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”On bended knee is no way to be free,
lifting up an empty cup, I ask silently

that all my destinations will accept the one that’s me
so I can breath...’

(Eddie Vedder - Guaranteed)

iii





Prologue

Despite several clinical tests that have been developed to qualita-
tively describe complex motor tasks by functional testing, these meth-
ods often depend on subjective interpretation, which make the assess-
ment results inconsistent and have limited accuracy in recall. Although
their predictive value is undeniable, cutoff values for clinical use merely
correspond with clearly visible instability or reduced ambulation. For
these reasons, the validity of such assessment essentially depends on
clinicians’ experience and training. Results might not have the precision
needed to objectively assess the effect of the rehabilitative intervention
or the decline over time in patients. A more detailed characterization is
required to fully capture the various aspects of motor control and per-
formance during complex movements of lower and upper limbs. The
need for objective, cost-effective and clinically applicable methods, as
well as methods that possess a high sensitivity and specificity, is hence
clear. Instrumented tests would enable quantitative assessment of per-
formance on a subject-specific basis, overcoming the limitations due to
the lack of objectiveness related to individual judgment, and possibly
disclosing subtle alterations that are not clearly visible to the observer.

Postural motion measurements at additional locations, such as lower
and upper limbs and trunk, may be necessary in order to obtain infor-
mation about the inter-segmental coordination during different func-
tional tests involved in clinical practice. With these considerations in
mind, this Thesis aims: i) to suggest a novel quantitative assessment
tool for the kinematics and dynamics evaluation of a multi-link kine-
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matic chain during several functional motor tasks (i.e. squat, sit-to-
stand, postural sway), using one single-axis accelerometer (SAA) per
segment, ii) to present a novel quantitative technique for the upper limb
joint kinematics estimation, considering a 3-link kinematic chain during
the Fugl-Meyer Motor Assessment and using one inertial measurement
unit (IMU) per segment. Traditional movement analysis systems, such
as stereo-photogrammetry and force plates, were used for validation
only.

With regard to the first aim of this Thesis, kinematics and dynam-
ics prediction techniques are based on the use of one SAA per segment.
A preliminary calibration allows the estimation of sensors position and
orientation and segment lengths. These parameters are then used to
predict the N -link chain kinematics during a squat motor task, ap-
plying a bi-directional low pass filter to the SAA outputs. Results
demonstrated the usability of the method, showing errors lower than
1° for the considered body-segments and suggesting the opportunity to
evaluate compensatory postural strategies in different functional tasks
in a easy and portable way. Dynamics prediction method is based
on the estimation of the subject-specific anthropometric parameters
during the sit-to -stand functional test. Considering the relationships
between kinematic and kinetic variables, dynamics of a N -link model
is well-known. Results confirmed the accuracy of the technique, show-
ing errors on predicted center of pressure equal to about 2cm during
the sit-to-stand test and 6mm during the postural sway test, using one
SAA per segment only. During sit-to-stand, also error on ankle joint
moment, about 10Nm, demonstrated the the usability of this instru-
mented test in the clinical practice.

Regarding to the second aim of this Thesis, the upper limb joint
kinematics estimation method, based on the use of one IMU per seg-
ment takes advantage by the application of a sensors fusion algorithm
based on an extended Kalman Filter to estimate segment orientations.
A preliminary IMU technical systems of reference alignment procedure,
using accelerometers and gyroscopes data only, allows the definition of

vi



a common global system of reference, neglecting the use of any mag-
netometers in the experimental set-up, which are typical affected by
disturbances due to the presence of iron in both clinical and domestic
environments. Shoulder and elbow joint angles are estimated after a
functional calibration of body-segment anatomical axes, showing mean
errors lower than 4° and confirming the accuracy of the technique.

The suggested methods could have several positive feedbacks from
clinical practice. In this perspective, the use of objective biomechan-
ical measurements in the context of the rehabilitation, provided by
inertial sensor-based technique, may help clinicians to: i) objectively
track changes in motor ability, ii) provide timely feedback about the
effectiveness of administered rehabilitation interventions, iii) enable in-
tervention strategies to be modified or changed if found to be ineffective,
and iv) speed up the experimental sessions when several subjects are
asked to perform different functional tests.
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Chapter 1

Human movement

assessment

1.1 Human motion analysis in rehabilita-

tion

Many different disciplines use motion analysis systems to capture
movement and posture of the human body. Basic scientists seek a better
understanding of the mechanisms that are used to translate muscular
contractions about articulating joints into functional accomplishment.

In the contemporary medicine the patient is the starting and end-
ing point of a circular path (see Figure 1.1). Clinicians are directly
in contact with the patient, but at the same time instrumentation as
support to the diagnosis and/or the therapy is adopted. Instrumental
human motion analysis can be adopted by the practitioners in order to
allow them to mostly concentrate on the therapy decision-making pro-
cess and to improve the knowledge about a specific biological system.
In fact, without the use of instrumental analysis, for example in the
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case of the musculo-skeletal system, physicians are not able to deeply
examine the biological systems from the anatomical and physiological
points of view only.

Figure 1.1: Schematic representation of the circular path describing con-

temporary medicine

Research initiative to define the effectiveness of rehabilitation have
seen a steady growth over the past decade. This growth has, for the
most part, been precipitated by advances in our understanding of mech-
anism of neuroplasticity and the exciting possibility for sensorimotor
rehabilitation to exploit this hitherto unrecognized potential. The ev-
idence of neuroplasticity in the adult brain has offered new hope to
those treating patients with long-term disability and underlines the in-
creasing interest in finding new and more effective ways to maximize
this potential. The field of rehabilitation research seen an exponential
escalation over the past twenty years. One reason for the increase in
the number of researchers is the realization and recognition that reha-
bilitation is an interdisciplinary undertaking. In addition to those with
professional rehabilitation backgrounds, investigators representing dif-
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ferent fields and including engineering, physiology, neuroscience, and
medicine, now identify themselves with rehabilitation [111].

An active collaboration between bioengineers and clinicians is nec-
essary in order to provide the engineer with the right information about
the clinical question to solve and, from the other side, to provide the
practitioner with the necessary knowledge about the optimal way of
using the technology. The application of instrumental motion analysis
on the rehabilitation field is based on several aspects, like the instru-
mentation adopted, the mathematical models, the algorithms, the data
processing. The combination of these elements determines the com-
plexity of the analysis system and at the same time its validity.

The characteristics of a motion analysis system have to be close
to the ones in clinical settings. For example the time required for
performing a clinical examination using a motion analysis system has
to be similar to the one spent during a normal routine examination
or, even, the time required for the motion analysis system must be
less than that, when the system is adopted as additional instrument
together with clinical evaluation scales.

Figure 1.2: Classification of the common motion capture systems
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Commercial optical systems (see Figure 1.2) are often considered as
a "gold standard" in human motion analysis. Although these systems
provide accurate position information (errors ≈1mm), there are some
important limitations. The most important factors are the high costs
and the limited measurement volume. The use of a specialized labora-
tory with fixed equipment impedes many applications, as monitoring of
daily life activities or assessment of workload in ergonomic studies. Re-
cently, the health care system trend toward early discharge to monitor
and train patients in their own environment. This has promoted a large
development of non-invasive, portable and wearable systems. The ad-
vent of Micro-Electro-Mechanical Systems (MEMS) technology allowed
systems based on inertial and magnetic sensors to be introduced in the
biomechanical community, thanks to their low costs, sizes, and power
consumption, overcoming some of the limitation related to commercial
optical systems, allowing the motion analysis outside the laboratory.

1.2 Inertial sensors

Inertial sensors use the property of bodies to maintain constant
translational and rotational velocity, unless disturbed by forces and
torques, respectively. The vestibular system, located in the inner ear,
is a biological 3D inertial sensor. It can sense the angular motion as
well as the linear acceleration of the ear, allowing to maintain balance
and to stabilize eye positions relative to the environment. MEMS units
are usually placed on each body-segment to be tracked.

The accelerometer is a sensor which converts a linear acceleration
into an electrical signal by a known relationship. A single-axis ac-
celerometer (SAA) consists of a mass, suspended by a spring in a hous-
ing (see Figure 1.3). Springs, within their linear region, are governed
by a physical principle knows as Hooke’s law. Hooke’s law states that a
spring will exhibit a restoring force which is proportional to the amount
it as been expanded or compressed. Specifically, F = Ksx0, where Ks

is the constant of proportionality between displacement x0 and force F.
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The other important physical principle is that of Newton’s second law
of motion, which states that a force operating on a mass M , which is
accelerated with an acceleration a, will exhibit a force with magnitude
F = Ma. This force causes the mass to either compress or expand
the spring under the constraint that F = Ma = Ksx0. Hence an ac-
celeration a will cause the mass M to be displaced by x0 = Ma

Ks
, or,

if we observe a displacement equal to x0, we known the mass has un-
dergone an acceleration equal to a = Ksx0

M . In this way, the problem
of measuring acceleration has been turned into one of measuring the
displacement of a mass connected to a spring, which is converted into
an electrical signal by the sensor. In order to measure multiple axes of
acceleration, this system needs to be duplicated along each of the re-
quired axes. Various MEMS geometries are available, of which the most
interesting uses the capacity effect for measure mass displacements.

Figure 1.3: A single-axis accelerometer consisting of a mass suspended by a

spring

The gyroscope is a sensor which converts an angular velocity into
an electrical signal by a known relationship. There are two broad cate-
gories: mechanical gyroscopes and optical gyroscope. The first mechan-
ical gyroscope was built by Foucault in 1852, as a gimbaled wheel that
stayed fixed in the space due to angular moment, while the platform
rotated around it (see Figure 1.4a). Mechanical gyroscopes operate on
the basis of conservation of angular momentum by sensing the change
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in direction of an angular moment. According to Newton’s second law,
the angular moment of a body will remain unchanged unless it is acted
upon by a torque. The fundamental equation describing the behavior
of the gyroscope is τ = dL

dt = d(Iω)
dt = Iα, where the vectors τ and L

are, respectively, the torque on the gyroscope and its angular moment,
the scalar I is its moment of inertia, the vector ω is its angular velocity,
and the vector α is its angular acceleration. Gimbaled and laser gyro-
scopes are not suitable for human motion analysis due to their large size
and high costs. Over the last few years, micro-machined inertial sen-
sors have become more available. Vibrating mass gyroscopes are small,
inexpensive, and have low power requirements, making them ideal for
human movement analysis. A vibrating element (vibrating resonator),
when rotated, is subjected to the Coriolis effect that causes secondary
vibration orthogonal to the original vibrating direction. By sensing
the secondary vibration, the rate of turn can be measured (see Figure
1.4b).

Figure 1.4: a) A conventional spinning wheel gyroscope, b) a vibrating mass

gyroscope consisting in a mass subjected to the Coriolis effect

The Coriolis force is given by Fc = −2M(ω ∧ v), where M is the
mass, the vector v is the momentary velocity of the mass relative to
the moving object to which it is attached, and the vector ω is the
angular velocity of that object. Various MEMS geometries are avail-
able, of which many use the piezo-electric effect for vibration exert and
detection.
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1.3 Inertial sensor- and model-based instru-

mentation of functional tests

The ability to observe and interpret measurements of human move-
ment has been the primary factors limiting growth of the rehabilitation
field. Future advancements in the study of human movement should
be discussed in the context of new technology and ways that this new
technology can be applied to the evaluation of musculoskeletal disease
and injury [2].

Over the last several centuries, there have been several fundamen-
tal advancements that have made a substantial impact on our under-
standing of the process of human movement. As instruments have
been developed to enhance our ability to observe human movement,
models have been used to develop information that cannot be directly
observed. Typically, models are an abstraction in the form of a phys-
ical construction governed by principles of physics and mathematics.
Models of biomechanical systems provide the basis for the seeking of
truth through application of physical laws. Borelli (1608–1679) [20] was
among the first to apply physical laws to the analysis of the locomo-
tion of animals. Borelli, in his classic work De Motu Animalum (1680),
recognized that complex biological structures could be reduced to sim-
plified constructs that facilitated the estimation of forces and patterns
of movement. Borelli’s work has been fundamental to the development
of biomechanical models and the study of human movement. In modern
times, the prediction of intersegmental forces and moments has been
extremely valuable in improving our understanding of the musculoskele-
tal system. The information from these studies should be applied to
fundamental clinical studies, and the same methodology should be used
for both the lower and the upper joints.

Skilled motor ability is based on the learner acquiring classes of
elemental motor behaviors, such as muscle or movement synergies, and
learning how to apply them in different combinations to accomplish
the desired motor task [144]. At the moment, clinical scales are usually
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administered to evaluate motor performance during several functional
tests, based on visual observation of joint angle motion to describe
alterations in coordination and movement pattern.

Despite several clinical tests that have been developed to qualita-
tively describe complex motor tasks by functional testing, these meth-
ods often depend on subjective interpretation, which make the assess-
ment results inconsistent and have limited accuracy in recall [132]. Al-
though their predictive value is undeniable, cutoff values for clinical
use merely correspond with clearly visible instability or reduced am-
bulation. For these reasons, the validity of such assessment essentially
depends on clinicians’ experience and training. Results might not have
the precision needed to objectively assess the effect of the rehabilita-
tive intervention or the decline over time in patients. A more detailed
characterization is required to fully capture the various aspects of mo-
tor control and performance during complex movements of lower and
upper limbs. The need for objective, cost-effective and clinically appli-
cable methods, as well as methods that possess a high sensitivity and
specificity, is hence clear. Instrumented tests would enable quantitative
assessment of performance on a subject-specific basis, overcoming the
limitations due to the lack of objectiveness related to individual judg-
ment, and possibly disclosing subtle alterations that are not clearly
visible to the observer.

By way of example, elderly patients may use different compensatory
strategies to achieve successful transition, such as a deviation from nor-
mal motion. Deviations are due to several types of motion irregularities,
among which sway is the most frequently encountered. Sway consists
in repetitive, quick changes in motion orientation due to a temporary
loss of balance or to insufficient strength in lower limbs. The subtle
deviation from normal motion could not be seen by the clinician who
is administering typical functional tests. These considerations suggest
that further quantitative investigations of postural transition with other
additional parameters have the potential to provide important predic-
tive information about the status of the sensorimotor system of the
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patient.
Actually, traditional clinical balance tests, as the Romberg Test

[96], the Berg Balance Scale [140], the Balance Evaluation System
Test [85], are dependent on subjective scores related to the motor task
accomplishment, while traditional FP-based [157, 184] or active bal-
ance system-based [187] methods, focused on CoP displacement and
neglected the biomechanics of the single body-segments [164]. Further-
more, other static and dynamic balance test widely used to assess pa-
tient’s mobility abilities (e.g. traditional community walk tests, as the
Walking Distance, the Walking Speed, the Functional Ambulation, the
Fugl-Meyer Motor Assessment [61], the Tinetti Test [185]) are based
on visual observation of motion. The relative balance improvement or
deterioration of a subject, during static or postural transitions tests,
can be of interest in several case of the clinical setting:

• neurodegenerative disorder that leads to a progressive decline in
motor function (e.g. Parkinson disease [122, 150], diabetic neu-
ropathies [189], cerebellar diseases [49]),

• deficit in postural control [54, 115, 165],

• impairments after stroke [106, 130],

• risk of falls evaluation that might cause bone fractures [21, 51,
73, 121, 177, 220],

• sport medicine pathologies [169],

• reductions in lower-extremity strength [26, 37],

• rehabilitation programs for the postural training on ankle, knee
and hip joint after a traumatic event [83],

• gerontology studies for the aging and balance relationship [103,
120, 154, 211].

Only in recent years, functional tests as the Timed Up and Go and
the Sit-to-Stand or Stand-To-Sit, have been marked by advances in
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technology, specifically, in wearable, small, light-weight body-fixed sen-
sors. The Timed Up and Go (TUG) is a well-known clinical test of
mobility. In older adults and in other populations such as patients
with Parkinson’s disease or stroke, longer TUG times have been associ-
ated with impaired mobility and an increased risk of fall [12, 142, 159].
TUG duration is also sensitive to therapeutic interventions, for exam-
ple in patients with Parkinson’s disease [7, 16]. The predecessor of the
TUG was the Up and Go Test, introduced by Mathias et al. in 1986
[125]. In this version, multiple components of the test are scored by
an observer. However, to enhance widespread usability and diminish
the subjective nature of scoring, Podsiadlo and Richardson introduced
the timed version of the test [159]. In this popular version, the single
outcome of the test is its duration: the time it takes to stand up from a
chair, walk 3 m, turn around, return, and sit down again. Despite en-
hancing the objectivity of the test, this timed version does not capture
subtle differences in test performance. Since Mathias introduced the Up
and Go Test more than two decades ago, published studies which have
instrumented the TUG or portions of it using wearable devices have
reported intriguing and promising results. For example, Marschollek
et al. [124] placed a tri-axial accelerometer on the lower back to as-
sess group differences in the TUG between fallers and non-fallers in the
geriatric population. They investigated acceleration parameters related
to the walking portion of the TUG, rather than to the Sit-to-Stand or
Stand-To-Sit components. Similarly, Gillian et al. [70] examined dif-
ferences in the walking portion of the TUG in healthy older adult and
patients with cognitive impairment. Ganea et al. [67] used an inertial
sensor on the lower trunk comprised of 1 gyroscope and 2 accelerometers
to assess the dynamic complexity (estimated by the fractal dimensions
of an acceleration–angular velocity plot) of the Sit-to-Stand movement
in frail elderly subjects. Using a gyroscope, Najafi et al. [142] eval-
uated the performance of the Sit-to-Stand and Stand-To-Sit tasks of
two groups of elderly subjects (with and without fall risk) by applying
wavelet transform methods and calculating shifting duration related pa-
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rameters. Similarly, Bidargaddi et al. [18] developed a wavelet-based
algorithm for detecting and calculating the durations of Sit-to-Stand
and Stand-To-Sit transitions from the signal vector magnitude of a
measured acceleration signal. The algorithm was tested on waist worn
accelerometer data collected from young subjects as well as geriatric pa-
tients. In a small, pilot study, Giansanti et al. [69] used a sensor unit
which included 3 mono-axial accelerometers and 3 rate gyroscopes on 5
control subjects and 3 early Parkinson’s disease patients who performed
the Sit-to-Stand in 3 different chair height conditions. They derived
peak acceleration and timing parameters and were able to discriminate
between the different Sit-to-Stand conditions. The existing literature
suggests that quantification of the TUG may be beneficial. However, to
our knowledge, body-fixed sensors devices have not yet been applied to
systematically assess the TUG transitions in patients with PD. Weiss
et al. [200] demonstrated, in a recent study, the potential of using an
accelerometer to measure TUG and the Sit-to-Stand transitions perfor-
mance in order to detect and quantify subtle differences in mobility and
function, not be readily quantified by simple visual analysis, to identify
Parkinson’s disease, to document disease progression, and to asses the
response and benefits to different therapeutic interventions. Palmerini
et al. [150] presented an accelerometer-based approach to quantify pos-
tural impairments in Parkinson’s disease, easier than the conventional
protocol with force plates, which are more expensive and non-portable,
focusing on the early-mild stage of the disease, where accelerometers
have already proved their usefulness in detecting impaired anticipatory
postural adjustments [123] and deficits in gait and turning [215]. Al-
though all these methods take advantage by the use of wearable devices
in order to obtain quantitative measures of mobility performance, they
neglect the assumption of a biomechanical model to describe to physical
lows that are typical of human body-segments movements.

The lack of objective measures of clinical tests is also clear, for in-
stance, in the context of typical functional evaluation of hemiparetic
upper limb in patient following stroke. Assuming that neurological in-
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jury leads to the loss of skilled motor behavior, motor relearning would
depend on the reacquisition of such elemental motor patterns (recov-
ery) or, in the absence of reacquisition, adaptation of remaining (com-
pensation) or integration of alternative (substitution) motor elements.
Motor scales that assess impairments (Body Functions/Structure level,
see Figure 1.5) rather than disability (Activity level, see Figure 1.5)
cannot make the distinction between the recovery of elemental motor
patterns, present before the injury, or the motor compensation resulting
from the adaptation of remaining motor elements, and cannot provide
an appreciation of the movement quality [99, 111].

Figure 1.5: Integrated model of the rehabilitation cycle incorporating the

World Health Organization’s International Classification of Functioning, Dis-

ability and Health (WHO-ICF) model. Image is adapted from [172]
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This lack concerns about the extent to which rehabilitative interven-
tions provide improvements in reduction of impairment among the pa-
tients. Indeed, motor compensation in the upper limb can include the
use of movement patters that incorporate trunk displacement and rota-
tion, scapular elevation, shoulder abduction and internal/external rota-
tion [109, 166]. The use of increased trunk movement to assist arm and
hand transport [32, 190], and to aid in hand positioning/orientation for
grasping [135], are example of adaptive compensatory strategies. The
degree of motor compensations is also related to the severity of the
hemiparesis, conditioning the appropriate interventions.

At the Body Function/Structure level, the emphasis is on the qual-
ity of movement regardless of movement outcome or task accomplish-
ment. Recovery at this level would be characterized by the reappear-
ance of movement patterns and by a decrease in spasticity or by a
reduction in trunk displacement during a reaching or pointing move-
ment. Adaptive compensation at this level would be characterized by
the appearance of alternative movement patterns during the accom-
plishment of a task. Substitutive compensation would reflect the use
of different effectors to replace lost motor elements. Numerous valid
and reliable clinical scales measure impairments at this level. Scales
such as the Modified Ashworth Scale [19] and the Composite Spasticity
Index [108] document the presence or absence of resistance to passive
range of motion associated with spasticity. The motor deficit may be
quantified in terms of range of active joint motion and muscle strength
as the ability of the patient to perform movements of individual joints
of group of adjacent joints. Scales such as the Fugl-Meyer Assessment
Scale [61], the Chedoke-McMaster Stroke Scale [74] and the Reaching
Performance Scale [110] measure upper limb impairment at the Body
Function/Structure level. Although these scales may offer the clini-
cians an appreciation of impairments, more detailed kinematic analysis
of motor patterns during the performance of functional tasks would
provide even more relevant information about movement patterns and
motor compensation.
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At the Activity level, recovery requires that the task is performed us-
ing the same end effectors and joints of the movement patterns typically
used by non-disabled individuals. Compensation often takes the form
of substitution and would be noted if the patients were able to accom-
plish the task using alternative joints or end effectors. Most evaluation
at the Activity level neither specify how the task is accomplished nor
which compensatory movements were used in place of motor patterns
observed in non-disabled individuals. Example of scales that measure
function and not motor patters are the Barthel Index [86], the Box and
Block Test [126], the Frenchay Arm Test [195], the Jebsen Taylor Hand
Function Test [90], the Motricy Index [197], the Action Research Arm
Test [214], the TEMPA Test [44]. Difficulties arise in interpretation
of studies that use such functional tests to indicate recovery because
scores on these tests may improve either when the intervention results
in improvements in motor patterns or in increasing compensation, and
the distinction between them is not made. An example of a relative
new scale that attempts to incorporate both measures of task success as
well as movement quality during task accomplishment is the the Wolf
Motor Function Test [209].

