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Abstract

Multiprocessor Systems-on-Chip (MPSoC) are the core of nowadalysext gen-
eration computing platforms. Their relevance in the global market contihuous
increase, occupying an important role both in everyday life products $engrt-
phones, tablets, laptops, cars) and in strategic market sectors as adaf&mse,
robotics, medicine. Despite of the incredible performance improvements in the
recent years processors manufacturers have had to deal with, issa@sionly
called “Walls”, that have hindered the processors development. Aftdatheus
“Power Wall”, that limited the maximum frequency of a single core and marked
the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” an
the “Utilization Wall” are the actual key limiter for performance improvements.
The former concerns the damaging effects of the high temperature onifhe ch
caused by the large power densities dissipation, whereas the secersltoethe
impossibility of fully exploiting the computing power of the processor due to the
limitations on power and temperature budgets. In this thesis we faced thése cha
lenges by developing efficient and reliable solutions able to maximize penfigena
while limiting the maximum temperature below a fixed critical threshold and sav-
ing energy. This has been possible by exploiting the Model Predictivér@ian
(MPC) paradigm that solves an optimization problem subject to constraints in o
der to find the optimal control decisions for the future interval. A fully-distr#ul
MPC-based thermal controller with a far lower complexity respect to a dexeita

one has been developed. The control feasibility and interesting prapttithe
simplification of the control design has been proved by studying a partiatetif-

tial equation thermal model. Finally, the controller has been efficiently included
in more complex control schemes able to minimize energy consumption and deal
with mixed-criticalities tasks.
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Chapter 1

Introduction

The main purpose of this chapter is to introduce the reader to the centralgbehis thesis
deals with. First, we motivate the need of dynamic controllers to improvempegifce of chips
multiprocessor. Then, we outline the major contributions and the organizafithe remainder
of this thesis.

1.1 MPSoCs and Multi-core basics

A system-on-chigSoC) is an integrated circuit that implements most or all of the functions of
a complete electronic syster)( It integrates on the same chip components as memory hier-
archies, central processing units (CPUSs), specialized logic, busdestizer digital functions.
Most of these system usually need more processing units to addressrihkexity of combin-

ing together very different components to create a unique harmoniousdfamehe system and
achieving desired performance goalsMAiltiprocessor system-on-chfyiPSoC) is a SoC that
uses multiple programmable processors as system components.

According to @), the MPSoC architecture is made of three types of components:

e Thehardware subsystemsses hardware components to implement specific functional-
ities of an application or global memories (HW in Filgl). The intra-subsystem com-
munication represents the communication inside the hardware subsystemesrbéte/e
different HW components (e.g small buses or point-to-point networks).

e Thesoftware subsystemspresent programmable subsystems, also called processor nhodes
of the architecture. Inside this subsystem, we find an intra-subsystem cuoation
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Hardware

Software Subsystems

Subsystems

Figure 1.1: MPSoC architecture.

that connect the hardware components (HW in Big) as local memories, I/O com-

ponents, or hardware accelerators, with computing resources. Hitesaepresent the

central processing units, CPUs, or equivalently the cores. Eachegemites sequen-
tially the instructions of a program stored in the memory. Depending on the mwhbe
cores a software subsystem can be defined as single-core or multi-core

e Finally theinter-subsystem communicatioepresents the communication architecture
between the different software and hardware subsystems (e.g. KstaorChip that

allow simultaneous data transfers).

The architectures of the MPSoCs can be classified in two big famhi@siogeneouand
heterogeneouslhe former integrate on the same chip identical software subsystem intgdntia
several time. In literature this architecture is often referred to as paratleitecture model.
The latter, instead, incorporate different software subsystems withratitf@rocessing units
like general purpose processors (GPP), digital signal proced38R) or application-specific
instruction set processors (ASIP). The exchange of information leetihe subsystems can be
manage according to two different communication models: shared memory asdgeeass-
ing. The shared memory approach allows all the CPUs to access simultgrteeunemory to
get information. This communication model fits well with homogeneous MPSo@hwias
identical software subsystems. For heterogeneous MPS0Cs it isgiilefer message passing
communication where each software subsystem explicitly asks for information

Before proceeding it is useful to remark that in this thesis we will considssical desktop
multi-core processors as special cases of MPSoCs. This becausaueti®ated in this work
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1.1 MPSoCs and Multi-core basics

similarly affects all the architectures comprising multiple cores on the same clopedver,

it is important to highlight that in literature the two terms are often used as symmuny. To-
day multi-core processors can be compared to homogeneous MPSdCsphtain multiple
processing units on the same chip substrate and exploit parallelism to immnoyei@tional
performance. Researchers have also shown the benefit of heteoagemulti-core processors
(3). However, according to the definition ift)( the main difference between the two architec-
tures is related to the applications which they are designed for. Indeedeagmulti-cores are
targeted to general-purpose uses, the MPSoC are usually related todemhlaglications.

Multi-core processors are commonly used in desktops, laptops, sanermdata centers.
Because of the high differentiability of the applications running on theseekkvdesigners
realize general-purpose architectures with the aim of improving ave@sgperformance, in-
tended as computation capacity or throughput. However, it is clear ertbagim these archi-
tectures performance is strongly dependent on the application exemag&uhg the variance
in computing time larger.

On the other hand, MPSoCs are widely used in networking, communicatigns) pro-
cessing, and multimedia among other applications (e.g. smartphones, caroasages, MP3
readers, DVD players, ...). Their architecture is designed in ordbalance the complex-
ity of the technology with embedded applications requirements. These neguite could be
computing time deadlines in real-time applications, low-power consumption in mobileede
or short time-to-market. In these cases the use of a general-purpbgecture is counterpro-
ductive since it reduces performance at the expense of a uselesalggnwhen application
requirements are known. The aim of designers is improving worst-cai&mpance making
the computing time predictable. Thus, it is more convenient to design a neiteatahe rather
than redesign the one of a multi-core. The new architecture should bestlitatthe tradeoff
between the hardware specialization to meet application requirements witherighnpance
and the programming complexity, increasing with the irregularity of the archieeetod the
variety of components integrated.

Fig. 1.2shows the architecture of two MPSoCs by using block diagrams. The fiyst,.Ba,
represents the Lucent Daytona structufe (This processors is the first MPSoC processor of
the history. It was presented in 2000 and it has been designed for sgitedse stations. As we
can see, Daytona has an homogeneous architecture with four CPUsdttach high-speed
bus. The second, Fig.2o, represents the architecture of the ST Microelectronics Nomagik (
This is a cell phones heterogeneous MPSoC which uses an ARM926&hast processor.
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Connected to the same bus there are two programmable accelerators (sPs)l] fdSaudio
and video.

RISC CPU || RISC CPU
+ SIMD + SIMD

Memory
o L1 cache || L1 cache ARMO26EJ || controller

memory > P[0 bridged

interface RISC CPU || RISC CPU
+SIMD || "+ SIMD Video ||~ Audio
Accelerator| |Accelerator|

L1 cache || L1 cache

(@) (b)

Figure 1.2: MPSoCs: (a) Lucent Daytona (Homogeneous); (b) ST NomadikrBerogeneous).

It is interesting to note that, although tailored to the requirements of the applicti®n
Daytona configuration is similar to the one of a multi-core.

Aware of the differences between multi-cores and MPSoCs, we remaitk gt the focus
of this thesis will be devoted on both these two categories without making atigctisn
between the architectural and application-oriented characteristics aftbegsors. Indeed the
issues tackled in this thesis affect both the processors families alike.
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Figure 1.3: MPSoC examples.

In the next future it is expected the number of cores on the same chip walllgracrease
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to encounter the demand for higher performance. Multiprocessorsipmilhtransform in
many-core heterogeneous processors. InERwe present some typical chip multiprocessors
recently appeared on the market. On the network side, where packetspiag is important,
there are the Cavium Octeon Il which features up to 32 MIPS cores, an8rdadcom/Net-
Logic XLP II. On general-purpose side we find the Tilera Tile-Gx8100 @0 identical core
and Adapteva Epiphany that is very reminiscent to Tilera’s. It has 64pleserful cores and
manually managed cache memory. It is designed to maximize floating point baeseyith
the lowest possible energy footprint. Finally Intel SCC that is a platfornmfany-core soft-
ware research. It has 24 dual-core tiles arranged in a 6x4 mesh eimd@a is a P54C CPU
(see AppendiB for more details).

We conclude this section showing in Fig4the vastity of applications the multiprocessor
chips are used for.
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Figure 1.4: MPSoC utilizations.

1.2 Motivations

Multiprocessors on chip are playing an increasingly important role in thebémmnomy. They
are the core of nowadays and next generation computing platforms. Mgkigsors appear in
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1. INTRODUCTION

a widespread market area ranging from consumer electronics and cacatimmproducts to
high performance computing devices. As an example,Etgshows the information and com-
munication technology chain. Here we can find different devices commaely in everyday
life and containing multiprocessors chip, but also huge web and datagenter
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Figure 1.5: ITC Network.

Smartphones, as well as laptops and tablets, are used by an exponertiakgsing num-
ber of people. The International Data Corporati@idC) (7) shows that the worldwide smart-
phone market grew 54.7% year over year in the fourth quarter of 20Q1%). The total
smartphone shipment volumes reached 491.4 million units in 2011, up a strd@% @bm
the 304.7 million units in 2010. Although there was a slowdown from 2010 (#85.1DC
expects double-digit growth for the foreseeable future. Accordingedatest research from
Strategy Analyticsg) 2, the number of smartphones in use worldwide surpassed the 1 billion
units in the third quarter of 2012, after only 16 years from the first Nokiar§ophone appeared
on the market. However, Strategy Analytics forecasts that the next billiorbwidichieved in
less than three years. Fi.6 shows the increasing trend of smartphone shipments.

According to a study conducted in December 2012 by IDC 122.3 million tabletdwill
sold in 2012, rising to 172.4 million units in 2013 and 282.7 million units in 2016. ThB NP

1IDC is the premier global provider of market intelligence, advisoryises; and events for the information
technology, telecommunications and consumer technology markets.

2Strategy Analytics Strategy Analytics, Inc., a global research anditiotgsfirm, focuses on market opportu-
nities and challenges in the areas of Automotive Electronics, Digital ComsMintual Worlds, Wireless Strategies,
Tariffs and Enabling Technologies.
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Figure 1.6: Smartphone shipments: (a) shipments forecast, (b) shigsnpen platform.

DisplaySearch Quarterly Mobile PC Shipment and Forecast Rep@radds that in 2013, for
the first time, tablet shipments are expected to reach more than 240 million unitswaer

surpassing the notebook shipments (207 million units) that encounteredeasie©f 8% in
the last quarter of 2012. Nevertheless, notebook shipments will be stimblatbd emerging
market. Fig.1.7 shows the aforementioned trends.
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Figure 1.7: Mobile statistics: (a) tablets vs. notebooks shipmenistatblets and notebooks ship-
ment trend.

The 2012 Cisco Connected World Technology Repdrighlights that Global mobile data
traffic will increase by 18 times more from 2011 to 2016. In particular smartpland tablets
traffic will be respectively 50 and 62 times greater in 2016 than they arethew 1% of mobile
data traffic will be dedicated to watching videos on portable devices by @dd8martphones,
laptops, and other portable devices will drive about 90 percent obgtabbile data traffic by
2016 (130 Exabytes of worldwide data traffic in 2016).

Internet and the cloud computing paradigm — the practice of using a netwfagmote

1Cisco Connected World Technology Report is based on a study comnésshy Cisco and conducted by
InsightExpress, a market research firm based in the United States2n 201
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1. INTRODUCTION

servers hosted on the Internet to store, manage, and process tleathran a local server —
constitutes a link between the mobiles products and the high performancetoogrgatforms
(e.g. data and service centers). Indeed, the increasing adoptionrbtigwviaes, combined with
mass connectivity, high-speed broadband networks and cloud compatiadigms will drive
increased adoption of streaming services resulting in the continuing rapidrgof data and
service centers. This data is also confirmed by statistics. According to a &tisgy (1),
global data center traffic will grow 4-fold, reaching a total of 6.6 zettabgtenually by 2016.
Data center traffic will continue to dominate internet traffic for the forelsiesfaiture, but the
nature of data center traffic is undergoing a fundamental transformatnme, the two-thirds of
the total traffic will be dominated by global cloud traffic, the fastest-growimmponent of data
center traffic. IDC forecasts that the total number of U.S. data centersedilice from 2.94
million by 2012 to 2.89 million by 2016 because of the evolution of information telciyies
to the cloud. However, the size of data centers will increase significandiyiigg from 611.4
million square to more than 700 million square feet in 2016. A trend that couldjleieed

by the development of large-capacity data centers.
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Figure 1.8: Forecast of Data Center: (a) Data Center Processor growt@RJ, (b) Data Center
traffic growth (L1).

All the data previously presented show the exponential increase of ¢mgpalatforms
and devices containing multiprocessors chip (one for smartphones, teousfand for data
centers). In particular we referred to few devices belonging to thermdton and commu-
nication technology area, but the products that exploit multiprocessdtglexcmany others
belonging to the aviation, automotive, medical, defence, space, industiiatefecommuni-

cations, marine and civil nuclear area.
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Figure 1.9: Control systems in high-end cark?).

As an example, multiprocessors are widespread in automotive to face flengkeeaof in-
creasing performance, and, at the same time, reducing costs and dinsgesipmpower usage,
electromagnetic compatibility, printed circuit board area and wiring issuedg@eld, multipro-
cessors may reduce considerably the number of Electronic Control Bditds, present on a
vehicle, which grew up above 70 for high-end cars (see E@. This solution, on one side
improve performance increasing the average throughput and the cdiopatg@ower; on the
other side it reduces costs, eliminating redundant hardware, reduaingn&@orming software
components, and simplifying the final software validation according to thletysstiandards.

This introduces also some challenges in the software development. Iridsddhportant
that safety critical functions could run alongside non-safety criticattions without their
safety characteristics being compromised. Moreover, the software rausble to manage
resource sharing and the parallel running of different operatistenys (because the different
functions may be best served by different operating systems). Thaosglalready used in
aviation, is virtualization technology, that is splitting the software in portions émed by
microkernels) each one acting as an independent virtual machine, grantlusive access to
the configured system resourcés)(

Other examples are the machine used for robotic surgery and artificial litdipg1(5)
controlled by multi-core processors in medicine, the control unit on a agmathe processing
unit inside a PLC in automation industry.

Power consumption is a key issue for all these computing devices. Foaursihg Infor-
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mation and Communication Technology (ITC) industry, global consultantsn&afi6) esti-
mated that in 2007 it accounted about 2% of the total glGie3 emissions, but this percentage
is expected to grow in the future, despite some modest achievements in eff@igycy. The
International Institute for Sustainable Development (IISD)(reports that the ITC sector al-
ready represents the 8 per cent of global electricity consumption and firsdited to grow
to 10-12 per cent of all electrical consumption in the next decade. Hmweecording to
SMARTer 2020 reportX8), ITC can play a role in reducing annual emission, enabling an
abatement of the 16.5% of the total emissions in many end-use sectors (agpottation,
agricolture, buildings, manufacturing, power, and service). NevetkeFig.1.10shows that,
despite of the potential benefits offered by ITC, its power consumption wllvgeaching
2.3% of global emissions in 2020.
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Figure 1.10: ITC emissions and potential benefits of ITC for other sectongssions 18).

This power consumption explosion has its main causes in the increasingatifiighese
devices (mainly in developing countries) and in the rising performance d&nidis latter, in
particular, translates in a manufacturer competition to accomodate the mareatdienaking
more powerful processors, but trying to maintaining the power consumlptided.

At first, manufacturers managed this situation by exploiting the miniaturizatioreaftiip
components and then, by using parallelism (the passage from singlesauoréti-core allows
the improvement of the throughput reducing the power consumption).

Nevertheless, the power consumption problem is still unresolved. The nminé&ton im-
prove the performance of our systems at the cost of higher powenmgi®n and higher
power densities — the power consumed per area — on the chip. As a aense@n-chip tem-

peratures dramatically increase. In large multiprocessors, the povestenlg consumed on

10
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the chip, generates high temperature variations across the die or “ltotldpre the tempera-
ture reaches harmful values that strongly undermines the reliability of tfeod@PNowadays
temperature is a key issue for manufacturers and it represents a dimdidbr processors
development. In literature, this issue is commonly referred to as “Thermal Afadl'it affects
all the devices containing multiprocessors.

Another recent issue related to high temperatures and power consumgtiersis called
“Utilization Wall”. This issue rises when the chip contains a high number ofs;dret only
a subset of cores can be activated at the same time due to power and tanepezasons.
Roughly speaking chips contain too many transistors that cannot be suipiplgower at the
same time. Thus, some of them must be left unpowered — or dark, in indastayppe — while
the others are working. The phenomenon is knownlak silicon Actually chips are not
suffering for this issue, but provisions show that we will soon enter inddud silicon era
and mobile devices will experience the problem first due to the growingmeaince demand
and the extreme power constraints. In the next future the combination of ninéiton and
increasing number of cores on the same chi) (20) will result in an augment of dark silicon
as shown in Figl.11
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Figure 1.11: Forecasts of percent dark silicon across technology n&igs (

We have already remarked that “Thermal Wall” and “Utilization Wall” are isgheat affect
all computing devices. However, it is worth to note that these problems lravesr impacts
on some devices rather than others.

As an example data centers are very sensitive to the thermal issue. ledregthnumber of
cores running at the same time to perform calculations produces a greattaohdeat which
must be dissipated in order to avoid undesired computing arrests. Instelms the 50% of
power is consumed for feeding the complex cooling infrastructure, draatigtimpacting on
costs and environmen2®).

11
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Also mobile devices are sensitive to temperature because of the constrmaiot®ling
systems. The limited power budget as well as the reduced size of the dmakeshe active
cooling impracticable and shrink the surfaces available for heat dissipagioplicating the
architecture design. Moreover, in the next future, the limit on power éisdgill prevent the
simultaneous use of all processors at the same time making the mobile devicessuagtible
to the “Utilization Wall”.

1.3 Thesis contributions

Multiprocessor (or MultiCore) Systems-on-Chip (MPSoC) are the coroafadays and next
generation computing platforms. In this thesis, two main issues, related to sudsgors,
will be considered, since they are crucial in limiting their development. Thesess which
has been introduced in the previous section (and will be deeply treatedniexhehapter), are
referred in literature as “Thermal Wall” and “Utilization Wall”. The first cemos the dam-
aging effects of high temperatures on chips, whereas the seconsl t@tbe impossibility of
fully exploiting the computing power of the processor due to the limitations on pamektem-
perature budgets. The central aim of this thesis has been searchidgwahobing efficient and
reliable control solutions for maximize performance, limiting, at the same time, tawtopes
and power consumptions. Model Predictive Control (MPC) schemeakarain tools we used
for implementing our control algorithms. Exploiting the predictions computed bynamic
model of the system to be regulated, MPC controllers solve an optimizatiolepr@object to
constraints in order to find the optimal control decisions for the future iaterihe capability
of handling constraints in a systematic way, maximizing at the same time a previeisigd
cost function, makes MPC very attractive for this application.

The main contribution of this thesis is the development of a distributed MPC dentro
for managing on-chip temperatures. The basic idea behind this solutioistsangorecasting
the chip area in which temperature will violate the critical temperature limit and neatwag
avoid overheating. The main tools are frequency and voltage “knobisélibavs the controller
to reduce the speed of each core. As consequence, the powemgitsureduces and the
temperature decreases as well. In literature, solutions founded on thiglidady exist, but
all of them exploit centralized MPC schemes, i.e. schemes where a unigjiermris solved
to determine the optimal speed of all cores. The solution implemented in this thders dif
from the previously mentioned one because it is distributed: each coigedets frequency

12
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exploiting also the information coming from the neighbor cores. This solutisrchmpara-
ble performance, but ensures two big advantages: first the systemegefiable because the
control algorithm is split on all cores, second the computational complexitynisiderably re-
duced. Indeed, it is known that the computational complexity of a MPC probigonentially
increases with the number of cores, whereas the distributed one linealdy sc

The dynamic model used for predictions plays a fundamental role in MP&rseh Ac-
curacy and simplicity are the main characteristics a model should possasaggéor having
exact behavior forecasting, and simplicity to improve controller efficieyagducing compu-
tational complexity. In this thesis some techniques to obtain a model with sucérpesthave
been studied. In particular, the model has been obtained by:

1. solving a distributed ARX identification problem;
2. solving aH., optimization problem;
3. using a proper orthogonal decomposition (POD) approach;

More in detail, the first two approaches can be used to update the modelétne when the
prediction error is unacceptable.

An important methodological contribution of this work derives from the stoid$he con-
troller feasibility for thermal system context. This problem is usually disigghin the specific
literature on the thermal control of MPSoC, even though it is extremely imgddaguaran-
teeing the respect of temperature constraints at each time instant. In dageasibility the
controller may lose its authority on the system, resulting in dangerous situatiottgs the-
sis we proved that centralized and distributed MPC schemes are alveeyisiéefor a generic
class of thermal systems. In order to cover all possible cases we usedheatimodel de-
scribed by Partial Differential Equations (PDE). However, a mode¢thasy PDE cannot be
incorporated in a MPC algorithm due to its complexity. Time and spatial discretizatian
be used to find a simple and accurate model, but the new control schenesaoénnfeasible.
Whereas in the centralized case the feasibility loss could happen, in theutedrdmlution its
unavoidable. In order to guarantee the property in the distributed casieweloped a complex
two-layer control scheme where a Safety controller supervises the disttiVPC solution.
The methodological analysis also provided an interesting property thatsall@vsimplifica-
tion of the controller design. It permits to reduce the number of temperatastramts from
an infinite to a finite number. Indeed, the control problem should maintain thestetope of

13



1. INTRODUCTION

every infinitesimal volume element of the chip under the threshold. Thanksstpribperty
the same result can be obtained by constraining the temperature of a finitemohgoints
corresponding to the chip sources, i.e. the cores.

Beside the two-layer control solution previously mentioned, we develoftent oomplex
solutions which use as basic ingredient the distributed MPC scheme.

We developed a fully distributed controller able to manage the temperatureeaadeligy
consumption of a MPSoC. Each core has a local energy mapper andl MiBCathermal
controller. The energy mapper allows each core to set its frequencyder tw maximize
energy saving, preserving performance loss within a tolerable boumel thErmal controller
trims this frequency if the temperature reached is too high. More in detail, g#rgyemapper
algorithm reduces the core frequency if the executing task is memorydbaen involves
extensive memory use. In this case reducing the core speed doesdtt eecution time
overheads because memory access speed is the limiting factor.

Another control solution addresses the “Utilization Wall” issue for mobile deviech
as tablets and smartphones. Even though the “Utilization Wall” issue affeatsrafbuting
devices, our solution it has been designed specifically for mobile deicésd reasons: first,
the effects of the “Utilization Wall” will hit mobile devices due to the tighter constisaion
power and temperature, and second, the quality of service percejvind luser depends on
the responsiveness rather than the average throughput. The basig tties control solution,
called computing sprinting, consists in running all cores only for short timeviai® (in order
to remain below the critical temperature). Indeed, the chip is designed toatess$ie heat
of a subset of cores switched on at the maximum speed. If all the cane®gether the
chip will melt. The distributed MPC thermal controller intrinsically guarantees phiating
functioning, maximizing performance (i.e. the cores speed) at the same tinveevEip the
proposed solution provides another MPC control layer which managéisatraal capacity of
the chip. It guarantees a sprinting window every fixed period allowing titiead tasks — the
deterministic task with hard real time deadlines necessary for the correidning of the
system — to be executed at the maximum speed. In this way the controller cagemaixed-
criticalities systems. We refer to this solution (innovative in MPSoCs literatgrgparanteed
re-sprinting solution.

The last solution proposed realizes a communication-aware MPC therntedltam Start-
ing from the centralized MPC solution it has been possible to modify the cagotithm in
order to establish a communication between two cores. In other words w&aoed two or
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1.4 Thesis Overview

more cores to have the same frequency implementing a message passingmequirThis
solution also allows the controller to dynamically choose which cores mustthaveame
frequency.

We developed these solutions by using the Matlab/Simulink environment. Firsacthe
curate model to simulate the real system has been generated using a finitetéésheique.
Then, we developed the control and identification algorithms necesgairyfitementing the
control schemes. We used different toolboxes to simplify the operatioC(Mi®lbox, Hybrid
Toolbox, Yalmip, CVX). The distributed MPC controller algorithm has been imgleted in
C/C++ language in view of a future implementation on a real Intel Single-chipddBmmputer
(SCC) containing 48 P54C Pentium cores. The C/C++ code version alssalkto estimate
the execution time necessary to solve a single control problem obtainingnation on the
computational overhead and complexity.

The results shown in this thesis have been carried out within the team deélinthermal
Control of Systems-on-Chip (Prof. Luca Benini, Dr. Andrea Tilli, Dr.deato Diversi) at De-
partment of Electrical, Electronic, and Information Engineering "Guglielmoddai” (DEI) of
the University of Bologna and in collaboration with Professor Emanuelerigeof the Service
d’Automatique et d’Analyse des Sgshes (SAAS) at the UniversitLibre de Bruxelles.

1.4 Thesis Overview

The thesis is organized as follows.

In the chapte the “Thermal Wall” and “Utilization Wall” issues are contextualized. Then,
the main solutions proposed in literature to manage these issues are shown.

In chapter3 some theoretical basics useful in further chapters will be given. Som&lkn
edge on optimization problem with constraints will be introduced before fogusn MPC
theory. Here the main components of a MPC scheme will be presentd goingeigpovath
feasibility and stability issues. In the second part the computational complexitgrfe scale
systems will be treated by showing the benefits of distribution.

In chapte# the distributed MPC solution is presented. This correspond to the basic solutio
that will be used in most of the complex control solutions mentioned in the pregection.

In the first part the focus will be devoted to highlight the importance of the hfodéMPC
accuracy. In this context some methods are shown to obtain accuratedacéd order models
of the system (distributed ARX identification, proper orthogonal decoitippgPOD) and
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conservative identificatiorH)). Then, the centralized and distributed MPC control schemes
will be accurately described showing the strengths of the latter solutionllyHiha feasibility
property will be proved for centralized and distributed controllers.

In chapter5 some complex control schemes, which use the distributed MPC solution as
basic element, are presented. First, a distributed scheme able to manage #ratie@@nd
save energy through a higher layer energy mapper. Second, a tercctaytroller (centralized
and distributed) able to guarantee the controller feasibility trough the ussadéty layer based
on switch controllers. Finally a modified solution of the basic controller able tragiee
message passing capabilities.

In chapter6 the solution implemented for the “Utilization Wall” problem will be presented.
Although this solution could be part of the previous chapter, we prefeadold a separated
chapter for it because of the wideness of the topic.

Finally in Chapter7 the conclusion are drown. Moreover, the future development will be
considered.

The aim of the appendices is to add useful information on the work. Appéngive some
hints on optimization theory and multi-parametric programming. AppeBdixes some de-
tails on the technique used to implement the accurate model used as realisysitaniations,
and some notions on power consumption of multiprocessors. Appé&hdontains the Mat-
lab/Simulink and C/C++ code to implement MPC control algorithms.
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Chapter 2

MPSo0Cs Issues and Solutions

In this chapter the main MPSoCs issues tackled in this thesis are presertst] afbrief in-
troduction highlights the technology walls encountered by processodov&from the birth of
the first processors. Then, the issues of today MPSoCs and sortiersofuresent in literature

are shown.

2.1 Processors issues from the beginning

A computer is an electronic device designed to accept data, perforeripegs mathematical
and logical operations at high speed according to a set of instructiothsljgplay the results of
these operations. The first fully electronic general-purpose compiti&@E (Electronic Nu-
merical Integrator and Computer), introduced in the 1946, was a hugameablat contained
17.468 vacuum tube and required teams of people to operate. Howevas, tihe invention of
transistors that revolutionized the computing device world, strongly aatelgitheir develop-
ment.

The transistor effect was discovered in 1947 at Bell's Lab and for tisisodery John
Bardeen, Walter Brattain, and William Shockley were awarded with the N in Physics
in the 1956. The first silicon transistor was produced in Texas instrumetie ih954 and
the first MOS at Bell Labs in 1960. Transistors replaced the biggevjdreé&agile, and more
power consuming vacuum tubes (used to amplify and switch signals), begonerbuilding
block for all modern electronics and the foundation for microchip. Their i@pae was also
remarked in 2009 when the invention was named an IEEE Milestone. De featsjstors

have introduced the third revolution for civilization: the information revolufafter the agri-
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2. MPSOCS ISSUES AND SOLUTIONS

culture and industrial revolution). As machines have incremented man’samieehpower by
simplifying and making more comfortable everyday jobs, so information tecgpartended
man'’s intellectual power simplifying the storage, processing, transmissbexgtoitation of
information. In the last half of the 20th century, science has become agiieel force (of
information): service jobs are more common than jobs in manufacturing ouégre.

Nowadays, transistors are present in almost all devices storing, trangmdisplaying,
or manipulating information. On a silicon chip we can find many thousands orl@lli®ns
of transistors. Commonly, the number of transistors, i.e. tthAmsistor counton a device
is used as a metric for integrated circuits complexity. Microprocessoresepr the most
complex application of transistors, containing billions of them. Bi@.represents the number
of transistors contained in a microprocessors respect to time. As it is [ogssee the number
of on-chip transistors doubles every eighteen months. This trend is betiemkas Moore’s
Law, named after Gordon Moore (Intel co-founder), in a paper ofl®@5, stated that the
number of transistors on a chip will roughly double each yéa(i6 1975 he refined this to
every two years).
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Figure 2.1: Transistor count 1971-2011.

The Moore’s Law born as a simple observation of the future trend ofist@ns density
on chips, but it became accepted as a reference for all processatsrg. Though it refers to
the transistors size, in literature it is common to find different versions of thelé&scribing
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2.1 Processors issues from the beginning

correlated technological trends that arise as consequence of theabaga (e.g. chip costs,
power density, clock scaling, silicon area, storage costs, ...).

The history of the microprocessor begins with the birth of the Intel 4004 71 1®e first
commercially available microprocessor. It consisted of 2300 transistorpMi@S technology
(20 um) and a clock rate of 740 kH2). From that moment, led by Moore’s Law, microchip
manufacturers started a “rush” for improving processors performafioe aim was to acco-
modate the market demands and seize the leadership position in a profitatidestamdving
sector. To better understand the progress made in this market it is enotighktthat if the
transportation industry had kept the same pace of microprocessorsriesiu®day we could
have traveled from New York to London in about a second for rouglignacents 8). After
more than forty years, Moore’s Law still holds, despite of many “brick Wafsecountered and
successfully circumvented. At the time of the first processors the mainwssithe dimension
of the programs limited by the size of the computer’'s memory; nowadays, @owieiemper-
ature are the main issues. In the follows we show the main reasons thathjpsivendors to
move from a world dominated by single processors to one dominated by mut§zars on a
chip.

2.1.1 The “Power Wall”

The previously mentioned rush for processors performance improvestated in the early
70’s with the birth of the first microprocessor and its trend is accuratelgritbesl by Moore’s
Law. The improvements to make single processors computation faster virearifyr tech-
nology driven. The first remarkable step was the transition from the niMi@&8ar logic to

the, still in use, CMOS in the 80’¢lJ. The main reasons CMOS technology became the most
used technology implemented on chips regarded the noise immunity and the lovpetesic
consumption¥). More in detail, the CMOS structure (a nMOS and a pMOS in series) allows
the components to draws significant power only during the ON/OFF (close)Ywitching
transition. At the contrary nMOS logic normally have some standing curreat when not
changing state, resulting in a much higher waste of heat and power. Woydloe energy re-
quired for a logic switching (the energy necessary to charge the transagtacitance) depends
on the square of the supply voltage, therefore if voltage scales (posesilglen CMOS transis-
tors) also power and heat scale. This advantages were well undebstétobert Dennard that

in a paper in the 19746) postulated the scaling theory: the MOSFET transistors (nMOS or
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2. MPSOCS ISSUES AND SOLUTIONS

pMOS) density, operation speed and energy efficiency will grow ptagpally to the degree
of miniaturization. In other words smaller transistors switch faster at lomsepo

The Dennard scaling theory is at the base of Moore’s Law and it drov&tuiization
in the industry until now, enabling computing devices to be portaBle Table2.1 show the
implication of Dennard’s theory assuming a scaling factdior each technology generation.
Therefore, since every technology generation has commoaly=dl.4 scaling factor (depen-

Parameters Scaling Factor

Device dimensionsox, L, W 1/a
Doping concentratiola a

VoltageVyq 1l/a

Currentl 1l/a

CapacitanceA/t 1/a

Delay time per circuivyqC/1 1/a

Power dissipation per circWiygl 1/a?
Power densitWygl /A 1
Integration density a?

Table 2.1: Dennard’s scaling theory

dent on industry strategies) the transistors dimensions reduces of th€l3a%- 0.7x), the
area shrinks of the 50% (& = 0.5x), and the transistor density doubles. At the same time
circuit performance increases by about 4080=f 1.4x frequency increase that corresponds
to 1/a = 0.7x delay reduction) and the supply voltage is reduced by 308 (& 0.7x) to
meet the condition of having a constant electric fields according to Dearthsbry. As a
result, active powerR = C-V2,- f, whereC is the capacitance being switched per clock cycle,
Vyq is the supply voltage, andl is the switching frequency) reduces by 50% ¢ = 0.5x)
(8). Therefore, considering the same chip area , in every technologyajém transistor den-
sity doubles and circuit becomes 40% faster at the same power consunifiiese data are
summarized in Fig2.2

However, miniaturization is only one of the factors that in these years conacumprove
performance. Other important factors are microarchitecture techniquesache memory
improvements that we briefly introduce without going into details.

Microarchitecture techniques refers to the way in which the resoureesrganized and
the design techniques used in the processor to reach the target cqstréonance goals
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(e.g. pipelining, branch prediction, out-of-order execution, andwdpgon). Microarchitec-
ture techniques exploit the growth in available transistors to improve perfaenal he per-
formance increase by microarchitecture alone is empirically described IackoRule 9),
which states that performance increases as the square root of therrafrirbesistors or area
of a processor. In other words, if the number of transistors doubleswamicroarchitecture
delivers only a 40% performance increase (see Zi§). Anyway, it is important to notice that
developers do not modify the microarchitecture every technology gemera

Also memory (DRAM) architecture influences performance. Following therds Law,
memory density doubles every two years, but performance improves toatg Esee Fig2.4a),
resulting in a bottleneck for the overall system performance. Howeseoyding to ) the slow
improvements depends on economical choices rather than technologicairmeped Market
demanded high density and low cost memories at the expense of speddg(sedb). Al-
though it was technically possible to have a memory as fast as processoigfacturers chose
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a more economically viable path to reduce the speed gap between precasdanemories.
The idea was to introduce some small, expensive but fast memories closepimdtessors,
containing copies of the most frequently used data. Nowadays cachesganized in three-
layer hierarchical structures and it is common to find caches on the die ‘(§ufiltracting”
transistors to cores). This because, comparing the performancetbef#icreasing the tran-
sistors on a core with the ones obtained by reducing the speed gap beheessries and
processors, often it results more convenient the second choicei¢s@e4E).

Over the past two decades, both scaling, and microarchitecture and meerairghy tech-
niques allows a 1000x microprocessor performance improvement. Howleigerend slowed
down due to physical scaling limits. Scaling is not a “free lunct?)(@nymore. Power con-
sumption, reliability and variability constitute barriers to the development of mioogssors
(13). In mid-2003 manufacturers hit the “Power Wall”. The benefits of thérsgsheory sub-
sist if the electric field is kept constant, which means that when transistdes atso the supply
voltage V4q), theSiG; insulator layer and the threshold voltage of transistdgg bave to scale
to deliver circuit performance. Unfortunately all these three elementsueitered limitations.
As the threshold voltage reduces, subthreshold leakage current arteatdflowing between
source and drain when the transistor is OFF (i.e. open or equivalentlypihreshold region)
— exponentially increases (it dependsedfes“n) whereVgs is the voltage between gate and
source). As shown in FigR.5, the greater is the scaling, the greater is the portion of power
due to leakage. Thus, to keep leakage under control, the thresholdevatiagt be limited,
resulting in performance degradations. Solutions commonly adopted byt @legigners to
alleviate subthreshold leakage issue are stacked gates, body biaeemuiansistors.

Also the oxide insulating layer plays an important role in power consumptiodeelh,
as the gate dielectric gets thinner (as consequence of the transistor stiadimgrformance
improves, but, at atomic dimensions, the gate leakage current — the clloveing between
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gate and drain — increases, resulting in an augment of the power dissiphieghenomena is
calledtunneling Circuit designers mitigated this problem by using high K dielectrics.

Due to transistors atomic dimensions, threshold voltage limits and constraints ttheeet
processor performance targets (e.g. noise immunity, cell state stabilitythe Supply voltage
is approaching a lower bound. As a result (see Eif). the power consumption increase over
generations, reaching a maximum limit in mid-2003. The maximum clock frequeached
was around 4GHZLE).

Table2.2 summarizes how these limitations modify the Dennard’s implications showed in
Table2.1

Parameters Scaling Factor

Device dimensionsox, L, W 1l/a
Doping concentratiola a
\oltageVyq 1
Currentl 1

CapacitanceA/t 1/a

Delay time per circuivy4C/| 1l/a
Power dissipation per circifygl 1

Power densitWyql /A 1/a
Integration density a?

Table 2.2: Post-Dennard’s scaling theory

Consideringx the scaling factor, area reduces by 50%01 = 0.5x), frequency increases

by 40% (@), capacitances scales by 30% ), but voltage does not scale (1), leading to a

25


./2_Literature/img/0040_Leakage.eps

2. MPSOCS ISSUES AND SOLUTIONS

10,000,000

Dual core Itanium 2 =
1,000,000
100,000
10,000
1,000
100
10

* M Transistors

1 o ol @Clock Speed (MHz)
e o *
* k% A Power (W)
YePerf/Clock (ILP)

0

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2.6: Intel CPU trend {2).

power consumption that doubles every technology generatién Fig. 2.7 summarizes these
data.

All these limitations and the increasing design complexity (due to the featuresl add
improve performance as multi-threading, hyper-threading, speculatdé@igon, ...), pushed
companies to search for new solutions. Again Moore’s Law helped dasigimdeed, despite
power and clock frequency limitations, the number of transistors continugisnio, providing
cheaper transistors and the possibility of including multiple cores on the samelt2004
AMD put on the market the Opteron processor which signed the switch $ingie-core to
multi-core paradigms. However, it is worth to highlight that the embedded muiggeor
systems-on-chip history began earlier than general purpose multicat@9hwith Daytona
MPSoC.

The basic idea of multiprocessors was that if average throughput ttharimproved by
increasing speed, due to power budget limitations, then it could be indregiggarallelizing
the operations, that is executing more tasks on slower multiple cores at theissmnmel his
solution allowed the designers to increase the data throughput, reducinglthge and the

frequency. We can summarize the multiprocessors in three words: sinipleersefficient

26


./2_Literature/img/0050_Power.eps

2.1 Processors issues from the beginning

Power Consumption Scaling

P=f.C-Vid

3 Higher Lower

Frequency Capacitance
(o) (1/a)

Transistor
1| Doubling
(o)

2 2 2 °

—

1 technology generation

Figure 2.7: Dennard’s failure implications.

(i.e. they consume less power).

However, differently from what one can expect, doubling the numbearooés does not
mean doubling the performance, this because most existing software is-thiregded and
parallelizing compilers have limitations in static analysis and/or lack of informaticorapile-
time. Therefore only a small fraction of codes can be automatically parallelized

Nevertheless, the number of cores on the same chip increases fassaatthers already
forecast thousands of cores in the next future. Researcheiistpbthat the number of cores
on a silicon chip will double with every technology generati®h pringing MPSoCs to the
many-core paradigm — processors with a high number of cores, whenauhi-processor
techniques are no longer efficient due to congestion problems.2Fdghows the increasing
demands for MPSoCs in a wide range of market sectors, particularlyrfartghones in ICT

sector.

2.1.2 The “Thermal Wall”

The diminishing return on performance and the increasing power consumipticaditional
scaling approach, led designers to integrate on the same chip multiple cbesgriffiary aim
was improving performance per Watt exploiting parallelism. However, multggsars bene-
fits comprise also the possibility of setting the performance (frequencygeglten/off) of each
core individually, and distributing the load in order to reduce heat at¢hesslie, improving

reliability and leakage.
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This last sentence introduces a new problem which is directly connectegavitbr con-
sumption and constitutes the actual key limiter for multiprocessors developnigéaproblem
is the temperature and its detrimental effects on reliability, leakage, andmpearioe.

It is worth to note that the temperature issue is not new and the First Lawesfriddy-
namics is the proof that the problem is always existed. It states that esargyserved, which
means that it can be converted from one form to another, but neithatiedrenor destroyed.
Therefore, the power consumed by transistors is converted into heat.

However, the actual power consumption of chip coupled with the area gddlire to tran-
sistors shrunk) result in an extraordinary power density increasehimiolves dramatically
high temperatures. This trend is perfectly illustrated in the famous Inteldstex the 1999
shown in Fig.2.9. Following the actual trend, in the next future, researchers expetagn
inable power densities similar to the one produced by a nuclear reactoocket nuzzle.

Moreover, to complicate the issue, the switch to multiprocessors technologguced
new thermal challenges. The large chip used as support for coresllaasvthe difference of
workloads executed and power consumed on cores generate tempeeatations across the
die that contribute to worsen the reliability, the performance, and the codfiogercy of the
chip. These temperature variation may manifest as hot spots or temporspaina temper-
ature gradients. The former are small areas of the cores heavily utilizegwie consumed
power density/temperature is higher than in other part of the chip. The lafisgsent ther-
mal cycles, that are temperature fluctuating along time, and temperature naapstelized by
non-uniformity on the chip area.

High temperatures adversely affect performance by reducing the c¢imgmpeed of the
chip. This because temperature degrades carrier mobility — the mobility ofarle@nd holes

28


./2_Literature/img/0060_MPSoCsDemand.eps

2.1 Processors issues from the beginning

1000 e
. rface
F Power doubles every 4 years
5-year projection: 200W total, 125 W/cm? !
lear Reactor s
£ 100} e atm
(@] F
RS -
2 i
®© 5 ) Pentium® I11
= 10l 't plate Pentium® I1
; Pentium® Pro
1

150 1p 0.7p 0.5p 0.35u 0.25u 0.18u 0.13p 0.1 0.07n

Figure 2.9: Power density trendL).

in semiconductors under an electric field.

The temperature influences leakage power, that exponentially increisés making the
problem of power consumption even more evident.

Moreover, high temperatures strongly affect reliability and lifetime of chimponents
(17), (18), (19), (20). Components lifetime exponentially reduce with temperature, accelerating
failure mechanisms as electro-migration, stress migration and dielectric bimeakdhe time
to failure — the time interval from when a component is put into service to wheodimponent
fails — decreases as function &®/(KT) according to the Arrhenius relationship, whé&gis
the activation energy, i.e. the energy necessary for the failure meahamisccur,k is the
Boltzmann’s constant (38 x 10?3 J/°K), andT is the absolute temperature.

These challenges occur with high steady-state temperatures, but theyedyedangerous
under 150C. At lower magnitude, temperature gradients are the major causes for reliability
loss. Repeated changes of temperature in time (thermal cycles) redsigecahly the mean
time to failure of metallic structures and cause package fatigue and plasticndgifins that
are proportional to the magnitude and the frequency of the cycles. Oriiteeside, changes
in temperature along space accelerate negative bias temperature instatility) @hd hot
carrier injection (HCI) effects. Both cases refer to the breakadgii-eH bonds happening at
the Si-channel/gate-oxide interfac®i(SiO,) of MOSFETS during transistors operation (when

the gate bias is negative and temperature are elevated). When this hdpmogen diffuses
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away from the interface, leaving behind the so called dangling bonds ofaiceetraps. As a
result the absolute threshold voltage increases, the carrier mobility diminesmes$he drain
current reduces2(l) (22). Spatial temperature variations also have other undesired effects:
clock skew problems induced by circuit delays that increase with temper@haeed local
resistances are proportional to temperature), and cooling efficiemcgat® since the power
spent to feed the cooling system is proportional to the highest temperataseirad.

All these issues constitute the “Thermal Wall”, the new major limiter for high perémce
processors. In the next future power density is expected to grow duwedcscaling and transis-
tor power consumption. In order to ensure the correct functioning antiféttime of devices,

an accurate thermal management is necessary.

2.1.3 The “Utilization Wall”

Looking forward to the future, Moore’s Law scaling will continue to impradsensistors den-
sity, but with small performance improvements. Power wall and energyesftiz constraints
will force designers to deeply exploit parallelism and customizati@ps lfitegrating on the
same chip multiple cores (eventually heterogeneous) and ad-hoc harthsarpport compu-
tation can improve considerably the average-throughput of the micregsoc Researchers
expect that the number of cores integrated on a chip will double everndtayy genera-
tion reaching a number of hundreds or thousands of processing urmitgevdr, this solution
is expected to fail in following the historical exponential performance ratetd the energy
constraints Z5).

With the failure of Dennard’s scaling theory, on every technology geiter, the frequency
and the number of transistors increase, but, unfortunately, the samenisapphe power con-
sumption (see Fig.7). As aresult, the heat generated on the chip cannot be entirely dissipated
Cooling infrastructures are limited by cost (e.g. data centers consume ¥hefihe energy
to power cooling systems), or by physical constraints (e.g. in mobile plamriee cooling is
impracticable), obliging the system to use only a fraction of the chip transistdud speed,
at one time. In literature this issue takes the name of “Utilization Wall” and it reptes big
concern for chip designers. Although it is expected that the problem sk anost clearly
in the next future, some effect of this wall are indirectly present in mogdesnessors. As an
example Intels Nehalem “turbo mode” power off some cores in order to ther®at higher
speedsZ4).
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The rate of utilization of a chip will drop exponentiallyX2per generation). According to
the experiments conducted i85, with a 22nm technology only the 79% of the die can work
at full frequency, and this percentage drops to less than the 50% at marfraction of the
chip that remains underclocked, is called “dark silicon”. The term wasecdim2009 by Mike
Muller who wrote in £6): “Without fresh innovations, designers could find themselves by 2020
in an era of “dark silicon,” able to build dense devices they cannot affordower”

Fig. 2.10shows the power density and the dark silicon trends according to the data fr
(8) and ITRS.
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Figure 2.10: (a) Power density trend; (b) Dark silicon trer&).(

In order to improve device performance the “Utilization Wall” issue need afeghman-
agement. In particular, mobile platforms seem to be the most susceptible to “Utiix&&ty”
effects. Battery capacity and heat dissipation limits strongly reduce thgyeawegilable to the
microprocessors to run the core at full speed, de facto limiting perforeahcthis case a
thermal management must guarantee thermal safety and performance miimn(izet only
as average throughput, but also as Quality of Service perceived lngénge

Before concluding this section it is worth to note that we define dark silicoromly the
silicon completely unused, but also the silicon rarely used or used at afi@geency.

2.2 Related Works

The “Thermal Wall” and the “Utilization Wall” are crucial limits for the developmeifimul-
tiprocessor (or multi-core) systems-on-chip. We have already seenpethi®us Section that
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the first concerns the damaging effects of high/variable on-chip tempesatuhereas the sec-
ond refers to the impossibility of fully exploiting the computing power of the pssoedue to
the limitations on power budgets and cooling systems. This Section contains stmeenst

effective solutions found in literature to solve these issues.

2.2.1 Solutions for thermal issue

As processors scale, the power density collected on the chip exponemtatases, result-
ing in high temperatures and even high variations across the die and ®tispioundermine
the processor reliability and efficiency. Moreover, the exponentiaéuniéence of leakage on
temperature aggravates the problem even further. The research cagnandleading elec-
tronics companies have invested significant efforts in developing theonaiot solutions for
computing platforms.

In general we can group the approaches used to tackle the thermahissodig families:
Static Thermal Management techniques (SanMjDynamic Thermal Management techniques
(DTM). The former increase the power dissipation of the chip (the so called “thelesin
power” or TDP) by acting on architectural design (heat sink, fanrfilamning, ...). The latter,
instead, reduce the operating temperature at “run time” through the ugaarhit voltage and
frequency scaling (DVFS), thread migration/scheduling and clock gating.

The increasing power density coupled with cooling infrastructures palyesici economical
constraints pose severe and sometimes insuperable challenges to STedcapsr Whereas
in the past STM techniques were enough to guarantee worst-casegiesgipation, nowadays
cooling systems are unable (or inaccessibly expensive) to completely ecimowneat under
these conditions.

Studies showed that air cooling systems are approaching the dissipation lriait] &V /mn?

in (27) even though establishing an exact value is difficult due to the great drobuvariables

and parameters affecting heat dissipation. This pushed researchieics toore efficient, but
often more complex and more expensive solutions as liquid cooling. The agen higher
heat capacity that, compared to conventional air cooling techniques, dfiewas-chip temper-
ature to reduce up to 4K and, since leakage power is exponentially related with temperature,
a 12.8% average leakage power reductizs).(

Mobile phones poses great constraints on the cooling infrastructursmntak dimensions of

the device limit the heat convectively dissipated and prevent the use wé aolutions.
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2.2 Related Works

However, cooling techniques are only a subset of the STM techniqueprirciple the
chip area could be increased in order to reduce the power densitypdtgtand architectural
constraints make this solution inadmissible. Thermal-aware floorplanning esohgp com-
ponents position in order to maximize performance and energy reducticat &melsame time
minimizing temperature. This can be done by decreasing wire length and maxinthzng
distance between hot units. According &9)the performance loss with thermal-aware floor-
planning is less than 2% respect to the 6% - 21% obtained with DTM techniques.

Nevertheless, while mechanical cooling solutions and STM techniques rémeginmary
mechanisms for dealing with thermal wall, they are costly, unwieldy and not letahpsolve
the problem. As the power density increase the thermal problem must esaddrat all levels
of the design cycle. Today and tomorrow thermal management techniqudsevéllmix of
STMs and DTMs and these latter will play an increasingly primary role. Asepadensity
increases also the maximum power consumption/temperature increaseveldhe average
power consumed is considerably lower than the maximum one, and this gapeistex to
become larger in the future. As an example the Alpha 21264 processamhasimum power
dissipation of 95W, but the average power dissipation was found to be7@wlyfor typical
applications 81). DTM techniques allows chip designers to focus on average rathewtair
case thermal conditions, i.e. cooling systems can be designed to handlesthgeagase,
letting the MPSoC managing the emergencies through dynamic techniques. &ktieinely
important since studies revealed that cooling costs increase exponentiallyewigierature
(30). Fig. 2.11a shows the increasing disparity between the maximum and average power
consumption, while Fig2.11b highlights the exponentially increasing dependence of cooling
costs on thermal dissipation.
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Figure 2.11: (a) maximum vs. average power consumption; (b) coolingscesthermal dissipa-
tion (30).
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DTM techniques have received a lot of attention in recent years and #ssstWill focus
on these latter. In the follows we briefly summarize some interesting solutions podhkem
of dynamic thermal management.

According to 81), the key goals of DTM techniques are: (i) to provide inexpensive-hard
ware or software responses, (ii) that reliably reduce power, (iii) whileactipg performance
as little as possible. In simple words this means maximizing performance while maigtainin
the chip below a safe temperature. DTM techniques can be classified in tegodas: the
temporal DTMsolutions and thepatial DTMsolutions 82) (33).

The former controls the temperature by reducing the amount of energypatess. In other
words they slow down or arrest the cores in order to make the chip caol.ddynamic Voltage
and Frequency Scaling (DVFS), Instruction Cache Throttling and Feagigding belong to this
category. Itis worth to note that usually these techniques imply perforntiegradation, since
cores run at a reduced speed.

The second category comprises all the techniques that control the téunpdnadistribut-
ing the activities over the chip area. In other words the idea is to cool dogvhdhareas of
the chip (i.e. areas with high power consumptions) by moving the workloadldeicareas
(i.e. areas with low power consumptions). As an example, assume a deahiprwhere one
core is running a cpu-bound task (high power consumption), whereagtlier is running a
memory-bound task (low power consumption). As a result the first corer@dlth a higher
temperature than the second. Then, the thermal manager should scheduieité tasks in
order to balance the temperature on the chip assigning to the second oebewp tasks
and memory-bound tasks to the first one. Migration at granularity of fumaltionit, pipeline,
cache bank, execution clusters, thread migration (or equivalently op@rig) belong to this
category.

It is worth to note that there exist also hybrid and hierarchical DTM solatishich com-
prise multiple of the previously mentioned solutions. The former use the DTMigaés in
a gradual way from the less to the most aggressive to minimize performas;eMoereas the
latter select the most appropriate technique from a set of possible ctaslida

Among all these DTM techniques we focus on DVFS ones. DVFS technigdese power
consumption by adjusting the clock frequency and/or the supply voltagare$ clynamically.
Because the power consumption is proportional to the frequency anquhessof the supply
voltage, reducing this latter yields more significant power saving. Howeverder to have
stable operation, supply voltage has to be reduced only if frequencgised. According
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to the relationship shown above, DVFS is able to reduce temperatures byingpawer
consumption with a performance loss linearly proportional to frequency.

A general DVFS technique is triggered by an event as it could be a thesnabr on the
die. Then, the DTM algorithm computes, according to some rules, the fneg@ad voltage
to apply to the system. In general frequency and voltage “knob” are meai@ble by chip
manufacturers. In the research community, DVFS schemes can be implemsingdifferent
algorithm and rules.

Early approaches focused only on temperature management, ignorfognpearce opti-
mization. The most common techniques used in today microprocessors ateotdrbased:
in case of temperature bound violation the frequencies of all cores wete the minimum
value. As an example, Thermal Monitor 1 (TM1) of Pentium 4 and Dual €oreerts idle
clock cycles (Thermal Throttling) when the temperature reaches a crititta vit reduces the
duty cycle of the microprocessor by 50% favoring the chip cooling downdEsign complex-
ity reasons, the first DVFS approaches on multiprocessors were glblzales were adjusted
according to the same policy. These approaches can be triggered byetfating system or
directly by hardware mechanisms. However, both have drawbacksupartycfor multi-scale
systems (many-core and 3D-integrated stacks). The former caneodt batind the run-time
temperature and it has been shown to worsen the thermal cycles and ssigibitity, whereas
the latter bring major performance degradation or even application failage$34). More-
over, as the cooling costs and the on-chip temperatures increased, &vhénce DVFS)
techniques became more aggressive at the expense of performapageW DTM techniques
must take into account also the issue of maximizing performance.

For these reasons (i.e. minimizing performance loss and improving reliabili®yy] &l-
gorithms started exploiting most advanced solutions belonging to feedbatkldbeory. The
first approaches studied were based on classic PID algorittdp635) (36). These algorithms
permit to apply a frequency/voltage proportional to the thermal emergeking into account
the prior history of the system.

More recently, studies focused on more sophisticated algorithms baseuimalocontrol
theory @7). In particular Model Predictive Control (MPC) methods look very prangislue to
their capability of dealing explicitly with performance and state-space camstiae. temper-
ature bounds)38) (39). MPC schemes use a system model to predict the future temperature
and find the optimal control decision by solving a constrained optimizationigmofor one
or more control steps in the future (more details will be given in Chajtetf an accurate
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thermal model is available, MPCs can guarantee a reliable temperaturegapaity working
condition. In the follows two recently proposed MPC solutions are pregente

In (38), Zanini et al. implemented a MPC scheme in order to make smoother the DVFS
approach and maximize performance. The thermal behavior of the chiygbasnodeled using
a finite element techniques. They split the chip in two layers (one repregehgnjunction
silicon and one representing the copper of the heat spreader) aimdeagh layer has been
split in cubic cells. To each cell they assigned an equivalent RC electrigittivhere R and C
are equivalent respectively to a thermal resistance and a thermalteapac The final thermal
model is:

tkr112n = A-tkron +B- il +W (2.1)

wherety 1.0, are the temperatures of the 2ubic cells at timek (i.e. the model state A
is the state matrixfy; represents the frequency of the th core at the timek, a expresses
the dependence between the power consumption and the frequencyyi.e= flg’j where
1< a < 2),Bis the input matrix, andlV is an offset vector considering the room temperature
effect in the heat spreading process. This model is used from the NtR@tlam at each
sampling interval to forecast the future temperatures of the chip in thehnekervals. The
MPC scheme can be stated as,

min:Z: ( fitjap — rl‘jfl:p) .S (flf’ﬂ-’l:p — rlzl:p) (2.2a)
St.

0 < tp11:n <tmax Vk=0,....,h—1 (2.2b)
0< 81 1p< fla Vk=0,....h—1 (2.2¢)

where @.29 is the objective (or cost) functior§ is a weight matrix, andy; expresses
the required operating frequency of theth core requested by a higher level software as the
operating system( f, — rlzi) represents the error between the offered power and the required
one. Notice that mihimizing this value means maximizing the performance. The etpatio
(2.2b-(2.29 represent a set of constraints respectively on future temperataedfared core
power.ty. 1 1.0 are the temperatures of the cells at tikie 1, tmaxis the maximum temperature
allowed, fZ,, ;.; is the future power consumption of theecores, andfg,, is the maximum
power allowed.

Thus, summarizingf is the manipulable input, comes from the OS, andis measured
with thermal sensors. At each sampling interval, the solution of this problene isgtimal
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Figure 2.12: (a) Sun Niagara-1 MPSoC model; (b) MPC vs. Convex-basedisoly38).

fil 1.1.p that maximize performance, meeting the constraints. Itis worth to note thatthieso
of this problem returns the frequency of all cores.

From the implementative perspective, the authors built two solutions: the impittithee
explicit solutions. The first solves the optimization problén2(on-line at each sampling time,
requiring a great computing effort. The second solves the optimizatiomgonadiff-line for all
possible scenarios and store the optimal control decisions in a look-up tabigs solution
requires less on-line computations (it only has to detect the currentrgz@h@ach sampling
instant), but a great amount of memory space.

Finally the authors test their solution on the model of a Niagara 8 coresgsmceA
comparison between this solution and the state-of-the-art convex-balsgidn shows an im-
provement up to & (see Fig2.12.

In (39) Wang et al. present a MPC scheme that constraint both the power,aisirthera-
ture of the cores while maximizing the performance. The Eigj3shows in detail the proposed
control scheme. The power monitor, the temperature sensor on eadmncbitge system-level
performance monitor of each core collect information that will be used bydméroller to
compute the new DVFS levels of the cores (the manipulated variables of threldoap). The
new levels are applied to the cores by the DVFS modulator and the online nsige&tr

updates the power system.

The thermal model of the system is computed with a least square identificatiorigee.
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Figure 2.13: (a) Temperature-constrained power control loop for a CM# Wi core; (b) power
and temperature plo86).

The final model has the form,
At(k) = A -t(k—1)+B-Af(k—1) (2.3)

wheret(k) and f (k) are respectively the temperature and the frequency array containing all
cores temperatures and frequencies at ke (k) =t(k+1) —t(k), Af (k) = f(k+1) — f(Kk),
A is the state matrix anB is the input matrix between frequency and temperature. The model
assumes a linear relation between frequency and power dissipation. (
The MPC scheme can be stated as,

minii||cp(k+ 1]k) — ref(k+1]k)[[& + (2.4a)
M-1

i; 1A (k+ L]k) +  (k+ 1]K) — Fnaxl ) (2.4b)
st.

Fininj < fj(k4+1) <Fmaxj Yj=1,...,N (2.4c)
cpk) <P (2.4d)
Bi-f(k+1)<s Vi=1,...,N (2.4€)
fi(k+1)=fj(kt1) Vi,j=1,...,N (2.4f)

whereN is the number of core 2(49 is the cost function that penalizes the power error
between the total power consumption of the clip)@nd the ideal reference trajectory of the
power fef), computed as an exponential trajectory betweptk) andPs (this latter is the
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maximum power value). The functioB.4b), instead, is the control penalty that minimizes the
distance between the manipulated DVFS frequency e+ 1) and the maximum DVFS
frequency levelFmnax The constraintd.4¢ implies the future manipulated frequency is in the
range[Fmin, Fmax, (2.40d imposes the total power is lower than the maximum power allowed
(Ps), (2.46 is a temperature constraifitk + 1) < T; — 6 reformulated according to the model
equation § is a safe margin and is a constant value dependent @i, (2.4 represents
optional constraints due to application or hardware requirements.

The authors also provide a study of the sensitivity to the parametric distglzand a on-
line model estimator able to update the temperature model.

For what concerns results, they implemented their solution on a real Xe865XQuad
Core processor and compared the results with other state-of-thdtaitiss obtaining greater
performance. They used also a cycle-accurate simulator (SESC) taffiersird chip architec-
ture.

2.2.2 Solutions for utilization issue

Due to the novelty of the problem, the literature on this topic is limited, even thougixpext
it will considerably expand.

According to @3) there exist four potential approaches to deal with the challenges posed
by dark silicon and the “Utilization Wall”. Each of them has some benefits, i s ideal to
solve the problem. For this reason future solutions will probably incotp@ihfour of them.

The first solution consists in shrinking the chip size, eliminating unused dartrs On
the one side this solution allows the designer to save time reducing chip compieaitgy
on silicon (the cost reduce linearly with area), and leakage (since theanwhtransistors is
lower). However, the silicon cost after few technology generationddvoel only a negligible
fraction of the total cost which comprises the costs for tests, marketing, salpport, main-
tenance, packaging, .... Then, there will be no more incentives intingesoney to pursue
Moore’s Law. With area shrinking hot spots will be smaller and, accortbngcent studies
the smaller are the hot spots and the greater is the efficiency in dissipatingitreaolder
neighbors.

On the other hand the dark silicon could be exploited to build more competitidgeigi®on the
market. Moreover, it is known that the maximum on-chip temperature is inygrsmportional
to the chip area, therefore, area shrinking would result in a loweringeof BP which would
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compel designers to reduce performance.

The second solution consists in using the dark silicon to build specialized. ddezause
with every technology generation transistors become cheaper than ponsrmption, it is
convenient to spend these transistors to introduce custom hardwatertiebn only when
necessary and that consumes less energy than a general purpaséicexample of such
a chip is the UCSD GreenDroid mobile processél)(that contains hundreds of specialized
cores, called conservation cores or c-cores, instead of the darkisilibese c-cores are auto-
matically generated from application source code in order to save ersagy(g2.14).

Multi-core GreenDroid c-core
processor
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Figure 2.14: (a) Many-core processor with c-cores; (b) GreenDroid; {cde @0).

The third solution consists in populating the dark silicon with homogeneoustetreould
exceed the power budget (i.e. the TDP) and using them undercloclk¢thermaximum speed
for short burst. In simpler words, every technology generation, weusa the dark area to
increase the number of cores. Clearly all these cores cannot run atatkiemnum speed all
together because of the limits on the power and temperature. Then, we kiarthacproblem
in two different ways: distributing the power budget on the whole chip or éntittme. In the
first case, it is possible to ensure a safe temperature and power céydingting the speed
of all the cores. As alternatives it is possible to use cores with lower ppeaioce but greater
energy-efficiency (e.g. Near-Threshold Voltage Processor), usédhe dark space to increase
the cache size, reducing the energy consumption for off-chip readimjhe memory-reading
bottleneck. In the second case, we can turn on all cores at the maximedhfspa short time
interval in order to keep a safe temperature.

In (41) the authors exploit this approach to improve the performance of mobileegevic
multiprocessors. They assume to have a chip with 16 core each one cogsiWwiout a TDP
of only 1W. This means that the cooling infrastructure (package + hddtisiable to dissipate
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the power consumed by one core continuously active. Otherwise, ifralt @we active, the chip
will exceed the sustainable power budget (i.e. the TDP) resulting in a chipheat. However,
this is true only in steady-state conditions. Indeed, even though the chipages heat faster
than the system can dissipate it, the temperature will takes some time to reach tabvaiitie.
This time interval depends on the thermal capacitance of the chip that is usesllghort.
This fact depends on the materials used to build the package that are umtathjzed for
minimizing the thermal resistance from the junction to the ambient, neglecting thstbesge
capabilities. The authors suggest to activate all 16 cores at full spedideftime allowed by
the thermal capacity and, after that, returning in a state of nominal operaifitbril5 cores in
a rest condition. The approach is called computational sprinting and ibpesmalso the use of
solid-liquid Phase Change Material (PCM) inside the package in orderresise the thermal
capacity of the package (i.e. the duration of the sprint). Phase Chanigeiditaare solid at
ambient temperature and can store extra heat during the melting prodeasjmg it to the
ambient later on, during solidification. During the process of melting the terpeneemains
quite constant because the thermal energy is used to break the bondsrbatalecules. As
consequence of that, PCM allows packing in a small volume and within a small tetuee
gap a large thermal capacitance placed close to the silicon die.

Fig. 2.15a-b show the sprint/rest mechanisriigg; is the melting point of the PCM, while
Tmax iS the maximum safe temperature.

The authors chose mobile device processors because the utilization isgre significant
in these systems due to the power requested by new multiprocessorsaunshle with battery
technology, and the constraints on heat dissipation, the small dimensionsd#ilee limits
the air flow and prevent the use of active cooling infrastructures. Ama#gason for this choice
are the different applications and requirements respect to desktoptocdrigputing devices.
Indeed, many interactive applications are characterized by shotsminsitense computation
punctuated by long idle periods waiting for user inputs, while the perforeseaic be measured
in terms of responsiveness rather than average-throughput.

From the architecture perspective the authors first show that the rdaisgpower-grid
drops and the ripples caused by switching from sprint to rest mode cafielcgively miti-
gated by introducing a gradual activation scheduling of the cores witlyd#28al duration.
Second, they show that high peak power phases, required by therapde can be effectively

delivered using Li Polymer battery and ultra capacitors. Moreover,@lepkak current is not
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Figure 2.15: (a) Sprinting transient; (b) Resting transient; (c) Chigmented with PCM; (d)
Thermal model of the chipi(l).

typical in mobile packages and would require a large number of pins to besgdi this cost
can be mitigated by using higher pin voltages combined with an on-chip voltggkater.

