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ABSTRACT 

 

The severity of Helicobacter pylori infections largely depends on the genetic 

diversity of the infecting strain, and particularly on the presence of the cag 

pathogenicity island (cag-PAI). This virulence locus encodes a type-IV secretion 

system able to translocate in the host cell at least the cag-encoded toxin CagA and 

peptidoglycan fragments, that together are responsible for the pathogenic phenotype 

in the host. Little is known about the bacterial regulators that underlie the 

coordinated expression of cag gene products, needed to assemble a functional 

secretion system apparatus. To fill this gap, a comprehensive analysis of the 

transcriptional regulation of the cag-PAI operons was undertaken. 

To pursue this goal, a robust tool for the analysis of gene expression in H. 

pylori was first implemented. A bioluminescent reporter system based on the P. 

luminescens luxCDABE operon was constructed and validated by comparisons with 

transcriptional analyses, then it was systematically used for the comprehensive study 

and mapping of the cag promoters. 

The identification of bona fide cag promoters had permitted to pinpoint the 

set of cag transcriptional units of the PAI. The responses of these cag transcriptional 

units to metabolic stress signals were analyzed in detail, and integrated with 

transcription studies in deletion mutants of important H. pylori virulence regulators 

and protein-DNA interaction analyses to map the binding sites of the regulators.  

Finally, a small regulatory RNA cncR1 encoded by the cag-PAI was 

identified, and the 5’- and 3’-ends of the molecule were mapped by primer extension 

analyses, northern blot and studies with lux reporter constructs. To identify 

regulatory effects exerted by cncR1 on the H. pylori gene expression, the cncR1 

strain was derived and compared to the parental wild type strain by a macroarray 

approach. Results suggest a negative effect exerted by cncR1 on the regulome of the 

alternative sigma factor 
54
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1.1  Helicobacter pylori 

 

1.1.1 Epidemiology and infection 

Helicobacter pylori is a gram-negative, spiral shaped, microaerophilic 

bacterial pathogen (Fig. 1), which colonizes the mucosal layer overlying the gastric 

epithelium of the human stomach. Isolated in 1982 by Robin Warren and Barry 

Marshall, it is recognized as the principal causative agent of chronic active gastritis 

(Blaser, 1990), as well as gastric and peptic ulcer diseases (Nomura et al., 1994), and 

is associated with the development of B-cell mucosa-associated lymphoid tissue 

lymphoma and gastric adenocarcinoma (Du and Isaccson, 2002; Parsonnet et al., 

1994; Peek and Blaser, 2002). 

Fig. 1 Electron micrograph of Helicobacter pylori. H. pylori in vivo and under optimum in 

vitro conditions is an S-shaped bacterium with 1 to 3 turns, 0.5×5 μm in length, with a tuft of 

5 to 7 polar sheathed flagella. Field emission SEM, bar = 0.5 μm (Mobley et al., 2001). 

 

 

While the infection is chronic and often asymptomatic, this bacterium infects 

over 50% of the world’s population (Dunn et al., 1997). The sheer number of 

infected individuals leads to a significant number of H. pylori-associated diseases 

cases each year, worldwide. Moreover, since colonization usually occurs early in 

childhood and remains throughout the person’s life if the infection is not treated with 
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antibiotics (Blaser, 1990; de Reuse and Bereswill, 2007), the chronicity increases the 

likelihood of disease. For these reasons H. pylori is considered an important public 

health problem with serious economic consequences and the World Health 

Organization has classified the organism as a class 1 carcinogen in 1994 (Bouvard et 

al., 2009).  

After initial infection, H. pylori rapidly reaches to the gastric mucosa layer in 

close contact with epithelial cells (Josenhans et al., 2007). Here, the bacterium faces 

with harsh physiological conditions such as mild to strong acidity, fluctuating 

nutrient, availability and osmolarity, oxygen tension and a vigorous host immune 

response. Therefore, H. pylori produces a number of factors to cope with changes in 

the micro-environment and the host response (van Vliet et al., 2001a). Several factors 

that facilitate its survival, such as flagellins (Suerbaum et al., 1993) and urease 

(Cussac et al., 1992), and that are associated with pathogenesis, like the cag 

pathogenicity island (Covacci et al., 1993) and the vacuolating toxin (Cover et al., 

1994; Telford et al., 1994), have been extensively studied, and significant advances 

regarding the regulation of these factors have been made (Akada et al., 2000; Joyce 

et al., 2001). 

H. pylori infections can be successfully cured with antibiotic treatment, 

associated with a proton pump inhibitor (Megraud and Lamouliatte, 2003). 

Unfortunately, the available antimicrobial therapies are beginning to lose efficacy 

principally because of insurgence of antibiotic resistance, which frequently emerges 

de novo in H. pylori. Altered expression of gene products sensitive to antibiotic 

treatment seems to be especially important for resistance to penicillins and especially 

nitrimidazoles, the most common form of resistance encountered in H. pylori (Gerrits 

et al., 2006). However, because it would be unrealistic to use antimicrobial therapies 

to eradicate an infection that affects 50% of the world population, it remains 

necessary to explore and identify both bacterial and host markers to diagnose 

individuals at high risk for the most severe infection outcomes, as well as to develop 

new effective therapeutic strategies. For these reasons, H. pylori remains a bacterial 

pathogen of major medical importance. This was acknowledged by the Nobel Price 

for Medicine in 2005 to Warren and Marshal who first discovered the bacterium 

(Marshall and Warren, 1984). 
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1.1.2 Genome and regulatory functions 

The complete genomic sequence of many H. pylori strains derived from 

unrelated clinical isolates are currently available, as Hp26695 (Tomb et al., 1997), 

HpJ99 (Alm et al., 1999), HpAG1, (Oh et al., 2006) and HpG27 (Baltrus et al., 2009) 

strains. Although H. pylori was believed to exhibit a large degree of genomic and 

allelic diversity, the overall genomic organization, gene order and predicted gene 

products of these strains were found to be remarkably similar (Alm et al., 1999). 

The H. pylori genome is 1600 kb long and contains approximately 1500 open 

reading frames (ORFs) of which 60% were similar to genes of known function and 

could, therefore, be designated a putative identification, 18% showed similarity to 

genes that are conserved throughout other bacteria but do not have a known function 

and 23% were specific to H. pylori (Alm et al., 1999; Scarlato et al., 2001). 

One of the most striking features of the H. pylori genome is the singular 

paucity of transcription factor and regulatory protein predicted (Scarlato et al., 2001; 

Tomb et al., 1997). Analysis of genome led to the identification of only 32 gene 

products classified as having a possible regulatory function of which only 17 are 

predicted to have a role in the regulation of transcription (Fig. 2). This is 

approximately half the number of those reported for H. influenzae, which has a 

genome of comparable size to H. pylori and less than a quarter to those predicted for 

E. coli. In addition, only one-third of the number of two-component regulatory 

systems of E. coli are present in H. pylori which possesses only four sensor proteins 

and seven response regulators (Tomb et al., 1997). 

The low abundance of regulators is consistent with a small genome, where 

transcription factors have been lost due the absence of selective pressure (Madan 

Babu et al., 2006), reflecting the reductive evolution of this pathogen, which has 

been attributed to a constrained gastric habitat and the absence of other competitive 

microorganisms in this hostile environment (de Reuse and Bereswill, 2007). 
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Fig. 2 Schematic representation of H. pylori genome and map position of regulatory genes 

(Scarlato et al., 2001; Tomb et al., 1997). Outer concentric circle: predicted coding regions 

on the plus strand; second concentric circle: predicted coding regions on the minus strand. 

Symbols: green arrow boxes, sigma factors (3); blue arrow boxes, sensor kinase (3); yellow 

arrow boxes, response regulator (5); red arrow boxes, transcriptional regulator (7). 

 

 

There is, however, evidence that H. pylori uses other mechanisms of 

regulation. These include slipped-strand mispairing within genes (Josenhans et al., 

2007) and in putative promoter regions (Alm et al., 1999), and methylation by its 

nine type II methyltransferases (Marais et al., 1999). Moreover, mechanisms of post-

transcriptional regulation have been described in H. pylori, through antisense 

transcription and the expression of at least 60 small RNAs (Sharma et al., 2010), as 

well as through RNA-binding proteins that modulate mRNA stability and translation 

efficiency (Douillard et al., 2009). 
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Finally, the H. pylori genome does not have extensive operon structure. For 

example, the flagellar regulon is not contained in operons in this organism, which 

further confounds the apparent lack of regulation. 

Thus, despite the limited number of proteins putatively involved in regulation 

of transcription functions (as deduced from genome), H. pylori seems to use complex 

and fascinating mechanisms to control transcription. The key issue is how the few 

regulatory factors of H. pylori can exploit their functions in order to regulate 

different sets of genes in a coordinate manner.  

 

 

1.2 Regulatory modules 

Globally, the coordinated expression of the genetic repertoire is controlled by 

the transcriptional regulatory network (TRN), which controls the decision making of 

the bacterium in response to changes in the environment (Balazsi and Oltvai, 2005). 

Recent evidence points to a very shallow of H. pylori TNR in which the few 

regulators are encompassed in four main modules which process the physiological 

responses needed to colonize the gastric niche: respectively, motility and chemotaxis, 

heat and stress response, acid acclimation and metal ion homeostasis (Danielli et al., 

2010). 

 

1.2.1 Motility and chemotaxis 

Flagellar, chemotaxis, and motor protein encoding genes are key virulence 

factors in H. pylori. Their deletion leads to strains with an attenuated or completely 

defective ability to establish colonization in animal models (Eaton et al., 1996; 

Foynes et al., 2000; Josenhans and Suerbaum, 2002), possibly because of a failure to 

move in response to favorable or noxious gradients. The ∼40 motility genes of H. 

pylori are unclustered, frequently scattered within multicistronic gene operons (Alm 

et al., 1999; Niehus et al., 2004; Tomb et al., 1997). Along with other pleiotropic 

regulatory effects, such as polarity and DNA supercoiling (Ye et al., 2007), their 

transcription is hierarchically regulated, employing a remarkable fraction of 
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dedicated transcriptional factors. This regulated mechanism of gene expression 

allows flagellar proteins to be produced in stages, facilitating their ordered secretion 

and proper interactions so that flagellar biosynthesis occurs correctly, and it is 

accomplished by linking transcription of classes of flagellar genes to structural steps 

in flagellar biosynthesis.  

Flagellar genes are typically positively regulated and hierarchically organized 

in three main classes according to their activating sigma factor (Macnab, 2003; 

Niehus et al., 2004). Class I encompasses gene targets transcribed by the vegetative 

RNA polymerase containing σ
80

 factor (HP0088-RpoD), and comprises mostly 

flagellar regulatory genes (rpoN-σ
54

, flgR, flgS and flhA) and genes encoding for 

proteins that form the flagellar base structures, as the MS ring (FliF), the flagellar 

type III secretion system-T3SS (FlhA, FlhB, FliO, FliP, FliQ and FliR), the 

cytoplasmic C ring or switch complex (FliG, FliM, and FliN or FliY), and the motor 

(MotA and MotB) (Kavermann et al., 2003). Class II includes specific targets of the 

alternative σ
54

 factor (HP0714-RpoN), and encodes for the components of the 

flagellar basal body (FlgB, FlgC, FlgD and FliE), of the hook (FlgE, FlgL and FlgK) 

and their corresponding regulators (FliW and FliK). Class III genes encode late both 

flagellar structures (FlaG, FliD, FliS and FliT) and regulators (HP1032-FliA), and 

they are transcribed by σ
28

-(FliA)-containing RNA polymerase. 

The flagellar regulatory module adopts a short σ regulatory cascade 

(σ
80

>σ
54

>σ
28

) initiated by the housekeeping σ
80

 factor, where each σ factor activates 

its dedicated target gene class. Moreover, σ
80

 is also responsible for the transcription 

of σ
54

, establishing a hierarchical regulation on the subset of σ
54

-dependent genes. σ
54

 

is proposed to activate its own subset of genes and σ
28

, but the latter gene seems co-

transcribed in a single multicistronic operon with the upstream genes from the σ
80

-

dependent P1034 promoter (Sharma et al., 2010). Other factors intersect this 

regulatory network, obtaining a tightly regulated response of the flagellar origon. In 

particular, FlgRS two-component systems (HP0703, HP0244) (Brahmachary et al., 

2004; Niehus et al., 2004; Spohn and Scarlato, 1999b; Wen et al., 2009), FlhA 

(HP1041) (Niehus et al., 2004), FlhF (HP1035) (Niehus et al., 2004) and FlgZ 

(HP0958) (Pereira and Hoover, 2005; Pereira et al., 2011), positively regulate the 

transcriptional activity of σ
54

. This regulation likely occurs through the activation of 
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the σ
54

-RNA polymerase, by interaction with specific sequences on the promoters, or 

though the promotion of a stable accumulation of σ
54

. In contrast, FliK (HP0906) 

(Douillard et al., 2009; Ryan et al., 2005) and FlgM (HP1122) (Niehus et al., 2004) 

repress σ
54

 and σ
28

, respectively, likely establishing a feed-back regulation of the 

different class of flagellar genes. 

 

1.2.2 Heat shock 

The heat shock origon is amongst the best-understood regulatory modules in 

H. pylori. Whereas most Gram-negatives employ specialized sigma factors (σ
32

) to 

positively regulate the transcriptional responses to heat shock, H. pylori has evolved 

an opposite strategy, commonly found in Gram-positive bacteria, that implements 

two repressors with homology to Bacillus subtilis HrcA (Narberhaus, 1999; Schulz 

and Schumann, 1996) and Streptomyces spp. HspR (Servant and Mazodier, 2001). 

Specifically, the heat shock origon of H. pylori is composed of HspR and HrcA 

directly repressing three main target operons, including the groESL chaperone genes. 

All three operons are responsive to heat shock and are activated by the presence of 

misfolded proteins or stress signals (Homuth et al., 2000; Spohn et al., 2002). HspR 

alone represses transcription of the cbpA operon, thereby negatively autoregulating 

its own synthesis (Spohn and Scarlato, 1999a). On the contrary, both HspR and HrcA 

are required for dual repression of the groESL and hrcA operons (Spohn et al., 2004). 

The DNA-binding activity of both repressors is enhanced by the product of the 

groESL target gene (Roncarati et al., 2007), suggesting that HrcA and HspR are 

involved with the GroE chaperonin system in a feedback regulatory loop, complying 

with the B. subtilis “titration model” (Mogk et al., 1997). This model postulates that 

upon heat shock, GroESL is titrated away by misfolded polypeptides, thereby 

relieving HspR/HrcA repression, and triggering the stress response. 

 

1.2.3 Acid Origon 

The capacity to grow under the harsh acidic conditions encountered in the 

stomach is a distinctive feature of H. pylori and is associated with virulence (Sachs et 

al., 2003; Scott et al., 2007). Accordingly, the regulated expression of a dedicated set 
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of so-called acid acclimation genes (the ure urease operon, aliphatic amidases amiE 

and amiF, arginase roc, etc.) allows H. pylori to keep acidity of the bacterial 

periplasm close to neutrality, and to maintain physiologic pH levels in the cytoplasm 

in the presence of urea and urease activity (Scott et al., 2002; Tsuda et al., 1994; 

Weeks et al., 2004). Transcription of acid acclimation operons is under control of the 

housekeeping σ
80

 factor and is regulated principally by the essential acid response 

regulator ArsR (Pflock et al., 2006b). ArsR is autoregulated and is encoded by an 

operon that also encompasses the cognate transmembrane ArsS histidine kinase 

(Dietz et al., 2002). It has been proposed that the signal sensed by ArsS is 

acidification of the periplasm, transduced through changes in protonation of its 

histidine residue 94 (pKa ∼6.0) in the extracytosolic sensory domain (Pflock et al., 

2004). This stimulus triggers phosphorylation of ArsR, thereby promoting its DNA-

binding activity towards a specific set of promoters (Pflock et al., 2005; Wen et al., 

2006). However, there are three distinct group of targets, which are controlled 

according to the phosphorylation status of ArsR: 

 A first cluster of genes encompasses P∼ArsR-dependent target operons 

regulated by ArsR in a phosphorylation-dependent manner, upon mild 

acidification of the periplasm through ArsS signaling (omp11, carbonic 

anhydrase, hypA, ureAB). 

 A second cluster of genes contains target operons that are regulated by more 

harsh acidic conditions, promoting acidification of the cytoplasm. Their 

regulation is P∼ArsR-dependent and phosphorylation of the regulator similarly 

promotes high affinity DNA binding to their promoters. However, they are not 

deregulated in arsS deletion mutants, and may therefore rely on a different 

(cytoplasmic) acid signal transducer to promote the phosphotransfer needed to 

activate ArsR. This group includes other genes central to the acid acclimation 

process such as amiE, amiF, and others. 

 Finally, a third group of genes includes targets of unphosphorylated ArsR 

(including the arsRS operon) and whose regulation is not necessarily pH 

dependent. The latter group contains genes of unknown function that appear to 

be essential for viability. 
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Very interestingly, a recent work identified FlgS, the aforementioned 

cytosolic NtrB-like histidine kinase belonging to the flagellar biosynthesis module, 

as being also essential for survival of H. pylori at low pH (Wen et al., 2009). 

Although it is not known whether FlgS is able to trigger ArsR phosphorylation upon 

acidification of the cytoplasm, it may represent a good candidate as a cytosolic acid 

sensor feeding into the ArsR regulon. Finally, the pleiotropic metal-dependent 

transcriptional regulators Fur and NikR are involved in the acidic shock response and 

in the mechanisms of acid adaptation and tolerance (Valenzuela et al., 2011; van 

Vliet et al., 2004). 

 

1.2.4 Metals 

In many bacterial pathogens, including H. pylori, metal starvation triggers the 

expression of virulence factors, which enables them to compete with the host for 

these essential nutrients. On the other hand, metal ions are toxic if present 

intracellularly in high amounts. Therefore, their homeostasis must be tightly 

controlled (Giedroc and Arunkumar, 2007). Three systems are dedicated to this 

fundamental task in H. pylori: the CrdRS two-component system, the ferric uptake 

regulator (Fur) involved in iron homeostasis (Bereswill et al., 1998), and a homolog 

of the Ni-responsive NikR regulator of E. coli (van Vliet et al., 2002a). Whilst the 

only identified genes targets of the CrdRS system appear to be involved in copper 

resistance (Waidner et al., 2005), Fur and NikR have been described as pleiotropic 

regulators. 

Fur regulates genes involved in both Fe
2+

 uptake (Danielli et al., 2009; 

Delany et al., 2001a; van Vliet et al., 2002b) and detoxification (Bereswill et al., 

2000; Ernst et al., 2005b). Distinctively, the metal ion cofactor can act as co-

repressor (holo-Fur repressed genes) or as inducer (apo-Fur repressed genes) 

(Carpenter et al., 2009; Delany et al., 2001b). In accordance with its pleiotropic role, 

exemplified by the observed competitive colonization defects of fur mutants (Gancz 

et al., 2006), Fur is an abundant protein and binds to ∼200 target loci in vivo, 

including genes coding for other regulators (rpoN, flgR, flgS, cheA, nikR) (Danielli et 

al., 2006). Consequently, hundreds of genes deregulated by fur deletion have been 

reported, although not all appear to be direct targets of the regulator (Danielli et al., 
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2006; Ernst et al., 2005a). Moreover, fur deletion mutants are impaired in their acid 

tolerance (Bijlsma et al., 2002; van Vliet et al., 2003), and Fur in vivo targeting of 

ArsR has been reported in ChIP-chip experiments (Danielli et al., 2006), 

substantiating a direct (and hierarchically important) role of Fur in the regulation of 

acid acclimation. The same study also revealed that protein levels of Fur increase in 

stationary phase, suggesting that this regulator is involved in the reported growth 

phase–dependent regulation of genes encoding metallo-proteins and iron-trafficking 

factors (Choi et al., 2008; Danielli et al., 2009; Merrell et al., 2003). 

On the other hand, NikR mediates regulation of Ni
2+

 homeostasis in the cell, 

central to the activity of the nickel-enzyme urease. In contrast to Fur, apo-NikR is 

unable to bind DNA, and Ni
2+

 coordination at high-affinity metal binding sites drives 

allosteric changes promoting the DNA binding activity of holo-NikR (Abraham et 

al., 2006; Benanti and Chivers, 2007; Zambelli et al., 2008). According to the 

position of the operator elements, NikR can act as a positive or negative regulator of 

transcription (Contreras et al., 2003; Ernst et al., 2005c). NikR might be also 

involved in the regulation of several acid acclimation genes, including the urease 

operon (van Vliet et al., 2004; van Vliet et al., 2002a), possibly through increased 

bioavailability of the Ni
2+

 ion under low pH conditions, or through pH-responsive 

DNA binding activity, which has recently been reported (Li and Zamble, 2009). 

 

 

1.3 Antisense transcription and sRNAs 

The primary transcriptome analysis of H. pylori strain 26695, revealed a 

massive antisense transcription as well as an high number of more than 60 small 

RNAs (sRNAs) including potential regulators of cis- and trans-encoded mRNA 

targets, indicating that H. pylori uses riboregulation for its gene expression control 

(Sharma et al., 2010). Small RNAs interact with the target mRNAs by base-pairing 

and can influence their expression by different mechanisms, as translation inhibition, 

transcription interference and attenuation, transcript stabilization or degradation 

(Thomason and Storz, 2010). 
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1.3.1 Cis-encoded sRNAs 

Cis-encoded antisense RNAs (asRNAs) can overlap the 5′- or 3′-end, the 

middle, or entire genes that are transcribed oppositely the corresponding cis-sRNAs, 

and the interaction with the target occurs through a perfect extended base-pairing. 

More than 900 cis-encoded asRNAs have been identified in H. pylori, including at 

least one antisense transcriptional start site for almost half of all ORFs (Sharma et al., 

2010). Whether all of them are functional or rather represent spurious transcription 

still need to be clarified. However, the characterization of a naturally occurring 292-

nt long cis-encoded antisense sRNA from the opposite strand of the urease operon in 

H. pylori strain 43504 further demonstrates the functionality of asRNAs in H. pylori 

(Wen et al., 2011). One of the mechanism of cis-RNA mediated regulation is through 

antisense-induced processing of the dsRNAs, likely performed by the double-strand 

specific ribonuclease RNase III, as was suggested for Staphylococcus aureus (Lasa et 

al., 2011). 

Besides sRNAs, several new small hydrophobic proteins (<50 aa) are 

encoded by H. pylori, some of which are associated with cis-encoded asRNAs 

(Sharma et al., 2010). For example, six structurally related ∼80 nt sRNAs, IsoA1–6 

(RNA-inhibitor of small-ORF family A), are expressed antisense to the small ORFs, 

AapA1–6 (antisense-RNA-associated peptide family A), representing homologous 

22–30 aa long peptides. Some of these small ORFs resemble antimicrobial peptides 

or small toxic peptides from bacteria and functional studies suggested that the aapA–

isoA loci might represent the first examples of class I toxin–antitoxin systems in H. 

pylori, in which an unstable RNA antitoxin represses expression of a stable peptide 

toxin (Sharma et al., 2010). 

 

1.3.2 Trans-encoded sRNAs 

Trans-encoded sRNAs are synthesized as discrete transcripts with dedicated 

promoter and terminator sequences and share only limited complementarity with 

their target mRNAs. These sRNAs regulate the translation and/or stability of target 

mRNAs and are, in many respects, functionally analogous to eukaryotic miRNAs 

(Aiba, 2007; Gottesman, 2005). The majority of the regulation by the known trans-
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encoded sRNAs is negative (Aiba, 2007; Gottesman, 2005). Base-pairing between 

the sRNA and its target mRNA usually leads to repression of protein levels through 

translational inhibition, mRNA degradation, or both. For the few characterized 

sRNA-mRNA interactions, the inhibition of ribosome binding is the main contributor 

to reduced protein levels, while the subsequent degradation of the sRNA-mRNA 

duplex by RNase E is thought to increase the robustness of the repression and make 

the regulation irreversible (Morita et al., 2006). However, sRNAs can also activate 

expression of their target mRNAs through an anti-antisense mechanism whereby 

base-pairing of the sRNA disrupts an inhibitory secondary structure which sequesters 

the ribosome binding site (Gottesman, 2005; Prevost et al., 2007).  

In many cases, the RNA chaperone Hfq is required for trans-encoded sRNA-

mediated regulation, presumably to facilitate RNA-RNA interactions due to limited 

complementarity between the sRNA and target mRNA (Aiba, 2007; Brennan and 

Link, 2007; Valentin-Hansen et al., 2004). 

Several of the newly identified sRNAs in H. pylori are potential candidates 

for trans-encoded antisense RNAs. For example, the abundant 87-nt long HPnc5490 

sRNA, was predicted to interact by a C/U rich stretch with a G-repeat in the 5′ UTR 

of tlpB mRNA encoding for one of the four chemotaxis receptors in H. pylori. 

Comparison of tlpB expression in the wild-type and a HPnc5490 deletion strain 

confirmed down-regulation of the tlpB mRNA as well as TlpB protein levels by 

HPnc5490. It has been suggested that TlpB senses protons and diverse studies have 

demonstrated its potential role in pH-taxis, quorum sensing as well as colonization, 

and inflammation of the gastric mucosa (Croxen et al., 2006; McGee et al., 2005; 

Rader et al., 2011; Williams et al., 2007). Therefore, HPnc5490, and probably 

additional H. pylori sRNAs, could play important roles during stress responses or 

infection, as described for other bacterial pathogens (Papenfort and Vogel, 2010). 

Another H. pylori trans-encoded sRNA is the homolog of E. coli 6S RNA, a 

ubiquitous riboregulator, which mimics an open promoter complex and thereby 

sequesters RNA polymerase (Barrick et al., 2005; Sharma et al., 2010; Wassarman 

and Storz, 2000). Despite only little sequence conservation to E. coli 6S RNA, the 

180-nt long RNA from H. pylori can fold into the characteristic long hairpin 

structure of 6S RNA (Trotochaud and Wassarman, 2005). Deletion of 6S RNA 
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results in no obvious phenotype during exponential growth but altered cell survival 

during stationary phase and under extreme stress conditions in E. coli (Wassarman, 

2007). Whether 6S RNA has a role during stress response or stationary phase growth 

in H. pylori or, like in Legionella (Faucher et al., 2010), impacts on its virulence still 

needs to be investigated. 

 

1.3.3 Proteins involved in sRNA- and asRNA-mediated regulation 

The Sm-like RNA chaperone Hfq is required for the stabilization of sRNAs 

and facilitates the base-pairing of trans-encoded sRNA with their target mRNAs in 

different bacteria (Vogel and Luisi, 2011). Deletion of hfq leads to pleiotropic 

phenotypes including reduced fitness and virulence in several bacterial pathogens 

(Chao and Vogel, 2010). However, as is the case for 50% of all bacterial genomes, 

hfq appears to be absent in Epsilonproteobacteria. Whether a different RNA binding 

protein replaces the function of Hfq or whether sRNAs act without a chaperone in 

these bacteria is still an open question. 

