
Alma Mater Studiorum
Università degli Studi di Bologna

D.E.I. – Electrical, Electronic, and Information Engineering “Guglielmo Marconi”

RESEARCH DOCTORATE IN
AUTOMATIC CONTROL SYSTEM AND OPERATIONAL RESEARCH

XXV CYCLE

Ph.D. dissertation on

MODEL PREDICTIVE CONTROL IN
THERMAL MANAGEMENT OF

MULTIPROCESSOR SYSTEMS-ON-CHIP

Author:

MATTEO CACCIARI

Advisor:

Dott. Ing. ANDREA TILLI

Ph.D. Coordinator:

Prof. ANDREA LODI

2013
SSD ING-INF / 04 - AUTOMATICA

SC 09 / G1 – AUTOMATICA

Model predictive control in thermal

management of multiprocessor

systems-on-chip

Matteo Cacciari

DEI – Electrical, Electronic, and Information Engineeringdepartment Guglielmo

Marconi

University of Bologna

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

March 2013

Acknowledgements

This thesis represents the conclusion of a three years long journey whichgave me

the opportunity to meet nice and kind people and having life experiences thatwere

unimaginable to me just few years ago.

I cannot find words to express my gratitude to my advisor, Dott. Ing AndreaTilli,

for the many opportunities he gave me, his guidance and support. In these years

he has always been present with suggestions, advices and encouragements. It has

been a great pleasure working with you!

A special thank goes to Prof. Luca Benini for giving me the possibility of working

on the stimulating and very actual topic of this thesis, and for having believed in

me and my abilities making me part of the team for the thermal management of

systems-on-chip.

I heartily thank Prof. Emanuele Garone of the ULB University for the amazing

period in Bruxelles. I will never forget his kindness and generous hospitality,

the interesting conversation while preparing dinner, and the valuable suggestions

related to this thesis. I hope we will have the opportunity to work together again

in the near future!

I owe a special thank to Andrea Bartolini for being a great (and much morethan

a) colleague, sharing with me many of the successes and difficulties of this thesis

(I cannot forget the nights spent working together for finishing papers before the

deadline!).

Christian, Giovanni, Raffaele we lived together this Ph.D. adventure, helping each

other and proving unquestionably the saying “unity is strength”. It would not be

the same without you!

I would like also to thank all the guys and (the few) girls of the Center of Complex

Automated Systems (CASY) for the time spent together and the fun. Thanks also

to the researchers of Micrel Lab (University of Bologna) for being always kind

and nice. My gratitude goes also to the researchers of the SAAS department (ULB

University), my home mates, and all the people met in Brussel for making my stay

in Belgium so memorable.

Special thanks goes to my friends Alan, Alessandro, Alex, Alice, Cecilia, Fed-

erico, Lorenzo, Luca, Martina, Matteo, Riccardo, Simone, Stefania, Stefano (I beg

your pardon if I forgot someone) for being so patient with me when I had tostudy,

for sharing enjoyable moments and for being simply the best!

Last but not least, my deepest gratitude goes to my family, to my mother Serenella

for having always a good word to encourage me in the difficult times, to my father

Lorenzo for making my life easier everyday, and to my brother Alessandrofor

bearing with patience my tapping on the keyboard during the nights and helping

me with this thesis. Without their loving support, this thesis would not have been

possible.

Matteo Cacciari

Alma Mater Studiorum – University of Bologna

March 2013

Abstract

Multiprocessor Systems-on-Chip (MPSoC) are the core of nowadays and next gen-

eration computing platforms. Their relevance in the global market continuously

increase, occupying an important role both in everyday life products (e.g. smart-

phones, tablets, laptops, cars) and in strategic market sectors as aviation, defense,

robotics, medicine. Despite of the incredible performance improvements in the

recent years processors manufacturers have had to deal with issues, commonly

called “Walls”, that have hindered the processors development. After thefamous

“Power Wall”, that limited the maximum frequency of a single core and marked

the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and

the “Utilization Wall” are the actual key limiter for performance improvements.

The former concerns the damaging effects of the high temperature on the chip

caused by the large power densities dissipation, whereas the second refers to the

impossibility of fully exploiting the computing power of the processor due to the

limitations on power and temperature budgets. In this thesis we faced these chal-

lenges by developing efficient and reliable solutions able to maximize performance

while limiting the maximum temperature below a fixed critical threshold and sav-

ing energy. This has been possible by exploiting the Model Predictive Controller

(MPC) paradigm that solves an optimization problem subject to constraints in or-

der to find the optimal control decisions for the future interval. A fully-distributed

MPC-based thermal controller with a far lower complexity respect to a centralized

one has been developed. The control feasibility and interesting properties for the

simplification of the control design has been proved by studying a partial differen-

tial equation thermal model. Finally, the controller has been efficiently included

in more complex control schemes able to minimize energy consumption and deal

with mixed-criticalities tasks.

Contents

List of Figures vii

1 Introduction 1

1.1 MPSoCs and Multi-core basics .1

1.2 Motivations .5

1.3 Thesis contributions .12

1.4 Thesis Overview .15

Bibliography 17

2 MPSoCs Issues and Solutions 19

2.1 Processors issues from the beginning .. . 19

2.1.1 The “Power Wall” .21

2.1.2 The “Thermal Wall” .27

2.1.3 The “Utilization Wall” .30

2.2 Related Works .31

2.2.1 Solutions for thermal issue .32

2.2.2 Solutions for utilization issue .39

Bibliography 45

3 Model Predictive Control 49

3.1 Background .49

3.1.1 History .51

3.1.2 Advantages and disadvantages .53

3.2 MPC structure .55

3.2.1 Prediction models .55

i

CONTENTS

3.2.2 Constrained optimization problem .57

3.2.3 Different MPC solutions .59

3.3 Explicit MPC .62

3.4 Distributed/Decentralized MPC for large scale systems63

3.5 Feasibility, Stability, and Computational Complexity69

3.5.1 MPC Feasibility .69

3.5.2 MPC Stability .72

3.5.3 MPC Complexity .75

3.6 Notes .77

Bibliography 79

4 MPC thermal controller for MPSoCs 81

4.1 The prediction model .81

4.1.1 Distributed ARX identification .87

4.1.2 H∞ identification .90

4.1.3 POD approach .91

4.2 The Distributed Thermal Controllers .94

4.3 Design choices motivations .100

4.3.1 Distributed solution vs. Centralized solution101

4.3.2 Model accuracy .105

4.3.3 Power Model accuracy .106

4.3.4 Distributed solution vs. PID solution108

4.4 Control feasibility and other properties .110

4.4.1 The thermal problem .110

4.4.2 Thermal system physical properties113

4.4.3 The constraint reduction property .115

4.4.4 The feasibility issue .117

4.4.5 Discretization issues .125

4.4.6 Notes on stability .129

Bibliography 131

ii

CONTENTS

5 Complex control solutions 133

5.1 Thermal and Energy management of High-Performance Multi-cores 133

5.1.1 The Architecture .133

5.1.1.1 Local Self-Calibration Routine134

5.1.1.2 The Local Energy Manager135

5.1.1.3 The Local MPC-based Thermal Controller137

5.1.2 The Implementation .138

5.1.3 Experimental Results .140

5.2 A feasible two-layer distributed MPC approach to thermal control of Multipro-

cessor Systems on Chip .142

5.2.1 The Architecture .143

5.2.1.1 Local Iterative Identification Procedure144

5.2.1.2 Local Safety Controller .145

5.2.1.3 Local MPC Controller .147

5.2.2 The Implementation .149

5.2.3 Experimental Results .151

5.3 Communication-aware solution .153

5.3.1 Architecture .155

5.3.1.1 Problem update .157

5.3.2 The Implementation .160

5.3.3 Experimental Results .161

Bibliography 163

6 Guaranteed Re-sprinting in MPSoCs exploiting MPC 165

6.1 Overview .165

6.2 Sprinting Architecture .168

6.2.1 Platform Characteristics .168

6.2.2 Thermal Modeling (Simulator) .169

6.2.3 Guaranteed re-sprinting definition .171

6.3 Architecture .175

6.3.1 The Lower-layer thermal controller176

6.3.2 The Higher-layer PCM controller .178

6.4 The Implementation .180

iii

CONTENTS

6.5 Experimental Results .181

6.5.1 Generic workload .182

6.5.2 Guaranteed re-sprints .183

6.5.3 Non-nominal conditions .186

Bibliography 189

7 Conclusion and future developments 191

7.1 Conclusion .191

7.2 Future works .193

8 Publications 195

Appendices 197

A Mathematical Background 199

A.1 Convex Linear MPC with quadratic cost function implementation199

A.2 Multi-parametric Quadratic Programming .201

A.2.1 A mpQP algorithm .203

Bibliography 205

B MPSoCs and Simulators 207

B.1 The MPSoC System .207

B.2 The Power Consumption .208

B.3 The Power Model .211

B.4 The Thermal plant .214

B.4.1 Matlab/Simulink Simulator .215

B.4.2 Simics Simulator .219

B.5 Performance .221

B.6 The SCC platform .222

Bibliography 225

C Accurate Model 227

C.1 The plant .227

C.1.1 Global parameters .227

iv

CONTENTS

C.1.1.1 LayoutFiles Generation.m229

C.1.2 Input Pattern Generation .232

C.1.3 Thermal Model Generation .234

C.1.3.1 mat modeling.m .236

C.1.3.2 fine2L linear.m .240

C.1.3.3 discretization.m .245

C.1.3.4 Visualization3D.m. .246

C.2 The thermal model identification .247

C.2.1 distributed ARX identification .248

C.2.1.1 MPSoCId Distr.m .248

C.2.1.2 SCI.m .254

C.2.1.3 give physics.m. .257

C.2.2 H∞ identification .258

C.2.2.1 MPSoCId Hinf.m .258

C.2.3 POD approach .262

C.2.3.1 POD redu.m .263

C.3 The distributed MPC control solution .265

C.3.1 Hybrid Toolbox .265

C.3.1.1 Textual version .265

C.3.1.2 Simulink version .270

C.3.2 Yalmip Toolbox .277

C.3.2.1 Textual version .277

C.3.2.2 Simulink version .281

C.3.3 qpOASES .282

C.4 The complex MPC control solutions .297

C.4.1 A feasible two-layer distributed MPC approach to thermal control of

Multiprocessor Systems on Chip .297

C.4.2 Communication-aware solution .299

C.4.2.1 communication.m. .303

C.4.3 Guaranteed Re-sprinting in MPSoCs exploiting MPC305

C.4.3.1 Simulation Initialization .306

C.4.3.2 Simulink block diagram details311

v

CONTENTS

Bibliography 317

vi

List of Figures

1.1 MPSoC architecture. .2

1.2 MPSoCs: (a) Lucent Daytona (Homogeneous); (b) ST Nomadik SA (Hetero-

geneous). .4

1.3 MPSoC examples. .4

1.4 MPSoC utilizations. .5

1.5 ITC Network. .6

1.6 Smartphone shipments: (a) shipments forecast, (b) shipments per platform. . . 7

1.7 Mobile statistics: (a) tablets vs. notebooks shipments, (b) tablets and notebooks

shipment trend. .7

1.8 Forecast of Data Center: (a) Data Center Processor growth (CAGR), (b) Data

Center traffic growth (11). 8

1.9 Control systems in high-end cars (12). 9

1.10 ITC emissions and potential benefits of ITC for other sectors emissions(18). . . 10

1.11 Forecasts of percent dark silicon across technology nodes (21). 11

2.1 Transistor count 1971-2011. .. 20

2.2 Dennard’s implications (23). 23

2.3 Pollack’s Rule. .23

2.4 DRAM density (a), costs (b), and performance (c) (8) (10). 24

2.5 Leakage power trend: (a) subthreshold leakage power (14), (b) Active vs leak-

age power. .25

2.6 Intel CPU trend (12). .26

2.7 Dennard’s failure implications. .27

2.8 MPSoCs Demand. .28

2.9 Power density trend (16). .29

vii

LIST OF FIGURES

2.10 (a) Power density trend; (b) Dark silicon trend (8). 31

2.11 (a) maximum vs. average power consumption; (b) cooling costs vs thermal

dissipation (30). .33

2.12 (a) Sun Niagara-1 MPSoC model; (b) MPC vs. Convex-based solution. (38). . . 37

2.13 (a) Temperature-constrained power control loop for a CMP with N core; (b)

power and temperature plot (39). 38

2.14 (a) Many-core processor with c-cores; (b) GreenDroid; (c) c-core (40). 40

2.15 (a) Sprinting transient; (b) Resting transient; (c) Chip augmented with PCM;

(d) Thermal model of the chip (41). 42

3.1 receding horizon strategy. Adapted from (4). 50

3.2 (a) general MPC scheme; (b) typical industrial working region 52

3.3 Decentralized (a) and Distributed (b) control approaches (19) 66

3.4 Number of regions and CPU time comparison varying the number of degrees

of freedom .77

4.1 Conceptual control scheme .84

4.2 Abstract view of the model .84

4.3 a) Single core thermal impact range, at different time windows; b) Multi cores

thermal impact range, at different time windows;86

4.4 Self-calibration routine results .90

4.5 (a) Simulated processor, (b) Thermal and power Response of the core 1 94

4.6 Thermal Controller structure .95

4.7 Simulation layout of the chip used in the tests100

4.8 Centralized vs. Distributed performance comparisons: (a) Maximum over-

shoot, (b) Percentage of time the bound is violated, (c) Distributed solution

QoS Loss .102

4.9 Scalability and complexity reduction results103

4.10 Scalability by grouping .105

4.11 Prediction model: 1 dynamic per core vs 2 dynamics per core 105

4.12 Nonlinear vs. linear power model function (P2f and f2P) 106

4.13 Sensitivity test on the Power Model .107

4.14 Distributed MPC solution vs. distributed PID solution109

4.15 The bar example .113

viii

LIST OF FIGURES

4.16 Parabolic cylinder for the 2D volumeV .114

4.17 Two sources simulation: a) 20W per sources; b) 0W per sources 116

4.18 Definition of the new bound̄TCRIT .120

4.19 (a) simple circuit used for simulating a volume with three point-wise sources;

(b) simulation result using a uniformTCRIT.124

4.20 Feasibility problem for distributed MPC .129

5.1 General Architecture .134

5.2 Performance Improvement and Normalized Energy Consumption (2) 136

5.3 Virtual platform test results .141

5.4 General Architecture .144

5.5 Off-line steps summary .150

5.6 Simulator layout .151

5.7 (a) Temperature prediction error comparison; (b) Performance comparison with

differentτMPC .151

5.8 Simulation results of the core 3 .153

5.9 Performance comparison with three differentτMPC154

5.10 Proposed solution architecture .155

5.11 Temperature, Frequency and Power results of cores 1, 2, and 5.Before 10s the

fC,1 = fC,2, then fC,1 = fC,5. .162

5.12 Time spent for solving the QP problem at each time step.162

6.1 The considered sprinting architecture and the adopted thermal modelling 169

6.2 (a) Internal Energy to Temperature nonlinear function; (b)Comparison among

sprinting architectures .171

6.3 Translation of theN-M Guaranteed Re-sprinting objective in a time-varying

constraint on PCM internal energy,U .173

6.4 Structure of the proposed controller .175

6.5 Typical non guaranteed trace response 182

6.6 Non guaranteed performance comparison 183

6.7 Typical guaranteed trace response .. . 184

6.8 Guaranteed performance comparison .. 185

6.9 Guaranteed performance comparison (Tmax= Tmelt)186

6.10 Non-nominal workload system response 187

ix

LIST OF FIGURES

A.1 mpQP algorithm description (from dispenses of Prof. Bemporad). 204

B.1 (a) CMOS transistor; (b) CMOS inverter circuit during switching low-to-high;

(c) Leakage current. .209

B.2 Per-core Power Based on Activity. .. 213

B.3 Chip thermal architecture. .214

B.4 Thermal Model. .215

B.5 Finite element approach: equivalent electric circuit. 216

B.6 Approx.IntelR© XeonR© X7350 Floorplan. .218

B.7 Temperature map. .218

B.8 (a) Virtual platform architecture; (b) Control development strategy.. 220

B.9 Fluidanimate traces. .222

B.10 SCC architecture. .223

C.1 Layout definition .228

C.2 Layout files generated by the functionLayoutFiles Generation.m 232

C.3 Simulink control scheme using the Hybrid Toolbox270

C.4 The 48 core controllers .271

C.5 The single local controller .271

C.6 Simulink block diagram of the two-layer solution.298

C.7 Simulink block diagram of the re-sprinting solution.306

x

Chapter 1

Introduction

The main purpose of this chapter is to introduce the reader to the central themes this thesis

deals with. First, we motivate the need of dynamic controllers to improve performance of chips

multiprocessor. Then, we outline the major contributions and the organization of the remainder

of this thesis.

1.1 MPSoCs and Multi-core basics

A system-on-chip(SoC) is an integrated circuit that implements most or all of the functions of

a complete electronic system (1). It integrates on the same chip components as memory hier-

archies, central processing units (CPUs), specialized logic, busses and other digital functions.

Most of these system usually need more processing units to address the complexity of combin-

ing together very different components to create a unique harmonious and efficient system and

achieving desired performance goals. AMultiprocessor system-on-chip(MPSoC) is a SoC that

uses multiple programmable processors as system components.

According to (2), the MPSoC architecture is made of three types of components:

• Thehardware subsystemsuses hardware components to implement specific functional-

ities of an application or global memories (HW in Fig.1.1). The intra-subsystem com-

munication represents the communication inside the hardware subsystems between the

different HW components (e.g small buses or point-to-point networks).

• Thesoftware subsystemsrepresent programmable subsystems, also called processor nodes

of the architecture. Inside this subsystem, we find an intra-subsystem communication

1

1. INTRODUCTION

Software
Subsystems

Hardware
Subsystems

Figure 1.1: MPSoC architecture.

that connect the hardware components (HW in Fig.1.1) as local memories, I/O com-

ponents, or hardware accelerators, with computing resources. Theselatter represent the

central processing units, CPUs, or equivalently the cores. Each coreexecutes sequen-

tially the instructions of a program stored in the memory. Depending on the number of

cores a software subsystem can be defined as single-core or multi-core.

• Finally the inter-subsystem communicationrepresents the communication architecture

between the different software and hardware subsystems (e.g. Networks on Chip that

allow simultaneous data transfers).

The architectures of the MPSoCs can be classified in two big families:homogeneousand

heterogeneous. The former integrate on the same chip identical software subsystem instantiated

several time. In literature this architecture is often referred to as parallel architecture model.

The latter, instead, incorporate different software subsystems with different processing units

like general purpose processors (GPP), digital signal processors(DSP) or application-specific

instruction set processors (ASIP). The exchange of information between the subsystems can be

manage according to two different communication models: shared memory and message pass-

ing. The shared memory approach allows all the CPUs to access simultaneously the memory to

get information. This communication model fits well with homogeneous MPSoCs which has

identical software subsystems. For heterogeneous MPSoCs it is preferable a message passing

communication where each software subsystem explicitly asks for information.

Before proceeding it is useful to remark that in this thesis we will consider classical desktop

multi-core processors as special cases of MPSoCs. This because the issues treated in this work

2

./1_Introduction/img/0010_MPSoC_Architecture.eps

1.1 MPSoCs and Multi-core basics

similarly affects all the architectures comprising multiple cores on the same chip. Moreover,

it is important to highlight that in literature the two terms are often used as synonymous. To-

day multi-core processors can be compared to homogeneous MPSoCs, both contain multiple

processing units on the same chip substrate and exploit parallelism to improve computational

performance. Researchers have also shown the benefit of heterogeneous multi-core processors

(3). However, according to the definition in (1), the main difference between the two architec-

tures is related to the applications which they are designed for. Indeed, whereas multi-cores are

targeted to general-purpose uses, the MPSoC are usually related to embedded applications.

Multi-core processors are commonly used in desktops, laptops, serversand data centers.

Because of the high differentiability of the applications running on these devices, designers

realize general-purpose architectures with the aim of improving average-case performance, in-

tended as computation capacity or throughput. However, it is clear enoughthat in these archi-

tectures performance is strongly dependent on the application executed,making the variance

in computing time larger.

On the other hand, MPSoCs are widely used in networking, communications, signal pro-

cessing, and multimedia among other applications (e.g. smartphones, cameras,consoles, MP3

readers, DVD players, . . .). Their architecture is designed in order tobalance the complex-

ity of the technology with embedded applications requirements. These requirements could be

computing time deadlines in real-time applications, low-power consumption in mobile devices

or short time-to-market. In these cases the use of a general-purpose architecture is counterpro-

ductive since it reduces performance at the expense of a useless generality, when application

requirements are known. The aim of designers is improving worst-case performance making

the computing time predictable. Thus, it is more convenient to design a new architecture rather

than redesign the one of a multi-core. The new architecture should be the result of the tradeoff

between the hardware specialization to meet application requirements with high performance

and the programming complexity, increasing with the irregularity of the architecture and the

variety of components integrated.

Fig.1.2shows the architecture of two MPSoCs by using block diagrams. The first, Fig. 1.2a,

represents the Lucent Daytona structure (4). This processors is the first MPSoC processor of

the history. It was presented in 2000 and it has been designed for wireless base stations. As we

can see, Daytona has an homogeneous architecture with four CPUs attached to a high-speed

bus. The second, Fig.1.2b, represents the architecture of the ST Microelectronics Nomadik (5).

This is a cell phones heterogeneous MPSoC which uses an ARM926EJ asits host processor.

3

1. INTRODUCTION

Connected to the same bus there are two programmable accelerators (small DSPs), for audio

and video.

ARM926EJ
Memory

Controller

Audio

Accelerator

Video

Accelerator

I/O bridges

L1 cache

RISC CPU
+ SIMD

L1 cache

RISC CPU
+ SIMD

L1 cache

RISC CPU
+ SIMD

L1 cache

RISC CPU
+ SIMD

I/O
+

memory
interface

(b)(a)

Figure 1.2: MPSoCs: (a) Lucent Daytona (Homogeneous); (b) ST Nomadik SA(Heterogeneous).

It is interesting to note that, although tailored to the requirements of the application, the

Daytona configuration is similar to the one of a multi-core.

Aware of the differences between multi-cores and MPSoCs, we remark again that the focus

of this thesis will be devoted on both these two categories without making any distinction

between the architectural and application-oriented characteristics of the processors. Indeed the

issues tackled in this thesis affect both the processors families alike.

1 GHz RISC

Core

Local

Mamory

Multicore
Communication

Framework

Route
r

RR R R R R

RR R R R R

RR R R R R

RR R R R R

MC

MC

MC

MC

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

le

P54C
(16KB

each L1)

Message
Passing
Bu!er

MIU

256KB
L2

CC

P54C
(16KB

each L1)

Message
Passing
Bu!er

256KB
L2

CC

To
Router

V I R T U A L I Z AT I O N

H Y P E R C O N N E C T
8Tbps

NETWORK

I/F

and

I/Os

100Gbps

MEMORY

on-chip

6 MB

APPLICATION

ACCELERATION

MANAGER

APPLICATION

ACCELERATION

MANAGER

64
-B

IT
 cn

M
IP

S C
OR

ES

SE
C

U
R

IT
Y

 E
N

G
IN

ES

Adapteva Epiphany

XLP832 SCC

64 bit processor

Cache
L1 data
cache

L1 data
cache

L2 cache

L1 data
cache

Terabit
switch

Execution
pipeline

Execution
pipeline

Register "le

Execution
pipeline

Memory Controller
MiCA

MiCA

UART x2
USB x2
JTAG,
I2C, SPI

Flexible
I/O

3PCIe
Interface

Memory Controller

Memory Controller Memory Controller

Tilera Tile-Gx8100

Cavium Octeon II

512K L2

64K L1I

32K L1D

Core 1
512K L2

64K L1I

32K L1D

1

2

3

4

Core 2
512K L2

64K L1I

32K L1D

5

6

7

8

Core 3
512K L2

64K L1I

32K L1D

9

10

11

12

Core 4
512K L2

64K L1I

32K L1D

13

14

15

16

Core 5
512K L2

64K L1I

32K L1D

1

2

3

4

Core 6
512K L2

64K L1I

32K L1D

5

6

7

8

Core 7
512K L2

64K L1I

32K L1D

9

10

11

12

Core 8
512K L2

64K L1I

32K L1D

13

14

15

16

Memory Distributed Interconnect

Fast Messaging Network

I/O Distributed Interconnect

M
e

m
o

ry
 a

n
d

 I
/O

 B
ri

d
g

e

D
D

R
3

D
D

R
3

IC
I-

2

D
D

R
3

D
D

R
3

IC
I-0

IC
I-1

GPIO
NAND
NOR
USB

Interlaken

XAUI

SGMI

Interlaken-LA1

PCIe 2.0

D
M

A
/R

A
ID

E
n

g
in

e

N
e

tw
o

rk
A

cce
l.

E
n

g
in

e

P
IC

C
n

tl M
sg

S
w

itch

P
k

t O
rd

e
r

E
n

g
in

e

C
o

m
p

re
s.

E
n

g
in

e

S
e

cu
rity

E
n

g
in

e

P
o

w
e

r M
g

t

Network Packet Distributed Interconnect

Eight Banked 8MB Level-3 Cache

Figure 1.3: MPSoC examples.

In the next future it is expected the number of cores on the same chip will greatly increase

4

./1_Introduction/img/0020_MPSoC_Hom_Het.eps
./1_Introduction/img/0030_generic_MPSoC.eps

1.2 Motivations

to encounter the demand for higher performance. Multiprocessors on chip will transform in

many-core heterogeneous processors. In Fig.1.3we present some typical chip multiprocessors

recently appeared on the market. On the network side, where packet processing is important,

there are the Cavium Octeon II which features up to 32 MIPS cores, and the Broadcom/Net-

Logic XLP II. On general-purpose side we find the Tilera Tile-Gx8100 with100 identical core

and Adapteva Epiphany that is very reminiscent to Tilera’s. It has 64 lesspowerful cores and

manually managed cache memory. It is designed to maximize floating point horsepower with

the lowest possible energy footprint. Finally Intel SCC that is a platform formany-core soft-

ware research. It has 24 dual-core tiles arranged in a 6x4 mesh and each core is a P54C CPU

(see AppendixB for more details).

We conclude this section showing in Fig.1.4the vastity of applications the multiprocessor

chips are used for.

perpic

LGM

WWW.XSR.KZ

S
D

HOMEHOME
2

1

3

4

OK

EJECT

DVD
-RW

DVD
-RW

USB

SATA

PHO
NE

MIC
LINE

-IN

AUDIO

POWERPOWER

CARD

READER

NumLock
Caps

Lock
Scroll

Lock

Num
Lock

7
4

1

/
8

5
2

*
9

6
3

0

-

+ScrollLock
ScrnPrint

SysRq

Pause
Break

Home

End
PageDown

PageUp

Insert

Delete

Enter

End

Home
PgUp

PgDn

Del.

Ins

F1 F2 F3 F4
F5 F6 F7 F8

F9 F10 F11 F12

Esc

1
2 3 4

5 6 7 8 9
0(

)

*
&

^
%

$
#

@
!

`~

-_ =+ \|

Ctrl

Ctrl

Alt

A S D F G H J K L

Caps
Lock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

LCD-ProLCD-Pro

SELECT

MENU

-
+

tux@linux#

SyncMaster 223BW

Kinon

AUTOMOTIVE ITC

AVIATION / DEFENSE

ROBOTICS

NUCLEAR

SPACE

MEDICINE

TRANSPORTATION

Figure 1.4: MPSoC utilizations.

1.2 Motivations

Multiprocessors on chip are playing an increasingly important role in the global economy. They

are the core of nowadays and next generation computing platforms. Multiprocessors appear in

5

./1_Introduction/img/0031_MPSoC_Utilizations.eps

1. INTRODUCTION

a widespread market area ranging from consumer electronics and communication products to

high performance computing devices. As an example, Fig.1.5shows the information and com-

munication technology chain. Here we can find different devices commonly used in everyday

life and containing multiprocessors chip, but also huge web and data centers.

Web Server SQL Server Data Storage repository

Switch Switch

Firewall

INTERNET

Data and service centers

OK

tux@linux#

SyncMaster 223BW

Servers and thin mobile clients

Cloud Computing

and switching centers

M.Pedram [CADS10]

Figure 1.5: ITC Network.

Smartphones, as well as laptops and tablets, are used by an exponentially increasing num-

ber of people. The International Data Corporation1 (IDC) (7) shows that the worldwide smart-

phone market grew 54.7% year over year in the fourth quarter of 2011 (4Q11). The total

smartphone shipment volumes reached 491.4 million units in 2011, up a strong 61.3% from

the 304.7 million units in 2010. Although there was a slowdown from 2010 (+75.7%), IDC

expects double-digit growth for the foreseeable future. According to the latest research from

Strategy Analytics (8) 2, the number of smartphones in use worldwide surpassed the 1 billion

units in the third quarter of 2012, after only 16 years from the first Nokia smartphone appeared

on the market. However, Strategy Analytics forecasts that the next billion willbe achieved in

less than three years. Fig.1.6shows the increasing trend of smartphone shipments.

According to a study conducted in December 2012 by IDC 122.3 million tablets willbe

sold in 2012, rising to 172.4 million units in 2013 and 282.7 million units in 2016. The NPD

1IDC is the premier global provider of market intelligence, advisory services, and events for the information

technology, telecommunications and consumer technology markets.
2Strategy Analytics Strategy Analytics, Inc., a global research and consulting firm, focuses on market opportu-

nities and challenges in the areas of Automotive Electronics, Digital Consumer, Virtual Worlds, Wireless Strategies,

Tariffs and Enabling Technologies.

6

./1_Introduction/img/0040_ITCNetwork.eps

1.2 Motivations

305

494.5

717.5

916.6

1088.6

1254.6

1494.8
Smartphone Shipments

(millions)

20112012 2013 2014 2015 20162010

1600

1400

1200

1000

800

600

400

200

0

source: IDC 150000

125000

100000

75000

50000

25000

0

1
Q

 2
0

0
7

2
Q

 2
0

0
7

3
Q

 2
0

0
7

4
Q

 2
0

0
7

1
Q

 2
0

0
8

2
Q

 2
0

0
8

3
Q

 2
0

0
8

4
Q

 2
0

0
8

1
Q

 2
0

0
9

2
Q

 2
0

0
9

3
Q

 2
0

0
9

4
Q

 2
0

0
9

1
Q

 2
0

1
0

2
Q

 2
0

1
0

3
Q

 2
0

1
0

4
Q

 2
0

1
0

1
Q

 2
0

1
1

2
Q

 2
0

1
1

3
Q

 2
0

1
1

4
Q

 2
0

1
1

1
Q

 2
0

1
2

WinPhone

Android

Bada

Symbian

Linux

Rim

Palm

iOS

Others

WinMob

source: Gartner

Smartphone sales Growth by platform

(a) (b)

Figure 1.6: Smartphone shipments: (a) shipments forecast, (b) shipments per platform.

DisplaySearch Quarterly Mobile PC Shipment and Forecast Report (10) adds that in 2013, for

the first time, tablet shipments are expected to reach more than 240 million units worldwide

surpassing the notebook shipments (207 million units) that encountered a decrease of 8% in

the last quarter of 2012. Nevertheless, notebook shipments will be stimulatedby the emerging

market. Fig.1.7shows the aforementioned trends.

100%

75%

50%

25%

0%

Notebook PC
Tablet PC

2011 2012 2013 2014 2015 2016 2017
2012 2013 2014 2015 2016 2017

900,000

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100,000

0

Notebook PC Shipment Forecast
Mini-note PC Shipment Forecast
Tablet PC Shipment Forecast

(a) (b)

Figure 1.7: Mobile statistics: (a) tablets vs. notebooks shipments, (b) tablets and notebooks ship-

ment trend.

The 2012 Cisco Connected World Technology Report1 highlights that Global mobile data

traffic will increase by 18 times more from 2011 to 2016. In particular smartphone and tablets

traffic will be respectively 50 and 62 times greater in 2016 than they are now, the 71% of mobile

data traffic will be dedicated to watching videos on portable devices by 2016and smartphones,

laptops, and other portable devices will drive about 90 percent of global mobile data traffic by

2016 (130 Exabytes of worldwide data traffic in 2016).

Internet and the cloud computing paradigm – the practice of using a networkof remote

1Cisco Connected World Technology Report is based on a study commissioned by Cisco and conducted by

InsightExpress, a market research firm based in the United States in 2012.

7

./1_Introduction/img/0049_Smartphone.eps
./1_Introduction/img/0050_Mobile.eps

1. INTRODUCTION

servers hosted on the Internet to store, manage, and process data, rather than a local server –

constitutes a link between the mobiles products and the high performance computing platforms

(e.g. data and service centers). Indeed, the increasing adoption of smart devices, combined with

mass connectivity, high-speed broadband networks and cloud computingparadigms will drive

increased adoption of streaming services resulting in the continuing rapid growth of data and

service centers. This data is also confirmed by statistics. According to a Cisco study (11),

global data center traffic will grow 4-fold, reaching a total of 6.6 zettabytes annually by 2016.

Data center traffic will continue to dominate internet traffic for the foreseeable future, but the

nature of data center traffic is undergoing a fundamental transformation,since the two-thirds of

the total traffic will be dominated by global cloud traffic, the fastest-growingcomponent of data

center traffic. IDC forecasts that the total number of U.S. data centers willreduce from 2.94

million by 2012 to 2.89 million by 2016 because of the evolution of information technologies

to the cloud. However, the size of data centers will increase significantly, growing from 611.4

million square to more than 700 million square feet in 2016. A trend that could be explained

by the development of large-capacity data centers.

2X V
olu

m
e G

ro
w

th

Network

Ent, Storage

Workstation

HPC

Public Cloud

SMP & Enterprise

> 20%

> 25%

> 30%

2011 2016

(a) (b)

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

Z
e

tt
a

b
y

te
s/

Y
e

a
r

2011 2012 2013 2014 2015 2016

Cloud Data Center

Traditional Data Center

61%

39% 36%

64%

Figure 1.8: Forecast of Data Center: (a) Data Center Processor growth (CAGR), (b) Data Center

traffic growth (11).

All the data previously presented show the exponential increase of computing platforms

and devices containing multiprocessors chip (one for smartphones, ten ofthousand for data

centers). In particular we referred to few devices belonging to the information and commu-

nication technology area, but the products that exploit multiprocessors includes many others

belonging to the aviation, automotive, medical, defence, space, industrial, rail, telecommuni-

cations, marine and civil nuclear area.

8

./1_Introduction/img/0051_DatatCenter.eps

1.2 Motivations

http://www.cvel.clemson.edu/auto/systems/auto-systems.html

Instrument
Cluster

Night Vision

Head-Up
Display Accident

Recorder

Event data
recorderDriver

Alertness
Monitoring Auto-Dimming

Mirror

IInterior
Lighting

Voice/Data
Communications

Instrument
Cluster

Cabin
Environment

Control

DSRC
Battery

Management

LAne
Correction

Electroni
Toll Collection

Digital Turn Signals

Navigation
System

Security System

Active Exhaust

Noise Soppressor

Active Suspension

Hill-Hold
Control

Regenerative
Braking

Antilock
Braking

Tire
Pressure

Monitoring

Parking
System

Active
Yaw

Control

Electronic
Stability
Control

Seat Position
Control

OBDII

Remote
Keyless
Entry

Active
Vibration
Control

Blind spot
Detection

Lane
Departure
Warning

Idle
Stop/Start

Electronic
Valve
Tming

Electronic Throttle
Control

Electric
Power Steering

Automatic
Braking

Windshield
Wiper Control

Parental
Control

IEngine
Control

Adaptive Cruise
Control

Adaptive Front
Lighting

Airbag
Deployment

Cylinder
De-activation

Transmission
Control

Entertainment
System

Figure 1.9: Control systems in high-end cars (12).

As an example, multiprocessors are widespread in automotive to face the challenge of in-

creasing performance, and, at the same time, reducing costs and dimensions (e.g. power usage,

electromagnetic compatibility, printed circuit board area and wiring issues). Indeed, multipro-

cessors may reduce considerably the number of Electronic Control Units,ECUs, present on a

vehicle, which grew up above 70 for high-end cars (see Fig.1.9). This solution, on one side

improve performance increasing the average throughput and the computational power; on the

other side it reduces costs, eliminating redundant hardware, reducing and uniforming software

components, and simplifying the final software validation according to the safety standards.

This introduces also some challenges in the software development. Indeed,it is important

that safety critical functions could run alongside non-safety critical functions without their

safety characteristics being compromised. Moreover, the software must be able to manage

resource sharing and the parallel running of different operative systems (because the different

functions may be best served by different operating systems). The solution, already used in

aviation, is virtualization technology, that is splitting the software in portions (managed by

microkernels) each one acting as an independent virtual machine, granting exclusive access to

the configured system resources (13).

Other examples are the machine used for robotic surgery and artificial limbs (14) (15)

controlled by multi-core processors in medicine, the control unit on a airplane or the processing

unit inside a PLC in automation industry.

Power consumption is a key issue for all these computing devices. Focusingon the Infor-

9

./1_Introduction/img/0060_Automotive_ECU.eps

1. INTRODUCTION

mation and Communication Technology (ITC) industry, global consultants Gartner (16) esti-

mated that in 2007 it accounted about 2% of the total globalCO2 emissions, but this percentage

is expected to grow in the future, despite some modest achievements in energyefficiency. The

International Institute for Sustainable Development (IISD)(17) reports that the ITC sector al-

ready represents the 8 per cent of global electricity consumption and this ispredicted to grow

to 10-12 per cent of all electrical consumption in the next decade. However, according to

SMARTer 2020 report (18), ITC can play a role in reducing annual emission, enabling an

abatement of the 16.5% of the total emissions in many end-use sectors (e.g. transportation,

agricolture, buildings, manufacturing, power, and service). Nevertheless, Fig.1.10shows that,

despite of the potential benefits offered by ITC, its power consumption will grow reaching

2.3% of global emissions in 2020.

ICT footprint

(1.3 GtCO
2
e = 2.3% of global emissions)

2000

2020

2011

60

50

40

30

20

10

0

All other GHG emissions

(44.6 GtCO
2
e)

Business as usual growth in emissions

1.6

1.6

2.0

1.9

1.2
.07

 ICT enabled

abatement

(-9.1 GtCO
2
e)

Building
Agriculture
Consumer & service
Manufacturing
Transportation
Power

CO2 emissions in

gigatons (equal

to 1 billion tons)

Figure 1.10: ITC emissions and potential benefits of ITC for other sectorsemissions (18).

This power consumption explosion has its main causes in the increasing diffusion of these

devices (mainly in developing countries) and in the rising performance demand. This latter, in

particular, translates in a manufacturer competition to accomodate the market demand, making

more powerful processors, but trying to maintaining the power consumptionlimited.

At first, manufacturers managed this situation by exploiting the miniaturization of the chip

components and then, by using parallelism (the passage from single-coreto multi-core allows

the improvement of the throughput reducing the power consumption).

Nevertheless, the power consumption problem is still unresolved. The miniaturization im-

prove the performance of our systems at the cost of higher power consumption and higher

power densities – the power consumed per area – on the chip. As a consequence on-chip tem-

peratures dramatically increase. In large multiprocessors, the power, unevenly consumed on

10

./1_Introduction/img/0070_Power_ITC.eps

1.2 Motivations

the chip, generates high temperature variations across the die or “hot spot”. Here the tempera-

ture reaches harmful values that strongly undermines the reliability of the MPSoC. Nowadays

temperature is a key issue for manufacturers and it represents a cruciallimit for processors

development. In literature, this issue is commonly referred to as “Thermal Wall”and it affects

all the devices containing multiprocessors.

Another recent issue related to high temperatures and power consumption isthe so called

“Utilization Wall”. This issue rises when the chip contains a high number of cores, but only

a subset of cores can be activated at the same time due to power and temperature reasons.

Roughly speaking chips contain too many transistors that cannot be supplywith power at the

same time. Thus, some of them must be left unpowered – or dark, in industry parlance – while

the others are working. The phenomenon is known asdark silicon. Actually chips are not

suffering for this issue, but provisions show that we will soon enter in thedark silicon era

and mobile devices will experience the problem first due to the growing performance demand

and the extreme power constraints. In the next future the combination of miniaturization and

increasing number of cores on the same chip (19) (20) will result in an augment of dark silicon

as shown in Fig.1.11.

20%

40%

60%

80%

100%

C
P
U

G
P
U

C
P
U

G
P
U

C
P
U

G
P
U

C
P
U

G
P
U

C
P
U

G
P
U

C
P
U

G
P
U

45nm 32nm 22nm 16nm 11nm 8nm
Core Core Core Core

Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core

Core Core

Figure 1.11: Forecasts of percent dark silicon across technology nodes (21).

We have already remarked that “Thermal Wall” and “Utilization Wall” are issues that affect

all computing devices. However, it is worth to note that these problems have stronger impacts

on some devices rather than others.

As an example data centers are very sensitive to the thermal issue. Here, the huge number of

cores running at the same time to perform calculations produces a great amount of heat which

must be dissipated in order to avoid undesired computing arrests. In such systems the 50% of

power is consumed for feeding the complex cooling infrastructure, dramatically impacting on

costs and environment (22).

11

./1_Introduction/img/0090_Dark_Silicon.eps

1. INTRODUCTION

Also mobile devices are sensitive to temperature because of the constraints on cooling

systems. The limited power budget as well as the reduced size of the devicesmake the active

cooling impracticable and shrink the surfaces available for heat dissipationcomplicating the

architecture design. Moreover, in the next future, the limit on power budgets will prevent the

simultaneous use of all processors at the same time making the mobile devices moresusceptible

to the “Utilization Wall”.

1.3 Thesis contributions

Multiprocessor (or MultiCore) Systems-on-Chip (MPSoC) are the core ofnowadays and next

generation computing platforms. In this thesis, two main issues, related to such processors,

will be considered, since they are crucial in limiting their development. These issues, which

has been introduced in the previous section (and will be deeply treated in thenext chapter), are

referred in literature as “Thermal Wall” and “Utilization Wall”. The first concerns the dam-

aging effects of high temperatures on chips, whereas the second refers to the impossibility of

fully exploiting the computing power of the processor due to the limitations on power and tem-

perature budgets. The central aim of this thesis has been searching anddeveloping efficient and

reliable control solutions for maximize performance, limiting, at the same time, temperatures

and power consumptions. Model Predictive Control (MPC) schemes arethe main tools we used

for implementing our control algorithms. Exploiting the predictions computed by a dynamic

model of the system to be regulated, MPC controllers solve an optimization problem subject to

constraints in order to find the optimal control decisions for the future intervals. The capability

of handling constraints in a systematic way, maximizing at the same time a previously defined

cost function, makes MPC very attractive for this application.

The main contribution of this thesis is the development of a distributed MPC controller

for managing on-chip temperatures. The basic idea behind this solution consists in forecasting

the chip area in which temperature will violate the critical temperature limit and manage to

avoid overheating. The main tools are frequency and voltage “knobs” that allows the controller

to reduce the speed of each core. As consequence, the power consumption reduces and the

temperature decreases as well. In literature, solutions founded on this ideaalready exist, but

all of them exploit centralized MPC schemes, i.e. schemes where a unique problem is solved

to determine the optimal speed of all cores. The solution implemented in this thesis differs

from the previously mentioned one because it is distributed: each core decides its frequency

12

1.3 Thesis contributions

exploiting also the information coming from the neighbor cores. This solution has compara-

ble performance, but ensures two big advantages: first the system is more reliable because the

control algorithm is split on all cores, second the computational complexity is considerably re-

duced. Indeed, it is known that the computational complexity of a MPC problem exponentially

increases with the number of cores, whereas the distributed one linearly scale.

The dynamic model used for predictions plays a fundamental role in MPC schemes. Ac-

curacy and simplicity are the main characteristics a model should posses. Accuracy for having

exact behavior forecasting, and simplicity to improve controller efficiency by reducing compu-

tational complexity. In this thesis some techniques to obtain a model with such properties have

been studied. In particular, the model has been obtained by:

1. solving a distributed ARX identification problem;

2. solving aH∞ optimization problem;

3. using a proper orthogonal decomposition (POD) approach;

More in detail, the first two approaches can be used to update the model at run-time when the

prediction error is unacceptable.

An important methodological contribution of this work derives from the studyof the con-

troller feasibility for thermal system context. This problem is usually disregarded in the specific

literature on the thermal control of MPSoC, even though it is extremely important for guaran-

teeing the respect of temperature constraints at each time instant. In case ofinfeasibility the

controller may lose its authority on the system, resulting in dangerous situations.In this the-

sis we proved that centralized and distributed MPC schemes are always feasible for a generic

class of thermal systems. In order to cover all possible cases we used a thermal model de-

scribed by Partial Differential Equations (PDE). However, a model based on PDE cannot be

incorporated in a MPC algorithm due to its complexity. Time and spatial discretizations can

be used to find a simple and accurate model, but the new control scheme can result infeasible.

Whereas in the centralized case the feasibility loss could happen, in the distributed solution its

unavoidable. In order to guarantee the property in the distributed case, we developed a complex

two-layer control scheme where a Safety controller supervises the distributed MPC solution.

The methodological analysis also provided an interesting property that allows the simplifica-

tion of the controller design. It permits to reduce the number of temperature constraints from

an infinite to a finite number. Indeed, the control problem should maintain the temperature of

13

1. INTRODUCTION

every infinitesimal volume element of the chip under the threshold. Thanks to this property

the same result can be obtained by constraining the temperature of a finite number of points

corresponding to the chip sources, i.e. the cores.

Beside the two-layer control solution previously mentioned, we developed other complex

solutions which use as basic ingredient the distributed MPC scheme.

We developed a fully distributed controller able to manage the temperature and the energy

consumption of a MPSoC. Each core has a local energy mapper and a local MPC thermal

controller. The energy mapper allows each core to set its frequency in order to maximize

energy saving, preserving performance loss within a tolerable bound. The thermal controller

trims this frequency if the temperature reached is too high. More in detail, the energy mapper

algorithm reduces the core frequency if the executing task is memory-bound, i.e. involves

extensive memory use. In this case reducing the core speed does not lead to execution time

overheads because memory access speed is the limiting factor.

Another control solution addresses the “Utilization Wall” issue for mobile devices such

as tablets and smartphones. Even though the “Utilization Wall” issue affects allcomputing

devices, our solution it has been designed specifically for mobile devices for two reasons: first,

the effects of the “Utilization Wall” will hit mobile devices due to the tighter constraints on

power and temperature, and second, the quality of service perceived by the user depends on

the responsiveness rather than the average throughput. The basic idea of this control solution,

called computing sprinting, consists in running all cores only for short time intervals (in order

to remain below the critical temperature). Indeed, the chip is designed to dissipate the heat

of a subset of cores switched on at the maximum speed. If all the cores run together the

chip will melt. The distributed MPC thermal controller intrinsically guarantees the sprinting

functioning, maximizing performance (i.e. the cores speed) at the same time. However, the

proposed solution provides another MPC control layer which manages thethermal capacity of

the chip. It guarantees a sprinting window every fixed period allowing the critical tasks – the

deterministic task with hard real time deadlines necessary for the correct functioning of the

system – to be executed at the maximum speed. In this way the controller can manage mixed-

criticalities systems. We refer to this solution (innovative in MPSoCs literature) as guaranteed

re-sprinting solution.

The last solution proposed realizes a communication-aware MPC thermal controller. Start-

ing from the centralized MPC solution it has been possible to modify the controlalgorithm in

order to establish a communication between two cores. In other words we constrained two or

14

1.4 Thesis Overview

more cores to have the same frequency implementing a message passing requirement. This

solution also allows the controller to dynamically choose which cores must havethe same

frequency.

We developed these solutions by using the Matlab/Simulink environment. First, theac-

curate model to simulate the real system has been generated using a finite element technique.

Then, we developed the control and identification algorithms necessary for implementing the

control schemes. We used different toolboxes to simplify the operation (MPC Toolbox, Hybrid

Toolbox, Yalmip, CVX). The distributed MPC controller algorithm has been implemented in

C/C++ language in view of a future implementation on a real Intel Single-chip Cloud Computer

(SCC) containing 48 P54C Pentium cores. The C/C++ code version also allows us to estimate

the execution time necessary to solve a single control problem obtaining information on the

computational overhead and complexity.

The results shown in this thesis have been carried out within the team dealing with Thermal

Control of Systems-on-Chip (Prof. Luca Benini, Dr. Andrea Tilli, Dr. Roberto Diversi) at De-

partment of Electrical, Electronic, and Information Engineering ”Guglielmo Marconi” (DEI) of

the University of Bologna and in collaboration with Professor Emanuele Garone of the Service

d’Automatique et d’Analyse des Systémes (SAAS) at the Universitè Libre de Bruxelles.