In this perspective, the use of objective biomechanical measure-
ments in the context of the rehabilitation, provided by inertial sensor-
based technique, may help clinicians: i) to objectively track changes in
motor ability following neurological injury, ii) to provide timely feed-
back about the effectiveness of administered rehabilitation interven-
tions, iii) to enable intervention strategies to be modified or changed if
found to be ineffective, and iv) to speed up the experimental sessions
when several subjects are asked to perform different functional tests.

1.4 Outline of the Thesis

In Chapter 2 a quantitative assessment tool will be provided in
order to estimate body sway angles of a 2D multi-link kinematic chain,
using a single-axis accelerometer per segment. To evaluate the method,
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the algorithm for angular displacement estimation will be tested on a
mechanical arm, modeled by an inverted pendulum, and on a sub-
ject performing a squat task, considering a 3-link biomechanical model.
Reference systems (encoder and stereo-photogrammetric system) will
be used to calibrate the sensors position and orientation and to validate
results. The presented method may be applied to different balance as-
sessment functional tests and may be used for kinematic chains of any
number of link. In Chapter 2 it will be used to objectively evaluate
squatting exercises, often performed to characterize the bilateral lower-
extremity kinematics, and in the next Chapters to assess sit-to-stand
and postural sway angular kinematics, providing the usability of this
instrumented functional test in the clinical practice.

In Chapter 3 a functional subject-specific 2D evaluation tool will
be proposed in order to estimate body-segment anthropometric pa-
rameters during a repeated sit-to-stand motor task, using a single-axis
accelerometer per segment and a force plate. After this preliminary
estimation, a quantitative assessment tool will be provided in order to
predict the ground reaction forces, the centers of pressure and mass, and
the net joint moments of a subject performing a repeated sit-to-stand
task, considering a 2D 3-link biomechanical model and using a single-
axis accelerometer per segment (force plate will be used for validation
only). The method for the instrumentation of the repeated-sit-to-stand
functional test, will provide objective kinematic and dynamic informa-
tions during postural control, risk of fall, lower-extremity strength, im-
pairment after stroke evaluations. The same method may be applied
to evaluate kinematics and dynamics during different functional tests,
and may be used for kinematic chains of any number of link.

In Chapter 4 the quantitative assessment tool to estimate body
sway angles (presented in Chapter 2) will be applied to the voluntary
postural sway functional test, in order to provide information about
the kinematic strategies adopted by a subject during a self-imposed
perturbed stance. A single-axis accelerometer per segment will be used
(stereo-photogrammetric system will be used for validation only), and
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three biomechanical models, from 1- to 3-link, will be evaluated in or-
der to describe as well as possible the sway movement. In addition, the
quantitative assessment tool to predict kinematic and dynamic vari-
ables (presented in Chapter 3) will be applied to the voluntary postu-
ral sway functional test in order to predict the ground reaction forces
and the centers of pressure and mass of the subject, considering a 2D
3-link biomechanical model and using a single-axis accelerometer per
segment (force plate will be used for validation only). The presented
method may be suitable for the response strategy evaluation to unex-
pected perturbation even if it will be evaluated on a self-induced sway
only. An instrumented postural sway functional test will provide objec-
tive information to evaluate the balance control in several application
of the clinical practice.

In addition to the accelerometers, in Chapter 5 gyroscopes will be
used for the estimation of the upper limb kinematics, considering a 3D
3-link biomechanical model. A sensor consisting of a tri-axes accelerom-
eters and a tri-axes gyroscope will be placed to each body-segment, and
a Kalman Filter-based algorithm will be computed in order to estimate
the sensors angular kinematics. A new procedure will be introduced
in order to align the technical system of reference of all sensors and to
obtain a common global system of reference, neglecting the use of any
magnetometer in the experimental set-up. Moreover, a quantitative
assessment tool will be provided in order to estimate upper limb joint
kinematics, considering a functional procedure to define body-segments
anatomical axes based on accelerometers and gyroscopes data. Stereo-
photogrammetric system will be used for validation only. In order to
support the usability of this method in the clinical practice, the Fugl-
Meyer motor assessment (for the upper extremity) will be performed
by the subject. The instrumentation of some of its functional tasks
will provide an objective evaluation of motor performance in patients
following a stoke, and may be considered also for functional evaluation
and rehabilitation after different neurological and orthopedic injuries.
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Chapter 2

Angular kinematics

evaluation during the

Squat functional test

Postural motion measurements at additional locations, such as
lower and upper limbs and trunk, may be necessary in order to ob-
tain information about the inter-segmental coordination during differ-
ent functional tests involved in clinical practice. The main aim of this
Chapter is to provide a quantitative assessment tool of body sway angles
of a multi-link kinematic chain in the sagittal plane, using one single-
axis accelerometer (SAA) per segment. A preliminary calibration, us-
ing SAAs and a reference system (encoder or stereo-photogrammetry),
allows the estimation of sensors position and orientation and segment
lengths. These parameters are then used to predict the chain kine-
matics using the SAAs only. To evaluate the method, the algorithm
is first tested on a mechanical arm equipped with a reference encoder.
A general method for estimating the kinematics of an x-link chain is
also provided. Finally, a three-link biomechanical model is applied to
a human subject to estimate the joint angles during squat tasks; a
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stereo-photogrammetric system is used for validation. The results are
very close to the reference values. Mean descriptive (predictive) root
mean squared error (RMSE) is 0.15° (0.16°) for the inverted pendu-
lum, and 0.39° (0.59°) for the shank, 0.82° (1.06°) for the thigh, 0.87°
(1.09°) for the HAT (head-arm-trunk) in the three-link model. The
mean value of RMSE without calibration is 1.02° for the inverted pen-
dulum, and 11.01° (shank), 11.39° (thigh) and 12.21° (HAT) in the
three-link model. These results suggest that, after the calibration pro-
cedure, one SAA per segment is enough to estimate 2D joint angles
accurately in a kinematic chain of any number of links, providing the
usability of this instrumented test in the clinical practice [8].

2.1 Introduction

Several authors have used accelerometers and/or rate gyroscopes to
study balance in unperturbed upright stance [94, 127, 136], to estimate
the gait kinematic parameters [118, 128], and to evaluate joint angles
during specific tasks [35, 41, 53, 58, 112, 168, 182].

In the balance studies, Kamen et al. [94] used two Single-Axis Ac-
celerometers (SAAs), taped to the back (at S2 level) and forehead,
to quantify postural sway, evaluating the Root Mean Square Error
(RMSE) and frequency spectrum of the accelerations in the Anterior-
Posterior (AP) direction. Moe-Nilssen [136] used a tri-axial accelerom-
eter placed on the trunk to investigate whether body sway during quiet
standing could differentiate between young and elderly healthy sub-
jects in different sensory conditions. In the study of Mayagoitia et al.
[127], the authors compared the effectiveness of tri-axial accelerometer,
placed at the back of the subject, and Force Plate (FP) measurements
in distinguishing between different standing conditions. In the gait
studies, Mayagoitia et al. [128] used four SAAs and one gyroscope per
body segment to obtain the kinematics (shank, thigh and knee angles)
in the sagittal plane. Their system was validated by an optoelectronic
system, and the ratio between the mean RMSEs and the mean peak-to-
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peak values was 2-5%. Lyons et al. [118] used two SAAs to distinguish
between static and dynamic activities and to detect the basic postures
of sitting, standing and lying. In the evaluation of the inclination an-
gles of trunk and thigh in posture, the inertial term was neglected.
The effect of this decision will be further discussed in the definition
of our model. In joint angle evaluation studies, Liu et al. [112] used
two tri-axial accelerometers to estimate the flexion/extension and ab-
duction/adduction angles of the thigh segment; the RMSE of the thigh
segment orientation was between 2.4° and 4.9° during normal gait, com-
paring accelerometric and Stereo-Photogrammetric (SP) data. Cooper
et al. [35] estimated knee flexion/extension angles with RMSEs from
0.7° up to 3.4° using two inertial measurement units (i.e., a combina-
tion of gyroscopes and accelerometers). Similar results for the 3D knee
joint angle measurements were obtained by Favre et al. [58] with the
same instrumentation. O’Donovan et al. [53] found RMSE between 0.5

and 4 degrees for 3D lower limb joint angles estimation during static
and dynamic tasks by using tri-axial accelerometers, gyroscopes and
magnetometers. Dejnabadi et al. [41] showed RMSEs of 1° and 1.6°
for shank and thigh segments, respectively, in the sagittal plane using
a combination of accelerometers and gyroscopes.

Most of these methods usually require at least two inertial sensors
per segment. In contrast, the aim of this study is to develop an alter-
native method using (only) one SAA per segment aligned with the AP
axis of the anatomical reference frame. Off-line evaluation of sagittal
plane kinematics is performed through a model-based approach.

To validate the method, three models are used:

• Inverted pendulum model : experimental tests using a mechanical
arm equipped with an absolute encoder and a SAA.

• N-link model : a simulation shows the possible extension of the
algorithm to a kinematic chain with N links.

• Three-link biomechanical model : an experimental session is con-
ducted with a subject during squat tasks.
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A calibration for the inverted pendulum and the 3-link model is
provided to give the position and the orientation of the sensors and the
anthropometric parameters of the subject (lengths of the shank and the
thigh). These parameters are used, together with accelerometric data,
to predict the joint angles which are then compared to the encoder
outputs (for the inverted pendulum model) or to the SP outputs (for
the 3-link biomechanical model).

2.2 Methods and Materials

2.2.1 Inverted Pendulum Model

An inverted pendulum model (1 degree of freedom) is initially an-
alyzed. First, the kinematic equation of the model is shown and the
estimation algorithm of the angular sway is provided. Next, in order
to validate the method in a simple set-up, a mechanical arm equipped
with an absolute encoder and a SAA is used and the sway angle is
estimated after a calibration.

Inverted Pendulum Model: the Angle Estimation Method

The SAA is placed at height h from the pivot point P, with the sen-
sitive axis orthogonal to the longitudinal axis of the inverted pendulum
(see Figure 2.1a). The accelerometer output a(t) can be expressed, in
the continuous-time domain, as the sum of two terms, an inertial contri-
bution depending on the angular acceleration θ̈(t), and a gravitational
term depending on the sway angle θ(t):

a(t) = hθ̈(t)− g sin θ(t) (2.1)

where g is the gravitational acceleration.
Several authors [97, 118, 127, 128, 136, 203] used an inverted pen-

dulum and a Quasi-Static (QS) model in which the inertial term in
Equation (2.1) is neglected, so the accelerometer output can be ap-
proximated as a(t) ≈ −g sin θ(t). This approximation is overcome by
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Figure 2.1: a) Inverted Pendulum Model, b) Mechanical Inverted Pendulum

the angular sway estimation algorithm presented in this Chapter, which
is based on the dynamic model shown in Equation (2.1). First, Equa-
tion (2.1) can be rewritten, in the discrete-time domain, as the sum of
a linear (L) and non-linear (NL) term:

a(k) = hθ̈(k)− gθ(k)︸ ︷︷ ︸
Linear term

+ g(θ(k)− sin θ(k))︸ ︷︷ ︸
Corrective non-linear term

= aL(k) + aNL(k)

k = 1, . . . , n

(2.2)

where n is the number of samples.

Under the approximation of small angles, (sinθ(k) ≈ θ(k)), the non-
linear term is negligible, Equation (2.2) is linearizable and the linear
model transfer function is:

H(s) =
θ(s)

a(s)
=

1

hss − g
(2.3)

Equation (2.3) clearly shows that the system is unstable, because
one of the roots of the denominator is positive. We refrain in this
thesis from discussing the inverted pendulum model stabilization and
focus instead on the angular sway estimation. This can be solved in
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the frequency-domain rewriting Equation (2.3) as the product of two
first-order low-pass filters (FF , forward filter; BF , backward filter):

H(jω) =
θ(jω)

a(jω)
= −1

g

1

1− jω
ωc︸ ︷︷ ︸

BF

1

1 + jω
ωc︸ ︷︷ ︸

FF

(2.4)

ωc =

√
g

h

The cutoff frequency of the two filters equals the corresponding natural
frequency of the system:

fc =
1

2π

√
g

h
(2.5)

which is related to the distance h between the pivot point and the
origin of the reference system of the inertial sensor. Equation (2.5)
represents the frequency response of a second-order low-pass filter with
zero-phase. Therefore, the angular sway can be computed through the
bi-directional filtering of the accelerometric signal as follows (using the
filtfilt function in Matlab):

θ(jω) = −1

g
BF (jω)FF (jω)a(jω) (2.6)

The corrective non-linear term takes into account the non-linearities
due to large angular excursions. The problem of evaluating the non-
trivial, large angular displacements in Equation (2.2) is solved using an
iterative methods with the following steps:

1. the angle vector θ = [θ(1) . . . θ(n)] is initialized, neglecting the
nonlinear and the inertial terms, as−a/g, where a = [a(1) . . . a(n)]

is the accelerometer output.

2. the corrective nonlinear term aNL is evaluated from Equation
(2.2) by substituting the angle vector θ.

3. the linear acceleration vector is estimated as aL = a − aNL and
new samples are added at the beginning and at the end of the
vector using the Symmetric Padding technique [178] in order to
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neglect the transient effect after filtering. The length of the two
extensions has been chosen equal to six times the time constant,√
h/g, of the filter.

4. the angle vector θ is estimated by filtering the acceleration aL

through the bidirectional low-pass filter, and the added extensions
are removed.

5. the residual error at step j is estimated as e(j) = θ(j) − θ(j−1).

6. the cost function is evaluated as f (j) = e(j)
(
e(j)
)T

Iterations 2-6 stopped when f (j) < ε0, where ε0 = 10−25 is the chosen
threshold. Usually, the method converges in 10-15 steps.

Mechanical Inverted Pendulum

To test the method, an aluminum rectangular link is used as an
inverted pendulum driven by hand to sway with a fixed pivot point.
The frequency content of the angular sway is about 2Hz. Five trials are
performed. The mechanical arm is equipped with an absolute encoder
(Gurley Precision Instrument, mod. 7700, resolution 19 bit) and a
tri-axial accelerometer (Dynaportr Minimod, McRoberts, range ±2g,
resolution ±1mg) placed at height h = 0.31m from the pivot point, P
(Figure 2.1b). For the present study, only the accelerometer output
related to the axis orthogonal to the mechanical arm is acquired at
100Hz sampling rate.

Unlike the ideal condition of the mathematical model, the placement
of the sensor on the mechanical link potentially introduces some errors
due to the non-orthogonality of the sensitive axis of the SAA to the
segment. This effect is even more evident in the human body segments,
where the soft tissue between the bone and the skin affects the ideal
orthogonality of the SAA sensitive axis. Equation (2.1) is modified by
taking into account the projections of the tangential, centripetal and
gravity accelerations on the sensitive axis, in order to quantify this
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undesired effect, as follows:

a(k) = hθ̈(k) cosβ − hθ̇2 sinβ − g sin(θ(k)− β)

k = 1, . . . , n (2.7)

where the angle β describes the SAA non-orthogonality (see Figure 2.1b).
Preliminary calibration is required to evaluate the two geometric

parameters h and β. In the calibration trial the encoder output, θenc,
is used as reference. This algorithm estimates the parameter vector
p = [h, β] through a least-squares approach by minimizing the cost
function f (j) = e(j)

(
e(j)
)T

, where e(j) = θ(j)enc − θ
(j−1) is the residual

error at step j. The angle vector θ is estimated through the iterative
algorithm previously described.

In order to test the robustness of the calibration, the two parameters
are estimated for each trial and then their mean values are used to
predict the angular sway of the inverted pendulum using the SAA;
this prediction is compared to the encoder output. Angular RMSE
is evaluated both in the calibration and prediction trials. In order
to demonstrate the advantage of the angle estimation method with
respect to the QS model, the encoder output is compared with the
angular sway approximated as θ ≈ β + g arcsin(a/g), neglecting the
inertial terms θ̇ and θ̈. RMSEs between QS and reference angles are
evaluated and the percentage of time in which the QS model is valid is
provided. In fact, according to Equation (2.4), if the frequency content
of the accelerometer output is below the frequency fmax = fc

√
e%/100,

which implies an angle percentage error less than e% (e.g., h = 1m,
e% = 5%, fmax = 0.11Hz), the QS model approximation is valid; if the
frequency content exceeds fmax significantly, the accelerometer output,
in absolute value, can reach the gravitational acceleration and the QS
model provides imaginary angular values.

2.2.2 Multi-link Model

A kinematic chain model (N degrees of freedom) is analyzed. First,
the kinematic equations of the model are described and the outputs
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of the N accelerometers are simulated. The angular sway of each link
is evaluated with the iterative method presented in the Section 2.2.1.
The experimental validation of the model is then performed, after a
calibration trial in a movement analysis laboratory, on a subject during
squat tasks; the human body is assumed to be a 3-link model.

N-link Model

A continuous curve, with a fixed point in the joint ankle, is modeled.
The curve can be discretized with any finite number of links, as shown
in Figure 2.2. In this first simulation phase, a linear array of N =

40 SAAs, equally spaced with li = 2cm(i = 1, . . . , n) (Figure 2.2), is
assumed. The N angular trends are then simulated by a superposition
of sinusoidal functions.

Figure 2.2: Linear array of SAAs

The output of the i-th accelerometer is obtained from Equation
(2.2), adding the projection on the measurement axis of the accelera-
tions, axi and a

y
i , at the lower joint. These two contributions can be eval-

uated considering the second derivative of the lower joint position with
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respect to the pivot point (e.g., for the first segment [l1 sin θ1, l1 cos θ1],
and for the second segment [l1 sin θ1 + l2 sin θ2, l1 cos θ1 + l2 cos θ2]).
Therefore, by simple geometric considerations, the acceleration of the
i-th joint will be given by the recursive expressions:

axi (k) = axi−1(k) + li−1
d2[sin θi−1(t)]

dt2

∣∣∣
t=kT

≈ axi−1(k) + li−1
[sin θi−1(k+1)−2 sin θi−1(k)+sin θi−1(k−1)]

T 2

and

ayi (k) = ayi−1(k) + li−1
d2[cos θi−1(t)]

dt2

∣∣∣
t=kT

≈ ayi−1(k) + li−1
[cos θi−1(k+1)−2 cos θi−1(k)+cos θi−1(k−1)]

T 2

for k = 1, . . . , n and i = 1, . . . , N , where T is the sample time and
li−1 is the length of the (i-1)-th segment (it is assumed that ax,y0 = 0,
l0 = 0).

Therefore, the simulated i-th accelerometer output is expressed as:

ai(k) = hiθ̈i(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N (2.8)

In order to simulate the accelerometers output, a random Gaussian
noise (zero-mean, std=0.01) is added to each of the simulated signals
expressed in Equation (2.8). The same iterative method described in
Section 2.2.1 allows the evaluation of the time-dependent snake-like
profile, by summing and subtracting the linear gravitational contribu-
tion gθi(k) in Equation (2.8). In this case, the non-linear term of the
acceleration, used in step-2 of the estimation method, is defined as:

aNL,i(k) = gθi(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N

(2.9)

The estimated profile of the kinematic chain is compared to the
simulated profile.
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Three-Link Biomechanical Model

In the second experiment, the method is tested on one subject (fe-
male, 27 years-old, weight 59kg, height 167cm), who participated after
giving her informed consent. In order to estimate the body sway in the
sagittal plane during squat tasks [173], a 3-link biomechanical model is
introduced.

Figure 2.3: Experimental testing set-up

The feet are supposed to be rigidly connected to the ground; the
ankle, knee and hip joints are represented as three hinge joints and the
shank (segment 1, length l1 = 0.40m), the thigh (segment 2, length
l2 = 0.49m) and the Head-Arms-Trunk (HAT, segment 3) are modeled
as three rigid segments. The subject is asked to perform a repetition
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of squat exercises for 30 seconds with her arms folded, keeping her
movement in the AP direction. Four trials are performed. In order to
estimate the shank, thigh and HAT angles with respect to the vertical
line, three tri-axial accelerometers (Dynaportr Minimod, McRoberts,
range ±2g, resolution ±1mg) are placed at measured heights h1 =

0.30m, h2 = 0.29m, h3 = 0.29m, with respect to the ankle, knee and
hip joint, respectively, in order to minimize the skin artifact effect. Each
of the three sensors is placed on a rhomboid rigid plate and mounted
on the skin at the lateral side of the thigh, shank and HAT by using
three hook-and-loop fastener belts, as shown in Figure 2.3. For the
present study only the AP accelerometer outputs are acquired at a
100Hz sampling rate.

Figure 2.4: Three-link biomechanical model

Four reflective markers are placed on the vertices of each plates,
and a SP system (SMART eMOTION, BTS) is used for calibration
and validation. SP and accelerometer data are low-pass filtered (zero-
phase) at a cut-off frequency of 3Hz. The 12 markers are projected onto
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the plane which best approximates the point cloud in the observation
interval, and the three reference angles are evaluated through the 2D
Singular Value Decomposition (SVD) method [6, 76]. The SP angles are
related to the first acquisition frame which defines the cluster model.

As explained in Section 2.2.1, the sensors on the skin surface in-
troduce potential errors, due to non-orthogonality of the measurement
axis of the SAAs to the body segment anatomical axis. In order to
model this undesired effect, Equation (2.8) is modified by taking into
account the projections of the tangential, centripetal, gravity and lower
joints acceleration on the measurement axis. The method proposed in
this paper provides angles from accelerometric measures with respect
to the vertical, rather than from the first acquisition frame as for SP
data. In order to take this fact into account, Equation (2.8) is modified
as follows:

ai(k) = hiθ̈i(k) cosβi − hiθ̇2i (k) sinβi − g sin (θi(k)− βi + θi0) (2.10)

+axi (k) cos (θi(k)− βi + θi0)− ayi (k) sin (θi(k)− βi + θi0)

k = 1, . . . , n

i = 1, . . . , 3

where the angles βi describe the SAAs non-orthogonality (see Fig-
ure 2.4) for each segment, and the angle θi0 = −ai0/g is related to
the first acquisition frame, in which the inertial and non-linear terms
are negligible.