In the paper, authors use 150g of PCM material to substitute the heatlspraagmenting
its thermal capacitance to sustain 1s of continuous sprint. It is shown tHagaihstored during
the sprint requires a cooling period of 25s to restore the initial sprintinglibty. The PCM
material is modeled with a variable capacitance and both the PCM and the siliera &g
modeled as isothermal blocks.

In the same paper the authors quantify the performance gain during spnoftases, in
average benchmarks achieved a 10.2x speed-up compared to sirgkxeoution time. The
same thermal capacitance can be exploited by voltage/turbo-boosting, camtoday high-
end multi-processors. Indeed voltage/turbo boosting allows to speeceygetformance of
single-threaded workload by increasing for a short time period the swpfigge of the core
and consequently its clock frequency. The voltage supply-frequegiation is almost lin-
ear, whereas dynamic power depends on the square of supply voitddmearly with the
frequency. As consequence of that #i) the authors demonstrate that with the same 16x
sprint power budget a single-core that uses voltage-boosting camacinigve an average 2.5x
speed-up on the same benchmaky.(This is 8x slower than the computational sprint one.
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For what concerns thermal management, if the sprinting applications exswoigh to
completely melt the PCM, the sprint is stopped by a threshold-based féetiteamal con-
troller when the critical junction temperature is reached. Above this value Wecélld be
severely damaged. Safe thermal stop are enabled architecturally witia¢hst flush and tasks
migration, ensuring the correct software execution. Nonetheless,ssibp® performance op-
timization or re-sprinting requests are taken into account in such appr@acthe one hand,
whenever the critical junction temperature is reached, sprint is stoppedutiskeeking for
profitable intermediate solutions, exploiting DVFS. On the other hand, in theeatiop pol-
icy, only thermal issues are taken into account, without considering wbian has been left
for a subsequent re-sprint.

Finally a fourth possibility is to find a semiconductor substitute for MOSFETeraesdam-
ple Tunnel Field Effect Transistors (TFETS) and Nano-Electro-Maatal switches. Indeed,
even though technology will improve MOSFETS in the future, they will alwagdimited by
leakage.
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Chapter 3

Model Predictive Control

In this chapter a background knowledge of MPC controllers is presentest, the MPC

strategy is explained, and the pros and cons and a brief summary of/tihatien history of

MPC are shown. Subsequently, the main elements composing a MPClleorare listed

and a classification of the main MPC structures are reported. Finally, tmencon challenges
affecting a MPC controller, such as feasibility, stability and computational dexity, are

described with a collection of the most common techniques to solve them.

3.1 Background

Model Predictive controllers are not representative of a specifit@lostrategy, but designate
a wide range of control methods. The basic idea of the controller belotgithg MPC family
is to solve, at each sampling time and starting from the current state, anaggeoptimal
control problem over a finite horizon, yielding as a result the optimal cbdé&aision for the
next time interval. More in detail, the controller uses a dynamic model to fordmastystem
behavior over a determined horizbp, namely theprediction horizon The predicted outputs
can be indicated agt +k|t) for k= 1,...,hp which highlights that the values at tinfe-+ k)
are estimated by knowing the measurements up to instaie goal of the controller is to find
the future decisions sequence that optimizes a speafigttive functior(or cost functio,
eventually respecting some constraints. We callgd- k|t) for k=0,...,hy andV(x,t,u) the
input sequence and the objective function respectively. Of the dedsiuence computed by
the controller, only the first control action(t|t), is applied to the plant during thet + 1]
sampling interval. The procedure is then repeated the next sampling time witlewhdata
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3. MODEL PREDICTIVE CONTROL

available over the new horizdat+ 1,t + 1+ hp] (1) (2) (3) (4). This control strategy is referred
to as receding horizon strategy where the term “receding horizon” isdintex to indicate
that the horizon recedes as time proceeds. The receding horizongpetepusly described

prediction horizon
control horizon
past | riture - predicted outputs:
o JEKO
_________________________________ T i — —_——
reference _ 7 ° !
Pl . |
- . : ]
- ceeea : : ]
j= === 1 L it
== - == =1 control decisions
u(ty): : u(tklt)
t t+1 t+he t+hp
A
_ next
.sample
_predicted outputs .
: . R S y(t+1HK(tET) -
___________________________________ @ T @ @ e e - — = — -
reference : PR . ]
: s : !
: PR : !
. Y e ||| mmme=a - N 1
- [ '----;____________ﬁ
: u(t+1)t+1) - control decisions
: : ©u(tETHK|EET)
1 t+2 t+1+he t+1+hp

Figure 3.1: receding horizon strategy. Adapted fro#).(

is shown in Fig.3.1, whereh; represents theontrol horizon that is the number of sampling
interval over which the control decisions are computed. Affiesamples the control input
remains constant to the last computed value. This strategy is commonly employea in
application as a technique for reducing the computational complexity of the AltisGithm at
the expense of the optimality of the solution (over the prediction horizon) aldrementioned
mechanism belongs to the set of strategies named move-blocking strategiefdtato all
those approaches where the input sequence or its derivative areeienfmobe constant over
several time steps in order to improve the controller efficiency. A MPC cldetron which
a move-blocking strategy is applied, is usually referred tMage-blocking MPC scheméf
hc = hp the control sequence is allowed to change over all the prediction horiEomgever, it
is worth to note that often it is more convenient to usg & hy, than reducindp.

A very typical example for understanding how the MPC works is compariRgMtrategy
with the strategy used in driving a car. According to the car character{ste&now the be-
havior of our car if we take a curve at 70Km/h rather than 40Km/h) and lawpthe reference
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3.1 Background

trajectory, the driver is able to manage the control actions (brakedeeaios, and steering) in
order to track the desired trajectory. On the contrary a classic PID takesi@ah only when an

error between the current and the desired trajectory is detected, thiat bpanalogous, refer-
ring to the driving example, to taking decision by using the rear-view mirrdgo Ahe game

of chess resembles the MPC strategy. Indeed, a player choosesttheledy forecasting in

advance the next opponent moves.

In literature the terms Model Predictive Control (MPC) and Receding ldoriZontrol
(RHC) are often used as synonyms. Accordingfica(MPC is a particular case of RHC where
the finite time optimal control law is computed by solving an on-line optimization problem.
According to §), instead, MPC and RHC are equivalent and the difference of theirhhase
only historical reasons. Indeed, in principle receding horizon contsadlealt with state-space
models, whereas model predictive ones with I/O models. In this thesis wmedghey are
synonyms.

3.1.1 History

The history of MPC has developed in a contrary sense comparing to thecottieol paradigms.
Indeed, MPC strategy started to receive attentions from the researchuwty only after be-
ing profitably used in process industry applications, in the seventies e@lenms of this success
were mainly due to its ability of handling, simply and effectively, hard condsain control
and statesZ6).

It is worth noting that the development of the modern control theory (infinite &me
finite time optimal control), in the sixties, has posed the bases for the developitre
MPC. Indeed also MPC deals with the resolution of optimization problems. Haweshile
the elegant and powerful optimal control theory had little impact on contretldpment in
industries, the MPC properties fitted perfectly with the industry requiremantsording to )
the main reasons for the failure of the LQ controller were:

¢ the incapacity of dealing with constraints;

e the complexity of modifying and updating the solution to account for new mtscand
aging (low flexibility);

e the unsustainable costs for developing accurate models;

¢ the difficulty of finding a solution (if it exists) to problem with nonlinearities;
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3. MODEL PREDICTIVE CONTROL

e the relatively low exposure of technicians and control engineering togtieal control

theory.

The MPC, instead, had all the characteristics to tackle the typically compleknear, multi-
variable, and constrained problems arising in the process industnjltthigemost economical
system functioning regions are placed extremely close to critical constriatefore the con-
troller must be able to consider these constraints during the computation @timabsolution,
see Fig3.2b). We can reasonably say that MPC has born as an approximated taretodhe
optimal LQ controls, with the aim of meeting the industry targets. The word appeated is
because it has been proved that solving repeatedly a finite time optimallqaototems in a
receding horizon fashion yields an infinite horizon “suboptimal” controdg(the solution is

optimal in the deterministic case, i.e. without uncertainties).

Optimal

/ region

Power
consumption

Reference

Past inputs

Trajectory

and outputs PREDICTION  |predicted o Speed
o MODEL Outputs Pressure Admissible
g solution
OPTIMIZATION region
IFuture ALGORITHM Future —
nputs " n Errors
(constraints, cost function)

Torque
Temperature

Figure 3.2: (a) general MPC scheme; (b) typical industrial working oegi

The first ideas regarding MPC originated in the early sixties. In the 1968dPproposed
a MPC solution for linear systems with hard constraints on control relying eadiprogram-
ming, whereas in the 1968 Lee and Markus substantially anticipated the M&€gstistating
that:

One technique for obtaining a feedback controller synthesis from knowtg#dgeen-loop
controllers is to measure the current control process state and theputenvery rapidly for
the open-loop control function.The first portion of this function is then useidgla short time
interval, after which a new measurement of the process state is made e apen-loop

control function is computed for this new measurement. The procedurenisepeated.
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3.1 Background

However, these ideas remained unobserved in the academic world untildtisrin put
these ideas into practice opening up new methodological issues that catterimterest of
theoreticians.

From the mid seventies, in literature, the first papers related to MPC in growdsstry
applications appeared. The first were presented by Richalet et al. B#and 19789
10) and Cutler et al. in the 1980L)). Both proposed unconstrained MPC solutions based
on quadratic performance indices and employ a model, impulse or step sespased, to
predict the effect of future control inputs on the system. The constraiatsagement was
realized by ad hoc solutions. The name of these two industrial MPC algorittemesIi?COM
(IDentification and COMmand) the software version of the Model Predic¢tiguristic Control
(MPHC) approach, and DMC (Dynamic Matrix Control).

The second generation of controllers allowed engineers to manageaioegtMPC. The
QDMC represented the evolution of the DMC where the problem was pasad)® problem
able to explicitly deal with constraintd?). The subsequently MPC solutions, belonging to the
third generation of MPC technology and developed in the nineties, indr@asemplexity in
order to solve practical problems as the management and recovery fieasiliie solutions,
the distinction between hard and soft constraints, or the management of bjettiees inside
the cost function. Example of such controllers are SMOC, IDCOM-M,EG{IlN, PCT. How-
ever, some important theoretical issues remained unsolved in these solétgas example
the feasibility and the closed-loop stability are delicate problems that the acatksaarch
addressed ever since.

3.1.2 Advantages and disadvantages

In this section we have summarized the desired characteristics of a MPC isolutio

e MPC can handle control problems where an off-line solution cannotimguated (due to
nonlinearities, constraints, and uncertainties): it solves the optimizatiohepnain-line
for the current state;

e MPC can control multivariable plants also in presence of delays, unstabdittson-

minimum phase issues;

e MPC allows the systems to work in proximity of the constraints where usually the pe
formance are maximized and the costs minimized;
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3. MODEL PREDICTIVE CONTROL

e MPC intrinsically compensates dead times;
e MPC is easy and intuitive to tune (also for complex systems);
e MPC results in applying at each sample interval a simple linear control law;

e MPC is flexible and require less time, compared to optimal controllers, to be ntbdifie
or adapted to new requirements (e.g. new safety regulations, new Bpdad new

machines), environment modifications, and aging effects;

e MPC internal model can be obtained from data by identification approaetiasing the

costs of model development that could be unjustifiable for small batch gtiods.

Among the drawbacks of the MPC one of the most critical is the need to solapthe
mization problem on-line during a sampling interval. This the reason why the tdéhology
has been addressed as a technology fitting well only with system with slaawrdgs in which
the sampling time could be maintained large. However, as the technology aretHiblernance
of the processing elements improve, the concept of “slow” is rapidly dhgrajlowing one
to control system with quite fast dynamics as the thermal behavior of a momessor. An-
other drawback is represented by the accuracy of the model usedefdictons. It is far
from obvious to find a model accurately describing the behavior of thersysvhile keeping
an acceptable order dimension that guarantees the solvability of the probtemsampling
interval. Model accuracy and computational speed are not the only limitadfo$C; it is
worth to note that for safety critical applications on-line approachesiffi@utt to certify since
it is difficult to show the correctness of a mathematical programming solvas. répresents
one of the reasons for which sometimes it is convenient to use an explicitddiR@on, that is
a MPC solution in which the control decisions are pre-computed off-linedoh possible state
value. Finally, it is important to note that during the design phase it is negessaonsider
the problem of feasibility and stability of the controller. Indeed, even if tretesy is stable,
the predictive controller, using the receding horizon strategy, realifsesda@ack control policy
that may destabilize the closed-loop system. Moreover, the controller, optjritEnsystem
performance over a finite prediction horizon, could take the system to aistatieich the

constraints cannot be met.
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3.2 MPC structure

3.2 MPC structure

The typical goal for MPC controllers is to optimize the performance accgrdira cost func-
tion meeting some constraints (see Ada). Thus, the main elements constituting a MPC can
be identified in:

e a model used for forecasting the future outputs of the system;

e a constrained optimization problem to be solved for obtaining a control decsion
guence over a finite prediction horizon.

Different choices of these elements determine a different MPC algorithm.

3.2.1 Prediction models

The basic concept of MPC relies in using a dynamic model of the systemeafstrits future
behaviors. For this reason the models, commonly cglitediction modelén order to highlight
their function inside the control algorithm, are instrumental for ensuringfteeteness and
the efficiency of a controller. The main properties a model must meet aret¢hesay and low
dimensions. The former guarantees accurate predictions, necesstakirfig a correct control
decision, whereas the latter ensures efficiency reducing the computatomalexity.

An interesting characteristic of MPCs consists in their flexibility in acceptingadbible
model forms.

State-space model are commonly used in literature due to the simplicity of dealing with
multivariable systems. A general state-space model can be describee tojidlving equa-

tions,
X(t) = F(x(),ut)  x(0) =% @)
y(t) = h(x(t),u(t))

wherex € R" is the state vectoy € R™ is the input vectory € RP is the output vector, and

t € Ris the time.

However, it is worth to note that usually these models are specified in digarete The reason

is that in common applications, controllers are implemented on digital computergoivs,

discrete-time models enable the use of powerful mathematical programmingusestior solv-

ing the optimal control problemgl). Thus, the generic nonlinear model can be stated as,
X(t+1) = f(x(t)

t

D) X0 =%
y(t) = h(x(t), u( (3:2)

,u
)
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3. MODEL PREDICTIVE CONTROL

The linearity is often used as an approximation of the real system whicliyubetaves in
a nonlinear fashion. The motivations for such an approximation is the éassution and
analysis of linear models. The same reasons are behind the use of a linegavanment model
as the one shown below,
X(t+1) =A-x(t)+B-u(t)) X(0) = xo
y(t) = C-x(t)

Notice that due to the delay always present between the measuremeg(tisaoid the applica-

(3.3)

tion of theu(t), the feed-through matrix fromtoy is usually not considered. The prediction
output can be obtained as,

§(t+Kit) =C-x(t+Kt) =C-

A X(t) +_iAi1-B- u(t+k—i|t)] (3.4)

where the notatior(t + k|t) means the stateat timet + k estimated at time.

The input/output model representation is more convenient if we have fenniation of
the internal model structure. It bases on the transfer function coaoéhe prediction model
can be stated as,

by-zt4+by-z 2+ +bpp-z "

y(t+Kk|t) = ’
y( + ‘) 1—|—3_1-Z_1+a2‘z_2+"'+ana’z_na

u(t +kit) (3.5)

Other types of models, typically used in commercial softwares, ar@ g responsandstep
responsamodels. The idea behind these formulations is recording the open-loogneespf
each output variable (until they reach a steady-state valuetaftesamples) when a impulse
or step input is applied to each inputs variable. The response of anyiophersignal can be
obtained by the knowledge of the previously found responses (becétise linearity and the
superposition principle). The predicted output for the impulse model isdiyehe convolu-

tion sum,
trun

y(t+KJt) = Zlh(i)-u(u—k—i\t) (3.6)
=

where we assumed a SISO model for the sake of simplicityrargpresents the impulse re-
sponse sequence truncated attthum-th value. A similar model can be obtained for the step
response model. Notice that these methods can be used only with asymptotaiayptants
and the number of parameters required to have good approximation ofdtemsgould be
large.

The flexibility of MPC allows one to use also more complex models as for example no
linear models, partial derivative models, neural networks,However, it is worth to note that
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3.2 MPC structure

the more complex are the models and the more time is required from the solver tateomp
the control decisions. Thus, it is convenient to avoid, if possible, nesigleomplex models

according to the principle of parsimony.

3.2.2 Constrained optimization problem

The MPC algorithms differs also for the optimization problems they have to s@weop-
timization problem can be seen as composed by two main elementxoshdunction(or
objective functiopand theconstraints

A general form of theost function can be expressed as,

hp—1
(Xt ft: Utsstrhgir) = PX(E+hplt)) + kz q(x(t+kit),u(t +Kit)) 3.7)
=0

wherep(-) represents theerminal costq(-) is thestage costhy, is theprediction horizon(the
costis defined over afinite horizon), ddd,  h,t = [U(t[t), ..., u(t+hp—1[t)]" andX; ¢ n i =
[X(t]t),...,x(t+ hp|t))" are the control decisions and the state sequences for the time interval
[t,t+hp]. We assume the stage cost as continuous and sual€)8j = 0. The goal expressed

by this cost function could be the regulation to zero of the statiethe tracking of a specified
reference output trajectory. In particular, if the future referenodugion is known a priori, then

the controlled system can act before of experiencing tracking erronp&asating actuation
delays.

The constraints are the main feature that distinguish MPC from classical finite horizon
optimization problems. First of all, the state sequeKceg .+ can be obtained by applying
theU; i n,t to the prediction model. Thus, the dynamic behavior of the state is constrained to
be related to the control inputs by the model equations. Moreover, it is weribte that, in
real systems, the manipulated variableg)) are usually bounded by physical constraints. As
examples a motor have a limited maximum torque, a pneumatic valve has a limited displace-
ment, and a processor has a maximum computational speed (or frequadditjonally, it is
often necessary to impose constraints on states and outputs for reasafetyfproduct qual-
ity, or efficiency. As an example it could be preferable to maintain the temperafta process
below a specific critical value. Dealing with state constraints, it is often impagedminal

constraints, i.e. bound on the last element of the state sequence. Téeisements translate
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in constraints on both the state and control sequedges n r andX; ¢ 1, therefore,

X(t+k—+1jt) = f(x(t+kft),ut+Kklt)) k=0,....,hp—1

X(t+Kkjt) eX k=0,...,hp—1 (3.8)
u(t+kit) e U k=0,...,hp—1 '
X(t—i—hp)EXf

whereX andU are subset oR" andR™ respectively. UsuallyJ is a convex and compact set,
while X is convex.X; C X is the terminal constraint set. Notice that the constraints on outputs
can be expressed as states constraints since outputs are usually fohtitiestate.

It is also worth to remark that constraints can be classifiedaad or soft The former
regards those bounds which can never be crossed, whereas thardatterunds that can be
occasionally crossed. Usually, input constraints are typically hardrednts because they are
dictated by the physical limits of the actuators (they cannot be softeneé)states constraints
instead are typically soft constraints because they represent desieddaeiors of the system
(nevertheless they could be hard as well). Notice that a hard state aoihstia be softened
by adding to the optimization problem the so cal#alck variablesi.e. variables that assume
non-zero values if the constraints are violated. The cost function cerdagrm dependent on
the slack variables: the greater is the penalty weight associated to a fuactdhe smaller is
the constraint violation.

The optimal control problem at a particulax(t) consists in minimizing the previously

mentioned cost function, and meeting the constraints. The final problefecstated as,

hp—1

M RO, Utcsn) £ POKE+hal) + 5 a(t+KI), ut+ k) (3.92)
st.

X(t+k+1jt) = f(x(t+kft),ut +k|t)) k=0,....,hy—1 (3.9b)

X(t+kit) e X, ut+kit)eU k=0,...,hy—1 (3.90)

X(t+hplt) € X5 (3.9d)

X(t|t) = x(t) (3.9¢)

where it is worth to note that the initial time at which we optimize the problem is rel@rdyn
if the cost function and the constraints are time-varying, otherwise we déatve previous

problem as,

58



3.2 MPC structure

hp—1

min b(x(0):Uo) £ PX(h) + 5 (k). u(k) (3.10a)

st.
X(k+1) = f(x(k),u(k)) k=0,...,hp—1 (3.10Db)
x(k)eX, uk)eU k=0,...,hp—1 (3.10c)
X(hp) € X¢ (3.10d)
x(0) = x(t) (3.10e)

whereUg = [u(0), ..., u(hp, — 1) Notice also that the cost value can be expressed as a function
of the initial statex(t) only, not of the whole state sequence, because, as already mentioned,
we constrained the state evolution to be solution of the equadi®iy)(
In both cases, the problem igparametric optimization problemm which the decision variable
is Ut 1nt (Or Ug) and both the cost function and the constraints depend on the parameter
X(t). The optimal solution of the problem is denotedLb:ﬁL>t+hp|t = [u°(tft),...,u°(t+hp—
1|t)]’ while the correspondent optimal value of the cost functiadf{(t)). According to the
receding horizon strategy only the control inut) = u°(t|t) = u°(x(t|t)) is applied to the
system. For the sake of notational simplicity we consider hereafter the timeainvaase.
Thus, the optimal solution can be writtenld$ = [u°(0),...,u°(hp —1)]. We definellp(x) as
the set ofUp such that the constraints are met dtid as the set ok € X such that the set
Un, (X) is not empty.

The properties of both the cost function and the constraints (and héswéha predic-
tion model) determine the classification of the optimization problem. We refer to tierae
problem @.9) as anonlinear program When the cost and the constraints of the continuous
optimization problem3.9) are affines, then the problem is calletirear program(LP). Dif-
ferently, if the cost function is a convex quadratic function and the cainstfunctions are
affine, then the problem is callegladratic program(QP). The previously mentioned families
of problem can assume the suffixixed-integeiif the optimization variables belong to a set
obtained by the Cartesian product of a binary set and a real Euclicéae sp

3.2.3 Different MPC solutions

In the past years the MPC was relegated to slow dynamics applicationssbechits need
to solve the optimization problem on-line. As already mentioned the advancariputer
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technology has progressively shifted the MPC applications to systems widasiagly faster
dynamics opening up to new and more complex MPC schemes. The reseafiétGs simply
follows step-by-step the MPC schemes realized for new applications.

The first, and the simplest, MPC algorithms were used in the process indlbgy.be-
longed to the family of the so calldohear MPC. The termlinear MPC refers to those MPC
schemes in which linear models are used to predict the future behavior s§steam, which
usually are inherently nonlinear. With the aim of maximizing performance ahetheg costs,
new algorithms based on more accurate nonlinear prediction model were inmpéshiatro-
ducing the family ofnonlinear MPC However, beside the accuracy and performance advan-
tages, we have to consider that the use of a nonlinear model implies a Ifiaienely in solving
the optimization problem compared to a linear one, and difficulties in the stabilitysasé.3).

With the aim of reducing the on-line computational complexity of MPC algoritlaxglicit
MPC schemes solve the optimization problem off-line for all possible values ofader
(e.g. the state vector) rather than on-line for the current parameter vallid).( Another
approach that has had a good diffusion in the last decade whglihid MPC a MPC algorithm
in which the model comprises both continuous and discrete signals in the samanfork.
This scheme is able to handle switching linear dynamics, on/off inputs, logis séaté logic
constraints on input and state variables. Both the explicit and hybrid algwj#s an example,
has been successfully applied in automotive applications {$¢euid references therein).

In aerospace systems and UAVS, besides hybrid schdimear time-varying MPCalgo-
rithm has been profitably used. In this case the controller uses a linear diryiegy model.
The problem can be reformulated as a QP problem and solved each satimpéing

The computational complexity difficulties of applying MPC control schemes telacale
systems led talecentralized and distributed MP@&lgorithms. Indeed, it is widely known
that complexity exponentially scales with the model dimension. Nevertheless)talized
schemes, if applicable, ensures better performance and prevent carattmmdifficulties.

Finally in these recent yeartochastic MPCschemes have been used to handle uncer-
tainties. In past literature uncertainties were addressed &dbgst MPCschemes that were
designed on the pessimistic worst-case scenario and assuming boundgdiaties. Stochas-
tic MPC solutions take into account uncertainties with stochastic prediction mashelsost
and constraint functions based on expected values.

The research community is aiming to bridge the gap between theory and praktiae
lyzing literature, we can say that linear, explicit and hybrid MPC theory is raatuhereas
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3.2 MPC structure

distributed/decentralized and stochastic MPC theory still lack contributions.

In this thesis we dealt with a time-invariaimear MPC scheme, although the prediction
model underlying our controller algorithm is nonlinear. The greater effigieof linear prob-
lem solvers, compared to nonlinear one, explains the rationale behind thég cindeed, for
applications with fast dynamics the computational burden introduced by eanlMPC is still
a serious barrier for its implementation. In the case of the processors theanagement,
although thermal processes usually present slow dynamics, the tiny dimgo$ithe package
and the huge power consumption make a controller with high sampling time necébsa
choice of a discrete-time controller is forced by the system in which the dlanti® imple-
mented that is digital). However, the sampling time must be carefully chosezednthe time
spent for solving the constrained optimization problem must be a small pgeegn 0.5%)
of the sampling interval in order to make the computing effort for regulatindethmperature
invisible to the device users. Thus, the choice of the correct sampling timeésvibe solution
of a trade-off problem.

The great majority of linear MPC algorithms in literature, as the ones presentéads
thesis, rely on the solution of a convex QP. The general formulation afwesdP-based MPC
assumes a linear plant model, a quadratic cost function and linear inequaditesstraints,

hp—1
rrL]in Jo(x(0),Uo) £ x(hp)' Px(hp) + > x(k)"Qx(k) +u(k)' Ruk) (3.11a)
0 k=0
st.
x(k+1) = Ax(K) +Bu(k) k=0,....hy—1 (3.11b)
Ex(k)+Mu(k) <y, k=0,....hp—1 (3.11c)
x(0) = x(t) (3.11d)

whereP andQ are symmetric and positive semi-definite (ie=P =0, Q= Q = 0) and
Ris symmetric and positive definite (i.&R = R = 0). In this case the Karush-Kuhn-Tucker
(KKT) conditions are sufficient conditions for optimality, and the solutijtan be shown to

be unique. Notice that all the constraints can be expressed with the eqg{Balitg.

In the rest of this thesis we also treated other MPC schemes with the main @uwpos
reducing the computational complexity of the basic algorithm. Our main contribigitre
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3. MODEL PREDICTIVE CONTROL

development of alistributed MPC solution which will be presented in the next chapter. Fi-
nally we tested the performance and characterized the complexity of ouitlafigaising an
explicit distributed MPC solution . In the next Sections we briefly introduced the main issues
of MPC schemes and the theory behind the distributed and explicit solutions.

3.3 Explicit MPC

In the previous Sections we presented the computational effort for gotridine the con-
strained optimization problem as the biggest drawback of MPC schemesednif we con-
sider the linear quadratic MPC proble®.11), the usual way of implementing the solution
consists of translating the problem into a QP general form, as the one sfebovm, and then
solving it on-line at every sampling time (see Sectfot in AppendixA).

% X(O)/YQPX(O) + rﬂin %Ué QQon + X(O)/ FQp Ug (3.12a)
0
st.
MqpUo < Wap + EqpX(0) (3.12b)
(3.12¢)

However, the computing time necessary for solving the QP problem couldrgréhe on-
line use of the MPC solution in system with fast dynamics. Technology adgaransiderably
reduced this issue, but other practical problems affect this solution:attdevare cost, and the
complexity and the determinism of the software could move the users towardsothgons.

In this case it could be convenient to find a pre-computed control fegdaction that
relates the optimal solution to the current state of the system, preventing ttiersolfithe QP
problem on-line. The explicit solution shifts the computational burden o#-leducing con-
siderably the complexity. Exploiting the multi-parametric programming approash $&c-
tion A.2 in Appendix A), it is possible to find the optimal control inpll; as an explicit
function of the measured state paramed@), that isUg(x(0)) = f(x(0)) for all x(0) in the
set of feasible states. In4) it has been proved that this function is piecewise affine respect to
the state variables. The domain of the function, the feasible state set, is paditiooonvex
polytopic regions, calledritical regions and a linear state feedback control law is associated
to each region in order to yield the optimal control value. The union of alktkhestrol laws is
the piece-wise control function.
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3.4 Distributed/Decentralized MPC for large scale systems

Thus, the on-line computation reduces to detect the region and evaluatenthe amput
using the related affine function. Assurfid'-x(0) < k'}, i =1,...,N; is the polyhedral set
which defines thé\, partitions of the state space, aRtk x(0) +G', i = 1,...,N; is the set of
feedback control laws. Then, the algorithm executed on-line by the éxgditition can be

summarized as:

1. measure the current state x(0);

2. detect thé-th polytope containing the state checking which condititnx(0) < k' is
satisfied;

3. apply the correspondent control la0) = F' - x(0) + G'

The on-line computational effort is strongly reduced. Additionally, coragdo the im-
plicit solution — the on-line MPC — we notice two other advantages. The figstrds the
hardware costs; the control algorithm need simple and cheap hardeapooents to com-
pute the control law, therefore the approach is preferable for madsigiions. Secondly, the
low complexity of the software reduces the difficulties in estimating the worg-C&%J time
necessary for solving the problem favoring safety certifications andgbén hard real-time
scenarios.

However, explicit MPC also entails some disadvantages. First, the complexiguced
to solve the multi-parametric program off-line, that requires an increasimguatational effort
as the size of the problem increase, and second, the storage capdbiyneémory. Indeed,
as the problem size increases, the number of regions and the data théensased into the
memory increase. These data regard the gain and offset arrays fihatttie regionsH' and
k') and the gain and offset arrays of the control l&& &4nd G') associated to each region.
We can say that the complexity is not disappeared but it has moved to menagg. ushus,
the decision between implicit or explicit MPC must be related to a trade-off legtv@PU
and memory usage. Usually the explicit MPC solutions are limited to application vath fa
dynamics, but small dimensions (6-8 free moves and 8-12 states+redsjen

3.4 Distributed/Decentralized MPC for large scale systems

The size and complexity of a system are central problems for the desigdemetbpment
of MPC schemes (and in general for all typical controllers). Accordin¢l6), a system is
considered akarge-scaléf it possess at least one of these properties:
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3. MODEL PREDICTIVE CONTROL

e (decomposition) it can be partitioned into many small-scale and interactingstabss;

e (complexity) its complexity prevents the use of conventional techniques of Iimgde
analysis, control, design, and computation do not give reasonable sglwith reason-
able effort;

e (centrality) components and information cannot be grouped in one gaugahlocation.

Typical examples of large scale systems are power networks, urbfio tretfivorks, digi-
tal communications networks, flexible manufacturing networks, ecologis&ms, economic
systems. We can also include to these examples multiprocessor systemsgehafctue ele-
vated number of interacting processing units (the cores), althoughgettkaa small space.

As an example, a distributed linear time-invariant system with each subsystgrltable
and coupled with the others can be modeled as,

X (t+1) Air o Adng X1 (t) Biu - B up (t)
; = S ; : : +1 : : : (3.13)
a0 | LA o A | Lw® ] [ B o Ban | [

A B

wherex and u represent respectively the state and the input vectors of the systasthe
number of subsystems, amde R" andu; € R™ are the state and input vectors of thth
subsystem. MoreoveA € R™" andB € R™™ are the state and input matrices respectively,
andAj; € R"*" andB;; € R"*™ represent the contributions of theh subsystem state/input
vector to the-th subsystem state vector.

In large-scale systemscntralizedcontrol scheme — a scheme where all the information
processed and all the control commands are dispatched by one ceeinala- is generally
impossible or uneconomical. This is due to the lack of scalability of computationgplexity,
the impossibility of obtaining a centralized model, the difficulty of maintenance ttadn-
practicability of conveying all the communication signals to a single location. aimesssues
affect all controller families, hence also MPC schemes. In both the implicieaplicit MPC
solutions the complexity increases as the dimension of the systems to be controléstses.

In the former case computational complexity increases, whereas in the latier isemory
usage that makes the controller impracticable.

A natural solution to the above mentioned issues is the developmelgcehtralizedor
distributedcontrol schemes in which each subsystem is controlled with a specifiededefyr
autonomy respect to the other subsystems. Each subsystem is computatiactdlyle and
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3.4 Distributed/Decentralized MPC for large scale systems

the local control inputs are computed using local measurements and deoiutss models of
the local dynamicsl(7) (18). This control configuration enables:

e a computing effort reduction (the subsystems to be controlled are simpler);
e a communication load reduction (less data to be transmitted and for shortecdsgtan

e maintenance and reliability improvement (in case of damage the other subsystems
tinue working properly, data are not transmitted for long distances);

o a flexibility improvement (it is easier to update or modify parts of the system);
e a simplification of subsystems synchronization working at different time scale
e a cost reduction (less communication links and less powerful hardware).

The same considerations hold for MPC controllers. Previously mentionashtadjes open
up to decentralized and distributed MPC schemes whose popularity is cargipiacreasing.
In this scenario the original large-scale optimization problem is replacedsby @ small and
tractable local optimization problems that work independently or cooperatiagmth each
other.

The decentralized/distributed MPC schemes have not a fixed structugeottan. During
their design, developers can choose some properties (or ingrediems)lémnent the control
policy according to requirements.

A first choice is the degree of interaction between the local regulatorsording to (9),
a regulator can exchange information with another regulator or it can@tos its optimal so-
lution independently. This represents the difference betwetatantralizedand adistributed
MPC scheme (see Fi§.3).

Decentralized MPC is composed by local agents that take control decisaeEendently
one from another. Each local controller supervises a partition of theraywhose inputs and
outputs does not overlap inputs and outputs of other subsystems. dheetieéy manage a
limited amount of information (i.e. inputs, states, outputs). If some overlappfogiation
exists these are neglected. Moreover, the time necessary to computettioé smiation is not
affected by communication overhead as delays or packets losses. Diespiifusion of these
schemes, there exist very few algorithms with guaranteed properties.

Contrary to the decentralized MPC schemes, distributed ones allow the traiwsnig
information between the local agents, expanding the knowledge of looabdlers respect to
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Controller System Controller System
r———————=n ==t ————— 1 [Fo——————n ———f—————— 1
| Regulator] | L Subsystem | || | Regulator| | L Subsystem | ||
| Ry :u'ir S | yr | Ry :u'ir S | yr
I | Y I W b
[ Poloxa| b fxes - I T
| 1| . | | , ! 1| . |
| [ H 1 | HE [ H 1
| I I LY Y I
\_Regulator| iu.i_[Subsystem] | y. | Regulator| w._[Subsystem] | y.
’—:> Rns : i’ Sns : - ’—:> Rns : i’ Sns : o
[ p———— | Lo 1 [ ———— | Lo 1
(@ (b)

Figure 3.3: Decentralized (a) and Distributed (b) control approaché} (

what is happening around them. This means an improvement of perfornadribe expenses
of a greater complexity due to communication and synchronization issuestiohadly, the
complexity of the prediction model increases if a local regulator receiveprédicted future
control actions as input informationy( in Fig. 3.2b). Indeed, in this case the local regulators

should know the model of all the subsystems.

Another design choice for the development of distributed MPC schemasdetihe topol-
ogy of the communication network. We definefally connected algorithna MPC scheme
where all the regulators transmit information to all the otherpa#ially connected algorithm
instead is a MPC scheme where all the regulators transmit information to & sfitise oth-
ers. This latter may be particularly convenient for large-scale systemevgoene interaction

between subsystems produce negligible performance deterioration.

Designers can also manage the rate of information exchange betweeaollestr The
information can be transmitted only at the beginning or repeatedly within the samisg
interval. In the first case we refer to the MPC algorithnrmes-iterative whereas in the second

asiterative

Finally, it is possible to decide if using the information received from othealloantrollers
for pursuing a global or a local goal. We defineremcooperativean algorithm where each
local regulator minimizes a local performance index, andasperativean algorithm where

each local regulator minimizes a global cost function.
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3.4 Distributed/Decentralized MPC for large scale systems

As an example, consider the optimization probl&i.() where we assume the separability

of the cost function, i.e. the weights are diagonal matrices,

P 0 PRy 0 pP e 0
S N B R I L IR 314
0 =+ PngQng 0 vt PnsRng 0 o PgPrg

such that,

Jo(X(0),Uo) = p1-Jo,1(%1(0),Up 1,...,Uong) + - - + Prg - Jo,ns(Xns(0),Uo 1, - . . ,Uong) =

e (3.15)
= Z}PJ -Jo0,j (%(0),Uo)
j=
where
J01(x4(0), U, ..Uon,) = Xa(hp)' Prxe(p) + 370 % (K)' Quxa (K) + s (K) Ry Us (K)
Jo.ns(%ns(0),Uo1, - .- ,Uo,ng) = Xng(Np)’ Pag Xng(hp) + Ztiglxns(k)/ Qng Xng (K) =+ Ung (K)” R Ung (K)
(3.16)

andUo,j = [Llj(O), R Uj(hp — l)]
Moreover, it is assumed that the constraints are uncoupled, i.e. therariteraction or
coupling of the inputs in the constraint relatid).(

In this scenario we can define thentralized problemas,

Ns

rULn ]Zl p;j Jo,j (xj(0),Uo) (3.17a)
st.
x(k+1) = Ax(k)+Bu(k) k=0,....hy—1 (3.17b)
uk) eU xk)eX k=0,....,hp—1 (3.17¢)

whereA andB are defined in3.13

The decentralized problemcorrespond to the other extreme in distributing the decision
making in a large-scale system. Whereas centralized control knowstlengrabout the
system and optimizes respect to all the decision variables, the local cohtlecentralized
schemes has no information about the other subsystems and it optimizes oldgaheost

function. The regulatoR; will have the form,
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3. MODEL PREDICTIVE CONTROL

WinJo,j(Xj(O),Uoﬁj) (3.18a)
0.j
st.
Xj(k+1):Aijj(k)-i-BjjUj(k) k=0,...,hp—-1 (3.18b)
Uj(k)EUJ‘ Xj(k)GXi k:O,...,hp—l (3.180)

However, a completely decentralized scheme is not able to achieve thd obgative of
the system. Distributed solutions offer a middle ground between decentrahzeckntralized
control, allowing one to obtain better performance than the former and Iameplexity than
the latter. Thenoncooperative problemexploits the information of other subsystems, but it
pursues its own objective. It can be defined as,

rLrJ1in Jo,j(x;(0),Uo) (3.19a)
0.
st.
~ ~ k:07 ,hp 1
Xj(k+1) = Ajj xj (K) + Bjj uj (K) + Aij X (K) + Bij Gi (k) _1 ne i % | (3.19b)
It R R}
uj(k) e U; xj(k)eXj k=0,...,hp—1 (3.19¢)

where the”symbol means that the predictions of that variable are available.
Finally, in thecooperative problemthe control agents share a common objective, obtain-
ing performance improvements respect to the noncooperative onerdliiemp can be defined

as,

Woi? Jipj Jo.j(%j(0),Uo1,---,Uqj;---,Uons) (3.20a)
st.

X(k41) = Ax(K) +B[G1(K),...,Uj(K),...,0n(K)] k=0,...,hp—1 (3.20b)
uj(k) €eU; x(k)eX k=0,....,hy—1 (3.20c)

The thermal management solution we developed in this thesis belongs to the family o
distributed schemes. We assigned to each core (or to subsets of cdoea) MIPC. Each
controller transmits information to a subset of controllers, therefore thdagpof the com-
munication network is partially connected. We assumed no delays in informatitsntissions

68



3.5 Feasibility, Stability, and Computational Complexity

since the distance of the core are very close and we use a non-itefgtiviéhan. The informa-
tion transmitted are not control decisions, but output information that ptele controller to
know the whole system model. We finally use a noncooperative policy sedchtcontroller
optimizes only the local cost function. All the properties we chose for ontrol solution aim
to reduce computational complexity of the algorithm.

3.5 Feasibility, Stability, and Computational Complexity

The design of a MPC algorithm hides some dangerous treats which may cormserthe cor-
rect functioning of the controller. These are mainly due to the finitenesseopitbdiction
horizon and the presence of constraints. In a MPC the control decesierugptimized over the
prediction interval, without considering that the reached state could be gib®$o stabilize
(optimality does not imply stability) or even avoid the feasible solution of the pnobl€he
stability and feasibility are not ensured by the MPC algorithm. Thus, the MRE€lajeers
should, in principle, analyze the impacts of the different tuning choicesotaeghe validity of
these properties. Since this operation is usually prohibitive, feasibility abiis/ are usually
obtained by reformulating the problem.

Another issue regards the complexity of solving the optimization problem thatislly
correlated to the problem dimension and the number of variables.

These issues are briefly accounted in the following Subsections.

3.5.1 MPC Feasibility

First of all we need to define what is the meaning of feasibility. Considenargeoptimization

problem,

min fo(2) (3.21a)
st.

fi(z2) <0, i=1,...,Ninegq (3.21b)
hi(z)=0, i=1,...,ngq (3.21¢c)
zeZ (3.21d)

the optimization variableg, is feasibleif:

69



3. MODEL PREDICTIVE CONTROL

e it belongs to the set of value for which the objective and all constrainttioms are
defined 8.219;

e it satisfies the constraint8.210 and @.219.

An optimization problem, instead, isfaasible problemf there exists at least one feasilde
On the other hand, a problem is said toibeasibleif such a value does not exist. The set of
all the feasiblezis called thefeasible sef20).

The MPC strategy solves an optimization problem at each time step starting feacarth
rent statex(t) (or x(0) if we assume a time-invariant systems) over a finite horizon. It optimizes
the control sequendg; .t (or Up in the time-invariant case) that represents the optimization
variable. For the sake of notation simplicity we will consider the time-invariase tereafter.
The problem is feasible if a control sequenggeexists meeting the constraints. However, it is
worth to note that in the MPC problem formulation it is present the initial stdlg therefore
the feasibility of the problem also depends on this parameter. For this re@hads said to be
feasible if the problem is feasible starting frof®). X represents the set of initial state®)
for which the optimal control problem is feasible, i.e.

Xo = {x(0) € X : 3Ug suchthat xt) € X, u(t) e U, t =0,...,hp— 1, X, € X

(3.22)
where Xt +1) = Ax(t) + Bu(t), t =0,...,h, — 1}

whereX is the set of all possible, X andU are the state and input constraint sets respectively,
andXy is the terminal set that we want the states to reach at the end of the horizaffigra,
prediction samples.

The feasibility ensures the existence of a solution to the problem, but thisémaogh for
guaranteeing the feasibility of the MPC algorithm. Indeed, the feasibility of ptienaation
problem can be lost during the functioning. The problem is due to thet'stgit” of the MPC
which may steer the state to a value for which no feasible control decisidstsirexhe next
sampling interval. Instead, it is desirable a MPC possessing the propé#ety cursive(or
persistent feasibility, which can be stated as,

Definition 3.5.1. If the controller is feasible at any time, for all input control sequencesfand
all initially feasible state x0), then the MPC controller is recursively (or persistently) feasible.

Proving this property is computationally difficult, since it requires to seatang time
the set of states that remain feasible at the next sampling interval. Typicallgakibility at
timet = 0 is assumed and the structure of the problem (cost function, consteaidterminal
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constraints) is modified so that feasibility is preserved at the following time .stepan ex-
ample, it is possible to soften state constraints using slack variables, or gggfeoto insert
constraints on the terminal s&t or varying the length of the prediction horizon.

Recursive feasibility of finite-horizon MPC problems can be explicitly ecédrby con-
straining the state at the final prediction step to a controlled invariant sett, &sigg the
invariant set theory, it is possible to prove that a necessary andisnffgondition for guaran-
teeing recursive feasibility can be given by imposing that the initial stat&sistequal to the
set of all initial states generating feasible closed-loop trajectdfies,

Lemma 3.5.1. Consider the problem3(11) and denote withfthe receding horizon control
law that associates the optimal inpuj to the current state (0), f;(x(0)) = ug(x(0)). LetOe
be the maximal positive invariant set for the closed-loop systémxAx(0) +B f(x(0)). The
RHC problem is persistently feasible if and onl{(f = Oc.

However, 0. depends on the matriceQ, P, andR, therefore for some of these tuning
variable the recursive feasibility may not be proved. Accordingyjoif is possible to make
0. independent fron®, P, andR by taking the terminal s€{; as a control invariant set of the
system model with constraints.

Theorem 3.5.2.Consider the problen8(11), if Xt is a control invariant set for the constrained
system3.11H then the MPC is persistently feasible.

where we define as control invariant set for a system subject to aontstias the set of
statesx such that there exists a feasible contrdbr with the future staté\ x+ B u belong to
the same set (refer td) for the proof).

Another approach for detecting if a MPC is recursively feasible, has peoposed inA1).
The author considers a linear time-invariant problem as the ori214)( without the need of
the terminal constraint. The idea is to prove the existence of problematic statates for
which the optimization problem has no solution — by exploiting a bilevel optimizatiob-pr
lem.

Consider the QP problen8(12 obtained from 8.11). The problem is infeasible if a feasi-
ble state is steered to an infeasible state by applying the optimal control dec¢igbis the
following inequality is not satisfied,

MgpUi;1 < Wop+ Egr(AX(t) +B u(t)?) (3.23)
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Then this condition can be rewritten as a set of three condition,

y>0 (3.24a)
Y Mgp=0 (3.24b)
y’[WQP—‘r Egr(AX(t)+Bu(t)?)] <0 (3.24c¢)

by using the Farkas’ Lemma, according to with,

Lemma 3.5.3. Let M € RP*9 and we RP. Then either there is an& RY such that Mx< b or
there is a yc RP such thaty> 0,y M =0, and yb < 0.

Using conditions .24 we can implement the bilevel problem

min, f (Wop +Eqp (AX(t) + BU(t)*) (3.25a)
s.t.

y>0, YF=0 (3.25D)
Uy = arg problem(3.12) (3.25c¢)

If the optimal value of the cost function is negative the problem is infeastlearf ad-
missible state, according to Farkas’ Lemma. The problem can be simplifiedbisiitating
to the constraint3.259 representing the inner optimization problem the Karush-Kuhn-Tucker

conditions (since the problem is convex).

3.5.2 MPC Stability

The second issue for MPC is stability. In the first industrial MPC applicatisapossibility of

automatically ensure stability was unavailable, requiring a manual tuning ofgtietm. The

research community devoted considerable attention to this topic producingousselutions.
The problem of stability consists in designing a MPC algorithm guaranteeinhth&harigin

of the closed-loop system is an asymptotically stable equilibrium point. As focdke of

feasibility, the main approach for ensuring stability is modifying the structuteeoMPC. The

main modifications regard the terminal cost (the tepfxgt + hp|t)) in (3.9) andx(h,)' P x(hp)

in (3.11)), the terminal constraint set (defined &) and the terminal controllerkf(-) for

stabilizing the state insid&¢). These are the three main “ingredients” for building a MPC

satisfying stability (and often also feasibility).
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There exist also different techniques for proving closed-loop stabilistrand of the liter-
ature shows that closed-loop stability may often be achieved using a suffidang prediction
horizon @2) (23). Some methods require that the sta@® is shrinking in some norm, as the
Contraction Constrainapproach24) (25) which requires that(t) is decreasing in some norm
(Ixt+1)t)|| < ajx(t)|| anda < 1). However, the most used approach consists in choosing
the previously mentioned “ingredients” such that the cost function is alry@apfunction. The
reason is that for nonlinear controllers the natural tool for establishatglisy is Lyapunov
theory, and MPCs are for their nature nonlinear because of the peeséronstraints (note
that the explicit solution of the QP-MPC is piecewise linear even if the model iarlin the
excellent survey pape6) the authors analyzed the MPC solutions present in literature for en-
suring stability and recognized the three previously mentioned ingredietite &aming knobs
usable by the designers. Furthermore the authors distilled four conditiotheangredients,
sufficient for guaranteeing closed-loop stability. Before listing theselitions, we recall the

general MPC optimization problem,

hp—1
AT A0 Uigary) 2 POXLE0) 5 Ak U+ kD) (6260
s.t.
X(t+k+1[t) = f(x(t £ kit),u(t +Kkit)) k=0,...,hp—1 (3.26b)
X(t+kt) € X, ut+kt)eU k=0,...,hy—1 (3.26¢)
X(t + hplt) € X (3.26d)
(U =x(0) (3.260)

wherep(x(t + hpl|t)) is the terminal costY¢ is the terminal set and the local controllgr-) is
merely implicit, but is required to prove stability.

The conditions are stated below:
Al : X; C X, Xt closed, 0= X (state constraint satisfied %);
A2 : ki (x) € U, Vx € Xt (control constraint satisfied ¢ );
A3 : f(xKki(X)) € X¢, Vx e Xt (Xt is positively invariant undeks (+));

A4 [p(f(x.ki(X))) — p(X)+q(x, ki (X))], ¥x € Xt (pis alocal Lyapunov function)
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If these conditions hold, then the value function is a Lyapunov functionffecient con-
dition for stability. More in detail, the last condition ensure the descendingepty of the
Lyapunov function. This is easy to prove.

Consider as a Lyapunov function the optimal solution of the problem for ikialistate
X(t),

J = J(X(), U nype)

WhereUtO_nJrhp‘t = [uw(t]t),...,uw(t+hy—1Jt)) and)([f’_wrhp‘t = [x°(t[t),...,x°(t+hplt)]’ is the

resultant state sequence.
The successor stakgt + 1) is computed ag (x(t),ks (X(t))) and analogously to the previous
definitions,

K1 = (Xt + 1)U 1 ngraes1)

whereUg, y i yqpr = (W EFLE+D), Wt o+ Lt D)) andX, o gyeqq = DO
1t+1),...,x°(t+hp+ 1t +1)]" is the resultant state sequence.

Since it is difficult to directly comparé’ andJ;, ; we can find an upper bound df, ; using
a feasible — but not optimal — input sequence for the timel by shifting the optimal input
sequence at time The new sequence is given by,

Ot 1ty = [0+ 110, -, U7 (4 hplt), ks (X(t+hp))]

The value function for this input sequence can be defined as,

Jra(X(t+ 1), Uprastengra) =% — dx(t), ke (x(1))) — pOC (t+ hplt))+
+q0C (t+hplt), ke (6 (t+ hp[t)))+ (3.27)
+ P(F (X (t+hp[t)), ke (X (t+hplt)))

wherex(t) is the initial state. Sincéf, ; < J1(X(t + 1),Ut+1ﬁt+hp+l‘t), it follows that,
Fra—J < —ax(t), ke (x(t))) (3.28)
that is true only if for allx there exists a input € U such that,
P(f (X, kt (X)) — p(X) +a(x. k¢ (x)) <0 (3.29)

The four conditions previously stated can be satisfied by different ehaitthe “ingredi-
ents” that defines different MPC schemes. These are few exaB{pI€6):

e Terminal statex(t + hp|t) = 0.
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e Infinite prediction horizonhy = oo,
e Terminal Weighting Matrixin the linear case, P is the solution of a Riccati inequality.

e Invariant terminal set x(t + hp|t) € Q andu(t + Kk|t) = FLox(t +K|t), Yk > hm, where
FLo is the LQ feedback gain.

For what concerns the distributed MPC controllers the theory is still not mafine actual
trend is similar to the one of the MPC in the past: there exist many efficient algaitbut
strong theoretical results and a unifying picture are still partially lacking.

As an example, in31) the authors showed that the cooperative MPC approach leads to
closed-loop stability in the linear case.

In general, whereas cooperative schemes reach a Pareto equilibonoooperative ones
have been shown to reach a Nash equilibrium (the controllers optimize theatigbs inde-
pendently). We define the two types of equilibrium for completeness,

Nash equilibrium : point reached when the objective of each controller cannot be imgrove
by varying any of its control actions;

Pareto equilibrium : point reached when a modification of the local objectives, necessarily
worsens the global objective.

It is worth to note that the Nash equilibrium is not sufficient for stability, tfexes as for
the non distributed case, some constraints are imposed on the local costroller

3.5.3 MPC Complexity

The third issue we treated in this Section is the computational complexity whichmiesco
prohibitive for large systems or systems with fast dynamics. The influeraitgr for the
computational complexity are the type of MPC scheme used and the dimensierpobtiem.

The first consideration derive from the fact that the solvers useliniear MPC are more
efficient respect to the solvers used for finding a solution of a nonliEaC.

The complexity of a problem increases also with the dimension of the state leafb
and of the controlsnf), with the length of the prediction horizohy), and with the number
of constraints ;). Focusing on linear quadratic MPCs, as the one show8.itl), we have
already noticed that it can be rewritten as a convex QP problem. Two papeltfods for
solving QP problems are thactive set(27) and theinterior point (28) methods. A naive
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3. MODEL PREDICTIVE CONTROL

application of the active set method on a general QP problem can r@(thiﬁéer n+ne)?)
operations. However, according t89 with an appropriate reordering of the variables, it is
possible to improve the number of operation obtain®@,(m-+n+nc)3) or O(hy(m+n—+
nc)?) respectively with an interior point method and an active set method. In besle ttases
we can see that the computational complexity exponentially increase with theenwinthe

states, of control and variables (for major details refer als@@dnd the references therein).

From the previously data it is clear that the number of inputaultiplied with the predic-
tion horizonhy, usually calleddegrees of freedomf the problem, are the dominating factor
for complexity in MPC. For this reason, as we have previously mentioneddtioBe3.1, the
move-blocking strategy allows to reduce the computational complexity (e.g. ingpibe con-

trol value as constants after a specific interval).

Another useful tool for having some insights on the computational efférsoloing an
MPC problem is the explicit MPC approach. In this thesis we exploited the édtiproach
in two different ways. First, for reducing the on-line computational complexrelegating
the difficulties of solving the optimization problem off-line. The complexity of thgoathm
depends on the number of regioNs that in turn depends on the dimension of the staje (
on the number of constraints, and on the number of controlgn( — in particular on the
degrees of freedonms& mh,) (14). The number of regions is strongly related to the number
of constraints, and the computational time necessary to find the control lesages with an
exponential trend. For this reason this approach can be used onpétinglue ofm, ne, and
hp. To give a dimension of the term “small”if > 5,m > 3, andl > 12 the number of regions
cannot be efficiently managed. As a result solving a QP problem on-liastisrfthan detecting
the region and applying the control la&2).

The second way we used the explicit approach has been as a metricdonite the com-
plexity of an on-line algorithm. Indeed, as the complexity of the problem ise®ao0 also the
number of regions increase. We can say that the complexity of the MPQthlgds mani-

fested by the number of regions.

Fig. 3.4show a comparison between the number of regions and the CPU time of a con-

strained double integrator systeB8) when the degrees of freedom varies.
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Figure 3.4: Number of regions and CPU time comparison varying the nurabdegrees of free-
dom

3.6 Notes

We conclude this chapter with some notes. The MPC solutions presented ingsiss fibr
the thermal and energy management of processors have been ddweitipehe intent of
improving performance and reducing computational complexity.

These requirements motivates our choices of using distributed and expi€tddlutions.
The use of explicit solutions also allowed us to have a double check onti@exty data we
obtained from experiments.

Another important observation is that, although we presented the commaaahps used
in literature for ensuring the feasibility and the stability, we obtained our proioéctly study-
ing the physical properties of our system. More in detail, the study of theepties of the
system allows us to prove the feasibility without increasing the complexity of fR€ Btheme
by adding useless constraints or terminal costs. Additionally, the validity girivef regards
all the thermal systems and all the controllers whose target is the temperappiag, there-
fore the proof is widely general. Moreover, the study of the physiagb@rties of the systems
allows us to find other useful properties which simplify the design of the otheitr

Itis finally worth to remark that in this thesis we omitted the stability proof simply beeau
our application does not require it. Indeed, as it will be clear later on,reeet interested
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3. MODEL PREDICTIVE CONTROL

in maintaining the temperature of the system arbitrarily close to a set point auaibgum
point, but below the maximum temperature. Our priority is meeting the constraietaiNg¢ee
that our problem only required the boundedness of the state that istgealdy the feasibility
property. This argument will be deeply detailed in the last part of the neapter.
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Chapter 4

MPC thermal controller for MPSo0Cs

In this chapter the basic distributed MPC solution is presented. First, the foitLise devoted
to highlight the importance of the model for MPC accuracy. In this contextesmethods to
obtain accurate and reduced order models of the system are illustratezh, The centralized
and distributed MPC control schemes will be accurately described slgawenstrengths of the
latter solution. Finally, the feasibility property will be proved for centralized alistributed

controllers.

4.1 The prediction model

In the previous chapter we showed how MPC schemes strongly rely oryitznic models
used to forecast the future behaviors of the system. In order to builtficier® and effective
control solution, the properties the model must satisfysarglicityandaccuracy The former
is necessary for reducing computational complexity and guaranteeingl @ ¢ontrol decision
before the ending of the sampling interval. The latter, instead, affects tiraabipy of the
control decision, which strongly depends on predictions.

When we build a model, the parameters that affect computational complexigcandacy
are essentially three: the model type, its order and the number of inputs.

Although there is nothing in the theory of MPC schemes against the use laiesmmod-
els, linear models (if correctly describe the phenomena) are usuallyrgbefebecause they
are easier to identify and enable the use of more reliable and efficienithigsrto solve the

optimization problem, guaranteeing a global minimum solution (nonlinear MPGreehare
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4. MPC THERMAL CONTROLLER FOR MPSOCS

generally non-convex}j (2). However, linear model are usually approximation of the natural
phenomena which usually are nonlinear.

The model order represents the state dimension of the model. The greatedéhethe
greater the number of system modes that describe the behavior of the sgsi@g hence its
accuracy. However, as remarked in Cha@teghe computational complexity of a MPC scheme
is exponentially related to the state dimension and the number of constraints.

Finally, it is important to identify the inputs that have a strong impact on the vbddre-
haviors, while discarding the ones that have a negligible contribution.ethdes the number
of inputs increases, also the computational complexity increases, sinagntibenof multipli-
cations and additions increase. Moreover, also the design complexitydtvady affected by
the increasing of information transmission.

The aim of this section is to understand the motivations that have led to the moelels w
used in our control algorithms and to show the techniques adopted to idegiifpértameters.
Thus, in the follows we will answer to these questions: What type of modelat Wibdel
order? How many inputs?

Clearly, it is impossible to answer these questions without having any informaridhe
system we want to model. The required model has to describe the therragidredf a generic
multiprocessor chip (see Appendifor major details on how a generic multiprocessor may
be modeled). The system takes as inputs the core frequencies, the sajpage and the
workload of each core and it returns as output the temperatures ofoé peints on the die,
which correspond to the measurements from the sensors. In this thesasemably assumed
a sensor for each core. As it is possible to note the temperature and tke gisgipation of
caches are respectively uncontrollable and unmeasurable. Thugstemss under-actuated,
since to keep the temperature of the caches below the constraint value welgananage the
power dissipation of the cores. However, it is worth to remark, that this limitasiorot so
restrictive because the highest power density are consumed on doges usually the most
dangerous thermal challenges occr (

What type of model? As shown in AppendiB, the thermal behavior of a processor can
be modeled by a nonlinear mathematical function that depends on five maimgiara: the
cores frequency, the cores workload (CPI — clocks per instructtbe) supply voltage, the
chip temperature and the ambient temperature. Such a function can be dsednp two

sub-functions that realize the following “causal chain”:

(freq,CPILVaa, T) 2% (P Tams) 25 T



4.1 The prediction model

where freqis the vector containing the cores frequendy is the supply voltageCPl is the
workload running on each cor€,andP are respectively the vector containing the temperature
and the power dissipation of the cores, dpgg is the ambient temperature.
The first sub-function(-), is a highly nonlinear and can be addressed separately in each
core according to:
P = Paynamict Pstatic=

. 4.1)
ka- freq- V2 + ks + (ke + ko freq) -CPIKE 4 Z Vyq- T2 e 1

This equation, that will be called Power Model in the follows, has been adddig performing
a set of tests on each core of a real general-purpose mukidafthout entering in more details
(see the AppendiB and the references therein), we can notice that the core dynamic power
depends nonlinearly on the frequency, siNggis a nonlinear function of the frequency, and
sub-linearly on the CPI of the application (CPI and frequency are algpled). Even if this
is a simple empirical model that does not account for many secondacjsefieany works in
the state-of-the-art show that it can be used as a reliable basis to dedsmpced models to
effectively estimate the power consumption of different worklo@ji$%) (6).

Differently, the power-to-temperature modg] that we will call Temperature Model in
the follows, can be considered with good approximation linear. The tempeneadtiation of
each point of the die is affected by the power dissipated by the comporrettie chip, cores
and caches primarily. The model can be obtained by using the well-knoalaggnbetween
thermal and electrical models. The chip is decomposed into a great nundmealbtells, each
one associated to an electrical RC circuit.

The same idea of decomposing the system model (i.e. the plant) into a lineamand a
linear part can be exploited also to build the prediction model. The centsamdar adopting
such a strategy relies on the possibility of exploiting the advantages ofigletarity. Indeed,
we can design a linear MPC scheme which uses as manipulable variablesvdrecpasump-
tions instead of the frequencies and voltages, and then to convert tlee ipevfrequency with
the Power Model. Without entering in the details of how the controller is stredttiat is the
argument of the next section, the Power Model translates the targeefreigs, workloads and
voltages (requested by an higher layer software as the operating systemget power con-
sumptions. The controller manages these target powers in order to maximizerfblenance
respecting the temperature constraints and it returns the controlled poWegse latter are

Hntel® Xeon® X7350 @)
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4. MPC THERMAL CONTROLLER FOR MPSOCS

given as input to the Power Model properly inverted to obtain again tlygiémrecies. Fig4.1
clarifies this concept.

Target Power | Target L"\;?;gr Controlled II\)Iloovglee: Controlled
eq, CPI, vVdd ™ 2 2
freq, CPl,Vdd "| Model | Power | ¢ eroller| 7" |inverted| @ <P Vad

Temperature

Figure 4.1: Conceptual control scheme

Concluding, the model chosen is a linear model which takes as inputs the pangimp-
tion of the cores (only the cores are controllable, that is we have no infiommaf the power
dissipated by caches) and it returns the measured temperatures ofdbhdardy the sensors

measurements),

{KKHU:AAM+BUw) 4.2

y(k) =C-x(k)

wherex is then x 1 state vectory is the measure@ x 1 outputs vector (thermal sensors
readings)u is them x 1 inputs vector (the power dissipation of each core and other informa-
tion) andAnxn, Bnxm, Cpxn are respectively the dynamical matrix, the input matrix and the
output matrix. AssumingN the number of corep = N. Thus, according to the granularity
of performance counters, thermal and power sensors, our monit@paipiity is at core level
and within a core we assume uniform power and temperature distributionsaW\abstractly
visualize our model as a chip only composed by cores (seelky.

Components Cores
Power [ [8{] Ln Temperature
ot | |
PLANT \ Prediction Model
Cores | m | w | Cores
Power | S| 8 | S Temperature

Figure 4.2: Abstract view of the model

What model order? The results in&) highlight that the thermal dynamics of each core is
characterized by two time constants: a faster one, at a few ms, is relatedstticine surface,

84


./4_BasicSolution/img/0010_ChainMod.eps
./4_BasicSolution/img/0020_AbstractView.eps

4.1 The prediction model

whereas the slower one, at a few seconds, is related to the heatesprEaid behavior, needs
to be carefully accounted in model identification and control design. Tdrereour model
should have at least two states for each core. On the other hand, thatationl complexity
requirements imposes a low order for the model. For this reason we chéisgt attempt a
second order model. In this case, the state dimensier2 x N whereN is the number of
cores.

How many inputs? The inputs represent the actions of the surrounding environment on
the system and they can be classified in manipulated or not manipulated.sticarfibe modi-
fied, by the user or the control algorithm, in order to change the behé&itioe system (e.g. the
power dissipation of the cores in our case), whereas the secondeatga “measured distur-
bance”, that is an information that modifies the system behavior but thabthea controlled
arbitrarily (e.g. the ambient temperature). The greater is the number of ingedsto model a
fixed behavior, the greater is the accuracy, but also the complexity.

It is also important to note that a measurable attribute can be defined asonusys-
tem, but it could not be for another one, depending on what we are $teeréo model. As
an example, if our goal is to find a unique thermal model for the whole chipwavill call
“global model” hereafter, then the inputs will be the power of the cores and the ambient tem-
perature. In this case all these inputs are necessary to have antacoodel. Otherwise, if
our goal is to model the temperature behavior of a single core, then the wiuts the power
of the core, the ambient temperature and the powers and temperaturesotigheores. In
the following of the thesis we will refer to the model composed by the set ofittgescore
models asmodular model”. In this latter case the number of inputs increases with the number
of cores. Thus, in order to understand which inputs are necessarytdaoh are negligible we
performed empirical tests. First we discarded the power of the othes asrpossible inputs,
due to the negligible contribution to the final temperature of the core. Recallingdf's law,
the temperature of each core can be assumed dependent on its owrtelisggpaer, ambient
temperature and adjacent cores temperatures and powers (bouodditions). This assump-
tion is actually straightforward only for continuous time models. Focusing aretistime
models, a larger coupling among cores has to be considered to accotim fghain of in-
teractions” taking place during the blind intervals among samplings. Recallaig kgurier’'s
law, the coupling among two cores will be inversely related to their distanceliaactly re-
lated to the sampling time period. Hence, the “equivalent neighborhoodtofeadepends on
the floorplan combined with the adopted sampling period. To verify this assumpédook
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Il 7s=2ms [ Ts=0.1s B = 1ms i i
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Figure 4.3: a) Single core thermal impact range, at different time winstd) Multi cores thermal
impact range, at different time windows;

an example loosely correlated with the 1ffeBCC experimental architecturél) (see also
AppendixB). The floorplan is fully tiled with 48 core/regions, each with an area o8arhn?
and a maximum power consumption of 2.6W. We used this set-up with the Hot&potath
analysis tool {2), and we made the following test. We stimulate with a power step the central
core (53) (“thermal attacker” core) while keeping all the other cores at zeveepagonsump-
tion. As result of the power step, the temperature of the attacker coragaseinducing a
temperature raise in the neighbor cores. We are interested in measurirgdgeeof thermal
impact of the “attacker core. To do that we look at the surroundingscthrat raise their tem-
peratures as consequence of the attacker. We call them “victims”. Végdeoras victim only
a core that raises its temperature of 1% the attacker temperature incremedt3&ghows in
black the attacker core and in different colors the victims after differentititeevals. We can
notice that the radius of thermal influence of the central core increagieshe time interval:
within 50ms it impacts only the closest core along the four cardinal directain3,75s the
majority of them is affect.

