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SUMMARY 
Neurorehabilitation is an active process by which individuals affected by neurological 

impairments achieve a full recovery or, when this is not possible, realize their optimal 

physical, mental and social potential. The rehabilitation process can be considered successful 

when it improves daily activities of patients treated and, therefore, their quality of life. The 

essential components of an effective motor rehabilitation process include an expert 

multidisciplinary assessment, a realistic and goal-oriented programs and the evaluation of the 

patient’s achievements through clinically appropriate, scientifically sound outcome measures. 

The main aim of this thesis was to develop quantitative methods and tools for the clinical 

treatment and assessment of patients with neurological impairments. 

Conventional rehabilitation treatments typically require neurological patients to execute 

repetitive exercises over a long period, with consequences in their engagement and 

motivation. Virtual reality and augmented feedback are tools recently applied to motor 

rehabilitation, which have shown to involve patients, allowing repeatability and 

standardization of protocols. An augmented feedback tool based on the use of IMU for trunk 

control was developed and the evaluation of its usability is presented in this work. 

Moreover, virtual reality allows individualizing the treatment according to the patient needs 

gradually adapting the difficulty level to the progress. A virtual reality-based application for 

gait rehabilitation was developed and tested in a 6-weeks training program on patients 

affected by multiple sclerosis. Usability, feasibility and acceptance of both system and 

training protocol were evaluated and the effectiveness of the treatment demonstrated. 

Traditionally, the quantitative assessment of motor skills has been performed using motion 

capture systems. Unfortunately, their effective use in clinical practice is still limited by their 

cost, and the space, time and expertise required operating. Moreover, the application of 

markers on the body of patients may influence their natural movements. To overcome these 

limitations the use of inertial sensors has been introduced in the field. A methodology based 

on their use in assessing the arm swing in subjects affected by Parkinson’s disease is 
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proposed and preliminary results show their ability in distinguishing healthy from 

pathological subjects. 

Inertial sensors, which are small, accurate, flexible and portable, have the drawback to 

accumulate significant drift during long measurements. This particular issue has been 

analyzed in this work and findings suggest that drift and its consequences in determining gait 

parameters can be contained if the inertial unit is placed on the foot and accelerations are 

integrated starting from the mid stance phase of gait.  

Finally, a validation of the Microsoft Kinect in tracking gait in a virtual reality-based training 

is presented. Preliminary results allow defining the range of use of the sensor for applications 

in rehabilitation. 
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SOMMARIO 
La neuroriabilitazione è un processo attivo attraverso il quale gli individui affetti da patologie 

neurologiche mirano al conseguimento di un recupero completo o, quando ciò non è 

possibile, alla realizzazione del loro potenziale ottimale benessere fisico, mentale e sociale. Il 

processo di riabilitazione può essere considerato effettivo quando migliora le attività 

quotidiane dei pazienti trattati e, di conseguenza, la loro qualità di vita. Gli elementi 

essenziali di un processo di riabilitazione motoria efficace comprendono una valutazione 

clinica da parte di un team multidisciplinare, un programma riabilitativo realistico e orientato 

a pochi specifici obiettivi e la valutazione dei risultati conseguiti dal paziente attraverso 

l’intervento mediante misure scientifiche e clinicamente appropriate.  

L'obiettivo principale di questa tesi è stato sviluppare metodi quantitativi e strumenti per 

l’intervento riabilitativo e la valutazione clinica di pazienti affetti da deficit neurologici.  

I trattamenti riabilitativi convenzionali tipicamente richiedono a pazienti neurologici 

l’esecuzione di esercizi ripetitivi per un lungo periodo, andando a incidere negativamente sul 

loro impegno e sulla loro motivazione. La realtà virtuale e i feedback aumentati sono 

approcci recentemente adottati dalla riabilitazione motoria, in grado di coinvolgere i pazienti 

nel trattamento, permettendo la ripetibilità e la standardizzazione dei protocolli. In questo 

lavoro è stato sviluppato uno strumento basato sull'utilizzo di feedback aumentati e sensori 

inerziali per il controllo del tronco ed è stata presentata una valutazione sulla sua efficacia e 

usabilità. 

Inoltre, la realtà virtuale permette individualizzare il trattamento in base alle esigenze del 

paziente, adeguando gradualmente il livello di difficoltà ai suoi progressi. Un’applicazione 

basata sulla realtà virtuale per la riabilitazione del cammino è stata sviluppata ed è stata poi 

testata su pazienti affetti da sclerosi multipla durante un programma riabilitativo di sei 

settimane. Sono state valutate l’usabilità, la fattibilità e l’accettazione sia del sistema sia del 

protocollo riabilitativo ed è stata dimostrata l'efficacia del trattamento. 
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Tradizionalmente, la valutazione quantitativa delle capacità motorie dei pazienti viene 

effettuata utilizzando sistemi di motion capture. Purtroppo, il loro uso nella pratica clinica è 

ancora limitato a causa del loro costo, dello spazio, del tempo e delle competenze necessari 

per il loro funzionamento. Inoltre, l'applicazione di marcatori sul corpo dei pazienti può 

influenzare il loro movimento naturale. Per superare queste limitazioni è stato introdotto in 

questo campo l'utilizzo di sensori inerziali. In questa tesi, viene proposta una metodologia 

basata sul loro uso nella valutazione dell’oscillazione delle braccia in soggetti affetti da 

morbo di Parkinson, e si mostra come essa sia in grado di distinguere tra soggetti sani e 

patologici. 

I sensori inerziali, che sono piccoli, accurati, flessibili e portatili, presentano però 

l'inconveniente di accumulare drift rilevanti durante lunghe misurazioni. In questo lavoro è 

stato affrontato questo particolare problema e i risultati ottenuti suggeriscono che, se l'unità 

inerziale è posizionata sul piede e le accelerazioni sono integrate iniziando dalla fase di mid 

stance del cammino, il drift e le sue conseguenze nella determinazione dei parametri del 

cammino sono contenuti. 

Infine, è stata presentata una validazione del Microsoft Kinect in un’applicazione per il 

tracking del cammino in ambiente virtuale. Risultati preliminari consentono di definire il 

campo di utilizzo del sensore per applicazioni in riabilitazione. 
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1. Introduction 

1.1. Rationale 

The essential components of an effective motor rehabilitation program for subjects affected 

by neurological impairments include expert multidisciplinary assessment, realistic and goal-

oriented interventions, and the evaluation of the impact of the rehabilitation through the use 

of clinically appropriate, scientifically sound outcome measures. Traditionally laboratory 

based motion capture systems have been used to assess the patient before and after the 

rehabilitative intervention. This approach usually requires the use of markers to be positioned 

on the patient’s body surface. In some occasions, the presence of markers may represent a 

source of uneasiness and discomfort, influencing and interfering with the natural movements 

of the subject. Moreover, motion capture systems, which are generally very expensive, 

require expertise, space and a long time for set-up, further increasing the cost of the 

evaluation. All the above reasons help to explain the limited use of these systems in clinical 

practice, where the evaluations are mostly qualitative. 

Rehabilitative interventions of neurological patients typically aim at recovering motor skills. 

It has been demonstrated that motor recovery is promoted by intensive skillful practice 

(Shumway-Cook, 2007) and increasing difficulty (Malouin, 2003). Therefore conventional 

physical therapies in clinical practice are often characterized by the regular and intense 

repetition of exercises over a long period, consequently limiting patients’ engagement and 

motivation. 

Recently, innovative technology and approaches have been proposed to overcome the above-

mentioned limitations. The main goal of the project described in this thesis was to develop 

new quantitative rehabilitation methods and tools to be used in the clinical assessment and 

treatment of patients with neurological deficits. 

1.2. Outline 

The thesis is organized as follows. 
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Chapter 2 is an overview of the process of rehabilitation for people affected by neurological 

impairments. 

Chapter 3 describes some of the limitations of conventional motor rehabilitation and 

proposes new methods and tools to overcome them. 

Chapter 4 presents a study on the estimation of the stride length using an inertial 

measurement unit (IMU). The study evaluates the error associated with the zero velocity 

assumption in estimating stride length using several locations of the IMU on the foot and on 

the shank. 

Chapter 5 presents a study focusing on a virtual reality (VR)-based system for gait training in 

subjects affected by multiple sclerosis (MS) using IMUs. The proposed system and training 

are explained in detail and their feasibility, acceptance and effectiveness are evaluated. 

Chapter 6 presents a study on the measurement of the arm swing in Parkinson’s disease (PD) 

patients using IMUs. The proposed methodology has been used both on patients and healthy 

subjects and preliminary results are presented. 

Chapter 7 describes a tracking methodology based on the use of the Microsoft Kinect for the 

reproduction of gait in a VR application. The proposed methodology is validated using 

stereo-photogrammetry. 

Chapter 8 describes an augmented feedback tool for trunk control based on the use of inertial 

sensing. Preliminary results on the usability of the tool on young healthy subjects are 

presented. 

Chapter 9 summarizes advantages and limitations of the developed tools and the methods and 

suggests options for future research. 
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2. Rehabilitation in neurological impairments 

2.1. Neurological impairments 

The World Health Organization (WHO) defines impairment as any loss or abnormality in 

body structure or of a physiological or psychological function (World Health Organization, 

2001). Specifically, all the disorders originating from structural, biochemical or bioelectrical 

abnormalities in the central and peripheral nervous system lead to neurological impairments. 

They may cause physical or mental problems, affecting an individual’s speech, motor skills, 

vision, memory, muscle function or learning abilities. Not all neurological impairments are 

present from birth. A neurological impairment can be acquired as a result of some form of 

brain or spinal cord injury. Often, the results are very similar; the only difference is the way 

in which a given part of the brain becomes damaged. Because of its various forms, 

neurological impairment can be classified in many different ways. 

Neurological disorders are diseases of the central and peripheral nervous system, which 

affect learning and behavioral abilities (World Health Organization, 2007).  

Some of the more common neurological diseases (Hirtz, 2007) include multiple sclerosis 

(MS) and Parkinson's disease (PD), with a crude incidence rate, respectively, of 2.5 (with a 

range of 1.1–4) and 4.5–19 per 100,000 population per year, and a median estimated 

prevalence, respectively, of 30 (with a range of 5–80) and 100-200 per 100,000 (World 

Health Organization, 2007) (World Health Organization, 2008). MS and PD are considered 

neurodegenerative disorders (Trapp, 1999), (World Health Organization, 2001), (Gao, 2008) 

and will be particularly considered in the present thesis. Neurodegenerative diseases are 

defined as conditions characterized by progressive nervous system dysfunction. These 

disorders are often associated with atrophy of the affected central or peripheral structures of 

the nervous system. 

MS is an inflammatory demyelinating condition of the central nervous system that is 

generally considered to be autoimmune in nature (World Health Organization, 2007). In 
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people with MS, the immune trigger is unknown, but the targets are myelinated central 

nervous system tracts. MS can lead to a wide variety of motor and cognitive symptoms, 

depending on the affected part of the body and on the severity.  

Approximately 80% of individuals affected by MS initially present a form of this pathology 

called relapsing/remitting (Figure 1), which is characterized by unpredictable attacks, called 

relapses, during which new symptoms appear or those existing become more severe 

(Lidcombe, 2003). They can last for long periods (days or months) and are followed by a 

partial or total recovery, i.e., the remission.  

 

 

The disease may appear clinically inactive for months or years, though a more frequent 

asymptomatic inflammatory activity is usually present. Over time, however, symptoms may 

become more severe with less complete recovery of function after each attack. 

MS is usually accompanied by physical disability, complicated by fatigue, depression and 

possibly cognitive impairment and can lead to a functional decline. Typically disease onset is 

around 30 years of age, hence the loss in functional ability of patients with MS can be 

substantial and often prevents MS subjects from performing their customary roles. 

PD is a chronic progressive neurodegenerative disorder of insidious onset (World Health 

Organization, 2007), (Gao, 2008). The motor symptoms become readily apparent and 

diagnosis is made based on cardinal predominate motor signs, however, non-motor features 

of the disease are increasingly recognized (Chaudhuri, 2006). PD is also associated with late-

Neurological disorders: public health challenges86

time and space and enable the clinician to make an early diagnosis of MS. They also facilitate the 
diagnosis of MS after a fi rst attack (a clinically isolated syndrome) and in disease with insidious 
progression (the primary progressive form of MS), see below. 

While these criteria have proved to be useful in a typical adult Caucasian population of western 
European ethnic origin, their validity remains to be proven in other regions such as Asia where 
some studies still use Poser’s criteria. As the experience with MRI in MS builds up, it is expected 
that the McDonald criteria with minor modifi cations will become applicable worldwide. It is always 
essential that other conditions mimicking MS (such as vascular disorders, Sjogren’s disease and 
sarcoid) are excluded.

COURSE AND OUTCOME 
Just as the symptoms of MS are varied, so too is the course of the disease. Although some people 
with MS experience little disability during their lifetime, up to 60% are no longer fully ambulatory 
20 years after onset. In rare cases MS is so malignantly progressive it is terminal, but most people 
with MS have a normal or near-normal life expectancy. 

Typical patterns of progression, illustrated in Figure 3.4.1, are explained below.
Relapsing/remitting MS. Approximately 80% of patients will initially present this form of 
MS, in which there are unpredictable attacks (relapses) during which new symptoms appear 
or existing symptoms become more severe. The relapses can last for varying periods (days 
or months) and there is partial or total recovery (remission). The disease may appear to be 
clinically inactive for months or years, though MRI studies show that asymptomatic infl am-
matory activity is usually more frequent. Over time, however, symptoms may become more 
severe with less complete recovery of function after each attack, possibly because of gliosis 
and axonal loss in repeatedly affected plaques. People with MS may then enter a progressive 
phase, characterized by a step-like downhill course.
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Figure 3.4.1 Patterns of progression of multiple sclerosis
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Figure 1 Example of two possible courses of MS in relapsing/remitting form. 
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onset motor symptoms, such as postural instability and falls, freezing of gait, speech and 

swallowing difficulties (Jankovic, 2008).  

The pathophysiology of PD involves the progressive loss of dopamine-containing neurons of 

the pars compacta of the substantia nigra that lead to denervation of the nigrostriatal tract and 

a significant reduction of dopamine at the striatal level. The consequence of this denervation 

process is an imbalance in the striato-pallidal and pallido-thalamic output pathways, which is 

responsible for the major motor deficits (Albin, 1989). 

Beyond motor and cognitive impairments, quality of life in PD also deteriorated significantly 

with increasing disease severity particularly in those aspects related to physical and social 

functioning (Schrag, 2001).  

2.2. Neurological rehabilitation 

2.2.1. The rehabilitation cycle 

The WHO defines rehabilitation as an active process by which those affected by injury or 

disease achieve a full recovery or, when this is not possible, realize their optimal physical, 

mental and social potential and are integrated into their most appropriate environment (World 

Health Organization, 1981). Consequently, a rehabilitation process can be considered 

successful when it improves independence and quality of life of treated subjects, by 

maximizing their ability and participation. 

The essential components of an effective rehabilitation include expert multidisciplinary 

assessment, realistic and goal-oriented programs and evaluation of impact on the patient’s 

rehabilitation achievements through the use of clinically appropriate, scientifically sound 

outcome measures incorporating the patient’s and the family’s perspectives (European 

Multiple Sclerosis Platform and Rehabilitation in Multiple Sclerosis, 2004). 

The rehabilitation process should be provided by a multidisciplinary team, usually including 

doctors, nurses, therapists, clinical neuropsychologists and social workers. The aim of the 

rehabilitation team is to treat impaired body structures to overcome diminished functions, 

while maximizing patients’ activity and participation in their social setting and minimizing 
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the risk of further symptoms and disability, the patient’s pain and the stress of the family 

and/or caregivers (Stucki, 2002). 

The rehabilitation process, seen both from the guidance and from the service perspective, can 

be thought as an iterative process involving the following elements (Figure 2):  

1. assessment of the nature of the patient’s problems and needs; 

2. assignment to an intervention program; 

3. plan and implementation of the assigned intervention; 

4. evaluation of the intervention. 

 

 

ASSESSMENT 

The assessment includes the identification of the impairments of patients, which contribute to 

the difficulties in function, the estimation of rehabilitation potential and prognosis and the 

definition of the goals of the intervention program. Since neurological subjects suffer from a 

combination of multiple impairments, it is crucial, to identify target problems, which may be 

treated and relieved in a reasonable amount of time. In this phase, information is collected 

through both standardized assessment and interviews. 

The most commonly used measures of impairment in neurological patients include: a) the 

Motricity and the Ambulation Index for motor deficits; b) the Berg Balance test (Berg, 1995) 

and Timed Up and Go (Podsiadlo, 1991) for balance; c) the Beck Depression Index for 

depression (Lykouras, 1998); d) the Short Orientation Memory Concentration Test 

17public health principles and neurological disorders

treatment targets ill-health, rehabilitation targets human functioning. As with other key health 
strategies, it is of varying importance and is relevant to all other medical specialities and health 
professions. Though rooted in the health sector, rehabilitation is also relevant to other sectors 
including education, labour and social affairs. For example, building of ramps and other facilities to 
improve access by disabled people falls beyond the purview of the health sector but is neverthe-
less very important for the comprehensive management of a person with a disability.

As a health-care strategy, rehabilitation aims to enable people who experience or are at risk 
of disability to achieve optimal functioning, autonomy and self-determination in the interaction 
with the larger physical, social and economic environment. It is based on the integrative model of 
human functioning, disability and health, which understands human functioning and disability both 
as an experience in relation to health conditions and impairments and as a result of interaction 
with the environment.