The parameters hi, βi and lm (m = 1, 2) are estimated by the cal-
ibration algorithm using the least-squares minimization, as in Sec-
tion 2.2.1; the SP angles are used as reference values. The angle vec-
tors θi = [θi(1) . . . θi(n)] are estimated through the iterative algorithm
described in Section 2.2.1. In order to test the robustness of the cali-
bration, the 8 parameters are estimated for each trial; the mean values
of the parameters are then used to predict the subject’s angular sways
using the three SAAs. The estimated angles are compared to the SP
outputs by evaluating the RMSE.
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2.3 Results

2.3.1 Mechanical Inverted Pendulum Kinematics

The calibration algorithm, presented in Section 2.2.1, provides two
parameters (mean±std): the distance h = 0.31 ± 0.00m, of the ori-
gin of the sensor reference system to the pivot point P (the measured
distance equals 0.30m), and an angle β = −1.17 ± 0.15°, related to
the non-orthogonality of the measurement axis of the SAA to the link.
These two parameters are used along with the SAA data to predict
the angles which are compared with the encoder angles. Calibration
and prediction RMSEs and Peak-to-Peak (P-P) ranges are reported in
Table 2.1, along with the results obtained with the QS model and the
percentage of time in which it is valid.

Table 2.1: RMSEs and P-P range for the mechanical inverted pendulum

The mean ratio between the RMSEs and the P-P ranges in descrip-
tion and prediction is approximately 0.12%. The mean ratio between
the RMSEs and the P-P range obtained without calibration, by ne-
glecting the parameter β and using the measured parameter h, is about
0.82% and the mean value of RMSEs is 1.02°. The use of the calibra-
tion parameters therefore allows a less biased estimation. Table I also
shows that the mean angular error of the QS model is very high, about
25°, due to the high frequency sways.
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2.3.2 Multi-link Kinematics

N-link model kinematics

The linear array of N = 40 SAAs, equally spaced with li = 2cm(i =

1, . . . , N), is simulated. The snake-like profile for 3 different frames is
shown in Figure 2.5, comparing the simulated and estimated profiles:
the continuous curve represents the simulated N -link chain, the points
of the silhouette are the estimated joint positions, with respect to the
pivot point, between two consecutive links. The positions of the joints
are evaluated using the estimated angles and segment lengths.

Figure 2.5: Snake-like profile for a 40-link kinematic chain

The angular RMSE between the sway angle of each link and the
reference angle is evaluated. The values of the RMSE and P-P range,
averaged out the N -link, are (mean±std) 0.37±0.16° and 70.42±10.19°,
respectively. The Euclidean distance between the joint positions of the
estimated and simulated N -link is (mean±std) 0.3± 0.1mm.
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Three-link biomechanical model kinematics

The mean values and standard deviations of the calibration pa-
rameters for the 4 trials, estimated by using the accelerometer output
and the SP data as reference, are (mean±std) h1 = 0.31 ± 0.01m,
h2 = 0.32±0.00m, h3 = 0.30±0.07m, l1 = 0.51±0.06, l2 = 0.52±0.06

and β1 = −10.96± 0.21°, β2 = −11.83± 0.64° and β3 = −13.17± 0.4o.
These parameters are used to predict angular sway by using the three
SAA outputs. The angles obtained are then compared with the SP
data. Calibration and prediction RMSEs and P-P ranges are reported
in Table 2.2 for shank, thigh and HAT angles, respectively.

Table 2.2: RMSEs and P-P range for the subject during squat tests

The ratios between the mean values of RMSEs and the P-P ranges
are 1.5%, 1.7%, 1.9% for shank, thigh and HAT angles, respectively, for
the calibration trials, and 2.3%, 2.1%, 2.4% for the prediction trials.
The three angular patterns for stereo-photogrammetry and accelerom-
etry data are reported in Figure 2.6 for one prediction trial. The mean
RMSEs obtained without calibration, thus neglecting the parameters
βi and using the measured parameters hi and li, are 11.01°, 11.39° and
12.21° for shank, thigh and HAT, respectively.
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Figure 2.6: Shank, thigh, HAT angular patterns in prediction

2.4 Discussion

This Chapter suggests a novel method based on the use of one SAA
per segment, which provides the accurate estimation of 2D joint angles,
taking into account the inertial term of the accelerometer output.

Several authors used the QS model to evaluate the angular sway:
the procedure of separating the gravitational and inertial components of
the accelerometer output has usually been considered very difficult un-
less multiple accelerometers are used [57, 76, 80, 112, 147]. Our method
improves the QS model approximation: the use of the iterative method
based on the bidirectional low-pass filter, with a cut-off frequency re-
lated to the sensor position with respect to the pivot point, provides
RMSEs of approximately 0.1% of the angular range, as shown in Ta-
ble 2.1. The experimental sessions on the mechanical arm provided
a simplified situation in which the method was successfully tested, as
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demonstrated by the mean RMSE values of 0.15° with a mean P-P range
of 126.1°. This error term partly reflects the encoder resolution (0.036°)
and the accelerometer performance limits. As shown in the Methods,
the angle evaluation can be extended to an N -link model, providing the
possibility of estimating the silhouette of a kinematic chain with any
number of links. The results obtained in simulation suggest possible
applications in various fields like trunk posture evaluation and swim-
ming, and most importantly to evaluated different strategies response
to external stimuli in terms of sway angles.

Additional discussion is required about the subject tests. Descrip-
tion and prediction RMSEs are smaller than those previously reported
in the literature. For example, reported shank and thigh angle RMSEs
range from 0.7° to 4.1° [35, 53, 112], although these studies analyse 3D
joint angle estimation during gait instead of 2D squat tasks. RMSEs
of the calculated angular displacements of the three segments (thigh,
shank and HAT), as shown in Table 2.2, are larger than those in the
inverted pendulum tests, due to several factors:

- 2D errors: motion is inherently 3D and 2D analysis is an approx-
imation. 2D projection of the markers’ coordinates on the best fit
plane produces a distortion affecting the SP angles estimation and
therefore the validation measures. Consequently, there is not the
certainty that SP provides a gold standard kinematics. Therefore
both calibrated and predicted RMSE values in Table 2.2 should
be considered as measures of the distance between estimates pro-
vided by two differently approximated methods;

- sensor mounting : it is difficult to firmly affix the accelerometers
and the rhomboid rigid plates onto the segments without any rel-
ative motion. Unlike the mechanical arm, the soft tissue artifacts
and the muscle activation add noise to the accelerometric mea-
sures. In particular, respiration represents an undesired effect for
the sensor placed on the lateral side of the trunk, upon the rib;

- propagation errors: RMSEs are lower in the distal segment and
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increase in the thigh and HAT. As shown in Equation (2.8), the
accelerations are related to the estimated angles of the lower links,
therefore the errors in the angle estimation of the (i-1)-th link
propagate to the angle estimation of the i-th link.

Despite these considerations, the results are very encouraging for
several reasons. First, it is important to note the effectiveness of the cal-
ibration procedure, both for the mechanical arm and the 3-link biome-
chanical model, which allows the evaluation of the sensor position and
misalignment and thus provides a better kinematic estimation. The
parameter estimation provides unbiased results, both for description
and prediction. Significantly, calibration allows us to reduce the errors
from 11.0°-12.2° to 0.6°-1.1°. Second, our estimation method provides a
simple, accurate and portable joint angle evaluation for postural tasks.
The movement analysis laboratory is required only in the calibration
phase, after which the clusters of markers are removed and only the
three SAAs are used.

Squatting exercises are often performed to characterize the bilateral
lower-extremity kinematics after anterior cruciate ligament reconstruc-
tion. The main outcome measures are the sagittal plane ankle, knee
and hip angles and their maximum excursion [173], in addition to the
net joint moments. The procedure presented in this Chapter speeds up
the experimental sessions, reducing the computational and economic
costs, especially when several subject are involved. The novel method
presented in this Chapter overcomes the limitation of the QS model,
often used in literature [97, 118, 127, 128, 136, 203], in which the ac-
celerometers are used as inclinometers. Since some authors used more
than one sensors per segment [35, 112, 128], we demonstrated one SAA
per segment is enough to estimate 2D joint angles accurately in a kine-
matic chain of any number of link providing errors smaller than those
reported in literature.

The methods presented in this Chapter is therefore suitable to be
included in different balance assessments tests which includes perturbed
postures by applying a direct force to the subject or by tilting or trans-
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lating the surface upon which he stands. The presented approach could
be able to discriminate among different strategies adopted for recovery
balance after external stimuli by the evaluation of sway angles, high-
lighting how the subject’s motor system responds in terms of hip, ankle
or combined ankle-hip strategies.
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Chapter 3

Dynamics evaluation

during the repeated

Sit-to-Stand functional

test

In the previous Chapter a novel method was proposed for estimat-
ing the kinematics of a multi-link model by using a body-sensor network
during squat tasks. The same method is extended in this and in next
Chapters for the kinematic description of Sit-to-Stand. In addition, this
Chapter proposes a functional subject-specific 2D evaluation tool for
estimating body-segment and dynamic parameters which makes use of
a simple motor task (repeated Sit-to-Stand, rSTS), recorded with one
single-axis accelerometer (SAA) per segment and a Force Plate (FP).
After this preliminary estimation, the quasi-real-time prediction of the
Ground Reaction Force (anterior/posterior, Fx, and vertical, Fz, com-
ponents), the Centers of Pressure (CoP) and Mass (CoM), and the Net
Joint Moments (NJMs) at the ankle, knee and hip, is performed by
the use of accelerometry only during the rSTS functional test in the
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sagittal plane. Predicted dynamic variables and those obtained using
anthropometric parameters derived from De Leva were compared to the
FP outputs, in terms of Root Mean Squared Errors (RMSEs). RMSEs
increase, using De Leva’s parameters in place of those estimated, from
12N to 21N (Fx), from 21N to 24N (Fz), from 21.1mm to 55.6mm
(CoP), and from 10.3Nm to 17.0Nm (ankle NJM) in rSTS. In addition,
a telescopic inverted pendulum was adopted to analyse the balance
control in rSTS using only predicted CoP and CoM. Results suggest
that one SAA per segment may be used to predict the dynamics of a
biomechanical-model of any degrees of freedom [9, 64, 65].

3.1 Introduction

Sit-to-Stand is an important task in daily life, and it has been iden-
tified as one of the most mechanically demanding activities, confirm-
ing the general acceptance of its use as an indicator of the mobility
level. This task requires coordination, balance, adequate mobility and
strength. The transfer from sitting to standing and back to sitting re-
quires voluntary movement of the different segments that contribute to
the change of posture and balance control during the Center of Mass
(CoM) forward and backward displacement. In several studies, re-
peated Sit-to-Stand (rSTS) performance has been associated with age-
related changes in muscular strength in leg extensor [167] and vestibular
disorders as well as changes in movement strategies [95]. Consequently,
standardized assessment of rSTS postural transitions has been used for
multiple purposes, including evaluation of postural control [54, 115],
risk of fall [21, 51], lower-extremity strength [26, 37], and impairment
after stroke [106, 130].

A comprehensive analysis of kinematics and dynamics performance
of the rSTS test requires the knowledge of the trajectories of the body
Center of Pressure (CoP) and the body CoM, commonly investigated in
studies on human posture and balance control [84, 88, 160, 205] and in
many functional tests [62, 148, 151]. In balance-related studies [107], it
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is often interesting to quantify the motion of CoP and CoM in order to
investigate kinetic quantities such as the moment of the Ground Reac-
tion Force (GRF) with respect to the CoM or the whole body stiffness
around the ankles [206]. However, while the CoP can be measured by
means of a Force Plate (FP), the whole body CoM location is not di-
rectly observed and it should be estimated. Kinematics-based [77, 206]
and FP-based methods [25, 176, 217] have been proposed to estimate
CoM position, involving the definition of an adequate biomechanical
model of the body and the identification of anthropometric properties
of body-segments.

Anthropometric parameters and kinematic data have been also used
as inputs to the equations of motion, with or without dynamic data
depending on the method used [23, 204], to estimate the Net Joint
Moments (NJMs) during functional tests. The knowledge of the lower
limb joint moments provides information on muscle strength and inter-
muscular coordination across the joint. These quantities are then used
to determine dynamic stability in human subjects, and may provide an
indicator of deterioration in the motor performance of subjects with
motor disorders (e.g. Parkinsonian [119]) or to discriminate between
fallers and non-fallers [51].

Body-Segment Parameters (BSP) are typically derived from geo-
metric models [75, 78, 92, 202, 213] and/or regression models scaled
to the height and the weight of the subject (e.g. cadaver segmenta-
tion [27, 43] and imaging methods [29, 56, 174, 175, 196, 216]). The
intrinsic limits of the geometric models are the assumption of a com-
mon model which neglects individual differences in segment shape and
density, and the requirement of a large number of measurements (be-
tween 90 [213] and 248 [78]). About regression models, if equations are
obtained from cadaver’s data, they assume that embalmed and frozen
tissue properties are similar to their in vivo state. Regression equations
derived from imaging methods provide more accurate anthropometric
parameter estimates, but they are invasive and expensive.

Recently, optimization methods combining model-based and exper-
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imental approaches were proposed to estimate anthropometric param-
eters [28, 163]. Riemer et al. [163] used a 2D two-step optimization
approach to solve a constrained non-linear optimization problem. Three
calibration motions were considered: i) a long motion that involved a
single cycle of a flexion and hyperextension of the hips, followed by
flexion and extension of the knees, ii) a squat motion, and iii) a sway
motion. The authors used a stereo-photogrammetric (SP) system and
a FP, minimizing the residuals between measured GRF and the one
calculated via a top-down inverse dynamics approach. Chen et al. [28]
developed a 3D non-invasive, radiation-free optimization method, us-
ing a SP system and two FPs. The authors evaluated the performance
by comparing the predicted GRF and CoP to those directly measured
for static postures, squatting and walking. They obtained mean CoP
errors less than 5 mm during stationary standing postures, 9.4 mm for
squatting and 12.8 mm for walking. These methods need costly lab-
oratory instrumentations and complex experimental protocols. Their
implementation requires a fully equipped movement analysis labora-
tory, with a SP system and skilled personnel (e.g. in [28] each subject
wore 54 retro-reflective markers placed by a well-trained physical ther-
apist).

In conclusion, while the current state of the art offers several alter-
natives for BSP estimation, to the best of our knowledge, there are no
published methods based on inertial measurements related to this rel-
evant topic. Even if inertial tracking technologies are becoming widely
accepted for the assessment of human movement both in clinical ap-
plications and scientific research, there is still a lack of applications of
inertial wearable technology for dynamics evaluation of human move-
ment.

Aims of this Chapter are:

• to present a novel, functional, model-based approach to estimate
subject-specific BSP using a single-axis accelerometer (SAA) per
segment and a FP;
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• to predict GRF, CoP, CoM and NJMs at the ankle, knee and hip,
using only the SAAs and the estimated anthropometric parame-
ters, during the rSTS functional test.

The predicted dynamic variables are compared to those measured
by the FP and those obtained using anthropometric parameters derived
from De Leva’s tables [42]. Moreover, an inertial-based quasi-real-time
balance monitoring during the rSTS is suggested.

3.2 Methods and Materials

3.2.1 Experimental Set-Up

Three young healthy subjects - two males, Body Mass Index (BMI)
= [25.5, 22.3]kg/m2; one female, BMI = 23.6kg/m2- with no previ-
ous orthopedic ailment, participated in this study after giving their
informed consent. The subjects, standing on a FP (Bertec 4060-08)
with the feet supposed rigidly connected to the ground, were asked to
perform five trials of ten rSTS on a chair with height hc = 0.48m, with
their arms folded and keeping their movement in the anterior/posterior
(AP) direction. The first five repetitions of each rSTS trial were per-
formed at the subjects’ maximum speed, and the second five at the
subjects’ self-selected speed. Three SAA (Analog Device, ADXL 103)
were placed at measured heights h1, h2, h3, with respect to the an-
kle, knee, and hip joint, respectively. Each of the three sensors was
mounted directly on the skin, in a central position on the lateral side of
the thigh and the shank, and on the posterior side of the Head-Arms-
Trunk (HAT), in order to minimize skin artifact effects and model er-
rors. In order to measure the sensor position, hi(i = 1, . . . , 3), and
the segment length, li(i = 1, . . . , 3), anatomical landmarks of body-
segments (lateral malleolus, lateral epicondyle and L5 vertebra) were
identified by palpation. FP and accelerometer signals were acquired
at a 100Hz sampling rate and low-pass filtered (2nd order zero-phase
Butterworth filter) at a cut-off frequency of 3Hz.
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3.2.2 N-link Biomechanical Model

In order to describe the new method in the most general way, a N -
link biomechanical model (N degrees of freedom) in the sagittal plane
is initially analyzed.

Figure 3.1: N -link free-body diagram in the sagittal plane
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The free-body diagram (Figure 3.1) was used to define the dynamic
equilibrium equations of the N -link model and the relationships be-
tween kinematic and kinetic variables. Feet and other body segments
were considered separated from each other and the interaction between
adjacent segments was described by horizontal and vertical forces, Hi

and Vi , and net joints moments, Ti. The AP and the vertical compo-
nents of the GRF, FX and FZ , and the moment component about the
medium/lateral (ML) axis, MY , can be expressed, in the discrete-time
domain, as follows:

FX(k) = D̃T S̈θ(k)

FZ(k) = Mg + D̃T C̈θ(k) (3.1)

MY (k) = D̃T [gSθ(k)− l0S̈θ(k)−AIS(k)]− J̃T θ̈(k)

k = 1, . . . , n

where θ̈(k), Sθ(k), S̈θ(k), C̈θ(k), AIS(k), D̃, J̃ are [N × 1]-column
vectors and n is the number of samples. The vectors’ elements are
defined as follows:

Sθ,i(k) = sin θi(k)

Cθ,i(k) = cos θi(k)

AIS,i(k) =
∑i−1
j=1 lj{[θ̈j(k) + θ̈i(k)] cos[θi(k)− θj(k)]+

[θ̇(k)2j − θ̇(k)2i ]sin[θi(k)− θj(k)]}
D̃i = midi + li

∑N
j=i+1mj

J̃i = Ji +mid
2
i + l2i

∑N
j=i+1mj

k = 1, . . . , n

i = 1, . . . , N

The vector θi = [θi(1) . . . θi(n)] represents the i-th angular deviation
from the vertical line, θ̇i, the i-th angular velocity vector, and θ̈i the
i-th angular acceleration vector. The two sensitivity vectors D̃ and J̃

are defined as linear combinations of the anthropometric parameters,
as segment length, li, mass, mi, distance of CoM from distal joint axis,
di, and moment of inertia, Ji.
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The i-th SAA output vector, ai = [ai(1) . . . ai(n)], along the sensi-
tive axis directed normally to the segment and oriented anteriorly, can
be expressed as the sum of an inertial and a gravitational term plus
two contributions, related to the horizontal and vertical accelerations
at the lower joint, ax

i and ay
i , due to the underlying chain kinematics

(see Chapter 2):

ai(k) = hiθ̈i(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N (3.2)

According to the iterative technique presented in the previous Chap-
ter, the i-th sway angle of the N -link model, θi, can be evaluated from
the accelerometer outputs, using a low-pass bi-directional filter with
cut-off frequencies depending on sensor positions. After computing
θi and its first numerical derivative θ̇i, its second derivative, θ̈i, can
be computed by Equation (3.2). Therefore, the dynamic equilibrium
equations can be expressed as linear combinations of the i-th angular
position, θi, the i-th angular velocity, θ̇i, and the i-th SAA output, ȧi,
through the 2N unknown anthropometric parameters, D̃ and J̃.

3.2.3 Subject-specific Body-Segment Parameters Es-
timation

Adequate to the trials carried out, a 3-link model is then used for
the subject-specific BSPs estimation. The rSTS trials were used to
estimate the anthropometric parameters D̃ and J̃, for each subject.
After computing θi(i = 1, . . . , N), D̃ and J̃ can be calculated by a
linear regression using the FP outputs, FX,FP , FZ,FP and MY,FP ,
as the dependent variables, and the angular position vector, θi, the
angular velocity vector, θ̇i, and the SAA outputs, ai(i = 1, . . . , N), as
the regressors. Three offset parameters must be also taken into account:
two instrumental offsets are related to the forces and the third, M0

Y , is
related to the distance between the origin of the FP’s reference system
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and the equilibrium position. Parameters reliability was assessed by
calculating the Intra-Class Correlation coefficient (ICC3,1) from the
five measurements of the three subjects. The significance level for all
tests was set to an uncorrected α = 5% (two-sided). Additionally, the
mean value of each estimated parameter was compared with the one
provided by De Leva’s anthropometric tables [42].

3.2.4 Dynamics Prediction

The predictive ability of the 3-link model is finally tested on each
subject during the rSTS functional test. The estimated parameters, D̃

and J̃ , were used to predict FX , FZ , the displacement of the CoP in
the AP direction, ∆CoPX , the displacements of the CoM in the AP
and in the vertical direction, ∆CoMX and ∆CoMZ , the NJMs at the
ankle, the knee and the hip, Ti(i = 1, 2, 3), using the three SAAs only
and a top-down approach, as follows:

FX(k) = D̃T S̈θ(k)

FZ(k) = Mg + D̃T C̈θ(k)

∆CoPX(k) =
∆MY (k) +m0gδ

FZ(k)
− CoP 0

X

∆CoMX(k) =
1

M
[D̃TSθ(k)]

∆CoMZ(k) =
1

M
[D̃TCθ(k)] (3.3)

Ti(k) = Ti+1(k) + J̃iθ̈i − gD̃i sin θi+

+ D̃i

i−1∑
k=1

lk[θ̈k cos(θk − θi)− θ̇2k sin(θk − θi)]+

+ li

3∑
k=i+1

D̃k[θ̈k cos(θk − θi)− θ̇2k sin(θk − θi)]

k = 1, . . . , n

where m0 is the estimated feet mass, δ is the AP location of the
feet CoM with respect to the malleolus (see Figure 3.1), ∆MY (k) =
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MY (k)−M0
Y , and CoP

0
X =

M0
Y

F 0
Z

= m0gδ is the CoP value at the equi-
librium position.

For comparison, the NJM at the ankle was also obtained form the
FP outputs as follows:

T1,FP (k) = FZ,FP (k)CoPX,FP (k) + FZ,FP (k)l0 −m0gδ (3.4)

The effectiveness of the method was evaluated for each subject in
terms of Root Mean Square Error (RMSE) between the measured and
estimated FP outputs, as follows:

• the mean description error was computed by averaging the RM-
SEs obtained by using the estimated parameters of the p-th rSTS
trial for the evaluation of the dynamic variables of the same p-th
trial;

• the mean prediction error was computed by averaging the RMSEs
obtained by using the estimated parameters of the p-th rSTS trial
(p = 1, . . . , 5) for the evaluation of the dynamic variables of the
q-th rSTS trial (q = 1, . . . , 5, q 6= p);

• the mean De Leva’s prediction error was evaluated considering the
De Leva’s parameters [42] in place of the estimated parameters
D̃ and J̃;

• the predicted ankle moment T1 and that obtained using De Leva’s
parameters, T1,DeLeva, was compared to that provided by FP
outputs, T1,FP, in terms of RMSEs.