In order to test the behavior of the system when more cores are triggerednsidered
an increasing numbers of attackers starting from the perimeter coresadossgto the victim
one (now core 33), after different timing intervals, we check the cores that increase their
temperature more than the 1% of the attackers increment. iRy we can see the results.
We can notice that the neighborhood composed of one core in each direcémough to
prevent the core victim to be sensitive to the rest of the core temperatiithés ¥0ms of time
interval.
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Technique| Type | Modular Order
ARX Linear Yes 2 per core
Heo Linear Yes 2 per core
POD Linear No 5 per 8 cores

Table 4.1: Prediction model characteristics vs. identification tégha used to find it.

On the basis of these tests the power consumption of the core, the ambientaemgand
the temperature of the adjacent cores constitute the inputs of the singlemaded

Concluding, our MPC solution will use a linear power-to-temperature mddbesecond
order. For the global model we have chosen as inputs the powers afribeand the ambient
temperature, whereas for each single-core model the own powerraptisn, the ambient
temperature and the temperatures of the adjacent cores (assuming a séimglilogver than
10ms).

In the following three subsections we show the techniques used in this thegisapolate
the prediction model. The tabfel shows the characteristics of the three techniques.

4.1.1 Distributed ARX identification

The first, and simplest, approach, used to find the prediction model, relig= avell-known
ARX identification techniques9j (10). An ARX discrete model can be written as,

yt)=o0s-yt—1)+---+ay-y{t—s)+Bs-u(t —1)+---+ B - u(t —s) +e(t) (4.3)

wheresis the ordery is the outputu is the input,a and are constant parameters aas a
stochastic white process with null expected value.

However, the MPC controller will use the model as a predictor for the fudutput, there-
fore the equation4.3) can be rewritten as,

ytt—=1) =as-yt—21)+--4+ar-yt—9)+Br-ut—21)+---+B1-ut—s) (4.4)

wherey(t|t — 1) is the predicted output for the future tirhdased on the information available
at time (t — 1). The main difference between a predictor and a simulation model is that the
predictor uses the past measurements to estimate the future output, whersanutlation
model uses the past estimations.

The main idea of the ARX identification technique consists in learning the modminpa
eters @ and 3) by solving a least square problem that minimizes the prediction error. The
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prediction error is the difference between the system response afteaweeapplied proper
training stimuli and the response estimated using past measurements.

S""#sample

T (vt —y(tft—1))? (45)

min,_
P sample {511

where #ampleis the number of measurements used for identificasamthe model ordery(t)
is the measured output at timendy(t|t — 1) is the estimated output at timebtained using
the equation4.4).

As already discussed in the previous section, we chose a ®¢d@rfor the model. More-
over, we called this technique distributed because it sdWé=ast square problems (one for
each core) in order to identified tiNesingle-core models forming the modular model. Two are
the main advantages of this approach:

e it offers a low complexity solution to counteract the system identification cortipng
cost in large multi-core systems. Indeed, in MIMO model the complexity forirsglhe
least square problem explodes with the number of inputs.

e it perfectly fits with a distributed control solution, since each local regulzdardirectly
exploits a single-core identified model.

As in the equation4.4), thei —th single-core model is a simple MISO model with a single
output and multiple inputs,

Ttt-1) =02 Ti(t—1)+ar-Ti(t—=2)+Br2-Rt—1)+ Br1-R(t-2)+
+B22- Tama(t — 1) + B2.1- Tams(t — 2) + Bs:adim(NEIGH),2° (4.6)
“TneiGH (t = 1) + Ba:ardimNEIGH),1 - TNEIGH (T —2)

whereT; is the temperature of the-th core,R(-) is the dissipated power of the-th core,
Tams is the ambient temperaturd EIGH is the set of neighbors of the-th core andlygich
represent their temperatures,..; andBy.3, dimNEeicH),1:2 are the identified parameters.

As already mentioned the core power consumption can be estimated fronréhepenat-
ing point and from the current workload characteristic using the Powatdi/(see 4.1) or it
can be directly measured from power sensors present in recent@®I@3)).

The first step for the identification process is collecting data from the ystém. The
input sequence must be persistently exciting in order to ensure identifiabligyforced a
Pseudo-Random Binary Sequence (PRBS) power input to eachvdaite,probing the core
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4.1 The prediction model

temperature. Then, the parametarand are derived by solving a least square problem that
minimizes the prediction error, as the one shown in equatid), (

St+#sam ple

S (M)~ Titjt—1)) (4.7)

min
#sample t=511

Often it is convenient to translate the model just found in a state-space form,

R(t)
Xi(t+1) = Aarxi-Xi(t) +Barxi- | Tams

4.8
TNEIGH (4.8)

Ti(t) = Carxi - Xi(t)
Unfortunately, the identified models states do not have a physical meamimgatth the core
temperature with the first state of each model we apply a change of comrtterasformation to
obtain a matriXxCarx; = [ls | Os] wherels is thes-dimensional identity matrix. We achieve that
by representing our system in the equivalent observer canonical ¥e use the observability
matrix O = [Carxi; Carxi - Aarxi] as linear transformation to change the coordinates of the
(Aarxi, Barxi,Carxi) model as shown below.

A =01 Aprxi-O
Bi = O 1. Barx; (4.9)
G =Carxi-O

Since each thermal model is a second-order model and each elem&gnBfC; can be
expressed as the composition of a finite algebraical operation of the elef&x;, Barxi,
Carxi, the above computation is negligible.

In a real system we expect to run the distributed ARX identification praeeds a self-
calibration routine executed by each core. First, during the start uge @rasthen, on-line,
each time the model behavior differs from the plant one.

We tested the performance of our technique using a high dimensional emch&cplant
developed in Matlab using a finite elements approach (see AppBhdix Fig.4.4a we showed
the comparison between the plant and the model temperature of core 1 dlatapiging PRBS
signals different from those used for the self-calibration routine. In4dp instead we vali-
dated our technique on plants with increasing number of cores. First,veeapplied PRBSs
on each core and then we have computed the model. Finally, we have nikt#sumean
absolute error between the temperature of the system and the temperatgenafdél, both
running PARSEC 2.1 benchmarks tracé8)(see AppendiB for more details). The resulting
errors are lower than°K on average.
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Figure 4.4: Self-calibration routine results

Notice that the modular model can be easily translated into a global model by smmpo
the single-core models contributions.

4.1.2 H, identification

We have seen that a common procedure to find the prediction model is thm systeification.
Basing on the observed data, i.e. inputs and outputs, the system identifigaicoach finds
the optimal parameters of the model minimizing a certain objective function. Thelromter
chosen and the number of inputs determine the number of these parameteis.values
instead depends on the objective function chosen. In the previousrsefcticeach core we
minimized the mean square of the error between the measured and the estimatrdtie®ep
of the core. Also théH., technique search for a modular model of the second order, but it
uses a different cost function that favors the development of a miableeand efficient MPC
controller. For each single-core model it finds the parameters that minimzé@sfihite norm
of the error, i.e. the maximum error, but imposing the estimated temperature lwégsa
greater than the measured one. This latter constraints allowed us to inttreasbdustness
of the controller. Indeed, the MPC controller, which exploits the model, wilbgs forecast
a temperature value higher or equal than the real one. Thereforay din@e, the control
decision returned by the controller will be either the optimal one or a lessrparfg one. This
optimization problem can be formalized as,

min S
S,01,02,B1,32

st. (4.10)
Ti(t) —Ti(tlt—1) > —s
Ti(t)—Ti(tjt—1) <0
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whereT;(t|t — 1) results from the second order input/output model,
Ttt—1) =a2-Tt—1)4+a1-T(t—2)+L-ut—1)+pf1-u(t—2),

uis the inputs vector anfl, and3; are vectors of appropriate dimensions. Notice that the two
constraints impose the error to be negative or at least equal to 0.
Finally, if necessary, we may convert the model from the I/O space to ttesgiace ob-

servable canonical form,

— ——
R R T e K o R
=1 0L {50

It is worth to note that the parameters result from the data collected fotiaysar bench-
mark. However, it could exist particular benchmarks for which the tentperastimated is
lower than the real one. For this reason we use a PRBS and check fap#teaypical bench-
marks of the package PARSEC 2113].

In this thesis we also experimented an iterative procedure that uskl, theproach. The
aim is to find the model with the appropriate inputs. The algorithm starts comgjdat the
possible inputs for the single-core model (the power of all the coresntiéeat temperature,
and the temperature of all the cores), then it repeats the identificationamppdiscarding at
each step the inputs with negligible contributions or giving rise to incoheesuits. As an
example it is expected that the temperature contribution of a core decrighshstance. This
approach could be necessary to cover the scenarios missed by thetestis Fig.4.3.

4.1.3 POD approach

In control theory it is extremely important to find a low-order model that axipnates the be-
havior of the real system without impacting on the computational cost. ThpeP@rthogonal
Decomposition (POD) is an elegant technique for finding low-dimensior@oapnation of
large-scale dynamical systems and data sets. The POD is also knownagdP@omponent
Analysis (PCA), the Karhunen-ve Decomposition (KLD), and the single value decompo-
sition (SVD). It provides the optimal orthonormal basis for the modal deositipn of an
ensemble of functions, such as data obtained in the course of experirhéntCombined
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with the Galerkin projection procedure, we can obtain a lower dimensionallsofi@ynami-
cal systems that have a very large or even infinite dimensional phase spac

Assume we have a very accurate model of the system obtained by usirnig &léments
decomposition approach, that is discretizing in space the infinite dimensimmsyEhis model
has usually a high order and therefore it is prohibitive for the developiwfea controller.
We may think to have the model we used as plant in our simulations (see Ap@nthiat
counts 360 states for a four-cores processor. We cdl(g$) the function which describes the
temperature of the discretized systesrepresents the-th elementary volume (suppose they
areK), andt is the time sample. It is always possible to exprésst) as an infinite sum of
coefficientd” = [y,.. ., Y] multiplied by the vectors of the orthonormal ba®is= (@1, ..., @],

8

T(st) = ) W(t) - (s) (4.12)
1

An approximationf(s,t) of T(s,t) can be obtained using a badig containing onlyM vectors.
The POD technique find thd terms basis that gives the best approximation in a least square
sense. In particular we want to minimize the distance of the data respect tagheiximation,
expressed as,
Time "
min/ IT(st) — T (s.t)[20t (4.13)
0

Solving this problem is equivalent to solving the eigenvalue problem,
Corr- =9 A (4.14)
where, according to the method of Sirovich, we may find the correlation n@trixas,

Corr = -Tduap Tsnap (4.15)

sample

andTsnapis theK x Nsampiematrix, thesnapshot matrixobtained collecting the temperature
values of thek elementary volumes composing the modelNgxypetime samples, i.e.

Tsnap= [T(1) T(2) ... T(Nsample)] (4.16)

T(i) is a column vector witlK elements and\ = diag(As, ..., ANy, IS the diagonal eigen-
values matrix.

The basis correspondsdand it containg eigenvectors oforr. The correlation between
the data and a generig is represented by the eigenvalues: the greater is the eigenvahe
greater is the ability ofg to approximate the data collected. Thus, we can chbbéhe basis
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dimension) by taking theg i = 1,...,M vectors with the greatest eigenvalues. As an example
we could findM using the function,
Ry — LNiM:ll’\‘ (4.17)
Sic1 A

Assuming the eigenvalues are sorted in a descending order, we staM with and then we
increaseM until we reachPy = 0.99. The reduced basis ®y = [@,...,@v] andT(s;t) can
be approximated with (s,t) = @y - Ty (t) wherely (t) = [yi(t), ..., wa(t)]

Once we found the basis functions, we apply to the plant the Galerkin fioojeo find
the low-dimensional model. Suppose our plant is a linear discrete-time motghed by
discretizing a partial differential equation via finite elements or finite diffeesn

X(t+1) =A-x(t)+B-u(t)

T(t) = C-x(t) (4.18)

whereC = and hence(t) = T(t). We obtain the reduced order model by substituting

INs.ample
the T (t) with its approximationi (t) and projecting the system onto the subspace defined by

@y by multiplying the matrice#\, B, C by ®y. The final matrices of the reduced model are:
AR:CD-,&‘A‘CDM BR:cD-,\Ih‘B GR=C Dy (419)

In Fig. 4.51t is reported a simulation test where the distributed ARX and the POD apm@®ach
have been compared. We modeled the thermal behavior of a simple fasf@acessor ex-
ploiting the well-known equivalence between thermal and electrical systnshiown in Ap-
pendixB. We split the volume of the processor in two layers and then we decompashd e
layer into a large number of cubic cells. To each cell we assigned anadepiivelectrical cir-
cuit obtaining a model as in equatioh.18. The total number of cells iK = 1728 then the
dimension of the state matriR, is 1728x 1728.

The blue line represents the real temperature measured on the simulatoedhdige is
the temperature estimated by the low order model obtained with the distributed pyRr&aach.
The single-core models has been composed to obtain the global model thtt 8atates (2
per core). Finally, the red line represents the model obtained with the P@bigee. Despite
it has a lower number of states, a total of 5, the temperature estimation are hattamean
value of the error for the POD respect to the real temperaturel©, whereas the one for
the ARX is 47°C.

From these results the POD seems to be the preferable approach to us€ inaitrol
solutions. However, it present two main disadvantages that made us leardsothe ARX
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Figure 4.5: (a) Simulated processor, (b) Thermal and power Respon$e afore 1

andH., approaches. First, this approach requires the knowledge of the thieemaVior of
the real system in all its points, but this is usually impossible since on a chipesent only
few sensors, say one per core. Also the use of softwares for thedlaiteent decomposition
analysis do not represent a viable way. Indeed, it is difficult to tune alptrameters to have
the identical response of the real system. Moreover, preparing sucde is time consuming
and the possibility of reuse the model for other processors is very lowonse our MPC
solution has the characteristic of being distributed, therefore it fits well wehdistributed
ARX andH., approaches.

It is also worth to note that the ARX average error of°€ is not significative since is
obtained using the model as a simulator. Inside the controller, instead, idgasepredictor,
thus, starting from the real temperature value it has to forecast the tetuperature for few
time instants. In this scenario the ARX results accurate.

The code used for the POD method is shown in Appefix

4.2 The Distributed Thermal Controllers

In this section we present the main contribution of this thesis, that is the disttibutemal
manager designed using the MPC approach. The main idea of this solutierimalEcompos-
ing the MPC controller into a set tdcal MPC controllerseach one supervising the temperature
of a group of cores. Notice that the number of cores supervised Iyoeedroller can be dif-
ferent. In the follows we considered a fully distributed solution, that is each is supervised
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4.2 The Distributed Thermal Controllers

by a local controller.
The block diagram in Figd.6 shows its global architecture, focusing on a single local con-
troller which basically consists of four blockiP converter P2f converter MPC Controller

andObserver
_______________________________ T1, TNEIGH 1
mﬂ Local Controller #1 ]
@ L R B S
: freq c:
___________localController#i
High |freqr, | Pri MPC cri ]
g _q_’. f [———— Controller —>| P Th |
i TAvB = fi erma
Level : I% TNEIGH; ] H % e
. - Pc: l
CPli | “ | Model
M > Xi ] D)
anager | _Observer | 1
T SO — TiTneGHi |
freqrn e freq c,
CPln oo Local Controller#n R —

Figure 4.6: Thermal Controller structure

f2P and P2f converter blocks.These two blocks perform the conversion respectively from
frequency to power and from power to frequency using the worklsatlditional information.
The main role of the blocks is to encapsulate the nonlinear part of the fregue tempera-
ture relation. The main advantage of this separation is the possibility of usingaa MPC
controller instead of a nonlinear one which allows the use of more efficighteliable algo-
rithms for computing the optimal control solution. Both the conversion rely orethgirical
relation @.1). Thef2P convertetblock accepts as inputs the target frequency and the workload
coming from a high level manager. It takes as inputs the target core apéetie workload,
respectively defined afeqr; andCPl;, and it returns as output the correspondent power con-
sumption Br;). Notice that in Fig4.6the Vyq does not belong to the inputs set. However,
as we have already mentioned, the voltage can be substituted by a nonlineiorf of the
frequency. The”2f converterblock is the dual of f2P one. It receives as inputs the optimal
Rci and the workload of the core, and converts them to a consistent freguaiue fcj. This
optimal frequency is then applied to the core. The P2f conversion is oldthyénverting
the @.1). Unfortunately, the function is nonlinear, so for finding the root wedneuse an
iterative numerical method. We have chosen Brent's methégthat combines the stability
of bisection with the speed of a higher-order methods. In particular ittheesecant method
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4. MPC THERMAL CONTROLLER FOR MPSOCS

or inverse quadratic interpolation if possible and the more robust bisectithochié necessary.

MPC controller block. It represents the center of the local controller. It uses the input
measurementSave, Tneicn andx; to forecast the core temperature obtained by consuming
all the requested poweR ;. As output, the block returns the controlled povef which is
equal toPr, if the predicted temperature meets the temperature constigigg), otherwise
itis reduced. Clearly, the reduction must be as small as possible to maximizertbeance.

In order to define a local MPC controller able to manage this problem, two maimeats
must be designed: a model used for computing predictions and an optimizaiolem to
find the optimal control decisions. The model estimate at each time instant, atiysham
the current system temperature, the temperature of the core for a futureviimew. We
have already discussed about the characteristics of the model and Isetvite parameters.
As an example this model could be identified by using a self-calibration roamshown in
Sectiord.1.1 Let us assume to have for each controller a single-core model of tme for

R(t)
Tt+1) | _, | Ti() '
[ Xi(t+1) ] =A [ X2 (t) ] B TIETAGBIEJ[()'[) (4.20)

no-c:| 10 |

X (t)
whereT;, R, Tneicn are respectively the temperature, the power consumption, and the temper-
ature of the neighbors of the-th core, whereasg,; represents the unmeasurable state of the
model since we consider a second order model for each core.
The obtained forecasts are finally used to define the optimization problem:

hp—1
i ) P 2

min kZO IFei(t+K|t) —Pri(t+Kk)[I§ (4.21q)

st.

Ti(t—l—k—l— 1’1’) < TcriT Vk:O,...,h (4.21b)

whereT;(t +k+ 1Jt) represents the temperature of the core predicted forttinle+ 1 based

on the information available at tinte The inequality 4.210 imposes a hard constraint on the
core temperaturely), while (4.219 ensures the maximization of performance, minimizing the
difference between the target powe¥ () and the power really assigned to the cdrg;f. hp
represents the dimension of the prediction time window in sample instants (i.e etfietjun
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horizon) andQ; is a matrix that weights the importance of the square error elements. In our
implementation we have chos&) equal to the identity matrix antl, = 1, guided by the
characteristics of the system. Each sampling time, the solver yields the optimadisdh ;,

that minimizes the cost function and meets the constraints.

Hereafter, we briefly recalled two possible alternatives to solve the optinmzatmblem
presented above. The first is calladplicit and provides an iterative algorithm that solves
on-line the optimization problem at each time instant. The second, insteadrrpsithe op-
timization off-line and it is calledexplicit (16). Both the methods have been introduced in
Chapter3. Anyway, both the approaches need for a reformulation of the problenstandard
guadratic programming (QP) form. The steps shown below transpose pheaap used in
AppendixA to our specific problem.

n\)vi_n% Wi () - Hi-wi(t) +g7 - wi(t) (4.22a)
st.
M; - w; (t) < b (4.22b)

This problem is exactly equivalent to the optimization problem previously e@fiwhereas
w; (t) is the solution vector, the values of matrices and vedibydi, g andb; can be found
starting from 4.219 and @.218H. Below are presented the mathematical manipulations to
obtain them.

From @.219 we findH; andg;. The function can be rewritten in the vector form:

J=(Pei—Pri)" R (Pej—Pr))

whereRe; = [Reji(t]t) ... Pei(t+Kt) ... Rej(t+hp—1Jt)) andPrj = [Pr;(t) ... Pri(k+
i) ... Pri(t+hy—1)]" andR; is the weight matrix (for example an identity). Note that we set
hp =1, henceR-; = R [k|k] andPr; = Pr [k]. Computing the products we have:

J=Rl-R-Rei—R-R-Pri—P{-R-Rei+P-R-Pr; (4.23)
Using the matrix ruléA-B)T = BT - AT we can rewrite the previous equation as:

J=Pl-R-Rei—PL-R-TRei—P{;-R-Rej +Pf;-R - Pr; (4.24)
The searched value B ;, hencew;(t) = R;;. Then:

H=R g=-P (RT+R)
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The termP{i -R - Pr,i can be omitted since it is constant at each time step.
Now we can manipulate the constraint inequality for obtaiiigandb;. Remembering
thath, =1, (4.2109 becomes:

Tit+1t) =C-x(t+1) =G - (A-x(t) +Bi-ui(t) < TeriT
whereu = [Rc; Tams Tneich]’- Making explicitRc; we have:

Ci-Bii-Prc <Tcrimt—Ci-Ai-% —Ci By [Tams Tneich]

whereB = [By B2j|, By is the column oB; related to the inpu: ; andB,; is the completion
of Bj. From the previous equation:
Mi =G - By,
bi =Terit—Ci- A - %i [K| —Ci - B2 - [Tame TneicH]
It is worth to note that we could also consider the case of a lower bouncegrothier Buin <
Re i) writing:
. Bq:

TeriT—GCi- A -Xi [K| = Ci - By - [Tame TneicH ]
—Buin

In some of our simulations we do not take into account this power constingd & is rea-

bi =

sonable to assume that the real chip is designed to dissipate a power haghy;th without
incurring in thermal issues.

Once the QP formulation is obtained, one of the two approaches can bé¢oused the
optimal solution. The implicit approach uses a quadratic programming solvisrwbrth to
note that the matrik; depends on the current stag¢t) that is time-variable. The same goes
for gi(t) that depends on the requested po®er which is also time varying. Clearly, since
the QP problem changes over time, the solving algorithm must be applied cat-Baeh time
instant. Although efficient QP solvers based on active-set methods tnidirpoint methods
are available, the computational overhead for finding the solution demagmiscant on-line
computation effort. Assuming that the solution of the QP problem does nogetlrauch from
the solution obtained at the previous iteration, we can reduce this effarsipg an active
set algorithm capable of finding the new solution starting the search frorpréwious one
(hotstart). This algorithm is implemented in the open-source library gpOASBS (
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As previously mentioned in Chapt8rand in AppendixA, another way to reduce com-

putational burden is to use an explicit approach that solves the QP prafldime for all
possible values aof;(t). The problem solved in this way is commonly called multi-parametric
QP (mp-QP). By treating;i(t) as a vector of parameters, the optimal solution is an explicit
function of the stateRg(xi(t))) with the property of being continuous piecewise affifié)(
In other words it is possible to partition the state-space into convex polghesyions, each
one with its own optimal linear control law. At each time instaq(t) lies in one and only
one of these regions. Similarly to a Look-Up Table (LUT), knowing theentrstate and by
checking region boundaries it is possible to find the solution using the linpagssion:

Pe.i(X) = Fr, - xi(t) + Gy, (4.25)

wherer is the region index anB,; andG;; are the corresponding gain matrices for each core

Even though on one hand the use of the explicit solution reduces the cdiopataver-
head, on the other hand it increases the memory usage for storing theSitatarly to the
overhead in the implicit solution, the number of regions increases with théepnatomplex-
ity (18).

Observer. The aim of this block is to estimate the unmeasurable state compongnt (
from the temperature measurements. Indeed in Sedtibthe model is shown to have two
dynamics, but only one thermal sensor per core is available. By knowengdidel and taking
as inputs the temperature of the cdreandR.;, the observer estimates the state components
X2i. Subsequently, this state will be used by the MPC block as initial state for ¢lécpon of
the temperature at the next time instant. We have used forighatore a classic Luenberger
identity observer defined as:

Xit+1)=A-X(t)+Bi-ui(t) +Ki- (Ti(t) — G - %(t))

wherex is the estimation of the stat4,, B;, C; are the matrices of the prediction model, the
same used by the MPC controller amds the input vector containing: ;, Tams, Ti, TNEIGH -
Ki is the observer gain matrix that is a degree of freedom for the desigiseelements are
chosen to asymptotically stabilizing to zero the dynamic model of the estimationeéryes
Xi(t) —x(t) characterized by the state mat(#; — K; - C;). To do that we act oi; to move the
poles of the error model inside the unitary circle. In particular we placedlesloser to the
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center than the poles of the model to have faster dynamics and thus a tastergence of the
error to zero. The only requirements to arbitrary move the poles is thewalisidy of the pair
(Ai,G) that is assured by the physics of the system, in fact each dynamic direatigieectly

affects the model output temperatures.

4.3 Design choices motivations

This section aims to show simulation results in order to justify our design chol¢estests
have been performed on a Matlab/Simulink thermal simulator, as the onelbadefscribed

in AppendixB. This allowed us to be more rapid in switching from a control law to another or
simply to change the chip floorplan. The Fg7 shows the architectures of the chips simulated

during the tests.

Xeon-like 4 cores 8 cores 16 cores 48 cores
(a) (b) () (d) (e)
13,12 mm
7,872 mm 7,872 mm 7,872 mm 7,872 mm
n 7 7 7 7
£ ® | >
3 CORE 1 Q ® ol o o] o] o] 0 i
5 ® E . CORE 1 CORE 1] CORE 2| 11213 |2 B K
CORE2] N \g ® B ol 6 B of o] o] © B 3hiakis 1 B
g CORE 2 § | CORE 3) CORE 4} § 51617 I8 § K §
® Q 3 ® 3 | o]l o]z |o|o]o]e] |3 3
CORE3| O CORE 3| |3 |corescores] |3 o hohih2| 13 3
® - ® @l 6} o] o] o] @
CORE4] N CORE 4 | CORE 7 CORE 8} 13h1aji5hie B
Pmax/core: 25W 17.5W 6.25W 2.083wW

Figure 4.7: Simulation layout of the chip used in the tests

The majority of tests have been performed using as a layout an accuat® X&350 like
four cores model calibrated on real HW (for more details see Appddidikor simplicity and
without loss of generality the tests comprising chips with more than 4 corespeei@med
on chips without caches. Note that this is not a limitation because all the coopéess are
performed under the same simulation conditions. Finally in the 8, 16 and 48 legxauts we

scaled down the maximum power of each core in order to keep constariiee gensity on
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4.3 Design choices motivations

the chip and we reduced the spatial discretization of the thermal simulatorga&astant the
number of finite elements per core.
In the following subsections, we show:

1. a comparison between our distributed solution and a centralized solution;
2. the importance of an accurate prediction model;
3. the importance of an accurate power model ;

4. a comparison between our distributed solution and a PID based solution

4.3.1 Distributed solution vs. Centralized solution

Recently, literature presented many variants of MPC-based DTM schemasahaging the
thermal issue of MPSo0Cs. Despite the use of different formulations ariteatures, see
e.g. (L8)(19), a quite common idea is to modify the frequency of each core with the twofold
objective of meeting the temperature constraint and tracking the targaefieg requested by

a high level SoC manager. This purpose can be obtained by solving an @ttomiproblem

whose prototype is:

h—1
min 3" || fr (t+K[t) — fe(t+ k)G (4.26a)
k=0
s.t.
T (t+k+1t) <TeriT Vj=1,...,p ¥k=0,...,N (4.26b)
wherefc = [fc 1, ..., fcn] is the set of frequency assigned to the coffess= [fr 1, ..., frn]
is the set of target frequenc@n.n is the weight matrix, andcriT andTj, j =1,...,p are

respectively the critical temperature and the temperatures on p@ts selected to represent
the thermal state of the die (i.e. the sensors). The notafidr-k+ 1|t) means the temperature
estimated for the future timé@ + k+ 1) based on the information available at timevhich
implies the existence of a thermal model relating the frequency of all the @rdshe ambient
temperature) with future cores temperatures. Notice that also in this caseliagcto @.1),

it is possible to replace respectively the targht)(and the currentfc) frequency with the
target Pr) and the currentfe) power consumption. The controller takes as inputsRéand
the target frequency of all the cores. It translates these two attributesnsier gonsumption
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requirements. After having solved the optimization problem, the controllemsthe optimal
power consumption of all the cores which is subsequently translated uneiney inputs for the
thermal simulators.

This control approach is usually referred to'@gntralized” because the control decision,
i.e. the frequency assigned to each core, results from the solution d@eyproblem running
on a single core. However, this solution is problematic to execute on a laalfe Sgstem
because of the computational complexity. As the number of cores inciglaisas the expected
trend for the future), the time necessary to solve the probke@6( exponentially evolves,
causing a loss of controllability on the system, maintenance problems andctioacdhf fault-
tolerance to sensors and actuators failugéy. (

These considerations motivate the use of our distributed solution ché@radtby a set of
local controllers each one supervising the temperature of a groupes ¢@hiat is a single core
in the problem described i (21)).

We have tested the performance of the distributed and centralized solusiogsthis lat-
ter as yardstick, since it guarantees the maximum achievable thermal comiesfiermance,
reflecting in minimal QoS degradation due to thermal constraining. The fitstaasists in
measuring the performance of the two solutions as maximum overshoottré&spiee critical
temperaturélcrr = 330°K and percentage of time spent over the aforementioned threshold
(we consider the limit violated when temperature exceedsl38(). We performed these tests
using the Xeon-like chip architecture (see Hgia) and applying to the cores different PAR-
SEC 2.1 (3) benchmarks. The same test has been also repeated on Simics a full gytstaim
platform to gauge with high accuracy the complex interdependencies betwa&ol actions
and workloads, which are lost when using trace-based workload m@skesAppendixB).
Fig. 4.8 shows that the distributed and centralized solutions have comparablenpenize. In

Maximum Temperature Percentage of time the bound is o
Overshoot (MATLI{,B/SimuIink) violated (MATLAB/Simulink) D'St”b"'teCS' 'Il'herns[al Controller
0,01 - QoS loss (Simics)
0,009 — N —
0,12 B Centralized [~ o008. [___|®Centralized | __
o istri 9007 10 piceri — 2%
008 O Distributed | 0,006+ {—— O Distributed | —
! 0,005
0,06 0,004 1% —
0,04 0,003
0.02 0,002 0% [
) 0,001 I IO IR
0 0 SN & & S
Fluidanimate Facesim Dedup Bodytrack Raytracing Fluidanimate Facesim Dedup Bodytrack Raytracing Q}'b(‘ ® < S &

(a) (b) ()

Figure 4.8: Centralized vs. Distributed performance comparisonsMayimum overshoot, (b)
Percentage of time the bound is violated, (c) Distributddtim QoS Loss
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4 81 7,70 f2pP 0,061 us (time)
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16 our 24,20 MPC (Impl) | 4,690 ps (time)
48 ourt 85,50 MPC (Expl) 2  #regions
#regions time (us) P2f 1,188 us (time)
(a) (b)

Figure 4.9: Scalability and complexity reduction results

Simics test we use a QoS Loss metric that quantifies the controller quality a¢es€@o0S)
degradation due to thermal constraint. We decided to compute it as the meaadsguror
between the target frequencysj and the one applied to the system by the controlfe).(
Even though performance obtained by the centralized solution representger bound for
the distributed one, in all the tests we attained a close approximation of the optintedlc
actions computed by the centralized controller.

Previous tests showed that our distributed solution performs as the catratie in terms
of controller quality. However, its main properties remain hidden. Hereafteprovided some
results to highlight its main benefits in terms of computational complexity and scalability

The tests consist in comparing the distributed and the centralized solutioinefeasing
number of cores (we used the Fig7b-e models). To evaluate the complexity we use as met-
rics both the execution time, for the implicit formulation, and the number of redarexplicit
one. As a matter of fact]1g) shows that the number of operations depends logarithmically on
the number of regions. Instead, for the implicit solution, we provide the meapatational
time necessary to solve the QP problem at each iteration. This time has bei@edbtmning
a C/C++ code version of the control algorithm on a 2.4GHz dual-coreepsut. The Figd.%
shows the relation between the computational complexity and the number eficdhe cen-
tralized MPC solution. The time spent to solve the QP problem and the numbegiohs
exponentially increases with the number of cores in the worst case. tinyar, as asserted
in (16) and in SectiorB.3, the regions number increases with the number of states, decision
variables and constraints. For a chip with 16 or 48 cores we have babieun compute them
for memory limitations.

Fig. 4.% instead shows the complexity of our distributed solution: whereas the lizedra
solution grows exponentially, the distributed one globally increases linedbyreover, the
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complexity of a single controller node remains constant regardless the nohdoees. Indeed,
each one has only two regions and spends on average @4 to solve the QP problem.
The same figure also shows the execution time for the frequency-to-pomweersion and the
observer estimation. Notice that their impact on the global execution time is négligiBus).

In addition, we need to consider that our distributed controller is naturalbliph(i.e. one
local controller running on each core), while parallelization of the cen&dlcontroller is far
from obvious. As consequence of our distributed implementation, eaanaheontroller can
be stopped autonomously without impacting on other controllers performarits. avoids
periodically waking-up of idle cores to execute the controller routine. klee the small
power consumption of cores, when power gated, ensures that no themmegencies can
occur on their surface. Consequently, they do not need to be thermatiplied. As the core
is waken up, the controller will pay a temporally QoS loss due to the partially vatidlistate
vector. Properties in the Luenberger observer ensure this ertocdagerges to zero. This
is not the case of centralized MPC where the core in which the controllenisng always
need to be periodically waken-up since other cores might be under themmeadjencies. This
introduces extra energy penalties in centralized solution applicability.

The set of tests performed in order to compare the centralized and theifuitipated solu-
tions conclude with the exploration of intermediate solutions. Indeed, it cauibvenient to
group cores in set with a cardinality greater than one. The data idHiQrefers to a 16 cores
chip where different degrees of control distribution are applied. taikléhe comparison is be-
tween the centralized solution, the fully distributed solution and two semi-distdisaiations,
in which local controllers manage respectively groups of four and eighgs. As expected,
results shows comparable performance in both scenarios: the maximutragungolation
differs by few one hundredths of degree (see4&itfh). The percentage of time for which the
temperature violates the constraint is omitted since the results are all zerdsl®&iginstead,
shows the controller complexity of each single group. We can notice thatithber of regions
exponentially increases with the number of cores supervised by eatrbltam Also the time
spent to solve a QP problem increases as well. Moreover, even thaughirthof solving times
of each local controller in distributed or semi-distributed solutions are hitjaerthe central-
ized one, due to its parallel execution, the completion time of the distributed impletimesta

is equal to the one of a single local controller.
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Figure 4.10: Scalability by grouping
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Figure 4.11: Prediction model: 1 dynamic per core vs 2 dynamics per core

4.3.2 Model accuracy

We have mentioned many times the importance of the model accuracy in ordeftgded
predictions. In this subsection, we tested how performance worsen awtted change. We
have compared the centralized solution with a second order global modeheifame solu-
tion, but with a simpler first order global model as itB). Notice that in this case we used
a centralized solution instead of the distributed solution for the sake of simplisityway,
we have already shown that the performance of the centralized and utistribolutions are
similar, therefore the results of the test hold also for the distributed solution.

The results in Fig4.11show, as we expected, a worsening of the controller performance.
The first order model we use considers only the slower dynamics, @#t@dominant ones.
The absence of faster dynamics causes oscillations in the controlled témeéhat causes a
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Maximum Temperature Percentage of time - thermal
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Figure 4.12: Nonlinear vs. linear power model function (P2f and f2P)

large increase in the percentage of time the constraint is violated. The lEEmdees that the
model behavior is characterized by slow dynamics so in proximity of the ternuperamit it

gives a strong control action to rapidly decrease the temperature. ddiffgrthe plant, having
both slow and fast dynamics, responds with larger temperature deaeakie controller
senses this unexpected drop in the temperature and, again, it reacts wiitncd action larger

than what needed. This gives rise to a limit-cycle oscillating behavior whicr fsdm ideal.

4.3.3 Power Model accuracy

The accuracy of thé2P and P2f converters is extremely important to have a reliable and
efficient controller. A wrong estimation of the power consumption could legettibormance
degradations as consequence of suboptimal control decisions. Theveesiave performed
show an extremely worsening of the results when the nonlinear Power|Noslebstituted
with its linearization. In the first test we compared the centralized solution wiiimiéas one
where a linear function has been used f@P andP2f conversions. As in19) we use the
best first degree polynomial fitting the nonlinear function. The test haa performed on
the Xeon-like processor since the number of cores does not impact aoediiés, but only
emphasizes the results attained.

The results in Fig4.12show that the MPC with lineaf2P function shows globally lower
controller performance. It has bigger maximum overshoot, and the timengage the con-
straint is violated is significantly higher. This is because the linear functiorsfoans the
controller output powerP:, into an input frequency for the plant model which is higher or

lower than the frequency really derived by the controller. Notice thdbpmance is influ-
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enced by the previous results since the frequencies are maintainedtoldserinput target
frequencies because the temperature constraint is violated more thandheastbs.

A reader could complain about the fact that the Power Model we useah@sarison meter
with the linearized one is the same used inside the thermal simulator. Moreavétpirer
Model has been identified through empirical experiments, hence thene grearantees about
its accuracy. The next test shows that even stressing the nonlinetiofuimside the controller
with parameters errors the performance slightly degrades.

Maximum Temperature Percentage of time - thermal
Overshoot bound violation

o
w
vl
o

0,2 2. H Ideal
| - ] B -
= — bl = % Error 20%
. [l b 20
0,14— | | ES
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¢ ¢
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0
I

Delta Kelvin degree respect TMAX

0- T T T T 0 — | — — — 1
Fluidanimate Facesim Dedup Bodytrack Raytracing Fluidanimate Facesim Dedup Bodytrack Raytracing

(a) (b)

Figure 4.13: Sensitivity test on the Power Model

In order to quantify how the accuracy of the power model impacts on dtsrtggerfor-
mance, we have simulated different accuracy levels by introducing aitéic@s in the Power
Model parameters. This is done while keeping the simulation model unchaSgete errors
are applied both irf 2P andP2f. Fig.4.13shows the performance of the distributed controller
under two different levels of accuracy. Respectively we introduc2d% and a 30% of error
on all the parameters di2P andP2f functions. The results show that despite a worsening in
performance, our controller is robust to power model accuracy lackedd, with 20% of error
on internal parameters the maximum overshoot is still lower th2iK0Oand the percentage of
time the temperature violates the constraint is below the 10%. Moreover, gsegis highlight
the importance of having an accurate power model for control perfarendrhis reflects in the
expectation that in future chip releases, manufacturers will provide diétafermation on the
f2P relation or will embed accurate power sensors in the final HW to facilitaigeaitgification
and its recursive recalibration.

It is also important to note that a recursive recalibration at run time of therliperd of
the model would help to improve performance compensating also the uncegantithis
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function, for instance leakage power to temperature dependency.

4.3.4 Distributed solution vs. PID solution

In our control solution we have used a sophisticated approach basdB@nbut is this better
than a classical PID one?

In this subsection we provided a comparison between our distributed MiBtbacand a
distributed PID-based solution. The test has been performed on thelikegrocessor. We
designed the PID solution taking the cue from the controller developedlinfgr a single
processor (for the sake of simplicity and without loss of generality we obittin power and
not in frequency). By using classical design rules, we approximatethtiuel of each core
with a first order system with delay. Then, we developed the PID contifolterach core by

using Ziegler-Nichols and Cohen-Coon tables. The single PID has the tintaxgous form:

PID; = K¢+ (1+

Ta-s
Tt

whereK., T andTy are respectively the constants of the proportional, integral and theeiva
actions. As shown in Figd.14c, the PID solution is power driven and not frequency driven;
each PID controller takes as inputs the error between the real temperatilegy  and returns
as output the correction that needs to be applied to the target peyye¢o (neet the temperature
constraint.

Notice that positive corrections should be avoided since the core waullidster than the
frequency suggested by the high level SoC manager, causing a uselesisconsumption.
For this purpose a saturati¢rinf,0] has been introduced to the control action outgoing from
the PID. Moreover, to prevent the negative effect of the saturatiotherintegral action we
force this latter to freeze when controller output saturates the actuatefingh value for our
Ziegler-Nichols based PID ar&; = 1.048+ 003, T, = 1le— 003, Tq = 2.5e— 004 discretized
with a sampling timéelg = 0.5ms It is relevant to remark that we chose a sampling time finer
than the MPC solution one that isnkin order to reflect the lower internal complexity of the
PID solution. Moreover, the PID controller does not include the quantizafibe Fig.4.14a-

b use the usual metrics to show the benefits of a MPC-based solution @nnpante. This
results are even more relevant if we consider that the sampling time of the BR@lter is
higher than the one used to discretize the PID.
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Figure 4.14: Distributed MPC solution vs. distributed PID solution
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4.4 Control feasibility and other properties

In order to build an effective MPC scheme, model properties should eéutlst checked to
test the feasibility of the considered control problem (centralized or disédl) and simplify
the design of the controller.

The aim of this section consists in verifying feasibility of the control soluticer alifferent
prediction horizonst{p), taking into account that the constraint on the critical temperature must
be fulfilled by all the points on the die. The feasibility problem is usually digigin the
specific literature on the thermal control of MPSoC and no formal proo&anteeing the
meeting of the constraints are stated. For this reason we studied the popéttie thermal
models starting from the general Partial Differential Equation (PDE) wt@phesents the heat
conduction in a volume (the so callbdat equation(22) (23). Then, we used the properties of
the PDE thermal model to obtain general results, which are not affecteodsyble side-effects
due to temporal and spatial discretization.

However, it is worth to remark that the model is heavily influenced by unoéda and
unavoidable simplifications required to make the problem treatable (e.g. theticedof the
originally infinite dimension model to a handy finite dimension). These simplificatem: n
atively affect the model accuracy threatening feasibility and performahzvertheless, the
spatial and temporal discretizations, usually adopted in control/simulationtedienodeling,
are necessary for model simplification even though they introduce areagonorsening. The
model has to be simple and accurate to reduce the computational efforaptudecall the die
temperatures without missing the maximum one. Thus, rules for model disticetinaust be
stated. We exploited physical properties of thermal systems to capture thmunaxempera-

ture on the die, keeping the problem size as low as possible for contrsimuthtions.

4.4.1 The thermal problem

In order to provide a general dissertation on the feasibility problem vatithiswhole class
of thermal systems, we assume to have a very accurate model based syw#ids perfectly
describes the thermal system behavior. The PDE we considered is thienoeih heat equa-
tion that models the heat conduction in a solid body. It belongs to the family abend
order linear PDEs, and in particular it is a parabolic PDE. The heat equdgiives from two

important postulates. The first states that the internal eneifdyof a body depends on the
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spatial distribution of temperature and the thermal capacity of the materidl@as<o
u(x,t) = u(T(x,t),x) = cr(T(Xt),X) - T(Xt) (4.27)

where for the sake of simplicity the thermal capacityis assumed constant.
The second is the so-called Fourier’'s law of heat conduction stating #adietdt transfer
rate per unit area is proportional to the normal temperature gradient, i.e.

Jy(%,t) = —K(T(x,t),x) - OT (x,t) (4.28)

whereJy(-) [W] is the heat flowdT(-) is the temperature gradient ak) is a positive pro-
portional term dependent on material conductivity and temperature. Nattéhih minus sign
is a consequence of the Second Principle of Thermodynamics which statbs#t must flow
downhill on the temperature scale or equivalently the entropy of a clostdmyalways in-
creases or remains constant.

In agreement with the First Principle of Thermodynamics, energy is ceedethus the
total system energy is equal to the amount of energy transferredsatgd®undary by means
of heat and workdu = dQ — dW). Assuming no working energy is transferred, the variation
of internal energy of the body will depend only on the heat flowing into thdylthrough the
boundary and on the thermal power generated by internal sogfges

‘;;’ — —0-J4+q(xt) (4.29)

Putting together constitutive equatiorsd7) and @.28 with energy balance equatiod.R9
and assuming, according to common approacbegndk as constants, we obtain the heat

equation:
JT(x,t)
ot

where[1? is the divergence of the gradient (Laplacian) of the temperature.

cr- = k- 02T (x,t) +q(x,t) (4.30)

To completely define a thermal system this equation is not enough. First tineldy of
the region of interest must be specified. Let the volivne R® be the region we want to study,
and letdV be its boundary surface (such th& UV = V). Secondly, the initial condition
T(x,0), representing the system statet at 0 must be set. Finally, the boundary conditions
must be defined. In this regard, the most common choices are Dirichletd@guoonditions
(DBCs), whereT (x,t) is known on the boundary (i.&x € dV, vt > 0) and Neumann boundary
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conditions (NBCs), where the normal derivatiod /dn = - OT (x,t) is specified I§7is the
normal to the boundary). A general heat problem is given by,

T — DT (x ) =q(xt) xeV te[01]
T(x,0) = To(x) vxeV

(4.31)
T(Xat) = Tov (Xat)

. VxeodV vte|0o1]
A-OT(xt) = =gy (X,t)

wher€0, 7] is the time interval,a = k/cr is a constant and(-) is equal toq(-) except for
a multiplicative constant value. The second and third equation definecteshe the initial
temperature and the conditions on the body boundary, i.e. the DBCs an®@® Nloreover,
in both formulations, initial and boundary conditions need to be set accotdittie Third
Principle of Thermodynamics, i.e. forcing the temperature evolution to beyalpasitive.
Hence, expressing the temperature in Kelvin degrees, the following furinstraints have to

be considered:
To(x) >0 vxevV,

Tov(X,1)>0 VxeoV, vte[0,1] (4.32)

or Jv(x,1)<0 VxeoV, Vte[0,T] st. T(x,t)=0

where the second equation is for DBCs, while the third one is for NBCs.

Remark 1. Itis also worth to note that the classical Fourier-based heat equatiosd ursthis
work to model the thermal systems, assumes an infinite propagation fepeke heat. To take
into account the finiteness of heat propagation speed we should uptracgquation from the
parabolic to an hyperbolic form considering the second time derivative, aséoa nonlinear
parabolic equation like the Porous Medium Equation. Anyway, considén@gransmission
speed of the heat in silicon and the small sizes of chips, the classical l@pmtion still
remains a good approximation.

In order to better understand the latter remark, consider an arbitrarilyolamig a monodi-
mensional space. If we apply a heat pulse in its middle, according to Feguetion, temper-
ature change at the borders instantaneously. However this behamtoastovith the relativity
theory because it assume that the speed of information propagation istif@stehe speed of
light in vacuum. This explains why a thermal system modeled with the Fouriatiegudoes
not present an overshoot in correspondence of a pointwise eetien when temperature are
at the equilibrium. In simpler words, consider the same bar with a constant teitiglerature

distribution as below the critical threshold and assume that the boundary conditions@sakn

(see Figd.15. At a particular instant we put a small power in the middle of the bar. From the
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According to the
Temperature -'-_A/ relativity theory

Distribution

temperature

L [Bar ' >

R

Figure 4.15: The bar example

Fourier heat equation we would haViéxt) = q(x,t) since(?T (x,t) = 0, that means the tem-
perature increases in that point before decreasing, but if we corsiklignite heat propagation
speed then this overshoot is infinitely small and it tends to zero.

4.4.2 Thermal system physical properties

In the following we mention two properties of thermal systems, useful focessive proofs.
The first is the Maximum Principle that allows one to infer the position of the maxiteumm
perature in a generic open volune

Maximum Principle (22) (23): Assume the parabolic cylinder and the parabolic boundary
respectively defined as:

QT:VX(07T]7 rrzﬁ'[_QT:VX[O,T]_QT

where the bar indicate the closure set, and suppése) sufficiently smoothT (x,t) € C?(Q;)N
C(Q;)) andT(x,t) solves the heat equation @;. Then,

1. (weak maximum princip)e

maxT (x,t)=max (x,t) i.e. FTNJarg max T (x,t)]#0
Q; It xt)eQr

2. (strong maximum princip)df V is connected and there exists a pdit, tm) € Q; such
that,

T Xm, tm)=maxT (x,t) i.e. Q;N[arg max T (x,t)]#0
Q; xt)eQr

thenT (x,t) is constant irQ;.
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Figure 4.16: Parabolic cylinder for the 2D volumé
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In other words the maximum temperature is on the tep @) or on boundaries of the parabolic

cylinder.

The second properties states that:

Proposition 4.4.1. The temperature norm rate is the sum of three terms representing respec
tively, the internal fluttering, the effect of the boundaries and the efféntarhal sources.

Proof. The norm and its derivative can be written as:

TGt [y 2 ¢ /V Tt dv

1
d 1 S\t d .
Gl = ([rmrav)” & [mra

The derivative term on the right hand side 433 can be written as:

d Do 0T
a/Vm dv_/vn-T-m v

Then, substituting the heat equatiéfi /0t = a0°T 4 qin (4.34 we obtain:

9/ |T|”dv:/ NT|T " 2a002T dv—|—/ nT|T|" 2qdv
dt v v %
Recalling Green identity:

/f-ngdv: f-(Dg-ﬁ)ds—/Df-ngv
\Y ov \Y
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we rewrite the first term of4.35 on the right hand side as:

/nT]T\”’zaDZT dv:a/ NT[T|"2(0T - ) ds+
\ oV

(4.36)
—a/n(n—l)]T\”*ZHDTH%dV
\%
Putting together4.35 and @.36), (4.33 becomes:
d n-2 A
GilTlov =v-[a- [ TIT" 20T ) ds+
EFFECT OF THE BOUNDARIES (437)
—or/ n(n—1)|T|"™ 2||DT||2dv+/nT|T|” 2q dv
INTERNAL FLUTTERING INTERNAL SOURCES
O

4.4.3 The constraint reduction property

The central target of the predictive controller is limiting the temperature ofdheneV under
a specified threshold. This goal translates into having an optimization pratitbran infinite
number of constraints, one for each infinitesimal volume element. Startingfr@iMaximum
Principle, in this section we have shown how to reduce these constraintsriteanfimber,
making the controller implementable and reducing its compléxity

Proposition 4.4.2. Consider the problen?(31) with g 0 and DBCs or NBCs. The maximum
temperature is either at initial time, or on the boundary or on sources.

Proof. Since @.31) is a Cauchy problem, it admits a unique solut‘lﬁqx,t). Assumingq # 0
only in a finite sum of compact and connected $gfswith i =1,2,...,n, it is possible to find
the temperaturéT(x,t) on the boundary of each source (i.€x €y;avs;). Calling vs=Ur; vsi
andavs=Ur, dvs;, the Cauchy problem can be rewritten as an equivalent problem withgut a
internal heat sources:

I —q-02.T=0 xeV\ Vs, te[0,1]
T(x,0=To(x) vxeV\ Vs

TX t)=Ty (X t) or A-OT=Jg VxeoV, Vte[0,T]
Tx,)=T(xt) or AOT=AOT Vxe dVs,vte0,1]

(4.38)

1The number of constraints as well as the model order determine thdedmpf the optimization problem.
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Applying the maximum principle the maximum temperature isat0 or on the augmented
boundary VvV U dVs) that is:

max  T(xt)= max T(x,t)
(xt)eV\Vsx[0,1] (xt){{V\Vs} x {0} }U{{aVUaVs} x[0,7]}
hence:
max T(xt) = max T(xt)
(x1)eQq (xt)e{Vx{0}udV x[0,T|UVsx[0,T]}

The above result directly leads to the following proposition.

Proposition 4.4.3. Under the conditions that the initial and boundary temperatures are lower
than TriT, @ necessary and sufficient condition fofxk) <TcriT VX €V, Vt>0 is that the
maximum temperature on sources is always lower thaurT

Fig. 4.17illustrates the temperature distribution of a volume, in two subsequent time in-
stants. In Fig.4.17a we find the maximum temperatures on the two sources, in which we
applied a 20W power. Then, after removing powers (see #itjb), the maximum tempera-
ture moves to a middle point, not corresponding to any sources, but with r@itondey far lower
than the initial one shown in Figl.17a.

The main consequence of latter propositions is that possible constraintsovioteay hap-
pen on sources first, if we assume that the boundary temperature andi#heamdition meet
constraints. According to this result, and with the further assumption thatuthber of sources
is finite and that each of them is assimilable to a point source, then we cagrctwinfinite
dimensional constraint into the finite dimensional constraixt) < TeriT, VX € Vs.

3155 313
315
314.5
314

3125
3135

312

Figure 4.17: Two sources simulation: a) 20W per sources; b) OW per sources
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4.4 Control feasibility and other properties

4.4.4 The feasibility issue

One of the most important property for MPC schemes is feasibility: if a coimpoit sequence
meeting the constraints exists at titne 0, then, it will exist also for alt > 0.

In classical MPC literature such a property is enforced by using atleguediction hori-
zons, terminal weighting matrix, invariant terminal sets, ete5) (2). However, these are
indirect methods that have some limitations of use, they complicate the desigrcomtineller
and augment its computational complexiB6) (24). In this Section our aim is to prove that
predictive controllers related to the centralized probldmi2§) and the distributed onet(21),
possibly with some adaptations, are intrinsically feasible when applied to venaie@rmal sys-
tem, for any horizon of length greater or equal to 0. The first step is @phy the following
proposition, direct consequence of the Maximum Principle,

Proposition 4.4.4. Consider the systerd (31) under DBCs with no internal sources. I§(X)
and T(x,t) are lower than Er T respectively at time+ 0 and on the boundaryt € [0, 7], then
the temperature will never exceegRlr, i.e. the sel’ = {T(-,-)|T(x,:) < TcriT, ¥X€eV}isa
positive invariant set.

Proof. According to the maximum principle, the temperature of any points in the parabolic
cylinder is lower than the maximum temperature at initial time or on the cylinder laoynd
Consequentlyyts, to such that, > t; > 0:

1T t2) ooy <X T (X t1) oo [[T(5-)lleo, ov, tefts b))
that provedJ is invariant. Ol

Thus, if the maximum temperature meets the constraints atttisn@, the temperature
on boundary is lower thaficr;T, and no sources are present, then the constraints will never
be violated in the future. This has a direct consequence in the MPC coitedans that if
constraints are not violated at a given time, then the null input action (i.@ingeall of the
sources) always ensures constraints satisfaction in the future. Shisckearly guarantees the
feasibility for the centralized control problem.26) for any prediction horizon.

A similar result may be stated also undéBCswhen there is no heat transfer from the
external environment towards the thermal system. In such a case it iblpdegprove that,

Proposition 4.4.5. Consider the problem?(31) with NBCs, no internal sources ¢g0) and no
heat coming from the boundaries, i.eJs, = fi- OT < 0. Then||T(x,t)|»v decreases along
time.
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Proof. With g = 0, the equation4.37) is equal to:

Tl = v+ |=a [ nn=1)T|" 2|07 |3av+

<
dt
(4.39)
+a-/ nT|[T ™ 2(0T - A) ds| <0
oV

where the right-hand term is negative since the internal fluttering is alneyative, the tem-
perature is always positive and the heat flow at the boundary is naningo SinceT (x,t) is
continuous oveY, then:

1T sy = im [T v
Hence,

d . . d
gedim [IT (%, 6)llny = im [T (xt)|lny <0

O]

Thus, if we provide a null input action to the system the temperature will riegezase,
proving recursive feasibility in the centralized case. Notice that, on this bashe above
considerations, the infinity norm may be seen as a Lyapunov functiondarathsidered class
of thermal systems. It is also worth to note that in the next proofs we willnasdDBCs for
simplicity reasons and without any accuracy loss since it is always pogsilgienvert one
boundary condition to another.

Remark 2. A physical interpretation of the described property may be given acoptd the
fact that, for the Second Principle of Thermodynamics, heat flow camnalirected as the
temperature gradient. Hence, no inductive storage elements can lmpmethermal systems
and, consequently, no free resonant or double integrative behadorarise when no sources
are present.

For what concerns the feasibility of distributed solutions, related to thdgraé.21), a
crucial point is to define the “perimeter” of the local controllers and theri&dion about the
rest of the system available to each of them. According to Subset#o8 a finite number
of point-wise sourcessj i = 1...Ns, is considered iV (i.e. xs;j are the only points iV
whereq(x,t) can be larger than zero) an is defined as the set collecting all of them. By
Propositiord.4.2 the requirement to prevent temperatures larger Taan all over the system
can be achieved by preventing overtemperature on the sources (iflsuitisial and boundary
conditions are present). Then, following the formulationdb®(), a local controller is assumed
for each sourcgs j; each controller can read its own source temperature and can act oralts loc
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power, while it has to comply with the local constraifitxsj) < TcriT. At this stage, no
information on the rest of the system is considered available. The onlynaism that can
be formulated at local control level is that all of the other controllers atim@ in order to
comply with their local constraints. In this framework, taking the cue from tlegipus result
for the centralized problen%(26), it looks reasonable to expect that shutting down a single
core guaranties no overtemperature can take place for that coresgusbiag the other cores
have no overtemperature as well, but independently of their exact tetmpgesand dissipated
power. In other words, whenever a core is approaching harmful tertyper the local decision
of reducing its power should be enough to prevent local constraintticinlaand contextual
reduction of powers of all other cores should not be needed, proyvitis each of them is
meeting its local thermal bound. Indeed, this property, which will be crdgididistributed”

feasibility, is true and captured in the following Proposition.

Proposition 4.4.6. Consider the systerd31) under DBCs withVs = {xs; i = 1...Ns} the set
of points in V where the sources are located. Assume that the initial condiiththe boundary
temperatures satisfy the constraints, i.e(XJ] < TeriT, VX € V and By (X,t) < TeriT, VX €
oV, vt € [0, 1[. For each sourceg; i =1...Ns, the local decision of imposing(x;,t) =
0, vt € [0, T[ guarantees Txs;, t) < TeriT, Vt € [0, T[, if T (X j, t) < Tcrit for all of the other
sources j {1...Ns}, j #iandVt € [0, T[.

Proof. As soon as, in a source poirt;, q(Xsi,t) is zeroed, this point becomes equivalent
to a no-source point i, then the result, claimed in the proposition, follows by Proposition
4.4.2 O

In the above analysis, the possibility of imposing null power on sourcesdg alement to
achieve important properties in the path toward feasibility of both centralizédietributed
control problems4.26) and @.21). In real chips, it is very hard and possibly harmful to have
a sudden zeroing of the power consumption (i.e. halting the core activities iizeigdl The
common procedure is to slow down the clock frequency of the cores to a lmvwmd fyn,
that means reduce the source powers to a minimal value, referred hgyigya<Clearly, this
issue cannot be covered by the results of Proposidofgtand4.4.6 but, taking inspiration
from them and introducing a suitable thermal constraints review, similar resititsion-null
minimum power can be obtained as shown in the following, these results will &by fax-

ploited to show the feasibility of the considered centralized and distributadot pnoblems.
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DefineTeg(x) as the solution of the following Cauchy problem

{—a-DZT(X) =ouin(X) X€EV (4.40)

T(X) = Tav, max(X) VX e oV

where guin (X) represents the minimum power which can be dissipated in any source and
Tov. max(X) is the largest environment temperature which can be experienced byitherch

its boundary. Similarly to Propositiof.4.6 a finite number of point-wise sourcesg,i : i =
1...Ns, is assumed, withs = {Xsj i =1...Ns}.

According to the above definitiofieo(x) corresponds to the steady state temperature distribu-
tion for the system4.31) under minimum power consumption and worst ambient temperature
(i.e. assumingeq(x) as initial condition andlyy max(X) as constant boundary condition, the
solution of @.31) is constant along time and equalfigy(x)). Obviously,Teg(X) < TcriT, VX €

V is guaranteed by a proper sizing of the chip, otherwise the thermal costannot be met.

In addition, by Propositio.4.2 it follows that the maximum value Ofgq(X) is located on

sources or boundaries, i.e.

{argm%xTEQ(x) } N{VsUaV }#0

Then, defining

ATcriT = n;i\?(TCRIT —Teo®), (4.41)
X
it results
AT = min (T —Teo®¥) > 0O, 4.42
CRIT xeavuvs( crIT— TEQ(XX) (4.42)

At this point, a crucial review of temperature bound needs to be introdueedefine a space-
variant'FCRn constraint as follows

-FCRIT(X) = TEQ(X) +ATCRIT, VX e \7 (4.43)

Figure 4.18: Definition of the new boundcrt
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In Fig. 4.18 the meaning of this new bound is graphically represented assuming a simple
one-dimension thermal system. Clearly, the new boﬁmﬂT(x) is tighter thanTcrT, but this
restriction is fundamental to formulate the following propositions, as it will bardtg their
proofs.

Proposition 4.4.7. Consider the thermal system.81) under DBCs with ¢(x,t) # 0. As-
suming B(x) < 'FCRW(X) vx eV and By (xt) < _ITCRrr(X) Vx € VWt € [0, 1], and applying
q(x,t) = quin (x) the following bound holds [&,t) < TeriT(X)Vx € VWt € [0, T[; i.e. the set

T={T(-,)|T(x-) <TeriT(X), ¥x €V} is a positive invariant set respect to the constant input
amin (X)-

Proof. As consequence of the superposition principle the heat equ‘E\(dQn) —a-0%T (x,t) =
gwin (X) can be rewritten as
aT(xt)—a-O%AT (xt) =0 (4.44)

whereAT (x,t) = T(x,t) — Teq(X) is the displacement from the equilibrium temperature. Ac-
cording to the hypothesis of the Proposition and the definitioficgfr, we consider 4.44)
under the following initial and boundary conditiodsly(X) < ATcriTVX € V andATyy (X,t) <
ATcriTVX € dV Vt € [0, 7] The Maximum Principle can be applied to such system, since it
has the same structure ¢f.81), thenAT (x,t) < ATcriTVX € V'Vt € [0, T[ and, consequently,
T(xt) < Teo(X) +ATcriT = TeriT(X) VX € VVE € [0, T[

O

Similarly to Propositio.4.4 the above result is useful only to achieve feasibility of the
centralized control problend(26), but exploiting the approach adopted in Propositéioh.
the following can be derived.

Proposition 4.4.8. Consider the systend 31) under DBCs with ; i = 1...Ns the points in
V where the sources are located. Assume that the initial condition and tiredlboy temper-
atures satisfy the constraints, i.eo(X) < TeriT(X), Vx € V and By (x,t) < Terit(X), VX €
oV, vt € [0, 1[. For each sourceg i = 1...Ns, the local decision of imposing(xs;,t) =
avin (Xsi), vt € [0, T[ guarantees TXs i, t) < 'F(;Rn(xs,i), Vte [0, T[, if T(Xsj, t) < TeriT(Xs j)
for all of the other sources ¢ {1...Ns}, j #iandVvt € [0, T].

Proof. By definingAT (x,t) = T(x,t) — Teq(X) andAq(x,t) = q(x,t) — guin (X) (WhereAq(-),
q(-) andgmin(-) can be non-null in the point-wise sources i = 1...Ns), the temperature
dynamics can be rewritten as follows, again exploiting the superpositionlgnc

AT (x,t) —a - D2AT (x,t) = Ag(x,t) (4.45)
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This equation has the same structure4B(), then it inherits all of its features. In addition,
according to 4.43, the boundfCR.T(x) is mapped into a constant bouAdcg . Therefore,

as soon as, in a source poiti, q(Xsi,t) = guin(Xsi) is imposed, it means thaig(xs ) is
zeroed and this point becomes equivalent to a no-source poinfdn(4.45. Then, according

to Propositiord.4.2 the maximum of temperaturdsT (x,t) occurs on the remaining sources
Xs,j» ] € {1...Ns}, j # i and/or the initial condition and/or the boundaries. In these places, by
the proposition assumption&T (x,t) is always lower thadTcryT, therefore the claimed result
follows. O

With the above results at hand, the feasibility properties of the centralizédismibuted
problems, 4.26) and @.21) can be formally stated as follows, whegn (X) is the minimum
power which can be dissipated in any point-wise sougGe=1...Ns.

Proposition 4.4.9. Centralized Feasibility Consider the thermal syster.81) under DBCs
and subject to the constraint(¥,t) < TcriT(X), VXV, vt >0, according to the control problem
(4.26. Assume thatgs i = 1...Ns are the points in V where the sources are located and define
u(t) € R*Ms as the centralized control vector, whose i-th element commands the gowe).

Let To(x) < TeriT(X) at time t=0 and T(x,t) < TeriT(X) on the boundaryt € [0,7]. Assume
that at time ta control strategy is computed such that constraints are satisfied in thevahter

t’ <t <t’+At whereAt >0 is a the prediction horizon. If such a strategy is applied to the
thermal system, then for any tinfegt[t’,t’+At] it is possible to compute a new control strategy
that if applied will not violate constraints in the intervdl€t <t”-+ At.

Proof. It is enough to note that by using the strategy computed atttiong to the timet’ + At
the constraints at tim& will not be violated, i.e T (x,t”) S'FCRH-(X),VXGV. Then, the strategy
ui(t) =agwin, i = 1...Ns, vVt € [t",t” +At] is always a feasible strategy, sindeis a positive
invariant set according to Propositidm.7. O

Proposition 4.4.10. Distributed Feasibility Consider the thermal systed.81) under DBCs.
According to the control problen#(21), assume thatgx i = 1...Ns are the points in V where
the sources are located and define, for each(t).e R™ as the scalar control input, available
to the local i-th controller, whose value commands the powggqt). Let To(x) < TeriT(X)
at time t=0 and T(x,t) < TeriT(X) on the boundaryt € [0,7]. Assume the system.B1)

is subject to the following constraints, again according4a2@), T (Xsi,t) g'ITcmT(xs_i), vt >
0,i =1...Ns (these constraints are equivalent to requiret) < 'ITCRH-(X),VXEV, vt >0, as
stated in Propositiort.4.9. Finally, assume that at timé for a generic local controllerj,
a control strategy is computed such that the local constraif;t) g'ﬁ;Rn(x&i—) is satis-
fied in the interval t<t <t'+At (whereAt >0 is again the prediction horizon), provided
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that all the other local controllers i, j € {1...Ns} satisfy their own local constraint
T (% j,t) <TcriT(Xs )Vt € [t', '+ At]. If such a strategy is applied to the local souiend all
other constraints are fulfilled in the considered interval, then for any tifre[t’,t’ +At] it is
possible to compute a new local control strategy for the soittea, if applied, will provide the
following features; (i) the local constraint will not be violated in the interjtdkt <t”+ At],
provided that the other constraints are not violated as well; (ii) the locati@bistrategy ap-
plied toi, or to any subset of sources, will not prevent the other sources tienpossibility
of meeting their own local constraint exploiting the same strategy. In additimabove-
mentioned local control strategy focan be selected without any detailed information on the
conditions of the other controllers, but just exploiting the assumption thaf gflem are satis-
fying the other constraints.