1.4 Thesis Overview

The thesis is organized as follows.

In the chapter2 the “Thermal Wall” and “Utilization Wall” issues are contextualized. Then,

the main solutions proposed in literature to manage these issues are shown.

In chapter3 some theoretical basics useful in further chapters will be given. Some knowl-

edge on optimization problem with constraints will be introduced before focusing on MPC

theory. Here the main components of a MPC scheme will be presentd going into deep with

feasibility and stability issues. In the second part the computational complexity for large scale

systems will be treated by showing the benefits of distribution.

In chapter4 the distributed MPC solution is presented. This correspond to the basic solution

that will be used in most of the complex control solutions mentioned in the previous section.

In the first part the focus will be devoted to highlight the importance of the model for MPC

accuracy. In this context some methods are shown to obtain accurate and reduced order models

of the system (distributed ARX identification, proper orthogonal decomposition (POD) and

15

1. INTRODUCTION

conservative identification (H∞)). Then, the centralized and distributed MPC control schemes

will be accurately described showing the strengths of the latter solution. Finally the feasibility

property will be proved for centralized and distributed controllers.

In chapter5 some complex control schemes, which use the distributed MPC solution as

basic element, are presented. First, a distributed scheme able to manage the temperature and

save energy through a higher layer energy mapper. Second, a two-layer controller (centralized

and distributed) able to guarantee the controller feasibility trough the use of asafety layer based

on switch controllers. Finally a modified solution of the basic controller able to guarantee

message passing capabilities.

In chapter6 the solution implemented for the “Utilization Wall” problem will be presented.

Although this solution could be part of the previous chapter, we preferred to hold a separated

chapter for it because of the wideness of the topic.

Finally in Chapter7 the conclusion are drown. Moreover, the future development will be

considered.

The aim of the appendices is to add useful information on the work. Appendix A give some

hints on optimization theory and multi-parametric programming. AppendixB gives some de-

tails on the technique used to implement the accurate model used as real systemin simulations,

and some notions on power consumption of multiprocessors. AppendixC contains the Mat-

lab/Simulink and C/C++ code to implement MPC control algorithms.

16

Bibliography

[1] A. Jerraya, W. Wolf,Multiprocessor Systems-on-Chips (Systems on Silicon), Morgan Kaufmann, Aug. 2004.1, 3

[2] K. Popovici, F. Russeau, A. Jerraya, M. Wolf,Embedded Software Design and Programming of Multiprocessor System-

on-Chip: Simulink and System C Case Studies, Springer, Mar. 2010.1

[3] R. Kumar, D.M. Tullsen, N.P. Jouppi, P. Ranganathan,Heterogeneous chip multiprocessors, Computer, Vol.38(10),32-38,

Nov. 2005.3

[4] B. Ackland, A. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade, J. Knobloch, E. Micca, M. Moturi, C. J. Nicol, J. H.

ONeill, J. Othmer, E. Sackinger, K. J. Singh, J. Sweet, C. J. Terman, and J. Williams,A single-chip, 1.6 billion, 16-b

MAC/s multiprocessor DSP, IEEE J. Solid-State Circuits, vol. 35(3):412423, Mar. 2000. 3

[5] A. Artieri, V. DAlto, R. Chesson, M. Hopkins, and M. C. Rossi, NomadikOpen Multimedia Platform for Next Generation

Mobile Devices, 2003. technical article TA305. http://www.st.com3

[6] http://www.adapteva.com/

[7] http://www.idc.com/6

[8] http://www.strategyanalytics.com/6

[9] Cisco Visual Networking Index Forecast Projects 18-Fold Growth in Global Mobile Internet Data Traffic From 2011 to

2016, Feb. 2012,

http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=668380

[10] H. Himuro, R. Shim,Quarterly Mobile PC Shipment and Forecast Report, Jan. 2013, http://www.displaysearch.com/7

[11] http://www.cisco.com/Cisco Global Cloud Index: Forecast and Methodology, 20112016 2012, White paper,

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns1175/CloudIndex White Paper.pdfvii , 8

[12] http://www.cvel.clemson.edu/

http://www.cvel.clemson.edu/auto/systems/auto-systems.html vii , 9

[13] S.S. Thiebaut, M. Gerlach,Multicore and virtualization in automotive environments, Oct. 2012,

http://www.edn.com/design/automotive/4399434/Multicore-and-virtualization-in-automotive-environments9

[14] K. Eaton,Your Smartphone Is An Artificial LimbAug. 2011,

http://www.fastcompany.com/1775278/your-smartphone-artificial-limb 9

[15] W. Xiao, H. Huang, Y. Sun, Q. Yang,Promise of Embedded System with GPU in Artificial Leg Control: Enabling Time-

frequency Feature Extraction from Electromyography, in Proc. IEEE Conf. Eng. Med. Biol. Soc., Vol. 1, pp. 69266929,

2009.9

17

BIBLIOGRAPHY

[16] C. Pettey,Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2 Emissions, Apr. 2007,

http://www.gartner.com/it/page.jsp?id=50386710

[17] B.St. ArnaudUsing ICT for Adaptation Rather Than Mitigation to Climate Change, Oct. 2012,

www.iisd.org/pdf/2012/comicts starnaud.pdf10

[18] http://gesi.org GeSI SMARTer2020: The Role of ICT in Driving a Sustainable Future Dec. 2012,

http://gesi.org/SMARTer2020vii , 10

[19] J. Held , J. Bautista , S. Koehl,From a Few Cores to Many: A Tera-scale Computing Research Overview, 2006, White

paper, Intel,

http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-

paper.pdf11

[20] K. Asanovic , The Landscape of Parallel Computing Research: A View from Berkley, tech report UCB/EECS 2006-183,

Dept. Electrical Eng. and Computer Science, Univ. of Calif.,Berkeley, 2006.11

[21] H. Esmaeilzadehy, E. Blemz, R.St. Amantx, K. Sankaralingamz, D. Burger,Dark Silicon and the End of Multicore Scaling,

in Proc. ISCA, pp. 365-376, June 2011.vii , 11

[22] Greenpeace,Make IT Green, Mar. 2010,

http://www.greenpeace.org/international/Global/international/planet-2/report/2010/3/make-it-green-cloud-computing.pdf

11

18

Chapter 2

MPSoCs Issues and Solutions

In this chapter the main MPSoCs issues tackled in this thesis are presented. First, a brief in-

troduction highlights the technology walls encountered by processors vendors from the birth of

the first processors. Then, the issues of today MPSoCs and some solutions present in literature

are shown.

2.1 Processors issues from the beginning

A computer is an electronic device designed to accept data, perform prescribed mathematical

and logical operations at high speed according to a set of instructions, and display the results of

these operations. The first fully electronic general-purpose computer ENIAC (Electronic Nu-

merical Integrator and Computer), introduced in the 1946, was a huge machine that contained

17.468 vacuum tube and required teams of people to operate. However, itwas the invention of

transistors that revolutionized the computing device world, strongly accelerating their develop-

ment.

The transistor effect was discovered in 1947 at Bell’s Lab and for this discovery John

Bardeen, Walter Brattain, and William Shockley were awarded with the NobelPrize in Physics

in the 1956. The first silicon transistor was produced in Texas instruments inthe 1954 and

the first MOS at Bell Labs in 1960. Transistors replaced the bigger, heavier, fragile, and more

power consuming vacuum tubes (used to amplify and switch signals), becoming the building

block for all modern electronics and the foundation for microchip. Their importance was also

remarked in 2009 when the invention was named an IEEE Milestone. De facto,transistors

have introduced the third revolution for civilization: the information revolution(after the agri-

19

2. MPSOCS ISSUES AND SOLUTIONS

culture and industrial revolution). As machines have incremented man’s mechanical power by

simplifying and making more comfortable everyday jobs, so information technology extended

man’s intellectual power simplifying the storage, processing, transmission and exploitation of

information. In the last half of the 20th century, science has become a productive force (of

information): service jobs are more common than jobs in manufacturing or agriculture.

Nowadays, transistors are present in almost all devices storing, transmitting, displaying,

or manipulating information. On a silicon chip we can find many thousands or even billions

of transistors. Commonly, the number of transistors, i.e. thetransistor counton a device

is used as a metric for integrated circuits complexity. Microprocessors represent the most

complex application of transistors, containing billions of them. Fig.2.1represents the number

of transistors contained in a microprocessors respect to time. As it is possible to see the number

of on-chip transistors doubles every eighteen months. This trend is better known as Moore’s

Law, named after Gordon Moore (Intel co-founder), in a paper of the1965, stated that the

number of transistors on a chip will roughly double each year (1) (in 1975 he refined this to

every two years).

Figure 2.1: Transistor count 1971-2011.

The Moore’s Law born as a simple observation of the future trend of transistors density

on chips, but it became accepted as a reference for all processors vendors. Though it refers to

the transistors size, in literature it is common to find different versions of the law describing

20

./2_Literature/img/0010_Moore.eps

2.1 Processors issues from the beginning

correlated technological trends that arise as consequence of the original one (e.g. chip costs,

power density, clock scaling, silicon area, storage costs, . . .).

The history of the microprocessor begins with the birth of the Intel 4004 in 1971, the first

commercially available microprocessor. It consisted of 2300 transistors withpMOS technology

(10 µm) and a clock rate of 740 kHz (2). From that moment, led by Moore’s Law, microchip

manufacturers started a “rush” for improving processors performance. The aim was to acco-

modate the market demands and seize the leadership position in a profitable andfast moving

sector. To better understand the progress made in this market it is enough tothink that if the

transportation industry had kept the same pace of microprocessors industries, today we could

have traveled from New York to London in about a second for roughly afew cents (3). After

more than forty years, Moore’s Law still holds, despite of many “brick walls” encountered and

successfully circumvented. At the time of the first processors the main issuewas the dimension

of the programs limited by the size of the computer’s memory; nowadays, powerand temper-

ature are the main issues. In the follows we show the main reasons that push chips vendors to

move from a world dominated by single processors to one dominated by multiprocessors on a

chip.

2.1.1 The “Power Wall”

The previously mentioned rush for processors performance improvement started in the early

70’s with the birth of the first microprocessor and its trend is accurately described by Moore’s

Law. The improvements to make single processors computation faster were primarily tech-

nology driven. The first remarkable step was the transition from the nMOSbipolar logic to

the, still in use, CMOS in the 80’s (4). The main reasons CMOS technology became the most

used technology implemented on chips regarded the noise immunity and the low staticpower

consumption (5). More in detail, the CMOS structure (a nMOS and a pMOS in series) allows

the components to draws significant power only during the ON/OFF (close/open) switching

transition. At the contrary nMOS logic normally have some standing current even when not

changing state, resulting in a much higher waste of heat and power. Moreover, the energy re-

quired for a logic switching (the energy necessary to charge the transistor capacitance) depends

on the square of the supply voltage, therefore if voltage scales (possibleonly in CMOS transis-

tors) also power and heat scale. This advantages were well understood by Robert Dennard that

in a paper in the 1974 (6) postulated the scaling theory: the MOSFET transistors (nMOS or

21

2. MPSOCS ISSUES AND SOLUTIONS

pMOS) density, operation speed and energy efficiency will grow proportionally to the degree

of miniaturization. In other words smaller transistors switch faster at lower power.

The Dennard scaling theory is at the base of Moore’s Law and it drove miniaturization

in the industry until now, enabling computing devices to be portable (7). Table2.1 show the

implication of Dennard’s theory assuming a scaling factorα for each technology generation.

Therefore, since every technology generation has commonly aα = 1.4 scaling factor (depen-

Parameters Scaling Factor

Device dimensionstox, L, W 1/α
Doping concentrationNa α

VoltageVdd 1/α
CurrentI 1/α

CapacitanceεA/t 1/α
Delay time per circuitVddC/I 1/α

Power dissipation per circuitVddI 1/α2

Power densityVddI/A 1

Integration density α2

Table 2.1: Dennard’s scaling theory

dent on industry strategies) the transistors dimensions reduces of the 30%(1/α = 0.7×), the

area shrinks of the 50% (1/α2 = 0.5×), and the transistor density doubles. At the same time

circuit performance increases by about 40% (α = 1.4× frequency increase that corresponds

to 1/α = 0.7× delay reduction) and the supply voltage is reduced by 30% (1/α = 0.7×) to

meet the condition of having a constant electric fields according to Dennard’s theory. As a

result, active power (P=C ·V2
dd · f , whereC is the capacitance being switched per clock cycle,

Vdd is the supply voltage, andf is the switching frequency) reduces by 50% (1/α2 = 0.5×)

(8). Therefore, considering the same chip area , in every technology generation transistor den-

sity doubles and circuit becomes 40% faster at the same power consumption.These data are

summarized in Fig.2.2.

However, miniaturization is only one of the factors that in these years concurs to improve

performance. Other important factors are microarchitecture techniques and cache memory

improvements that we briefly introduce without going into details.

Microarchitecture techniques refers to the way in which the resources are organized and

the design techniques used in the processor to reach the target cost andperformance goals

22

2.1 Processors issues from the beginning

1

Transistor
Doubling

(α2)

Higher
Frequency

(α)

Voltage Supply
squared
(1/α2)

Lower
Capacitance

(1/α)

α
1

α2

α3

α4 P = f C Vdd
2

Power Consumption Scaling

1 technology generation

Figure 2.2: Dennard’s implications (23).

10.0

1.0

0.1
0.1 1.0 10.0In

te
g

e
r

P
e

rf
o

rm
a

n
ce

 (
X

)

Area (X)

Slope =0.5

Pentium 4 to Core

P6 to Pentium 4

Pentium to P6

486 to Pentium

386 to 486

Figure 2.3: Pollack’s Rule.

(e.g. pipelining, branch prediction, out-of-order execution, and speculation). Microarchitec-

ture techniques exploit the growth in available transistors to improve performance. The per-

formance increase by microarchitecture alone is empirically described by Pollacks Rule (9),

which states that performance increases as the square root of the number of transistors or area

of a processor. In other words, if the number of transistors doubles, anew microarchitecture

delivers only a 40% performance increase (see Fig.2.3). Anyway, it is important to notice that

developers do not modify the microarchitecture every technology generation.

Also memory (DRAM) architecture influences performance. Following the Moore’s Law,

memory density doubles every two years, but performance improves more slowly (see Fig.2.4a),

resulting in a bottleneck for the overall system performance. However, according to (8) the slow

improvements depends on economical choices rather than technological impediments. Market

demanded high density and low cost memories at the expense of speed (seeFig. 2.4b). Al-

though it was technically possible to have a memory as fast as processors,manufacturers chose

23

./2_Literature/img/0015_Dennard.eps
./2_Literature/img/0020_Pollack.eps

2. MPSOCS ISSUES AND SOLUTIONS

$ 0.67

M
e

m
o

ry

T
ra

n
si

st
o

rs

$ 387

M
ic

ro
p

ro
ce

ss
o

r

T
ra

n
si

st
o

rs

Cost for 1 Billion transistors

(a)

DRAM Density

CPU Speed

DRAM Speed

100,000

10,000

1,000

100

10

1
1980 1990 2000 2010

R
e

la
ti
ve

(b) (c)

10,000

1,000

100

10

1
1u 0.5u 0.25u 0.13u 65nm

O
n

-d
ie

 c
a

c
h

e
 (

K
B

)

Figure 2.4: DRAM density (a), costs (b), and performance (c) (8) (10).

a more economically viable path to reduce the speed gap between processors and memories.

The idea was to introduce some small, expensive but fast memories close to theprocessors,

containing copies of the most frequently used data. Nowadays caches are organized in three-

layer hierarchical structures and it is common to find caches on the die (built“subtracting”

transistors to cores). This because, comparing the performance benefits of increasing the tran-

sistors on a core with the ones obtained by reducing the speed gap betweenmemories and

processors, often it results more convenient the second choice (see Fig. 2.4c).

Over the past two decades, both scaling, and microarchitecture and memoryhierarchy tech-

niques allows a 1000x microprocessor performance improvement. However, this trend slowed

down due to physical scaling limits. Scaling is not a “free lunch” (12) anymore. Power con-

sumption, reliability and variability constitute barriers to the development of microprocessors

(13). In mid-2003 manufacturers hit the “Power Wall”. The benefits of the scaling theory sub-

sist if the electric field is kept constant, which means that when transistors scale, also the supply

voltage (Vdd), theSiO2 insulator layer and the threshold voltage of transistors (Vth) have to scale

to deliver circuit performance. Unfortunately all these three elements encountered limitations.

As the threshold voltage reduces, subthreshold leakage current – the current flowing between

source and drain when the transistor is OFF (i.e. open or equivalently in subthreshold region)

– exponentially increases (it depends one(VGS−Vth) whereVGS is the voltage between gate and

source). As shown in Fig.2.5, the greater is the scaling, the greater is the portion of power

due to leakage. Thus, to keep leakage under control, the threshold voltage must be limited,

resulting in performance degradations. Solutions commonly adopted by circuit designers to

alleviate subthreshold leakage issue are stacked gates, body bias, and sleep transistors.

Also the oxide insulating layer plays an important role in power consumption. Indeed,

as the gate dielectric gets thinner (as consequence of the transistor scaling) the performance

improves, but, at atomic dimensions, the gate leakage current – the currentflowing between

24

./2_Literature/img/0030_Memory.eps

2.1 Processors issues from the beginning

0.25µ 0.18µ 0.13µ 90nm 65nm 45nm

Technology

100

10

1

0.1S
u

b
th

re
sh

o
ld

 L
e

a
k

a
g

e
 [

W
]

0.18µm0.25µm 0.13µm 0.09µm 0.07µm

Technology

Source: Microprocessor power

 consumption , IntelActive
Leakage

P
o

w
e

r
[W

]

300

250

200

150

100

50

0

Figure 2.5: Leakage power trend: (a) subthreshold leakage power (14), (b) Active vs leakage

power.

gate and drain – increases, resulting in an augment of the power dissipated. This phenomena is

calledtunneling. Circuit designers mitigated this problem by using high K dielectrics.

Due to transistors atomic dimensions, threshold voltage limits and constraints to meetthe

processor performance targets (e.g. noise immunity, cell state stability, . . .), the supply voltage

is approaching a lower bound. As a result (see Fig.2.6) the power consumption increase over

generations, reaching a maximum limit in mid-2003. The maximum clock frequencyreached

was around 4GHz (15).

Table2.2summarizes how these limitations modify the Dennard’s implications showed in

Table2.1.

Parameters Scaling Factor

Device dimensionstox, L, W 1/α
Doping concentrationNa α

VoltageVdd 1

CurrentI 1

CapacitanceεA/t 1/α
Delay time per circuitVddC/I 1/α

Power dissipation per circuitVddI 1

Power densityVddI/A 1/α
Integration density α2

Table 2.2: Post-Dennard’s scaling theory

Consideringα the scaling factor, area reduces by 50% (1/α2 = 0.5×), frequency increases

by 40% (α), capacitances scales by 30% (1/α), but voltage does not scale (1), leading to a

25

./2_Literature/img/0040_Leakage.eps

2. MPSOCS ISSUES AND SOLUTIONS

386

Pentium

Pentium 4

Dual core Itanium 2

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

0

Transistors

Clock Speed (MHz)

Power (W)

Perf/Clock (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2.6: Intel CPU trend (12).

power consumption that doubles every technology generation (α2). Fig. 2.7summarizes these

data.

All these limitations and the increasing design complexity (due to the features added to

improve performance as multi-threading, hyper-threading, speculative execution, ...), pushed

companies to search for new solutions. Again Moore’s Law helped designers, indeed, despite

power and clock frequency limitations, the number of transistors continues toclimb, providing

cheaper transistors and the possibility of including multiple cores on the same chip. In 2004

AMD put on the market the Opteron processor which signed the switch fromsingle-core to

multi-core paradigms. However, it is worth to highlight that the embedded multiprocessor

systems-on-chip history began earlier than general purpose multicore, in1990 with Daytona

MPSoC.

The basic idea of multiprocessors was that if average throughput cannot be improved by

increasing speed, due to power budget limitations, then it could be increased by parallelizing

the operations, that is executing more tasks on slower multiple cores at the sametime. This

solution allowed the designers to increase the data throughput, reducing thevoltage and the

frequency. We can summarize the multiprocessors in three words: simpler, slower, efficient

26

./2_Literature/img/0050_Power.eps

2.1 Processors issues from the beginning

1

Transistor
Doubling

(α2)

Higher
Frequency

(α)

Lower
Capacitance

(1/α)

α
1

α2

α3

α4 P = f C Vdd
2

Power Consumption Scaling

1 technology generation

Figure 2.7: Dennard’s failure implications.

(i.e. they consume less power).

However, differently from what one can expect, doubling the number ofcores does not

mean doubling the performance, this because most existing software is single-threaded and

parallelizing compilers have limitations in static analysis and/or lack of information atcompile-

time. Therefore only a small fraction of codes can be automatically parallelized.

Nevertheless, the number of cores on the same chip increases fast and researchers already

forecast thousands of cores in the next future. Researchers predicted that the number of cores

on a silicon chip will double with every technology generation (9), bringing MPSoCs to the

many-core paradigm – processors with a high number of cores, where the multi-processor

techniques are no longer efficient due to congestion problems. Fig.2.8 shows the increasing

demands for MPSoCs in a wide range of market sectors, particularly for smartphones in ICT

sector.

2.1.2 The “Thermal Wall”

The diminishing return on performance and the increasing power consumption in traditional

scaling approach, led designers to integrate on the same chip multiple cores. The primary aim

was improving performance per Watt exploiting parallelism. However, multiprocessors bene-

fits comprise also the possibility of setting the performance (frequency, voltage, on/off) of each

core individually, and distributing the load in order to reduce heat acrossthe die, improving

reliability and leakage.

27

./2_Literature/img/0055_PostDennard.eps

2. MPSOCS ISSUES AND SOLUTIONS

Smart grid (Meter)

Smart grid (Power rooter)

Home server

Robot

Printer

Car (Driving)

Car (Body)

Car (Safety)

Car (Amenity)

Car (Navigation)

Car (Other)

High-end rooter

Smartphone

Cell tower

Battery control

Medical devices

Measuring device

4000

3000

2000

1000

0

M
ill

io
n

 u
n

it

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 2.8: MPSoCs Demand.

This last sentence introduces a new problem which is directly connected withpower con-

sumption and constitutes the actual key limiter for multiprocessors development. This problem

is the temperature and its detrimental effects on reliability, leakage, and performance.

It is worth to note that the temperature issue is not new and the First Law of Thermody-

namics is the proof that the problem is always existed. It states that energyis conserved, which

means that it can be converted from one form to another, but neither created, nor destroyed.

Therefore, the power consumed by transistors is converted into heat.

However, the actual power consumption of chip coupled with the area scaling (due to tran-

sistors shrunk) result in an extraordinary power density increase which involves dramatically

high temperatures. This trend is perfectly illustrated in the famous Intel forecast of the 1999

shown in Fig.2.9. Following the actual trend, in the next future, researchers expects unimag-

inable power densities similar to the one produced by a nuclear reactor or a rocket nuzzle.

Moreover, to complicate the issue, the switch to multiprocessors technology introduced

new thermal challenges. The large chip used as support for cores as well as the difference of

workloads executed and power consumed on cores generate temperature variations across the

die that contribute to worsen the reliability, the performance, and the cooling efficiency of the

chip. These temperature variation may manifest as hot spots or temporal andspatial temper-

ature gradients. The former are small areas of the cores heavily utilized where the consumed

power density/temperature is higher than in other part of the chip. The latter represent ther-

mal cycles, that are temperature fluctuating along time, and temperature maps characterized by

non-uniformity on the chip area.

High temperatures adversely affect performance by reducing the computing speed of the

chip. This because temperature degrades carrier mobility – the mobility of electrons and holes

28

./2_Literature/img/0060_MPSoCsDemand.eps

2.1 Processors issues from the beginning

W
a

tt
s
/c

m
2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Figure 2.9: Power density trend (16).

in semiconductors under an electric field.

The temperature influences leakage power, that exponentially increaseswith it, making the

problem of power consumption even more evident.

Moreover, high temperatures strongly affect reliability and lifetime of chip components

(17), (18), (19), (20). Components lifetime exponentially reduce with temperature, accelerating

failure mechanisms as electro-migration, stress migration and dielectric breakdown. The time

to failure – the time interval from when a component is put into service to when the component

fails – decreases as function ofeEa/(k·T) according to the Arrhenius relationship, whereEa is

the activation energy, i.e. the energy necessary for the failure mechanism to occur,k is the

Boltzmann’s constant (1.38×1023 J/◦K), andT is the absolute temperature.

These challenges occur with high steady-state temperatures, but they arerarely dangerous

under 150◦C. At lower magnitude, temperature gradients are the major causes for reliability

loss. Repeated changes of temperature in time (thermal cycles) reduce considerably the mean

time to failure of metallic structures and cause package fatigue and plastic deformations that

are proportional to the magnitude and the frequency of the cycles. On the other side, changes

in temperature along space accelerate negative bias temperature instability (NBTI) and hot

carrier injection (HCI) effects. Both cases refer to the breakage ofSi−H bonds happening at

the Si-channel/gate-oxide interface (Si/SiO2) of MOSFETs during transistors operation (when

the gate bias is negative and temperature are elevated). When this happens, hydrogen diffuses

29

./2_Literature/img/0070_PowerDensity.eps

2. MPSOCS ISSUES AND SOLUTIONS

away from the interface, leaving behind the so called dangling bonds or interface traps. As a

result the absolute threshold voltage increases, the carrier mobility diminishes, and the drain

current reduces (21) (22). Spatial temperature variations also have other undesired effects:

clock skew problems induced by circuit delays that increase with temperature (indeed local

resistances are proportional to temperature), and cooling efficiency decrease since the power

spent to feed the cooling system is proportional to the highest temperature measured.

All these issues constitute the “Thermal Wall”, the new major limiter for high performance

processors. In the next future power density is expected to grow due toarea scaling and transis-

tor power consumption. In order to ensure the correct functioning and the lifetime of devices,

an accurate thermal management is necessary.

2.1.3 The “Utilization Wall”

Looking forward to the future, Moore’s Law scaling will continue to improvetransistors den-

sity, but with small performance improvements. Power wall and energy efficiency constraints

will force designers to deeply exploit parallelism and customizations (8). Integrating on the

same chip multiple cores (eventually heterogeneous) and ad-hoc hardware to support compu-

tation can improve considerably the average-throughput of the microprocessor. Researchers

expect that the number of cores integrated on a chip will double every technology genera-

tion reaching a number of hundreds or thousands of processing units. However, this solution

is expected to fail in following the historical exponential performance rate due to the energy

constraints (25).

With the failure of Dennard’s scaling theory, on every technology generation, the frequency

and the number of transistors increase, but, unfortunately, the same happens to the power con-

sumption (see Fig.2.7). As a result, the heat generated on the chip cannot be entirely dissipated.

Cooling infrastructures are limited by cost (e.g. data centers consume the 50% of the energy

to power cooling systems), or by physical constraints (e.g. in mobile phonesactive cooling is

impracticable), obliging the system to use only a fraction of the chip transistorsat full speed,

at one time. In literature this issue takes the name of “Utilization Wall” and it represents a big

concern for chip designers. Although it is expected that the problem will arise most clearly

in the next future, some effect of this wall are indirectly present in modernprocessors. As an

example Intels Nehalem “turbo mode” power off some cores in order to run others at higher

speeds (24).

30

2.2 Related Works

The rate of utilization of a chip will drop exponentially (2× per generation). According to

the experiments conducted in (25), with a 22nm technology only the 79% of the die can work

at full frequency, and this percentage drops to less than the 50% at 8 nm.The fraction of the

chip that remains underclocked, is called “dark silicon”. The term was coined in 2009 by Mike

Muller who wrote in (26): “Without fresh innovations, designers could find themselves by 2020

in an era of “dark silicon,” able to build dense devices they cannot affordto power.”

Fig. 2.10shows the power density and the dark silicon trends according to the data from

(8) and ITRS.

ITRS Borkar ITRS + Borkar Vdd scaling

45 32 22 16 11 8 6

process (nm)

0

1

2

4

8

16

p
o

w
e

r
d

e
n

si
ty

(a)

45 32 22 16 11 8 6

process (nm)

20

40

60

80

100

p
e

rc
e

n
t

d
a

rk
 S

i

(b)

Figure 2.10: (a) Power density trend; (b) Dark silicon trend (8).

In order to improve device performance the “Utilization Wall” issue need a careful man-

agement. In particular, mobile platforms seem to be the most susceptible to “Utilization Wall”

effects. Battery capacity and heat dissipation limits strongly reduce the energy available to the

microprocessors to run the core at full speed, de facto limiting performance. In this case a

thermal management must guarantee thermal safety and performance maximization (not only

as average throughput, but also as Quality of Service perceived by theuser).

Before concluding this section it is worth to note that we define dark silicon not only the

silicon completely unused, but also the silicon rarely used or used at a lowerfrequency.

2.2 Related Works

The “Thermal Wall” and the “Utilization Wall” are crucial limits for the developmentof mul-

tiprocessor (or multi-core) systems-on-chip. We have already seen in thepervious Section that

31

./2_Literature/img/0075_DarkSilicon.eps

2. MPSOCS ISSUES AND SOLUTIONS

the first concerns the damaging effects of high/variable on-chip temperatures, whereas the sec-

ond refers to the impossibility of fully exploiting the computing power of the processor due to

the limitations on power budgets and cooling systems. This Section contains some of the most

effective solutions found in literature to solve these issues.

2.2.1 Solutions for thermal issue

As processors scale, the power density collected on the chip exponentiallyincreases, result-

ing in high temperatures and even high variations across the die and hot spots that undermine

the processor reliability and efficiency. Moreover, the exponential dependence of leakage on

temperature aggravates the problem even further. The research community and leading elec-

tronics companies have invested significant efforts in developing thermal control solutions for

computing platforms.

In general we can group the approaches used to tackle the thermal issuein two big families:

Static Thermal Management techniques (STM)andDynamic Thermal Management techniques

(DTM). The former increase the power dissipation of the chip (the so called “thermal design

power” or TDP) by acting on architectural design (heat sink, fan, floorplanning, . . .). The latter,

instead, reduce the operating temperature at “run time” through the use of dynamic voltage and

frequency scaling (DVFS), thread migration/scheduling and clock gating.

The increasing power density coupled with cooling infrastructures physical and economical

constraints pose severe and sometimes insuperable challenges to STM approaches. Whereas

in the past STM techniques were enough to guarantee worst-case powerdissipation, nowadays

cooling systems are unable (or inaccessibly expensive) to completely remove the heat under

these conditions.

Studies showed that air cooling systems are approaching the dissipation limit, set to 1.5W/mm2

in (27) even though establishing an exact value is difficult due to the great amount of variables

and parameters affecting heat dissipation. This pushed researchers tofind more efficient, but

often more complex and more expensive solutions as liquid cooling. The waterhas an higher

heat capacity that, compared to conventional air cooling techniques, allowsthe on-chip temper-

ature to reduce up to 45◦K and, since leakage power is exponentially related with temperature,

a 12.8% average leakage power reduction (28).

Mobile phones poses great constraints on the cooling infrastructure: thesmall dimensions of

the device limit the heat convectively dissipated and prevent the use of active solutions.

32

2.2 Related Works

However, cooling techniques are only a subset of the STM techniques. In principle the

chip area could be increased in order to reduce the power density, but costs and architectural

constraints make this solution inadmissible. Thermal-aware floorplanning manages chip com-

ponents position in order to maximize performance and energy reduction andat the same time

minimizing temperature. This can be done by decreasing wire length and maximizingthe

distance between hot units. According to (29) the performance loss with thermal-aware floor-

planning is less than 2% respect to the 6% - 21% obtained with DTM techniques.

Nevertheless, while mechanical cooling solutions and STM techniques remainthe primary

mechanisms for dealing with thermal wall, they are costly, unwieldy and not completely solve

the problem. As the power density increase the thermal problem must be addressed at all levels

of the design cycle. Today and tomorrow thermal management techniques willbe a mix of

STMs and DTMs and these latter will play an increasingly primary role. As power density

increases also the maximum power consumption/temperature increases. However, the average

power consumed is considerably lower than the maximum one, and this gap is expected to

become larger in the future. As an example the Alpha 21264 processor hasa maximum power

dissipation of 95W, but the average power dissipation was found to be only72W for typical

applications (31). DTM techniques allows chip designers to focus on average rather thanworst-

case thermal conditions, i.e. cooling systems can be designed to handle the average-case,

letting the MPSoC managing the emergencies through dynamic techniques. This isextremely

important since studies revealed that cooling costs increase exponentially withtemperature

(30). Fig. 2.11a shows the increasing disparity between the maximum and average power

consumption, while Fig.2.11b highlights the exponentially increasing dependence of cooling

costs on thermal dissipation.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Max Power
Typical Power
Max Power Trend
Typical Power Trend

0

5

10

15

20

25

30

35

40

C
o

o
lin

g
 S

o
lu

ti
o

n
 C

o
st

 [
$

]

P
o

w
e

r
[W

]

1985 1987 1989 1991 1993 1995 1997 1999

Year of intro Thermal Dissipation [W]

20 30 40 50 60 70 80

(a) (b)

Figure 2.11: (a) maximum vs. average power consumption; (b) cooling costs vs thermal dissipa-

tion (30).

33

./2_Literature/img/0080_CoolingCost.eps

2. MPSOCS ISSUES AND SOLUTIONS

DTM techniques have received a lot of attention in recent years and this thesis will focus

on these latter. In the follows we briefly summarize some interesting solutions to theproblem

of dynamic thermal management.

According to (31), the key goals of DTM techniques are: (i) to provide inexpensive hard-

ware or software responses, (ii) that reliably reduce power, (iii) while impacting performance

as little as possible. In simple words this means maximizing performance while maintaining

the chip below a safe temperature. DTM techniques can be classified in two categories: the

temporal DTMsolutions and thespatial DTMsolutions (32) (33).

The former controls the temperature by reducing the amount of energy dissipated. In other

words they slow down or arrest the cores in order to make the chip cool down. Dynamic Voltage

and Frequency Scaling (DVFS), Instruction Cache Throttling and Fetch-Toggling belong to this

category. It is worth to note that usually these techniques imply performancedegradation, since

cores run at a reduced speed.

The second category comprises all the techniques that control the temperature by distribut-

ing the activities over the chip area. In other words the idea is to cool down the hot areas of

the chip (i.e. areas with high power consumptions) by moving the workload in colder areas

(i.e. areas with low power consumptions). As an example, assume a dual core chip where one

core is running a cpu-bound task (high power consumption), whereas the other is running a

memory-bound task (low power consumption). As a result the first core willreach a higher

temperature than the second. Then, the thermal manager should schedule the future tasks in

order to balance the temperature on the chip assigning to the second core cpu-bound tasks

and memory-bound tasks to the first one. Migration at granularity of functional unit, pipeline,

cache bank, execution clusters, thread migration (or equivalently core hopping) belong to this

category.

It is worth to note that there exist also hybrid and hierarchical DTM solutions which com-

prise multiple of the previously mentioned solutions. The former use the DTM techniques in

a gradual way from the less to the most aggressive to minimize performance loss, whereas the

latter select the most appropriate technique from a set of possible candidates.

Among all these DTM techniques we focus on DVFS ones. DVFS techniques reduce power

consumption by adjusting the clock frequency and/or the supply voltage of cores dynamically.

Because the power consumption is proportional to the frequency and the square of the supply

voltage, reducing this latter yields more significant power saving. However, in order to have

stable operation, supply voltage has to be reduced only if frequency is reduced. According

34

2.2 Related Works

to the relationship shown above, DVFS is able to reduce temperatures by managing power

consumption with a performance loss linearly proportional to frequency.

A general DVFS technique is triggered by an event as it could be a thermalsensor on the

die. Then, the DTM algorithm computes, according to some rules, the frequency and voltage

to apply to the system. In general frequency and voltage “knob” are madeavailable by chip

manufacturers. In the research community, DVFS schemes can be implementedusing different

algorithm and rules.

Early approaches focused only on temperature management, ignoring performance opti-

mization. The most common techniques used in today microprocessors are threshold based:

in case of temperature bound violation the frequencies of all cores were set to the minimum

value. As an example, Thermal Monitor 1 (TM1) of Pentium 4 and Dual Cores inserts idle

clock cycles (Thermal Throttling) when the temperature reaches a critical value. It reduces the

duty cycle of the microprocessor by 50% favoring the chip cooling down. For design complex-

ity reasons, the first DVFS approaches on multiprocessors were global, all cores were adjusted

according to the same policy. These approaches can be triggered by the operating system or

directly by hardware mechanisms. However, both have drawbacks particularly for multi-scale

systems (many-core and 3D-integrated stacks). The former cannot safely bound the run-time

temperature and it has been shown to worsen the thermal cycles and systemreliability, whereas

the latter bring major performance degradation or even application failures (32) (34). More-

over, as the cooling costs and the on-chip temperatures increased, DTM (and hence DVFS)

techniques became more aggressive at the expense of performance. The new DTM techniques

must take into account also the issue of maximizing performance.

For these reasons (i.e. minimizing performance loss and improving reliability), DTM al-

gorithms started exploiting most advanced solutions belonging to feedback control theory. The

first approaches studied were based on classic PID algorithms (34) (35) (36). These algorithms

permit to apply a frequency/voltage proportional to the thermal emergency,taking into account

the prior history of the system.

More recently, studies focused on more sophisticated algorithms based on optimal control

theory (37). In particular Model Predictive Control (MPC) methods look very promising due to

their capability of dealing explicitly with performance and state-space constraints (i.e. temper-

ature bounds) (38) (39). MPC schemes use a system model to predict the future temperature

and find the optimal control decision by solving a constrained optimization problem for one

or more control steps in the future (more details will be given in Chapter3). If an accurate

35

2. MPSOCS ISSUES AND SOLUTIONS

thermal model is available, MPCs can guarantee a reliable temperature capping in any working

condition. In the follows two recently proposed MPC solutions are presented.

In (38), Zanini et al. implemented a MPC scheme in order to make smoother the DVFS

approach and maximize performance. The thermal behavior of the chip hasbeen modeled using

a finite element techniques. They split the chip in two layers (one representing the junction

silicon and one representing the copper of the heat spreader) and again each layer has been

split in cubic cells. To each cell they assigned an equivalent RC electric circuit where R and C

are equivalent respectively to a thermal resistance and a thermal capacitance. The final thermal

model is:

tk+1,1:2n = A· tk,1:2n+B· f α
k,1:p+W (2.1)

wheretk,1:2n are the temperatures of the 2n cubic cells at timek (i.e. the model state),A

is the state matrix,fk,i represents the frequency of thei − th core at the timek, α expresses

the dependence between the power consumption and the frequency (i.e.pk, j = f α
k, j where

1≤ α ≤ 2), B is the input matrix, andW is an offset vector considering the room temperature

effect in the heat spreading process. This model is used from the MPC algorithm at each

sampling interval to forecast the future temperatures of the chip in the nexth intervals. The

MPC scheme can be stated as,

min
h−1

∑
k=0

(
f α
k+ j,1:p− rα

k,1:p

)
·S·
(

f α
k+ j,1:p− rα

k,1:p

)
(2.2a)

s.t.

0≤ tk+1,1:2n≤ tmax ∀k=0, . . . ,h−1 (2.2b)

0≤ f α
k+1,1:p≤ f α

max ∀k=0, . . . ,h−1 (2.2c)

where (2.2a) is the objective (or cost) function,S is a weight matrix, andrk,i expresses

the required operating frequency of thei − th core requested by a higher level software as the

operating system.(f α
k,i − rα

k,i) represents the error between the offered power and the required

one. Notice that minimizing this value means maximizing the performance. The equations

(2.2b)-(2.2c) represent a set of constraints respectively on future temperatures and offered core

power.tk+1,1:2n are the temperatures of the cells at timek+1, tmax is the maximum temperature

allowed, f α
k+1,1:p is the future power consumption of thep cores, andf α

max is the maximum

power allowed.

Thus, summarizing,f is the manipulable input,r comes from the OS, andt is measured

with thermal sensors. At each sampling interval, the solution of this problem is the optimal

36

2.2 Related Works

Core
5

Core
6

Core
7

Core
8

Core
1

Core
2

Core
3

Core
4

L2 cache
Bank 0

L2 bu!
Bank 0-1

L2 cache
Bank 1

L2 cache
Bank 2

L2 bu!
Bank 1-2

L2 cache
Bank 3

L2 Tag
Bank 2

Floating
Point
unit

L2 Tag
Bank 3

L2 Tag
Bank 0

DRAM ctrl & IO
bridge

Crossbar

DRAM ctrl &
JBUS

clock &
test unit

L2 Tag
Bank 1

0 0.1 0.2 0.3 0.4 0.5 0.6
40

50

60

70

80

90

100

To
ta

l N
or

m
al

iz
ed

 W
or

kl
oa

d
[%

]

time [s]

MPC

convex

required workload

0 0.1 0.2 0.3 0.4 0.5 0.6
366

367

368

369

370

371

time [s]
M

ax
 c

hi
p

te
m

pe
ra

tu
re

 [°
K]

Sun Niagara-1 MPSoC

(a) (b)

MPC

convex

Figure 2.12: (a) Sun Niagara-1 MPSoC model; (b) MPC vs. Convex-based solution. (38).

f α
k+1,1:p that maximize performance, meeting the constraints. It is worth to note that the solution

of this problem returns the frequency of all cores.

From the implementative perspective, the authors built two solutions: the implicit and the

explicit solutions. The first solves the optimization problem (2.2) on-line at each sampling time,

requiring a great computing effort. The second solves the optimization problem off-line for all

possible scenarios and store the optimal control decisions in a look-up table. This solution

requires less on-line computations (it only has to detect the current scenario at each sampling

instant), but a great amount of memory space.

Finally the authors test their solution on the model of a Niagara 8 cores processor. A

comparison between this solution and the state-of-the-art convex-basedsolution shows an im-

provement up to 5× (see Fig.2.12).

In (39) Wang et al. present a MPC scheme that constraint both the power, and the tempera-

ture of the cores while maximizing the performance. The Fig.2.13shows in detail the proposed

control scheme. The power monitor, the temperature sensor on each coreand the system-level

performance monitor of each core collect information that will be used by thecontroller to

compute the new DVFS levels of the cores (the manipulated variables of the control loop). The

new levels are applied to the cores by the DVFS modulator and the online model estimator

updates the power system.

The thermal model of the system is computed with a least square identification technique.

37

./2_Literature/img/0085_Zanini.eps

2. MPSOCS ISSUES AND SOLUTIONS

Temperature and performance measures of each core

Power consumption on the chip

Power

controller

S
e

rv
ic

e
 P

ro
ce

ss
o

r

(F
ir

m
w

ar
e

)

On-line

Model

EstimatorHistory data

Model update

New DVFS level of each core

Power

Supply

Circuit

Power

Monitor

Cache

Cache

C0

C1

TS

TS

Cache

C3

TS

Cache

CN-1

TS

Cache

C2

TS

Cache

CN-2

TS

Chip Multiprocessor

Temperature

Sensor

Core N-1

L2

Cache

Shared Bus

(a) (b)

20

30

40

50

60

Te
m

p
e

ra
tu

re
 (
°

C
)

Core 1 Core 2

0 60 120

110

130

150

170

P
o

w
e

r
(W

)

time (s)

Figure 2.13: (a) Temperature-constrained power control loop for a CMP with N core; (b) power

and temperature plot (39).

The final model has the form,

∆t(k) = At · t(k−1)+B·∆ f (k−1) (2.3)

wheret(k) and f (k) are respectively the temperature and the frequency array containing all

cores temperatures and frequencies at timek, ∆t(k) = t(k+1)− t(k), ∆ f (k) = f (k+1)− f (k),

At is the state matrix andB is the input matrix between frequency and temperature. The model

assumes a linear relation between frequency and power dissipation (p(k)).

The MPC scheme can be stated as,

min
p

∑
i=1

‖cp(k+1|k)− re f(k+1|k)‖2
Q(i)+ (2.4a)

M−1

∑
i=0

‖∆ f (k+1|k)+ f (k+1|k)−Fmax‖
2
R(i) (2.4b)

s.t.

Fmin, j ≤ f j(k+1)≤Fmax, j ∀ j=1, . . . ,N (2.4c)

cp(k)≤ Ps (2.4d)

Bi · f (k+1)< si ∀i=1, . . . ,N (2.4e)

fi(k+1) = f j(k+1) ∀i, j=1, . . . ,N (2.4f)

whereN is the number of core, (2.4a) is the cost function that penalizes the power error

between the total power consumption of the chip (cp) and the ideal reference trajectory of the

power (re f), computed as an exponential trajectory betweencp(k) and Ps (this latter is the

38

./2_Literature/img/0087_YWang.eps

2.2 Related Works

maximum power value). The function (2.4b), instead, is the control penalty that minimizes the

distance between the manipulated DVFS frequency level,f (k+ 1) and the maximum DVFS

frequency level,Fmax. The constraint (2.4c) implies the future manipulated frequency is in the

range[Fmin,Fmax], (2.4d) imposes the total power is lower than the maximum power allowed

(Ps), (2.4e) is a temperature constraintti(k+1) < Ti − δ reformulated according to the model

equation (δ is a safe margin andsi is a constant value dependent onTi), (2.4e) represents

optional constraints due to application or hardware requirements.

The authors also provide a study of the sensitivity to the parametric disturbance and a on-

line model estimator able to update the temperature model.

For what concerns results, they implemented their solution on a real Xeon X5365 Quad

Core processor and compared the results with other state-of-the-art solutions obtaining greater

performance. They used also a cycle-accurate simulator (SESC) to test different chip architec-

ture.

2.2.2 Solutions for utilization issue

Due to the novelty of the problem, the literature on this topic is limited, even though weexpect

it will considerably expand.

According to (23) there exist four potential approaches to deal with the challenges posed

by dark silicon and the “Utilization Wall”. Each of them has some benefits, but none is ideal to

solve the problem. For this reason future solutions will probably incorporate all four of them.

The first solution consists in shrinking the chip size, eliminating unused dark silicon. On

the one side this solution allows the designer to save time reducing chip complexity,money

on silicon (the cost reduce linearly with area), and leakage (since the number of transistors is

lower). However, the silicon cost after few technology generations would be only a negligible

fraction of the total cost which comprises the costs for tests, marketing, sales, support, main-

tenance, packaging, Then, there will be no more incentives in investing money to pursue

Moore’s Law. With area shrinking hot spots will be smaller and, accordingto recent studies

the smaller are the hot spots and the greater is the efficiency in dissipating heat with colder

neighbors.

On the other hand the dark silicon could be exploited to build more competitive products on the

market. Moreover, it is known that the maximum on-chip temperature is inversely proportional

to the chip area, therefore, area shrinking would result in a lowering of the TDP which would

39

2. MPSOCS ISSUES AND SOLUTIONS

compel designers to reduce performance.

The second solution consists in using the dark silicon to build specialized cores. Because

with every technology generation transistors become cheaper than powerconsumption, it is

convenient to spend these transistors to introduce custom hardware thatturns on only when

necessary and that consumes less energy than a general purpose core. An example of such

a chip is the UCSD GreenDroid mobile processor (40) that contains hundreds of specialized

cores, called conservation cores or c-cores, instead of the dark silicon. These c-cores are auto-

matically generated from application source code in order to save energy (see Fig.2.14).

C-core

Tile

CPU

FPU

I-cache D-cache

OCN

D $

(a) (b) (c)

C-core

C-core

C-core

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

L1

C
P

U

C
P

U

I $

1 mm

1 mm

OCN
C C

C C C

C

C

C

C

C

In
te

rn
a

l
st

a
te

in
te

rf
a

c
e

L1

C
P

U

GreenDroid

processor

Multi-core c-core

Figure 2.14: (a) Many-core processor with c-cores; (b) GreenDroid; (c) c-core (40).

The third solution consists in populating the dark silicon with homogeneous corethat would

exceed the power budget (i.e. the TDP) and using them underclocked orat the maximum speed

for short burst. In simpler words, every technology generation, we can use the dark area to

increase the number of cores. Clearly all these cores cannot run at themaximum speed all

together because of the limits on the power and temperature. Then, we can tackle the problem

in two different ways: distributing the power budget on the whole chip or in the time. In the

first case, it is possible to ensure a safe temperature and power cappingby limiting the speed

of all the cores. As alternatives it is possible to use cores with lower performance but greater

energy-efficiency (e.g. Near-Threshold Voltage Processor), or touse the dark space to increase

the cache size, reducing the energy consumption for off-chip readingsand the memory-reading

bottleneck. In the second case, we can turn on all cores at the maximum speed for a short time

interval in order to keep a safe temperature.