For an effective description of the rSTS task by using the accelerom-
etry -based predicted CoP and CoM in the AP direction, the Tele-
scopic Inverted Pendulum (TIP) model, presented by Papa and Cap-
pozzo [151], was analyzed. In this study, a minimum measured-input
model, which used only information obtained from a six-component FP,
a seat uniaxial load-cell and anthropometric data derived from [26], was
adopted.
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Figure 3.2: Schematic representation of the two TIP models

In the present study, only the information derived from accelerome-
ters were assumed as measured input. According to [151], two TIP mod-
els were used in temporal sequence, as shown in Figure 3.2 : the first one
(TIP1) is related to the time preceding seat-off, in which only the HAT
system moves, and the second one (TIP2) to the whole body movement
during the interval of time following seat-off. For the TIP1 model, the
vertical projection of the first sample of the predicted ∆CoPX on the
seat surface, P1 = (∆CoPX(1);hc), was considered in place of the mid-
point between the hips. For the TIP2 model, the last sample of the
predicted ∆CoPX under the feet, P2 = (∆CoPX(n); 0), was consid-
ered in place of the midpoint between the ankles. The linear actuator
(LA) and the sagittal plane rotational actuator (SA) were taken into
account to describe the elongation and the forward and backward ro-
tations of the link. The telescopic link joined P1 to the predicted HAT
CoM position (phase TIP1), and P2 to the predicted whole-body CoM
position (phase TIP2). The linear and angular velocity of the SA and
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LA actuators were evaluated and compared with those presented in
[151].

3.2.5 Quasi-Real-Time Prediction

Prediction of dynamic variables could be extended to real-time ap-
plications for balance monitoring during the rSTS functional test. The
∆CoPX and ∆CoM prediction is based on quasi-real-time estimation
of the sway angles θi(i = 1, . . . , N) from the accelerometer outputs.
The quasi-real-time technique is derived from the procedure described
in Chapter 2 by applying the low-pass bi-directional filter to a sliding
time window of the i-th accelerometer outputs ai(i = 1, . . . , N) . The
length of the time window is set to NW = 160 samples (TW = 1.6s).
For the sake of clarity, the procedure is reported here for a single seg-
ment and the index i is neglected (e.g. ai(k) becomes a(k)). At the
k -th instant of time (k = NW

2 , . . . , NW

2 ) the angle θ(k) is evaluated as
follows:

1. the 1.6s time-window aW = [a(k− NW

2 ), . . . , a(k+ NW

2 )] is filtered
using the low-pass bidirectional filter-based technique and the
vector angle θW = [θW (1), . . . , θW (NW )] evaluated;

2. the central value θW (NW

2 ) is considered as θ(k) estimate.

These two steps are repeated by shifting, sample by sample, the 1.6s

time-windows.

The method was evaluated on-line using Matlab R2011a 7.12.0. The
time required for the execution of the described two-steps procedure is
2ms only. The kinematic and dynamic variables can be estimated with
a delay of 0.8s since NW

2 accelerometer future samples have to be taken
into account. The technique provides results consistent with the ones
presented in the previous Chapter.
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3.3 Results

Test-retest reliability was good for the estimated parameters D̃i and
J̃i(i = 1, . . . , 3), with ICC3,1 equal to 0.98, 0.99, 0.99 and 0.91, 0.89,
0.92, respectively. Subjects’ characteristics (sex, age and BMI), the
mean value (standard deviation) of subject-specific estimated anthro-
pometric parameters and the De Leva’s parameters [42] are reported in
Table 3.1.

Table 3.1: Characteristics of participants, estimated and De Leva’s inertial

parameters. The three rows for each subject represent the i-th element (i =

1, . . . , 3) of the sensitivity vectors D̃ and J̃ .

Mean description and prediction RMSEs are shown in Figure 3.3
for the rSTS trials. For each subject the mean prediction error is close
to the mean description error: the difference ranges from 0.1N to 0.4N
for the forces and from 0.1mm to 1.8mm for ∆CoPX. De Leva’s pa-
rameters provide prediction errors higher than those obtained with the
estimated parameters. RMSEs of FZ, FZ and ∆CoPX, get worse in
all cases. For the three subjects, the mean prediction error of ∆CoPX

increases, using De Leva’s parameters in place of those estimated, from
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21.5mm to 57.9mm, from 17.8mm to 36.0mm, and from 24.0mm to
72.9mm, respectively.

Figure 3.3: RMSEs of: a)FX , b)FZ , c)∆CoPX , for rSTS trials
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Figure 3.4: Pattern of: a)FX , b)FZ , c)∆CoPX and residual errors during

a rSTS trial (Subject 2)

By way of example, FP outputs and residuals between measured
signals and signals predicted by SAAs are reported in Figure 3.4 for
one rSTS trial of Subject 2. In the box, the CoP displacement and
the residual error during a single translation from sitting to standing
is shown related to the task duration. The mean prediction RMSE of
∆CoPX, averaged on the three subjects, is about 21.1mm with mean
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Figure 3.5: Linear and angular velocity of the rotation (SA) and linear (LA)

actuator during a rSTS trial (Subject 2). Image in the box is from [151]

peak-to-peak range of 40cm. The percentage ratio between the mean
RMSE and the range of the CoP displacement is about 5%.

In Figure 3.5 an example of the predicted ∆CoPX, ∆CoMX and
∆CoMZ analysis during a rSTS trial is shown for Subject 2. This fig-
ure helps to identify the functional phases of the rSTS by monitoring
the CoM position with respect to the CoP, in terms of linear and an-
gular velocities. These variables were obtained by accelerometer-based
prediction. The figure in the box is from Papa and Cappozzo [151].

RMSEs of T1 and T1,DeLeva with respect to that obtained from
FP output, averaged on the three subjects, are 10.3Nm and 17.0Nm,
respectively. In Figure 3.6 the predicted NJMs are reported for Subject
2. In Figure 3.7 the ankle moment provided from FP outputs is shown
at the top of the picture. The residual errors between: i) measured
signal and signal predicted using the SAAs, and ii) measured signal and
signal evaluated using the De Leva’s parameters are shown at bottom
of the picture.
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Figure 3.6: Patterns of ankle, knee and hip joint moments during a rSTS

trial (Subject 2)

Figure 3.7: Patterns of ankle joint moment provided from FP and residual

errors during a rSTS trial (Subject 2)
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3.4 Discussion

This Chapter suggests a novel method aimed at estimating subject-
specific anthropometric parameters using one SAA per segment and
a FP, during a common functional motor task (rSTS) and taking ad-
vantage of a model-based approach. Several authors estimated these
parameters in different ways, but no study, at our knowledge, evaluates
the body-segment properties using inertial tracking technologies. FP
and portable and cost-effective inertial sensors represent an easy and
non-invasive alternative for anthropometric measurements, compared
to previous invasive [27, 29, 43, 56, 174, 175, 196, 216] or expensive
[28, 163] setups. The use of a traditional instrument for movement
analysis, as the FP, is exclusively required for the subject-specific BSP
estimation, after which only the SAA outputs and the estimated pa-
rameters allow the GRF, CoP, CoM and NJMs prediction during the
rSTS functional test. During this exercise, the above mentioned kinetic
variables are often used for balance monitoring [31, 148, 149], and to
extract temporal and power-related features [51, 221].

The CoP, CoM and NJMs prediction by using only SAAs and the es-
timated parameters during sit-to-stand tasks could have several positive
feedbacks from clinical applications. As explained in the Introduction
of this Chapter, the rSTS exercise is a skill that helps to determine the
functional level of a subject. The proposed method allows the kinemat-
ics and dynamics prediction by using a simple, accurate and portable
setup. Since rSTS tasks is frequently used in clinical routine by taking
advantages of quantitative and semi-quantitative techniques [89], the
procedure presented in this thesis can speed up the experimental ses-
sions, reducing the computational and the economic costs, especially
when several subjects are involved.

The effectiveness of the suggested method was evaluated by compar-
ing the predictive ability of the estimated parameters and those derived
from the De Leva’s tables [42]. As shown in Table 3.1, the mean values
of D̃ and J̃ are significantly different from D̃DeLeva and J̃DeLeva. These
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differences can be related to the specific morphology of the subjects’
segments, not taken into account by the De Leva’s parameters, which
depend only on mass and height of the subjects. The good reliability
of each estimate (ICC3, 1 always higher than 0.89) and the negligible
difference between the mean description and prediction errors for the
dynamic variables of the three subjects (see Figure 3.3) suggest that
a single rSTS trial is enough to estimate the subject-specific anthro-
pometric parameters. The model-based approach and the integration
of FP and SAAs data allow “one-shot” regression estimation. As com-
putational cost is concerned, previously published studies [163, 194],
combining model-based and experimental approaches, showed higher
complexity and computational requirements.

One of the main aims of the presented study was to predict the
GRF, the displacement of the CoP and CoM in the AP direction, and
the NJMs at the ankle, the knee and the hip, using only the SAAs and
the estimated parameters during the rSTS functional test.

As shown in Figures 3.3 and 3.7, mean prediction RMSEs, averaged
on the three subjects, are about 12N, 21N, 21.10mm and 10.3Nm for
FX, FZ, ∆CoPX and T1, with mean peak-to-peak ranges of 203N,
520N, 0.401m and 228.8Nm, respectively. These values are lower than
those obtained with the De Leva’s parameters, which are about 21N,
24N, 55.60mm and 17.0Nm for FX, FZ, ∆CoPX and T1. These con-
siderations confirm that the presented experimental protocol provides
the best anthropometric parameter estimates.

By comparing ∆CoPX prediction errors with those presented in
a previous study [28], the results are very encouraging. Chen et al.
[28] obtained a mean CoP error (standard deviation) of 9.40(2.95)mm
for arm-swing squatting, lower than the proposed prediction method in
rSTS (about 21.10mm), the CoP range should be taken into account
with relation to the performed task. During squatting, the CoP dis-
placement is confined to few centimeters, whereas during rSTS move-
ment the ∆CoPX range is about 40cm. Therefore, the percentage
ratio between ∆CoPX error and its range obtained from our study is
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about 5%, significantly lower than that reported in [6], which is around
32%. Moreover, Chen et al. [28] assumed 3D geometric shapes for the
body segments instead of a rigorous biomechanical model. Despite of
these encouraging results, one limitation of the presented study is the
2D model-based approach, which neglects the ML movement during
the performed trials.

Since sit-to-stand task requires coordination, balance, adequate mo-
bility and strength, several authors investigated the change of posture
and balance control [62, 148, 149] and of muscle strength and inter-
muscolar coordination across the joint [23, 51, 119, 204] during the CoM
forward and backward displacement from sitting to standing and back
to sitting, using SP systems and FPs. The traditional movement anal-
ysis systems, usually considered as a goal standard for the kinematics
and dynamics evaluation, show several drawbacks, as lack in portability
and usability, costs, and high computing demanding for real-time appli-
cations. These drawbacks could be overcome by using inertial sensors.
In this study the quasi-real-time CoP and CoM prediction is accom-
plished by using only SAAs and a set of subject-specific anthropometric
parameters. As shown in Figure 3.5, the dynamics accelerometer-based
prediction provides results consistent with the relevant study of Papa
and Cappozzo [151], related to the TIP model applied to rSTS move-
ments. Linear and angular velocity of LA and SA were evaluated by
using only CoP and CoM positions, predicted through SAAs, the in-
puts of the minimum measured-input model, in place of FP and seat
uni-axial load-cell data as suggested by [151]. Therefore, applications
of the balance control techniques during rSTS tasks could take advan-
tage of accelerometry, in terms of portability, availability of the setup in
either clinical/laboratory settings or free-living environments, both for
off-line and real-time monitoring. These benefits are not task-related,
since the subject-specific anthropometric parameters, estimated in a
single rSTS trial, can be well-applied to different motor tasks sharing
the same biomechanical model.

In summary, this Chapter provides a subject-specific evaluation tool
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for estimating inertial parameters through a simple motor task (rSTS),
involving only few SAAs and a FP. After this preliminary estimation,
the quasi-real-time prediction of GRF, CoP, CoM and NJMs at the an-
kle, knee and hip during rSTS, postural sway, squatting, etc., could be
performed by the use of accelerometry only, which compares favorably
to commercial SP movement analysis systems in terms of cost, size,
weight, convenience, and portability. As a result, data collection is
no longer confined to a laboratory environment. One limitation of the
study is the 2D model-based approach, which neglects the ML move-
ment during the performed trials. Future developments of the presented
work will address the extension of the dynamic analysis to a 3D biome-
chanical model and the prediction of kinematic and kinetic variables in
different motor tasks, extending the model to any number of degrees of
freedom.
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Chapter 4

Kinematic strategies and

dynamics evaluation

during the voluntary

Postural Sway functional

tests

In the previous Chapters, novel methods were proposed for estimat-
ing the kinematics and the dynamics of a multi-link model by using a
body sensor network during different dynamic motor tasks. The same
methods are applied in this Chapter for the kinematic and dynamic
description of the voluntary Postural Sway (PS) functional test. One
of the main aim of this Chapter is to evaluate the kinematic strate-
gies performed during a self-imposed perturbed stance, applying the
quantitative assessment tool of body sway angles presented in Chapter
2. A body-sensor network, consisting on one single-axis accelerometer
(SAA) per segment was used and three different biomechanical mod-

59



els (from 1- to 3-link) were analyzed in order to describe as well as
possible the sway movement. In addition, the anterior/posterior com-
ponent of the ground reaction force (Fx), and the Centers of Pressure
(CoP) and of Mass (CoM) displacements were predicted in this Chap-
ter for the voluntary PS analysis. The prediction technique is based
on the use of the SAAs located on the subject and the set of subject-
specific body-segment parameters provided by the estimation method
presented in Chapter 3. In order to support the usability of SAA
for angular kinematics estimation in PS functional tests, results were
compared with those previously provided using different and more ex-
pensive measurement systems in other published studies. Estimated
Fx and CoP, related to the different models and calculated through
De Leva’s anthropometric parameters [42] scaled on the models order,
were compared to the Force Plate (FP) outputs, in terms of Root Mean
Square Errors (RMSEs). RMSEs of Fx decrease from 7.3N (1-link) to
4.6N (2-link) and to 3.3N (3-link), and RMSEs of CoP decrease from
27.7mm (1-link) to 11.1mm (2-link) and to 6.6mm (3-link). In addition,
the simultaneous existence of an in-phase and an anti-phase behaviors
between trunk and leg segments is demonstrated, confirming the un-
suitability of the inverted pendulum model to describe PS movements.
In order to validate the Fx, CoP and CoM prediction method based
on the preliminary body-segment parameters estimation, predicted dy-
namic variables and those obtained using anthropometric parameters
derived from De Leva’s tables were compared to the FP outputs, in
terms of RMSEs. RMSEs increase, using De Leva’s parameters in place
of those estimated, from 3.1N to 3.3N (Fx), and from 5.5mm to 6.6mm
(CoP). Although at the present moment only GRF, CoP and CoM are
predicted using the previously estimated parameters, the positive re-
sults suggest that also body kinematic strategies evaluation can take
advantages by the use of the subject-specific inertial properties [63, 64].
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4.1 Introduction

Bipedal stance is an important prerequisite for human functional
movement [158]. The easy with which we maintain our vertical pos-
ture is surprising considered the open-loop-controlled musculo-skeletal
system, unstable under the effect of the gravity [139]. The principal
objective of the balance control system is to keep the vertical projec-
tion of the body’s Center of Mass (CoM) within the area of the base
of support [207]. To accomplish this in a biomechanical perspective,
models related to ankle stiffness [206, 208] and reactive muscle strate-
gies [138, 139] predict that adjustments in the location of the under-
foot Center of Pressure (CoP) are used to guide the trajectory of the
CoM towards an equilibrium position. For this reason, during upright
stance the body is never perfectly still. An irregular and low ampli-
tude motion, termed Postural Sway (PS), is ever-present and produces
a constant flow of information across the sensory systems that are used
to maintain postural stability [131, 162]. The disruption of one of these
information might lead to change the postural strategies [101] and the
responses to different mechanical perturbations [98], due to the failure
of the nervous system which does not induce adequate compensatory
movements. Analytic methods have been used to quantify the temporal
structures of PS [34, 164] as indicators of the individual’s performance.
In this perspective, the trajectories of the body CoP and CoM are com-
monly investigated in studies on human posture and balance control
[84, 88, 160, 205]. The analyses have revealed that the CoP fluctua-
tions are a blend of deterministic and stochastic dynamics, depending,
in part, upon what types of sensory information are available [165].

Several authors investigated human balance control in unperturbed
stance considering one-segment inverted pendulum model [91, 113, 114,
139, 155, 206, 208]. In these studies, the human body is represented
as rigid segment, the ankle torque acts as the single control input of
the link and other joints do not contribute to both postural sway and
postural control. However, it has recently become clear that for main-
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taining stability the required local stiffness at the ankle joint is much
lower than the destabilizing effect of the gravity when a multi-segmental
model is assumed [171]. Multi-segmental biomechanical models were
introduced for the evaluation of postural responses following platform
or visual perturbations, considering the contribution of hip and knee
[3, 13, 14, 143] to balance control. Only recently, studies on unper-
turbed stance bring into focus the importance of rotations at joints
other than the ankle that contribute to the minimization of the body
CoM movement [1, 5, 36, 66, 87].

The relative balance improvement or deterioration of a subject can
be of interest in several case of the clinical setting: neurodegenera-
tive disorder that leads to a progressive decline in motor function (e.g.
Parkinson disease [122, 150], diabetic neuropathies [189], cerebellar dis-
eases [49]), risk of falls evaluation that might cause bone fractures
[73, 121, 177, 220], sport medicine pathologies [169], rehabilitation pro-
grams for the postural training on ankle, knee and hip joint after a
traumatic event [83], gerontology studies for the aging and balance re-
lationship [103, 120, 154, 211]. In these studies, the evaluation of the
PS temporal structures provides a window into the functional organi-
zation of the postural control system [165], and may be used in order
to find objective indicators of subject’s balance performance [150].

Different balance tests may include evaluation of: i) spontaneous
sway in standard condition or following proprioception, vestibular or vi-
sual perturbations, and ii) induced sway due to external or self-imposed
threats to stability. Voluntary PS movements represent a simple ap-
proach to examining deficits in postural control that may contribute
to the evaluation of risk of fall in elderly and pathological subjects.
In a recent study [188], three categories of voluntary PS tasks, includ-
ing maximum voluntary leans held statically, continuous steady-state
voluntary sway, and rapidly initiated voluntary sway movement, were
analyzed in order to differentiate and identify the fall-history status of
older adults.

Actually, traditional clinical balance tests are dependent on subjec-
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tive scores (e.g. the Romberg Test [96], the Berg Balance Scale [140],
the Balance Evaluation System Test [85]), and traditional FP-based
[157, 184] or active balance system-based [187] methods, focused on
CoP displacement and neglected the biomechanics of the single body
segments [188]. Recently, kinematic and dynamic measures have been
evaluated for a comprehensive analysis of balance control during PS
trials [5, 36, 158], considering the contribution of a several number of
joint to postural control. In Pinter et al. [158], the authors used a
stereo-photogrammetric system and an FP, analyzing the variance of
the joint angles in order to verify that the variance of the knee and hip
joint angles did not differ from the variance found in the ankle angle
during an unperturbed stance. Aramaki et al. [5] found the angular
displacement at the hip to be significantly greater than the angular dis-
placement at the ankle and further found that angular acceleration of
the ankle was compensated by oppositely directed acceleration of the
hip joint. The authors used three CDD (charge coupled device) laser-
displacement sensors to measure the angular motion of the shank, the
thigh and the trunk body-segment, and a FP to measure the CoP ex-
cursion, restricting movements at knee and head-neck-trunk with stiff
wooden splints. More recently, Creath et al. [36] found a simultaneous
coexistence of an in-phase and anti-phase patterns between lower and
upper body angles. Spectral analysis tasks showed that the body be-
haves like a multi-link pendulum with two coexisting modes, depending
on motion frequency. Experiments were carried out on quiet stance mo-
tor tasks, restricting visual information performing an eye-closed con-
dition and using a variable pitch platform and potentiometers located
on the subjects.

Complicating factors in comparing published researches concerns
the nature of the postural control mechanism in the variety of the ex-
perimental conditions and the several technologies used for the test
instrumentations, different in terms of economical and computational
costs, portability and usability. Their use in clinical practice has been
partly limited by the cost and the need of qualified personnel. For these

63



reasons, wearable inertial technologies increasingly investigated for hu-
man movement analysis. Few authors, [94, 136, 137], have used ac-
celerometers to study balance while standing quietly. Kamen et al. [94]
used two uni-axial accelerometers taped to the back (at S2 level) and
forehead of the subject and measured in the anterior–posterior direc-
tion. They calculate root mean square and frequency spectrum of the
gathered signals as performance parameters. Unfortunately this sensor
configuration is affected by the acceleration of gravity, a function of the
angle of the accelerometer with respect to the vertical. Moe-Nilssen,
in [136] and [137], used a tri-axial accelerometer placed at the small of
the back. The average tilt of the sensor is used to subtract the static
gravity error and then the data are transformed to a horizontal–vertical
orthogonal coordinate system by a trigonometric algorithm. Root mean
square is used on the data from each of the three axes as a performance
parameter. This system has demonstrated test-retest reliability [137].
Mayagoitia et al. [127] distinguished between different standing con-
ditions comparing tri-axial accelerometer and FP measurements. In
Chiari et al. [30], high correlations were found between the CoP dis-
placement and trunk acceleration in an audio-biofeedback application
for balance improvement.

All these methods still lack a rigorous biomechanical analysis. In
addition, even if these studies focused on the comprehensive analysis
of kinematic and dynamic data, they neglected the CoM evaluation.
While the current state of the art offers several alternatives for CoP
and Ground Reaction Force (GRF) measures by means of a FP, the
whole body CoM location is not directly observed and it should be
estimated, considering an adequate biomechanical model of the body.
FP-based methods estimate CoM location from CoP by using either an
“anthropometric filter” [25] or by double-integration of the horizontal
GRF [176, 217]. Since FPs, generally used in a movement analysis
laboratory, are typically embedded in the ground, they do not represent
a flexible and portable solution for measuring body sway and postural
stabilization in different environments.
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To the best of our knowledge, there are no published methods based
on inertial measurements that provide a comprehensive analysis for
kinematics and dynamics evaluation of PS, all-considering the sway
angles, the GRF, the CoP and the CoM estimates as indicators of
subject’s balance performance.