Proof. First of all, according to the above assumptions, the constraints at’tim#l not be
violated, i.e.T (xs,t") < Tcrit(Xsi), i = 1...Ns and, thenT (x,t") < TeriT(X), VxeV. There-
fore, (i) follows as direct consequence of Propositi#.8by applying, in the generic local
controlleri, u(t)= quin, Vt € [t” <t < t”+At]. Clearly, this control strategy does not require
any knowledge on the other local controllers, confirming what stated atithef proposition.
For what concerns (ii), by Propositigh4.7it follows that all of the local controllers can ap-
ply u(t); = guin, Vt € [t” <t <t”+At], guaranteeing feasibility. Moreover, by exploiting the
approach adopted in the proof of Propositibd.8it is easy to prove what follows. Con-
sidering a generid € [1...Ng] and defining two generic disjointed subsets of sour&gs,
and S;, not including j, but covering all of the sources (.65 = {n|ne€ [1...Ng|,n# j},
S={mme[l...NgJ,m# j}, NS =0, SUS=[1...]—1,j+1...Ng]), if all of the
sources inS apply un(t) = guin, Vt € [t”,t” + At] and all of the sources i meet their
own local constraintd (Xs m,t) g'ﬁ;R|T(x&m), vt € [t”,t” + At], then in the sourcg it can be
appliedu;(t) = quin, ¥t € [t”,t” + At], guaranteeing (s j,t) < TeriT(Xs j), Wt € [t”, 17 4 At].
Then, also (ii) is proven. O

A remarkable point that can be noted is that the above results hold trueyfpioaitive pre-
diction horizonAt > 0; therefore, it can be selected arbitrarily small without impairing feasibil-
ity properties. It means that there is room to preserve feasibility until threrute mperature
reach the bound, both in the centralized and distributed approach.

Another relevant point to highlight is the useT_aJ‘Rn(x) < TeriT instead ofTcriT. This is
not just a technical point related to the available theoretical tools, butduats for a possible
practical trouble in the thermal behavior (even if it can be a bit consgejatAs a matter of
facts, whenever a core (or any heat source) needs an indire¢hpadigh its neighbors to expel
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its heat flow and keep a safe temperature (i.e. it doesn’t have a ditbdiopaard the external
ambient that is efficient enough), the neighbors are required to keeppetature lower than
the maximum to give room to the heat flow coming from the above-mentioned Ctearly,
this characteristic strongly depends on the layout and the thermal resisfititg considered
system and should be carefully addressed in the multi-core design. Byaty)eaw idea on
how important is this effect can be easily derived by the analysTs @fx), solution of @.40);

the more uniform iSTeq(X) in V, the less important is “indirect heat flow” to guarantee safe
temperature.

0.9
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Figure 4.19: (a) simple circuit used for simulating a volume with threenpavise sources; (b)
simulation result using a uniforerT.

Fig. 4.19 shows a simple example to clarify the concepts. We consider a volume with
three three point-wise sources. We split the volume into three cells assod@tiagh one
an equivalent electric circuit (as shown in figure). The power consiompf the sources are
P(xs1), P(Xs2), andP(xs 3), the ambient temperature Tamg = 0°C, the critical temperature
is TcriT = 1°C, the minimum powePRyny = 1W, and the initial temperature of the cells are
T(Xs1) = T(Xs2) = T(xs3) = 1°C. When the three sources dissip&an the lateral cells
dissipate all the power whereas the central one dissipates only a smaif gagtpower (due
to the resistance value). The source 2 is neither able to dissipate the pooegttithe cells
1 and 3 since the initial temperatures are the same. Therefore, the posgetiogacrease the
temperature causing a violation g . This happens because figy 1 is uniform. When the
minimum power is applied the corresponding equilibrium temperature is sucTethiat 1) =
Teo(Xs3) = 0.4°C, Teg(xs 2) = 0.68°C. Due to the resistance and capacitance values assigned,
we can note a large difference between these temperatures, then a langivoe of “indirect
heat flow” could be present. Indeed, this is confirmed by simulations. missuthatTerit =
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1°C, imposing an initial condition with all the temperatures in the volWhequal toTcrT
and applyingguin in all of the sources, we can observe a constraint violation in source 2. |
contrast, if we start from an initial conditiof(x, 0) = '|TCR|T(X), no over-temperature takes
place.

The above results guarantee feasibility by applying minimum power consungit&ach
core. The centralized feasibility of Propositidm4.9is essentially based on the observation
that, by switching to the minimum power all of the cores, the maximum temperaturg thien
chip will never increase, since no resonant or double integrationteféan arise. The dis-
tributed feasibility of Propositiod.4.10allows to recover this property locally to each source
without needing any information exchange, but just assuming, in a loc#latier, that all of
the other are working correctly. This can be achieved at the costlaiag the uniform bound
TcriT With the variable bounaTCRn(x) (probably, this cost can be reduced by allowing proper
information exchange between the core and selecting a large enougttipretorizon, but
this is not the subject of this work).

At first glance, these results could seem of little interest from a practieaipoint, since they
just provide the trivial solution of switching to minimum power the cores to meetetmper-
ature constraints, but they do not provide any algorithm to find otheibleasolutions which
maximize the computing power, as reported both4r2€) and @.21). To this purpose, in
the following, algorithms based on approximated discretized models will benqess also
exploiting information exchange between controllers for the distributed chssertheless,
the above feasibility results play a fundamental role for practical applicatimueed, by us-
ing algorithm based on approximated discrete models, temperature constiaglation could
be experienced, but this can be effectively prevented, accordingetaltbve feasibility re-
sults with arbitrary small prediction horizon, by adding a soniltifmate temperature capping
control layeron each local-th source. This control layer, as soon as Thg + approaches
'FCRW(XSJ), has to override the optimizing controller and to impose singk¢ ;, t) = qmin for
a suitable time interval to obtaify, ; sufficiently lower tha‘chT(xSi).

4.45 Discretization issues

We have already shown the benefit of using a discrete LTI moded, &9 (instead of the PDE-
based one. However, whereas we proved control feasibility for thig,|étee same property
could not be guaranteed for the identified model due to the time-spacetidiaton process.
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In (24) the author showed a simple approach for testing the control feasibility véfeoe
to a discrete model. It consists in designing a bilevel optimization problem - @ter‘copti-
mization problem containing an “inner” optimization problem in the constraintd €aacking
the optimal value of the outer objective function. Thus, we could discarddehmdentified
with the iterative procedure if the test fails.

We have already shown the main step of this approach in Chapkégreafter we special-
ized the approach to our problem. The discrete model used is given by:

X(t+1) =A-x(t)+By-p(t) +Bz-d(t)

T(t) = C-x(t) (4.46)

where we discriminated control inputs, from the othersg.

The optimization problem4(21) can be rearranged in a quadratic programming form,

min% -P(t)-H - P(t) +P(t) - G(t) (4.47a)
s.t.
E-X(t) +F - P(t) < b(t) (4.47b)

whereP(t) = [p(t|t) p(t+1Jt) ... p(t+N—-1Jt)], E=C-A F =C-Bj andb(t) = TcriT—C-
By -d(t).

Feasibility is guaranteed if for every initially feasible states and for evarsiliée control
sequences the optimization problem remains feasible for all time. Hendg) i6 a feasible

initial state andp°(t|t) is the optimal solution 0f4.47), then at the next sample interval,
E-(A-X(t)+[B1 Bo]-[pTtt) d(t)]")+F -Pt+1) <b(t) (4.48)

According to the Farkas’ Lemma,xgt) exists such that(48) is true or ay(t) exists such that
y>0,y"-F =0 andy"(b(t) — E-(A-x(t)+[By1 Bo]-[p°(t]t) d(t)]") < O.

Thus, starting from a feasible statg) and giving an optimal inpup®(t|t), if a y satisfying
these conditions exists, then the control problem is infeasible. Accordififtave designed

the following optimization problem to check the consistency of Farkas’ comgitio
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4.4 Control feasibility and other properties

min y"-(b(t)~E-(Ax(t)+[B1 B2} {pt[t) d(t)]")) (4.49a)
y. X(t), d(t
st.
y>0, y"-F=0 (4.49D)
xeX,deD (4.49c)
. 1
P°=arg rlp({? 5 P(t)-H-P(t)+P(t) - G(t) (4.49d)
s.t.
E-x(t)+F-P(t) <b(t) (4.49%)
pelP (4.49)

whereX, P andD are respectively the sets of allowed valuesX, p(t), d(t), and the cost
function of the outer problem is the third condition of the lemma.

Substituting the Karush-Kuhn-Tucker optimality conditions to the inner copveklem
(4.499-(4.491) we obtain a easier problem to solve with numerical algorithm:

. x(t),ré}i% }g(-t)(b(t) —E-(AX(t)+[By B2} {pTtt) d(t)]) (4.50a)
st.

y>0, yT.F=0 (4.50b)
xeX,deD, peP (4.50c)
H-P(t)+G(t)+C-B;-A =0 (4.50d)
A>0 (4.50e)
b(t)—E-x(t)—F-P(t) >0 (4.50f)
AT-(b(t)—E-x(t)—F-P(t)) =0 (4.509)

whereA is the array of the Lagrangian multipliers. Farkas’ conditions holds if the optiahae
of the objective function is negative. In this case at least one state initialijtle can become
infeasible. The identification procedure must discard the consideredl modaecheck the
feasibility for a new model solving a new problem. Every time the model chamge#h must
be repeated.
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4. MPC THERMAL CONTROLLER FOR MPSOCS

It is worth to note that this approach can be applied both to the centralizethardis-
tributed MPC algorithm. In the first case the stata(is = [Ti(t) x|, i = 1,...,N, whereT,
is the temperatures of theth core andk,; is the second unknown state of thtéh core. The
input p(t) is the vector containing thid power of all cores, and(t) contains only the ambient
temperature. In this casg P andDD can be assumed equal ta0T;(t) < TeriT, i = 1,...,N,
Puin <R (t) <Puax,i=1,...,N, and 0< Taug(t) < TcriT.

In the case of a distributed scheme we apply the test to-thdocal controller. The state is
Xi(t) = [Ti(t) x2,i], the inputp(t) is the power consumption of theth core §), andd(t) con-
tains the ambient temperatufgyg and the temperature of the neighbors. Th&nP andD
can be assumed equal to<0Ti(t) < TcriT, Puin < R(t) < Buax, 0 < Tams(t) < TeriT, and
0 < Tneigh (t) < TeriT.

In both cases the control solution may be feasible or not. Thus, we shepgdtrthe fea-
sibility test until we identify a feasible model. It is worth to remark that the mod&iobd
by the identification approaches could have not the same physical pespefrthe real sys-
tem. However, the distributed MPC introduces some challenges which acemsitiered by
the previously mentioned feasibility test and which cannot occur with a dizetlasolution.
Indeed, the distributed solution could be feasible according to the simplifebdiacrete-time
discrete-space models obtained by identification, but it could be unfeéwilitee actual sys-
tem, owing to the unavoidable model approximations and the time discretizationddnto
better understand this concept, consider a distributed MPC solution. asibifity test is ap-
plied to each MPC local controller that uses as prediction model the didoretanodel of
a single core. The controller results feasible if all the future states, obtgimeg as inputs
to the model all possible feasible inputs and starting from any feasible inittakstaeet the
constraints. However, this approach is based on the assumption that therdaemgs of the
neighbors are constant during a sampling interval, whereas they ciratige real system.
Thus, imagine a scenario where all cores have a temperature closet legfual, to the tem-
perature limitTeriT. Each controller computes the optimal decision to bring the temperature
of the controlled core close g T Without considering that in the meanwhile the temperature
of the neighbors cores increase as well. As a result some cores cqédesce a threshold
violation even though the controller had passed the feasibility test.4E2@.illustrates well
this behavior that depends on the use of a discrete-time model insteadioticais-time one.
In the centralized case the previously mentioned situation cannot hapgeumsieehe controller
can exploit the information of all the cores and the discrete model of the whgddo forecast
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4.4 Control feasibility and other properties

the future cores temperatures and obtain th
perfectly equal talcgiT.

TcrT=360°K + T2=359°K
X Watt to *each TcriT
TCR\T=360°K¢+ T2=361°K
X Watt to reach TcriT

Figure 4.20: Feasibility pro

CORE 1

Time: t

ez e

CORE2

Time: t+1

CORE 1 CORE2

e optimal control action to makertperéture

TcrT=359°K + T2=357°K
iy Y Watt to *each TerT

Y is too much!
T1 has changed in
the meanwhile!

blem for distributed MPC

Similar issues derive also from the approximation and uncertainties of thd nesgect to

the real system.

In Chapters we proposed a solution able
the need of a discrete model, avoiding in this

4.4.6 Notes on stability

to ensure the feasibility of the system, without

way the aforementioned issues.

The goal of our controller is to regulate the power consumption of the ¢oremintain the

temperature below a specific threshold. Wh

desired behavior, the stability is unnecessal

ereas the feasibility is funddrn®etasure the
ry. By definition a system ig stabcan be

bounded arbitrarily close to an equilibrium point. However, in our specdseove are not

interested in maintaining the temperature close to a specific value, our priorapsgraining

the temperature below a threshold. Thus, o
guaranteed.

nly the boundedness of teenssigte must be

The feasibility property is enough for proving the boundedness of the Gtate that the
feasibility never imply the stability). The proofs stated in Sectdof.4ensure the feasibility

for a time continuous controller when a partia

| differential equation basetthmconsidered.

When a discrete-time discrete-space model is considered, instead, tralepfeasibility can

be proved with the feasibility test of Sectidm.5(we are not considering the feasibility respect
to the real system which is obtained in the Chaptesing a hierarchical control structure). The
test ensures that the measured part of the state is bounded when limitecaregpapplied (the

part corresponding to the temperature). However, we have no diesrgmat the unmeasurable
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4. MPC THERMAL CONTROLLER FOR MPSOCS

part of the state is bounded. This could compromise the feedback bebéather model. The
internal boundedness of the model is ensured by the following propagsition

Proposition 4.4.11. Let the model

y(t) = CpxnXx(t)
be observable and let part of the state be constrained to a boundedwh&rebounded inputs
are applied. Then, the whole state is bounded.

(4.51)

Proof. Because of the observability of the system, the state is uniquely determinedh afte
steps, whera is the order of the model. The state can be found as,

X(t) =0t (Y(t) ~U(t)

whereQy, is the observability matrifC; CA;...; CA™ Y, Y(t) = [y(t);...; y(t+n—1)] is the
output vector containing the outputs ovesteps andJ (t) = [CBut);...; CAT"™1Bu(t) +
~--+CBUt+n—2)]. From assumption¥,(t) —U (t) is bounded (as an example using the 2
norm), therefore,

Ix(®) 2= 105 - Y (t) ~U ()]]2

where| O, 1| is the induced norm of the observability matrix. O
This proof guarantees that if the controller satisfies the feasibility test, treemphuts
needed to constraint the outputs are bounded, and hence, the identifletlaaenot have un-

stable dynamics (possibly related to unstable zeros which could occur inrthEfied model
coming from the identification methods described in Secfidh
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Chapter 5

Complex control solutions

In this chapter three complex control solutions are presented. All thelséians involve as
common element the distributed thermal controller presented in the psectmapter. In ad-
dition they provide extensions to the nominal functionality enabling energggavthe first
example, feasibility and reliability in the second one, and communication giepdetween
cores in the third and last example of this chapter.

5.1 Thermal and Energy management of High-Performance Multi-
cores

The control solution we present in this section addresses the scalabilltgndefor large
multi-core platforms with a fully distributed architecture. It combines energy miritiua,
MPC based thermal control, and thermal model self-calibration.

5.1.1 The Architecture

The Fig.5.1depicts the block diagram of the proposed solution. Eghblcore runs three main
programs, two of them are executed on-line and one off-line:

Local Self-Calibration Routine : it automatically derives, off-line, the local, but interacting,
thermal prediction model adopted in MPC-based blocks.

Local Energy Mapper (EM;): according to the workload characteristics of the incoming task,
it selects the minimum frequencyg ;) that allows energy saving, preserving perfor-
mance loss within a tolerable bound.
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5. COMPLEX CONTROL SOLUTIONS

Local MPC-based Thermal Controller (TG): it trims the frequency to ensure a safe work-
ing temperature. Local controllers jointly optimize global system operationxdlyaang-
ing a limited amount of information at run-time on a neighborhood basis. This is the

solution presented in Chaptér

In the next paragraphs we provide a detailed description of these ihmgmoents.

High Level
SoC Manager
777777777777777777777777777777 7], TNEIGH T
EM ) fe ] Local Controller #1 4'4—
= (@ PR frc:
TAMB\ Femi ... _localController#i ___________
femi Pemi MPC CPli | C
| = - - —’> 1
== > Controller —>|P| H
TNEIGHii e A I 2 TAmB = ol ﬁ'Ci
. Y ) i TNEIGH | ] : — |
- i1 INEIGH | P - Prci fl
Iamag | S
H B = ol X"I |——I<—| o
TheiGHi | <22 . — CPIi l Observer | i
' = I ———  TiTwnEcH
—_— fomn e . Cn >
= i»l Local Controller #n |
CPln TSSNEININESIIETIIIISINNNNNS T, TNEIGH

Figure 5.1: General Architecture

5.1.1.1 Local Self-Calibration Routine

The accuracy of the model is of primary importance for the reliability andcefieness of
the control problem. We addressed model uncertainty by self-calibragimch core extracts
automatically the local prediction model by applying a set of training stimuli andtororg
the thermal response of the neighborhood area. The distributed canstodieegy combined
with the distributed thermal model calibration phase allow us to take advantabe péaral-
lelism of the underlying multi-core platform by running different instancethe controller
and self-calibration routine in parallel.

The identification mechanism consists in the Distributed ARX approach sho@hap-

ter4. We used a second order model,

R(t)
X(t+1) =A-%(t)+Bi- | Tawe

51
TNEIGH ®.1)

Ti(t) =Gi-xi(t)
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5.1 Thermal and Energy management of High-Performance Multi-coes

wherei refers to the-th single-core modek;, R, T, TveigH are respectively the state vector,
the power consumption, the temperature, and the temperature of the nsighbm®of tha-th
core, Tamg is the ambient temperature.

Notice that the same model has been used to implement the observer block filFig.
Indeed, each local thermal controller embeds a Luenberger stater@biseestimate from the
core temperature sensors the not-measurable state components. Thisualkowsse higher
order and more accurate prediction models inside the MPC, bringing to ségrifioprove-
ments in the quality of the control with lower overhead compared to a standdndalk ob-
server. Moreover, the observer uses the local model identified in Ifheadibration phase and
thus does not incur in errors due to not-in-field calibration.

Finally, it is worth to remark that the Self-Calibration Routine is executed atdifgine
during the start up phase. Then, it should be executed every time the bejdelior differs
from the measurements. This could happen due to the normal aging of thementpdue to
external environmental causes (e.g. the device is under the sun, opb@@uecould prevent a
correct ventilation), or to components failures.

5.1.1.2 The Local Energy Manager

The Energy MapperEM;) associated to theth core computes the optimal core frequency
(fem,i(t)) which minimizes the energy consumption keeping the performance lossaifided
percentage decided by the user. Roughly speaking, this is possibldumjre the core speed
proportionally to the characteristics of the executing task. If an executsigisaCPU and
cache intensive (or CPU bound, i.e. the CPU already has the data, whithdng to read them
from RAM memory), the performance improvement scales linearly with ingrgdiequency.
Otherwise, if a task is memory intensive (or memory bound), the performammevement
is relatively insensitive to increase in frequency. In this scenario it iseruant to reduce
frequency for memory bound tasks in order to save energy while keggirigrmance almost
unchanged. The Fid¢.2 shows some experiments conductedZntbiat verify the assumption
previously stated.

Fig. 5.2a shows that performance linearly improves with frequency for CPU dbtasks,
whereas it only marginally improves for memory bound tasks due to the limitatioremuted
speed imposed by memory access latencies.5z, instead, shows the energy consumption
of the tasks normalized against the lowest energy consumption. Theyesstigg increases
exponentially reducing frequency for memory bound tasks, whereasins almost constant
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Figure 5.2: Performance Improvement and Normalized Energy Consumji2jo

for CPU bound tasks. Indeed, reducing frequency in a CPU bouRdriaans increasing its
execution time, that is we spend less power instantaneously, but for moreTtinisedoes not
happen in memory bound tasks where the performance delay remain lowlemesasing the
frequency.

However, tasks typically comprise memory bound and CPU bound phases the best
frequency to reduce energy must be find according to the workloa@ @®uJ. The Cycles per
instruction (CPI) is the metric we have chosen to measure the workload. dalisgo select
the frequency that minimizes the power consumption while preserving thersgstéormance.
Our solution does it by taking advantage of the parallel architecture andgletich coreij
compute autonomously the future frequency in line with the incoming worklaadnements.

Indeed, considering an in-order architectuttee average time needed to retire an instruc-
tion —i.e. to execute and complete it — can be seen as composed of two ternmsT (it y,
the portion of time spent in active cycles and (ii) thamayegm, the portion of time spent in
waiting for memory cycles. Whereas the first term is proportional to the inpquéncy, the
second one is constant to it and depends on the memory access latency.

Let assumefyax is the maximum frequency allowed by the system &RJ;(t) is the

workload requirement for thieth core at the time instait Then, the minimum execution time

IMulti-core trend is toward integrating a high number of simpler procegddrs
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5.1 Thermal and Energy management of High-Performance Multi-coes

of the task Time(t)) is given by,

(5.2)

. 1
Tlme\,h (t) =#NsT: [ 1 +(CP|i (t) — 1)] . f
Timew  Tmemr A

Assumingfcki(t) = f“’% the generic frequency of a task, its time execution increase as,

1
fmax

TimQ;K,i (t) = #NST- [CY + (Cph (t) — 1)] (53)

where 0< a < 1 is the i (if 1 the task is CPU bound).

fmax
By combining them, the execution time overhekiche,; can be represented as function

of the new frequencyck ; (t) andCPI;(t) as reported ing.4).

. Timex(t) . a+(CPl(t)—1)
Timey;(t) = Timew (D) -1= 17 (CPh(D—1) -1 (5.4)

Inverting the last equatiorb(4) we can finda as,

a =Timey;(t)-CPI+1 (5.5)

then, knowing thatr = ff;i; we can write

fmax
fexi® = 75 cpy (t) - Timey,(t) o

Therefore, if we suppose to know the predicted CPI for the next samptieyal CP([t,t+

1]|t)), we can define the best frequency that preserves the performétice a tolerable

penaltyTimey, as,

L fmax
femit) = 1+CPE([t,t +1JJt) - Timey,(t) >0

fem,i is the best frequency returned as output byittie Energy Mapper after it takes as
input the predicte@PI; for the next sampling interval.

5.1.1.3 The Local MPC-based Thermal Controller

The MPC control layer relies on the distributed solution described in Chapter
At the t-th time instant, each Local MPC controller receives as inputs the Energpéia
output frequency fgm,i(t)), its own core temperaturdi(t)), the temperatures of the physical
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neighbour$ (Tnelch (1)), the estimate@PIi(t), and the ambient temperatui®(s(t)). Then,
according to the safe reference temperatligg) at which the core temperaturég(€)) must
be constrained, the MPC algorithm adjusts the actual frequency comrfiandt{), minimiz-
ing the displacement from the Energy Mapper requirefiltare in detail, the local controller
uses the Power Model to convey j(t) andCPIi(t) into a target power requiremeriz;.
Then, it exploits the prediction model, feeded with the measuren¥agis, TneigH, Xi, tO
compute the estimated core temperature, starting from the current systematmgse These
predictions define the optimization problem:

h-1
; 2
min ;||Prc,i(t+k|t)—PEM,i(t+k)HQ (5.8a)
st.
Ti(t—{—k—{— 1|t) <TeriT Vk=0,...,h (5.8b)

As output, the block returns the controlled powge; which is equal td v if the predicted
temperature meets the temperature constrdigg{), otherwise it is reduced. Clearly the
reduction must be as small as possible to maximize the performance.

The optimization problem can be solved implicitly on-line with a QP solver or explicitly
off-line with a multi-parametric QP solver (see Chaptdor more details).

5.1.2 The Implementation

This section describes the pseudo-code of the implementation of our soltih, during
system initialization, the self-calibration routine described in Sedidnl.lis executed for
each core to gather the local thermal model. Secondly, with the single-catelsrabtained,
we update the weight matrices of each local optimization problem, as showatiorgg1.1.3
Third, at each sample we execute the Local Energy Mapper and theNlB¢xbased Thermal
Controller routines. Subsequently at each controller step we apply the bptiopaency to the
controlled core.

1The sampling time is assumed small enough as discussed in the prevégusrdh order to include only the
adjacent cores in the neighborhood.

2The computation and actuation times for EM and TC are assumed negligibleesjibct to sampling time
interval. Hence, for mathematical modeling, control outputs are carsldgnerated at the same instant of sampled
inputs.
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5.1 Thermal and Energy management of High-Performance Multi-coes

The code below shows the list of operations executed in parallel by eaehacgather the
local thermal model, adapt the controller parameters and control the spstéonmance.

Pseudo Code

© o N o o0 h W N P

A N e < =
N o o0 A W N B O

SYSTEM INITIALIZZATION PHASE:
Apply a PRBS task sequence;
get R,Ti,TNEIGH:
obtain a, and B with the distributedARX approach;
find the state space representation A,Bi,C with Ci=][10];

CONTROLLER ROUTINE
Initialize the weight matrices Hi, M;, and the state % (0);
FOR EACH SAMPLE
get previous  frci(t—1) and CPli(t—1);
compute the optimal femi(t);
convert to Pem;i(t) using the Power Model;
update g and by;;
solve the QP problem and find  Prc;i(t) with hot -start;
compute frc;(t);
estimate  Xi(t);
END_FOR

More in detail:

Line 1 during the system initialization phase we execute in paréll each core the Self-Calibration
Routine;

Line 2-3 we apply a pseudo-random task sequence to each core andlect twé core power and local
neighborhood temperature traces;

Line 4 we execute th&RX optimization in each core to obtain theand3 parameters;

Line 5 we convert the model in the state-space form using the oaisiity matrix to give physical
meaning to the first component of the state vector. It comedfio the measured core tempera-
ture;

Line 8 we define the constant matrices used in the QP probieg?)( H;, M;), and assign the initial
state x(0), to the model ;

Line 9 at each time step the loop from line 9 to line 17 is repeated;

Line 10 the Energy Mapper read the previous step core frequéngyt — 1) andCPli(t — 1), and it es-
timates the future workload requiremé@®|; (t) and compute optimal target frequent,; (t);

Line 12 the Thermal Controller receives the target frequency aadubrkload from theeM; and then
it converts them into the target power using the nonlineaction @.1);
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Line 13 the vectow;, dependent oRe=wm,i (t), and the vectol;, dependent or (), Tams(t) andTneich (1),
are updated.

Line 14 starting from the previous optimal solutid®c;(t — 1) the solver finds the optimdtrc;(t),
solution of the QP problem.

Line 15 Prc; and workload are used to finftc; inverting the function 4.1) as an example with the
Brent’s algorithm.

Line 16 the observer estimates the state) knowing thefrc;(t) andTi(t). This state will be used as
initial state by the MPC controller to estimate the futuraperature of the core.

The explicit MPC implementation is similar to the one described above with the only dif-
ference in lines 13-14. Indeed, the optirfat ; is obtained with4.25. Both implementations,
thank to our distributed strategy and the hot-start QP solver (in the implicit implaitiem),
have low overhead and are suitable to be executed with a sample rate wifsl-10

5.1.3 Experimental Results

The solution has been tested on the accurate virtual platform describegpienAixB that
combines Simics a x86 ISA functional simulator, and GEMS & complex memory hierarchy
timing-accurate model. This virtual platform emulates a general-purpose rotdtiHenning in
a full system. It provides a flexible and effective tool to support thégtespace exploration of
power, thermal and reliability control-theory-based close-loop regsauanagement solution.

We executed each Local Energy Mapper and Local MPC-basedrBh&ontroller with a
sampling time of iIns The Local MPC-based Thermal Controller routine embeds the explicit
MPC implementation and estimates full state with the state observer. Even if thellewmbu-
tines are not executed directly on the target multi-core, the complexity analy&extiond.3.1
demonstrates that the distributed solution has negligible run-time. Thus, tebadion due
to its computations to the program execution flow can be neglected.

The floorplan used to test the proposed solution on the virtual platform }stg® X7350
already showed in Figd.7 in Chapter4. On each core we run different PARSEC 29 (
benchmarks workloads each one with a number of tasks equal to the nofimmes. The
temperature constraint for each cor@dg it = 330°K)L. The test has been performed on four

control configurations:

1Used thermal model is calibrated on a device with high performance #helissipation dynamics, indeed to
stress our thermal controller we are forced to use a lower temperatusgaint
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Original : without any type of contral,

Energy Mapper : with the energy control, but without the thermal control;

Centralized MPC : with the energy control and with the centralized MPC thermal control;
Distributed MPC : with the energy control and with the distributed MPC thermal control.

The results has been compared using as metrics the maximum temperatuneayeasnely
the maximum temperature reached mifigg;t, and the percentage of time the critical tem-
perature is violated. A quality of service (QoS) degradation metric is theah tasguantify
the performance loss respect to the centralized solution and it has beented as the mean
squared error between the energy mapper frequency tafigg) &nd the one applied to the
system by the controllerf{c). We relativized it against the centralized controller one.

‘ Maximum Temperature Overshoot Percentage of time bound violated

|l0rigina| nEM mCentr TC o Distr TC|

Distributed Thermal Energy Mapper

Contro"er Qos Ioss 10% B Execution Time O\E'hyead pp #1 - Blackscholes
3% 8% | O Power Saving #2 - Bodytrack
2% 6% i Energy Saving #3 - Freqmine

4% #4 - Swaptions
1% 2% #5 - Fluidanimate
0%+——— J 0% #6 - Canneal
#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

(c) (d)

Figure 5.3: Virtual platform test results

Fig. 5.3 shows the results collected. First, from Fig3a,b and c, we can notice that the
proposed distributed solution performs as well as the centralized onartinytar Fig.5.3a,
the maximum overshoot in Kelvin degrees, and Bigb, the percentage of time the constraint
is violated, show that both solutions are capable of drastically reducingpttierpof time in
which each core runs out of the thermal bound. Looking at the perfuwenboss (Fig5.3c),
we notice that our proposed solution performs at the same level of thealkieedrone, with
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a degradation less than 3%. Finally in more symmetrical workfasleh asswaptions
fluidanimate , canneal , we noticed that the average frequency applied to the external
cores (#1, #4) is kept lower (up to -14%) than the internal cores. Thisign that the MPC
controller is able to optimize the core frequency locally, taking advantageafitference be-
tween the local thermal models. Indeed the external thermal models havedesal dissipa-

tion headroom since thermal model considers the chip lateral boundatyasid 8). Finally,

Fig. 5.3d shows the performance of the EM alone, while allowing a performancaltgesf
Toi(t) = 5%. We can notice that it is able to maintain the performance overhead umder th
selected threshold while achieving a significant power and energy saving

5.2 Afeasible two-layer distributed MPC approach to thermal con-
trol of Multiprocessor Systems on Chip

The central aim of the control solution presented in this section is to adtire9gPSoCs
thermal issue by using a fully distributed control solution able to ensuréfkiys reliability
and efficiency.

The main idea to develop a solution with these properties is to exploit the restdiaaxb
in Section4.4.4 Indeed, we have proved that a thermal system modeled with a PDE issalway
feasible in solving temperature capping problem. However, temporal ailsgiscretiza-
tion affect this property. The uncertainties introduced by discretizing theeimas well as
unpredictable measures (e.g. the workload cannot be accuratehadtedcand usually it is
considered equal to the past one assuming low variability between two timé jstepsnt the
use of an ideal distributed MPC solution as the one shown in the Ché&pierere each lo-
cal controller supervises one core, maintaining the temperature undedativesholdTcriT,
and maximizing at the same time the workload request from the High Level Sa@adéa
Before proceeding, it is worth to make some considerations on the plant mwedesed for
simulations. It has been built assuming that the main contribution for heatatissimccurs
through the heat spreader located on the top of the chip, whereas tipatiissalong lateral
boundaries has been considered negligible. For this reason the stagglyemperature when
the minimum power is given to the cores is uniformly distributed and the criticaksyarying
thresholdTcrT considered in Sectiof.4.4can be considered equalTpgrT. A solution with
TerIT = TeriT IS actually under development.

1The parallel benchmark executes the same code on all the processors
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A first attempt to take into account model uncertainties is using a conseri@emntification
approach as the one shown in Secdoh.2 Overestimating the future temperature of the cores,
the controller applies a more moderate control action. However, the idemtibdél uses a set
of data collected from the real system that may not capture all possibéibes) leaving the
problem of model uncertainties not completely solved.

Another simple solution may be to put a margin between the critical tempenayreand
the maximum temperature allowed by the MPC, that we catiget. Thus, the temperature
could violatetypc due to underestimations on predictions, but it remains ba&tgwr because
of the margin.

Nevertheless, guarantees for conservative thermal capping requsgnificantly large
margin — increasing with sampling time period — that strongly impacts on perfoemardeed,
as temperature threshold decreases, also power consumption angdemmteeduce as well. A
even bigger problem is related to our decision of using a distributed solwfoah, as already
shown in Sectiord.4.5and due to the sampling time and model uncertainties, may take to an
infeasible solution.

Our solution considers a two-layer hierarchical architecture. The higier exploits the
distributed MPC scheme previously mentioned to address the thermal cappiagrsaximiz-
ing performance at the same time. The lower one, namely the Safety layeantpes the
control feasibility, the respect of thier;T bound and the reduction of the MPC margin, favor-
ing better performance. Its functioning is totally independent from the syatdand since the
knowledge of the model of the system is unnecessary.

5.2.1 The Architecture

The Fig.5.4 depicts the block diagram of the proposed solution. Each local contralfer c
prises three components, one of them is computed off-line, the other tviks woirun time and
differs for the implementation. One it is suppose to be software-basedeasthe other one
is hardware-based.

Local Iterative Identification Procedure : it derives, off-line, the local, but interacting, ther-
mal prediction model adopted in Local MPC Controller.

Local Safety Controller : it switch thei-th core frequency to the minimum value if its tem-
perature cross the critical threshold (itew tcH. It guarantees feasibility.
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Local MPC Controller : it trims the frequency to ensure a safe working temperature (i.e.
< twmpc). Local controllers jointly optimize global system operation by exchanging a
limited amount of information at run-time on a neighborhood basis. This is thésolu
presented in Chaptdr

In the next paragraphs we provide a detailed description of these thmgmoents.

High MPC
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Y

Sampling Time = 100us

Safety

fci,.8

Figure 5.4: General Architecture

5.2.1.1 Local Iterative Identification Procedure

The basic concept of MPC is to use a dynamic model to forecast systavibeland optimize
the predictions to produce the best control decision. Thus, the effic@ibe controller is
strongly related to the accuracy and complexity of the model used for fimdic In order
to identify a model with such characteristics each core runs an off-linatikterldentification
Procedure. This procedure recalls repeatedlyHheproblem shown in Sectiod.1.2 At
each iteration, the approach finds the model that minimizes the maximum errcrdetire
predicted temperature and the measured one (obtained applying a setio§tstimuli to the
real processor), keeping the error always positive (for coasige/reasons). The technique
start considering all possible measurements as model input, then at eatibntérdiscards
the negligible one.
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The model considered for each core is a second order model,

X (t+1) = Ai-x(t) +Bj-u(t) (5.9)
Ti(t) =Gi-x(t)
whereC; = [1 0], andu(t) are the inputs selected after the iterative approach has been applied.
We found that these inputs & (t) Tame TNEIGH] -

It is also worth to note that the model, having a order greater than ones aeeazbstimator
to evaluate the unknown state. The particular structure of the model allow ustam dhe
real value of the states by simply storing the past control inputs and temmsratundeed,

considering the second order model obtained as result ¢dithgroblem,
Ttt—1D) =a2- T(t—1)4+0a1-Tt—2)+B2-ut—1)+f1-u(t—2),
the unknown state can be estimated as,

Xo(t) =ap-To1+bp g

5.2.1.2 Local Safety Controller

The Safety layer is composed by a set of hardware-based switch lgenstrone for each core,
completely independent from the MPC layer, namely the Local Safety QlemgroWhen the
current temperature of thieth core,T;, reaches the critical temperature threshdlk,r, the
correspondent switch controller bypasses the MPC layer providing todfeea minimum
power,Pyn, until the temperature reaches a fixed lower vatd@ rcHLow-

The three central goals of this layer are: to ensure feasibility, to retipe¢emperature
constraintTcriT and to improve performance respect to the MPC solution with completely
conservative margin (i.e. the MPC controller is designed to avoid the Sajelydativation).

We prove the first two properties directly using the results established iioSec4.4
indeed,

Proposition 5.2.1. Consider the systen#31) and assume that temperatures on sources are
measured, then there exists a setaxfal time-continuous switch regulators that solve the ther-
mal capping problem and whose form is:

Rupc,i(t) Ti(t) <TcriT

Rei(t) = ' _ (5.10)

Puin Otherwise
where R ; and Rypc; are respectively the final controlled power and the power chosen by the
MPC controller supervising that core.
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Proof. From the propositiod.4.2 the maximum temperatures are known because of the sen-
sors on sources. The properyl.7ensures the feasibility by applying instantaneously a lim-
ited control actionPyn, on sources which are exceeding the thermal liigitT. On the other
hand, according to the propositidm4.3 the sources which are not controlledRgNn cannot
cause the threshold violation of the nullified ones (or elsewhere), sincddhgeratures are
lower thanTcrT. O

However, this result has theoretical validity under continuous-time hypistHaut the clock
driven nature of MPSoCs imposes the use of a discrete-time controlleseGoantly, as tem-
perature violation can happen during sampling interval, it is necessarg\mpra margin, that
is to decrease the critical temperatlieg T to a valuersw tcnaccording to the sampling time
chosen. Notice that, because the Safety layer is hardware-baseampléng time can be very
small. A procedure to findsy TcHrelies on the inversion of the discrete modé&l9) of each
core. It consists in finding the initial state that reaches the critical temper&igyr after a
sampling interval, assuming the worst possible case (i.e. maximum power, ma@mbi@ant
temperature and maximum temperature of neighbors). Therefore, invérdrgecond order
model @.11) we obtain,

T Puvax
TSWITCH | _ A-1 CRIT
=A" —B- | TamBMmAX
X2, init X2, fut T
neighsMAX

Notice that the previous equation includes three unknown varial¥@srch X2,init andxa fut,
but only two equations. To solve the problem we overestimated the valbger@fsetting an
appropriateAT and using the previous equation which can be written as,

%2 fu=ar; (TeriTHAT—a11TeriT — B -Ila":s:,MAx (5.11)
TheighsmAX

whereay 1 anda;» are the first line elements &f

In order to completely define the switch controller we need to set the walug crHLow
that determines its deactivation. As the nominal behavior resumes, the sthie ®fstem
must be feasible, hence lower than the temperature limit imposed by the MBE, We set
TswiTcHLow = Tmpc — A whereA is a small arbitrary value.

Thus, summarizing, the resulting controller is a hardware-based, digtnetehysteresis
controller, capable of guaranteeing feasibility.
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The last property to be discussed is how the use of the Safety layer caovangiobal
performance of the system. The central idea is to design the two layersrigthve existence
of the other. Indeed, designing a stand-alone MPC layer would cameddp set the threshold
Tvpc to the maximum value that prevent the use of the Safety layer, causingrarfoe
degradation. Instead, we can $gbc to a higher value, allowing the cores to be faster and the
Safety layer to intervene more frequently. How to choosetfig: value is described in the

next section.

5.2.1.3 Local MPC Controller

The MPC layer, as well as the Safety layer, has been designed with audidristructure.
Such configuration allows the controller to be computationally more efficiesh@sgn in Sec-
tion4.3and more reliable, since the break down of a core cannot compromise thesyistem
performance. Each controller solves an optimization problem which expleitprédictions,
computed with the identified single-core model, to find the best control dedlsadmaintains
the temperature undegpc. When the temperature of tlieh core reaches the Safety thresh-
old, tswitch thei-th switch controller takes the control of the core imposing the minimum
power. Immediately, when the switch controller deactivates, the MPC comtrehéh has re-
mained active, takes place and continue with the best control action congiukedbeginning
of the previous sampling time.

The optimization problem solved inside the Local MPC Controller is the onepted in
Chapter, that is,

h—1
min 3 [IRei(t+kit) = Prit+ Kl (5.12a)
1 K=0
st.
Ti(t+k+1Jt) < typc Vk=0,...,h (5.12b)

An important step in the development of the global control solution is chodkaIPC
threshold. Ideallyrmpc = Tswitcw but, as already mentioned, the existence of uncertainties
would involve a frequent intervention of the Safety controller. We needdwige a margin
betweentypc and tswitcy Clearly, the greater is the margin, the more conservative is the
controller, and the lower are the performance (the MPC would maintain the spaed to
a lower level). However, also setting a low margin would correspond to lafompeance
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due to the high activation frequency of the Safety layer. Thus, the tedé@ of the two-
layer solution is to choose a MPC threshold greater than the completely catigzone (i.e.
the one that prevents the activation of the Safety layer), that lets the $ayetymanaging
critical situations, in order to maximize the performance. Note that this latter ig pdiet for
manufacturers whose profit is strictly related to performance.

Therefore, thaypc results from the solution of a trade-off problem between conservative-
ness of the MPC controller and frequency of activation of the Safetiralter. Nevertheless,
the great number of factors affecting the controller, as external inmatgtee already cited
model uncertainties, make the use of a rigorous analytical estimatiopegfdifficult. Thus,
we developed empirically-based methods to impose this margin.

A first simple method consists in running typical benchmarks, e.g. PARSE®R.4and
calibratingtypc as the value that reduces the violationg&fTchunder an arbitrarily chosen
percent of time. This solution let the user the freedom of choosing theele§exploitation of
the Safety layer. However, if our goal is maximizing the computing perforeane need to
solve an optimization problem. We search for thgc that maximizes an objective function —
the integral of the cores frequency — constrainipgc in the interval[tvpccons TcriT], that
is

Time

min Zl/ fC| TMpc,t)dt (5.138.)

TMPC

TMpc.CONS< Tmpc < TcriT (5.13b)

whereN is the core numbeifc is the controlled cores frequend®, Timg is the time interval
of the benchmarks, antdspcconsis the Typc in the completely conservative case (i.e. the
Safety layer is never used). We solved the problem for each benclandriwe selected the
optimal value oftypc as the average of the result of each problem. However, the solution of
the problem %.13 requires to run a great amount of simulations to collect the frequency data
for computing the integral in the objective function (one for each valugygt and for each
benchmark). In order to reduce the number of simulations we quantizeetioé the Typc
values.

Finally, it is worth to note that the upper bound BQfpc is TcriT, NOt TswiTcw The con-
servativeness of the identified model explains this choice, indeed the taorpsréimited
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by the MPC could be lower thanswtcH even if ypc > Tswitcw In this particular case
TswiTcHLOW = TswiTcH—A.
5.2.2 The Implementation

The code below shows the list of operations executed in parallel by eaelocgather the local
thermal model, adapt the controller parameters and control the systemnrpanice.

Pseudo Code

1 OFF-LINE MODEL IDENTIFICATION & CONTROLLER SETTINGS:
2 Apply a PRBS task sequence;
3 get R,Ti,TNEIGH;
4 obtain a, and P with the H. Iterative Procedurg
5 find the state space representation A,Bi,C with G =[10];
6 setting of TswiTCH  TMPC;
7
8 CONTROLLER ROUTINE
9 Initialize the weight matrices Hi, M;, and the state % (0);
10 FOR EACH MPC CONTROLLER SAMPLE
11 get fri(t) and CPI(t) =CPl(t—1);
12 convert to Pri(t) using the Power Model;
13 update g and by;
14 solve the QP problem and find Rc;i(t) with hot -start;
15 FOR EACH SAFETY CONTROLLER SAMPLE
16 compute the min between Rcj(t) and the output of the Safety Layer;
17 END_FOR
18 compute fg (t);
19 estimate  X(t);
20 END_FOR

More in detail:

Line 1 during the system initialization phase we execute in paréll each core the Self-Calibration
Routine;

Line 2-3 we apply a pseudo-random task sequence to each core andlect tw core power and local
neighborhood temperature traces;

Line 4-6 according to Fig5.5:

1. weidentified the prediction modelsof each core performing the iterative procedure of
Section4.1.2 As already mentioned the distributed models may be inbéasiherefore
we avoided the feasibility test of Secti@n4.5 (the Safety layer is enough for ensuring
feasibility).

2. We found the thresholtky TcH of the Safety layer by inverting the models.
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3. We detected theonservative MPC threshold(tmpccong by running a set of benchmarks
on the system supervised by the two-layer controller. Weasehitial thresholdrypc =
TswitcH and we used as prediction model the identified one. Then, weedsed the
MPC threshold until we detected that cores temperaturesrrexceedrsy tcy for each
benchmark.

4. we found the finafypc that maximizes the performance. Starting frogdc = Tmpccons
we increasedypc looking for the value that maximize the integral of the cdreguencies
and then we performed a average of the results of all bendtzmar

Line 9 we define the constant matrices used in the QP probde?)( H;, M;), and assign the initial
state x(0), to the model ;

Line 10 at each sampling time of the MPC layer the loop from line 10rte RO is repeated;
Line 11 the High Level SoC Manager provides the frequeffigy(t) andCPI;(t) requirements;
Line 12 the Thermal Controller converts them into the target poveangithe nonlinear functiord(1);

Line 13 vectorg;, dependent offrj(t), and vectom;, dependent o (t), Tams(t) andTneich (1), are
updated.

Line 14 starting from the previous optimal soluti®q; (t — 1) the solver finds the optimé&t(t), solu-
tion of the QP problem.

Line 15 at each sampling time of the Safety layer (faster than the M€ one) the loop from line 15
to line 17 is repeated;

Line 16 if the current core temperature is greater thiggtch the Safety Controller imposés (t) =

Pvin;

Line 18 P and workload are used to firfd ; inverting the function4.1) as an example with the Brent's
algorithm.

Line 19 the observer estimates the stafe) knowing thefc;(t) andTi(t). This state will be used as
initial state by the MPC controller to estimate the futumaperature of the core.

O Iterations

Conservative
Model Safety Layer MPC L\gyé\; MPC Layer
e .. (| Threshold ~  Threshold = Threshold
Identification resho
TSWITCH TMPC,CONS TMPC

Figure 5.5: Off-line steps summary

Notice that the Safety layer is hardware based and can be executed \&itipiegate of
100us, whereas the MPC layer is software based and its sample rate is 10ms.
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5.2.3 Experimental Results

We tested our solution on a Matlab/Simulink simulator developed exploiting the finiteeate
approach described in Appendix Fig. 5.6 shows the plant we used for our simulations. This
is a Xeon-like platform as the one shown in Hg7, but we decided to double it to show that
our control solution is reliable also for a bigger number of cores. Theléigaut is similar to
the Enterprise Xed® Processor presented if)(

Figure 5.6: Simulator layout

The admissible power consumptions of each core ranges Bgm= 4.38W to RByax =
25W corresponding to a frequency of 1600MHZ and 2970MHz and the idleepe- power
consumed when the core is shut down Ris g = 0.25WV. The power dissipated by the caches
is the 30% of the power consumed by the cores directly connect to them.

For each local MPC controller we identified, according to ktheiterative procedure, a
second order model to forecast the temperature of the supervised®pmllected the inputs
and output data applying a PRBS power trace to the plant and then we Hudvegtimization
problem @.10 to find the unknown parameters. At the first iteration we considered sdlipo
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Figure 5.7: (a) Temperature prediction error comparison; (b) Perfoceacomparison with dif-
ferenttypc
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ble inputs: all core powers, the ambient temperature and the temperatureaia (except
thei-th one). The results showed that the power inputs, with the exception @ftlthene,
had a negligible contribution to the final temperature of the cores. As an éxadhgppower

consumption contributions for the core 1 are:

47e—2 6e—6 —25e—6 56e—6 —64e—6 —15e—6 2—-6 57e—6 ...

B: —45e—2 8e—5 —26e—4 38e—-5 —854e—-5 —-7e—-4 5e-5 8e-7 ...
EXT 2 E TP s T8RS TS E e &Y
Rl P2 R Pea Pes Pce Fe7 Res

In the second iteration we deleted the temperature contributions of the doged far from
thei-th core. We considered only the north, south, east and west sides cor

In Fig. 5.7a we show a comparison between the models identified respectively in the first
(All inputs) and last stepHew input$ of the iterative procedure. The temperature prediction
error results similar for both the cases. As an example, we reported bedawdtiel obtained

Ts |5 Y T
X233 a1 -05 0 X2’3t

T
[4.06—2 35e—4 4e—-4 Te—4 38e—4 £

for the core 3,

—45e-2 0 05e—4 —27e—467e—4|
Ts |,

We settsw tcy= 3597°K, assumingAT = 0.25°K in (5.11), and the conservative MPC
thresholdrvpc cons= 3588°K by iteratively decreasing the,pc until we detected no Safety
layer intervention’s

The procedure to findypc is similar to the one used to finthpccons We settypc =
Tmpcconsand we increased iteratively its value bylK. For each simulation we stored the
integral of the frequency as performance metric.

In Fig. 5.7b we compared the performance with respect totifse: chosen. Notice that
because we run the simulation with different benchmarks the values plotted figtine cor-
respond to average values. The final valuetigsc is 35928°K that is greater thamsw tcr
As already mentioned this is due to the conservativeness of the models dbtétin¢he iden-
tification procedure. The improvements of performance are about 1%enage. The lower
hysteresis threshold of the switch controllersy tchiow, is equal totswtch— 0.1°K, that
is 3596°K.

1At each iteration we decrease the previouscconsby 0.1°K.
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Figure 5.8: Simulation results of the core 3

Fig. 5.8 shows the temperature response of core 3. Fi8a shows the case when only
the Safety layer is active. The temperature results bounded unddgghe= 360°K and
the controller is feasible, but the performance degrades due to the cmrtimgtivation and
deactivation of the Safety layer.

Fig. 5.8p, instead, shows the response of the core 3 when a PARSEC 2.1 bek¢kina
idanimate) is assigned to the controlled system. The temperature is perfeatigdabunder
TecriT @nd the Safety layer intervenes only when the temperature crosgesy setting the
frequency to 1600MHz.

Finally Fig.5.9 shows the simulation results for the core 3 when different MPC thresholds
were applied: theypc that maximizes the performancagec max), the tvpc that reduces the
violation under the A% (Tmpc0.1%) and thetypc completely conservativerpccong. As
illustrated the frequency forrapc max) is the greatest on average even though Safety layer
intervenes more frequently than in the other case.

5.3 Communication-aware solution

Increasing the number of cores on a single chip substrate is the actuhifdreimproving

processors performance. Dozens or hundreds of core aretedgacthe next future. As a
result, many-core architectures will substitute the actual multi-core one e¥owbehind the
improvement of the throughput per Watt, many-core systems introduce Imaertges tied
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Figure 5.9: Performance comparison with three differegbc

to their large scale structure. We can define a processor as many-@ohasfa number of
cores large enough (several tens of cores) to prevent the use tohdit@nal multi-processor
techniques due to issues of congestion. Indeed, the data and instruafiicrggnerated by so
many cores preclude the use of shared buses and shared memoriesntibeveores (used in
the so called cache-coherent approach). Many-core architechayg$®e non-cache-coherent
and the communication between cores may take place via message passigg tietvorks-
on-chip (NoCs). Message passing system is usually implemented usingsadéeBassing
Interface (MPI), a library specification that has become the standantefssage-passing-based
parallel programming. Additionally, many-core chips can benefit from adgatfpn migration
and mechanisms for actively balancing load which can enhance systemghiprg and power
management. This latter, in particular, represents a critical constraints ip todaputing
platform. A common approach to reduce power consumption is DVFS (Dynaotiagé and
Frequency Scaling) that exploits the dependence on frequency arsdjubes of the supply
voltage of the power. Roughly speaking we save energy by redu@ngéncy and voltage of
one core when it experiences thermal issues or performance wowddexge low degradation.
Nevertheless, whereas this technique achieves good results for singletmne processors,
they do not capture the unique performance-power tradeoffs in maneysystems with MPI.
Indeed, voltage and frequency changes affect MPI since its fuisctorcalls are executed
on the cores subjected to DVFS regulati@j (6). According to the results achieved i) (
testing some typical benchmarks on a SCC processor (see Apf@ndhe performance and
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Figure 5.10: Proposed solution architecture

the power efficiency of the many-core system show some benefit if thedneies of the core
that are communicating are balanced.

The aim of this solution is to manage the core frequencies in order to equadifesth
qguency of the cores that communicate with each other. This managementamestdrmed in
a thermally safe environment, therefore the proposed solution consistdatingpthe thermal
control solution for respecting this new requirement. In the next sectiensr@sented our so-
lution, however it is important to remark that a real analysis of the perfocemamprovements
has not been conducted yet. This Section has only the aim of preseiiirezaMPC-based
thermal control solution able to account dynamically constraints on fregu€&mally this so-
lution can be exploited also in the case of two or more cores may need to haakeDVFS
level due to application requirements or hardware limitations.

5.3.1 Architecture

Differently from the other solution presented, this solution consists of orer that uses the

centralized MPC-based control paradigm,

h—1

min 5 ||Pr (t + kit) — Re(t + Kt) 1§ (5.14a)
k=0

st.

Tj (t+k+1lt)§TCR|T Vi=1,...,nr vk=0,...,N (5.14b)

whereR: = [Rc 1, ..., Ren] @andPr = [Pr g, ..., Prn] are respectively the vector of the power
consumption allowed to be dissipated by the cores and the one requestedigtitievel SoC
ManagerQnxn is the weight matrixJTcrt is the critical temperature, arld= [Ty,..., Ty] is
the vector of the temperatures measured on the chip (see the control@tehiia Fig.5.10.
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5. COMPLEX CONTROL SOLUTIONS

We assumed to have a sensor placed in the center of each corge,=déN whereN is the
number of cores. The notatidi(t + k+ 1]t) means the temperature estimated for the future
time (t + k+ 1) based on the information available at timevhich implies the existence of

a discrete-time thermal model relating the power consumption (and the ambiertrétunp)
with the future temperature of the cores,

P(t

X(t+1) = A-x(t) + B- [ TA<M>B] 5.15)
T(t)=C-x(t)
The model has been identified using the distributed ARX approach showectin$4.1.1
This approach return single-core models that can be composed to obtain a global model.
Each single-core model has two states (we chose a second order modach core), the
first o which corresponds to the core temperatdik the second, instead, is unknows ).
Composing all these states together we obtain the state of the global m@gethat has
dimension A x 1. We decided to grouped all the temperature measurements in the first half of
the vector, thereforg(t) = [T1,..., Ty, X2,1,..., Xon]. Ais @ N x 2N matrix, Bis 2N x (N+1)
matrix andC is aN x 2N matrix of the form[ly Oy].

It is worth to note that in the problem formulatiob. {4 we exploited, as in the rest of the
thesis, the possibility of separating the nonlinear frequency-to-poveiarein order to have a
linear MPC problem. The Power Model we considered is the samé Hflfut we substituted

to the supply voltag¥yq the nonlinear function of the frequenbyf) = a; - f# + ag, that is,
[kAl- ke 4 knp + (ke + ko - freq) -CPH + [z.vdd.T -exT

whereka; = 3.8696e— 008, kg = 2.4090,ka» = 1.1025,kg = —0.3016,kc = —4.1376,kp =
0.0051,Z =2.5%+2,q=1.60e—19,K = 1.38e—23.
The three main points of this solution are:

e maximizing the performance by reducing the tracking error between the {oger
and the controlled one;

e constraining the temperature below a maximum vatygr
e reduce the frequency of the desired core to the same value

The first two points are automatically satisfied by the MPC-based thermal soluiloe
aim of this solution is to account the last point.
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5.3 Communication-aware solution

5.3.1.1 Problem update

The simplest approach for modifying the problem structure and allows titeotler to manage
the communication between cores is to add a constraint as,

fci(t) = fC,j(t)

wherefc(t) is the controlled frequency of the carat the time instanit

However, the manipulated variable of the control probl&ni4) is the controlled power
consumptiorP: that depends nonlinearly on frequency. Introducing such a constvaind
mean to make the MPC problem nonlinear. Moreover, in order to have tisépityg of con-
straining the frequency of all the N core we should have ud to1 nonlinear constraints that
greatly affect the computational complexity.

For all these reasons we decide to following another approach that #ezfinear charac-
teristics of the problem.

Suppose, for simplicity, that we want to constraint only the frequenciesafdle 1 and 2,
fc 1= fc2 (at the end of the section we will generalized the problem for all cordsy.main
idea is to impose that the difference between the power consunfptioandR: » is equal to a
A that depends on the workload (CPI) and the frequency. Indeed,

Ro1—Poz =k (18, — 1) +ke - (CPIE—CPIke) + 517
boe 5.17
tko- (fc,l-c:Pl‘l<E - fc,z-cplgE) —A

where the static powers can be discarded due to their small and compaiaigle. \VAssuming
at steady-staté: 1 = fc 2(= fx) we can rewrite%.17) as,

A= ke- <CPI'1‘E —CPI'Z‘E> +kp - fx - (CP“{E —Cp'gE) =

(5.18)
= (ke +ko - fx)- (CPI'l‘E —CP|'2‘E>
Finally we can approximate thi as the rate,
— (f —f = (Peo— (fx—f
(Ruax —Pvin) @ (fuax — fvin) = (Re2—Buin) = (fx — fvin) (5.19)

fx = (Re2—Puin) - % + fmin

where we calledyax and fyn the maximum and the minimum frequency respectively (e.g.
3000MHz and 1600MHz), anByax andPyn the maximum and minimum power obtained
from the Power Modelg.16), using for both th&Pl,.

157
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Substituting thefy in (5.18), we obtain,
A= (k+ko: (P21 —Rwun -1+ fwin) - (CPIlfE —CPI';E) (5.20)

— fuax=fmin i
wherel = Ryax Py - T TOM 6.20 we can write,

Pei—PRez2=a(t) -Re2+B(1) (5.21)
wherea andf depend on the CPI, and hence, on the time.

a=kol- (cpﬂl‘E —CPI'Z‘E)

(5.22)
B=(kc—ko-Puin-I+ko- fmin)- (CP||1(E —CP||2(E>

The equationq.21) represents a constraint on power consumption in order to impose the same
frequency to two cores. This constraint can be included in the objecinatidn of the problem
(5.14b as,

h-1
min Z || Pr t+k|t)—Pe t+K]t) Hél—i—H Re 1 (t+HK|t) —Re 2 (t+HK|t) —a (t+K|t)-Re 2 (t+K|t) —B t+HK|t) ”éz
K=0

(5.23a)
St.

Tj (t—l—k—{—:ut) <TeriT Vj=1,....,ny ¥k=0,....N (5.23b)

whereQ; is the diagonal weight matri@, = diag(w 1, ..., Wn n) Which relates the error be-
tween the power consumption assigned to the cores and the target;grie the scalar value
representing the weight between the power error of the icangl the power error of the core
j. For the sake of simplicity, we assumefgl; =W, = --- = wn n. Similarly Q> =ry1» where
r12 is the weight value between the power of the core 1 and 2 in order to imposentotiie
same frequency

The problem %.23 can be translated into a QP problem,

min,scgl%r-H-ﬁchgT-P_c (5.24a)
st.
M-R-<b (5.24b)
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whereR: = [Re(t[t) Pe(t+1Jt) ... Pe(t+h—1]t)]T andR. = [P ... Pen]T. Assumingh, =1
as in the rest of the thesis, thBa= Pc(t|t) that is the vector of power consumption constantly
assigned to the cores for the interjiat + 1].

Computing the products in the objective functi@n239 we obtain,

RS QiRe—Pf QiR PRI QiPr+P{ Qi Pr+

+R1 QR 1—R1Q(1+a)Re2—Re 1 Q2 B+

+(1+ )R 2Q(1+a)Re2—(1+a)Re2QeRe 1+ (1+a)Re2Q2 B+
—BQRc1+BQ(1+a)R 2! +BQ2f

The termsP{ Q; Pr and B Q.3 can be discarded since they are independent on the control

(5.25)

variableR-.
Comparing $.249 and 6.25 we obtain,

Wi1+Tr12 —r12(1+0q) 0o ... Pri-Wii+B-riz

Ho» fr1,2(1+a) wz,2+r172(1+a)2 0 ) Pr,z-W272+ﬁ-r172~(1+a)
B 0 0 W33 ... g=—< P]—73 ‘W33

(5.26)

whereas the constraints matrices remains unchanged

M = [ C-B; } b— [ Terim —C-A-X(t) +C- Bz Tams(t)
—IN [*P’V“N]le

whereA, B = [Blonxn B22n«1], andC are the matrices of the modéd.(5. Moreover we

(5.27)

added a constraint to impose that cores power is not lowerRan It is worth to note that
the matricedH, g, b depend on time (due to th@PI, x andPr), therefore every time sample
they must be updated.

We conclude this section generalizing the approach. It is enough to deentiialing a
constraint between the frequency of two carasd j means to modify the matricé$ = 2- Q1
andg=—2-[Pr1-wy1,...,Prn -WN’N]T. More in details we must add the value:

e rjjinHij,

e —r;j(1+a)inH;jandHi;,
o —1ij(1+a)?inHj;

o B-rijing(i),

e Borij-(I+a)ing(j),
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5.3.2 The Implementation

The pseudo-code below shows the sequence of operations ngcessaake the proposed

solution work.

Pseudo Code

© ©® N o U A W N P

10
11
12
13
14
15

OFF-LINE MODEL IDENTIFICATION:
Apply a PRBS task sequence;
get R,Ti,TNEIGH;
obtain a, and S with the distributedARX approach;
find the global state space representation A, B, C with C=][INO];

CONTROLLER ROUTINE
Initialize the weight matrices M;, and the state % (0);
FOR EACH SAMPLE
get fr(t) and CPI(t);
convert to  Pr(t) using the Power Model;
update H, g, and b;
solve the QP problem and find  Re(t);
compute fc(t);
estimate  X(t);
END_FOR

More in detail:
Line 1 during the system initialization phase we execute the mioi@eitification;

Line 2-3 we apply a pseudo-random task sequence to each core andlect tizé core power and local
neighborhood temperature traces;

Line 4 we execute thé&RX optimization in each core to obtain tlleand3 parameters;

Line 5 we convert the single-core models in the state-space foimg tise observability matrix to give
physical meaning to the first component of the state vectao(respond to the measured core
temperature) and then we compose all of them together irr twdebtain a global model;

Line 8 we define the constant matrix used in the QP proble24j, M, and assign the initial state(0),
to the model ;

Line 9 at each time step the loop from line 9 to line 16 is repeated;

Line 10 the High Level SoC Manager provides the desired core fregjaeriir (t) and the predicted
workloadCPl)(t);

Line 11 the Centralized Thermal Controller converts them into #rget powePr (t) using the nonlin-
ear function $.16);
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5.3 Communication-aware solution

Line 12 the matrixH, dependent o€PI(t), the vectolg, dependent o@PI(t) andPr(t), and the vector
b, dependent or(f), that is estimated with a Luenberger obseriggs(t) and TneicH (t), are
updated.

Line 13 the solver finds the optimd&k:(t) solution of the QP problem.

Line 15 R- and workload are used to firfgd inverting the function%.16) as an example with the Brent's
algorithm.

Line 16 the observer estimates the state) knowing thefc(t) andT(t). This state will be used as
initial state by the MPC controller to estimate the futumaperature of the core.

5.3.3 Experimental Results

We have tested the performance of the centralized communication-awatiersolusing the
8 cores plant shown in the previous solution (refer to Bi@). The target frequencies range
from 1600MHz to 3000MHz, whereas the CPIs range from 0.5 to 10@.cBiches consumes
the 30% of the adjacent core powers.

As a first test we ran a PRBS target frequency on all the cores andsignad to CPI a
constant value of 1.5. Only the CPI of the core 2 varies as a PRBS. Ffirgh&Gs core 1
and 2 communicates, later communication is between core 1 and %.Fighows the results
obtained from the test. The temperature is perfectly bounded even if thietiwa model has
a low order compared to the plant and the power consumption of the caehestaneasured.
However, we have to remark that we considered the target CPI and perfectly known.
The frequency effectively assigned to the core 1 ané2,and fc 5, result the same with an
error of about the 1%. The Fi§.11also shows that the solution is able to dynamically change
the communication constraints at run-time. Indeed, the frequencies of tard 2 are the
same until 10s, then the frequencies of cores 1 and 5 equalized, whilethehcy of core 2
is the one that minimizes the power error betwBemandPr.

A second test measure the complexity of the solution. We have translateddéeoto
the control algorithm from Matlab language to C++ language and then we theaw some
PARSEC 2.1 benchmarks measuring the time necessary for solving the @Erpho The
results for the Fluidanimate benchmark are shown in &igj2 The mean time to solve the
problem is 3us

1\We ran this test on a simple four cores processor.
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Chapter 6

Guaranteed Re-sprinting in MPSoCs
exploiting MPC

In this chapter a novel control solution is presented in order to addressUitilization Wall”
issue in mobile devices. The solution mitigates the problem with a computatirdirsg ap-
proach. A Phase Change Material package enables higher perfarepamd a two-layer pre-
dictive control enables thermally-safe sprinting while guaranteeing a pralolie re-sprinting

rate.