In (41) the authors exploit this approach to improve the performance of mobile devices

multiprocessors. They assume to have a chip with 16 core each one consuming 1W but a TDP

of only 1W. This means that the cooling infrastructure (package + heat sink) is able to dissipate

40

./2_Literature/img/0100_GreenDroid.eps

2.2 Related Works

the power consumed by one core continuously active. Otherwise, if all cores are active, the chip

will exceed the sustainable power budget (i.e. the TDP) resulting in a chip overheat. However,

this is true only in steady-state conditions. Indeed, even though the chip generates heat faster

than the system can dissipate it, the temperature will takes some time to reach the critical value.

This time interval depends on the thermal capacitance of the chip that is usuallyvery short.

This fact depends on the materials used to build the package that are usuallyoptimized for

minimizing the thermal resistance from the junction to the ambient, neglecting the heatstorage

capabilities. The authors suggest to activate all 16 cores at full speed for the time allowed by

the thermal capacity and, after that, returning in a state of nominal operation,with 15 cores in

a rest condition. The approach is called computational sprinting and it proposes also the use of

solid-liquid Phase Change Material (PCM) inside the package in order to increase the thermal

capacity of the package (i.e. the duration of the sprint). Phase Change Materials are solid at

ambient temperature and can store extra heat during the melting process, releasing it to the

ambient later on, during solidification. During the process of melting the temperature remains

quite constant because the thermal energy is used to break the bonds between molecules. As

consequence of that, PCM allows packing in a small volume and within a small temperature

gap a large thermal capacitance placed close to the silicon die.

Fig. 2.15a-b show the sprint/rest mechanisms.Tmelt is the melting point of the PCM, while

Tmax is the maximum safe temperature.

The authors chose mobile device processors because the utilization issue ismore significant

in these systems due to the power requested by new multiprocessors, unsustainable with battery

technology, and the constraints on heat dissipation, the small dimensions of thedevice limits

the air flow and prevent the use of active cooling infrastructures. Another reason for this choice

are the different applications and requirements respect to desktop or high computing devices.

Indeed, many interactive applications are characterized by short bursts of intense computation

punctuated by long idle periods waiting for user inputs, while the performance can be measured

in terms of responsiveness rather than average-throughput.

From the architecture perspective the authors first show that the dangerous power-grid

drops and the ripples caused by switching from sprint to rest mode can be effectively miti-

gated by introducing a gradual activation scheduling of the cores with 128µs total duration.

Second, they show that high peak power phases, required by the sprint mode can be effectively

delivered using Li Polymer battery and ultra capacitors. Moreover, the 16A peak current is not

41

2. MPSOCS ISSUES AND SOLUTIONS

Die

TIM

Case Package

PCB

TIMTIMTIMTIMTIMTIMTIMTIMTIMTIMTIMTIM
PCM

Case

(c)

C pcm

C junction

R
p

cm

Tamb

T pcm

T junction
R

p
a

ck
a

g
e

P

C case

2

3R
co

n
v

e
ct

io
n

1

(d)

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

20

50

80

te
m

p
e

ra
tu

re
 (

C
)

Tmelt

tmelt tone

Tmax

tmelted

(a) Sprint initiation

0.0 5.0 10.0 15.0 20.0 25.0

time (s)

20

50

80

te
m

p
e

ra
tu

re
 (

C
)

Tmelt

tfreeze

Tmax

tfrozen

(b) Post-sprint cooldown

Figure 2.15: (a) Sprinting transient; (b) Resting transient; (c) Chip augmented with PCM; (d)

Thermal model of the chip (41).

typical in mobile packages and would require a large number of pins to be delivered, this cost

can be mitigated by using higher pin voltages combined with an on-chip voltage regulator.

In the paper, authors use 150g of PCM material to substitute the heat-spreader, augmenting

its thermal capacitance to sustain 1s of continuous sprint. It is shown that theheat stored during

the sprint requires a cooling period of 25s to restore the initial sprinting capability. The PCM

material is modeled with a variable capacitance and both the PCM and the silicon layers are

modeled as isothermal blocks.

In the same paper the authors quantify the performance gain during sprinting phases, in

average benchmarks achieved a 10.2x speed-up compared to single-core execution time. The

same thermal capacitance can be exploited by voltage/turbo-boosting, commonin today high-

end multi-processors. Indeed voltage/turbo boosting allows to speed-up the performance of

single-threaded workload by increasing for a short time period the supplyvoltage of the core

and consequently its clock frequency. The voltage supply-frequencyrelation is almost lin-

ear, whereas dynamic power depends on the square of supply voltage and linearly with the

frequency. As consequence of that in (41) the authors demonstrate that with the same 16x

sprint power budget a single-core that uses voltage-boosting can onlyachieve an average 2.5x

speed-up on the same benchmarks (41). This is 8x slower than the computational sprint one.

42

./2_Literature/img/0110_Raghavan.eps

2.2 Related Works

For what concerns thermal management, if the sprinting applications executeenough to

completely melt the PCM, the sprint is stopped by a threshold-based feedback thermal con-

troller when the critical junction temperature is reached. Above this value the HW could be

severely damaged. Safe thermal stop are enabled architecturally with fastcache flush and tasks

migration, ensuring the correct software execution. Nonetheless, no possible performance op-

timization or re-sprinting requests are taken into account in such approach. On the one hand,

whenever the critical junction temperature is reached, sprint is stopped without seeking for

profitable intermediate solutions, exploiting DVFS. On the other hand, in the above stop pol-

icy, only thermal issues are taken into account, without considering which room has been left

for a subsequent re-sprint.

Finally a fourth possibility is to find a semiconductor substitute for MOSFETs as for exam-

ple Tunnel Field Effect Transistors (TFETS) and Nano-Electro-Mechanical switches. Indeed,

even though technology will improve MOSFETs in the future, they will alwaysbe limited by

leakage.

43

2. MPSOCS ISSUES AND SOLUTIONS

44

Bibliography

[1] G.E. MOORE,Cramming more components onto integrated circuits, Electronics, Vol. 38(8), Apr. 1965.20

[2] http://www.wikipedia.org/ http://en.wikipedia.org/wiki/Intel 400421

[3] D.A. Patterson, J.L. HennessyComputer Organization and Design: the hardware/Software interface, 4th edition, Morgan

Kaufmann Publishers, 2009.21

[4] Sam NaffzigerHigh-Performance Processors in a Power-Limited World, Symposium on VLSI Circuits Digest of Technical

Papers pp.93-97, 2006.21

[5] http://www.wikipedia.org/ http://en.wikipedia.org/wiki/CMOS 21

[6] R.H. Dennard, F.H. Gaensslen, H. Yu, V.L. Rideout, E. Bassous, A.R. Leblanc,Design of Ion-Implanted MOSFETs with

Very Small Physical Dimensions, in proc. of the IEEE, VOL. 87(4):668-678, Apr. 1999.21

[7] M. Bohr, A 30 Year Retrospective on Dennards MOSFET Scaling Paper, Solid-State Circuits Newsletter, Vol. 12(1):11-13,

winter 2007.22

[8] S. Borkar, A.A. ChienThe future of microprocessors, Communications of the ACM, Vol. 54(5):67-77, May 2011.vii ,

viii , 22, 23, 24, 30, 31

[9] S. Borkar,Thousand Core ChipsA Technology Perspective, DAC 07, Jun. 2007, San Diego, California, USA.23, 27

[10] R. Fish III, The future of computers - Part 1: Multicore and the Memory Wall, Nov. 2011, http://www.edn.com/.vii , 24

[11] R. Fish III, The future of computers - Part 2: The Power Wall, Jan. 2012, http://www.edn.com/.

[12] H. Sutter, The Free Lunch Is Over A Fundamental Turn Toward Concurrencyin Software, Mar. 2005,

http://www.drdobbs.com/vii , 24, 26

[13] S. Borkar, N.P. Jouppi, P. Stenstrom,Microprocessors in the Era of Terascale Integration, DATE ’07, pp.1 -6, Nice, Apr.

2007.24

[14] S. Borkar,Gigascale Integration-Challenges and Opportunities, Jul. 2009, http://software.intel.com/en-usvii , 25

[15] J. Parkhurst, J. Darringer, B. Grundmann,From Single Core to Multi-Core: Preparing for a new exponential, in Proc.

ICCAD’06, Nov. 5-9, 2006, San Jose, CA.25

[16] F. Pollack, New microarchitecture challenges in the coming generationof CMOS Process Technologies, Intel Corp.

Micro32 conference key note, 1999.vii , 29

[17] D. Cuesta, J.L. Risco-Martin, J.L. Ayala, J. Ignacio Hidalgo, 3D thermal-aware floorplanner using a MOEA approxima-

tion, Integration, the VLSI Journal, Vol. 46(1):10-21, Jan. 2013. 29

45

BIBLIOGRAPHY

[18] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur,Thermal Performance Challenges from Silicon to Systems, Intel

Technology Journal, Q3, 2000.29

[19] A. CoskunEfficient Thermal Management for Multiprocessor Systems, Ph.D. dissertation, University Of California, San

Diego, 2009.29

[20] Failure Mechanisms and Models for Semiconductor Devices, JEDEC Publication JEP122C, http://www.jedec.org.29

[21] D.K. Schroder Negative bias temperature instability: What do we understand?, Microelectronics Reliability,

Vol.47(6):841852, 2007.30

[22] H. Kufluoglu, M.A. Alam A Unified Modeling of NBTI and Hot Carrier Injection for MOSFET Reliability, 10th Interna-

tional Workshop on Computational Electronics (IWCE-10), pp.28-29, 2004.30

[23] M.B. Taylor Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse, in Proc.

49ht DAC ’12, pp.1131-1136, 2012.vii , 23, 39

[24] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,Conservation Cores: Reducing the Energy of Mature Computations,

in Proc. 15th ASPLOS 2010, March 2010.30

[25] H. Esmaeilzadeh, E. Blem, R.St. Amant, K. Sankaralingam, D.Burger, Dark silicon and the end of multicore scaling,

IEEE Micro, Vol 32(3):122-134, Jun. 2012.30, 31

[26] M. Muller ARM CTO: power surge could create ’dark silicon’, 2009,

http://www.eetimes.com/electronics-news/4085396/ARM-CTO-power-surge-could-create-dark-silicon-31

[27] P. Zhou, J. Hom, G. Upadhya, K. Goodson, and M. Munch.Electro-kinetic microchannel cooling system for desktop

computers, In Proc. of SEMI-THERM, 2004.32

[28] J. Kong, S.W. Chung, K. Skadron,Recent Thermal Management Techniques for Microprocessors, ACM Computing

Surveys (CSUR), Vol. 44(3)No. 13, Jun. 2012.32

[29] K. Sankaranarayanan, S. Velusamy, M. Stan, K. Skadron,A Case for Thermal-Aware Floorplanning at the Microarchitec-

tural Level, Journal of Instruction-Level Parallelism, Vol.8, pp. 1-16, 2005.33

[30] S.H. Gunther, F. Binns, D.M. Carmean, J.C. Hall,Managing the impact of increasing microprocessor power consumption,

Intel Technology Journal, 2001.viii , 33

[31] D. Brooks, M. Martonosi, Dynamic Thermal Management for High-Performance Microprocessors, 7th International

Symposium on High-Performance Computer Architecture HPCA, pp.171-182, Mexico, Jan. 2001.33, 34

[32] P. Chaparro, J. Gonzalez, G. Magklis, Q. Cai, A. Gonzalez, Understanding the Thermal Implications of Multicore Archi-

tectures, IEEE Transaction on Parallel and Distributed Systems, Vol.18(8):1055-1065, Aug. 2007.34, 35

[33] A. Naderlinger A Survey of Dynamic Thermal Management and Power Consumption Estimation, Software Systems

Seminar, Salzburg, 2007.34

[34] K. Skadron, T. Abdelzaher, M. R. Stan,Control-Theoretic Techniques and Thermal-RC Modeling forAccurate and

Localized Dynamic Thermal Management, in Proc. of the 8th International Symposium on High-Performance Computer

Architecture, Anaheim, California, 2002, pp. 1728.35

[35] M. Kadin, S. Reda, A. Uht,Central vs. distributed dynamic thermal management for multi-core processors: which one is

better?, in ACM Great Lakes Symposium on VLSI, New York, NY, 2009, pp. 137-140.35

[36] Z. Wang, X. Zhu, C. McCarthy, P. Ranganathan, V. Talwar,Feedback Control Algorithms for Power Management of

Servers, in 3rd International Workshop on Feedback Control Implementation and Design in Computing Systems and

Networks, Annapolis, MD, June 2008.35

46

BIBLIOGRAPHY

[37] F. Zanini, D. Atienza, G. De Micheli, S.P.F. Boyd,Online convex optimization-based algorithm for thermal management

of MPSoCs, in Proc. of the 20th symposium on Great lakes symposium on VLSI, 2010, pp. 203-208.35

[38] F. Zanini, D. Atienza, L. Benini, G. De Micheli,Multicore Thermal Management with model predictive control, in Proc.

of the 19th European Conference on Circuit Theory and Design, pp. 90-95, 2009.viii , 35, 36, 37

[39] Y. Wang, K. Ma and X. Wang,Temperature-Constrained Power Control for Chip Multiprocessors with Online Model

Estimation, in Proc. of the 36th annual international symposium on Computer architecture, Austin, TX, USA, June 2009.

viii , 35, 37, 38

[40] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia,J. Auricchio, P.C. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb,

S. Swanson, M. Taylor,The GreenDroid mobile application processor: An architecture for silicon’s dark future, IEEE

Micro, Vol. 31(2):86-95 , March 2011.viii , 40

[41] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K.P. Pipe, T.F. Wenisch, M.M.K. Martin,Computational

Sprinting, In HPCA, Feb. 2012.viii , 40, 42

47

BIBLIOGRAPHY

48

Chapter 3

Model Predictive Control

In this chapter a background knowledge of MPC controllers is presented. First, the MPC

strategy is explained, and the pros and cons and a brief summary of the evolution history of

MPC are shown. Subsequently, the main elements composing a MPC controller are listed

and a classification of the main MPC structures are reported. Finally, the common challenges

affecting a MPC controller, such as feasibility, stability and computational complexity, are

described with a collection of the most common techniques to solve them.

3.1 Background

Model Predictive controllers are not representative of a specific control strategy, but designate

a wide range of control methods. The basic idea of the controller belongingto the MPC family

is to solve, at each sampling time and starting from the current state, an open-loop optimal

control problem over a finite horizon, yielding as a result the optimal control decision for the

next time interval. More in detail, the controller uses a dynamic model to forecastthe system

behavior over a determined horizonhp, namely theprediction horizon. The predicted outputs

can be indicated asy(t + k|t) for k = 1, . . . ,hp which highlights that the values at time(t + k)

are estimated by knowing the measurements up to instantt. The goal of the controller is to find

the future decisions sequence that optimizes a specifiedobjective function(or cost function),

eventually respecting some constraints. We calledu(t +k|t) for k= 0, . . . ,hp andV(x, t,u) the

input sequence and the objective function respectively. Of the decisionsequence computed by

the controller, only the first control action,u(t|t), is applied to the plant during the[t, t + 1]

sampling interval. The procedure is then repeated the next sampling time with the new data

49

3. MODEL PREDICTIVE CONTROL

available over the new horizon[t+1, t+1+hp] (1) (2) (3) (4). This control strategy is referred

to as receding horizon strategy where the term “receding horizon” is introduced to indicate

that the horizon recedes as time proceeds. The receding horizon strategy previously described

u(t+k|t)

y(t+k|t)

t+hc t+hpt+1t

u(t|t)

t+1+hc t+1+hpt+2t+1

u(t+1+k|t+1)

y(t+1+k|t+1)

u(t+1|t+1)

predicted outputs

control decisions

predicted outputs

control decisions

reference

reference

next
sample

past future

prediction horizon

control horizon

Figure 3.1: receding horizon strategy. Adapted from (4).

is shown in Fig.3.1, wherehc represents thecontrol horizon, that is the number of sampling

interval over which the control decisions are computed. Afterhc samples the control input

remains constant to the last computed value. This strategy is commonly employed inreal

application as a technique for reducing the computational complexity of the MPCalgorithm at

the expense of the optimality of the solution (over the prediction horizon). Theaforementioned

mechanism belongs to the set of strategies named move-blocking strategies that refers to all

those approaches where the input sequence or its derivative are imposed to be constant over

several time steps in order to improve the controller efficiency. A MPC controller, on which

a move-blocking strategy is applied, is usually referred to asMove-blocking MPC scheme. If

hc = hp the control sequence is allowed to change over all the prediction horizons. However, it

is worth to note that often it is more convenient to use ahc < hp than reducinghp.

A very typical example for understanding how the MPC works is comparing MPC strategy

with the strategy used in driving a car. According to the car characteristics(we know the be-

havior of our car if we take a curve at 70Km/h rather than 40Km/h) and knowing the reference

50

./3_MPC/img/0010_RHStrategy.eps

3.1 Background

trajectory, the driver is able to manage the control actions (brakes, accelerator, and steering) in

order to track the desired trajectory. On the contrary a classic PID takes decision only when an

error between the current and the desired trajectory is detected, that would be analogous, refer-

ring to the driving example, to taking decision by using the rear-view mirror. Also the game

of chess resembles the MPC strategy. Indeed, a player chooses the best move by forecasting in

advance the next opponent moves.

In literature the terms Model Predictive Control (MPC) and Receding Horizon Control

(RHC) are often used as synonyms. According to (4) a MPC is a particular case of RHC where

the finite time optimal control law is computed by solving an on-line optimization problem.

According to (5), instead, MPC and RHC are equivalent and the difference of their names has

only historical reasons. Indeed, in principle receding horizon controllers dealt with state-space

models, whereas model predictive ones with I/O models. In this thesis we assumed they are

synonyms.

3.1.1 History

The history of MPC has developed in a contrary sense comparing to the other control paradigms.

Indeed, MPC strategy started to receive attentions from the research community only after be-

ing profitably used in process industry applications, in the seventies. The reasons of this success

were mainly due to its ability of handling, simply and effectively, hard constraints on control

and states (26).

It is worth noting that the development of the modern control theory (infinite timeand

finite time optimal control), in the sixties, has posed the bases for the development of the

MPC. Indeed also MPC deals with the resolution of optimization problems. However, while

the elegant and powerful optimal control theory had little impact on control development in

industries, the MPC properties fitted perfectly with the industry requirements.According to (6)

the main reasons for the failure of the LQ controller were:

• the incapacity of dealing with constraints;

• the complexity of modifying and updating the solution to account for new products and

aging (low flexibility);

• the unsustainable costs for developing accurate models;

• the difficulty of finding a solution (if it exists) to problem with nonlinearities;

51

3. MODEL PREDICTIVE CONTROL

• the relatively low exposure of technicians and control engineering to the optimal control

theory.

The MPC, instead, had all the characteristics to tackle the typically complex, nonlinear, multi-

variable, and constrained problems arising in the process industry (usually the most economical

system functioning regions are placed extremely close to critical constraints, therefore the con-

troller must be able to consider these constraints during the computation of the optimal solution,

see Fig.3.2b). We can reasonably say that MPC has born as an approximated alternative to the

optimal LQ controls, with the aim of meeting the industry targets. The word approximated is

because it has been proved that solving repeatedly a finite time optimal control problems in a

receding horizon fashion yields an infinite horizon “suboptimal” controller (4) (the solution is

optimal in the deterministic case, i.e. without uncertainties).

Pressure

Temperature

Power
consumption

Speed

Torque

Admissible

solution

region

Optimal

region

Past inputs

and outputs

Future

Inputs

PREDICTION

MODEL

OPTIMIZATION
ALGORITHM

(constraints, cost function)

Predicted

Outputs
+-

Reference
Trajectory

Future

Errors

Figure 3.2: (a) general MPC scheme; (b) typical industrial working region

The first ideas regarding MPC originated in the early sixties. In the 1963 Propoi proposed

a MPC solution for linear systems with hard constraints on control relying on linear program-

ming, whereas in the 1968 Lee and Markus substantially anticipated the MPC strategy stating

that:

One technique for obtaining a feedback controller synthesis from knowledgeof open-loop

controllers is to measure the current control process state and then compute very rapidly for

the open-loop control function.The first portion of this function is then used during a short time

interval, after which a new measurement of the process state is made and anew open-loop

control function is computed for this new measurement. The procedure is then repeated.

52

./3_MPC/img/0020_MPCScheme.eps

3.1 Background

However, these ideas remained unobserved in the academic world until the industry put

these ideas into practice opening up new methodological issues that captured the interest of

theoreticians.

From the mid seventies, in literature, the first papers related to MPC in process industry

applications appeared. The first were presented by Richalet et al. in the1976 and 1978 (9,

10) and Cutler et al. in the 1980 (11). Both proposed unconstrained MPC solutions based

on quadratic performance indices and employ a model, impulse or step response based, to

predict the effect of future control inputs on the system. The constraintsmanagement was

realized by ad hoc solutions. The name of these two industrial MPC algorithms were IDCOM

(IDentification and COMmand) the software version of the Model Predictive Heuristic Control

(MPHC) approach, and DMC (Dynamic Matrix Control).

The second generation of controllers allowed engineers to manage constrained MPC. The

QDMC represented the evolution of the DMC where the problem was posed as a QP problem

able to explicitly deal with constraints (12). The subsequently MPC solutions, belonging to the

third generation of MPC technology and developed in the nineties, increased in complexity in

order to solve practical problems as the management and recovery from infeasible solutions,

the distinction between hard and soft constraints, or the management of multi objectives inside

the cost function. Example of such controllers are SMOC, IDCOM-M, HIECON, PCT. How-

ever, some important theoretical issues remained unsolved in these solutions. As an example

the feasibility and the closed-loop stability are delicate problems that the academicresearch

addressed ever since.

3.1.2 Advantages and disadvantages

In this section we have summarized the desired characteristics of a MPC solution.

• MPC can handle control problems where an off-line solution cannot be computed (due to

nonlinearities, constraints, and uncertainties): it solves the optimization problem on-line

for the current state;

• MPC can control multivariable plants also in presence of delays, unstabilitiesand non-

minimum phase issues;

• MPC allows the systems to work in proximity of the constraints where usually the per-

formance are maximized and the costs minimized;

53

3. MODEL PREDICTIVE CONTROL

• MPC intrinsically compensates dead times;

• MPC is easy and intuitive to tune (also for complex systems);

• MPC results in applying at each sample interval a simple linear control law;

• MPC is flexible and require less time, compared to optimal controllers, to be modified

or adapted to new requirements (e.g. new safety regulations, new products, and new

machines), environment modifications, and aging effects;

• MPC internal model can be obtained from data by identification approachesreducing the

costs of model development that could be unjustifiable for small batch productions.

Among the drawbacks of the MPC one of the most critical is the need to solve theopti-

mization problem on-line during a sampling interval. This the reason why the MPCtechnology

has been addressed as a technology fitting well only with system with slow dynamics in which

the sampling time could be maintained large. However, as the technology and the performance

of the processing elements improve, the concept of “slow” is rapidly changing allowing one

to control system with quite fast dynamics as the thermal behavior of a microprocessor. An-

other drawback is represented by the accuracy of the model used for predictions. It is far

from obvious to find a model accurately describing the behavior of the system, while keeping

an acceptable order dimension that guarantees the solvability of the problemin the sampling

interval. Model accuracy and computational speed are not the only limitationsof MPC; it is

worth to note that for safety critical applications on-line approaches are difficult to certify since

it is difficult to show the correctness of a mathematical programming solver. This represents

one of the reasons for which sometimes it is convenient to use an explicit MPCsolution, that is

a MPC solution in which the control decisions are pre-computed off-line foreach possible state

value. Finally, it is important to note that during the design phase it is necessary to consider

the problem of feasibility and stability of the controller. Indeed, even if the system is stable,

the predictive controller, using the receding horizon strategy, realizes afeedback control policy

that may destabilize the closed-loop system. Moreover, the controller, optimizing the system

performance over a finite prediction horizon, could take the system to a statein which the

constraints cannot be met.

54

3.2 MPC structure

3.2 MPC structure

The typical goal for MPC controllers is to optimize the performance according to a cost func-

tion meeting some constraints (see Fig.3.2a). Thus, the main elements constituting a MPC can

be identified in:

• a model used for forecasting the future outputs of the system;

• a constrained optimization problem to be solved for obtaining a control decisionse-

quence over a finite prediction horizon.

Different choices of these elements determine a different MPC algorithm.

3.2.1 Prediction models

The basic concept of MPC relies in using a dynamic model of the system to forecast its future

behaviors. For this reason the models, commonly calledprediction modelsin order to highlight

their function inside the control algorithm, are instrumental for ensuring the effectiveness and

the efficiency of a controller. The main properties a model must meet are the accuracy and low

dimensions. The former guarantees accurate predictions, necessary for taking a correct control

decision, whereas the latter ensures efficiency reducing the computational complexity.

An interesting characteristic of MPCs consists in their flexibility in accepting all possible

model forms.

State-space model are commonly used in literature due to the simplicity of dealing with

multivariable systems. A general state-space model can be described by the following equa-

tions,
ẋ(t) = f (x(t),u(t)) x(0) = x0

y(t) = h(x(t),u(t))
(3.1)

wherex ∈ R
n is the state vector,u ∈ R

m is the input vector,y ∈ R
p is the output vector, and

t ∈ R is the time.

However, it is worth to note that usually these models are specified in discrete-time. The reason

is that in common applications, controllers are implemented on digital computers. Moreover,

discrete-time models enable the use of powerful mathematical programming softwares for solv-

ing the optimal control problems (4). Thus, the generic nonlinear model can be stated as,

x(t +1) = f (x(t),u(t)) x(0) = x0

y(t) = h(x(t),u(t))
(3.2)

55

3. MODEL PREDICTIVE CONTROL

The linearity is often used as an approximation of the real system which usually behaves in

a nonlinear fashion. The motivations for such an approximation is the ease of solution and

analysis of linear models. The same reasons are behind the use of a linear time-invariant model

as the one shown below,

x(t +1) = A·x(t)+B·u(t)) x(0) = x0

y(t) =C ·x(t)
(3.3)

Notice that due to the delay always present between the measurements ofy(t) and the applica-

tion of theu(t), the feed-through matrix fromu to y is usually not considered. The prediction

output can be obtained as,

ŷ(t +k|t) =C ·x(t +k|t) =C ·

[
Ak ·x(t)+

k

∑
i=0

Ai−1 ·B·u(t +k− i|t)

]
(3.4)

where the notationx(t +k|t) means the statex at timet +k estimated at timet.

The input/output model representation is more convenient if we have few information of

the internal model structure. It bases on the transfer function conceptand the prediction model

can be stated as,

ŷ(t +k|t) =
b1 ·z−1+b2 ·z−2+ · · ·+bnb ·z−nb

1+a1 ·z−1+a2 ·z−2+ · · ·+ana ·z−na ·u(t +k|t) (3.5)

Other types of models, typically used in commercial softwares, are theinput responseandstep

responsemodels. The idea behind these formulations is recording the open-loop response of

each output variable (until they reach a steady-state value aftertrun samples) when a impulse

or step input is applied to each inputs variable. The response of any otherinput signal can be

obtained by the knowledge of the previously found responses (because of the linearity and the

superposition principle). The predicted output for the impulse model is given by the convolu-

tion sum,

ŷ(t +k|t) =
trun

∑
i=1

h(i) ·u(t +k− i|t) (3.6)

where we assumed a SISO model for the sake of simplicity andh represents the impulse re-

sponse sequence truncated at thetrun-th value. A similar model can be obtained for the step

response model. Notice that these methods can be used only with asymptotically stable plants

and the number of parameters required to have good approximation of the system could be

large.

The flexibility of MPC allows one to use also more complex models as for example non-

linear models, partial derivative models, neural networks,. . . . However, it is worth to note that

56

3.2 MPC structure

the more complex are the models and the more time is required from the solver to compute

the control decisions. Thus, it is convenient to avoid, if possible, needlessly complex models

according to the principle of parsimony.

3.2.2 Constrained optimization problem

The MPC algorithms differs also for the optimization problems they have to solve.An op-

timization problem can be seen as composed by two main elements: thecost function(or

objective function) and theconstraints.

A general form of thecost functioncan be expressed as,

Jt(Xt→t+hp|t ,Ut→t+hp|t) = p(x(t +hp|t))+
hp−1

∑
k=0

q(x(t +k|t),u(t +k|t)) (3.7)

wherep(·) represents theterminal cost, q(·) is thestage cost, hp is theprediction horizon(the

cost is defined over a finite horizon), andUt→t+hp|t = [u(t|t), . . . ,u(t+hp−1|t)]′ andXt→t+hp|t =

[x(t|t), . . . ,x(t +hp|t)]′ are the control decisions and the state sequences for the time interval

[t, t+hp]. We assume the stage cost as continuous and such thatq(0,0) = 0. The goal expressed

by this cost function could be the regulation to zero of the statex or the tracking of a specified

reference output trajectory. In particular, if the future reference evolution is known a priori, then

the controlled system can act before of experiencing tracking errors compensating actuation

delays.

The constraints are the main feature that distinguish MPC from classical finite horizon

optimization problems. First of all, the state sequenceXt→t+hp|t can be obtained by applying

theUt→t+hp|t to the prediction model. Thus, the dynamic behavior of the state is constrained to

be related to the control inputs by the model equations. Moreover, it is worthto note that, in

real systems, the manipulated variables (u(t)) are usually bounded by physical constraints. As

examples a motor have a limited maximum torque, a pneumatic valve has a limited displace-

ment, and a processor has a maximum computational speed (or frequency).Additionally, it is

often necessary to impose constraints on states and outputs for reasons ofsafety, product qual-

ity, or efficiency. As an example it could be preferable to maintain the temperature of a process

below a specific critical value. Dealing with state constraints, it is often imposeda terminal

constraints, i.e. bound on the last element of the state sequence. These requirements translate

57

3. MODEL PREDICTIVE CONTROL

in constraints on both the state and control sequencesUt→t+hp|t andXt→t+hp|t , therefore,

x(t +k+1|t) = f (x(t +k|t),u(t +k|t)) k= 0, . . . ,hp−1
x(t +k|t) ∈ X k= 0, . . . ,hp−1
u(t +k|t) ∈ U k= 0, . . . ,hp−1
x(t +hp) ∈ X f

(3.8)

whereX andU are subset ofRn andRm respectively. UsuallyU is a convex and compact set,

whileX is convex.X f ⊆X is the terminal constraint set. Notice that the constraints on outputs

can be expressed as states constraints since outputs are usually functionof the state.

It is also worth to remark that constraints can be classified ashard or soft. The former

regards those bounds which can never be crossed, whereas the latterare bounds that can be

occasionally crossed. Usually, input constraints are typically hard constraints because they are

dictated by the physical limits of the actuators (they cannot be softened). The states constraints

instead are typically soft constraints because they represent desirablebehaviors of the system

(nevertheless they could be hard as well). Notice that a hard state constraint can be softened

by adding to the optimization problem the so calledslack variables, i.e. variables that assume

non-zero values if the constraints are violated. The cost function contains a term dependent on

the slack variables: the greater is the penalty weight associated to a functionand the smaller is

the constraint violation.

The optimal control problem at a particularx(t) consists in minimizing the previously

mentioned cost function, and meeting the constraints. The final problem canbe stated as,

min
Ut→t+hp|t

Jt(x(t),Ut→t+hp|t), p(x(t +hp|t))+
hp−1

∑
k=0

q(x(t +k|t),u(t +k|t)) (3.9a)

s.t.

x(t +k+1|t) = f (x(t +k|t),u(t +k|t)) k= 0, . . . ,hp−1 (3.9b)

x(t +k|t) ∈ X, u(t +k|t) ∈ U k= 0, . . . ,hp−1 (3.9c)

x(t +hp|t) ∈ X f (3.9d)

x(t|t) = x(t) (3.9e)

where it is worth to note that the initial time at which we optimize the problem is relevant only

if the cost function and the constraints are time-varying, otherwise we can write the previous

problem as,

58

3.2 MPC structure

min
U0

J0(x(0),U0), p(x(hp))+
hp−1

∑
k=0

q(x(k),u(k)) (3.10a)

s.t.

x(k+1) = f (x(k),u(k)) k= 0, . . . ,hp−1 (3.10b)

x(k) ∈ X, u(k) ∈ U k= 0, . . . ,hp−1 (3.10c)

x(hp) ∈ X f (3.10d)

x(0) = x(t) (3.10e)

whereU0 = [u(0), . . . ,u(hp−1)]′ Notice also that the cost value can be expressed as a function

of the initial statex(t) only, not of the whole state sequence, because, as already mentioned,

we constrained the state evolution to be solution of the equation (3.9b).

In both cases, the problem is aparametric optimization problemin which the decision variable

is Ut→t+hp|t (or U0) and both the cost function and the constraints depend on the parameter

x(t). The optimal solution of the problem is denoted byU◦
t→t+hp|t

= [u◦(t|t), . . . ,u◦(t +hp−

1|t)]′ while the correspondent optimal value of the cost function isJ0
t (x(t)). According to the

receding horizon strategy only the control inputu(t) = u◦(t|t) = u◦(x(t|t)) is applied to the

system. For the sake of notational simplicity we consider hereafter the time-invariant case.

Thus, the optimal solution can be written asU◦
0 = [u◦(0), . . . ,u◦(hp−1)]. We defineU0(x) as

the set ofU0 such that the constraints are met andXhp as the set ofx ∈ X such that the set

Uhp(x) is not empty.

The properties of both the cost function and the constraints (and hence also the predic-

tion model) determine the classification of the optimization problem. We refer to the general

problem (3.9) as anonlinear program. When the cost and the constraints of the continuous

optimization problem (3.9) are affines, then the problem is called alinear program(LP). Dif-

ferently, if the cost function is a convex quadratic function and the constraint functions are

affine, then the problem is calledquadratic program(QP). The previously mentioned families

of problem can assume the suffixmixed-integerif the optimization variables belong to a set

obtained by the Cartesian product of a binary set and a real Euclidian space.

3.2.3 Different MPC solutions

In the past years the MPC was relegated to slow dynamics applications because of its need

to solve the optimization problem on-line. As already mentioned the advance in computer

59

3. MODEL PREDICTIVE CONTROL

technology has progressively shifted the MPC applications to systems with increasingly faster

dynamics opening up to new and more complex MPC schemes. The research on MPCs simply

follows step-by-step the MPC schemes realized for new applications.

The first, and the simplest, MPC algorithms were used in the process industry.They be-

longed to the family of the so calledlinear MPC. The termlinear MPC refers to those MPC

schemes in which linear models are used to predict the future behavior of thesystem, which

usually are inherently nonlinear. With the aim of maximizing performance and reducing costs,

new algorithms based on more accurate nonlinear prediction model were implemented, intro-

ducing the family ofnonlinear MPC. However, beside the accuracy and performance advan-

tages, we have to consider that the use of a nonlinear model implies a lower efficiency in solving

the optimization problem compared to a linear one, and difficulties in the stability analysis (13).

With the aim of reducing the on-line computational complexity of MPC algorithms,explicit

MPC schemes solve the optimization problem off-line for all possible values of a parameter

(e.g. the state vectorx) rather than on-line for the current parameter value (14). Another

approach that has had a good diffusion in the last decade was thehybrid MPC, a MPC algorithm

in which the model comprises both continuous and discrete signals in the same framework.

This scheme is able to handle switching linear dynamics, on/off inputs, logic states, and logic

constraints on input and state variables. Both the explicit and hybrid algorithms, as an example,

has been successfully applied in automotive applications (see (15) and references therein).

In aerospace systems and UAVs, besides hybrid schemes,linear time-varying MPCalgo-

rithm has been profitably used. In this case the controller uses a linear time-varying model.

The problem can be reformulated as a QP problem and solved each samplingtime.

The computational complexity difficulties of applying MPC control schemes to large scale

systems led todecentralized and distributed MPCalgorithms. Indeed, it is widely known

that complexity exponentially scales with the model dimension. Nevertheless, a centralized

schemes, if applicable, ensures better performance and prevent communication difficulties.

Finally in these recent yearsstochastic MPCschemes have been used to handle uncer-

tainties. In past literature uncertainties were addressed usingRobust MPCschemes that were

designed on the pessimistic worst-case scenario and assuming bounded uncertainties. Stochas-

tic MPC solutions take into account uncertainties with stochastic prediction models, and cost

and constraint functions based on expected values.

The research community is aiming to bridge the gap between theory and practice. Ana-

lyzing literature, we can say that linear, explicit and hybrid MPC theory is mature, whereas

60

3.2 MPC structure

distributed/decentralized and stochastic MPC theory still lack contributions.

In this thesis we dealt with a time-invariantlinear MPC scheme, although the prediction

model underlying our controller algorithm is nonlinear. The greater efficiency of linear prob-

lem solvers, compared to nonlinear one, explains the rationale behind this choice. Indeed, for

applications with fast dynamics the computational burden introduced by nonlinear MPC is still

a serious barrier for its implementation. In the case of the processors thermal management,

although thermal processes usually present slow dynamics, the tiny dimensions of the package

and the huge power consumption make a controller with high sampling time necessary (the

choice of a discrete-time controller is forced by the system in which the controller is imple-

mented that is digital). However, the sampling time must be carefully chosen. Indeed, the time

spent for solving the constrained optimization problem must be a small percent (e.g. 0.5%)

of the sampling interval in order to make the computing effort for regulating thetemperature

invisible to the device users. Thus, the choice of the correct sampling time involves the solution

of a trade-off problem.

The great majority of linear MPC algorithms in literature, as the ones presentedin this

thesis, rely on the solution of a convex QP. The general formulation of a convex QP-based MPC

assumes a linear plant model, a quadratic cost function and linear inequalitiesas constraints,

min
U0

J0(x(0),U0), x(hp)
′Px(hp)+

hp−1

∑
k=0

x(k)′Qx(k)+u(k)′Ru(k) (3.11a)

s.t.

x(k+1) = Ax(k)+Bu(k) k= 0, . . . ,hp−1 (3.11b)

E x(k)+M u(k)≤ ψk k= 0, . . . ,hp−1 (3.11c)

x(0) = x(t) (3.11d)

whereP andQ are symmetric and positive semi-definite (i.e.P = P′ � 0, Q = Q′ � 0) and

R is symmetric and positive definite (i.e.R= R′ ≻ 0). In this case the Karush-Kuhn-Tucker

(KKT) conditions are sufficient conditions for optimality, and the solutionU0 can be shown to

be unique. Notice that all the constraints can be expressed with the equation(3.11c).

In the rest of this thesis we also treated other MPC schemes with the main purpose of

reducing the computational complexity of the basic algorithm. Our main contributionis the

61

3. MODEL PREDICTIVE CONTROL

development of adistributed MPC solution which will be presented in the next chapter. Fi-

nally we tested the performance and characterized the complexity of our algorithm using an

explicit distributed MPC solution . In the next Sections we briefly introduced the main issues

of MPC schemes and the theory behind the distributed and explicit solutions.

3.3 Explicit MPC

In the previous Sections we presented the computational effort for solving on-line the con-

strained optimization problem as the biggest drawback of MPC schemes. Indeed, if we con-

sider the linear quadratic MPC problem (3.11), the usual way of implementing the solution

consists of translating the problem into a QP general form, as the one shownbelow, and then

solving it on-line at every sampling time (see SectionA.1 in AppendixA).

1
2

x(0)′YQPx(0)+min
U0

1
2

U ′
0QQPU0+x(0)′FQPU0 (3.12a)

s.t.

MQPU0 ≤WQP+EQPx(0) (3.12b)

(3.12c)

However, the computing time necessary for solving the QP problem could prevent the on-

line use of the MPC solution in system with fast dynamics. Technology advances considerably

reduced this issue, but other practical problems affect this solution: the hardware cost, and the

complexity and the determinism of the software could move the users toward other solutions.

In this case it could be convenient to find a pre-computed control feedback function that

relates the optimal solution to the current state of the system, preventing the solution of the QP

problem on-line. The explicit solution shifts the computational burden off-line reducing con-

siderably the complexity. Exploiting the multi-parametric programming approach (see Sec-

tion A.2 in Appendix A), it is possible to find the optimal control inputU◦
0 as an explicit

function of the measured state parameterx(0), that isU◦
0 (x(0)) = f (x(0)) for all x(0) in the

set of feasible states. In (14) it has been proved that this function is piecewise affine respect to

the state variables. The domain of the function, the feasible state set, is partitioned in convex

polytopic regions, calledcritical regions, and a linear state feedback control law is associated

to each region in order to yield the optimal control value. The union of all these control laws is

the piece-wise control function.

62

3.4 Distributed/Decentralized MPC for large scale systems

Thus, the on-line computation reduces to detect the region and evaluate the control input

using the related affine function. Assume{H i · x(0) ≤ ki}, i = 1, . . . ,Nr is the polyhedral set

which defines theNr partitions of the state space, andF i · x(0)+Gi, i = 1, . . . ,Nr is the set of

feedback control laws. Then, the algorithm executed on-line by the explicit solution can be

summarized as:

1. measure the current state x(0);

2. detect thei-th polytope containing the state checking which conditionH i · x(0) ≤ ki is

satisfied;

3. apply the correspondent control lowu(0) = F i ·x(0)+Gi

The on-line computational effort is strongly reduced. Additionally, compared to the im-

plicit solution – the on-line MPC – we notice two other advantages. The first regards the

hardware costs; the control algorithm need simple and cheap hardware components to com-

pute the control law, therefore the approach is preferable for mass productions. Secondly, the

low complexity of the software reduces the difficulties in estimating the worst-case CPU time

necessary for solving the problem favoring safety certifications and theuse in hard real-time

scenarios.

However, explicit MPC also entails some disadvantages. First, the complexity introduced

to solve the multi-parametric program off-line, that requires an increasing computational effort

as the size of the problem increase, and second, the storage capacity ofthe memory. Indeed,

as the problem size increases, the number of regions and the data that mustbe saved into the

memory increase. These data regard the gain and offset arrays that define the regions (H i and

ki) and the gain and offset arrays of the control law (F i and Gi) associated to each region.

We can say that the complexity is not disappeared but it has moved to memory usage. Thus,

the decision between implicit or explicit MPC must be related to a trade-off between CPU

and memory usage. Usually the explicit MPC solutions are limited to application with fast

dynamics, but small dimensions (6-8 free moves and 8-12 states+references).

3.4 Distributed/Decentralized MPC for large scale systems

The size and complexity of a system are central problems for the design anddevelopment

of MPC schemes (and in general for all typical controllers). Accordingto (16), a system is

considered aslarge-scaleif it possess at least one of these properties:

63

3. MODEL PREDICTIVE CONTROL

• (decomposition) it can be partitioned into many small-scale and interacting subsystems;

• (complexity) its complexity prevents the use of conventional techniques of modeling,

analysis, control, design, and computation do not give reasonable solutions with reason-

able effort;

• (centrality) components and information cannot be grouped in one geographical location.

Typical examples of large scale systems are power networks, urban traffic networks, digi-

tal communications networks, flexible manufacturing networks, ecological systems, economic

systems. We can also include to these examples multiprocessor systems, because of the ele-

vated number of interacting processing units (the cores), although packaged in a small space.

As an example, a distributed linear time-invariant system with each subsystem controllable

and coupled with the others can be modeled as,




x1(t +1)
...

xns(t +1)


=




A11 · · · A1ns

...
. . .

...

Ans1 · · · Ansns




︸ ︷︷ ︸
A

·




x1(t)
...

xns(t)


+




B11 · · · B1ns

...
. . .

...

Bns1 · · · Bnsns




︸ ︷︷ ︸
B

·




u1(t)
...

uns(t)


 (3.13)

wherex andu represent respectively the state and the input vectors of the system,ns is the

number of subsystems, andxi ∈ R
ni andui ∈ R

mi are the state and input vectors of thei-th

subsystem. Moreover,A ∈ R
n×n andB ∈ R

n×m are the state and input matrices respectively,

andAi j ∈ R
ni×n j andBi j ∈ R

ni×mj represent the contributions of thej-th subsystem state/input

vector to thei-th subsystem state vector.

In large-scale systems acentralizedcontrol scheme – a scheme where all the information

processed and all the control commands are dispatched by one central agency – is generally

impossible or uneconomical. This is due to the lack of scalability of computational complexity,

the impossibility of obtaining a centralized model, the difficulty of maintenance, andthe im-

practicability of conveying all the communication signals to a single location. The same issues

affect all controller families, hence also MPC schemes. In both the implicit andexplicit MPC

solutions the complexity increases as the dimension of the systems to be controlledincreases.

In the former case computational complexity increases, whereas in the latter isthe memory

usage that makes the controller impracticable.

A natural solution to the above mentioned issues is the development ofdecentralizedor

distributedcontrol schemes in which each subsystem is controlled with a specified degree of

autonomy respect to the other subsystems. Each subsystem is computationallytractable and

64

3.4 Distributed/Decentralized MPC for large scale systems

the local control inputs are computed using local measurements and reduced-order models of

the local dynamics (17) (18). This control configuration enables:

• a computing effort reduction (the subsystems to be controlled are simpler);

• a communication load reduction (less data to be transmitted and for shorter distances);

• maintenance and reliability improvement (in case of damage the other subsystemscon-

tinue working properly, data are not transmitted for long distances);

• a flexibility improvement (it is easier to update or modify parts of the system);

• a simplification of subsystems synchronization working at different time scale;

• a cost reduction (less communication links and less powerful hardware).

The same considerations hold for MPC controllers. Previously mentioned advantages open

up to decentralized and distributed MPC schemes whose popularity is continuously increasing.

In this scenario the original large-scale optimization problem is replaced by aset of small and

tractable local optimization problems that work independently or cooperating one with each

other.

The decentralized/distributed MPC schemes have not a fixed structure or algorithm. During

their design, developers can choose some properties (or ingredients) toimplement the control

policy according to requirements.

A first choice is the degree of interaction between the local regulators. According to (19),

a regulator can exchange information with another regulator or it can pursue for its optimal so-

lution independently. This represents the difference between adecentralizedand adistributed

MPC scheme (see Fig.3.3).

Decentralized MPC is composed by local agents that take control decisionsindependently

one from another. Each local controller supervises a partition of the system whose inputs and

outputs does not overlap inputs and outputs of other subsystems. Therefore they manage a

limited amount of information (i.e. inputs, states, outputs). If some overlapping information

exists these are neglected. Moreover, the time necessary to compute the control solution is not

affected by communication overhead as delays or packets losses. Despitethe diffusion of these

schemes, there exist very few algorithms with guaranteed properties.

Contrary to the decentralized MPC schemes, distributed ones allow the transmission of

information between the local agents, expanding the knowledge of local controllers respect to

65

3. MODEL PREDICTIVE CONTROL

Regulator

R1

Regulator

Rns

Subsystem

Sns

Subsystem

S1

xnsx1

SystemController

u1

uns

y1

yn

Regulator

R1

Regulator

Rns

Subsystem

Sns

Subsystem

S1

xnsx1

SystemController

u1

uns

y1

yn

(a) (b)

Figure 3.3: Decentralized (a) and Distributed (b) control approaches (19)

what is happening around them. This means an improvement of performance, at the expenses

of a greater complexity due to communication and synchronization issues. Additionally, the

complexity of the prediction model increases if a local regulator receives the predicted future

control actions as input information (ui in Fig. 3.2b). Indeed, in this case the local regulators

should know the model of all the subsystems.

Another design choice for the development of distributed MPC schemes regards the topol-

ogy of the communication network. We define asfully connected algorithma MPC scheme

where all the regulators transmit information to all the others. Apartially connected algorithm

instead is a MPC scheme where all the regulators transmit information to a subset of the oth-

ers. This latter may be particularly convenient for large-scale system where some interaction

between subsystems produce negligible performance deterioration.

Designers can also manage the rate of information exchange between controllers. The

information can be transmitted only at the beginning or repeatedly within the same sampling

interval. In the first case we refer to the MPC algorithm asnon-iterative, whereas in the second

asiterative.

Finally, it is possible to decide if using the information received from other local controllers

for pursuing a global or a local goal. We define asnoncooperativean algorithm where each

local regulator minimizes a local performance index, and ascooperativean algorithm where

each local regulator minimizes a global cost function.

66

./3_MPC/img/0030_Dec_Distr.eps

3.4 Distributed/Decentralized MPC for large scale systems

As an example, consider the optimization problem (3.11) where we assume the separability

of the cost function, i.e. the weights are diagonal matrices,

Q=




p1 Q1 · · · 0
...