Aims of this Chapter are:

• to evaluate kinematic strategies performed during a self-imposed
perturbed stance, applying the iterative technique presented in
Chapter 2 for the sway angles estimation and using a body sensor
network, consisting of one single-axis accelerometer (SAA) per
segment;

• to predict GRF, CoP and CoM during voluntary PS trials, us-
ing only the SAAs and a set of subject-specific anthropomet-
ric parameters (these parameters are provided by the estimation
method presented in Chapter 3, which is based on a SAAs per
segment data and a FP measure during a sit-to-stand exercise).

In order to support the usability of SAA for angular kinematics es-
timation in PS functional tests, the obtained results are compared with
those provided by previous researches, which used different and more
expensive measurement systems. GRF and CoP are estimated for dif-
ferent biomechanical models in order to define the postural strategies
adopted by the subjects, using the anthropometric parameters provided
by De Leva’s tables [42], consistently scaled on the models order. Fi-
nally, in order to validate the GRF, CoP and CoM prediction method,
the predicted variables are compared to those measured by the FP
and those obtained using anthropometric parameters derived from De
Leva’s tables [42].
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4.2 Methods and Materials

4.2.1 Experimental Set-Up

Three young healthy subjects - two males, Body Mass Index (BMI)
= [25.5, 22.3]kg/m2; one female, BMI = 23.6kg/m2- with no previ-
ous orthopedic ailment, participated in this study after giving their in-
formed consent. The subjects, standing on a FP (Bertec 4060-08) with
the feet supposed rigidly connected to the ground, were asked to per-
form five trials of self-imposed PS around their ankle joint, with their
arms folded, keeping their movement in the anterior/posterior (AP) di-
rection and using as much as possible a pure ankle strategy. In order to
obtain a broad frequency spectrum, each oscillatory trial was performed
at the subjects’ maximum speed in the first part (about 1Hz) and at the
subjects’ self-selected speed in the second part (about 0.5Hz). Three
SAA (Analog Device, ADXL 103) were placed at measured heights h1,
h2, h3, with respect to the ankle, knee, and hip joint, respectively. Each
of the three sensors was mounted directly on the skin, in a central posi-
tion on the lateral side of the thigh and the shank, and on the posterior
side of the Head-Arms-Trunk (HAT), in order to minimize skin arte-
fact effects and model errors. In order to measure the sensor position,
hi(i = 1, . . . , 3), and the segment length, li(i = 1, . . . , 3), anatomical
landmarks of body-segments (lateral malleolus, lateral epicondyle and
L5 vertebra) were identified by palpation. FP and accelerometer sig-
nals were acquired at a 100Hz sampling rate and low-pass filtered (2nd
order zero-phase Butterworth filter) at a cut-off frequency of 3Hz.

4.2.2 Kinematic Strategies Evaluation

According to the analysis of the N -link biomechanical model, pre-
sented in the previous Chapter (see Section 3.2.2) and in order to
evaluate the strategies performed during the oscillations, three biome-
chanical models in the sagittal plane, consisting in 1- 2- and 3-link,
were analyzed (Figure 4.1).
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Figure 4.1: Tested models: a) inverted pendulum, b) 2-link model, c) 3-link

model

The tested models are listed below:

• Inverted pendulum model (N = 1): the only accelerometric signal
used for the inverted pendulum approximation is the output of
the accelerometer a3, mounted on the posterior side of the HAT
at a measured height from the ankle joint. Consequently, the
angular sway of the inverted pendulum corresponds to θ3;

• Two-link model (N = 2): the accelerometric signals used are the
outputs of the accelerometers a2, mounted on the lateral side
of the thigh, and a3; their positions are assumed at measured
heights from the ankle joint and from the hip joint;

• Three-link model (N = 3): the accelerometric signals used are
the outputs of the accelerometers a1, mounted on the lateral side
of the shank, a2 and a3; their positions are assumed at measured
heights from the ankle, the knee and the hip joint, respectively.
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The dynamic equilibrium equations of an N -link model and the
relationships between kinematic and kinetic variables, as defined in
Equation (3.1), were evaluated for each tested biomechanical model.
The AP component of the GRF, FX , and the moment component about
the medium/lateral (ML) axis, MY , were expressed as follows:

FX(k) = D̃T
DeLevaS̈θ(k)

MY (k) = D̃T
DeLeva[gSθ(k)− l0S̈θ(k)−AIS(k)]− J̃TDeLevaθ̈(k)

k = 1, . . . , n (4.1)

where θ̈(k), Sθ(k), S̈θ(k), AIS(k), D̃DeLeva, J̃DeLeva are [N×1]-column
vectors and n is the number of samples. As regards the vectors’ ele-
ment definitions, we refer to Equation (3.1). The vertical force is not
reported for the PS functional test since the CoM vertical acceleration
is negligible and FZ is approximately Mg.

The vector θi = [θi(1) . . . θi(n)] represents the i-th angular devia-
tion from the vertical line, θ̇i the i-th angular velocity vector, and θ̈i the
i-th angular acceleration vector. The two sensitivity vectors D̃DeLeva

and J̃DeLeva are defined as linear combinations of the anthropometric
parameters, as segment length, li, mass, mi, distance of CoM from dis-
tal joint axis, di, and moment of inertia, Ji. In this part of this Chapter,
these parameters are obtained from the De Leva’s anthropometric ta-
bles [42], scaled on the subjects’ mass and height and calculated for an
inverted pendulum model, a 2- and a 3-link biomechanical models.

The i-th SAA output vector, ai = [ai(1) . . . ai(n)], along the sensi-
tive axis directed normally to the segment and oriented anteriorly, can
be expressed as the sum of an inertial and a gravitational term plus
two contributions, related to the horizontal and vertical accelerations
at the lower joint, ax

i and ay
i , due to the underlying chain kinematics

(see Chapter 2):

ai(k) = hiθ̈i(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N (4.2)
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According to the iterative technique presented in Chapter 2, the
i-th sway angle of the three models, θi, can be evaluated from the
accelerometer outputs, using a low-pass bi-directional filter with cut-off
frequencies depending on sensor positions. After computing θi and its
first numerical derivative θ̇i, its second derivative, θ̈i, can be computed
by Equation (4.2). Therefore, the dynamic equilibrium equations can
be expressed as linear combinations of the i-th angular position, θi,
the i-th angular velocity, θ̇i, and the i-th SAA output, ȧi, through the
2N De Leva’s anthropometric parameters, D̃DeLeva and J̃DeLeva. The
dynamic variables in Equation (4.1) can be estimated using the SAA
outputs only and the anthropometric parameters.

The effectiveness of the estimation method was evaluated for each
subject in terms of Root Mean Sqare Error (RMSE) between the mea-
sured and the estimated FP outputs, FX and ∆CoPX = ∆MY+m0gδ

Mg −
CoP 0

X , where m0 is the estimated feet mass, δ is the AP location of
the feet CoM with respect to the malleolus (see Figure 3.1), ∆MY =

MY −M0
Y , and CoP

0
X =

M0
Y

F 0
Z

= m0gδ is the CoP value at the equilib-
rium position. For an effective description of the kinematic strategies
adopted by the subjects during the self-imposed oscillations, RMSEs
were calculated for the three biomechanical models.

4.2.3 Dynamics Prediction

In the second part of this Chapter, the predictive ability of the
3-link model presented in Chapter 3 is tested on each subject during
the oscillatory trials. The subject-specific body-segment parameters, D̃

and J̃ , estimated in the previous Chapter, were used to predict FX , and
the displacement of the CoP and CoM in the AP direction, ∆CoPX ,
∆CoMX , using the three SAAs only and a top-down approach, as
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follows:

FX(k) = D̃T S̈θ(k)

∆CoPX(k) =
∆MY (k) +m0gδ

Mg
− CoP 0

X (4.3)

∆CoMX(k) =
1

M
[D̃TSθ(k)]

k = 1, . . . , n

The effectiveness of the method was evaluated for each subject in
terms of RMSE between the measured and estimated FP outputs, as
follows:

• the mean prediction error was computed by averaging the RMSEs
obtained by using the estimated parameters of the p-th rSTS trial
(p = 1, . . . , 5) for the evaluation of the dynamic variables of the
q-th oscillatory trial trial (q = 1, . . . , 5);

• the mean De Leva’s prediction error was evaluated considering the
De Leva’s parameters [42] in place of the estimated parameters
D̃ and J̃;

4.3 Results

4.3.1 Kinematic Strategies Evaluation

In order to identify the kinematic strategies performed by the sub-
jects during a voluntary PS exercise, Figure 4.2 shows the RMSEs on
estimated FX and ∆CoPX: the three markers are representative of the
RMSE obtained by the 1-, 2- and 3-link biomechanical models for each
subject. As it can be seen, both RMSEs and their between-subjects
variability are decreasing functions of the model order.

In the 2- and 3-link models the errors and the variability are signifi-
cantly reduced: mean RMSE of FX decreases from 7.3N in the inverted
pendulum model to 4.6N in the 2-link model and to 3.3N in the 3-link
model, while mean RMSE of ∆CoPX decrease from 27.7mm in the
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Figure 4.2: RMSEs of: a)FX , b)∆CoPX , for oscillatory trials related to 1-,

2- and 3-link biomechanical models

inverted pendulum model to 11.1mm in the 2-link model and to 6.6mm
in the 3-link model. The mean peak-to-peak range, averaged across
all trials and all subjects, is 84.2±12.7N for FX and 0.17±0.02m for
∆CoPX.

The relationship between the trunk and leg segment angles during
quiet stance is shown in the representative plots of ankle-hip angular
displacements in Figure 4.3 for low- and high-frequency oscillations.
In Figure 4.3a for low sway frequency, the trunk and leg trajectories are
primarily moving in unison with large excursion of the trunk, mirrored
by those of the legs. In Figure 4.3b a shift from in-phase to anti-phase
behavior due to the high frequency is shown.
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Figure 4.3: Ankle-Hip angular displacements for: a)low-, b)high-frequency

oscillations during a PS trial (Subject 2)

4.3.2 Dynamics Prediction

The 3-link biomechanical model defined in the Chapter 3 by the
estimation of a set of subject-specific body-segment parameters was
used to predict dynamic variable during the voluntary PS functional
test. Mean prediction RMSEs are shown in Figure 4.4. For each sub-
ject, the mean prediction error of dynamic variables obtained using the
rSTS estimated parameters is lower than the one obtained by using De
Leva’s parameters. For the three subjects, the mean prediction error of
∆CoPX increases, using De Leva’s parameters in place of those esti-
mated, from 6.2mm to 7.5mm, from 4.4mm to 5.6mm, and from 5.9mm
to 6.7mm, respectively. By way of example, FP outputs and residuals
between measured signals and signals predicted by SAAs are reported
in Figure 4.5 for one self-imposed oscillatory trial of Subject 2.

In Figure 4.6 an example of the predicted ∆CoPX and ∆CoMX

during an oscillatory trial is shown for Subject 2: the predicted ∆CoPX

and the predicted difference ∆CoMX−∆CoPX are in counter-phase
as one would expect in an optimal balance control strategy.
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Figure 4.4: RMSEs of: a)FX , b)∆CoPX , for oscillatory trials

73



Figure 4.5: Pattern of: a)FX , b)∆CoPX and residual prediction errors

during an oscillatory trial (Subject 2)
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Figure 4.6: Pattern of: a)∆CoPX and b)∆CoMX −∆CoPX during an

oscillatory trial (Subject 2)

4.4 Discussion

This Chapter suggests a novel method aimed at evaluating kine-
matic strategies performed by a subject during a simple functional mo-
tor task (voluntary PS), using one SAA per segment and and taking
advantage of a model-based approach. Several authors provided signifi-
cant results in term of quiet and perturbed stance characterization, but
no study, at our knowledge, evaluates the kinematic strategies during
the sway using inertial tracking technologies. The procedure presented
in this Chapter speeds up the experimental sessions, reducing the com-
putational and economic costs, especially when several subjects are
involved. Moreover, an innovative method for the voluntary PS dy-
namics analysis is introduced in the second part of this Chapter. The
use of a traditional instrument for movement analysis, as the FP, is
exclusively required for a preliminary subject-specific anthropometric
parameters estimation during a repeated Sit-to-Stand (rSTS) exercise,
after which only the SAA outputs and the estimated parameters allow
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the GRF, CoP and CoM prediction during the voluntary PS functional
test. These kinetic variables are often used for balance monitoring
[84, 88, 160, 205], and to extract temporal and power-related features
[150].

Multisegmental posturography [1, 153] allows direct investigation
of the kinematics of the segmental movements controlling stance. The
first results of this study indicate that, although CoM displacement can
accurately be described by ankle angular displacement, a one-segment
inverted pendulum model cannot give a comprehensive description of
PS data. The knee and the hip joint rotations can be decomposed into
both an amplifying and reducing pattern with regard to the position of
the body CoM.

As shown in Figure 4.2 during voluntary PS, the postural movement
is never characterized by a pure ankle strategy, particularly at high fre-
quencies, but rather by a combined ankle-hip strategy, consistent with
the results obtained by Creath et al. [36] through a variable pitch plat-
form and a set of potentiometers located on the subject. Mean RMSEs
of FZ and ∆CoPX, averaged on the five trials, show that estimated
outputs are highly dependent on the model order: the inverted pendu-
lum model, that should be the most suitable for describing PS, provides
the largest errors and between-subjects variability. The improvement
taken switching from the inverted pendulum to the 2-link is significant
in terms of kinematic strategies descriptive ability.

A concise picture of the coordinative relationship between trunk
and leg segments was assessed by analyzing the phase angle between
the two links, as shown in Figure 4.3. The in-phase and anti-phase
relationship between ankle and hip angular displacements, at low- and
high-frequency oscillation respectively, are indicative of the trunk and
leg synergies, demonstrating the simultaneous existence of these pat-
terns during voluntary PS, as well Creath et al. [36] demonstrated for
quiet stance motor tasks. In order to describe the body-kinematics
during the movement, both pattern in Figure 4.3 suggest the use of
a 2-link biomechanical model. The in-phase behavior during the low-
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frequency oscillation suggest that the trunk and leg trajectories are
mirrored, with a small excursion of the leg and a large excursion of
the trunk. Although the excursion of the two links are similar during
the high-frequency oscillation, the anti-phase behavior of ankle and hip
angles suggests that trunk and leg move in opposite directions in order
to maintain a good margin of stability.

Based on these considerations, the inverted pendulum model is in-
deed an oversimplification of reality during a PS functional test. A
multi-link pendulum, consisting at least of two links, is required for
the correct description of the body movement during the posture ad-
justments used to maintain the CoP and CoM locations in balance
positions. In a multi-segmental posturography study, Acconero et al.
[1] demostrated that the 2-link biomechanical model represents an eco-
nomic way to maintain the upright posture. The inverted pendulum, in
their study, was used to describe sway only in elderly people, in which
the increased postural rigidity is justified by an age-related increase in
joint stiffness and a more rigid motor strategy per se.

One of the main aims of the presented study was to predict the GRF,
and the displacement of the CoP and CoM in the AP direction, using
only the SAAs and the previously estimated parameters (see Chapter
3) during postural oscillation motor tasks.

As show in Figure 4.4, mean prediction RMSEs, averaged on the
three subjects, are about 3.1N and 5.5mm for FZ and ∆CoPX, with
mean peak-to-peak ranges of 84.2N and 0.17m, respectively. These val-
ues are lower than those obtained with the De Leva’s parameters, which
are about 3.3N and 6.6mm for FZ and ∆CoPX. These considerations
are confirmed by the results obtained in the previous Chapter, related
to the rSTS (see Figure 3.3). Since the differences between mean pre-
diction errors and mean De Leva’s prediction errors are less significant
than in the rSTS trials, the experimental protocol presented in Chapter
3 provides the best anthropometric parameter estimates.

By comparing ∆CoPX prediction errors with those presented in a
previous study [28], the results are very encouraging. Chen et al. [28]
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obtained mean errors (standard deviations) of about 2.72(1.23)mm,
4.68(1.52)mm and 3.30(1.44)mm during static postures with 30° trunk
flexion, 45° hip flexion and 90° shoulder abduction, respectively. As
shown in [160], during quiet standing, the range of the CoP displace-
ment is around 14.30mm, as confirmed by experimental evidences. The
percentage ratio between the mean CoP error provided by [28] and
the CoP range is around 25%. In the oscillatory trials presented in
this study, subjects performed voluntary oscillations, with a mean CoP
range, averaged on the three subjects, of 170mm in the AP direction
and with a mean error of about 5.50mm. The related percentage ra-
tio between ∆CoPX error and the range is hence about 3%, signifi-
cantly lower than that obtained by [28]. Similar results are obtained
from the dynamic trials evaluation, discussed in the previous Chapter.
Moreover, Chen et al. [28] assumed 3D geometric shapes for the body
segments instead of a rigorous biomechanical model. Despite of these
encouraging results, one limitation of the presented study is the 2D
model-based approach, which neglects the ML movement during the
performed trials.

Applications of the balance control techniques during voluntary PS
tasks could take advantage of accelerometry, in terms of portability,
availability of the setup in either clinical/laboratory settings or free-
living environments, both for off-line and real-time monitoring. These
benefits are not task-related, since the subject-specific anthropomet-
ric parameters, estimated in a single rSTS trial, can be well-applied
to different motor tasks sharing the same biomechanical model, which
is composed by a 3-link kinematic chain in this and in the previous
Chapters. As shown in Figure 4.6, the accelerometry-based predicted
CoP and CoM in the AP direction are suitable to quantifying standing
balance during postural oscillations. For the sake of simplicity, consid-
ering a simple inverted pendulum in place of the correct biomechanical
model, the difference ∆CoMX −∆CoMX is directly proportional to
the CoM acceleration. The ankle moment, and consequently the CoP,
is then in counter-phase in order to keep balance.
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In summary, this Chapter provides a kinematic strategies evalua-
tion tool for estimating angular displacements in an important clinical
functional test (voluntary PS), involving only few SAAs. The method
is suitable for the evaluation of the response strategy to unexpected
perturbation even if it has been evaluated on a self-induced sway only.
Obtained results support its possible use in clinical practice as tool for
estimating how subject’s motor system responds to external stimuli and
for estimating balance control quantitative reactions. Moreover, the
prediction method for GRF, CoP and CoM evaluation during the volun-
tary PS is presented. It could be performed during different functional
tests in the clinical settings by the use of accelerometry only and con-
sidering a set of subject-specific body-segment parameters, previously
estimated during a simple motor task (rSTS). Accelerometry compares
favorably to commercial and traditional movement analysis systems in
terms of cost, size, weight, convenience, and portability. As a result,
data collection is no longer confined to a laboratory environment.

Future developments will be address to evaluate the kinematic strate-
gies using the estimated subject-specific body-segment parameters in
place of those obtained from anthropometric De Leva’s tables [42]. Al-
though at the present moment only GRF, CoP and CoM are predicted
using the previously estimated parameters, the positive results suggest
that also body kinematic strategies evaluation can take advantages by
the use of the subject-specific inertial properties.
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Chapter 5

Joint kinematics

evaluation during the

Fugl-Meyer Motor

Assessment for the upper

extremity

A novel inertial sensors-based technique for joint kinematics estima-
tion is provided in this Chapter in order to obtain 3D objective biome-
chanical measurements of upper extremity kinematics. Aim of this
Chapter are: i) to overcome the limitations of clinical scales based on
individual judgment, ii) to help clinicians to objectively track changes
in motor ability and iii) to provide timely feedback about of the ef-
fectiveness of administered rehabilitation interventions. A kinematic
chain of 3-link is considered, using one IMU per body-segment during
some easy exercises administered by the Fugl-Meyer Motor Assessment,
and taking advantage by the use of a sensors fusion algorithm based
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on an extended Kalman Filter to estimate segment orientations. A
preliminary IMU technical systems of reference alignment procedure,
using accelerometers and gyroscopes data only, allows the definition of
a common global system of reference, neglecting the use of any mag-
netometers in the experimental set-up, which are typical affected by
disturbances due to the presence of iron in both clinical and domes-
tic environments. To evaluate the method, the technique is tested on
a subject during shoulder flexion/extension, abduction/adduction and
internal/external rotation movements. Shoulder and elbow joint angles
are estimated after a functional calibration of body-segment anatomical
axes, and a stereo-photogrammetric system is used for validation taking
into account the data provided by the standard anatomical calibration.
The results are consistent with those provided by the reference system
and those published in previously studies. Mean root mean squared
error range from 1.2° to 5.2°, with a mean value equal to 2.7° for shoul-
der angles and equal to 3.2° for elbow angles. Overlooking the type
of task, mean errors are about 3.1°, 2.4°, 2.6° for shoulder angles of
flexion/extension, ab/adduction and intra/extra rotation, respectively,
and are about 2.9°, 3.2°, 3.6° for elbow angles of flexion/extension,
pronation/supination and carrying angle, respectively. These results
suggest that, after the alignment procedure and the functional calibra-
tion, one IMU per segment, consisting of a tri-axial accelerometer and
a tri-axial gyroscope only, is enough to estimate 3D joint kinematics in
a kinematic chain modeling upper limb, providing the usability of this
instrumented test in the clinical practice.

5.1 Introduction

Stroke is one of the leading causes of death and disability and has
been described as a worldwide epidemic [52, 59]. The effects of a stroke
may include sensory, motor and cognitive impairment as well as a re-
duced ability to perform self care and participate in social and commu-
nity activities [129]. Many stroke survivors report long-term disability
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and reduced quality of life [152, 180] and have difficulty moving, think-
ing and sensing. While most recovery is thought to be made in the first
few weeks after stroke, patients may have improvements on functional
tasks and experience neural reorganization many months after having
a stroke [183].

Stroke rehabilitation is the process realized in order to help post-
stroke patients undergo treatment to return to normal life as much as
possible by regaining and relearning the skills of everyday living. It also
aims to help the survivors to understand and to adapt to difficulties, to
prevent secondary complications and to educate family members to play
a supporting role. A rehabilitation team is usually multidisciplinary
and involves staff with different skills working together to help the pa-
tients. For most people with stroke, physical, occupational and speech-
language therapies are the cornerstones of the rehabilitation process.
Physical therapy focuses on joint range of motion and strength by per-
forming exercises and re-learning functional tasks such as bed mobility,
transferring, walking and other general motor functions, improving the
awareness and the use of the hemiplegic side and involving constraint-
induced movement therapy. Occupational therapy is involved in train-
ing to help relearn everyday activities known as the Activities of Daily
Living (ADLs) such as eating, drinking, dressing, bathing, cooking,
reading and writing, and toileting. Speech and language therapy is ap-
propriate for patients with the speech production disorders: dysarthria
and apraxia of speech, aphasia, cognitive-communication impairments
and/or dysphagia (problems with swallowing).