Rehabilitation involves a coordinated and iterative problem-solving process along the continuum 
of care from the acute hospital to the community. It is based on four key approaches integrating a 
wide spectrum of interventions: 1) biomedical and engineering approaches; 2) approaches that build 
on and strengthen the resources of the person; 3) approaches that provide for a facilitating envi-
ronment; and 4) approaches that provide guidance across services, sectors and payers. Specifi c 
rehabilitation interventions include those related to physical medicine, pharmacology and nutrition, 
psychology and behaviour, education and counselling, occupational and vocational advice, social 
and supportive services, architecture and engineering and other interventions.

Rehabilitation services are like a bridge between isolation and exclusion — often the fi rst 
step towards achieving fundamental rights. Health is a fundamental right, and rehabilitation is a 
powerful tool to provide personal empowerment.

Rehabilitation strategy
Because of the complexity of rehabilitation based on the above-mentioned integrative model, re-
habilitation services and interventions applying the rehabilitation strategy need to be coordinated 
along the continuum of care across specialized and non-specialized services, sectors and payers. 
Figure 1.2 illustrates the iterative problem-solving process sometimes called Rehab-CYCLE (20).
The Rehab-CYCLE involves four steps: assess, assign, intervene and evaluate. The process is 
applied on two levels. The fi rst refers to the guidance along the continuum of care and the second 
to the provision of a specifi c service.

From the guidance perspective, the assessment step in-
cludes the identifi cation of the person’s problems and needs, 
the valuation of rehabilitation potential and prognosis and the 
defi nition of long-term service and goals of the intervention 
programme. The assignment step refers to the assignment to 
a service and an intervention programme. From the guidance 
perspective, the intervention step is not further specifi ed. The 
evaluation step refers to service and the achievement of the 
intervention goal.

From the service perspective, the assessment step includes 
the identifi cation of a person’s problems, the review and po-
tential modifi cation of the service or goals of the intervention 
programme and the defi nition of the fi rst Rehab-CYCLE goals 
and intervention targets. The assignment step refers to the as-
signment of health professionals and interventions to the intervention targets. The intervention 
step refers to the specifi cation of the intervention techniques, the defi nition of indicator measures 
to follow the progress of the intervention, and the defi nition of target values to be achieved within a 

Assessment

Intervention

Evaluation Assignment

Figure 1.2 The Rehab-CYCLE

Figure 2 The rehab-cycle (Stucki, 2002), (World Health Organization, 2007) 
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(Katzman, 1983) and Mini Mental State Examination (Folstein, 1975) for brief cognitive 

screening e) the Frontal Assessment Battery (Dubois & Slachevsky, 2000), for neurological 

and cognitive features, and the Montreal Cognitive Assessment (Nasreddine, 2005) a 

cognitive screening tool. The two most widely used measures of disability are the Barthel 

Activities of Daily Living index (Collin, 1988) and the Functional Independence Measure 

(Dodds, 1993). 

ASSIGNMENT 

The assignment is the determination of a realistic intervention program, identifying and 

addressing it toward the factors with the greatest potential for improvement. The first aim of 

the assignment is to make the patient conscious about her/his disability and to stimulate 

her/him to have an active role on it. The second aim is to define the compensatory strategies 

for cognitive and behavioral deficits. The third aim consists in planning interventions aiming 

to generalize the compensatory strategies in the environment. Effective teamwork requires 

that all team members work towards common goals. Good rehabilitation practice should 

involve the patient (and the family, when appropriate) in the setting of meaningful, 

challenging and achievable short-term and long-term goals. 

INTERVENTION 

The task-oriented approach refers to the specification of the rehabilitative techniques, 

indicator measures and the target values to be achieved in a predefined time period. Practice 

of an impaired function usually involves repetition, starting with simple tasks and slowly 

increasing the level of difficulty (Malouin, 2003). An alternative approach is to use 

compensatory techniques, to help the patient to achieve the goal by different means. There 

has been a shift from exercising isolated impairments towards task-oriented therapy for 

activities of daily living (Horak, 1990).  

EVALUATION 

The evaluation refers to the assessment of goal achievement with respect to predefined 

treatment goals. In rehabilitation, the measurement of functioning and health is not only 

relevant to evaluate intervention outcomes, but the assessment and interventional 
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management as well. Thus these measures are examined much more closely both at the level 

of individual problems and at the level of instrumented scales. 

Although all the phases of the cycle are present in the choice and implementation of a 

rehabilitation treatment, in this thesis, the focus will be prevalently on the stages of 

assessment and rehabilitation intervention, in the effort to make quantitative the outcome 

coming from them. 

2.3. Rehabilitation methods 

Rehabilitation should start as soon as possible after the diagnosis of a neurological 

impairment and should focus on the community rehabilitation perspective (World Health 

Organization, 2007). Neurological patients can present a wide number of complexities 

including physical functioning limitations, cognitive and communication impairments, 

behavioral problems, compromised basic daily living activities and psychosocial limitations. 

Consequently, intervention programs and services have been developed, showing to 

contribute effectively to the optimal functioning of people with neurological conditions. Here 

we will briefly discuss those aiming to treat motor and neuropsychological deficits. 

2.3.1. Motor deficits  

The motor activity in neurological diseases acquires importance for the neuro-motor features 

of the movement that, although impaired, can be used to recondition and reach a new balance 

on coordinative pre-existing movement patterns. The physical exercise has shown to provide 

beneficial effects in neurodegenerative diseases like PD, (Bergen, 2002) but also in MS, 

where endurance exercises have been showed to make higher the threshold of the fatigue 

perceived by the patients (Gutierrez, 2005), contributing to improve their quality of life 

(Petajan, 1996), (Brown, 2005). 

Rehabilitation in neurodegenerative disorders stands as its primary objective the 

improvement of the neuro-muscle-skeletal diseases, but also the enhancement of the global 

motor performance, with the consequent reduction of fall risk (Valobra, 2000). Therapeutic 
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approaches include stretching and strength training, rehabilitation of postural transitions, 

reeducation of postural instability and gait, and training to cognitive strategies. 

One of the most common motor dysfunction encountered in the motor rehab of MS is muscle 

weakness, with onset in 90-100% of cases (Valobra, 2000). It is therefore important to 

maintain the level of physical performance for as long as possible, by a process that does not 

generate fatigue or changes in body temperature.  

Postural instability is also a disorder consistently reported by MS patients, with onset in 23-

82% of cases, (Valobra, 2000), and can be addressed with specific or non-specific 

rehabilitative approaches, which are based on intensive, repetitive tasks and augmented 

feedback. Specific treatments aim to learn patients of motor strategies pointing to improve 

their residual potential in postural control. Non-specific treatments include generic 

mobilization and stretching exercises, in order to maintain range and muscle elasticity, 

especially in the lower limbs.  

Moreover, about the 55% of individuals with MS identify fatigue as one of the major 

symptoms affecting their mobility (Fisk, 1994). The exact origin of fatigue is unclear, 

although it could be sought in the association of weakness, spasticity, ataxia, depression, and 

heat (Jacobs, 1986).  

Other common motor symptoms in MS are spasticity, paresis, stiffness, sensory impairments 

and fasciculation (Zuvich, 2009). Spasticity (onset 75% of cases) can become a problem as it 

often interferes with rehabilitation. After that the sources of nociceptive input have been 

identified and treated, the patient should be instructed to perform appropriate muscle 

stretching exercises aiming at expand the range of motion of the affected joints (Merritt, 

1981). After, the facilitation of motor strength can be accomplished by using passive and 

active therapies, advancing to progressive resistance training. In active therapy the patient is 

encouraged to perform an exercise, while the therapist provide her/him a feedback about 

her/his performance, in order to avoid unnecessary muscle activity and to achieve selective 

control of specific muscles. Passive therapies include positioning patients on their side, 

sitting, or standing in a support frame, and stretching exercises.  
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Recurrent motor symptoms in PD, on which the rehabilitation has shown to be mostly 

effective, are bradykinesia, rest tremor, rigidity, and postural disturbances and, in late-onset, 

postural instability and falls and freezing of gait (Jankovic, 2008). The hypertonic muscles 

and bradykinesia aggravate the condition of the muscle-skeletal system, already altered by 

age (Valobra, 2000). Muscle stretching is definitely a basic treatment also in PD and the 

districts where it is prevalently needed are the flexor muscle groups of trunk and limbs. 

Stretching has the effect of lengthening the slow and progressive soft tissues and in presence 

of severe flexion contractures, where traditional stretching is not effective, prolonged statics 

stretching sessions could be required. This technique consists in maintaining tolerable 

postures for long periods, in order to act more markedly on shortened connective tissues. 

Joint mobilization is an imperative treatment modality for a disease that has immobility as 

the main effect. This method can be performed in passive mode, active-assisted or preferably 

active, depending on the degree of autonomy of the patient in the execution of exercises. 

2.3.2. Reduced mobility and gait deficits 

Neurological disorders, due to the characteristics of the disease, such as type, location, 

extension, stability or progressivity and age of onset, are characterized by an extreme variety 

of clinical manifestation, resulting in alterations of the motor control which cause, during 

walking, different changes in the kinematics of the upper and lower limbs and trunk. 

Regardless of the pathology, the ability of gait is modified in terms of: 

− effectiveness: reduction in the rate of spontaneous and maximum sustainable speed; 

− security: the need for assistance and / or supervision and / or direct assistance; 

− efficiency: increase of energy cost; 

with consequent limitations of autonomy and participation in social and working life. 

The observational analysis and the global clinical segmental assessment allow defining the 

main problems of gait in terms of global imbalances, focal problems and coordination. 

Reduced mobility is one of the most frequent impairment in MS patients and may be due to 

motor, sensory, balance and exploratory deficits. The aim of the rehabilitation project may be 
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restoration or maintenance of the residual skills, using also orthoses or assistive devices. 

Trunk stability represents a fundamental prerequisite for locomotor rehabilitation; therefore a 

preparation program to standing, performing exercises on the mat, usually precedes any gait 

treatment. Most of these activities aim at the reduction of the base support, the 

verticalization, the maintenance of postural stability, in both static and dynamic conditions. 

Once that a good alignment trunk-limbs is reached in the standing position, dynamic stability 

will be trained and obtained with destabilization-stabilization movements of the trunk. As 

soon as a suitable motor control in the upright position has been reached, it is possible to start 

to walk handling the bars, trying to reset the motor patterns of gait, coordinating the 

movement of the lower limbs with the pendular synkinesis of the arms. 

Gait reduction plays an important role also in the rehabilitation of PD subjects (Valobra, 

2000). The patient is trained to use the most correct gait pattern as possible, which is the 

more stable and the less energetically expensive. In PD, particular attention should be paid on 

direction changes, often usually carried out pivoting on a limb and causing instability. The 

patient should be instructed to change direction, particularly when turning back, touring 

enough largely to prevent the two legs stepping on each other. The path must be trained not 

only on smooth terrain such as gyms, but also on uneven surfaces. To make the rehabilitation 

treatment as effective as possible in real life, it is important to include also exercises upward 

and downward by a step, and training aiming at negotiating obstacles of different height and 

shape.  

In treadmill (TM) training with partial body-weight support (BWS) the patient is secured into 

a harness hanging above a TM on which she/he walks. The use of TM finds in PD a 

beneficial application because it forces the subject to a rhythmic path. Indeed, this 

intervention has shown to improve gait in individuals affected by neurodegenerative 

disorders, such as PD (Mehrholz, 2010), (Miyai, 2002) and MS (Benedetti, 2009), (Pilutti, 

2011)  

For a further diagnostic-functional inspection, clinical examination can be extended to 

instrumental analysis, which is addressed to quantify: 
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- The dynamic neuromuscular pattern using dynamic electromyography; 

− The global and segmental kinematic characteristics using optoelectronic systems; 

− The global and segmental kinetic through force platforms and optoelectronic 

systems; 

− The energy cost of ambulation through systems of measurement of oxygen 

consumption. 

The three-dimensional optoelectronic analysis quantifies the spatial-temporal gait parameters, 

kinematics and kinetics segmental. The three main categories of problems can be scaled 

according to the deviation from normality data and are (Bowden, 2006): 

- Reduced load acceptance; 

- Reduced propulsion; 

- Reduced load acceptance and reduced propulsion. 

2.3.3. Neuropsychological deficits 

Most neuropsychological interventions are related to the treatment or optimization of 

cognitive deficiencies including also emotional, behavioral and personality alterations, 

aiming at the best cognitive, neurobiological and social re-adaptation (Valobra, 2000).  

Problems in memory and concentration are very common reported symptoms in 

neurodegenerative disorders and affect tasks such as decision-making, planning, sensory 

integration and dual tasking (Yogev-Seligmann, 2008). The memory is now considered as a 

function consisting of several components that work sequentially and integrally. We can 

distinguish between a short-term memory, perspective memory, which relates to knowledge 

skills that are implicitly acquired, and a long-term memory (Valobra, 2000). The 

rehabilitation intervention should take into consideration the specificity of patients and the 

level of their deficit, distinguishing subjects able to learn and apply new compensation 

strategies, from subjects able to acquire only implicit behaviors. According to literature of 

recent years, about half of MS patients are affected by memory disorders, as well as by 

attention, executive and visual-spatial functions (Rao, 1991). Disorders in long- and short-
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term memory, saving the implicit memory, characterize these patients and are, with attention 

functions and speed processing, the first symptoms of the disease. Specifically, like in PD, 

the main cognitive affected areas include memory, executive functions and attention 

(Chiaravalloti, 2008), (Caballol, 2007). 

Attention constitutes a phenomenon with more components including selectivity and 

intensity. The first dimension includes two separate processes: the focused attention, 

generally tested by asking to the subject to find a specific target stimulus among several 

distractors, and divided attention, assessed by dual task, where the individual must respond to 

two stimuli interfering with each other. The intensity does include the warning and physical 

alertness. The alert aims to implement a response following a warning signal, while the 

supervisory indicates the ability to maintain the appropriate response for a certain period of 

time. Batteries are standardized to highlight any shortfall depending on attention processes. 

The rehabilitation protocols can be gathered in two groups: the first one aims to recover the 

lost capacity, while the second aims to develop compensatory strategies. 

Also neuropsychiatric and behavioral disorders are common in neurodegenerative disorders. 

Depression, for example, seriously affects the autonomy and quality of both individuals 

affected by MS (Arnett, 2008) and PD (Mayeux, 1984), (Taylor, 1986).  

2.3.4. Dual task during walking 

Performing two tasks simultaneously (dual tasking) is a frequent activity in everyday life, 

which requires divided attention. Indeed, when people attempt dual task, performance is 

generally impaired, characterized by more errors or longer reaction times than the same task 

performed without a concurrent task (Wu, 2008). The capacity to execute a second task (dual 

task performance) is highly advantageous during walking because it allows for 

communicating with people, transporting objects and monitoring the environment.  

The effects of dual tasks on gait (dual task cost) have been studied in several populations, 

from healthy young and older adults to neurologic patients. In healthy adults, dual tasking 

has demonstrated to reduce the performance of the concurrent task and to decrease the gait 
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speed, highlighting how deficits in attention and executive functions are associated with fall 

risk, postural instability and impairments in daily life activities (Yogev-Seligmann, 2008). 

The dual task cost has been studied also in elderly people (Woollacott, 2002), showing an 

increase in the reaction times of the concurrent cognitive task or a decrease in gait speed 

(Chen, 1996), (Ebersbach, 1995), and an increased gait variability (Dubost, 2006). Age-

related gait changes are more pronounced in people with cognitive impairments (Hausdorff, 

1997), (Holtzer, 2006), (Lindenberger, 2000) and are accentuated under dual task condition. 

Lundin-Olsson et al. showed that the instability to maintain a conversation during walking 

constitutes a marker of future falls in older adults (Lundin-Olsson, 1997). Several studies 

have also demonstrated that dual tasking severely affected gait parameters in populations 

prone to falls, much more then in a healthy elderly people (Bloem, 2001), (Beauchet, 2005), 

(Toulotte, 2006), (Springer, 2006), (Verghese, 2002). Faulkner et al. observed that changes in 

performance while dual-tasking could be used to identify subjects at risk for recurrent falls 

(Faulkner, 2007). A recent study on a large sample of older adults found that the dual task 

cost of 18% or more predicted falls in individuals walking faster than a specific gait speed 

threshold (Yamada, 2011).  

Typically, the dual task cost is larger in neurological patients than healthy age-matched 

controls (Sheridan, 2003). This has been largely investigated in PD patients and can be 

explained by their impairment in attention and in executive function processes (Dubois, 

1996) and by their altered gait, typically characterized by slow gait speed, short strides, high 

double support time (Yogev, 2005) (Morris, 1994), (O'Shea, 2002), (Bond, 2000), 

(Camicioli, 1998), (Hausdorff, 2003), (Lewis, 2011), decreased symmetry and coordination 

between left and right steps (Plotnik, 2008), (Yogev, 2007), and increased stride-to-stride 

variability (Plotnik, 2011), (Yogev, 2005), (Hausdorff, 2003).  

Contrarily to PD, the dual task cost during gait in MS has been poorly explored. In a recent 

case-control study (Hamilton, 2009) on MS subjects, walking and attention interaction have 

been investigated. Compared to healthy controls, MS subjects demonstrated slower speed and 
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elevated swing time variability in gait performance under cognitive dual task conditions. The 

authors suggested that fatigue and general cognitive ability contribute to this. 