Although the exact mechanism of repression is still unclear, both functionally 

characterized antisense RNAs in H. pylori cause reduced protein levels as well as 

reduced target-mRNA levels, most likely through transcript destabilization or active 

recruitment of RNases. In enterobacteria, sRNA-mediated target-mRNA decay 

mainly depends on the RNA degradosome, a protein complex composed of the 

endoribonuclease RNase E, polynucleotide phosphorylase PNPase, and the RNA 

helicase RhlB (Caron et al., 2010; Morita et al., 2005). In H. pylori, several RNases 

are annotated (RNase H, RNase H-II, RNase J, RNase N, RNase P, RNase R, and 

RNase III) but like all Epsilonproteobacteria it appears to lack a homolog of RNase 

E. Nevertheless, recent studies have shown that H. pylori RNase J and RNase III 

could be potential RNases participating in sRNA-mediated transcript destabilization 

(Boisset et al., 2007; Chevalier et al., 2008; Huntzinger et al., 2005; Mathy et al., 

2010; Roux et al., 2011). Moreover, the 3′–5′ exoribonuclease RNase R has been 

shown to post-transcriptionally down-regulate six virulence related genes (Tsao et 

al., 2009), but its potential role in sRNA-mediated regulation still needs to be 

investigated. 
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1.4 Type IV secretion system 

T4SS are macromolecular devices that bacteria use to transport various 

macromolecules, including protein, DNA or nucleic acid/protein complexes, across 

the cell envelope (Alvarez-Martinez and Christie, 2009; Fronzes et al., 2009). These 

systems are remarkably versatile and have been classified into three different groups 

according to their function (Alvarez-Martinez and Christie, 2009). 

 T4SS of the first group can mediate the conjugative transfer of plasmid DNA 

or transposons from one cell to another by a contact-dependent process 

(Dreiseikelmann, 1994), promoting bacterial genome plasticity and the 

adaptive response of bacteria to changes in the environment. Typical acceptors 

are bacterial cells of the same species or of different species (Grohmann et al., 

2003; Lawley et al., 2003; Trieu-Cuot et al., 1985), while at least the two 

Gram-negative Escherichia coli and Agrobacterium tumefaciens can deliver 

DNA substrates into fungal, plant or human cells (Bundock et al., 1995; 

Waters, 2001). 

 The second group of T4SS is used for DNA uptake and release from and to the 

extracellular milieu, promoting the genetic exchange. Examples are the ComB 

system of H. pylori (Smeets and Kusters, 2002) and the GGI system of 

Neisseria gonorrhoeae, (Hamilton et al., 2005).  

 The third group consists of T4SSs that transfer protein effectors and function as 

molecular pumping devices that facilitate host–pathogen interaction and/or 

inject toxins into the host cell (Wallden et al., 2010). This type of T4SS are 

exploited by numerous pathogenic bacteria, including Bordetella pertusis, 

Legionella pneumophila, Brucella species and Bartonella species (Backert and 

Meyer, 2006; Corbel, 1997; Ninio and Roy, 2007), as well as H. pylori 

(Akopyants et al., 1998). 

Despite the wide diversity of their substrates and functions, all T4SSs are 

evolutionarily related (Lessl and Lanka, 1994; Lessl et al., 1992), sharing several 

components and probably function in a similar manner. The genes encoding the 
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T4SS components are usually arranged in a single or a few operons. Although 

variations exist, many of the T4SSs found in Gram-negative bacteria are similar to 

the A. tumefaciens VirB/D T4SS machinery, the best characterized T4SS that is 

regarded as the prototype among that family members . 

 

1.4.1 Archetypal Agrobacterium tumefaciens T4SS 

The A. tumefaciens T-DNA (transfer DNA) transfer machinery delivers 

oncogenic nucleoprotein particles into plant cells, resulting in the development of 

crown-gall tumors (Cascales and Christie, 2003; Christie, 1997; Schroder et al., 

2002). The T4SS proteins mediating T-DNA transfer are the 11 VirB proteins 

encoded by virB1–virB11, as well as the so-called coupling protein VirD4, a 

nucleoside triphosphatase (Cascales and Christie, 2003; Christie, 1997). They 

assemble to form three interlinked subparts (Fig. 3): a cytoplasmic/inner membrane 

complex, a double membrane-spanning channel and an external pilus (Alvarez-

Martinez and Christie, 2009). The cytoplasmic/inner membrane complex is 

composed of four inner membrane scaffold proteins VirB3, VirB6, VirB8, and 

VirB10, that contribute in various ways to channel formation and activity. The trans-

membranes pore complex, also termed “the core complex”, is composed by VirB7, 

VirB9 and VirB10 proteins and it forms a ~1 MDa channel spanning from the inner 

to the outer membrane. Lastly, VirB2 and VirB5 proteins constitute the external 

pilus. Other essential non-structural components for the formation of the T4SS 

complex is VirB1 transglycosylase and the three NTPases VirB4, VirB11 and VirD4. 

VirB1 protein harbors a muraminidase activity and, delivered across the cytoplasm, it 

causes the localized degradation of the peptidoglycan, allowing for the insertion of 

the system in the periplasm (Cascales and Christie, 2003). The NTPases VirB4, 

VirB11 and VirD4 are the energetic components of the T4SS and they are employed 

to energize the early steps of machine biogenesis and the substrate recruiting and 

transfer. In particular, the VirD4 coupling protein (CP) together with VirB11, 

recruits the T-DNA transfer intermediate complex to the secretion apparatus and 

promotes its translocation through the secretion channel (Lai and Kado, 2000). 
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Fig. 3 Model of the VirB/VirD4 type IV secretion system (T4SS) machinery of 

Agrobaterium tumefaciens. Colour code: yellow, pilus-associated extracellular components 

of the T4SS machinery; blue, all other components of the T4SS machinery (pore complex 

and energizers); pink, T4CP; green, T4SS substrates. Abbreviations: CY, cytoplasm; EX, 

extracellular milieu; IM, inner membrane; OM, outer membrane; PG, peptidoglycan layer; 

PP, periplasm (Schroder and Dehio, 2005). 

 

Although T4SS core complexes are able to form autonomously, they are 

unlikely to do so constitutively and without a positional preference. In the A. 

tumefaciens Vir system, spatial targeting of the secretion apparatus has been 

suggested to be determined by VirB8 as a nucleating factor (Judd et al., 2005), 

possibly together with the peptidoglycan-degrading lytic transglycosylase VirB1 

(Alvarez-Martinez and Christie, 2009). 

It is important to note that most, but not all, of the T4SSs have homologues of 

each of these proteins, but a conserved core VirB4, VirB7, VirB9, VirB10 and 

VirB11 proteins is present in all of them. 
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1.4.2 H. pylori cag encoded T4SS 

The H. pylori cag pathogenicity island (cag-PAI) is a 38 kb multi-operon 

locus encompassing 28 putative ORFs, encoding functional components of a type IV 

secretion system (T4SS), homologues of the basic T4SS represented by the 

Agrobacterium tumefaciens virB/D operons (Bourzac and Guillemin, 2005). H. 

pylori T4SS represents a needle-like structure (also called T4SS pilus) protruding 

from the bacterial surface (Fig. 4) and is induced by host cell contact to inject 

virulence CagA effector into host cells (Kwok et al., 2007), as well as to stimulate a 

CagA-independent interleukin-8 secretion, via the host AP-1 and NF-B signaling 

pathway (Backert and Selbach, 2005).  

 

 

Fig. 4 H. pylori cag-encoded pilum (Molloy, 2007). H. pylori strain 26695 co-cultured with 

AGS cells and visualized by scanning electron microscopy. Three pili are visible at the 

interface between the bacteria and the host cell. 

 

In its most common gene arrangement, the cag-PAI is inserted between the 

genes encoding a Sel1 repeat-containing protein (HP0519) and glutamate racemase 

(HP0549), respectively, and it is flanked by a 31 bp sequence duplication of the latter 

gene. The amount of sequence diversity among these genes in isolates from different 

geographic groups has recently been taken as an indication that the cag-PAI was 

acquired only once in the history of H. pylori (Olbermann et al., 2010). 

By contrast to other T4SS found in H. pylori, the Cag-T4SS is only distantly 

related to T4SS found in other species (Fischer et al., 2010), and only a few cag 

genes encode for proteins with clear sequence similarities to known T4SS proteins. 

Obvious similarities exist only for CagE (to VirB4), CagX (to VirB9), CagY (to 
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VirB10), Cagα (to VirB11) and Cagβ (to VirD4), although even these proteins, 

particularly CagX and CagY, are remarkably different from their counterparts in 

prototypical systems. Nevertheless, protein topology predictions and determinations, 

localization studies and functional studies suggested that Cagγ (VirB1), CagC 

(VirB2), CagL (VirB5), CagW (VirB6), CagT (VirB7) and CagV (VirB8) are further 

VirB homologues (Andrzejewska et al., 2006; Backert et al., 2008; Buhrdorf et al., 

2003; Kutter et al., 2008; Zahrl et al., 2005). 

Early systematic studies with isogenic mutants in each cag gene (Fischer et 

al., 2001; Selbach et al., 2002) identified 15 genes that are essential for inducing IL-8 

secretion and for CagA translocation, suggesting that these genes encode for 

components of the secretion apparatus (Table 1). These essential components include 

all the aforementioned VirB-like proteins and several further components that are 

unique to the Cag system: Cag, CagU, CagM and CagH. Three further gene 

products (CagN, CagG, CagD) are not absolutely necessary, although their absence 

results in a reduced efficiency of both phenotypes, and these proteins (supporting 

components) thus appear to be involved in assembling the secretion apparatus as 

well. An additional group of genes was shown to be required for CagA translocation 

but not for IL-8 induction (Fischer et al., 2001), and the encoded gene products 

(CagZ, CagI, CagF and the toxin CagA) are accordingly termed CagA translocation 

factors. 

Finally, several cag-PAI gene products (Cag, Cag, CagS, CagQ, CagP, 

CagB) do not appear to have a function for the type IV secretion-related phenotypes 

examined. They might have other as yet unknown functions or even be further 

effector proteins, or they might simply be unrelated to the T4SS. However, one of 

these genes (cagζ) was found to be among the most highly transcribed among all cag 

genes in vitro and in vivo, and transcripts of cag, cagS, cagQ, cagP and cagB were 

also found, probably together with a small RNA upstream of cagP (Boonjakuakul et 

al., 2005; Sharma et al., 2010). These observations suggest that all non-essential 

genes are expressed, and their organization in operons indicates a functional 

relationship with the T4SS (Cendron, 2011). 
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Table 1: Overview of characteristics and functions of cagPAI-encoded proteins 

Gene Protein Homologues (Putative) function(s) CagA IL-8 

HP0520 Cag 

  

- - 

HP0521 Cag 

  

- - 

HP0522 Cag 

  

Essential Essential 

HP0523 Cag VirB1 Peptidoglycan hydrolase Essential Essential 

HP0524 Cag VirD4 Coupling Protein Essential - 

HP0525 Cag VirB11 ATPase Essential Essential 

HP0526 CagZ 

 

Cagβ stabilization Essential - 

HP0527 CagY VirB10 Core complex Essential Essential 

HP0528 CagX VirB9 Core complex Essential Essential 

HP0529 CagW VirB6 Inner membrane channel Essential Essential 

HP0530 CagV VirB8 Core complex-IMP Essential Essential 

HP0531 CagU 

  

Essential Essential 

HP0532 CagT VirB7 Core complex-OMP Essential Essential 

HP0534 CagS 

  

- - 

HP0535 CagQ 

  

- - 

HP0536 CagP 

  

- - 

HP0537 CagM 

 

Outer Membrane Complex Essential Essential 

HP0538 CagN 

  

Supportive Supportive 

HP0539 CagL VirB5 Adhesin - Integrin binding Essential Essential 

HP0540 CagI 

  

Essential - 

HP0541 CagH 

  

Essential Essential 

HP0542 CagG 

  

Essential Supportive 

HP0543 CagF 

 

Chaperone of CagA Essential - 

HP0544 CagE VirB3/B4 ATPase Essential Essential 

HP0545 CagD 

  

Essential Supportive 

HP0546 CagC VirB2 Pilus subunit Essential Essential 

cagB CagB 

  

Unknown Unknown 

HP0547 CagA 

 

Toxin Essential - 

 

 

1.4.3 Architecture of H. pylori type 4 secretion system 

The architecture of the H. pylori type 4 secretion system is modeled on the 

homologue A. Tumefaciens VirB/D T4SS. However, the cag proteins are 

considerably different from their Vir counterparts, both in size and in amino acidic 

sequences, suggesting different and/or additional functions. The H. pylori T4SS is 

composed by the cytoplasmic/inner membrane complex, the double membrane-
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spanning channel and the external pilus, plus other ancillary components (Fischer, 

2011) (Fig. 5). 

The H. pylori cag core complex is composed by the CagT, CagX and CagY 

proteins, homologues to VirB7, VirB9 and VirB10. By contrast to other T4SS, this 

subcomplex appears to harbor two additional components, CagM and Cagδ, that 

interacting with CagT and CagX, stabilize the scaffold proteins and mediate to 

oligomerization of the outer membrane subcomplex (Fischer et al., 2001; Kutter et 

al., 2008). The most divergent core protein is CagY, a huge protein with a peculiar 

middle region containing extensive sequence repeats. CagY is shown to interact with 

subcomplex CagX-CagM-CagT-Cag, by direct binding of CagX (Kutter et al., 

2008). Moreover, CagY is also detected on type IV secretion pilus-like surface 

appendages (Rohde et al., 2003) and is identified as one of several bacterial 

interaction partners of β1 integrins, which represent the secretion apparatus receptors 

on target cells (Jimenez-Soto et al., 2009). 

The Cag system contains three essential proteins that might constitute a 

cytoplasmic membrane pore. CagW is a polytopic inner membrane protein with 

features that are common among VirB6-like proteins (Kutter et al., 2008), CagU is a 

second polytopic inner membrane protein with three predicted transmembrane 

helices that has no counterpart in other systems, and CagH is an essential bitopic 

inner membrane protein, also without counterparts in other systems. Functional 

studies with all these components are lacking so far. 

The Cag-T4SS elaborates sheathed surface appendages that are dissimilar to 

the pili commonly found in DNA-transporting T4SS. Nevertheless, these appendages 

are considered to be composed of the VirB2-like pilin subunit CagC (Andrzejewska 

et al., 2006) but, in addition, they can be stained with immunogold labels directed 

against CagY, CagT, CagX and CagL (Kwok et al., 2007; Rohde et al., 2003; Tanaka 

et al., 2003). It is shown that purified CagL binds via its RGD motif to β1 integrin 

subunits, suggesting a VirB5-like adhesin function for CagL (Kwok et al., 2007), 

although conflicting results were obtained with respect to the requirement of this 

motif during CagA translocation (Jimenez-Soto et al., 2009; Kwok et al., 2007). On 

the other hand, CagY, CagA and CagI are also identified as Cag proteins binding to 

β1 integrins (Jimenez-Soto et al., 2009). 
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Fig. 5 Assembly and interaction model of the H. pylori Cag type IV secretion apparatus 

(Fischer, 2011). Cag proteins are depicted in their most likely localizations according to 

sequence prediction or experimental data and designated by their last letters (e.g. ‘A’ for 

CagA). Overlapping boxes indicate probable protein–protein interactions. Integrin 

heterodimers are indicated as receptors on the target cell surface (α, β1). IM, inner (bacterial) 

membrane; PG, peptidoglycan layer; OM, outer (bacterial) membrane; CM, cytoplasmic 

membrane of a eukaryotic target cell. 

 

Similarly to A. tumefaciens T4SS, the assembly of the T4SS machinery likely 

relies on both the lytic transglycosylase Cagγ (VirB1 homologue) responsible for the 

local degradation of peptidoglycan (Zahrl et al., 2005), and CagV, a bitopic inner 

membrane protein with features similar to the nucleating factor VirB8 (Buhrdorf et 

al., 2003), capable to interact with Cagδ, CagM and CagT proteins of the core 

complex. Moreover, on the cytoplasmic face of the secretion apparatus, the ATPases 

CagE (VirB3-VirB4 fusion homologue) (Kutter et al., 2008) and Cag (VirB11 

homologue) provide the energy for secretion apparatus assembly and/or substrate 

transport (Kutter et al., 2008). 
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1.4.4 Mechanisms of CagA translocation 

The translocation of the toxin CagA through the T4SS channel has been 

showed occurring through two consecutive events: the recruitment of CagA to the 

T4SS complex and the energetic-dependent secretion of the protein through the 

channel. CagF, CagZ and Cagβ play a central role in the recruitment process, 

interacting with different motifs on the C-terminal region of CagA. In particular, 

CagF likely recruits CagA protein interacting with ∼100 amino acids in the C-

terminal region of CagA (Couturier et al., 2006; Pattis et al., 2007), similarly to the 

secretion chaperones in type III secretion systems. The ATPase Cagβ forms a stable 

complex with CagZ at the bacterial cytoplasmic membrane that might recognize the 

C-terminal secretion signal of CagA (∼20 amino acids) (Hohlfeld et al., 2006) and 

promote the secretion of the protein. The other ATPases CagE (VirB4) and Cag 

(VirB11), together with Cag (Backert et al., 2008), furnish the energetic power for 

the translocation of CagA through the T4SS channel (Hohlfeld et al., 2006). The 

molecular mechanisms of CagA translocation through the secretion apparatus are 

only poorly understood. Several studies have shown that CagA is located at the 

bacterial surface, particularly at the pilus tip (Jimenez-Soto et al., 2009; Kwok et al., 

2007; Murata-Kamiya et al., 2010), although it has not been examined whether 

surface- or pilus-associated CagA represents a translocation intermediate. It has also 

been established that translocation of CagA depends on the presence of β1 integrins 

as receptors for the Cag secretion apparatus at the target cell surface (Jimenez-Soto et 

al., 2009; Kwok et al., 2007), as well as CagA itself binds strongly to β1 integrin 

(Kwok et al., 2007), suggesting that pilus-associated CagA has an important function 

for translocation. The uptake process into the host cell cytoplasm is not understood, 

and it is unclear whether CagA uptake involves pore formation in the host cell 

cytoplasmic membrane or other cellular processes. 
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1.5 Effects of the H. pylori T4SS on the host cells 

In H. pylori cag-PAI encoded T4SS is identified to translocate the cagA 

protein into human gastric epithelial cells after bacterial attachment. Injected CagA 

interferes with physiological signal transduction and causes pathological cellular 

responses such as increased cell proliferation, motility, apoptosis and morphological 

change through different mechanisms. In addition, H. pylori induces a pronounced 

pro-inflammatory phenotype in infected gastric epithelial cells by multiple signaling 

activities that stimulate the transcription factors NF-κB and/or AP-1, in CagA-

independent mechanism. 

 

1.5.1 Phosphorylated CagA 

The H. pylori toxin CagA is considered a paradigm for bacterial 

carcinogenesis (Hatakeyama and Higashi, 2005). After translocation into gastric 

epithelial cells, CagA is tyrosine-phosphorylated by host cell kinases of the Src 

family (SFKs), such as Src, Abl and others (Handa et al., 2007; Wessler and Backert, 

2008). CagA harbors numerous phosphorylation sites at the repeated Glu-Pro-Ile-

Tyr-Ala (EPIYA)-motifs (Backert et al., 2010; Hatakeyama and Higashi, 2005). 

Phosphorylated CagA (CagA
PY

) interacts with Src homology 2 (SH2) domains of 

more than 20 different human proteins involved in signal transduction, interfering 

with the signaling cascades at multiple levels, thus affecting host cell gene 

expression (Backert et al., 2010; Peek, 2005). As a consequence of CagA
PY

 action, 

epithelial cells will have some of their major functions disturbed, such as cell cycle, 

cytoskeletal structure, cell-cell adhesion, signaling, adherence and proliferation 

(Hatakeyama and Higashi, 2005). Gastric epithelial cells infected with H. pylori in 

vitro start to migrate and acquire a morphology that has been originally described as 

the “hummingbird phenotype” (Al-Ghoul et al., 2004; Backert et al., 2001). This 

phenotype results from two successive events: the induction of cell scattering and 

cell elongation. While induction of early cell motility mainly depends on a CagA-

independent T4SS factor (Churin et al., 2003), cell elongation is clearly triggered by 

CagA
PY

 (Backert and Selbach, 2008; Hatakeyama, 2008), through the recruitment of 
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the tyrosine phosphatase SHP-2 and the activation its phosphatase activity. The 

activated SHP-2 directly dephosphorylate and inactivate the focal adhesion kinase 

(FAK), and activate the Rap1→B-Raf→Erk signaling cascade. CagA
PY

-induced cell 

elongation phenotype also involves tyrosine dephosphorylation of cortactin, vinculin 

and ezrin, three well-known actin-binding proteins (Backert and Selbach, 2008), 

through unknown host phosphatases. CagA
PY

 can also induce the production of 

reactive oxygen species (ROS) in gastric epithelial cell. Excessive ROS production 

in eukaryotic cells can cause DNA damage and thus might involve in gastric 

carcinogenesis (Naito and Yoshikawa, 2002). Interestingly, phosphorylated CagA 

inhibits the activity of Src kinase in a negative feedback loop, which results in 

dephosphorylation of many host cell proteins, including the actin-binding protein 

cortacin (Selbach et al., 2003). This mechanism may enable cagA-positive H. pylori 

to establish a chronic infection, avoiding excessive CagA toxicity to the host. 

 

1.5.2 Un-phosphorylated CagA  

Injected H. pylori CagA affects the host cell also in a non-phosphorylated 

form, interacting with, at least, 12 cellular partners (Backert et al., 2010). These 

interactions have been reported to induce the disruption of cell-to-cell junctions, loss 

of cell polarity and induction of mitogenic responses. In polarized epithelial cells, 

non-phosphorylated CagA disrupts the cell-to-cell junctions, which are essential 

components for the integrity of the gastric epithelium (Wessler and Backert, 2008). 

These effects are achieved via several pathways, as interfering in the E-cadherin 

pathway, as well as associating with the epithelial tight-junction scaffolding protein 

ZO-1 and the transmembrane protein JAM, causing an ectopic assembly of tight-

junction components at sites of bacterial attachment (Amieva and El-Omar, 2008). 

Moreover, CagA binds directly and inactivates the central regulator of cell polarity 

Par1b (Hatakeyama, 2008), inducing the loss of cell polarity. Together, these effects 

contribute to the H. pylori-induced elongation phenotype of AGS cells. Non-

phosphorylated CagA forms CagA/Grb2/Sos complexes that promote Ras-GTP 

formation, which in turn stimulates the Raf→Mek→Erk signaling cascade. The 

activation of these factors leads to cell scattering as well as to the activation of 

nuclear transcription factors, involved in cell proliferation and in the expression of 
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the anti-apoptotic myeloid cell leukaemia sequence-1 (MCL-1) protein (Mimuro et 

al., 2007). Finally, CagA can also induce the ubiquitination and degradation of 

RUNX3, a tumor suppressor which is frequently inactivated in gastric cancer (Tsang 

et al., 2010). In certain H. pylori strains, non-phosphorylated CagA can induce IL-8 

expression via NF-κB activation (see below) (Brandt et al., 2005; Kim et al., 2006; 

Lamb et al., 2009), however this mechanism is not universal across all cag PAI-

positive strains (Keates et al., 1999; Keates et al., 2001; Meyer-ter-Vehn et al., 2000; 

Naumann et al., 1999). 

 

1.5.3 Bacterial Peptidoglycan 

During infection, fragments of the H. pylori peptidoglycan (PGN) are 

transferred to and internalized into the gastric epithelial cells via the cag type IV 

secretion system and outer membrane vesicles (OMV) (Kaparakis et al., 2010). 

However, it is not clear if the secretion of peptidoglycan muropeptides occurs by a 

syringe-like mechanism, analogous to CagA, or whether the only intimate contact of 

the T4SS assemblies with the host cell surface could induce a facilitated 

internalization of the PGN. The muropeptides are sensed by the nucleotide-binding 

oligomerization domain 1 (NOD1), an intracytoplasmic pathogen pattern-recognition 

molecule (Boughan et al., 2006; Viala et al., 2004), that activates host cells signaling 

molecules, as nuclear factor κB (NF-κB), p38 and Erk (Allison et al., 2009; Viala et 

al., 2004). These factors stimulate the production of proinflammatory cytokines MIP-

2, β-defensin, and IL-8. Moreover, NF-κB induces the expression of AID (a DNA-

editing enzyme) in host target cells, which results in the accumulation of mutations 

in the tumor suppressor protein TP53 (Matsumoto et al., 2007). Thus, induction of 

AID might be a mechanism whereby gene mutations could emerge during H. pylori-

associated gastric carcinogenesis. Furthermore, NOD1 activation by H. pylori 

peptidoglycan also regulates the production of type I interferon (IFN), which likely 

affects Th1 cell differentiation (Watanabe et al., 2010).  
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1.5.4 Intact T4SS components 

During H. pylori infection, several host responses rely on an intact T4SS, but 

are independent from CagA or peptidoglycan delivery. Hence, these responses are 

likely triggered by the interaction of the T4SS structure with the host cell, or are 

induced by still unknown secreted factors. Infections of gastric epithelial cells with 

H. pylori are reported to profoundly activate numerous receptor tyrosine kinases 

(RTKs) in a T4SS-dependent but cagA-independent fashion, including the epidermal 

growth factor receptor EGFR (Churin et al., 2003; Keates et al., 2001), hepatocyte 

growth factor receptor c-Met and Her2/Neu (Churin et al., 2003). Studies on the 

downstream signaling indicate that activation of EGFR induces pro-inflammatory 

responses, leading to the secretion of IL-8 (Keates et al., 2001), while the activation 

of c-Met (but not EGFR or Her2/Neu) is involved in cell scattering and motogenic 

responses of infected gastric epithelial cells (Churin et al., 2003). The small Rho 

GTPases Rac1 and Cdc42 are also activated by a T4SS-dependent but CagA-

independent mechanism and play a role in triggering the scattering and motility of 

infected gastric epithelial cells (Churin et al., 2001). However, the actual T4SS factor 

involved is unclear. Moreover, H. pylori is reported to disrupt the normal cell cycle 

progression by changing histone H3 phosphorylation levels both at serine residue 10 

and threonine residue 3, hence inducing a transient pre-mitotic arrest (Fehri et al., 

2009). The cag–encoded CagL protein is shown to be involved in the activation of 

EGFR, Her3/ErbB3, Src and Fak kinases in an RGD-dependent manner (Jimenez-

Soto et al., 2009). In facts, CagL mimics some important functions of human 

fibronectin (Tegtmeyer et al., 2010) and it can directly trigger intracellular signaling 

pathways upon contact with mammalian cells, both exploiting the natural 

fibronectin-mediated pathways but also activating fibronectin-independent signaling 

events. In particular, the interaction of the CagL RGD domain with the integrin 

member α5β1 triggers the dissociation of the metalloprotease ADAM17, that in turn 

activate EGFR. Lastly, H. pylori expresses a yet unknown T4SS factor exhibiting 

antiphagocytic activity, which can actively block the uptake of the bacteria by 

professional phagocytes, playing an essential role in the immune escape processes 

(Ramarao et al., 2000). 
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2. AIMS OF THE PROJECT 
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The severity of Helicobacter pylori infections largely depends on the genetic 

diversity of the infecting strain, and particularly on specific genotypes of virulence-

associated genes, such as the cag pathogenicity island (cag-PAI). The effects of the 

cag-T4SS on host cell signaling pathways have been extensively described in 

literature. On the contrary, little is known about the bacterial regulators that underlie 

the coordinated expression of cag gene products, needed to assemble a functional 

secretion system apparatus. To begin to fill this gap, a comprehensive analysis of the 

transcriptional regulation of the cag-PAI operons was undertaken.  