...
...

0 · · · pns Qns


 R=




p1 R1 · · · 0
...

...
...

0 · · · pns Rns


 P=




p1 P1 · · · 0
...

...
...

0 · · · pns Pns


 (3.14)

such that,

J0(x(0),U0) = p1 ·J0,1(x1(0),U0,1, . . . ,U0,ns)+ · · ·+ pns ·J0,ns(xns(0),U0,1, . . . ,U0,ns) =

=
ns

∑
j=0

p j ·J0, j(x j(0),U0)
(3.15)

where

J0,1(x1(0),U0,1, . . . ,U0,ns) = x1(hp)
′P1x1(hp)+∑hp−1

k=0 x1(k)′Q1x1(k)+u1(k)′R1u1(k)
...

J0,ns(xns(0),U0,1, . . . ,U0,ns) = xns(hp)
′Pns xns(hp)+∑hp−1

k=0 xns(k)
′Qns xns(k)+uns(k)

′Rns uns(k)
(3.16)

andU0, j = [u j(0), . . . ,u j(hp−1)].

Moreover, it is assumed that the constraints are uncoupled, i.e. there is nointeraction or

coupling of the inputs in the constraint relation (3).

In this scenario we can define thecentralized problemas,

min
U0

ns

∑
j=1

p j J0, j(x j(0),U0) (3.17a)

s.t.

x(k+1) = Ax(k)+Bu(k) k= 0, . . . ,hp−1 (3.17b)

u(k) ∈ U x(k) ∈ X k= 0, . . . ,hp−1 (3.17c)

whereA andB are defined in (3.13)

The decentralized problemcorrespond to the other extreme in distributing the decision

making in a large-scale system. Whereas centralized control knows everything about the

system and optimizes respect to all the decision variables, the local controlof decentralized

schemes has no information about the other subsystems and it optimizes only thelocal cost

function. The regulatorRj will have the form,

67

3. MODEL PREDICTIVE CONTROL

min
U0, j

J0, j(x j(0),U0, j) (3.18a)

s.t.

x j(k+1) = A j j x j(k)+B j j u j(k) k= 0, . . . ,hp−1 (3.18b)

u j(k) ∈ U j x j(k) ∈ X j k= 0, . . . ,hp−1 (3.18c)

However, a completely decentralized scheme is not able to achieve the overall objective of

the system. Distributed solutions offer a middle ground between decentralizedand centralized

control, allowing one to obtain better performance than the former and lower complexity than

the latter. Thenoncooperative problemexploits the information of other subsystems, but it

pursues its own objective. It can be defined as,

min
U0, j

J0, j(x j(0),U0) (3.19a)

s.t.

x j(k+1) = A j j x j(k)+B j j u j(k)+Ai j x̂i(k)+Bi j ûi(k)
k= 0, . . . ,hp−1

i = 1, . . . ,ns, i 6= j
(3.19b)

u j(k) ∈ U j x j(k) ∈ X j k= 0, . . . ,hp−1 (3.19c)

where theˆsymbol means that the predictions of that variable are available.

Finally, in thecooperative problemthe control agents share a common objective, obtain-

ing performance improvements respect to the noncooperative one. The problem can be defined

as,

min
U0, j

ns

∑
j=1

p j J0, j(x j(0),Û0,1, . . . ,U0, j , . . . ,Û0,ns) (3.20a)

s.t.

x(k+1) = Ax(k)+B[û1(k), . . . ,u j(k), . . . , ûns(k)]
′ k= 0, . . . ,hp−1 (3.20b)

u j(k) ∈ U j x(k) ∈ X k= 0, . . . ,hp−1 (3.20c)

The thermal management solution we developed in this thesis belongs to the family of

distributed schemes. We assigned to each core (or to subsets of cores) alocal MPC. Each

controller transmits information to a subset of controllers, therefore the topology of the com-

munication network is partially connected. We assumed no delays in information transmissions

68

3.5 Feasibility, Stability, and Computational Complexity

since the distance of the core are very close and we use a non-iterative algorithm. The informa-

tion transmitted are not control decisions, but output information that prevent the controller to

know the whole system model. We finally use a noncooperative policy so thateach controller

optimizes only the local cost function. All the properties we chose for our control solution aim

to reduce computational complexity of the algorithm.

3.5 Feasibility, Stability, and Computational Complexity

The design of a MPC algorithm hides some dangerous treats which may compromise the cor-

rect functioning of the controller. These are mainly due to the finiteness of the prediction

horizon and the presence of constraints. In a MPC the control decisionsare optimized over the

prediction interval, without considering that the reached state could be impossible to stabilize

(optimality does not imply stability) or even avoid the feasible solution of the problem. The

stability and feasibility are not ensured by the MPC algorithm. Thus, the MPC developers

should, in principle, analyze the impacts of the different tuning choices to prove the validity of

these properties. Since this operation is usually prohibitive, feasibility and stability are usually

obtained by reformulating the problem.

Another issue regards the complexity of solving the optimization problem that is usually

correlated to the problem dimension and the number of variables.

These issues are briefly accounted in the following Subsections.

3.5.1 MPC Feasibility

First of all we need to define what is the meaning of feasibility. Consider a generic optimization

problem,

min f0(z) (3.21a)

s.t.

fi(z)≤ 0, i = 1, . . . ,nineq (3.21b)

hi(z) = 0, i = 1, . . . ,neq (3.21c)

z∈ Z (3.21d)

the optimization variable,z, is feasibleif:

69

3. MODEL PREDICTIVE CONTROL

• it belongs to the set of value for which the objective and all constraint functions are

defined (3.21d);

• it satisfies the constraints (3.21b) and (3.21c).

An optimization problem, instead, is afeasible problemif there exists at least one feasiblez.

On the other hand, a problem is said to beinfeasibleif such a value does not exist. The set of

all the feasiblez is called thefeasible set(20).

The MPC strategy solves an optimization problem at each time step starting from the cur-

rent statex(t) (or x(0) if we assume a time-invariant systems) over a finite horizon. It optimizes

the control sequenceUt→t+hp|t (orU0 in the time-invariant case) that represents the optimization

variable. For the sake of notation simplicity we will consider the time-invariant case hereafter.

The problem is feasible if a control sequenceU0 exists meeting the constraints. However, it is

worth to note that in the MPC problem formulation it is present the initial statex(0), therefore

the feasibility of the problem also depends on this parameter. For this reasonx(0) is said to be

feasible if the problem is feasible starting fromx(0). X0 represents the set of initial statesx(0)

for which the optimal control problem is feasible, i.e.

X0 =
{

x(0) ∈ X : ∃U0 suchthat x(t) ∈ X, u(t) ∈ U, t = 0, . . . ,hp−1, xhp ∈ X f

where x(t +1) = Ax(t)+Bu(t), t = 0, . . . ,hp−1
} (3.22)

whereX is the set of all possiblex, X andU are the state and input constraint sets respectively,

andX f is the terminal set that we want the states to reach at the end of the horizon, i.e. afterhp

prediction samples.

The feasibility ensures the existence of a solution to the problem, but this is notenough for

guaranteeing the feasibility of the MPC algorithm. Indeed, the feasibility of the optimization

problem can be lost during the functioning. The problem is due to the “short sight” of the MPC

which may steer the state to a value for which no feasible control decisions exist in the next

sampling interval. Instead, it is desirable a MPC possessing the property called recursive(or

persistent) feasibility, which can be stated as,

Definition 3.5.1. If the controller is feasible at any time, for all input control sequences andfor

all initially feasible state x(0), then the MPC controller is recursively (or persistently) feasible.

Proving this property is computationally difficult, since it requires to search at any time

the set of states that remain feasible at the next sampling interval. Typically thefeasibility at

time t = 0 is assumed and the structure of the problem (cost function, constraints,and terminal

70

3.5 Feasibility, Stability, and Computational Complexity

constraints) is modified so that feasibility is preserved at the following time steps. As an ex-

ample, it is possible to soften state constraints using slack variables, or it is possible to insert

constraints on the terminal setX f or varying the length of the prediction horizon.

Recursive feasibility of finite-horizon MPC problems can be explicitly enforced by con-

straining the state at the final prediction step to a controlled invariant set. First, using the

invariant set theory, it is possible to prove that a necessary and sufficient condition for guaran-

teeing recursive feasibility can be given by imposing that the initial state setX0 is equal to the

set of all initial states generating feasible closed-loop trajectories,O∞.

Lemma 3.5.1. Consider the problem (3.11) and denote with ft the receding horizon control

law that associates the optimal input u◦
0 to the current state x(0), ft(x(0)) = u◦0(x(0)). LetO∞

be the maximal positive invariant set for the closed-loop system x(1) =Ax(0)+B ft(x(0)). The

RHC problem is persistently feasible if and only ifX0 = O∞.

However,O∞ depends on the matrices,Q, P, andR, therefore for some of these tuning

variable the recursive feasibility may not be proved. According to (4), it is possible to make

O∞ independent fromQ, P, andRby taking the terminal setX f as a control invariant set of the

system model with constraints.

Theorem 3.5.2.Consider the problem (3.11), if X f is a control invariant set for the constrained

system (3.11b) then the MPC is persistently feasible.

where we define as control invariant set for a system subject to constraints as the set of

statesx such that there exists a feasible controlu for with the future stateAx+Bu belong to

the same set (refer to (4) for the proof).

Another approach for detecting if a MPC is recursively feasible, has been proposed in (21).

The author considers a linear time-invariant problem as the one in (3.11), without the need of

the terminal constraint. The idea is to prove the existence of problematic states –states for

which the optimization problem has no solution – by exploiting a bilevel optimization prob-

lem.

Consider the QP problem (3.12) obtained from (3.11). The problem is infeasible if a feasi-

ble state is steered to an infeasible state by applying the optimal control decision, that is the

following inequality is not satisfied,

MQPUt+1 ≤WQP+EQP(Ax(t)+Bu(t)◦) (3.23)

71

3. MODEL PREDICTIVE CONTROL

Then this condition can be rewritten as a set of three condition,

y≥ 0 (3.24a)

y′MQP = 0 (3.24b)

y′ [WQP+EQP(Ax(t)+Bu(t)◦)]< 0 (3.24c)

by using the Farkas’ Lemma, according to with,

Lemma 3.5.3. Let M∈ R
p×q and w∈ R

p. Then either there is an x∈ R
q such that M x≤ b or

there is a y∈ R
p such that y≥ 0, y′M = 0, and y′b< 0.

Using conditions (3.24) we can implement the bilevel problem

min
y,x(t),Ut

y′ (WQP+EQP(Ax(t)+Bu(t)◦)) (3.25a)

s.t.

y≥ 0 , y′F = 0 (3.25b)

U◦
t = arg problem(3.12) (3.25c)

If the optimal value of the cost function is negative the problem is infeasible for an ad-

missible state, according to Farkas’ Lemma. The problem can be simplified by substituting

to the constraint (3.25c) representing the inner optimization problem the Karush-Kuhn-Tucker

conditions (since the problem is convex).

3.5.2 MPC Stability

The second issue for MPC is stability. In the first industrial MPC applicationsthe possibility of

automatically ensure stability was unavailable, requiring a manual tuning of the algorithm. The

research community devoted considerable attention to this topic producing numerous solutions.

The problem of stability consists in designing a MPC algorithm guaranteeing that the origin

of the closed-loop system is an asymptotically stable equilibrium point. As for thecase of

feasibility, the main approach for ensuring stability is modifying the structure ofthe MPC. The

main modifications regard the terminal cost (the termsp(x(t+hp|t)) in (3.9) andx(hp)
′Px(hp)

in (3.11)), the terminal constraint set (defined asX f) and the terminal controller (kf (·) for

stabilizing the state insideX f). These are the three main “ingredients” for building a MPC

satisfying stability (and often also feasibility).

72

3.5 Feasibility, Stability, and Computational Complexity

There exist also different techniques for proving closed-loop stability.A strand of the liter-

ature shows that closed-loop stability may often be achieved using a sufficiently long prediction

horizon (22) (23). Some methods require that the statex(t) is shrinking in some norm, as the

Contraction Constraintapproach (24) (25) which requires thatx(t) is decreasing in some norm

(‖x(t +1|t)‖ ≤ α ‖x(t)‖ andα < 1). However, the most used approach consists in choosing

the previously mentioned “ingredients” such that the cost function is a Lyapunov function. The

reason is that for nonlinear controllers the natural tool for establishing stability is Lyapunov

theory, and MPCs are for their nature nonlinear because of the presence of constraints (note

that the explicit solution of the QP-MPC is piecewise linear even if the model is linear). In the

excellent survey paper (26) the authors analyzed the MPC solutions present in literature for en-

suring stability and recognized the three previously mentioned ingredients asthe tuning knobs

usable by the designers. Furthermore the authors distilled four conditions on the ingredients,

sufficient for guaranteeing closed-loop stability. Before listing these conditions, we recall the

general MPC optimization problem,

min
Ut→t+hp|t

Jt(x(t),Ut→t+hp|t), p(x(t +hp|t))+
hp−1

∑
k=0

q(x(t +k|t),u(t +k|t)) (3.26a)

s.t.

x(t +k+1|t) = f (x(t +k|t),u(t +k|t)) k= 0, . . . ,hp−1 (3.26b)

x(t +k|t) ∈ X, u(t +k|t) ∈ U k= 0, . . . ,hp−1 (3.26c)

x(t +hp|t) ∈ X f (3.26d)

x(t|t) = x(t) (3.26e)

wherep(x(t +hp|t)) is the terminal cost,X f is the terminal set and the local controllerkf (·) is

merely implicit, but is required to prove stability.

The conditions are stated below:

A1 : X f ⊂ X, X f closed, 0∈ X f (state constraint satisfied inX f);

A2 : kf (x) ∈ U, ∀x∈ X f (control constraint satisfied inX f);

A3 : f (x,kf (x)) ∈ X f , ∀x∈ X f (X f is positively invariant underkf (·));

A4 : [p(f (x,kf (x)))− p(x)+q(x,kf (x))], ∀x∈ X f (p is a local Lyapunov function)

73

3. MODEL PREDICTIVE CONTROL

If these conditions hold, then the value function is a Lyapunov function, a sufficient con-

dition for stability. More in detail, the last condition ensure the descending property of the

Lyapunov function. This is easy to prove.

Consider as a Lyapunov function the optimal solution of the problem for the initial state

x(t),

J◦t = Jt(x(t),U
◦
t→t+hp|t)

whereU◦
t→t+hp|t

= [u◦(t|t), . . . ,u◦(t+hp−1|t)]′ andX◦
t→t+hp|t

= [x◦(t|t), . . . ,x◦(t+hp|t)]′ is the

resultant state sequence.

The successor statex(t +1) is computed asf (x(t),kf (x(t))) and analogously to the previous

definitions,

J◦t+1 = Jt+1(x(t +1),U◦
t+1→t+hp+1|t+1)

whereU◦
t+1→t+hp+1|t+1= [u◦(t+1|t+1), . . . ,u◦(t+hp+1|t+1)]′ andX◦

t+1→t+hp+1|t+1= [x◦(t+

1|t +1), . . . ,x◦(t +hp+1|t +1)]′ is the resultant state sequence.

Since it is difficult to directly compareJ◦t andJ◦t+1 we can find an upper bound ofJ◦t+1 using

a feasible – but not optimal – input sequence for the timet +1 by shifting the optimal input

sequence at timet. The new sequence is given by,

Ũt+1→t+hp+1|t = [u◦(t +1|t), . . . , u◦(t +hp|t), kf (x(t +hp))]
′

The value function for this input sequence can be defined as,

Jt+1(x(t +1),Ũt+1→t+hp+1|t) =J◦t −q(x(t),kf (x(t)))− p(x◦(t +hp|t))+

+q(x◦(t +hp|t),kf (x
◦(t +hp|t)))+

+ p(f (x◦(t +hp|t)),kf (x
◦(t +hp|t)))

(3.27)

wherex(t) is the initial state. SinceJ◦t+1 ≤ Jt+1(x(t +1),Ũt+1→t+hp+1|t), it follows that,

J◦t+1−J◦t ≤−q(x(t),kf (x(t))) (3.28)

that is true only if for allx there exists a inputu∈ U such that,

p(f (x,kf (x)))− p(x)+q(x,kf (x))≤ 0 (3.29)

The four conditions previously stated can be satisfied by different choices of the “ingredi-

ents” that defines different MPC schemes. These are few example (30) (26):

• Terminal state: x(t +hp|t) = 0.

74

3.5 Feasibility, Stability, and Computational Complexity

• Infinite prediction horizon: hp = ∞.

• Terminal Weighting Matrix: in the linear case, P is the solution of a Riccati inequality.

• Invariant terminal set: x(t +hp|t) ∈ Ω andu(t + k|t) = FLQx(t + k|t), ∀k ≥ hm, where

FLQ is the LQ feedback gain.

For what concerns the distributed MPC controllers the theory is still not mature. The actual

trend is similar to the one of the MPC in the past: there exist many efficient algorithms, but

strong theoretical results and a unifying picture are still partially lacking.

As an example, in (31) the authors showed that the cooperative MPC approach leads to

closed-loop stability in the linear case.

In general, whereas cooperative schemes reach a Pareto equilibrium, noncooperative ones

have been shown to reach a Nash equilibrium (the controllers optimize their objectives inde-

pendently). We define the two types of equilibrium for completeness,

Nash equilibrium : point reached when the objective of each controller cannot be improved

by varying any of its control actions;

Pareto equilibrium : point reached when a modification of the local objectives, necessarily

worsens the global objective.

It is worth to note that the Nash equilibrium is not sufficient for stability, therefore, as for

the non distributed case, some constraints are imposed on the local controllers.

3.5.3 MPC Complexity

The third issue we treated in this Section is the computational complexity which becomes

prohibitive for large systems or systems with fast dynamics. The influencingfactor for the

computational complexity are the type of MPC scheme used and the dimension of the problem.

The first consideration derive from the fact that the solvers used forlinear MPC are more

efficient respect to the solvers used for finding a solution of a nonlinearMPC.

The complexity of a problem increases also with the dimension of the state variable (x)

and of the controls (m), with the length of the prediction horizon (hp), and with the number

of constraints (nc). Focusing on linear quadratic MPCs, as the one shown in (3.11), we have

already noticed that it can be rewritten as a convex QP problem. Two popular methods for

solving QP problems are theactive set(27) and theinterior point (28) methods. A naive

75

3. MODEL PREDICTIVE CONTROL

application of the active set method on a general QP problem can requireO(h3
p(m+n+nc)

3)

operations. However, according to (29) with an appropriate reordering of the variables, it is

possible to improve the number of operation obtainingO(hp(m+n+nc)
3) or O(hp(m+n+

nc)
2) respectively with an interior point method and an active set method. In both these cases

we can see that the computational complexity exponentially increase with the number of the

states, of control and variables (for major details refer also to (20) and the references therein).

From the previously data it is clear that the number of inputsmmultiplied with the predic-

tion horizonhp, usually calleddegrees of freedomof the problem, are the dominating factor

for complexity in MPC. For this reason, as we have previously mentioned in Section 3.1, the

move-blocking strategy allows to reduce the computational complexity (e.g. imposing the con-

trol value as constants after a specific interval).

Another useful tool for having some insights on the computational efforts of solving an

MPC problem is the explicit MPC approach. In this thesis we exploited the explicit approach

in two different ways. First, for reducing the on-line computational complexity, relegating

the difficulties of solving the optimization problem off-line. The complexity of the algorithm

depends on the number of regionsNr , that in turn depends on the dimension of the state (n),

on the number of constraints (nc), and on the number of controls (m) – in particular on the

degrees of freedom (s= mhc) (14). The number of regions is strongly related to the number

of constraints, and the computational time necessary to find the control law increases with an

exponential trend. For this reason this approach can be used only for small value ofm, nc, and

hp. To give a dimension of the term “small” ifn≥ 5,m≥ 3, andl ≥ 12 the number of regions

cannot be efficiently managed. As a result solving a QP problem on-line is faster than detecting

the region and applying the control law (32).

The second way we used the explicit approach has been as a metric for determine the com-

plexity of an on-line algorithm. Indeed, as the complexity of the problem increases, so also the

number of regions increase. We can say that the complexity of the MPC algorithm is mani-

fested by the number of regions.

Fig. 3.4 show a comparison between the number of regions and the CPU time of a con-

strained double integrator system (33) when the degrees of freedom varies.

76

3.6 Notes

300

200

100

0

#
 R

e
g

io
n

s

0 5 10 15 20
free moves

40

20

0

C
P

U
 t

im
e

0 5 10 15 20

Figure 3.4: Number of regions and CPU time comparison varying the numberof degrees of free-

dom

3.6 Notes

We conclude this chapter with some notes. The MPC solutions presented in this thesis for

the thermal and energy management of processors have been developed with the intent of

improving performance and reducing computational complexity.

These requirements motivates our choices of using distributed and explicit MPC solutions.

The use of explicit solutions also allowed us to have a double check on the complexity data we

obtained from experiments.

Another important observation is that, although we presented the common approaches used

in literature for ensuring the feasibility and the stability, we obtained our proofs directly study-

ing the physical properties of our system. More in detail, the study of the properties of the

system allows us to prove the feasibility without increasing the complexity of the MPC scheme

by adding useless constraints or terminal costs. Additionally, the validity of theproof regards

all the thermal systems and all the controllers whose target is the temperature capping, there-

fore the proof is widely general. Moreover, the study of the physical properties of the systems

allows us to find other useful properties which simplify the design of the controller.

It is finally worth to remark that in this thesis we omitted the stability proof simply because

our application does not require it. Indeed, as it will be clear later on, we are not interested

77

./3_MPC/img/0040_Complexity.eps

3. MODEL PREDICTIVE CONTROL

in maintaining the temperature of the system arbitrarily close to a set point or an equilibrium

point, but below the maximum temperature. Our priority is meeting the constraints. We will see

that our problem only required the boundedness of the state that is guaranteed by the feasibility

property. This argument will be deeply detailed in the last part of the next Chapter.

78

Bibliography

[1] E.F. Camacho, C. Bordons,Model predictive control, Springer, 1999.50

[2] J.M. Maciejowski,Predictive control: with constraints, Pearson Education, 2002.50

[3] J.B. Rawlings, D.Q. Mayne,Model Predictive Control Theory and Design, Nob Hill Publishing, 2009.50, 67

[4] F. Borrelli, A. Bemporad, M. Morari,Model Predictive Control for linear and hybrid systems, in preparation, last update

Nov, 2012.viii , 50, 51, 52, 55, 71

[5] W.H. Kwon, S.H. Han,Receding Horizon Control: Model Predictive Control for State Models, Springer, 2005.51

[6] S.J. Qin, T.A. Badgwell,An Overview Of Industrial Model Predictive Control Technology, In Chemical Process Control,

Vol. 93(316):232–256, 1997.51

[7] A.I. Propoi, Use of linear programming methods for synthesizing sampled-data automatic systems, Automation and

Remote Control, Vol. 24(7):837-844, 1963.

[8] E.B. Lee, L. Markus,Foundations of optimal control theory, New York: Wiley, 1967.

[9] J. Richalet, A. Rault, J.L. Testud, J. Papon,Algorithmic control of industrial processes, in Proc. of the Fourth IFAC

symposium on identification and system parameter estimation, pp. 1119–1167, Tbilisi, 197653

[10] J. Richalet, A. Rault, J.L. Testud, J. Papon,Model predictive heuristic control: Applications to industrial processes,

Automatica, Vol. 14:413–428, 1978.53

[11] C.R. Cutler, B.C. Ramaker,Dynamic matrix control - a computer control algorithm, In Proc. American Contr. Conf., Vol.

WP5-B, San Francisco, USA, 1980.53

[12] C.R. Cutler, A. Morshedi, J. Haydel,An industrial perspective on advanced control, In AIChE annual meeting, Washing-

ton, DC, Oct. 1983.53

[13] R. Findeisen, F. Allg̈ower,An Introduction to Nonlinear Model Predictive, 21st Benelux Meeting on Systems and Control,

VeidhovenJ, 2004, pp. 1–23.60

[14] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos,The explicit linear quadratic regulator for constrained systems,

Automatica, Vol. 38(1):3-20, 2002.60, 62, 76

[15] A. Bemporad,Model Predictive Control Design: New Trends and Tools, in Proc. of the 45th IEEE Conference on Decision

& Control, Manchester Grand Hyatt Hotel San Diego, CA, USA, December 13-15, 2006.60

[16] McGraw-Hill, Dictionary of Scientific and Technical Terms, 6th edition, The McGraw-Hill Companies, Inc.63

[17] N.R. Sandell, P. Varaiya, M. Athans, M.G. Safonov,Survey of decentralized control methods for large scale systems, IEEE

Trans. Automat. Contr., Vol. AC-23, pp. 108-128, Feb. 1978.65

79

BIBLIOGRAPHY

[18] D.D. Siljak, Decentralized control and computations: Status and prospects, Annu. Rev. Contr., Vol. 20, pp. 131-141,

1996.65

[19] R. Scattolini,Architectures for distributed and hierarchical model predictive control : a reviewJournal of Process Control,

Vol. 19, pp. 723–731, 2009.viii , 65, 66

[20] S. Boyd, L. Vandenberghe,Convex Optimization, Cambridge University Press, 2004.70, 76

[21] J. Löfberg, Oops! I cannot do it again: Testing for recursive feasibility in MPC, Automatica, Vol. 48(3):550–555, 2011.

71

[22] T.Parisini. R. Zoppoli, A receding hor1zon regulator for nonlinear systems and a neural approximation, Automatica,

31(10):1443–1451, 1995.73

[23] P.O.M. Scokaert, J.B. Raw1ings, Constrained linear quadratic regulation, IEEE Trans. Auto. Cont., Vol. 43(8):1163–1169,

Aug. 1998.73

[24] E. Polak, T.H. Yang, Moving horizon control of linear systems with input saturation and plant uncertainty–part 1. robust-

ness, Int. J. Control, Vol. 58(3):613–638, 1993.73

[25] Z.Q. Zheng, Robust Control of Systems Subject to Constraints, Ph.D. dissertation. California Institute of Technology.

Pasadena, CA, U.S.A, 1995.73

[26] D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O. Scokaert, Constrained model predictive control: stability and optimality,

Automatica, Vol. 36, pp. 789–814, 2000.51, 73, 74

[27] B. Fletcher,Practical Methods of optimization, second edn, John Wiley and Sons, New York, 1987.75

[28] S.J. Wright,Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics, Jan., 1987. 75

[29] S. J. Wright, Applying new optimization algorithms to model predictive control, Chemical Process Control-V., Vol.

93(316):147155, 1997.76

[30] A. Bemporad, M. Morari, Robust model predictive control:A survey(1999), In A. Garulli, A. Tesi, A. Vicino (Eds.),

Robustness in identification and control, Lecture Notes in Control and Information Sciences, Vol. 245, pp. 207226, Berlin:

Springer.74

[31] N. Venkat, J.B. Rawlings, S.J. Wright,Distrtbutedmodel predictive control of large-scale systems, In Assessment and

Future Direcrtons of Nonlinear Model Predictive Control, pp. 591–605. Springer, 2007.75

[32] Y. Wang, S. Boyd, Fast Model Predictive Control Using Online Optimization, IEEE Transaction on Control System

Technology, Vol. 18(2):267–278, mar. 2010.76

[33] A. Bemporad, Explicit Model Predictive Control, Slidesof SIDRA doctorate school, 2012.76

80

Chapter 4

MPC thermal controller for MPSoCs

In this chapter the basic distributed MPC solution is presented. First, the focuswill be devoted

to highlight the importance of the model for MPC accuracy. In this context some methods to

obtain accurate and reduced order models of the system are illustrated. Then, the centralized

and distributed MPC control schemes will be accurately described showing the strengths of the

latter solution. Finally, the feasibility property will be proved for centralized anddistributed

controllers.

4.1 The prediction model

In the previous chapter we showed how MPC schemes strongly rely on the dynamic models

used to forecast the future behaviors of the system. In order to build an efficient and effective

control solution, the properties the model must satisfy aresimplicityandaccuracy. The former

is necessary for reducing computational complexity and guaranteeing to find a control decision

before the ending of the sampling interval. The latter, instead, affects the optimality of the

control decision, which strongly depends on predictions.

When we build a model, the parameters that affect computational complexity andaccuracy

are essentially three: the model type, its order and the number of inputs.

Although there is nothing in the theory of MPC schemes against the use of nonlinear mod-

els, linear models (if correctly describe the phenomena) are usually preferable because they

are easier to identify and enable the use of more reliable and efficient algorithms to solve the

optimization problem, guaranteeing a global minimum solution (nonlinear MPC schemes are

81

4. MPC THERMAL CONTROLLER FOR MPSOCS

generally non-convex)(1) (2). However, linear model are usually approximation of the natural

phenomena which usually are nonlinear.

The model order represents the state dimension of the model. The greater theorder, the

greater the number of system modes that describe the behavior of the system, and hence its

accuracy. However, as remarked in Chapter3, the computational complexity of a MPC scheme

is exponentially related to the state dimension and the number of constraints.

Finally, it is important to identify the inputs that have a strong impact on the observed be-

haviors, while discarding the ones that have a negligible contribution. Indeed, as the number

of inputs increases, also the computational complexity increases, since the number of multipli-

cations and additions increase. Moreover, also the design complexity is negatively affected by

the increasing of information transmission.

The aim of this section is to understand the motivations that have led to the models we

used in our control algorithms and to show the techniques adopted to identify their parameters.

Thus, in the follows we will answer to these questions: What type of model? What model

order? How many inputs?

Clearly, it is impossible to answer these questions without having any information on the

system we want to model. The required model has to describe the thermal behavior of a generic

multiprocessor chip (see AppendixB for major details on how a generic multiprocessor may

be modeled). The system takes as inputs the core frequencies, the supplyvoltage and the

workload of each core and it returns as output the temperatures of a setof points on the die,

which correspond to the measurements from the sensors. In this thesis we reasonably assumed

a sensor for each core. As it is possible to note the temperature and the power dissipation of

caches are respectively uncontrollable and unmeasurable. Thus, the system is under-actuated,

since to keep the temperature of the caches below the constraint value we can only manage the

power dissipation of the cores. However, it is worth to remark, that this limitationis not so

restrictive because the highest power density are consumed on cores where usually the most

dangerous thermal challenges occur (7).

What type of model? As shown in AppendixB, the thermal behavior of a processor can

be modeled by a nonlinear mathematical function that depends on five main parameters: the

cores frequency, the cores workload (CPI – clocks per instruction),the supply voltage, the

chip temperature and the ambient temperature. Such a function can be decomposed in two

sub-functions that realize the following “causal chain”:

(f req,CPI,Vdd,T)
P(·)
−−→ (P,TAMB)

F(·)
−−→ T

82

4.1 The prediction model

where f req is the vector containing the cores frequency,Vdd is the supply voltage,CPI is the

workload running on each core,T andP are respectively the vector containing the temperature

and the power dissipation of the cores, andTAMB is the ambient temperature.

The first sub-function,P(·), is a highly nonlinear and can be addressed separately in each

core according to:

P= Pdynamic+Pstatic=

kA · f req·V2
dd+kB+(kC+kD f req) ·CPIkE +Z ·Vdd ·T

2 ·e
−q·Vt
K·T

(4.1)

This equation, that will be called Power Model in the follows, has been obtained by performing

a set of tests on each core of a real general-purpose multicore1. Without entering in more details

(see the AppendixB and the references therein), we can notice that the core dynamic power

depends nonlinearly on the frequency, sinceVdd is a nonlinear function of the frequency, and

sub-linearly on the CPI of the application (CPI and frequency are also coupled). Even if this

is a simple empirical model that does not account for many secondary effects, many works in

the state-of-the-art show that it can be used as a reliable basis to developadvanced models to

effectively estimate the power consumption of different workloads (4) (5) (6).

Differently, the power-to-temperature modelF, that we will call Temperature Model in

the follows, can be considered with good approximation linear. The temperature variation of

each point of the die is affected by the power dissipated by the components on the chip, cores

and caches primarily. The model can be obtained by using the well-known analogy between

thermal and electrical models. The chip is decomposed into a great number ofsmall cells, each

one associated to an electrical RC circuit.

The same idea of decomposing the system model (i.e. the plant) into a linear and anon-

linear part can be exploited also to build the prediction model. The central reason for adopting

such a strategy relies on the possibility of exploiting the advantages offeredby linearity. Indeed,

we can design a linear MPC scheme which uses as manipulable variables the power consump-

tions instead of the frequencies and voltages, and then to convert the power into frequency with

the Power Model. Without entering in the details of how the controller is structured, that is the

argument of the next section, the Power Model translates the target frequencies, workloads and

voltages (requested by an higher layer software as the operating system)in target power con-

sumptions. The controller manages these target powers in order to maximize theperformance

respecting the temperature constraints and it returns the controlled powers. These latter are

1Intel R© XeonR© X7350 (3)

83

4. MPC THERMAL CONTROLLER FOR MPSOCS

given as input to the Power Model properly inverted to obtain again the frequencies. Fig.4.1

clarifies this concept.

Linear
MPC

Controller

Controlled
Power

Temperature

Target
Power

Power
Model

Inverted

Plant
Power
Model

Target
freq, CPI, Vdd

Controlled
freq, CPI, Vdd

Figure 4.1: Conceptual control scheme

Concluding, the model chosen is a linear model which takes as inputs the power consump-

tion of the cores (only the cores are controllable, that is we have no information of the power

dissipated by caches) and it returns the measured temperatures of the cores (only the sensors

measurements),

{
x(k+1) = A·x(k)+B·u(k)

y(k) =C ·x(k)
(4.2)

wherex is then×1 state vector,y is the measuredp×1 outputs vector (thermal sensors

readings),u is them×1 inputs vector (the power dissipation of each core and other informa-

tion) andAn×n, Bn×m, Cp×n are respectively the dynamical matrix, the input matrix and the

output matrix. AssumingN the number of coresp = N. Thus, according to the granularity

of performance counters, thermal and power sensors, our monitoring capability is at core level

and within a core we assume uniform power and temperature distributions. Wecan abstractly

visualize our model as a chip only composed by cores (see Fig.4.2).

CORE 1

L2

L1 L1 L1 L1

L2

CORE 2 CORE 3 CORE 4

PLANT
Prediction Model

Cores
Power

Cores
Temperature

Components
Power

Cores
Temperature

C
O

R
E

1

C
O

R
E

2

C
O

R
E

3

C
O

R
E

4

Figure 4.2: Abstract view of the model

What model order? The results in (8) highlight that the thermal dynamics of each core is

characterized by two time constants: a faster one, at a few ms, is related to thesilicon surface,

84

./4_BasicSolution/img/0010_ChainMod.eps
./4_BasicSolution/img/0020_AbstractView.eps

4.1 The prediction model

whereas the slower one, at a few seconds, is related to the heat spreader. This behavior, needs

to be carefully accounted in model identification and control design. Therefore, our model

should have at least two states for each core. On the other hand, the computational complexity

requirements imposes a low order for the model. For this reason we chose asfirst attempt a

second order model. In this case, the state dimensionn = 2×N whereN is the number of

cores.

How many inputs? The inputs represent the actions of the surrounding environment on

the system and they can be classified in manipulated or not manipulated. The first can be modi-

fied, by the user or the control algorithm, in order to change the behavior of the system (e.g. the

power dissipation of the cores in our case), whereas the second represents a “measured distur-

bance”, that is an information that modifies the system behavior but that cannot be controlled

arbitrarily (e.g. the ambient temperature). The greater is the number of inputsused to model a

fixed behavior, the greater is the accuracy, but also the complexity.

It is also important to note that a measurable attribute can be defined as input for a sys-

tem, but it could not be for another one, depending on what we are interested to model. As

an example, if our goal is to find a unique thermal model for the whole chip, that we will call

“global model” hereafter, then the inputs will be the power of the cores and the ambient tem-

perature. In this case all these inputs are necessary to have an accurate model. Otherwise, if

our goal is to model the temperature behavior of a single core, then the inputswill be the power

of the core, the ambient temperature and the powers and temperatures of theother cores. In

the following of the thesis we will refer to the model composed by the set of the single-core

models as“modular model”. In this latter case the number of inputs increases with the number

of cores. Thus, in order to understand which inputs are necessary and which are negligible we

performed empirical tests. First we discarded the power of the other cores as possible inputs,

due to the negligible contribution to the final temperature of the core. Recalling Fourier’s law,

the temperature of each core can be assumed dependent on its own dissipated power, ambient

temperature and adjacent cores temperatures and powers (boundary conditions). This assump-

tion is actually straightforward only for continuous time models. Focusing on discrete-time

models, a larger coupling among cores has to be considered to account for the “chain of in-

teractions” taking place during the blind intervals among samplings. Recalling again Fourier’s

law, the coupling among two cores will be inversely related to their distance anddirectly re-

lated to the sampling time period. Hence, the “equivalent neighborhood” of acore depends on

the floorplan combined with the adopted sampling period. To verify this assumption we took

85

4. MPC THERMAL CONTROLLER FOR MPSOCS

1 2 3 4 5 6 7 8

1

2

3

4

5

6

Ts= 2ms

Ts= 50ms

Ts= 75ms

Ts= 0.1s

Ts= 0.25s

Ts= 0.5s

(a)

1

2

3

4

5

6

1

2

3

4

5

6

Ts = 1ms

Ts = 2ms

Ts = 10ms

Ts = 50ms

Ts = 75ms

Ts = 1ms

Ts = 7ms

Ts = 10ms

1 2 3 4 5 6 7 8

(b)

1 2 3 4 5 6 7 8

Figure 4.3: a) Single core thermal impact range, at different time windows; b) Multi cores thermal

impact range, at different time windows;

an example loosely correlated with the IntelR© SCC experimental architecture (11) (see also

AppendixB). The floorplan is fully tiled with 48 core/regions, each with an area of 11.82mm2

and a maximum power consumption of 2.6W. We used this set-up with the HotSpot thermal

analysis tool (12), and we made the following test. We stimulate with a power step the central

core (5,3) (“thermal attacker” core) while keeping all the other cores at zero power consump-

tion. As result of the power step, the temperature of the attacker core increases, inducing a

temperature raise in the neighbor cores. We are interested in measuring the range of thermal

impact of the “attacker“ core. To do that we look at the surrounding cores that raise their tem-

peratures as consequence of the attacker. We call them “victims”. We consider as victim only

a core that raises its temperature of 1% the attacker temperature increment. Fig. 4.3a shows in

black the attacker core and in different colors the victims after different timeintervals. We can

notice that the radius of thermal influence of the central core increases with the time interval:

within 50ms it impacts only the closest core along the four cardinal directions,at 0.75s the

majority of them is affect.

In order to test the behavior of the system when more cores are triggeredwe considered

an increasing numbers of attackers starting from the perimeter cores goingclose to the victim

one (now core 5,3), after different timing intervals, we check the cores that increase their

temperature more than the 1% of the attackers increment. In Fig.4.3b we can see the results.

We can notice that the neighborhood composed of one core in each direction is enough to

prevent the core victim to be sensitive to the rest of the core temperatures within 10ms of time

interval.

86

./4_BasicSolution/img/0030_bg_2.eps

4.1 The prediction model

Technique Type Modular Order

ARX Linear Yes 2 per core

H∞ Linear Yes 2 per core

POD Linear No 5 per 8 cores

Table 4.1: Prediction model characteristics vs. identification technique used to find it.

On the basis of these tests the power consumption of the core, the ambient temperature and

the temperature of the adjacent cores constitute the inputs of the single-coremodel.

Concluding, our MPC solution will use a linear power-to-temperature model of the second

order. For the global model we have chosen as inputs the powers of the cores and the ambient

temperature, whereas for each single-core model the own power consumption, the ambient

temperature and the temperatures of the adjacent cores (assuming a samplingtime lower than

10ms).

In the following three subsections we show the techniques used in this thesis toextrapolate

the prediction model. The table4.1shows the characteristics of the three techniques.

4.1.1 Distributed ARX identification

The first, and simplest, approach, used to find the prediction model, relies onthe well-known

ARX identification techniques (9) (10). An ARX discrete model can be written as,

y(t) = αs ·y(t −1)+ · · ·+α1 ·y(t −s)+βs ·u(t −1)+ · · ·+β1 ·u(t −s)+e(t) (4.3)

wheres is the order,y is the output,u is the input,α andβ are constant parameters ande is a

stochastic white process with null expected value.

However, the MPC controller will use the model as a predictor for the futureoutput, there-

fore the equation (4.3) can be rewritten as,

y(t|t −1) = αs ·y(t −1)+ · · ·+α1 ·y(t −s)+βn ·u(t −1)+ · · ·+β1 ·u(t −s) (4.4)

wherey(t|t −1) is the predicted output for the future timet based on the information available

at time(t − 1). The main difference between a predictor and a simulation model is that the

predictor uses the past measurements to estimate the future output, whereas the simulation

model uses the past estimations.

The main idea of the ARX identification technique consists in learning the model param-

eters (α andβ) by solving a least square problem that minimizes the prediction error. The

87

4. MPC THERMAL CONTROLLER FOR MPSOCS

prediction error is the difference between the system response after wehave applied proper

training stimuli and the response estimated using past measurements.

minα, β
1

#sample

s+#sample

∑
t=s+1

(y(t)−y(t|t −1))2 (4.5)

where #sampleis the number of measurements used for identification,s is the model order,y(t)

is the measured output at timet andy(t|t −1) is the estimated output at timet obtained using

the equation (4.4).

As already discussed in the previous section, we chose a orders= 2 for the model. More-

over, we called this technique distributed because it solvesN least square problems (one for

each core) in order to identified theN single-core models forming the modular model. Two are

the main advantages of this approach:

• it offers a low complexity solution to counteract the system identification computational

cost in large multi-core systems. Indeed, in MIMO model the complexity for solving the

least square problem explodes with the number of inputs.

• it perfectly fits with a distributed control solution, since each local regulatorcan directly

exploits a single-core identified model.

As in the equation (4.4), thei− th single-core model is a simple MISO model with a single

output and multiple inputs,

Ti(t|t −1) = α2 ·Ti(t −1)+α1 ·Ti(t −2)+β1,2 ·Pi(t −1)+β1,1 ·Pi(t −2)+

+β2,2 ·TAMB(t −1)+β2,1 ·TAMB(t −2)+β3:3+dim(NEIGHi),2·

·TNEIGHi (t −1)+β3:3+dim(NEIGHi),1 ·TNEIGHi (t −2)

(4.6)

whereTi is the temperature of thei − th core,Pi(·) is the dissipated power of thei − th core,

TAMB is the ambient temperature,NEIGHi is the set of neighbors of thei− th core andTNEIGHi

represent their temperatures.α1:2 andβ1:3+dim(NEIGHi),1:2 are the identified parameters.

As already mentioned the core power consumption can be estimated from the core operat-

ing point and from the current workload characteristic using the Power Model (see (4.1) or it

can be directly measured from power sensors present in recent MPSoC (11)).

The first step for the identification process is collecting data from the real system. The

input sequence must be persistently exciting in order to ensure identifiability.We forced a

Pseudo-Random Binary Sequence (PRBS) power input to each core,while probing the core

88

4.1 The prediction model

temperature. Then, the parametersα andβ are derived by solving a least square problem that

minimizes the prediction error, as the one shown in equation (4.5),

min
1

#sample

s+#sample

∑
t=s+1

(Ti(t)−Ti(t|t −1))2 (4.7)

Often it is convenient to translate the model just found in a state-space form,

xi(t +1) = AARX,i ·xi(t)+BARX,i ·




Pi(t)
TAMB

TNEIGHi




Ti(t) =CARX,i ·xi(t)

(4.8)

Unfortunately, the identified models states do not have a physical meaning. To match the core

temperature with the first state of each model we apply a change of coordinate transformation to

obtain a matrixCARX,i = [Is | 0s] whereIs is thes-dimensional identity matrix. We achieve that

by representing our system in the equivalent observer canonical form. We use the observability

matrix O = [CARX,i ; CARX,i ·AARX,i] as linear transformation to change the coordinates of the

(AARX,i ,BARX,i ,CARX,i) model as shown below.




Ai = O−1 ·AARX,i ·O

Bi = O−1 ·BARX,i

Ci =CARX,i ·O

(4.9)

Since each thermal model is a second-order model and each element ofAi , Bi , Ci can be

expressed as the composition of a finite algebraical operation of the elementof AARX,i , BARX,i ,

CARX,i , the above computation is negligible.

In a real system we expect to run the distributed ARX identification procedure as a self-

calibration routine executed by each core. First, during the start up phase and then, on-line,

each time the model behavior differs from the plant one.

We tested the performance of our technique using a high dimensional and accurate plant

developed in Matlab using a finite elements approach (see AppendixB). In Fig.4.4a we showed

the comparison between the plant and the model temperature of core 1 obtained applying PRBS

signals different from those used for the self-calibration routine. In Fig. 4.4b instead we vali-

dated our technique on plants with increasing number of cores. First, we have applied PRBSs

on each core and then we have computed the model. Finally, we have measured the mean

absolute error between the temperature of the system and the temperature of the model, both

running PARSEC 2.1 benchmarks traces (13) (see AppendixB for more details). The resulting

errors are lower than 1◦K on average.

89

4. MPC THERMAL CONTROLLER FOR MPSOCS

50 51 52 53 54

335

340

345

Temperature Comparison (Core1)

(a)

Real Model

Identified Model

(b)

°K

°K

s

Fluidanimate Facesim

BodytrackDedup

0

0,2

0,4

0,6

0,8

1

1,2

4 8 16 48

MEAN ABSOLUTE ERROR

Cores

Figure 4.4: Self-calibration routine results

Notice that the modular model can be easily translated into a global model by composing

the single-core models contributions.

4.1.2 H∞ identification

We have seen that a common procedure to find the prediction model is the system identification.

Basing on the observed data, i.e. inputs and outputs, the system identificationapproach finds

the optimal parameters of the model minimizing a certain objective function. The model order

chosen and the number of inputs determine the number of these parameters. Their values

instead depends on the objective function chosen. In the previous section, for each core we

minimized the mean square of the error between the measured and the estimated temperatures

of the core. Also theH∞ technique search for a modular model of the second order, but it

uses a different cost function that favors the development of a more reliable and efficient MPC

controller. For each single-core model it finds the parameters that minimizes the infinite norm

of the error, i.e. the maximum error, but imposing the estimated temperature to be always

greater than the measured one. This latter constraints allowed us to increasethe robustness

of the controller. Indeed, the MPC controller, which exploits the model, will always forecast

a temperature value higher or equal than the real one. Therefore, at any time, the control

decision returned by the controller will be either the optimal one or a less performing one. This

optimization problem can be formalized as,

min
s,α1,α2,β1,β2

s

s.t.
Ti(t)−Ti(t|t −1)≥−s
Ti(t)−Ti(t|t −1)≤ 0

(4.10)

90

./4_BasicSolution/img/0040_MSE.eps

4.1 The prediction model

whereTi(t|t −1) results from the second order input/output model,

T(t|t −1) = α2 ·T(t −1)+α1 ·T(t −2)+β2 ·u(t −1)+β1 ·u(t −2),

u is the inputs vector andβ2 andβ1 are vectors of appropriate dimensions. Notice that the two

constraints impose the error to be negative or at least equal to 0.

Finally, if necessary, we may convert the model from the I/O space to the state space ob-

servable canonical form,

[
x1(t +1)
x2(t +1)

]
=

A︷ ︸︸ ︷[
α2 1
α1 0

]
·

[
x1(t)
x2(t)

]
+

B︷ ︸︸ ︷[
β2

β1

]
·u(t)

T(t) =
[

1 0
]

︸ ︷︷ ︸
C

·

[
x1(t)
x2(t)

] (4.11)

It is worth to note that the parameters result from the data collected for a particular bench-

mark. However, it could exist particular benchmarks for which the temperature estimated is

lower than the real one. For this reason we use a PRBS and check for themost typical bench-

marks of the package PARSEC 2.1 (13).

In this thesis we also experimented an iterative procedure that uses theH∞ approach. The

aim is to find the model with the appropriate inputs. The algorithm starts considering all the

possible inputs for the single-core model (the power of all the cores, the ambient temperature,

and the temperature of all the cores), then it repeats the identification approach discarding at

each step the inputs with negligible contributions or giving rise to incoherent results. As an

example it is expected that the temperature contribution of a core decrease with distance. This

approach could be necessary to cover the scenarios missed by the test shown in Fig.4.3.