These results seem to be consistent with the differential dual-task decrements reported in 

another study on MS patients (D’Esposito, 1996), when compared to controls, during the 

execution of two cognitive tasks simultaneously. Different interpretations can explain these 

findings, including reduced working memory capacity, task demand, use of different 

strategies, confounding factors and a divided attention deficit. Moreover, another study 

(Sosnoff, 2011) investigated the effect of a cognitive task on gait performance in MS 

individuals with mild, moderate, and severe disability. The findings showed that, compared 

to patients with mild and moderate disability, the group with severe disability walked slower, 

with shorter steps, and spent a greater percentage of the gait cycle in double support. 

The growing evidence that instability and falls increase during the performance of multiple 

tasks suggests the need of training balance and gait in dual task in neurological patients. 

Dual-task training involves the execution of the primary task (maintaining postural control or 

walking speed) while performing a secondary task, for example a cognitive challenge such as 

counting backwards, or a manual task such as carrying an item (Woollacott, 2002). Few 

studies have tried to specifically address this issue, and the findings have not always been 

consistent (You, 2009), (Yang, 2007), (Canning, 2008), (Silsupadol, 2009), (Schwenk, 2010), 

(Yogev-Seligmann, 2012), (Plummer-D’Amato, 2012). Still, promising results suggest that 

training improves dual task gait in older adults with balance impairment (Silsupadol, 2009), 

patients with dementia (Schwenk, 2010), post-stroke individuals (Yang, 2007), (Plummer-

D’Amato, 2012) and PD subjects (Yogev-Seligmann, 2012), (Canning, 2008), suggesting 

that even among patients with neurodegenerative disease, intensive and repetitive practicing 

of DT while walking can lower dual-task costs.  
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3. Technological tools for designing new motor rehabilitation 

methods 

The aim of the bioengineering research in motor rehabilitation is to develop new methods for 

the assessment of impaired patients and, simultaneously, on the basis of the responses 

gathered from them, to provide clinicians with tools to tailor or facilitate motor rehabilitative 

interventions (Bonato, 2010). These new approaches must be made with a view to 

overcoming current limitations in routine clinical practice, where qualitative scales and 

functional tests are still largely preferred, due to practical reasons, and where treatments are 

prevalently based on repetition. In this sense, the relevance recently gained by pervasive 

solutions and personalized interventions for healthcare among researchers and clinicians had 

a high impact on rehabilitation. New approaches have been primarily possible thanks to the 

recent progresses in several fields, such as telecommunications, electronics, computer science 

and real-time data analysis. In particular, a wide range of new technologies, including inertial 

sensors and low cost video technology, and tools, such as multi-sensory interfaces and virtual 

reality (VR) have been recently experimented, and in some case combined, opening new 

perspectives for relevant applications in motor rehabilitation. In this chapter we will 

introduce them, presenting their potential application in motor rehabilitation of neurological 

subject.  

3.1. Measuring human movement in clinical practice: inertial sensing 

The ability to measure human movement quantitatively represents an essential part of clinical 

assessment and evaluation, thus either allowing for a more complete diagnosis or determining 

the efficacy of motor rehabilitation interventions.  

Motion capture systems, using instruments such as optical motion capture and force plates, 

are considered as the gold standard in the field of motion analysis for assessing joint 

kinematics and kinetics. For kinematics, optical motion capture system consists in tracking 

the position of markers attached to specific locations on the subject’s body using a set of 
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cameras, and reconstructing their 3D position. Technology is either based on active or 

passive markers and uses the red and infrared light range. For kinetics measurements, the 

reference system used in laboratory setting is force platforms. They measure the ground 

reaction forces generated by a body standing on or moving across them. They can provide 

also accurate temporal parameters such as foot initial and terminal contact.  

Measuring body movements in laboratory setting under controlled conditions allows getting 

precise, accurate and reliable measurements of the movement pattern of the subject, and add 

quantitative and objective figures to the clinical gait assessment. Nevertheless, motion 

capture systems present also several disadvantages, such as the costly equipment and the 

need of technical expertise to operate. Another drawback is represented by the confinement 

of such a system inside the laboratory setting, where the volume of measurement is limited. 

This aspect can strongly influence the natural behavior of the subjects and does not allow 

observing them in their everyday life. More importantly, the interpretation of the outcomes is 

not straightforward and requires further processing and analysis by clinical expertise. 

Consequently, the use of these devices in the routine clinical practice is limited and it is 

mostly used for research purpose. In order to overcome them, in the last two decades, new 

methods (e.g. markerless techniques (Deutscher, 2000) have been successfully implemented.  

Wearable technology overcomes the limitations of settings and cost, offering an inexpensive, 

and efficient manner of performing motion analysis in several health-related applications, 

outside the laboratory. Inertial wearable sensing, (Teng, 2008), (Bonato, 2010) may be used 

in in the motion analysis of neurological individuals (Bonato, 2009). These sensors, based on 

a technique for measuring the motion of an object without the need of an external reference, 

are named Inertial Measurement Units (IMUs) and are composed by different inertial sensor 

technologies, including accelerometers, gyroscopes and magnetometers. Gyroscopes provide 

a measurement of the angular velocity applied to the object and thus an estimation of the 

rotated angle and actual orientation if an initial reference is provided. Though they are 

usually based on the concept of measuring the Coriolis force, gyroscopes based on other 

operating principles also exist (electronic, microchip-packaged MEMS gyroscope devices, 
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solid-state ring lasers, fiber optic gyroscopes, and the extremely sensitive quantum 

gyroscope). They can be used for the measurement of the motion and posture of any human 

body segment (Ayrulu-Erdem & Barshan, 2011), (Catalfamo, Ghoussayni, & Ewins, 2010), 

(Tuncel, Altun, & Barshan, 2009). Since gyroscopes have different sources of dynamic drift, 

the estimation of the orientation deteriorates with time. To correct these effects, 

accelerometers and magnetometers are added to the system through data fusion algorithms so 

that external references are provided for drift correction.  

Accelerometers are inertial sensors measuring the linear acceleration along their sensitive 

axis. Their common operation principle is based on a mechanical sensing element consisting 

of a proof mass attached to a mechanical suspension system. According to Newton’s second 

Law, under the influence of external accelerations the proof mass deflects from its neutral 

position and, using the physical changes in the displacement of the proof mass, the 

acceleration can be measured electrically. Three common types of accelerometers are 

available, namely, piezoelectric, piezoresistive, and differential capacitive accelerometers 

(Öberg, 2004), (Mathie, 2004).  

Magnetometers are usually based on the magnetoresistive effect. If a magnetic field is 

applied, a Lorentz force proportional to it will deflect the current path, increasing the 

resistance. Since the resistance change is proportional to the tilt angle in relation to the 

magnetic field direction (Graham, 2004), magnetoresistive sensors can estimate changes in 

the orientation of a body segment in relation to the magnetic North or the vertical axis in the 

gait analysis (Dai, 1996), (O’Donovan, 2007), (Choi, 2008), providing information that 

cannot be determined by accelerometers or the integration of gyroscope signals. 

Accelerometers give a measure of the direction of the gravity vector, and magnetometers 

provide measurements of the direction of the Earth’s magnetic field. With this technology, 

IMUs are able to accurately estimate their own orientation with respect to a fixed reference 

frame formed by gravity and the Earth’s magnetic North vectors.  

IMUs have great potential for measurement of human movement in rehabilitation. They can 

be used for kinematic measurements (Mayagoitia, 2002), (Luinge, 2005) in ambulatory 
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circumstances. Mathie et al. (Mathie, 2004) reviewed the accelerometer-based systems 

applied to human movement, distinguishing between monitoring of specific movements (e.g. 

gait, fall, sit-to-stand transfer etc.), assessment of physical activity and classification of 

movements. Godfrey et al. (Godfrey, 2008) compared all the techniques that have been used 

using accelerometers since the early 1990s to 2006 for human movement analysis. To obtain 

more information on human kinematics, gyroscopes and magnetoresistive sensors have been 

combined with accelerometers. Gyroscopes are usually used to measure the angular rate and 

the joints’ range of motion (Tong, 1999), (Coley, 2005), (Miyazaki, 1997), while the 

magnetoresistive sensors provide an additional reference measure for body orientation. 

Recently, Altun et al. (Altun, 2010) compared the different techniques of classifying human 

activities using wearable inertial and magnetic sensors. 

Following Mathie’s classification, IMUs can be used in rehabilitation to:  

a) Monitor specific movements, such gait (Tong, 1999), (Menz, 2003), (Sabatini, 2005), 

(Tao, 2012), sit-to-stand transfer (Najafi, 2002), falls (Williams, 1998), (Doughty, 

2000), (Bourke, 2007), (Wu, 2008 );  

b) Measure and assess human motion, for clinical assessment (Wade, 2010), (Parnandi, 

2010), (Mancini, 2010), (Palmerini), (Mancini, 2012), for tracking purposes (Lee, 

2003), (Zhu, 2004), (Foxlin, 2005), (Zhou, 2008), (Guo, 2009), (Hussain, 2012), and 

for treatment evaluation (Lorincz), (Jovanov, 2005);  

c) Detect and classify activities (Aminian, 1999), (Najafi, 2003), (Bao, 2004), (Ravi, 

2005), (Parkka, 2006), (Preece, 2009), (Yang, 2010). 

All these purposes are even more important for individuals affected by neurodegenerative 

disorders. An increasing interest toward inertial sensing has been recognized in measuring 

mobility or walking impairment in neurological populations (Pearson, 2004) including 

persons with MS (Weikert, 2010), (Snook, 2009). For example, quantitative measures 

coming from inertial units may assist clinicians in assessing gait (Salarian, 2004) and 

evaluating the above-mentioned turning difficulties of PD subjects, especially in home-based 

assessments (Boonstra, 2008), (Salarian, 2007). Zampieri et al. has showed that the Timed 
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Up and Go test, extensively used to assess balance and mobility in moderate-to-severe stage 

PD, measured with the sole stopwatch was not sensitive enough to detect abnormalities in 

early-to-mid stage PD and used inertial sensors to make the test more reliable (Zampieri, 

2010).  

In Chapter 0 an application based on the use of IMUs for motor assessment of PD patients is 

presented. 

3.2. Virtual Reality in motor rehabilitation interventions 

One of the main goals of motor rehabilitation is to increase the quantity and quality of 

patients’ daily activities to improve their independent living. Essential for motor recovery is a 

task-oriented treatment characterized by intense skillful practice (Shumway-Cook, 2007) and 

increasing difficulty (Malouin, 2003). Consequently, physical therapies usually request 

patients to regularly execute movement patterns repetitively over an extended period, often 

limiting their engagement and motivation in rehabilitation. “Motivation is an important factor 

in rehabilitation and is frequently used as a determinant of rehabilitation out-come. In 

particular, active engagement towards a treatment/training intervention is usually equated 

with motivation, and passivity with lack of motivation” (Colombo, 2007). VR is a relatively 

recent approach in rehabilitation, which demands focus and attention, increasing patients’ 

motivation, and provides them with a sense of achievement (Lange, 2011). 

3.2.1. What is Virtual Reality 

Coates in 1992 defined VR as “…electronic simulations of environments (…) enabling the 

end user to interact in realistic three-dimensional situations.” (Coates, 1992). To date, VR 

refers to the use of interactive simulations created with computer hardware and software to 

present users with opportunities to engage themselves in environments reproducing the real 

world, (Weiss, 1998). Users interact with the environments, performing actions inside them 

and/or moving and manipulating virtual objects, in a way that attempts to “immerse” them 

within the simulation. Immersion is an important concept and relates to the extent to which 

the VR system succeeds in delivering an environment, which refocuses the user’s sensations 
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from the real to a virtual world (Slater, 1999). A second key concept of VR is the sense of 

presence, which characterizes the user’s interaction within the VR environment. Whereas 

immersion is an objective measure referring to the VR platform, it does not immediately 

correspond to the level of presence (which is subjective). VR environments may be delivered 

to the user via several technologies that differ in the extent to which they are able to 

“immerse”. There is considerable evidence indicating that a high sense of presence may lead 

to deeper emotional response (Weiss, 2005), increased motivation and, in some cases, 

enhanced performance (Schuemie, 2001). To provide to the users augmented sensorial 

feedback (discussed in paragraph 3.2.4) about their performance, helps to achieve a stronger 

feeling of presence in the virtual world. 

VR environments are usually experienced with the aid of special hardware and software for 

input (transfer of information from the user to the system) and output (transfer of information 

from the system to the user). The selection of appropriate hardware is important since may 

greatly influence the way users respond to a VR environment (Rand, 2005). The output to the 

user can be delivered by different modalities including visual, auditory, haptic, vestibular and 

olfactory stimuli. Visual information is commonly displayed by Head Mounted Displays 

(HMDs1), projection systems or flat screens. Sophisticated VR systems employ more than 

specialized visual displays, such as audio and haptic2 display, engaging the user in the VR 

environment. Other, less frequently used ways of making the virtual environment more life-

like are by letting the user stand on a platform capable of perturbations and thereby providing 

vestibular stimuli such as the multisensory system CAREN (Motek, Amsterdam). Even less 

frequent is the provision of olfactory feedback to add odor to a virtual environment (Weiss, 

2005).  

                                                        
1 An HMD is composed of two small screens positioned at eye level within special goggles or a helmet. Thus 
users view the virtual environment in very close proximity. Advanced HMDs even provide stereoscopic 3D 
displays of the environment and usually are referred to as more immersive systems (Weiss P. K., 2005). 
 
2 Haptic feedback enables users to experience the sensation of touch, making the systems more immersive and 
closer to the real world experience (Weiss P. K., 2005). 
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Equally important to achieving a realistic experience within a virtual environment is the 

ability of the user to navigate and manipulate objects within it. Thus the user must be able to 

interact (directly or indirectly) with the environment via input technologies. One class of 

input technologies may be considered as direct methods since users behave in a natural way, 

and the system tracks their actions and responds accordingly. Generally, tracking (discussed 

in paragraph 3.2.3) is achieved by using special sensors (non-visual based systems) or by 

visual tracking (visual based systems). A second class consists of indirect ways for users to 

manipulate and navigate within a virtual environment. These include activation of computer 

keyboard keys, a mouse or a joystick or even virtual buttons appearing as part of the 

environment (Rand, 2005). 

Beyond specialized hardware, application software is also necessary. In recent years, “off-

the-shelf”, “ready-for-clinical-use” VR software has become commercially available. 

However, more frequently, special software development tools are required in order to design 

and code an interactive simulated environment that will achieve a desired rehabilitation goal. 

In many cases, innovative intervention ideas may entail customized programming to 

construct a virtual environment from scratch, using traditional programming languages 

(Weiss, 2005). 

VR hardware, combined with virtual environments, provides engineers tools for designing 

rehabilitation interventions customized on patients. When creating a specific VR application 

for rehabilitation the clinician and technical team face the challenge of choosing and 

integrating the software and hardware. These decisions are made taking into account budget, 

physical space, mobility of the system, patient population, complexity of the task with 

respect to the patient population and the extent of immersion desired from the system. In 

Chapter 5 a VR application for motor rehabilitation is described in detail. 

3.2.2. Virtual Neurorehabilitation 

Virtual rehabilitation is the use of VR within rehabilitation (Burdea, 2002). It allows creating 

environments for assessing and rehabilitating patients, where controlled presentations of 
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stimuli, motion tracking and performance recording are possible (Rizzo & Kim, 2005).  

The rationale for using VR in rehabilitation is based on a number of unique attributes of this 

technology (Riva, 1999), (Schultheis, 2001). These include the opportunity for active 

learning, which engages the participant in two or more cognitive and motor activities 

simultaneously (i.e., dual tasking). This involves and motivates the participant (Mantovani, 

2003) and enhances motor learning through problem solving and decision-making. It has 

been shown that people with impairments seem able to both learn motor skills in VR and 

transfer the learnt abilities to their real life (Holden, 2005). 

In addition, VR allows to objectively quantifying changes and measuring behavior in 

challenging but safe environments, while maintaining strict experimental control over 

stimulus delivery and measurement (Rizzo, 2002 ). VR also offers the possibility to 

individualize treatments and to standardize assessment and training protocols (Weiss, 2005).  

VR environments provide the opportunity for repeated learning trials and offer the capability 

of gradually increasing the complexity of tasks while decreasing the support and feedback 

provided by the therapist (Schultheis, 2001). Moreover, VR offers the opportunity to provide 

multi-sensory feedback simultaneously in order to broaden users’ rehabilitation. The 

assumption is that, by displaying and augmenting the same information to different senses, it 

is possible to increase the amount of knowledge available to participants and consequently 

assist their performance. Finally, the automated nature of feedback delivery during a VR 

treatment enables a therapist to focus on the provision of maximum physical support when 

needed without reducing the complexity of the task.  

Among the disadvantages, a factor that may limit the use of VR for patients is cybersickness, 

which refers to side effects experienced by some users during and following exposure to VR 

environments (Kennedy, 1997), (Kennedy, 1996). Effects noted while using some VR 

systems can include nausea, eye-strain and other ocular disturbances, postural instability, 

headaches and drowsiness. Effects noted up to 12 hours after using VR include 

disorientation, flashbacks and disturbances in hand–eye coordination and balance (Kennedy, 

1997), (Stanney, 1998). Many of these effects appear to be caused by incongruities between 
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information received from different sensory modalities (Lewis C. a., 1998). Other factors that 

may influence the occurrence and severity of side effects include characteristics of the user 

and the display, the user’s ability to control simulated motions and interactivity with the task 

via movement of the head, trunk or whole body (Lewis C. a., 1998). 