A complete functional assessment should be made for the benefit
of the stroke survivor which will be used as reference for proper thera-
peutic management and for the rehabilitation of stroke patients. Also,
the advent of new treatments and rehabilitation options for post-stroke
therapy has made measuring recovery after a stroke very important.
Aside from establishing the plan of treatment for the stroke patient,
such assessments can also prepare the stroke survivor, his or her family
for any anticipated and expected outcomes.
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Up to 85% of the stroke survivors experience hemiparesis, result-
ing in impairment of one upper extremity immediately after stroke,
and between 55% and 75% of survivors continue to experience limita-
tion in upper extremity function, which are associated with diminished
health-related quality of life [111]. Defined in terms of the capacity of
the patient to perform movements in the same way as age-matched non-
disable subjects, upper extremity sensorimotor recovery of arm function
may be slower or more complex than that of the lower limb. Move-
ments of the upper extremity are also far less stereotypical than those
of the lower extremity, involving a wider inventory of coordinated trunk
and multi-joint movements to manipulate objects in the environment.
In order to assess recovery in post-stroke hemiplegic patients, clinical
outcomes scales meant to measure improvement mainly focus on task
accomplishment and are often not qualitatively sensitive enough to dis-
criminate improvements in how the task is performed. The treatment
effects are usually investigated on the following domains:

1. Upper limb function and activity :

• arm function and activity: including assessments such as the
Motor Assessment Scale (upper limb), the Action Research
Arm Test, the Wolf Motor Function Test, the Fugl-Meyer
Motor Assessment (upper limb);

• hand function and activity: including assessments such as
the Nine Hole Peg Test and the Box and Block Test.

2. Gait and balance function and activity :

• lower limb function and activity: including assessments such
as the Walking Distance, the Walking Speed, Community
Walk Test, the Functional Ambulation, the Fugl-Meyer Mo-
tor Assessment (lower limb), the Timed Up and Go;

• standing reach: including assessments such as the Berg Bal-
ance Scale and laboratory-based force plate measures.

84



3. Global motor function: including assessments such as the Motor
Assessment Scale.

4. Cognitive function: including assessments such as the Trail mak-
ing test and the Useful Field of View Test.

5. Activity limitation: including assessments such as the Functional
Independence Measure, the Barthel Index, the Activities-Specific
Balance Confidence Scale, the On-Road Driving Test.

6. Participation restriction and quality of life: including assessments
such as the SF36, the EQ5D, the Stroke Impact Scale or other
patient-reported outcomes.

7. Imaging studies: including functional magnetic resonance imag-
ing (MRI).

8. Adverse events: including motion sickness, pain, injury, falls and
death.

This Chapter will focus on the upper limb function evaluation through
the Fugl-Meyer Motor Assessment (FMA).

Fugl-Meyer Motor Assessment

As shown in the previous Chapters, the main aim of this Thesis is to
provide quantitative assessment of traditional functional tests by using
inertial sensors. In particular, this Chapter focuses on the instrumen-
tation of some easy exercises administered in the FMA for the upper
extremity [61].

The FMA is a stroke-specific and performance-based impairment
index. This means that all stroke survivors are considered unique and
that a grading system is in place for proper evaluation. Basically, it pro-
vides a numeric value to determine the severity of the stroke, describe
motor recovery, plan the post-stroke treatment and evaluate these treat-
ments. Evaluation can be done immediately after a stroke and can be
repeated while the stroke patient is already undergoing therapy. The
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FMA was developed to be used in both clinical and research settings,
and is the first numerical evaluation tool based on the chronological
stages of motor and sensory return in hemiplegic stroke patients. Al-
though the FM allows the health care team to properly evaluate the
motor and sensory recovery of survivors after a stroke, it can also assess
balance, joint functions, clear changes in motor impairment following
stroke [71], capacity of the stroke survivor to perform ADLs, and pain.

A physical therapist, an occupational therapist or any other rehabil-
itation professional trained on FMA can administer the evaluation on
the stroke patient on a one-on-one basis. The person tasked to admin-
ister the test shall guide the stroke victim through demonstrations and
by giving out verbal instructions. It can be applied in any setting as
a hospital and at the home of stroke survivors and tracks the progress
in stroke patients from the initial day that he or she had the stroke to
days, weeks, months or even years post-stroke. The traditional FMA
does not need any special equipment, at most it requires a mat or a bed
and a number of small objects for assessment of sensation, reflexes and
range of motion. Sections of the evaluation can be administered sep-
arately. The FMA is usually takes about 30-35 minutes to administer
the whole test.

Scoring in the FMA is based on direct observation of the perfor-
mance of stroke survivors and is based on the ability to complete an
item. The maximum score that a stroke patient can have is 226 points
and items in the FMA are scored on a 3-point scale:

• 0 = cannot perform;

• 1 = performs partially;

• 2 = performs fully.

There are five domains which are evaluated by the occupational or
physical therapist during the FMA:

• Motor function: this part of the test includes assessing the move-
ment, coordination and reflex action of the shoulder, elbow, fore-
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arm, wrist, hand, hip, knee and ankle. The score for this test
range from 0 (paralysis) to 100 (normal motor function): 66 is
the upper extremity maximum score and 34 is the lower extrem-
ity maximum score.

• Sensory function: this part evaluates light touch on two surfaces
of the arm and leg, and position sense for 8 joints, maximum score
is 24.

• Balance: this part contains 7 tests, 3 seated and 4 standing,
maximum score is 14.

• Joint range of motion: this part considers 8 joints, maximum
score is 44.

• Joint pain: maximum score is 44.

Despite FMA is a commonly used clinical test that has been de-
veloped to qualitatively describe complex motor tasks by functional
testing, this method depends on individual observation and subjective
interpretation, which make the assessment results inconsistent and have
limited accuracy in recall [132]. The need for objective, cost-effective
and clinically applicable methods, as well as methods that possess a
high sensitivity and specificity, is hence clear. Aim of this Chapter is
to develop a new motion analysis protocol for the upper extremity FMA
instrumentation, by using inertial sensors in order to estimate the body-
segment angular displacements of the kinematic chain used to model
the upper limb. In this study, 3D joint kinematics is estimated taking
advantages from the use of a simple and portable measurement system
(inertial sensors) and from the assumption of a rigorous biomechanical
model related to the single patient. This new technique for the instru-
mented upper extremity FMA would enable quantitative assessment
of performance on a subject-specific basis, overcoming the limitations
due to the lack of objectiveness related to individual judgment, and
possibly disclosing subtle alterations that are not clearly visible to the
observer.
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Upper Limb Motion Analysis Protocol

Quantifying upper extremity dysfunction in neurological and or-
thopedic disorders is technically complex because of the multi-joint
structure, and interpretation is hindered by the variability of possible
movements. Increasing interest in upper limb biomechanics has led to
closer investigations of both segment movements and detailed joint mo-
tion. Unfortunately, conceptual and practical differences in the motion
analysis protocols reduce compatibility for post-data and cross valida-
tion analysis. For instance, several authors used different kinematic
models of the upper limb, different coordinate systems, different motor
tasks, and different measurement systems [4, 39, 141, 192, 193]. A new
and flexible framework for the definition of standardized protocols for
measuring upper extremity kinematics was design in 2008 by Kontaxis
et al. in [100]. The steps required to build a motion analysis protocol,
recommended by the authors, are the following:

1. Joints/segments of interest selection;

2. Mechanical model of joints/segment DoFs definition;

3. Joint/segment coordinate systems and angles definition;

4. Marker setup/ sensors placement identification;

5. Selection of the set of activities to be measured;

6. Kinematics refinements definition.

The protocol developed for the upper limb kinematics estimation
presented in this Chapter is based on these recommendations. The used
measurement system, as mentioned above, is a body-sensor network
consisting on one Inertial Measurement Unit (IMU) per segment, in-
cluding a tri-axial accelerometer and a tri-axial gyroscope. The use of a
traditional movement analysis system, as the Stereo-Photogrammetric
(SP) system, is required only in order to validate the method.

Since micro-machined sensors have become generally available on
the market, human movement can be continuously measured outside a
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specialized laboratory, overcoming the limitation of traditional move-
ment analysis systems. In addition to inertial sensors, some commercial
IMUs, often used in motion analysis, include a magnetometer able to
measure the earth magnetic field strength. Body-segments orientation
can be estimated by combining the sensor signals from accelerome-
ters, gyroscopes and magnetometers, approximating the body-segment
anatomical axes to the IMU technical axes and considering the IMUs
orientation.

The design of a filter for the IMU orientation estimation (in place
of the human body-segments orientation) has been first described by
Foxlin et al. [60] and Bachmann et al. [10]. Foxlin et al. [60] described
a sensor unit containing a 2D fluid inclinometer, a 2D electronic com-
pass and a 3D gyroscope, with a Kalman Filter (KF) that incorporated
a continuous gyroscope offset estimate. Although this method seemed
to work for some controlled 2D test movements, applicability of this
sensor was limited for general 3D movements, owing to the singular-
ities arising from the 2D instead of 3D sensors and the use of Euler
angles. Bachman et al. [10] used a filter that relied on accelerometers
and magnetometers for low-frequency components of the orientation
and used gyroscopes to measure faster changes of orientation. This
method seemed to be robust, although the performance of the filter
has not been investigated for 3D human movements. In 2005, Luinge
and Veltink [116] designed and evaluated a KF that fused tri-axial ac-
celerometer and tri-axial gyroscope signals for ambulatory recording
of human body-segments orientation. The method continuously cor-
rected orientation estimates obtained by mathematical integration of
the 3D angular velocity measured using the gyroscope. The correction
was performed using an inclination estimate continuously obtained us-
ing the signal of the 3D accelerometer. The error in rotation around
the vertical was not significantly reduced. Zhu and Zhou [219] used
also magnetometers in addition to accelerometers and gyroscopes to
overcome this problem.
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Thanks to their portability and usability, inertial sensors have been
largely used for the evaluation of kinematic variables in order to assess
neurological disorders by measuring arm movements. By way of exam-
ple, Beer et al. [15] measured the path of the hand in pointing tasks for
quantifying hemiparesis, Goldvasser et al. [72] for quantifying ataxia
and Topka et al. [186] for quantifying dyskinesia. Symptoms of Parkin-
son’s disease were measured using accelerometers [55, 82]. Uswatte et
al. [191] and Bernmark and Wiktorin [17] used an accelerometer at-
tached to the arm in order to obtain a measure of arm function during
daily life. More detailed and accurately studies have been published in
the last years regarding the use of inertial and magnetic sensors for the
upper limb motion tracking. By way of example, Zhou et al. [218] pre-
sented a new motion tracking system using two IMUs that are placed
near the wrist and the elbow joints. Each IMU consisted of a tri-axial
accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. The
position of the wrist and the elbow joints was obtained from a kine-
matic model previously designed. The position of the shoulder joint
was estimated using a Lagrangian-based optimization technique, which
integrated the values of acceleration and the estimated value of rotation
measured from both the inertial sensors. Experimental results, com-
pared to an optical motion tracker, provided position error less than
0.01m and angle error ranged from 2.5° and 4.8°.

In these studies, the data supplied by the accelerometer, gyroscope
and magnetometer are combined through sensor fusion algorithms to
measure the 3D orientation of the IMU technical System of Reference
(SoR), defined basing on the sensitive axis of the inertial and mag-
netic sensors, with respect to a global, earth-based SoR. In order to
estimate joints kinematics: i) an IMU has been attached to each body-
segment of interest, ii) at least one anatomical SoR has been defined for
each body-segment, and iii) the orientation of the anatomical SoR has
been expressed in the IMU technical SoR. Joint kinematics are finally
obtained from the relative orientation of the anatomical SoRs. The
standard procedure for the definition of an anatomical SoR is based on
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the measurement of the position of bony landmarks [24, 212]. Obvi-
ously, this is not a practical solution when IMUs are being used since it
would require the use of an additional measurement system to record
bony landmarks position in 3D, relative to the orientation of the IMU
technical SoR [156]. There is a need for an anatomical calibration
procedure for inertial sensors, to obtain comparable results as in pro-
cedures developed for optical recording systems. Only a few studies
have investigated the use of IMUs to analyze the joint kinematics of
the upper limb, considering the human body-segment SoRs orienta-
tion. These studies have mainly focused on determining the kinematics
of the humerus [33], the humerothoracic [10], and the elbow [10, 117].
In particular, in order to measure the kinematics between arm and fore-
arm, the method designed by Luinge et al. [117] on the basis of the
previous study published in 2005 [116] used the adduction constraints
in the elbow to measure the orientation of the forearm with respect to
the arm. They considered a sensor calibration in order to determine
the exact devices orientation with respect to the body-segments. The
accuracy of this method was limited by the accuracy of the sensor to
segment calibration. Cutti et al. [39] developed a protocol to mea-
sure scapulothoracic, humerothoracic, and elbow kinematics using four
IMU positioned on each body-segment of interest. For each segment,
anatomical SoRs were defined and were expressed in the SoR of the
IMU placed on the segment. Comparing joint kinematics estimates
with those obtained from a SP system, Cutti et al. obtained mean
errors between 0.2° and 3.2°, demonstrating the considerable accuracy
of the sensor-based estimation method. In order to exclude differences
in the measurements of the two systems, the clusters of markers were
glued on the IMUs to ensure that the same soft tissue artifacts affected
both tracking devices. Moreover, the same protocol for the definition of
the anatomical SoRs both for SP system and IMU was used: the ones of
the thorax, scapula and proximal humerus had a constant orientation
with respect to IMU technical SoR of the corresponding segment, while
the direction of elbow flexion/extension and pronation/supination axes
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were estimated before exercise [179, 210] in order to define the anatom-
ical SoRs for distal humerus and forearm. In another study, De Vries et
al. [48] developed a functional method in which the anatomical SoRs
were constructed from estimations of the functional axes of rotation
of a segment. Angular velocity, as measured by the IMUs during some
defined exercises, was used as an estimate of the functional axis of rota-
tion (averaged over time and normalized to unit length) [117]. Thorax,
arm, forearm and hand kinematics was estimated using four IMUs, con-
sidering their above functional procedure for anatomical SoRs, and a
SP system for validation, considering the ISB recommendations [212].
In order to determine the difference between methods, the angles of
rotation between the bony landmarks-based and the IMU-based SoRs
were calculated for each segment, obtaining 6.4°, 8.7°, 17.2° and 15.2°
for thorax, arm, forearm and hand respectively. The authors justified
the high errors considering the offset between the anatomical SoR defi-
nition methods and the soft tissue artifacts, which have different effects
on both the involved measurement systems.

Almost all the previously published studies focused on the use of
commercial IMU containing inertial and magnetic sensors and there is
a lack in the literature of the use of inertial technologies only. By an
inboard fusion algorithm, these sensors data are used to estimate IMU
orientation under the assumption of homogeneity of the earth mag-
netic field. Although not always obvious, it is usual that the condition
of the earth magnetic field is far from optimal, if not homogeneous at
all. These irregularities can be caused by construction iron in floors,
walls and ceilings, or other equipment in the environment, and occur
in both the horizontal and vertical plane [11]. In the recent past, De
Vries et al. [47] developed a technique to investigate the distortion
of the earth magnetic field in their laboratory and to define the ef-
fect of these disturbances on the accuracy of the orientation estimation
IMU-based method. Despite their results, the protocol presented in
this Chapter neglects the use of magnetometers, considering that the
developed measurement system would be used in both clinical and do-
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mestic environments: the difficulties related to the mapping of the earth
magnetic field are not compatible with the characteristics of portabil-
ity and usability required in this study. An important issue for the
IMU-based joint kinematics estimation method, is the alignment of the
different technical SoRs related to the different sensors placed on the
body-segments. IMUs which include magnetometers use gravity and
heading of the earth magnetic field to obtain the same global SoR.

In this perspective, aims of this Chapter are:

• to develop a new procedure in order to align the technical SoR
of each inertial sensor, obtaining a common global SoR, by us-
ing only accelerometers and gyroscopes data measured during a
preliminary system calibration phase;

• to evaluate 3D upper limb joint kinematics during some easy
exercises administered by the FMA: the relative orientation of
the anatomical body-segment SoRs will be obtain considering the
functional procedure described in [48] for anatomical axes defini-
tion, and applying a KF to accelerometer and gyroscope signals
in order to obtain 3D IMU orientation.

In order to support the usability and the accuracy of the method
presented in this Chapter, a SP system is used during the FMA exer-
cises for validation. The traditional anatomical calibration procedure
to define body-segment SoRs [24, 212] is performed in order to eval-
uate the difference between methods, in terms of angles of rotation
between the bony landmarks-based and the IMU-based SoRs for each
body-segment. Preliminary results are obtained in 2D, considering a
multi-link mechanical arm for experimental sessions and evaluating KF
performance in real-time.
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5.2 Methods and Materials

5.2.1 2D real-time multi-link model kinematics

A 2D multi-link model was initially analyzed, and the real-time
estimation algorithm of the angular displacements was provided. An
Extended Kalman Filter (EKF) was developed to estimate the dynamic
state of the system, considering accelerometer and gyroscope signals.
Next, in order to validate the method in a simple set-up, a mechanical
arm equipped with absolute encoders and IMUs was used to estimate
the multi-link kinematics.

Multi-link model

In order to describe the new method in the most general way, a
3-link model (3 degrees of freedom, DoFs) in the sagittal plane was
initially analyzed (see Figure 5.1)

The multi-link shown in Figure 5.1b models the upper limb kine-
matic chain in the sagittal plane (see Figure 5.1a). In this first part
of the Chapter, the kinematics of arm, forearm and hand was investi-
gated. The angles θ1, θ2, θ3, defined with respect to the vertical lines
passing through the rotation centers of shoulder (SH), elbow (E) and
wrist (W) joints, respectively, represent the three model’s DoF.

Three IMUs are supposed placed at height h1, h2, h3 from the ro-
tation centers SH, E and W, respectively. The measured accelerometer
and gyroscope outputs for the i-th link can be expressed as follows:

ax,i(k) = hiθ̈i(k) + g sin θi(k) + axi (k) cos θi(k)− azi (k) sin θi(k)

az,i(k) = hiθ̇
2
i (k) + g cos θi(k)− axi (k) cos θi(k)− azi (k) sin θi(k)

ωy,i(k) = θ̇i(k) (5.1)

considering:

axi (k) = axi−1(k) + li−1
d2[sin θi−1(t)]

dt2

∣∣∣
t=kTs

≈ axi−1(k) + li−1
[sin θi−1(k+1)−2 sin θi−1(k)+sin θi−1(k−1)]

T 2
s
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Figure 5.1: a) Upper limb kinematic chain representation in the sagittal

plane, b) 2D multi-link model

azi (k) = ayi−1(k) + li−1
d2[cos θi−1(t)]

dt2

∣∣∣
t=kTs

≈ ayi−1(k) + li−1
[cos θi−1(k+1)−2 cos θi−1(k)+cos θi−1(k−1)]

T 2
s

for k = 1, . . . , n (n is the number of samples) and i = 1, . . . , 3, where
Ts is the sample time and li−1 is the length of the (i-1)-th segment (it
is assumed that ax,y0 = 0, l0 = 0).

In order to describe the dynamic state of the system, an EKF
[93, 201] was implemented to accurately estimate the three angles θ1,
θ2, θ3, by fusing the accelerometer and gyroscope outputs, calculated
by Equation (5.1). The main equations of the EKF are shown in Equa-
tion (5.2), where wk and vk represent the process and measurement
noise, assumed to be independent, white and with normal probability
distribution, having a process noise covariance Q and a measurement
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noise covariance R. More details about the algorithm are presented
elsewhere [201]. The state-space model of the EKF is described by the
process and measurement model equations:

xk+1 = Axk + wk

zk = h(xk) + vk (5.2)

The state vector of the EKF, x(k)[9×1], at every sampled instant of
time k, was defined considering the angles, θ1, θ2, θ3, their first and
second time derivatives as:

x(k) =



θ1(k)

ω1(k)

α1(k)

θ2(k)

ω2(k)

α2(k)

θ3(k)

ω3(k)

α3(k)



(5.3)

In the discrete-time domain, the predicted state at the instant k+1

was obtained as:

x(k + 1) =


A[3×3] 0[3×3] 0[3×3]

0[3×3] A[3×3] 0[3×3]

0[3×3] 0[3×3] A[3×3]


︸ ︷︷ ︸

A[9×9]

x(k) (5.4)

where

A[3×3] =


1 Ts

T 2
s

2

0 1 Ts

0 0 1

 (5.5)

The upper triangular state matrix A[9×9] was obtained considering the
extension of A[3×3] to the [9×1]-state vector defined in Equation (5.3).
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The measurement vector z(k)[9×1], at every sampled instant of time
k, was defined considering the outputs of the sensors, expressed in
Equation (5.1), as:

z(k) =



ax,1(k)

az,1(k)

ωy,1(k)

ax,2(k)

az,2(k)

ωy,2(k)

ax,3(k)

az,3(k)

ωy,3(k)



(5.6)

According to Equation (5.1), the output vector is related to the state
vector through the non-linear relationship zk = h(xk). The output
matrix H(k)[9×9], which relates the measurements z(k)[9×1] to the state
x(k)[9×1], was thus obtained evaluating the Jacobian matrix of partial
derivatives of h(xk) with respect to the state vector.

Figure 5.2: Summary scheme of the operations implemented in the Kalman

Filter

97



The process covariance matrix Q was defined under the assumption
that noise affects the jerk only and there are no correlations between
the jerk noise sequences. Q[9×9] has therefore three non-zero elements
only (Q(i, i), i = 3, 6, 9). The measurement noise covariance matrix
R was defined considering the noise which affects the accelerometer
and the gyroscope outputs. Since correlations between noise of the
sensors were assumed to be zero, R[9×9] is diagonal. In order to run
the filter procedure (see Figure 5.2), initial estimate of the state vector
was zeroed, whereas the initial estimate of the error covariance matrix
P[9×9] was set equal to the identity matrix.

The three angles of rotation θ1, θ2, θ3, are the elements x1(k), x4(k),
x7(k) of the estimated state vector x(k), after the filtering procedure.

Multi-link mechanical arm

The method was tested by using an aluminum rectangular 3-link
mechanical arm driven by hand. The mechanical arm is equipped with
three absolute encoders (Gurley Precision Instrument, mod. 7700,
resolution 19 bit) and three IMUs (Microstrain, mod. Inertia-Link,
range ±5g, ±300°/s, resolution 16 bit) placed at height h1 = 0.20m,
h2 = 0.15m, h3 = 0.10m from the rotation center SH, E and W, re-
spectively (see Figure 5.3). Considering that movement takes place in
the sagittal plane, the output signals from accelerometers with sensitive
axes placed along orthogonal ax,i(k) and centripetal az,i(k) direction
with respect to the links, and the output signals from gyroscopes with
sensitive axes orthogonal to the sagittal plane ωy,i(k) were considered
only (k = 1, . . . , n and i = 1, . . . , 3). Signals were acquired at 100Hz
sampling rate and five trials were performed, oscillating the multi-link
arm at different frequencies and with different angular excursions.