4.1.3 POD approach

In control theory it is extremely important to find a low-order model that approximates the be-

havior of the real system without impacting on the computational cost. The Proper Orthogonal

Decomposition (POD) is an elegant technique for finding low-dimensional approximation of

large-scale dynamical systems and data sets. The POD is also known as Principal Component

Analysis (PCA), the Karhunen-Lov̀e Decomposition (KLD), and the single value decompo-

sition (SVD). It provides the optimal orthonormal basis for the modal decomposition of an

ensemble of functions, such as data obtained in the course of experiments (14). Combined

91

4. MPC THERMAL CONTROLLER FOR MPSOCS

with the Galerkin projection procedure, we can obtain a lower dimensional models of dynami-

cal systems that have a very large or even infinite dimensional phase space.

Assume we have a very accurate model of the system obtained by using a finite elements

decomposition approach, that is discretizing in space the infinite dimension system. This model

has usually a high order and therefore it is prohibitive for the development of a controller.

We may think to have the model we used as plant in our simulations (see AppendixB) that

counts 360 states for a four-cores processor. We call asT(s, t) the function which describes the

temperature of the discretized system:s represents thes-th elementary volume (suppose they

areK), andt is the time sample. It is always possible to expressT(s, t) as an infinite sum of

coefficientsΓ = [γ1, . . . ,γ∞] multiplied by the vectors of the orthonormal basisΦ = [φ1, . . . ,φ∞],

T(s, t) =
∞

∑
k=1

γk(t) ·φk(s) (4.12)

An approximationT̂(s, t) of T(s, t) can be obtained using a basisΦM containing onlyM vectors.

The POD technique find theM terms basis that gives the best approximation in a least square

sense. In particular we want to minimize the distance of the data respect to theirapproximation,

expressed as,

min
∫ Time

0
‖T(s, t)− T̂(s, t)‖2dt (4.13)

Solving this problem is equivalent to solving the eigenvalue problem,

Corr ·Φ = Φ ·Λ (4.14)

where, according to the method of Sirovich, we may find the correlation matrixCorr as,

Corr =
1

Nsample
·TT

SNAP·TSNAP (4.15)

andTSNAP is theK ×Nsamplematrix, thesnapshot matrix, obtained collecting the temperature

values of theK elementary volumes composing the model forNsampletime samples, i.e.

TSNAP= [T(1) T(2) . . . T(Nsample)] (4.16)

T(i) is a column vector withK elements andΛ = diag(λ1, . . . ,λNsample) is the diagonal eigen-

values matrix.

The basis corresponds toΦ and it containsK eigenvectors ofCorr. The correlation between

the data and a genericφi is represented by the eigenvalues: the greater is the eigenvalueλi the

greater is the ability ofφi to approximate the data collected. Thus, we can chooseM (the basis

92

4.1 The prediction model

dimension) by taking theφi i = 1, . . . ,M vectors with the greatest eigenvalues. As an example

we could findM using the function,

PM =
∑M

i=1 λi

∑
Nsample

i=1 λi

(4.17)

Assuming the eigenvalues are sorted in a descending order, we start withM = 1 and then we

increaseM until we reachPM = 0.99. The reduced basis isΦM = [φ1, . . . ,φM] andT(s, t) can

be approximated witĥT(s, t) = ΦM ·ΓM(t) whereΓM(t) = [γ1(t), . . . ,γM(t)]

Once we found the basis functions, we apply to the plant the Galerkin projection to find

the low-dimensional model. Suppose our plant is a linear discrete-time model obtained by

discretizing a partial differential equation via finite elements or finite differences,

ẋ(t +1) = A·x(t)+B·u(t)
T(t) =C ·x(t)

(4.18)

whereC = INsample and hencex(t) = T(t). We obtain the reduced order model by substituting

theT(t) with its approximationT̂(t) and projecting the system onto the subspace defined by

ΦM by multiplying the matricesA, B, C by ΦM. The final matrices of the reduced model are:

AR = ΦT
M ·A·ΦM BR = ΦT

M ·B CR =C ·ΦM (4.19)

In Fig. 4.5 it is reported a simulation test where the distributed ARX and the POD approaches

have been compared. We modeled the thermal behavior of a simple four-cores processor ex-

ploiting the well-known equivalence between thermal and electrical systems,as shown in Ap-

pendixB. We split the volume of the processor in two layers and then we decomposed each

layer into a large number of cubic cells. To each cell we assigned an equivalent electrical cir-

cuit obtaining a model as in equation (4.18). The total number of cells isK = 1728 then the

dimension of the state matrix,A, is 1728×1728.

The blue line represents the real temperature measured on the simulator, the green line is

the temperature estimated by the low order model obtained with the distributed ARX approach.

The single-core models has been composed to obtain the global model that counts 8 states (2

per core). Finally, the red line represents the model obtained with the POD technique. Despite

it has a lower number of states, a total of 5, the temperature estimation are better. The mean

value of the error for the POD respect to the real temperature is 0.44◦C, whereas the one for

the ARX is 4.7◦C.

From these results the POD seems to be the preferable approach to use in MPC control

solutions. However, it present two main disadvantages that made us lean towards the ARX

93

4. MPC THERMAL CONTROLLER FOR MPSOCS

Core 1

Core 2

Core 3

Core 4
3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98

25

30

35

40

0

10

20

30

Real Model ARX POD

Te
m

p
e

ra
tu

re
 [

°K
]

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 [
W

]

Figure 4.5: (a) Simulated processor, (b) Thermal and power Response of the core 1

andH∞ approaches. First, this approach requires the knowledge of the thermalbehavior of

the real system in all its points, but this is usually impossible since on a chip are present only

few sensors, say one per core. Also the use of softwares for the finiteelement decomposition

analysis do not represent a viable way. Indeed, it is difficult to tune all the parameters to have

the identical response of the real system. Moreover, preparing such amodel is time consuming

and the possibility of reuse the model for other processors is very low. Second, our MPC

solution has the characteristic of being distributed, therefore it fits well with the distributed

ARX andH∞ approaches.

It is also worth to note that the ARX average error of 4.7◦C is not significative since is

obtained using the model as a simulator. Inside the controller, instead, it is used as a predictor,

thus, starting from the real temperature value it has to forecast the futuretemperature for few

time instants. In this scenario the ARX results accurate.

The code used for the POD method is shown in AppendixC

4.2 The Distributed Thermal Controllers

In this section we present the main contribution of this thesis, that is the distributed thermal

manager designed using the MPC approach. The main idea of this solution relies in decompos-

ing the MPC controller into a set oflocal MPC controllerseach one supervising the temperature

of a group of cores. Notice that the number of cores supervised by each controller can be dif-

ferent. In the follows we considered a fully distributed solution, that is eachcore is supervised

94

./4_BasicSolution/img/0045_ResultsPOD.eps

4.2 The Distributed Thermal Controllers

by a local controller.

The block diagram in Fig.4.6shows its global architecture, focusing on a single local con-

troller which basically consists of four blocks:f2P converter, P2f converter, MPC Controller

andObserver.

(NL)

f
2
P

(NL)

P
2
f

MPC
Controller
Lin.Model

Optim.

Observer

freqT i

CPI i

Local Controller #i

PT i

TAMB

TNEIGHi

xi

Ti, TNEIGH i

PC i

CPI i

freq C i

freqT n

CPIT n

freq C n

Local Controller #1
freqT 1

CPIT 1
freq C 1

T1, TNEIGH 1

Local Controller #n
Tn, TNEIGH n

Thermal

Model

High

Level

Manager

Figure 4.6: Thermal Controller structure

f2P and P2f converter blocks.These two blocks perform the conversion respectively from

frequency to power and from power to frequency using the workload as additional information.

The main role of the blocks is to encapsulate the nonlinear part of the frequency to tempera-

ture relation. The main advantage of this separation is the possibility of using a linear MPC

controller instead of a nonlinear one which allows the use of more efficient and reliable algo-

rithms for computing the optimal control solution. Both the conversion rely on theempirical

relation (4.1). Thef2P converterblock accepts as inputs the target frequency and the workload

coming from a high level manager. It takes as inputs the target core speedand the workload,

respectively defined asf reqT,i andCPIi , and it returns as output the correspondent power con-

sumption (PT,i). Notice that in Fig.4.6 theVdd does not belong to the inputs set. However,

as we have already mentioned, the voltage can be substituted by a nonlinear function of the

frequency. TheP2f converterblock is the dual of f2P one. It receives as inputs the optimal

PC,i and the workload of the core, and converts them to a consistent frequency value fC,i . This

optimal frequency is then applied to the core. The P2f conversion is obtained by inverting

the (4.1). Unfortunately, the function is nonlinear, so for finding the root we need to use an

iterative numerical method. We have chosen Brent’s method (15) that combines the stability

of bisection with the speed of a higher-order methods. In particular it usesthe secant method

95

./4_BasicSolution/img/0050_LinearNonLinear.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

or inverse quadratic interpolation if possible and the more robust bisection method if necessary.

MPC controller block. It represents the center of the local controller. It uses the input

measurementsTAMB, TNEIGHi andxi to forecast the core temperature obtained by consuming

all the requested powersPT,i . As output, the block returns the controlled powerPC,i which is

equal toPT,i , if the predicted temperature meets the temperature constraint (TMAX), otherwise

it is reduced. Clearly, the reduction must be as small as possible to maximize the performance.

In order to define a local MPC controller able to manage this problem, two main elements

must be designed: a model used for computing predictions and an optimization problem to

find the optimal control decisions. The model estimate at each time instant, and starting from

the current system temperature, the temperature of the core for a future timewindow. We

have already discussed about the characteristics of the model and how toset its parameters.

As an example this model could be identified by using a self-calibration routine,as shown in

Section4.1.1. Let us assume to have for each controller a single-core model of the form,

[
Ti(t +1)
x2,i(t +1)

]
= A·

[
Ti(t)
x2,i(t)

]
+B·




Pi(t)
TAMB(t)

TNEIGHi (t)




Ti(t) =C ·

[
Ti(t)
x2,i(t)

] (4.20)

whereTi , Pi , TNEIGHi are respectively the temperature, the power consumption, and the temper-

ature of the neighbors of thei − th core, whereasx2,i represents the unmeasurable state of the

model since we consider a second order model for each core.

The obtained forecasts are finally used to define the optimization problem:

min
PC,i

hp−1

∑
k=0

‖PC,i(t +k|t)−PT,i(t +k)‖2
Q (4.21a)

s.t.

Ti(t +k+1|t)≤ TCRIT ∀k= 0, . . . ,h (4.21b)

whereTi(t + k+1|t) represents the temperature of the core predicted for timet + k+1 based

on the information available at timet. The inequality (4.21b) imposes a hard constraint on the

core temperature (Ti), while (4.21a) ensures the maximization of performance, minimizing the

difference between the target power (PT,i) and the power really assigned to the core (PC,i). hp

represents the dimension of the prediction time window in sample instants (i.e. the prediction

96

4.2 The Distributed Thermal Controllers

horizon) andQi is a matrix that weights the importance of the square error elements. In our

implementation we have chosenQi equal to the identity matrix andhp = 1, guided by the

characteristics of the system. Each sampling time, the solver yields the optimal solution, PC,i ,

that minimizes the cost function and meets the constraints.

Hereafter, we briefly recalled two possible alternatives to solve the optimization problem

presented above. The first is calledimplicit and provides an iterative algorithm that solves

on-line the optimization problem at each time instant. The second, instead, performs the op-

timization off-line and it is calledexplicit (16). Both the methods have been introduced in

Chapter3. Anyway, both the approaches need for a reformulation of the problem ina standard

quadratic programming (QP) form. The steps shown below transpose the approach used in

AppendixA to our specific problem.

min
wi

1
2
·wT

i (t) ·Hi ·wi(t)+gT
i ·wi(t) (4.22a)

s.t.

Mi ·wi(t)≤ bi (4.22b)

This problem is exactly equivalent to the optimization problem previously defined. Whereas

wi(t) is the solution vector, the values of matrices and vectorsHi , Mi , gi andbi can be found

starting from (4.21a) and (4.21b). Below are presented the mathematical manipulations to

obtain them.

From (4.21a) we findHi andgi . The function can be rewritten in the vector form:

J = (PC,i −PT,i)
T ·Ri · (PC,i −PT,i)

wherePC,i = [PC,i(t|t) . . . PC,i(t + k|t) . . . PC,i(t + hp − 1|t)]′ and PT,i = [PT,i(t) . . . PT,i(k+

i) . . . PT,i(t +hp−1)]′ andRi is the weight matrix (for example an identity). Note that we set

hp = 1, hencePC,i = PC,i [k|k] andPT,i = PT,i [k]. Computing the products we have:

J = PT
C,i ·Ri ·PC,i −PT

C,i ·Ri ·PT,i −PT
T,i ·Ri ·PC,i +PT

T,i ·Ri ·PT,i (4.23)

Using the matrix rule(A·B)T = BT ·AT we can rewrite the previous equation as:

J = PT
C,i ·Ri ·PC,i −PT

T,i ·Ri ·
T PC,i −PT

T,i ·Ri ·PC,i +PT
T,i ·Ri ·PT,i (4.24)

The searched value isPC,i , hencewi(t) = PC,i . Then:

Hi = Ri gi =−PT
T,i · (R

T
i +Ri)

97

4. MPC THERMAL CONTROLLER FOR MPSOCS

The termPT
T,i ·Ri ·PT,i can be omitted since it is constant at each time step.

Now we can manipulate the constraint inequality for obtainingMi andbi . Remembering

thathp = 1, (4.21b) becomes:

Ti(t +1|t) =Ci ·xi(t +1) =Ci · (Ai ·xi(t)+Bi ·ui(t)≤ TCRIT

whereu= [PC,i TAMB TNEIGHi]
′. Making explicitPC,i we have:

Ci ·B1,i ·PTCi ≤ TCRIT−Ci ·Ai ·xi −Ci ·B2,i · [TAMB TNEIGHi]
′

whereB= [B1,i B2,i], B1,i is the column ofBi related to the inputPC,i andB2,i is the completion

of Bi . From the previous equation:

Mi =Ci ·B1,i

bi = TCRIT−Ci ·Ai ·xi [k]−Ci ·B2,i · [TAMB TNEIGHi]
′

It is worth to note that we could also consider the case of a lower bound on the power (PMIN ≤

PC,i) writing:

Mi =

[
Ci ·B1,i

−1

]

bi =

[
TCRIT−Ci ·Ai ·xi [k]−Ci ·B2,i · [TAMB TNEIGHi]

′

−PMIN

]

In some of our simulations we do not take into account this power constraint since it is rea-

sonable to assume that the real chip is designed to dissipate a power higher thanPMIN without

incurring in thermal issues.

Once the QP formulation is obtained, one of the two approaches can be usedto find the

optimal solution. The implicit approach uses a quadratic programming solver. It is worth to

note that the matrixbi depends on the current statexi(t) that is time-variable. The same goes

for gi(t) that depends on the requested powerPT,i which is also time varying. Clearly, since

the QP problem changes over time, the solving algorithm must be applied on-lineat each time

instant. Although efficient QP solvers based on active-set methods and interior point methods

are available, the computational overhead for finding the solution demands significant on-line

computation effort. Assuming that the solution of the QP problem does not change much from

the solution obtained at the previous iteration, we can reduce this effort byusing an active

set algorithm capable of finding the new solution starting the search from theprevious one

(hotstart). This algorithm is implemented in the open-source library qpOASES (17).

98

4.2 The Distributed Thermal Controllers

As previously mentioned in Chapter3 and in AppendixA, another way to reduce com-

putational burden is to use an explicit approach that solves the QP problemoff-line for all

possible values ofxi(t). The problem solved in this way is commonly called multi-parametric

QP (mp-QP). By treatingxi(t) as a vector of parameters, the optimal solution is an explicit

function of the state (PC,i(xi(t))) with the property of being continuous piecewise affine (16).

In other words it is possible to partition the state-space into convex polyhedral regions, each

one with its own optimal linear control law. At each time instant,xi(t) lies in one and only

one of these regions. Similarly to a Look-Up Table (LUT), knowing the current state and by

checking region boundaries it is possible to find the solution using the linear expression:

PC,i(x) = Fr i ·xi(t)+Gr i (4.25)

wherer is the region index andFr,i andGr,i are the corresponding gain matrices for each corei.

Even though on one hand the use of the explicit solution reduces the computational over-

head, on the other hand it increases the memory usage for storing the data.Similarly to the

overhead in the implicit solution, the number of regions increases with the problem complex-

ity (18).

Observer. The aim of this block is to estimate the unmeasurable state component (x2,i)

from the temperature measurements. Indeed in Section4.1 the model is shown to have two

dynamics, but only one thermal sensor per core is available. By knowing the model and taking

as inputs the temperature of the coreTi andPC,i , the observer estimates the state components

x2,i . Subsequently, this state will be used by the MPC block as initial state for the prediction of

the temperature at the next time instant. We have used for eachi-th core a classic Luenberger

identity observer defined as:

x̂i(t +1) = Ai · x̂i(t)+Bi ·ui(t)+Ki · (Ti(t)−Ci · x̂i(t))

wherex̂i is the estimation of the state,Ai , Bi , Ci are the matrices of the prediction model, the

same used by the MPC controller andui is the input vector containingPC,i , TAMB, Ti , TNEIGHi .

Ki is the observer gain matrix that is a degree of freedom for the designer. Its elements are

chosen to asymptotically stabilizing to zero the dynamic model of the estimation errore(t) =

x̂i(t)−xi(t) characterized by the state matrix(Ai −Ki ·Ci). To do that we act onKi to move the

poles of the error model inside the unitary circle. In particular we place the poles closer to the

99

4. MPC THERMAL CONTROLLER FOR MPSOCS

center than the poles of the model to have faster dynamics and thus a faster convergence of the

error to zero. The only requirements to arbitrary move the poles is the observability of the pair

(Ai ,Ci) that is assured by the physics of the system, in fact each dynamic directly or indirectly

affects the model output temperatures.

4.3 Design choices motivations

This section aims to show simulation results in order to justify our design choices.The tests

have been performed on a Matlab/Simulink thermal simulator, as the one carefully described

in AppendixB. This allowed us to be more rapid in switching from a control law to another or

simply to change the chip floorplan. The Fig.4.7shows the architectures of the chips simulated

during the tests.

s

CORE 1

CORE 2

CORE 3

CORE 4

C
A

C
H

E
 L

2
C

A
C

H
E

 L
2

s

s

s

1
3

1
2

 u
m

2
3

,6
1

6
 m

m
13,12 mm

CORE 1

CORE 3

CORE 5

CORE 7

CORE 2

CORE 4

CORE 6

CORE 8

s s

s s

s s

s s

s s s s

1 2 3 4

s s s s

5 6 7 8

s s s s

9 10 11 12

s s s s

13 14 15 16

s s s s s s

1 2 3 4 5 6

s s s s s s

7 8 9 10 11 12

s s s s s s

13 14 15 16 17 18

s s s s s s

19 20 21 22 23 24

s s s s s s

25 26 27 28 29 30

s s s s s s

31 32 33 34 35 36

s s s s s s

37 38 39 40 41 42

s s s s s s

43 44 45 46 47 48

2
0

,9
9

2
 m

m

2
0

,9
9

2
 m

m

7,872 mm

2
0

,9
9

2
 m

m

7,872 mm

2
0

,9
9

2
 m

m

7,872 mm7,872 mm

PMAX/core: 25W 17.5W

8 cores

(c)

16 cores

(d)

48 cores

(e)

Xeon-like

(a)

4 cores

(b)

6.25W 2.083W

s

CORE 1

CORE 2

CORE 3

CORE 4

s

s

s

Figure 4.7: Simulation layout of the chip used in the tests

The majority of tests have been performed using as a layout an accurate XeonR© X7350 like

four cores model calibrated on real HW (for more details see AppendixB). For simplicity and

without loss of generality the tests comprising chips with more than 4 cores wereperformed

on chips without caches. Note that this is not a limitation because all the comparison tests are

performed under the same simulation conditions. Finally in the 8, 16 and 48 cores layouts we

scaled down the maximum power of each core in order to keep constant the power density on

100

./4_BasicSolution/img/0060_Layout.eps

4.3 Design choices motivations

the chip and we reduced the spatial discretization of the thermal simulator to keep constant the

number of finite elements per core.

In the following subsections, we show:

1. a comparison between our distributed solution and a centralized solution;

2. the importance of an accurate prediction model;

3. the importance of an accurate power model ;

4. a comparison between our distributed solution and a PID based solution

4.3.1 Distributed solution vs. Centralized solution

Recently, literature presented many variants of MPC-based DTM schemes for managing the

thermal issue of MPSoCs. Despite the use of different formulations and architectures, see

e.g. (18)(19), a quite common idea is to modify the frequency of each core with the twofold

objective of meeting the temperature constraint and tracking the target frequency requested by

a high level SoC manager. This purpose can be obtained by solving an optimization problem

whose prototype is:

min
h−1

∑
k=0

‖ fT(t +k|t)− fC(t +k|t)‖2
Q (4.26a)

s.t.

Tj(t+k+1|t)≤TCRIT ∀ j=1, . . . , p ∀k=0, . . . ,N (4.26b)

where fC = [fC,1, . . . , fC,N] is the set of frequency assigned to the cores,fT = [fT,1, . . . , fT,N]

is the set of target frequency,QN×N is the weight matrix, andTCRIT andTj , j = 1, . . . , p are

respectively the critical temperature and the temperatures on thep points selected to represent

the thermal state of the die (i.e. the sensors). The notationTj(t+k+1|t) means the temperature

estimated for the future time(t + k+ 1) based on the information available at timet which

implies the existence of a thermal model relating the frequency of all the cores(and the ambient

temperature) with future cores temperatures. Notice that also in this case according to (4.1),

it is possible to replace respectively the target (fT) and the current (fC) frequency with the

target (PT) and the current (PC) power consumption. The controller takes as inputs theCPI and

the target frequency of all the cores. It translates these two attributes in power consumption

101

4. MPC THERMAL CONTROLLER FOR MPSOCS

requirements. After having solved the optimization problem, the controller returns the optimal

power consumption of all the cores which is subsequently translated in frequency inputs for the

thermal simulators.

This control approach is usually referred to as“Centralized” because the control decision,

i.e. the frequency assigned to each core, results from the solution of a unique problem running

on a single core. However, this solution is problematic to execute on a large scale system

because of the computational complexity. As the number of cores increases(this is the expected

trend for the future), the time necessary to solve the problem (4.26) exponentially evolves,

causing a loss of controllability on the system, maintenance problems and a reduction of fault-

tolerance to sensors and actuators failures (20).

These considerations motivate the use of our distributed solution characterized by a set of

local controllers each one supervising the temperature of a group of cores (that is a single core

in the problem described in (4.21)).

We have tested the performance of the distributed and centralized solutions using this lat-

ter as yardstick, since it guarantees the maximum achievable thermal controller performance,

reflecting in minimal QoS degradation due to thermal constraining. The first test consists in

measuring the performance of the two solutions as maximum overshoot respect to the critical

temperatureTCRIT = 330◦K and percentage of time spent over the aforementioned threshold

(we consider the limit violated when temperature exceeds 330.1◦K). We performed these tests

using the Xeon-like chip architecture (see Fig.4.7a) and applying to the cores different PAR-

SEC 2.1 (13) benchmarks. The same test has been also repeated on Simics a full-systemvirtual

platform to gauge with high accuracy the complex interdependencies between control actions

and workloads, which are lost when using trace-based workload models(see AppendixB).

Fig. 4.8shows that the distributed and centralized solutions have comparable performance. In

Bla
ck

sch
ole

s

Bo
dy

tra
ck

Fre
qm

ine

Sw
ap

tio
n

Fu
ida

nim
ate

Ca
nn

ea
l

0

0,02

0,04

0,06

0,08

0,1

0,12 Centralized

Distributed

Maximum Temperature
Overshoot (MATLAB/Simulink)

Fluidanimate Bodytrack RaytracingFacesim Dedup

3%

0%

1%

2%

Distributed Thermal Controller
QoS loss (Simics)

(b)(a) (c)

Percentage of !me the bound is
violated (MATLAB/Simulink)

Fluidanimate Bodytrack RaytracingFacesim Dedup
0

0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0,009

0,01

Centralized

Distributed

Figure 4.8: Centralized vs. Distributed performance comparisons: (a)Maximum overshoot, (b)

Percentage of time the bound is violated, (c) Distributed solution QoS Loss

102

./4_BasicSolution/img/0070_PerformanceComparison.eps

4.3 Design choices motivations

(a) (b)

Distributed MPC Complexity
(single core)

f2P

P2f

µs (!me)

µs (!me)

µs (!me)

regions

µs (!me)

0,061

0,743

MPC (Impl) 4,690

MPC (Expl) 2

1,188

Observer

MPC_explicit MPC_implicit

4 81 7,70

8 6561 9,00

16 OUT 24,20

48 OUT 85,50

regions time (us)

Centralized MPC Complexity

Figure 4.9: Scalability and complexity reduction results

Simics test we use a QoS Loss metric that quantifies the controller quality of service (QoS)

degradation due to thermal constraint. We decided to compute it as the mean squared error

between the target frequency (fT) and the one applied to the system by the controller (fC).

Even though performance obtained by the centralized solution representsan upper bound for

the distributed one, in all the tests we attained a close approximation of the optimal control

actions computed by the centralized controller.

Previous tests showed that our distributed solution performs as the centralized one in terms

of controller quality. However, its main properties remain hidden. Hereafter, we provided some

results to highlight its main benefits in terms of computational complexity and scalability.

The tests consist in comparing the distributed and the centralized solutions forincreasing

number of cores (we used the Fig.4.7b-e models). To evaluate the complexity we use as met-

rics both the execution time, for the implicit formulation, and the number of regionsfor explicit

one. As a matter of fact, (18) shows that the number of operations depends logarithmically on

the number of regions. Instead, for the implicit solution, we provide the mean computational

time necessary to solve the QP problem at each iteration. This time has been obtained running

a C/C++ code version of the control algorithm on a 2.4GHz dual-core processor. The Fig.4.9a

shows the relation between the computational complexity and the number of cores in the cen-

tralized MPC solution. The time spent to solve the QP problem and the number of regions

exponentially increases with the number of cores in the worst case. In particular, as asserted

in (16) and in Section3.3, the regions number increases with the number of states, decision

variables and constraints. For a chip with 16 or 48 cores we have been unable to compute them

for memory limitations.

Fig. 4.9b instead shows the complexity of our distributed solution: whereas the centralized

solution grows exponentially, the distributed one globally increases linearly.Moreover, the

103

./4_BasicSolution/img/0080_TimeCentrDistr.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

complexity of a single controller node remains constant regardless the number of cores. Indeed,

each one has only two regions and spends on average only 4,69 µs to solve the QP problem.

The same figure also shows the execution time for the frequency-to-powerconversion and the

observer estimation. Notice that their impact on the global execution time is negligible (< 2µs).

In addition, we need to consider that our distributed controller is naturally parallel (i.e. one

local controller running on each core), while parallelization of the centralized controller is far

from obvious. As consequence of our distributed implementation, each thermal controller can

be stopped autonomously without impacting on other controllers performance.This avoids

periodically waking-up of idle cores to execute the controller routine. Moreover, the small

power consumption of cores, when power gated, ensures that no thermal emergencies can

occur on their surface. Consequently, they do not need to be thermally controlled. As the core

is waken up, the controller will pay a temporally QoS loss due to the partially valid initial state

vector. Properties in the Luenberger observer ensure this error fast converges to zero. This

is not the case of centralized MPC where the core in which the controller is running always

need to be periodically waken-up since other cores might be under thermalemergencies. This

introduces extra energy penalties in centralized solution applicability.

The set of tests performed in order to compare the centralized and the fully distributed solu-

tions conclude with the exploration of intermediate solutions. Indeed, it could be convenient to

group cores in set with a cardinality greater than one. The data in Fig.4.10refers to a 16 cores

chip where different degrees of control distribution are applied. In detail, the comparison is be-

tween the centralized solution, the fully distributed solution and two semi-distributed solutions,

in which local controllers manage respectively groups of four and eightcores. As expected,

results shows comparable performance in both scenarios: the maximum constraint violation

differs by few one hundredths of degree (see Fig.4.10a). The percentage of time for which the

temperature violates the constraint is omitted since the results are all zeros. Fig.4.10b, instead,

shows the controller complexity of each single group. We can notice that the number of regions

exponentially increases with the number of cores supervised by each controller. Also the time

spent to solve a QP problem increases as well. Moreover, even though the sum of solving times

of each local controller in distributed or semi-distributed solutions are higherthan the central-

ized one, due to its parallel execution, the completion time of the distributed implementations

is equal to the one of a single local controller.

104

4.3 Design choices motivations

Fluidanimate
329,98

330,06

330,04

330,02

330

Dedup Raytracing

Maximum Temperature
Overshoot

Complexity per single
controller

15.4162 6463

8.65926 70

!me (us) # regions

29.119 OUT

4.55575

88

4444

Centralized

Distributed 2

(a) (b)

Distributed

4444

88

Centralized

Figure 4.10: Scalability by grouping

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0

5

10

15

20

25

30

35

Fluidanimate Facesim Dedup Bodytrack Raytracing

(a)

Fluidanimate Facesim Dedup Bodytrack Raytracing

(b)

Centralized

2 Dynamics

Distributed

2 Dynamics

Centralized

1 Dynamic

Maximum Temperature
Overshoot

Percentage of !me - thermal
bound viola!on

Figure 4.11: Prediction model: 1 dynamic per core vs 2 dynamics per core

4.3.2 Model accuracy

We have mentioned many times the importance of the model accuracy in order to have good

predictions. In this subsection, we tested how performance worsen as themodel change. We

have compared the centralized solution with a second order global model withthe same solu-

tion, but with a simpler first order global model as in (19). Notice that in this case we used

a centralized solution instead of the distributed solution for the sake of simplicity.Anyway,

we have already shown that the performance of the centralized and distributed solutions are

similar, therefore the results of the test hold also for the distributed solution.

The results in Fig.4.11show, as we expected, a worsening of the controller performance.

The first order model we use considers only the slower dynamics, that are the dominant ones.

The absence of faster dynamics causes oscillations in the controlled temperature that causes a

105

./4_BasicSolution/img/0090_GroupingPerf.eps
./4_BasicSolution/img/0095_1DynamicMod.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Centralized

Nonlinear

Distributed

Nonlinear

Centralized

Linear

Fluidanimate Facesim Dedup Bodytrack Raytracing

(a)

Fluidanimate Facesim Dedup Bodytrack Raytracing

(b)

Maximum Temperature
Overshoot

Percentage of �me - thermal
bound viola�on

0

5

10

15

20

25

30

35

Figure 4.12: Nonlinear vs. linear power model function (P2f and f2P)

large increase in the percentage of time the constraint is violated. The controller sees that the

model behavior is characterized by slow dynamics so in proximity of the temperature limit it

gives a strong control action to rapidly decrease the temperature. Differently, the plant, having

both slow and fast dynamics, responds with larger temperature decreasing. The controller

senses this unexpected drop in the temperature and, again, it reacts with a control action larger

than what needed. This gives rise to a limit-cycle oscillating behavior which is far from ideal.

4.3.3 Power Model accuracy

The accuracy of thef 2P and P2 f converters is extremely important to have a reliable and

efficient controller. A wrong estimation of the power consumption could lead toperformance

degradations as consequence of suboptimal control decisions. The tests we have performed

show an extremely worsening of the results when the nonlinear Power Model is substituted

with its linearization. In the first test we compared the centralized solution with a similar one

where a linear function has been used forf 2P andP2 f conversions. As in (19) we use the

best first degree polynomial fitting the nonlinear function. The test has been performed on

the Xeon-like processor since the number of cores does not impact on theresults, but only

emphasizes the results attained.

The results in Fig.4.12show that the MPC with linearf 2P function shows globally lower

controller performance. It has bigger maximum overshoot, and the time percentage the con-

straint is violated is significantly higher. This is because the linear function transforms the

controller output power,PC, into an input frequency for the plant model which is higher or

lower than the frequency really derived by the controller. Notice that performance is influ-

106

./4_BasicSolution/img/0100_LinearP2F.eps

4.3 Design choices motivations

enced by the previous results since the frequencies are maintained closerto the input target

frequencies because the temperature constraint is violated more than the other cases.

A reader could complain about the fact that the Power Model we used as comparison meter

with the linearized one is the same used inside the thermal simulator. Moreover, the Power

Model has been identified through empirical experiments, hence there areno guarantees about

its accuracy. The next test shows that even stressing the nonlinear function inside the controller

with parameters errors the performance slightly degrades.

D
el

ta
 K

el
vi

n
 d

eg
re

e
re

sp
ec

t
TM

A
X

Maximum Temperature
Overshoot

%
 o

f
�

m
e

Percentage of �me - thermal
bound viola�on

Ideal

Error 20%

Fluidanimate Facesim Dedup Bodytrack Raytracing Fluidanimate Facesim Dedup Bodytrack Raytracing

(a) (b)

Error 30%

0

0,1

0,2

0,3

0

10

20

30

40

50

Figure 4.13: Sensitivity test on the Power Model

In order to quantify how the accuracy of the power model impacts on controller perfor-

mance, we have simulated different accuracy levels by introducing artificial errors in the Power

Model parameters. This is done while keeping the simulation model unchanged. Same errors

are applied both inf 2P andP2 f . Fig.4.13shows the performance of the distributed controller

under two different levels of accuracy. Respectively we introduced a20% and a 30% of error

on all the parameters off 2P andP2 f functions. The results show that despite a worsening in

performance, our controller is robust to power model accuracy lack. Indeed, with 20% of error

on internal parameters the maximum overshoot is still lower than 0.2◦K and the percentage of

time the temperature violates the constraint is below the 10%. Moreover, these results highlight

the importance of having an accurate power model for control performance. This reflects in the

expectation that in future chip releases, manufacturers will provide detailed information on the

f2P relation or will embed accurate power sensors in the final HW to facilitate itsidentification

and its recursive recalibration.

It is also important to note that a recursive recalibration at run time of the linear part of

the model would help to improve performance compensating also the uncertainties on this

107

./4_BasicSolution/img/0110_Sensitivity.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

function, for instance leakage power to temperature dependency.

4.3.4 Distributed solution vs. PID solution

In our control solution we have used a sophisticated approach based onMPC, but is this better

than a classical PID one?

In this subsection we provided a comparison between our distributed MPC solution and a

distributed PID-based solution. The test has been performed on the Xeon-like processor. We

designed the PID solution taking the cue from the controller developed in (21) for a single

processor (for the sake of simplicity and without loss of generality we control it in power and

not in frequency). By using classical design rules, we approximated themodel of each core

with a first order system with delay. Then, we developed the PID controllerfor each core by

using Ziegler-Nichols and Cohen-Coon tables. The single PID has the time-continuous form:

PIDi = Kc · (1+
1

Ti ·s
+Td ·s)

whereKc, Ti andTd are respectively the constants of the proportional, integral and derivative

actions. As shown in Fig.4.14c, the PID solution is power driven and not frequency driven;

each PID controller takes as inputs the error between the real temperatureandTCRIT and returns

as output the correction that needs to be applied to the target power (PT) to meet the temperature

constraint.

Notice that positive corrections should be avoided since the core would run faster than the

frequency suggested by the high level SoC manager, causing a uselesspower consumption.

For this purpose a saturation[−in f ,0] has been introduced to the control action outgoing from

the PID. Moreover, to prevent the negative effect of the saturation onthe integral action we

force this latter to freeze when controller output saturates the actuator. The final value for our

Ziegler-Nichols based PID are:Kc = 1.048e+003,Ti = 1e−003,Td = 2.5e−004 discretized

with a sampling timeTs = 0.5ms. It is relevant to remark that we chose a sampling time finer

than the MPC solution one that is 1ms in order to reflect the lower internal complexity of the

PID solution. Moreover, the PID controller does not include the quantization. The Fig.4.14a-

b use the usual metrics to show the benefits of a MPC-based solution on performance. This

results are even more relevant if we consider that the sampling time of the MPC controller is

higher than the one used to discretize the PID.

108

4.3 Design choices motivations

Fluidanimate Facesim Dedup Bodytrack Raytracing Fluidanimate Facesim Dedup Bodytrack Raytracing

(a) (b)

(c)

0

0,1

0,2

0,3

40

30

20

10

0

Kc

PT i

Ti
z-1

Ts

Integral action
+ freezing

+ +

Saturation
[-inf,0]

Saturation
[PMIN,PMAX]

Derivative action

Td (z-1)
Ts z

+

Ti

TCRIT

+

T1

TCRIT

PID #i

PID #1

PC i

PT 1

+
PC 1

+

Tn

TCRIT

PID #n

PT n

+
PC n

Thermal

Model

Distributed MPC

solu!on

Distributed PID
Ziegler-Nichols

Distributed PID
Cohen-Coon

Maximum Temperature
Overshoot

Percentage of �me - thermal
bound viola�on

Figure 4.14: Distributed MPC solution vs. distributed PID solution

109

./4_BasicSolution/img/0120_PID.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

4.4 Control feasibility and other properties

In order to build an effective MPC scheme, model properties should be carefully checked to

test the feasibility of the considered control problem (centralized or distributed) and simplify

the design of the controller.

The aim of this section consists in verifying feasibility of the control solution over different

prediction horizons (hp), taking into account that the constraint on the critical temperature must

be fulfilled by all the points on the die. The feasibility problem is usually disregarded in the

specific literature on the thermal control of MPSoC and no formal proofs guaranteeing the

meeting of the constraints are stated. For this reason we studied the properties of the thermal

models starting from the general Partial Differential Equation (PDE) whichrepresents the heat

conduction in a volume (the so calledheat equation) (22) (23). Then, we used the properties of

the PDE thermal model to obtain general results, which are not affected bypossible side-effects

due to temporal and spatial discretization.

However, it is worth to remark that the model is heavily influenced by uncertainties and

unavoidable simplifications required to make the problem treatable (e.g. the reduction of the

originally infinite dimension model to a handy finite dimension). These simplification neg-

atively affect the model accuracy threatening feasibility and performance. Nevertheless, the

spatial and temporal discretizations, usually adopted in control/simulation-oriented modeling,

are necessary for model simplification even though they introduce an accuracy worsening. The

model has to be simple and accurate to reduce the computational effort and capture all the die

temperatures without missing the maximum one. Thus, rules for model discretization must be

stated. We exploited physical properties of thermal systems to capture the maximum tempera-

ture on the die, keeping the problem size as low as possible for control andsimulations.

4.4.1 The thermal problem

In order to provide a general dissertation on the feasibility problem valid for the whole class

of thermal systems, we assume to have a very accurate model based on PDEs, which perfectly

describes the thermal system behavior. The PDE we considered is the well-known heat equa-

tion that models the heat conduction in a solid body. It belongs to the family of thesecond

order linear PDEs, and in particular it is a parabolic PDE. The heat equation derives from two

important postulates. The first states that the internal energyu [J] of a body depends on the

110

4.4 Control feasibility and other properties

spatial distribution of temperature and the thermal capacity of the material as follows:

u(x, t) = u(T(x, t),x) = cT(T(x, t),x) ·T(x, t) (4.27)

where for the sake of simplicity the thermal capacitycT is assumed constant.

The second is the so-called Fourier’s law of heat conduction stating that the heat transfer

rate per unit area is proportional to the normal temperature gradient, i.e.

~Jq(x, t) =−k(T(x, t),x) ·∇T(x, t) (4.28)

where~Jq(·) [W] is the heat flow,∇T(·) is the temperature gradient andk(·) is a positive pro-

portional term dependent on material conductivity and temperature. Note that the minus sign

is a consequence of the Second Principle of Thermodynamics which states that heat must flow

downhill on the temperature scale or equivalently the entropy of a closed system always in-

creases or remains constant.

In agreement with the First Principle of Thermodynamics, energy is conserved, thus the

total system energy is equal to the amount of energy transferred across its boundary by means

of heat and work (∂u= ∂Q− ∂W). Assuming no working energy is transferred, the variation

of internal energy of the body will depend only on the heat flowing into the body through the

boundary and on the thermal power generated by internal sources ¯q(·):

∂u
∂ t

=−∇ ·Jq+ q̄(x, t) (4.29)

Putting together constitutive equations (4.27) and (4.28) with energy balance equation (4.29)

and assuming, according to common approaches,cT andk as constants, we obtain the heat

equation:

cT ·
∂T(x, t)

∂ t
= k ·∇2T(x, t)+ q̄(x, t) (4.30)

where∇2 is the divergence of the gradient (Laplacian) of the temperature.

To completely define a thermal system this equation is not enough. First the boundary of

the region of interest must be specified. Let the volumeV ⊂R
3 be the region we want to study,

and let∂V be its boundary surface (such that∂V ∪V = V̄). Secondly, the initial condition

T(x,0), representing the system state att = 0 must be set. Finally, the boundary conditions

must be defined. In this regard, the most common choices are Dirichlet boundary conditions

(DBCs), whereT(x, t) is known on the boundary (i.e.∀x∈ ∂V,∀t ≥ 0) and Neumann boundary

111

4. MPC THERMAL CONTROLLER FOR MPSOCS

conditions (NBCs), where the normal derivative∂T/∂n = n̂ ·∇T(x, t) is specified (ˆn is the

normal to the boundary). A general heat problem is given by,




∂T(x,t)
∂ t −α ·∇2T(x, t) = q(x, t) x∈V t ∈ [0,τ [

T(x,0) = T0(x) ∀x∈V

or
T(x, t) = T∂V(x, t)

n̂·∇T(x, t) =−J∂V(x, t)
∀x∈ ∂V ∀t ∈ [0,τ [

(4.31)

where[0,τ [is the time interval,α = k/cT is a constant andq(·) is equal to ¯q(·) except for

a multiplicative constant value. The second and third equation define respectively the initial

temperature and the conditions on the body boundary, i.e. the DBCs and the NBCs. Moreover,

in both formulations, initial and boundary conditions need to be set accordingto the Third

Principle of Thermodynamics, i.e. forcing the temperature evolution to be always positive.

Hence, expressing the temperature in Kelvin degrees, the following further constraints have to

be considered:
T0(x)≥ 0 ∀x∈V ,

or
T∂V(x, t)≥0 ∀x∈∂V, ∀t∈[0,τ [
J∂V(x, t)≤0 ∀x∈∂V, ∀t∈[0,τ [s.t. T(x, t)=0

(4.32)

where the second equation is for DBCs, while the third one is for NBCs.

Remark 1. It is also worth to note that the classical Fourier-based heat equation, used in this

work to model the thermal systems, assumes an infinite propagation speed for the heat. To take

into account the finiteness of heat propagation speed we should upgrade the equation from the

parabolic to an hyperbolic form considering the second time derivative, or touse a nonlinear

parabolic equation like the Porous Medium Equation. Anyway, consideringthe transmission

speed of the heat in silicon and the small sizes of chips, the classical linearequation still

remains a good approximation.

In order to better understand the latter remark, consider an arbitrarily longbar in a monodi-

mensional space. If we apply a heat pulse in its middle, according to Fourierequation, temper-

ature change at the borders instantaneously. However this behavior contrast with the relativity

theory because it assume that the speed of information propagation is faster than the speed of

light in vacuum. This explains why a thermal system modeled with the Fourier equation does

not present an overshoot in correspondence of a pointwise heat reduction when temperature are

at the equilibrium. In simpler words, consider the same bar with a constant initialtemperature

distribution aε below the critical threshold and assume that the boundary conditions are known

(see Fig.4.15). At a particular instant we put a small power in the middle of the bar. From the

112

4.4 Control feasibility and other properties

Temperature

Distribution

Bar x

According to the

relativity theory

te
m

p
er

at
u
re

Figure 4.15: The bar example

Fourier heat equation we would haveṪ(x, t) = q(x, t) since∇2T(x, t) = 0, that means the tem-

perature increases in that point before decreasing, but if we consider a infinite heat propagation

speed then this overshoot is infinitely small and it tends to zero.

4.4.2 Thermal system physical properties

In the following we mention two properties of thermal systems, useful for successive proofs.

The first is the Maximum Principle that allows one to infer the position of the maximumtem-

perature in a generic open volumeV.

Maximum Principle (22) (23): Assume the parabolic cylinder and the parabolic boundary

respectively defined as:

Ωτ :=V × (0,τ] , Γτ := Ω̄τ −Ωτ = V̄ × [0,τ]−Ωτ

where the bar indicate the closure set, and supposeT(x, t) sufficiently smooth (T(x, t)∈C2(Ωτ)∩

C(Ω̄τ)) andT(x, t) solves the heat equation inΩτ . Then,

1. (weak maximum principle)

max
Ω̄τ

T(x, t)=max
Γτ

T(x, t) i.e. ΓT∩[arg max
(x,t)∈Ω̄τ

T(x, t)] 6= /0

2. (strong maximum principle) if V is connected and there exists a point(xm, tm) ∈ Ωτ such

that,

T(xm, tm)=max
Ω̄τ

T(x, t) i.e. Ωτ∩[arg max
(x,t)∈Ω̄τ

T(x, t)] 6= /0

thenT(x, t) is constant inΩ̄τ .

113

./4_BasicSolution/img/0130_bar.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

Ωτ

dV

Γτ

V

t

Figure 4.16: Parabolic cylinder for the 2D volumeV

In other words the maximum temperature is on the top (t = 0) or on boundaries of the parabolic

cylinder.

The second properties states that:

Proposition 4.4.1. The temperature norm rate is the sum of three terms representing respec-

tively, the internal fluttering, the effect of the boundaries and the effect ofinternal sources.

Proof. The norm and its derivative can be written as:

‖T(x, t)‖n,V , n

√∫

V
|T(x, t)|n dv

d
dt
‖T‖n,V =

1
n
·

(∫

V
|T|n dv

) 1
n−1

·
d
dt

∫

V
|T|n dv. (4.33)

The derivative term on the right hand side of (4.33) can be written as:

d
dt

∫

V
|T|n dv=

∫

V
n·T · |T|n−2∂T

∂ t
dv. (4.34)

Then, substituting the heat equation∂T/∂ t = α∇2T +q in (4.34) we obtain:

d
dt

∫

V
|T|ndv=

∫

V
nT|T|n−2α∇2T dv+

∫

V
nT|T|n−2qdv. (4.35)

Recalling Green identity:
∫

V
f ·∇2g dv=

∫

∂V
f · (∇g· n̂) ds−

∫

V
∇ f ·∇g dv

114

./4_BasicSolution/img/0140_ParabolicCylinder.eps

4.4 Control feasibility and other properties

we rewrite the first term of (4.35) on the right hand side as:

∫

V
nT|T|n−2α∇2T dv= α

∫

∂V
nT|T|n−2(∇T · n̂) ds+

−α
∫

V
n(n−1)|T|n−2‖∇T‖2

2 dv
(4.36)

Putting together (4.35) and (4.36), (4.33) becomes:

d
dt
‖T‖n,V = γ ·

[
α ·
∫

∂V
nT|T|n−2(∇T · n̂) ds

︸ ︷︷ ︸
EFFECT OF THE BOUNDARIES

+

−α
∫

V
n(n−1)|T|n−2‖∇T‖2

2 dv
︸ ︷︷ ︸

INTERNAL FLUTTERING

+
∫

V
nT|T|n−2q dv

]

︸ ︷︷ ︸
INTERNAL SOURCES

(4.37)

4.4.3 The constraint reduction property

The central target of the predictive controller is limiting the temperature of the volumeV under

a specified threshold. This goal translates into having an optimization problemwith an infinite

number of constraints, one for each infinitesimal volume element. Starting fromthe Maximum

Principle, in this section we have shown how to reduce these constraints to a finite number,

making the controller implementable and reducing its complexity1.

Proposition 4.4.2.Consider the problem (4.31) with q 6= 0 and DBCs or NBCs. The maximum

temperature is either at initial time, or on the boundary or on sources.

Proof. Since (4.31) is a Cauchy problem, it admits a unique solutionT̄(x, t). Assumingq 6= 0

only in a finite sum of compact and connected setsVS,i with i = 1,2, . . . ,n, it is possible to find

the temperaturēT(x, t) on the boundary of each source (i.e.∀x ∈
⋃

i ∂VS,i). Calling VS=
⋃n

i=1VS,i

and∂VS=
⋃n

i=1 ∂VS,i, the Cauchy problem can be rewritten as an equivalent problem without any

internal heat sources:




∂T
∂t −α ·∇2·T=0 x∈V \VS , t∈ [0,τ [

T(x,0)=T0(x) ∀x∈V \VS

T(x, t)=T∂V(x, t) or n̂·∇T=JB ∀x∈∂V, ∀t∈ [0,τ [

T(x,t)=T̄(x,t) or n̂·∇T=n̂·∇T̄ ∀x∈ ∂VS,∀t∈[0,τ [

(4.38)

1The number of constraints as well as the model order determine the complexity of the optimization problem.