6.1 Overview

The control solution that we present in this chapter addresses the “UtitiAé&adl” issue intro-
duced in the Chaptet. Although conceptually we could describe this solution in the previous
chapter (it presents the distributed MPC-based thermal controller asdbasient), we prefer
to reserved an entire chapter to this solution due to the extension of thealisseand in order
to highlight the novelty of the contribution.

We have already discussed about the issues introduced by the “cadeigroving CPU
performance. The growing transistor counts, the limited power budgetgréaikdown of
voltage scaling and the difficulties in heat dissipation prevent the possibilityroéll cores
without getting into a thermal crisis, limiting de facto the number of usable cores@viae.
In this power-limited computing era the parallelism has shown its benefits oorperfice, but
it is now accepted that in upcoming and future technology generations(28d beyond) all
the units on a die cannot be continuously switched on at the same time, as tHgiotota
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6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

consumption would exceed the maximum Thermal Design Power (TDP), letdathermal
run-out. Cooling solutions, needed to remove the heat from the siliconrdiémated by cost
or by physical constraints: in data centers approximately 50% of theyenengumed is used
for powering the cooling infrastructuré)( whereas in embedded/mobile platforms the cooling
system is constrained by form factor and packaging @)stark Silicon has been estimated
to be the 21% at 22nm and 50% at 8n8&): (practically limiting the maximum parallelism
achievable by future many-cores. In future mobile platforms this probleneis more serious
since active cooling cannot be easily implemented without compromising batttmnkf, form
factor, user experiencé

Nevertheless, mobile devices have characteristics that bind well with cotopadesprint-
ing approaches — i.e. approaches where all cores are poweredtenraaximum frequency
for short time windows, ideally triggered on-demand. Indeed, the applitatizat run on
power-bound systems are typically composed of alternating sequenpasabél and sequen-
tial sections %) and thus they do not exploit constantly the underling hardware parallelism
(parallel tasks are also characterized by different computationabph@3. This is exacer-
bated in mobile platform where applications are often triggered by the usdrdifferently
from batch jobs, their Quality of Service (QoS) does not depend orageehroughput, but
on users experience and response time. Studies demonstrate thategye axssr perceives a
response time below 150ms as crisp, noticeable within 1s, annoying in 29aadaeptable
in the 2-5s range7. Moreover, accordingly to the usage scenario, the user needsrtitha
cognitive resources with the perception of the external environmentmiiielum continuous
span of attention to the mobile device is 4s in a busy street whereas the maxintahtsack
duration (the time spent on attending the environment before switching batle tmobile
device) is 7-8s). As a consequence, mobile platform are often response-time condtraine
and they need to provide fast bursts of computation on demand. Theréferseldom use of
parallelism and the importance of responsiveness for the Quality of queiceived by the
user, rather than average throughput, enable the possibility of turniagthie same time all
cores and exceed temporarily the thermal power budget to provide ingantthroughput,
after which the chip must return to nominal operation to cool down.

The duration of the time windows in which all cores can run at the maximum sjegezhds
on the thermal capacitance of the chip. Traditional Thermal Design Powefired statically

on the worst-case power consumption, considering only the packageaihesistanced). As
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consequence, packages are optimized for minimizing their resistance witmthiera tem-
perature neglecting the heat storage capabilities of the different packatgrials, associated
with their thermal capacitance. In a regime where classical TDP cannatectie power-on
of all the integrated cores, but maximum performance is needed mainly ihlalrsts, the
heat buffer associated with the thermal capacitance can be sufficiamt &l the cores at the
maximum performance for short time windows, ideally triggered on-demarahewer peak
parallel workload phases and user interaction occur.

These Computational Sprints@) can be lengthened by increasing the thermal capacitance
of the package. Phase Change Material that are solid at ambient temggecatu store extra
heat during the melting process, releasing it to the ambient later on, dutidification. As
consequence of that, PCM allows packing in a small volume and within a small tetugegap
a large thermal capacitance placed close to the siliconldile Embedding the correct PCM
guantity and material can enable longer sprints (e.g. 1s), suitable fodjpally speed-ups
and can improve the QoS of interactive tasks.

From the above considerations, clear advantages can be achieveglbyirgy silicon/-
package thermal capacitance, PCM or other materials as “heat tanksfiledalong sprint-
ing phases. However, these tanks are finite, then only limited sprinting intaresdsistainable.
Suitable “restintervals” are, then needed to let the tanks to release hleaigrternal ambient.
This is necessary to keep cores temperatures below their critical valdés wastore sprinting
capabilities. Such intrinsically-dynamic thermal behavior requires a suitablkdime tem-
perature management to guarantee safe working, even under vanabp®ssibly uncertain
conditions.

Once a sprinting architecture has been defined with a reliable and edf¢fcrmal con-
trol, one has to cope with another crucial challenge, not yet deeplydsed in literature.
That ishow to exploit limited sprinting capabilities, when different tasks are runniggtteer
with different QoS requests or criticality featureé&\s a matter of facts, rest intervals are a
sort of blanking periods w.r.t. possible sprinting requests, then theitidosaand placement
along time will affect the actual QoS of different applications. In the mobilaaia, differ-
ent APPs/tasks can be executed at the same time with different QoS requisdmg. video
encoding/decodindl(l), driving augmented realit§@) and health monitoringl(3), phone call
and text message). Moreover, in other domains as automotive embedudeal, coixed criti-
cality scenarios will take place with hard real-time and even safety-critided tasining along
with soft real-time applications. A suitable run-time control policy is clearly rded tackle
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such heterogeneous workload scenarios. Sprinting capabilities haeekploited or reserved
to favor, or even guarantee, the execution and the QoS of most criti&sl t&Imming up,
sprinting time is a shared, limited and dynamical resource which needs dyhassicae time.
Then, whenever a sprint is launched, the system should preseritalalestroom” for subse-
guent sprints, according to a policy defined for managing differentdeskalities. We refer
such a feature a@Re-sprintingmanagement.

Our control solution guarantees thermally-safe and run-time optimal sprantishge-sprinting
using a two-layer MPC-based solution.

6.2 Sprinting Architecture

Contrary to the other solutions presented in this thesis, before introdu@mittrol architec-
ture, we need to:

e describe the characteristics of the chip on which we have implemented dwlaigo-

rithm;

e show how to model the thermal behavior of this platform for studying thetffness

of our solution;

e define concepts useful for better understand the rest of the work.

6.2.1 Platform Characteristics

We considered a multi-core processor with 16 cores, the die are8nsrt< 6.8mmwith a
thickness of 35Qm. Per-core DVFS is assumed and the maximum power dissipated by each
core under maximum frequency and worst load conditions is se{fg=1W (i.e. the chip
maximum dissipated power B,5,=16W). Maximum frequency, corresponding to maximum
power is set to 1.5Ghz and minimum one is set at 500Mhz, with a per corer goweal to
Pe.min=150mW under worst load conditions.

In sprinting conditions, all the cores are requested to work with maximunuérezy and full
utilization. In rest conditions, only one core is assumed to run at full Frrqy and utilization
(i.e. at full power), while all of the others are assumed to be in idle status widgaivalent
power ofR; jge=50mW each (i.e. a chip power dlest=1.79V is assumed). This characteri-
zation of computational/power traces is simplified, but significant to represiewnant thermal
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issues. Indeed, actual sprinting traces are expressed in terms ofédgiemncy (and voltage)
pulses, while the actual power consumption also depends on currddbaaicharacteristics.
Nevertheless, in this work, to simplify the discussion, sprinting traces wilepeesented in
terms of power Rnax along sprints an@es; in rest conditions), assuming worst workload con-
ditions. This does not give a relevant generality loss, when focusitigegsmal issues.

Thermal stability is obviously guaranteed in rest condition, while the systemotaustain
permanent sprinting; the maximum admissible Silicon temperatulig.is=360°K, while the
considered maximum ambient temperaturéasma=318K. As reported in Fig6.1a a layer

Figure 6.1: The considered sprinting architecture and the adoptedlenodelling

of PCM with physical properties similar to commercial Climsel-CT8)(is interposed in be-
tween the Silicon die and the device case. The thickness of such layeris¥d2@cording to
common mobile and embedded applications, no heat-sink is considgretl Copper based
thermal conductivity enhancer is assumed inside the PCM layer to improdeictrity and
speed up heat charging and discharging during the melting phase. Thiseniatube seen as
an homogeneous material with both high thermal conductivity and high heatita (L0).

The only measurements available for control purpose come from the temmgesansors
of the cores, the PCM layer and the ambient. Thei reading3cgyevith i =1..16, Tpcm and
Tams, respectively.

6.2.2 Thermal Modeling (Simulator)

The chip described in the previous section has been modeled using the saeneléments
technique used for the thermal simulators shown in the Appdddixlumped thermal model
is obtained according to the equivalent electric network reported on thé Eig Also in this
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case we considered two layers one of silicon and the other of a mixtureNdid@ copper (the
enhancer). The silicon layer has been split in cells, each one modeleduryeat generator
representing the power dissipated by the cell, a resistor and a capactyc@a has 25 cells).

As in previous work {0), the PCM layer and conductivity enhancer have been modeled by a
single large cell assuming a uniform distribution of the heat. The resulting nxdel

. B, Teom—Tic | MRS i — Tk

= % 4 Mk Z _neighi — K
Cj Ci-Rjv & 2-Cj-Rjn 6.1)
& Tk—Teem  Teem— Taws

& Riv Recm

whereTy, B are respectively the temperature and the power dissipated xytth8ilicon

U:

cell, Theighi are the neighbor cells temperatur@sey is the temperature of the PCNIyyg is
the ambient temperature abldis the internal energy of the PCM layer.

Itis worth noting that, in§.1), the first equation is obtained by standard space-discretization
of the well-known Heat Equation. In contrast, for the second equat@ording to (5), an
energy-based model has been exploited for PCM to handle its nonlinese{changing behav-
ior. The PCM temperature can be easily derived ftody a nonlinear maplpcy=Fpcm(U),
to represent monotonic increasing behavior in solid and liquid condition, whiletant tem-
perature will be given in the melting phase, see Biga. The first term in the top equation
represents the contribution of the power consumption in each cell, whaeelast two, accord-
ing to Fourier Law, are the effects of heat flow entering in the kcélbm PCM and neighbor
cells, respectively. Similarly, in the bottom equation, the first term is the haatffom all
of the silicon cells to PCM, whereas the second gives the heat flow fravh 8Ghe external
environment; no direct thermal path is assumed between the silicon cells aatbient.

The following values for cell capacitance and thermal resistances suienad Cj=6.6e—
5J/°K, Rjh=229K/W, R;,=215K/W and Rpcm=7.9°K/W. The latter two resistances,
linking the PCM layer to the others elements, benefit from the Copper ctivityenhancer,
in particular inR;, contact resistance between Silicon and PCM layer has been considered.
Parameters of the adopted PCM are melting temperaifykg—70°C, density, 1708g/m?,
specific latent heat, 396 /Kg, latent heat of the whole volume B2 and differential thermal
capacitance in solid and liquid condition521/(°K um?). These parameters will characterize
the whole “PCM + conductivity enhancer layer”, since Copper thermp&cigance does not
affect relevantly the PCM thermal inertia. All these leads to a maximum interneayg for
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solid phas&Jmeiimin=23J and a minimum internal energy for liquid phddgeitmax= 35.8J, in
between melting phase will take place.

365 T
TI°KIf ECM t i Core Temperature[°K]
i

380: l
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340F =" T f , r
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Figure 6.2: (a) Internal Energy to Temperature nonlinear functionC@anparison among sprinting
architectures

In Fig. 6.2b the effectiveness of the PCM with conductivity enhancer is highlighted. A
constant full power working condition is considered and the adopteideless’compared with
two variants where the PCM + enhancer is replaced bymthick heat spreader or by a pure
PCM layer, respectively. By observing the time when core temperatusiel Tgax, it can be
noted that the considered architecture enables larger sprinting roonthve mthers.

6.2.3 Guaranteed re-sprinting definition

In this Subsection, we provide and motivate a “formal” definition of GuaethiRe-sprinting
capability, then we translate it in a clear requirement for PCM energy mareagéy exploit-
ing a simplified, but effective, thermal model of the given system.

We referred to the term Re-sprinting management as the policy to handledesiepus
tasks with different QoS requests or criticality levels. In particular, limitethipg capability
have to be spent or preserved according to a policy which favorsyesr guarantees, most
critical or QoS-demanding task space. Toward this goal, we consideoltbeihg scenario.
We suppose to have two main task groups, both requiring full-power sgyjntitical hard
real-time periodic and predictable tasks and non-critical aperiodic tagksthé first group,
the total fulfilment of the sprinting requests has to be guaranteed, whiléhdasecond one,
best effort is admissible; we refer those group&Gasranteed GrouandBest Effort Group
respectively. For the Guaranteed Group a known periodicityl @ assumed, while the total
time needed to execute all these tasks together at full power is assuméarebprger than
a given bound equal tbl. This kind of information is usually available when dealing with
real-time critical tasks. Differently, for the Best Effort Group no infotima is assumed.
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Under the considered condition, it is clear that the sprinting and restat¢éerged to be dynam-
ically arranged not only to maximize service of generic sprinting providingriaecapping,
but N-long sprinting windows must be guaranteed evighrgeconds to serve the Guaranteed
Group. We formalize such requirement in the following definitiol\NsM Guaranteed Re-
sprinting.

N-M Guaranteed Re-sprinting for a computing system is the capability obgteging a
sprint at full power of duration N, as soon as a time M fIMN) has elapsed from the starting
of the previous guaranteed sprinting.

From the above definition, it is clear that whenever a sprint has beechadnthe run-time
control system has to limit the sprint period not only taking into account maxiteorperature
bounds, but also considering that the system needs some rest time t@aooprbperly and
get ready for a possible new sprinting requesiNageconds, aftel seconds from the begin-
ning of the previous one. Such behavior requires a suitable sizing araper@ent of the PCM
heat tank which provides room for sprinting according to its “chargde\e the following
an explicit and treatable relation is determined to link PCM energy condition wipniating
requirements. Toward this goal, we considered a simplified, but effe¢tiegemal model by
collapsing all the Silicon cells into a single cell with temperaflise Summing up all the cells
capacitors and power sources (neglecting horizontal resist&ggsand by parallel composi-
tions of all theR; v, we can define the total approximated Silicon capacitafge;26mJ/°K,
and the total approximated Silicon-to-PCM thermal resistalRgepcm = 0.6°K /W. Then the
following approximated model can be drawn.

_ Rot  Tsi—Tpcm

Fo Mot
®7 Csi Csi-Rsi pcm 6.2)
U— Tsi—Tecm  Trcm— Tams '
Rsi-pcm Recm

whereRq =Y R. According to the commonly used sprinting time-scale, usually in the
range of 1-10s, the effect of the Silicon inertia can be neglected wittecesp PCM and
enhancer dynamics (i.eTSi = 0). Therefore, a static relation betwe&g and Py can be

exploited to reviseQ.2) leading to

Tsi = Tpcm + Rsi-pcm - Rot
U = Ry Trcm — Tame (6.3)
Rpcwm
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Figure 6.3: Translation of theN-M Guaranteed Re-sprinting objective in a time-varying c@ist
on PCM internal energy)

With this model at hand, the re-sprinting requirement can be easily trangtagetime-
varying constraints on the PCM internal enetgyaccording to the time diagram of Fi§.3.
Let assume a guaranteed sprinting has been issued &t tittnen according to the prescribed
N-M Guaranteed Re-sprinting between timeM and timetj+M+N the PCM is expected
to be able to stor@nax N energy without violating Silicon temperature bounds. That means
U (t+M+N)<Umax, whereUyax can be easily defined, using.8), as

Unmax = max{U | Fpcm(U ) = Tmax— Rsi-pcm - Pmax} (6.4)

In the considered 16-cores case, we hBy&: < Tmax— Pmax: Rsi_pcm. That means we can
run a sprinting up to 8pcpm > Tmeir and a corresponding > Umeltmax Where PCM is totally
liquid. Nevertheless, we simply assultd@ax = Umeltmax this saves some margin and mitigates
thermal cycles caused by the on-off computational paradigm. Havingedifiaax, we can
computely reported in Fig6.3as follows,

Tocm—T,
Un = Umax — <Pmax— W) N (6.5)

Uy in (6.5 is the maximum admissible energy at tithe-M which guarantees that a sprint
at full power can be sustained in the followithgseconds. Therefore, whatever the previous
sprint requests are, N-M Guaranteed Re-sprinting asks for(aa-M)<Uy. It is worth noting
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that, in 6.5, Uy derivation is carried out assuming that PCM melting condition is preserved,
i.e. Un>Umeltmin but can be easily extended to more general condition. Now, moving back
along time from(tj+M,Uy), we can derive the time-varyind,(t) taking into account the
maximum cooling capabilities of chip und€yms=Tamsmax These are achieved when all the
cores but one are in idle conditions (i.e. the system is in a rest phase)e Hem generic time
instantt < t;4+M, the maximum admissible internal eneldy(t) is the maximum one which
can be steered t@-+M,Uy) exploiting the maximum cooling capability of the system. At the
same time, the bound <Uyax has to be considered, théla(t) can be computed as follows

vt € [tj, ti+M][, leading to the line reported in Fi§.3.

Up(t) = min{UMAX,UN+(TPCM‘TAMBmaX Prest)«(tiw)—t)} (6.6)
Rpcwm

where obviously%&wm—ﬁesp 0, otherwise the system is not thermally balanced (i.e.

is not sized correctly). In addition, the instanthereUy + (%CAMWW—R%Q (t+M)-t)=
Umax has to be greater thdnt+N, otherwise theN-M Guaranteed Re-sprinting is not sustain-
able by the system owing to its physical properties (i.e. a suitable resizingdedg

Finally, summing up all of the previous considerations, Ki® Guaranteed Re-sprinting re-
guest can be effectively translated into a time-varying bound on the ihtemeagyU of the
PCM by using, in eacM interval, theUy(-) profile derived in 6.6).

In Fig. 6.3a typicalPR profile is also reported to highlight sprinting from both Guaranteed
(continuous line) and Best Effort Groups (dashed line). It is worttingoas the sprinting
for the Best Effort Group will be affected by the time varying bodsid-). In addition, it is
possible to figure out that, whenever the bound is reached, the coystehs will enforce a
power consumption that makes the PCM internal enérgy slide alongUp(-). The power
giving such a behavior is the rest power witkyg = Tamsmax according to §.6), but it can be
larger whenevefaus < Tamemax This degree of freedom can be effectively used to maximize
the integral of the sprinting power.

For the considered sprinting architecture,.2-8s Guaranteed Re-sprinting requested.
By applying 6.5 and 6.6) it can be noted that this kind of Re-sprinting is effectively sus-
tainable withUyax = Umeitmax Un = 33.2 andt = t; +2.23s. In addition, it can be verified
that, according to the system sizing, this re-sprinting capability requireroer@daranteed
Group leaves a significant room for Best Effort Group. Detailed cdatmns for such issue,
and sizing procedure in general, are not reported here since this tisenotain focus of this
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Figure 6.4: Structure of the proposed controller

work (nevertheless, some hints on such topic have been already degfttedliscussing the
feasibility issues in§.5) and 6.6)).

6.3 Architecture

The proposed control solution is a novel closed-loop controller basedRC approach that
provides effective and reliable thermal capping and achieves optimalgaaret of various
and dynamics sprinting scenarios. Workload with mixed-criticality heteragen&asks are
considered, then Guaranteed Re-sprinting requirements, are dire&llgdtatn addition, the
proposed solution is designed to handle as well situations where justflmesiapproach is
needed, with no re-sprinting guarantees.
The Fig. 6.4 depicts the block diagram of the proposed solution. We used a two-layer

hierarchical approach:

Lower-layer thermal controller : it manages optimization of the current core computation
powers and effective capping of core temperatures, taking advaotdle distributed
and scalable MPC solution presented in ChagteNotice that this layer is enough for
manage a sprinting approach that maximizes performance.

Higher-layer PCM controller : with its novel centralized MPC solution, it manages the heat
buffer (PCM, in this paper) maximizing sprinting time, while guaranteeing rispg
performance for the considered system.

The higher level interacts with the lower one by tuning the computational pageested
for sprinting. When no guaranteed re-sprinting is needed, the promystem can be eas-
ily “downgraded” to such simpler condition by just turning off the higher fagethe pro-
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posed controller. This can be useful when a generic task-set hawederied according to
a best effort approach. It is worth noting that this transition betweearanteed” and “non-
guaranteed” re-sprinting, and even the opposite, can be handlethibatig at run-time.

6.3.1 The Lower-layer thermal controller

In the lower layer we exploited the distributed MPC-based Thermal scalalblgos presented
in Chapterd. For eachi-th core the following discrete-time local MPC problem is set,
min (P (t[t) — P (1))?
i (6.7)
subject tol¢ (t 4+ 1[t) < Tmax
P¢i are the core power references. Their values for2,...,16 are determined by the higher
level controller, while for the core B, = R; maxat any time, according to sprinting architec-
ture previously described in Sectié2 P, are the actual core powers (i.e. the sum of the
powers dissipated in cores areas).

We assume to use them as control knobs, although actually only freqardayltage are
directly controllable. We imagine as in previous solution the presence of arfdadel to
convert frequency and workload (obtained by performance caindadings) to powerTnax
is the maximum admissible temperature for the cores as defined in Séiomhe general
idea driving such control approach is to keep the power of each coctbse as possible to
the requested one, complying with hard thermal bounds. As long as no thssmaoccurs,
the power will be equal to the requested one, otherwise temperature limitatidreveitiforced
with minimum performance penalty. This will provide optimal power performarmabined
with reliable temperature capping. The distributed setting of such MPC praillews one to
obtain linear complexity w.r.t. the number of cores and to split the implementation oftld
cores (see Chaptd).

Differently from the other solutions treated in the previous chapter, thestéstime single-
core model adopted for predicting the future temperature of-thecore is represented by a
first order equation,

I:)c.,i (t) TPCM(t) - Tc,i (t) #neigthneighi (t) - Tc,i (t)
& ' GRy 2 2GR ) (6.8)

whereTst is the sampling timeTcneighi are the temperatures of tieh core neighborsC.=
1.65mJ/°K, Re0=4.6°K /W, R;y=9.6°K /W are given by straightforward parallel composition

Tei (t+1)t) = Tei (t)+ TsT(
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of capacitances and resistances of the cells belonging to a core. Noie thigtsingle-core
model the interaction with the reminder of the chip is taken into account by mé#resrmeigh-
bor cores and PCM temperatures, acting as uncontrollable but measopatlée An additional
positive effect of such feature is that the mod&j is Linear Time-Invariant, despite of the
large nonlinearity characterizing PCM. Thanks to the use of the simplifiecsftactive, first-
order model 6.8), the MPC problemsg.7) can be solved explicitly, leading to the following

algorithm for the thermal controller of each core,

Pai(t) = {Fiéi © TP <Pul®) ©9)
, Pi(t) if P3i(t) > Peit)

where

Poi(t) = = (T‘max— Tt —rsT<TPCMC<Z? ;CIC"“H#% Teregn (0 "o m)) (6.10)

P (t) in (6.10 represents the maximum sustainable power at the inspaetenting violation

of the thermal boundax att+1. This expression is derived from the simplified mode8),
taking into account the current temperature sensor readings. lower thanTmay is adopted

in (6.10 to save some margin and take into account model approximations and pasamete
uncertainty. A reliablémax can be derived empirically with simulation tests or formally with
more complex computations. As an example we could find it with the same technspe:

find Typc margin in Sectiorb.2.1.3

In the considered benchmark, we ha*_,t,%xz 359.9°K, while Tmax=360K. This testifies
the good approximation given by simplified modeésg|, when no parameter uncertainties are
accounted. It is worth underlining that, in order to improve accuracy, auddcreplace §.8)
with a more complex linear model (e.g. a second order model). In this cagaoilem 6.7)
could be translated into an equivalépuadratic Programming (QPproblem and solved with
a standardActive Setalgorithm triggered at each sampling instant by the controller. A run-
time observers could be exploited to recover states of the considered mibeeishey are not
directly available from sensor readings and/or relevant measuremsesrase present.

Finally, in the actual implementation of the algorithé9)-(6.10 we added a dead-zone
that collapses t& jqie =50mW all the values of;(t) lower thanP min=150mW. This item
represents the discontinuity in DVFS between minimum frequency and idléticonas stated
at the beginning of Sectiof.2

177



6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

We used a sampling time aft = 2.5ms thus computational time of the MPC routine,
~ bus (see Sectiod.3.]), can be neglected. In general, sampling time is related to the phys-
ical properties of the considered system. A rule-of-thumb for its selectiGudh kind of
applications is 13-1/5 of the smallest time constant characterizing the uncontrolled system
(16).

6.3.2 The Higher-layer PCM controller

Once thermal capping with minimum performance degradation is guarantett bgwer-
layer MPC, the higher level one can be design to manage the PCM in ordeueeuaranteed
re-sprinting performance, whenever heterogeneous tasks withetiff@oS requirements or
criticalities are tackled. According to Subsecti®r2.3 we considered two tasks groups; the
Best Effort Group and the Guaranteed Group, willtil Guaranteed Re-sprinting requirement
(0.2s-4s for the considered benchmark). Taking the cue from@&gand 6.6), the idea is to
enable every sprinting request until the PCM internal enddgyapproaches the bourd,,
then a suitable sprinting reduction has to be taken to presbtye= Uy(t), i.e. to preserve the
requested re-sprinting room for the Guaranteed Group. Moving fresethonsiderations, we

propose the following centralized MPC problem to tackle PCM management.

16
. . (1))2
rgginig (Fei (t[t) — R.i(t)) (6.11)

subject tdJ (t 4+ 1Jt) < Up(t+1)

whereF¢;, i = 2,...,16 are the control knobs of such controller, representing the povest re
ences delivered to distributed thermal controllers as reported ir6FE@nd in Sectior6.3.1
Differently, B i(t),i =1,...,16 are the original computational power targets for the cores; they
are equal tPnax/16 = P max= 1W, when a sprinting request is running; whereas, in rest con-
ditions, R 1 = Pemax= 1IW andR ; = P jqgle = 50mW for the other cores. The rationale of this
approach is to let the power referend®s, for lower level MPC, to be close t&(t), when-
ever the PCM energy is clearly far from the time-varying repetitive bdug¢see Fig.6.3).
Differently, when the prediction of the internal enekdyt + 1]t) approachebly(t + 1), power
references are decreased. A one-step-ahead preview is assnortfes lmoundJy(-), this is

admissible according to strategy adopted to derive i6if)(
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The approximated discrete-time model adopted for prediction purposesamibling time

TSPI IS

(6.12)

Ut+1/t) = U () + TsP<TPCM(t) —Tams(t) O Tei(t) — TPCM(t)>

Recm i; Rev
It is worth noting that, sinc@pcy is available from measurements, it can be used as an input
and the energy-based modél12 will be Linear Time-Invariant, despite the nonlinearity of
the PCM behavior.

The PCM internal energy) (t) adopted in §.12) is not directly available, an observer is ac-
tually used for such variable, exploiting temperature measurements. Somtgoattes to

be paid along the melting condition since the internal energy becomes uvattieeirom the
PCM temperature.

In the prediction model proposed if.(39), the control knob$%; are not directly available. In
order to apply standard MPC solutions a more complex model would be aegéssighlight

the relationships among the control knobs and the internal energy. itoaddhis would in-
volve lower-layer thermal controllers, too. To prevent such heavy fimgdand to save the
separation among the control layers, the simplified model proposegidnig exploited and

the following non-conventional approximated model predictive controlldeis/ed

P (1) = {F}i (t) if Up(t+1) > U(t+1f) from (6.12 6.12)
’ Ri(t) if Up(t+1) <U(t+1]t) from (6.12
wherei = 2,...,16 andR; (t) = Ret(t)/15 with,
ﬁot(t) _ Jb(t+]1-_i;ljb(k) + TPCM(QP_CIAAMB(U —Ra(t) (6.14)

With such a solution,&.12) is used to predict (t+1|t), while (6.14), directly derived dis-
cretizing 6.3), is adopted to compute the power references whén+ 1jt) hits the bound
Up(t+1). Similarly to the lower layer thermal controller case, the bouRd) is replaced

with Up(t) <Up(t) to save some margin and to compensate for the approximations of the
adopted models. Computations and simulations tests can be carried out ® aleehable
boundU_b(t). For the considered benchmark, unde2-8s Guaranteed Re-sprinting require-
ment,Up (k) =Up (k) —0.25J.

Focusing orR;(K), it can be shown with straightforward computations that, according to the
definition ofUy(t) in (6.6), F{i (t) =Peidle WhenTavg(t) = Tamemax but it can be larger when-
everTave<Tamemax This behavior has been already highlighted at the bottom ofé=&and
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can be effectively exploited to improve sprinting performance.

It is worth noting that the proposed control approach is valid for eMg(y), computed accord-
ing to (6.6), and, then, for everiN-M Guaranteed Re-sprinting request or even for more in-
volved scenarios. Moreover, as already anticipated, this control ¢ayebe easily and dynam-
ically enabled/disabled according to the current re-sprinting requireriiéinénever no guar-
anteed re-sprinting is needed, the following power references will bdyssep. ; (K) =R i (k)
fori=2,...,16 and only the lower layer will be active. Finally, the adopted sampling time for
the considered benchmarkis = 10ms

6.4 The Implementation

The code below lists the operations executed by the proposed contridbsolu

Pseudo Code

1 CONTROLLER ROUTINE
2 Initialize the parameters of the models used by the Lower/Hi gher-layer controller
3 FOR EACH HIGHER-LAYER CONTROLLER SAMPLE (10ms)
4 get R.(t);
5 read the current Tei(t), Tams(t), Tpem(t);
6 compute the forecast of U(t), U(t+1t);
7 solve equation (6.13) to find P(t);
8 FOR EACH LOWER-LAYER CONTROLLER SAMPLE (2.5ms) & FOR ALL TEEAL CONTROLLER
9 read the current Tei(t), Tecm(t);
10 compute the maximum sustainable power, P_C?i(t), for the next sampling interval;
11 solve equation (6.9) to find Pt);
12 END_FOR
13 END_FOR
More in detail:

Line 2 Off-line we set the parameter of the models used by both the control lagerR o,
Rev: Cc andRecw);

Line 3 at each sampling time of the Higher-layer controller the loop from line 3 to line 13 is
repeated;

Line 4 the Higher-layer controller receives from the High Level SoC Man#getarget power,
Ri;

Line 5-6 using the equations(12) the Higher-layer controller forecasts the future value of the
internal energy stored in the PCM{t + 1]t);
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Line 7 U (t+1|t) is compared with the maximum allowed eneldy if it is lower thenP;;(t) =
R.i(t), otherwiseRy;(t) results from the equatior(14);

Line 8 at each sampling time of the Lower-layer controller the loop from line 8 to line 12 is

repeated;;

Line 9-10 using the equationg(10 each local Lower-layer controller forecasts the maximum
power that can be spent in the next sampling interval, that is the powessaageo reach

the temperaturénaxin the next sample instarﬁi(t);

Line 11 PZ;(t) is compared with the maximum allowed powgy(t): if it is lower thenPy;(t) =
P:i(t), otherwisePe;(t) = Pei(t);

6.5 Experimental Results

The proposed solution has been tested on the Matlab/Simulink environmerd thieesimu-
latore described in Sectigh2.2has been implemented. Then, the results has been compared
with a Threshold-based solution as definedlifi){ where each sprinting request is executed
at maximum speed, until each core, but the #1, is forced to shutdown oatentiperature
reacheSmax

Before showing the results it is worth to stress that, to simplify the discussiespttnt-
ing traces used in simulations are represented in terms of power. Constaigad instruction
characteristics are assumed, then power consumption can be seepcasqmal to the adopted
frequency. In addition, those traces are assumed fixed, even thougtal reactive applica-
tions, the sprinting request trace is dynamically affected by the actuansispness of the
device. This effect has been disregarded here to make the resultstedsdnterpreted.

Tests can be split into three macro groups. The first shows the behd&war solution
respect to the Threshold-based one when generic workload is appliedoaguaranteed re-
sprints are needed. In the second, critical periodic tasks are intdocevaluate the per-
formance of our solution when N-M Guaranteed Re-sprinting are redjuif@ally, to show
the reliability of our solution, we applied non-nominal working conditions to thetlled

system.
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Figure 6.5: Typical non guaranteed trace response

6.5.1 Generic workload

When no guaranteed re-sprints are needed the higher-layer con{ralaely PCM Model
predictive controller in Fig6.4) can be disabled. As consequence of that, only the lower-
layer (namely thermal MPC in Fid.4) is active andP;; = R;. In Fig. 6.5we compare the
performance of our solution against the Threshold-based one whaimadf 1s is requested
every 2s.

Differently from the threshold one, the proposed solution is not purelgfband is capa-
ble of finding an optimal intermediate operating mode (i.e. operating frequamtyoltage,
implying a particular core power consumption level) for each core, that nirasntiae cores
temperatures close to the limit. This optimal value is inversely proportional to theeatmb
temperature. Indeed in a colder environment, the heat is dissipated to theafasier, allow-
ing higher cores frequencies (power). Moreover, compared@pdur distributed controller
solution does not assume isothermal silicon temperature and thus can exgthfferent core

thermal dissipation efficienéyas shown in the zoomed area. Threshold-based solution puts

Ipoundary cores are colder than the center one, since they have l@enmethesistance with the PCM layer
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all cores to idle (except #1) when any core first croskgs, our solution instead decreases
frequency (power) independently for each core. From the same figeiean notice that our
solution leads to a more regular sprinting duration profile, whereas for thehld one it

depends strongly on the previous sprint duration and in the internajyelesel.

tasks Gaussian mean value

——

p=1 |u=1.5| p=2 |u=2.5
Thiswork | 974 | 934 | 91.8 | 81.0
Threshold [ 955 | 88,5 | 85.8 | 68.0

Figure 6.6: Non guaranteed performance comparison

As consequence of that to quantify the improvement obtained with our solgdouilt
4 sprinting traces of 2@0constituted by tasks with duration distributed with Gaussian prob-
ability (standard deviation.B and mean value respectivelg, 1.5s, 2s, 2.5s) and separated
from each other with a rest time generated using a Poisson cumulative distrifunction
(A =10). The table in Fig6.6, collects the percentage of the total operating frequencies (com-
puted integrating on time the operating frequencies of all cores) normaligbdegpect to
the requested on j?. ifl'g))jﬁloo wheref¢; and f; are thei-th controlled and target core
frequencies respectively. Our solution outperforms the Threshadeoane reaching a 19% of

improvements when tasks have mean value equal to 2.

6.5.2 Guaranteed re-sprints

As previously discussed when the system executes both critical arebigpoon-critical tasks

a guaranteed re-sprint needs to be ensured. In the second st aveéesvaluated the perfor-
mance of our solution comparing it to the state-of-the-art threshold one.6Figefers to a
0.2-4s Guaranteed Re-sprinting scenario and shows in order the temperatuRE; khinternal
energy and th& andP; of the core #7. In the top subplot we can first notice that Threshold-
based solution runs the tasks until the temperatures readi,thewvhile in our solution, for a
design decision, the PCM cannot crdgg;, and then cores are actually bounded to a temper-
ature a little bit lower thafnax. This gives an extra heat storage room to the Threshold-based
controller but on the contrary leads to crisper thermal cycles. The inteneegy of the system

is shown in the central subplot. Whereas our solution keeps the endayy bg limiting non
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Figure 6.7: Typical guaranteed trace response
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guaranteed tasks to have enough energy to run the hard real-time task4# tingeT hreshold-
based solution is not so far-seeing. In fact, it cannot ensure afpredénternal energy level
at the beginning of a guaranteed task. This leads to an unpredictabledaioler duration of
the guaranteed sprint phase, that strongly depends on the prevaradispcomputation.

Non guaranteed number of tasks

A=3 [A=6 [ A=9 [A=12|| A=3 | A=6 | A=9 [A=12
100 | 100 | 100 | 100 || 74.2|76.8 | 75.6 | 76.1 | | This work
944 (824 (76.2170.6||76.6|80.6|80.2|80.7 | | Threshold
100 [ 100 [ 100 | 100 || 76.4|77.0|783|77.9
98.3191.41829(|79.9]|79.0(81.283.1]83.0
100 | 100 | 100 | 100 || 78.0|80.5(79.4|81.7
99.9(98.9(95.1192.81|80.4|84.4|84.4|86.7
100 | 100 | 100 | 100 || 83.0|80.8(83.4|82.6
100 | 100 |99.6|99.21|184.9|84.3|(87.6|87.3
% Guaranteed % Total

§1=0.175

u=0.125

1=0.075

11=0.025

Guaranteed tasks mean value

Figure 6.8: Guaranteed performance comparison

To quantify the benefit of our approach in a realistic scenario we paddra set of tests
under different stochastic workloads. F&8shows the results. In these tests, the guaranteed
tasks duration is determined using a uniform probability distribution functionewihe non
guaranteed total tasks duration4d) of each period (g has been split into a number of equal
parts dependent on a Poisson probability distribution function. Eaclepastitutes the mean
value of a Gaussian distribution with standard deviatid@y#&asks Each trace differs from
the other for the characteristic numbkerof the Poisson function and the mean value of the
uniform distribution. The ambient temperature is set t6@%and the metrics used to evalu-
ate the performance a .. '}f;gggiloo and%-loo, called respectively Yotal and
%Guaranteedn Fig. 6.8, wherefc‘fi and fﬁi differently from the previously defined total con-
trolled and target frequencies of théh core (fe; and f;; respectively ) are assumed not zero
only in guaranteed windows. This two metrics are proportional to the eféethiroughput.
As it is clear from the table our solution guarantees the execution of allreatdime tasks,
whereas the Threshold-based does not. From the same figure weticantinat the operating
frequency percentage is slightly higher for the Threshold-basedagipr This was expected
since our solution does not exploit the core temperature upnjeand because of the hard
constrainUy, adopted in our solution to preserve guaranteed re-sprinting room.

In Fig. 6.9 we repeat the previous tests by considering a Threshold-based salditicm
switches off the cores when the PCM shadlwgm > Tmert. 1N this way we remove the advantage
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Non guaranteed number of tasks

A=3 [ A=6 | A=9 |A=12|| A=3 [ A=6 [ A=9 [A=12
100 | 100 [ 100 | 100 || 74.2|76.8 | 75.6 | 76.1 | | This work
929(79.4(73.7(68.8||74.4|77.0|75.8|76.4 || Threshold
100|100 | 100 | 100 || 76.4|77.0(78.3|77.9
97.2(89.0(80.4(77.4||76.5|77.2|78.6 |78.2
100 | 100 [ 100 | 100 || 78.0 | 80.5 | 79.4 [ 81.7
99.7(97.8(93.1(90.3||78.2|80.8|79.7|82.0
100 |1 100 | 100 | 100 || 83.0|80.8(83.41|82.6
100 | 100 [99.2(98.7 || 83.3|81.0 | 83.6 [ 82.9
% Guaranteed % Total

1=0.175

§1=0.125

1=0.075

1=0.025

Guaranteed tasks mean value

Figure 6.9: Guaranteed performance comparis®iak = Tmely)

for such solution in exploiting the cores upTpax In this case, the performance loss of our
solution for total operating frequency is below th8% (see Fig6.9). This is the actual cost

of guaranteed re-sprinting rooms.

6.5.3 Non-nominal conditions

Finally, we have tested our solution with non-nominal working conditions with dabicality
workload. Since a well suited chip thermal design should prevent critiocgddeatures when
nominal operating frequencies are provided, we set the ambient tempeetatdC°C (i.e.
“phone on the beach”) and we increased the power consumption ofceael{i.e. 2V per

core instead of W). This emulates a possible leakage power increase due to higher ambient
temperatures, aging and process variation. As shown in&=id@ cores thermal controllers
must intervene to reduce power. Power reduction is different frorm eaie and optimized to

maximize performance maintaining the temperature clo3g o
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Figure 6.10: Non-nominal workload system response
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Chapter 7

Conclusion and future developments

7.1 Conclusion

The demands for increasingly efficient systems caused the diffusioP8d@s architectures in
every sector of the worldwide economy, ranging from industries to easriife products (e.g.
laptops, tablets, smartphones,...). Guided by the Moore’s law, the ousiigh-performance
processors has seen single CPUs gradually disappear, due to tlstauredale power con-
sumes, in favor of multi-core processors, which are able to exploit pisailgreatly reducing
the power consumption. Nevertheless, several constraints imposedhhyliegical scaling de-
termined an increase of the power density which translated in powersnipeigsipated on the
chip and localized in “hot-spots” where the temperature reaches haralfigs/that strongly
undermines the reliability of the MPSoC. In this respect, studies have sheweottelation be-
tween high temperatures and chip failure mechanisms acceleration (e.gorelgcation and
stress migration) and the reduction of transistors speed and chip contpbfetime. Cooling
and heat management are rapidly becoming the key limiters for high perfoenpaocessors.
Another interesting issue, mainly present in mobile devices, is related to the linoteer p
budget and the economical and practical limitations of cooling infrastructuredeed, it is
now accepted, that in upcoming devices, all the units on a die cannot &ateefy switched
on at the same time, as their total power consumption would exceed the Thezgigh[Power
(TDP) — the maximum amount of power the cooling system is required to dissipgaseling
to thermal run-out.

In this context we developed reliable MPC-based control solutions thatmizaexperfor-

mance, limiting temperatures and power consumptions, at the same time. To dethat w

191



7. CONCLUSION AND FUTURE DEVELOPMENTS

ploited MPC controllers for implementing a DVFS technique more efficient thaorkeob-
tained with other control theory based solutions. Our solution for managénigthperature of
the MPSoC is based on a distributed technology. Compared to the centralizgdrspresent
in literature, we have obtained a greater reliability and a far lower computatongplexity
with similar performance.

Due to the importance of model accuracy and complexity to perform the predicof
the temperature, we explored three approaches respectively baghstridmuted ARX, He
problem, and proper orthogonal decomposition techniques.

We proved the control feasibility of the centralized and distributed MPC solsifior the
family of thermal systems over any prediction horizon. This proof, usuatiyedarded in
literature, is extremely important for guaranteeing the respect of tempetnstraints at each
time instant. The study has been conducted on a generic thermal modébeédnyr partial
differential equations and it has revealed other interesting propertiesdsimplification of
the control design.

The distributed MPC solution has been included in more complex control ssheme

a two-layer control solution able to ensure feasibility and efficiency ataheegime;

a fully distributed solution able to maximize the energy saving;

a communication-aware solution to allows the communication between cores in a mes-

sage passing context;

e a MPC hierarchical solution able to contrast the “Utilization Wall” issue in mobile de

vices.

In particular this latter solution is based on the computational sprinting agpmehich
consist in running all cores at maximum speed only for short time intervalsigr @ not ex-
ceed the temperature limits. Differently respect to literature solutions, otrotlen is able to
maximize performance, and guarantee a time window where executing crigkalaamaxi-
mum speed, placed at the beginning of an initially specified time interval. The diomeof the
sprinting window has been increased exploiting an opportunely defireskpathange material
(PCM).

In order to develop and test these control solutions we used the Matlab/Strealriron-
ment. A processor thermal simulator has been implemented. Additionally a C/Gi#tiosdas
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been developed to estimate the time overhead necessary for computing tioé decisions.

The code will be used for the implementation of the control algorithm on rediNzae.

7.2 Future works

In the next future the work it is expected to continue, mainly focusing oretacévities:

Implementation on real HW. The proposed control solution has been tested on a cycle-
accurate simulator. In the next future we expected to implement the contooithig on a real
hardware. In this scenario it will be necessary to reformulate the proinlemder to account
for the uncertainties unavoidably present on the identified model paranatet the unmea-
surable disturbances acting on the real system which may compromisedt#évefiess of the
model predictive controller. Under these nondeterministic conditions, lireratuggests the
reformulation of the MPC controller as a “Robust MPC” problem, that is dowghuncertain-
ties and adopting worst-case approach. Although no robust MPC sagiast in literature
for MPSoCs thermal issue, this approach is often too conservativeessihfistic. Thus, we
expected that a “Stochastic MPC” problem will be preferable due to its abflitging the ad-
ditional information of the probabilistic distribution of the uncertainty to redugaiicantly
the conservativeness respect to classic approaches. The cdgirithan will have soft con-
straints met with a desired probability instead of hard constraints, the olgjdatiction will
be formulated as an expected cost and the prediction models will incorpoi@teation on
uncertainties. Due to the presence of unmeasurable states a Kalman filter dekigned. The
control solution will be implemented and tested on the SCC processor showrpenéixB.

Hierarchical solution improvement. Another activity will address the “Utilization Wall”
issue by improving the hierarchical control solution shown in Chapthritially, the effective-
ness of the controller respect to different chip layouts will be careflilgcked. Then, a novel
hierarchical control structure will be designed eliminating some of the cuassumptions and
improving the overall performances.

Heterogeneous multi-coreln the next future multi-core chips will be composed of many
specialty cores working in concert, each one with a particular role insideéeiee (e.g. mo-
bile phones already use heterogeneous cores). In this context thgenasra of the different
resources must be carefully controlled to improve performance andeedunsumes. A “Hy-

brid MPC controller” able to handle both the temperature and the workload gfrtitessors,
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and a consensus based task scheduling manager are interesting stuiimpsoving hetero-
geneous processors performance.
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Appendix A

Mathematical Background

In this Appendix are reported useful contents relative to optimization proatemmodel pre-

dictive control.

A.1 Convex Linear MPC with quadratic cost function implemen-
tation

The main control tool we used in this thesis is the linear MPC algorithm. It is cteaized by
a convex quadratic cost function and affine constraint functions.ndie contribution of this
Section is to give an idea of how the MPC algorithm is usually implemented.

Assume this is the optimization problem which must be solved to obtain the nexbkontr
decision:

hp—1

rTL}in Jo(x(0),Ug) = x(hp)' Px(hp) + z x(k)" Qx(k) +u(k)' Ruk) (A.l1a)
0 k=0

st.
X(k+1) =Ax(k)+Buk) k=0,...,hp—1 (A.1b)
Ex(k)+Mu(k) <y, k=0,....hp—1 (A.lc)
x(0) = x(t) (A.1d)

whereP=P > 0,Q=0Q > 0,R=R > 0,Up = [u(0),...,u(hy — 1)]" is the control sequence
that we want to optimizef, is the prediction horizon,A.1b) is the model of the plant, and
X(t) is its current state. Notice that the problem and the model are time-invariargfdtes
the control sequence will depend only on the initial state. This is the realspnve putx(0)
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A. MATHEMATICAL BACKGROUND

instead ofx(t[t) andUp = [u(0),...,u(hp —1)]" instead o ¢, h, 1 = [u(t]t),...,u(t +hp —

1e)]"

Assume that a full measurement of the stdte is available at the current timgotherwise

an observer is necessary). Then, the optimization problem must be sileagh sampling

time.

Each MPC problem has a different structure that depends on the djgpliead the re-

quirements it has to satisfy. However, the implementation of an ad-hoc soli@eisonsum-

ing, and extremely inefficient. The usual way of solving linear quadrati€NRoblems is to

translating the optimization problem into a QP problem for which efficient sslased on

active-set methods and interior point methods are available.

The steps to obtain the QP formulation are presented below. First, we neawriie the

problem @.1) in the matrix form,

min Jo(X(0),Up) £ x(hp)' Px(hp) + X5 QX0 +UjRUp
0

st.

Xo = AX(0) +BUg
EXg+MUpg <W
x(0) = x(t)

whereUg = [u(0),...,u(hp— 1)) € R"™, Xy = [x(0),...,x(hp — 1)] € R™", and
Q =diag{Q,...,Q} € RMenxhon,

R =diag{R,...,R} € RMpmxnpm

& =diag{E,...,E} € RMoncxhpn,

M = diag{M,...,M} € RMpnexhpm

Moreover, the matriced € R"»™" andB ¢ R"™he™M can be defined as,

A 0
2 B 0 0 0
A= B AB B 0 0
K . . . . :
A A2 A3 ... ... 0

(A.2a)

(A.2b)
(A.2¢)
(A.2d)

(A3)

remembering that the state at each sampling time can be defined respect to tretatéxa0)

and eliminating the intermediate states as,

k—1
x(k) = Ax(0) + § AlBu(k—1—j)
,; (
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A.2 Multi-parametric Quadratic Programming

SubstitutingXy of equation A.2b) in the equationsA.2a) and (A.2c) we obtain,

% X(O)/YQPX(O) + rTL]In %Ué QQPUO + X(O)/ FQPUO (A.5a)
0
st.
MaqpUo < Waqp -+ EqpX(0) (A.5b)
(A.5c)

whereQop =B’ QB +R=Qpyp - 0, Fop = A’ OB, Yop = A’ Q A, andQ = diag{Q, P}. Notice

that bothQqp, Fop, Mgp, Wop, Eqp depend on the matricé3 andR, and that the term with
weight matrixYop is usually avoided since it represent a fixed cost independent fromahe
nipulable variabldJy. Notice also that in the unconstrained case the solution of this problem
can be easily obtained by zeroing the gradient of the cost function onatiegly in a recursive
way using the dynamic programming approach.

A.2 Multi-parametric Quadratic Programming

This Section presents the algorithm for solving a multi-parametric quadraticgnmo(mpQP)
in order to determine explicitly the state feedback control law which minimizes ttimiap-
tion problem A.5). According to the operations research jargomuti-parametric program
is a problem that depends on a vector of variables. In this case we wéntta function
u°(0) = f(x(0)) for all feasible values of. This approach represents an alternative to the on-
line computation presented in the previous Section which is sometimes impracticeble d
computing time and costs.

In this thesis we applied this approach to our linear quadratic MPC in ordendat§
explicit solution. The starting point is the QP probleAR) influenced by the parameterc
X CR".

Assume there exists a subset of feasible parameters such that,
X?={x(0) € X:3Up satisfying MypUg <Wop+Eqpx(0)} (A.6)

If the set is empty the problem could not be solved.

We can solve the problen\(5) using the Karush-Kuhn-Tucker (KKT) conditions. For any
optimization problem with differentiable objective and constraint functiomsmaich strong
duality obtains, any optimal solution of the primal and dual problems must s#tisfitkKT

201



A. MATHEMATICAL BACKGROUND

conditions. Because our problem is convex, KKT conditions are als$wisut (1). The KKT
of our problem are:

QqpUg + Fépx(0) + MgpA =0 (A.72)
A (MopU§ —Whp — EGpX(0) =0 i=1,...,m (A.7b)
A>0 (A.7¢)
MqpUg < Wop + Eqpx(0) (A.7d)

whereA represents the vector of Lagrangian multipliers.
Solving forU; the equationA.7a) becomes,

Up = —Qaé(':épx(o) +MgpA) (A.8)
where we remark th&op > 0. Equation A.8) can be simplified as,

Ug = — Qg (FopX(0) +Mgp ) (A.9)
where we indicated with the accent ™ the constraints part relative to adiv&raints, i.e.

constraints holding with equality at the optimum. For inactive constraints 0. We can
substitutdJg in the complementarity conditioA(7b) obtaining,

~Ngp Qo (FopX(0) +MgpA ) = Wap + Eqpx(0) (A.10)

Since the rows ofgp are linearly independentﬂQané Map exists, and we can findl as,

A = —(MqpQghMop) ~* (Wap + (Egp + Mop Qo Fop) X(0)) (A11)
Thus, A is anaffine functiorof X(0). Substituting A.11) in (A.9) we obtain\J; as,
Ug = Qqp [Map (MapQqp Mop) ™ (Wop + (Eqp + Map Qop Fap) X(0)) — FopX(0)] (A.12)

Thus, also the optimizer functidd, is affine Moreover, using the receding horizon strategy
u°(0) =[1 0...0]-Ug that is affine too. However, this solution is valid only for the states
belonging to the region where the set of the active constraints remainangeth We define
this region as theritical region (CRa), that is the set of parametetfor which the same sét of
constraints is active at the optimum. A new stabelongs to the critical region if the optimizer
functionUg meets the primal conditiorA(7d) and (A.7c) keeps non-negative values. Thus if

Map Qqp [Map (Mor Qg Mae )~ (Wap + (Eqp + Mor Qg Fop) X(0)) — Fopx(0)] < Wop -+ Eqrx(0)

—(MpQopMop) ~* (Wop + (Eqp + MopQopFop) X(0)) = 0
(A.13)
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theCRx set can be defined as,
CRa = {x€ X: (A13) are satisfied

As it is possible to see fromA(13) CRa is a polyhedron irK. After having defined the critical
regionCRy the rest of the space must be explored in order to generate other cetjoaths.
Summarizing, lef;(X) be the set of active constraints foe X°, then we have proved that,

e CRx is a polyhedron;

e the optimizer functiod; is an affine function of the states insi@&a, i.e. Uy = Gy -
X+Offg VXeCRa

e the value functionJ§(x) is a quadratic function of the states insid&, i.e. Jj(x) =
X'+ M- X+ i - X+ d; VX € CRa

This is true for all critical regiolCRa; associated to a specific set of active constraints. Finally,
it is also possible to prove that,

Proposition A.2.1. Consider the multi-parametric quadratic prograi.p) and let Qp > O.
Then, the optimizer {Jis continuous and piecewise affine in each polyhedral critical region,
and the optimal solutiongx) is continuous, convex and piecewise quadratic on polyhedra.

Additionally, J5(x) is aC™® function @) (2).

A.2.1 A mpQP algorithm

The mpQP algorithm goal is to partition the feasible state sgédeto a set of critical regions
CRaj and find the expression of the functiodg and J;(x). It usually comprises aactive
set generatorand aKKT solver The former computes the set of active constraftfor a
particular value of the state, whereas the latter findGRg; and the values dfJ; and J;(X)
associated to the states inside the region. The algorithm presented belaoistba simplest
algorithm developed in these years.

Algorithm .

1. Find the starting state vectry inside the polyhedral set® as the center of the largest
ball contained inX°;

2. solve the QP problem fo«(0) = Xo to obtain(Ug,A°);
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3. determine the set of active constraigtfor U5 andx(0) = xo;

4. using the functionsq.11) and A.12), characterize the regidbRap;
5. partition the rest of the spa&€ in regionR;;

6. for each newR; repeat the code from point (1).

The Fig.A.1 summarizes the procedure.

R, R,
Y Y o Y o R3 O %o R3
‘g ‘E; R CR, § R CR, E; R CR,
X X X X CR,
R5 D Rs n
s g
X° X0 X X

Figure A.1: mpQP algorithm description (from dispenses of Prof. Beragpr

It is worth to remark that of the optimal control sequehigeonly the first input is applied.
For this reason it is possible to reduce the number of critical regions leosing the critical
regions for which the first element of the control vector is the same.
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Appendix B

MPSo0Cs and Simulators

In the first part of the appendix a brief review of the terminology usedédsdlthesis regarding
the chip system is presented. Then the accurate model used for simuisti@ssribed.

B.1 The MPSoC System

When we look at a computing system we can distinguish two major topic: sofwaacthard-
ware. Softwaresare all the programs that direct the actions of the hardware and ar#iethss
in application softwareandsystem softwarelhe former are all the application that can be in-
voked by a user, whereas the latter are interfaces between the systemaiteand application
softwares. Theperating systens a part of the system software, that allows the applications to
use the hardware resources (thanks to application programming interfa¢d). An applica-
tion is usually divided in processes. pkocesqor task) is an instance of a program which has
been executed. It is an independent execution unit that contains itstaterirformation, use
its own address spaces, and only interact with other processes viadeEsp communication
mechanisms. Each process can contain one or more threatiseailis the smallest list of
instructions— the basic commands understood by the processor — that can be sdhmdille
operating system on a processor. Focusingpamwareit comprises all the physical compo-
nents (processing units included). Eamhcessologically comprises two main components:
the datapath that performs arithmetic operations and tdmatrol unit that commands the dat-
apath, 1/0O devices, and memory according to the instructions of the progiacomponents
inside of a single-core processor comprises: an instruction decoliet) imterprets the suc-
cessive instructions (fetched from memory), an arithmetic unit, which perdperations (add,
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B. MPSOCS AND SIMULATORS

compare, move, ...) on quantities contained in registers (and sometimes in yjheanpro-
gram counter which keeps track of the current location in the procdsss aontrol circuitry
which handles communication with memory and I/O. It also incluthehe memoriesvhich
holds values recently fetched from memory for quicker access (cachmries are small and
fast memories realized using the static random access memory (SRAM) ieghndhey act
as buffer for DRAM memory, are faster but more expensive than this)atter

With the advent of Multiprocessors Systems-on-Chip (MPSoCs) and muéj-@o the
same substrate of silicon we can find multiple processing units. It is importamtiterthe
difference existing between the previously mentioned processors atigpidcessors. This
latter refer to systems with multiple processors but not on the same chip. FEnemwe refer
to MPSoCs and multi-cores as synonyms. The idea under the rising of MPQoSists in
exploiting parallelism to increase the average throughput. This solutiondeas riecessary
to reduce the power consumption, that reached unsustainable quantitg the failure of

Dennard’s scaling.

B.2 The Power Consumption

In the past years single-core processors performance increpseesially, doubling every
two years. The primary drivers for this incredible trend were technosogy microarchitec-
tural improvements. Microarchitectural techniques exploit the abundafricansistors to in-
crease processor efficiency with instruction level parallelism, extractcmigues, deeper
pipeline, .... Technology improvements mainly refers to transistor scalint974, a work of
Robert H. Dennard, a IBM fellow, proved that as transistors get smdikey can switch faster
and use less power. This theory, called Dennard’s scaling theorgrligglthe most famous
Moore’s law which states that the number of transistors on a chip doubig sve years.

A transistor can be seen as an on/off switch controlled by an electric sidred. first
transistors used on processors were nMOS, then substituted with CM®8i$e immunity
and low static power consumption reasons.

However, as the transistor dimensions reached atomic sizes, Dennaaly thiled. At
every technology generation as transistor doubled and performancavimpthe power con-
sumption exponentially increased. In the early 2000’s processors Isib ttedled “Power Wall”
that refers to the impossibility of improving processors performance dingca his because
the power consumption of the chip would have generated an amount oinfigassible to
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B.2 The Power Consumption

dissipate with conventional cooling systems. The cooling infrastructuts eas the heat ex-
traction limit imposed to the processor industries a change of strategy with tbduntion of
the multi-core paradigm.

In order to understand better the problem we explain briefly how to competpawer
consumption of a processor.

The power consumption of a processor strictly depends on the powsurogtion of a
transistor. Indeed, every integrated circuit (as it is a processor) is wfadansistors. In a pro-
cessor the number of transistors may be of billions. So lets start from thermornsumption
of a CMOS transistor. The great of the power is spent in moments: durirgtitehing and
during the rest. The former component is usually catlgdamic powewhile the latterstatic

power.

Pemos= denamic"' Pstatic (B-l)

A CMOS transistor comprises an nMOS transistor in series with a pMOS tramdik®circuit
of a CMOS inverter is shown in FidR.1b whereV|y andVoy T are the input and output voltage,

Cis the load capacitor, andq is the supply voltage.

B S
I I
p+ J U+ J [ n+ | p+

H m
I—Oo
I—Ouw
m

(_‘
I—Oo
—Ow

p-substrate

nMOS pMOS

S D
T 1 1

IVaa 4 Gate leakage

1 I _\}—/----‘\“K- _ __.Subthreshold

N . leakage
Vin C Vour < 7
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a l 4 > ~ 77 Junction BTBT
I
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(b) (0)

Figure B.1: (a) CMOS transistor; (b) CMOS inverter circuit during switog low-to-high; (c)
Leakage current.
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The dynamic power is the power spent to charge and discharge the Ipaciteace, in
order to switch the output voltage from low-to-high or from high-to-lowe ower can be ob-
tained multiplying the switching frequencyreq) by the energy dissipated for one switching.
Assuming an ideaV,y with zero rise/fall time, this energy can be computed as the integral of
the instantaneous power over the period of interest:

AV Vi
2T it = c-vdd/ MVour=C-VZ,  (B.2)
0

Evdd:/0 |vdd-Vdddt:Vdd/0 C-

Thus, every time a capacitive node switches from groungyto an energy of3~VdZd is con-
sumed. The power drawn from the supply is given by,

Paynamic=C- freQ‘ded (B.3)

It is important to note that slower circuit (i.e. lofreg) consume less power not less energy,
and that power is a function of the voltage squared, therefore it is n@mneto reducé/ygq.
The failure of Dennard’s scaling depends on the impossibility of decrg¥gin

The static power is related to the currents flowing whernMkevoltage is unchanged. Itis
usually referred to as leakage power. Ideally, the transistor has aawairggonsumption when
it is in steady-state. However real system has undesired currentsdléwm the drain to the
source (subthreshold leakage), from the gate to the drain/sourcédaledge) and between the
p and n regions (Band-to-Band Tunneling current). These curretitsase exponentially as
the size of transistors and the threshold voltage reduce (that is anakenr® limit the lower
value of theVyg). After an estimation of these currents the static power is given by,

Pstatic= 1 -Vud (B-4)
The total power consumption of a transistor can be stated as,
Pemos= freq:C-Viy+ 1 - Vug (B.5)

Notice that the switching and the leakage power consumption are the most inipmte
tributions, but not the only one in a real system. As an exampMyiftransitions are not
instantaneous, there could be a period in which both the nMOS and the pM@xstors si-
multaneously conduct, generating a current between power supplyramadgterminals. The
short-circuit powelis the dissipation caused by this currefit (

We found the power consumption of a CMOS, but a processor counts maligns of
transistors. How much power does it consume?
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As a first approximation, the total power can be computed as the sum of Wez pon-
sumption of each transistor. However, the global power consumptioryajiaen time is not
always the same. Indeed, the dynamic power is closely tied to the numbensiktaa that
change state. Therefore it is usual to find a constant A which pre-multiplyotial dynamic
power,

Pror = A- freq-CLoap- V& + lerr - Vad (B.6)

Arepresents the activity factor, that is the fraction of the circuit that is simigcdind it depends
on the workload requestedreqis the clock frequency of the processGrpap is the circuit
equivalent capacitanc¥yg is the supply voltage?).

B.3 The Power Model

How can we compute the power consumption practically?

The use of the equatioB(6) for characterizing a real platform often leads to inaccurate
Power Models which can compromise the efficiency of a control algorithrarelexist differ-
ent drawbacks that prevent the use of such a model,

1. the information of the internal architecture, material, geometry of the gsoceisually
are unknown because protected by intellectual property or becausertquex to model,

2. each component on the chip is different from the others. This is thelsa cariability
issue which depends on the tolerance used during the production préoeshis reason
even though we perfectly know the architecture we will encounter lowracgu

3. the ageing effects can modify the behaviour of the system;

4. the parameteA that represents the relation between power dissipation and workload is
unknown.

For all these reasons the Power Model used in this thesis has been idafitdigtly from
measurements obtained from a Ifteserver system S7000FC4URLt runs four quad-core
Xeon® X7350 processors at 2.93GHz and has a total memory capacity of 166! loa
FBDIMMs. The Xeof® X7350 consists of two dual-core Core architecture dies in a single
package. Each of the two dual cores share a common 4MB sized L2 cache

1Those experiments were conducted by Andrea Bartolir)n (
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The power profile of the platform has been characterized performieg gwats of tests.
The first test consists in running a power virus — a task that maximizes ther powsumption
of the CPU — in order to extrapolate the static power of each core. Indeetyttamic power
can be obtained subtracting the idle power (the power when all coresrast condition) from
the maximum power measured, and the static power by subtracting the dynamac fpom
the TDP specification, that is,

Paynamic= Pvax — RpLE (B.7a)
Pstatic = Prop — denamic (B-7b)

The second test investigates the contribution to the whole power of voltab&egquency.
The experiment consisted on the one hand in forcing the cores to switclieiediffrequency
values without scaling voltage, and on the other hand in scaling also voltameparing the
results obtained by scaling frequency (DFS) and scaling both freguamtvoltage (DVFS),
DVFS shows that voltage reduction accounts for up to 10% of total sysaemgs. Focusing
on the dynamic power reduction, it is super-linear on the frequency gcator for DVFS
(for a decrease in frequency by 1.83, the dynamic power reduce®byad 2.86 for power
virus and a memory bound benchmark respectively), whereas for DESuib-linear (for a
decrease in frequency by 1.83, the dynamic power reduces by 1.6B4Bdespectively)3).
The results of the test has been used to fit the parameters of a simple ahaigiiled of the
dynamic power at different voltage and frequency levels.

The third test goal is to characterize the relation between the core ponguroption and
the workload at different performance levels. Indeed the previotibésdeen performed run-
ning the same power virus. In this test a set of synthetic benchmark withiatiffenemory
utilization has been executed on processors, which has been foragea &b different perfor-
mance levels. For each benchmark has been extracted the clocks patiostfCPI) metrics,
that quantified the workload on the processor, and it has been codreldtethe power con-
sumption. Note that the CPI is correlated to the activity faé&@resented in the previous
section.

The simple model used in test two fits well for high CPI, but not for low orfeer&fore, a
new analytical model has been adopted. The dynamic power is given by,
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Figure B.2: Per-core Power Based on Activity.

whereas the static power,

Patatic = Z- Vg - T2 - €K1 (B.9)

whereka =2.13e— 3, kg = —1.45,kc = —4.1376,kp = 0.0051 kg = —0.3016,Z = 2.5%+ 02,
K =1.38—-23,q=1.60e— 19,V is the threshold voltage, afidis the temperature.

These two equations constitute thewer Modelwe used in the thesis (sometimes referred
to asfreq2powmodel). It relates the power consumption of the processor to the workload
(CPI), the clock frequency, the voltage supply and also the temperature.

It is worth to note that in order to simplify the inversion of the Power Model, yeadic

power can be simplified as,

Paynamic= a- freq® +b- freq+c (B.10)

wherea = 1.54%—6,b = 5.1e— 3-CPI1793016_0,002003,c = 2.37— 4.138-CP| 03016

Notice that the supply voltage disappear from the function used to computsyiaenic
power. However, the contribution of the voltage is incorporated inside theaefrec?. This
because th¥q is a nonlinear function of the frequenclg(freq)). It is common to find in
literature thefreqand theévyq related to the power with a function proportionalfi@g” where

l<y<?.
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B.4 The Thermal plant

The transistor scaling trend dictated by the Moore’s Law will persist alsoem#xt future.
As a result the power densities on the chip exponentially increase caugmgemperatures
that affect the reliability of the processors. Heat dissipation has becdwmg mssue for the
development of high performance MPSoCs.