VR has successfully been used in assessment and rehabilitation of in the neuropsychological 

and motor deficits in people affected by neurological impairments. Specifically, several 

studies have been used VR application aiming to train balance and posture, gait, upper and 

lower extremity function (Sveistrup, 2003). Bisson et al. measured attention demands and 

functional balance scores before and after a VR balance training programs with augmented 

biofeedback, demonstrating an improvement of functional balance in traumatic brain injury 

survivors (Bisson, 2007). VR-based motor training for lower limb has shown encouraging 

results in post-stroke populations (Laver, 2011), such as improvements in gait speed (Fung, 

2006), (Yang, 2008), (Walker, 2010) and stride length (Jaffe DL, 2004), (Mirelman A., 

2009), and in PD individuals (Mirelman A. M., 2011). For what concerns the virtual 

rehabilitation of the upper limb, the majority of the literature is addressed to post-stroke 

populations and has shown encouraging results (Levin, 2009) (Henderson, 2007), (Holden, 

2005). 

3.2.3. Motion tracking in virtual environments 

In order to involve patients in the virtual motor rehabilitation treatment, it is necessary to 

immerse them into the simulation, reproducing their limbs movement in real-time inside the 

virtual environment. A good tracking of the head also contributes to enhance the sense of 

presence in the simulation, recording the head orientation and moving the virtual 

environment accordingly (Baillot, 2001).  

Features that are usually required to a good real-time tracking are the high accuracy, low 

encumbrance, high robustness, low invasiveness (users should be unrestricted in their 

mobility) and minimum latency (Ribo, 2001). 
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The existing human limb tracking systems can be classified as non-vision based and vision-

based systems. Non-vision based systems use inertial, mechanical and magnetic sensors to 

collect movement signals. Magnetic tracking systems do not require much space but they 

tend to have limited accuracy due to magnetic field distortions caused by large metal objects 

common to industrial environments. Inertial measurement systems can be used in many 

circumstances without limitations (i.e. illumination, temperature, or space, etc.) and show 

better performance in accuracy against mechanical sensors. With this sensor approach, such 

as used by Intersense (InterSense Inc., Billerica, MA, USA), InterTrax2, a three degrees of 

freedom, inertial orientation tracker used to track pitch, roll and yaw movements, the user 

wears a tracking device that transmits position and orientation data to the VR system. The 

main drawback of using inertial sensors is that accumulating errors (or drift) can become 

significant after a short period of time. This issue is discussed in detail in Chapter 4, while a 

tracking methodology for VR based on the use of IMUs is described in Chapter 5. 

In vision-based systems, the user’s motion is recorded by video cameras, where special 

software processes the video image, extracts the user’s figure from the background in real-

time, and identifies any motion of the body. Unfortunately this approach to human motion 

tracking often involves intensive computations, such as temporal differencing, background 

subtraction or occlusion handling (Sen, Leo, Tan, & and Tham, 2011).  

The Microsoft Kinect for Windows is a low cost sensor belonging to the vision-based class 

since it exploits an infrared (IR) structured light to calculate the distances between the IR 

camera and points in the environment. It consists of three main components, such as IR laser 

emitter, an IR camera, constituting the depth sensor, and an RGB camera. The inventors 

describe the measurement of depth as a triangulation process (Freedman, 2010). The Kinect 

sensor captures depth and color images simultaneously at a frame rate of up to 30 fps. In 

Chapter 7 an application using the Microsoft Kinect for tracking gait and reproducing it in a 

VR environment is illustrated. 

Remarkable improvements have been achieved by using hybrid tracking systems, which 

combine the strengths, eliminating the disadvantages, of complementary sensing systems 
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(e.g. optical and inertial tracking (You, 1999), optical and magnetic tracking (Auer, 1999) 

(Baltadjieva, 2006) (Behrman, 1998). 

3.2.4. Augmented feedback 

Reliable sensory information and correct integration of sensory information are necessary for 

motor control. In neurological impairments, and also as a natural consequence of ageing, this 

information may be inadequate and, consequently, the control results impaired (Dozza, 

2007).  

“Biofeedback can be defined as the use of instrumentation to make covert physiological 

processes more overt” (Huang, 2006). A sensory feedback, augmenting or substituting the 

sensory movement information, gives to neurodegenerative patients the opportunity to 

observe a physiological function otherwise not perceptible and regain the ability to better 

assess different physiological responses and possibly to learn self-control of those responses 

(Hilgard, 1975).  

During the learning process of a motor skill, feedback is the positive or negative response 

that can inform the learner how well she/he performed the task. The term feedback can be 

divided in two classes: the inherent (or intrinsic) feedback and augmented (extrinsic) 

feedback. Inherent feedback is the sensory information that tells the learner how well the task 

was completed: a basketball player will understand that he/she made a mistake when the ball 

misses the hoop. In contrast, augmented feedback is information that supplements or 

“augments” the inherent feedback: for example, when a person is driving over the speed limit 

and a beep sound is generated by the car. Although the car did not do any harm, the beep 

gives augmented feedback to the driver in to increase safety (Schmidt, 2005).  

The augmented feedback can assume a high number of independent dimensions: it can be 

concurrent or terminal, immediate or delayed, accumulated or distinct, verbal or non-verbal.  

An important category of the augmented feedback is the knowledge of results (KR), which is 

defined terminal augmented feedback about the goal achieved and not about the movement 

itself. In experimental studies, KR usually refers to a score or, in any case, to information 
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provided over and above those sources of feedback that are naturally received when a 

response is made (Adams, Response feedback and learning, 1968).  

Knowledge of performance (KP) refers, instead, to information about the quality or 

patterning of a movement. It may include information such as displacement, velocity or joint 

motion. KP tends to be distinct from intrinsic feedback and more useful in real-world tasks. It 

is a strategy often employed by rehabilitation practitioners (Winstein, 1991). 

In the next chapters several applications of augmented feedback in virtual environments are 

described. In particular, in Chapter 8, a visual feedback tool for trunk control is presented. 
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4. Estimation of stride length using an IMU: a validation of the zero 

velocity assumption 

This chapter was written on the basis of the published article “Estimation of stride 

length in level walking using an IMU attached to the foot: A validation of the zero velocity 

assumption during stance” (Peruzzi, Della Croce, Cereatti; Journal of Biomechanics 

2011). 

4.1. Introduction 

Wearable IMUs, including accelerometers and gyroscopes, allow measuring and tracking 

human locomotion (Sabatini, 2005); (Yun X., 2007), along with the estimation of spatial 

parameters (such as the stride length), both outdoor indoor and in non-controlled 

environment and for prolonged periods of time. Once estimated the IMU orientation in the 

global reference frame (Sabatini, 2005); (Schepers, 2007), linear displacements can be 

obtained by double integrating the IMU linear coordinate acceleration in the global reference 

frame and by removing the gravitational contribution from the accelerometer signals. 

However, the described procedure is complicated by the next factors: (a) a drift commonly 

present when integrating the accelerometer and gyroscope signals introducing an error in the 

displacement estimations, which is nonlinearly related to the integration time (Djuric, 2000); 

(Thong, 2004); (b) the determination of the IMU orientation with respect to the global 

reference frame from gyroscopic and accelerometer data is not trivial (Woodman, 2007) and 

(c) in the integration of the coordinate accelerations an estimate of initial velocity needs to be 

provided. 

Exploiting the cyclical nature of gait typically reduces the detrimental effects of the drift. 

This allows reduction of the interval of integration time to a single gait cycle but requires the 

identification in the cycle of an instant of known velocity to be used as initial velocity in the 

integration of the acceleration in the global reference frame. 
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Despite the fact that during stance in level walking the foot rolls from the outer edge to the 

inner edge (Rodgers, 1988) and the paths of movement of the forefoot and heel differ both in 

shape and time (Winter, 1984), the velocity of the sensor placed on the different foot and 

shank locations is often set to zero at the beginning of the integration interval (zero velocity 

assumption— (Veltink, 2003), (Sabatini, 2005), (Foxlin, 2005), (Yun X., 2007), (Schepers, 

2007), (Ojeda, 2007), (Bamberg, 2008), (Feliz, 2009), (Li, 2010), (Mariani, 2010). In 

particular, the foot velocity has been assumed to be zero: (a) throughout the stance phase 

(Yun X., 2007), (b) during a portion of it (Sabatini, 2005), (Ojeda, 2007) or (c) only in a 

specific instant (Li, 2010). 

While the zero velocity detection issue has been recently studied (Skog, 2010)and both drift 

reduction and IMU orientation determination have been extensively studied (Veltink, 2003), 

(Foxlin, 2005), (Sabatini, 2005), (Ouinge, 2005), in literature there is no study analyzing the 

validity of the zero velocity assumption. 

4.2. Methods 

This study aimed at determining the minimum velocity of progression of various points of 

the foot and shank during the stance phase of the gait cycle while walking at different speeds. 

Such an analysis allowed estimation of the magnitude of the errors in determining the stride 

length due to the zero velocity assumption. The analysis of other factors affecting the stride 

length estimate, such as accelerometer and gyroscope drifts and biases, IMU orientation 

errors and identification of the time epochs when the inertial sensors are not moving, was 

beyond the scope of this study. 

Twenty subjects (9 females, age 35.9 ± 8 years, h 168 ± 9 cm), with no history of major 

injuries or gross lower limb musculoskeletal abnormalities, were enrolled. 

Eight retro-reflective markers (14 mm) were placed on selected locations of the right foot and 

shank (Fig. 1), reproducing the IMU placements adopted in various studies (Sabatini, 2005), 

(Schepers, 2007), (Ojeda, 2007), (Li, 2010). Subjects were asked to walk at three different 

self-selected speeds (slow, comfortable and fast) wearing sneaker shoes. 
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For three trials at each speed, marker positions were reconstructed using a stereo-

photogrammetric system (six-camera Vicon T20, 2Mpixel). The frame rate was set to 100 

frames/s to preserve signal power (Antonsson, 1985). The measurement volume was a 1.5 m 

sided cube. The global reference frame was formed by a vertical axis (V), by an antero-

posterior axis (AP) coincident with the direction of progression of gait and an axis 

perpendicular to the V and AP axes (Figure 3) The beginning and the end of the stance phase 

were identified, setting a threshold of 5 N to the vertical component of the ground reaction 

force measured with a 6-channel force platform (AMTI). For each trial, gait speed (s), gait 

cycle duration (T) and stride length (SL) were determined from marker positions. Trials were 

then reorganized in three equally populated groups (slows, comfs, fasts) based on the s values. 

The velocity of markers along AP (𝑣 ) was estimated by applying a finite difference 

calculation of the relevant coordinates. At the times when the number of cameras used for 

reconstructing marker position changed due to loss/gain of marker visibility, abrupt artificial 

marker velocity changes were observed. To remove such outliers, for each marker, at any 

instant 𝑡!, 𝑣 𝑡!  was considered reliable only if both the differences |𝑣 𝑡! − 𝑣(𝑡!!!)| and 

|𝑣 𝑡!!! − 𝑣(𝑡!)| were smaller than 0.005 m/s (0.015 m/s for the shank markers). 

The accuracy of 𝑣 estimates was assessed from the acquisition of a still marker positioned on 

the ground. 

For each trial and each marker the minimum AP velocity during stance (𝑣!"#) and the 

relevant instant of occurrence, expressed as percentage of the stance phase (𝑆𝑃%!!"#), were 

Figure 3 Marker locations for the right foot and shank and the global reference frame. 
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determined. When v reached negative numbers, 𝑣!"#  was set to zero and the relevant 

𝑆𝑃%!!"#  was set to the instant of zero crossing. For each walking speed group, the average of 

the  𝑣!"!  values (𝑣!"#) and the average of the 𝑆𝑃%!!"# values (𝑆𝑃%!!"#) along with their 

standard deviations (𝑠𝑑) were computed for all markers. 

From noise-free coordinate acceleration data, SL can be determined by double integrating the 

AP coordinate acceleration 𝑎(𝑡) over 𝑇: 

a τ dτdt   + 𝑣!𝑇
!
!!!

!
!!! ; 

where 𝑣! is the AP velocity at the beginning of the integration interval. Under the zero 

velocity assumption, the stride length estimate (𝑆𝐿!) is obtained when the integration interval 

begins at an instant when 𝑣!=0. To quantify the influence of the zero velocity assumption on 

the 𝑆𝐿 estimation, 𝑣! was set equal to the 𝑣!"# value found for each trial, a stride length 

estimate (𝑆𝐿∗) was obtained and the stride length estimation error (𝑒) was calculated as the 

difference between 𝑆𝐿! and  𝑆𝐿∗ (𝑒 ≥   𝑆𝐿!  𝑆𝐿∗ = −𝑣!"#𝑇). 

The average percent error (𝑒%) was computed for each marker and for each walking speed 

group as follows: 

𝑒% =    !
!
   !!!"#!!

!"!
!
!!! ×100 = !

!
   !!

!"!
!
!!! ×100, 

where 𝑁 represents the number of trials included in each walking speed group. 

4.3. Results 

The error in estimating the AP velocity of a still marker was lower than 0.002 m/s. 

 

Gait trials were reorganized in three equally populated groups (60 trials per group) based on 

the effective 𝑠  value (slows, 𝑠 < 1  m/s; comfs, 1 < 𝑠 < 1.33  m/s; fasts, 𝑠 > 1.33  m/s). 

 Stride duration s Stride Lenght mm Gait speed mm/s 
slows 1.3 (0.2) 1122 (118) 846 (106) 
comfs 1.1 (0.2) 1300 (165) 1164 (99) 
fasts 0.9 (0.2) 1324 (345) 1576 (192) 

Table 1 Average and sd values of stride duration (T), stride length (SL) and gait speed (s) for 

each walking speed group (N=20). 
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Average values of gait speed, stride length and stride duration and relevant 𝑠𝑑 for each 

walking speed group are reported in Table 1. 

Minimum velocity 𝑣!"#, percentage errors 𝑒% and their 𝑠𝑑 are reported for each marker and 

for each walking speed group in Figure 4a and b, respectively. For each marker and for each 

walking speed group, 𝑆𝑃%!!"# values and 𝑠𝑑 are reported in Figure 5. 
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4.4. Discussion 

To determine the stride length in level walking with an IMU positioned on the foot (or the 

shank) a double integration of the IMU’s coordinate acceleration is needed and, 

consequently, a velocity value at the beginning of the integration interval must be specified. 

In this context, velocities of foot and shank have been assumed, with no exception, to be 

equal to zero sometimes during the stance phase regardless of the sensor location and the gait 

speed. In this study, the validity of such assumption was tested by evaluating its isolated 

effects on stride length estimation for various IMU positions. Results showed, on average, 

that none of the tested points on foot and shank had zero velocity at any time during stance. 

However, the high 𝑠𝑑 values observed for some tested points indicate the high sensitivity of 

𝑣!"# to minor changes in foot contact mechanics. The minimum velocity of the foot points 

was always lower than that of the shank but still larger (𝑣!"# < 0.011 m/s) than the estimate 

of velocity of a still marker (𝑣 ≤  0.002 m/s). 

For foot points, the zero velocity assumption applied to drift- free coordinate acceleration 

data introduces an average stride length underestimation error up to -0.7%. For a shank point 

(0.03 m above the ankle joint) the 𝑣!"# value resulted to be up to 0.049 m/s, causing stride 

length underestimation errors up to -3.3%. For all locations analyzed, 𝑣!"# resulted to be 
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dependent on gait speed. These results are consistent with the representation of the foot 

during stance as a deformable rolling body for which an increase of the gait speed would 

presumably cause an increase of the angular velocity. Since none of the observed points were 

in contact with the ground during stance, their AP velocity is expected to increase as the gait 

speed increases. 

Higher gait speeds resulted also in larger stride length values and lower stance durations. As 

a consequence, the increase of the stride length estimation error 𝑒% due to the increase of the 

minimum velocity was partially counterbalanced by the decrease of the stance duration and 

by the increase of the stride length. 

The instant of occurrence of the minimum velocity (𝑆𝑃%!!"#) ranged between 31% (CA2) 

and 57% (TOE) of the stance phase duration and no dependency on gait speed was observed, 

except for the TOE point. 

In conclusion, the results of the study suggest that if an IMU is positioned on the calcaneus 

(CA1) or on the lateral aspect of the rear foot (CA2) the influence of the error in estimating 

the stride length, associated with the zero velocity assumption, is minimized since during 

stance these points showed (a) a minimum velocity, (b) a limited dependency on gait speed 

and (c) a limited timing variability. Overall the assumption that the velocity of the IMU can 

be set to zero at some point during stance may be acceptable if the IMU is attached to the 

foot, whereas it may cause critical errors if it is attached to the shank. 
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5. Virtual reality and inertial sensing in motor training: application 

to multiple sclerosis 

This chapter was written on the basis of a preliminary study of VR+TM training for 

MS patients. The results of the study have been divided in three articles. The first of them is 

“Feasibility and acceptance of a virtual reality, treadmill and wearable inertial sensors 

system for gait training of individuals with Multiple Sclerosis” (Peruzzi, Cereatti, Mirelman, 

Della Croce) and has been submitted to IEEE Transactions on Neural Systems and 

Rehabilitation. The second article is about the effectiveness of this kind of gait intervention 

on MS patients and will be submitted to the Journal of NeuroEngineering and Rehabilitation. 

The third article will be on the outcomes of motor and cognitive tests, whose choice and 

analysis has been performed by the clinicians who collaborate with my group. The methods 

and results will be reported for a complete overview of the study. 