115

4. MPC THERMAL CONTROLLER FOR MPSOCS

Applying the maximum principle the maximum temperature is att = 0 or on the augmented

boundary (∂V ∪∂VS) that is:

max
(x,t)∈V\VS×[0,τ]

T̄(x, t) = max
(x,t)∈{{V\VS}×{0}}∪{{∂V∪∂VS}×[0,τ]}

T̄(x, t)

hence:

max
(x,t)∈Ω̄τ

T̄(x, t) = max
(x,t)∈{V×{0}∪∂V×[0,τ]∪VS×[0,τ]}

T̄(x, t)

The above result directly leads to the following proposition.

Proposition 4.4.3. Under the conditions that the initial and boundary temperatures are lower

than TCRIT, a necessary and sufficient condition for T(x, t)≤TCRIT ∀x∈V, ∀t≥0 is that the

maximum temperature on sources is always lower than TCRIT.

Fig. 4.17 illustrates the temperature distribution of a volume, in two subsequent time in-

stants. In Fig. 4.17a we find the maximum temperatures on the two sources, in which we

applied a 20W power. Then, after removing powers (see Fig.4.17b), the maximum tempera-

ture moves to a middle point, not corresponding to any sources, but with a magnitude far lower

than the initial one shown in Fig.4.17a.

The main consequence of latter propositions is that possible constraints violation may hap-

pen on sources first, if we assume that the boundary temperature and the initial condition meet

constraints. According to this result, and with the further assumption that the number of sources

is finite and that each of them is assimilable to a point source, then we can convert the infinite

dimensional constraint into the finite dimensional constraintT(x, t)≤ TCRIT,∀x∈ VS.

a)

b)

312

312.5

313

312

312.5

315.5

315

314.5

314

313.5

313

Figure 4.17: Two sources simulation: a) 20W per sources; b) 0W per sources

116

./4_BasicSolution/img/0150_MaxTempSources.eps

4.4 Control feasibility and other properties

4.4.4 The feasibility issue

One of the most important property for MPC schemes is feasibility: if a controlinput sequence

meeting the constraints exists at timet = 0, then, it will exist also for allt > 0.

In classical MPC literature such a property is enforced by using adequate prediction hori-

zons, terminal weighting matrix, invariant terminal sets, etc. (25) (2). However, these are

indirect methods that have some limitations of use, they complicate the design of thecontroller

and augment its computational complexity (26) (24). In this Section our aim is to prove that

predictive controllers related to the centralized problem (4.26) and the distributed one (4.21),

possibly with some adaptations, are intrinsically feasible when applied to whatever thermal sys-

tem, for any horizon of length greater or equal to 0. The first step is captured by the following

proposition, direct consequence of the Maximum Principle,

Proposition 4.4.4. Consider the system (4.31) under DBCs with no internal sources. If T0(x)

and T(x, t) are lower than TCRIT respectively at time t= 0 and on the boundary∀t ∈ [0,τ], then

the temperature will never exceed TCRIT, i.e. the setT = {T(·, ·)|T(x, ·)≤ TCRIT , ∀x∈V} is a

positive invariant set.

Proof. According to the maximum principle, the temperature of any points in the parabolic

cylinder is lower than the maximum temperature at initial time or on the cylinder boundary.

Consequently,∀t1, t2 such thatt2 ≥ t1 ≥ 0:

‖T(x, t2)‖∞,V ≤max(‖T(x, t1)‖∞,V ,‖T(·, ·)‖∞, ∂V, t∈[t1,t2])

that provesT is invariant.

Thus, if the maximum temperature meets the constraints at timet = 0, the temperature

on boundary is lower thanTCRIT, and no sources are present, then the constraints will never

be violated in the future. This has a direct consequence in the MPC context;it means that if

constraints are not violated at a given time, then the null input action (i.e. zeroing all of the

sources) always ensures constraints satisfaction in the future. This result clearly guarantees the

feasibility for the centralized control problem (4.26) for any prediction horizon.

A similar result may be stated also underNBCswhen there is no heat transfer from the

external environment towards the thermal system. In such a case it is possible to prove that,

Proposition 4.4.5.Consider the problem (4.31) with NBCs, no internal sources (q= 0) and no

heat coming from the boundaries, i.e.−J∂V = n̂ ·∇T ≤ 0. Then‖T(x, t)‖∞,V decreases along

time.

117

4. MPC THERMAL CONTROLLER FOR MPSOCS

Proof. With q= 0, the equation (4.37) is equal to:

d
dt
‖T‖n,V = γ ·

[
−α

∫

V
n(n−1)‖T‖n−2‖∇T‖2

2 dv+

+ α ·
∫

∂V
nT‖T‖n−2(∇T · n̂) ds

]
≤ 0

(4.39)

where the right-hand term is negative since the internal fluttering is alwaysnegative, the tem-

perature is always positive and the heat flow at the boundary is not incoming. SinceT(x, t) is

continuous overV, then:

‖T(x, t)‖∞,V = lim
n→∞

‖T(x, t)‖n,V

Hence,
d
dt

lim
n→∞

‖T(x, t)‖n,V = lim
n→∞

d
dt
‖T(x, t)‖n,V ≤ 0

Thus, if we provide a null input action to the system the temperature will neverincrease,

proving recursive feasibility in the centralized case. Notice that, on the basis of the above

considerations, the infinity norm may be seen as a Lyapunov function for the considered class

of thermal systems. It is also worth to note that in the next proofs we will assume DBCs for

simplicity reasons and without any accuracy loss since it is always possibleto convert one

boundary condition to another.

Remark 2. A physical interpretation of the described property may be given according to the

fact that, for the Second Principle of Thermodynamics, heat flow cannotbe directed as the

temperature gradient. Hence, no inductive storage elements can be present in thermal systems

and, consequently, no free resonant or double integrative behaviors can arise when no sources

are present.

For what concerns the feasibility of distributed solutions, related to the problems (4.21), a

crucial point is to define the “perimeter” of the local controllers and the information about the

rest of the system available to each of them. According to Subsection4.4.3, a finite number

of point-wise sources,xs, i i = 1. . .Ns, is considered inV (i.e. xs, i are the only points inV

whereq(x, t) can be larger than zero) andVs is defined as the set collecting all of them. By

Proposition4.4.2, the requirement to prevent temperatures larger thanTCRIT all over the system

can be achieved by preventing overtemperature on the sources (if suitable initial and boundary

conditions are present). Then, following the formulation of (4.21), a local controller is assumed

for each sourcexs, i ; each controller can read its own source temperature and can act on its local

118

4.4 Control feasibility and other properties

power, while it has to comply with the local constraintT(xs, i) ≤ TCRIT. At this stage, no

information on the rest of the system is considered available. The only assumption that can

be formulated at local control level is that all of the other controllers are acting in order to

comply with their local constraints. In this framework, taking the cue from the previous result

for the centralized problem (4.26), it looks reasonable to expect that shutting down a single

core guaranties no overtemperature can take place for that core, just assuming the other cores

have no overtemperature as well, but independently of their exact temperature and dissipated

power. In other words, whenever a core is approaching harmful temperature, the local decision

of reducing its power should be enough to prevent local constraint violation, and contextual

reduction of powers of all other cores should not be needed, providing that each of them is

meeting its local thermal bound. Indeed, this property, which will be crucialfor “distributed”

feasibility, is true and captured in the following Proposition.

Proposition 4.4.6.Consider the system (4.31) under DBCs withVs = {xs, i i = 1. . .Ns} the set

of points in V where the sources are located. Assume that the initial conditionand the boundary

temperatures satisfy the constraints, i.e. T0(x) ≤ TCRIT, ∀x ∈ V and T∂V(x, t) ≤ TCRIT, ∀x ∈

∂V, ∀t ∈ [0, τ [. For each source xs, i i = 1. . .Ns, the local decision of imposing q(xs, i , t) =

0, ∀t ∈ [0, τ [guarantees T(xs, i , t)≤ TCRIT, ∀t ∈ [0, τ [, if T(xs, j , t)≤ TCRIT for all of the other

sources j∈ {1. . .Ns}, j 6= i and∀t ∈ [0, τ [.

Proof. As soon as, in a source pointxs, i , q(xs, i , t) is zeroed, this point becomes equivalent

to a no-source point inV, then the result, claimed in the proposition, follows by Proposition

4.4.2.

In the above analysis, the possibility of imposing null power on sources is a key element to

achieve important properties in the path toward feasibility of both centralized and distributed

control problems (4.26) and (4.21). In real chips, it is very hard and possibly harmful to have

a sudden zeroing of the power consumption (i.e. halting the core activities immediately). The

common procedure is to slow down the clock frequency of the cores to a lower bound fMIN ,

that means reduce the source powers to a minimal value, referred here asqMIN . Clearly, this

issue cannot be covered by the results of Propositions4.4.4and4.4.6, but, taking inspiration

from them and introducing a suitable thermal constraints review, similar resultswith non-null

minimum power can be obtained as shown in the following, these results will be finally ex-

ploited to show the feasibility of the considered centralized and distributed control problems.

119

4. MPC THERMAL CONTROLLER FOR MPSOCS

DefineTEQ(x) as the solution of the following Cauchy problem

{
−α ·∇2T(x) = qMIN(x) x∈V

T(x) = T∂V, max(x) ∀x∈ ∂V
(4.40)

whereqMIN(x) represents the minimum power which can be dissipated in any source and

T∂V, max(x) is the largest environment temperature which can be experienced by the chip on

its boundary. Similarly to Proposition4.4.6, a finite number of point-wise sources,xs, i : i =

1. . .Ns, is assumed, withVs = {xs, i i = 1. . .Ns}.

According to the above definition,TEQ(x) corresponds to the steady state temperature distribu-

tion for the system (4.31) under minimum power consumption and worst ambient temperature

(i.e. assumingTEQ(x) as initial condition andT∂V, max(x) as constant boundary condition, the

solution of (4.31) is constant along time and equal toTEQ(x)). Obviously,TEQ(x)<TCRIT, ∀x∈

V̄ is guaranteed by a proper sizing of the chip, otherwise the thermal constraints cannot be met.

In addition, by Proposition4.4.2, it follows that the maximum value ofTEQ(x) is located on

sources or boundaries, i.e.
{

argmax
x∈V̄

TEQ(x)

}
∩{Vs∪∂V}6= /0

Then, defining

∆TCRIT = min
x∈V̄

(TCRIT−TEQ(x)) , (4.41)

it results

∆TCRIT = min
x∈∂V∪Vs

(TCRIT−TEQ(x)) > 0, (4.42)

At this point, a crucial review of temperature bound needs to be introduced, we define a space-

variantT̄CRIT constraint as follows

T̄CRIT(x) = TEQ(x)+∆TCRIT, ∀x∈ V̄. (4.43)

TCRIT

TCRIT

TEQ

∆TCRIT

Figure 4.18: Definition of the new bound̄TCRIT

120

./4_BasicSolution/img/0160_Limits.eps

4.4 Control feasibility and other properties

In Fig. 4.18, the meaning of this new bound is graphically represented assuming a simple

one-dimension thermal system. Clearly, the new boundT̄CRIT(x) is tighter thanTCRIT, but this

restriction is fundamental to formulate the following propositions, as it will be clear by their

proofs.

Proposition 4.4.7. Consider the thermal system (4.31) under DBCs with q(x, t) 6= 0. As-

suming T0(x) ≤ T̄CRIT(x)∀x ∈ V and T∂V(x, t) ≤ T̄CRIT(x)∀x ∈ ∂V ∀t ∈ [0,τ [, and applying

q(x, t) = qMIN(x) the following bound holds T(x, t) ≤ T̄CRIT(x)∀x ∈ V ∀t ∈ [0,τ [; i.e. the set

T̄ = {T(·, ·)|T(x, ·)≤ T̄CRIT(x) , ∀x∈V} is a positive invariant set respect to the constant input

qMIN(x).

Proof. As consequence of the superposition principle the heat equationṪ(x, t)−α ·∇2T(x, t)=

qMIN(x) can be rewritten as

∆Ṫ(x, t)−α ·∇2∆T(x, t) = 0 (4.44)

where∆T(x, t) , T(x, t)−TEQ(x) is the displacement from the equilibrium temperature. Ac-

cording to the hypothesis of the Proposition and the definition ofT̄CRIT, we consider (4.44)

under the following initial and boundary conditions,∆T0(x)≤ ∆TCRIT∀x∈V and∆T∂V(x, t)≤

∆TCRIT∀x ∈ ∂V ∀t ∈ [0,τ [The Maximum Principle can be applied to such system, since it

has the same structure of (4.31), then∆T(x, t) ≤ ∆TCRIT∀x ∈ V ∀t ∈ [0,τ [and, consequently,

T(x, t)≤ TEQ(x)+∆TCRIT = T̄CRIT(x)∀x∈V ∀t ∈ [0,τ [

Similarly to Proposition4.4.4, the above result is useful only to achieve feasibility of the

centralized control problem (4.26), but exploiting the approach adopted in Proposition4.4.6,

the following can be derived.

Proposition 4.4.8. Consider the system (4.31) under DBCs with xs, i i = 1. . .Ns the points in

V where the sources are located. Assume that the initial condition and the boundary temper-

atures satisfy the constraints, i.e. T0(x) ≤ T̄CRIT(x), ∀x ∈ V and T∂V(x, t) ≤ T̄CRIT(x), ∀x ∈

∂V, ∀t ∈ [0, τ [. For each source xs, i i = 1. . .Ns, the local decision of imposing q(xs, i , t) =

qMIN(xs, i), ∀t ∈ [0, τ [guarantees T(xs, i , t)≤ T̄CRIT(xs, i), ∀t ∈ [0, τ [, if T(xs, j , t)≤ TCRIT(xs, j)

for all of the other sources j∈ {1. . .Ns}, j 6= i and∀t ∈ [0, τ [.

Proof. By defining∆T(x, t) , T(x, t)−TEQ(x) and∆q(x, t) , q(x, t)−qMIN(x) (where∆q(·),

q(·) andqMIN(·) can be non-null in the point-wise sourcesxs, i i = 1. . .Ns), the temperature

dynamics can be rewritten as follows, again exploiting the superposition principle

∆Ṫ(x, t)−α ·∇2∆T(x, t) = ∆q(x, t) (4.45)

121

4. MPC THERMAL CONTROLLER FOR MPSOCS

This equation has the same structure of (4.31), then it inherits all of its features. In addition,

according to (4.43), the boundT̄CRIT(x) is mapped into a constant bound∆TCRIT. Therefore,

as soon as, in a source pointxs, i , q(xs, i , t) = qMIN(xs, i) is imposed, it means that∆q(xs, i) is

zeroed and this point becomes equivalent to a no-source point inV for (4.45). Then, according

to Proposition4.4.2, the maximum of temperatures∆T(x, t) occurs on the remaining sources

xs, j , j ∈ {1. . .Ns}, j 6= i and/or the initial condition and/or the boundaries. In these places, by

the proposition assumptions,∆T(x, t) is always lower than∆TCRIT, therefore the claimed result

follows.

With the above results at hand, the feasibility properties of the centralized and distributed

problems, (4.26) and (4.21) can be formally stated as follows, whenqMIN(x) is the minimum

power which can be dissipated in any point-wise sourcexs, i i = 1. . .Ns.

Proposition 4.4.9. Centralized Feasibility. Consider the thermal system (4.31) under DBCs

and subject to the constraint T(x, t)≤ T̄CRIT(x),∀x∈V,∀t≥0, according to the control problem

(4.26). Assume that xs, i i = 1. . .Ns are the points in V where the sources are located and define

u(t) ∈ R
+Ns as the centralized control vector, whose i-th element commands the power q(xs, i).

Let T0(x) ≤ T̄CRIT(x) at time t=0 and T(x, t) ≤ T̄CRIT(x) on the boundary∀t ∈ [0,τ]. Assume

that at time t′ a control strategy is computed such that constraints are satisfied in the interval

t ′ ≤ t ≤ t ′+∆t where∆t > 0 is a the prediction horizon. If such a strategy is applied to the

thermal system, then for any time t′′∈ [t ′, t ′+∆t] it is possible to compute a new control strategy

that if applied will not violate constraints in the interval t′′≤ t ≤ t ′′+∆t.

Proof. It is enough to note that by using the strategy computed at timet ′ up to the timet ′+∆t

the constraints at timet ′′ will not be violated, i.e.T(x, t ′′)≤ T̄CRIT(x),∀x∈V. Then, the strategy

ui(t) = qMIN , i = 1. . .Ns,∀t ∈ [t ′′, t ′′+∆t] is always a feasible strategy, sincēT is a positive

invariant set according to Proposition4.4.7.

Proposition 4.4.10.Distributed Feasibility. Consider the thermal system (4.31) under DBCs.

According to the control problem (4.21), assume that xs, i i = 1. . .Ns are the points in V where

the sources are located and define, for each i, ui(t) ∈ R
+ as the scalar control input, available

to the local i-th controller, whose value commands the power q(xs, i , t). Let T0(x) ≤ T̄CRIT(x)

at time t= 0 and T(x, t) ≤ T̄CRIT(x) on the boundary∀t ∈ [0,τ]. Assume the system (4.31)

is subject to the following constraints, again according to (4.21), T(xs, i , t)≤ T̄CRIT(xs, i), ∀t ≥

0, i = 1. . .Ns (these constraints are equivalent to require T(x, t)≤ T̄CRIT(x),∀x∈V,∀t ≥0, as

stated in Proposition4.4.2). Finally, assume that at time t′ for a generic local controller,̄i,

a control strategy is computed such that the local constraint T(xs, ī , t)≤ T̄CRIT(xs, ī) is satis-

fied in the interval t′ ≤ t ≤ t ′+∆t (where∆t > 0 is again the prediction horizon), provided

122

4.4 Control feasibility and other properties

that all the other local controllers j6= ī, j ∈ {1. . .Ns} satisfy their own local constraint

T(xs, j , t)≤ T̄CRIT(xs, j)∀t ∈ [t ′, t ′+∆t]. If such a strategy is applied to the local sourceī and all

other constraints are fulfilled in the considered interval, then for any time t′′∈ [t ′, t ′+∆t] it is

possible to compute a new local control strategy for the sourceī that, if applied, will provide the

following features; (i) the local constraint will not be violated in the interval[t ′′≤ t ≤ t ′′+∆t],

provided that the other constraints are not violated as well; (ii) the local control strategy ap-

plied to ī, or to any subset of sources, will not prevent the other sources fromthe possibility

of meeting their own local constraint exploiting the same strategy. In addition, the above-

mentioned local control strategy for̄i can be selected without any detailed information on the

conditions of the other controllers, but just exploiting the assumption that allof them are satis-

fying the other constraints.

Proof. First of all, according to the above assumptions, the constraints at timet ′′ will not be

violated, i.e.T(xs, i , t ′′)≤ T̄CRIT(xs, i), i = 1. . .Ns and, then,T(x, t ′′)≤ T̄CRIT(x),∀x∈V. There-

fore, (i) follows as direct consequence of Proposition4.4.8by applying, in the generic local

controller ī, u(t)ī = qMIN , ∀t ∈ [t ′′≤ t ≤ t ′′+∆t]. Clearly, this control strategy does not require

any knowledge on the other local controllers, confirming what stated at theend of proposition.

For what concerns (ii), by Proposition4.4.7it follows that all of the local controllers can ap-

ply u(t)i = qMIN , ∀t ∈ [t ′′≤ t ≤ t ′′+∆t], guaranteeing feasibility. Moreover, by exploiting the

approach adopted in the proof of Proposition4.4.8 it is easy to prove what follows. Con-

sidering a genericj ∈ [1. . .Ns] and defining two generic disjointed subsets of sources,S0

and Ss, not including j, but covering all of the sources (i.e.S0 = {n|n∈ [1. . .Ns], n 6= j},

Ss = {m|m∈ [1. . .Ns], m 6= j}, S0 ∩ Ss = /0, S0 ∪ Ss = [1. . . j −1, j +1. . .Ns]), if all of the

sources inS0 apply un(t) = qMIN , ∀t ∈ [t ′′, t ′′ + ∆t] and all of the sources inSs meet their

own local constraintsT(xs,m, t)≤ T̄CRIT(xs,m), ∀t ∈ [t ′′, t ′′+∆t], then in the sourcej it can be

appliedu j(t) = qMIN , ∀t ∈ [t ′′, t ′′+∆t], guaranteeingT(xs, j , t)≤ T̄CRIT(xs, j), ∀t ∈ [t ′′, t ′′+∆t].

Then, also (ii) is proven.

A remarkable point that can be noted is that the above results hold true for any positive pre-

diction horizon∆t > 0; therefore, it can be selected arbitrarily small without impairing feasibil-

ity properties. It means that there is room to preserve feasibility until the current temperature

reach the bound, both in the centralized and distributed approach.

Another relevant point to highlight is the use ofT̄CRIT(x)≤ TCRIT instead ofTCRIT. This is

not just a technical point related to the available theoretical tools, but it accounts for a possible

practical trouble in the thermal behavior (even if it can be a bit conservative). As a matter of

facts, whenever a core (or any heat source) needs an indirect paththrough its neighbors to expel

123

4. MPC THERMAL CONTROLLER FOR MPSOCS

its heat flow and keep a safe temperature (i.e. it doesn’t have a direct path toward the external

ambient that is efficient enough), the neighbors are required to keep a temperature lower than

the maximum to give room to the heat flow coming from the above-mentioned core. Clearly,

this characteristic strongly depends on the layout and the thermal resistivityof the considered

system and should be carefully addressed in the multi-core design. By the way, an idea on

how important is this effect can be easily derived by the analysis ofTEQ(x), solution of (4.40);

the more uniform isTEQ(x) in V, the less important is “indirect heat flow” to guarantee safe

temperature.

RVL=0.3°C/W

RO=0.3°C/W

CCL=0.1J/°C

P1=1W

RVC=2°C/W

RO=0.3°C/W

CCC=0.02J/°C

P2=1W

RVL=0.3°C/W

CCL=0.1J/°C

P3=1W

T1

T2

T3

TAMB=0°C

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

T2

T1=T3

(a) (b)

Figure 4.19: (a) simple circuit used for simulating a volume with three point-wise sources; (b)

simulation result using a uniformTCRIT.

Fig. 4.19 shows a simple example to clarify the concepts. We consider a volume with

three three point-wise sources. We split the volume into three cells associatingto each one

an equivalent electric circuit (as shown in figure). The power consumption of the sources are

P(xs,1), P(xs,2), andP(xs,3), the ambient temperature isTAMB = 0◦C, the critical temperature

is TCRIT = 1◦C, the minimum powerPMIN = 1W, and the initial temperature of the cells are

T(xs,1) = T(xs,2) = T(xs,3) = 1◦C. When the three sources dissipatePMIN the lateral cells

dissipate all the power whereas the central one dissipates only a small partof the power (due

to the resistance value). The source 2 is neither able to dissipate the power through the cells

1 and 3 since the initial temperatures are the same. Therefore, the power goes to increase the

temperature causing a violation ofTCRIT. This happens because theTCRIT is uniform. When the

minimum power is applied the corresponding equilibrium temperature is such thatTEQ(xs,1) =

TEQ(xs,3) = 0.4◦C, TEQ(xs,2) = 0.68◦C. Due to the resistance and capacitance values assigned,

we can note a large difference between these temperatures, then a large importance of “indirect

heat flow” could be present. Indeed, this is confirmed by simulations. Assuming thatTCRIT =

124

./4_BasicSolution/img/0170_CirProva.eps

4.4 Control feasibility and other properties

1◦C, imposing an initial condition with all the temperatures in the volumeV equal toTCRIT

and applyingqMIN in all of the sources, we can observe a constraint violation in source 2. In

contrast, if we start from an initial conditionT(x, 0) = T̄CRIT(x), no over-temperature takes

place.

The above results guarantee feasibility by applying minimum power consumptionat each

core. The centralized feasibility of Proposition4.4.9 is essentially based on the observation

that, by switching to the minimum power all of the cores, the maximum temperature along the

chip will never increase, since no resonant or double integration effects can arise. The dis-

tributed feasibility of Proposition4.4.10allows to recover this property locally to each source

without needing any information exchange, but just assuming, in a local controller, that all of

the other are working correctly. This can be achieved at the cost of replacing the uniform bound

TCRIT with the variable bound̄TCRIT(x) (probably, this cost can be reduced by allowing proper

information exchange between the core and selecting a large enough prediction horizon, but

this is not the subject of this work).

At first glance, these results could seem of little interest from a practical viewpoint, since they

just provide the trivial solution of switching to minimum power the cores to meet thetemper-

ature constraints, but they do not provide any algorithm to find other feasible solutions which

maximize the computing power, as reported both in (4.26) and (4.21). To this purpose, in

the following, algorithms based on approximated discretized models will be presented, also

exploiting information exchange between controllers for the distributed case. Nevertheless,

the above feasibility results play a fundamental role for practical applications. Indeed, by us-

ing algorithm based on approximated discrete models, temperature constraintsviolation could

be experienced, but this can be effectively prevented, according to the above feasibility re-

sults with arbitrary small prediction horizon, by adding a sort ofultimate temperature capping

control layer on each locali-th source. This control layer, as soon as theTxs, i , t approaches

T̄CRIT(xs, i), has to override the optimizing controller and to impose simplyq(xs, i , t) = qMIN for

a suitable time interval to obtainTxs, i , t sufficiently lower thaT̄CRIT(xs, i).

4.4.5 Discretization issues

We have already shown the benefit of using a discrete LTI model, as (4.11), instead of the PDE-

based one. However, whereas we proved control feasibility for this latter, the same property

could not be guaranteed for the identified model due to the time-space discretization process.

125

4. MPC THERMAL CONTROLLER FOR MPSOCS

In (24) the author showed a simple approach for testing the control feasibility with respect

to a discrete model. It consists in designing a bilevel optimization problem - an “outer” opti-

mization problem containing an “inner” optimization problem in the constraints - and checking

the optimal value of the outer objective function. Thus, we could discard a model identified

with the iterative procedure if the test fails.

We have already shown the main step of this approach in Chapter3. Hereafter we special-

ized the approach to our problem. The discrete model used is given by:

x(t +1) = A·x(t)+B1 · p(t)+B2 ·d(t)
T(t) =C ·x(t)

(4.46)

where we discriminated control inputs,p, from the others,d.

The optimization problem (4.21) can be rearranged in a quadratic programming form,

min
1
2
·P(t) ·H ·P(t)+P(t) ·G(t) (4.47a)

s.t.

E ·x(t)+F ·P(t)≤ b(t) (4.47b)

whereP(t) = [p(t|t) p(t +1|t) . . . p(t +N−1|t)], E =C ·A, F =C ·B1 andb(t) = TCRIT−C ·

B2 ·d(t).

Feasibility is guaranteed if for every initially feasible states and for every feasible control

sequences the optimization problem remains feasible for all time. Hence, ifx(t) is a feasible

initial state andp◦(t|t) is the optimal solution of (4.47), then at the next sample interval,

E·(A·x(t)+[B1 B2]·[p
◦(t|t) d(t)]T)+F ·P(t+1)≤ b(t) (4.48)

According to the Farkas’ Lemma, ax(t) exists such that (4.48) is true or ay(t) exists such that

y≥0, yT ·F = 0 andyT ·(b(t)−E·(A·x(t)+[B1 B2]·[p◦(t|t) d(t)]T)< 0.

Thus, starting from a feasible statex(t) and giving an optimal inputp◦(t|t), if a y satisfying

these conditions exists, then the control problem is infeasible. According to(24) we designed

the following optimization problem to check the consistency of Farkas’ conditions.

126

4.4 Control feasibility and other properties

min
y, x(t), d(t)

yT ·(b(t)−E·(A·x(t)+[B1 B2]·[p
◦(t|t) d(t)]T)) (4.49a)

s.t.

y≥ 0 , yT ·F = 0 (4.49b)

x∈ X, d ∈ D (4.49c)

P◦ = arg min
P(t)

1
2
·P(t) ·H ·P(t)+P(t) ·G(t) (4.49d)

s.t.

E ·x(t)+F ·P(t)≤ b(t) (4.49e)

p∈ P (4.49f)

whereX, P andD are respectively the sets of allowed values forx(t), p(t), d(t), and the cost

function of the outer problem is the third condition of the lemma.

Substituting the Karush-Kuhn-Tucker optimality conditions to the inner convexproblem

(4.49d)-(4.49f) we obtain a easier problem to solve with numerical algorithm:

min
y, x(t), d(t),λ ,P(t)

yT·(b(t)−E·(A·x(t)+[B1 B2]·[p
◦(t|t) d(t)]T)) (4.50a)

s.t.

y≥ 0 , yT ·F = 0 (4.50b)

x∈ X, d ∈ D, p∈ P (4.50c)

H ·P(t)+G(t)+C ·B1 ·λ = 0 (4.50d)

λ ≥ 0 (4.50e)

b(t)−E ·x(t)−F ·P(t)≥ 0 (4.50f)

λ T · (b(t)−E ·x(t)−F ·P(t)) = 0 (4.50g)

whereλ is the array of the Lagrangian multipliers. Farkas’ conditions holds if the optimal value

of the objective function is negative. In this case at least one state initially feasible can become

infeasible. The identification procedure must discard the considered model and recheck the

feasibility for a new model solving a new problem. Every time the model change the test must

be repeated.

127

4. MPC THERMAL CONTROLLER FOR MPSOCS

It is worth to note that this approach can be applied both to the centralized andthe dis-

tributed MPC algorithm. In the first case the state isx(t) = [Ti(t) x2,i], i = 1, . . . ,N, whereTi

is the temperatures of thei-th core andx2,i is the second unknown state of thei-th core. The

input p(t) is the vector containing thePi power of all cores, andd(t) contains only the ambient

temperature. In this caseX, P andD can be assumed equal to 0≤ Ti(t) ≤ TCRIT, i = 1, . . . ,N,

PMIN ≤ Pi(t)≤ PMAX, i = 1, . . . ,N, and 0≤ TAMB(t)≤ TCRIT.

In the case of a distributed scheme we apply the test to thei-th local controller. The state is

xi(t) = [Ti(t) x2,i], the inputp(t) is the power consumption of thei-th core (Pi), andd(t) con-

tains the ambient temperatureTAMB and the temperature of the neighbors. Then,X, P andD

can be assumed equal to 0≤ Ti(t) ≤ TCRIT, PMIN ≤ Pi(t) ≤ PMAX, 0≤ TAMB(t) ≤ TCRIT, and

0≤ TNEIGHi (t)≤ TCRIT.

In both cases the control solution may be feasible or not. Thus, we should repeat the fea-

sibility test until we identify a feasible model. It is worth to remark that the model obtained

by the identification approaches could have not the same physical properties of the real sys-

tem. However, the distributed MPC introduces some challenges which are notconsidered by

the previously mentioned feasibility test and which cannot occur with a centralized solution.

Indeed, the distributed solution could be feasible according to the simplified and discrete-time

discrete-space models obtained by identification, but it could be unfeasiblefor the actual sys-

tem, owing to the unavoidable model approximations and the time discretization. In order to

better understand this concept, consider a distributed MPC solution. The feasibility test is ap-

plied to each MPC local controller that uses as prediction model the discrete-time model of

a single core. The controller results feasible if all the future states, obtained giving as inputs

to the model all possible feasible inputs and starting from any feasible initial states, meet the

constraints. However, this approach is based on the assumption that the temperatures of the

neighbors are constant during a sampling interval, whereas they changein the real system.

Thus, imagine a scenario where all cores have a temperature close, but not equal, to the tem-

perature limitT̄CRIT. Each controller computes the optimal decision to bring the temperature

of the controlled core close tōTCRIT without considering that in the meanwhile the temperature

of the neighbors cores increase as well. As a result some cores could experience a threshold

violation even though the controller had passed the feasibility test. Fig.4.20 illustrates well

this behavior that depends on the use of a discrete-time model instead of continuous-time one.

In the centralized case the previously mentioned situation cannot happen because the controller

can exploit the information of all the cores and the discrete model of the wholechip to forecast

128

4.4 Control feasibility and other properties

the future cores temperatures and obtain the optimal control action to make the temperature

perfectly equal tōTCRIT.

TCRIT=360°K + T2=359°K

X Watt to reach TCRIT

TCRIT=360°K + T2=361°K

X Watt to reach TCRIT

TCRIT=359°K + T2=357°K

Y Watt to reach TCRIT

Y is too much!

T1 has changed in

the meanwhile!

CORE 1 CORE 2

357°K 359°K

Time: t

CORE 1 CORE 2

360°K 361°K

Time: t+1

Figure 4.20: Feasibility problem for distributed MPC

Similar issues derive also from the approximation and uncertainties of the model respect to

the real system.

In Chapter5 we proposed a solution able to ensure the feasibility of the system, without

the need of a discrete model, avoiding in this way the aforementioned issues.

4.4.6 Notes on stability

The goal of our controller is to regulate the power consumption of the coresto maintain the

temperature below a specific threshold. Whereas the feasibility is fundamental to ensure the

desired behavior, the stability is unnecessary. By definition a system is stable if it can be

bounded arbitrarily close to an equilibrium point. However, in our specific case we are not

interested in maintaining the temperature close to a specific value, our priority is constraining

the temperature below a threshold. Thus, only the boundedness of the system state must be

guaranteed.

The feasibility property is enough for proving the boundedness of the state (note that the

feasibility never imply the stability). The proofs stated in Section4.4.4ensure the feasibility

for a time continuous controller when a partial differential equation based model is considered.

When a discrete-time discrete-space model is considered, instead, the controller feasibility can

be proved with the feasibility test of Section4.4.5(we are not considering the feasibility respect

to the real system which is obtained in the Chapter5 using a hierarchical control structure). The

test ensures that the measured part of the state is bounded when limited inputsare applied (the

part corresponding to the temperature). However, we have no guaranties that the unmeasurable

129

./4_BasicSolution/img/0180_exampleDistr.eps

4. MPC THERMAL CONTROLLER FOR MPSOCS

part of the state is bounded. This could compromise the feedback behaviorof the model. The

internal boundedness of the model is ensured by the following proposition,

Proposition 4.4.11.Let the model

x(t +1) = An×nx(t)+Bn×mu(t)

y(t) =Cp×nx(t)
(4.51)

be observable and let part of the state be constrained to a bounded valuewhen bounded inputs

are applied. Then, the whole state is bounded.

Proof. Because of the observability of the system, the state is uniquely determined after n

steps, wheren is the order of the model. The state can be found as,

x(t) = O−1
n · (Y(t)−U(t))

whereOn is the observability matrix[C; CA; . . . ; CAn−1], Y(t) = [y(t); . . . ; y(t +n−1)] is the

output vector containing the outputs overn steps andU(t) = [CBu(t); . . . ; CAt+n−1Bu(t)+

· · ·+CBu(t +n−2)]. From assumptions,Y(t)−U(t) is bounded (as an example using the 2

norm), therefore,

‖x(t)‖2 = ‖O−1
n ‖ · ‖Y(t)−U(t)‖2

where‖O−1
n ‖ is the induced norm of the observability matrix.

This proof guarantees that if the controller satisfies the feasibility test, then the inputs

needed to constraint the outputs are bounded, and hence, the identified model cannot have un-

stable dynamics (possibly related to unstable zeros which could occur in the simplified model

coming from the identification methods described in Section4.1).

130

Bibliography

[1] E.F. Camacho, C. Bordons,Model predictive control, Springer, 1999.82

[2] J.B. Rawlings, D.Q. Mayne,Model Predictive Control Theory and Design, Nob Hill Publishing, 2009.82, 117

[3] N. Sakran et al. The implementation of the 65nm dual-core 64b merom processor, In IEEE International Solid-State

Circuits Conference, 2007.83

[4] Xi Chen, Chi Xu, R. P. Dick, Z. Morley Mao.Performance and power modeling in a multi-programmed multi-core

environment, DAC ’10. ACM, New York, NY, USA, pp. 813-818, 2010.83

[5] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, E. Ayguade.Decomposable and responsive power models for multicore

processors using performance counters, ICS ’10. ACM, New York, NY, USA, pp. 147-158, 2010.83

[6] K. Singh, M. Bhadauria, S.A. McKee.Real time power estimation and thread scheduling via performance counters,

SIGARCH Comput. Archit. News 37, pp. 46-55. July 2009.83

[7] H.F. Hamann, A. Weger, J.A. Lacey, Z. Hu, P. Bose, E. Cohen,J. Wakil, Hotspot-Limited Microprocessors: Direct

Temperature and Power Distribution Measurements, IEEE J. Solid-State Circuits, Vol. 4, pp. 5665, Jan. 2007.82

[8] W. Huang, K. Skadron, S. Gurumurthi, R.J. Ribando, M.R. Stan. Differentiating the roles of IR measurement and simula-

tion for power and temperature-aware design, ISPASS, 2009.84

[9] L. Ljung, System Identification - Theory For the User, 2nd ed, PTR Prentice Hall Upper Saddle River, N.J., 1999.87

[10] R. Guidorzi,Multivariable system identification, Bononia University Press, 2003.87

[11] J. Howard et al,A 48-Core IA-32 Message-Passing Processor with DVFS in 45nmCMOS, ISSCC, pp. 108-109, Feb. 2010.

86, 88

[12] Huang Wei, K. Sankaranarayanan, K. Skadron, R.J. Ribando, M.R. Stan,Accurate, pre-RTL temperature-aware design

using a parameterized, geometric thermal model, IEEE Transactions on Computers, 57(9):1277-1288, 2008.86

[13] C. Bienia, S. Kumar, J.P. Singh, K. Li,The PARSEC Benchmark Suite: Characterization and Architectural Implications,

PACT, 2008.89, 91, 102

[14] P.Holmes, J.L. Lumley, G. Berkooz,Turbulence, Coherent Structures, Dynamical System, and Symmetry, Cambridge

University Press, Cambridge, 1996.91

[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C (2nd Ed.): The Art of Scientific

Computing, Cambridge University Press, New York, NY, USA.95

[16] A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos,The explicit linear quadratic regulator for constrained systems,

Automatica, Vol. 38(1):3-20, Jan. 2002.97, 99, 103

131

BIBLIOGRAPHY

[17] qpOASES Homepage (2011). http://www.qpOASES.org/98

[18] F. Zanini, D. Atienza, L. Benini and G. De Micheli,Multicore Thermal Management with model predictive control,

ECTTD, Vol. 1, 2009.99, 101, 103

[19] Y. Wang, K. Ma and X. Wang,Temperature-Constrained Power Control for Chip Multiprocessors with Online Model

Estimation, in Proc. of the 36th annual international symposium on Computer architecture, Austin, TX, USA, June 2009.

101, 105, 106

[20] P.D. Christofidesa, R. Scattolini, D.M. de la Peña, J. Liu, Distributed model predictive control: A tutorial review and

future research directions, Computers & Chemical Engineering, Vol. 0, pp. - , June 2012.102

[21] K. Skadron, T. Abdelzaher, M.R. Stan,Control-Theoretic Techniques and Thermal-RC Modeling forAccurate and Lo-

calized Dynamic Thermal Management, Technical Report, UMI Order Number: CS-2001-27, University of Virginia.

108

[22] Lawrence C. Evans,Partial Differential Equations, American Mathematical Society, Feb. 1998.110, 113

[23] Walter A. Strauss,Partial Differential Equations:An Introduction, Wiley, 1992.110, 113

[24] J. Löfberg, Oops! I cannot do it again: Testing for recursive feasibility in MPC, Automatica, Vol. 48(3):550–555, 2011.

117, 126

[25] A. Bemporad, M. Morari, Robust model predictive control:A survey(1999), In A. Garulli, A. Tesi, A. Vicino (Eds.),

Robustness in identification and control, Lecture Notes in Control and Information Sciences, Vol. 245, pp. 207226, Berlin:

Springer.117

[26] R. Gondhalekara, J. Imura, K. Kashima,Controlled invariant feasibility - A general approach to enforcing strong feasibility

in MPC applied to move-blocking, Automatica, Vol. 45(12):2869–2875, 2009.117

132

Chapter 5

Complex control solutions

In this chapter three complex control solutions are presented. All these solutions involve as

common element the distributed thermal controller presented in the previous chapter. In ad-

dition they provide extensions to the nominal functionality enabling energy saving in the first

example, feasibility and reliability in the second one, and communication properties between

cores in the third and last example of this chapter.

5.1 Thermal and Energy management of High-Performance Multi-

cores

The control solution we present in this section addresses the scalability challenge for large

multi-core platforms with a fully distributed architecture. It combines energy minimization,

MPC based thermal control, and thermal model self-calibration.

5.1.1 The Architecture

The Fig.5.1depicts the block diagram of the proposed solution. Eachi-th core runs three main

programs, two of them are executed on-line and one off-line:

Local Self-Calibration Routine : it automatically derives, off-line, the local, but interacting,

thermal prediction model adopted in MPC-based blocks.

Local Energy Mapper (EMi): according to the workload characteristics of the incoming task,

it selects the minimum frequency (fEM,i) that allows energy saving, preserving perfor-

mance loss within a tolerable bound.

133

5. COMPLEX CONTROL SOLUTIONS

Local MPC-based Thermal Controller (TCi): it trims the frequency to ensure a safe work-

ing temperature. Local controllers jointly optimize global system operation by exchang-

ing a limited amount of information at run-time on a neighborhood basis. This is the

solution presented in Chapter4.

In the next paragraphs we provide a detailed description of these three components.

F
T

C
 iT

i

TNEIGH i

TNEIGH i

FEM iTAMB

TNEIGH i EMi

(NL)

f
2
P

(NL)

P
2
f

MPC
Controller
Lin.Model

Optim.

Observer

fEM i

CPI i

Local Controller #i

PEM i

TAMB

TNEIGH i

x i

Ti, TNEIGH i

PTC i

CPIi

fTC i

C
H
I
P

fEM n

CPI n
EMn

fTC n

Local Controller #1fEM 1

CPI 1
EM1

fTC 1

T1, TNEIGH 1

Local Controller #n
Tn, TNEIGH n

High Level

SoC Manager

CPI i CPI i

Figure 5.1: General Architecture

5.1.1.1 Local Self-Calibration Routine

The accuracy of the model is of primary importance for the reliability and effectiveness of

the control problem. We addressed model uncertainty by self-calibration:each core extracts

automatically the local prediction model by applying a set of training stimuli and monitoring

the thermal response of the neighborhood area. The distributed controller strategy combined

with the distributed thermal model calibration phase allow us to take advantage ofthe paral-

lelism of the underlying multi-core platform by running different instances of the controller

and self-calibration routine in parallel.

The identification mechanism consists in the Distributed ARX approach shown inChap-

ter4. We used a second order model,

xi(t +1) = Ai ·xi(t)+Bi ·




Pi(t)
TAMB

TNEIGHi




Ti(t) =Ci ·xi(t)

(5.1)

134

./5_ComplexSolutions/img/0010_Architecture.eps

5.1 Thermal and Energy management of High-Performance Multi-cores

wherei refers to thei-th single-core model,xi , Pi , Ti , TNEIGHi are respectively the state vector,

the power consumption, the temperature, and the temperature of the neighbors core of thei-th

core,TAMB is the ambient temperature.

Notice that the same model has been used to implement the observer block in Fig.5.1.

Indeed, each local thermal controller embeds a Luenberger state-observer to estimate from the

core temperature sensors the not-measurable state components. This allowsus to use higher

order and more accurate prediction models inside the MPC, bringing to significant improve-

ments in the quality of the control with lower overhead compared to a standard Kalman ob-

server. Moreover, the observer uses the local model identified in the self-calibration phase and

thus does not incur in errors due to not-in-field calibration.

Finally, it is worth to remark that the Self-Calibration Routine is executed at first off-line

during the start up phase. Then, it should be executed every time the modelbehavior differs

from the measurements. This could happen due to the normal aging of the component, due to

external environmental causes (e.g. the device is under the sun, or someobject could prevent a

correct ventilation), or to components failures.

5.1.1.2 The Local Energy Manager

The Energy Mapper (EMi) associated to thei-th core computes the optimal core frequency

(fEM,i(t)) which minimizes the energy consumption keeping the performance loss undera fixed

percentage decided by the user. Roughly speaking, this is possible by reducing the core speed

proportionally to the characteristics of the executing task. If an executing task is CPU and

cache intensive (or CPU bound, i.e. the CPU already has the data, withouthaving to read them

from RAM memory), the performance improvement scales linearly with increasing frequency.

Otherwise, if a task is memory intensive (or memory bound), the performanceimprovement

is relatively insensitive to increase in frequency. In this scenario it is convenient to reduce

frequency for memory bound tasks in order to save energy while keepingperformance almost

unchanged. The Fig.5.2shows some experiments conducted in (2) that verify the assumption

previously stated.

Fig. 5.2a shows that performance linearly improves with frequency for CPU bound tasks,

whereas it only marginally improves for memory bound tasks due to the limitation on executed

speed imposed by memory access latencies. Fig.5.2b, instead, shows the energy consumption

of the tasks normalized against the lowest energy consumption. The energy saving increases

exponentially reducing frequency for memory bound tasks, whereas it remains almost constant

135

5. COMPLEX CONTROL SOLUTIONS

2.3

1.8

1.3

0.8
200 300 400 500

Frequency (MHz)

P
e

rf
o

rm
a

n
ce

Im

p
ro

v
e

m
e

n
ts

2.3

1.8

1.3

0.8
200 300 400 500

Frequency (MHz)
N

o
rm

a
liz

e
d

 E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

CPU bound

memory bound

mixed

(a) (b)

Figure 5.2: Performance Improvement and Normalized Energy Consumption (2)

for CPU bound tasks. Indeed, reducing frequency in a CPU bound task means increasing its

execution time, that is we spend less power instantaneously, but for more time.This does not

happen in memory bound tasks where the performance delay remain low evendecreasing the

frequency.

However, tasks typically comprise memory bound and CPU bound phases, hence the best

frequency to reduce energy must be find according to the workload of the CPU. The Cycles per

instruction (CPI) is the metric we have chosen to measure the workload. Our goal is to select

the frequency that minimizes the power consumption while preserving the system performance.

Our solution does it by taking advantage of the parallel architecture and letting each core (i)

compute autonomously the future frequency in line with the incoming workload requirements.

Indeed, considering an in-order architecture1 the average time needed to retire an instruc-

tion – i.e. to execute and complete it – can be seen as composed of two terms: (i) theTimeALU,

the portion of time spent in active cycles and (ii) theTimeMEM, the portion of time spent in

waiting for memory cycles. Whereas the first term is proportional to the input frequency, the

second one is constant to it and depends on the memory access latency.

Let assumefMAX is the maximum frequency allowed by the system andCPIi(t) is the

workload requirement for thei-th core at the time instantt. Then, the minimum execution time

1Multi-core trend is toward integrating a high number of simpler processors(1).

136

./5_ComplexSolutions/img/0020_Energy.eps

5.1 Thermal and Energy management of High-Performance Multi-cores

of the task (Timei(t)) is given by,

TimeMi (t) = #INST ·


 1︸︷︷︸

TimeALU

+(CPIi(t)−1)︸ ︷︷ ︸
TimeMEM


 · 1

fMAX
(5.2)

AssumingfCK,i(t) =
fMAX

α the generic frequency of a task, its time execution increase as,

TimeCK,i(t) = #INST · [α +(CPIi(t)−1)] ·
1

fMAX
(5.3)

where 0≤ α ≤ 1 is the fCK,i

fMAX
(if 1 the task is CPU bound).

By combining them, the execution time overheadTime%,i can be represented as function

of the new frequencyfCK,i(t) andCPIi(t) as reported in (5.4).

Time%,i(t) =
TimeCK,i(t)
TimeM,i(t)

−1=
α +(CPIi(t)−1)
1+(CPIi(t)−1)

−1 (5.4)

Inverting the last equation (5.4) we can findα as,

α = Time%,i(t) ·CPI+1 (5.5)

then, knowing thatα =
fCK,i

fMAX
we can write

fCK,i(t) =
fMAX

1+CPIi(t) ·Time%,i(t)
(5.6)

Therefore, if we suppose to know the predicted CPI for the next samplinginterval (CPIi([t, t+

1]|t)), we can define the best frequency that preserves the performancewithin a tolerable

penaltyTime% as,

fEM,i(t) =
fMAX

1+CPIi([t, t +1]|t) ·Time%,i(t)
(5.7)

fEM,i is the best frequency returned as output by thei-th Energy Mapper after it takes as

input the predictedCPIi for the next sampling interval.

5.1.1.3 The Local MPC-based Thermal Controller

The MPC control layer relies on the distributed solution described in Chapter4.