From a construction point of view, the architecture of a chip is designedssipdte the
heat generated from the active silicon device layer. The heat is ctatttirough the silicon
die, to the Thermal Interface Material (TIM) which, filling the gap betweeneamial asperities,
reduces the contact thermal resistance (seeB:RBa). Then, the heat flows through the heat
spreader and the heat sink and finally is convectively removed to the ararien

Heat Sink

ﬁ
Heat Spreader

Figure B.3: Chip thermal architecture.

In order to develop a correct thermal management strategy it is negéssaiild a model
where to test the control algorithm before implementing them on a real hegdwidsing a
model of the system (that in the follows we will call as plant) guaranteegéiffedvantages:

e it measures all the parameters;

e it allows the designers to rapidly modify the control algorithm;

e it allows the designers to rapidly change the chip architecture under exam;
e it saves time and costs;

e it avoids hardware breaking.

The dynamic thermal management techniques implemented in this thesis havesbean te
on two different type of simulators, one realized in Matlab/Simulisjkehvironment, the other,

more accurate and complex, is based on Singgs (
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B.4 The Thermal plant

B.4.1 Matlab/Simulink Simulator

The thermal model of a generic processor takes as inputs the freqemeyorkload (CPI),
the voltage and the ambient information and it returns, as output, the tempemadprof the
system (see FidB.4).

freq

vdd :
— Thermal Temperaturcé

Ambient Model
Temperature

Power Power Temperature
Model Model

Figure B.4: Thermal Model.

It is widely known that the relation between the aforementioned inputs andrtipetature
is nonlinear. However, the nonlinearity affects only a part of the relatf@mone between the
frequency, voltage, CPI and the power consumption. Instead the forthabcorrelates power
and temperature is linear. For this reason, the thermal model can be obtaitvenl steps,
first executing a nonlinear function to find the power, and then, a linegwtifun to find the
temperature, that is,

T= EF(PTOTaTambient) = EF({J)(freq,CPIand);Tambient) (B-ll)

whereJ(-) and®P(-) are respectively a linear function and a nonlinear functiois the tem-
perature of the processor afghpientiS the ambient temperature. In detdhl) is the Power
Model we discussed in the previous section. Thus, we can assume tatkribetice that the
definition of an accurate Power Model is quite a hard task and represemtgial issue in
thermal control of MPSoCs. In the rest of the thesis, accordin®ibdf and B.9), we will
considerP(-) equal to the Power Model,

Pror = denamic+ Pstatic =
(B.12)

—aM

ka- freq-VZ,+ ks + (kc +kp freq) -CPI€ 4+ Z . Vyq- T2 e®T
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TheJ function, that we call Temperature Model according to the Big, could be developed
using different mathematical instruments. A partial differential equation reagribe the heat
flow inside a volume, as well as an analytical function where the paramegakeatified from

the measurements. We chose a finite element approach which guaranteespaarision and

a relative low computational complexity)((8). We assumed the chip as a volume composed
by two layers: a silicon layer that represents the die and a copper layeefinasents the heat
spreader. We decompose the layers in elementary cubic cells. Then exgptlodivwell-known
duality between heat transfer and electrical phenomena we associath toelaa RC circuit,

as shown in FigB.5.

= ®T T O N

5 O A = == =N

Figure B.5: Finite element approach: equivalent electric circuit.

The current is the heat flow, the voltage represents the temperatunediffe R is the
thermal resistance and C represents the thermal capacitance that mottelsdieat behavior

of the cells, i.e. the time necessary to reach the new temperature after theipowehange.

Each cells is composed by a resistor for the vertical thermal dissipatigetselyRs;y,
Recuy for the silicon and copper cells), four resistors for the horizontal thiedesipation Rsip,
Rcuh), a capacitancelgj, Ccy) and a current generator or a voltage generator depending on the
belonging layer. The former represents the power dissipated by the adicon cell, while

the latter represents the ambient temperature close to the heat spreader.
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Connecting the circuit of each cell to the neighbors we obtain the model:

T k:i N Teuk — Tsik 9", neighi — Tsik
"“Csi Csi-Rsiv i; 2-Csi- Rsjn

#neighs
Tsik—Teuk  Te — Teuk I Teuneighi — Teuk

Touk= + +
cuk Z 2-CeuReun

Ceu- RSi,v Csi- I:\)Cu,v i=
whereTs;k andTcyk are respectively the temperatures of kheth cell of silicon and copper,

(B.13)

andTsineigi andTcuneigi are respectively the neighbors of tke-th silicon and copper cell.
The model is linear and can be re-written as,

X(t+1) = AX(t) +B Rei(t) +Bawvs Tams(t)

T(t) = C X(t) (B.14)

wherex(t) is the state vector containing all the cell temperatures atttjiiés the state matrix,

B andBawp are the input matrixP.e is the input vector containing the power dissipation of
each cellTavg is the ambient temperature informatidnis the vector containing the measured
temperature, an@ is the output matrix.

It is worth to note that, althougkrepresents the temperature of all the cells in which the
processor has been decomposed, only few of these values can heeddas real processor.
Indeed processors has few thermal sensors for monitoring chip tenmasragually placed in
strategic positions. Theé matrix selects a subset of temperatures which represent the measured
temperatures. In this thesis we assumed to have one sensor per coderpigoeenter, imaging
to find here the highest temperatures (there exist techniques to optimize #ternoaf the
sensors9)). Another assumption of this thesis is that only cores are actuated, thadyithe
power dissipation of the cores can be directly modified. The other comsooeithe chip, as
cache, are indirectly controlled through the cores. Also this limitation is nohalia because
the highest power density are consumed on cores where usually the anggrdus thermal
challenges occur.

As an example, the Fid3.6a shows the approximative layout of the X&iX7350 (L0)
where only cache and cores has been considered. The paraméiess shown on the right,
has been set according to the material properties and by comparing thedtmpeesponse
of the model with the response of the real processor. Bigp shows the results of these tests
for one core. The dash&dot line shows the temperature measurementgaw/iiee dashed
curve shows the input power step. The parameters set allow us to findaite € values of the
equivalent circuit Rsjy = 1.6°K /W, Reyy = 150K /W, Rsjh = 22.9°K /W, Reyn = 1.2°K/W,
Csi= 1le—3J/°K, Coy = 1.2e— 23/°K).
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Figure B.6: Approx. Intef® Xeor® X7350 Floorplan.

Each core has been decomposed in 24 silicon cells and 24 copper cetlsovdi on the
chip can be present other components as for instance caches, eugh these components
cannot be directly controlled with frequency and voltage knobs. Freylevorkload, and
voltage of the four cores have been converted into power dissipatiog trenPower Model
as an interface function. The cores power feeds the Temperaturel Mbddh returns the

temperatures of the measured cells. Bgl shows the temperature of all cells interpolated
along space.

330
320

310

Figure B.7: Temperature map.
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Finally, it is worth to note that the Power Model is different for each platforfNever-
theless, in this thesis we assumed the Power Model as a universal funalidrior all the
processors. Although this assumption is not technically correct, the tagaithms pre-
sented in this work are not affected by the nonlinear function that couklbstituted with
any others. However, in almost all the architectures we consideredijededrkeep the same
proportion with the original architecture (e.g. duplicating the floorplaniregéhe dimensions
and the parameters)

B.4.2 Simics Simulator

The Matlab/Simulink simulator has been used as first environment where toutesbntrol
solutions. However, this simulator presents different limitations: it relies @etdaiven sim-
ulations and it disregards the dependencies existing among power, treffetd) reliability
and performance. In order to take into account the interdependeratigsdn control actions
and workloads, we test our solutions on a full-system virtual platform. glaiorm relies on
a established system simulator called Simi&swhere models for estimating the power con-
sumption, the temperature distribution and the aging have been integrateatcfehiaed from
real hardware). Simics is a commercial instruction set simulator that modets@eate multi-
core platform based on in-order x86 cores with memory, 1/0 interfacgé®parating systems.
We configured Simics to emulate the X7350 Ifftetore which comprises four Pentif®n4
cores. Simics simulates each x86 instruction in one CPU clock time period. darador
memory latency, and different execution times for different instructions Sitoeds a cycle-
accurate memory timing-model called RUBY belonging to the GEMS ¢ollection. During
simulation, RUBY is called from each core before executing each memogssicdt deter-
mines the latency of memory accesses and stalls the target core until theynelaakée finishes.
The RUBY and Simics cycle periods are the same. RUBY also contains a moduésatling
Simics performance counters every arbitrarily chosen N cycles. Thacéstr data refer to
the number of instructions retired, the clock cycles and stall cycles exgirechalt instruc-
tions and other core events. Then, these data are used to compute threcposiamption
and the temperatures of the chip. To compute the CPU power consumptioravike FAodel
(B.8)-(B.9) has been integrated as a RUBY module. The power dissipated by memories ca
obtained by multiplying the memory usage (extracted by counters) by the peterated us-
ing CACTI in different working states. Also the thermal model has beeniiated as a RUBY
module. It is the finite element model showed in the previous Section and it talkgsLas the
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powers computed by the power module. The simulation time required by the \ptaiedrm
to execute 1 billion instructions is 1240

. . «Q
Temperature Model  |[MATLABLL AT Simulink ;
Interface| | Controller | S R itinininieieleleleled
e, PL1, PL2 = T L f
i« . — = jCONTROLLERHPLANT MODEL [—!
Power Model £ ) £l | E2 Tmax, P* |2 cmmmmmm e oo d
£

fi =) J'E_, E
— 0.S. ]
(@]

CPU1 ([ CPU2 | wereremencnes CPUN T Tmas, P* f N r
smics(__,
L2 [ 12 ]

[ Network |

DRAM HW

SIMICS

(a) (b)

Figure B.8: (a) Virtual platform architecture; (b) Control developmetrategy.

The next step is to implement the control algorithm on the simulator previoustyided.
In order to simplify the control algorithm integration in the virtual platform a RUBodule
has been added to support the MATLAB engine library. This latter allowsdgrams to
use Matlab as a computational engine. At initialization time the virtual platform dtaets
MATLAB engine process that executes concurrently to the simulator. ,TiienSimulink
controller model is loaded and initialized, and two communication channels tglisised
between the RUBY module and the Simulink control algorithm. The first chgmoeides
input to the control algorithm. The second one leads controller outputs torget samulated
system. At each sampling instant of the controller:

1. the Simulink controller initializes with the past internal states;

2. the performance counters are read and the data sent to the Matlainerest;
3. one step of Simulink simulation executes;

4. RUBY reads the data from Simulink (core frequencies);

5. Simulink saves the internal state

Fig. B.8a shows the architecture of the virtual platform. Instead, Bi§b shows the steps re-
quired for the development of a control algorithm. First, the controller ddsigarried out in
the MATLAB/Simulink framework providing preliminary tests and rapid desigjusitinents.
Then, the tuned controller is directly interfaced with the virtual platform, eiiptpthe MAT-
LAB/Simulink interfacing features. For more details on the virtual platfornmiéecture refer
to (3).
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B.5 Performance

B.5 Performance

In this thesis we often use the term performance for assessing the gsaufreecontrol algo-
rithm. However, the definition of the performance metrics depends on thieysar applica-
tion the processor is used for. As an example in a data center we aretiedierethe average
throughput, whereas in a smartphone it is far most important the respaass, that is to re-
spond fast to a request provided by the user. The main performande metse in this work
is the maximization of the frequency. Indeed, we expect that the higher otkespeed and
the lower is the task execution time (it depends on the number of instructionsrogeam).
Thus, considering DFS or DVFS techniques for thermal and power neamad, it is clear that
these mechanisms necessarily affect performance, since impose entgglecrease.

The usual way to measure performance is to use benchmarks — prqugeifically chosen
to measure performance — that form the workload of cores (i.e. the gebgfam runs). In
order to test our controller we chose a benchmark suite called PARSEC&®Rn Application
Repository for Shared-Memory Computer&P) that collects multithreaded programs. The
suite focuses on emerging workloads and was designed to be reptiesaritaext-generation
shared-memory programs for chip-multiprocessors. We select somer-@ase benchmark:

Fluidanimate used for simulating the fluid dynamic for animation purposes with Smoothed
Particle Hydrodynamics (SPH) method;

Facesim used for simulating the motions of a human face;

Bodytrack used for the body tracking of a person;

Raytrace used for real-time raytracing;

Dedup used for next-generation compression with data deduplication.

Since our simulator is not designed for taking as input tasks and threadw;ofiled the fre-
guency, the CPI, and the power consumption behaviors by running lteesémark on a real
platform (the InteP server system S7000FC4UR which runs four quad-core ReXi350
processors at 2.93GHz and has a total memory capacity of 16GB bas&DdkMs).

Fig. B.9 shows the traces obtained for the benchmark Fluidanimate for the core 1. In

electronic devices the clock determines when events take place in the hewrdia discrete
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Figure B.9: Fluidanimate traces.

time interval are calledlock cyclesand the frequency of the processor is usually expressed as

clock ratethat is The execution time of a program can be expressed as,

1
clock period

Execution time= Clock cycles frequency

The number of clocks constituting a program can be achieved by multiplyingtdenumber
of instructions by the average clock cycles per instructi8).(The average time each instruc-
tion takes to execute is defined as clock cycles per instruction (CPI).ndepeon the type
of instruction the CPI varies (i.e. the lower is the CPI the lower are the aexéssnemory).
In this thesis the CPI is computed as the ratio between the clock un-halted ayobdéerence
frequency and the instruction retired in the observed period. This mepiegses an instanta-

neous workload measurement.

B.6 The SCC platform

The Single-chip Cluod Computer (SCCQ)j is a 48-core experimental processor created by
Intel Labs. It supports on-chip message passing application, Networkzhip (NoCs) com-
munications, and DVFS mechanisms. It is implemented in 45 nm high-K metal-gateSCMO
and it contains 1.3 billion transistors in a total die area ofrb6.
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B.6 The SCC platform

Architecture. The cores are P54C CPU with x86 architecture. Each of them belongs to a
tile that can accommodate two cores. The tiles are arranged indadid. On each core we
can boot an operating system (Linux 2.6.38 kernel) which works inaigely from the others.
Each core has private L1 and L2 caches (16KB and 256KB respggtivCache coherence is
managed through a software protocol as opposed to commonly useddnaghetocols. Each
tile has a 54-ports, high-speed, and low latency router to connect witighbwing routers
and set a 2D-mesh on-die network. According to Big.0each tile has also a Message Passing
Buffer (MPB) used to increase performance of a message passg@gprming model whereby
cores communicate through local shared memory. Tile performance isledatabh 300 MHz
at 700 mV to 1.3 GHz at 1.3 V. The on-chip network scales from 60 MHz atrd¥ to 2.6
GHz at 1.3 V. The design target for nominal usage is 1 GHz for tiles and 2 fGHthe 2-

D network, when supplied by 1.1 V. Each tile in the SCC contains two ring-osmilllased
thermal sensors

fe——3.6mm ——

L23 Core foe——— 26.5mm ——
£ TILE §
E|Router)  |MPB "

N o
n
a|g
£

L2$ Core PLL | ;mas <

@) TILE u|N

= = }

) ™

o o

[a) [a)

[a) [a)
Systemnterface 110 !

Figure B.10: SCC architecture.

Message PassingThe SCC includes an on-chip message passing application framework,
named RCCE, which is a lightweight message passing library developetebgria optimized
for SCC. It uses the hardware MPB to send and receive messagesiing the use of the
network layer abstraction and the TCP/IP protocol overhead for egihg messages among
different physical cores. The library uses the two primitipes and get to efficiently move
data respectively from the L1 cache of one core to the MPB of anotlegrama from the MPB
to the L1 cache of the same core.
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DVFS. The processor presents 8 Voltage Islands and 28 Frequencydstarthged with
software-based DVFS techniques. The voltage islands are controlle®#GfR (Voltage Regu-
lator Controller) that contains two voltage regulators and it is addressglalecoy core (Volt-
age range:[0,1.3]V with 6.25mV steps). Two voltage islands supply the 2D-mesh and die
periphery, with the remaining 6 voltage islands being divided among the cese 24 out of
the 28 frequency islands are associated to the tiles, one for the 2D-nk#trea for the sys-
tem interface, VRC, and memory controllers, respectively. Unlike voltagages, frequency
can be changed faster (28vs about Insfor voltage changes).
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Appendix C

Accurate Model

In this Appendix part of the code used for simulations is presented.

C.1

In this

The plant

Section is reported the Matlab code used to create the accurate tmeoahell (the

simulator) for testing our control algorithms.

The code has been split in part in order to simplify the comprehension todberme

C.1.1 Global parameters
1 clear all
2 clc
3
4 %% 0
5 %VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VIR VVVVVVVVVVVVVVVV VY
6 QO TR TR T
7 %9%6%%%%%% %% %%%% %% % %% %% % % % %% %%%%%%% % %8%80%Y
8 %%%%%%%% % %% %% %% %% %%%%% %% %%  GLOBAL PARAMETER%%%%%%%%%%%%%04
9 %%%%%%% %% %% %% %% % %% %% %% % % %% %%%%%% %% %8%80% Y
10 QoI TR R T T
11 %AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA LA AAAAAAAAAAAAAAAAAA
12
13 N_CORE = 8; % Number Of Cores
14 N_COMP = 20; % Number Of Components (Cores,Caches,Empty Areas)

R e~ S =
© © ® N o O

% Set the type of thermal model

%Type
%Type
Type =

= 'Reducedl1lL’; % 1 Layer 1 cell per core
= 'Reduced2l’; % 2 Layer 1 cell per core
‘Full2l” % 2 Layer many cell per core
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C. ACCURATE MODEL

% Layout definition

Filename_FLOORPLAN="floorplan8.txt’ ; % floorplan
Filename_SENSORS="sensors8.txt’ ; % Sensor location
Filename_HOTSPOT="powers8.txt’ ; % power distribution

% Each core has 4x6 cells each of them with dimension 1312x131 2
Chip_Dimensions.h=5248+5248+2624+5248+5248; % Height
Chip_Dimensions.L=7872+5248+5248+7872; % Width
% Ambient temperature (in the case of POD set 0

Tenvironment =310; % [K]

In this first part the global parameters are defined. The user mustesetithber of cores
and the total number of components belonging to the chip. As an example ttespoo pre-

sented in FigC.1has 8 cores and 20 components. Notice that it is not possible to have compo-

nents with more than a neighbor on the same edge. In this case it is requipid tioessingle
real component in more parts. Each cache in figure has two neighles aorthe same side,

hence we need to split the cache in two parts.

|«——Chip_Dimensions.. —|

Empty space - =) =) mp:10-| comp-11-|-Compi 13

a
m
C

|~——{ysuoisuaLLIg dIyD —]

Figure C.1: Layout definition

Then, the user must select the type of model he wants to build. The appread to build
the model lies on the finite element decomposition described in Appdhdilkke processor
volume is split in cells each of which is associated to an equivalent electridi@@t The

program allows the user to create:

e models with 1 layer and 1 cell per component;
e models with 2 layers and 1 cell per components (total 2 cells);

e models with 2 layers and many cells per components;

Since we need an extremely accurate model and the accuracy increasieewitimber of
the cells we decided for the third alternative. Notice that the first two soluiom®btained
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C.1 The plant

from the third solution making the parallel of all the vertical resistances ot¢lie compos-
ing a component, the parallel of the horizontal cells linking the component toetgbor
component and neglecting the horizontal resistances between the cealltimsidomponents.

The layout of the processors is described inside 3 textual files the namesiah are
assigned to the variableBilenameFLOORPLANFilenameSENSORS-ilenameHOTSPOT

Finally, the dimensions of the chip and the initial ambient temperature are defined

C.1.1.1 Layout Files_Generation.m

© O N o o0 b W N P

NONNN B R R R R B R R R
W N P O © ® N o o h W N P O

24

25

26

27

28

29

30

31
32

%% 0

%VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VI VVVVVVVVVVVVV VWV Y

ol 1IN
%%%%%%%6%6%6%6%6%6%%6%6%% % % % %%

%%%%%%%%0%0%%%%%%%% %% % %% USER DEFINITIONS

%6%%%%%%6%6%6%6%6%6%6%6%6%%% %% %%
ol 1NN

(e
%6%%%%%%%6%6%6%6%6%6%6%6%6%6%4
Y WU
%6%6%%%%%%%%6%6%6%6%6%6%%%4
(e

%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAA

% Cells per core
core_cells_num_height = 4; R Modifiable by
core_cells_num_width = 6; R Modifiable by

% Cells per cache
cache_cells_num_height = 4; % <-mmmemmeeees Modifiable by
cache_cells_num_width = 4; % <-mmmmemeeee- Modifiable by

% Cells subsampling (e.g. if subsplit_height=2 then core=4
subsplit_height = 1; % <-mmmmmmmeeeeeen Modifiable by
subsplit_width = 1; R Modifiable by

% Matrices of ones with the dimensions of the cores and caches

core = ones(core_cells_num_height * subsplit_height,
core_cells_num_width * subsplit_width);
cache = ones(cache_cells_num_height * subsplit_height,

cache_cells_num_width * subsplit_width);

% Sensor position in cores and caches (1 where there is the sen

core_sens = zeros (core_cells_num_height * subsplit_height,
core_cells_num_width * subsplit_width);

core_sens(2 *subsplit_height, 3 *subsplit_width) = 1;

% <-mmmmmmmememee- Modifiable by the user
cache_sens = zeros (cache_cells_num_height * subsplit_height,
cache_cells_num_width * subsplit_width); % <-mmmmmmmmmmeeeen

user

% Power distribution in cores and caches
% The total power of the component is divided by the maximum nu
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34
35
36
37

38

39

40
a1
42
43
a4

45
46

a7
48
49
50
51
52
53

54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74

C. ACCURATE MODEL

% assigned to the cells and the results is divided by the numbe r of cells
% with the same number to find the single cell power consumpti on
% Example: core=[1 1 11 1;1 232 111111]->1 cells have a powe r
% equal to Pow_TOT/3/12, P(2 cells)=Pow_TOT/3/2, and P(2 ce lIs)=Pow_TOT/3/1
core_hot = ones(core_cells_num_height * subsplit_height,
core_cells_num_width * subsplit_width);
core_hot(1 subsplit_height+1:3 * subsplit_height, 1 * subsplit_width+1:5 * subsplit_width)
= 2; % <---mmmmmmmmeeees Modifiable by the user
cache_hot = ones(cache_cells_num_height * subsplit_height,
cache_cells_num_width * subsplit_width); % <-mmmmmmmmmeees Modifiable by the
user

% Floorplan definition using previously defined patterns

floorplan=[core 2 xcache 3 xcache 4 xcore;

5+core 6 *cache 7 xcache 8 xcore;

9+ ones(2 *subsplit_height,core_cells_num_width * subsplit_width)
10+ ones(2 *subsplit_height,cache_cells_num_width * subsplit_width)
11*ones(2 *subsplit_height,cache_cells_num_width * subsplit_width)
12*ones(2 *subsplit_height,core_cells_num_width * subsplit_width);

13+core 14 *cache 15 *cache 16 xcore;

17+core 18 *cache 19 *cache 20 *core]; %o <-mmmmmmmmmeeen

Modifiable by the user

% Sensors Layout definition using previously defined senso rs patterns
sensors=[core_sens cache_sens cache_sens core_sens;
core_sens cache_sens cache_sens core_sens;
zeros (2 *subsplit_height,20 * subsplit_width);
core_sens cache_sens cache_sens core_sens;
core_sens cache_sens cache_sens core_sens]; R
Modifiable by the user

% Power Distribution definition using previously defined p ower patterns
power=[core_hot cache_hot cache_hot core_hot;
core_hot cache_hot cache_hot core_hot;
ones(2 *subsplit_height,20 * subsplit_width);
core_hot cache_hot cache_hot core_hot;
core_hot cache_hot cache_hot core_hot]; % <-mmmmmmmmmeeen
Modificabile da utente

%% 1
%VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVV VY RRKXK VYV VVVVVV VWV VYV VY
ol I T

%%%%%%%%9%%%%%%%% %% %% %% %%%%%%%%9%0%%%%%%%% %4
%%%%%%%%9%0%%%%%%%%% %% %% WRITING OF FILES %% YWV VWV
%%%%%%%%6%%%%%%%%%% %% %% %%%%%%%%0%%%%%%%%% %4

R (e
WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASKNNMAAAAAAAAAAAAAAAAAAA

% Floorplan
floorplan_filename= 'floorplan8.txt’ ;

230

0%%%%
P0%%%
©%%%%



75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
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94
95
96
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100

101

102

103

104

105

107
108
109
110
111

C.1 The plant

fpl = fopen (floorplan_filename,
for i=1: size (floorplan,1)
for j=1: size (floorplan,2)
fprintf  (fpl, strcat(
end
fprintf (fpl, "\n’ );
end
fclose (fpl);

% Sensors Layout
sensors_filename=

fp2 = fopen (sensors_filename,
for i=1: size (sensors,1)
for j=1: size (sensors,2)
fprintf  (fp2, strcat(
end
fprintf (fp2, "\n'" );
end
fclose (fp2);

% Power Distribution
power_filename= 'powers8.txt’

fp3 = fopen (power_filename,
for i=1: size (power,1)
for j=1: size (power,2)
fprintf  (fp3, strcat(
end
fprintf (fp3, "\n" );
end
fclose (fp3);

'sensors8.txt’

w);

num2str (floorplan(i,j)),

num2str (sensors(i,j)),

w);

numa2str (power(i,j)),

ey

AC));

\E))

These are the instructions used to generate the three files previously rednfshrown

in Fig. C.2. In the first part of the code the number of cells composing the coreofand

the caches are defined. Then the matritesrplan sensorsandpowerare created by the

user. Each element of the matrix is associated to a single cell of the siliconTdaedtoorplan

matrix assigns the cells to the components by numbering them. The cells belontliagéme

component have the same number. The numeration of the components is frft thehe

right and from the top to the bottom. Tlsensorsnatrix localizes the sensors position. A cell

contains a temperature sensor if the correspondent value in the matrixaslsetherwise its
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value is 0. Thegowermatrix instead defines the power distribution in the components. Wether
the power consumption of the whole component is equally dissipated by alletiseticen

the elements of the matrix associated to these cells have the number 1, otheewdszern
different areas with different power consumption by numbering the cdélfsimcreasing value.
Then, the total power is equally divided by the number of the defined arebsubsequently by
the number of cells belonging to that area in order to find the single cell poweumption.

To better understand this mechanism, let us consider the core 1 iI€RRigThe number of
areas in the power matrix of core 1 is 2. This means that each region casisume

Po Po
POWegion1 = V\ZIFOT POWegion2 = V\Z,FOT

The power dissipated by each cell can be obtained as,

Powegiont POWegion2
PoWelis1 = —75~~ POWegionz = —g

In the second part of the code the matrices are saved in a text file.

ENCC N VN
coam N NN
coam N NN
ECRC N VR VRN
NNNWwWwww
NNNWwWwww
NNNWwWwww
NNNWwWwww
EEE R RS
PRI NENNN
PRI NENINN
PRI ENININ
PRI NENINN
RSSO

1
1
1
1
5
5
5

[
[OOSR TSN

56666 77778888288
910101010 11 11 11 11 12 12 12 12 12 12
99999 9101010101111 111112121212 12 12
131313131313 14141414 151515 1516 16 16 16 16 16
131313131313 1414 1414 151515 15 16 16 16 16 16 16
131313131313 1414 1414 151515 15 16 16 16 16 16 16
131313131313 14141414 151515 15 16 16 16 16 16 16
17171717 17 17 18 18 18 18 19 19 19 19 20 20 20 20 20 20
17171717 17 17 18 18 18 18 19 19 19 19 20 20 20 20 20 20
17 1717 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 20 20
1717 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 20 20| 000

floorplan8.txt sensors8.txt powers.tx

1
1
1
1
5
5
5
5
9

R
VUL L LS oo

©cooococoocoocoooocoococoooooo
©coocoococoocooooocoocoocoocooooo
©cooocoocoococoooocoocoocoooooo

coocoocococoo0oocoocoocoooooo0o
cooocococoooocoococooooooo
co-o0coco-0o00o0o-000-=o0
cooococoococoooococoocoooooo
cooococoocoooococoocooooooo
cooococoocoooococoocooooooo
coocoococoocoooococoocooooooo
coocoococoocoooococoocooooooo
coocoocoocoocoooococoocooooooo
coococoocoocoooococoocooooooo
cocococoocoocooocoocoocoocoooooo
cocococoocoocooocoococoocooooooo
cocococoocoocoooocoocoocoocooooooo
co-oc0ocoo-0o0o0cocoo-—-000=o0
cocococoocoocooocoocoocoocooooooo
cococoocoocooocoocoocoocoooooo
cococooocoocoo0ooo0o0o0o0o0o000o
B N L VL I T T VI VR UR VI
B N N I VL I T U I I Ui N
B N N T VT VI F R N L
B N N N NI N L VL VI Vi Vi
T N N N N I N Ul P
N N N N I N Tl P
N N I N U C N P SN
R N N N N I CJ N Ul S

Figure C.2: Layout files generated by the functibayout Files Generation.m

C.1.2 Input Pattern Generation

1 %% 1

2 %VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV RN VVVVVVVVVVVVV VWV VY

3 S A A (T

4 %%%%%%%% %% %%%%%%% %% % %% %%%%%%%% %% %% %%%%%% %0 %% %%
5 %%%%%%% %% %%%%%%%%% %% %% INPUT PATTERN GENERATI@i%0% Y8%R%A%%8%0 %0 % % %%

6 %%%%%%% %% %% %%%%%%% %% %% %%%%%%%% %% %% %%%%%%%0%% % %
7 S A A (T

8 %AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAAAAAAAA

9

10 % Simulation time information
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C.1 The plant

Time = struct();
Time.Start = 0;
Time.End = 30;
Time.Points = 30000;
Time.FrameRate=20;
vis.)
Time.Step = (Time.End - Time.Start)/Time.Points;
Time.array = (Time.Start:Time.Step:Time.End)’;

% Input vector with environmental temperature
Tenv = ones( length (Time.array),1)

% Power Input initialization
clear PowerCPU Power PowerCache
Power = zeros (length (Time.array),N_COMP);

PowerCPU = zeros (length (Time.array),N_CORE);

% Input cores power: Steps

% PowerCPU(:,1)=[zeros(floor(Time.Points/18),1); 30

zeros(floor(Time.Points/18 *16)+3,1)];
% PowerCPU(:,2)=[zeros(floor(Time.Points/18

zeros(floor(Time.Points/18 *14)+2,1)];
% PowerCPU(:,3)=[zeros(floor(Time.Points/18

zeros(floor(Time.Points/18 *12)+2,1)];
% PowerCPU(:,4)=[zeros(floor(Time.Points/18

zeros(floor(Time.Points/18 *10)+3,1)];
% PowerCPU(:,5)=[zeros(floor(Time.Points/18

zeros(floor(Time.Points/18 *8)+2,1)];
% PowerCPU(:,6)=[zeros(floor(Time.Points/18

30+ ones(floor(Time.Points/18),1); zeros(floor(Time.Poin

% PowerCPU(:,7)=[zeros(floor(Time.Points/18

30+ ones(floor(Time.Points/18),1); zeros(floor(Time.Poin

% PowerCPU(:,8)=[zeros(floor(Time.Points/18

30+ ones(floor(Time.Points/18),1); zeros(floor(Time.Poin

% Input cores power: PRBS

PowerCPU = [zeros (Time.Points/4,N_CORE);idinput([Time.Points

0.5],[0 25])];

% Computation of the power dissipated by caches (30% of adjac

percentage=0.6;

PowerCache(;,1) =
PowerCache(;,2) =
PowerCache(:,3)
PowerCache(:,4) =

% Total power inputs (all components)

Power=[PowerCPU(:,1) PowerCache(;,1)./2 PowerCache(;,
PowerCPU(:,3) PowerCache(:,1)./2 PowerCache(:,2)./2 Po
zeros (Time.Points+1,4) PowerCPU(:,5) PowerCache(:,3)./2 Pow
PowerCPU(:,6) PowerCPU(:,7) PowerCache(:,3)./2 PowerCa

((PowerCPU(:,1)+PowerCPU(:,3))./2)
((PowerCPU(:,2)+PowerCPU(:,4))./2)
((PowerCPU(:,5)+PowerCPU(:,7))./2)
((PowerCPU(:,6)+PowerCPU(:,8))./2)

% [s]

% [s]

% Number of points

% frame per sec (only for 3D

% Step
% Time vector

* Tenvironment;

* ones(floor(Time.Points/18),1);

*3),1); 30 *ones(floor(Time.Points/18),1);

*5),1); 30 *ones(floor(Time.Points/18),1);

*7),1); 30 +ones(floor(Time.Points/18),1);

*9),1); 30 *ones(floor(Time.Points/18),1);
*11),1);

ts/18 =*6)+2,1)];
*13),1);

ts/18 *4)+3,1)];
*15),1);

ts/18 *2)+2,1)];

*3/4+1,N_CORE], ’prbs’

ent cores)

* percentage;
* percentage;
* percentage;
* percentage;

2).12 PowerCPU(:,2)

werCPU(:,4)
erCache(:,4).12

che(:,4)./2 PowerCPU(:,8)];
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C. ACCURATE MODEL

In this part of the code we described the input pattern applied to the therndal.mo
First, the parameters concerning the time of the traces are specified. ahmust insert the

values in a structure containing the following values:

Start: initial time in seconds;

End: stop time in seconds;

Points: the number of points;

FrameRate: the number of frame per second (used for the 3D visualization).

The time step between two sampling intervals and the array containing all the samplin
instants are computed automatically from the previously defined values.
The ambient temperature is defined as an array. Each element codéspmsampling instants
(we assumed the ambient temperature constant in this case).
Then, it is specified the input power trace. Notice that this trace is used to sithatemper-
ature of the processors. Subsequently, identification approachapgred on the collected
temperature data in order to make the thermal model treatable by the contrbiley, &k this
point of the code it is unnecessary to define the inputs as frequencgRihtitaces and then
convert them into power traces.
The power traceRowerin the code) is a matrix with a number of column equal to the number
of components and a number of row equal to the number of sampling instastswie defined
the power consumption of the cord®verCPY as a PRBS input ranging fromADto 25M.
Then, for the sake of simplification, we defined the power consumption atablees Pow-
erCachg¢ as the 30% of the power consumed by the adjacent core. There$aaa, example,
at every sampling interval the power consumption of the cache number liastecthe mean
of the power consumption of the cores number 1 and 3 multiplied for the 30%ull\sithe
PowerCPUand thePowerCachematrices are combined to obtain the fifalwer vector(the

empty components have zero power)

C.1.3 Thermal Model Generation
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%% 2
%VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVVRRKEK VYV VVVVVV VWV VY
ol 1IN (e
%6%%%%%%6%6%6%6%6%6%6%6%6%%% % %% % %6%%%%%%%6%6%6%6%6%6%6%6%%6%%64
%6%%%%%%6%6%6%6%6%6%6%%%%%%%%%  THERMAL MODEL GENERATON069%6%6%46%
%%%%%%6%6%6%6%6%6%6%6%6%6%6% % % % %% %%%%%%%%6%6%6%6%6%6%6%6%6%6%64
ol I T

%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAA

% Accurate Thermal model creation

Continuous_Discrete = -1; % 1 discrete time, -1 continuous time

[A,B,C,D] = mat_modeling(Filename_FLOORPLAN, Filename_ SENSORS, Filename_HOTSPOT,
Chip_Dimensions, Type, Continuous_Discrete);

TModel = ss(A,B,C,D); % SS object creation

X0 = ones( size (A,1),1) =*Tenvironment; % Initial condition

% Continuous time simulation
Temp = Isim(TModel, [Power,Tenv], Time.array, XO0);

% Modification of C to measure all the states

TModelX = ss(TModel.a,TModel.b, eye ( size (TModel.a,1)), zeros (size (TModel.a,1),
N_COMP+1));

x_plant = Isim(TModelX,[Power,Tenv], Time.array,X0);

%%%%% %% %%%%%%%%% %% % % %% %% 3D visualization %% YW W W WYYV 0 %0%% %% %%
% Setting Parameters
data.OUT=x_plant(:,1: size (x_plant,2)/2);
data.IN=PowerCPU;
visual.OUT.xmin=1;
visual.OUT.xmax=20;
visual.OUT.ymin=1;
visual.OUT.ymax=18;
visual.OUT.zmin=310;
visual.OUT.zmax=460;
visual.OUT.x=1;
visual.OUT.y=1;
visual.OUT.z=1;
visual.IN.xmin=0;
visual.IN.xmax=2;
visual.IN.ymin=0;
visual.IN.ymax=4;
visual.IN.zmin=0;
visual.IN.zmax=30;
visual.IN.x=10;
visual.IN.y=-10;
visual.IN.z=10;

% visualization function call
Visualization3D(data, Time,visual,1)

10%%%%
1%%

0%%%%
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C. ACCURATE MODEL

In order to build the accurate thermal model we exploit the funatiatmodeling.mthat
returns the classical state matrix A, the input matrix B, the output matrix C andeldédirward
matrix D. The matrices are then used to create a SS Matlab object.

Then, the initial temperature of the cells has been set equal to the initial artdrigmérature.
Finally, the model is simulated using th&m function. The function returns as output the
temperatures of the cells measured by the sensors usually located in thelailEofthe lower)
as specified in th€ilenameSENSORSIe. In our case the sensor are 8, one for each core.
In this part of code there are also the instructions to modify the model in tvadatain all the
temperature values of the states (this is useful for the identification base@brapproach
where we assume to have an accurate model of the thermal system leefoceng its size)

and to have a 3D visualization of the processor temperature distribution.

C.1.3.1 matmodeling.m

N o b~ wWwN

10
11
12
13
14
15
16
17

18

19

20
21
22
23
24

function [A,B,C,D]=mat_modeling(FILENAME_FLOORPLAN, FILENAME_  SENSORS,
FILENAME_HOTSPOT, CHIP_DIMENSIONS, TYPE,TS)

% MAT_MODELING. Generate A, B, C, D matrices.

% The function take as input 6 parameters:

%

% - FILENAME_FLOORPLAN: the string of the text file containi ng the floorplan

%

% - FILENAME_SENSORS: the string of the text file containing the location of
sensors

%

% - FILENAME_HOTSPOT: the string of the text file containing the distribution of
powers

%

% - CHIP_DIMENSIONS: a structure with 2 fields:

% -> h = Height of the chip (um)

% -> L = Width of the chip (um)

%

% - TYPE: the string containing the type of the model:

% -> 'Full2l’ for a model with high number of cell and 2 layers

% ->  'Full2LNL" for a model with high number of cell and 2 layer s, but
non linear

% -> ’Reduced2l’ for a reduced model with two cells for each co re and 2
layers

% -> 'ReducedlL’ for a reduced model with one cells for each co re and 1
layer

%

% - TS: the sampling time in seconds:

% -> -1 to have continuous matrices (default)

%

%
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C.1 The plant

cretization

%%

% Example
% [a,b,c,d]=mat_modeling(‘'floorplan.txt’,’'sensors.tx t',’hotspots.txt’, chip_size,
"Full2L’,1e-3);
%
% NOTES: this function uses these functions:
%  fine2L_linear coarsegrain2L coarsegrainllL Full2LNL dis
%
%% 0
QO T I
%%%%%%% %% %% %%%% %% %% %% %%
%%%%%%% %% % %% %% %% % %% %% %% PARAMETERS %
%%%%%%% %% %% % %% %% % %% %% %% CHECK
%%%%%%% %% %% %%%% %% %% %% %%
QO IR
if nargin <5,
error (’'model:mat_modeling:none’ 'The function needs more parameters’
end

if isa(FILENAME_FLOORPLAN, ’char’
error (’'model:mat_modeling:input’
end

if “isa(FILENAME_SENSORS, ’char’
error (’'model:mat_modeling:input’
end

if isa(FILENAME_HOTSPOT, ’'char’
error (’'model:mat_modeling:input’
string.’ );

end

if “isa(CHIP_DIMENSIONS, ’struct’
error (’'model:mat_modeling:input’
fields .h and .L. );

(Cisa(CHIP_DIMENSIONS.L,
error (’'model:mat_modeling:input’
numerics.” );

elseif

end
if Tisa(TYPE, ’'char ),
error (’'model:mat_modeling:input’
end
if nargin <6 || isempty (TS),

)

):

‘numeric’

'Floorplan file name must be a string

'Sensors file name must be a string.’

, 'Power Distribution file name must be a

) || “isa(CHIP_DIMENSIONS.h,

‘the fourth parameter must be a struct with 2

‘numeric’

, 'the fields of the fourth parameter must be

, 'Model type must be a string.’
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%%%%%0%6%%%%% %% %% %% %% %% %% %Y
%09%0%9

%%%%%% % %888860%% %%
%%%%%0%6%%%%%%%%%% %% %% %% % %Y

0%%%
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C. ACCURATE MODEL

TS=-1,;
warning(
model’ );

'model:nimodel:default’

end

%% 1

ol NI
%6%%%%%%%%%%6%6%6%6%6%6%%%% %% %%
%6%%%%%%%6%6%6%6%6%6%6%6%%6%6%6% %% %
%6%%%%%%%6%6%6%6%6%6%6%6%6%6%6%6% %% %
%6%%%%%%%%%%6%6%6%6%6%6%6%6%% %% %%
R

%
clear

Parameters
™

% Reading of the floorplan file

fpl= fopen (FILENAME_FLOORPLAN," );

k=0;

row = fgets (fpl);

while ischar(row)
k=k+1;
TM.components_layout(k,:)= sscanf (row, '%f\t'" )
row = fgets (fpl);

end

fclose (fpl);

% Reading of the sensors file

fp2= fopen (FILENAME_SENSORS)" );

k=0;

row = fgets (fp2);

while ischar(row)
k=k+1;
TM.sensors_layout(k,:)= sscanf (row, '%f\t'" )
row = fgets (fp2);

end

fclose (fp2);

% Reading of the power distribution file

fp3= fopen (FILENAME_HOTSPOT,r" );

power_distribution= zeros (size (TM.components_layout,1),
k=0;
row
while

fgets (fp3);
ischar(row)

k=k+1;
power_distribution(k,:)=
row fgets (fp3);

sscanf (row, '%f\t’

)

end
fclose (fp3);
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,’ Matrices are calculated for a continuous

T
%6%%%%%%%%6%6%6%6%6%6%6%69
%% %% %% RBUIB %6660
%6%%%%%%RBY6%6%6%6%6
%6%6%%%%%%6%6%6%6%6%6%6%69
(T

MODEL
DATA

size (TM.components_layout,2));

0%%%%%%%% %%
%0%%%%%%%
/0%%0%0%0%%%%
1%%%%%%%% %%
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C.1 The plant

% Chip properties

TM.cells_num_height= size (TM.components_layout,1);
TM.cells_num_width= size (TM.components_layout,2);
TM.layer_num=2;

% Cells dimensions

TM.cell_height_Si=CHIP_DIMENSIONS.h/ size (TM.components_layout,1); %[um]

TM.cell_width_Si=CHIP_DIMENSIONS.L/ size (TM.components_layout,2); %[um]

TM.cell_thick_Si=350; %[um]

TM.cell_height_Cu=CHIP_DIMENSIONS.h/ size (TM.components_layout,1); %[um]

TM.cell_width_Cu=CHIP_DIMENSIONS.L/ size (TM.components_layout,2); %[um]

TM.cell_thick_Cu=2057; %[um]

TM.c_Si=1.628e-12; % Si specific heat [j/(K *um”3)]

TM.c_Cu=3.55e-12; % Cu specific heat [j/(K *um”3)]

% Kelvin degree between heat spreader and ambient for dissip ating 1 Watt (package
data)

Kperw=0.4;

% Heat exchange coefficient with the ambient [W/(K *um"2)] =1.041667e-7;

TM.env_sup=1/KperW/TM.cells_num_height/TM.cells_num _width/ TM.cell_height_Cu/

TM.cell_width_Cu;

TM.thermal_conductivity Si=1.25e-4; % Silicon thermal conductivity W/(K *Um)
TM.thermal_conductivity_Cu=4e-4; % Copper thermal conductivity —~ W/(K *Uum)

TM.components_num= max( max(TM.components_layout));

if (( size (TM.components_layout,1)™= size (TM.sensors_layout,1))||
('size (TM.components_layout,2) = size (TM.sensors_layout,2)))
error (’'Sensors and Floorplan files have different dimensions’ )

end

if  (( size (TM.components_layout,1)™= size (power_distribution,1))||
('size (TM.components_layout,2)™= size (power_distribution,2)))
error (’Distribution Power and Floorplan files have different dim ensions’ )

end

%% 2
R AR TSR
%%%%6%% %% % %% % %% % %% % %% %% % %%%%%%%6%% % %% %% %Y
%9%%%%%%6%% %% % %% % %% % %% %% % MATRICES %96%% %0 YBUB4048%8%40%0 Y0 %0 %0
%9%%%%% %% % %% % %% % %% % %% %% % %9%%%%%%%%% %% %% %Y
R AR RRRTEY I

switch  lower (TYPE)
case { ‘full2l }
[A,B,C,D]=fine2L_linear(TM);

case { reduced2l’ }
[A,B,C,D]=coarsegrain2L(TM);
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C. ACCURATE MODEL

case { reducedll’ }
[ACG_plant,BCG_plant,CCG_plant,DCG_plant]=coarsegra in2L(TM);
[A,B,C,D]=coarsegrainlL(TM,ACG_plant,BCG_plant);

otherwise
disp (’'Unknown method. Possible choices: Full2L - Reduced2L - Red ucedll’ )
end
% Matrix B modification for account the inhomogeneity of pow er distribution

for j=1:TM.components_num
support_matrix1=TM.components_layout==j;

support_matrix2=support_matrix1. * power_distribution;
maximum=max( max(support_matrix2));
for i=1:TM.cells_num_height * TM.cells_num_width

if  B(i,j)=0

B(i,j)=B(.)) * sum( sum(support_matrix1))/maximum/

sum( sum(support_matrix2==support_matrix2( floor ((i-1)/ TM.cells_num_width)+1,
mod((i-1), TM.cells_num_width)+1)));

end
end

end

% Discretization if required

if TS>0
[A,B,C,D]=discretization(A,B,C,D,TS);

end

The function takes as inputs the names of the fillbkENAMEFLOORPLAN FILE-
NAME.SENSORS-ILENAME HOTSPOY used to define the layout of the processor, the chip
dimensions CHIP_.DIMENSIONS, and the variables that describe respectively the desired
model type TYPB and the temporal characteristitS) of the model (discrete-time continuous-
time). The function gives as output the matrices used to describe the lineat imdlde state-
space formalism.

The first part checks if the input parameters are correct. In the dgmamh the layout file are
read and the useful parameters are collected in the strutiife.g. the cells number, the cells
dimensions, the silicon and copper thermal conductivity). Finally, in the tlrtitpe function
fine2Llinear is called to create the model. The functidiscretizationconverts the model from
continuous-time to discrete-time if requested, and the m&tisxmodified to account for the

information contained in the power distribution file.

C.1.3.2 fine2L.linear.m
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function [A,B,C,D]=fine2L_linear(TM)

% FINE2L_LINEAR generates the model matrices

%

% It takes as inputs

% - cells_num_height: number of cells along y axe

% - cells_num_width: number of cells along x axe

% - layer_num: number of cell layers

% - components_num: number of components

% - cell_height_Si: height of the silicon cell

% - cell_width_Si: width of the silicon cell

% - cell_thick_Si: thickness of the silicon cell

% - cell_height_Cu: height of the copper cell

% - cell_width_Cu: width of the copper cell

% - cell_thick_Cu: thickness of the copper cell

% - c_Si: silicon specific heat

% - c_Cu: copper specific heat

% - env_sup: heat exchange coefficient with the ambient

% - thermal_conductivity_Si: silicon thermal conductivit

% - thermal_conductivity_Cu: copper thermal conductivity

% - components_layout: components layout

% - sensors_layout: sensors layout

%

%% 1
R TR RRRRTR
%%%%6%% % %% %% % %% % %% % %% %% %
%9%%%%%%6%% %% % %% % %% % %% %% %0 MODEL
%9%%%%% % %% %% % %% % %% % %% %% % DATA

%606%%%%%%%%%6%6%6%6%6%6%6%%6%6%6%%
ol NN

cells_num_height = TM.cells_num_height;
cells_num_width = TM.cells_num_width;

layer_num = TM.layer_num;

Si_cells_num = cells_num_height * cells_num_width;
components_num = TM.components_num;

%%%%%0%%%%%%%%%%Y
%%%%% %% %8%8%960%% %%
%%%9%%%% % %8%460%% %%
%%%%%0%%%%%%%%%%Y

% +1 for the T_amb;

input_num = components_num-+1;

cell_height_Si = TM.cell_height_Si; %[um]
cell_width_Si = TM.cell_width_Si; %[um]
cell_thick_Si = TM.cell_thick_Si; %[um]
cell_height Cu = TM.cell_height_Cu; %[um]
cell_width_Cu = TM.cell_width_Cu; %[um]
cell_thick_Cu = TM.cell_thick_Cu; %[um]
c_Si = TM.c_Si; %calore specifico silicio

c_Cu = TM.c_Cu;

env_sup = TM.env_sup;
W/(K*um”™2)
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%calore specifico rame

K

*um”3)

(K *um”3)

%W/(Kxum~2) %coefficiente di scambio del calore con I'ambiente

0%0%%%%%%%Y

120%%%%0%%%
0%09%0%%%% %%

0%0%%%%%% %Y
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C. ACCURATE MODEL

thermal_conductivity_Si = TM.thermal_conductivity_Si; % Silicon thermal conductivity
[W/(K *um)]
thermal_conductivity_Cu = TM.thermal_conductivity_Cu; % Copper thermal conductivity

W/(K *um)]

components_layout = TM.components_layout;
sensors_layout = TM.sensors_layout;

thermal_capacity_Si = c_Si *cell_height_Si * cell_width_Si * cell_thick_Si;
% [j/K]
thermal_capacity Cu =c_Cu *cell_height_Cu *cell_width_Cu  =*cell_thick_Cu;
% [j/K]
G_Si_vertical=thermal_conductivity_Si * cell_width_Si * cell_height_Si/cell_thick_Si;
% [WI/K]
G_Si_horizontal=thermal_conductivity_Si *cell_width_Si * cell_thick_Si/cell_height_Si;
% [WIK]
G_Cu_vertical=(thermal_conductivity_Cu +cell_width_Cu  *cell_height_Cu/cell_thick_Cu) *
(env_sup =*cell_width_Cu  =*cell_height_Cu)/
((thermal_conductivity Cu *cell_width_Cu  *cell_height_Cul/cell_thick_Cu)+
(env_sup =cell_width_Cu  *cell_height_Cu)); % [WIK]
G_Cu_horizontal=thermal_conductivity_Cu *cell_width_Cu  =*cell_thick_Cul/cell_height_Cu;
% [WIK]
disp (’'Horizontal resistance (Si/Cu):’ )

disp (1/G_Si_horizontal)
disp (1/G_Cu_horizontal)

disp ('Vertical resistance (Si/Cu)’ )
disp (1/G_Si_vertical)
disp (1/G_Cu_vertical)

disp ('Thermal Capacity (Si/Cu):’ )
disp (thermal_capacity_Si)
disp (thermal_capacity_Cu)

%% 2
ol I T
%6%%%%%%%%6%%6%6%6%6%6%6%6%%6%% %% % %6%%%%%%%%6%6%6%6%6%6%6%69
%6%%%%%%%6%6%6%6%6%6%6%6%6%6%6%6%% %% MATRICES %60/6%6% % VBB Y0Y6 %%
%6%6%%%%%%%6%6%6%6%6%6%6%%6%6%6 %% %% %6%6%6%%%%%%%6%6%6%6%6%6Y
ol I (I

Z=ones(cells_num_height,cells_num_width);

Z=[ zeros (cells_num_height,1) Z zeros (cells_num_height,1)];
Z=[ zeros (1,cells_num_width+2);Z; zeros (1,cells_num_width+2)];
% > A S e

A=zeros (cells_num_height *cells_num_width  xlayer_num);

0%%%%%%%% %%
0%%%%
0%0%%%%%%% %%
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C.1 The plant

% A Matrix layer 1 (Silicon)

for i=2:(cells_num_height+1)
for j=2:(cells_num_width+1)
neighbors_counter=0;

if (Z(i-1,j)==1)
neighbors_counter=neighbors_counter+1;
A(cells_num_width * (i-2)+j-1,cells_num_width * (i-3)+j-1)= G_Si_horizontal/
(2 = thermal_capacity_Si);
end
if (Z(i+1,)==1)
neighbors_counter=neighbors_counter+1;
A(cells_num_width * (i-2)+j-1,cells_num_width * (i-1)+j-1)= G_Si_horizontal/
(2 *thermal_capacity_Si);
end
if (Z(i,j-1)==1)
neighbors_counter=neighbors_counter+1;
A(cells_num_width * (i-2)+j-1,cells_num_width *(i-2)+j-2)= G_Si_horizontal/
(2 »thermal_capacity_Si);
end
if  (Z(i,j+1)==1)
neighbors_counter=neighbors_counter+1;
A(cells_num_width * (i-2)+j-1,cells_num_width *(i-2)+(j))= G_Si_horizontal/
(2 » thermal_capacity_Si);
end
A(cells_num_width * (i-2)+j-1, cells_num_width * (i-2)+j-1)=
-(neighbors_counter * G_Si_horizontal/ (2 * thermal_capacity_Si))-
(G_Si_vertical/thermal_capacity_Si);
A(cells_num_width * (i-2)+j-1, cells_num_width * (i-2)+j-1+Si_cells_num)=
G_Si_vertical/ thermal_capacity_Si;
end
end
% A Matrix layer 2 (Copper)

for i=2:(cells_num_height+1)
for j=2:(cells_num_width+1)
neighbors_counter=0;
if (Z(i-1,j)==1)
neighbors_counter=neighbors_counter+1,;
A(cells_num_width * (i-2)+j-1+Si_cells_num,
cells_num_width  *(i-3)+j-1+Si_cells_num)= G_Cu_horizontal/
(2 = thermal_capacity_Cu);
end
if (Z(i+1,)==1)
neighbors_counter=neighbors_counter+1;
A(cells_num_width * (i-2)+j-1+Si_cells_num,
cells_num_width  *(i-1)+j-1+Si_cells_num)= G_Cu_horizontal/
(2 »thermal_capacity_Cu);
end
it (Z(i,j-1)==1)
neighbors_counter=neighbors_counter+1;
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A(cells_num_width = (i-2)+j-1+Si_cells_num,
cells_num_width  *(i-2)+j-2+Si_cells_num)= G_Cu_horizontal/
(2 *thermal_capacity_Cu);

end
if  (Z(i,j+1)==1)

neighbors_counter=neighbors_counter+1;

A(cells_num_width  * (i-2)+j-1+Si_cells_num,
cells_num_width  *(i-2)+(j)+Si_cells_num)= G_Cu_horizontal/
(2 *thermal_capacity_Cu);

end

A(cells_num_width * (i-2)+j-1+Si_cells_num,
cells_num_width  *(i-2)+j-1+Si_cells_num)= -(neighbors_counter
(2 »thermal_capacity_Cu))- (G_Cu_vertical/thermal_capaci
(G_Si_vertical/thermal_capacity Cu);

A(cells_num_width * (i-2)+j-1+Si_cells_num, cells_num_width
G_Si_vertical/ thermal_capacity Cu;
end

end

% S - < —

B=zeros (cells_num_height *cells_num_width  *layer_num,input_num);
% Parameter that links the power consumption input and the si
coefficient_1c=1/thermal_capacity_Si;

% Parameter that links the power consumption input and the si
coefficient_2c=G_Cu_vertical/thermal_capacity_Cu;

% Compute the ratio 1/(cells number for each component)
for i=l:components_num

ratio(i)=1/ length (find (components_layout==i));
end

% power contribution to B
for i=1:cells_num_height
for j=1:cells_num_width
B((i-1) = cells_num_width+j,components_layout(i,j))=
ratio(components_layout(i,j)) * coefficient_1c;
end
end

% Ambient temperature contribution to B

for i=Si_cells_num+1:(Si_cells_num * layer_num)
B(i,input_num)=coefficient_2c;

end

% > CeD e
% C matrix

k=0;

n_sens= sum( sum(sensors_layout));

C=zeros (n_sens,Si_cells_num);

for i=l:cells_num_height
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C.1 The plant

176 for j=1:cells_num_width
177 if sensors_layout(i,j)==1,
178 k=k+1;
179 C(k,cells_num_width * (i-1)+))=1,
180 end
181 end
182 end
183 C=[C zeros (n_sens,Si_cells_num)];
184
185 % D matrix
186 D=zeros (n_sens,input_num);
The only input of the function is the recofiiM. The values extracted from its fields are

used to compute the conductances and the thermal capacities of the silicoopgued cells.
Then the matrices, B, C, D are build according to the equatior& {3) of AppendixB.

C.1.3.3 discretization.m

function [Ad,Bd,Cd,Dd]=discretization(A,B,C,D,TS)

© o N o o b W N R
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% DISCRETIZATION discretizes the system defined by A, B, C, D

%
% It takes as inputs:

% - AB,C,D: the 4 matrices that defines the linear model;
% - TS: the sampling time used for the discretization.

%

% Example

% [a,b,c,d]=discretization(A,B,C,D,1e-3)
%

if TS<=0

error ('model:discretization:time’ , 'Sampling time argument not valid’ );
end
system=ss(A,B,C,D);
discrete_system=c2d(system, TS, ‘zoh’ );
Qmmmmmmmmmm s e > AdCG
Ad=discrete_system.a;
Qs e > Ad
Bd=discrete_system.b;
e > Ad
Cd=discrete_system.c;
Qo-mmmmm e e > Ad

Dd=discrete_system.d;
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C.

The function discretizes the continuous-time model (the only input of theifumc

1.3.4 Visualization3D.m

© 0 N o U A W N P

BB WOW W W W W W WWWwNNNNDNNDNDNNDNERE PR R B BB R R R
P O © ® N O O B @O N P O © ® N O O » W N P O © © N O 0 » W N B O

42
43
44
45

function [I=Visualization3D(data, Time,visual,PowVis)

% VISUALIZATIONS3D: it shows the temperature variation duri ng time with a 3D
% visualization.

%

% Input parameters:

%

% data: structure containing the output and input data (data .OUT, data.IN)
%

% Time: structure containing the initial time (Time.Start) , the final time

% (Time.End), the time step (Time.Step) and the number of fra me per second
% (Time.FramRate)

%

% visual: structure containing the xmin, xmax, ymin, ymax, z min, zmax of
% the input and output data, and the x, y, z coordinates of the c amera:
% visual.OUT.xmin, visual.OUT.xmax, visual.OUT.ymin, vi sual.OUT.ymax,

% visual.OUT.zmin, visual.OUT.zmax, visual.OUT.x, visua .OUT.y,

% visual.OUT.z, visual.IN.xmin, visual.IN.xmax, visual. IN.ymin,

% visual.IN.ymax, visual.IN.zmin, visual.IN.zmax, visua I.IN.x

% visual.IN.y, visual.IN.z

%

% PowVis: 0 for visualizing only output, 1 for visualizing in put and output
time.Points = floor ((Time.End - Time.Start)/Time.Step);

time.FR= floor ((1/Time.Step)/Time.FrameRate);

%

Traccia 1 solo Sens

screensize= get (0, ’'ScreenSize’ );

f1= figure ;
set (f1, 'Position’ , [0 0 screensize(3) screensize(4) ] );
for i=1:time.FR:time.Points

if  PowVis>0
subplot (121),
else
subplot (111),
end
MatPlot= reshape (data.OUT(i,:),visual.OUT.xmax,visual.OUT.ymax);
sur= mesh(1:1:visual.OUT.ymax,1:1:visual. OUT.xmax,MatPlot);
axis ([ visual.OUT.ymin visual.OUT.ymax visual.OUT.xmin visu al.OUT.xmax
visual.OUT.zmin visual.OUT.zmax]);
view ([visual.OUT.x,visual.OUT.y,visual.OUT.z])
title  (strcat( 'Time: ™ , ' ', num2str (i *Time.Step), 's’ ));
drawnow
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if  PowVis>0
subplot  (122),
MatPow=reshape (data.IN(i,:),visual.IN.xmax,visual.IN.ymax);
MatPow=MatPow’;
h=bar3(MatPow);
for j = 1: length (h)
zdata = get (h(j), ’'ZData' );
set (h(), ’'CData’ ,zdata)
% Add back edge color removed by interpolating shading
set (h, 'EdgeColor , k" )
end
axis ([ visual.IN.xmin visual.IN.xmax+1 visual.IN.ymin visua LLIN.ymax+1
visual.IN.zmin visual.IN.zmax]);
view ([visual.IN.x,visual.IN.y,visual.IN.z])

titte  (’Distributed MPC frequency response’ );
xlabel (’cores’ ); ylabel (’cores’ ); zlabel (’'Core Frequency [MHz] )
drawnow

end

end

For completeness we reported the 3D visualization function. The first pgraimeter is a
record containing the data to be visualizddtg). It has two fields: the input data and the output
data. Both are stored as matrices, where the number of columns is equattmrther of inputs
or the outputs respectively, whereas the rows are the value samplezhdirea interval. The
parameteilimeis a structure containing the time information of the simulation data (the initial
time Time.Startthe final timeTime.Endthe time ste@ime.Ste@mnd the number of frame per
secondlime.FramRate Also thevisualparameter is a record which contains the visualization
settings decided by the user. FinalRgwVisallows the users to choose if visualizing simply
the outputs o both the outputs and the inputs.

The body of the function is a loop that at each iteration,

1. scans the data line by line;
2. reshapes each line as specified inviseal parameters;

3. plots the values.

C.2 The thermal model identification

In this Section we reported the code used to reduce the order of theasctiuermal model.
The procedures are explained in Chapteand consist in thelistributed ARX identification
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solution theH., identification solutiorand thePOD-based solution

C.2.1 distributed ARX identification

As shown in the code below the ARX identification approach is obtained by g#tafunction

MPSoClId_Distr.m The goal is to obtain a set of single-core models, which takes as inputs the

power consumption, the ambient temperature, and the neighbors tempgrattuening as

output the future core temperature.

© 0 N o g b~ W N

L i e
o o h W N P O

%% 3

%VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV IR VVVVVVV VWV VYV VWV VY

ol L AARTTRE AR

%%%%%%%%9%%%%%%%%%% %% %% %%%%%%%%9%0%%%%%%%% %4
%%%%%%%% %% %% %% %% %% %% %% SYSTEM IDENTIFICATION %YW WV VYW 0 %0
%%9%%%%% %% %%%%% %% %% %% %% %%9%%%% %% %% %% %% % %% %Y

ol NIRRT AT ARRET

%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASMMAAAAAAAAAAAAAAAAAA

% Parameters

model_order=2; % order for each single-core model
ARX_Method=1; % ldentification solver
Cores_Deployment = [1 2; 3 4; 5 6; 7 8]; % relative cores position

% ldentification
models=MPSoC_Id_Distr(Cores_Deployment, PowerCPU, Ten v, Temp, Time.Step,
model_order, ARX_Method);

0%%%%
0%

0%0%%%

First some parameters have been defined. mbdelorder represents the desired model

order for each single-core model. The ARX identification procedure altbe user to choose

the identification algorithm to use for finding the models. Actually two methods are im-

plemented, the firstARXMethod=1) uses the arx function of Matlab, whereas the second

(ARXMethod-2) uses an ad-hoc approach implemented with CVX toolbox. The first method

has resulted more efficient than the second one. For this reason weawilstity the first one.

The CoresDeploymentnatrix, instead, contains the information about the relative position of

the cores. In the current case the core 5 has as neighbors the c6resa 7.
Finally, the identification procedure is called.