5.1. Introduction 

Many of the common motor impairments of MS could lead to gait disturbances and difficulty 

in walking (Swinnen, 2012). About 85% of patients with MS develop gait problems 

(Armutlu, 2001). Individuals with MS frequently show, compared with the healthy controls, 

a greater variability in lower limb kinematics during gait, reduced stride length and walking 

speed, prolonged double limb support time (Crenshaw, 2006), (Martin, 2006). Approximately 

75% of individuals with MS experiences mobility problems (Swingler, 1992), (Lord, 1998), 

such as a reduced walking ability (Thoumie, 2005). Moreover, about the 55% of individuals 

with MS identify fatigue, and, consequently, functional walking endurance, as one of the 

major symptoms affecting their mobility (Fisk, 1994). Additionally gait impairments can lead 

also to an increased risk of falling (Cattaneo, 2002). It is therefore important to develop 

effective rehabilitation interventions to address gait, balance and endurance in individuals 

with MS. As mentioned in paragraph 2.3.1, conventional therapeutic interventions for 

patients with MS usually include muscle-strengthening exercises, gait and balance control 
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techniques (O’Sullivan, 1988). Different studies have compared the effectiveness of task-

oriented interventions to facilitation approaches to improve walking ability and balance in 

individuals with MS (Lord, 1998), (Wiles, 2001). Both methods have shown to improve 

functional mobility, walking speed and balance, demonstrating no significant differences in 

effectiveness between the two methods. 

Locomotor training using a BWS and TM system is a task-oriented intervention that has 

shown to improve walking ability in individuals who have experienced neurological injuries 

such as spinal cord injury (Field-Fote, 2001), (Behrman, 2005), PD (Mehrholz, 2010), stroke 

(Laufer, 2001), (Nilsson, 2001), (Sullivan, 2002) and MS (Swinnen, 2012). This training 

modality allows for repetitive training of locomotion throughout a complete gait cycle.  

Although training of locomotion combined with the use of VR has shown promising results 

on neurological populations (Paragraph 3.2.2) to my knowledge, only a single-case study on 

MS has been found in literature. Fulk et al. of a BWS system and TM for training gait 

combined with a VR-based system for balance purpose (Fulk, 2005), suggesting that a 

rehabilitation intervention combining the use of TM and VR were appropriate to improve 

walking, balance, and endurance outcomes on an individual with MS. 

Cognitive impairments are also common (43 - 65%) in MS (Rao, 1991), often associated 

with depression (Arnett, 2008). Specifically the main cognitive affected areas include 

memory, executive functions and attention (Chiaravalloti, 2008). In a recent case-control 

study (Hamilton F, 2009) in MS, interaction between walking and attention has been 

investigated. Compared to healthy controls, MS subjects demonstrated slower speed and 

elevated swing time variability in gait performance under a dual task condition. Since daily 

life is often characterized by walking with a concurrent cognitive task, a treatment of gait in 

MS should incorporate motor as well as cognitive training, in order to optimally enhance 

mobility in dual tasking and reduce fall risk, with a consequent improvement on quality of 

life. It is our hypothesis that a rehabilitation intervention combining TM training and VR will 

produce changes in gait and endurance of MS individuals. 
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Moreover, the success of a rehabilitation intervention relies on the patient’s engagement, 

motivation and satisfaction (Lewis, 2011) (Jovanov, 2005). VR-based rehabilitation tools 

applied to upper extremity training of post-stroke patients have shown a high level of 

acceptance. Cameirão et al. (Cameirão, 2010) used a questionnaire to assess the usability and 

acceptance of a VR-based neurorehabilitation system for controlling two virtual limbs in 

individualized tracking tasks. They evaluated the enjoyment in performing the task, the 

understanding and ease of the task and the subjective performance. Similar questionnaires 

have been used to assess enjoyments and level of challenge during VR training as well as 

self-confidence and demonstrated high levels of satisfaction of these systems (Lewis, 2011), 

(Schwickert, 2011). Numerous studies underlined the importance of motivation and 

participation of patients involved in VR-based training. Zimmerli and colleagues (Zimmerli, 

2009) showed that augmented feedback applications for gait training (a VR environment and 

a Lokomat - Hocoma, AG, Switzerland), increased the subject’s motivation and activity 

level. In a second work they showed that the presence of a virtual opponent in a VR 

environment produced higher participation and enjoyment of children with gait impairment 

(Koenig, 2008), (Brütsch, 2010). In Girone et al., (Girone, 2000) subjects with ankle 

disorders responded favorably to a training combining a VR environment with an ankle 

rehabilitation device. Ease of use of the device and perception of limited fatigue during the 

training resulted in high acceptance and satisfaction (Deutsch, 2001), (Deutsch, 2005). 

The first aim of this study was to build a VR system using wearable inertial sensors and a VR 

environment for gait training on TM. The second aim was to assess the acceptance and the 

feasibility of using the VR-based gait training approach, combining motor and cognitive 

aspects, for patients with MS. Finally, the last aim was demonstrate the efficacy of the 6-

weeks gait intervention with TM and VR in patients with MS, evaluating possible gains over 

ground immediately after the end of the training period. 
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5.2. Methods 

5.2.1. Experimental set-up 

The following equipment was used to administer the proposed gait training program: a 

conventional TM, a BWS, three IMU (MTx Xsens, Enschede, The Netherlands) and a Head 

Mounted Display (HMD - Z800 Emagin, Bellevue, WA, USA) – or alternatively a large 

screen. The TM allowed controlling the patient’s walking speed. Patients wore the harness to 

guarantee a safe experimental setup. The HMD was used to deliver the specifically designed 

VR environment. Two IMUs were attached to the patient shoes and the data recorded during 

the walking trails were used to generate in real time, the motion of a pair of shoes in the VR 

environment. An additional IMU was placed on the patient’s head to monitor its rotation in 

the horizontal plane. 

5.2.2. VR environment 

 

 

Figure 6 (a) A screen shot of the VR environment: a tree-lined road presenting obstacles and road 
bifurcations. The movement of the shoes reproduces in real time the patient’s feet movement. (b) A 
positive visual feedback (green circle) is returned when the patient successfully passed an obstacle (a 
log) and (c) a negative visual feedback (red circle) is returned when the patient unsuccessfully 
negotiated an obstacle (a puddle). (d) A bifurcation as seen by the patient: the road sign shows two 
directions. The patient chooses a direction by turning her/his head towards it. The head rotation is 
captured by an IMU and a blinking arrow appears pointing at the selected direction just prior to the 
turn. 
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The software platform implementing the VR environment was based on Python (Python 

v2.4). The data extracted from the IMUs were streamed in real time into the VR environment 

at the sampling rate of 50 Hz. The VR environment was generated with the Vizard software 

(WorldViz, Santa Barbara, CA, USA).  

The VR environment consisted in a tree-lined road presenting obstacles (puddles and logs). 

In addition, to evaluate decision-making, attention and problem solving, road bifurcations 

featuring street signs indicating both the pre-assigned destination and alternative destinations 

were included. As visual feedback, the subject could see her/his shoes while walking along 

the trial (Figure 6a).  

While walking on the TM, when virtually approaching an obstacle, the patient was expected 

to negotiate the obstacle without colliding with it. This required motor abilities as well as 

cognitive function, specifically planning and information processing. 

Environmental changes were also introduced as distracters in order to challenge divided 

attention. These included different modalities in the form of auditory (chirping birds, barking 

dogs, ambulance sirens, etc.) and visual stimuli (change in weather conditions or animals and 

vehicles crossing the walkway). 

The VR environment had five levels of complexity. These were determined by the number of 

bifurcations, density of trees and road width. The trainer could set size, position and 

frequency of the obstacles in the walkway, according to the subject’s needs. To promote 

motor learning, visual and auditory feedbacks were provided upon success or failure 

(Schultheis, 2001), (Fung, 2004), (Levin, 2010). A KR, expressed as the amount of passed 

obstacles, was shown on the display at the end of the training trial reflecting knowledge of 

results. 

Gait replication 

The identification of gait cycles was obtained from IMU pitch angle data: heel strikes and the 

toe off corresponded to IMU pitch angle minima and maxima values, respectively (Figure 7). 

The pitch angle data were used to reproduce the patient’s shoes movement in the VR 

environment, which was made to move toward the patient's point of view depending on the 
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TM speed. The velocity of the patient’s shoes in the VR environment during the swing phase 

𝑣!"   was set under the assumption that when walking on a TM, the distance traversed during 

the stance phase ∆𝑠!"  is equal to the distance traversed during swing ∆𝑠!": 

𝑣!" = ∆!!"
∆!!"

≅ ∆!!"
∆!!"

= !!"∆!!"
!!∆!!"

, 

Where 𝑣!" is the TM speed,   ∆𝑇!"   is the duration of the swing phase, which was assumed to 

be equal to the difference between the mean stride time 𝑇  (calculated over the previous 5 

cycles) and the current stance phase time ∆𝑇!"𝑣!". 

 

 

Therefore, to replicate gait in the VR, a shoe was made to move forward when a maximum 

pitch value was detected and backward when a minimum pitch value was detected, therefore 

traversing a forward distance equal to 𝑣!"∆𝑇!" during swing and a distance equal to 𝑣!"𝑠𝑡 

during the stance phase. ∆𝑇!" and ∆𝑇!" are defined as: 

∆𝑇!" = 𝑛!"×∆𝑡
∆𝑇!"   = 𝑛!"  ×∆𝑡

 

Obstacles and bifurcations 

Obstacles (puddles or logs) along the walkway appeared at variable intervals of time, while 

their number, size and orientation were adjusted by the trainer on a trial-by-trial basis. 

Patients had to raise their foot, when encountering a log, and lengthen their step, when 

encountering a puddle. In both cases the duration of the swing time was used as an indirect 

Figure 7 Gait cycles were identified from IMU pitch angle data: heel strikes and toe off instants 

corresponded to the instants of pitch angle minima and maxima, respectively. The gray solid line 

represents the longitudinal axis of the IMU, whereas the black dotted line represents the pitch angle 

reference of the IMU defined by the foot flat on the ground. 
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measurement for discriminating successful tasks and an audio/visual feedback was generated 

(Figure 6b and c). 

When in the proximity of a bifurcation, patients were instructed to express the chosen 

destination by turning their head accordingly. A blinking arrow pointing at the chosen 

direction, identified from the recording of the head mounted IMU, appeared just before 

encountering the bifurcation to allow a direction change if needed (Figure 6d). 

If successful, a positive audio/visual feedback was provided immediately after the turn. 

5.2.3. Study design and participants 

This study used a repeated measures design (pre-training – Pre, post-training – Post, and 

follow-up at 4 weeks – F-Up), evaluating gait during single (ST) and dual task (DT) after a 6-

week intervention using TM with VR in a single group of patients with MS.  

Ten subjects affected by Relapsing Remitting type of MS according to McDonald et al.'s 

criteria (McDonald, 2001), were recruited from the Operative Unit of Neurology unit at the 

Sassari University Hospital and participated in this feasibility study (9 females, mean age: 

44.3 ± 8.1 years). Patients had an Expanded Disability Status Scale - EDSS (Kurtzke, 1983) 

score between 3 and 6 and an Ambulation Index - AI (Rose, 2006), between 3 and 5. They 

had adequate cognitive ability to participate in the study (a Mini-Mental State Examination –

MMSE (Folstein, 1975) - score of 24 or above), and had stable medical conditions with no 

relapses in the last 6 months prior to the study. Exclusion criteria included serious chronic 

medical illnesses (e.g., orthopedic, psychiatric or neurological) and severe visual deficits or 

depression. All participants provided an informed written consent prior to the beginning of 

the study. 

5.2.4. Rehabilitation intervention 

The VR environment required the participants to walk on a TM while processing multiple 

stimuli simultaneously and making decisions about obstacle negotiation. These decisions 

were made more difficult by a memory task, by distracters in the simulation to challenge the 

divided attention and by adjustment of the frequency and size of the virtual obstacles.  
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The intervention lasted six weeks (with two sessions per week for a total of 12 sessions). 

Training progression was based on an earlier study protocol of intensive progressive 

individualized TM training with VR in patients with PD (Mirelman, 2011). In both studies, 

participants walked on the TM with a safety harness that prevented falls but did not provide 

BWS. The subjects were required to lift their legs high enough and far enough to pass the 

virtual obstacles. Sessions consisted of three trials of ten minutes of walking followed by five 

minutes of rest, for a total time of about 45 minutes (30 minutes of training and 15 minutes of 

resting). The Borg Rating Scale of Perceived Exertion Scale – Borg Scale (Borg, 1982) was 

administered at the beginning and end of each session to assess and monitor the level of 

exertion and fatigue.  

 
The VR training allows for an individual progression outline, which would fit each patient 

and their specific abilities and difficulties, and would be based on their performance during 

previous trials and sessions. In order to keep a standardized training program for all patients, 

general progression should be kept within the setting ranges framework and according to 

specific weekly goals (Table 2). The patient’s balance during training could be challenged by 

asking her/him to remove one or both hands from the handrail. The level of complexity of the 

VR environment was raised when the trainer considered the patient ready for a more intensive 

Week Goal Session Speed 
Difficulty 

level 
Hand 

support Distracters 
Number of 

bifurcations 

1 
Familiarization 
and adaptation 

1 1.5/2.0 km/h 
1 

2 

None 

1 
2 80% 

2 
Increasing motor 

load 
3 

90% 2 2 
4 

3 Increasing 
cognitive load 

5 
100% 

3 3 6 

4 
Increasing both 

motor 
and cognitive load 

7 

110% 
Easy 

8 

4 4 
5 Improve balance 

9 

1 
Medium 

10 

120% 
6 

Reach to the 
maximal potential 

11 
5 Hard 5 

12 0 

Table 2 Training progression milestones per week and setting ranges. 

. 
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cognitive task. During the first session the TM speed was set at low values in order to let 

people to familiarize with the training. In the second session TM speed was set at 20% lower 

than the patients over-ground walking speed (Brooks, 2003). In the following sessions, the 

TM speed was adjusted based on the fatigue, the balance and the VR complexity levels. Also 

orientation, size, frequency of appearance, and shape of the obstacles were manipulated 

according to individual needs, trying to follow the guidelines for training progression, which 

gas been designed to achieve a success rate of 80% in clearing the obstacles to promote 

engagement and motor learning. Feedback was given to the participant in multiple ways 

including the scoring on the obstacle avoidance tasks and auditory and visual feedback about 

the motor and the cognitive performance. 

5.2.5. Outcomes 

§ Evaluation of the VR-based system- The VR-based system, including hardware and VR 

environment, has been assessed in terms of usability (ease of use and safety of the system, 

accuracy of the user’s task). 

§ Evaluation of setup and administration of the gait training program- The setup and the 

proposed training program were evaluated in terms of feasibility and acceptance. 

− Feasibility: a) number of patients completing the training program, b) number of 

unexpected events or accidents during the training, c) number of system crashes, d) 

number of uncompleted trials, e) TM speed progression associated to the fatigue, balance 

challenge and VR environment complexity levels. 

§ Acceptance: a questionnaire based on previous studies (Cameirão, 2010), (Chang, Chen, 

& Huang, 2011), (Zimmerli, 2009), (Girone, 2000), (Deutsch, 2001) was administered 

(Table 7). The questionnaire included aspects such as the ease and understanding of the 

task (statements 1-4), attitudes relating to the technology (statements 5-7), the subjective 

performance (statement 8-10) and enjoyment from the training (statements 11-14). 

Responses were recorded using a 5-point Likert scale with “strongly disagree”, rated as a 

1, to “strongly agree”, rated as 5. 



 44 

§ Gait analysis- Patients were asked to walk over-ground in the gait analysis laboratory 

under two conditions: 1) comfortable speed (ST), 2) while serially subtracting 3 from a 

pre - defined number (DT). A stereo-photogrammetric system (six-camera Vicon T20, 

frame rate 100 frames/s), two force platforms (AMTI OR6-7, frame rate 1000 frames/s) 

and the Vicon Plug-in Gait marker set have been used to assess spatial temporal gait 

parameters, low limb joint kinematics and kinetics (dynamics). 

 

In Table 3 all the analyzed parameters have been reported. Three trials were evaluated for 

each condition. Since some of the patients exhibited bilateral impairments (Table 4), both 

data regarding the most and the less affected side has been reported. 

§ Endurance- The Six-minute walk test (6MWT) assessed endurance measured as the total 

distance walked in six minutes (Brooks, 2003). In this measure of walking endurance, 

subjects were instructed to cover as much distance as possible. 

§ Disease severity of MS - will be measured using EDSS.  

§ Cognition- Standardized cognitive tests will be used to assess executive function, visual 

processing and attention. These tests are: a) the Montreal Cognitive Assessment (MOCA) 

Parameter Gait cycle phase 

Kinematics 

Ankle Flexion Angle Min deg Double support 
Ankle Flexion Angle Max deg Single support 
Ankle Flexion Angle Min deg Swing 
Knee Flexion Angle Max deg Double support 
Knee Flexion Angle Min deg Stance 
Knee Flexion Angle Max deg Swing 
Hip Flexion Angle Max deg Double support 
Hip Flexion Angle Min deg Single support 

Dynamics 
 

Ankle Moment Max Nm/Kg Terminal Stance 
Hip Moment Min Nm/Kg Terminal Stance 
Ankle Power Max W/Kg Toe-Off 
Ankle Power Min W/Kg Single Support 
Hip Power Max W/Kg Swing 

Spatial-temporal 
Gait speed mean m/s - 
Stride length mean m - 

Table 3 List of the analyzed parameters. 
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to assess several cognitive domains (Nasreddine, 2005); b) the Trail Making Test3 (TMT) 

to evaluate visual search speed, scanning, speed of processing, mental flexibility, as well 

as executive functioning (Tombaugh, 2004) (Tombaugh, 2004); c) the Stroop Color-Word 

Test (STROOP)4 to measure selective attention, cognitive flexibility and processing speed, 

and it is used as a tool in the evaluation of executive functions (Howieson, 2004); d) 

frontal assessment battery (FAB), which includes simple tests of sequencing, behavioral 

inhibition, planning and frontal release signs, can be used as a screening test to elicit 

typical neurological and cognitive features (Dubois & Slachevsky, 2000); e) Serial 

Subtraction Dual Task (SSDT) performance. Subjects will be asked to walk while 

systematically subtracting three from a three-digit number. Performance in DT will be 

measured by the number of subtractions achieved (n°) and the number of mistakes made 

(err). 