 

 To pursue this goal, a robust tool for the analysis of gene expression in 

H. pylori was first  implemented. We constructed a bioluminescent reporter 

system based on the P. luminescens luxCDABE operon, constituted by a 

promoterless G27 lux acceptor strain and a transforming vector pVCC, in 

which promoters of interest can be conveniently cloned. The reporter system 

was validated by comparisons with transcriptional analyses and 

systematically used for the comprehensive study and mapping of the cag 

promoters. 

 

 The identification of bona fide cag promoters had eventually 

permitted to pinpoint the set of cag transcriptional units of the PAI. The 

responses of these cag transcriptional units to metabolic stress signals were 

analyzed in detail, and integrated with a) transcription studies in deletion 

mutants of important H. pylori virulence regulators, and b) protein-DNA 

interaction analyses to map the binding sites of the regulators. 

 

 Finally, a small regulatory RNA (sRNA) cncR1 encoded by cag-PAI 

island was identified upstream of the cagP gene (HP0536). In order to 

validate cncR1 , which could participate to post-transcriptional cag-PAI 

regulation, northern blot analyses and studies with lux reporter constructs 

have been performed to map the 3’ end of the molecule. To identify 

regulatory effects exerted by cncR1 on the H. pylori gene expression, the 
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cncR1 knock out mutant strain was derived and compared to the parental 

wild type strain by a macroarray approach. 

 

 

In synthesis, the aims of this thesis is: 

1. Implementation of a robust reporter system in H. pylori allowing for a 

comprehensive transcriptional analysis of cag promoters in vivo;  

2. Identification of the H. pylori cag pathogenicity island transcriptional units and 

analysis of their regulatory responses; 

3. Functional study of the cncR1 sRNA encoded by the H. pylori cag-

pathogenicity island. 
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3. PART 1: 
 

Implementation of the lux reporter system in  

H. pylori 
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3.1 SPECIFIC INTRODUCTION 

Despite its importance as a human pathogen and the enduring interest of the 

scientific community in its fundamental biology, the study of Helicobacter pylori 

gene expression has been somewhat hindered by the lack of suitable genetic tools 

(Boneca et al., 2008), in particular by the limited effectiveness of available reporter 

systems (Carpenter et al., 2007). 

An ultimate reporter gene ideally would be expressed without perturbing the 

physiology of the recipient organism, and it would be readily detectable and 

quantifiable using standard laboratory instrumentation without the need to disrupt the 

living cell. In addition, the reporter should be highly sensitive, with low background 

noise, in order to permit analyte detection at low molar concentrations and, at the 

same time, to prove rapid enough to enable monitoring of quick response kinetics 

(Hakkila et al., 2002; van der Meer and Belkin, 2010). Finally, the signal should not 

perdure or stably accumulate in the cell, as this may lead to significant biases in the 

estimation of gene expression over time. 

Of the many reporter systems tested in Gram-negative bacteria, the 

bioluminescent systems based on paralogues of the bacterial luxCDABE luciferase 

operons appear to best fulfill these criteria (Hakkila et al., 2002; Meighen, 1993). 

The luciferase activity is provided by two enzyme subunits, LuxA and LuxB, 

encoded by the luxAB cistrons, which together catalyze the oxidation of a reduced 

riboflavin phosphate and a long-chain fatty aldehyde, coupling the reaction with 

bioluminescence, e.g., emission of light in the visible range with a maximum at 490 

nm (Meighen and Dunlap, 1993). An enzymatic reductase complex, encoded by 

paralogues of the luxCDE cistrons, is responsible for shunting fatty acid metabolites 

from the central metabolism to convert them into the aldehyde substrate used by the 

LuxAB complex to catalyze the bioluminescence reaction in vivo. 

In H. pylori, previous comparisons of reporter fusions to a cat cassette 

(providing chloramphenicol resistance), GFP (encoding green fluorescent protein), 

and a Vibrio harveyi luxAB operon proved the superiority of the luciferase-based 

system in faithfully reflecting the dynamic changes detected at the mRNA level at 
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different time points throughout growth (Niehus et al., 2002). In the latter system, 

fusion of the sole luxAB operon as a reporter imposed the external supply of the 

aldehyde substrate in order to catalyze the emission of bioluminescence, limiting to 

some extent its usefulness in vivo and leaving open the question of whether fusions 

with the whole luxCDABE operon would be functional in H. pylori as well. In 

addition, the V. harveyi luciferase has a temperature optimum below 37°C (Meighen, 

1991), which may give rise to inconsistent measures at continuous culture at 37°C or 

prove restrictive if expression has to be analyzed after heat shock or under conditions 

of metabolic stresses. 

Unlike those of the marine V. harveyi enzyme, the luxCDABE gene products 

of the soil bacterium Photorhabdus luminescens retain mesophilic luciferase activity, 

operating at temperatures as elevated as 45°C (Meighen and Dunlap, 1993). 

Accordingly, the P. luminescens luxCDABE operon has been successfully employed 

as a reporter system in Campylobacter jejuni, both to image the bacterium (Kassem 

et al., 2010; Kelana and Griffiths, 2003) and to quantify sigma 28 promoter activity 

(Allen and Griffiths, 2001; Ding et al., 2005). 

 

The implementation in H. pylori of such a bioluminescent reporter system 

based on the P. luminescens luxCDABE cassette is reported. The robustness of this 

new lux reporter system is validated in noninvasive in vivo monitoring of dynamic 

transcriptional responses of inducible as well as repressible promoters and it is 

demonstrated the suitability of lux reporter for the implementation of genetic screens 

in H. pylori. 
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3.2 RESULTS 

3.2.1 Construction of the H. pylori lux reporter system 

Two separate elements have been used to generate an H. pylori lux reporter 

system: a G27 lux acceptor strain and the transforming vector pVCC, both 

schematically represented in Fig. 6. 

The first element is the G27 lux acceptor strain (Table 3), a G27 derivative 

carrying a kanamycin resistance cassette upstream of a divergent, promoterless 

luxCDABE operon derived from Photorhabdus luminescens, all engineered in the 

vacA locus (Fig. 6A). The products of the luxAB genes retain a mesophilic luciferase 

activity (Meighen, 1991), while the remaining luxCDE cistrons code for the 

reductase complex responsible for the biosynthesis of the aldehyde substrate, which 

is used by the luciferase complex to catalyze the bioluminescence reaction. By 

default, the G27 lux acceptor strain lacks bioluminescent activity due to the absence 

of a functional promoter upstream of the luxCDABE operon. 

The second element of the system is the pVCC suicide transformation vector, 

a 5,155-bp plasmid designed to conveniently introduce promoters of interest 

upstream of the lux operon by double homologous recombination in the G27 lux 

acceptor strain. It carries flanking regions with homology to the 3′ end of the cysS 

and the (promoterless) 5′ end of the luxC cistrons, respectively. Between these 

flanking regions, pVCC encompasses a Campylobacter coli cat cassette, conferring 

selectable chloramphenicol resistance, and unique BamHI, KpnI, and SacI restriction 

sites in which promoters, DNA sequences, or transcriptional fusions of interest can 

be cloned (Fig. 6B).  

Following H. pylori G27 lux transformation with pVCC and a successful 

(double) homologous recombination event of the cysS and luxC regions, the 

kanamycin resistance will be lost while the new derivatives of G27 lux will gain the 

ability to grow on medium supplemented with chloramphenicol as a selectable 

marker. Consequently, promoters cloned in pVCC upstream of luxC in the correct 

orientation accordingly will drive the expression of the luxCDABE operon in vivo to 

emit bioluminescence. The following can be monitored in a noninvasive and 
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quantitative manner with a luminometer, a multiplate reader, or even with 

chemiluminescence imagers.  

 

 

 

Fig. 6  (A) Genomic organization of H. pylori G27 and the derivative G27 lux acceptor 

strain. (B) Detailed map of the pVCC transformation vector. Numeration starts from the 

EcoRI site upstream of the cysS 3′ region. Flanking regions for double homologous 

recombination in G27 lux are indicated by dashed crossed lines. Unique BamHI, KpnI, SacI, 

and SnaBI restriction sites can be used to clone fragments of interest upstream of the luxC 5′ 

region. The cat promoter maps upstream of the promoter cloning site and in divergent 

orientation with respect to the lux operon to avoid bias deriving from antisense transcription.  

 

3.2.2 Linear response of the lux reporter system 

The expected codon adaptation index (eCAI; 0.754) and the absence of long 

stretches of rare codons suggested that codon utilization of the P. luminescens 

luxCDABE cassette should not represent a problem in H. pylori. Thus, to first verify 
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the response of the lux system in reporting promoter strength or the abundance of 

native transcripts in H. pylori, transcriptional fusions of the luxCDABE operon with 

PcagU and PcagP promoters were generated. These two cag promoters were chosen 

because the abundance of their respective transcripts changes according to the 

growth phase (see next sections). The transcript levels at the PcagU promoter 

remained constant throughout growth (Fig. 7A), while the levels at the PcagP 

promoter decreased markedly toward the late-exponential phase (Fig. 7B). 

Amplicons encompassing cagU and cagP promoter regions and parts of their 5’ 

untranslated regions (5’UTRs) were cloned in pVCC leading to the PVCC::PcagU-

5'UTRtr and PVCC::PcagP-5'UTRtr constructs, respectively (Materials and 

Methods). After transformation, the cat selected clones G27 PcagU-5'UTRtr-lux 

(hereafter referred as PcagU-lux) and G27 PcagP-5'UTRtr-lux (hereafter referred as 

PcagP-lux) carried the PcagU-5'UTRtr and PcagP-5'UTRtr regions cloned upstream 

the luxCDABE operon in the same orientation with respect to the reporter. The 

luminescence emitted by these two mutant strains was assayed with a Victor 

multiplate reader, normalized according to the OD600 of the cultures and compared to 

the mRNA levels at the native PcagU and PcagP promoters, measured through 

quantification of primer extension analyses at different points of the growth curve 

(Fig. 7). For unvarying (PcagU; Fig. 7A) as well as for decreasing transcript levels 

(PcagP; Fig. 7B), the bioluminescence emitted by the respective reporter strains 

faithfully reflected the trend of the  transcript abundance, suggesting a linear 

response of the lux reporter system in the mid- and late-exponential phases. At later 

time points, when the cultures entered the advanced stationary phase, the emitted 

luminescence decreased (data not shown). This repeatedly observed phenomenon is 

likely attributable to the high metabolic burden associated with the expression of the 

luxCDABE reporter operon. On the other hand, no significant retardation of growth 

rates was observed between the parental G27 wild-type strain and the G27 PcagU-

lux and G27 PcagP-lux derivatives (Fig 7C), suggesting that the expression of the lux 

operon has a modest biological cost in the exponential phase of liquid cultures.  
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Fig. 7 Linear response of the lux reporter system in mid-and late-exponential phase 

cultures. Transcript levels at the native cagU (A) and cagP (B) promoters were assayed in 

triplicate by primer extension analysis. The values are reported as arbitrary units of 
32

P 

counts measured in a PhosphorImager (gray squares). Error bars indicate the standard 

deviations. Values of emitted luminescence of G27 PcagU-lux and G27 PcagP-lux reporter 

strains, measured in a multiplate reader and normalized according to the optical density 

(OD600) of the culture, are depicted by white circles. The different trend of cagU and cagP 

lux fusion expression was confirmed by linear regression analysis fitted using the least-

square approach (dotted line). (C) Growth rates of the parental G27 wild-type strain and the 

PcagU-lux and G27 PcagP-lux derivatives over a 15 h time-course experiment. 

 

3.2.3 Reporter assays with an inducible promoter 

To better characterize the reporter system upon (faster) dynamic 

transcriptional changes, I set out to assay the response kinetics of the pfr promoter, 

driving the expression of the Pfr bacterioferritin using the lux reporter system. This 

promoter has been extensively studied in H. pylori and used to validate a GFP 

reporter system implemented on a modified endogenous low-copy-number plasmid 

(Carpenter et al., 2007). It is repressed in iron-depleted conditions by the ferric 

uptake regulator Fur and promptly induced in response to iron (Carpenter et al., 

2009; Delany et al., 2001b). An amplicon of 180 bp containing the regulatory 

elements upstream of the pfr transcriptional start site was cloned in pVCC, obtaining 

the PVCC::Ppfr and PVCC::oppPpfr constructs (Table 4 and Materials and 

Methods). After transformation of the G27 lux acceptor strain, the cat selected G27 

Ppfr-lux and oppPpfr-lux strains were obtained, carrying the pfr promoter in either 

direct (Ppfr) or opposite (oppPpfr) orientation with respect to the luxCDABE operon.  
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Fig. 8 Reporter assays with the inducible Ppfr promoter. (A) Inverted dark-field image of 

luminescence emitted on plates by H. pylori reporter strains carrying the Ppfr promoter in 

either codirectional (G27 Ppfr-lux; white squares) or opposite (G27 oppPpfr-lux; black 

triangles) direction with respect to the luxCDABE operon and in a wild-type or Δfur 

(fur::aphA-3; gray circles) genetic background. Images were acquired through the CCD 

camera of a laboratory gel imager. The miniature shows the bright-field image of the plate. 

(B) Quantification of emitted luminescence (symbols are as described for panel A) measured 

through a luminometer and normalized according to the optical density (OD600) of the 

cultures. (C) Iron inducibility of the Ppfr promoter verified through the reporter system in 

wild-type (white squares) and Δfur (gray circles) genetic background. 

http://aem.asm.org/content/78/18/6524/F3.expansion.html


 

45 

 

Moreover, from G27 Ppfr-lux strain, the mutant G27 Ppfr-lux Δfur was 

derived, carrying the Ppfr-lux transcript fusion in a fur knockout background 

(fur::aphA-3). The G27 Ppfr-lux, oppPpfr-lux and Ppfr-lux Δfur strains were streaked 

on Columbia agar plates and the bioluminescence emitted on the plates was recorded 

with the charge-coupled device (CCD) camera of a gel imager (Fig. 8A). 

No luminescence was evident in negative controls carrying the pfr promoter 

in the opposite orientation (oppPpfr) with respect to luxCDABE (oppPpfr-lux strain), 

while a dim light emission could be detected on G27 lux derivatives carrying Ppfr in 

direct orientation (Ppfr-lux strain). This luminescence was significantly stronger in 

the Δfur strain under conditions in which the Ppfr promoter is constitutively 

derepressed (Delany et al., 2001b), permitting the identification of even single 

colonies on the plate. This desirable feature indicates that genetic screenings can be 

easily implemented using the lux reporter system in association with a strong 

promoter. 

In parallel, a luminometer was used to quantify the luminescence of 

exponentially growing liquid cultures, normalized according to the optical density of 

the culture (Fig. 8B). The analysis reported a difference of more than four orders of 

magnitude between derivatives carrying Ppfr in direct orientation with respect to 

luxCDABE operon, against negative controls carrying Ppfr in opposite orientation. 

These results demonstrate that in H. pylori, the lux reporter system has an 

intrinsically low background and is therefore suited for sensitive applications. 

Moreover, the reporter system readily detected the derepression of Ppfr promoter in 

the Δfur background, with normalized luminescence increased about another order of 

magnitude over that of the G27 Ppfr-lux strain, mirroring published data on pfr 

transcript abundance in wild-type and Δfur strains (Delany et al., 2001b).  

Subsequently, the time-response kinetics of the G27 Ppfr-lux reporter in wild-

type and Δfur (G27 Ppfr-lux Δfur) backgrounds was monitored by using a 

luminometry, after the addition of 1 mM (NH4)2Fe(SO4)2 to exponentially growing 

cultures (Fig. 8C). In a wild-type background (G27 Ppfr-lux), the prompt induction 

of Ppfr is reflected in a 10-fold increase of luminescence, reaching a maximum at 60 

min after iron treatment. On the contrary, in a fur knockout background (G27 Ppfr-

lux Δfur), no induction of luminescence is detected. This is expected for the Ppfr 
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promoter, as its iron-dependent regulation is directly mediated by Fur. The observed 

response curves accurately parallel the kinetics of the pfr transcript levels after iron 

treatment (Delany et al., 2001b), indicating a consistent response of the reporter 

system. 

Finally, the time-response kinetics of the iron-responsive G27 Ppfr-lux strain, 

treated with 1 mM (NH4)2Fe(SO4)2 for 120 min and then treated with 1.1 mM 2,2-

dipyridyl to sequester stoichiometrically the iron ions was assayed (Fig. 9). After the 

addition of the chelator, it has been observed a 10-fold reduction of the luminescence 

(black line - triangles) to values similar to the non-induced samples (dark grey line - 

diamond) over 90 min, followed by a further 10-fold reduction of luminescence over 

the subsequent 120 min. In contrast, samples induced with iron, but not treated with 

2,2-dipyridyl (light grey line - squares), maintained the aforementioned high levels of 

luminescence. Likely, the slight excess of the 2,2-dipyridyl sequestered the iron ions 

either added with the initial treatment and those normally present in the growing 

medium, prompting the Fur-mediated repression of the Ppfr promoter below the 

physiological values of expression.  

 

Fig. 9 Iron-dependent response of the pfr promoter in presence of divalent Fe ions and iron 

chelator. Exponential growing cultures of G27 Ppfr-lux strain were treated with 1 mM 

(NH4)2Fe(SO4)2 (black line with triangles and light grey line with squares) or sterile water 

(dark grey line with diamonds). The emitted luminescence was recorded at regular intervals 

over 120 min and normalized according to the optical density of the cultures. Subsequently, 

to the iron-enriched samples were treated with 1.1 mM 2,2-dipyridyl (light grey line with 

squares) or left untreated, and the luminescence was measured at regular intervals over 

further 210 min. Mean values from two independent experiments were used to determine the 

n-fold variation of the treated samples with respect to the untreated sample. 
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Thence, the observed Fe
2+

-dependent induction of the Ppfr-lux reporter strain 

is reversible and the time-response kinetic of repression is similar to the induction. 

Together, the results validate the use of the P. luminescens luxCDABE operon 

as a robust tool to monitor the dynamic responses of inducible promoters in H. 

pylori.  

 

3.2.4 Reporter assays with a repressible promoter 

To test whether the lux reporter could also be valuable to monitor the 

regulation of other repressible promoters, the system was assayed on the promoter of 

the fecA3 gene, encoding a putative outer membrane ferric dicitrate transporter. This 

promoter is repressed in a nickel-dependent manner by binding of the NikR regulator 

to two adjacent operators, OPI and OPII, overlapping the transcriptional start site and 

the extended −10 box, respectively, with OPI being necessary and sufficient for the 

nickel-dependent repression (Danielli et al., 2009; Ernst et al., 2006; Romagnoli et 

al., 2011). To this aim, several G27 lux–derived reporter strains were created (Fig. 

10A and Table 3): the G27 PfecA3-lux, carrying the full-length fecA3 promoter, 

encompassing the −10 box, the RBS and the start codon of fecA3 cloned in direct 

orientation upstream the luxCDABE operon; the G27 oppPfecA3-lux control strain 

carrying the full-length fecA3 promoter in opposite orientation with respect to 

luxCDABE; the G27 PfecA3SDlux-lux strain, carrying a 3′-shortened sequence 

missing the native fecA3 RBS and start codon, in which translation starts on the 

heterologous luxC initiation sequence; and the G27 PfecA3SDlux-luxOPINikR strain, a 

PfecA3SDlux-lux derivative mutant, with the fecA3 promoter lacking the OPI NikR 

operator responsible for Ni
2+

-dependent repression of the promoter. The 

bioluminescence of these reporter strains was then analyzed as described for the Ppfr 

reporter strains, and results are shown in Fig. 10B. 

Streaked on plates, the G27 oppPfecA3-lux negative-control strain, carrying 

PfecA3 in opposite orientation with respect to luxCDABE, was unable to emit 

detectable luminescence. On the contrary, both G27 PfecA3-lux and PfecA3SDlux-lux 

reporter strains showed a readily detectable signal, which is indicative of robust 

expression of the lux reporter in the absence of Ni
2+

 treatment (Fig. 10B), while an 
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even stronger luminescence was recorded in the PfecA3SDlux-ΔOPINikR-lux reporter 

strain.  

These qualitative results were further quantified with a luminometer on 

exponentially growing liquid cultures. The normalized quantitative luminescence 

measures paralleled the qualitative observations made on plates, with more than four 

orders of magnitude stronger signal of strains carrying the codirectional PfecA3 

promoter (G27 PfecA3-lux) above levels for strains carrying it in divergent 

orientation (G27 oppPfecA3-lux) with respect to the lux operon (Fig. 10C). 

Interestingly, G27 PfecA3-lux and PfecA3SDlux-lux strains showed similar 

luminescence values, suggesting that the absence of the native fecA3 RBS and ATG 

initiation codon had no significant influence on the measured levels of lux 

expression. Likely, the Shine-Dalgarno sequence (SD) of P. luminescens is well 

recognized and supported in H. pylori. This feature may be convenient if the activity 

of different promoters or transcriptional fusions has to be compared, as it filters out 

the bias of dissimilar translation rates that may arise from various ribosome binding 

sites and/or 5′ untranslated regions (5’UTRs).  

In addition, a 3-fold increase of luminescence in the PfecA3SDlux-ΔOPINikR-

lux strain, that carries the fecA3-lux fusion deleted of the OPINikR regulatory element, 

was recorded. The observed behavior reflects the constitutive derepression induced 

by the lack of NikR repressor binding to the promoter. Accordingly, the addition of 1 

mM Ni
2+

 to the culture medium resulted in a progressive repression of the 

luminescence signal only in G27 PfecA3-lux and PfecA3SDlux-lux, carrying the intact 

nickel-responsive OPINikR element, while in its absence the lux reporter strain was 

completely insensitive to nickel (Fig. 10D). These results demonstrate that the lux 

reporter system can be used to monitor the time-response kinetics of repressible 

promoters, making it a very versatile instrument in the H. pylori molecular toolbox. 

 

 



 

49 

 

 

Fig. 10 Reporter assays with the repressible PfecA3 promoter. (A) Schematic representation 

of the PfecA3-lux fusion constructs, showing the positions of the NikR operators, the −10 

box (white box), the transcriptional start site (bent arrow), and the native fecA3 Shine-

Dalgarno (SD) sequences as well as the heterologous SDluxC sequences. (B) Inverted dark-

field image of luminescence emitted on plates by H. pylori reporter strains carrying the 

PfecA3 promoter in either codirectional (G27 PfecA3-lux; white squares) or opposite (G27 

http://aem.asm.org/content/78/18/6524/F4.expansion.html
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oppPfecA3-lux; white circles) direction with respect to the luxCDABE operon, carrying only 

the heterologous luxC ribosome entry site (G27 PfecA3SDlux-lux; black triangles), and a 

deletion of the NikR OP-I operator important for Ni
2+

-dependent repression of fecA3 (G27 

PfecA3SDlux-ΔOPINikR-lux; gray circles). Images were acquired through the CCD camera of a 

laboratory gel imager. (C) Quantification of emitted luminescence (symbols are as described 

for panel B), measured through a luminometer and normalized according to the optical 

density (OD600) of the cultures. (D) Ni
2+

-dependent repression of the PfecA3 promoter 

verified through the reporter system with the wild-type fecA3 promoter and 5′UTR (white 

squares), the SDlux-substituted fecA3 SDlux (black triangles), and the PfecA3SDlux-ΔOPINikR-

lux variant with the NikR operator OPI deleted (gray circles).  

 

3.2.5 Utilization of the lux reporter for genetic screening 

Robust in vivo reporter systems greatly facilitate genetic screenings, 

especially if positive clones can be identified and picked easily over a vast plethora 

of negative ones.  

Strong promoters driving abundant luxCDABE expression permitted to spot 

single luminescent colonies on plates using the CCD camera of a gel imager, a 

common piece of equipment in most research laboratories (Fig. 8A). However, for 

weak promoters the integration time needed to acquire a detectable signal had to be 

increased significantly. This exposed the plates to prolonged periods of suboptimal 

temperature and unfavorable CO2 tension, making subsequent recovery of the 

positive clones demanding. Moreover, it was noticed that in stationary phase, the 

bioluminescence emitted by lux expressing clones has the tendency to drop (data not 

shown). Thus, to optimize the lux reporter system for genetic screening, an 

alternative high-throughput method based on luminescence monitoring single 

colonies growing in liquid in 96-well plates was implemented. To validate the 

method, a blind screen was performed. 

Single colonies of G27 lux-derivatives carrying the Ppfr promoter in the fur 

wild-type or knockout background (G27 Ppfr-lux and Ppfr-lux Δfur, respectively) 

were individually cultured in the wells of a microtiter plate. The growth (OD) and 

luminescence of each clone were monitored at regular time intervals over a period of 

72 h within a multilabel plate reader. Recalling the Fur-dependent repression of Ppfr, 

discrimination between wild-type and fur knockout backgrounds was based solely on 

the normalized reporter luminescence driven by the Fur-repressed Ppfr promoter. Out 

of 30 inoculated clones (15 G27 Ppfr-lux and 15 G27 Ppfr-lux Δfur), only one did not 
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grow. The remaining were promptly classified in two groups according to the weak 

(repressed Ppfr) or strong (derepressed Ppfr) emitted luminescence (Fig. 11). Clones 

in the first group were judged to have a wild-type background (Fig. 11, black bars), 

while clones belonging to the second group were predicted by the operator to be Δfur 

strains (white bars). Notably, all clones were correctly assigned, and viable ones 

could be effortlessly recovered and expanded even after 72 h of culture, 

demonstrating that the lux reporter system not only may be useful to monitor 

transcriptional responses but also can be implemented for genetic screening in H. 

pylori. 

 

 

Fig. 11 Genetic screening with the lux reporter performed in 96-well culture plates. 

Genotype prediction blind test of individual H. pylori clones expressing the Ppfr-lux 

promoter fusion in wild-type (black bars) and Δfur (white bars) genetic backgrounds.  
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3.3 DISCUSSION 

The success of H. pylori as a pathogen and its impact on human health 

depend on the concerted expression of virulence and stress resistance factors, which 

are controlled by a markedly small number of transcriptional regulators organized in 

a shallow transcriptional regulatory network (Danielli et al., 2010). In this context, it 

is clear that the implementation of robust reporter systems for the in vivo analysis of 

gene expression is of pivotal importance. 