C.2.1.1 MPSoClId_Distr.m

1

2

function Models= MPSoC_ld_Distr(Deployment, Power, Tenvi, Temper ature, Tsampling,
ModelOrder, varargin)
% MPSoC_ld_Distr returns a structure containing the single -core models
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3 %

4 % Inputs parameters:

5 %

6 % - Deployment : a map of the core

7 % - Power : a matrix with all the power data of the cores

8 % - Tenvi : the environment temperature data

9 % - Temperature : the temperature data of the cores

10 % - Tsampling : the sampling time

11 % - ModelOrder : the desired order of the model

12 % - varargin :

13 % -> parameter 1: put 1 for Matlab ARX identification method o r 2 for CVX

14 % -> parameter 2: string containing the destination path whe re to

15 % save the models

16 %

17 % Example:

18 % Models = MPSoC_Id_Distr(Deployment, Power, Tenv, Temper ature, Tsampling,
ModelOrder, 1,’path’)

19 %

20 % Notes: The size of the matrices b are equalt to the cores temp eratures + 2

21

22 %% 0

23

%%%%%0%9%%%%%%%% %% %% %% %% %% %% %% %% %% %%
24 %%%%%%%0%%%%%%%%%% %% %% %% CHECK PARAMETERS
%%%%%%%% %% %% %% %% % % %% %% %% % %%

8%0%% %% %% %% %% %% %Y

25
%%%%%0%%%%%%%%%%% %% %% %% %% %% %% %% % % % %Y

%%% %% %% %% %% % %Y
26

27 % Method and path management
28 If isempty  (varargin)

29 Method=1;

30 save_model=0;

31 else

32 save_model=0;

33 if isempty  (varargin{1})

34 Method=1;

35 else

36 if ischar(varargin{1})

37 error ('Libreria:MPSoC_ld_Distr:METHOD’ , 'The method variable must be a
number’ );

38 else

39 if varargin{1}==1

40 Method=1;

41 else

42 Method=varargin{1};

43 disp ('CVX method will be used’ )

44 end

45 end

46 end

47

48 % To save the single-core model to the path specified in varar gin{2}

49 if length  (varargin)==2
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if isempty  (varargin{2})
save_model=0;

else
if  isnumeric(varargin{2})

error (’Libreria:MPSoC_ld_Distr:ADDRESS’

string’ )
else
save_model=1,;
cd_old= cd;
cd (varargin{2})
mkdir( 'model_data’ );
address=strcat(varargin{2},
cd (cd_old);
end
end
end
end

% Number of cores
n_core=0;
for i=1: size (Deployment,1)
for j=1: size (Deployment,2)
if  Deployment(i,j)>n_core
n_core=Deployment(i,j);
end
end
end

% Understanding of the neighborhood relation
k=1;
neighbors= zeros (n_core);

Deployment_ext=[  zeros (1, size (Deployment,2)+2);

Deployment zeros (size (Deployment,1),1);
while  k<=n_core
for i=2: size (Deployment_ext,1)-1
for j=2: size (Deployment_ext,2)-1

\model_data\’

);

, 'The address must be a

zeros (size (Deployment,1),1)

zeros (1, size (Deployment,2)+2)];

if  ((Deployment_ext(i-1,j)=k) && (Deployment_ext(i-1,j)

(Deployment_ext(i,j)==k))

neighbors(k,Deployment_ext(i-1,j))=1;

end

if  ((Deployment_ext(i+1,j))"=k) && (Deployment_ext(i+1,j)

(Deployment_ext(i,j)==Kk))

neighbors(k,Deployment_ext(i+1,j))=1;

end

if  ((Deployment_ext(i,j-1)=k) && (Deployment_ext(i,j-1)

(Deployment_ext(i,j)==k))

neighbors(k,Deployment_ext(i,j-1))=1;

end

if ((Deployment_ext(i,j+1)"=k) && (Deployment_ext(i,j+1)

(Deployment_ext(i,j)==k))

neighbors(k,Deployment_ext(i,j+1))=1;

end
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end
end
k=k+1;
end

%% 1
%%%%%0%%%%%%%%%%% %% %% %% %% %% %% %% %% % %Y
%%%%%0%0%6%%%% %% %% %% %% %% % %% IDENTIFICATION
%%%%%0%9%0%%%%%%%%% %% %% %% %%%%%

%%%%%0%%%%%%% %% %% %% %% %% %% %% %% %% %% % %Y

% Iterative procedure repeated for each core
for k=1:n_core

0%%%%Y,

%%% %Y

clc ;

disp (’ldentification of the model’ ); disp (K);

J=0;

Templin(:,1)=Tenvi; % Templn contains the ambient and the neighbors temperature S

for i=1:n_core
if neighbors(k,i)==1

=i+
Templn(:,j)=Temperature(:,i);
end
end
% Identification: function call (Method=1 --> ARX, CVX othe rwise)
if Method==1
mod=SCI(Power(:,k),Tenvi,Templn,Temperature(:,k),Ts ampling,ModelOrder);
else
mod=SCI_cvx(Power(:,k),Tenvi,Templin,Temperature(:,k ),Tsampling,ModelOrder);
end
% Change of coordinates to have C=[1 0 .. O]
model_ARX_MISO=give_physics(mod);
% B matrix extension for the sake of future operation conveni ence:

% inclusion of all the temperatures as neighbors inputs
% (the unused inputs have correspondent B elements zeroed)
b(:,1:2)=model_ARX_MISO.b(;,1:2);
=2;
for i=1:n_core
if neighbors(k,i)==1

=+
b(:,i+2)=model_ARX_MISO.b(:,j);
else
b(;,i+2)=  zeros (size (model_ARX_MISO.b,1),1);

end
end
model_ARX_MISO.b=b;
model_ARX_MISO.d= zeros (1,n_core+2);
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% Computation of the initial state:

% - Case 1: initial state computed assuming the model in equil ibrium

% with the ambient temperature, the initial power equal to

% 0 and the neighbors temperature equal to the ambient one

% - Case 2: initial equilibrium different from the previous o ne. The

% initial power, hte initial neighbors temperature, and the

% core temperature is equal to the first sampled data.

states= ’'syms’ ;

ics= ' X' ;

for i=1:(ModelOrder-1)
states=strcat(states,strcat(ics, numa2str (i)));

end

eval (states)

for i=1:(ModelOrder-1)
xeq2(i,1)=  eval (strcat(ics, num2str (i)));

end

if (Temperature(1,k)-1>(Tenvi(1,1)))
% Case 2
init_state=Temperature(1,k);

init_power=Power(1,k);

init_Tneigh=Temperature(1,:)’;

else
% Case 1
init_state=Tenvi(1,1);
init_power=  zeros (1,1);
init_Tneigh=Tenvi(1,1) *ones(n_core,1);

end

% initial state estimation

xeq=[init_state;xeq2];

equilibrium=(model_ARX_MISO.a- eye (size (model_ARX_MISO.a,1))) *xeq+

model_ARX_MISO.b * [init_power;Tenvi(1,1);init_Tneigh];

solution=solve(equilibrium(1:(ModelOrder-1)));

if ModelOrder==
x02=double(solution);

else
ics= ’'double(solution.x’ :
x02=zeros ((ModelOrder-1),1);
for i=1:(ModelOrder-1)

x02(i,1)=  eval (strcat(ics, num2str (i), ) ));

end

end

model_ARX_MISO.x0=[init_state;x02]; % Initial state of the model

% Gain matrix estimation for Luenberger observer

eigenvalues= eig (model_ARX_MISO.a) *0.4;

model_ARX_MISO.k_obsv=(place(model_ARX_MISO.a’, mode |_ARX_MISO.c’

,eigenvalues))’;
% The k-th single-core model is saved to the address indicate

if (save_model==1)
cd (address)
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eval ([ 'Mod” num2str (k) ’'=model_ARX_MISO;" 1),
eval ([ 'save(strcat(address,”Mod’ num2str (k) "),”Mod’ num2str (k) )y D;
cd(cd_old);

end

% Sampling time

model_ARX_MISO.Ts=Tsampling;

% The k-th single-core model assigned to the output structur e

eval ([ 'Models.m’ num2str (k)

clear
disp (’'Done’ )
end

'=model_ARX_MISO;" ]);

Templn mod model_ARX_MISO xeq2 init_Tneigh

This function takes as inputs the deployment of the cores, the data achigsadulating

the accurate thermal model (the power consumptions and the temperatiireooés, and the

ambient temperature), the sampling time used for collecting the data, the desuletorder

for the final models, and two optional inputs that are the method used fangdhlve ARX

identification algorithm and the address where to save the model. By defaudigbrithm

is solved using tharx function of Matlab and the models are not saved. The output of the

function consists of a record whose fields are described below.

models

ml.

mN

o 0O T Y

k_obsv
Ts
x0

whereml,...,mN are the models, a, b, c, d are the model matrikeshsvis the gain

matrix of the Luenberger observer computed by usingplaee Matlab function,Ts is the

sampling time, andO is the initial state of the model.

In the first part the input parameters are checked in order to save tHamgthod to be applied

and the address where to save the model if present. Then, for eaghlmrelation of prox-

imity with the other cores is described with theighborsmatrix. It is a square matrix with

dimension equal to the number of cores. The row number indicates the emtsidh core
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and the columns are the possible neighbors. If the ¢@se neighbor of thé-th core then the
element(i, j) is equal to 1, O otherwise (the same applies to the element (j,i)).
In the second part, a loop executes the following operations for eaeh cor

1. the neighbors temperature data and the ambient temperature data atecoilBempln
2. theSCl.mfunction is called to solve the ARX algorithm;

3. thegive physics.nfunction is called to change the coordinate of the state space model re-
turned by thesCl.mfunction, in order to have the first state that represents the measured
core temperature;

4. the input matrixo is expanded in order to take as inputs all the neighbor temperatures
(the temperature of the cores that do not belong to the neighborhoodsareated to 0
coefficients in the matrib);

5. the initial state of the model is computed according to two cases: (i) the moutel is
equilibrium when the initial power is 0 and the initial temperature of all coregqueal
to the ambient temperature, (ii) the model is in equilibrium when the initial power and
the initial temperature of all cores are equal to the first sample of the dathfoise
identification;

6. the gain matrix of the Luenberger observer is computed placing the eigeswof the
matrix (a+ k_obsv: c) at the values obtained by multiplying the eigenvaluea by 0.4;

7. the model is saved and assigned to the output record.

C.2.1.2 SCl.m

© o N o U A W N R

[N
o

11
12

function model=SCI(MyPow, Tenv,NeighTemp,MyTemp,T_sampling,De gree,varargin)
% SCI Single Core Identification
% The function takes as input six parameters:

% - MyPow : the power of the core;

% - Tenv : the environment temperature;

% - NeighTemp : the neighbors temperature;

% - MyTemp : the temperature of the core;

% - T_sampling : the sampling time;

% - Degree : the order of the identified model;

% - varargin: visualization mode(0O=nothing, 1=simulator, 2=predictor, 3=white

test).
%
% The result is a SS object.
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%

% Example

% model=SCI(MyPow(:,1),Tenv(:,1),NeighTemp(:,1:2),My Temp(;,1),1e-3,2,2);
%

%% 0
%%%%%0%%%%%%%%%%% %% %% %% %% %% %% %% %% % %Y

%%%%%%%6%% %% %% %% %% %% %% %% CHECK PARAMETERS
%%%%%0%9%0%%%%%%%%% %% %% %% %%%%%

%%%%Y,

%%%%%0%%%%%%% %% %% %% %% %% %% %% %% %% %% % %Y %%% %Y

if size (MyPow,2)>1
error (’'SClinput’ , 'MyPow size mismatch’ )
end
if size (MyTemp,2)>1
error (’'SClinput’ , 'MyTemp size mismatch’ )
end
if size (Tenv,2)>1
error (’'SClinput’ , 'Tenv size mismatch’ )
end
if  (( isempty (varargin)) || (varargin{1}>3))
visu_mode=0;
else
visu_mode=varargin{1};
end

% Adjusting data
num_neighbor=size (NeighTemp,2);

Out=MyTemp;

In=[MyPow Tenv NeighTemp];
data=iddata(Out,In, 'Ts" ,T_sampling);
data.OutputName = { T };

data.OutputUnit = { K %
%% 1
%%%%%%% %% %% % %% % %% % %% % %% % %% % %% % %% % %09

%%%%%%6%6%% %% %% %% %% %% %% %% IDENTIFICATION
%%%%%0%9%0%%%%%%%% %% %% %% %% %% %%

%%%%Y,

%%%%%0%%%%%%%%%%% %% %% %% %% %% %% %% %% % %Y

%%%%Y

% ARX function call

modell=arx(data, 'na’ ,Degree, 'nb’ ,Degree =*ones(1l,num_neighbor+2), 'Focus’ , 'Prediction’ );
% modell=arx(data,'na’, Degree, 'nb’, Degree *ones(1,num_neighbor+2), 'nk’,
ones(1,num_neighbor+2)); % Equivalent to the upper one
% modell=pem(data,’na’, Degree, 'nb’, Degree *ones(1,num_neighbor+2), 'Focus’,
"Prediction’);
% modell=pem(data,’na’, Degree, 'nb’, Degree *ones(1,num_neighbor+2), 'SearchMethod’,

‘Im’, 'Tolerance’,sqrt(eps));
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C. ACCURATE MODEL

switch visu_mode

case 1
disp (’'Comparison between real data and simulated data’ );
compare(data,modell);
pause ();
close ;

case 2
disp ('Comparison between real data and predicted data’ );
compare(data,modell,1);
pause ();
close ;

case 3
disp ('White test on the error as predictor’ )
[yh,fit,x_initj=compare(data,modell1,1);
er=0ut-yh{1}.OutputData;
disp ('White test result’ );
disp (wtest(er));
plot (1: size (er,1)er); title  (’Residual’ )
pause ();

otherwise
disp (’'No visualization selected.’ )

end

%% 2
0%%60%%6%6%6%6%Y6%Y6% %6660 Y60% V6% 6% %Y V6% Y6% 6% R A

%%%%%%%%0%%%%%%%%% %% %% %% STATE-SPACE MODEL
%%%%%%9%0%%%%%%%%%%% % %% %% %% %%

%%%%%% %% %% %% %%

%09%%%%%%% % %% %% % % %% % %% %% % % %% % %% % %% % Yo Y8 %846%8%846%0%840%6%890%0%846%6

5%0%0%0%09%p%%%%%%% %%

% Input/Output model convertion into a state-space form

for i=1: size (modell.b,1)
matrix(:,i)=tf(modell.b(i,:),modell.a,modell.Ts);

end

model=ss(matrix, ‘min’ );

TheSCl.mtakes as inputs the power consumptibtyPow), the temperaturey Temp and
the temperature of the neighbotdégighTempof thek-th core. Moreover, it takes the ambient
temperature dataény, the value of the sampling timé& (sampling according to with the data
are collected, the order of the searched moDebfeg and as optional the visualization mode.
The output is the model in a state-space form.

In the first part the function parameters are checked and the data |lkretex in a Matlab
IDDATA data object opportunely divided into inputs and outputs. The visualizatiore isod
assigned to the variablésumode
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In the second part of the code, the Matlafx function is called. It takes as input the data
previously managed, the order of the polynomials related to the inputs anditihgs The
commented instructions represent other functions to obtain the same resudtre8slts we
obtain a input-output model of the form,

a(q) -y(t) =B(qg) - u(t) +&(t)

wherea andb are polynomials contained as fields in the recorddell According to the
visumodevariable the data obtained using the model as a simulator or a predictor can be
plotted and compared to the real datss(mode=1andvisumode=2 respectively). Setting
visumode=3it is possible to plot the residual error between the predicted and readcldthae

result of the white test.

In the third part the model is converted in the state-space form.

C.2.1.3 givephysics.m

© 0 N o 0 b~ W N P

N NN B R R R R B R R R
N B O © ® N~ o O » W N P O

function model=give_physics(mdl)

% GIVE_PHYSICS: The function transforms the ss-model ident ified with SCI
% function in a State-Space model with C matrix in the form [I_ n | 0_n
% where n is the number of cores

% The function take as input one parameters:

% - mdl : the model identified with SCI function;

%

% The result is a structure. The A,B,C,D matrices are held in a ,b,c,d
%

%

% Example

% m=give_physics(SCI_model);
%

% Observability matrix
T = (obsv(mdl))*-1;

% Change coordinate

model.a=T"-1 *mdla *T;

model.b=T"-1 *mdl.b;

model.c=mdl.c  *T;

model.d= zeros (size (model.c,1), size (model.b,2));

The function uses the observability matrix,to change the coordinate of the state-space
model obtained from th8Cl.mfunction. As a result the first state of the new model correspond
to the measured temperature, indé&dhas the form[10... 0] where the number of zeros
depends on the desired model order.
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C.2.2 H. identification

The H., identification approach relies on tihPSoCld_Hinf.m function. The code below is

used in the main program to call the previously mentioned function that reaisrostput the

set of single-core models collected in a record structure.

1 %% 3
2 %VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VKK VVVVVVVVVVVV VYV VY
3 R AR (T
4 9%6%%%6%% %% % %% % %% % %% % %% %% 96%%%6%% %% %% %% %% % %% % %0% % %%
5 %9%%%%% %% % %% %% %% % %% %% %% SYSTEM IDENTIFICATION %YWV WYYV 0% Y0 %
6 9%6%%%0%% %% % %% % %% % %% %% % %% 96%%%0%% %% %% %% %% % %% % %% % %%
7 R TR (T
8 %AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAA
9
10 % Parameters
11 model_order=2; % order for each single-core model
12 Cores_Deployment = [1 2; 3 4; 5 6; 7 8]; % relative cores position
13
14 % ldentification
15 models=MPSoC_ld_Hinf(Cores_Deployment, PowerCPU, Tenv , Temp, Time.Step, model_order);
First the order of the single-core modeladdelorder) and the cores relative position

(Core Deploymentare defined, then the function is called.

C.2.2.1 MPSoClId_Hinf.m
1 function Models=MPSoC_Id_Hinf(Deployment, Power, Tenvi, Tempera ture, Tsampling,

ModelOrder, varargin)

2 % MPSoC_ld_Hinf returns a structure containing the single- core models
3 %
4 % Inputs parameters:
5 %
6 % - Deployment : a map of the core
7 % - Power : a matrix with all the power data of the cores
8 % - Tenvi : the environment temperature data
9 % - Temperature : the temperature data of the cores
10 % - Tsampling : the sampling time
11 % - ModelOrder : the desired order of the model
12 % - varargin :
13 % -> parameter 1: string containing the destination path whe re to
14 % save the models
15 %
16 % Example:

[
3

18
19

% Models= MPSoC_Id_Hinf(Deployment, Power, Tenv, Tempera
ModelOrder, ’'path’)
%

258

tureerature, Tsampling,




21

22

23

24

N
o

27
28
29
30

32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
26
47
48
a9
50
51
52
53
54
55

56

57

58
59
60

61
62
63
64

C.2 The thermal model identification

%% 0

%%%%9%6%%%%%%% %% %% %% %% %% %% %% %% %% %% % %Y
%%%%%%%%0% %% %% %% %% %% %% %% CHECK PARAMETERS
%%%%%0%%%%%%%%%%% %% %% %% %%%%%

%%%%%0%%%%%%%%%%% %% %% %% %% %% %% %% %% %%

% Save management
if isempty (varargin)
save_model=0;
else
if isnumeric(varargin{1})
error (’Libreria:MPSoC_ld_Hinf:ADDRESS’ , 'The address must be a string’ )
else
save_model=1;
cd_old= cd;
cd (varargin{1})
mkdir( 'model_data’ );
address=strcat(varargin{1}, \model_dataV’ );
cd(cd_old);
end
end

% Number of cores
n_core=0;
for i=1: size (Deployment,1)
for j=1: size (Deployment,2)
if Deployment(i,j)>n_core
n_core=Deployment(i,j);
end
end
end

%% 0

%%%%9%6%%%%% %% %% %% %% %% %% %% %% %% %% %% % %Y
%%%%%%%%0%%%%%%%%% %% %% %% IDENTIFICATION
%%%%%0%9%%%%%%%%%% %% % %% %% %% %%

%%%%Y

%%%%%0%0%0%%%%%%% %% %% %% %% %% %% %% %% % %% % H8%6%6%6

0%%%%Y
fin= size (Temperature,l);
Deployment_ext=[  zeros (size (Deployment,1)+2,1) [ zeros (1, size (Deployment,2));

Deployment;  zeros (1, size (Deployment,2))] zeros (size (Deployment,1)+2,1)];

% Iterative procedure repeated for each core
for j=1:n_core
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C. ACCURATE MODEL

disp (’ldentification of the model ); disp (j);

% Optimization variables definition
a=sdpvar(ModelOrder,1) ;
bpow=sdpvar(ModelOrder,1);
bTenv=sdpvar(ModelOrder,1);
b=sdpvar(ModelOrder,n_core);
x=sdpvar(1,1);

% Understanding neighbors
B=zeros (2,n_core+2);
B(:,1:2)=ones(2,2); %[bpow bTenv];
for rows=2: size (Deployment_ext,1)-1
for colums=2: size (Deployment_ext,2)-1

if Deployment_ext(rows-1,colums)™=0 && Deployment_ext(ro ws-1,colums)==j
B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

end

if Deployment_ext(rows+1,colums)™=0 && Deployment_ext(ro ws+1,colums)==j
B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

end

if Deployment_ext(rows,colums-1)"=0 && Deployment_ext(ro ws,colums-1)==j
B(;,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

end

if Deployment_ext(rows,colums+1)"=0 && Deployment_ext(ro ws,colums+1)==j
B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

end

end
end

% Constraints definition
Constraints = [Temperature(3:fin,j)-

a(l) *Temperature(2:fin-1,j)-a(2) * Temperature(1:fin-2,j)- ((B(1,:). * [bpow(1,1)

bTenv(1,1) b(1,)]) * [Power(2:fin-1,j) Tenvi(2:fin-1,1)

Temperature(2:fin-1,1:n_core)]')- ((B(2,:). *[bpow(2,1) bTenv(2,1) b(2,)]) *

[Power(1:fin-2,j) Tenvi(1:fin-2,1) Temperature(1:fin- 2,1:n_core)]’)y>=-X,
Temperature(3:fin,j)- a(1) * Temperature(2:fin-1,j)-

a(2) » Temperature(1:fin-2,j)- ((B(1,:). *[bpow(1,1) bTenv(1,1)

b(1,)])  *[Power(2:fin-1,j) Tenvi(2:fin-1,1) Temperature(2:fin- 1,1:n_core)]’)-

((B(2,). * [bpow(2,1) bTenv(2,1) b(2,)]) * [Power(1:fin-2,j) Tenvi(1:fin-2,1)

Temperature(1:fin-2,1:n_core)]')'<=0];

% Cost function definition
Objective = x;

% Solving optimization problem
options = sdpsettings( ‘'verbose’ ,1, ’'solver’ " );

sol = solvesdp(Constraints,Objective,options);

% The j-th single-core model

eval ([ 'Models.m’ num2str (j) '.a=[double(a(1)) 1;double(a(2)) 0O]; D;
eval ([ 'Models.m’ num2str (j) .b=[(B(1,:). * [double(bpow(1,1)) double(bTenv(1,1))
double(b(1,:))]);(B(2,:). * [double(bpow(2,1)) double(bTenv(2,1))
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C.2 The thermal model identification

double(b(2,:))D];’

eval ([ 'Models.m’ num2str (j) ’.b(isnan(Models.m’ num2str (j) '.b))=0; D;
eval ([ 'Models.m’ num2str (j) '.c=[1 0]; D;

eval ([ 'Models.m’ num2str (j) ’.d=zeros(1,10); D;

eval ([ 'Models.m’ num2str (j) '.Ts=Tsampling;’ D;

eval ([ 'Models.m’ num2str (j) '.x0=[Tenvi(1,1); (Models.m’ num2str (j)
a(2,1)  +Tenvi(1,1)+Models.m’ numa2str (j)

".b(2,2:n_core+2) *(Tenvi(1,1)  *ones(n_core+1,1)))/(1-Models.m’ numa2str (j)
a2y D

% The j-th single-core model is saved to the address indicate d

if (save_model==1)

cd (address)
eval ([ 'Mod” num2str (j) '=Models.m’ num2str () 1)
eval ([ 'save(strcat(address,”Mod’ num2str () ),"Mod’ num2str () )y D;
cd(cd_old);
end
disp ('Done’ )

end

D

This function takes as inputs the deployment of the cdbeploymen}, the data achieved

by simulating the accurate thermal model (the power consumptiRoger, the temperature

of all cores, Temperature and the ambient temperatufenv), the sampling time used for

collecting the dataTsampling, the desired model order for the final modeidodelOrdey,

and an optional input containing the address where to save the models @ddliessin the

rest of the code). The output of the function consists of a record evfiekls are described

below.
( a
b
c
ml. q
models Ts
[ X0
mN

whereml,...,mN are the modelsa, b, c, d are the model matriceg;sis the sampling
time, andx0 is the initial state of the model.
The first part of the code checks the input parameters to verify théstensy of the address
path entered by the user.
In the second part of the code, for each doithe following instructions are executed through
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the use of a loop:
1. the identification variables are instanced;

2. adouble loop is used to detect the neighbors cores dfttheore and for building the
matrix B that has 1 coefficient in correspondence of the neighbor ¢opes, and 0
otherwise;

3. the constraints of the optimization problem are defir@ahstraint3;
4. the cost function of the optimization problem is defin@ijec);
5. the problem is solved with opportunely defined optiasiong;

6. the matrices of theth model are build according to the results of the optimization prob-
lem;

7. the model is saved and assigned to the output record.

It is worth to note that for defining the problem we used the Yalmip tooll3px (

C.2.3 POD approach

The code below is used in the main program to callRiD_redu.mfunction for realizing the
model reduction of the accurate thermal system using the POD approach.

© 0 N o g A W N P

e i =
g~ W N P O

%% 3

%VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VRV VVVVVVVVVVVVVVV VY
ol I (e
%%6%%%%%6%6%696%6%6%6%6%6%6%6%6% %% % %6%6%%%%%6%6%6%6%6%6%6%6%6%%6%6 6% %% %
%%%%%%%6%6%6%6%6%6%6%6%6%6%6%6%% %% POD APPROACH 6% YRR Y0%6%6%6%6%6%6%
%%6%%%%%6%6%6%6%6%6%6%6%%6%6%6%6% %% %%%%%%%6%6%696%6%6%6%%6%6%6%646% %% %

ol I L
%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASKAAAAAAAAAAAAAAAAAAA

% Model Reduction
POD=POD_redu(x_plant,TModel,0.99,3);

% Model discretization
POD_discrete_Model=c2d(POD.Model,Time.Step, ‘zoh' );

The code simply calls the functid?OD_redu.mthat takes as inputs all the data concerning
the states of the accurate thermal model and other parameters, and astoutput a record
structure with two fields:
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Model: contains the reduced model;

Order: contains the final model order.

Then, the model is dicretized.

C.2.3.1 POD.redu.m

© o N o 0 b W N P

S N T e =
N o U A W N P O
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function POD=POD_redu(Data,Model,Eig_importance,Order_bias)

% POD_redu computes the reducted model using the POD approac h to find
% the opttimal basis and the Galerkin projection to project t he system
% in the new space.

%

% Inputs:

% - Data: the data of the experiment (all the states);

% - Model: the original system model (SS object);

% - Eig_importance: the value of

% sum_1"order(eigs(Correlation))/sum_1"(all)(eig(Cor relation));
% - Order_bias: value added to the order that is automaticall y found;
%

% Example: POD=POD_redu(Data,Model,0.99,3)

%

%% 0

%%%%9%0%%%%%%%%%%% %% %% %% %% %% %% %% % % % %Y
%%%9%%%%% % %% %%%% %% %% %% %% CHECK PARAMETERS
%%%%%0%9%0%%%%%%%%% %% % %% %% %% %%

%%%%%%%% %% %% %% %% % % %% %% %% %% %% %% % %% %Y

if  “isnumeric(Data)

error (’Libreria:POD_redu:ADDRESS’ ‘Data must be a numeric matrix’ );

end
if  “isobject(Model)
error (’Libreria:POD_redu:ADDRESS’ , 'Model must be a Matlab SS object’ );
end
if  “isnumeric(Eig_importance)
error (’Libreria:POD_redu:ADDRESS’ , 'The Eig_importance variable must be a
number’ );
end
if  “isnumeric(Order_bias)
error (’Libreria:POD_redu:ADDRESS’ , 'The Order_bias variable must be a number
end

%% 1

%9%0%%9%% % %% % %% %% % %% % %% % %% % %% %% % %% % %% Y
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%%%%%%%%%%%%%%%%% %% %% %%

MODEL REDUCTION

%%%%%0%9%%%%%%%%%%% %% %% %% %% %%

%%%%%%%0%0%%%% %% %% %% %0 %% %% %% %% %% %0 % % % %0 4646404646646 46 %0%848484046%6%6

% snapshot matrix creation using the measurements x_plant

T_snap= Data’;

% mean subtraction
mean_value = mean(T_snap,2);
T_snap = T_snap - repmat(mean_value,1,

% Find correlation matrix Corr
Corr=1/ size (T_snap,2) =*T_snap=*T_snap’;

% Solve eigenvalue problem
[eigenvectors,eigenvalues]= eig (Corr);
eigenvalues= diag (eigenvalues);

% Find the basis order M

M=0;

numerator=0;

denominator= sum(eigenvalues);

P_M=0;

while  (P_M<Eig_importance)
M=M+1;
numerator=numerator+eigenvalues(M);
P_M=numerator/denominator;

end

POD_coeff=eigenvectors’ *T_snap;

% Eigenvalue spectrum
plot (1: size (eigenvalues,1),eigenvalues,

% Reduced basis \Phi_M
n_modes=M+Order_bias;
POD.Order=n_modes;
basis=eigenvectors(:,1:n_modes);

% Reduced model (Galerkin)
Ar=basis’ *Model.a *basis;
Br=basis’ *Model.b;

Cr=Model.c =*basis;

Dr=Model.d;
POD.Model=ss(Ar,Br,Cr,Dr,Model.Ts);

size (T_snap,2));

%%%%Y

0%0%0%0%%%%%%

This function takes as inputs the data achieved by simulating the accurate lthevoe

Data (i.e. a matrix with the value of all the model states on columns for each samplingghter

on rows), the accurate moddbdel that must be a SS Matlab object, and two other parameters
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for specifying the accuracy of the resulting model: Big_importance that is a number in the
interval [0,1] and allows the function to automatically determine the model order, and the
Order_bias that allows the user to modify the order automatically obtained. The result is a
structure containing the reduced model and its final order.

In the first part of the code the input parameters are checked.

In the second part, the algorithm shown in Secdah 3is implemented. First, the correlation
matrix of the data is found, then the basis order is automatically achieved (tlabledV)
according to thécig_importanceinput parameter. Then the order is modified according to the
Order_biasinput parameter, and finally the reduced order model is obtained by exgltfikn
Galerkin projection mechanism on the original mohleldel

C.3 The distributed MPC control solution

In this Section we reported the code of the distributed MPC thermal controlldernented
using different toolboxes.

C.3.1 Hybrid Toolbox

The Hybrid Toolbox 2) is a MATLAB/Simulink toolbox that allows the user to design a con-
strained optimal controller for hybrid dynamical systems with either implicit ofiexgporm.

It also provides a Simulink library, multiparametric solvers for QP and LPIprob, visualiza-
tion functions for polyhedral objects and a C-code generator for edduaeapplications.

We used this toolbox because it is more flexible of the MPC toolbox in the prodiddimi-
tion and it allows us to manage explicit formulations of the controller. In the akptitution
the state-space is divided in polyhedral partitions each one associateallimiglar control law.
The number of these partitions is a good metric for measuring the complexity chtiieller.

C.3.1.1 Textual version

In the piece of code reported below, we present a possible way for imptergehe distributed
MPC thermal solution by using the hybrid toolbox. The code simulates the theshaVior
of a chip controlled by using the aforementioned distributed MPC solutiomslbleen entirely

realized using textual instructions.

1 %% 4
2 %VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVIRKKN VVVVVVVVVVVVVVVVVV
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ol TN
%%%%%%%6%6%6%6%6%6%6%6%6%6%6%6% %% % % % %%
%6%0%%%%%6%6%6%6%6%6%6%6%6%6%6%6% %% %% % %%
%%%%%%%6%6%6%6%6%6%6%6%6%6%6%6%% %% % % %%
ol I

MPC CONTROLLER

%%%%%%% %0 %8%6/0%% %% %% %% % %% % %%
R e 7Rl
%%%%%%%%09%%8%6/0%% %% %% %% % %% % %%

%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

%% 4.1 Hybrid Toolbox

%% 4.1.2 Hybrid Toolbox for textual simulation

%%%%%%%6%% %% %% %% %% %% %% % %% %% %%

% Initialization
Vdd=1.35;
Temp_plant= zeros (Time.Points,N_CORE);
power_cores_cntrl_ideal= zeros (Time.Points,N_CORE);
frequency_cores_cntrl= zeros (Time.Points,N_CORE);
x_plant=zeros (Time.Points-1, size (TModel.a,1));
X_obsv= zeros (Time.Points-1, size (models.m1l.a,1));

% Controller parameters

PARAMETERS %S4 s

% Vdd assumed constant for P_static (in P_dyn V_dd=h(f))

%%Y

rho=10"5; % weight of the slack variable (epsilon) for soft constraint S
Vy_max=0; % O=hard 1=soft constraints
T_CRIT=330; % Critical temperature
R_u=1; % weight of each power error P_T-P_C
% For each core "i":
%
% min P_C_i" * Q. gp_i * P_C_i + f_gp_¥’ * P_C_i
% s.t.
% A_gp_i * P_C_i <= b_gp_i
%
% where
% fqp_i = [- P_T_i * £1,0]
% b gp i =TCRIT+b1i = xobsv+b?2i =* [Tenvionment, Tneigh]
ModelsName="models.m’ ;
for i=1:N_CORE
=0;
eval ([ 'Q_gp_’ num2str (i) '= [R_u zeros(size(R_u,1),1); zeros(1,size(R_u,1))
rho]. *2; ]);
eval ([ 1 num2str (i) '=2*R_u; ]);
support=strcat(ModelsName, numa2str (i));
eval ([ 'aa_’ num2str (i) '=" ModelsName num2str (i) 'a; ]);
eval ([ 'bb_" num2str (i) '= ModelsName num2str (i) '.b(:;,1:N_CORE+2); D;
eval ([ 'cc_’ num2str (i) '=" ModelsName num2str (i) 'c; ]);
eval ([ 'dd_’ num2str (i) '= ModelsName num2str (i) '.d(:,1:N_CORE+2); D;
eval ([ 'A gp_’ num2str (i) ’'=[cc’ num2str (i) +bb_ ' num2str (i) °(;,1)
-Vy_max];’ 1)
eval ([ 'b_1_' num2str (i) ’'=-cc_’ num2str (i) '=*aa_ ' num2str (i) D;
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eval ([ 'b_2_' num2str (i) ’'=-cc_’ num2str (i) ' +bb_' num2str (i) '(:,2:end); D;
% Initial state of each observer
eval ([ 'x_obsv_’ num2str (i) =" ModelsName num2str (i) '.x0"; D

end

% Plant

TModel_discrete=c2d(TModel, Time.Step, ‘zoh' );

x_plant(1,:)=X0’;

Temp_plant(1,:)=(TModel_discrete.C * X0);

% Target trace (Fluidanimate)

frequency_cores_target = OFluidanimate.Freq(1:Time.Po ints, N_CORE);
CPI_cores_target = OFluidanimate.CPI(1:Time.Points ,N_ CORE);
power_cores_target = F_CPI_2_P(frequency_cores_target , CPI_cores_target, IDLE,

Tenv(1,1), Vvdd);

%%%%%%%%%%%%%%%%%% %% %% %% %% %% SIMULATION

%90%0%%Y

% Simulation loop
for i=1:Time.Points-1

% Plant temperature and state

x_plant(i+1,:)= (TModel_discrete.a * X_plant(i,:)’+ TModel_discrete.b *
[power_cores_cntrl_ideal(i,:) Tenv(i,1)]');
Temp_plant(i+1,:)= TModel_discrete.c * X_plant(i+1,:)";

% Observer estimation

Temp_neighs(1,:)= zeros (1,N_CORE);
for j=1:N_CORE

eval ([ 'x_obsv_’ num2str (j) ‘(i+1,;)=aa_’ num2str (j) ' *x_obsv_' num2str (j)
'(i,:)’+ bb_’ num2str (j) '+ [power_cores_cntrl_ideal(i,j) Tenv(i,1)
Temp_plant(i,:)]"+ ’ ModelsName num2str (j) 'k _obsv *(Temp_plant(i,j)”- cc_’
num2str (j) ' *x_obsv_' num2str () '(i,)"); ;

eval ([ 'Temp_neighs(1,j)) = x_obsv_’ num2str () °(i+1,1); ° D
end

% Solution of the QP and updating of QP matrices
for j=1:N_CORE

eval ([ 'f_gp_’ num2str (j) '=[(-power_cores_target(i+1,)) *f 1" num2str ()
)01y i

eval ([ 'b_gp_’ num2str () ’'=T_CRIT+b_1_' num2str () ' =*x_obsv_' num2str (j)
(i+1,:)"+b_2_’ num2str (j) ' *[Tenv(i+1,1) Temp_neighs(1,:)]"; D;

eval ([ 's=gpsol(Q_qgp_’ num2str (j) fgp_’ num2str (j) A gp_’  num2str () ,
b_gp’ num2str ) 0,0 [ ModelsName  num2str (i) '.x0(j) ’ ModelsName
num2str (i) '.xO(j+N_CORE)], 4, inv(Q_gp_’ num2str () ) s

power_cores_cntrl_ideal(i+1,j)) = s(1);
end

% Power to frequency conversion (ideal)

frequency_cores_cntrl(i+1,:)= P_CPI_2_F(power_cores_ cntrl_ideal(i+1,:),
CPI_cores_target(i+1,:), IDLE, Tenv(1,1),vdd);
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C. ACCURATE MODEL

% Frequency to power conversion
power_cores_cntrl_ideal(i+1,:)= F_CPI_2_P(frequency_ cores_cntrl(i+1,:),
CPI_cores_target(i+1,:), IDLE, Tenv(1,1),vdd);

end
9%9%%%%%%%% %% % %% % %% % %% % %% %% %%  VISUALIZATION  %%%%%%%%%%%%% %% % %Y
y_NoContr=disim(TModel_discrete.a, TModel_discrete.b , TModel_discrete.c,
TModel_discrete.d, [power_cores_target(1:Time.Points ;) Tenv(1:Time.Points,:)],
X0);
core_num=1;
ax(1l) = subplot (611); plot (1:1:Time.Points-1, [Temp_plant(1:Time.Points-1,core _num),
y_NoContr(1:Time.Points-1,core_num)], ‘Linewidth’  ,2); title  ('Temperature’ );
legend ('MPC’, 'no MPC'’, 'Location’ ,'Best’ );
ax(2) = subplot (612); plot (1:1:Time.Points-1,
frequency_cores_cntrl(1:Time.Points-1,core_num), ‘Linewidth®  ,2); title (’'Provided

Frequency’ )
ax(3) = subplot (613); plot (1:1:Time.Points-1,
power_cores_cntrl_ideal(1:Time.Points-1,core_num), ‘Linewidth’  ,2);
titte  ('Provided power’ ), %
ax(4) = subplot (614); plot (1:1:Time.Points-1,
frequency_cores_target(1:Time.Points-1,core_num), ‘Linewidth’  ,2); title ('Target
Frequency’ )
ax(5) = subplot (615); plot (1:1:Time.Points-1,

power_cores_target(1:Time.Points-1,core_num), ‘Linewidth’  ,2); title ('Target
power’ );
ax(6) = subplot (616); plot (1:1:Time.Points-1,
CPI_cores_target(1:Time.Points-1,core_num), ‘Linewidth’  ,2); title ('Target CPI' );
linkaxes(ax, X );

1]

In the first part we initialized the variables used to storage the temperatdtheistates
of the plant Tempplant andx_plant respectively), the controlled frequency and power con-
sumption {requencycorescntrl and power corescntrl_ideal respectively), and the observer
state k_obsy. Notice that the variable name of the controlled power consumption, that is the
power provided to cores after being regulated, ends with the word “id&dlis because we
assume that the controller perfectly know the future workload (CPI) appii¢he cores in at
the next sampling interval, even though it is usually unpredictable. In othetians we will
show how to avoid this assumption by assigning as future CPI value the orseiredat the
previous sampling interval hypothesizing a low variability of the workload betwtwo sam-
pling instants.

In lines 24-56 we have defined the controller parameters, those whitdhloedefine off-line.
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C.3 The distributed MPC control solution

Assume the optimization problem for each local MPC controller is given by,

i W] (1) Qupi W (1) + 14w (D) C1a)
st.
Aqpii - Wi (t) < bgp,i (C.1b)

wherew; = [Rc; €] is the manipulated variabldx j represents the power consumption of the
corei, namelypower corescntrl_idealin the code £ instead is a slack variable used to manage
the rigidity of the constraints: the greatercishe softer is the constraint.
T_CRIT is the critical temperature threshold of the MPC local controller, the weightaxmatr
Qqp;i in (C.19 containsk u, the weight for the power consumption, aid, the weight for the
slack variable. The rest of the parameters of each local controlleefired inside the loop at
lines 41— 56. Q_gp.i, A gp.i areQqp; andAqp; respectivelyaa.i, bb.i, cc.i, anddd.i are the
matrices names of the reduced order single-core thermal model dfhimore (used in place
of the structure variables containing the model created during the identifigaticess for the
sake of simplifying notation), and.obsvi is the state of the observe which is initialized. The
arraysfqpi andbgpi cannot be defined at this stage because are time-varying. We may only
defined some parameteffsl{ b_1, andb_2) that will be used to speed-up the computation of
fqpi andbgp,.
The accurate model of the system (i.e. the plant) is discretized with the saménggatimpe
of the controller. It is worth to note that this is a strong simplification becauseaveot
consider the thermal variations between the sampling interval. Howeveealizad Simulink
simulations where the plant is continuous-time. We also realized textual simulatiene the
sampling time of the controller is far slower than the one used for updating stensybut we
intentionally decide to not complicate this example with extra code lines.
Finally the frequency and the CPI of the trace to be simulated is defined. et power of
the core can be obtained by exploiting the Power Model defined in App&ndiwtice that the
Power Model accounts thég g (set as constant at the beginning of the code) by including in the
dynamic power equation théq = h( frequency function. Vyq is simply used to compute the
static power.

The second part of the code realized the simulation. It consists of a Idogreweach
iteration represents a sampling interval. The operations executed duritogthare:
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1. updating of plant states and outputs;

2. estimation of the unknown state of each single-core thermal model by tisrigcal
observers;

3. updating of the matricdsqp.i andb_gp.i;
4. solution of the QP prolem for each local controller;

5. power-to-frequency conversion;

(o]

. frequency-to-power conversion (nhot executed by the real @aatorithm);

The instructions in the third part realized a visual comparison between ttoted and
uncontrolled solutions.

C.3.1.2 Simulink version

The same simulations can be obtained using a Simulink block diagram. The schehmwis
in Fig. C.3where a 48-core processor is controlled by using 48 local controllers.
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Fcs 0 0 O 0 O O
Fca
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Fcio
11 8 U
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FC13 Temp
C14 ~ ~ ~ ~ A ~
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= 4 6 3 To Workspace
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Eear ore ore ore ore ore ore
C22 0
Fc23 0 4
Inputs | Temp Fezs
€26 o o N o o B
(Fr, CPI) Fc27 0 0 . . 0 0
C,28 Q Q 0
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€48
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Figure C.3: Simulink control scheme using the Hybrid Toolbox

In the figure we can notice three main blocks. The first on the left prouisesnput
benchmarks (frequency and CPI) for all cores, the central ortaicsrthe controllers, while the
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right one contains the continuous time accurate model. Focusing on the btbeloontrollers,
Fig. C.4and Fig.C.5show the details of the implementation.
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Figure C.4: The 48 core controllers

%
%
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In Fig. C.4the single local controllers are shown. As expectedtiecontroller takes as
inputs the frequency and the CPI of the cor@nd the temperature of all cores. Notice that
to simplify the implementation we gave as inputs all cores temperatures, hoas\aready
mentioned, the coefficients of the input matiof the single-core model used for predictions
are equal to zero in correspondence of unusable temperatures [y.éhetemperatures of the
i-th core and other ones of the neighbors are admitted).
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Figure C.5: The single local controller
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Fig. C.5instead shows the single local controller. The target frequency anai@€Rilans-
lated in a power consumption requirement. The obtained power and the anggrdrature
enter as inputs in the controller block that returns as output the controleermonsumption
which maintains the temperature under the critical value. The controller pswebsequently
converted into the controlled frequency that, after being quantized (wadinte quantization
as a disturbance element), is used to feed the plant. Notice that we also impatseadion
to limit the power between the maximum and minimum values that are the power didsipate
by the core when it executes respectively at maximum and at minimum spkeedrefjuency
really assigned to the plant (the quantized one) is then used, coupled witdntperature in-
formation, as input of the observer block which estimates the unknowmdestate (indeed
we assume, as we did during all this thesis, two states per single-core mad&h. C.5it is
also possible to see how the controller is implemented. MR€ block belongs to the Hybrid
Simulink library. The block can manage two types of problems: the regulatmsiggn and

the tracking problem. The equation of the two problems are shown below.

N-1
minx'(t+N[t)Px(t+NJt) + 3 X (t+K[)QX(t +Kt) + U (t+ K)RUt + k) + pe?  (C.2a)
=4

st.

Ymin— € <Y(t+K|t) <Ymaxt+€, k=1,...,Ny (C.2b)
Umin < U(t +K) < Umax, K=0,...,Ngy (C.2¢)
u(t +k) = Kx(t+Klt), k>N (C.2d)
X(t+k+1jt) = Ax(t +K|t) + Bu(t + k) (C.2e)
y(t+K|t) = Cx(t +K|t) + Du(t + k) (C.2f)
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hp—1
min Z (Y (t+K|t) —r (1) S(y(t +k|t) —r(t)) + AU (t + K) TAu(t + k) + pe? (C.3a)
k=0

st.

Ymin— € <Y(t+K|t) < Ymax+ €, k=1,...,Ny (C.3b)
Umin < U(t +K) < Umax, K=0,...,Ngy (C.30)
Aumin < Au(t +K) < Aumax, K=0, ..., Ny (C.3d)
u(t +k) = Kx(t+Kjt), k>N (C.3e)
X(t+k+ 1|t) = AX(t +K|t) + Bu(t + k) (C.3f)
y(t +k[t) = Cx(t +k|t) + Du(t + k) (C.39)

As itis possible to see the problem are slightly different respect the oseled because it is
not possible to track the inputs (the power dissipation in our case). Ouh#&$daeen to use the
regulation problem where the input is the power consumption &ettaP (i.e. the difference
between the target power consumpti®get and the controlled power consumptiBntrolied)-
However, this solution is not correct because not all the model inputstbde=computed by
the optimization problem. The input signals that enter in the model can be cldssifieo
families, the manipulated inputs, which are the inputs that are calculated byrttrelty, and
the measured disturbances, namely the inputs that cannot be modified mntraler (e.g.
the ambient temperature and the temperature of the neighbors). Making stsn@denoticed
that setting the weight of the measured disturbances to zero does nefaiesir modification.
Our idea has been to exploit the superposition principle of the linear mod#dfing the state
with the measured disturbances contributions and giving this state (we cadleiftetd state
as input to the regulation optimization problem. The controller retDei$aP that has to be
subtracted to th&arget to 0btainPeontroied: The controller parameters inside th#*C block
can be obtained calling the functiolistrMPC_Hybrid.mwith the code below.

© O N o g b W N P

%% 4.1.2 Hybrid Toolbox for Simulink simulation

%6%6%6%%6%6%%%6% % %% %% %% % %% % %% %%%%%  PARAMETERS %St A 6%6% %

T_CRIT=360 * ones(1,N_CORE); % Critical temperature threshold
H_p=2; % prediction horizon
H_c=1; % control horizon

480%%%%

%%%%%%%%%%%%%%% %% %% %%%%%%%%% CENTRALIZED %%8%8%8%6%0%0%6%68%6%6%6
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Yo

10
11 Ctrl_Centr=centrMPC_Hybrid(model, T_CRIT,H_p,H_c,Tim e.Step);
12
13
14 %9%%%6%% % %% %% % %% % %% % %% % %% %%%%%%  DISTRIBUTER:%%%%%%%%%%%%%0%%%%%
15
16 Ctrl_Distributed=distrMPC_Hybrid(models, T_CRIT,H_p, H_c,Time.Step);
distrMPC_Hybrid.m
1 function Controller=distrMPC_Hybrid(models, T_CRIT,N,Nc)
2 % distrMPC_Hybrid returns:
3 % - Controller.c#.ctrl.impl = Implicit controller
4 % - Controller.c#.ctrl.expl = Explicit controller
5 % - Controller.c#.shift = the gain matrix for shifting the st ate (in
6 % Simulink scheme)
7 % - Controller.c#.Kobsvdiscr = the gain matrix of the observ er
8 % - Controller.c#.model = the model of the single core system
9 %
10 % The input parameters are:
11 % - models : a structure with the a, b, ¢, d matrix of each single -core model
12 % - T_CRIT : an array with the temperature limits of all the cor es
13 % - N : the prediction horizon
14 % - Nc : the control horizon
15
16
17 %% 0
18
%96%%%% % %% %% % %% % %% %% %% %% %% % %% % %% %% %Y 0%%% %Y
19 %9%%%%% % %% %% %% %% %% % %% % CONTROL PARAMETERS
%9%%%%% %% %% %% %% % %% % %% % %% % %% %
20
%9%6%% %% % %% % %% % %% %% % %% % %% %0 %% %% %% %% %% % 6%%%%09
21
22 n_core= size (Modello.c,1);
23
24 % Control parameter definition for each core
25 for k=1:n_core
26
27
%9%%%%% % %% %% % %% % %% % %% % %% %% % %% % %% %% %Y %%6%%Y
28 9%9%%%%% % %% %% % %% % %% % %% % %% % %% IMPLICIT CONTROLLER
%9%%%6%% %% %% %% %% %% %% %% % %% % %% %
29
30 % System model definition
31 eval ([ 'sys=ss(models.m’ num2str (k) ’.a, models.m’ num2str (k) ".b(:,1), models.m’
num2str (k) '.c, models.m’ num2str (k) '.d(:,1), models.m’ num2str (k) ".Ts); 1)
32 INname="Delta P’ ;
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OUTname=T" ;

STATEname=x' ;
sys.InputName(1,1)={strcat(INname,
sys.OutputName(1,1)={strcat(OUTname,
sys.StateName(1,1)={strcat(OUTname,

num2str (k))};
num2str (k))};
num2str (k))};

ModelOrder= size (sys.a,l);
for i=2:ModelOrder

sys.StateName(1+(i-1),1)={strcat(STATEname, num2str (k), '’ , num2str (i))};
end
% Limits
clear limits
limits.umin=- Inf ; % Lower bounds on Input
limits.umax= Inf ; % Upper bounds on Input
limits.ymin=0; % Lower bounds on Output

limits.ymax=T_CRIT(k); % Upper bounds on OUTput
% Costs

clear cost

cost.Q= diag (zeros (1,ModelOrder));

~

v State weight

cost.R=0.0001; % Input weight
cost.P= diag (zeros (1,ModelOrder)); % Final State weight

cost.rho= Inf ; % Hard constraints

% Intervals
clear interval

interval.Nu=Nc; % input horizon u(0),...,u(Nu-1)
interval.N=N; % output horizon  \sum_{k=0}"{Ny-1}
interval.Ncy=1; % output constraints horizon k=0,...,Ncy
interval.Ncu=1,; % input constraints horizon k=0,...,Ncu
% Controller

eval (strcat( ’'Controller.c’ , hum2str (k), ’.ctrl.impl = lincon(sys,’reg”, cost,
interval, limits);’ );

%%%%%6%% % %% %% %% %% %% %% %% %% %% %% %% %% % %Y
%%%%%%%%0%%%%%%% %% %% % %% %% %% EXPLICIT CONTROLLER
%%%%%0% %% %% %% %% %% %% %% %% %%%%%

%%% %Y

% Range & Options
clear range options
range.xmin=[0 0];
range.xmax= [400 400];
range.umin=-50;
range.umax=5;

% Options
options.reltol=1e-7;
options.join=1;
options.verbose=1;
options.uniteeps=1e-3;
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options.gpsolver= ‘gpact’ % Use active-set QP

% Explicit Controller

eval (strcat( ’'Controller.c’ , hum2str (k), ’.ctrl.expl =

expcon(Controller.c’ , hum2str (k),

%%%%%6%6%%%%% %% %% %% %% %% % %% %% %% %% % % % %0 %48408408%6%6%6%6%6%8%6%48%48%404046%6
%%%%%%%%0%0%%%%%% %% %% %% %% %% %% %% %% SHIFT
%%%%%0%9%%%%%%%% %% %% % % %% %% %% %% %% % %

".ctrl.impl, range, options);’ );

%% %% %% %% %% %% %%

% matrix for computing the contribution of measured disturb ances

eval (strcat( ’'Controller.c’ , hum2str (k), ’.shift = (models.m’ , num2str (k), a-1) *

models.m’ , num2str (k), .b; ));

%%%%%% %% %% %% % %% % %% %% %% %% % %% %% % % %0 % %0 %48%8%8%6%840% 84840840 %848%8%68%8 0%%%%%%%%%
%%9%0%%%% %% %% %% %% % % %% %% %% % % %% %% OBSERVER

%%%%%%%%%%%%%%%%% %% %% %% %% %% %% %%

% Observer

eigenvalues = eig (model.a) +*0.4;

eval (strcat( 'Controller.c’ , hum2str (k), ’'.Kobsvdiscr =

(place(models.m’ , hum2str (k), ’.a”, models.m’ , hum2str (k), ’.c”,

eigenvalues))”; );

eval (strcat( 'Controller.c’ , hum2str (k), '.model = models.m’ , num2str (k), ;" ));

end

The function takes as inputs a structure containing the identified singlevzatels (hod-

els), the predictioni{) and the control

horizorNC), respectively set to 2 and 1, and the critical

temperature threshol.CRIT. The function returns as output the structure:

controllers

expl
cl.{ Kobsvdiscr
model
shift

ctrl { impl

. CN

whereci contains the parameters useful for tiié core simulationgtrl contains the controller

parametersinpl the parameters of the implicit controller, aarlplthose of the explicit con-

troller), Kobsvdiscris the gain matrix of the Luenberger observandelcontains the matrices

a, b, c, d of the model, arghiftis the gain matrix that multiplied by the measured disturbances
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and added to the current state returns the shifted state.
Analyzing the code, the instructions to be executed to each core are ezhtagide a loop

First a SS Matlab object containing the model is obtained. Subsequentlyrdmagtars of the

controller are set and the functitincon, belonging to the Hybrid Toolbox library, is called to

generate the implicit controller data structure. The same steps are execotsditothe ex-

plicit controller data structure, but this time the function calledxpcon Finally the observer

gain matrix and the shift matrix are computed.

C.3.2 Yalmip Toolbox

The distributed MPC thermal solution has been implemented also using the Yalmipxoolb

(3), a language for modeling and solving convex and non-convex optimizatalems. It is
a free toolbox for MATLAB that allows the user to describe the problenigit kevel without
caring about how the problem will be solved.

C.3.2.1 Textual version

As for the Hybrid Toolbox, the piece of code reported below simulates thim#idehavior of
a chip controlled by the distributed MPC thermal solution. The code is entiralizeel using

textual instructions.

© o N o g b W N P

N i e N i i = =
N B O © ® N o o~ W N P O

%% 4.2 Yalmip Toolbox

%% 4.2.1 Yalmip Toolbox for textual simulation

%%%%%%9%0 %% %% %% %% %% %% % %% %% %% %% PARAMETERS

% Trace name (structure with fields)

tracel = ’Fluidanimate’

trace2 = 'Facesim’ ;

trace3 = ’Bodytrack’ ;

trace4 = ’'Dedup’ ;

trace5 = ’Raytracing’ ;

n_traces = 5; % number of traces to be simulated

Vdd = 1.35; % Vdd assumed constant for P_static (in P_dyn V_dd=h(f))
IDLE = 1;

P_MIN = 0.254043439071652; % power dissipated when cores run the min freq

% Controller parameters

R _u = eye(1); % weight of each power error P_T-P_C
rho = 1075; % weight of the slack variable (epsilon) for soft constraint S
Vy_max = zeros (1,1); % O=hard 1=soft constraints

MPC_Thresh = 360 *ones(N_CORE); % MPC temperature threshold

277

1]




23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
a1

43
a4
45
46

47

48
49
50
51

52
53
54
55

56
57

58
59
60
61
62
63
64
65
66
67

C. ACCURATE MODEL

Q_gp = [R_u zeros (size (R_u,1),1); zeros (1, size (R_u,1)) rhoj; %

%%%%%%%%% %% %% %% %% %% %% %% %%%%% SIMULATION

% For each trace

for

ii=1:n_traces

% Initialization

weight matrix

clear frequency_cores_target CPI_cores_target CPI_cores_tar get_delayed
power_cores_target_delayed power_cores_cntrl power_to t_cntrl
frequency_cores_cntrl

time_trace = size ( eval (strcat( eval ([ 'trace’ num2str (i) ")), Freq )),1);
power_cores_cntrl = zeros (time_trace,N_CORE);

power_tot_cntrl = zeros (time_trace,N_COMP);

frequency_cores_cntrl = zeros (time_trace,N_CORE);

% Plant

TModel_discrete = c2d(TModel,Time.Step, 'zoh’ );

x_plant =  zeros (time_trace-1, size (A1));

x_plant(1,:) = X0’
Temp_plant = zeros (time_trace,N_CORE);
Temp_plant(1,:) = (TModel_discrete.C * X0);

% Target Benchmarks

frequency_cores_target = eval (strcat( eval ([ 'trace’ numa2str (i) "D
".Freq(1:time_trace,1:N_CORE)’ );
CPI_cores_target = eval (strcat( eval ([ 'trace’ numa2str (i) D,
".CPI(1:time_trace,1:N_CORE)’ );
% Delayed CPI: to simulate unpredictability of workload the CPI used by
% the MPC is equal to the CPI measured the previous sampling ti me
CPI_cores_target_delayed = [CPI_cores_target(1,:); CPI _cores_target(1: end-1,2)];
power_cores_target_delayed = F_CPI_2_P(frequency_core s_target,
CPI_cores_target_delayed, IDLE, Tenv(1,1), Vdd);
% Observer initialization

for j=1:N_CORE

eval ([ 'x_obsv_’ num2str (j) ’=zeros(time_trace,size(models.m’ num2str (j)
1)) D

eval ([ 'x_obsv_’ num2str () ’(1,:)=models.m’ num2str (j) '.x0"; ;

eval ([ 'K_obs_' num2str (j) ’'=(place(models.m’ num2str (j) .a”, models.m’
num2str () '.c”, (eig(models.m’ num2str (j) .a). =*0.4))"; D;
end

% Simulation loop (for each sampling time)
for j=1:time_trace

% Plant output
Temp_plant(j,:)=TModel_discrete.c *X_plant(j,})’;

% Computation of the Local MPC solution (QP problem)
for jj=1:N_CORE
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C.3 The distributed MPC control solution

clear pot
pot=sdpvar(2,1);

Objective=pot’ * Q_gp* pot+pot’  *[(-power_cores_target_delayed(j,jj) * 2+ R_u)";0];
eval ([ 'Constraints=[[models.m’ numa2str (jj) .c *models.m’ numa2str (jj)
b(;,1) -Vy_max] * pot<=MPC_Thresh-models.m’ num2str (jj) .c *models.m’
numa2str (jj) .a xx_obsv_' numa2str (jj) '(,:)"-models.m’ numa2str (jj)
.c *models.m’ numa2str (jj) ".b(:,2:end) * [Tenv(j,1) Temp_plant(j,:)]”,
pot(1,1)>=P_MIN]; D;
Options=sdpsettings( ‘'verbose’ ,0, ’'solver , " );

sol = solvesdp(Constraints,Objective,Options);
power_cores_cntrl(j,jj)=double(pot(1,1));
end

% Frequency to power conversion (with delayed CPI)
frequency_cores_cntrl(j,:)= P_CPI_2_F(power_cores_cn trl(j,:),
CPI_cores_target_delayed(j,:), IDLE, Tenv(1,1), Vvdd);

% power to frequency conversion (without delayed CPI)
power_cores_cntrl(j,:)= F_CPI_2_P(frequency_cores_cn trl(j,:),

CPI_cores_target(j,:), IDLE, Tenv(1,1), Vdd);

% Total power array (need to add caches power)

power_tot_cntrl(j,:)=[power_cores_cntrl(j,1),(power _cores_cntrl(j,1)+
power_cores_cntrl(j,3))./4. * percentuale,
(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4. * percentuale,
power_cores_cntrl(j,2:3),
(power_cores_cntrl(j,1)+power_cores_cntrl(j,3))./4. * percentuale,
(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4. * percentuale,
power_cores_cntrl(j,4), zeros (1,4), power_cores_cntrl(j,5),
(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4. * percentuale,
(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4. * percentuale,
power_cores_cntrl(j,6:7),
(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4. * percentuale,
(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4. * percentuale,

power_cores_cntrl(j,8)];

% Computation of the plant state
x_plant(j+1,:)= (TModel_discrete.a *x_plant(j,:)’+ TModel_discrete.b *
[power_tot_cntrl(j,:) Tenv(j,1)')’;

% Observer
for jj=1:N_CORE

eval ([ 'x_obsv_’ numa2str (jj) '(j+1,:)= models.m’ numa2str (jj) a *x_obsv_’
numa2str (jj) '(j,:)"+ models.m’ numa2str (jj) b *[power_cores_cntrl(j,jj)
Tenv(j,1) Temp_plant(j,:)]"+ K_obs_’ num2str (jj) " * (Temp_plant(j,jj)”-
models.m’  num2str (jj) .c *x_obsv_' num2str (jj) G, D;
end
end
eval ([ 'save("data’ numa2str (i) 7’ "Temp_plant”, "frequency_cores_cntrl”,

"power_cores_cntrl”, "frequency_cores_target”, power_cores_target”,
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C. ACCURATE MODEL

"CPI_cores_target”);’ )}
end
%9%%%6%%% %% % %% %% % %% % %% % %% %%%%  VISUALIZATION  %%%%%%%%%%%%%%%% %%
y_NoContr=dIsim(TModel_discrete.a, TModel_discrete.b , TModel_discrete.c,
TModel_discrete.d, [power_cores_target(1:Time.Points ,2) Tenv(1:Time.Points,:)],
X0);
core_num=1;
ax(1) = subplot (611); plot (1:1:Time.Points-1, [Temp_plant(1:Time.Points-1,core _num),
y_NoContr(1:Time.Points-1,core_num)], ‘LineWidth®  ,2); title ('Temperature’ );
legend ('MPC’, 'no MPC’ , 'Location’ ,'Best’ );
ax(2) = subplot (612); plot (1:1:Time.Points-1,
frequency_cores_cntrl(1:Time.Points-1,core_num), ‘Linewidth® ,2); title  (’'Provided

Frequency’ )
ax(3) = subplot (613); plot (1:1:Time.Points-1,

power_cores_cntrl(1:Time.Points-1,core_num), ‘LineWidth’ ,2); title (’Provided
power’ ); %

ax(4) = subplot (614); plot (1:1:Time.Points-1,
frequency_cores_target(1:Time.Points-1,core_num), ‘Linewidth’  ,2); title ('Target

Frequency’ )
ax(5) = subplot (615); plot (1:1:Time.Points-1,

power_cores_target(1:Time.Points-1,core_num), ‘LineWidth’  ,2); title ('Target
power’ );
ax(6) = subplot (616); plot (1:1:Time.Points-1,
CPI_cores_target(1:Time.Points-1,core_num), ‘LineWidth’ 2); title ('Target CPI' );
linkaxes(ax, X ),

In the first part the parameters of the controllers are set. Differentty fhe textual version
realized with the Hybrid Toolbox, the code uses a loop to simulate a set dfitvemks instead
of a single one. Inside the benchmark loop the variables, the plant, antdsbevers are ini-
tialized, and the target frequenéequencycorestargetand the CPICPI_corestarget of the
ii-th benchmark are loaded. Before starting the simulation the target fregaad the CPI are
used to compute the target powsmwer corestargetdelayed It is worth to note that, differ-
ently from the code realized with the Hybrid Toolbox, we assumed the uigpaedity of the
CPI, therefore we delayed the CRIFI_corestargetdelayed of one sampling time. Clearly
this affects the controller efficiency since the predicted CPI providemagwestimation of the
target power consumption.

These operations are realized off-line. The second loop realizes thsonwy updating the
plant output, and solving the optimization problem at each sampling time. The optoniza

problem has been defined using the functions of the Yalmip libisapvardefines the name
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and the dimension of the optimization variable (pet, a 2x 1 array where the first element is
the controlled power of the core and the second element representscthessiables). In Ob-
jectiveand Constraintsthe cost function and the constraints are respectively defined. Finally,
the problem is solved using the functisnlvesdpaccording to the options defined in top-
tionsvariable, and the solution is assigned to the power controlled varpaller corescntrl.
This power is translated to frequency, tinrequencycorescntrl, and assigned to the plant. At
this point the plant simulator requires the computation of the power consumptionthe
controlled frequency and the CPI information in order to compute the tempeatthe chip.
However, it is worth to note that the CPIl we used in this case is not the delayethe real
one. Thus the controlled power consumption that feeds the plant is subbptima

When the simulation is completed the data are saved and then visualized.

C.3.2.2 Simulink version

Also the Yalmip-based implementation can be used in Simulink, however there Simnlink
libraries to use. The idea is to build a Matlab function that computes the solutioe @ipth
timization problem. Then using a standaveATLAB functionblock it is possible to call the
function. The function is reported below.

distrMPC_Yalmip.m

© ® N o U A W N
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function [power_cores_cntrl] = distrMPC_Yalmip(N_CORE, models, p ower_target_past,
MPC_Thresh, Tenv, Temp, Temp_past, pow_past)

% Controller parameters initialization
Vy_max=zeros (1,1);

rho=10"5;

R_u=eye (1);

Q_gp=[R_u zeros (size (R_u,1),1); zeros (1, size (R_u,1)) rhoj;
pot=sdpvar(2,1);

power_cores_cntrl= zeros (8,1);

% Local MPC controller solution

for i=1:N_CORE
% x_2 estimation (no need of observer)
eval ([ 'state=[Temp(i); models.m’ num2str (i) .a(2,1) * Temp_past(i)+ models.m’
num2str (i) ".b(2,) * [pow_past(i); Tenv; Temp_past]]; D;

% Objective function definition
Objective=pot’ *Q_qgp* pot+ pot’ = [(-power_target_past(i) *2xR_u)’; 0O];
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% Constraints definition

eval ([ 'Constraints=[[models.m’ num2str (i) '.c *models.m’ num2str (i) '.b(:,1)
-Vy_max] * pot<= MPC_Thresh- models.m’ num2str (i) '.c * models.m’ num2str (i)
.a state- models.m’ num2str (i) '.c * models.m’ num2str (i) '.b(:,2:end) *
[Tenv;Temp],pot(1,1)>= 0.254043439071652];’ I)B

% QP problem solution
Options=sdpsettings( ‘'verbose’ , 0, ’solver’ ,” ),
sol = solvesdp(Constraints, Objective, Options);
power_cores_cntrl(i)= double(pot(1,1));

end

The function take as input the number of the cbr€ORE the structure with the iden-
tified modelsmodels the power consumption of the cores estimated with the delayed CPI
measurementpowertarget past the critical temperature threshoMPC_Thresh the ambi-
ent temperatur@eny the current cores temperatufremp and the temperatureemppastand
power pow_pastat the previous sampling time. The function gives as output the controlled
power consumption.

In the first part the parameters of the optimization problem are set. Swdrgga loop solve
independently the local optimization problem. Focusing on the loop, the fitsti@ti®n is to

estimate the unknown state of the model (in this case we do not use the Lgenbeserver).
To complete this operation we need to storage the cores temperature ardcpas@mption
of the prior sampling interval. Then the objective function and the Constraiatdefined and
the problem solved using the specified options.

C.3.3 QpOASES

In this Section we have reported the distribute algorithm realized in C/C++daeghe code
is briefly explained below.