In order to validate the estimation method, the three encoder out-
puts were compared with the estimated angles θ1, θ2, θ3. Root Mean
Square Errors (RMSEs) are thus provided.
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Figure 5.3: Three-link mechanical arm equipped with encoders and IMUs

The acquisition, the EKF and the output processing were developed
in LabVIEW programming environment (see Figure 5.4) in order to
guarantee the real-time performance of the system.

Figure 5.4: Main part of the acquisition and data processing software de-

veloped in LabVIEW programming environment

99



5.2.2 3D upper limb joint kinematics

Starting from the method developed for the 2D multi-link kinemat-
ics estimation, the second part of this Chapter focused on the extension
of the procedure for a 3D evaluation. In 5.2.1 an EKF was developed
considering the upper limb modelled as a 2D 3-link kinematic chain, and
sensor outputs were calculated starting from a geometrical perspective
of the biomechanical model. In 3D dissertation and in order to extend
the EKF procedure to estimate upper limb kinematics, a model of the
sensor, positioned on each body-segment of interest, was used in place
of a model of the kinematic chain . In addition to rotations, the EKF
developed in this Chapter considers the translations in the estimated
state vector.

Figure 5.5: Relative rotation and translation between the sensor technical

systems of reference (red) and the global systems of reference (black)
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All the rotations and translations estimated through the EKF were
referred to rotations and translations of the sensor technical SoR xyz

with respect to the sensor’s technical SoR at the initial condition XY Z
(frame 0), which was assumed as global SoR (see Figure 5.5).

For each IMU, the three rotation angles with respect to the global
SoR were referred to roll, pitch and yaw angles: at every sampled
instant of time k, the roll is a counterclockwise rotation of α(k) about
the x-axis, the pitch is a counterclockwise rotation of β(k) about the
y-axis, and the yaw is a counterclockwise rotation of γ(k) about the
z-axis. In addition, the three translations with respect to the global
SoR were defined as tx(k), ty(k) and tz(k), which correspond to the
translation along, the x-, y- and z-axis, respectively.

The rotation matrix and the translation vector from the technical
SoR to the global SoR at frame k, were defined as

GRT (k) = Rz(γ(k)) ·Ry(β(k)) ·Rx(α(k)) =

=


CβCγ SαSβCγ − CαSγ CαSβCγ + SαSγ

CβSγ SαSβSγ + CαCγ CαSβSγ − SαCγ
−Sβ SαCβ CαCβ


GtT (k) =

[
tx(k) ty(k) tz(k)

]T
(5.7)

where, considering the generic angle φ(k), Sφ = sinφ(k) and Cφ =

cosφ(k), respectively.

The state-space model of the EKF is described by the same process
and measurement model equations defined in Equation (5.2). The state
vector, x(k)[18×1], at every sampled instant of time k, was defined con-
sidering the angles α(k), β(k), γ(k), with their first and second time
derivatives, and the translations tx(k), ty(k), tz(k), with their first and
second time derivatives, as:

x(k) =
[
Θx(k) Θy(k) Θz(k) Tx(k) Ty(k) Tz(k)

]T
(5.8)

The vectors expressed in Equation (5.8), for each direction along x-, y-
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and z-axis, were defined as:

Θx(k) =
[
α(k) α̇(k) α̈(k)

]T
Θy(k) =

[
β(k) β̇(k) β̈(k)

]T
Θz(k) =

[
γ(k) γ̇(k) γ̈(k)

]T
Tx(k) =

[
tx(k) ṫx(k) ẗx(k)

]T
Ty(k) =

[
ty(k) ṫy(k) ẗy(k)

]T
Tz(k) =

[
tz(k) ṫz(k) ẗz(k)

]T
(5.9)

In the time-discrete domain, the predicted state at the instant k+1

was obtained as:

Θx,y,z(k + 1) =


1 Ts

T 2
s

2

0 1 Ts

0 0 1


︸ ︷︷ ︸

A[3×3]

Θx,y,z(k)

Tx,y,z(k + 1) = A[3×3]Tx,y,z(k) (5.10)

The upper triangular state matrix A[18×18] was obtained considering
the extension of A[3×3] to the [18×18]-state vector defined in Equation
(5.8).

The measurement vector z(k)[6×1], at every sampled instant of time
k, was defined considering the outputs of the sensor, as:

z(k) =
[
ax(k) ay(k) az(k) ωx(k) ωy(k) ωz(k)

]T
(5.11)

The accelerometer and gyroscope outputs measured at the instant k
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and defined in the sensor technical SoR were expressed as follows [68]:
ax

ay

az

 = GRT
T · (Gg +

G
ẗT )


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 = GRT
T ·

dGRT

dt
(5.12)

Considering the changes in state and measurement vector defini-
tions, the filtering procedure previously described in 5.2.1 and shown
in Figure 5.2, was implemented in order to estimate the three angles
of rotation of a single sensor, α(k), β(k), γ(k), which are the elements
x1(k), x4(k), x7(k) of the estimated state vector x(k).

After the definition of the segments and joints of interest, and their
mechanical model description, the first phase of the movement analysis
protocol focuses on the application of the filtering procedure to each
considered IMU, in order to estimate sensors angular kinematics with
respect to the initial condition (global SoR) during the set of activi-
ties to be measured, selected in the FMA. Even if commercial IMUs,
including magnetometers and considering gravity and heading of the
earth magnetic field to define the global SoR, are usually used in this
phase, in this Chapter magnetometer data are completely neglected.
In this perspective, an alignment procedure is developed in order to
obtain a unique global SoR, using accelerometer and gyroscope data,
which is used as reference for IMUs angular kinematics.

Then, in a second phase, anatomical SoRs are defined for every
body-segments starting from accelerometer and gyroscope data, during
some easy exercises defined in a functional calibration procedure. The
body-segments angular kinematics with respect to the IMUs global SoR
is thus estimated, and the relationship between corresponding anatom-
ical and technical SoRs is known.

The third phase is focused on the joint kinematics estimation, con-
sidering the relative orientation between anatomical SoRs related to

103



adjacent body-segments. In order to validate the method, a SP system
is used to compare obtained joint kinematics, considering a cluster of
markers glued on each IMU to ensure that the same soft tissue arti-
facts affected both tracking devices. A standard anatomical calibration
is carried on for the body-segment anatomical axes definitions [24],
considering the recommendations provided by ISB [212].

Joints/Segments of interest

The 3D kinematic model considered in this part of the Chapter
consists of the thorax, the arm and the forearm body-segments, which
are assumed to be rigid segment (see Figure 5.6a).

The orientation of the arm was computed with respect to the thorax,
defining this as the shoulder kinematics, and the orientation of the
forearm was computed with respect to the arm, defining this as the
elbow kinematics.

Figure 5.6: a) Kinematic model for the right upper limb, b) representation

of the mechanical model of the joints of interest
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Joint mechanical models

The shoulder kinematics was modeled with three DoFs (Figure 5.6b),
namely Flexion/Extension (S_FE, Figure 5.7a), Abduction/Adduction
(S_AA, Figure 5.7b) and Internal/External rotation (S_IE, Figure
5.7c), which are the independent rotation angles around Y -, X- and
Z-axis of an IMU global SoR, respectively. Elbow kinematics was de-
scribed by two DoFs: Flexion/Extension (E_FE, Figure 5.7d) and
Pronation/Supination (E_PS, Figure 5.7e), which are the independent
rotation angles around Y - and Z-axis of an IMU global SoR, respec-
tively. , The Carrying- Angle (E_CA) is a constant parameter of the
elbow and measures the relative orientation of the axes of the hinges;
it is subject-specific and not necessarily null [38, 198].

Figure 5.7: DoFs of the joints of interest
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Sensors set-up

One healthy subject, without no previous orthopedic ailment, par-
ticipated in this study after giving his informed consent. Three inertial
sensors (Xsens, MTx, range ±50m/s2, ±1200°/s) were placed on each
body-segment of interest with double sided tape on the right upper
limb. For the thorax, the IMU was placed over the flat portion of the
sternum. For the arm, the IMU was placed over the central third of
the humerus, slightly posterior in order to minimize to soft tissue arti-
fact. For the forearm, the IMU was placed over the distal, flat surface
of radius and ulna. Inertial measurements were acquired at fs=100Hz
sampling rate. The output signals of each sensor are referred to the
technical SoR of each IMU.

In order to define a common global SoR XY Z for the three IMUs,
using accelerometer and gyroscope data and neglecting magnetometer
data, an alignment procedure was carried out. The aim is to obtain
a global SoR with the Z-axis pointing vertically as the gravity vector,
and with the X- and Y -axes aligned to the technical SoR of IMU placed
on the thorax. This configuration was interpreted as the initial condi-
tion for the EKF procedure: IMUs angular kinematics are related to a
defined global SoR, as inertial and magnetic devices are usually related
to the earth magnetic field.

At the beginning of each data collection, the subject was asked
to adopt a standard anatomical position (SAP, standing straight, arm
hanging along the body, hand palms pointing to the front). In this
position, the gravity vector measured by the accelerometers was used
as an estimator for the z-axis of the IMU. Afterwards, and starting
from the SAP, the subject was asked to perform a rigid movement
involving adjacent body-segments, in order to assume that the angular
velocities measured by the gyroscopes in a common fixed SoR are equal.
The relative angle between the two projected angular velocities in the
horizontal plane was then calculated and used in order to estimate the
rotation angle between the two IMU technical SoRs [58].
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The alignment procedure is described by the following steps:

1. Static calibration

The subject is asked to adopt the SAP for five seconds, and the
thorax, arm and forearm accelerometer outputs are measured.
At every sampled instant of time k, according to Equation (5.12),
they are expressed in static condition as:

ax(k) = −g sinβ(k)

ay(k) = g cosβ(k) sinα(k)

az(k) = g cosβ(k) cosα(k)

k = 1, . . . , 5 · fs (5.13)

Starting from Equation (5.13) and averaging accelerometer out-
puts over time, rotation matrices Rx and Ry are obtained con-
sidering the mean angles, α and β, that describe the rotation
between the IMU technical SoR xyz and the one with the Z-axis
aligned with the gravity vector:

α = tan−1
āy
āz
⇒ Rx =


1 0 0

0 cosα − sinα

0 sinα cosα



β = − sin−1
āx
g
⇒ Ry =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 (5.14)

For each body-segment, the resultant rotation matrix Ry · Rx

allows the alignment of the z-axis of each technical SoR with the
gravity vector. After this static calibration, the technical SoR of
the IMU placed on the thorax is assumed as the global SoR.

2. First dynamic calibration

Starting from the SAP, in order to align the IMU technical SoR
of the arm to the the IMU technical SoR of the thorax, the sub-
ject is asked to perform five times flexion/extension of the thorax
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and the arm body-segments, try to avoid any movement of the
shoulder joint to obtain a movement as rigid as possible. After
the alignment provided by the static calibration, at every sam-
pled instant of time k, thorax and arm gyroscope outputs, ωTk
and ωAk, are measured in their technical SoRs, and the angle be-
tween the two projected angular velocities in the horizontal plane
is calculated using the dot product in Equation (5.15):

θk = sign(ωAx,k · ωTy,k − ωAy,k · ωTx,k)·

· cos−1
(
〈[ωAx,k, ωAy,k], [ωTx,k, ωTy,k]〉
‖ωAx,k, ωAy,k‖ · ‖ωTx,k, ωTy,k‖

)
(5.15)

where 〈, 〉 denotes the dot product and the sign function expresses
the sign (-1 or 1) of its argument, defining the direction of the
rotation. Assuming that θk is a constant value influenced by the
amplitude of angular velocity, γA2T is estimated by a weighted
averaging of θk, using Equation (5.16). Angle γA2T describes the
rotation between the arm IMU technical SoR and the thorax IMU
technical SoR in the horizontal plane:

γA2T =

∑n
k=1‖[ωAx,k, ωAy,k]‖ · θk∑n
k=1‖[ωAx,k, ωAy,k]‖

⇒

⇒ Rz,A2T =


cos γA2T − sin γA2T 0

sin γA2T cos γA2T 0

0 0 1

 (5.16)

3. Second dynamic calibration

Starting from the SAP, in order to align the IMU technical SoR of
the forearm to the the IMU technical SoR of the arm, the subject
is asked to perform five times abduction/adduction of the arm
and the forearm body-segments, try to avoid any movement of
the elbow joint to obtain a movement as rigid as possible. After
the alignment provided by the static calibration, at every sampled
instant of time k, arm and forearm gyroscope outputs, ωAk and
ωFk, are measured in their technical SoRs, and the angle between
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the two projected angular velocities in the horizontal plane is
calculated, modifying the Equation (5.15) in:

θk = sign(ωFx,k · ωAy,k − ωFy,k · ωAx,k)·

· cos−1
(
〈[ωFx,k, ωFy,k], [ωAx,k, ωAy,k]〉
‖ωFx,k, ωFy,k‖ · ‖ωAx,k, ωAy,k‖

)
(5.17)

Angle γF2A describes the rotation between the forearm IMU tech-
nical SoR and the arm IMU technical SoR in the horizontal plane:

γF2A =

∑n
k=1‖[ωFx,k, ωFy,k]‖ · θk∑n
k=1‖[ωFx,k, ωFy,k]‖

⇒

⇒ Rz,F2A =


cos γF2A − sin γF2A 0

sin γF2A cos γF2A 0

0 0 1

 (5.18)

According to the above explained static and dynamic calibrations,
the three rotation matrices between the technical SoR xyz of each IMU
and the global common SoR XY Z are calculated as follows (see Figure
5.8):

GRTT = RTy ·RTx

GRAT = Rz,A2T ·RAy ·RAx

GRFT = Rz,A2T ·Rz,F2A ·RFy ·RFx (5.19)

In order to to demonstrate the accuracy of the alignment procedure
of the IMU technical SoRs, orientation data were acquired from the
three sensors in addition to accelerometer and gyroscope outputs. Ori-
entation data provided by the IMUs are obtained through an embedded
EKF with respect to the earth magnetic field SoR, thanks to the use of
the internal tri-axial magnetometer. Relative orientation between the
IMUs placed on the thorax and the arm were estimated during three
trials of flexion/extension, three trials of ab/adduction and three trials
of internal/external rotation of the arm, using both the alignment pro-
cedure to obtain a common global SoR and the embedded EKF which
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Figure 5.8: Representation of the Thorax (T), arm (A) and forearm (F)

system of reference and of the rotation matrices between technical and global

frames
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works with respect to the earth magnetic field. Relative matrices were
calculated at every instant of time k as:

RS′(k) = GRTT
T (k) · GRAT (k)

RS′IMU(k) = ERTT
T (k) · ERAT (k) (5.20)

where RS′(k) and RS′IMU(k) are the rotation matrices which describe
the relative orientation between the technical SoRs of the IMUs placed
on the arm and the thorax, provided considering the global SoR, G,
and the earth magnetic SoR ,E, respectively (S is about "shoulder").

The relative angles were then obtained by decomposing the relative
orientation of the technical SoRs with the following sequences of Euler
angles:

• S_FE, S_AA, and S_IE with the sequence Y X ′Z ′′ for almost
sagittal tasks;

• S_AA, S_FE, and S_IE with the sequence XY ′Z ′′ for almost
frontal tasks;

• S_IE, S_AA, and S_FE with the sequence ZX ′Y ′′ for almost
transverse tasks;

The effectiveness of the procedure to align the IMU technical SoRs
was evaluated for each type of task in terms of RMSEs between the
global SoR-based and the earth magnetic field SoR-based estimated
angles.

Body-segments anatomical system of reference

In order to define the anatomical SoRs xayaza of the thorax, arm
and forearm, and to express the orientation of these anatomical SoRs
with respect to the IMU technical SoRs xyz, some easy exercises ad-
ministered in a functional calibration procedure were performed. The
body-segments angular kinematics with respect to the IMU global SoR
XY Z was thus estimated, and the relationship between corresponding
anatomical and technical SoRs was calculated.
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The functional calibration of the body-segment anatomical axes is
focused on the evaluation of the functional axes of rotation of each seg-
ment of interest [48], using accelerometer and gyroscope data. After
the static and dynamic calibration for the IMU technical SoRs align-
ment procedure, subject was asked to perform the following series of
well defined, uni-axial rotations, five times each, avoiding the extremes
of the range of motion:

Thorax

• perform five times forward flexion of the trunk (0° to 40°
flexion), keeping the arms aligned with the thorax and trying
to avoid neck flexion, starting and ending adopting the SAP
for a few second, in order to estimate the functional axis of
thorax flexion/extension, ya;

• from standing, adopt SAP for five seconds, in order to esti-
mate the functional axis of thorax lateral flexion, xa.

Arm

• while seated, with the olecranon supported at a table and the
elbow flexed at about 90º, perform five times internal rota-
tion of the humerus, trying to avoid elbow flexion-extension,
or forearm prono/supination during the movement, in order
to estimate the functional axis of arm axial rotation, za;

• while seated, with both olecranons supported at a table
and the elbows at shoulder breadth, holding a stick with
both hands at shoulder breadth, with thumbs pointing lat-
erally, perform five times elbow extension (20º to 50º exten-
sion), in order to estimate the functional axis of arm flex-
ion/extension, ya. Since movement of the forearm is used to
define the lateral axis of the humerus which is not moving,
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data from the IMU on the forearm is expressed in the SoR
of the IMU on the humerus.

Forearm

• while seated, with the olecranon supported at a table and the
ulna supported and fixated to avoid internal/external rota-
tion of the humerus during the movement, perform five times
pronation of the forearm, in order to estimate the functional
axis of forearm axial rotation, za;

• perform the same procedure as in obtaining the functional
axis of arm flexion/extension, in order to obtain the func-
tional axis of forearm flexion/extension, ya. Data from the
IMU on the forearm is expressed in its SoR.

The definitions of the anatomical SoR xayaza of the thorax, arm
and forearm body-segments (Table 5.1) are thus applied, considering
xa-axis pointing anteriorly, ya-axis pointing laterally to the left, and
za-axis pointing vertically. Angular velocity measured by the IMUs
was used as an estimate of the functional axis of rotation (averaged
over time, and normalized to unit length) [117]. To enable a clear
segmentation, each series of movements was followed by a stop of at
least two seconds. To ensure a high signal-to-noise ratio, a cut-off of
30% of the maximal angular velocity amplitude was used.

According to the above explained functional calibration procedure,
the three rotation matrices between the anatomical SoR xayaza of each
body-segment and the IMU global SoR XY Z are calculated as follows:

G
R(T,A,F)A =


xa,(T,A,F )

ya,(T,A,F )

za,(T,A,F )


T

(5.21)
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Table 5.1: Definition of the anatomical SoRs of each body-segment (right

upper limb). All vectors are expressed in the IMU global SoR. Symbol ∧
denotes the cross product

The constant relationship between corresponding anatomical and
technical SoRs for each body-segment is then calculated according to
Equations (5.19) and (5.21) as follows:

ARTT = GRTT
A ·

GRTT

ARAT = GRAT
A ·

GRAT

ARFT = GRFTA ·
GRFT (5.22)

Joint kinematics evaluation

The alignment and the functional calibration procedures require to
perform six easy and fast exercises (some exercises can be used for both
procedures), schematically represented in Figure 5.9.
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Figure 5.9: Exercises required by the alignment and functional calibration

procedures: a) static, b) thorax and arm flexion/extension, c) arm and fore-

arm abduction/adduction, d) arm internal/ external rotation, e) forearm

flexion/extension, f) forearm pronation/ supination

After the alignment and functional calibration procedures, subject
was asked to perform some similar exercises, administered by the FMA,
selected thanks their broad content regarding the kinematic information
obtained during the upper limb movements. Starting from the SAP, the
subject was asked to perform the following series of exercises, five times
each, at a self-selected velocity:

1. arm flexion/extension

2. arm abduction/adduction

3. arm internal/external rotation

During each exercise, the EKF was applied to accelerometer and
gyroscope outputs for the thorax, the arm and the forearm body-
segments, in order to provide the IMUs angular kinematics with re-
spect to the IMUs global SoR. Estimated rotation angles and rotation
matrices were calculated at every instant of time k, for the thorax, the
arm and the forearm, following the steps shown in Equation (5.23):

a(T,A, F )x(k) ω(T,A, F )x(k)

a(T,A, F )y(k) ω(T,A, F )y(k)

a(T,A, F )z(k) ω(T,A, F )z(k)

−→ EKF −→

−→
roll(T,A, F )(k)

pitch(T,A, F )(k)

yaw(T,A, F )(k)

⇒ G
R(T,A,F)T (k) (5.23)
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Considering the result of (5.22), the rotation matrices related to the
body-segment anatomical SoRs with respect to the IMUs global SoR
during the exercises were provided by:

G
R(T,A,F)A(k) =

G
R(T,A,F)T (k) · AR(T,A,F)

T
A (5.24)

Joint kinematics were obtained considering the relative orientation
between the anatomical SoRs related to adjacent body-segments:

RS(k) = GRTT
A(k) · GRAA(k)

RE(k) = GRAT
A(k) · GRFA(k) (5.25)

where RS(k) is the rotation matrix which describes the relative ori-
entation between arm and thorax anatomical SoRs, where S is about
"shoulder", and RE(k) is the rotation matrix which describe the rel-
ative orientation between forearm and arm anatomical SoRs, where E

is about "elbow".

The shoulder and elbow angles (see Figure 5.6) were then obtained,
at every instant of time k, by decomposing the relative orientation of
the anatomical SoRs with the following sequences of Euler angles:

• S_FE, S_AA, S_IE and E_FE, E_CA, E_PS with the sequence
Y X ′Z ′′ for almost sagittal tasks;

• S_AA, S_FE, S_IE and E_CA, E_FE, E_PS with the sequence
XY ′Z ′′ for almost frontal tasks;

• S_IE, S_AA, S_FE and E_PS, E_CA, E_FE with the sequence
ZX ′Y ′′ for almost transverse tasks.