Measurements of XylE or LacZ enzymatic activities have been used as 

heterologous reporter systems in many bacteria, and both have been implemented in 

H. pylori. XylE activity is absent from native strains, and the polypeptide encoded by 

the xylE reporter gene appears to be stable when expressed by the bacterium (Karita 

et al., 1996; Pereira and Hoover, 2005). In contrast, the measurement of the β-

galactosidase activity of the LacZ reporter in H. pylori has frequently proven critical, 

with low enzymatic activities detected even in the case of transcriptional fusions with 

the ureA promoter, one of the strongest promoters in H. pylori (van Vliet et al., 

2001b). Significant advances in the use of lacZ have recently been reported in the 

construction and tweaking of an inducible expression system to engineer conditional 

mutants (Boneca et al., 2008). However, due to the invasive nature of the enzymatic 

measurement and their relatively low sensitivity, both lacZ and xylE appear to be 

better suited for single- or endpoint assays rather than as a workable in vivo resource 

for the analysis of weak promoters or the implementation of genetic screens. 

For the latter purposes, reporter systems based on the promoterless 

chloramphenicol acetyltransferase cat cassette were developed. Fused to promoters 

of flagellar genes, the cat reporter displayed a high sensitivity. However, a major 

disadvantage of the cat reporter system is the well-known high stability of the Cat 

protein, which makes the system unsuited for the study of transient and dynamic 

changes in expression over time (Niehus et al., 2002). 

The same applies for fluorescent proteins, such as GFP, its cognate 

derivatives, or DsRed, which give slow responses, with significant rise of the signal 

occurring only several hours after induction (Hakkila et al., 2002). Another drawback 
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is their relatively weak sensitivity, leading to detection of the signal at approximately 

one hundred times higher analyte concentrations than with luminescent proteins 

(Hakkila et al., 2002). Optimized GFP isoforms with very bright fluorescence and 

improved folding in bacteria (Cormack et al., 1996) partially resolved this problem 

and constituted a pivotal tool for construction of reporter systems enabling the 

analysis of single H. pylori cells in culture or in contact with host cells (Carpenter et 

al., 2007; Josenhans et al., 1998; Kim et al., 2004). However, the high 

autofluorescence levels of H. pylori cells appear to compromise the use of GFP 

systems, especially in the advanced growth phases (Josenhans et al., 1998). 

Here, it has been demonstrated that a bioluminescent reporter system based 

on the P. luminescens luxCDABE operon provides a very convenient reporter to 

study the kinetics of gene expression in H. pylori. The reporter system is constituted 

by a promoterless lux acceptor strain, deriving from of the commonly used G27 

parental strain, and of a transforming vector pVCC, in which promoters of interest 

can be conveniently cloned. The system faithfully reported the iron-inducible Fur 

regulation of the pfr promoter (Fig. 8 and 9), as well as nickel-repressible NikR-

dependent regulation of the fecA3 promoter (Fig. 10), with very low background 

noise. The high signal-to-background ratio (≥10
3
- to 10

4
-fold difference), together 

with the self-sustainable expression of substrate fuelling the luciferase activity, 

makes the luxCDABE system especially suited for in vivo applications in which high 

sensitivity and continuous monitoring of the reporter output is desirable. It 

overcomes many of the limitations of fluorescent reporters, e.g., cellular 

autofluorescence, excessive stability, slow turnover of the fluorescent protein, etc., 

which have hampered the study of dynamic changes of H. pylori gene expression, 

especially in terms of host-pathogen interactions. For example, it is possible to use 

this reporter system to monitor differences in the timely activation of specific 

promoters upon contact with a human AGS cell line (see next section). 

Another advantage of the lux reporter over other available systems is its 

robustness, which allowed to correctly assign the genotype of a mutant strain using a 

high-throughput screening platform (Fig. 11). Moreover, single colonies with strong 

and constitutively derepressed promoters could be readily detected on plates using 
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standard laboratory imagers equipped with a CCD camera (Fig. 8), making the 

selection of positive clones particularly fast and cost-effective. 

Given the pervasive occurrence of antisense transcripts in H. pylori (Sharma 

et al., 2010), the lux reporter system also has excellent features to monitor putative 

posttranscriptional regulation mechanisms mediated by these noncoding RNAs. 

Indeed, the system can be used to verify target regions and pairing cores of putative 

small RNAs involved in posttranscriptional regulation and also to confirm the 

presence of predicted transcriptional terminators (see next sections). 

On the other hand, several drawbacks in the adaptation of the system to H. 

pylori have been noticed. First, the bioluminescence of the reporter progressively 

fades when the cultures enter the stationary phase. This is probably due to the high 

metabolic burden associated with the expression of the large lux operon and with the 

withdrawal of fatty acid metabolites from the central metabolism to synthesize the 

luciferase aldehyde substrate. This limits the range of workable and reproducible 

conditions to the mid- and late-exponential phases of growth (Fig. 7). Second, it has 

been observed that low pH has a negative effect on the emission of luminescence on 

the promoter tested, hampering to a certain extent the usefulness of the system if acid 

responses have to be monitored (data not shown). Finally, another pitfall of the 

system is that the reporter fusion is inserted at the vacA locus, so that promoters are 

not tested at their original positions on the chromosome, while it is acknowledged 

that the activity of certain promoters may be influenced by the DNA context. 

Nevertheless, the many desirable features of the described lux reporter system 

provide a major improvement to the available H. pylori toolbox. It is therefore 

anticipated that they will greatly help the study of kinetic responses in gene 

expression and implementation of genetic screens in this bacterium. 
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4. PART 2: 
 

Transcriptional analysis of the cag island 
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4.1 RESULTS 

4.1.1 Mapping of the cag promoter  

Recent studies on Helicobacter pylori have given some insights on the 

transcriptional organization of the cag pathogenicity island, with the mapping of the 

transcriptional start sites (TSS) located in the cag locus and the identification of their 

promoter regions. In particular 40 putative 5’-end of RNA transcripts were mapped 

in this DNA region using strain 26695; of these, only 14 5’-end map within 300 bp 

upstream of cag ORFs (Sharma et al., 2010; Ta et al., 2012). To further study 

transcriptional regulation of the cag promoters in H. pylori G27 strain, we set up 

primer extension analyses using oligonucleotides mapping downstream the 14 

aforementioned 5’-end of RNA transcripts (Table 6). 

With the exception of the transcriptional start sites mapping upstream of the 

cag , cagW and cagZ genes, our primer extension results confirmed the other 11 

TSS, suggesting that the cag region of G27 strain harbors at least 11 transcriptional 

units: cag, cagVXWYZ, cagUT, cagS, cagQ, cagP, cagMN, cagFGHIL, 

cagCDE, cagB and cagA (Fig. 12A). 

Nucleotide sequence analyses of these 11 cag promoters showed -10 regions 

with homology to the canonical TATAAT E. coli promoter consensus sequence, 

recognized by the vegetative sigma factor σ
80

 of H. pylori (Fig. 12B). In contrast, a   

-35 TTGACA motif homologue to the E. coli -35 consensus sequence was identified 

only in the PcagF promoter region. Notably, cag, cagV, cagU, cagQ, cagM, cagC, 

cagB and cagA exhibited an extended TGn -10 box (Fig 12B – grey boxes), able to 

ensure transcription even in the absence of a conserved -35 box. Intriguingly, the 

PcagS and PcagP promoters show the -10 sequence only, with no upstream -35 and 

no TG motifs. 
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Fig. 12  (A) Gene arrangement of the cag pathogenicity island in H. pylori G27 strain. The 

mapped transcriptional start sites (TSS) of each promoter are indicated by a bent arrow and 

the inferred operon organization is represented in tones of gray. (B) Summary of relevant 

features within the nucleotide sequences of the 11 mapped Pcag promoters. The TSSs (+1) 

are boxed in black boxes and showed in boldface. Sequences corresponding to -10 regions, 

the extended TGn elements and recognizable -35 region are enlightened in grey boxes. (C) 

Schematic representation of the Pcag-lux and Pcag-5’UTR-lux fusion constructs, obtained 

transforming the G27lux acceptor strain with the PVCC vector. The promoter sequences with 

or without the 5’untranslated regions (5’UTRs) carried by the pVCC vector  are inserted 

upstream the luxCDABE operon by double homologous recombination and selected by cat 

chloramphenicol resistance. (D) Comparison of the transcript levels at the Pcag promoters 

fused with lux reporter genes. mRNA levels of the Pcag-lux constructs were assayed by 

primer extension analysis using the oligonucleotide VSluxC1 and quantified with a 

phospoimager. The mean values from two independent experiments are reported as arbitrary 

units of 
32

P counts, normalized on Pcag. 
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4.1.2 Analysis of the cag transcript levels 

To evaluate the transcript levels at the cag promoters and compare their 

relative mRNA abundance, we used H. pylori strains harboring the transcriptional 

fusions of the cag promoters with a lux reporter operon, as described in the previous 

sections. Briefly, for each cag promoter, the promoter region was cloned upstream 

the promoterless lux operon from Photorhabdus luminescence, previously inserted in 

the chromosomal vacA locus of H. pylori (Fig. 12C). The Pcag-lux strains were 

grown to mid log phase and transcript levels were assayed and quantified by primer 

extensions. Results normalized on the mRNA level at the Pcag promoter, are 

reported in Fig. 12D, showing PcagQ, PcagP and PcagA promoters with the highest 

mRNA amounts, estimated as 2.6-, 5.7- and 3.6-fold higher than the transcript level 

at Pcag promoter. In contrast, PcagS exhibited the minimum mRNA level (3.9-fold 

reduced levels with respect to Pcag promoter) and the other Pcag promoters showed 

transcript levels similar to Pcag.  

Since both PcagP and PcagS show no conserved -35 or TG elements, we 

speculate that the observed high transcript level at the PcagP promoter and the low 

level of transcript at the PcagS promoter are likely to be exerted by an activator and a 

repressor, respectively. 

 

4.1.3 Growth-phase regulation of cag promoters 

To study the transcriptional regulation of the cag promoters during growth, 

we set out a 15 hours time course experiment of H. pylori G27 liquid cultures. Cells 

were collected at different time points and used to extract total RNA for quantitative 

primer extension experiments at the 11 cag promoters of interest (Fig 13). 

Transcription from the Pcag, PcagV, PcagF and PcagA promoters showed no 

significant variation in mRNA levels during the early exponential growth stages of 

the bacteria (Fig. 13A, lanes 1-3), while their amount increased in late logarithmic 

growth phase (Fig. 13A, lanes 4, OD=1.7). These extended RNA bands were 

quantified, normalized with respect to the signal measured at OD=0.2 (Fig. 13A, lane 

1) and reported in the graph underneath. As expected, mRNA level from these 

promoters was unchanged in cultures grown from OD=0.2 to OD=1.1, while at later 
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time points a two to ten fold increase of transcript levels from Pcag, PcagV, PcagF 

and PcagA promoters was measured (Fig. 13A, graph). 

By contrast, transcription levels from PcagS, PcagP, PcagM and PcagB 

promoters exhibited a reduction of mRNA levels during the time course experiment 

(Fig. 13B, lane 1-4). Quantification of the primer extensions products, normalized to 

the signal at OD=0.2 (Fig. 13B, lane 1), showed that the mRNA levels at the PcagS, 

PcagP, PcagM and PcagB promoters progressively decreased over time reaching a 

3.4-, 8.1-, 3.1- and 9.7-fold reduction at OD=1.7, respectively (Fig 13B, graph). 

Lastly, transcript levels from the PcagU, PcagQ and PcagC promoters 

showed no significant variation during the time-course experiment (Fig 13C, lanes 1-

4 and graph underneath). 

 

 

 

Fig. 13 Growth phase-dependent regulation of the Pcag promoters. The Pcag promoters are 

reported in the three panels according to the variations of the transcript levels during 

bacterial growth, with promoters induced at late logarithmic phase (A), repressed during 

bacterial growth (B) and not sensitive to growth phase-dependent regulation (C). An 

overnight culture of wild type strain was diluted to an OD600 of 0.08 and cultured for 15 

hours. Total RNAs were extracted from equal volumes of cultures at different time points 

corresponding to OD600 of 0.22 (t1), 0.53(t2), 1.06(t3) and 1.75(t4). Primer extension 

analyses were performed with 0.1 pmol of promoter-specific primers (Table 6) and 12-μg of 

total RNA. Results from time course experiments are shown in the upper panels. The 

intensity of the bands from two independent experiments were quantified with Image Quant 

Software, normalized on signal obtained at t1 and reported in the graphs as the n-fold 

change. 
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We conclude that during bacterial growth, transcription from Pcag, PcagV, 

PcagF and PcagA promoters increases at late log-phase, while transcription from 

PcagS, PcagP, PcagM and PcagB promoters is down-regulated. Likely, the former 

promoters are induced during the late log-phase, while the latter promoters appear to 

be repressed at the same growth phase. 

 

4.1.4 Environmental regulation at the cag promoters 

To study the transcriptional regulation of cag promoters in response to 

environmental signals, we exposed exponentially growing cultures of H. pylori G27 

strain to various conditions that mimic some of the environmental stresses likely 

encountered by the bacterium during infections. Total RNA was extracted from 

treated and untreated control samples and transcript levels at the cag promoters were 

assayed by quantitative primer extensions with the aforementioned cag-specific 

oligonucleotides (Table 6). 

In bacterial cultures exposed to heat shock (30 min at 42°C) we observed a 6- 

to 40-fold reduction of mRNA levels at most cag promoters (Fig. 14A), with the of 

Pcag and PcagA promoters that showed unchanged transcript levels (Fig. 14A). To 

further investigate on heat shock response, we assayed the mRNA levels at all cag 

promoters in  knock-out strains for the heat shock transcriptional regulators HspR 

and HrcA. In comparison to the wild type strain, the hspR and hrcA mutants, 

either grown in normal conditions or exposed to heat shock treatment, showed 

similar mRNA levels at all tested cag promoters (data not shown). Therefore, the 

observed variation in the mRNA levels after heat shock is not under the control of 

the HspR and HrcA regulators and, likely, is mediated by a still unknown factor or 

due to changes in the mRNA stability. 

Bacterial cultures treated with soluble Fe
2+

 (30 min with 1 mM 

(NH4)2Fe(SO4)2), iron chelator (30 min with 100 M 2,2-dipyridyl), or Ni
2+

 (30 min 

with 1 mM NiCl2), showed no significant variations in the transcript levels from 

most of the cag promoters (data not shown). An exception to this finding was 

observed at the PcagA promoter, showing a slight increase of RNA levels after 

exposure to Fe
2+

 and a 1.5-fold repression in iron-chlated conditions (Fig. 14B – 

upper panel). This iron-dependent response is in agreement with previous studies 
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(Ernst et al., 2005a; Pich et al., 2012). To further investigate on iron- and nickel-

dependent regulation, we assayed the mRNA levels at the cag promoters in the 

knock-out mutants of the iron-dependent regulator Fur and the nickel-dependent 

regulator NikR, exposed to the same conditions as the wild type strain. In RNA from 

the mutant cultures we observed unchanged transcript levels at the PcagA promoter 

(Fig. 14B – middle panel), as well as at the other cag promoters (data not shown). 

The loss of the iron-dependent response of the PcagA promoter in the fur mutant 

strain suggested that Fur can mediate the Fe
2+

–dependent regulation of at this 

promoter. In contrast, no iron- and no nickel-dependent responses were observed at 

the other cag promoters. 

Since intracellular Fur protein concentration increases during bacterial growth 

(Danielli et al., 2006), we assayed the iron-dependent response of the PcagA 

promoter in wild type and fur cultures grown to late log-phase (OD600=1.7), with 

results reported in Fig. 14B (bottom panel). As expected, in the wild type 

background, the iron-dependent response of the PcagA promoter was observed, with 

markedly higher differences in the mRNA levels between iron-repleted and iron-

depleted conditions, while in the fur strain, the transcript levels were unchanged. 

These results suggested that Fur represses the PcagA promoter in response to iron 

starvation, likely through a direct mechanism. 

To demonstrate direct Fur-promoter interaction and map its operators sites, 

we set up DNaseI footprinting assays using the PcagA and PcagB promoter regions 

as probes, and increasing amounts of recombinant Fur protein in Fe
2+

-repleted (holo-

Fur) and Fe
2+

-chelated (apo-Fur) conditions, respectively. The protection pattern of 

holo-Fur on the PcagA-PcagB intergenic region (Fig. 14C) shows four areas of 

altered DNaseI digestion, two at the minimal protein concentration used (21 nM) and 

two appearing at a concentration of 84 nM Fur. These results suggest the presence of 

two high-affinity binding sites, one of 19 bp spanning from position -44 to -63 of 

PcagA, and the other of 29 bp spanning from position -94 to -123 and overlapping 

with the PcagB -35 promoter region. Moreover, two Fur lower-affinity binding sites 

were detected, one extending from nucleotide +2 to -34 of PcagA, and the other 

spanning from nucleotide -147 to -178 and overlapping with the PcagB 
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transcriptional start site. A DNase I-hypersensitive site is apparent between the two 

high affinity binding regions. 

DNaseI footprinting assay of the apo-Fur on the same promoter probe 

showed four regions with altered DNaseI digestion pattern (Fig. 14D). This finding 

would suggest for the presence of four apo-Fur binding sites, mapping to nucleotide 

positions +2 to -34 (I), -44 to -63 (II), -94 to -123 (III) and -147 to -178 (IV) of 

PcagA. Regions I and IV showed high affinity binding with apo-Fur, while the 

regions II and III showed low affinity binding. The binding sites of apo-Fur on the 

PcagA promoter are consistent with the transcriptional analyses in Fig. 14B and 

support the hypothesis of the repressive role exerted by apo-Fur on the PcagA 

promoter. 
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Fig. 14 (A) Heat-shock response of the Pcag promoters. Primer extension analyses were 

performed on total RNA extracted from bacterial cultures of H. pylori wild type strain grown 

to exponentially phase and maintained at 37°C or exposed to 42°C for 30 min. (B) Iron-

dependent regulation of the PcagA promoter. Liquid cultures of wild type and fur strains 

were grown to OD600=0.5 or OD600=1.7 and treated for 30 min with 1 mM (NH4)2Fe(SO4)2 

(Fe+), 100M 2,2-dipyridyl (Fe-) or untreated (-). mRNA levels at the PcagA promoter were 

assayed by quantitative primer extension on the total RNA extracted. (C) In vitro binding of 

Fur protein to the PcagB-PcagA promoter region in a DNaseI footprinting assay. The probe 

used consists of a 462 bp NcoI/SalI fragment containing the PcagB-PcagA intergenic region 

5’-end–labeled on the NcoI site. Approximately 20 fmol the probe was incubated with 

increasing concentrations of Fur dimer, 0 nM (lane 1), 21 nM (lane 2), 42 nM (lane 3) and 84 

nM (lane 4). The binding reaction was performed in a final volume of 50 L in presence of 

divalent iron ions as cofactors (150 M (NH4)2Fe(SO4)2). The vertical grey and black boxes 

on the right of the panel indicate the areas of partial and complete DNaseI protection, 

respectively, resulting from binding of Fur on the probe. The numbers aside the boxes 

indicate the boundaries of the protected regions with respect to the +1 transcriptional start 

site (TSS) of PcagA. An hypersensitivity band that appears at high concentrations of Fur is 

indicated by a black triangle. On the left side of the panel, the TSS downstream PcagB and 

PcagA are indicated with bent arrows, while the relative position of the -10 and -35 regions 

of the two promoters are indicated as vertical black boxes. The G+A lane is a G+A sequence 

reaction on the labeled DNA probe used as size marker. (D) DNaseI footprinting of Fur 

protein to the PcagB-PcagA promoter region in absence if iron ions. The experimental 

conditions used for the footprinting assay were the same as described for the panel C, 

without the supplement of Fe
2+

 ions and with 150 M 2,2-dipyridyl used to chelate soluble 

iron. 

 

 

4.1.5 Acidic shock response 

To investigate the acidic shock response, liquid cultures of H. pylori grown to 

mid-log phase were divided in two subcultures and treated for 30 min either with 22 

mM HCl to adjust the pH of the medium to a value of 5.2 (acid shock) or with the 

same volume of sterile water (untreated control sample). The RNAs extracted from 

three independent cultures were assayed by primer extension experiments with 

results reported in Fig. 15. Transcript levels from Pcag, PcagU, PcagF and PcagA 

promoters increased in cells exposed to acidic shock with respect to the untreated 

sample (Fig 15A), and quantification of the bands showed a 3.8-, 2.3-, 3.2- and 1.9-

fold mRNA increase in the mRNA levels, respectively (Fig. 15A, graph). In contrast, 

transcript levels from the PcagS and PcagB promoters decreased after the acid shock 

(Fig. 15B) with a reduction of mRNA levels to 3.1- and 6.2-fold, respectively (Fig. 

15B, graph). Lastly, transcription from the PcagV, PcagQ, PcagP, PcagM and PcagC 

showed no significant variation in the mRNA levels after acid-exposure (Fig. 15C). 
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Subsequently, we assayed the transcript levels at the cag promoters after a 

prolonged acidic shock (90 min), in mid log-phase of growth (OD=0.7-0.8). 

Interestingly, transcription levels from the PcagV, PcagQ and PcagC promoters 

increased at 90 min to 1.7-, 3.2-, 6.3-fold, respectively (Fig. 15D), while mRNA 

levels from the PcagP and PcagM promoters showed no significant variations (Fig. 

15D). All the other promoters showed similar mRNA levels at 30 or 90 min acidic 

treatment. 

We conclude that exposure of bacteria to low-pH induces an immediate or 

delayed response, leading to variation of mRNA levels from 9 out of 11 cag 

promoters. 

 

 

 

Fig. 15 pH-dependent response of the Pcag promoters. Primer extension analyses were 

performed on total RNA extracted from bacterial cultures of H. pylori wild type strain, 

grown to exponential phase and treated for 30 or 90 min with 22 mM HCl to adjust the pH of 

the medium to 5.2, or maintained at neutral pH (pH 7.0). The intensity of the bands of four 

independent experiments were quantified and reported in the graphs as n-fold variation of the 

transcript levels in the acidic-treated samples with respect to the untreated sample. (A) Pcag 

promoters with transcript levels increased after an acidic treatment for 30 min; (B) promoters 

with reduced mRNA levels after the 30min acidic treatment; (C) promoters with unchanged 

transcript levels after the treatment. Error bars indicate the standard errors and significant 

variations between treated and untreated samples are marked with asterisks. (D) Response of 

PcagV, PcagQ, PcagP, PcagM and PcagC promoters after an acidic treatment of 90 min. 
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4.1.6 Acid response in mutant strains 

It is well established that acidic-response in H. pylori is primarily controlled 

by the ArsRS and FlgRS two-component systems (TCSs) (Pflock et al., 2006a; Wen 

et al., 2009) and that an indirect role could be exerted by the metal responsive 

transcriptional regulators NikR and Fur (Valenzuela et al., 2011; van Vliet et al., 

2004). To investigate the role of ArsRS, NikR and Fur in acidic response of the 

Pcag, PcagU, PcagF, PcagA, PcagS and PcagB promoters (Fig. 15 A and B), wild 

type, fur, nikR and arsS strains were grown to mid-log phase, exposed to acidic 

shock for 30 min and assayed for mRNA levels by quantitative primer extension 

assays with results reported in Fig. 16. 

Intriguingly, PcagF and PcagS promoters showed a loss of the pH-induced 

response in the nikR mutant, showing unchanged transcript levels after acidic 

treatment with respect to the untreated sample, while in the fur and arsS mutants 

we observed an acid response similar to the wild type strain. This suggests that NikR 

mediates the acidic response at these promoters. 

Similarly, transcript levels at the PcagB promoter were unchanged after acidic 

treatment in the fur mutant, while the wild type strain and the other mutants showed 

a pH-induced reduction in the mRNA levels. These results suggest that Fur can 

mediate the acid-dependent repression of PcagB. On the other hand, Pcag promoter 

showed a loss of acidic response in both the fur and nikR mutants, suggesting that 

the two regulators can mediate the acidic response of Pcag. Finally, for PcagA and 

PcagU we observed variations of transcript levels in the mutant strains similar to that 

in the wild type strain, hence acid response of these promoters is mediated by still 

unknown factors. 

To further investigate on the observed loss of the acidic response of some 

Pcag promoters in the mutant strains, we performed footprinting assays of 

recombinant Fur protein on a labeled probe encompassing the Pcag promoter, while 

footprinting assays of recombinant NikR were performed on the DNA fragments 

corresponding to the Pcag, PcagS, PcagF promoters. We were not able to detect 

patterns of protection on the probes tested (data not shown), suggesting that the 

acidic response mediated by NikR and Fur on these promoters is indirect. 
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Fig. 16 Acid-dependent response of the Pcag promoters in fur, nikR and arsS mutant 

strains. Liquid cultures of G27-derived fur, nikR and arsS mutant strains were grown to 

exponential phase and exposed to acid-shock (pH=5.2) for 30 min. Transcript levels at the 

Pcag, PcagU, PcagF, PcagA, PcagS and PcagB promoters were assayed by quantitative 

primer extensions. The intensity of the bands of three independent experiments were 

quantified and reported in the graphs as n-fold change of the acidic-treated samples with 

respect to the untreated samples. Error bars indicate the error standards and the significant 

differences of n-fold variations in the mutant strains with respect to the wild type strain are 

marked with asterisks.  

 

4.1.7 Pcag responses to bacterium-host cell contact 

Model tissue co-cultures with human gastric adenocarcinoma (AGS) host 

cells-lines and H. pylori cells have been used to study the bacterium responses to the 

direct contacts with its host cells (Gieseler et al., 2005; Rohde et al., 2003; Sharma et 

al., 2010). To assess the possible in vivo effects exerted by bacterium-host contacts 

on the transcription of the cag promoters, we used co-cultures of AGS cells and H. 

pylori G27-derived strains carrying the Pcag-lux transcriptional fusions. Bacterial 

cultures were grown to mid log phase and used to infect AGS cells cultured in 24-

well plates (AGS
+
 sample), while same amounts of bacterial cultures were added to 

plates containing only the medium (AGS
-
 sample). During a 6 hours time-course 

experiment, we measured the luminescence of the samples at regular time intervals 

using a multilabel reader, and for each time point we calculated the luminescence 

signal ratio for bacteria grown in presence or in absence of AGS cells (AGS
+
/AGS

-
 

ratio). The Pcag-lux strain co-cultured with AGS cells exhibited an increase of the 

luminescence with respect to the cultures grown in the medium only, with 

AGS
+
/AGS

-
 ratio that increased over time reaching a final value of 1.7 at 6 hours 
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(Fig. 17). In contrast, the other Pcag-lux strains did not show significant differences 

between samples cultured with or without the AGS cells, with an AGS
+
/AGS

-
 ratio 

unchanged during the experiment, as showed by the PcagQ- and PcagB-lux strains 

(Fig. 17). 