© o N o U A W N R

e =
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/I The program solves the problem below uteratively
1

/I min (Pd-P)’ * Hx (Pd-P)

Il s.t.

/I T<T_CRIT

1

/I that can be translated into a QP problem
1

/I mn x *Qx + g *X

Il s.t.

/I A *x < ubA

/I 0 < x

1
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C.3 The distributed MPC control solution

/I with x=[P_1 P_2...P_n eps] where eps is the slack variabl

e for constraints

rigidity
#include  <QProblem.hpp>
#include  <sys/time.h>
#include  <iostream>
#include  <sstream>
#include  <string>
#include  <cstdlib>
#include  "Distributed_Matrices.h.h"
#define  Ka_DEFAULT 3.8696e-008 // frequency to power parameters
#define  Kb_DEFAULT 2.4090
#define  Kc_DEFAULT 1.1025
#define  Kd_DEFAULT 0.0051
#define  Ke_DEFAULT -4.1376
#define  Kf_DEFAULT  -0.3016
#define  Z_DEFAULT 2.59E+02
#define K 1.38e-23
#define g 1.6e-19
#define alpha 1.5
#define  KIDLE_STATIC 0.33
#define F_MIN 1600 /I Minimum frequency
#define F_MAX 3000 /I Maximum frequency
#define  TOLLERANZA 1.e-6
#define  MAX_ITERATION 1
#define  NITER 5000 /I Iteration number
#define HARD_SOFT 0.0 /I 0/1 = Hard/Soft
#define  WEIGHT1 2.0 /I Weights of the Hessian matrix (x 2)
#define  WEIGHT2 200000.0 /I Weights of the Hessian matrix (slack variable)
#define TEMP_LIM 330 /I Maximum temperature allowed
#define  NUM_IT_QP_SOLVER 10 // Maximum iteration number (solver algorithm)
#define N_CORE 4 /I Cores number
/I Input Files
#define  FIN_DEF_FREQ "inputFreqFluid.txt" /I Frequency input
#define  FIN_DEF_CPI "inputCPIFluid.txt" /I CPI input
/I Output Files
#define FOUT_DEF_TEMP'outputCTempFregDistrNF.txt" /I Temperatures
#define  FOUT_DEF_POWoutputCPowFregDistrNF.txt" /I Power controlled
#define  FOUT_DEF_FREQ'outputCFregDistrNF.txt" /I Frequency controlled
#define  FOUT_DEF_TIME "outputCTempiFregDistrNF.txt" /I Times

/I 110 Function

void readVect( int dim,FILE = fin, double * vett); /I Reading of a vector from a file

void writeVect( double * y, int dim, FILE = fout); /I Writing of a vector in a file

void printVect( double * vett, int dim); /I Writing of a vector on the monitor

void printMat( double * mat, int righe, int columns); /I Writing of a matrix on the
monitor

/I Conversion function (frequency/power)
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double Psta( float  *p);

double f2p( double freq, float =*p);

double f2p_inv( double freq, float *p);

double Amsterdam_Method( double (*f)( double ,float =), double a, float ~ap, double c,
double tolerance, int  max_iterations, int  xerr);

typedef struct {

double H[2+2]; /I={{WEIGHT1,0},{0, WEIGHT2}};
double g[2]; /1={0.0, 0.0}

double A[1 *2]; //={0.0,HARD_SOFT};

double b_1[2]; /1={0.0,0.0};

double b_2[N_CORE+1]; //={0.0};
double ubA[1];

double Ib[1]; /1=0.0;

double x_obsv[2]; //={0,0};

double u_found_pow[N_CORE+2];
} QP_Object;

The first inclusion is related to the gpOASES librady that we employed to solve the
quadratic programming inside the MPC controller. qpOASES is an opees@i+ imple-
mentation of the recently on-line active set strategy proposeé)inp@rticularly suited for
model predictive control (MPC) applications. Among the other classicaisians, it is pos-
sible to notice the filDistributed Matrices.hwhich contains the accurate thermal model ma-
trices and the matrices of all the single-core models. The file is obtained uMagjab script
and the matrices are defined as follows:

Distributed _Matrices.h

© ® N o U A W N P
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/I Plant

int  dimlP_A=192; /lhow many rows for the A matrix?
int  dim2P_A=192; /lhow many rows for the A matrix?
double P_A[192][192]={{0.520788,...}};

int  dimlP_A=192; /Inow many rows for the B matrix?
int  dim2P_A=192; /lhow many rows for the B matrix?
double P_A[192][192]={{0.520788,...}};

int dimlP_C=4; /Ihow many rows for the C matrix?
int dim2P_C=192; //how many rows for the C matrix?
double P_CJ[4][192]={{0.000000,...}};

int  dimlP_D=4; /Inow many rows for the D matrix?
int  dim2P_D=5; /lhow many rows for the D matrix?
double  P_DI[4][5]={{0.000000,...}};

int  dim1P_X0=192;

int  dim2P_X0=1;

double  P_X0[192][1]={{310.000000}.{...}};

/I Single-core Models

int  dimlM_A=4; /I how many A matrices?

int  dim2M_A=2; /I ' how many rows for each A matrix?
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int  dim3M_A=2; /I how many rocolumns for each A matrix?

double  M_A[4][2][2]={{{0.000000, 1.000000}{-0.511909, 1.509 581}},{{0.000000,
1.000000},{-0.511610, 1.507963}},{{0.000000, 1.000000 }{-0.510852,
1.507153}},{{0.000000, 1.000000},{-0.511115, 1.508757 B

int  dim1M_B=4; /I how many B matrices?

int  dim2M_B=2; /I how many rows for each B matrix?

int  dim3M_B=6; /I how many rocolumns for each B matrix?

double M_BJ4][2][6]={{{0.031718, 0.000414, 0.000000, -0.00230 7, 0.000000,
0.000000},{0.017709, 0.001040, 0.000000, 0.000322, 0.00 0000,
0.000000}},{{0.031760, 0.000448, -0.002290, 0.000000, - 0.010885,
0.000000},{0.017826, 0.001124, 0.000532, 0.000000, -0.0 04477,
0.000000}},{{0.031744, 0.000488, 0.000000, -0.008217, O .000000,
-0.005814},{0.017783, 0.001223, 0.000000, -0.003106, O. 000000,
-0.001285}},{{0.031734, 0.000404, 0.000000, 0.000000, - 0.001108,
0.000000},{0.017719, 0.001014, 0.000000, 0.000000, 0.00 0981, 0.000000}}};

int  dimiM_C=4; /I how many C matrices?

int  dim2M_C=1, /I how many rows for each C matrix?

int  dim3M_C=2; /I how many rocolumns for each C matrix?

double M_C[4][1][2]={{{1.000000, 0.000000}},{{1.000000, 0.00 0000}},{{1.000000,
0.000000}},{{1.000000, 0.000000}}};

int  dim1M_D=4; /I how many D matrices?

int  dim2M_D=1; /I how many rows for each D matrix?

int  dim3M_D=6; /I ' how many rocolumns for each D matrix?

double M_D[4][1][6]={{{0.000000, 0.000000, 0.000000, 0.000000 , 0.000000,
0.000000}},{{0.000000, 0.000000, 0.000000, 0.000000, O. 000000,
0.000000}},{{0.000000, 0.000000, 0.000000, 0.000000, O. 000000,
0.000000}},{{0.000000, 0.000000, 0.000000, 0.000000, O. 000000, 0.000000}}};

int  dim1M_X0=4; /I how many initial state vectors?

int  dim2M_X0=1; /I how many rows for each initial state vectors?

int  dim3M_X0=2; /I how many rocolumns for each initial state vectors?

double  M_XO0[4][1][2]={{{310.000000, 310.586759}},{{310.0000 00,
313.945288}},{{310.000000, 314.198166}},{{310.000000 , 310.218260}}};

int  dim1K_Obsv=4; /I how many observer gain matrix?

int  dim2K_Obsv=2; /I ' how many elements

double K_Obsv[4][2]={{0.905748, 0.937297},{0.904778, 0.93461 9},{0.904292,
0.933791},{0.905254, 0.936473}};

double x_plant[192]; /I plant state dimension

double x_plant_old[192];

Subsequently, we defined the constants values: the parameters of teemodel (for
frequency to power conversions), the parameters of the optimizatiofeprpand the name of
the file where the input traces are read and the computed values are stored
Then, the functions used inside the code are defined. Some functions githelieading and
writing of the files and the writing of the data on the monitor, the others are useshtert
power to frequency and frequency to power. In particular, AhesterdamMethodfunction
allows us to invert the nonlinear equation which relates frequency to pvean be found as

open source file on the web).
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Finally, the type of structur€@P_Objectis defined. It is a support structure that groups all
the parameters necessary to define the local MPC controller (QP problameters, observer

states, and controlled power consumption). For each core (in the codsedet cores) there

will be an instance of th@P_Object

© 0 N o g b~ W N
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int  main( int argc, char #** argv)

{

s

/I Variabili

e
using namespace (gpOASES;

/I Time variables
timeval t_start, t stop, t_step;
double time[NITER];

/I loop variables
int  iii,j,k, numPar, numVinc, nWSR;

/I QP object
QP_Object QP[N_CORE];

/I Input arrays

double inPow[N_CORE+1];
double input[N_CORE+2];
double inFreq[N_CORE+1];
double InCPI[N_CORE];

/I Qutput arrays
double Temp_plant[N_CORE];
double Temp_plant_old[N_CORE];

/I Controlled power arrays (P_C)
double u_found_pow[N_CORE+1];
double u_found_freq[N_CORE+1];
double u_neig_tot[N_CORE+1];

/I Observers
double inno;
double x_obsv_old[2];

/I Variables necessary for frequency conversions

float  param[5] = {1,1,310,1.35,0.5}; /I param = [CPI, Idle, Temp, Vdd, Vi]
float  pinv[2] = {1,3};

double P_static=0.0;

double P_dyn=0.0;

int err;
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/I File pointers inizialization

FILE » fin_Freq;

FILE * fin_CPI;

FILE » fout_Temp;

FILE » fout_Pow;

FILE » fout_Freq;

FILE = fout_Time;
fin_Freq=fopen(FIN_DEF_FREQ, o)
fin_CPI=fopen(FIN_DEF_CPI, o),

fout_Temp=fopen(FOUT_DEF_TEMP, "w");

fout_Pow=fopen(FOUT_DEF_POW, "w");

fout_Freq=fopen(FOUT_DEF_FREQ, "w")
fout_Time=fopen(FOUT_DEF_TIME, "w")

The first instructions in the main are devoted to instantiate the variables usexiandh:

the time variables (to store the time elapsed for finding the control decisiorgptimer vari-

ables, a vector containing the four instances of @ Object the vectors that will contain

the input trace data and the computed output data (plant temperature dralledmpower),

the support variables used to update the observers states and theepbtses values, some

parameters used for frequency to power conversion, and the poariables addressing the

files where the data will be saved.
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1l
/I Initializations
1

/I Parameters number
numPar=dim2M_C+1;

/I Constraints number
numVinc=dim2M_C;

/I QP objects initializations

for (i=0;i<N_CORE;i++){
QPIi].H={WEIGHT1,0,0,WEIGHT2},
QPIi].g={0.0, 0.0};
QP[i].A={0.0,HARD_SOFT},
QPIi].b_1={0.0,0.0};
QPIi].b_2={0.0};
QP[i].10={0.0};
QPJi].x_obsv={0.0,0.0};

}

/I Definition of the constraints matrix A
for (k=0;k<N_CORE;k++){
for (i=0;i<2;i++){

QP[K].A[0]+=M_C[K][O][i] *M_BK][i][O];
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C. ACCURATE MODEL

/I Definition of b_1 and b_2
for (k=0;k<N_CORE;k++){
for (i=0;i<dim2M_A;i++){
for (j=0;j<dim2M_A;j++){

QP[K].b_1[il+=-M_C[K][O][i] * M_ALK]LT;
}
for (j=0;j<N_CORE+1;j++){
QP[K].b_2[jl+=-M_C[K][0][i] * M_BK][i][j+1];
}

/| State initialzation of observers
for (k=0;k<N_CORE;k++){
for (i=0;i<2;i++){
QPIK].x_obsv[i]=M_XO[K][O][i];
}

/I Setting up QProblem object.

QProblem MPC_1(numPar,numVinc);
QProblem MPC_2(numPar,numVinc);
QProblem MPC_3(numPar,numVinc);
QProblem MPC_4(numPar,numVinc);

/I Plant
for (j=0;j<dim1P_C;j++){
Temp_plant[j]=0;
for (k=0;k<dim2P_C;k++){
Temp_plant[j]+=P_CI[j][k] * P_XO[K][0];
}

}
writeVect(Temp_plant, dim1P_C, fout_Temp);

In this piece of code the variables are initialized. The number of optimizatidablas

and constraints are set, the constant parameters of the QP probleniasidsethe vector of
QP_Object the QProblemobject of the gpOASES library are definddC_1....,MPC 4), and

the plant is initialized.

1
2
3

1

/I Algorithm
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C.3 The distributed MPC control solution

1

1l
1 Cold start
Il

/I Reading of inputs
readVect(N_CORE+1,fin_Freq,inFreq);
readVect(N_CORE,fin_CPlL,inCPI);

/I Frequency to power conversion
for (i=0;i<N_CORE;i++){
param[0]=inCPI[i];
P_static = Psta(param);
inPow[i]=f2p( inFreq[i], param);
inPow(i]+=P_static;
}
inPow[N_CORE]=inFreq[N_CORE];

/I Input grouping: u_i=[P_i Tenv Tvicini(tutti)]

u_neig_tot[0]=inPow[N_CORE];

input[1]=inPow[N_CORE];

for (j=0;j<N_CORE;j++){
input[j+2]=Temp_plant[j];
u_neig_tot[j+1]=0.0;

/I Plant future state

for (j=0;j<dim1P_A;j++){
x_plant[j]=0;
for (k=0;k<dim1P_A;k++){

x_plant[j]+=P_AJj][k] * P_XO[K][O];
}
for (k=0;k<dim2P_B;k++){
x_plant[j]l+=P_BJ[j][K] *inPow[k];
}

/I Observers states
for (k=0;k<N_CORE;k++){
input[0]=inPow[k];
inno=0.0;
for (i=0;i<dim3M_C;i++){
inno+=M_C[K][O][i] * M_XO[K][O][i];
}
inno=Temp_plant[k]-inno;
for (i=0;i<dim2M_A;i++){
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QPIK].x_obsv[i]=0.0;
for (j=0;j<dim3M_A;j++){

QP[K].x_obsvlil+=M_A[K][i][j] * M_XO[K][O](i];
}
for (j=0;j<dim3M_B;j++){
QP[k].x_obsv[i]+=M_BIK][il[] *inputfj];
}
QPIK].x_obsv[i]+=K_Obsv[K]]i] *inno;

/I Plant output updating
for (j=0;j<dim1P_C;j++){
Temp_plant[j]=0;
for (k=0;k<dim2P_C;k++){
Temp_plant[j]+=P_CJj][k] * X_plant[k];

}
writeVect(Temp_plant, dim1P_C, fout _Temp);

/Il Reading of input predictions
readVect(N_CORE+1,fin_Freq,inFreq);
readVect(N_CORE,fin_CPL,inCPI);

/I Frequency to power conversion
for (i=0;i<N_CORE;i++){
param[0]=inCPI[i];
P_static = Psta(param);
inPow[i]=f2p( inFreq[i], param);
inPow[i]+=P_static;
}
inPow[N_CORE]=inFreq[N_CORE];

/I Updating of g and input array total=[Tenv Tneights] build ing
u_neig_tot[0]=inPow[N_CORE];
for (j=0;j<N_CORE;j++){
QP[j].g[0]=-inPowf[j] *2;
u_neig_tot[j+1]=QP[j].x_obsv[O0];
}
/I Computing ubA (b) --as---> uba= y max - b_1 *X_obsv - b 2 *Tenv
for (j=0;j<N_CORE;j++){
QP[j].UubA[O]=TEMP_LIM+QP[j].b_1[0] * QP[j].x_obsv[0] +
QP[j].b_1[1] * QP[j].x_obsv[1] + QP[j].b_2[0] *U_neig_tot[0] +
QP[j].b_2[1] *U_neig_tot[1] + QP[j].b_2[2] *U_neig_tot[2] +
QP[j].b_2[3] *U_neig_tot[3] + QPI[j].b_2[4] * U_neig_tot[4];

}
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C.3 The distributed MPC control solution

/I Cold QP solutions
NWSR=NUM_IT_QP_SOLVER;
gettimeofday(&t_start, NULL); Il <-meemmmeemeeee- TIC

MPC_1.init(QP[0].H,QP[0].g,QP[0].A,QP[0].Ib, NULL,NU LL,QP[0].ubA,

Y:NWSR=NUM_IT_QP_SOLVER;

MPC_2.init(QP[1].H,QP[1].9,QP[1].A,QP[1].Ib,NULL,NU LL,QP[1].ubA,

Y:NWSR=NUM_IT_QP_SOLVER;

MPC_3.init(QP[2].H,QP[2].9,QP[2].A,QP[2].Ib,NULL,NU LL,QP[2].ubA,

$:NWSR=NUM_IT_QP_SOLVER;

MPC_4.init(QP[3].H,QP[3].9,QP[3].A,QP[3].Ib,NULL,NU LL,QP[3].ubA,

);"WSR=NUM_IT_QP_SOLVER;

gettimeofday(&t_stop,NULL); R TOC
timersub(&(t_stop),&(t_start),&(t_step));
time[0]=(t_step.tv_sec + t_step.tv_usec/1000000.0)/N_ CORE;

/I Storing of the controlled powers values
MPC_1.getPrimalSolution(&(u_found_pow|[0]));
MPC_2.getPrimalSolution(&(u_found_powl[1]));
MPC_3.getPrimalSolution(&(u_found_pow([2]));
MPC_4.getPrimalSolution(&(u_found_pow([3]));
u_found_pow[N_CORE]=inPow[N_CORE];

/I Power -> Frequency & Frequency -> Power conversions
for (i=0;i<N_CORE;i++){
param[0]=inCPI[i];
P_static=Psta(param);
P_dyn=u_found_pow[i]-P_static;
if (P_dyn<0) P_dyn = O;
if  (f2p(F_MIN,param)>=P_dyn){
u_found_freq[i]=F_MIN;
}
else {
if (f2p(F_MAX,param)<=P_dyn){
u_found_freq[i]=F_MAX;
}
else {
pinv[0]=param[0];
pinv[1]=P_dyn;
u_found_freq[i]l=Amsterdam_Method(f2p_inv, F_MIN, pinv
TOLLERANZA, MAX_ITERATION, &err);
}
}
u_found_pow/[i]=f2p( u_found_freq[i], param);
u_found_pow/[i]+=P_static;

for (j=0;j<N_CORE;j++){
QP[j].u_found_pow[0]=u_found_powf[j];
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C. ACCURATE MODEL

QPJj].u_found_pow[1]=inPow[N_CORE];

Although efficient QP solvers based on active-set methods and int@iiarpethods are
available, the computational overhead for finding the solution demands sagrtifin-line com-
putation effort. The solving algorithm implemented in gpOASES library is moreiefi,
since, after having computed the first solution of a QP problem, it can computestir solu-
tion starting the search from the previous one (this property is ndwiestar). In the reported
part of code we show the algorithm to find the first solution of each QPlgmolbwe called it
cold star).

The first sample of the input trace is read. The functesdVectreads the frequency and the
CPI of each core from the input file. Then, the frequency is convéotpdwer using the func-
tion f2p, and the input vector for each single-core model is prepared in ordestimate the
future temperature of the plant. The plant states, the observer statdbegpldnt output are
computed. The estimations of the next input are read (we assume to knothyeéka work-
load of the next sample interval), the time-varying matrices of the QP probleopaated, and
then each QP problem is solved invoking the functididC_i.init of the qpOASES library. The

function MPC.i.getPrimalSolution(of the gpOASES library) assigns to the controlled power
vector u_foundpow the solution of the problems. Notice that the solving time is computed
using the functiorgettimeofdaysubtracting to the timestop saved after the QP problem has

been solved, the timestart, saved at the beginning of the computation. Finally the controlled

power of the cores obtained by solving the QP problems is converted inefnieguusing the
AmsterdarmMethodfunction.
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for  (i=0;i<NITER-1;i++){

/I Plant future state

for (j=0;j<dim1P_A;j++){
x_plant_old[j]=x_plant[j];

}

for (j=0;j<diml1P_A;j++){
x_plant[j]=0.0;
for (k=0;k<diml1P_A;k++){
x_plant[j]+=P_A[j][K] *X_plant_old[K];

292



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

C.3 The distributed MPC control solution

}
for (k=0;k<dim2P_B;k++){

x_plant[j]+=P_BI[jl[k] * u_found_powl[k];
}

/I Storing past Temperature & grouping of neighbors in the in
for (j=0;j<N_CORE;j++){
Temp_plant_old[j]=Temp_plant][j];
for (k=0;k<N_CORE;k++){
QP[K].u_found_pow[j+2]=Temp_plant[j];

/I Plant outputs updating
for (j=0;j<dim1P_C;j++){
Temp_plant[j]=0.0;
for (k=0;k<dim2P_C;k++){
Temp_plant[j]+=P_C[j][k] * x_plant[k];

}
writeVect(Temp_plant, dim1P_C, fout Temp);

/I Start Clock
gettimeofday(&t_start,NULL); /| <ememmmmmmeeee- TIC

/I Observers states
for (k=0;k<N_CORE;k++){
for (j=0;j<dim2M_A;j++){
x_obsv_old[j]=QP[K].x_obsv[j];
}
inno=0.0;
for (j=0;j<dim3M_C;j++){
inno+=M_C[K][O][j] *x_obsv_old[j];
}
inno=Temp_plant_old[k]-inno;
for (ii=0;ii<dim2M_A;ii++){
QP[K].x_obsvV[ii]=0.0;
for (j=0;j<dim3M_A;j++){

QP[k].x_obsV[ii]l+=M_A[K][ii][j] *x_obsv_old[j];
}
for (j=0;j<dim3M_B;j++){
QP[k].x_obsv[ii]l+=M_BIk][ii][j] * QP[K].u_found_powf[j];
}
QPI[K].x_obsvl[ii]+=K_Obsv[k][ii] *inno;
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C. ACCURATE MODEL

}

/I Reading of inputs
readVect(N_CORE+1,fin_Freq,inFreq);
readVect(N_CORE,fin_CPl,inCPl);

/I Frequency --> Power conversion
for (j=0;j<N_CORE;j++){
param[0]=inCPI[j];
P_static = Psta(param);
inPow(j]=f2p( inFreq[j], param);
inPow[j]+=P_static;
}
inPow[N_CORE]=inFreq[N_CORE];
u_neig_tot[0]=inPow[N_CORE];

/Il Update of g and input array totale=[Tenv Tneights] buildi ng
for (j=0;j<N_CORE;j++){
QPIj].g[0]=-inPow(j] *2,
u_neig_tot[j+1]=QPJj].x_obsv[0];
}
/I Computing ubA (b) --as--> uba= y max - b_1 *X_obsv- b 2 *Tenv
for (j=0;j<N_CORE;j++){
QPJj].ubA[0]=TEMP_LIM+QPJj].b_1[0] * QP[j].x_obsv[0] +
QP[j].b_1[1] * QP[j].x_obsv[1] + QPJj].b_2[0] *U_neig_tot[0] +
QP[j].b_2[1] *Uu_neig_tot[1] + QPI[j].b_2[2] *Uu_neig_tot[2] +
QP[j].b_2[3] *U_neig_tot[3] + QPJj].b_2[4] * U_neig_tot[4];

/I Hot QP solutions

MPC_1.hotstart(QP[0].g,QP[0].Ib, NULL,NULL,QP[0].ubA
);NWSR=NUM_IT_QP_SOLVER;

MPC_2.hotstart(QP[1].9,QP[1].Ib,NULL,NULL,QP[1].ubA
);NWSR=NUM_IT_QP_SOLVER;

MPC_3.hotstart(QP[2].g,QP[2].Ib, NULL,NULL,QP[2].ubA
);NWSR=NUM_IT_QP_SOLVER,;

MPC_4.hotstart(QP[3].9,QP[3].Ib,NULL,NULL,QP[3].ubA
);NWSR=NUM_IT_QP_SOLVER; // Il <-ecmmmeeeee ogni volta viene
(tenuto quello del ciclo precedente) !

/I Storing of the controlled powers values
MPC_1.getPrimalSolution(&(u_found_pow][0]));
MPC_2.getPrimalSolution(&(u_found_pow[1]));
MPC_3.getPrimalSolution(&(u_found_pow][2]));
MPC_4.getPrimalSolution(&(u_found_pow([3]));
u_found_pow[N_CORE]=inPow[N_CORE];
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C.3 The distributed MPC control solution

/I Power -> Frequency conversion
for (j=0;j<N_CORE;j++)X{
param[0]=inCPI[j];
P_static=Psta(param);
P_dyn=u_found_powlj]-P_static;
if (P_dyn<O)P_dyn = 0;
if  (f2p(F_MIN,param)>=P_dyn){
u_found_freq[j]=F_MIN;
}
else {
if (f2p(F_MAX,param)<=P_dyn){
u_found_freq[j]=F_MAX;
}
else {
pinv[O]=param][0];
pinv[1]=P_dyn;
u_found_freq[j]l=Amsterdam_Method( f2p_inv, F_MIN, pinv
TOLLERANZA, MAX_ITERATION, &err);
}

/I Stop Clock
gettimeofday(&t_stop,NULL); Il <ememmmmmmeeee TOC
timersub(&(t_stop),&(t_start),&(t_step));

time[i+1]=(t_step.tv_sec + t_step.tv_usec/1000000.0)/ N_CORE;

/I Frequency --> Power conversion

for (j=0;j<N_CORE;j++){
param[0]=( float )inCPI[j];
P_static=Psta(param);
u_found_powl[j]=f2p(u_found_freq[j], param);
u_found_pow([j]+=P_static;

for (j=0;j<N_CORE;j++){
QP[j].u_found_pow[0]=u_found_pow([j];
QPJj].u_found_pow[1]=inPow[N_CORE];

/I Writing of the time file
for (i=0;i<NITER;i++)
fprintf(fout_Time, "%f\n" time[i]);

return  0;

}
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C. ACCURATE MODEL

The code described for the cold start, is repeated for all the other santipieg with a
loop. The only difference regards the name of the function called foirgpthhe QP problems
that isMPC_i.hotstartthat allows the algorithm to compute the next solution starting from the

previous one.
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Il
/I Functions
I

/I Reading of a vector from a file

void readVect( int dim,FILE =* fin, double * vett)

{
int i
char ch;
for (i=0;i<dim;i++){
fscanf(fin, "%lf " &vett]i]);
}
fscanf(fin, "\r%c\n" ,&ch);
}

/I Writing of a vector in a file

void writeVect( double * y, int dim, FILE * fout)

{
int i
for (i=0;i<dim;i++){
fprintf(fout, “%f "yl
}
fprintf(fout, “\nnt);
}

/I Writing of a vector on the Monitor
void printVect( double * vett, int dim)
{
int i
for (i=0;i<dim;i++)
printf( ~ "%f " ,vett[i]);

printf(~ "\n" );
}
/I Writing of a matrix on the Monitor
void printMat( double * mat, int righe, int
{
int ij;

for (i=0;i<righe;i++){
for (j=0;j<columns;j++){
printf( "%f " ,mat[i *columns+j]);

columns)
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/I Functions for frequency conversions

double Psta( float *p)
{

return  (double )(Z_DEFAULT *p[3] *p[2] *p[2] *exp((-q *(p[4D)/(K  *p[2]));
}

double f2p( double freq, float *P)
{
double Pdyn;
it (p[0]'=0)1
Pdyn = (Ka_DEFAULT=* (pow((freq),Kb_DEFAULT)) + Kc_DEFAULT) +
(Ke_DEFAULT+(Kd_DEFAULT+freq)) *pow(p[0],Kf_DEFAULT);}
else {Pdyn=0;}
Pdyn = Pdyn *p[1];
return  Pdyn ;

}

double f2p_inv( double freq, float *P)

{
return  ((Ka_DEFAULT * (pow((freq),Kb_DEFAULT))+ Kc_DEFAULT +
(Ke_DEFAULT+(Kd_DEFAULT*freq)) *pow(p[0],Kf_DEFAULT)) - p[1]);

Finally the implementation of the functions.

C.4 The complex MPC control solutions

In this Section we provided the code of the complex control solutions pexsénChapteb.
These algorithms re-call the functions shown in the previous Section.

C.4.1 Afeasible two-layer distributed MPC approach to thernal control of Mul-
tiprocessor Systems on Chip

The simulation of the two-layer solution has been entirely executed in the Simunirtoe-
ment. The block diagram of the solution is represented inEi.
The scheme comprises four main blocks:

Inputs contains some typical benchmark traces selectable wittrdbe selectorblock;
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Figure C.6: Simulink block diagram of the two-layer solution.

MPC Layer contains the distributed MPC thermal controller;
Safety Layercontains the switch controllers;
Plant contains the accurate thermal model of the processor.

The Inputsand Plant blocks are not described here. We will focus on MBC Layerand
the Safety Layeblocks. With regard to the former, the block receives the frequencyttend
CPl values as inputs. Each sampling intervalni0these values are converted into a power
consumption requirement (using the bldelCPI_2_P), which is an input of theMPC Matlab
function block. This block calls the functiodistrMPC _Yalmip already shown in the Para-
graphC.3.2.2 in order to solve the optimization problem of each local controller. Thetiomc
returns the controlled power of all cores which is converted into freqquémy the function
block P_CPI_2_F. This frequency vector is the output of tMPC Layerblock. It is worth to
note that inside thMPC Layerblock three delay blocks are present (highlighted in yellow).
The first on the left simulates the unpredictability of the workload (i.e. the €fleacurrent
time is equal to the one computed in the previous sampling interval). The othetdreatise
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past temperature and power consumption of each core in order to estimatiktimavn states
of each single-core model inside thH>C block

TheSafety Layeblock, instead, contains the set of switch controllers used for guaiagtee
the feasibility of the global controller. As it is possible to see in Eidgh, each switch controller
(one per core) can be simulated using a standard Simulink blocRela/block, which im-
plements an hysteresis function. The gain block is only needed to adoptauirements to
the hysteresis block. Thgafety Layeblock takes as inputs the temperatures measured on the
cores. The temperature of théh core enters as input into the correspond@mitch#iblock. At
each sampling time (0mg, each temperature is compared to the switch temperature threshold
(tswitch). If the temperature violates the threshold the controller trims the power gumsu
tion of that core to the minimum valu®n) until the temperature decrease below the lower
hysteresis threshold. Otherwise the controller return the maximum powsumgiion. The
power is finally converted in frequency and given as output oSéfety Layeblock.

Notice that aminimumblock allows the controller to choose, for each core, the correct
frequency between the one outgoing from khieC Layerblock and the one outgoing from the
Safety Layeblock. That frequency feeds the cores of the plant.

C.4.2 Communication-aware solution

We reported below the code used for simulating the communication-aware golutio

© 0 N o g b~ W N P
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%% 5
%VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VIRV VVVVVVVVVVV VWV V VYV
QO I
%%%%%%% %% %% %%%% %% %% %% %% % %%9%0%%%% %% %% %% %% Y0 % %% %% % %0 %"
%%%9%0%%%% % %% %%%% %% %% %% %% % CONTROLLER Yo% VPSPPI Y0 %0 Y0 %0 %
%%%9%0%%% %% %% %%%% %% %% %% %% % %%9%6%%%% %% %% %% %% Y0%%%% %% %0 %"
QORI TR
%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBAAAAAAAAAAAAAAAAAAA
% Communication-Aware Approach:
% - performance maximization
% - thermal capping
% - matching frequency between cores

9%6%%%%% % %% %% %% %% % %% %% %% % %% %% %% %% % % %0 %48%08%8%0%8%6%840%848%0%8%6%848%8%0%0 % % % %% %

%%%%%% Parameters

Vdd=1.35; % Supply voltage

IDLE=1;

299



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

a1
42
43
a4
45
46
a7
48
49
50
51
52

53

54

55

56

57
58

59
60
61

o

2
63

C. ACCURATE MODEL

F_MAX=3000; % maximum frequency

F_MIN=1600; % minimum frequency

P_MIN=F_CPI_2_P(1600,100,IDLE,Tenv(1,1),vVdd); % minimum power consumption
time_trace = 30000; % trace duration

%%%%% %% %% %%%%%%% %% % %% % %% %% %% %% % % % % %
%%%%%% MPC Controller Init

8%0%%%%% %%

T_CRIT=360 * ones(NC,1); % critical temperature
Vy_max=zeros (NC,1); % O=hard 1=soft constraints
rho=10"5; % weight of the slack variable
weight=100; % weight of the communication
w=1; % weight of the power error

Q_gp=weye (NC);

%%%%% %% %% %% % %% % %% % %% % %% % %% % % %% %% %0 % %

%%%%%% Benchmarks

% Time

clear power_tot_target power_cache_target power_cores_targe t frequency_cores_target
CPI_cores_target

0%%%%%%%

% Inputs

frequency_cores_target = idinput([time_trace,NC], ‘prbs’ [0 0.005],[1600 3000]);
CPI_cores_target=1.5 * ones(time_trace,NC); % Note: we know the future CPI
CPI_cores_target(:,2) = 0.5+(100-0.5). +*rand (time_trace,1);

% Target Power (Conversion using the Power Model function CP 12Pow)
power_cores_target=CPI2Pow(frequency_cores_target,C PI_cores_target,IDLE,Tenv(1,1),vdd);

% Caches Power (the 30% of the adjacent core powers)
clear power_caches_target power_tot target
power_caches_target(:,1) =

((power_cores_target(:,1)+power_cores_target(:,3)). 12). *percentuale;
power_caches_target(:,2) =

((power_cores_target(:,2)+power_cores_target(:,4)). 12). *percentuale;
power_caches_target(:,3) =

((power_cores_target(:,5)+power_cores_target(:,7)). 12). *percentuale;
power_caches_target(:,4) =

((power_cores_target(:,6)+power_cores_target(:,8)). [2). *percentuale;

% Total Power

power_tot_target=[power_cores_target(:,1) power_cach es_target(:,1)./2
power_caches_target(;,2)./2 power_cores_target(;,2) p ower_cores_target(:,3)
power_caches_target(:,1)./2 power_caches_target(:,2) /2 power_cores_target(:,4)
zeros (time_trace,4) power_cores_target(:,5) power_caches_t arget(:,3)./2
power_caches_target(:,4)./2 power_cores_target(;,6) p ower_cores_target(:,7)
power_caches_target(:;,3)./2 power_caches_target(:,4) /2 power_cores_target(:,8)];

%%%%% %% % % %% %% %% %% % %% % %% % %% % %% % %% %0 %0 %8648
%%%%%% Initialization
% Plant

0%%%%% %%
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C.4 The complex MPC control solutions

sysd=c2d(TModel,Time.Step, ‘zoh' ); % Discretization of the plant
x_plant=zeros (time_trace-1, size (A1));

x_plant(1,:)=X0’;

Temp_plant= zeros (time_trace,NC);

Temp_plant(1,:)=(sysd.C * X0);

% Controlled Inputs

power_cores_cntrl= zeros (time_trace,NC);
power_tot_cntrl= zeros (time_trace,N_COMP);
frequency_cores_cntrl= zeros (time_trace,NC);

% Observer
x_obsv(1,:)=model.x0’;
K_obs=(place(model.a’,model.c’,( eig (model.a). *0.4)));

We skip the code used for the implementation of the accurate model and the cdeiotifi
of the prediction model (this solution is not distributed). In the first part efdbde the usual
parameters of the controller are defined. Subsequently, the inputrbaricts defined, the
frequency (a PRBS signal) and the CPI (a random input) are translapesvier requirements.
The plant and the observer are initialized.
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%9%6%% %% % %%%% %% %% %% % %% % %% %0 %% %% %0 %% %0 % % S840 HELB40UOABUBYBLEUYELEYEY
%%%%%% Simulazione
for j=1:time_trace

% Calcolo uscita plant

Temp_plant(j,:)=sysd.c *X_plant(j,:)’;

%%%%%%%

% Communication request
if  j<(time_trace/3)

Communicating_Core_vector=[1 1 0 0 0 0 0 0];
else

Communicating_Core_vector=[1 0 0 0 1 0 0 0];
end

% Matrices Update

[Q_additive g_additive]=communication(Communicating_ Core_vector,
CPI_cores_target(j,:), F_MAX, F_MIN, weight);

g_qp=(-2 *power_cores_target(j,:) *Q_qgp)’;

g_gp_tot=g_gp+g_additive’;

Q_gp_tot=[Q_gp. *2+Q_additive zeros (size (Q_gp,1),1); zeros (1, size (Q_gp.1))
rho. *2];

% QP problem

clear pow

pow=sdpvar(NC+1,1);

Objective=[0.5 *pow’ * Q_gp_tot * pow+pow’ * [g_gp_tot;0]];

Constraints=[[model.c * model.b(:,1:NC) -Vy_max] * pow <= T_CRIT-model.c * modela *
x_obsv(j,:)’-model.c * model.b(:;;NC+1: end)* Tenv(j,1),pow(1:NC,1) >=
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C. ACCURATE MODEL

0.254043439071652];

Options=sdpsettings( ‘'verbose’ ,0, ’'solver’
sol = solvesdp(Constraints,Objective,Options);
power_cores_cntrl(j,1:NC)=double(pow(1:NC,1));

DK

% Power-to-frequency conversion
frequency_cores_cntrl(j,:)=
Pow2Freq_main2(power_cores_cntrl(j,:),CPI_cores_tar

% Frequency-to-Power conversion
power_cores_cntrl(j,:)=
CPI2Pow(frequency_cores_cntrl(j,:),CPI_cores_target

% Total power (we add the power of the caches)
power_tot_cntrl(j,:)= [power_cores_cntrl(j,1),
(power_cores_cntrl(j,1)+power_cores_cntrl(j,3))./4.
(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4.
power_cores_cntrl(j,2:3),
(power_cores_cntrl(j,1)+power_cores_cntrl(j,3))./4.
(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4.
power_cores_cntrl(j,4),
(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4.
(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4.
power_cores_cntrl(j,6:7),
(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4.
(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4.
power_cores_cntrl(j,8)];

% The future state of the plant

x_plant(j+1,:)= (sysd.a *x_plant(j,:)’+sysd.b
% Observer
x_obsv(j+1,:)= model.a *X_0bsv(j,:)'+ model.b

Tenv(j,1)I'+ K_obs * (Temp_plant(j,:)’- model.c

end

%%%%%%6%%% %% %% %% %% %% %% % %% %% %% %% %% % %Y

% Visualization
corel=[1 2 5];

get(j,2),IDLE, Tenv(1,1),vdd);

(,:),IDLE, Tenv(1,1),Vdd);

* percentuale,
* percentuale,

* percentuale,
* percentuale,

zeros (1,4), power_cores_cntrl(j,5),

* percentuale,
* percentuale,

* percentuale,
* percentuale,

*[power_tot_cntrl(j,:) Tenv(j,1)]')’;

* [power_cores_cntrl(j,:)
*X_obsv(j,:)");

%%%%%%%

ax(l) = subplot (611); plot (1:1:time_trace-1, Temp_plant(1:time_trace-1,corel)) ;
title  ('Temperature’ ); legend ('MPC’, ’Location’ ,’'Best’ );
ax(2) = subplot (612); plot (1:1:time_trace-1,
frequency_cores_cntrl(1:time_trace-1,corel), ‘LineWidth’ ,2); title (’Provided
Frequency’ )
ax(3) = subplot (613); plot (1:1:time_trace-1,
power_cores_cntrl(1:time_trace-1,corel), ‘Linewidth’  ,2); title (’Provided power’ ); %
ax(4) = subplot (614); plot (1:1:time_trace-1,
frequency_cores_target(1:time_trace-1,corel), ‘Linewidth’  ,2); title (’'Target

Frequency’ )
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56 ax(5) = subplot (615); plot (1:1l:itime_trace-1,

power_cores_target(1:time_trace-1,corel)); titte  ('Target power );

57 ax(6) = subplot (616); plot (1:1:time_trace-1, CPI_cores_target(1:time_trace-1,c orel));
titte  ('Target CPI' );

58 linkaxes(ax, X );

In this part of the code the simulation of the input trace is performed. Theisaimilar
to the code shown in the previous example, except for two minor diffesertéest, the vector
CommunicatingCore vectorwhich contains the information on the communicating cores. The
dimension of the vector corresponds to the number of cores. The indéxtke elements
with 1 represent the cores that must have the same frequency. In themeoonposed the
communication between the cores 1 and 2 for the first 10 seconds andehetfvgecores 1
and 5 for the rest of the simulation. Notice that BemmunicatingCore vector vector is
assumed to be provided by a high level software manager. The secterémif regards the
use of the functiorcommunicatiorthat takes as inputs th@ommunicatingCore vector, the
target CPI vector, the maximum and the minimum frequencies and the weigstanbof the
communication and it returns the arraysadditiveandg_additive Assuming the QP problem
to be solved to find the control decision has, in the nominal case (that isshewiidout cores
communications) the form,

1
min> - POW (1) Qqp- POW(t) + Ggp- POW(t) (C.4a)
s.t.

Aqp- powt) < bgp (C.4b)

then, the array®_additiveandg_additiveadded to the matriceQy, andggp allows the con-
troller to take into account the communication between the cores as explainsdion5.3.1.1
Notice that the communication between more than two cores is possible by callinglenultip

times the functiocommunication

C.4.2.1 communication.m

In the code below theommunicatiorfunction is shown

1 function [H_additive g_additive]J=communication(Communicating_ Core_vector,
CPI_vector, F_MAX, F_MIN, weight)
2 % COMMUNICATION returns the weight matrices of the cost func tion of the QP

3 % problem.
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C. ACCURATE MODEL

%
% The input parameters:

% - Communicating_Core_vector : vector with dimension 1 x n_ cores, the

% indexes of the element equal to 1 are the core communicating the other
% elements are 0 (only two value can be different from zero)

% - CPIl_vector : vector containing the CPI of all cores

% - F_MAX,F_MIN : maximum and minimum value of the frequency

% - weight : weight value for the communication in the QP probl em

%

%

% Example:

%

% Communicating_Core_vector=[1 1 0 0 0 0]; % the cores are 6, t he communicatin core

are the 1 and the 2

% CPI_vector=[0.1 1 23 100 0.5 8];

% F_MAX=3000; F_MIN=1600; weight=100;

% [H_additive g_additive]=communication(Communicating _Core_vector, CPI_vector,
F_MAX, F_MIN, weight)

if size (Communicating_Core_vector)= size (CPI_vector)
error (’communication:communication:none’ , 'The first two inputs must have the
same dimensions’ );
end

if sum (Communicating_Core_vector) =2
error (’communication:communication:none’ ,’Only two core can communicate!
Modify the CPI vector’ );
end

% Power Model Fitting Parameters
KA1=3.8696e-008;

KA2=1.1025;

KB=2.4090;

KC=-4.1376;

KD=0.0051;

KE=-0.3016;

% Finding of the communicating cores
index = find (Communicating_Core_vector "= 0);

% Preparing of the parameters for computing alpha and beta
Delta_CPI=CPI_vector(index(1))"KE-CPI_vector(index( 2))°KE;

F_lim=[F_MIN, F_MAX];
P_lim=(KAl. *F_lim. KB +KA2) + (KC+KD. =*F_lim). =(CPI_vector(index(2)))."KE;

Delta_P=P_lim(2)-P_lim(1);
Delta_F=F_lim(2)-F_lim(1);

% Computing of alpha and beta
alpha=KD =*Delta_F =*Delta_CPI/Delta_P;
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C.4 The complex MPC control solutions

beta =(KC+(KD+ (F_lim(1) *P_lim(@2)-F_lim2)  =P_lim(1)))/Delta_P) * Delta_CP!;

% Computing of the H_additive array
H_additive=  zeros ( max(size (CPI_vector)));

H_additive(index(1),index(1))=2 *weight;

H_additive(index(1),index(2))=-2 *»weight * (1+alpha);
H_additive(index(2),index(1))=-2 *weight * (1+alpha);
H_additive(index(2),index(2))=2 *weight * (1+alpha)™2;

% Computing of the g_additive array

g_additive=  zeros (1, max(size (CPI_vector)));
g_additive(index(1))=-2 * beta *weight;
g_additive(index(2))=2 *beta *weight *(1+alpha);

The code simply computes tlee and 3 parameters as shown in equatidn2? in Sec-
tion 5.3.1.1 Then the two parameters are used to creatQtlheditiveandg_additivematrices

as shown in equatiorb(26).

C.4.3 Guaranteed Re-sprinting in MPSoCs exploiting MPC

The simulation of the re-sprinting solution has been executed in the Simulinloamant in
order to simplify the management of the sampling time. Indeed the plant is congitinoe,
whereas the two hierarchical MPC controllers has different sampling tifiesblock diagram
of the solution is represented in Fi@.7.

The scheme comprises five main parts:

1. Onthe left of FigC.7, we can see Blultiport switchblock used for selecting the desired
input trace. The output of the block is a vector signal containing the powesumptions
of the 16 cores (remember that the first one is the power of the leadevbimieis always
active).

2. TheU boundblock contains the time-varying limit on PCM internal energy.

3. ThePCM MPC layerblock contains the centralized MPC controller used for the PCM
management. As explained in Chapgethis control layer is necessary for ensuring
the re-sprinting capabilities of the regulated system when mixed criticalities saeks
present.

4. TheThermal MPC layeblock contains the distributed MPC thermal controller.

5. Theplantblock contains the accurate thermal model of the processor.

305



C. ACCURATE MODEL

(distrMPC_Yalmip(u(1:16),u(17),u(18:33),distr) )
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Figure C.7: Simulink block diagram of the re-sprinting solution.

The part of the code related to the inputs and the plant are skipped intorfdeus our at-
tention on the control part of the code. However, before illustrating treld®f the remaining

parts of the block diagram we need to show the script where the pararaséstsn the code

are defined.

C.4.3.1 Simulation Initialization

© 0 N o g A W N
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%Thermal + Energy control based on MPC (ALL CORES CONTROLLED

% Outline:

% 1 - Parameters initialization

% 2 - Thermal Model Generationn
% 3 - Prediction model generation
% 4 - MPC controller definition

clear all

clc

% Fkkkkkkkk
0/ *xkkkkkkkrrrrrhhkrk (1) PARAMETERS FekddddR ARk
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C.4 The complex MPC control solutions

N_CORE = 16 ; % Number Of Cores
% Ambient temperature
Tenvironment_max = 273+45; % [K] Maximum ambient temperature

Tenvironment = 273+25; % [K] Nominal ambient temperature

% Power data of the cores

P_MAX=16; % [W] Chip maximum power (all cores=1W)
P_MIN=1+15%0.05; % [W] Chip minimum power (corel=1W, other=0.05W)
P_max=1; % [W] Maximum power consumption of one core
P_min=0.15; % [W] minimum power consumption of one core
P_idle=0.05; % [W] Idle power of the cores

% PCM layer parameters (mixed Cu + Climsel C70)

T_melt=273+70; % [K] PCM melting temperature

T_Sprint_Max=1; % [s] Sprinting duration

PCM_density= 1700; % [Kg/m"3] PCM density

PCM_spec_lat_heat=396; % [KJ/Kg] PCM specific latent heat

% PCM specific heat Solid/Liquid

parameters.specific_heat_solid=3.526520000000000e-0 12; % [J/(K *»um’3)]

parameters.specific_heat_liquid=3.526520000000000e- 012; % [J/(K *um’3)]

% PCM layer area

parameters.cell_width=6800; % [um]

parameters.cell_height=6800; % [um]

% PCM resistance

Chip_Dimensions.R_PCM= 7.9; % [*K/W]

% Energy quantity from when PCM starts melting to when the PCM is melted

Delta_U=((P_MAX- (T_melt-Tenvironment_max)/ Chip_Dime nsions.R_PCM) = T_Sprint_Max);

% PCM layer thickness

parameters.cell_thickness= (Delta_U)/ 1000/ PCM_spec_| at_heat/ PCM_density/ 10°-18/
parameters.cell_width/ parameters.cell_height; % [um]

% Energy when PCM start melting

parameters.u_min=T_melt * parameters.specific_heat_solid * parameters.cell_width *
parameters.cell_height * parameters.cell_thickness;

% Energy when PCM is completely melted

parameters.u_max= parameters.u_min + Delta_U;

% PCM conductivity

Cu20PCMB80_conductivity=3.2012e-004; % 20% Cu + 80% Climsel C70

% Chip Data

FileName_FLOORPLAN="floorplan.txt’ ;

FileName_SENSORS=sensori.txt’ ;

FileName_HOTSPOT="potenze.txt’ ;

% Silicon layer area

Chip_Dimensions.h=parameters.cell_height;

Chip_Dimensions.L=parameters.cell_width;

% Two layers thickness

Chip_Dimensions.thick_1L=350; % silicon layer thickness
Chip_Dimensions.thick_2L=parameters.cell_thickness; % PCM layer thickness

% Simulation data
guaranteed_window=0.2; % [s]
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I

In this first part of the code we set the data of the processor we havéaggthuFirst, the
number of cores, the nominal and maximum ambient temperatures, and thequmsamp-
tions of the chip and of the single cores are defined. Subsequently, tMeld&€r data are
inserted in order to guarantee a maximum sprinting timespivhen all the cores at the max-
imum speed. Notice that also the energy values in which the PCM starts am$imeelting
are extrapolatedo@rameters.unin andparameters.umax. The names of the files containing
the layout of the cores, the locations of the sensors, and the powarnoptisn distribution
are entered. Finally, the guaranteed time window for re-sprints is defingteluser guaran-
teedwindow).

o g A W N P

%%
% Fokdkokkokdokkkkkokkokkkkokk %

0/ *xkkkkkkkkrkrrkkkrrk (2) THERMAL MODEL GENERATIOMexxkkksrrkkssrrkkksx %

TM3=EmbeddedModeling(FileName_FLOORPLAN, FileName_SE NSORS, FileName_HOTSPOT,
Chip_Dimensions, Cu20PCM80_conductivity);

The code calls the functioBmbeddedModeling,na function similar tanatmodeling.m
in SectionC.1.3.1 for generating the accurate model of the chip. The state vector comprises
the temperatures of each core and the internal energy of the PCM celutpwt the function

returns the input, output and state matrices of the model.

o g A W N R

%%

% Fhkkkkkkkkkkkkkkkkkk %

0/ *rkkkkkkkrrrrrrrhkk (3) PREDICTION MODEL GENERATIONk**xxxrrxrrrrrrrrrr %

model=EmbeddedCGModeling(FileName_FLOORPLAN, FileNam e_SENSORS, FileName_HOTSPOT,
Chip_Dimensions, Cu20PCM80_conductivity);
model.x0=[Tenvironment +*ones(N_CORE,1) ;parameters.u_min];

Then, it is called the functioEmbeddedCGModeling,nused for the generation of the
prediction model. The function does not use any identification procetutephysical ap-
proximations. The cells belonging to one component are reduced to a sellghy enaking
the parallel of the vertical resistances of the equivalent electric cirfeaws in SectiorB.4.1,
neglecting the horizontal resistances of the cells inside the componentsaraiiglizing the

horizontal resistances linking the cell of one component to the ones tfermmponent.
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% FhrAIIIIIIIIAAIIKIIK %
0/ *rrrKKKKKKKKKKKKKKK (4) MPC CONTROLLERS DEFINITION ###kssksssssssssssss %
% --mmmmmmmees > Centralized MPC Energy manager (PCM) <- = —ceeemeemeees %

% Sampling time
time_centr=10e-3;

% prediction model (MPC for PCM layer)

centr.model.a=model.a( end, end);

centr.model.b=[model.a( end,1: end-1) model.b( end, end-1: end)]; % ingressi=[T1 T2 ...
T_N_CORE T_pcm T_amb]

centr.model.c=model.c( end, end);

centrmodel.d=  zeros (1,N_CORE+2);

centr.model=c2d(ss(centr.model.a, centr.model.b, cent r.model.c, centr.model.d),
time_centr, 'zoh' );

centr.init_state=0;

% Controller parameters if we use a QP problem solver
centr.rho=1075;

centr.Vy_max= zeros (1,1); % O=hard 1=soft constraints
centr.ubA=parameters.u_max; % maximum energy (PCM is completely melted)
centr.ubA_modified=parameters.u_max+5; % maximum energy + margin
centr.reference=360 *ones(N_CORE-1,1); % Reference trajectory
centr.input_weight= eye (N_CORE-1); % Hessian matrix in QP problem
% QP matrices
centr.Q_qgp=[centr.input_weight zeros ( size (centr.input_weight,1),1);

zeros (1, size (centr.input_weight,1)) centr.rho]. *2;
centr.f 1=2  *centr.input_weight;
centr.A_gp=[centr.model.c * centr.model.b(1,2:N_CORE) -centr.Vy_max];
centr.b_1=-centr.model.c * centr.model.a;
centr.b_2=-centr.model.c * [centr.model.b(;,1) centr.model.b(;,N_CORE+1:N_CORE+ 2);
% Simulink function parameters for PCM layer (if we don't use a QP solver)
param_fun.model.a=centr.model.a;
param_fun.model.b=centr.model.b; % ingressi=[T1 T2 ... T_N_CORE T_pcm T_amb]

param_fun.model.c=centr.model.c;
param_fun.model.d=centr.model.d;
param_fun.model.xO=centr.init_state;
param_fun.R_pcm=Chip_Dimensions.R_PCM+0.02;
param_fun.P_MIN=P_MIN;
param_fun.P_max=P_max;
param_fun.P_idle=P_idle;
param_fun.P_min=P_min;
param_fun.T_melt=T_melt;
param_fun.T_amb_max=Tenvironment_max;
param_fun.Ts=time_centr;
param_fun.time_centr=time_centr;
param_fun.N_CORE=N_CORE;
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param_fun.u_min=parameters.u_min;
param_fun.u_max=parameters.u_max;
param_fun.C_si=6.586887999999999e-005 *400; % Silicon equivalent Capacity

param_fun.G_si=0.004166666666667 *400; % Silicon equivalent Conductance
% Energy bound: Final value of the energy bound
deltaU=(P_MAX-(T_melt-Tenvironment_max)/ param_fun.R _pcm) * guaranteed_window;

U_N=parameters.u_max-deltaU;

% Energy bound: duration of slanted side of the trapezoid
param_fun.sliding_time=deltaU/(P_MIN-(T_melt-Tenvir onment_max)/param_fun.R_pcm);
param_fun.u_n=U_N;

% Margin on Energy bound parameters

tau=param_fun.C_si/param_fun.G_si * (P_MAX-P_MIN);
param_fun.u_max_marg=param_fun.u_max-tau;

param_fun.u_n_marg=param_fun.u_n-tau;

In this part of the code we initialized the parameters of the centralized MP@ntrzdiges
the PCM energy. First, the sampling time is assigned tdithe centrvariable, the prediction
model of the centralized controller is extrapolated from the general modetfwith theEm-
beddedCGModeling.rfunction, and the parameters of the optimization problem are defined.
Notice that the parameter of the controller will be used into the function calle@iSithulink
block diagram to find the control decision of the centralized MPC contrdiewever, in the
proposed Simulink scheme we used a simpler ad hoc algorithm that usesdheefens con-
tained into the structurparamfun considerably reducing the computational complexity. The
structure will be given as input to the function called in the Simulink file to find thatrol
decision of the centralized controller. The last data are used for buildegriergy bound,
U_N andsliding_time are computed on the basis of the data specified in the first part of the
code. These data are finally shifted of a margin to account uncertaindesaarple time.
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% ~memmemmeeeeee- > Distribuito per Temperatura cores <- ~ ceemmemmeemeeee %

% Sampling time
time_distr=2.5e-3;

% Thermal MPC parameters

distr.rho=10"5; % slack variable weight
distr.Vy_max=0; % O=hard 1=soft
distr.ubA=360 *ones(1,N_CORE); % Maximum temperatures
distr.input_weight=1; % R_u
stringa=  ’distr.models.m’ ;
for i=1:N_CORE

j=0;

% Building of the single-core prediction model from the cent ralized
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% prediction model

eval ([stringa num2str (i) '.a= model.a(i,i); )

eval ([stringa num2str (i) b= [model.b(i,i) model.b(i,end-1) model.a(i,

l:end-1)]; )}

eval ([stringa num2str (i) .b(1,i+2)= 0; )

eval ([stringa num2str (i) '.c= model.c(i,i); D

eval ([stringa num2str (i) '.d= zeros(1,N_CORE+2); N

eval ([stringa num2str (i) = c2d(ss( strcat(stringa, numa2str (i) a, ’
strcat(stringa, num2str (i)) b, ’ strcat(stringa, num2str (i)) '.c, ’
strcat(stringa, num2str (i))  '.d), time_distr, "zoh”); N

eval ([ 'distr.init_state ’ num2str (i) ’'=Tenvironment;’ )

% QP problem parameters

eval ([ 'distr.Q_gp_’ num2str (i) ’'=[distr.input_weight

zeros(size(distr.input_weight,1),1); zeros(1,size(di str.input_weight,1))

distr.rho]. *2:0);

eval ([ 'distr.f 1’ num2str (i) '=2 =distr.input_weight;’ D;

acca=strcat(stringa, num2str (i));

eval ([ 'distr.aa_’ num2str (i) '=" stringa num2str (i) .a; ]);

eval ([ 'distr.bb_’ num2str (i) =" stringa num2str (i) ’.b(:,1:N_CORE+2); D;

eval ([ 'distr.cc_’ num2str (i) =" stringa num2str (i) '.c;’ 1)

eval ([ 'distr.dd_’ num2str (i) '=" stringa num2str (i) .d(;,1:N_CORE+2); D;

eval ([ 'distr.A_gp_’ num2str (i) ’'=[distr.cc_’ num2str (i) ' =distr.bb_’ numa2str (i)

'(:,1) -distr.Vy_max];’ D;

eval ([ 'distr.b_1_’ num2str (i) ’'=-distr.cc_’ num2str (i) ' xdistr.aa_’ num2str (i)
D

eval ([ 'distr.b_2_’ num2str (i) ’'=-distr.cc_’ num2str (i) ' =distr.bb_’ num2str (i)

'(:,2:end);’ D

eval ([ ’distr.x_obsv_’ num2str (i) ’=distr.init_state_’ num2str (i) Y D

end

The same data defined for the central controller are defined for the distlibne. First,
the sampling time of the controller is definditr(e distr), then the parameters of each local
controller are stored in thdistr structure: the thermal model of each core (extrapolated from
the general model found with tliEEnbeddedCGModeling)ithe optimization problem param-
eters and the initial state and the gain matrix of the observer. Notice that taeveb this
case is not necessary since each model has only one state coincidahewitbasured output.

It is also worth to note that the optimization problem solved by each controlle@ryssimple,
therefore, as for the case of the centralized controller, we proposiapter ad hoc function
that returns at any sampling time the control decision using a simple “if” statetdsimy this
function the control computational complexity considerably reduces.

C.4.3.2 Simulink block diagram details

In this Section we provide details of the block diagram shown in €i@.

311



C. ACCURATE MODEL

The U boundblock The blockU boundgives as output the maximum energy that the PCM
layer can storage at each sampling time in order to ensure the re-springingperiod. The
signal outgoing from this block has the shape of a trapezius repeatgtheveod defined by the
user. It has been realized using the standard Simulink dRepeating Sequenc&he signal

is then delayed by one sampling timin(e.centr=10m$. The delayed value of the energy
bound,U_max represents the actual value of the constraints, while the original value is th
future value of the boundJ_maxfut). This trick is necessary since the centralized controller
needs the future value of the constraint in order to regulate the powsuirgtion of the cores

for the next interval and prevent the energy bound violation.

The PCM MPC Layerblock The blockPCM MPC Layertakes as input the information on
the energy boundU_maxfut andU_may, the temperature of the cores, of the PCM and of
the ambient, and the target power consumption required by the high levegeraiiareturns
as output the target power of the coréarg_pow PCM) opportunely trimmed to prevent the
energy bound violation. This reduction is realized by the MPC used for R@iagement.
Looking at the FigC.7we notice that the MPC is implemented calling the funcfiod_pow.m
with the Matlab function blociCentralized The code below show the implementation of the
function.
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function [out] = find_pow(Temp, T_pcm, T_amb, P_core_in, u_max, u_m ax_future,
state, memory, parameters)

N_CORE=16; % number of cores
% Initialization of the variables

P_core_out=P_core_in;

state_out=state;

memory_out=memory;

memory_out(2)=P_core_in(2); % Storing of past power (core 2)

% Energy estimation

u_estim=parameters.model.a * memory(1)+parameters.model.b *[Temp(1l: end-1); T_pcm;
T_amb];

memory_out(1)=u_estim; % Storing of energy

% State 1

if state(1)==1
if  (u_estim>=u_max_future)

% If violation of energy bound, then computing of ideal targe t power

P_ideal= (((u_max_future-u_max)/ parameters.Ts)- P_cor e_in(1)+ (T_pcm-T_amb)
/parameters.R_pcm)/ (N_CORE-1);

% |If ideal target power lower than P_MIN --> assign P_idle to c ores
2,...,.N_CORE

if (P_ideal>parameters.P_idle && P_ideal<parameters.P_mi n)
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C.4 The complex MPC control solutions

P_ideal=parameters.P_idle;
end
if (P_ideal<parameters.P_idle)
P_ideal=parameters.P_idle;
end
% Target power consumption
P_core_out=[P_core_in(1); P_ideal * ones(parameters.N_CORE-1, 1)];
% Changing of the state
state_out(1)=0;
state_out(2)=1;
end
end

% State 2
if state(2)==1
% Computing of ideal target power

P_ideal= (((u_max_future-u_max)/ parameters.Ts)- P_cor e_in(1)+ (T_pcm-T_amb)/

parameters.R_pcm)/ (N_CORE-1);

% If ideal target power lower than P_MIN --> assign P_idle to ¢ ores 2,..,.N_CORE

if (P_ideal>parameters.P_idle && P_ideal<parameters.P_mi n)
P_ideal=parameters.P_idle;

end

if (P_ideal<parameters.P_idle)
P_ideal=parameters.P_idle;
end
P_core_out= [P_core_in(1); min (P_core_out(2:parameters.N_CORE),
P_ideal *ones(parameters.N_CORE-1, 1))];
% If the energy bound minimum value is reached or another spri nting is requested
if ((u_max_future>u_max+0.1)||(P_core_in(2)>memory(2)) )
% Target power consumption
P_core_out=P_core_in;
% Changing of the state
state_out(1)=1;
state_out(2)=0;
end
end

out=[P_core_out; state_out; memory_out]; % Outputs update

return

The function, beside the parameters enterind®@® MPC Layemlock, takes as input the
variableparametershat is the structure containing the value defined in Se@idn3.1 Notice
also the parametestateandmemory These are not really inputs, but variables that should be
kept in memory at each sampling time. Thus, we feedback their values asaaqting time
adding a one sample delay block. The output of the function is an arragioong the power

consumption value and the values to be stored giaeandmemory.
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In the first part of the code we initialized the output variables, and we cted@uprediction
of the internal energy of the systemngred) at the next sampling time. The varialslemoryis
a vector with two elements. The first contains the past power consumptioa obte number
2, while the second contains the predicted energy. The controller can bememted as a
two states automata. The controller remains in the state 1 if the predicted endrgjpus
the future value of the energy bound. In this case there is no need to tritarties power
consumption requested to the cotarg_pow PCM=targ_pow). Otherwise, if there is a energy
bound violation, the controller switch to the state 2 where the target powsuggtion in input
is reduced to the valu_ideal, that is the value that maintains the energy of the next sampling
interval close to the energy bound. This value is assigned to the outjmitiedarg pow PCM)
until the energy bound reach the minimum value or another re-sprint iestzpli (the input
power of the core 2 is greater than the past one).

The Thermal MPC Layerblock The blockThermal MPC Layettakes as input the infor-
mation on the temperature of the cores and of the PCM, and the target pomsmeption
opportunely updated by tHeCM MPC Layermlock. It returns as outputs the controlled power
of the cores ¢ntrled pow). Fig. C.7 shows that the MPC is implemented calling the known
functiondistrMPC_Yalmip.mwith the Matlab function bloclpistributed However, as already
mentioned, it is possible to use a simpler function for reducing complexity.
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function [power_cores_cntrl] = distrMPC_Simple(Temp,T_pcm,powe r_cores_target,distr)
N_CORE=16; % number of cores
P_idle=0.05; % power consumption of a core when it is turned off
P_min=0.15; % power consumption of a core when the freq is the minimum
for j=1:NC
% Computing of the future ideal power by inverting the model t 0 obtain T_MAX
eval ([ 'p_ideal= (distr.ubA(j)-distr.model.m’ num2str (j) '.c = distr.model.m’
num2str (j) .a * Temp(j)- distr.model.m’ num2str (j) '.c * distr.model.m’
num2str (j) b * [0; T_pcm; Temp(l:end-1)])/ (distr.model.m’ num2str (j)
".c distr.model.m’ num2str (j)  .b(1)); D
% If the ideal power is lower than the requested --> trim, othe rwise do nothing

if power_cores_target(j) <= p_ideal
power_cores_cntrl(j)=power_cores_target());
else
power_cores_cntrl(j)=p_ideal;
end
end

% if P_idel < ideal power < P_MIN --> ideal power = P_MIN
power_cores_cntrl(power_cores_cntrl<=P_idle)=P_idle ;
power_cores_cntrl((power_cores_cntrl<P_min)& (power_ cores_cntrl>P_idle))=P_min;

314



20
21

C.4 The complex MPC control solutions

return

The function takes as inputs the same parameters dftthemal MPC Layeblock and the
distr parameters defined in Secti@n4.3.1 The output is the vector containing the controlled
power of each local controller and that will feed the cores of the chipr elagh core the
function computes, by inverting the single-core model, the ideal popvielte@l) needed at the
next sampling time to maintain the temperature exactly at the critical value. Thelbehtr
power given as output will be the minimum betweenphideal and the target power requested
by thePCM MPC Layer
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