At the t-th time instant, each Local MPC controller receives as inputs the Energy Mapper

output frequency (fEM,i(t)), its own core temperature (Ti(t)), the temperatures of the physical

137

5. COMPLEX CONTROL SOLUTIONS

neighbours1 (TNEIGHi (t)), the estimatedCPIi(t), and the ambient temperature (TAMB(t)). Then,

according to the safe reference temperature (TCRIT) at which the core temperatures (Ti(t)) must

be constrained, the MPC algorithm adjusts the actual frequency command (fTC,i(t)), minimiz-

ing the displacement from the Energy Mapper requirement2 More in detail, the local controller

uses the Power Model to convertfEM,i(t) andCPIi(t) into a target power requirement,PEM,i .

Then, it exploits the prediction model, feeded with the measurementsTAMB, TNEIGHi , xi , to

compute the estimated core temperature, starting from the current system temperatures. These

predictions define the optimization problem:

min
PTC,i

h−1

∑
k=0

‖PTC,i(t +k|t)−PEM,i(t +k)‖2
Q (5.8a)

s.t.

Ti(t +k+1|t)≤ TCRIT ∀k= 0, . . . ,h (5.8b)

As output, the block returns the controlled powerPTC,i which is equal toPEM,i if the predicted

temperature meets the temperature constraint (TCRIT), otherwise it is reduced. Clearly the

reduction must be as small as possible to maximize the performance.

The optimization problem can be solved implicitly on-line with a QP solver or explicitly

off-line with a multi-parametric QP solver (see Chapter4 for more details).

5.1.2 The Implementation

This section describes the pseudo-code of the implementation of our solution.First, during

system initialization, the self-calibration routine described in Section5.1.1.1is executed for

each core to gather the local thermal model. Secondly, with the single-core models obtained,

we update the weight matrices of each local optimization problem, as shown in Section5.1.1.3.

Third, at each sample we execute the Local Energy Mapper and the Local MPC-based Thermal

Controller routines. Subsequently at each controller step we apply the optimal frequency to the

controlled core.

1The sampling time is assumed small enough as discussed in the previous chapter in order to include only the

adjacent cores in the neighborhood.
2The computation and actuation times for EM and TC are assumed negligible withrespect to sampling time

interval. Hence, for mathematical modeling, control outputs are considered generated at the same instant of sampled

inputs.

138

5.1 Thermal and Energy management of High-Performance Multi-cores

The code below shows the list of operations executed in parallel by each core to gather the

local thermal model, adapt the controller parameters and control the systemperformance.

Pseudo Code

1 SYSTEM INITIALIZZATION PHASE:

2 Apply a PRBS task sequence;

3 get Pi ,Ti ,TNEIGHi ;

4 obtain α, and β with the distributedARX approach;

5 find the state space representation Ai ,Bi ,Ci with Ci = [10];

6

7 CONTROLLER ROUTINE

8 Initialize the weight matrices Hi , Mi , and the state x̂i(0);

9 FOR EACH SAMPLE

10 get previous fTC,i(t −1) and CPIi(t −1);

11 compute the optimal fEM,i(t);

12 convert to PEM,i(t) using the Power Model;

13 update gi and bi ;

14 solve the QP problem and find PTC,i(t) with hot -start;

15 compute fTC,i(t);

16 estimate x̂i(t);

17 END_FOR

More in detail:

Line 1 during the system initialization phase we execute in parallel in each core the Self-Calibration

Routine;

Line 2-3 we apply a pseudo-random task sequence to each core and we collect the core power and local

neighborhood temperature traces;

Line 4 we execute theARXoptimization in each core to obtain theα andβ parameters;

Line 5 we convert the model in the state-space form using the observability matrix to give physical

meaning to the first component of the state vector. It correspond to the measured core tempera-

ture;

Line 8 we define the constant matrices used in the QP problem (4.22), Hi , Mi), and assign the initial

state, ˆxi(0), to the model ;

Line 9 at each time step the loop from line 9 to line 17 is repeated;

Line 10 the Energy Mapper read the previous step core frequencyfTC,i(t−1) andCPIi(t−1), and it es-

timates the future workload requirementCPIi(t) and compute optimal target frequencyfEM,i(t);

Line 12 the Thermal Controller receives the target frequency and the workload from theEMi and then

it converts them into the target power using the nonlinear function (4.1);

139

5. COMPLEX CONTROL SOLUTIONS

Line 13 the vectorgi , dependent onPEM,i(t), and the vectorbi , dependent on ˆxi(t), TAMB(t) andTNEIGHi (t),

are updated.

Line 14 starting from the previous optimal solutionPTC,i(t − 1) the solver finds the optimalPTC,i(t),

solution of the QP problem.

Line 15 PTC,i and workload are used to findfTC,i inverting the function (4.1) as an example with the

Brent’s algorithm.

Line 16 the observer estimates the state ˆx(t) knowing the fTC,i(t) andTi(t). This state will be used as

initial state by the MPC controller to estimate the future temperature of the core.

The explicit MPC implementation is similar to the one described above with the only dif-

ference in lines 13-14. Indeed, the optimalPTC,i is obtained with (4.25). Both implementations,

thank to our distributed strategy and the hot-start QP solver (in the implicit implementation),

have low overhead and are suitable to be executed with a sample rate of 1-10ms.

5.1.3 Experimental Results

The solution has been tested on the accurate virtual platform described in AppendixB that

combines Simics a x86 ISA functional simulator, and GEMS (7), a complex memory hierarchy

timing-accurate model. This virtual platform emulates a general-purpose multi-core running in

a full system. It provides a flexible and effective tool to support the design space exploration of

power, thermal and reliability control-theory-based close-loop resource management solution.

We executed each Local Energy Mapper and Local MPC-based Thermal Controller with a

sampling time of 1ms. The Local MPC-based Thermal Controller routine embeds the explicit

MPC implementation and estimates full state with the state observer. Even if the controller rou-

tines are not executed directly on the target multi-core, the complexity analysisin Section4.3.1

demonstrates that the distributed solution has negligible run-time. Thus, the perturbation due

to its computations to the program execution flow can be neglected.

The floorplan used to test the proposed solution on the virtual platform is theXeonR© X7350

already showed in Fig.4.7 in Chapter4. On each core we run different PARSEC 2.1 (9)

benchmarks workloads each one with a number of tasks equal to the numberof cores. The

temperature constraint for each core isTCRIT = 330◦K)1. The test has been performed on four

control configurations:

1Used thermal model is calibrated on a device with high performance thermal dissipation dynamics, indeed to

stress our thermal controller we are forced to use a lower temperature constraint

140

5.1 Thermal and Energy management of High-Performance Multi-cores

Original : without any type of control;

Energy Mapper : with the energy control, but without the thermal control;

Centralized MPC : with the energy control and with the centralized MPC thermal control;

Distributed MPC : with the energy control and with the distributed MPC thermal control.

The results has been compared using as metrics the maximum temperature overshoot,namely

the maximum temperature reached minusTCRIT, and the percentage of time the critical tem-

perature is violated. A quality of service (QoS) degradation metric is then used to quantify

the performance loss respect to the centralized solution and it has been computed as the mean

squared error between the energy mapper frequency target (fEM) and the one applied to the

system by the controller (fTC). We relativized it against the centralized controller one.

(a) (b)

(d)(c)

#1 - Blackscholes

#2 - Bodytrack

#3 - Freqmine

#6 - Canneal

#5 - Fluidanimate

#4 - Swap�ons

20%

10%

0%

Percentage of �me bound violated

92%

99%90% 72% 97% 96%98%

98% 68%86% 96%97%

#1 #2 #3 #4 #5 #6

3%

0%

1%

2%

Distributed Thermal
Controller QoS loss

#1 #2 #3 #4 #5 #6

#1 #2 #3 #4 #5 #6

Maximum Temperature Overshoot

8

6

2

0

4

Original EM Centr TC Distr TC
[°K]

Execu�on Time Overhead

Energy Saving
Power Saving

Energy Mapper

#1 #2 #3 #4 #5 #6

10%

8%

6%

4%

2%

0%

Figure 5.3: Virtual platform test results

Fig. 5.3 shows the results collected. First, from Fig.5.3a,b and c, we can notice that the

proposed distributed solution performs as well as the centralized one. In particular Fig.5.3a,

the maximum overshoot in Kelvin degrees, and Fig.5.3b, the percentage of time the constraint

is violated, show that both solutions are capable of drastically reducing the portion of time in

which each core runs out of the thermal bound. Looking at the performance loss (Fig.5.3c),

we notice that our proposed solution performs at the same level of the centralized one, with

141

./5_ComplexSolutions/img/0030_VPres.eps

5. COMPLEX CONTROL SOLUTIONS

a degradation less than 3%. Finally in more symmetrical workloads1, such asswaptions ,

fluidanimate , canneal , we noticed that the average frequency applied to the external

cores (#1, #4) is kept lower (up to -14%) than the internal cores. This isa sign that the MPC

controller is able to optimize the core frequency locally, taking advantage of the difference be-

tween the local thermal models. Indeed the external thermal models have lessthermal dissipa-

tion headroom since thermal model considers the chip lateral boundary adiabatic (8). Finally,

Fig. 5.3d shows the performance of the EM alone, while allowing a performance penalty of

T%,i(t) = 5%. We can notice that it is able to maintain the performance overhead under the

selected threshold while achieving a significant power and energy saving.

5.2 A feasible two-layer distributed MPC approach to thermal con-

trol of Multiprocessor Systems on Chip

The central aim of the control solution presented in this section is to addressthe MPSoCs

thermal issue by using a fully distributed control solution able to ensure feasibility, reliability

and efficiency.

The main idea to develop a solution with these properties is to exploit the results obtained

in Section4.4.4. Indeed, we have proved that a thermal system modeled with a PDE is always

feasible in solving temperature capping problem. However, temporal and spatial discretiza-

tion affect this property. The uncertainties introduced by discretizing the model as well as

unpredictable measures (e.g. the workload cannot be accurately forecasted and usually it is

considered equal to the past one assuming low variability between two time steps) prevent the

use of an ideal distributed MPC solution as the one shown in the Chapter4, where each lo-

cal controller supervises one core, maintaining the temperature under a fixed threshold,̄TCRIT,

and maximizing at the same time the workload request from the High Level SoC Manager.

Before proceeding, it is worth to make some considerations on the plant modelwe used for

simulations. It has been built assuming that the main contribution for heat dissipation occurs

through the heat spreader located on the top of the chip, whereas the dissipation along lateral

boundaries has been considered negligible. For this reason the steady-state temperature when

the minimum power is given to the cores is uniformly distributed and the critical space varying

thresholdT̄CRIT considered in Section4.4.4can be considered equal toTCRIT. A solution with

T̄CRIT 6= TCRIT is actually under development.

1The parallel benchmark executes the same code on all the processors.

142

5.2 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor
Systems on Chip

A first attempt to take into account model uncertainties is using a conservative identification

approach as the one shown in Section4.1.2. Overestimating the future temperature of the cores,

the controller applies a more moderate control action. However, the identifiedmodel uses a set

of data collected from the real system that may not capture all possible behaviors, leaving the

problem of model uncertainties not completely solved.

Another simple solution may be to put a margin between the critical temperatureTCRIT and

the maximum temperature allowed by the MPC, that we calledτMPC. Thus, the temperature

could violateτMPC due to underestimations on predictions, but it remains belowTCRIT because

of the margin.

Nevertheless, guarantees for conservative thermal capping requires a significantly large

margin – increasing with sampling time period – that strongly impacts on performance. Indeed,

as temperature threshold decreases, also power consumption and core speed reduce as well. A

even bigger problem is related to our decision of using a distributed solution,which, as already

shown in Section4.4.5and due to the sampling time and model uncertainties, may take to an

infeasible solution.

Our solution considers a two-layer hierarchical architecture. The higher layer exploits the

distributed MPC scheme previously mentioned to address the thermal capping issue, maximiz-

ing performance at the same time. The lower one, namely the Safety layer, guarantees the

control feasibility, the respect of theTCRIT bound and the reduction of the MPC margin, favor-

ing better performance. Its functioning is totally independent from the system at hand since the

knowledge of the model of the system is unnecessary.

5.2.1 The Architecture

The Fig.5.4 depicts the block diagram of the proposed solution. Each local controller com-

prises three components, one of them is computed off-line, the other two works at run time and

differs for the implementation. One it is suppose to be software-based, whereas the other one

is hardware-based.

Local Iterative Identification Procedure : it derives, off-line, the local, but interacting, ther-

mal prediction model adopted in Local MPC Controller.

Local Safety Controller : it switch thei-th core frequency to the minimum value if its tem-

perature cross the critical threshold (i.e.τSWITCH). It guarantees feasibility.

143

5. COMPLEX CONTROL SOLUTIONS

Local MPC Controller : it trims the frequency to ensure a safe working temperature (i.e.

≤ τMPC). Local controllers jointly optimize global system operation by exchanging a

limited amount of information at run-time on a neighborhood basis. This is the solution

presented in Chapter4.

In the next paragraphs we provide a detailed description of these three components.

T1,...,8

Min

PMIN

1e10
τSWITCH,LOW

τSWITCH

PMIN

1e10
τSWITCH,LOW

τSWITCH

T1

T8

Sampling Time = 100us

Safety

CORE 1

CORE 3

CORE 2

CORE 4

CORE 5

CORE 7

CORE 6

CORE 8

C
ach

e L2

C
ac

h
e

L2
C

ac
h

e
L2

C
ach

e L2
MPSoC PLANT

fC1,...,8

MPC 1

Lin.Model

Optim.

MPC 8

Lin.Model

Optim.

PT,1

TNEIGH1

TAMB

TNEIGH8

TAMB

PT,8

PC,1

PC,8

Sampling Time = 10ms

MPC
PT1,...,8

f T1,...,8

CPI1,...,8

High

Level

SoC

Manager

freq
2

Pow

PC1,...,8 Pow
2

freq

Figure 5.4: General Architecture

5.2.1.1 Local Iterative Identification Procedure

The basic concept of MPC is to use a dynamic model to forecast system behavior, and optimize

the predictions to produce the best control decision. Thus, the efficiency of the controller is

strongly related to the accuracy and complexity of the model used for predictions. In order

to identify a model with such characteristics each core runs an off-line Iterative Identification

Procedure. This procedure recalls repeatedly theH∞ problem shown in Section4.1.2. At

each iteration, the approach finds the model that minimizes the maximum error between the

predicted temperature and the measured one (obtained applying a set of training stimuli to the

real processor), keeping the error always positive (for conservative reasons). The technique

start considering all possible measurements as model input, then at each iteration it discards

the negligible one.

144

./5_ComplexSolutions/img/0040_Architecture2.eps

5.2 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor
Systems on Chip

The model considered for each core is a second order model,

xi(t +1) = Ai ·xi(t)+Bi ·u(t)
Ti(t) =Ci ·xi(t)

(5.9)

whereCi = [1 0], andu(t) are the inputs selected after the iterative approach has been applied.

We found that these inputs are[Pi(t) TAMB TNEIGHi] .

It is also worth to note that the model, having a order greater than one, needs an estimator

to evaluate the unknown state. The particular structure of the model allow us to obtain the

real value of the states by simply storing the past control inputs and temperatures. Indeed,

considering the second order model obtained as result of theH∞ problem,

T(t|t −1) = α2 ·T(t −1)+α1 ·T(t −2)+β2 ·u(t −1)+β1 ·u(t −2),

the unknown state can be estimated as,

x2(t) = a2 ·Tt−1+b2 ·ut−1

5.2.1.2 Local Safety Controller

The Safety layer is composed by a set of hardware-based switch controllers, one for each core,

completely independent from the MPC layer, namely the Local Safety Controllers. When the

current temperature of thei-th core,Ti , reaches the critical temperature threshold,TCRIT, the

correspondent switch controller bypasses the MPC layer providing to thecore a minimum

power,PMIN , until the temperature reaches a fixed lower value,τSWITCH,LOW.

The three central goals of this layer are: to ensure feasibility, to respectthe temperature

constraintTCRIT and to improve performance respect to the MPC solution with completely

conservative margin (i.e. the MPC controller is designed to avoid the Safety layer activation).

We prove the first two properties directly using the results established in Section 4.4.4,

indeed,

Proposition 5.2.1. Consider the system (4.31) and assume that temperatures on sources are

measured, then there exists a set oflocal time-continuous switch regulators that solve the ther-

mal capping problem and whose form is:

PC,i(t) =





PMPC,i(t) Ti(t)≤ TCRIT

PMIN Otherwise
(5.10)

where PC,i and PMPC,i are respectively the final controlled power and the power chosen by the

MPC controller supervising that core.

145

5. COMPLEX CONTROL SOLUTIONS

Proof. From the proposition4.4.2, the maximum temperatures are known because of the sen-

sors on sources. The property4.4.7ensures the feasibility by applying instantaneously a lim-

ited control action,PMIN , on sources which are exceeding the thermal limitTCRIT. On the other

hand, according to the proposition4.4.3, the sources which are not controlled toPMIN cannot

cause the threshold violation of the nullified ones (or elsewhere), since their temperatures are

lower thanTCRIT.

However, this result has theoretical validity under continuous-time hypothesis, but the clock

driven nature of MPSoCs imposes the use of a discrete-time controller. Consequently, as tem-

perature violation can happen during sampling interval, it is necessary to provide a margin, that

is to decrease the critical temperatureTCRIT to a valueτSWITCHaccording to the sampling time

chosen. Notice that, because the Safety layer is hardware-based, the sampling time can be very

small. A procedure to findτSWITCH relies on the inversion of the discrete models (5.9) of each

core. It consists in finding the initial state that reaches the critical temperature TCRIT after a

sampling interval, assuming the worst possible case (i.e. maximum power, maximumambient

temperature and maximum temperature of neighbors). Therefore, invertingthe second order

model (4.11) we obtain,

[
τSWITCH

x2,init

]
= A−1 ·



[

TCRIT

x2, f ut

]
−B·




PMAX

TAMB,MAX

Tneighs,MAX






Notice that the previous equation includes three unknown variables,τSWITCH, x2,init andx2, f ut,

but only two equations. To solve the problem we overestimated the value ofx2, f ut setting an

appropriate∆T and using the previous equation which can be written as,

x2, f ut=a−1
12 (TCRIT+∆T−a11·TCRIT−B·






PMAX

TAMB,MAX

Tneighs,MAX




 (5.11)

wherea11 anda12 are the first line elements ofA.

In order to completely define the switch controller we need to set the valueτSWITCH,LOW

that determines its deactivation. As the nominal behavior resumes, the state ofthe system

must be feasible, hence lower than the temperature limit imposed by the MPC,τMPC. We set

τSWITCH,LOW = τMPC−∆ where∆ is a small arbitrary value.

Thus, summarizing, the resulting controller is a hardware-based, discrete-time, hysteresis

controller, capable of guaranteeing feasibility.

146

5.2 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor
Systems on Chip

The last property to be discussed is how the use of the Safety layer can improve global

performance of the system. The central idea is to design the two layers knowing the existence

of the other. Indeed, designing a stand-alone MPC layer would correspond to set the threshold

τMPC to the maximum value that prevent the use of the Safety layer, causing performance

degradation. Instead, we can setτMPC to a higher value, allowing the cores to be faster and the

Safety layer to intervene more frequently. How to choose theτMPC value is described in the

next section.

5.2.1.3 Local MPC Controller

The MPC layer, as well as the Safety layer, has been designed with a distributed structure.

Such configuration allows the controller to be computationally more efficient, asshown in Sec-

tion 4.3and more reliable, since the break down of a core cannot compromise the whole system

performance. Each controller solves an optimization problem which exploits the predictions,

computed with the identified single-core model, to find the best control decisionthat maintains

the temperature underτMPC. When the temperature of thei-th core reaches the Safety thresh-

old, τSWITCH, the i-th switch controller takes the control of the core imposing the minimum

power. Immediately, when the switch controller deactivates, the MPC controller, which has re-

mained active, takes place and continue with the best control action computedat the beginning

of the previous sampling time.

The optimization problem solved inside the Local MPC Controller is the one presented in

Chapter4, that is,

min
PC,i

h−1

∑
k=0

‖PC,i(t +k|t)−PT,i(t +k)‖2
Q (5.12a)

s.t.

Ti(t +k+1|t)≤ τMPC ∀k= 0, . . . ,h (5.12b)

An important step in the development of the global control solution is choosingthe MPC

threshold. IdeallyτMPC = τSWITCH, but, as already mentioned, the existence of uncertainties

would involve a frequent intervention of the Safety controller. We need to provide a margin

betweenτMPC andτSWITCH. Clearly, the greater is the margin, the more conservative is the

controller, and the lower are the performance (the MPC would maintain the core speed to

a lower level). However, also setting a low margin would correspond to low performance

147

5. COMPLEX CONTROL SOLUTIONS

due to the high activation frequency of the Safety layer. Thus, the central idea of the two-

layer solution is to choose a MPC threshold greater than the completely conservative one (i.e.

the one that prevents the activation of the Safety layer), that lets the Safetylayer managing

critical situations, in order to maximize the performance. Note that this latter is a key point for

manufacturers whose profit is strictly related to performance.

Therefore, theτMPC results from the solution of a trade-off problem between conservative-

ness of the MPC controller and frequency of activation of the Safety controller. Nevertheless,

the great number of factors affecting the controller, as external inputs and the already cited

model uncertainties, make the use of a rigorous analytical estimation ofτMPC difficult. Thus,

we developed empirically-based methods to impose this margin.

A first simple method consists in running typical benchmarks, e.g. PARSEC 2.1(9), and

calibratingτMPC as the value that reduces the violations ofτSWITCHunder an arbitrarily chosen

percent of time. This solution let the user the freedom of choosing the degree of exploitation of

the Safety layer. However, if our goal is maximizing the computing performance, we need to

solve an optimization problem. We search for theτMPC that maximizes an objective function –

the integral of the cores frequency – constrainingτMPC in the interval[τMPC,CONS, τCRIT], that

is

min
τMPC

N

∑
i=1

∫ Time

0
fC,i(τMPC, t)dt (5.13a)

s.t.

τMPC,CONS≤ τMPC ≤ TCRIT (5.13b)

whereN is the core number,fC is the controlled cores frequency,[0,Time] is the time interval

of the benchmarks, andτMPC,CONS is theτMPC in the completely conservative case (i.e. the

Safety layer is never used). We solved the problem for each benchmarkand we selected the

optimal value ofτMPC as the average of the result of each problem. However, the solution of

the problem (5.13) requires to run a great amount of simulations to collect the frequency data

for computing the integral in the objective function (one for each value ofτMPC and for each

benchmark). In order to reduce the number of simulations we quantized the set of theτMPC

values.

Finally, it is worth to note that the upper bound ofτMPC is TCRIT, not τSWITCH. The con-

servativeness of the identified model explains this choice, indeed the temperatures limited

148

5.2 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor
Systems on Chip

by the MPC could be lower thanτSWITCH even if τMPC > τSWITCH. In this particular case

τSWITCH,LOW = τSWITCH−∆.

5.2.2 The Implementation

The code below shows the list of operations executed in parallel by each core to gather the local

thermal model, adapt the controller parameters and control the system performance.

Pseudo Code

1 OFF-LINE MODEL IDENTIFICATION & CONTROLLER SETTINGS:

2 Apply a PRBS task sequence;

3 get Pi ,Ti ,TNEIGHi ;

4 obtain α, and β with the H∞ Iterative Procedure;

5 find the state space representation Ai ,Bi ,Ci with Ci = [10];

6 setting of τSWITCH, τMPC;

7

8 CONTROLLER ROUTINE

9 Initialize the weight matrices Hi , Mi , and the state x̂i(0);

10 FOR EACH MPC CONTROLLER SAMPLE

11 get fT,i(t) and CPIi(t) =CPIi(t −1);

12 convert to PT,i(t) using the Power Model;

13 update gi and bi ;

14 solve the QP problem and find PC,i(t) with hot -start;

15 FOR EACH SAFETY CONTROLLER SAMPLE

16 compute the min between PC,i(t) and the output of the Safety Layer;

17 END_FOR

18 compute fCi (t);

19 estimate x̂i(t);

20 END_FOR

More in detail:

Line 1 during the system initialization phase we execute in parallel in each core the Self-Calibration

Routine;

Line 2-3 we apply a pseudo-random task sequence to each core and we collect the core power and local

neighborhood temperature traces;

Line 4-6 according to Fig.5.5:

1. we identified the prediction modelsof each core performing the iterative procedure of

Section4.1.2. As already mentioned the distributed models may be infeasible, therefore

we avoided the feasibility test of Section4.4.5 (the Safety layer is enough for ensuring

feasibility).

2. We found the thresholdτSWITCHof the Safety layer by inverting the models.

149

5. COMPLEX CONTROL SOLUTIONS

3. We detected theconservative MPC threshold(τMPC,CONS) by running a set of benchmarks

on the system supervised by the two-layer controller. We setas initial thresholdτMPC =

τSWITCH and we used as prediction model the identified one. Then, we decreased the

MPC threshold until we detected that cores temperatures never exceedτSWITCH for each

benchmark.

4. we found the finalτMPC that maximizes the performance. Starting fromτMPC= τMPC,CONS,

we increasedτMPC looking for the value that maximize the integral of the coresfrequencies

and then we performed a average of the results of all benchmarks.

Line 9 we define the constant matrices used in the QP problem (4.22), Hi , Mi), and assign the initial

state, ˆxi(0), to the model ;

Line 10 at each sampling time of the MPC layer the loop from line 10 to line 20 is repeated;

Line 11 the High Level SoC Manager provides the frequencyfT,i(t) andCPIi(t) requirements;

Line 12 the Thermal Controller converts them into the target power using the nonlinear function (4.1);

Line 13 vectorgi , dependent onPT,i(t), and vectorbi , dependent on ˆxi(t), TAMB(t) andTNEIGHi (t), are

updated.

Line 14 starting from the previous optimal solutionPC,i(t −1) the solver finds the optimalPC,i(t), solu-

tion of the QP problem.

Line 15 at each sampling time of the Safety layer (faster than the MPClayer one) the loop from line 15

to line 17 is repeated;

Line 16 if the current core temperature is greater thanτSWITCH, the Safety Controller imposesPC,i(t) =

PMIN ;

Line 18 PC,i and workload are used to findfC,i inverting the function (4.1) as an example with the Brent’s

algorithm.

Line 19 the observer estimates the state ˆx(t) knowing the fC,i(t) andTi(t). This state will be used as

initial state by the MPC controller to estimate the future temperature of the core.

Model

Identi�cation

Conservative
MPC Layer
Threshold
τMPC,CONS

Safety Layer
Threshold
τSWITCH

Iterations

MPC Layer
Threshold

τMPC

Figure 5.5: Off-line steps summary

Notice that the Safety layer is hardware based and can be executed with a sample rate of

100us, whereas the MPC layer is software based and its sample rate is 10ms.

150

./5_ComplexSolutions/img/0050_FlowChart.eps

5.2 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor
Systems on Chip

5.2.3 Experimental Results

We tested our solution on a Matlab/Simulink simulator developed exploiting the finite element

approach described in AppendixB. Fig. 5.6shows the plant we used for our simulations. This

is a Xeon-like platform as the one shown in Fig.4.7, but we decided to double it to show that

our control solution is reliable also for a bigger number of cores. The final layout is similar to

the Enterprise XeonR© Processor presented in (4).

Figure 5.6: Simulator layout

The admissible power consumptions of each core ranges fromPMIN = 4.38W to PMAX =

25W corresponding to a frequency of 1600MHZ and 2970MHz and the idle power – power

consumed when the core is shut down – isPIDLE = 0.25W. The power dissipated by the caches

is the 30% of the power consumed by the cores directly connect to them.

For each local MPC controller we identified, according to theH∞ iterative procedure, a

second order model to forecast the temperature of the supervised core. We collected the inputs

and output data applying a PRBS power trace to the plant and then we solvedthe optimization

problem (4.10) to find the unknown parameters. At the first iteration we considered all possi-

−15e-3

−10e-3

−5e-3

0

7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6
0

10

20

30

P
re

d
ic

ti
o

n
 E

rr
o

r
P

o
w

e
r

In
p

u
t

[W
]

All inputs
Few inputs

3
5

8
,9

3
5

9

3
5

9
,1

3
5

9
,2

3
5

9
,3

3
5

9
,4

3
5

9
,5

3
5

9
,6

3
5

9
,7

3
5

9
,8

3
5

9
,9

3
6

0

3
6

0
,1

3
6

0
,2

1

0,8

0,6

0,4

0,2

0

-0,2

-0,4Im
p

ro
v

e
m

e
n

ts
 [

%
]

τMPC

(a) (b)

Figure 5.7: (a) Temperature prediction error comparison; (b) Performance comparison with dif-

ferentτMPC

151

./5_ComplexSolutions/img/0060_ChipSimulated.eps
./5_ComplexSolutions/img/0070_SettingResults.eps

5. COMPLEX CONTROL SOLUTIONS

ble inputs: all core powers, the ambient temperature and the temperature of all cores (except

the i-th one). The results showed that the power inputs, with the exception of thei-th one,

had a negligible contribution to the final temperature of the cores. As an example the power

consumption contributions for the core 1 are:

B=

[
4.7e−2 6e−6 −2.5e−6 5.6e−6 −6.4e−6 −1.5e−6 2e−6 5.7e−6 . . .

−4.5e−2︸ ︷︷ ︸
PC,1

8e−5︸ ︷︷ ︸
PC,2

−2.6e−4︸ ︷︷ ︸
PC,3

3.8e−5︸ ︷︷ ︸
PC,4

−8.54e−5︸ ︷︷ ︸
PC,5

−7e−4︸ ︷︷ ︸
PC,6

5e−5︸ ︷︷ ︸
PC,7

8e−7︸ ︷︷ ︸
PC,8

. . .

]

In the second iteration we deleted the temperature contributions of the cores situated far from

the i-th core. We considered only the north, south, east and west sides cores.

In Fig. 5.7a we show a comparison between the models identified respectively in the first

(All inputs) and last step (Few inputs) of the iterative procedure. The temperature prediction

error results similar for both the cases. As an example, we reported below the model obtained

for the core 3,

[
T3

x2,3

]

t+1

=

[
1.5 1

−0.5 0

]
·

[
T3

x2,3

]

t

+

+

[
4.0e−2 3.5e−4 4e−4 7e−4 3.8e−4

−4.5e−2 0 0.5e−4 −2.7e−4 6.7e−4

]
·




PC,3

TE

T1

T4

T5




t

We setτSWITCH= 359.7◦K, assuming∆T = 0.25◦K in (5.11), and the conservative MPC

thresholdτMPC,CONS= 358.8◦K by iteratively decreasing theτMPC until we detected no Safety

layer interventions1.

The procedure to findτMPC is similar to the one used to findτMPC,CONS. We setτMPC =

τMPC,CONSand we increased iteratively its value by 0.1◦K. For each simulation we stored the

integral of the frequency as performance metric.

In Fig. 5.7b we compared the performance with respect to theτMPC chosen. Notice that

because we run the simulation with different benchmarks the values plotted in the figure cor-

respond to average values. The final value forτMPC is 359.8◦K that is greater thanτSWITCH.

As already mentioned this is due to the conservativeness of the models obtained with the iden-

tification procedure. The improvements of performance are about 1% in average. The lower

hysteresis threshold of the switch controllers,τSWITCH,LOW, is equal toτSWITCH−0.1◦K, that

is 359.6◦K.

1At each iteration we decrease the previousτMPC,CONSby 0.1◦K.

152

5.3 Communication-aware solution

359

360

T
e

m
p

e
ra

tu
re

[°
K

]

10

20

30

P
o

w
e

r

[W
]

2000

3000

F
re

q
u

e
n

cy

[M
H

z]

0

10

20

 W
o

rk
lo

a
d

[C

lo
ck

 P
e

r
Is

tr
u

ct
io

n
]

2 2.5 3 3.5 4 4.5

Controlled Requested

359.4

359.6

359.8

Temperature [°K]

1.65 1.66 1.67 1.68 1.69 1.7 1.71 1.72 1.73

1.65 1.66 1.67 1.68 1.69 1.7 1.71 1.72 1.73

1500

2000

2500

3000
Frequency [MHz]

(a) (b)

Figure 5.8: Simulation results of the core 3

Fig. 5.8 shows the temperature response of core 3. Fig.5.8a shows the case when only

the Safety layer is active. The temperature results bounded under theTCRIT = 360◦K and

the controller is feasible, but the performance degrades due to the continuous activation and

deactivation of the Safety layer.

Fig. 5.8b, instead, shows the response of the core 3 when a PARSEC 2.1 benchmark (Flu-

idanimate) is assigned to the controlled system. The temperature is perfectly bounded under

TCRIT and the Safety layer intervenes only when the temperature crossesτSWITCH setting the

frequency to 1600MHz.

Finally Fig.5.9shows the simulation results for the core 3 when different MPC thresholds

were applied: theτMPC that maximizes the performance (τMPC,MAX), theτMPC that reduces the

violation under the 0.1% (τMPC,0.1%) and theτMPC completely conservative (τMPC,CONS). As

illustrated the frequency for (τMPC,MAX) is the greatest on average even though Safety layer

intervenes more frequently than in the other case.

5.3 Communication-aware solution

Increasing the number of cores on a single chip substrate is the actual trend for improving

processors performance. Dozens or hundreds of core are expected in the next future. As a

result, many-core architectures will substitute the actual multi-core one. However, behind the

improvement of the throughput per Watt, many-core systems introduce new challenges tied

153

./5_ComplexSolutions/img/0080_SimulationResults.eps

5. COMPLEX CONTROL SOLUTIONS

357

358

359

360
T

e
m

p
e

ra
tu

re
 [

°K
]

1.6 1.8 2 2.2 2.4 2.6 2.8

2000

2500

3000

F
re

q
u

e
n

cy
 [

M
H

z]

ZOOM

τMPC, MAX

τMPC, 0.1%

τMPC, CONS

Figure 5.9: Performance comparison with three differentτMPC

to their large scale structure. We can define a processor as many-core ifit has a number of

cores large enough (several tens of cores) to prevent the use of thetraditional multi-processor

techniques due to issues of congestion. Indeed, the data and instruction traffic generated by so

many cores preclude the use of shared buses and shared memories between the cores (used in

the so called cache-coherent approach). Many-core architecturesmay be non-cache-coherent

and the communication between cores may take place via message passing through networks-

on-chip (NoCs). Message passing system is usually implemented using a Message Passing

Interface (MPI), a library specification that has become the standard for message-passing-based

parallel programming. Additionally, many-core chips can benefit from computation migration

and mechanisms for actively balancing load which can enhance system throughput and power

management. This latter, in particular, represents a critical constraints in today computing

platform. A common approach to reduce power consumption is DVFS (Dynamic Voltage and

Frequency Scaling) that exploits the dependence on frequency and thesquare of the supply

voltage of the power. Roughly speaking we save energy by reducing frequency and voltage of

one core when it experiences thermal issues or performance would experience low degradation.

Nevertheless, whereas this technique achieves good results for single/multi-core processors,

they do not capture the unique performance-power tradeoffs in many-core systems with MPI.

Indeed, voltage and frequency changes affect MPI since its functions or calls are executed

on the cores subjected to DVFS regulation (5) (6). According to the results achieved in (5)

testing some typical benchmarks on a SCC processor (see AppendixB), the performance and

154

./5_ComplexSolutions/img/0090_ComparisonTauMPC.eps

5.3 Communication-aware solution

(NL)

f
2
P

(NL)

P
2
f

MPC
Controller
Lin.Model

Optim.

Observer

fT

CPI

Centralized Controller

PT i

TAMB

x

T

PC

CPI

fC
Thermal

Model

High

Level

Manager

Figure 5.10: Proposed solution architecture

the power efficiency of the many-core system show some benefit if the frequencies of the core

that are communicating are balanced.

The aim of this solution is to manage the core frequencies in order to equalize the fre-

quency of the cores that communicate with each other. This management must be performed in

a thermally safe environment, therefore the proposed solution consists in updating the thermal

control solution for respecting this new requirement. In the next sections we presented our so-

lution, however it is important to remark that a real analysis of the performance improvements

has not been conducted yet. This Section has only the aim of presenting alinear MPC-based

thermal control solution able to account dynamically constraints on frequency. Finally this so-

lution can be exploited also in the case of two or more cores may need to have thesame DVFS

level due to application requirements or hardware limitations.

5.3.1 Architecture

Differently from the other solution presented, this solution consists of one layer that uses the

centralized MPC-based control paradigm,

min
h−1

∑
k=0

‖PT(t +k|t)−PC(t +k|t)‖2
Q (5.14a)

s.t.

Tj(t+k+1|t)≤TCRIT ∀ j=1, . . . ,nT ∀k=0, . . . ,N (5.14b)

wherePC = [PC,1, . . . , PC,N] andPT = [PT,1, . . . , PT,N] are respectively the vector of the power

consumption allowed to be dissipated by the cores and the one requested by the High Level SoC

Manager,QN×N is the weight matrix,TCRIT is the critical temperature, andT = [T1, . . . ,Tp] is

the vector of the temperatures measured on the chip (see the control architecture in Fig.5.10).

155

./5_ComplexSolutions/img/0100_Architecture3.eps

5. COMPLEX CONTROL SOLUTIONS

We assumed to have a sensor placed in the center of each core, i.e.p = N whereN is the

number of cores. The notationTj(t + k+1|t) means the temperature estimated for the future

time (t + k+ 1) based on the information available at timet which implies the existence of

a discrete-time thermal model relating the power consumption (and the ambient temperature)

with the future temperature of the cores,

x(t +1) = A·x(t)+B·

[
P(t)
TAMB

]

T(t) =C ·x(t)
(5.15)

The model has been identified using the distributed ARX approach shown in Section4.1.1.

This approach returnsN single-core models that can be composed to obtain a global model.

Each single-core model has two states (we chose a second order model for each core), the

first o which corresponds to the core temperature (Ti), the second, instead, is unknown (x2,i).

Composing all these states together we obtain the state of the global model,x(t), that has

dimension 2N×1. We decided to grouped all the temperature measurements in the first half of

the vector, thereforex(t) = [T1, . . . ,TN,x2,1, . . . ,x2,N]. A is a 2N×2N matrix,B is 2N× (N+1)

matrix andC is aN×2N matrix of the form[IN 0N].

It is worth to note that in the problem formulation (5.14) we exploited, as in the rest of the

thesis, the possibility of separating the nonlinear frequency-to-power relation in order to have a

linear MPC problem. The Power Model we considered is the same of (4.1) but we substituted

to the supply voltageVdd the nonlinear function of the frequencyh(f) = a1 · f a2 +a3, that is,

P= Pdynamic+Pstatic=
[
kA1 · f kB +kA2+(kC+kD · f req) ·CPIkE

]
+
[
Z ·Vdd ·T

2 ·e
−q·Vt
K·T

] (5.16)

wherekA1 = 3.8696e−008,kB = 2.4090,kA2 = 1.1025,kE = −0.3016,kC = −4.1376,kD =

0.0051,Z = 2.59e+2, q= 1.60e−19,K = 1.38e−23.

The three main points of this solution are:

• maximizing the performance by reducing the tracking error between the target power

and the controlled one;

• constraining the temperature below a maximum valueTCRIT

• reduce the frequency of the desired core to the same value

The first two points are automatically satisfied by the MPC-based thermal solution. The

aim of this solution is to account the last point.

156

5.3 Communication-aware solution

5.3.1.1 Problem update

The simplest approach for modifying the problem structure and allows the controller to manage

the communication between cores is to add a constraint as,

fC,i(t) = fC, j(t)

where fC,i(t) is the controlled frequency of the corei at the time instantt.

However, the manipulated variable of the control problem (5.14) is the controlled power

consumptionPC that depends nonlinearly on frequency. Introducing such a constraint would

mean to make the MPC problem nonlinear. Moreover, in order to have the possibility of con-

straining the frequency of all the N core we should have up toN−1 nonlinear constraints that

greatly affect the computational complexity.

For all these reasons we decide to following another approach that keeps the linear charac-

teristics of the problem.

Suppose, for simplicity, that we want to constraint only the frequencies of the core 1 and 2,

fC,1 = fC,2 (at the end of the section we will generalized the problem for all cores). The main

idea is to impose that the difference between the power consumptionPC,1 andPC,2 is equal to a

∆ that depends on the workload (CPI) and the frequency. Indeed,

PC,1−PC,2 =kA1 ·
(

f kB
C,1− f kB

C,2

)
+kC ·

(
CPIkE

1 −CPIkE
2

)
+

+kD ·
(

fC,1 ·CPIkE
1 − fC,2 ·CPIkE

2

)
= ∆

(5.17)

where the static powers can be discarded due to their small and comparable values. Assuming

at steady-statefC,1 = fC,2(= fX) we can rewrite (5.17) as,

∆ = kC ·
(
CPIkE

1 −CPIkE
2

)
+kD · fX ·

(
CPIkE

1 −CPIkE
2

)
=

= (kC+kD · fX) ·
(
CPIkE

1 −CPIkE
2

) (5.18)

Finally we can approximate thefX as the rate,

(PMAX−PMIN) : (fMAX− fMIN) = (PC,2−PMIN) : (fX − fMIN)

fX = (PC,2−PMIN) ·
fMAX− fMIN
PMAX−PMIN

+ fMIN
(5.19)

where we calledfMAX and fMIN the maximum and the minimum frequency respectively (e.g.

3000MHz and 1600MHz), andPMAX andPMIN the maximum and minimum power obtained

from the Power Model (5.16), using for both theCPI2.

157

5. COMPLEX CONTROL SOLUTIONS

Substituting thefX in (5.18), we obtain,

∆ = (kC+kD · (PC,2 · l −PMIN · l + fMIN) ·
(
CPIkE

1 −CPIkE
2

)
(5.20)

wherel = fMAX− fMIN
PMAX−PMIN

. From (5.20) we can write,

PC,1−PC,2 = α(t) ·PC,2+β (t) (5.21)

whereα andβ depend on the CPI, and hence, on the time.

α = kD · l ·
(
CPIkE

1 −CPIkE
2

)

β = (kC−kD ·PMIN · l +kD · fMIN) ·
(
CPIkE

1 −CPIkE
2

) (5.22)

The equation (5.21) represents a constraint on power consumption in order to impose the same

frequency to two cores. This constraint can be included in the objective function of the problem

(5.14b) as,

min
h−1

∑
k=0

‖PT(t+k|t)−PC(t+k|t)‖2
Q1+‖PC,1(t+k|t)−PC,2(t+k|t)−α(t+k|t)·PC,2(t+k|t)−β (t+k|t)‖2

Q2

(5.23a)

s.t.

Tj(t+k+1|t)≤TCRIT ∀ j=1, . . . ,nT ∀k=0, . . . ,N (5.23b)

whereQ1 is the diagonal weight matrixQ1 = diag(w1,1, . . . ,wN,N) which relates the error be-

tween the power consumption assigned to the cores and the target one.wi, j is the scalar value

representing the weight between the power error of the corei and the power error of the core

j. For the sake of simplicity, we assumedw1,1 = w2,2 = · · ·= wN,N. Similarly Q2 = r1,2 where

r1,2 is the weight value between the power of the core 1 and 2 in order to impose to them the

same frequency

The problem (5.23) can be translated into a QP problem,

minP̄C

1
2

P̄T
C ·H · P̄C+gT · P̄C (5.24a)

s.t.

M · P̄C ≤ b (5.24b)

158

5.3 Communication-aware solution

whereP̄C = [PC(t|t)PC(t+1|t) . . . PC(t+h−1|t)]T andPC = [PC,1 . . . PC,N]
T . Assuminghp = 1

as in the rest of the thesis, then̄PC = PC(t|t) that is the vector of power consumption constantly

assigned to the cores for the interval[t, t +1].

Computing the products in the objective function (5.23a) we obtain,

PT
C Q1PC−PT

T Q1PC−PT
C Q1PT+PT

T Q1PT+

+PC,1Q2PC,1−PC,1Q2(1+α)PC,2−PC,1Q2 β+

+(1+α)PC,2Q2(1+α)PC,2−(1+α)PC,2Q2PC,1+(1+α)PC,2Q2 β+

−β Q2PC,1+β Q2(1+α)PC,2!+β Q2 β

(5.25)

The termsPT
T Q1PT and β Q2 β can be discarded since they are independent on the control

variablePC.

Comparing (5.24a) and (5.25) we obtain,

H = 2·




w1,1+ r1,2 −r1,2(1+α) 0 . . .

−r1,2(1+α) w2,2+ r1,2(1+α)2 0 . . .

0 0 w3,3 . . .
...

...
...

. . .




g=−2·




PT,1 ·w1,1+β · r1,2

PT,2 ·w2,2+β · r1,2 · (1+α)

PT,3 ·w3,3
...




(5.26)

whereas the constraints matrices remains unchanged

M =

[
C ·B1

−IN

]
b=

[
TCRIT−C ·A·x(t)+C ·B2 ·TAMB(t)

[−PMIN]N×1

]
(5.27)

whereA, B = [B12N×N B22N×1], andC are the matrices of the model (5.15). Moreover we

added a constraint to impose that cores power is not lower thanPMIN . It is worth to note that

the matricesH, g, b depend on time (due to theCPI, x andPT), therefore every time sample

they must be updated.

We conclude this section generalizing the approach. It is enough to see that enabling a

constraint between the frequency of two coresi and j means to modify the matricesH = 2·Q1

andg=−2· [PT,1 ·w1,1, . . . ,PT,N ·wN,N]
T . More in details we must add the value:

• r i, j in Hi,i ,

• −r i, j(1+α) in Hi, j andH j,i ,

• −r i, j(1+α)2 in H j, j

• β · r i, j in g(i),

• β · r i, j · (1+α) in g(j),

159

5. COMPLEX CONTROL SOLUTIONS

5.3.2 The Implementation

The pseudo-code below shows the sequence of operations necessary to make the proposed

solution work.

Pseudo Code

1 OFF-LINE MODEL IDENTIFICATION:

2 Apply a PRBS task sequence;

3 get Pi ,Ti ,TNEIGHi ;

4 obtain α, and β with the distributedARX approach;

5 find the global state space representation A, B, C with C= [IN0];

6

7 CONTROLLER ROUTINE

8 Initialize the weight matrices Mi , and the state x̂i(0);

9 FOR EACH SAMPLE

10 get fT (t) and CPI(t);

11 convert to PT (t) using the Power Model;

12 update H, g, and b;

13 solve the QP problem and find PC(t);

14 compute fC(t);

15 estimate x̂(t);

16 END_FOR

More in detail:

Line 1 during the system initialization phase we execute the modelidentification;

Line 2-3 we apply a pseudo-random task sequence to each core and we collect the core power and local

neighborhood temperature traces;

Line 4 we execute theARXoptimization in each core to obtain theα andβ parameters;

Line 5 we convert the single-core models in the state-space form using the observability matrix to give

physical meaning to the first component of the state vector (it correspond to the measured core

temperature) and then we compose all of them together in order to obtain a global model;

Line 8 we define the constant matrix used in the QP problem (5.24), M, and assign the initial state, ˆx(0),

to the model ;

Line 9 at each time step the loop from line 9 to line 16 is repeated;

Line 10 the High Level SoC Manager provides the desired core frequencies fT(t) and the predicted

workloadCPI)(t);

Line 11 the Centralized Thermal Controller converts them into the target powerPT(t) using the nonlin-

ear function (5.16);

160

5.3 Communication-aware solution

Line 12 the matrixH, dependent onCPI(t), the vectorg, dependent onCPI(t) andPT(t), and the vector

b, dependent on ˆx(t), that is estimated with a Luenberger observer,TAMB(t) andTNEIGHi (t), are

updated.

Line 13 the solver finds the optimalPC(t) solution of the QP problem.

Line 15 PC and workload are used to findfC inverting the function (5.16) as an example with the Brent’s

algorithm.

Line 16 the observer estimates the state ˆx(t) knowing the fC(t) andT(t). This state will be used as

initial state by the MPC controller to estimate the future temperature of the core.

5.3.3 Experimental Results

We have tested the performance of the centralized communication-aware solutions using the

8 cores plant shown in the previous solution (refer to Fig.5.6). The target frequencies range

from 1600MHz to 3000MHz, whereas the CPIs range from 0.5 to 100. The caches consumes

the 30% of the adjacent core powers.

As a first test we ran a PRBS target frequency on all the cores and we assigned to CPI a

constant value of 1.5. Only the CPI of the core 2 varies as a PRBS. For thefirst 10s core 1

and 2 communicates, later communication is between core 1 and 5. Fig.5.11shows the results

obtained from the test. The temperature is perfectly bounded even if the prediction model has

a low order compared to the plant and the power consumption of the caches are not measured.

However, we have to remark that we considered the target CPI and power perfectly known.