We can conclude that under the experimental conditions used, the contact 

between H. pylori and its host cells exerts a positive effect only on expression levels 

at the Pcag promoter, hinting that AGS-bacterium interaction could trigger signals 

that regulate Pcag promoter through unknown factors. 

 

 

 

Fig. 17 Reporter assays with the Pcag-lux strains in bacterium-host contacts. Liquid cultures 

of Pcag-, PcagQ- and PcagB-lux strains were added at a multiplicity of infection of 5 to 24-

wells plates containing Human gastric adenocarcinoma (AGS) cells or with the medium 

only. H. pylori-AGS were grown in co-culture  and luminescence emitted by the reporter 

strains was recorded  at regular time intervals. Signals were normalized on the samples 

without AGS cells and average values and standard errors were calculated from four 

independent experiments and reported in the graph. 

 

 

4.1.8 Post-transcriptional regulation 

The analyses of the sequences downstream the transcriptional start sites of the 

Pcag promoters showed that each transcript harbors a 5’ untranslated region 

(5’UTR). To assess possible post transcriptional effects mediated by the Pcag 
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5’UTRs, we used the previously mentioned strains harboring the Pcag-lux 

transcriptional fusions and novel Pcag-5'UTR-lux reporter strains encompassing also 

the untranslated region downstream of the promoter. The luminescence emitted by 

these strains was measured at mid-log phase and compared to the luminescence 

emitted by the Pcag-lux reporter constructs lacking the 5’UTR region, with results 

reported in Fig. 18. We observed no significant differences of the signals between the 

constructs with or without the 5’UTR for PcagC, PcagB, PcagF and PcagA 

promoters (Fig. 18A) with an almost 1:1 ratio, suggesting that in mid-log growing 

cultures, the 5’UTR downstream these promoters do not affect the translational 

efficiency of the messengers. 

Intriguingly, signals from PcagP and PcagV promoter constructs, harboring 

the 5’ untranslated regions, decreased 3.2- and 30-fold with respect to the 5’UTR-

less constructs (Fig. 18A), suggesting that these sequences may contain elements that 

reduce the translational efficiency or decrease the mRNA abundance. To investigate 

this hypothesis, we assayed the mRNA levels of the reporter in these reporter strains. 

PcagV-derived constructs showed similar mRNA levels, while PcagP-5’UTR-lux 

strain showed reduced transcript levels with respect to the cognate PcagP-lux strain 

(Fig. 18B). These results suggest that the 5’UTR downstream PcagV promoter does 

not affect mRNA abundance and likely affects the reporter signals, possibly by 

reducing the translational efficiency. In contrast, the 5’UTR downstream PcagP 

promoter could contain elements that reduce the mRNA stability or reduce the 

transcription rate. Reporter strains harboring the PcagU-, Pcag- and PcagQ-5’UTR-

lux constructs showed a 7-, 19- and 26-fold increase in luminescence with respect to 

the corresponding 5’UTR-less constructs (Fig. 18A). As before, we assayed the 

transcript levels of the reporter in these reporter strains, observing that constructs 

with the Pcag promoter showed differences in the mRNA levels roughly 

corresponding to the observed variations of the signal of the reporter (Fig. 18C). The 

other pairs of constructs from PcagU, PcagQ and PcagS showed reduced mRNA 

levels in the pcag-5’UTR-lux strains with respect to the cognate Pcag-lux strains 

(Fig. 18C). These results suggest that the 5’UTR downstream Pcag may contain 

elements that enhance mRNA stability or transcription rate, while the 5’UTRs 

downstream PcagU, PcagQ and PcagS probably affects positively the translational 
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efficiency. Reporter comparisons with the PcagS promoter were excluded from the 

analysis because the PcagS-5’UTR-lux strain missed to emit detectable 

luminescence. 

 

 

 

 

Fig. 18 (A) Bioluminescence of the Pcag-lux and Pcag-5’UTR-lux reporter fusions. Reporter 

strains carrying either the Pcag-lux and Pcag-5’UTR-lux constructs were grown to 

exponential phase and luminescence emitted was recorded with a multiplate reader. Signals 

from two independent experiment were normalized according to the optical density of the 

cultures and the means values were reported in the graph, with Pcag-lux signals on the X-

axis and Pcag-5’UTR-lux signals on the Y-axis. A dashed line was added to the graph, 

corresponding to the 1:1 ratio of the two signals. (B) Analyses of the mRNA levels at the 

PcagV- and PcagP-derived constructs, containing the 5’untranslated regions (grey columns) 

or without the 5’UTRs (black columns). Each assay was performed on two independent 

experiments and the mean values are reported in the graph (C) Analyses of the mRNA levels 

at the Pcag-, PcagU-, PcagS- and PcagQ-derived constructs, containing the 5’untranslated 

regions (grey columns) or without the 5’UTRs (black columns). 
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4.2 DISCUSSION 

Helicobacter pylori G27 strain harbors a complete and fully functional cag 

pathogenicity island (cag-PAI). This chromosomal locus encodes both the toxin 

CagA and the components of the type IV secretion system (T4SS) that translocate the 

toxin into gastric epithelial cells during infection. 

In order to assess the regulation mechanisms that modulate the concerted 

expression of the cag-PAI genes, we mapped the G27 cag primary transcriptional 

start sites (TSS) and characterized their respective promoter regions. We pinpointed 

11 cag-PAI promoters, all containing a Pribnow box, homologous to the -10 box 

sequence of E. coli and, with the exception of PcagP and PcagS, an extended TGn -

10 element or a conserved -35 region (Fig. 12B). These findings are consistent with 

previous analyses (Joyce et al., 2001; Sharma et al., 2010; Spohn et al., 1997; Ta et 

al., 2012), partitioning the cag-PAI ORFs in at least 11 transcriptional units. Minor 

differences pertain the alternative TSSs located upstream cag, cagZ and cagW 

promoters, which we were unable to confirm, likely due to strain-specific differences 

in the nucleotide sequences of the promoters or due to low transcription levels. Other 

previously reported internal and antisense TSSs (Sharma et al., 2010; Ta et al., 2012) 

deserve dedicated studies and have therefore been excluded from the current 

analysis. By comparison of the transcript levels of the Pcag promoters with lux 

reporter fusions, differences of two order of magnitude in the mRNA levels were 

observed (Fig. 12B). The PcagA promoter showed high transcript levels that were 

consistent with previous reports (Boonjakuakul et al., 2005; Boonjakuakul et al., 

2004; Busler et al., 2006; Sharma et al., 2010), likely assuring high expression levels 

of the of CagA toxin.  

The PcagS, PcagQ, PcagP and PcagB promoters that direct the transcription 

of genes coding for disposable T4SS functions (i.e. those unessential for CagA 

delivery and for IL-8 induction) (Fischer et al., 2001), exhibit extreme values in the 

mRNA levels, either markedly lower or higher than the remaining cag cistrons. In 

contrast, all the promoters that direct the transcription of T4SS essential components 

(Pcag, PcagV, PcagU, PcagM, PcagF and PcagC), exhibited similar transcript 
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levels, likely reflecting the need to ensure a proper stoichiometric ratio of gene 

products for the correct T4SS assembly. Previous studies in different H. pylori strain 

recorded different expression levels of the genes downstream of some of these 

promoters, which led to attribute to PcagC and Pcag a 10- to 1000-fold activity with 

respect to the other cag promoters (Boonjakuakul et al., 2005; Boonjakuakul et al., 

2004; Busler et al., 2006; Castillo et al., 2008; Eaton et al., 2002; Joyce et al., 2001; 

Sharma et al., 2010). In our analysis in the G27 strain, the transcription levels 

observed for the Pcag-lux reporter fusions are consistent with those of the cag 

promoters at the original chromosomal locus. This suggests that the observed 

discrepancies may derive from a strain specific regulation of Pcag promoters. 

 

Adaptive responses to the host environment frequently rely on regulatory 

networks that control coordinated expression of virulence factors at the 

transcriptional or post-transcriptional level. In order to identify which signals may 

modulate cag gene expression, we first analyzed the transcript levels at the principal 

cag promoters in a time course experiment (Fig. 13). PcagS, PcagP, PcagM and 

PcagB, promoters are repressed when bacteria enter the stationary phase. On the 

contrary Pcag, PcagV, PcagF and PcagA promoters, driving the transcription of 

core structural genes, together with the CagA toxin, its chaperone CagF, and some 

auxiliary factors important for the T4SS assembly are induced at the late log-phase of 

growth. Finally, PcagU, PcagQ and PcagC promoters appear not responsive to the 

phase of growth. These results are consistent with previous observations on PcagP 

and PcagU, Pcag and PcagA (Boonjakuakul et al., 2005; Karita et al., 1996; 

Thompson et al., 2003; Vannini et al., 2012). Moreover, the observed repression of 

PcagM promoter during growth reflects the reported repression of the downstream 

cagM and cagN genes (Boonjakuakul et al., 2005). The temporal regulation of cag 

promoters during bacterial growth suggests a coordinated transcriptional expression 

of cag operons that can exert a regulatory effects in the pathway of assembly of the 

cag-pathogenicity island encoded Type IV secretion system and its functioning. 

Intriguingly, the PcagS, PcagP and PcagB promoters whose transcript levels are 

reduced during time, are upstream genes not fundamental for the T4SS. Hence, it 

may be possible that these operons could encode for regulatory elements that 



 

72 

 

modulate the cag island expression, similarly to other pathogenic bacteria 

(Ellermeier et al., 2005; Yahr and Wolfgang, 2006). 

Exposure of H. pylori to environmental and metabolic stresses enlightened a 

complex and multifaceted response at the Pcag promoters, showing altered transcript 

levels after heath shock and acidic treatments, as well as in response to iron ions 

availability. In accordance with other studies (Ernst et al., 2005a; Merrell et al., 

2003; Pich et al., 2012; Szczebara et al., 1999), we observed an iron-dependent 

regulation of the PcagA promoter, that is repressed under iron-deplete conditions and 

induced after addiction of soluble Fe
2+

 ions. We demonstrated that the metal-

dependent regulator Fur mediates this response, as the fur knock out mutant strain 

(fur) showed a loss of the iron-dependent regulation of PcagA (Fig. 14B). 

Moreover, the observed higher repression of PcagA in iron-depleted cultures grown 

to stationary phase correlates with the increase of the Fur protein in this phase of 

growth (Danielli et al., 2006), suggesting that PcagA is repressed by Fur in a direct 

fashion in the absence of iron cofactor (apo-Fur repression). As reported by Pich and 

colleagues (Pich et al., 2012), the Fe-dependent regulation of Fur on the PcagA 

promoter is likely exerted through a direct binding, and through DNaseI footprinting 

assays we have shown that Fur binds to the PcagA-PcagB intergenic region in both 

apo- and holo-form (Fig. 14C and 14D). Specifically, holo-Fur binds to four sites on 

the PcagAB intergenic region, two with high affinity and two with low affinity, 

possibly responsible for a cooperative binding of Fur to the promoter regions of cagA 

and cagB. The Fur binding site spanning -44 to -63 of PcagA contains the previously 

identified Fur box (Pich et al., 2012) and the other three binding regions show AT-

rich sequences with different homologies to the Fur consensus sequence. 

Footprinting assay of apo-Fur on the PcagAB intergenic region showed a pattern of 

protection similar to the binding of holo-Fur on the region, but with the high- and 

low-affinity regions swapped. The two regions protected with high-affinity by apo-

Fur overlap or map immediately close to the PcagA and PcagB TSSs respectively. 

The position of these boxes suggest a repressor role exerted by apo-Fur on PcagA, in 

agreement with the apo-Fur repression of cagA transcripts observed in the primer 

extension analysis. Moreover, the mapping of the high affinity binding site of holo-

Fur upstream the -35 region of the PcagA promoter suggests that also the holo-form 
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of the protein may regulate the PcagA promoter, likely positively, as observed in the 

transcription analysis. Hence, the Fur-mediated regulation of PcagA is likely 

dependent by a complex binding of holo- and apo-Fur proteins on the corresponding 

adjoining operators. 

Interestingly, previous footprinting analysis with -subunit of RNA 

polymerase showed a protection pattern on the region spanning from -17 to -70 

nucleotides of PcagA (Spohn et al., 1997), suggesting the presence of an UP element 

recognized by the CTD domain of the -subunit of RNA polymerase. We can 

speculate that the observed iron-dependent regulation of PcagA promoter could be 

exerted not only by the binding of apo- and holo-Fur on adjoining operators, but also 

by Fur competing for the binding of the-subunit to the UP element. 

Since H. pylori establishes infection in the harsh acidic environment of the 

human stomach, we assayed the response of the Pcag promoters to acidic stress (pH 

5.2). Interestingly, Pcag, PcagU, PcagF and PcagA promoters were induced by an 

acid treatment of 30 min, while PcagS and PcagB promoters were repressed in the 

same conditions (Fig. 15). The other promoters showed no significant variations, but 

prolonged exposure (90 min) showed long term adaptive response of PcagV, PcagQ 

and PcagC. These results partially fit with previous works indicating a strain-

dependent response of certain cag promoters to acidic stress in different H. pylori 

strains. In particular, an acid-dependent up-regulation of cagA (Allan et al., 2001; 

Barnard et al., 2004; Karita et al., 1996; Scott et al., 2007; Sharma et al., 2010; Wen 

et al., 2003) and a pleiotropic induction of the majority of the other cag genes was 

reported (Scott et al., 2007; Sharma et al., 2010; Wen et al., 2003). We observed two 

Pcag promoters repressed by acidic treatment (PcagS and PcagB) and two promoters 

non regulated by acidic exposure (PcagP and PcagM). Interestingly, these four 

promoters are the same that are negatively regulated during bacterial growth, hinting 

at the presence of coordinated regulatory mechanisms on these promoters, and 

suggesting that the downstream cistrons could encode for cag-specific regulatory 

functions. 

To identify the transcriptional regulators that mediate the acidic response of 

the Pcag promoters, we assayed the pH response in knock out mutants of known 

acidic response-mediating regulators. From this analysis we observed that the acidic 
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response of the Pcag and PcagB promoters is mediated by Fur, while NikR appears 

to mediate the acidic response of the Pcag, PcagF and PcagS promoters (Fig. 16). 

However, we were able to confirm direct binding only for Fur on PcagB promoter 

(Fig. 14), suggesting that the Fur and NikR pH-dependent responses of the other 

promoters are mediated by indirect mechanisms. Since apo- and holo-Fur bind to the 

corresponding operators on the PcagB promoter, it is possible that Fur regulates this 

promoter within the Fur-mediated acid tolerance response of H. pylori (Valenzuela et 

al., 2011). Further analyses should be carried out to investigate on this regulation. 

Moreover, our analysis appears to exclude the involvement of the global acid 

regulator ArsRS system in the pH-dependent responses of the cag promoters. With 

regard to heat shock and stress conditions, a pleiotropic reduction of  transcript levels 

was observed, that was also retained in knock out mutants of the heat-shock 

regulators hspR and hrcA. Thus, the observed heat-shock response is likely due to an 

attenuation of the transcription rates or a reduction of the mRNA stability and likely 

not mediated by direct HspR and HrcA protein-DNA interactions. 

 

The contact with host cells is a potent elicitor of secretion system gene 

expression in pathogenic bacteria (Yahr and Wolfgang, 2006). Previous works 

documented similar effects in H. pylori, showing an increase of the cag-encoded 

T4SS needles on the surface of the bacterium, when H. pylori is co-cultured with 

AGS cells (Rohde et al., 2003). In addition, variations of the expression of some cag 

genes during infections in humans, animal models or cell lines co-cultures has been 

reported (Boonjakuakul et al., 2005; Boonjakuakul et al., 2004; Gieseler et al., 2005; 

Joyce et al., 2001; Scott et al., 2007; Sharma et al., 2010). However, these studies 

showed a plethora different, and sometimes contrasting results, suggesting that the 

host-induced modulations of cag gene expression is likely dependent on the H. pylori 

strain, on the host used for the study and on the experimental conditions employed. 

In this study, we monitored the Pcag promoter responses in H. pylori G27 

strain, co-cultured with AGS cells at regular time intervals in a 6 hour time curse 

experiment. Using the Pcag-lux reporter fusions to monitor the dynamics of promoter 

activity, we observed a significant induction of the Pcag promoter in response to 

host cell-contact (Fig. 17). Interestingly, Kim and colleagues reported similar 
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variations of cag expression in H. pylori 69a strain, co-cultured with AGS cells for 

1 hour (Kim et al., 2004). Since cag belongs to the transcriptional unit downstream 

the Pcag promoter, these results suggest a conserved regulation of the operon, likely 

due to the modulation of the Pcag promoter activity. Previous observations of the 

AGS-induced regulation of cagA, cagP and cagS (Gieseler et al., 2005; Sharma et 

al., 2010) were not repeated in this study, likely due to strain-specific responses to 

host-cell contacts. 

 

We concluded our study on the Pcag promoters analyzing the effects exerted 

on expression and transcript stabilization by the 5’-UTRs of the first cistron of each 

cag transcriptional unit. Using the lux reporter system, we compared cognate 

constructs harboring only the promoter regions or including also the 5’UTRs. For 

each construct we assayed both the mRNA levels and the reporter signals, assessing 

the mRNA abundance and the efficiency of translation, respectively. The 5’UTRs 

downstream the PcagC, PcagB, PcagF and PcagA promoters showed no effects 

either in mRNA levels or efficiency of translation. Interestingly, the 5’UTR 

downstream PcagP negatively affects the mRNA levels, while the 5-UTR 

downstream of Pcag positively affects the transcript levels (Fig. 18). In contrast, the 

cagV 5’UTR exerts a negative effect on the translational efficiency of the transcript, 

while the 5’UTRs of cagU, cagQ and cagS appear to positively affect the 

translational efficiency (Fig. 18). 
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5. PART 3: 
 

Characterization cag-encoded cncR1 sRNA 
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5.1 RESULTS 

5.1.1 The cncR1 locus 

Recent transcriptional analysis conducted by Sharma and colleagues on 

Helicobacter pylori 26695 strain had proven some evidences that cagP (HP0536) 

encodes for a small non coding RNA, corresponding to the 5’ untranslated region of 

cagP mRNA (Sharma et al., 2010). Alignments of the H. pylori cag-PAI sequences 

published up to date showed that cagP is conserved in all the cag-PAI
+
 strains, with 

a 95 % sequence homology of the region encompassing both the 5’UTR and the 

coding sequence (CDS), and a 92% homology of the sequences corresponding to the 

putative sRNA only, henceforth referred as cncR1 sRNA.  

Since cncR1 small non-coding RNA corresponds to the 5’UTR of the 

monocistronic operon cagP (Fig. 19A) (Sharma et al., 2010), the 5’-end of the sRNA 

corresponds to the mapped transcriptional start site (TSS) downstream the PcagP 

promoter (see previous sections). As reported, the PcagP promoter harbors a 

conserved -10 region with homology to the canonical consensus sequence, 

recognized by the vegetative sigma factor σ
80

 of H. pylori, while no upstream -35 nor 

TG motifs were found (Fig. 19B). 

Nevertheless, the analysis of the transcript levels at the Pcag promoters 

showed that PcagP promoter has the highest mRNA levels, even greater than the 

PcagA promoter, that is responsible for the expression of the abundant toxin CagA. 

In previous sections, it has been reported the responses of the PcagP promoter to 

various environmental stresses, showing only a progressive repression of the 

promoter during bacterial growth. 
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Fig. 19 A) The cagP-cagM locus within the H. pylori G27 strain cag pathogenicity island. 

Predicted CDS are indicated with grey arrows, the region encoding for the cncR1 sRNA is 

represented with a white rectangle and the transcriptional start sites (TSS) of each promoter 

are indicated by bent arrows. (B) Summary of relevant features within the nucleotide 

sequences of the PcagP promoter. The TSS (+1) is enchased in a black box and sequences 

corresponding to -10 region are enlightened in grey boxes. 

 

 

5.1.2 Analysis of the cncR1 3’-end 

Recent RNA-seq analyses on H. pylori 26695 strain showed that transcription 

from PcagP promoter leads to a major cagP mRNA population encompassing cagP 

5’UTR only, and missing the CDS (Sharma et al., 2010). These results were 

confirmed by northern blot analysis, suggesting a premature end of the transcription 

process in correspondence of the 3’-end of the cagP 5’UTR, or a short mRNA 

fragment obtained from the processing of a longer cagP mRNA. The bioinformatic 

prediction of an intrinsic terminator of transcription at the 3’-end of the 5’UTR 

furnished another clue supporting the former hypothesis. 

Starting from these observations, a similar study was performed on H. pylori 

G27 strain. Total RNA extracted from wild type strain was assayed by northern blot 

analysis, using oligonucleotides mapping upstream and downstream the predicted 

terminator of the cagP transcript. The 536pe17 oligonucleotide, mapping upstream 

the predicted terminator, showed a major band of ~220 nt long (Fig. 20A, lane 1, 

band marked a1) and a weaker band (data not shown) ~280 nt long, appearing only 
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after prolonged expositions. In contrast, the probe 536pe20 mapping downstream the 

predicted terminator produced a single weak band a2 ~280 nt long (Fig. 20A, lane 2, 

band marked a2). Quantification of the two detected bands estimated the fragment a1 

as 8-fold more abundant than a2 (Fig. 20B). 

 

 

 

Fig. 20 (A) Northern blot analysis of the mRNAs transcribed from the PcagP promoter. 

About 15 g of total RNA extracted from G27 wild type strain was separated under 

denaturing conditions in 1.2% agarose–2.1 M formaldehyde-morpholinepropanesulfonic acid 

gels, transferred on a Hybond-N+ nylon membrane by capillary transfer and cross-linked to 

the filter by UV-ray treatment. The membrane was hybridized with the oligonucleotides 

536pe17 (probe 1) and 536pe20 (probe 2), mapping on the cncR1-cagP mRNA upstream and 

downstream the predicted terminator sequence, respectively. The membranes were exposed 

for autoradiography. Black triangles indicate the detected bands: a1 correspond to a ~220 nt 

RNA transcript, while a2 correspond to a ~290 nt transcript. Grey triangle labeled a3 

indicates the putative position of the mRNA encompassing the cncR1 and cagP CDS, based 

on the results on 26695 strain (Sharma et al., 2010). (B) Quantification of the bands from 

Northern blot analysis. Signals were acquired with a Storm phosphorimager and quantified 

using Image Quant Software. Results are reported in arbitrary units of 
32

P counts. (C) 

Schematic representation of the cncR1-cagP locus, with the regions targeted by the oligos 

(probes 1 and 2) and the regions with a putative terminator function. Underneath are 

represented the transcript fragments observed in Northern blot analysis. 
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Likely, the shorter transcript (a1) corresponds to the products of transcription 

interrupted in correspondence of the terminator, located ~213 nt downstream the 

PcagP transcriptional start site (Fig. 20C), while the longer transcripts likely 

correspond to the less abundant products of read-through of the RNA polymerase 

(Fig. 20C). Interestingly, both the detected RNAs do not cover the entire length of 

cagP CDS, and no full length mRNA was detected (Fig. 20A, putative full length 

transcript indicated with a3). This results suggest the presence of a further terminator 

sequence located ~90 nt downstream the start codon of cagP. Nevertheless, the 

detected RNA fragments could also correspond to the processed (a1) and 

unprocessed or partially processed (a2) RNA fragments of a longer undetected cagP 

mRNA. 

 

5.1.3 Study of the transcriptional terminator in cncR1 

To grasp information on the nature of the observed major 220 nt transcript, 

the nucleotide sequence corresponding to the predicted transcriptional terminator 

spanning 29 bp from position 184 to 213 of the cncR1 sRNA, was submitted to 

bioinformatic analysis. Search for sequence conservation among different H. pylori 

strains revealed that this hypothetical terminator is conserved, including strain G27 

(Fig. 21A). The bioinformatic prediction of the secondary structure of the RNA 

region corresponding to the terminator, was performed with the online resource 

RNA-fold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Results of the analysis 

are reported in Fig. 21B, showing a low free-energy RNA stem-loop structure (-20.1 

KJ/mol), followed by an uracil stretch with no base-paring. The secondary structure 

is consistent with the classic structure of the intrinsic transcription terminators 

(Castillo et al., 2008). 

To verify the in vivo functionality of the cncR1 terminator sequence, the lux 

reporter system was used. The parental G27-lux strain, carrying the promoterless P. 

luminescens luxCDABE operon cloned in the vacA locus (see previous section), was 

transformed with the PVCC::PcagP-5’UTR vector to obtain the G27 PcagP-5’UTR-

lux strain (Fig. 21C), that carries the cncR1 sRNA, along with its natural promoter 

PcagP, fused with the lux operon (PcagP-cncR1-lux). Moreover, using 

PVCC::PcagP-5’UTRterm vector, it was obtained the G27 PcagP-5’UTRterm-lux 
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mutant strain (Fig. 21C), carrying the same transcriptional fusion, with the deletion 

of the a 26 bp sequence corresponding to the predicted terminator (PcagP-

cncR1term-lux). The two G27 lux-derived mutant strains were grown to exponential 

phase and the luminescence emitted by the cultures was recorded using Victor3V 

(1420) multilabel reader (Perkin Elmer). Signals were normalized according to the 

optical density (OD600) of the cultures and reported in Fig. 21D. The luminescence 

emitted by the mutant carrying the PcagP-cncR1term-lux construct is 3.3-fold 

higher with respect to the cognate PcagP-cncR1-lux construct, suggesting that the 

region deleted in the former mutant harbors sequences that reduce the levels of the 

lux reporter.  

 

 

 

Fig. 21 (A) Sequence alignment of the predicted cncR1 terminator sequence. The nucleotide 

sequence spanning 29 bp from position 184 to 213 of the cncR1 sRNA (the predicted 

intrinsic transcriptional terminator) from 10 H. pylori strains was aligned with Vector-

AlignX program to assess conserved motifs. (B) Bioinformatic prediction of the secondary 

structure assumed by the nucleotide sequence corresponding to the predicted terminator 

region in G27 strain. The online program RNA-fold was employed for the analysis. (C) 

Schematic representation of the PcagP-cncR1-lux and PcagP-cncR1term-lux reporter 

strains, obtained transforming the G27 lux acceptor strain with the PVCC::PcagP-5’UTR 

and PVCC::PcagP-5’UTRterm vectors, respectively (D) Comparison of the reporter levels 

in the G27 strains harboring the PcagP-cncR1-lux and PcagP-cncR1term-lux constructs. 

Luminescence emitted by the bacterial cultures was recorded with a multiplate reader and 

normalized according to the optical density of the cultures. Mean values from two 

independent experiments are reported in the graph. 
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Since bioinformatic analysis predicted an intrinsic terminator element within 

the deleted sequence, the observed variations are likely due to the negative effect 

exerted by the terminator on the transcriptional activity of the RNA polymerase. 

However, the possibility that the 26 bp sequence could contain elements that enhance 

the processing of the primary transcript, leading to trunked mRNAs and hence the 

reduction of the expression of the downstream genes, cannot be excluded. 