§ Dynamic Stability - a) The Timed Up-and-Go (TUG) test to assess the ability to perform 

sequence movements of functional mobility (Podsiadlo, 1991). Patients are timed as they 

stand up from a standard chair, walk a distance of 3 meters at a normal pace, turn, walk 

back and sit down; b) The Four Square Step Test (FSST), a measure for dynamic balance 

involving stepping over low objects and movement in four directions under time 

constraints, has been used to assess overground obstacle negotiation and fall risk 

(Blennerhassett, 2008). The time to complete the test is used as performance metric. 

§ Berg Balance Scale (BBS) - To assess balance (Berg, 1995). It consists of 14 different 

balance tasks such as standing, reaching, bending, and transferring abilities, and has an 

overall score range from 0 (severely impaired) to 56 points (excellent). Although 

                                                        
3 The TMT includes two versions: in the TMT A the targets are numbers and the test taker needs to connect them 
in sequential order, while, in the TMT B, the subject alternates between numbers and letters (1, A, 2, B, etc.). The 
goal of the test is for the subject is to finish the part A and part B as quickly as possible; the time taken to 
complete the test is used as the primary performance metric. 
4 The STROOP contains a word page (the names of colors printed in black ink), a color page (rows of X's printed 
in colored ink) and a word-color page (the words from the first page are printed in the colors from the second 
page. The subject's task is to look at each sheet and move down the columns, reading words or naming the ink 
colors as quickly as possible, within a given time limit (45 seconds). Three scores, as well as an interference 
score, are generated using the number of items completed on each page, with higher scores reflecting better 
performance and less interference on reading ability. 
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primarily used with geriatric clients and individuals with stroke, the BBS is a valid 

measure of balance for individuals with MS. 

§ The Beck Depression Inventory (BDI) - is widely used to assess emotional wellbeing 

(Beck, 1974) 

5.2.6. Statistical analysis 

Cognitive and motor (dynamic stability and balance) outcomes, DBI, endurance, spatial-

temporal parameters, kinematics and dynamics of hip, knee and ankle were analyzed and 

descriptive statistics were calculated. Changes between Pre and Post and changes between 

Pre and F-Up were analyzed using the Wilcoxon Signed Ranks test with a significance level 

of 0.05. The EDSS measurements at Follow-Up were compared to those at baseline using the 

Wilcoxon Signed Ranks with a significance level of 0.05. All the statistical analyses were 

performed using SPSS (version 21). 

5.3. Results 

None of the subjects had a relapse within the period of enrollment. A summary of 

demographic and baseline gait characteristics of the study population is shown in Table 4. 

 

Patient Age Gender 
Disease  

Duration 
[years] 

EDSS 
Pre 

Ambulation  
index 

Distance  
Pre [m] 

Gait speed 
Pre [m/s] 

MMSE Clinical 

P01 40 F 17 5 3 403 1.1 29 
moderate cerebellar ataxia 

left hemiparesis 

P02 60 F 17 5.5 4 270 0.8 30 
moderate cerebellar and proprioceptive right ataxia 

very mild right hemiparesis 
antero-posterior bilateral knee instability 

P03 38 F 5 3.5 3 249 0.7 28 
mild cerebellar ataxia 

left hemiparesis 

P04 43 F 5 4 3 321.8 0.9 29 
mild proprioceptive ataxia 

right hemiparesis 

P05 34 F 5 6 5 212 0.6 29 
cerebellar and proprioceptive ataxia 

double hemiparesis left > right 

P06 50 F 18 4 3 391.6 1.1 30 
ataxia mild to moderate proprioceptive 

mild right hemiparesis 

P07 42 F 11 6 4 187.6 0.5 27 
proprioceptive ataxia 

double hemiparesis left>right 
very anxious depressive syndrome 

P08 48 M 15 4.5 3 372 1.0 22 
cerebellar and proprioceptive ataxia 

double hemiparesis left>right 

Table 4 Participants characteristics. 
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Half of patients were bilaterally impaired (five of them have the left as the most affected 

side). Only one subject used an assistive device (crutches) for gait. During the study, 

participants did not receive concurrent physiotherapy. All subjects tolerated the training 

sessions well, and no incidences of falling occurred. In the initial training sessions, all 

patients walked clinging to the handrails with reduced TM speed, and were impaired in the 

negotiation of obstacles. However, during the training they learned to walk under multi 

modal conditions and to divide their attention within the VR environment. During the initial 

session, indeed, TM speed was 0.53 m/s and patients had a mean of 18% errors in negotiating 

the virtual obstacles (as a percent of the total obstacles in the session). In the last session, five 

of eight patients walked without their hand on the handrails, the TM speed was 0.81 m/s and 

the mean error percent increased to 67%. The mean value of the EDSS improved 

significantly from 4.8 in Pre to 4.3 in F-Up (p = 0.04). 

5.3.1. Evaluation of the VR-based system 

The VR- based rehabilitation system was built according to the requirements of the 

rehabilitation protocol and tested during a 6-weeks gait intervention with TM in patients with 

MS. No crashes and adverse events or complications occurred during the entire training period.  

The evaluation of the timing performance of the VR-system was also performed and the latency 

between the real movement and the virtual output in the environment was lower than 100 

milliseconds. The speed inside the VR environment was constant and set equal to 𝑣!", while 

the subject inevitability moved on the TM in medio-lateral direction, introducing a variability 

that was not reported in the VR environment. Moreover, similar considerations regard gait, 

which was reproduced, as described in the methods section, according to maxima and minima 

pitch values. Finally, a consideration should be made on the unrealistic view of the subject of 

her/his shoes. Nevertheless, none of these discrepancies have been reported by subjects, who 

perceived the environment as plausible. Indeed, four of them became familiar with the VR 

environment after the first session, while the remaining, needed an extended acclimation time 

(two more sessions), probably due to the lack of experience in video gaming. 
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5.3.2. Evaluation of setup and administration of the gait training program 

Feasibility 

All patients completed the training, except for two who dropped out after the first session for 

personal reasons.  

TM speed progression for all training sessions and for all patients is reported in Table 5. The 

table also reports the VR environment complexity levels and the training sessions carried out 

without using the handrails.  

 

Table 6 reports the mean (and standard deviation) of the Borg Scale scores at the beginning of each 

training session (B0) and their increments at the end of the training session (DB=Bf-B0) averaged over 

patients. The percentage of uncompleted trials due to fatigue in each training session is also reported. 

 

 TM 
speed 
km/h 

Session no. 

1 2 3 4 5 6 7 8 9 10 11 12 

Pa
tie

nt
s n

o.
 

1 2.0 2.8 2.8 2.8 2.8 2.6 2.6 2.6 2.6 2.4 2.4 2.4 

2 2.0 2.0 2.1 2.3 2.6 2.6 2.6 2.7 2.8 2.8* 2.8* 2.8* 

3 2.0 2.0 2.0 2.1 3.0 3.0 3.0 3.3* 2.8* 3.0** 3.0** 3.0** 

4 2.0 2.5 2.6 2.9 3.8 3.8 2.8* 3.2** 3.3** 3.4** 3.4** 3.7** 

5 1.5 1.7 1.8 2.2 2.8 3.0 3.0 2.9 2.8* 2.8* 2.8* 2.3** 

6 2.0 3.1 3.1 3.1 3.4 3.4 3.4 3.6* 3.6* 3.0** 3.0** 3.1** 

7 2.0 1.5 1.7 1.8 2.5 2.6 2.7 2.8* 2.8* 2.8* 2.8* 2.8** 

8 2.0 2.0 2.3 2.5 2.9 2.9 3.2 3.5 3.0* 3.0* 3.0* 3.0* 

COMPLEXITY LEVEL 
 

 1 2 3 4 5  

Table 5 Progression of the TM speed across the training sessions. The asterisks indicate trials in 

which patients took off one (*) or both (**) hands from the handrails. The gray tone of the cells 

indicates the complexity level. Bold numbers highlight the occasions when the trainer decided to 

lower the TM speed (when starting a higher level of complexity, or asking to remove hands from 

handrails or when fatigue increase was assessed as excessive.  

 

 

 Session no. 
mean (std) 1 2 3 4 5 6 7 8 9 10 11 12 

B0 8 (3) 8 (2) 8 (2) 8 (3) 8 (2) 9 (3) 8 (3) 8 (3) 9 (3) 9 (3) 8 (2) 9 (3) 
ΔB 7 (3) 5 (2) 4 (2) 3 (2) 4 (3) 3 (2) 4 (3) 3 (3) 2 (2) 3 (3) 3 (2) 3 (3) 

% incomplete 21 0 8 4 4 8 0 4 4 4 0 0 

Table 6 Average and standard deviation over subjects of the Borg Scale score at the beginning of 

training sessions (B0) and difference between Borg Scale scores at the end (Bf) and at the beginning of 

each training session (DB = Bf - B0). In the last row of the table the percentage of the incomplete 

trials due to fatigue is reported for each training session.  
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Acceptance 

Table 7 reports the results of the satisfaction questionnaire. The number of patients who 

provided the same score to each of the statements is reported in the last columns of the table. 

 

5.3.3. Gait analysis 

Since a patient could not walk autonomously during the gait assessment, eight (N=8) subjects 

were considered in the analysis of the lower limb kinematics and spatial-temporal 

parameters, while seven (N=7) for the dynamics. 

Gait in single task 

Gait speed during usual walking increased by 10.9% immediately after the training (Pre: 0.77 

± 0.24 m/s, Post: 0.85 ± 0.25 m/s, p = 0.12) and 15.2% after one month (Pre: 0.77 ± 0.24 m/s, 

F-Up: 0.88 ± 0.23 m/s, p = 0.07). Stride length also increased in Post (Pre: 0.96 ± 0.19 m, 

Post: 1.04 ± 0.20 m, p = 0.09) improving up to 12.1% in F-Up (Pre: 0.96 ± 0.19 m, F-Up: 

1.08 ± 0.16 m, p = 0.03). Kinematics and kinetics in ST have not shown significant changes 

Statement/Score 1 2 3 4 5 

1. I had no trouble understanding what to do in the training - 1 1 1 5 

2. It was easy for me to learn how to move my feet and the head in the VR 1 - 3 1 3 

3. It was easy for me to learn how to pass the obstacles 1 - 3 1 3 

4. The visual and the audio feedbacks were helpful - - - - 8 

5. Wearing the HMD was comfortable - - - 3 5 

6. Wearing the IMUs was comfortable - - - 1 7 

7. Wearing the harness was comfortable - - - 1 7 

8. The exercise was simple 3 2 3 - - 

9. The exercise was not tiring 1 2 1 2 2 

10. I made few mistakes - - 3 3 2 

11. I have noticed some improvements in my daily life performing the training 1 - 3 1 3 

12. I enjoyed the training 1 - - 1 6 

13. Participating to the training was important for me - - 1 2 5 

14. I would like to participate to the training again 1 - 1 1 5 
Table 7 The administered questionnaire with the responses given by the patients. The questionnaire 

includes statements regarding the understanding of the task, the acceptance of the technology, the 

subjective performance and the enjoinment of the training. Patients’ responses were recorded using a 

5-point Likert scale from “strongly disagree”, rated as a 1, to “strongly agree”, rated as 5. 
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after the training, except to the minimum value of the knee flexion angle during the stance 

phase of the most affected side, which increased by about two degrees (Pre: 0.9 ± 3.5 deg, 

Post: 2.8 ± 4.8 deg, p = 0.04). For what concerns the less affected side, the maximum value 

of the ankle plantar-flexion angle during the swing phase increased (Pre: 8.1 ± 8.3 deg, Post: 

15.3 ± 8.3 deg, p = 0.02) and the maximum value of the knee flexion angle during the mid 

stance significantly decreased in Post (Pre: 15.2 ± 6.9 deg, Post: 12.7 ± 5.2 deg, p = 0.04) and 

in F-Up (Pre: 15.2 ± 6.9 deg, F-Up: 11.6 ± 5.8 deg, p = 0.05). About the dynamics, the 

maximum value of the flexor hip moment (Pre: 0.62 ± 0.29 Nm/kg, Post: 0.87 ± 0.50 Nm/kg, 

p= 0.13) and power (Pre: 1.12 ± 0.65 W/kg, Post: 1.26 ± 0.72 W/kg, p= 0.4) showed a 

positive trend after the training in the most-affected side. 

Gait in dual task 

Gait speed during DT significantly increased (Pre: 0.65 ± 0.19 m/s, Post: 0.77 ± 0.24 m/s, p = 

0.04) by 17.7% after training, reaching the 25.1% at F-Up (Pre: 0.65 ± 0.19 m/s, Post: 0.82 ± 

0.21 m/s, p = 0.01). Stride length increased by 9.1% immediately after the intervention (Pre: 

0.91 ± 0.15 m, Post: 1.00 ± 0.21 m, p = 0.05) improving up to 16.1% after one month (Pre: 

0.91 ± 0.15 m, Post: 1.06 ± 0.10 m, p = 0.01). Also under this condition, the minimum value 

of the knee angle flexion during the stance phase increased in the most affected side (Pre: 0.4 

± 4.1 deg, Post: 3.62 ± 5.0 deg, p = 0.03). For what concerns the dynamics, the maximum 

values of the ankle moment (Pre: 1.20 ± 0.23 Nm/kg, Post: 1.28 ± 0.14 Nm/kg, p = 0.4, F-

Up: 1.36 ± 0.16 Nm/kg, p = 0.06) and power increased in the most affected side (Pre: 1.25 ± 

0.69 W/kg, Post: 1.90 ± 1.02 W/kg, p = 0.03, F-Up: 2.14 ± 0.76 W/kg, p = 0.02). A not 

significant positive trend has been also reported for the ankle moment (Pre: 1.26 ± 0.21, Post: 

1.30 ± 0.25, F-Up: 1.32 ± 0.23 Nm/kg) and power (Pre: 1.47 ± 0.61 W/kg, Post: 2.01 ± 1.20 

W/kg, p = 0.18, F-Up: 2.09 ± 1.01 W/kg, p = 0.09) in the less affected side. Also in DT 

condition, the maximum value of the flexor hip moment (Pre: 0.56 ± 0.26 Nm/kg, Post: 0.82 

± 0.48 Nm/kg, p= 0.13) and power (Pre: 0.78 ± 0.43 W/kg, Post: 1.02 ± 0.59 W/kg, p= 0.18) 

of the most-affected side showed a positive trend immediately after the training. 
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5.3.4. Endurance, balance and obstacle negotiation 

Endurance, as measured by the distance walked during six minutes, improved after training 

by a mean of 8% in distance walked (p = 0.12), amounting to an increase of 23 m (Table 8), 

while gait speed during the 6MWT increased from 0.83 m/s to 0.90 m/s. In F-Up, the 

distance walked increased by 24%, amounting to an increase of 71 m (p = 0.03) and gait 

speed improved to 1.03 m/s.  

Dynamic stability and functional mobility improved after the training, as assessed by the 

significant decrease of time in performing the TUG test (Post: 17%, p = 0.05; F-Up: 29%, p = 

0.02). An additional significant improvement of balance, assessed by the BBS, was also 

observed (Post: 7%, p=0.02; F-Up: 15%, p=0.02).  

 

Obstacles negotiation, expressed by the FSST, revealed that time for executing the 

coordination task significantly decreased by a mean of 22% (p = 0.01) after the intervention 

and by the 37% after one month (p = 0.01). 
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0.80 
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Gait Speed  ST [m/s] Stride Length ST [m] Gait Speed DT [m/s] Stride Length DT [m] 

Pre  
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F-Up 

Figure 8 Effects of the TM+VR intervention on overground gait speed and stride length under ST 

and DT condition. 

 

 

Test Pre Post 
p value 

 (Pre-Post) 
F-Up 

p value  

(Pre-F-Up) 

6MWT [m] 301 ± 83 324 ± 77 0.12 372 ± 67 0.03 

TUG [s] 14 ± 5 12 ± 4 0.05 10 ± 3 0.02 

FSST [s] 23 ± 10 18 ± 6 0.01 14 ± 4 0.01 

BBS 41 ± 10 44 ± 12 0.02 47 ± 8 0.02 

Table 8 Average and standard deviation of the motor tests results for each evaluation. 
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5.3.5. Neuropsychological tests 

For what concerns the cognitive sphere, the results (Table 9), in general, are not significant 

even if several trends may be observed. Indeed score in FAB and MOCA slightly increased. 

The time spent in performing the STROOP slightly decreased, as well as the mean number of 

errors and time spent in performing the TMT-B, while the time spent in performing the 

TMT-A increased. Patients made 36% fewer mistakes on the cognitive task in F-Up 

compared with values in Pre on the SSDT.  

In addition, the training appeared to have a positive influence on psychosocial aspects such as 

the level of depression as assessed by the BDI. 