In order to validate the method presented in this Chapter for the
estimation of upper limb joints kinematics using inertial sensors, a SP
system was used (Vicon, mod. Bonita). A cluster of markers glued
on each IMU was used as the motion tracking device, and a standard
anatomical calibration was carried on for the body-segment anatomical
axes definitions [24]. Considering the recommendations provided by
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ISB [212] (see Figure 5.10), the bony-landmarks which were measured
are shown in the following list:

Figure 5.10: Bony-landmarks of the upper limb body-segments. Image is

from [212]

Thorax

• C7: processus spinosus of the 7th cervical vertebra

• T8: processus spinosus of the 8th thoracic vertebra

• IJ: deepest point of incisura jagularis

• PX: processus xiphoideus, the most caudal point of the ster-
num

Arm

• GH: glenohumeral joint rotation center, estimated by the
regression model described in [134], which used the following
scapula bony-landmarks:

– AC: Most dorsal point on the acromioclavicular joint
(shared with the scapula)
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– TS: Trigonum Spinae Scapulae, the midpoint of the tri-
angular surface on the medial border of the scapula in
line with the scapular spine

– AI: Angulus Inferior of the scapula, the most caudal
point

– AA: Angulus Acromialis of the scapula, the most latero-
dorsal point

– PC: Most ventral point of processus coracoideus

• EL: Most caudal point on lateral epicondyle

• EM: Most caudal point on medial epicondyle

• RS: Most caudal–lateral point on the radial styloid

• US: Most caudal–medial point on the ulnar styloid

Forearm

• EL: Most caudal point on lateral epicondyle

• EM: Most caudal point on medial epicondyle

• RS: Most caudal–lateral point on the radial styloid

• US: Most caudal–medial point on the ulnar styloid

5.3 Results

5.3.1 2D real-time multi-link kinematics

First results were obtained evaluating the performance of the EKF
procedure using a 2D mechanical arm, consisting in three links which
model the upper limb kinematic chain in the sagittal plane. By way of
example, estimated angles for shoulder, arm and forearm and residuals
obtained from comparison between IMU-based and encoders angles are
shown in Figure 5.11 for one trial.
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Figure 5.11: Pattern of: a) shoulder angle, b) elbow angle, c) wrist angle

(blue line) and residual errors (red line) during a trial
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RMSEs and percentages of the ratio RMSE/peak-to-peak range (P-
P), averaged on the five trials, are 0.31° (0.4%), 0.49° (0.7%), 0.74°
(0.8%) for arm, forearm and hand angles, respectively. Angular excur-
sions performed are about 81.26°, 65.58°, 97.32°, for the three links.
Real-Time performance are guaranteed. In order to accurately run the
EKF procedure, the values Q(i, i), i = (3, 6, 9) and the elements of the
diagonal of R were set after an optimization procedure, in which the
encoders were assumed as validation instruments.

5.3.2 3D upper limb kinematics

In order to develop an innovative technique for the upper limb kine-
matics evaluation, which could be applied to instrument functional test
as FMA, first results concern the usability and the accuracy of the
procedure for the alignment of the IMU technical SoRs, to provide a
common global SoR and neglecting the use of any magnetometers in
the sensors set-up. Then, results in terms of joint kinematics are then
provided, considering the comparison between a functional procedure
and the traditional anatomical procedure to estimate body-segments
anatomical axes, starting from inertial sensors and bony-landmarks
data, respectively.

IMU relative kinematics evaluation

For each performed task (three arm flexion/extension, three arm
ab/ adduction, three arm internal/external rotation), relative angles
between the technical SoRs of the IMUs placed on the arm and the
thorax are calculated applying the EKF to the accelerometer and gy-
roscope outputs of each body-segment, and carrying on the alignment
procedure of the IMU technical SoRs in order to describe the kinemat-
ics with respect to a common global SoR. The relative angles obtained
from the orientation data provided by the IMU with respect to the
earth magnetic field SoR (thanks to the use of a magnetometer) are
used for validation.
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RMSEs and Standard Deviations (STDs), related to each single-
relative-angle and averaged on the three trials performed for each type
of task, are reported in Table 5.2. Mean errors range from 0.4° to 5.3°,
with a mean value equal to 1.7°. Overlooking the type of exercise, mean
errors are about 1.3°, 0.7°, 3.1° for relative angles of flexion/extension,
ab/adduction and intra/extra rotation, respectively.

Table 5.2: RMSEs and STDs related to the relative angles between the

technical SoRs of the IMUs placed on the arm and the thorax, averaged on

three trials for each task

By way of example, estimated relative angles and residuals between
global SoR-based and earth magnetic field SoR-based results are re-
ported in Figures 5.12, 5.13, and 5.14 for one task of arm flex-
ion/extension, arm ab/adduction, and arm internal/external rotation,
respectively.
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Figure 5.12: Relative angles between technical SoRs of the IMUs placed

on the thorax and the arm (blue dashed line) and residual errors (red solid

line) for an arm flexion/extension task: a) shoulder flexion/extension, b)

shoulder ab/adduction, c) shoulder internal/external rotation, d) elbow flex-

ion/extension
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Figure 5.13: Relative angles between technical SoRs of the IMUs placed

on the thorax and the arm (blue dashed line) and residual errors (red solid

line) for an arm ab/adduction task: a) shoulder ab/adduction, b) shoulder

flexion/extension, c) shoulder internal/external rotation
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Figure 5.14: Relative angles between technical SoRs of the IMUs placed on

the thorax and the arm (blue dashed line) and residual errors (red solid line)

for an arm intra/extra rotation task: a) shoulder internal/external rotation,

b) shoulder ab/adduction, c) shoulder flexion/extension
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Joint kinematics evaluation

Relative angles between arm and thorax, and forearm and arm,
anatomical SoRs are calculated applying the EKF to the IMU outputs,
carrying on the alignment procedure of the IMU technical SoRs and the
functional calibration of the anatomical axes. The relative angles ob-
tained from the data provided by the SP system are used for validation,
applying the standard anatomical calibration [24].

RMSEs and STDs, related to each single-joint-angle and averaged
on the three trials performed for each type of task, are reported in Ta-
ble 5.3. Mean errors range from 1.2° to 5.2°, with a mean value equal to
2.7° for shoulder angles and equal to 3.2° for elbow angles. Overlook-
ing the type of task, mean errors are about 3.1°, 2.4°, 2.6° for shoul-
der angles of flexion/extension, ab/adduction and intra/extra rotation,
respectively, and are about 2.9°, 3.2°, 3.6° for elbow angles of flex-
ion/extension, prono/supination and carrying angle, respectively. Joint
angles estimated by IMU data and measured by SP system are reported
in Figures 5.15, 5.16, and 5.17 for one task of arm flexion/extension,
arm ab/adduction, and arm intra/extra rotation, respectively.

Table 5.3: RMSEs and STDs related to the joint angles of shoulder and

elbow, averaged on three trials for each task
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Figure 5.15: Joint angles measured by SP system (blue solid line) and es-

timated by IMU data (red dashed line) for an arm flexion/extension task:

a) shoulder flexion/extension, b) shoulder ab/adduction, c) shoulder inter-

nal/external rotation, d) elbow flexion/extension, e) carrying angle, f) elbow

pronation/supination
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Figure 5.16: Joint angles measured by SP system (blue solid line) and

estimated by IMU data (red dashed line) for an arm ab/adduction task:

a) shoulder ab/adduction, b) shoulder flexion/extension, c) shoulder inter-

nal/external rotation, d) carrying angle, e) elbow flexion/extension, f) elbow

pronation/supination

127



Figure 5.17: Joint angles measured by SP system (blue solid line) and esti-

mated by IMU data (red dashed line) for an arm intra/extra rotation task:

a) shoulder internal/external rotation, b) shoulder ab/adduction, c) shoulder

flexion/extension, d) elbow pronation/supination, e) carrying angle, f) elbow

flexion/extension
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5.4 Discussion

This Chapter suggests a novel method aimed at estimating upper
extremity joint kinematics, using one IMU per body-segment during
some easy exercises administered by the FMA, taking advantage by
the use of a sensor fusion algorithm based on an extended KF, and
considering the upper limb as a kinematic chain of 3-link (thorax, arm
and forearm, respectively). This approach allows to instrument a func-
tional test such as the FMA, enabling quantitative assessment of motor
performance on a subject-specific basis, overcoming the limitations due
to the lack of objectiveness related to individual judgment, and possibly
disclosing subtle alterations that are not clearly visible to the observer.

The method was based on the extension of the 2D approach vali-
dated on a mechanical arm instrumented with encoders. Results ob-
tained during that controlled experiment confirm the usability of the
extended KF for kinematics estimation.

Several authors in recent published studies have underlined the lack
of an unambiguous distinction between recovery (the reacquisition of
such elemental motor patterns) and compensation (the adaptation of
remaining motor elements) in stroke rehabilitation, showing that motor
scales that assess impairments (Body Functions/Structure level) rather
than disability (Activity level) cannot reliable make this distinction and
cannot provide an appreciation of the movement quality [99, 111] (see
Figure 1.5). This lack concerns about the extent to which rehabilitative
interventions provide improvements in reduction of impairment among
the patients. Indeed, motor compensation in the upper limb can include
the use of movement patterns that incorporate trunk displacement and
rotation, scapular elevation, shoulder abduction and internal/external
rotation [109, 166]. The use of increased trunk movement to assist arm
and hand transport [32, 190], and to aid in hand positioning/orientation
for grasping [135], are example of adaptive compensatory strategies.
The degree of motor compensations is also related to the severity of
the hemiparesis, conditioning the appropriate interventions.
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At the Body Function/Structure level, the emphasis is on the quality
of movement regardless of movement outcome or task accomplishment.
Recovery at this level would be characterized by the reappearance of
movement patterns and by a decrease in spasticity or by a reduction
in trunk displacement during a reaching or pointing movement. Adap-
tive compensation at this level would be characterized by the appear-
ance of alternative movement patterns during the accomplishment of a
task. Numerous valid and reliable clinical scales measure impairments
at this level [19, 61, 74, 108, 110]. Although these scales may offer
the clinicians an appreciation of impairments, more detailed kinematic
analysis of motor patterns during the performance of functional tasks
would provide even more relevant information about movement pat-
terns and motor compensation. At the Activity level, recovery requires
that the task is performed using the same end effectors and joints of the
movement patterns typically used by non-disabled individuals. Com-
pensation often takes the form of substitution and would be noted if
the patients were able to accomplish the task using alternative joints
or end effectors. Typical clinical scales [44, 86, 90, 126, 195, 197, 214]
neither specify how the task is accomplished nor which compensatory
movements were used in place of typical motor patterns.

In this perspective, the method for the upper limb joint kinemat-
ics estimation presented in this Chapter, which uses only a tri-axial
accelerometer and a tri-axial gyroscope per segment, and an extended
KF to estimate body-segment orientations, could have several positive
feedbacks from clinical applications and may help overcoming the above
described drawbacks. Portable and cost-effective inertial sensors repre-
sent an easy non-invasive alternative for the qualitative and subjective
evaluation of motor performance during functional tests.

One of the main aims of the present study was to develop a new
procedure in order to align the technical SoR of each IMU, obtaining a
common global SoR through the use of accelerometers and gyroscopes
data recording during three easy exercises. Previously published studies
focused on the use of commercial IMU containing inertial and magnetic
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sensors, using gravity and heading of the earth magnetic field, assumed
homogeneous at all, to define a common global SoR. These sensors
are able to estimate IMU orientation through the use of an inboard
sensors fusion algorithm. The probably no optimal conditions of the
earth magnetic field represent the main limit of these sensors, both in
clinical and domestic environments, where it is usual the presence of
iron in floors, walls and ceilings or other equipments, which produce
disturbances in the earth magnetic field.

In order to demonstrate the effectiveness of the suggested alignment
procedure, estimated global SoR-based relative angles were compared
with those provided by the orientation data recorded from the IMU, i.e.
the earth magnetic field SoR-based relative angles (see Figures 5.12,
5.13, and 5.14 for one task of arm flexion/extension, arm ab/adduction,
and arm internal/external rotation, respectively). As shown in Ta-
ble 5.2, mean errors, averaged on the three trials performed for each
motor tasks, range from 0.4° to 5.3°, with a mean value equal to 1.7°.
Overlooking the type of exercise, mean errors are about 1.3°, 0.7°, 3.1°
for relative angles of shoulder flexion/extension, ab/adduction and in-
tra/extra rotation, respectively. These considerations confirm the accu-
racy of the alignment procedure presented in this Chapter, which allow
to neglect the use of any magnetometers in the experimental set-up and
to obtain a common global SoR useful for relative angles estimation.

Several authors in previously published studies used relative an-
gles between IMUs to describe 3D arm movements, taking no notice of
the real bone movements [191, 17, 218]. In order to obtain the joint
kinematics the relative orientation between adjacent anatomical SoRs
is necessary. A practical solution is suggested in this Chapter in or-
der to define anatomical body-segment axes through the application of
a functional calibration of the axes of rotation of the body-segments.
This procedure, initially defined by De Vries et al. [48], takes into ac-
count the angular velocity (averaged over time and normalized to unit
length) measured by the IMUs during some defined exercises, using it
as an estimate of the functional axis of rotation [117].
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In order to support the usability and the accuracy of the method, the
results obtained by a SP system were compared with those obtained
by the technique presented in this Chapter, evaluating the distances
affecting joint angles between the functional calibration results and
the standard anatomical calibration results, based on bony-landmarks
recordings [24, 212] (see Figures 5.15, 5.16, and 5.17 for one task of
arm flexion/extension, arm ab/adduction, and arm internal/external
rotation, respectively). As shown in Table 5.3, mean errors, averaged on
the three trials performed for each motor tasks, range from 1.2° to 5.2°,
with a mean value equal to 2.7° for shoulder angles and equal to 3.2°
for elbow angles. Overlooking the type of task, mean errors are about
3.1°, 2.4°, 2.6° for shoulder angles of flexion/extension, ab/adduction
and intra/extra rotation, respectively, and are about 2.9°, 3.2°, 3.6°
for elbow angles of flexion/extension, prono/supination and carrying
angle, respectively. These results are affected by errors provided by
both IMU-based system and SP system, and the distances between
each couple of single-joint-angles is the sum of two contributions. The
first is related to the errors committed during the functional calibra-
tion for the anatomical axes definition: angular velocities measured by
IMUs during this procedure are strongly related to the goodness of
the movements. On the other side, the second contribution is due to
the errors committed during the anatomical calibration (accuracy in
bony-landmarks palpation, assumption of a regression model [134] to
estimate the glenohumeral joint rotation center, soft tissue artifacts).
These considerations support the obtained results, which are almost al-
ways lower than 4°. Considering the type of the performed motor tasks,
that principally involved the shoulder joint and the arm body-segment,
and in minor measure the elbow and the forearm body-segment, esti-
mated shoulder joint angles are more accurate than estimated elbow
joint angles, which show a smaller range of motion than the one related
to shoulder.

Joint angles estimation errors are consistent with those presented
in previously published studies [39, 48, 117], which used the orientation
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data provided by inboard sensors fusion algorithm of commercial IMUs,
and are based on magnetometer outputs.

The motion analysis protocol presented in this Chapter, overcoming
the limitations and the lacks in objectivity of the clinical scales, could
be applied in different scenarios of the upper limb functional evaluation
and rehabilitation post-stroke. A recent and promising approach is the
use of virtual reality systems, that may enable simulated practice of
functional tasks at a higher dosage than traditional therapies [102, 133].
Virtual reality has been defined as the “use of interactive simulations
created with computer hardware and software to present users with
opportunities to engage in environments that appear and feel similar
to real-world objects and events” [199]. In virtual rehabilitation, virtual
environments and objects provide the user with visual feedback which
may be presented though a head-mounted device, projection system
or flat screen. Feedback may also be provided through the senses,
for example, hearing, touch, movement, balance and smell [199], and
the user interacts with the environment by a variety of mechanisms
(simple devices, mouse, joystick, cameras, sensors or haptic feedback
devices, etc.). Key concepts related to virtual reality are immersion
and presence.

Virtual reality may be advantageous as it offers several features,
such as goal-oriented tasks and repetitions, shown to be important in
neurological rehabilitation [50] to improve upper [81] and lower extrem-
ity functions, gait [46], cognition, perception, and functional tasks such
as crossing a street, driving, preparing food and shopping [170]. Vir-
tual reality may have the potential to provide an enriched environment
in which people with stroke can solve problems and master new skills.
Researches with animals and humans have shown that intensive task-
specific practice is able to induce cortical reorganisation [145, 146] and
behavioral change [40]. Virtual reality programs capitalize on this by
offering simulated real-life functional activities, and grading of tasks
and immediate feedback have been shown to optimize motor learning
[181].
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Although its research in rehabilitation is becoming more prevalent
as technology becomes more accessible and affordable [22], the use of
virtual reality is not yet commonplace in clinical rehabilitation set-
tings. However, gaming consoles are ubiquitous and so researchers
and clinicians are turning to low-cost commercial gaming systems as
an alternative way of delivering virtual reality [45, 161]. These sys-
tems, which were originally designed for recreation, are being adapted
by clinicians for therapeutic purposes. In addition, interactive video
games are specifically being designed for rehabilitation [104]. Consid-
ering these perspectives, the authors of the last Cochraine review [105]
suggest that virtual reality is a promising new rehabilitation approach
for stroke recovery, with reasonable effect sizes (that is a moderate ef-
fect on arm function and large effect on ADL functions). However,
at present, they remind that the studies are too few and too small to
draw conclusions. Laver et al. [105], underlight that as virtual reality
interventions may vary greatly (from inexpensive commercial gaming
consoles to expensive customized programs), it is unclear what charac-
teristics of the intervention are most important, which type of patients
is most likely to benefit, and at what point in their rehabilitation it
should be used.

In this perspective, the use of objective biomechanical measure-
ments provided by the inertial sensor-based technique presented in this
Chapter, may help clinicians to objectively track changes in motor abil-
ity following neurological injury, providing timely feedback about the
effectiveness of administered rehabilitation interventions and enabling
intervention strategies to be modified or changed if found to be inef-
fective. Moreover, objective biomechanical measurements related to
upper extremity joint kinematics may be used as input data of several
virtual reality systems, supporting the rehabilitative exercises, such as
goal-oriented tasks and repetitions, with a clear numeric feedback rep-
resentative of subjects motor performance.

Future developments will address to: i) improve functional calibra-
tion procedure mainly for pathological patients, whose movements may
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differ from healthy subjects, ii) involve more subjects and increase the
number of exercises in order to further validate the usability of the
technique.
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Epilogue

The aims of this Thesis were to suggest novel methods for the quan-
titative description of several motor task during some functional tests,
typical of the clinical practice. The use of a body-sensors network
and the application of a biomechanical approach allowed evaluating
kinematic and dynamic variables of human movement, which are usu-
ally neglected in widespread clinical tests for the assessment of motor
performances. The need for objective, cost-effective and clinically ap-
plicable methods, has inspired this Thesis, knowing that instrumented
tests would enable quantitative assessment of performance on a subject-
specific basis, overcoming the limitations due to the lack of objective-
ness related to individual judgment, and possibly disclosing subtle al-
terations that are not clearly visible to the observer.

In Chapter 1 a brief introduction about the human movement
assessment and the inertial sensor- and model-based instrumentation
of functional tests was provided.

In Chapter 2 a quantitative assessment tool was provided in or-
der to estimate body sway angles of a 2D multi-link kinematic chain,
using a single-axis accelerometer (SAA) per segment. To evaluate the
method, the algorithm for angular displacement estimation was tested
on a subject performing a squat task, considering a 3-link biomechan-
ical model and applying a bi-directional low pass filter to the SAA
outputs. Results demonstrated the usability of the method, showing
errors lower than 1° for the considered body-segments and suggesting
the opportunity to evaluate compensatory postural strategies in a easy
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and portable way in different functional tasks, considering a generic
kinematic chains of any number of link.

In Chapter 3 a functional subject-specific 2D evaluation tool was
proposed in order to estimate body-segment anthropometric parame-
ters during a repeated sit-to-stand motor task, using a SAA per segment
and a force plate. After this preliminary estimation, a quantitative
assessment tool was provided in order to predict the ground reaction
forces, the centers of pressure and mass, and the net joint moments of a
subject performing a repeated sit-to-stand task, considering a 2D 3-link
biomechanical model and using a SAA per segment only. Results con-
firmed the accuracy of the technique, showing errors on predicted center
of pressure and on ankle joint moment equal to about 2cm and 10Nm,
respectively, demonstrating the the usability of this instrumented test
in the clinical practice.

In Chapter 4 the quantitative assessment tool to estimate body
sway angles (presented in Chapter 2) was applied to the voluntary pos-
tural sway functional test, in order to provide information about the
kinematic strategies adopted by a subject during a self-imposed per-
turbed stance. A SAA per segment was used and three biomechanical
models, from 1- to 3-link, were evaluated in order to describe as well as
possible the sway movement. In addition, the quantitative assessment
tool to predict kinematic and dynamic variables (presented in Chapter
3) was applied to the voluntary postural sway functional test in order to
predict the ground reaction forces and the centers of pressure and mass
of the subject, considering a 2D 3-link biomechanical model and using
a SAA per segment. Results confirmed the accuracy of the technique,
showing errors on predicted center of pressure equal to 6mm, suggesting
the suitability of this method for the response strategy evaluation to
unexpected perturbation, providing objective information to evaluate
the balance control in several application of the clinical practice.

In addition to the accelerometers, in Chapter 5 gyroscopes were
used for the estimation of the upper limb kinematics, considering a 3D
3-link biomechanical model. A sensor consisting of a tri-axes accelerom-
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eters and a tri-axes gyroscope was placed to each body-segment, and
a Kalman Filter-based algorithm was applied. A preliminary sensor
technical systems of reference alignment procedure, using accelerome-
ters and gyroscopes data only, allows the definition of a common global
system of reference, neglecting the use of any magnetometers in the
experimental set-up, which are typical affected by disturbances due to
the presence of iron in both clinical and domestic environments. Shoul-
der and elbow joint angles are estimated during some easy exercise of
the Fugl-Meyer Motor Assessment after a functional calibration of the
body-segment anatomical axes, showing mean errors lower than 4° and
confirming the accuracy of the technique. The instrumentation of these
functional tasks will provide an objective evaluation of motor perfor-
mance in patients following a stoke, and may be considered also for
functional evaluation and rehabilitation after different neurological and
orthopedic injuries.

Future works

In agreement with the line of reasoning presented in this Thesis,
it seems that a logical next step would be to start prospective stud-
ies involving pathological and elderly subjects, whose biomechanical
measurements will be evaluated through the algorithms presented in
this Thesis. In this perspective, the use of objective biomechanical
measurements in the context of the rehabilitation, provided by iner-
tial sensor-based technique, may help clinicians to: i) objectively track
changes in motor ability, ii) provide timely feedback about the effec-
tiveness of administered rehabilitation interventions, iii) enable inter-
vention strategies to be modified or changed if found to be ineffective,
and iv) speed up the experimental sessions when several subjects are
asked to perform different functional tests.
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