 

5.1.4 Construction of the isogenic cncR1 mutant 

To initiate studies on the role exerted by cncR1 sRNA in the regulation of H. 

pylori genes, an isogenic cncR1 knock-out mutant was constructed. For this purpose, 

H. pylori strain G27 was transformed with the vector pBS::cncR1, in which most of 

the sequence encoding for cncR1 and 79 bp of the upstream PcagP promoter were 

replaced with the chloramphenicol resistance cat gene (Fig. 22A). Mutants carrying 

the correct replacement of the wild type sequences with the cat cassette were 

confirmed by PCR and expanded for the analyses. To further characterize the G27 

cncR1::cat strain (cncR1), liquid cultures of cncR1 and the parental wild type 

strains were harvested and the extracted RNAs were assayed for the expression of 

cncR1 and the divergent cagM transcripts by primer extension analysis. 

 

 

Fig. 22 (A) Schematic representation of the procedure to obtain the cncR1 knock out mutant. 

The pBS::cncR1 vector carries the 574 bp “UP” region of homology with the sequences 

downstream cncR1, the 442 bp “DOWN” region of homology with the sequences upstream 

cncR1, and the cat cassette inserted between these two fragments. By transformation of the 

G27 wild type strain with pBS::cncR1 vector, the cat selected cncR1 strains harbor the 

sequence spanning 287 bp from position -79 to 208 of the cncR1 sRNA replaced by the cat 

cassette. (B) Primer extension analysis of transcript levels at the PcagP and PcagM 

promoters in the wild type and cncR1 strains. Primer extensions were performed with 12-

μg of total RNA and 0.1 pmol of labeled 536pe17 and 537pe8 primers (Table 6) to target 

transcript from PcagP and PcagM promoters, respectively. 
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As shown in Fig. 22B , the cncR1 levels observed in the wild type strain are 

completely lost in the cncR1 strain, while cagM showed same transcript levels in 

the two strains, suggesting that the replacement of cncR1 fully abrogate the cncR1 

expression but does not affect the expression of the divergent operon cagMN. 

 

5.1.5 cncR1 transcriptome analysis 

To identify H. pylori genes regulated by cncR1 sRNA, a genome-wide 

transcriptional analysis of the cncR1 mutant was carried out through DNA 

macroarray approach. Total RNAs isolated from exponentially growing cultures of 

the cncR1 mutant and the parental G27 wild type strain (OD600=0.6) were used for 

in vitro synthesis of 
33

P-labeled cDNAs, that were subsequently hybridized to H. 

pylori Panorama ORF arrays (Sigma-Genosys). The arrays were exposed for 

autoradiography, then the images were acquired with a Storm phosphor-imager 

(Amersham-GE). Each of the 1681 spots of the array was quantified using the Image 

Quant Software (Molecular Dynamics) and associated to the corresponding gene of 

H. pylori 26695 and J99 strains. For each H. pylori gene, signals were reported as per 

cent values of the total signal detected in the array and ΔcncR1/wild-type expression 

ratio was calculated from two independent hybridization experiments. The results 

were filtered according to both statistical significance of the variations (P ≤ 0.1) and 

the selected threshold limit of quantification (Materials and Methods).  

As reported in Table 2, 66 genes are significantly deregulated at least 1.5-fold 

in the ΔcncR1 strain with respect to the wild type strain, with 29 genes up-regulated 

and 37 genes down-regulated. The cncR1-regulated genes were grouped into several 

categories according to their cellular functions, as internal metabolism, cellular 

processes and signaling, transcription and DNA processing, motility and chemotaxis, 

as well as H. pylori-specific proteins of unknown function. Among the genes up-

regulated in the ΔcncR1 mutant strain, a clustering of the genes encoding for proteins 

involved in regulation and assembly of the flagellar apparatus was observed, with 10 

out 26 genes belonging to this category. These results suggested a coordinate co-

regulation of these genes in the knock out cncR1 mutant. In contrast, no obvious 

clusters of co-regulated genes were observed among the genes down-regulated in the 

ΔcncR1 mutant strain. However, expression level of the heat-inducible transcription 
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repressor hrcA (HP0111) is reduced in the ΔcncR1 strain and at least 4 genes related 

to host-pathogen interaction showed down-regulated expression, with omp17 

(HP0725) and HP1392 (fibronectin/fibrinogen-binding protein) involved in cell 

adhesion processes, and napA (HP0243) and tsaA (HP1563) linked to the resistance 

to oxygen toxicity. 

Interestingly, analysis of the de-regulated genes showed that 19 out 29 genes 

that are up-regulated in the ΔcncR1 mutant belong to operons preceded by 
54

 

consensus promoter sequences, indicating that transcription from these promoters is 

likely under the control of the alternative σ
54

 factor (Niehus et al., 2004; Pereira et 

al., 2006; Spohn and Scarlato, 1999b). In contrast, no σ
54

 consensus sequence was 

found upstream of genes down-regulated in the mutant strain. In agreement with this 

observation, the HP1122 ORF, whose promoter (PHP1122) was previously reported as 

being under the control of both the alternative σ
54

 and σ
28

 factors (Josenhans et al., 

2002), in H. pylori G27 strain it harbors a disrupted σ
54

 consensus sequence. 

Therefore, it is likely that this promoter is under the control of the sole σ
28

 factor. 

To date, the known regulome of the σ
54

 factor in H. pylori consists of 10 

operons: flaB-HP0114; flgE; HP0367-HP0368; flgE-hypA-mua; fliK-flgD-flgE; 

HP1076; HP1120-flgK; fliW-murG; HP1233; flgB-flgC-fliE (Niehus et al., 2004; 

Pereira et al., 2006; Spohn and Scarlato, 1999b). The fliA-fliM operon, formerly 

reported as member of σ
54

 regulome (Niehus et al., 2004), has been recently reported 

as not controlled by σ
54

 (Niehus et al., 2004; Sharma et al., 2010). In the reported 

macroarray analysis, all the known σ
54

-dependent genes are up-regulated in the 

ΔcncR1 mutant with respect to the wild type strain. The fliE gene was not included in 

this analysis as signals were below the selected threshold of validity, >0,0015%. 

These results suggest that cncR1 exerts a negative regulation of the expression of the 

entire σ
54

 regulome. 
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Functional 

category 

Genome 

ORF 

Fold change 

in cncR1 

Promoter Description 

UP-regulated genes 

Chemotaxis 

and motility 

HP0115 2,1 
54

 flagellin B (flaB) 

HP0295 2,0 
54

 flagellar hook-associated protein (flgL) 

 HP0870 1,8 
54

 flagellar hook protein (flgE) 

 HP0906 3,0 
54

 flagellar hook lenght control protein (fliK) 

 HP0907 1,9 
54

 flagellar basal body rod modification 

protein (flgD) 

 HP0908 1,7 
54

 flagellar hook protein (flgE) 

 HP1119 3,1 
54

 flagellar hook-associated protein (flgK) 

 HP1154 1,9 
54

 flagellar assembly protein (fliW) 

 HP1558 1,5 
54

 flagellar basal-body rod protein (flgC) 

 HP1559 2,5 
54

 flagellar basal-body rod protein (flgB) 

     Internal 

metabolism 

HP0483 1,7  cytosine specific DNA methyltransferase 

HP0966 1,6  conserved hypothetical protein 

 HP1036 1,6  7, 8-dihydro-6-hydroxymethylpterin-

pyrophosphokinase (folK) 

 HP1045 2,0  acetyl-CoA synthetase (acoE) 

 HP1155 1,7 
54

 transferase, peptidoglycan synthesis 

(murG) 

 HP1193 1,5  aldo-keto reductase 

     Cellular 

processes and 

signaling 

HP0366 2,4 
54

 spore coat polysaccharide biosynthesis 

protein C 

HP0869 1,7 
54

 hydrogenase expression/formation protein 

(hypA) 

HP1129 1,7  biopolymer transport protein (exbD) 

     Transcription 

and DNA 

processing 

HP0868 1,5 
54

 nickel-binding protein (Mua) 

HP1541 1,6  transcription-repair coupling factor (trcF) 

     Unknown/ 

Hypothetical 

HP0114 2,0 
54

 H. pylori predicted coding region HP0114 

HP0367 2,9 
54

 H. pylori predicted coding region HP0367 

 HP0469 1,5  H. pylori predicted coding region HP0469 

 HP0688 1,7  H. pylori predicted coding region HP0688 

 HP1076 5,3 
54

 H. pylori predicted coding region HP1076 

 HP1120 2,0 
54

 H. pylori predicted coding region HP1120 

 HP1162 1,7  H. pylori predicted coding region HP1162 

 HP1233 2,0 
54

 H. pylori predicted coding region HP1233 

     DOWN-regulated genes 

Internal 

metabolism 

HP0265 -1,5  cytochrome c biogenesis protein (ccdA) 

HP0370 -1,5  biotin carboxylase (accC) 

 HP0724 -3,3  anaerobic C4-dicarboxylate transport 

protein (dcuA) 

 HP0799 -1,6  molybdenum cofactor biosynthesis 

protein (mogA) 

 HP0839 -1,7  outer membrane protein P1 (ompP1) 

 HP1229 -1,6  aspartate kinase (lysC) 

     Cellular 

processes and 

HP0022 -1,7  lipid A phosphoethanolamine transferase 

HP0243 -1,8  neutrophil activating protein (napA) 
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signaling (bacterioferritin) 

 HP0725 -1,9  outer membrane protein (omp17) 

 HP0970 -1,8  nickel-cobalt-cadmium resistance protein 

(nccB) 

 HP1335 -1,7  nicotinate-nucleotide pyrophosphorylase 

 HP1392 -1,5  fibronectin/fibrinogen-binding protein 

 HP1563 -1,5  alkyl hydroperoxide reductase (tsaA) 

     Transcription 

and DNA 

processing 

HP0111 -1,8  heat-inducible transcription repressor 

(hrcA) 

HP0223 -1,6  DNA repair protein (radA) 

 HP1231 -1,6  DNA polymerase III delta prime subunit 

(holB) 

     Translation and 

protein fate 

HP0182 -1,8  lysyl-tRNA synthetase (lysS) 

HP0825 -1,9  thioredoxin reductase (trxB) 

 HP1497 -1,6  peptidyl-tRNA hydrolase (pth) 

     Unknown/ 

Hypothetical 

HP0120 -1,6  H. pylori predicted coding region HP0120 

HP0155 -1,9  H. pylori predicted coding region HP0155 

 HP0234 -1,8  H. pylori predicted coding region HP0234 

 HP0258 -1,7  H. pylori predicted coding region HP0258 

 HP0282 -1,8  H. pylori predicted coding region HP0282 

 HP0308 -1,6  H. pylori predicted coding region HP0308 

 HP0350 -1,8  H. pylori predicted coding region HP0350 

 HP0395 -1,9  H. pylori predicted coding region HP0395 

 HP0487 -1,6  H. pylori predicted coding region HP0487 

 HP0677 -1,5  H. pylori predicted coding region HP0677 

 HP0764 -1,6  H. pylori predicted coding region HP0764 

 HP0773 -1,6  H. pylori predicted coding region HP0773 

 HP0892 -1,5  H. pylori predicted coding region HP0892 

 HP0946 -1,6  H. pylori predicted coding region HP0946 

 HP1122 -1,8 (
54

) 
28

 H. pylori predicted coding region HP1122 

 HP1163 -2,0  H. pylori predicted coding region HP1163 

 HP1207 -1,9  H. pylori predicted coding region HP1207 

 HP1579 -4,2  H. pylori predicted coding region HP1579 

 

Table 2: Genes listed are those whose transcription differed more than 1.5-fold in the 

cncR1 mutant compared to the parental G27 wild type strain in the macroarray analysis; 

results are filtered according to the parameters reported in Material and Methods. ORF 

numbers are based on the genome sequences of H. pylori 26695, while the functional 

annotation of the genes and the subsequent grouping in functional categories was derived 

from literature reports. 
54

 and 
28

 annotations indicate genes belonging to operons whose 

transcription depend on the alternative 
54

 and 
28

 sigma factors, respectively. 

 

5.1.6 Primer extension analysis of cncR1-regulated genes and cag-

PAI genes 

To validate the results of the transcriptomic analysis, 4 promoters controlling 

the expression of 11 detected up-regulated genes were selected, and the transcript 

levels at these promoters were assayed by quantitative primer extension experiments, 
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comparing the expression in the ΔcncR1 strain with respect to the wild type strain. 

The promoters assayed in this analysis were PflaB, PflgE, PfliK and PflgB, upstream 

the flaB-HP0114, flgE, fliK-flgD-flgE and flgB-flgC-fliE operons, respectively. All 

selected promoters are under the control of the σ
54

 sigma factor, and the downstream 

operons encode for structural or regulatory flagellar proteins. Results of the primer 

extension assay are reported in Fig. 23, showing increased mRNA levels at all the 

tested promoters in the ΔcncR1 mutant, with respect to the wild type strain. The 

specific signals of the primer extension assays were quantified, showing in the 

ΔcncR1 strain 2.7-, 1.7-, 2.4- and 1.7-fold increased mRNA levels, with respect to 

the wild type strain, at the PflaB, PflgE, PfliK and PflgB promoters, respectively. The 

observed variations of the transcript levels in the primer extension assays are in 

agreement to the differential expressions detected in the macroarray analysis (Table 

2), confirming that cncR1 exerts a negative regulation of the σ
54

 regulome. 

To further confirm the specificity of the cncR1-dependent response, the 

ΔcncR1 strain was used to construct the complementing vacA::cncR1 strain, 

harboring the region encompassing the cncR1 sRNA and the upstream PcagP 

promoter cloned in the vacA locus. Through primer extension analysis were assayed 

the transcript levels at the PflaB, PflgE, PfliK and PflgB promoters, showing reduced 

transcript levels with respect to the ΔcncR1 and unchanged levels with respect to the 

wild type strain (data not shown). Hence, the novel copy of PcagP-cncR1 inserted in 

the ΔcncR1 strain was able to restore the transcript levels of at least four σ
54

-

dependent promoters to values unchanged with respect to the wild type, likely 

complementing the strain ΔcncR1. 

Since it has been shown that in many pathogenic bacteria dedicated 

transcriptional regulators are frequently encompassed within the PAIs of type III and 

type IV secretion systems (Ellermeier et al., 2005; Yahr and Wolfgang, 2006), 

expression of the cag-PAI genes was assayed in the ΔcncR1 mutants to assess 

possible cncR1-mediated regulation. While the macroarray transcriptional analyses 

showed unchanged transcript levels for most of the cag genes, some transcripts 

(cag, cagZ, cagV, cagS, cagQ, and cagL) had signals under the limit of 

quantification. Hence, expression levels of cag, cagV, cagS and cagQ were assayed 

by primer extension assay in ΔcncR1 and the wild type strain, showing unchanged 



 

88 

 

levels (data not shown). These results suggest that the cncR1 sRNA does not regulate 

the transcript levels of the cag genes under normal growing conditions. 

 

 

 

 

 

 

 

 

 

 

Fig. 23 Primer extension analysis of transcript levels at four 
54

-dependent promoters in the 

wild type and cncR1 strains. Primer extensions were performed with 12 μg of total RNA 

and 0.1 pmol of labeled oligos to target the transcripts at the corresponding promoters: 

VSflaB (PflaB promoter), VSflgE (PflgE promoter), VS958p1 (PfliK promoter) and VSflgB 

(PflgB promoter). 

 

5.1.7 cncR1-dependent modulation of the H. pylori motility 

Since most of the genes up-regulated in the ΔcncR1 strain are involved in the 

flagella assembly and regulation, the effect of the knock out was tested on the 

motility of the bacteria, by assaying the ability of the cells to spread on soft agar 

plates. The strains selected for the assay were the parental G27 wild type, ΔcncR1, 

ΔcncR1 vacA::cncR1 (complemented strain) and hspR strains (non-motile control). 

Cells were grown to exponential phase, spotted onto low-concentration agar plates 

and incubated for 72-96 h at 37°C under microaerophilic conditions. As reported in 

Fig. 24, the areas of spreading of the ΔcncR1 strain were augmented with respect to 

the area covered by the wild-type strain, thus showing increased motility functions. 

In contrast, the ΔcncR1 complemented strain (ΔcncR1 vacA::cncR1) restored wild 

type spreading. Consequently, we conclude that cncR1 exerts a negative effect on the 

regulation of the H. pylori motility functions. 
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Fig. 24 Bacterial motility assay. Bacteria were stab inoculated with a pipette tip into 

semisolid agar plates and incubated for 72 h at 37°C under microaerophilic conditions. The 

strains used in this assay are indicated as follows: G27 wild type, ΔcncR1 (G27 cncR1::cat), 

ΔcncR1 vacA::cncR1 (G27 cncR1::cat vacA::cncR1 - complemented strain) and hspR (G27 

hspR::km). 

 

5.1.8 cncR1-dependent regulation of σ
54

-interacting factors 

It is well established that the transcriptional activity of the alternative 
54

 

factor on its regulome in H. pylori is positively regulated by the FlgRS two-

component systems (HP0703, HP0244), FlhA (HP1041), FlhF (HP1035) and FlgZ 

(HP0958), while is repressed by FlgM (HP1122) and FliK (HP0906) (Brahmachary 

et al., 2004; Douillard et al., 2009; Niehus et al., 2004; Pereira and Hoover, 2005; 

Pereira et al., 2011; Ryan et al., 2005; Spohn and Scarlato, 1999b; Wen et al., 2009). 

To investigate possible regulatory effects exerted by the cncR1 sRNA on the 

aforementioned regulators, the mRNA levels of the corresponding genes were 

compared in the ΔcncR1 mutant with respect to the wild type strain. In the global 

transcriptional analysis with DNA macroarrays, flgR, flgS, flhA, flhF and flgZ 



 

90 

 

showed unchanged transcript levels, while mRNA levels of fliK and flgM were 

increased and decreased, respectively in the ΔcncR1 strain (Table 2). Afterwards, the 

transcript levels of flgR, flgS and flgZ genes were assayed by dot-blot analysis. 

Results showed unchanged transcript levels in flgR, flgS (data not shown), while flgZ 

showed 1.8-fold increased levels in the ΔcncR1 strain (Fig. 25A), which was not 

detected in macroarray analysis. Since fliK, flgZ and flgM are de-regulated in the 

ΔcncR1 strain, it is possible that the negative regulation exerted by cncR1 sRNA on 

the 
54

 regulome could be mediated by one or more of these factors. 

A bioinformatic screening of putative targets of the cncR1 sRNA on the 

genome of H. pylori G27 strain was carried out using the online resource RNAtarget 

(http://cs.wellesley.edu/~btjaden/TargetRNA2/). This analysis was based on finding 

of short (at least 7 bp) and imperfect base-pairing of the G27 cncR1 most conserved 

sequences with the whole H. pylori G27 predicted transcriptome. Results of the 

screening were filtered according to the energy of hybridization and relative 

positions of the two putative complementary RNAs. The analysis enlisted many 

bacterial mRNAs showing a significant base-pairing with short regions of the cncR1 

sRNA. Among high scored results is reported the fliK mRNA (HP0906), showing a 

base-pairing of the sequence from position 525 to 537 bp of the former with the 

cncR1 sRNA (Fig. 25B). To assess if this predicted short base-paring between cncR1 

and fliK mRNA is part of a more extensive long-range base-paring, a bioinformatic 

analysis with the online resource RNAhybrid (http://bibiserv.techfak.uni-

bielefeld.de/rnahybrid/submission.html) was performed, showing an extensive 

discontinued and imperfect  complementarity between the two RNAs (Fig. 25C). The 

predicted short and long imperfect base-pairing regions between cncR1 and fliK 

mRNA are consistent with a typical trans sRNA-mediated regulation mechanism of 

the corresponding mRNA target. If confirmed by further analyses, these interactions 

can support the regulatory effect exerted by cncR1 sRNA on the fliK mRNA that was 

observed in the transcriptional analysis.  
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Fig. 25  (A) Dot-blot analysis of the flgZ transcript levels in the cncR1 and wild type 

strains. About 15 g of total RNA was spotted on a Hybond-N+ nylon membrane by means 

of a Bio-Dot microfiltration apparatus (Bio-Rad) and cross-linked to the filter by UV-ray 

treatment. The membrane was hybridized with the oligonucleotide VS958p1 (Table 6), 

mapping on the flgZ mRNA. (B) Bioinformatic prediction of short low-energy base-pairing 

between cncR1 sRNA and fliK RNA. The analysis was performed with RNAtarget program 

(C) Bioinformatic prediction of long discontinuous base-pairing between cncR1 sRNA and 

fliK RNA, using RNAhybrid program. 
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5.2 DISCUSSION 

For a successful infection of the host or survival in the environment, bacteria 

have to rapidly adapt their gene expression in response to changing conditions. 

Besides regulation at the transcriptional level, post-transcriptional regulation is an 

important layer of control in both prokaryotes and eukaryotes. Together with several 

RNA binding proteins which influence RNA structure and stability, the bacterial 

small RNAs (sRNAs) act as post-transcriptional regulators under various stress and 

growth conditions (Papenfort and Vogel, 2010; Storz et al., 2011; Waters and Storz, 

2009). In this context, H. pylori is a peculiar organism: on one hand it is particularly 

poor in numbers of transcriptional regulators (Scarlato et al., 2001; Tomb et al., 

1997), which has been traditionally attributed to reductive evolution due to the 

constrained gastric habitat, on the other hand this situation is balanced by the very 

high numbers of antisense transcripts and putative sRNAs recently described 

(Pernitzsch and Sharma, 2012; Sharma et al., 2010). Despite the extensive regulatory 

potential offered by asRNA and sRNA regulation, in H. pylori, only few examples 

have been described to date (Sharma et al., 2010; Wen et al., 2011), likely due to the 

relative novelty of these findings. 

The cag-encoded cncR1 sRNA is a peculiar non coding RNA, since it is 

observed only in H. pylori strains with a conserved cag-PAI island. In particular, all 

sequenced cag
+
 strains harbor the cncR1 locus (both the sRNA and the upstream 

promoter PcagP), with a 92% sequence homology, a conservation that is higher than 

for most other cag genes (Azuma et al., 2004). This conservation suggests a possible 

functional role exerted by the cncR1 sRNA in H. pylori gene regulation, maybe at the 

level of the cag-dependent virulence pathways. The cncR1 sRNA corresponds to the 

5’UTR of the cagP gene (Fig. 19), that, in contrast, is less conserved, and frequently 

disrupted by frameshift mutations, as for example in the G27 strain. Moreover, cagP 

is not fundamental for the functioning of the cag-encoded T4SS, and mutagenic 

studies missed to identify a function (Fischer et al., 2001). 

The 5’-end of H. pylori G27 strain cncR1 sRNA has been mapped by primer 

extension analysis, while the position of the 3’-end was inferred from Northern blot 
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assays, showing a major transcript of 218 nucleotides, corresponding to the cncR1 

sRNA (Fig. 20). Transcription beyond the cncR1 3’-end drops dramatically, likely 

due to a transcriptional terminator. The bioinformatic analysis of the putative 

terminator sequences predicted secondary structures compatible with an intrinsic 

transcriptional terminator. In addition, the functionality of these sequences as 

terminators were confirmed with the aid of transcriptional fusions with a lux reporter 

(Fig. 21). Interestingly, the low levels of expression of cagP reported in many studies 

(Boonjakuakul et al., 2005; Eaton et al., 2002) are explained by the presence of the 

transcriptional terminator at the 3’-end of the cncR1 sRNA, that reduces the 

downstream transcription into of the putative cagP coding sequence. 

The cncR1 sRNA is under the control of PcagP promoter, and the nucleotide 

sequence of the promoter indicates a conserved -10 box recognized by the vegetative 


80

 factor, without extended TGn element or a -35 box. Quantification assays of the 

expressed cncR1 sRNA in normal physiological conditions showed that it is the most 

abundant RNA coded by the H. pylori cag-island (Fig. 12). Transcriptional studies 

on the PcagP promoter revealed that the expression of cncR1 sRNA is not under the 

control of either the pleiotropic metal-dependent transcriptional regulators Fur and 

NikR, nor the heat-shock regulators HrcA and HspR (see previous sections). 

Moreover, cncR1 levels do not change in response of most of the tested stimuli 

(environmental stresses, acidic pH  and contact with AGS host cells). Interestingly, 

cncR1 levels change during bacterial growth, with reduced expression levels in the 

advanced growth phase (Fig. 13). This result suggests that the possible negative 

effect (typical of sRNA regulation) exerted by cncR1 may drop when H. pylori 

approaches the stationary phase. 

A clear negative effect exerted by cncR1 was observed for all genes under the 

control of the alternative 
54

 factor RpoN (Table 2). Since the mRNA levels of the 

rpoN gene are unchanged between the cncR1 deletion mutant and the wild type 

strain, cncR1 is likely not affecting the expression of rpoN, but rather influencing 

post-transcriptionally the activity of the RNA polymerase-
54

 holoenzyme. The latter 

is modulated by different factors, affecting either the affinity of the RNAP 

holoenzyme with the promoter sequences, or the availability of the 
54

 sigma factor. 

In particular, FlhA, FlhF and the activated form of the FlgRS two-component system 
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are all required for the expression of the 
54

-dependent genes (Brahmachary et al., 

2004; Niehus et al., 2004; Spohn and Scarlato, 1999b; Wen et al., 2009), likely by 

direct interaction with the RNA polymerase-
54

 holoenzyme or by binding with 

specific sequences on the promoter, that alter the DNA bending (Xu and Hoover, 

2001). Similarly, FliK and FlgM reduce the activity of the holoenzyme likely with 

similar mechanisms or by interaction with the aforementioned positive regulators 

(Douillard et al., 2009; Niehus et al., 2004; Ryan et al., 2005). In contrast, FlgZ acts 

as a molecular chaperon of 
54

 protein, promoting its accumulation in the cytoplasm 

(Pereira and Hoover, 2005; Pereira et al., 2011). 

In the transcriptional analysis of the cncR1 mutant strain, the mRNA levels of 

flgZ, fliK and flgM resulted de-regulated with respect to the wild type strain (Fig. 25 

and Table 2), suggesting that the effect exerted by cncR1 on the transcriptional 

activity of 
54

 is likely mediated by one or more of these factors. In particular, flgZ is 

up-regulated in the cncR1 knock-out strain, and since FlgZ positively affects 
54

, the 

global up-regulation of the 
54

 promoters in the mutant strain would be explained. 

Similarly, flgM is down-regulated in the cncR1 mutant. This result fits with the up-

regulation of the 
54

-regulon since FlgM has been reported to negatively regulates 


54

 (Niehus et al., 2004). In contrast, the possible mechanism mediated by FliK is 

more elusive, since this factor represses the activity of 
54

 in a feedback loop, and 

appears to be up-regulated in the cncR1 mutant along with all other 
54

 promoters. 

Nevertheless the functioning of H. pylori FliK factor is poorly understood and it is 

possible that it acts with alternate mechanisms that fit with the speculation of a 

cncR1-mediated regulation of 
54

. 