 
Pre Post 

p value 
F-Up 

p value 
Test Mean Std Mean Std Mean Std 

TMT A [s] 80 30 85 33 0.14 96 71 0.53 
TMT B [s] 142 111 138 63 0.74 129 49 0.89 

FAB 15 2 15 2 0.34 16 2 0.09 
MOCA 23 5 24 4 0.78 26 4 0.02 

STROOP [s] 18 8 16 9 0.33 16 7 0.67 
STROOP [err] 1 2 0 1 0.34 0 0 0.07 

SSDT [n°] 14 7 15 7 0.33 17 3 0.21 
SSDT [err] 2 1 2 2 0.52 1 1 0.39 

BDI 20 14 19 12 0.57 13 8 0.18 
Table 9 Average and standard deviation of the neuropsychological tests results for each evaluation. 

5.4. DISCUSSION 

The first aim of this study was to build a system and a VR environment so that they could be 

used to implement a rehabilitation protocol for gait on TM. The usability of both the system 

and the VR environment has been verified by their safe and intensive use, which lasted six 

weeks, with no adverse event. Secondly, although the discrepancies between real world and 

the VR environment, patients got familiar with it and had fun during the training, suggesting 

that the differences were negligible for our rehabilitation application. 

Moreover, the evaluation of the experimental set up and administration of a novel VR based 

gait training program for patients with MS was conducted in this pilot study. The findings 

revealed that the patients tolerated the technology without major difficulties and 

demonstrated a high level of acceptance throughout the progression of the training program. 
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Eight of the nine patients were able to complete all training sessions without complications. 

The protocol allowed to effectively tune the TM speed based on: 1) the level of the VR 

environment complexity, 2) the amount of challenge of the patient’s balance when asked to 

remove hands from handrails, and 3) the increase fatigue level after each training session. For 

all patients but one the trainer reduced the TM speed either when starting a higher level of 

complexity or at the same level of complexity. TM speed was generally kept constant or 

reduced when handrails were not being used. The average Borg Scale scores reported at the 

beginning of each session had limited variability across sessions (average B0 between 8 and 9 

and std between 2 and 3 – Table 6) signifying that, overall, training sessions begun at a 

similar level of fatigue. More importantly, the values of the average increments of the Borg 

Scale scores were almost constant across sessions (average varied between 2 and 5 except for 

the first session – Table 6) with a limited variability across subjects (ΔB std between 2 and 3 

– Table 6), showing that an appropriate choice of the TM speed can also keep the fatigue 

increase at the end of the training session within a limited range. Moreover, the limited 

percentage of uncompleted trials due to fatigue in every training session (between 0 and 8% – 

Table 6), except for the first session, confirms that the tuning on TM speed and level of 

complexity was properly set. Both ΔB and the number of incomplete trials in the first session 

were higher than in the following sessions, suggesting that without reference to information 

regarding past sessions, the setting of the TM speed can result in excessive fatigue and higher 

number of incomplete trials. 

The results obtained from the administration of the questionnaire revealed that the highest 

ratings were obtained for the usefulness of feedbacks and the acceptance of technology 

(Table 7). High ratings were also found for the ease and enjoyment from the use of the 

system and the training: all patients found the training easy to learn and most of them 

enjoyed it and would have liked to continue it. There was a high variability in the subjective 

responses relating to performance, highlighting the differences among patients in terms of 

task execution and perception of fatigue. 
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For what concerns the gait analysis, the results of this study showed that the six-week VR-

based TM training was safe for the eight MS patients. They concluded the rehabilitation 

program without difficulties, enjoying every session and asking to continue the training after 

its end.  

The main clinical findings demonstrate improved gait speed and stride length in ST condition 

between Pre and Post, as a result of the specific training (Figure 8). The intervention was 

directed at obstacle negotiation, which required the patients to take larger steps; hence the 

results demonstrate a specific training effect. The mechanism that allowed for this change 

probably lies in the kinematic analysis that demonstrated improved knee control during the 

mid stance in the most affected side. This in turn allowed for a more stable position that 

enabled a larger swing. Interestingly, most of the gains were maintained for one month, with 

some parameters even slightly improving from Post to F-Up. However, while taking into 

account the different starting values, the more impressive effects were reflected in the DT 

walk. The VR training is in fact a motor-cognitive DT training that implicitly improves gait. 

During the over ground DT evaluation, patients demonstrated improved spatial-temporal 

parameters (Figure 8) after training, and these changes are maintained and even improved in 

F-Up. These improvements were probably possible by increased moment and power 

generation in the ankle during push off that enabled the forward progression. 

Moreover, the DT effect, measured as the difference in stride time duration between DT and 

ST, decreased from 0.15 seconds in Pre to 0.06 seconds in F-Up, demonstrating an improved 

ability of patients in dividing attention and coping with complex activities during gait. The 

fact that increased attention positively impacted on DT ability is confirmed also by the FSST 

(Table 8). In the present study, indeed, the serial subtraction executed by the patient during 

the evaluation of the intervention, as well as the task executed during the FSST, was not part 

of the training. Nevertheless after the VR-based TM training, patients walked faster under the 

DT condition, with longer strides compared with baseline and employed less time to execute 

the FSST, suggesting an ability to adapt the learned strategy to different tasks. Although, 

between-task transfer after VR-based TM training has been already shown in neurological 
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diseases, such as stroke (Jaffe, 2004) (Mirelman, 2009) and PD (Mirelman, 2011), this was 

not previously reported in patients with MS. Probably, the cognitive requirements 

characterizing the training in the VR environment allowed subjects to develop new 

movement strategies which are reflected in their natural motor behavior and that are 

maintained also after the end of the training.  

This kind of intervention, as proved by the kinematics data, does not instruct to perform a 

specific walking pattern, but rather trains subjects to a more controlled gait also under DT 

conditions. Since mobility in everyday life frequently requires walking while performing 

simultaneous cognitive or motor tasks, this approach indirectly reduces the risk of falls of 

trained people and, consequently, positively impacts their quality of life. 

Comparing the results of this study to those obtained by Mirelman et al. (Mirelman, 2011), 

the average overground speed gain during ST (0.11 m/s) and DT (0.17 m/s) are lower and 

less significant than those made by PD patients (ST: 0.12 m/s, DT: 0.21 m/s), but while in the 

current study the effective training time was 6 hours, in that case the training duration was 12 

hours with a sample size of 20 instead of 8. 

This pilot study has several limitations. Beyond the reduced sample size, the study design did 

not include a control group in order to unequivocally exclude the possibility that gains may 

have not been due to the training. The heterogeneity of the sample was another issue. 

Although the chosen criteria were very strict, a wild range of motor symptoms characterizes 

MS and, consequently, patients had different gait kinematics. Nonetheless, the results of the 

first study VR-based TM training applied to MS are quite promising and the more significant 

improvements during DT suggests that important gains were likely attributable to the VR and 

not to TM alone.  

5.5. CONCLUSIONS 

In this pilot study we evaluated the usability, feasibility and acceptance of a gait training 

setup including a TM and a VR environment created for gait training of patients with MS. 
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The results have shown a high level of feasibility and acceptance of the VR system and the 

gait training program.  

This study is the first to examine the effects of TM with VR on the mobility of patients with 

MS. The results reported here are preliminary and the pilot study had a reduced and relatively 

homogeneous sample of people, therefore should be considered with caution. Nevertheless, 

the results indicate that intensive and progressive TM with VR training is viable for patients 

with MS and may positively affect complex gait conditions such as walking during dual 

tasking, endurance and obstacle negotiation. Larger scale, randomized controlled studies with 

long term follow-up are needed to confirm efficacy and retention of VR- based TM training 

on motor and cognitive aspects and quality of life of MS patients.  

The training allowed for some flexibility (setting the TM speed and increasing level of 

complexity in the VR environment), which was shown to be highly important for providing 

tools for customizing sessions and engaging the patients whilst enhancing motivation and 

acceptance. 
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6. Inertial sensing in motor assessment: assessment of reduced arm 

swing in Parkinson’s disease 
This chapter was written on the basis of the work carried out in Tel Aviv, during my 

PhD period abroad, in the Laboratory for Gait and Neurodynamics of Ichilov 

Sourasky Medical Center. The preliminary results of the study have been published on 

several conference abstracts.  

6.1. Introduction 

PD is the second most common age-related, neurodegenerative disorder (Lewek, 2010). 

Tremor, rigidity, bradykinesia, and postural instability are hallmarks for the diagnosis of PD 

(Gelb, 1999), (Calne, 1992) with abnormal gait (e.g., short, shuffling steps, stooped posture, 

shorter stride length, reduced gait speed and arm swing (Morris, 1994). Although in PD 

reduced arm swing is the most frequently reported motor dysfunction (Nieuwboer, 1998) and 

it is associated with elevated fall risk (Wood, 2002), there have been only several studies 

aiming to quantify the arm swing of PD patients during walking. Most of them investigated 

shoulder kinematics in the sagittal plane using video-based (Knutsson, 1972), (Carpinella, 

2007), (Zijlmans, 1996), (Behrman, 1998) or ultrasound-based systems (Roggendorf J, 

2012). Since the total amount of arm swing during walking incorporates both elbow (Kuhtz-

Buschbeck J. P., 2008) and trunk kinematics, it is important examining the trajectory of the 

end effector (e.g., wrist/hand) when quantifying arm swing. Lewek et al. defined the arm 

swing amplitude during walking as the distance traveled by the wrist in the anterior/posterior 

and medial/lateral directions with respect to the pelvis within a stride and measured it trough 

a motion analysis system (Lewek, 2010). They demonstrated a significant difference in the 

asymmetry of arm swing amplitude between early PD and healthy control subjects.  

Wearable inertial sensors are relatively inexpensive and easier to implement in a clinical 

setting than video-based motion analysis and, therefore, ideal to assess the human motion of 

PD patients. Indeed, the same group (Huang, 2012), recently, attached accelerometers to each 
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forearm and collected angular accelerations, demonstrating that PD subjects have reduced 

bilateral coordination of arm swing during walking. Zampieri et al. (Zampieri, 2010) reported 

asymmetries in peak arm swing velocity, measured using wearable sensors, during the TUG 

test.  

The main objective of this study was to explore how inertial sensors could be used to 

quantify arm swing movements during gait and to develop tools for analyzing the trials to be 

easily used by clinicians. The second aim of the study was to quantify arm swing amplitude 

during normal over-ground walking in patients with PD using wearable sensors and to 

compare it to the movement observed in healthy controls. 

6.2. Methods 

Eleven patients with PD (PDG - 7 females, 56.6 ± 8.0 years, mean disease duration 3.5±2.0 

years, Hoehn and Yahr Scale: II-III) and thirteen healthy controls (CTRG - 9 females, 52.1 ± 

9.5) participated in this study. They were recruited from the Movement Disorders Unit at Tel 

Aviv Sourasky Medical Center in Israel. Two synchronized IMUs (Xsens, MTx, Enschede) 

were placed on the wrists of the subjects. Patients walked at their self-selected comfortable 

speed for one minute in a well-lit 25-meter corridor. Orientation data was extracted from 

sensors and processed by a custom-made algorithm in MatLab (see Appendix) to calculate 

parameters of arm swing, such as the range of motion and the asymmetry, of selected trials. 

Comparisons were made between left and right arms, affected and less affected arms and 

results were compared to data collected from a healthy control group. 

6.3. Preliminary results 

As reported in Figure 9a, arm swing range was significantly lower in the PD group (p=0.03). 

Figure 9b illustrates that, in the CTRG, there is a tendency for greater arm swing range of the 

dominant arm than the non-dominant arm (p=0.08), while PDG demonstrated (Figure 9c) a 

significantly higher degree of left-right asymmetry (p=0.04). Peak amplitude was moderately 

correlated to disease duration (r=0.61, p=0.05). 
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6.4. Conclusions 

In this study it was demonstrated that an automated algorithm based on data from wearable 

sensors is able to meaningfully quantify arm swing amplitude and asymmetry. In patients 

with PD this feature distinguishes between the more affected and less disease affected arms. 

Additional studies are needed to more fully evaluate clinical utility and the potential of this 

new approach. 

 

Figure 9 a) Comparison of the armswing amplitude of PDG and CTRG; b) arm swing range in CTRG; 

c) swing asymmetry in PDG between affected and not affected side arm. 
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7. Low cost video technology for tracking in virtual reality 

applications: the Microsoft Kinect 

VR-based exercises have the potential to revolutionize therapy for people with neurological 

impairments and older adults at risk of falls. However, to immerse these individuals in in VR 

it is necessary to reproduce their movements in real-time within the virtual environment. 

Current tracking systems are based on optical, electromagnetic, mechanical, and inertial 

measurements. Usually in motor rehabilitation, the immersion in virtual environments is 

obtained through expensive optical systems, which are difficult to use, time and space 

requiring. 

In the past years, low cost depth sensing cameras have also become commercially available, 

including the widely publicized Microsoft Kinect, which allows detecting human movement 

and pose without the use of markers or handheld devices (Lange, 2011). 

The Microsoft Kinect is a motion sensing input device, using an RGB camera combined with 

an infrared-based 3D depth sensor, which comprises actively emitted structured infrared (IR) 

light and a single IR sensitive camera to estimate distance between the sensor and the 

environment. The Kinect sensor captures depth and color images simultaneously at a frame 

rate of up to 30 fps. The 3D depth accuracy of the Kinect camera has been evaluated, 

showing an accuracy of depth reconstruction in the order of 1-4 cm in the range of 0.5-5 m 

(Khoshelham, 2012). 

Amongst its advantages, Kinect is inexpensive, easy to set up, and can be used in both home 

and clinical environments (Chang, 2012). Though the Kinect was originally designed for 

interactive entertainment, the features of the device, such as the easy interfacing with a 

variety of operating systems and measurement of the performance, have soon interested 

researchers from the rehabilitation field. Indeed, several studies have soon recognized the 

advantages of using an inexpensive depth camera, such as the Microsoft Kinect, for 

rehabilitation and assessment of body function. Actually, a system to calculate the kinematics 

of 20 joints of human body in real time mode has been recently proposed (Warade, 2012). A 
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further study (Suma, 2011) tried to address the problem of skeletal tracking of a human body 

using the Microsoft Kinect device. The authors, using a bottom up approach, developed a 

skeleton toolkit that allows a programmer to add full-body control to games and VR 

application.  

The same group implemented an interactive game-based rehabilitation tool, based on the 

Kinect, for training balance in adults after neurological injury (Lange, 2011). 

Change et al. (Chang, 2011) developed a Kinect-based system to involve students with motor 

impairments in rehabilitation training. The system, based on upper limb tracking and gesture 

recognition, has been also evaluated in terms of effectiveness by the same authors.  

Zhange and colleagues proposed a flexible motion tracking approach that can be used with a 

combination of Kinect devices, demonstrating its robustness and accuracy, and a significantly 

better performance in the presence of occlusions than current state-of-the-art implementations 

of single-sensor trackers (Zhang, 2012). Based on the Microsoft Kinect, non real-time 

applications providing accurate and robust tracking have been also implemented 

(Oikonomidis, 2011). 

The Microsoft Kinect has been used successfully also for tracking applications of other 

clinical fields, including medical imaging (Noonan, 2011), robotics (Bimbo, 2012), 

(Loconsole, 2012) and home monitoring (Stone, 2011), (Satyavolu S., 2012) 

7.1. Kinect-based gait tracking for VR clinical applications 

In this study, a new, low cost motion tracking methodology, based on the use of the 

Microsoft Kinect is proposed and evaluated against optoelectronic technology. Several 

attempt have been already done in this direction. Dutta captured four cubes in a static 

position with the Microsoft Kinect and the multi-camera based system, to avoid the 

synchronization issue (Dutta, 2012). The 3D coordinates of the centers of the target cubes 

have been then compared through the RMS, indicating that the accuracy of that Kinect 

motion capture system would be at least an order of magnitude less than that of a 

optoelectronic system. In a recent work, Chang et al. validated the motion tracking capability 
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of the Kinect with respect to a multi-camera based system on three different motor tasks 

(Chang, 2012). They compared the trajectories and measured the relative latency between the 

outputs of the two systems, concluding that Microsoft Kinect is a promising VR neurological 

rehabilitation tool both for clinical settings and home environments. In another study, Clark 

et al, assessed the validity of the anatomical landmarks collected using of the Kinect against a 

multi-camera 3D motion analysis system (Clark, 2012) during three standing postural control 

assessment tests. Specifically, they assessed the anatomical landmark displacements 

calculated by the two systems, confirming the potential for the Kinect to be used in clinical 

screening programs for a wide range of patient populations. 

 

 

Since in our VR application we were interested in gait, we decided to track the feet. 

Considering that the accuracy of the Microsoft Kinect decreases with the distance from the 

sensor and that the Skeleton Tracker needs to see the head of the subject, we would need a 

large room, therefore losing in tracking accuracy. For these reason, it has been decided to 

implement a new methodology (INITION, London, UK), which did not consider the upper 

part of the body, but focusing on feet. The methodology is synthetically illustrated in Figure 

10 and it is currently used in a multi-modal rehabilitation intervention, centered around the 

use of TM and VR, which aims to enhance mobility and reduce fall risk in a large sample of 

Figure 10 A representation of a new methodology based on the use of Kinect for tracking gait in a VR 

environment 
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PD and Mild Cognitive Impairment patients and elderly fallers [V-TIME - EU funded 

research project (European Union, 2012)]. 

7.1.1. Methods 

A healthy subject (male, 35 years old) walked on a TM at 0.3-0.4 m/s, in six different ways: 

a) foot-dragging walk (Drag), b) asymmetric gait (Asym), c) avoiding vertical obstacles 

(Vert), d) with minimum clearance (Minclear), e) short steps (Short) f) normal gait (Normal). 

A Kinect for Windows® (Microsoft, USA)5 was placed 1m above the ground, and 0.95m 

frontally from the TM, so that it had an unobstructed view of the TM surface. A 6-camera 

(2MPixel) optoelectronic system (Vicon, UK) was used as gold standard. 

Two green patches were placed on each shoe as markers for the Kinect: the smaller one 

(5x3.5 cm2) was placed on the anterior part of the shoe and the second (8x3.3 mm2) on the 

tarsus (Figure 11). Four retro-reflective markers (14 mm diameter) were placed on each shoe 

on the patches extremities. 

 

 

The Kinect captured the raw RGB and depth data at 30Hz, while the Vicon system captured 

at 100Hz. The two systems were synchronized. A standard color filter was used to isolate the 

green patches on the shoes, and then the 3D trajectories of the centroid of the patches were 

extracted and compared to those of the mid-point of the optical markers placed at the side of 

the patches (RDP, RPP, LDP, LPP – Figure 11). The comparison was carried out through 

estimation of the Root Mean Square Deviation (RMSD). 

                                                        
5 http://www.microsoft.com/en-us/kinectforwindows/ 

Figure 11 Retro reflective markers and green patches locations on the foot. The yellow circles indicate 

the position of the centroids (RDP, RPP, LDP, LPP). 
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7.1.2. Preliminary results 

The RMSD between the optical markers mid-point and the patches centroid is reported for 

each gait pattern and for each component (Table 10): vertical (V), medio-lateral (ML) and 

antero-posterior (AP). 

 

7.1.3. Discussion 

The preliminary results of the study showed a limited RMSD, between 2 and 6 mm, along the 

V and ML directions, while the reconstruction of the centroid of the green patches along the 

AP direction was about 3 to 5 times less accurate with an RMSD value from 10 to 20 mm. 

This appears to be consistent with previous studies (Khoshelham, 2011), (Khoshelham, 

2012), which have shown that the random error of depth measurements increases with the 

square of the distance from the sensor, reaching 4 cm at its maximum range. Moreover, 

Khoshelham and Elberink (Khoshelham, 2012) indicated also that the depth resolution 

decreases quadratically with increasing distance from the sensor, specifying that the point 

spacing in the depth direction (along the optical axis of the sensor) is as large as 7 cm at the 

maximum range of 5 meters. Moreover, among their final and general indications about the 

use of the Kinect for mapping applications, the authors also suggest to acquire data within 1–

3 m distance to the sensor, because at larger distances the quality of the data would be 

degraded by the noise and by the low resolution of the depth measurements. 

RMSD mm 
Gait 

Drag Asim Vert Minclear Short Normal 

Marker  AP V ML AP V ML AP V ML AP V ML AP V ML AP V ML 

RDP 11 2 2 14 4 3 14 2 2 15 2 2 14 3 2 13 3 2 

RPP 11 2 1 12 3 2 14 4 6 15 3 1 13 4 2 14 5 2 

LDP 11 3 2 20 3 3 13 5 2 16 2 2 10 3 2 14 4 2 
LPP 12 4 3 15 6 3 13 3 4 16 3 3 10 4 2 15 5 2 

Table 10 The RMSD between the optical markers mid-point and the patches centroid for each gait 

pattern and for each component 
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TIME). 
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8. Augmented biofeedback: a tool for trunk motor control 

Feedback has been defined as any sensory information that is available to an individual 

during or after the execution of a movement (Schmidt, 2008). 

Augmented (extrinsic) feedback is sensory information about a movement provided in 

addition to intrinsic feedback, which is delivered through the sensory systems within the 

body. The external source may be a therapist or a device such as a biofeedback system. 

Traditionally the role of augmented sensory feedback in learning of motor skills has been 

considered satisfying, motivational, or informational in nature (Adams, 2001.). Augmented 

sensory feedback has been shown to facilitate muscle activation during the early stages of 

learning (Kim, 1997), (Mulder T., 1984), (Henry, 2007). The impact of feedback on motor 

learning varies as a function of the frequency, delay, and precision with which information is 

provided (Winstein, 1991).  

Augmented feedback has been used in the past as a training tool that enables people to learn 

how to change physiological activity or behavior for the purposes of improving performance 

(Henry, 2007). There are two main goals for feedback motor training. One is to allow the 

central nervous system to re-establish appropriate sensory-motor loops under volitional 

control that may have been damaged by injury, disease, or surgery; the second goal is to 

assist in the development of greater cognitive awareness and control of a physiological 

process that has been previously considered “involuntary” or beyond the consciousness 

(Kenneth R., 1981). 

8.1. Augmented feedback in neurological impairments 

Augmented feedback training of balance, posture and motor control has shown to be effective 

in people affected by neurological impairments, such as peripheral neuropathy (Wu, 1997), 

vestibular loss (Tyler, 2003), (Kentala, 2003), (Dozza, 2007), stroke (Van Vliet, 2006), 

(Dursun, 1996), (Langhorne, 2009), (Stanton, 2011) traumatic brain injury (Guercio, 1997), 

(Wong, 1997), cerebral palsy (Talbot, 1981), (Nash, 1989), (Metherall, 1996), (Wooldridge, 
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1976), incomplete spinal cord injury (Kohlmeyer, 1996), (Brucker, 1996) and PD 

(Verschueren, 1997), (Mirelman, et al., 2011), (Marchese, 2000).  

A systematic review on augmented feedback in motor recovery in subjects with neurological 

disorders found that extrinsic feedback was commonly provided in the form of biofeedback, 

kinetic feedback and kinematic feedback (Van Vliet, 2006). While biofeedback concerns 

physiological processes, both kinetic and kinematic feedback is related to movement 

variables measured during task performance: kinetic feedback variables may be related to 

force and torque, while kinematic feedback variables are usually derivatives of distance and 

time (e.g., displacement, velocity, movement time, trajectory straightness). Kinematic and 

kinetic feedback can be provided in relation to either the outcome of the movement or the 

movement pattern itself (Levin, 2010). 

Moreover, the effects of biofeedback-assisted performance of balance and motor tasks have 

been explored using a variety of sensory feedbacks including visual, auditory and tactile 

modality (Dozza, 2005), (Dozza, 2007), (Verhoeff, 2009), (Vuillerme, 2007), (Wall & 

Kentala, 2005), (Dursun, 1996). Adamovich et al. (Adamovich, et al., 2004) developed a 

multi-feedback system for VR hand rehabilitation improving performance in patients with 

neurological impairments.  

8.2. Inertial-based visual feedback tool for trunk control 

Numerous tools aiming to improve trunk posture and control are based on inertial sensing: 

Wall et al., combining accelerometers and gyroscopes, developed a wearable vibrotactile 

feedback device based on trunk-tilt improved balance performance in healthy (Wall, 2001) 

and vestibular (Kentala, 2003) subjects. A system consisting of three inertial sensors and 

estimating the spinal curvature changes during trunk movements was shown to improve the 

subject’s posture when feedback signals were provided (Huang, 2006). Using the inertial 

sensors of a smartphone, Franco et al., developed an integrated auditory-biofeedback tool 

estimating the 3-D orientation of the user’s trunk during bipedal stance to improve balance 

(Franco, 2012).  
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In particular, feedback signals based on the distance from a specific target (error detection / 

error correction) have shown to facilitate learning processes (Magill, 2003). Several recent 

studies have developed and assessed feedback systems for motion guidance that use a control 

signal proportional to the error between the target and subject. In Sergi et al. (Sergi, 2008) 

and Kapur et al. (Kapur, 2010) the kinesthetic guidance systems is obtained employing 

magnetic motion tracking technologies and provide tactile feedback allowing patients to feel 

limb configuration errors continuously. Lieberman and Breazeal (Lieberman, 2007), using an 

optoelectronic system, developed a real-time wearable vibrotactile feedback suit to facilitate 

upper limb motor learning. The feedback, representing the difference, in terms of joint 

angles, between the target and the subject’s motion, contributed to decrease the error and 

accelerated motor task-learning rate. Also inertial sensors have been widely used for tracking 

body segments in applications for motion guidance. A mobile virtual trainer, developed by 

Lee et al., is able to map the trainee’s movements and return both instructions and real-time 

feedbacks based on inertial sensors data (Lee, 2011). Redd et al. developed a multisensory 

(visual, audible, or vibrotactile) feedback system for correcting gait information (Redd, 

2011).  

Chiari et al. developed a portable auditory feedback based-system that, encoding the signals 

provided by an accelerometer on the trunk into a stereo sound, improved balance (Chiari, 

2005). Based on the latter study, we designed and implemented a real-time visual 

biofeedback tool. 

The aim of the present work was to provide a preliminary evaluation of the usability and 

effectiveness of a real-time visual biofeedback (VBF) tool to assist the execution of specific 

motor tasks. The tool is designed to possibly become a component of a home-based 

rehabilitation system, relying on ICT systems aiming at providing real-time feedbacks for 

rehabilitation of PD patients [CuPiD FP7/2007-2013 - EU funded research project (Europen 

Union, 2011)].  
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8.2.1. Methods 

The hardware of the developed tool is composed by an IMU (MTx Xsens, Enschede, The 

Netherlands) recording inertial signals and a PC providing visual feedback. 

The IMU featuring a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, 

was placed on the trainee’s lower back (approximately on L5). Trunk inclination on the 

sagittal plane, computed on the device through an embedded Kalman filter, was recorded. 

The Graphical User Interface (GUI) providing the feedback has been implemented using a 

Python-based commercial software (Vizard 3.0, WorldViz, Santa Barbara, CA, USA). 

 

The GUI guides the trainee in executing specific motor tasks, by providing a real-time visual 

feedback (Figure 12) of the difference (err) between a computer generated reference 

orientation (Ref) and the measured trunk orientation. If err is within a specific range (Target 

Zone), the sphere is green and the cursor is centred on the antero-posterior direction; if err 

increases, the sphere moves on the antero-posterior direction toward the Limit Zones getting 

red (excessive backward trunk inclination) or blue (excessive forward trunk inclination). The 

raising of the sphere indicates the subject when to lift from the chair. 

Amplitudes of the Target Zone and of the Limit Zones are subject-specific and are based on a 

simple initial calibration phase (Chiari, 2005), (Nicolai, 2010). 

The effectiveness and usability of the tool was evaluated in a preliminary experimental 

session, during which eight healthy subjects (5 males, 25-35 years) were asked to perform 

three types of exercises (Figure 13), lasting 20 seconds each, for five times: 

Figure 12 The VBF is a sphere that is: a) green, if the subject is in the Target Zone, red b) and blue c) if 

trunk inclination exceeds respectively backward or forward. 
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§ Sit-to-stand without VBF (S2S - VBF); 

§ Trunk flexion (range 2°-20°) by sitting with VBF, as preparatory act to raise (PrepS2S + 

VBF); 

§ Sit-to-stand (in the range of flexion of the trunk 8°- 16°) with VBF (S2S + VBF) 

 

 

For every task, subjects were instructed, to try to follow the Ref, maintaining the slider cursor 

within the Target Zone. Before recording the trials, subjects performed a practice trial. 

8.2.2. Preliminary results 

All subjects were able to move the trunk reaching the Target Zone and keep it for the time 

required. The residence time in Target Zone for each motor task (Target Time Zone) is 

shown in Figure 14. Contrary to what happens in S2S - VBF, subjects in PrepS2S + VBF and 

in S2S +VBF are able to achieve and maintain the desired inclination of the trunk. The 

permanence in the target zone is greater in S2S + VBF compared to S2S - VBF and, 

generally, increases with the increase of TW, showing the effectiveness of the instrument 

VBF.  

In this preliminary study, the effectiveness of a new tool based on the use of augmented 

visual biofeedback to assist motor tasks, such as sit-to-stand, in real time has been evaluated. 

The results showed the intuitiveness and ease of use of the VBF and its flexibility, resulting 

from the ability to adjust the time window TW and the amplitude of the target zone. The 

Figure 13 Representation of the Ref during the phases of three motor exercises. The time window (TW), 

in which the subject is asked to perform the movement, varies from 2 to 6 seconds for task 1 and 3. 
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instrument VBF therefore allows you to customize the motion exercises according to the 

residual capabilities of the patient and to the movement to train. In the future we intend to 

apply the tool VBF to pathological populations, in particular in subjects coming from a long-

term bed rest in which the motor control of the trunk is usually compromised. Additionally, 

the control of the trunk in the medio-lateral direction will be added. 
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Pre$[s] Post[s]
0$+$5 2 3 4 5 6 20+(5+TW)$

S1 79 1 6 17 17 6 41
S2 88 8 8 18 13 13 34
S3 91 0 15 33 36 42 57
S4 100 26 37 47 50 30 43
S5 100 3 39 64 61 76 64
S6 100 16 64 71 67 80 45
S7 86 0 11 8 3 5 51
S8 100 39 27 59 79 65 76

Time$Target$$Zone$[%]
TW$[s]

Pre$[s] Post[s]
0$+$5 2 3 4 5 6 20+(5+TW)$

S1 36 2 0 0 0 0 15
S2 100 0 0 0 1 0 19
S3 54 2 0 1 0 0 21
S4 100 2 2 1 1 1 41
S5 92 14 8 6 4 2 66
S6 94 8 4 3 4 1 61
S7 69 0 0 0 0 0 33
S8 100 8 4 3 3 2 68

Time$Target$$Zone$[%]
TW$[s]

 

Figure 14 Values of Time Target Zone for each motor task: a) S2S - VBF b) PrepS2S VBF + c) + S2S 

VBF. In b) has been showed the average of the Target Time Zone in the four phases of the year (Pre, I, 

II, Post). In a) and c) the averages are reported only for the pre-and post phases, while the phase of 

execution of the movement the Time Target Zone is estimated to vary from TW.  
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9. Conclusions  

The tools and methods presented in this thesis are all based on new technologies, such as 

miniature inertial sensors and low-cost video systems, and have, as primary aim, the 

inclusion of a quantitative approach in the rehabilitation cycle that takes place in the clinical 

practice. A methodology based on the use of IMUs for the estimation of the arm swing in PD 

patients was proposed and applied in a pilot study. More needs to be done to elevate the 

method at the level of a clinical tool. 

The use of VR and augmented feedback in rehabilitation aims at overcoming the lack of 

engagement and motivation of patients involved in conventional physical therapies, while 

controlling the specifics of the training administered. The preliminary results about the 

usability and flexibility of a newly developed augmented feedback tool for trunk control 

based on the use of IMUs are presented. The tool will be adapted to be used in training the 

motor control of the trunk in neurologic patients after a period of bed rest. 

VR allows the rehabilitation in dual task (motor and cognitive task at the same time, typical 

of daily life), crucial in neurological impairments, and the transfer of the acquired skills to 

the real life. In this work we have shown how a VR-based intervention is effective in gait 

rehabilitation of MS patients, especially in dual task. Nevertheless, to ascribe these gains 

solely to the VR-based training, it is necessary to include a control group in the study. 

Finally, two tracking systems for immersive environments have been explored in this work. 

We have used both non vision-based systems, such as inertial sensors, and low cost video 

technologies, such as the Microsoft Kinect. Inertial sensors are small, accurate, flexible, 

portable, but show a drift during extended measurements. This particular issue has been 

analyzed in this work and solutions proposed. Vision-based systems, like the Kinect®, are 

low-cost, flexible, easy to set up, but less accurate than non vision-based systems. 

Nevertheless, the preliminary results of a validation study show a limited error within three 

meters from the sensor, therefore acceptable for tracking in VR rehabilitation. In the near 

future, a more complete validation analysis will be carried out. 
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Appendix 

I. Armswing GUI 

§ Once the file Armswing.fig has been opened, the GUI will be displayed on the screen. 

§ In the “Select a file” panel, load the right arm file and its name will be displayed in the 

string below  while the data contained in it will appear in a table on the right side. Load also 

the left arm file and,  eventually, the back file. 

 

§ When all the files loaded are displayed in the strings, push the button “Show graphs” in the 

panel  “Signal” and you will see the orientation graphs of the two arms in the right side of 

the GUI. 

 

§ If you want to see also acceleration and angular velocity graphs you can switch them in the 

panel  “Signal”. 
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§ In the “Cut” panel you can cut your signal, writing the time of the start and of the end and 

pushing  the button “Upgrade”. 

§ If you also chose a back file you can also see the “Back’s orientation” button in order to 

display also  the back’s graphs. 

§ Pushing the “Process and Save” button you will display the “Amplitude Table” and saving 

data in an  excel file that you will find in the folder of the patient analyzed. The Amplitude 

data contains the average and the standard deviation of the ROM for every arm, the max 

and min values and the number of peaks. 

§ If the number of picks (N.picks) of the two arms (last row) is the same, the “Amplitude 

distribution” button will appear below. After pushed it, the amplitude distribution graph 

will be showed. 

 

§ Once the analysis was accomplished, push the “Exit” button to close the window. 

§ You will find the excel file in the folder called as the patient’s name of the analyzed trial. 
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II. Trials Analysis GUI 

§ Once the file TrialsAnalysis.fig has been opened, the GUI will be displayed on the screen. 

§ In the “Gait” panel, choose the gait modality to analyze and all the trials will appear  in 

the list box on the right. 

§ You can decide to analyze all the data displayed (“Select all”) or to choose only some of 

them. Once  the file has been chosen push the “Analysis button”. 

§ A histogram will show you the mean values and relative standard deviations of the range 

of amplitude of both arms for the chosen subjects. On the right a table  containing the 

processed data will appear. Everything will be saved in an excel file.  

 

§ Once the analysis was accomplished, push the “Exit” button to close the window.  

§ You will find the excel file in the folder called as the chosen gait modality. 
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