Finally, since cncR1 inversely correlates with bacterial motility (Fig. 24), and 

the cncR1 expression decreases in the advanced growth phase, we can speculate that 

H. pylori may use cncR1 to modulate the motility during gastric infections. In 

particular, as long as there are few bacteria that can grow in nearly log phase, the 

cncR1 is highly expressed and bacterial motility is reduced. When the bacteria are 

locally too abundant and the culture proceeds to stationary phase, the expression of 

cncR1 is likely repressed and the motility enhanced, in order to permit the bacteria to 

reach less populated niches. 
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6. CONCLUSIONS 
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The transcriptional analysis of the H. pylori cag-pathogenicity island has 

been conducted to identify regulatory factors that underlie the coordinated expression 

of cag gene products, needed to assemble the cag-encoded type 4 secretion system 

apparatus. 

The study has enlightened 11 cag transcriptional units, for which a plethora 

of responses affecting to environmental stresses and growth conditions were 

reported. In particular, the mechanism of iron-dependent regulation of the PcagA 

promoter has been successfully cleared, as we were able to demonstrate a direct 

involvement of the ferric uptake regulator Fur. In contrast, the other observed 

transcriptional responses of Pcag promoters were not directly linked to any other 

known transcriptional regulator, suggesting that they may be due to pleiotropic 

responses of the bacterium or under the control of unknown regulators. 

In this respect, the  extensive presence of putative antisense transcripts and 

small non coding RNAs suggests that post-transcriptional regulation mechanisms 

might be responsible for the regulation of the cag genes. The cncR1 sRNA, 

characterized in detail in this study, is a primary candidate for this task, as it is coded 

by the cag-PAI island itself. Notably, in the cncR1 mutant strain the expression 

levels of most cag genes is unchanged with respect to the wild type strain. Thus, the 

regulation mediated by cncR1-should be exerted at the post-transcriptional level, 

acting on the translatability of the target mRNA. Hence, dedicated studies should be 

undertaken to clarify the possible antisense- and sRNA-mediated regulatory 

mechanisms on the cag-PAI. 
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7. MATERIALS and METHODS 
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7.1.1 Bacterial strains and growth conditions 

All H. pylori strains used are listed in Table 3. Bacteria were recovered from -80°C 

glycerol stocks and propagated on Columbia agar plates containing 5% defibrinated horse 

blood (Oxoid) or on BBLBrucella (BD) agar plates containing 5% fetal calf serum (Oxoid), 

both supplemented with 0.2% cyclodextrin and Dent’s or Skirrow’s antibiotic supplement. 

Bacteria were grown for 24-48 hours at 37°C in a water-jacketed thermal incubator (9% 

CO2, 91% air atmosphere, and 95% humidity) or in jars using CampyGen™ (Oxoid) gas-

packs. Liquid cultures were grown in BBLBrucella Broth supplemented with 5% fetal calf 

serum and Dent’s or Skirrow’s antibiotic supplement at 37°C with gentle agitation (125 

rpm), in glass or tissue-culture flasks with vented cap. When required, Brucella agar plates or 

liquid broth were supplemented with chloramphenicol (30g/ml) and kanamycin (25g/ml). 

To measure the metal-dependant transcriptional response, cultures of the wild-type 

and mutant strains were grown to mid-log phase (optical density at 600nm [OD600] 0.5-0.6) 

and treated for 30 minutes with either 1 mM (NH4)2Fe(SO4)2, 1 mM NiSO4, or 100 μM 2,2-

dipyridyl (Sigma-Aldrich) prior to RNA extraction or the measurement at regular time 

intervals for the emission of bioluminescence. For acid exposure experiment, mid-log phase 

cultures of the wild-type and mutant strains were divided in two subcultures and treated with 

either 1M HCl to adjust the pH from 7.0 to 5.2 (acid shock) or equal volume of sterile water 

(control sample). Subcultures were grown for 30-90 minutes than harvested for RNA 

extraction. The volume of 1 M HCl required to achieve a pH of 5.2 was determined on 

aliquots of the growing cultures. For heat-shock experiments, mid-log phase culture was split 

into 10-ml aliquots that were heat shocked at 42°C in a water bath for 30 min or maintained 

at 37°C, then harvested for total RNA extraction. To follow the expression of cag genes over 

times, an overnight culture of wild type strain was diluted to a starting OD600 of 0.08 and 

cultured to an OD600 of 1.75. Aliquots of the master culture were obtained at different time 

points for measurement of luminescence and optical density, as well as for total RNA 

extraction. For growth in 96-well plates (Orange Scientific) or in an Isoplate-96 TC 

(optimized for luminescence reading; Perkin Elmer), single H. pylori colonies were picked 

and inoculated in single wells containing 100 μl BBL Brucella broth. Plates (with loose lids) 

were agitated at 700 rpm with an MS3 digital shaker (IKA), placed inside the thermal 

incubator, and measured at regular time intervals with a multilabel reader (see below). 

Colonies cultured in single wells could be recovered and expanded on Brucella agar plates 

up to 72 to 96 h after the initial inoculum. 

Motility of H. pylori strains was assayed by stab-inoculating bacteria with a pipette 

tip into 0.3 % Brucella agar plates supplemented with 10% fetal calf serum and Dent’s or 

Skirrow’s antibiotic supplement. 

H. pylori transformants were obtained by double homologous recombination of the 

naturally competent G27 strain: freshly grown overnight cultures were spotted onto plates 

and grown for a further 5 h, at which point 5 g of plasmid DNA was added onto the 

growing strain and incubated overnight. Positive clones were selected on Brucella agar plates 

supplemented with chloramphenicol or kanamycin, according to the resistance phenotype 

conferred by the Campylobacter coli cat (Cm
R
) and aphA3 (Km

R
) cassettes, respectively. 

E. coli strains DH5α cultures were grown in Luria-Bertani (LB) agar or in LB broth. 

When required, ampicillin, kanamycin and chloramphenicol were added at final 

concentration of 100g/ml, 25g/ml, and 30g/ml, respectively.  
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Table 3. Strains used in this study 

Strain or 

Plasmid 
Genotype or description 

Source/ 

reference 

E. coli strains   

DH5 supE44 lacU169 (80 lacZM15) hsdR17 recA1 

endA1 gyrA96 thi-1 relA1 

(Hanahan, 1983) 

   
H. pylori strains  

G27 Clinical isolate; wild-type parental strain (Xiang et al., 

1995) 

G27(fur::km) G27 derivative; bp 25 to 434 of the fur (HP1027) 

coding sequence replaced by a km cassette; Km
R
 

(Delany et al., 

2001a) 

G27(nikR::km) G27 derivative; bp 88 to 417 of the nikR (HP1338) 

coding sequence replaced by a km cassette; Km
R
 

(Pflock et al., 

2005) 

G27(hspR::km) G27 derivative; bp 66 to 334 of the hspR (HP1025) 

coding sequence replaced by a km cassette; Km
R
 

(Spohn and 

Scarlato, 1999a) 

G27(hrcA::km) G27 derivative; bp 156 to 375 of the hrcA (HP0111) 

coding sequence replaced by a km cassette; Km
R
 

(Spohn et al., 

2004) 

G27(arsS::cp) G27 derivative; bp 3 to 1290 of the arsS (HP0164-

HP0165)coding sequence replaced by a cat cassette; 

Cm
R
 

This study 

G27(cncR1::cp) G27 derivative; bp -79 to 208 of the cncR1 (HP0536 

5'UTR)sequence replaced by a cat cassette; Cm
R
 

This study 

G27lux G27 derivative carrying the km cassette and the 

promoterless Photorhabdus luminescens luxCDABE 

operon in the vacA locus; Km
R
 

(Vannini et al., 

2012) 

G27 Ppfr-lux vacA::cat-PpfrluxCDABE; G27lux derivative obtained 

by double omologous recombination with plasmid 

PVCC::Ppfr; Cm
R
 

(Vannini et al., 

2012) 

G27 oppPpfr-lux vacA::cat-oppPpfrluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::oppPpfr; Cm
R
 

(Vannini et al., 

2012) 

G27 Ppfr-

luxfur 

vacA::cat-PpfrluxCDABE fur::aphA-3; G27lux Ppfr 

derivative carrying a deletion of the fur gene, obtained 

by double homologous recombination with plasmid 

pFur::km; Km
R
 Cm

R
 

(Vannini et al., 

2012) 

G27 PfecA3-lux vacA::cat-PfecA3luxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PfecA3; Cm
R
 

(Vannini et al., 

2012) 

G27 oppPfecA3-

lux 

vacA::cat-oppPfecA3luxCDABE; G27lux derivative 

obtained by double homologous recombination with 

(Vannini et al., 

2012) 



 

100 

 

plasmid PVCC::oppPfecA3; Cm
R
 

G27 PfecA3SDlux-

lux 

vacA::cat-PfecA3SDluxluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PfecA3SDlux; Cm
R
 

(Vannini et al., 

2012) 

G27 PfecA3SDlux-

OPINikR-lux 

vacA::cat-PfecA3SDlux-OPINikRluxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PfecA3SDlux-

OPINikR; Cm
R
 

(Vannini et al., 

2012) 

G27 Pcag-lux vacA::cat-PcagluxCDABE; G27lux derivative obtained 

by double homologous recombination with plasmid 

PVCC::Pcag; Cm
R
 

This study 

G27 Pcag-

5'UTR-lux 

vacA::cat-Pcag-cag5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::Pcag-5'UTR; Cm
R
 

This study 

G27 PcagV-lux vacA::cat-PcagVluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagV; Cm
R
 

This study 

G27 PcagV-

5'UTR-lux 

vacA::cat-PcagV-cagV5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagV-5'UTR; Cm
R
 

This study 

G27 PcagU-lux vacA::cat-PcagUluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagU; Cm
R
 

This study 

G27 PcagU-

5'UTR-lux 

vacA::cat-PcagU-cagU5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagU-5'UTR; 

Cm
R
 

This study 

G27 PcagU-

5'UTRtr-lux 

vacA::cat-PcagU-cagU5'UTRtr-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagU-5'UTRtr; 

Cm
R
 

This study 

G27 PcagQ-lux vacA::cat-PcagQluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagQ; Cm
R
 

This study 

G27 PcagQ-

5'UTR-lux 

vacA::cat-PcagQ-cagQ5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagQ-5'UTR; 

Cm
R
 

This study 

G27 PcagS-lux vacA::cat-PcagSluxCDABE; G27lux derivative obtained 

by double homologous recombination with plasmid 

PVCC::PcagS; Cm
R
 

This study 

G27 PcagS-

5'UTR-lux 

vacA::cat-PcagS-cagS5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

This study 
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recombination with plasmid PVCC::PcagS-5'UTR; Cm
R
 

G27 PcagP-lux vacA::cat-PcagPluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagP; Cm
R
 

This study 

G27 PcagP-

5'UTR-lux 

vacA::cat-PcagP-cagP5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagP-5'UTR; Cm
R
 

This study 

G27 PcagP-

5'UTRtr-lux 

vacA::cat-PcagP-cagP5'UTRtr-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagP-5'UTRtr; 

Cm
R
 

This study 

G27 PcagP-

5'UTRterm-

lux 

vacA::cat-PcagP-cagP5'UTRterm-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagP-

5'UTRterm; Cm
R
 

This study 

G27 PcagM-lux vacA::cat-PcagMluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagM; Cm
R
 

This study 

G27 PcagM-

5'UTR-lux 

vacA::cat-PcagM-cagM5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagM-5'UTR; 

Cm
R
 

This study 

G27 PcagF-lux vacA::cat-PcagFluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagF; Cm
R
 

This study 

G27 PcagF-

5'UTR-lux 

vacA::cat-PcagF-cagF5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagF-5'UTR; Cm
R
 

This study 

G27 PcagC-lux vacA::cat-PcagCluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagC; Cm
R
 

This study 

G27 PcagC-

5'UTR-lux 

vacA::cat-PcagC-cagC5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagC-5'UTR; 

Cm
R
 

This study 

G27 PcagB-lux vacA::cat-PcagBluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

plasmid PVCC::PcagB; Cm
R
 

This study 

G27 PcagB-

5'UTR-lux 

vacA::cat-PcagB-cagB5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagB-5'UTR; Cm
R
 

This study 

G27 PcagA-lux vacA::cat-PcagAluxCDABE; G27lux derivative 

obtained by double homologous recombination with 

This study 
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plasmid PVCC::PcagA; Cm
R
 

G27 PcagA-

5'UTR-lux 

vacA::cat-PcagA-cagA5'UTR-luxCDABE; G27lux 

derivative obtained by double homologous 

recombination with plasmid PVCC::PcagA-5'UTR; Cm
R
 

This study 

 

 

Table 4. Plasmids used in this study 

Plasmid Description 
Source/ 

reference 

pBluescript KS II Cloning vector, Ap
R
 Stratagene 

pGEM-T Cloning vector, Ap
R
 Promega 

pGEM-T Easy Cloning vector, Ap
R
 Promega 

pSB1075 Plasmid vector containing the 5.8-kb Photorhabdus 

luminescens luxCDABE operon cassette; Ap
R
 

(Winson et 

al., 1998b) 

pBS::cat pBluescript KS II derivative carrying a HincII 

Campylobacter coli cat cassette from pDT2548 (Wang 

and Taylor, 1990) cloned into the SmaI site of the 

vector; Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

pPhpn2 pGEM-T derivative carrying a 280-bp BamHI-PstI 

fragment encompassing the intergenic region upstream 

of hpn2 (HP1432), amplified with oligonucleotides 

1431DxD and 1431DxS; Ap
R
 

(Vannini et 

al., 2012) 

pFur::km pGEM3Z derivative carrying the C. coli aphA-3 cassette 

flanked by upstream and downstream regions for double 

homologous recombination in the fur locus; Ap
R
, Km

R
 

(Delany et 

al., 2001a) 

pBS::arsS pBluescript KS II derivative, carrying a 460 bp XbaI-

BglII fragment amplified on chromosomal DNA of H. 

pylori with oligos 163f_Xba and 163r_Bgl, BglI/BamHI 

cat cassette and a 616 bp BglII-HindIII fragment 

amplified with 166f_Bgl and 166r_Hin; Ap
R
, Cm

R
 

This study 

pBS::cncR1 pBluescript KS II derivative, carrying a 574 bp XbaI-

BglII fragment amplified on chromosomal DNA of H. 

pylori with oligos VS536U-F and VS536U-R, 

BglI/BamHI cat cassette and a 442 bp BglII-HindIII 

fragment amplified with VS536D2F and VS536D-R; 

Ap
R
, Cm

R
 

This study 

pGEM-PcagAB pGEM-T Easy derivative, carrying a 403 bp fragment 

amplified on chromosomal DNA of H. pylori with 

oligos Lux547R and Lux546F, encompassing PcagA-PcagB 

promoter regions; Ap
R
, Cm

R
 

This study 

pVAC::km pGEM3Z derivative containing the C. coli aphA-3 

cassette flanked by upstream and downstream regions 

for double homologous recombination in the vac locus; 

(Delany et 

al., 2002) 
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Ap
R
, Km

R
 

pVC pVAC derivative lacking the 779-bp 3'-end region of 

homology to vacA, altered with a 1,045-bp BamHI-

HindIII fragment of pSB1075 encompassing the 5'-end 

of the luxCDABE cassette, including the RBS, the 

translation start codon, and the first 1,013 bp of the luxC 

cistron; Ap
R
 

(Vannini et 

al., 2012) 

pVCC Suicide transformation vector for promoter-lux fusions;  

Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

PVCC::Ppfr pVCC derivative carrying a 180-bp fragment, amplified 

with oligonucleotides PpfrF and PpfrR, encompassing a 

codirectional Ppfr promoter upstream of luxC; Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

PVCC::oppPpfr pVCC derivative carrying the 180-bp Ppfr promoter 

fragment, cloned in opposite direction with respect to 

luxC; Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

PVCC::PfecA3 pVCC derivative carrying a 182-bp fragment, amplified 

with oligonucleotides A3.4 and A3.5B, encompassing a 

codirectional PfecA3 promoter upstream of luxC; Ap
R
, 

Cm
R
 

(Vannini et 

al., 2012) 

PVCC::oppPfecA3 pVCC derivative carrying the PfecA3 promoter fragment, 

cloned in opposite direction with respect to luxC; Ap
R
, 

Cm
R
 

(Vannini et 

al., 2012) 

PVCC::PfecA3SDlux pVCC derivative carrying a 109-bp fragment, amplified 

with oligonucleotides A3.4 and A3.1B, encompassing a 

codirectional PfecA3 promoter with a shortened 5'UTR 

devoid of the fecA3 RBS, cloned upstream of the lux 

operon; Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

PVCC::PfecA3SDlux-

OPINikR 

pVCC derivative carrying a 66-bp fragment, amplified 

with oligonucleotides A3.4 and A3.3B, encompassing a 

codirectional PfecA3 promoter missing the fecA3 5'UTR 

and the NikR OPI operator, cloned upstream of the lux 

operon; Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

PVCC::Pcag pVCC derivative carrying a 122 bp BamHI/BglII 

fragment amplified on chromosomal DNA of H. pylori 

with oligos Lux519F and Lux520RS, encompassing 115 

bp of the Pcag promoter and the first 7 bp of the cag 

5'UTR cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::Pcag-

5'UTR 

pVCC derivative carrying a 166 bp BamHI/BglII 

fragment from  Lux519F and Lux520RL oligos, 

encompassing 115 bp of the Pcag promoter and the cag 

5'UTR (51 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagV pVCC derivative carrying a 306 bp BamHI/BglII 

fragment from VS530FS and VS531RL oligos, 

encompassing 300 bp of the PcagV promoter and the first 

This study 
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6 bp of the cagV 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

PVCC::PcagV-

5'UTR 

pVCC derivative carrying a 366 bp BamHI/BglII 

fragment from VS530FL and VS531RS oligos, 

encompassing 269 bp of the PcagV promoter and the cagV 

5'UTR (97 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagU pVCC derivative carrying a 366 bp BamHI/BglII 

fragment from VS530FL and VS531RS oligos, 

encompassing 361 bp of the PcagU promoter and the first 

5 bp of the cagU 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagU-

5'UTR 

pVCC derivative carrying a 306 bp BamHI/BglII 

fragment from VS530FS and VS531RL oligos, 

encompassing 270 bp of the PcagU promoter with the 

cagU 5'UTR (35 bp) cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagU-

5'UTRtr 

pVCC derivative carrying a 373 bp BamHI/BglII 

fragment from  Lux530F2 and Lux531R2 oligos, 

encompassing 338 bp of the PcagU promoter and the first 

24 bp of the cagU 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

(Vannini et 

al., 2012) 

PVCC::PcagS pVCC derivative carrying a 180 bp BamHI/BglII 

fragment from VS534FS and VS534R2 oligos, 

encompassing 177 bp of the PcagS promoter and the first 

3 bp of the cagS 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagS-

5'UTR 

pVCC derivative carrying a 241 bp BamHI/BglII 

fragment from VS534F and VS534R2 oligos, 

encompassing 177 bp of the PcagS promoter and the cagS 

5'UTR (64 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagQ pVCC derivative carrying a 304 bp BamHI/BglII 

fragment from  VS535FS and VS535R oligos, 

encompassing 301 bp of the PcagQ promoter and the first 

3 bp of the cagQ 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagQ-

5'UTR 

pVCC derivative carrying a 439 bp BamHI/BglII 

fragment from  VS535F and VS535R oligos, 

encompassing 301 bp of the PcagQ promoter and the 

cagQ 5'UTR (138 bp) cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagP pVCC derivative carrying a 204 bp BamHI/BglII 

fragment from  VS536FS and VS537RL oligos, 

encompassing 201 bp of the PcagP promoter and the first 

3 bp of the cagP 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 
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PVCC::PcagP-

5'UTR 

pVCC derivative carrying a 394 bp BamHI/BglII 

fragment from VS536FL and Lux537R2 oligos, 

encompassing 170 bp of the PcagP promoter and the cagP 

5'UTR (224 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagP-

5'UTRtr 

pVCC derivative carrying a 383 bp BamHI/BglII 

fragment Lux536F2 and Lux537R2 oligos, 

encompassing 170 bp of the PcagP promoter and the first 

213 bp of the cagP 5'UTR cloned upstream of luxC; 

Ap
R
, Cm

R
 

(Vannini et 

al., 2012) 

PVCC::PcagM pVCC derivative carrying a 394 bp BamHI/BglII 

fragment from VS536FL and Lux537R2 oligos, 

encompassing 388 bp of the PcagM promoter and the first 

6 bp of the cagM 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagM-

5'UTR 

pVCC derivative carrying a 204 bp BamHI/BglII 

fragment from VS536FS and VS537RL oligos, 

encompassing 167 bp of the PcagM promoter and the 

cagM 5'UTR (37 bp) cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagF pVCC derivative carrying a 308 bp BamHI/BglII 

fragment from VS543FS and VS543R oligos, 

encompassing 305 bp of the PcagF promoter and the first 

3 bp of the cagF 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagF-

5'UTR 

pVCC derivative carrying a 352 bp BamHI/BglII 

fragment from VS543F and VS543R oligos, 

encompassing 305 bp of the PcagF promoter and the cagF 

5'UTR (47 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagC pVCC derivative carrying a 276 bp BamHI/BamHI 

fragment VS546FS and VS546R oligos, encompassing 

274 bp of the PcagC promoter and the first 2 bp of the 

cagC 5'UTR cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagC-

5'UTR 

pVCC derivative carrying a 300 bp BamHI/BamHI 

fragment from VS546F and VS546R oligos, 

encompassing 274 bp of the PcagC promoter and the cagC 

5'UTR (26 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagB pVCC derivative carrying a 261 bp BamHI/BglII 

fragment from VSorfxFS and VS547RL oligos, 

encompassing 257 bp of the PcagB promoter and the first 

4 bp of the cagB 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagB-

5'UTR 

pVCC derivative carrying a 324 bp BamHI/BglII 

fragment from VSorfxFL and VS547RS oligos, 

encompassing 155 bp of the PcagB promoter and the cagB 

5'UTR (169 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 
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PVCC::PcagA pVCC derivative carrying a 324 bp BamHI/BglII 

fragment from VSorfxFL and VS547RS oligos, 

encompassing 321 bp of the PcagA promoter and the first 

3 bp of the cagA 5'UTR cloned upstream of luxC; Ap
R
, 

Cm
R
 

This study 

PVCC::PcagA-

5'UTR 

pVCC derivative carrying a 261 bp BamHI/BglII 

fragment from VSorfxFS and VS547RL oligos, 

encompassing 156 bp of the PcagA promoter and the cagA 

5'UTR (105 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

PVCC::PcagP-

5'UTRterm 

pVCC derivative carrying a 261 bp BamHI/BglII 

fragment from VSorfxFS and VS547RL oligos, 

encompassing 156 bp of the PcagA promoter and the cagA 

5'UTR (105 bp) cloned upstream of luxC; Ap
R
, Cm

R
 

This study 

 

 

Table 5. Oligonucleotides used for cloning 

Name Sequence (5'-3')
a
 Source 

Restr 

site 

163f_Xba GCCCATGGTCGGTGTCTAGACAAAAACACAAATCCGC This study XbaI 

163r_Bgl GAAAATTTGAGATCTGTGAGCGGAGTGAAGGG This study BglII 

166f_Bgl CTTAAAAAAGATAGAGAGATCTAAAACCCCTTAACTC This study BglII 

166r_Hin CATGTAACCAAGCTTGATGAGCCATATACCGGC This study HindIII 

VS536D2F AGAAAAACATAGATCTATAAGACCTG This study BglII 

VS536D-R CCATAAGCTTTTGACTTAGCAGTAAG This study HindIII 

VS536U-F CACTCTAGATGTAGAATTATTTTTAAAAAACG This study XbaI 

VS536U-R GCCCTGAACTAGATCTTTAAAAAC This study BglII 

PpfrF GTTTTGGATCCTATTGATGCCAACCC (Vannini et 

al., 2012) 

BamHI 

PpfrR GTTTTAGATCTTGTCCCATAATTATAGCATA (Vannini et 

al., 2012) 

BglII 

A3.4 CGGGATCCAAAAGATTTTCA (Danielli et 

al., 2009) 

BamHI 

A3.5B ACTTAGATCTGCAACACAAACTC (Vannini et 

al., 2012) 

BglII 

A3.1B TCACAGATCTAACGAACGCCTAT (Vannini et 

al., 2012) 

BglII 

A3.3B AAAAAGATCTAATTCGCAGAAT (Vannini et 

al., 2012) 

BglII 

Lux519F TATAAGATCTAGTCCTTTTACAATTTGAGC This study BglII 

VS520RS ACTAGGATCCAAATTCATGTCATTATAGC This study BamHI 

VS520RL TGTGGGATCCATAGTGTTACCTCCATAAG This study BamHI 

VS530FS CTTAGGATCCTTTCAGTTATAGTATAG This study BamHI 

VS530FL TCCCGGATCCGCGACAGCTTTATTGTTTAG This study BamHI 

Lux530F2 TGTTTAGATCTTGGTTTGTTGGTTGCAAAAC (Vannini et 

al., 2012) 

BglII 

VS531RS ATTGAGATCTTGTTTTGATATTATACCATTC This study BglII 
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VS531RL TATCAGATCTGAAATTCCTTTCAAGAATTAAATTG This study BglII 

Lux531R2 TAATAGGATCCAAGAATTAAATTGAGAAATTG (Vannini et 

al., 2012) 

BamHI 

VS534FS CGTAGGATCCTATATTAAAATTATACAATATC This study BamHI 

VS534F TATTGGATCCATCGCTCTTGATCCCTTCAGTG This study BamHI 

VS534R2 AAATAGATCTATTAAAACTTTTTTAAATCG This study BglII 

VS535FS TTTTGGATCCTATCTCCTAATTATAG This study BamHI 

VS535F TAGGGGATCCTTCACAATAGCATACCTAAAG This study BamHI 

VS535R AAAAAGATCTCTTATGATTCGTTCAAAAATTTC This study BglII 

VS536FS ATCTGGATCCCACAAATCCATTATATAG This study BamHI 

VS536FL GGTTGGATCCTTTTGGTTTTTAAAGAAG This study BamHI 

Lux536F2 AATATAGGATCCAAAGAAGTAGTTCAGGGCG (Vannini et 

al., 2012) 

BamHI 

Lux537R2 TTATAGATCTAAATATCAATACATTTTACC (Vannini et 

al., 2012) 

BglII 

VS537RL TTGCAAAGATCTTATAGTTTTTGTAACC This study BglII 

VS543FS CAAGGGATCCTATTTATCTATGATACTATG This study BamHI 

VS543F TTTGGGATCCTTTAATACTCCTCTATTTGTTG This study BamHI 

VS543R TCACAGATCTTTTGGCTTGCCCTATTGCTG This study BglII 

VS546FS ATTGGGATCCATCGCTTGAGTATATC This study BamHI 

VS546F AAAAGGATCCGCGTTTCCTTTCAAATTGAAATC This study BamHI 

VS546R TCTAGGATCCTGCTTAAAATGGAGCTTTATTC This study BamHI 

VSOrfXFS TTCTGGATCCAAATTCGTTCATTTTAG This study BamHI 

VSOrfXFL TGTTGGATCCGTGAATCACAAACGCTTAATTG This study BamHI 

VS547RS CATGAGATCTAACATTACCATTATACCAC This study BglII 

VS547RL CGTTAGATCTTGTTTCTCCTTACTATAC This study BglII 

Lux546F TATAGGATCCTATATACTTTATGGTAAGC This study BamHI 

Lux547R TATAGATCTACCTAGTTTCATACCTATC This study BglII 

VSsteDF1 GGATCCGGGGAATTCAGGCTTG This study BamHI 

VSstemR1 TACAAAGGAGCATAAAATAATAAATATTTTAC This study - 
a 
Restriction site added for cloning purposes are underlined 

 

 

Table 6. Oligonucleotides used for primer extension and hybridization assays 

Name Sequence (5'-3')
a
 Source Target 

520pe2 CTAATGAATCATAACGCTTGTC This study cag(HP0520) 

530pe1 ACCAAATTTTCATCAATCAAG This study cagV(HP0530) 

531pe4 CATGATGCTCTGTTGTATC This study cagU(HP0531) 

534pe3 GTTTTCGCATGTTATTACTC This study cagS(HP0534) 

535pe1 ATAAGTAGCCACCAATCGCAAAC This study cagQ(HP0535) 

536pe20 TTTGCTAATTTGGTTGTTCC (Vannini et al., 2012) cagP(HP0536) 

536pe17 AACGATTTGTTTGTTTATGC (Vannini et al., 2012) cagP(HP0536) 

537pe8 CTCCAAACGCAACCAATGAG This study cagM(HP0537) 

543pe3 GTTCACGCAAATTTTGTTTC This study cagF(HP0543) 
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546pe1 ACAACTTTCTTGTAGCTGTC This study cagC(HP0546) 

OrfX GCAACTCCATAGACCACTAAAG (Spohn et al., 1997) cagB 

cagN GTCAATGGTTTCGTTAGTC (Spohn et al., 1997) cagA(HP0547) 

VSLuxC1 CAACCTGGCCGTTAATAATG This study luxC 

VSflgE GACACCAGACCATAAAGACC (Spohn and Scarlato, 

1999b) 

flgE (HP0870) 

VS906pe7 GGATTAATAGGAGATGGCATG (Spohn and Scarlato, 

1999b) 

fliK (HP0906) 

VSflaB GCATGAGAAGTTAAAGCGGC (Spohn and Scarlato, 

1999b) 

rpoN (HP0115) 

VS958p1 GGCTCTAAAGAGTCAATTTC This study flgZ (HP0958) 

VSflgB AAGACCGATAATCCAACGCC (Spohn and Scarlato, 

1999b) 

flgB (HP1559) 

 

 

7.1.2 DNA manipulation 
DNA amplification, restriction digests and ligations were all carried out with 

standard molecular techniques (Sambrook, 1989), with enzymes purchased from New 

England Biolabs. Preparations of plasmid DNA were carried out with a Qiagen Miniprep 

Spin Kit (Qiagen, Inc.) or a NucleoBond Xtra Midi plasmid purification kit (Macherey-

Nagel). DNA fragments for cloning purposes were extracted and purified from agarose gel 

using a Qiagen Gel Extraction Kit (Qiagen, Inc.) 

 

7.1.3 Construction of an isogenic arsS
-
 mutant 

H. pylori G27-derivative arsS knock-out mutant was obtained using a 

pBluescriptKS(-) vector carrying DNA regions flanking the arsS gene (ORF 

HP0164/HP0165) on the H. pylori chromosome, in attrition to a cat chloramphenicol 

resistance cassette. Primers 163f_Xba and 163r_Bgl (Table 5) were used to amplify and 

clone a 460 bp XbaI-BglII fragment encompassing the region upstream arsS, that correspond 

to 359 bp of the 5’ region of the HP0163 open reading frame (ORF), 9 bp of the intergenic 

region and the 57 bp of the 3’ region of HP0164. The primer couple 166f_Bgl and 166r_Hin 

were used for amplification and cloning of a 616 bp BglII-HindIII fragment encompassing 

the region downstream arsS, that correspond to 585 bp of the 3’ region of the HP0166 ORF 

and 25bp of the intergenic region downstream the HP0165 ORF. The cat cassette derived as 

BglII-BamHI fragment from pBS::cat was inserted between these two fragments and the 

final construct (Table 4) was used to transform H. pylori. The chloramphenicol-selected 

mutant strains (Table 3) were confirmed by PCR. 

 

7.1.4 Construction of an isogenic cncR1
-
 mutant 

H. pylori G27-derivative cncR1 knock-out mutant was obtained using a 

pBluescriptKS(-) vector carrying DNA regions flanking the cncR1-encoding region 

(corresponding to the annotated 5’UTR of HP0536) on the H. pylori chromosome, as well as 

a Campylobacter coli cat chloramphenicol resistance cassette. Primers VS536U-F and 

VS536U-R (Table 5) were used for amplification and cloning of a 574 bp Xba-BglII 

fragment encompassing the region downstream cncR1, that correspond to the last 16 bp of 

cncR1, the cagP CDS (345 bp) and 213 bp downstream cagP. The primer couple VS536D2F 

and VS536D-R were used to amplify and clone a 442 bp BglII-Hind fragment encompassing 

the region upstream cncR1, that correspond to 85 bp of the divergent PcagM promoter, the 

5’UTR of cagM (37 bp) and the first 320 bp of the cagM CDS. The cat cassette derived as 
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BglII-BamHI fragment from pBS::cat was inserted between these two fragments and the 

final construct (Table 4) was used to transform H. pylori. The chloramphenicol-selected 

mutant strains (Table 3) were confirmed by PCR. 

 

7.1.5 Generation of the promoterless luxCDABE acceptor strain 

To construct the H. pylori vacA::luxCDABE acceptor strain, a promoterless 

Photorhabdus luminescens luxCDABE operon cassette was isolated as a 5.8-kb BamHI 

fragment from plasmid pSB1075 (Winson et al., 1998a; Winson et al., 1998b) (Table 4) and 

cloned into pPhpn2, a pGEM-T (Promega) derivative containing a 280-bp PCR PstI-BamHI 

fragment encompassing the intergenic region between ksgA (HP1431) and hpn2 (HP1432), 

generating pPhpn2-luxCDABE (Table 4). A unique EcoRI site in pPhpn2-luxCDABE 

upstream of the luxCDABE ribosome binding site (RBS) served to insert the aphA-3 cassette, 

conferring kanamycin resistance (Trieu-Cuot et al., 1985). The resulting plasmid was used to 

recover a 7.3-kb BamHI fragment, encompassing the aphA-3 and luxCDABE operons, which 

was cloned in the pVAC suicide vector (Delany et al., 2002), generating pVAC::aphA-3-

luxCDABE (Table 4). This plasmid includes the promoterless lux operon and the selectable 

Km
R
 marker in divergent orientation, flanked by regions allowing double homologous 

recombination in the vacA locus of H. pylori G27. After transformation (as described above), 

recombinant colonies of the resulting G27 vacA::aphA-3-luxCDABE strain (G27lux for 

short) were expanded and confirmed by PCR (Table 3). 

 

7.1.6 Generation of the pVCC transformation vector 

Starting from pVAC (Delany et al., 2002), a 779-bp BamHI-HindIII fragment, 

containing the 3′ end of the vacA locus (the right region of homology to vacA), was replaced 

with a 1,045-bp BamHI-HindIII fragment derived from pSB1075, encompassing the 5′ end 

of the luxCDABE operon (the RBS, the translation start, and the first 1,013 bp of the luxC 

cistron), generating pVC (Table 4). A Campylobacter coli cat chloramphenicol resistance 

cassette, derived as a Bglll-BamHI fragment from pBS::cat, was cloned into the unique 

BamHI site of pVC, generating pVCC. This vector bears unique BamHI, KpnI, SacI, and 

SnaBI sites upstream of the lux RBS, which can be used to clone promoters of interest 

through cohesive or blunt-end ligation. The nucleotide sequence of pVCC (Table 4) has been 

deposited in GenBank under accession number HQ207194. 

 

7.1.7 Generation of the G27 Ppfr-lux and PfecA3-lux reporter 

strains 

The promoter regions of pfr (HP0653) and fecA3 (HP1400) were PCR amplified 

from H. pylori G27 genomic DNA using primer pairs with either BglII or BamHI overhangs 

and cloned into the unique BamHI site of pVCC. Due to cohesive BglII and BamHI ends, the 

promoter sequence could be cloned randomly in both directions, disrupting the BamHI site 

on either end of the insert. This feature was used to check the orientation of the promoter. 

Constructs with promoters diverging in orientation with respect to the lux operon (oppP) 

were used as negative controls.  

The primer couple PpfrF and PpfrR was used for amplification and cloning of the 

Ppfr promoter (180 bp), generating pVCC::Ppfr and pVCC::oppPpfr. For the PfecA3 

promoter, several constructs were created: (i) the full-length fecA3 promoter, encompassing 

the −10 box, the RBS, and the start codon of fecA3, was amplified with oligonucleotides 

A3.4 and A3.5B and cloned in pVCC, generating pVCC::PfecA3 and pVCC::oppPfecA3; (ii) 

a 3′-shortened promoter, devoid of the native fecA3 RBS and start codon, was amplified with 

oligonucleotides A3.4 and A3.1B, giving rise to pVCC::PfecA3SDlux; and (iii) a mutant 

promoter lacking the native fecA3 RBS and start codon, as well as the OPI NikR operator 
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responsible for Ni2
+
-dependent repression of PfecA3, was amplified with oligonucleotides 

A3.4 and A3.3B and cloned, generating pVCC::PfecA3SDlux-ΔOPINikR. All constructs 

were checked for correct insertion by sequencing. pVCC derivatives containing wild-type, 

oppP, and mutant promoters were then used to transform the G27lux acceptor strain by 

double homologous recombination. Positive transformants carrying the cat cassette were 

selected on chloramphenicol and were sensitive to kanamycin due to swapping of the 

resistance cassette. Finally, a fur deletion mutant, carrying the Ppfr-luxCDABE 

transcriptional fusion, was obtained by double homologous recombination of the G27 

vacA::cat-Ppfr-luxCDABE strain with the pFur::km suicide vector (Delany et al., 2001a) and 

subsequent selection on Km
R
/Cm

R
 Columbia agar plates. pVCC-derivative constructs used 

for H. pylori transformation are enlisted in Table 4 and the corresponding mutant strains are 

reported in Table 3. 

 

7.1.8 Generation of the reporter strains Pcag-lux and Pcag-5’UTR-

lux 

H. pylori G27-derivative strains carrying the transcriptional fusions of the Pcag 

promoter regions with the luxCDABE operon were obtained with the same procedures 

described above. For Pcag, PcagV, PcagS, PcagQ, PcagM, PcagF, PcagC, PcagB and 

PcagA promoters, two variants were derived, with or without the 5’untranlsated regions 

(5’UTRs), respectively. In particular, the Pcag-lux strains were obtained from PVCC::Pcag-

lux carrying the Pcag promoter regions and the first 2-6 bases of the of the 5’UTRs cloned 

upstream the luxC gene, while Pcag-5’UTR-lux strains were obtained from the PVCC::Pcag-

5’UTR-lux constructs carrying the promoters and theirs corresponding 5’UTR cloned 

upstream luxC. For PcagU and PcagP promoters, three variants were derived: beside the 

aforementioned the Pcag-lux and Pcag-5’UTR-lux strains, the Pcag-5’UTRtr-lux strains 

were derived, carrying the promoter regions and trunked 5’ untranslated regions cloned 

upstream the lux reporter. The detailed description of the pVCC-derivative constructs used 

for H. pylori transformation with the oligonucleotides used for cloning are reported in Table 

4, while the corresponding mutant strains are enlisted in Table 3. 

Using the phosphorylated oligonucleotides (150 pmol oligos, 1.5 nmol ATP, 2.5U 

T4 Polynucleotide Kinase, 1X PNK buffer) VSsteDF1 and VSstemR1, and the 

PVCC::PcagP vector as template for a site-direct mutagenic PCR, a DNA fragment was 

obtained that, after a blunt-end ligation, gave rise to the PVCC::PcagP-5’UTRterm 

construct. This vector carries the PcagP promoter region plus its 5’UTR deleted in the 

putative region of intrinsic transcription terminator (29 bp from position 184 to 213 

downstream the PcagP transcriptional start site) and, after G27lux transformation, generated 

the G27lux:: PcagP-5’UTRterm strain. 

 

7.1.9 Luminometry and data processing 

The luminescence of lux strains streaked on Columbia agar plates was captured 

through a Fluoromax Imager (Bio-Rad), with an integration time of 10 min. In the case of 

liquid cultures growing in flasks and treated with metal ions or chelator, samples of 0.5 to 

1.0 ml were taken at regular time intervals, gently pipetted into prewarmed luminometry 

vials (Promega), and immediately measured in a TD-20/20 luminometer (Turner Designs), 

with an integration time of 60 s. Data were normalized according to the culture volume and 

the optical density of the culture by measuring the OD at 600 nm (OD600) of the sample with 

a Beckman spectrophotometer. Luminescence in multiwell plates was assayed in a Victor3V 

(1420) multilabel reader (Perkin Elmer), with the bottom trail preheated at 37°C. Plates were 

first shaken with a linear 2-s pulse (shaking diameter, 0.1 mm), thereafter the luminescence 

of each well was measured with an integration time of 2 s (normal aperture) in the absence of 
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optical filters. To normalize the data, the optical density was assessed by measuring for 1 s 

the absorbance of each well through a 595-nm-length continuous-wave lamp filter. 

Data sets were processed with Genework 2.0, Wallac, and Excel software. The 

luminescence and OD values of vials/wells filled with growth medium were used as blank 

controls and were subtracted from the values of the experimental samples. Three to eight 

independent replicates were performed for each experiment, and average values and standard 

deviations were calculated. The threshold of significance was set 3 standard deviations above 

the average value of the blank controls both for OD and luminescence. Experimental 

samples with an OD below this threshold were excluded from the analysis; samples with 

luminescence below the threshold were judged to be negative (null). The luminescence 

values, normalized according to the OD of the sample, were averaged and plotted on graphs. 

In the course of the blind test, the maximum value of normalized reporter luminescence, 

measured at regular time intervals over a period of 72 h, was used to discriminate between 

weak (repressed) and strong (derepressed) promoters. 

 

7.1.10   RNA preparation (Hot phenol procedure) 

Bacterial cells were harvested pipetting 10 ml of liquid cultures into a 15 ml conical 

tube containing 1.25 ml of ice-cold EtOH/Phenol stop solution (5 % water-saturated phenol 

pH 4.5 in ethanol). Cells were spun down at 8,000 rpm for 2 min at 4 °C, then bacterial 

pellets were resuspended in 800 μl of lysis buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 

8.0, 0.5 mg/ml lysozyme) and transferred in 2 ml microfuge tubes. Samples were treated 

with 80 μl 10% SDS, placed in water bath at 64 °C for 2 min before addition of 88 μl 1 M 

NaOAc pH5.2 and 1 ml of water saturated phenol pH 4.5. The tubes were incubated in 64 °C 

water bath for 6 min, inverting 6-10 times every 40 s, than placed on ice to chill and 

centrifuged at max speed (14,000 rpm) for 10 min at 4 °C. The aqueous layer was transferred 

to a fresh 2 ml microfuge tube, extracted with 1 ml of chloroform and divided into two 1.5 

ml microfuge tubes containing 1/10 volume of 3M NaOAc pH 5.2 and 2 volumes of cold 

100% EtOH. Samples were stored at –20 °C. Prior to use, an aliquot of each RNA samples 

was collected by centrifugation, quantified, and loaded on a 1% agarose gel to assess RNA 

purity and integrity. 

 

7.1.11   Primer extension analysis 

The oligonucleotides used for primer extension reactions are listed in Table 6. The 

primer (5pmol) was 5’-end labeled using 6 pmol [γ-
32

P]-ATP (Perkin Elmer) with T4 

polynucleotide kinase (NEB) at 37°C for 45 min. Unincorporated radiolabeled nucleotide 

was removed with a G-50 microspin column (GE Healthcare). Labeled primer (0.1 pmol) 

was then added to 12 μg of total RNA, 2 μl of 2 mM dNTPs and 2 μl of 5X AMV reverse 

transcriptase buffer (Promega) to make up a final volume of 9.5 μl. The reaction mixture was 

incubated at 100°C for 3 min, cooled to 42°C, before addition of 0.5 μl of AMV reverse 

transcriptase. Reverse transcriptase (5 U, Promega) was added, and incubation continued at 

42°C for a further 60 min. After cDNA synthesis, samples were incubated for 10 min at 

room temperature with 1 l of RNase A (10g/l), extracted once with an equal volume of 

phenol–chloroform (1:1), ethanol precipitated and resuspended in 5 μl of formamide loading 

buffer (99% formamide, 0.1% bromophenol blue, 10 mM EDTA pH 8.0). After denaturation 

at 100°C for 3 min, samples were subjected to electrophoresis on denaturing (6 M urea) 6% 

polyacrylamide gels in TBE buffer (90 mM Tris, 90 mM boric acid, 2.5 mM EDTA; pH 8.0) 

at 1600 V, dried and autoradiographed. Signals for quantitative primer extension 

experiments were acquired with a Storm phosphor-imager (Amersham-GE) and quantified 

using the Image Quant Software (Molecular Dynamics). 
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7.1.12   RNA dot blot and Northern blot analysis 

For dot blot analysis, 15 μg of RNA was ethanol precipitated, resuspended in 200 μl 

of RNA denaturing buffer (50% formamide, 7% formaldehyde, 15 mM Na3-citrate, 150 mM 

NaCl), denatured at 65°C for 15 min. The samples were chilled on ice, mixed with 400 μl of 

20× SSC (1X SSC: 0.15 M NaCl, 0.015 M sodium citrate; pH 7.0), spotted on a Hybond-N+ 

nylon membrane (Amersham, U.K.) by means of a Bio-Dot microfiltration apparatus (Bio-

Rad) and cross-linked to the filter by UV-ray treatment. The filter was prehybridized in 5 ml 

of hybridization buffer (6X SSC, 5X Denhardt’s Solution [0.1% Ficoll 400, 0.1% 

polyvinylpyrrolidone-90, 0.1% bovine serum albumin], 0.5% SDS, 100 μg/ml denatured 

fragmented salmon sperm DNA) for 2 h and then hybridized in the same buffer with 1 pmol 

of radioactively labeled oligonucleotide 958p 51°C for 20 h. The membranes were washed 

twice for 2 min with wash buffer A (2X SSC, 0.1% SDS) at room temperature, twice for 5 

min with wash buffer A at temperatures of hybridization and exposed to Kodak Biomax 

XAR films for autoradiography. 

For Northern blot analysis, samples of total RNA were separated under denaturing 

conditions in 1.2% agarose–2.1 M formaldehyde-morpholinepropanesulfonic acid gels, 

stained with ethidium bromide, and transferred to the Hybond-N+ nylon membrane by 

capillary transfer with 20X SSC buffer. Membranes were treated as described for dot blot 

experiments. Hybridization reactions were carried out with end-labeled oligonucleotides 

536pe17 and 536pe20 at 45°C for 18 h. The Northern blot was washed four times with wash 

buffer A (2X SSC, 0.1% SDS), twice with wash buffer B (1X SSC, 0.1% SDS) and twice 

with wash buffer C (0.2X SSC, 0.1% SDS). Each wash was performed for 2 min at room 

temperature, than the membranes were exposed to X-ray film for autoradiography. 

 

7.1.13   Transcriptome analyses with microarrays 

Total RNA was extracted from cells of both wild-type G27 and ΔcncR1 strains 

grown to an OD600 of 0.6, by following a hot-phenol extraction procedure described above. 

Prior to reverse transcription, 60 g RNAs were treated with 60 U RQ1 RNase-free DNase 

(Promega) in presence 80 U RNase inhibitor RNasin [Promega] at 37°C for 30 min, phenol-

chloroform extracted, and ethanol precipitated. Integrity of the DNA-free RNA was assessed 

on 1% agarose gels prior to cDNA synthesis and labeling carried out in a thermal cycler 

(Roche). Forty micrograms of RNA was mixed with 150 pmol random 6-mer hexamers 

(Invitrogen) for 30-μl reactions, denatured for 3 min at 94°C and annealed for 5 min at 37°C. 

Then, 20 μl of reverse transcriptase labeling mix (40 U avian myeloblastosis virus reverse 

transcriptase [Promega], 40 μCi [α-
33

P]dATP, 80 U RNasin) was added, and reverse 

transcription was allowed to proceed for 3 h. The reaction was stopped by the addition of 2 

μl 0.5 M EDTA, and RNA was degraded by alkaline treatment with 8 l 1 M NaOH for 15 

min at 37°C and thereafter neutralized with 17.5 μl 1 M Tris-HCl (pH 7.5). The cDNAs were 

purified from unincorporated label by use of Chromaspin-TE spin columns (Clontech) and 

hybridized to H. pylori Panorama ORF arrays (Sigma-Genosys) according to the 

manufacturer's instructions. Briefly, membranes of gene arrays were prehybridized in 

hybridization solution (5 X SSPE, 2% SDS, 5X Denhardt’s Solution, 100 g/ml denatured 

salmon sperm DNA) for 1 h at 65°C, prior to the addition of labeled cDNA. Hybridization 

was carried out overnight at 65°C, than the membranes were washed with wash solution (0.5 

X SSPE, 0.2% SDS) 3 times for 20 min at 65°C and autoradiographed. Each experiment was 

originated from at least two biological replicates, and each replica was hybridized twice on 

the arrays. Images were acquired with a Storm phosphorimager (Molecular Dynamics) and 

the intensities of the spots on the arrays were quantified with Image Quant 5.2 software 

(Molecular Dynamics), processed with Microsoft Excel, and normalized by expressing 

values as percentages of the total gene specific intensity. To avoid background noise, spots 

with levels of intensity of <0.0015% were not considered. For data analysis, genes with 
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mutant strain/wild-type strain expression ratios of ≥1.5 or ≤−1.5 and Bayesian P values of 

≤0.1 were considered to be significantly deregulated. 

 

7.1.14   Overexpression and purification of recombinant His6-Fur 

Recombinant His6-Fur was overexpressed and purified under native conditions as 

previously described (Delany et al., 2001b). Thrombin protease (10 U/mg) was used to 

remove the N-terminal histidine tag according to the instructions of the manufacturer 

(Amersham GE Healthcare). The purified, untagged protein was dialyzed overnight against 

the binding buffer (10 mM Tris-Cl, pH 7.85, 50 mM NaCl, 10mM KCl, 0.02% Igepal CA-

630, 10% glycerol, 0.1 mM dithiothreitol) prior to the DNA binding experiments. A 

Bradford colorimetric assay kit (Bio-Rad) was used to quantify the protein fractions with 

bovine serum albumin as the standard (Sambrook, 1989). 

 

7.1.15   Probe preparation and DNase I footprinting 

PcagAB probe preparation was carried out with previously described methods 

(Delany et al., 2001b). Briefly, 1 pmol of pGEM-PcagAB vector was linearized with NcoI, 

dephosphorylated with calf intestinal phosphatase and labeled at the 5′ ends with 2 pmol of 

[γ-
32P

]ATP (6,000 Ci/mmol; PerkinElmer) by using T4 polynucleotide kinase. The labeled 

DNA probe was further digested with SalI and the products were separated by native 

polyacrylamide 6% gel electrophoresis and eluted in 1.5 ml of elution buffer (10 mM Tris-

HCl, pH 8.0, 1 mM EDTA, 300 mM sodium acetate, pH 5.2, 0.2% SDS) at 37°C overnight. 

The eluted probes were then extracted once with an equal volume of phenol–chloroform 

(1:1), ethanol precipitated and resuspended in 50 ml of milliQ water. The binding reactions 

between approximately 20 fmol of labeled probe and increasing concentrations of Fur were 

carried out at room temperature for 15 min in a final volume of 50 μl in the footprinting 

buffer (10 mM Tris-Cl, pH 7.85, 50 mM NaCl, 10 mM KCl, 0.02% Igepal CA-630, 10% 

glycerol, 5 mM dithiothreitol) containing an excess of (NH4)2Fe(SO4)2 (150 M) or 2,2-

dipyridyl (150 M) and with 300 ng of salmon sperm DNA (Invitrogen) as a nonspecific 

competitor. Afterwards, DNase I (0.08 U), diluted in footprinting buffer 1X containing 10 

mM CaCl2 and 5 mM MgCl2 was added to the reaction mixture and digestion was allowed to 

occur for 85 s. The reaction was stopped by adding 140 l of stop buffer (192 mM NaOAc 

pH 5.2, 32 mM EDTA pH 8.0, 0.14 % SDS, 64 g/ml sonicated salmon sperm DNA), 

extracted once with an equal volume of phenol–chloroform (1:1), ethanol precipitated and 

resuspended in 5 μl of formamide loading buffer. Samples were denatured at 100°C for 3 

min, separated on 8 M urea-6% acrylamide sequencing gels in TBE buffer and 

autoradiographed. A modified G+A sequencing ladder protocol (Liu and Hong, 1998) was 

employed to map the binding sites. 

 

7.1.16   AGS cell culture and infection assay 

AGS cells, a human adenocarcinoma epithelial cell line (ATCC CRL 1739), were 

grown in RPMI-1650 medium with 10% fetal bovine serum (FBS) in tissue-culture flasks. 

For the infection assay, cells were seeded in 24-well plates (Orange Scientific) and cultured 

for 1-2 days to reach 60-80% confluency. Before infection, the medium was replaced with 

fresh RPMI-1650 with 5% FBS conditioned in the bacterial incubator (9% CO2, 91% air 

atmosphere, and 95% humidity). Cells were infected with Pcag-lux strains at a multiplicity 

of infection (MOI) of 5, while other 24-well plates filled with medium but without AGS cells 

were inoculated with the same amount of bacterial cells and used as control samples. The 

plates were placed inside the bacterial incubator and luminescence was measured at regular 

time intervals with Victor3V (1420) multilabel reader (Perkin Elmer), with bottom trail pre 

heated at 37°C. Luminescence was measured with an integration time of 2 seconds (normal 
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aperture) in the absence of optical filters. The luminescence values of wells filled with plain 

growth medium were used as blank controls and subtracted from the values of the 

experimental samples. Each infection assay was performed in quadruplicate and the assay 

was repeated in three to six independent experiment. Average values and standard deviations 

were calculated. 

 

7.1.17   Bioinformatic analyses 

The RNAfold online program was used to predict the secondary structure of RNA 

sequences. 

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi 

 

The online resource RNAtarget was employed to identify putative targets of the 

cncR1 sRNA through the identification of low-hybridization energy short base-pairing. 

http://cs.wellesley.edu/~btjaden/TargetRNA2/ 

 

The RNAhybrid online program was used to identify long discontinued base pairing 

between cncR1 sRNA and mRNAs target. 

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html 
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