The frequency effectively assigned to the core 1 and 2,fC,1 and fC,2, result the same with an

error of about the 1%. The Fig.5.11also shows that the solution is able to dynamically change

the communication constraints at run-time. Indeed, the frequencies of cores 1 and 2 are the

same until 10s, then the frequencies of cores 1 and 5 equalized, while the frequency of core 2

is the one that minimizes the power error betweenPC andPT .

A second test measure the complexity of the solution. We have translated the code of

the control algorithm from Matlab language to C++ language and then we have run some

PARSEC 2.1 benchmarks measuring the time necessary for solving the QP problem1. The

results for the Fluidanimate benchmark are shown in Fig.5.12. The mean time to solve the

problem is 37us.

1We ran this test on a simple four cores processor.

161

5. COMPLEX CONTROL SOLUTIONS

350

360

T
e

m
p

e
ra

tu
re

T
 [

°K
]

1500

2000

2500

3000

3500

P
ro

v
id

e
d

F
re

q
u

e
n

c
y

fT
 [

M
H

z
]

0

20

40

P
ro

v
id

e
d

P
o

w
e

r
P

C

[W
]

1500

2000

2500

3000

3500

0

10

20

9 9.5 10 10.5 11 time [s]

0

50

100

T
a

rg
e

t

F
re

q
u

e
n

c
y

fT
 [

M
H

z
]

T
a

rg
e

t

P
o

w
e

r
P

T

[W
]

T
a

rg
e

t

C
P

I

Core 1
Core 2
Core 5

Figure 5.11: Temperature, Frequency and Power results of cores 1, 2, and 5. Before 10s the

fC,1 = fC,2, then fC,1 = fC,5.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

x 10−4

Time[s]

S
o

lv
e

r
ti
m

e
 p

e
r

s
te

p
 [
s
]

Figure 5.12: Time spent for solving the QP problem at each time step.

162

./5_ComplexSolutions/img/0110_ResultCommunication.eps
./5_ComplexSolutions/img/0120_ComputTime.eps

Bibliography

[1] J. Howard et al.,A 48-core ia-32 processor in 45 nm cmos using ondie message-passing and dvfs for performance and

power scaling, IEEE Journal of Solid-State Circuits, Vol. 46(1):173183,Jan. 2011.136

[2] G. Dhiman, T. S. Rosing,Dynamic voltage frequency scaling for multi-tasking systems using online learning, ISLPED,

Portland, OR, USA, Aug, 27-29, 2007.ix, 135, 136

[3] G. Keramidas, V. Spiliopoulos, and S. Kaxiras,Interval-based models for run-time dvfs orchestration in superscalar

processors, ACM CF ’10, pp. 287-296, New York, NY, USA, 2010.

[4] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang,R. Varada, M. Ratta and S. Vora,A 45 nm 8-Core Enterprise

XeonR©Processor, IEEE Journal of solid-state circuits, Vol. 45, pp. 7-14, Jan. 2010.151

[5] A. Bartolini, M. Sadri, J. Furst, A.K. Coskun, L. Benini,Quantifying the impact of frequency scaling on the energy

efficiency of the single-chip cloud computer, Design, Automation Test in Europe Conference Exhibition (DATE), pp.181-

186, Mar. 2012.154

[6] N,Ioannou, M. Kauschke, M. Gries, M. Cintra,Phase-Based Application-Driven Hierarchical Power Management on the

Single-chip Cloud Computer, International Conference on Parallel Architectures and Compilation Techniques (PACT),pp.

131-142, Oct. 2011154

[7] Martin Milo M. K. et al. Multifacets general execution-driven multiprocessor simulator (GEMS), toolset. SIGARCH

Comput. Archit. News, 33(4):92-99, 2005.140

[8] G. Paci, M. Morari, V. Dua and E.N. Pistikopoulos,Exploring temperature-aware design in low-power MPSoCs, DATE,

Vol.1, 2006, pp.1–6.142

[9] C. Bienia, S. Kumar, J.P. Singh, K. Li,The PARSEC Benchmark Suite: Characterization and Architectural Implications,

PACT, 2008.140, 148

163

BIBLIOGRAPHY

164

Chapter 6

Guaranteed Re-sprinting in MPSoCs

exploiting MPC

In this chapter a novel control solution is presented in order to address the “Utilization Wall”

issue in mobile devices. The solution mitigates the problem with a computational sprinting ap-

proach. A Phase Change Material package enables higher performance, and a two-layer pre-

dictive control enables thermally-safe sprinting while guaranteeing a predictable re-sprinting

rate.

6.1 Overview

The control solution that we present in this chapter addresses the “Utilization Wall” issue intro-

duced in the Chapter2. Although conceptually we could describe this solution in the previous

chapter (it presents the distributed MPC-based thermal controller as basicelement), we prefer

to reserved an entire chapter to this solution due to the extension of the dissertation and in order

to highlight the novelty of the contribution.

We have already discussed about the issues introduced by the “race” for improving CPU

performance. The growing transistor counts, the limited power budgets, thebreakdown of

voltage scaling and the difficulties in heat dissipation prevent the possibility ofrun all cores

without getting into a thermal crisis, limiting de facto the number of usable cores in adevice.

In this power-limited computing era the parallelism has shown its benefits on performance, but

it is now accepted that in upcoming and future technology generations (22nm and beyond) all

the units on a die cannot be continuously switched on at the same time, as their total power

165

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

consumption would exceed the maximum Thermal Design Power (TDP), leadingto a thermal

run-out. Cooling solutions, needed to remove the heat from the silicon die, are limited by cost

or by physical constraints: in data centers approximately 50% of the energy consumed is used

for powering the cooling infrastructure (1), whereas in embedded/mobile platforms the cooling

system is constrained by form factor and packaging cost (2). Dark Silicon has been estimated

to be the 21% at 22nm and 50% at 8nm (3): practically limiting the maximum parallelism

achievable by future many-cores. In future mobile platforms this problem is even more serious

since active cooling cannot be easily implemented without compromising battery lifetime, form

factor, user experience (4).

Nevertheless, mobile devices have characteristics that bind well with computational sprint-

ing approaches – i.e. approaches where all cores are powered on atthe maximum frequency

for short time windows, ideally triggered on-demand. Indeed, the applications that run on

power-bound systems are typically composed of alternating sequences ofparallel and sequen-

tial sections (5) and thus they do not exploit constantly the underling hardware parallelism

(parallel tasks are also characterized by different computational phases (6)). This is exacer-

bated in mobile platform where applications are often triggered by the users and differently

from batch jobs, their Quality of Service (QoS) does not depend on average throughput, but

on users experience and response time. Studies demonstrate that an average user perceives a

response time below 150ms as crisp, noticeable within 1s, annoying in 2s and not acceptable

in the 2-5s range (7). Moreover, accordingly to the usage scenario, the user needs to share its

cognitive resources with the perception of the external environment. Theminimum continuous

span of attention to the mobile device is 4s in a busy street whereas the maximum switch-back

duration (the time spent on attending the environment before switching back tothe mobile

device) is 7-8s (8). As a consequence, mobile platform are often response-time constrained

and they need to provide fast bursts of computation on demand. Therefore, the seldom use of

parallelism and the importance of responsiveness for the Quality of Service perceived by the

user, rather than average throughput, enable the possibility of turning onat the same time all

cores and exceed temporarily the thermal power budget to provide instantaneous throughput,

after which the chip must return to nominal operation to cool down.

The duration of the time windows in which all cores can run at the maximum speeddepends

on the thermal capacitance of the chip. Traditional Thermal Design Power isdefined statically

on the worst-case power consumption, considering only the package thermal resistance (9). As

166

6.1 Overview

consequence, packages are optimized for minimizing their resistance with the ambient tem-

perature neglecting the heat storage capabilities of the different package materials, associated

with their thermal capacitance. In a regime where classical TDP cannot ensure the power-on

of all the integrated cores, but maximum performance is needed mainly in short bursts, the

heat buffer associated with the thermal capacitance can be sufficient to run all the cores at the

maximum performance for short time windows, ideally triggered on-demand whenever peak

parallel workload phases and user interaction occur.

These Computational Sprints (10) can be lengthened by increasing the thermal capacitance

of the package. Phase Change Material that are solid at ambient temperature, can store extra

heat during the melting process, releasing it to the ambient later on, during solidification. As

consequence of that, PCM allows packing in a small volume and within a small temperature gap

a large thermal capacitance placed close to the silicon die (10). Embedding the correct PCM

quantity and material can enable longer sprints (e.g. 1s), suitable for periodically speed-ups

and can improve the QoS of interactive tasks.

From the above considerations, clear advantages can be achieved by exploiting silicon/-

package thermal capacitance, PCM or other materials as “heat tanks” to befilled along sprint-

ing phases. However, these tanks are finite, then only limited sprinting intervalsare sustainable.

Suitable “rest intervals” are, then needed to let the tanks to release heat inthe external ambient.

This is necessary to keep cores temperatures below their critical values and to restore sprinting

capabilities. Such intrinsically-dynamic thermal behavior requires a suitable run-time tem-

perature management to guarantee safe working, even under variable and possibly uncertain

conditions.

Once a sprinting architecture has been defined with a reliable and effective thermal con-

trol, one has to cope with another crucial challenge, not yet deeply considered in literature.

That ishow to exploit limited sprinting capabilities, when different tasks are running together

with different QoS requests or criticality features. As a matter of facts, rest intervals are a

sort of blanking periods w.r.t. possible sprinting requests, then their durations and placement

along time will affect the actual QoS of different applications. In the mobile domain, differ-

ent APPs/tasks can be executed at the same time with different QoS requirements (e.g. video

encoding/decoding (11), driving augmented reality(12) and health monitoring (13), phone call

and text message). Moreover, in other domains as automotive embedded control, mixed criti-

cality scenarios will take place with hard real-time and even safety-critical tasks running along

with soft real-time applications. A suitable run-time control policy is clearly needed to tackle

167

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

such heterogeneous workload scenarios. Sprinting capabilities have to be exploited or reserved

to favor, or even guarantee, the execution and the QoS of most critical tasks. Summing up,

sprinting time is a shared, limited and dynamical resource which needs dynamical restore time.

Then, whenever a sprint is launched, the system should preserve a suitable “room” for subse-

quent sprints, according to a policy defined for managing different taskcriticalities. We refer

such a feature asRe-sprintingmanagement.

Our control solution guarantees thermally-safe and run-time optimal sprintingand re-sprinting

using a two-layer MPC-based solution.

6.2 Sprinting Architecture

Contrary to the other solutions presented in this thesis, before introducing the control architec-

ture, we need to:

• describe the characteristics of the chip on which we have implemented our control algo-

rithm;

• show how to model the thermal behavior of this platform for studying the effectiveness

of our solution;

• define concepts useful for better understand the rest of the work.

6.2.1 Platform Characteristics

We considered a multi-core processor with 16 cores, the die area is 6.8mm× 6.8mmwith a

thickness of 350µm. Per-core DVFS is assumed and the maximum power dissipated by each

core under maximum frequency and worst load conditions is set toPc,max=1W (i.e. the chip

maximum dissipated power isPmax=16W). Maximum frequency, corresponding to maximum

power is set to 1.5Ghz and minimum one is set at 500Mhz, with a per core power equal to

Pc,min=150mW under worst load conditions.

In sprinting conditions, all the cores are requested to work with maximum frequency and full

utilization. In rest conditions, only one core is assumed to run at full frequency and utilization

(i.e. at full power), while all of the others are assumed to be in idle status with an equivalent

power ofPc,idle=50mW each (i.e. a chip power ofPrest=1.75W is assumed). This characteri-

zation of computational/power traces is simplified, but significant to represent relevant thermal

168

6.2 Sprinting Architecture

issues. Indeed, actual sprinting traces are expressed in terms of high frequency (and voltage)

pulses, while the actual power consumption also depends on current workload characteristics.

Nevertheless, in this work, to simplify the discussion, sprinting traces will be represented in

terms of power (Pmax along sprints andPrest in rest conditions), assuming worst workload con-

ditions. This does not give a relevant generality loss, when focusing onthermal issues.

Thermal stability is obviously guaranteed in rest condition, while the system cannot sustain

permanent sprinting; the maximum admissible Silicon temperature isTmax=360◦K, while the

considered maximum ambient temperature isTAMBmax=318◦K. As reported in Fig.6.1a a layer

TAMB

TPCM

Cj

Rj,h

Rj,h
Rj,v

P381

T381

Rj,h

Rj,v

Cj
P1

T1

Rj,h

Rj,h
Rj,v

Cj
P400

T400

Rj,v

P20

T20

RP
C
M

CPCM

Cj

Figure 6.1: The considered sprinting architecture and the adopted thermal modelling

of PCM with physical properties similar to commercial Climsel-C70 (14) is interposed in be-

tween the Silicon die and the device case. The thickness of such layer is 410µm. According to

common mobile and embedded applications, no heat-sink is considered (2). A Copper based

thermal conductivity enhancer is assumed inside the PCM layer to improve conductivity and

speed up heat charging and discharging during the melting phase. This mixture can be seen as

an homogeneous material with both high thermal conductivity and high heat capacity (10).

The only measurements available for control purpose come from the temperature sensors

of the cores, the PCM layer and the ambient. Thei readings areTc,i , with i=1..16, TPCM and

TAMB, respectively.

6.2.2 Thermal Modeling (Simulator)

The chip described in the previous section has been modeled using the same finite elements

technique used for the thermal simulators shown in the AppendixB. A lumped thermal model

is obtained according to the equivalent electric network reported on the Fig. 6.1b. Also in this

169

./6_DarkSilicon/img/0010_ThermalModel.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

case we considered two layers one of silicon and the other of a mixture of PCM and copper (the

enhancer). The silicon layer has been split in cells, each one modeled by acurrent generator

representing the power dissipated by the cell, a resistor and a capacity (each core has 25 cells).

As in previous work (10), the PCM layer and conductivity enhancer have been modeled by a

single large cell assuming a uniform distribution of the heat. The resulting modelis,

Ṫk =
Pk

Cj
+

TPCM−Tk

Cj ·Rj,v
+

#neighbors

∑
i=1

Tneigh,i −Tk

2·Cj ·Rj,h

U̇ =
16

∑
k=1

Tk−TPCM

Rj,v
−

TPCM−TAMB

RPCM

(6.1)

whereTk, Pk are respectively the temperature and the power dissipated by thek-th Silicon

cell, Tneigh,i are the neighbor cells temperatures,TPCM is the temperature of the PCM,TAMB is

the ambient temperature andU is the internal energy of the PCM layer.

It is worth noting that, in (6.1), the first equation is obtained by standard space-discretization

of the well-known Heat Equation. In contrast, for the second equation, according to (15), an

energy-based model has been exploited for PCM to handle its nonlinear phase-changing behav-

ior. The PCM temperature can be easily derived fromU by a nonlinear map,TPCM=FPCM(U),

to represent monotonic increasing behavior in solid and liquid condition, whileconstant tem-

perature will be given in the melting phase, see Fig.6.2a. The first term in the top equation

represents the contribution of the power consumption in each cell, whereasthe last two, accord-

ing to Fourier Law, are the effects of heat flow entering in the cellk from PCM and neighbor

cells, respectively. Similarly, in the bottom equation, the first term is the heat flow from all

of the silicon cells to PCM, whereas the second gives the heat flow from PCM to the external

environment; no direct thermal path is assumed between the silicon cells and theambient.

The following values for cell capacitance and thermal resistances are assumed,Cj=6.6e−

5J/◦K, Rj,h=22.9◦K/W, Rj,v=215◦K/W and RPCM=7.9◦K/W. The latter two resistances,

linking the PCM layer to the others elements, benefit from the Copper conductivity enhancer,

in particular inRj,v contact resistance between Silicon and PCM layer has been considered.

Parameters of the adopted PCM are melting temperature,Tmelt=70◦C, density, 1700Kg/m3,

specific latent heat, 396KJ/Kg, latent heat of the whole volume 12.8J and differential thermal

capacitance in solid and liquid condition, 3.52J/(◦K µm3). These parameters will characterize

the whole “PCM + conductivity enhancer layer”, since Copper thermal capacitance does not

affect relevantly the PCM thermal inertia. All these leads to a maximum internal energy for

170

6.2 Sprinting Architecture

solid phaseUmeltmin=23J and a minimum internal energy for liquid phaseUmeltmax=35.8J, in

between melting phase will take place.

20 22 24 26 28 30 32 34 36 38
300

320

340

360

380

U[J]

Umeltmin
23J

Umeltmax
35.8J

PCM

Tmelt

70°C

T[°K]

0.4 0.6 0.8 1 12. 1.4
355

360

365

Time [s]

 Core Temperature[°K]

PCM
Cu
Cu+PCM

Critical Temperature

(a) (b)

Figure 6.2: (a) Internal Energy to Temperature nonlinear function; (b)Comparison among sprinting

architectures

In Fig. 6.2b the effectiveness of the PCM with conductivity enhancer is highlighted. A

constant full power working condition is considered and the adopted device is compared with

two variants where the PCM + enhancer is replaced by a 2mmthick heat spreader or by a pure

PCM layer, respectively. By observing the time when core temperatures reachTmax, it can be

noted that the considered architecture enables larger sprinting room w.r.t.the others.

6.2.3 Guaranteed re-sprinting definition

In this Subsection, we provide and motivate a “formal” definition of Guaranteed Re-sprinting

capability, then we translate it in a clear requirement for PCM energy management by exploit-

ing a simplified, but effective, thermal model of the given system.

We referred to the term Re-sprinting management as the policy to handle heterogeneous

tasks with different QoS requests or criticality levels. In particular, limited sprinting capability

have to be spent or preserved according to a policy which favors, or even guarantees, most

critical or QoS-demanding task space. Toward this goal, we consider the following scenario.

We suppose to have two main task groups, both requiring full-power sprinting, critical hard

real-time periodic and predictable tasks and non-critical aperiodic tasks. For the first group,

the total fulfillment of the sprinting requests has to be guaranteed, while, forthe second one,

best effort is admissible; we refer those groups asGuaranteed GroupandBest Effort Group,

respectively. For the Guaranteed Group a known periodicity ofM is assumed, while the total

time needed to execute all these tasks together at full power is assumed equal or lower than

a given bound equal toN. This kind of information is usually available when dealing with

real-time critical tasks. Differently, for the Best Effort Group no information is assumed.

171

./6_DarkSilicon/img/0020_fPCMComp.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

Under the considered condition, it is clear that the sprinting and rest intervals need to be dynam-

ically arranged not only to maximize service of generic sprinting providing thermal capping,

but N-long sprinting windows must be guaranteed everyM seconds to serve the Guaranteed

Group. We formalize such requirement in the following definition ofN-M Guaranteed Re-

sprinting.

N-M Guaranteed Re-sprinting for a computing system is the capability of guaranteeing a

sprint at full power of duration N, as soon as a time M (M> N) has elapsed from the starting

of the previous guaranteed sprinting.

From the above definition, it is clear that whenever a sprint has been launched, the run-time

control system has to limit the sprint period not only taking into account maximumtemperature

bounds, but also considering that the system needs some rest time to cool down properly and

get ready for a possible new sprinting request ofN seconds, afterM seconds from the begin-

ning of the previous one. Such behavior requires a suitable sizing and management of the PCM

heat tank which provides room for sprinting according to its “charge level”. In the following

an explicit and treatable relation is determined to link PCM energy condition with re-sprinting

requirements. Toward this goal, we considered a simplified, but effective, thermal model by

collapsing all the Silicon cells into a single cell with temperatureTSi. Summing up all the cells

capacitors and power sources (neglecting horizontal resistancesRj,h), and by parallel composi-

tions of all theRj,v, we can define the total approximated Silicon capacitance,CSi=26mJ/◦K,

and the total approximated Silicon-to-PCM thermal resistance,RSi−PCM = 0.6◦K/W. Then the

following approximated model can be drawn.

ṪSi =
Ptot

CSi
−

TSi−TPCM

CSi ·RSi−PCM

U̇ =
TSi−TPCM

RSi−PCM
−

TPCM−TAMB

RPCM

(6.2)

wherePtot =∑Pk. According to the commonly used sprinting time-scale, usually in the

range of 1-10s, the effect of the Silicon inertia can be neglected with respect to PCM and

enhancer dynamics (i.e.̇TSi = 0). Therefore, a static relation betweenTSi and Ptot can be

exploited to revise (6.2) leading to

TSi = TPCM+RSi−PCM ·Ptot

U̇ = Ptot −
TPCM−TAMB

RPCM

(6.3)

172

6.2 Sprinting Architecture

PMAX

PREST

PTOT

ti ti+M ti+M+N

U

UN

Ub(t)

U(t)

TAMB

ti+t

Figure 6.3: Translation of theN-M Guaranteed Re-sprinting objective in a time-varying constraint

on PCM internal energy,U

With this model at hand, the re-sprinting requirement can be easily translatedin a time-

varying constraints on the PCM internal energyU according to the time diagram of Fig.6.3.

Let assume a guaranteed sprinting has been issued at timeti , then according to the prescribed

N-M Guaranteed Re-sprinting between timeti+M and timeti+M+N the PCM is expected

to be able to storePmax·N energy without violating Silicon temperature bounds. That means

U(ti+M+N)≤UMAX, whereUMAX can be easily defined, using (6.3), as

UMAX = max{U |FPCM(U) = Tmax−RSi−PCM ·Pmax} (6.4)

In the considered 16-cores case, we haveTmelt < Tmax−Pmax·RSi−PCM. That means we can

run a sprinting up to aTPCM > Tmelt and a correspondingU >Umeltmax, where PCM is totally

liquid. Nevertheless, we simply assumeUMAX =Umeltmax, this saves some margin and mitigates

thermal cycles caused by the on-off computational paradigm. Having definedUMAX, we can

computeUN reported in Fig.6.3as follows,

UN =UMAX−

(
Pmax−

TPCM−TAMBmax

RPCM

)
·N (6.5)

UN in (6.5) is the maximum admissible energy at timeti+M which guarantees that a sprint

at full power can be sustained in the followingN seconds. Therefore, whatever the previous

sprint requests are, N-M Guaranteed Re-sprinting asks for anU(ti+M)≤UN. It is worth noting

173

./6_DarkSilicon/img/0030_SchemaResprinting.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

that, in (6.5), UN derivation is carried out assuming that PCM melting condition is preserved,

i.e. UN>Umeltmin but can be easily extended to more general condition. Now, moving back

along time from(ti+M,UN), we can derive the time-varyingUb(t) taking into account the

maximum cooling capabilities of chip underTAMB=TAMBmax. These are achieved when all the

cores but one are in idle conditions (i.e. the system is in a rest phase). Hence, in a generic time

instantt < ti+M, the maximum admissible internal energyUb(t) is the maximum one which

can be steered to(ti+M,UN) exploiting the maximum cooling capability of the system. At the

same time, the boundU<UMAX has to be considered, thenUb(t) can be computed as follows

∀t∈ [ti , ti+M[, leading to the line reported in Fig.6.3.

Ub(t) = min

{
UMAX,UN+

(
TPCM−TAMBmax

RPCM
−Prest

)
·((ti+M)−t)

}
(6.6)

where obviouslyTPCM−TAMBmax
RPCM

−Prest>0, otherwise the system is not thermally balanced (i.e.

is not sized correctly). In addition, the instantt̄ whereUN+
(

TPCM−TAMBmax
RPCM

−Prest

)
·((ti +M)−t̄)=

UMAX has to be greater thanti+N, otherwise theN-M Guaranteed Re-sprinting is not sustain-

able by the system owing to its physical properties (i.e. a suitable resizing is needed).

Finally, summing up all of the previous considerations, theN-M Guaranteed Re-sprinting re-

quest can be effectively translated into a time-varying bound on the internal energyU of the

PCM by using, in eachM interval, theUb(·) profile derived in (6.6).

In Fig. 6.3a typicalPtot profile is also reported to highlight sprinting from both Guaranteed

(continuous line) and Best Effort Groups (dashed line). It is worth noting as the sprinting

for the Best Effort Group will be affected by the time varying boundUb(·). In addition, it is

possible to figure out that, whenever the bound is reached, the control system will enforce a

power consumption that makes the PCM internal energyU to slide alongUb(·). The power

giving such a behavior is the rest power withTAMB = TAMBmax, according to (6.6), but it can be

larger wheneverTAMB < TAMBmax. This degree of freedom can be effectively used to maximize

the integral of the sprinting power.

For the considered sprinting architecture, a 0.2-4s Guaranteed Re-sprintingis requested.

By applying (6.5) and (6.6) it can be noted that this kind of Re-sprinting is effectively sus-

tainable withUMAX = Umeltmax, UN = 33.2 andt̄ = ti + 2.23s. In addition, it can be verified

that, according to the system sizing, this re-sprinting capability requirement for Guaranteed

Group leaves a significant room for Best Effort Group. Detailed computations for such issue,

and sizing procedure in general, are not reported here since this is notthe main focus of this

174

6.3 Architecture

Thermal

MPC

PCORE,0

P*
CORE,i P*

CORE,n

TCORE,0

TNEIGH,0

P*
CORE,1

Thermal

MPC

PCORE,1

TCORE,1

TNEIGH,1

Thermal

MPC

PCORE,i

TCORE,i

TNEIGH,i

Thermal

MPC

PCORE,n

TCORE,n

TNEIGH,n

PCM

Model Predic!ve Controller

PTARGET,0 PTARGET,i PTARGET,n

TCORES

TPCM

TAMB
Ub (●)

PTARGET,1

Lower-layer

thermal controller

Higher-layer

PCM controller

Figure 6.4: Structure of the proposed controller

work (nevertheless, some hints on such topic have been already depictedwhile discussing the

feasibility issues in (6.5) and (6.6)).

6.3 Architecture

The proposed control solution is a novel closed-loop controller based on MPC approach that

provides effective and reliable thermal capping and achieves optimal management of various

and dynamics sprinting scenarios. Workload with mixed-criticality heterogeneous tasks are

considered, then Guaranteed Re-sprinting requirements, are directly tackled. In addition, the

proposed solution is designed to handle as well situations where just best effort approach is

needed, with no re-sprinting guarantees.

The Fig.6.4 depicts the block diagram of the proposed solution. We used a two-layer

hierarchical approach:

Lower-layer thermal controller : it manages optimization of the current core computation

powers and effective capping of core temperatures, taking advantageof the distributed

and scalable MPC solution presented in Chapter4. Notice that this layer is enough for

manage a sprinting approach that maximizes performance.

Higher-layer PCM controller : with its novel centralized MPC solution, it manages the heat

buffer (PCM, in this paper) maximizing sprinting time, while guaranteeing re-sprinting

performance for the considered system.

The higher level interacts with the lower one by tuning the computational powerrequested

for sprinting. When no guaranteed re-sprinting is needed, the proposed system can be eas-

ily “downgraded” to such simpler condition by just turning off the higher layer of the pro-

175

./6_DarkSilicon/img/0040_Architecture4.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

posed controller. This can be useful when a generic task-set have to be served according to

a best effort approach. It is worth noting that this transition between “guaranteed” and “non-

guaranteed” re-sprinting, and even the opposite, can be handled dynamically at run-time.

6.3.1 The Lower-layer thermal controller

In the lower layer we exploited the distributed MPC-based Thermal scalable solution presented

in Chapter4. For eachi-th core the following discrete-time local MPC problem is set,

min
Pc,i

(Pc,i(t|t)−P∗
c,i(t))

2

subject toTc,i(t +1|t)≤ Tmax

(6.7)

P∗
c,i are the core power references. Their values fori = 2, . . . ,16 are determined by the higher

level controller, while for the core 1,P∗
c,1 = Pc,max at any time, according to sprinting architec-

ture previously described in Section6.2. Pc,i , are the actual core powers (i.e. the sum of the

powers dissipated in cores areas).

We assume to use them as control knobs, although actually only frequencyand voltage are

directly controllable. We imagine as in previous solution the presence of a Power Model to

convert frequency and workload (obtained by performance counters readings) to power.Tmax

is the maximum admissible temperature for the cores as defined in Section6.2. The general

idea driving such control approach is to keep the power of each core as close as possible to

the requested one, complying with hard thermal bounds. As long as no thermal issue occurs,

the power will be equal to the requested one, otherwise temperature limitation willbe enforced

with minimum performance penalty. This will provide optimal power performancecombined

with reliable temperature capping. The distributed setting of such MPC problemallows one to

obtain linear complexity w.r.t. the number of cores and to split the implementation on allof the

cores (see Chapter4).

Differently from the other solutions treated in the previous chapter, the discrete-time single-

core model adopted for predicting the future temperature of thei-th core is represented by a

first order equation,

Tc,i(t +1|t) = Tc,i(t)+ τsT

(
Pc,i(t)

Cc
+

TPCM(t)−Tc,i(t)
Cc ·Rc,v

+
#neigh

∑
i=1

Tcneigh,i(t)−Tc,i(t)

2·Cc ·Rc,o

)
(6.8)

whereτsT is the sampling time,Tcneigh,i are the temperatures of thei-th core neighbors,Cc=

1.65mJ/◦K, Rc,o=4.6◦K/W, Rc,v=9.6◦K/W are given by straightforward parallel composition

176

6.3 Architecture

of capacitances and resistances of the cells belonging to a core. Note thatin this single-core

model the interaction with the reminder of the chip is taken into account by means of the neigh-

bor cores and PCM temperatures, acting as uncontrollable but measurableinputs. An additional

positive effect of such feature is that the model (6.8) is Linear Time-Invariant, despite of the

large nonlinearity characterizing PCM. Thanks to the use of the simplified, but effective, first-

order model (6.8), the MPC problems (6.7) can be solved explicitly, leading to the following

algorithm for the thermal controller of each core,

Pc,i(t) =

{
P∗

c,i(t) i f P∗
c,i(t)≤ P̄c,i(t)

P̄c,i(t) i f P∗
c,i(t)> P̄c,i(t)

(6.9)

where

P̄c,i(t) =
Cc

τsT

(
T̄max−Tc,i(t)−τsT

(
TPCM(t)−Tc,i(t)

Cc ·Rc,v
+

#neigh

∑
i=1

Tcneigh,i(t)−Tc,i(t)

2·Cc ·Rc,o

))
(6.10)

P̄c,i(t) in (6.10) represents the maximum sustainable power at the instantt preventing violation

of the thermal boundTmax at t+1. This expression is derived from the simplified model (6.8),

taking into account the current temperature sensor readings.T̄max, lower thanTmax, is adopted

in (6.10) to save some margin and take into account model approximations and parameters

uncertainty. A reliableT̄max can be derived empirically with simulation tests or formally with

more complex computations. As an example we could find it with the same techniquesused to

find τMPC margin in Section5.2.1.3.

In the considered benchmark, we haveT̄max=359.9◦K, while Tmax=360◦K. This testifies

the good approximation given by simplified models (6.8), when no parameter uncertainties are

accounted. It is worth underlining that, in order to improve accuracy, we could replace (6.8)

with a more complex linear model (e.g. a second order model). In this case, theproblem (6.7)

could be translated into an equivalentQuadratic Programming (QP)problem and solved with

a standardActive Setalgorithm triggered at each sampling instant by the controller. A run-

time observers could be exploited to recover states of the considered modelswhen they are not

directly available from sensor readings and/or relevant measurement noises are present.

Finally, in the actual implementation of the algorithm (6.9)-(6.10) we added a dead-zone

that collapses toPc,idle=50mW all the values ofPc,i(t) lower thanPc,min=150mW. This item

represents the discontinuity in DVFS between minimum frequency and idle condition, as stated

at the beginning of Section6.2.

177

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

We used a sampling time ofτsT = 2.5ms, thus computational time of the MPC routine,

∼ 5µs (see Section4.3.1), can be neglected. In general, sampling time is related to the phys-

ical properties of the considered system. A rule-of-thumb for its selection insuch kind of

applications is 1/3-1/5 of the smallest time constant characterizing the uncontrolled system

(16).

6.3.2 The Higher-layer PCM controller

Once thermal capping with minimum performance degradation is guaranteed bythe lower-

layer MPC, the higher level one can be design to manage the PCM in order to ensure guaranteed

re-sprinting performance, whenever heterogeneous tasks with different QoS requirements or

criticalities are tackled. According to Subsection6.2.3, we considered two tasks groups; the

Best Effort Group and the Guaranteed Group, with aN-M Guaranteed Re-sprinting requirement

(0.2s-4s for the considered benchmark). Taking the cue from Fig.6.3 and (6.6), the idea is to

enable every sprinting request until the PCM internal energy,U , approaches the boundUb,

then a suitable sprinting reduction has to be taken to preserveU(t) =Ub(t), i.e. to preserve the

requested re-sprinting room for the Guaranteed Group. Moving from these considerations, we

propose the following centralized MPC problem to tackle PCM management.

min
P∗

c,i

16

∑
i=2

(P∗
c,i(t|t)−Pt,i(t))

2

subject toU(t +1|t)≤Ub(t +1)

(6.11)

whereP∗
c,i , i = 2, . . . ,16 are the control knobs of such controller, representing the power refer-

ences delivered to distributed thermal controllers as reported in Fig.6.4 and in Section6.3.1.

Differently, Pt,i(t), i = 1, . . . ,16 are the original computational power targets for the cores; they

are equal toPmax/16= Pc,max= 1W, when a sprinting request is running; whereas, in rest con-

ditions,Pt,1 = Pc,max= 1W andPt,i = Pc,idle = 50mW for the other cores. The rationale of this

approach is to let the power referencesP∗
c,i , for lower level MPC, to be close toPt,i(t), when-

ever the PCM energy is clearly far from the time-varying repetitive boundUb (see Fig.6.3).

Differently, when the prediction of the internal energyU(t +1|t) approachesUb(t +1), power

references are decreased. A one-step-ahead preview is assumed on the boundUb(·), this is

admissible according to strategy adopted to derive it in (6.6).

178

6.3 Architecture

The approximated discrete-time model adopted for prediction purposes, withsampling time

τsP, is

U(t +1|t) =U(t)+ τsP

(
TPCM(t)−TAMB(t)

RPCM
+

16

∑
i=1

Tc,i(t)−TPCM(t)
Rc,v

)
(6.12)

It is worth noting that, sinceTPCM is available from measurements, it can be used as an input

and the energy-based model (6.12) will be Linear Time-Invariant, despite the nonlinearity of

the PCM behavior.

The PCM internal energy,U(t) adopted in (6.12) is not directly available, an observer is ac-

tually used for such variable, exploiting temperature measurements. Some attention has to

be paid along the melting condition since the internal energy becomes unobservable from the

PCM temperature.

In the prediction model proposed in (6.12), the control knobsP∗
c,i are not directly available. In

order to apply standard MPC solutions a more complex model would be necessary to highlight

the relationships among the control knobs and the internal energy. In addition, this would in-

volve lower-layer thermal controllers, too. To prevent such heavy modeling and to save the

separation among the control layers, the simplified model proposed in (6.3) is exploited and

the following non-conventional approximated model predictive controller isderived

P∗
c,i(t) =

{
Pt,i(t) i f Ūb(t +1)>U(t +1|t) from (6.12)

P̄t,i(t) i f Ūb(t +1)≤U(t +1|t) from (6.12)
(6.13)

wherei = 2, . . . ,16 andP̄t,i(t) = P̄tot(t)/15 with,

P̄tot(t) =
Ūb(t+1)−Ūb(k)

τsP
+ TPCM(t)−TAMB(t)

RPCM
−Pt,1(t) (6.14)

With such a solution, (6.12) is used to predictU(t+1|t), while (6.14), directly derived dis-

cretizing (6.3), is adopted to compute the power references whenU(t+1|t) hits the bound

Ūb(t+1). Similarly to the lower layer thermal controller case, the boundUb(t) is replaced

with Ūb(t)<Ub(t) to save some margin and to compensate for the approximations of the

adopted models. Computations and simulations tests can be carried out to derive a reliable

boundŪb(t). For the considered benchmark, under 0.2-4s Guaranteed Re-sprinting require-

ment,Ūb(k)=Ub(k)−0.25J.

Focusing onP̄t,i(k), it can be shown with straightforward computations that, according to the

definition ofUb(t) in (6.6), P̄t,i(t)=Pc,idle whenTAMB(t)=TAMBmax, but it can be larger when-

everTAMB<TAMBmax. This behavior has been already highlighted at the bottom of Fig.6.3and

179

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

can be effectively exploited to improve sprinting performance.

It is worth noting that the proposed control approach is valid for everyUb(·), computed accord-

ing to (6.6), and, then, for everyN-M Guaranteed Re-sprinting request or even for more in-

volved scenarios. Moreover, as already anticipated, this control layercan be easily and dynam-

ically enabled/disabled according to the current re-sprinting requirement.Whenever no guar-

anteed re-sprinting is needed, the following power references will be simply setPc,i(k)=Pt,i(k)

for i = 2, . . . ,16 and only the lower layer will be active. Finally, the adopted sampling time for

the considered benchmark isτsP= 10ms.

6.4 The Implementation

The code below lists the operations executed by the proposed control solution.

Pseudo Code

1 CONTROLLER ROUTINE

2 Initialize the parameters of the models used by the Lower/Hi gher-layer controller

3 FOR EACH HIGHER-LAYER CONTROLLER SAMPLE (10ms)

4 get Pt,i(t);

5 read the current Tc,i(t), TAMB(t), TPCM(t);

6 compute the forecast of U(t), U(t +1|t);

7 solve equation (6.13) to find P∗
c,i(t);

8 FOR EACH LOWER-LAYER CONTROLLER SAMPLE (2.5ms) & FOR ALL THELOCAL CONTROLLER

9 read the current Tc,i(t), TPCM(t);

10 compute the maximum sustainable power, P̄c,i(t), for the next sampling interval;

11 solve equation (6.9) to find Pc,i(t);

12 END_FOR

13 END_FOR

More in detail:

Line 2 Off-line we set the parameter of the models used by both the control layers (e.g. Rc,o,

Rc,v, Cc andRPCM);

Line 3 at each sampling time of the Higher-layer controller the loop from line 3 to line 13 is

repeated;

Line 4 the Higher-layer controller receives from the High Level SoC Managerthe target power,

Pt,i ;

Line 5-6 using the equation (6.12) the Higher-layer controller forecasts the future value of the

internal energy stored in the PCM,U(t +1|t);

180

6.5 Experimental Results

Line 7 U(t+1|t) is compared with the maximum allowed energyUb: if it is lower thenP∗
c,i(t) =

Pt,i(t), otherwiseP∗
c,i(t) results from the equation (6.14);

Line 8 at each sampling time of the Lower-layer controller the loop from line 8 to line 12 is

repeated;;

Line 9-10 using the equation (6.10) each local Lower-layer controller forecasts the maximum

power that can be spent in the next sampling interval, that is the power necessary to reach

the temperatureTmax in the next sample instant,̄Pc,i(t);

Line 11 P̄∗
c,i(t) is compared with the maximum allowed powerP̄c,i(t): if it is lower thenPc,i(t) =

P∗
c,i(t), otherwisePc,i(t) = P̄c,i(t);

6.5 Experimental Results

The proposed solution has been tested on the Matlab/Simulink environment where the simu-

latore described in Section6.2.2has been implemented. Then, the results has been compared

with a Threshold-based solution as defined in (10), where each sprinting request is executed

at maximum speed, until each core, but the #1, is forced to shutdown once the temperature

reachesTmax.

Before showing the results it is worth to stress that, to simplify the discussion, the sprint-

ing traces used in simulations are represented in terms of power. Constant workload instruction

characteristics are assumed, then power consumption can be seen as proportional to the adopted

frequency. In addition, those traces are assumed fixed, even though,in real reactive applica-

tions, the sprinting request trace is dynamically affected by the actual responsiveness of the

device. This effect has been disregarded here to make the results easier to be interpreted.

Tests can be split into three macro groups. The first shows the behavior of our solution

respect to the Threshold-based one when generic workload is applied and no guaranteed re-

sprints are needed. In the second, critical periodic tasks are introduced to evaluate the per-

formance of our solution when N-M Guaranteed Re-sprinting are required. Finally, to show

the reliability of our solution, we applied non-nominal working conditions to the controlled

system.

181

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

0

1

2

[W
]

0 41 52 63 7 8 time[s]

Power (cores=2,...,16)

360

370

350

340

[°
K

]

0 41 52 63 7 8 time[s]

This work
ThresholdTemperatures (cores=2,...,16)

0 41 52 63 7 8 time[s]

30

34

38

[J
]

PCM Energy

Targetzoom

Figure 6.5: Typical non guaranteed trace response

6.5.1 Generic workload

When no guaranteed re-sprints are needed the higher-layer controller(namely PCM Model

predictive controller in Fig.6.4) can be disabled. As consequence of that, only the lower-

layer (namely thermal MPC in Fig.6.4) is active andPc,i = Pt,i . In Fig. 6.5 we compare the

performance of our solution against the Threshold-based one when a sprint of 1s is requested

every 2s.

Differently from the threshold one, the proposed solution is not purely on/off and is capa-

ble of finding an optimal intermediate operating mode (i.e. operating frequencyand voltage,

implying a particular core power consumption level) for each core, that maintains the cores

temperatures close to the limit. This optimal value is inversely proportional to the ambient

temperature. Indeed in a colder environment, the heat is dissipated to the ambient faster, allow-

ing higher cores frequencies (power). Moreover, compared to (10) our distributed controller

solution does not assume isothermal silicon temperature and thus can exploit the different core

thermal dissipation efficiency1 as shown in the zoomed area. Threshold-based solution puts

1boundary cores are colder than the center one, since they have lower thermal resistance with the PCM layer

182

./6_DarkSilicon/img/0050_DistrVsWen.eps

6.5 Experimental Results

all cores to idle (except #1) when any core first crossesTmax, our solution instead decreases

frequency (power) independently for each core. From the same figurewe can notice that our

solution leads to a more regular sprinting duration profile, whereas for the threshold one it

depends strongly on the previous sprint duration and in the internal energy level.

97.4 93.4 91.8 81.0This work

95.5 88.5 85.8 68.0Threshold

µ=1 µ=1.5 µ=2 µ=2.5

{tasks Gaussian mean value

Figure 6.6: Non guaranteed performance comparison

As consequence of that to quantify the improvement obtained with our solutionwe built

4 sprinting traces of 200s constituted by tasks with duration distributed with Gaussian prob-

ability (standard deviation 0.5 and mean value respectively 1s, 1.5s, 2s, 2.5s) and separated

from each other with a rest time generated using a Poisson cumulative distribution function

(λ = 10). The table in Fig.6.6, collects the percentage of the total operating frequencies (com-

puted integrating on time the operating frequencies of all cores) normalized with respect to

the requested one:
∫

∑i fc,i(τ)dτ∫
∑i ft,i(τ)dτ ·100; wherefc,i and ft,i are thei-th controlled and target core

frequencies respectively. Our solution outperforms the Threshold-based one reaching a 19% of

improvements when tasks have mean value equal to 2.

6.5.2 Guaranteed re-sprints

As previously discussed when the system executes both critical and sporadic non-critical tasks

a guaranteed re-sprint needs to be ensured. In the second set of tests we evaluated the perfor-

mance of our solution comparing it to the state-of-the-art threshold one. Fig. 6.7 refers to a

0.2-4sGuaranteed Re-sprinting scenario and shows in order the temperature, the PCM internal

energy and thePt andPc of the core #7. In the top subplot we can first notice that Threshold-

based solution runs the tasks until the temperatures reach theTmax, while in our solution, for a

design decision, the PCM cannot crossTmelt, and then cores are actually bounded to a temper-

ature a little bit lower thanTmax. This gives an extra heat storage room to the Threshold-based

controller but on the contrary leads to crisper thermal cycles. The internal energy of the system

is shown in the central subplot. Whereas our solution keeps the energy below Ub, limiting non

183

./6_DarkSilicon/img/0060_Tabella_NM.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

3 3.5 4 4.5 5 5.5 6 6.5

3 3.5 4 4.5 5 5.5 6 6.5

350

360

340
time[s]

[°
K

]

33

35

37

[J
]

time[s]

3 3.5 4 4.5 5 5.5 6 6.5 time[s]

0

1

[W
]

PCM Energy

This work
Threshold

Ub

Power (core=7) Targetguaranteed

Temperature (core=7)

Figure 6.7: Typical guaranteed trace response

184

./6_DarkSilicon/img/0070_Guaranteed.eps

6.5 Experimental Results

guaranteed tasks to have enough energy to run the hard real-time task at time4s, the Threshold-

based solution is not so far-seeing. In fact, it cannot ensure a predefined internal energy level

at the beginning of a guaranteed task. This leads to an unpredictable and variable duration of

the guaranteed sprint phase, that strongly depends on the previous sporadic computation.

{
100
94.4

100
82.4

100
76.2

100
70.6

100
98.3

100
91.4

100
82.9

100
79.9

100
99.9

100
98.9

100
95.1

100
92.8

100
100

100
100

100
99.6

100
99.2

% Guaranteed

µ=0.025

µ=0.075

µ=0.125

µ=0.175

λ=3 λ=6 λ=9 λ=12

74.2
76.6

76.8
80.6

75.6
80.2

76.1
80.7

76.4
79.0

77.0
81.2

78.3
83.1

77.9
83.0

78.0
80.4

80.5
84.4

79.4
84.4

81.7
86.7

83.0
84.9

80.8
84.3

83.4
87.6

82.6
87.3

% Total

λ=3 λ=6 λ=9 λ=12

Non guaranteed number of tasks{

G
u

a
ra

n
te

ed
 t

a
sk

s
m

ea
n

 v
a

lu
e

This work
Threshold

Figure 6.8: Guaranteed performance comparison

To quantify the benefit of our approach in a realistic scenario we performed a set of tests

under different stochastic workloads. Fig.6.8shows the results. In these tests, the guaranteed

tasks duration is determined using a uniform probability distribution function, while the non

guaranteed total tasks duration (1.4s) of each period (4s) has been split into a number of equal

parts dependent on a Poisson probability distribution function. Each partconstitutes the mean

value of a Gaussian distribution with standard deviation 0.3/#tasks. Each trace differs from

the other for the characteristic numberλ of the Poisson function and the mean value of the

uniform distribution. The ambient temperature is set to 25◦C and the metrics used to evalu-

ate the performance are
∫

∑i fc,i(τ)dτ∫
∑i ft,i(τ)dτ ·100 and

∫
∑i f G

c,i(τ)dτ
∫

∑i f G
t,i(τ)dτ ·100, called respectively %Total and

%Guaranteedin Fig. 6.8, where f G
c,i and f G

t,i differently from the previously defined total con-

trolled and target frequencies of thei-th core (fc,i and ft,i respectively) are assumed not zero

only in guaranteed windows. This two metrics are proportional to the effective throughput.

As it is clear from the table our solution guarantees the execution of all hardreal-time tasks,

whereas the Threshold-based does not. From the same figure we can notice that the operating

frequency percentage is slightly higher for the Threshold-based approach. This was expected

since our solution does not exploit the core temperature up toTmax and because of the hard

constraintUb, adopted in our solution to preserve guaranteed re-sprinting room.

In Fig. 6.9 we repeat the previous tests by considering a Threshold-based solutionwhich

switches off the cores when the PCM showsTPCM>Tmelt. In this way we remove the advantage

185

./6_DarkSilicon/img/0080_Tabella_M1.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

{
100
92.9

100
79.4

100
73.7

100
68.8

100
97.2

100
89.0

100
80.4

100
77.4

100
99.7

100
97.8

100
93.1

100
90.3

100
100

100
100

100
99.2

100
98.7

% Guaranteed

µ=0.025

µ=0.075

µ=0.125

µ=0.175
74.2
74.4

76.8
77.0

75.6
75.8

76.1
76.4

76.4
76.5

77.0
77.2

78.3
78.6

77.9
78.2

78.0
78.2

80.5
80.8

79.4
79.7

81.7
82.0

83.0
83.3

80.8
81.0

83.4
83.6

82.6
82.9

% Total

Non guaranteed number of tasks

This work
Threshold

{

G
u

a
ra

n
te

ed
 t

a
sk

s
m

ea
n

 v
a

lu
e λ=3 λ=6 λ=9 λ=12 λ=3 λ=6 λ=9 λ=12

Figure 6.9: Guaranteed performance comparison (Tmax= Tmelt)

for such solution in exploiting the cores up toTmax. In this case, the performance loss of our

solution for total operating frequency is below the 0.3% (see Fig.6.9). This is the actual cost

of guaranteed re-sprinting rooms.

6.5.3 Non-nominal conditions

Finally, we have tested our solution with non-nominal working conditions with mixed-criticality

workload. Since a well suited chip thermal design should prevent critical temperatures when

nominal operating frequencies are provided, we set the ambient temperature to 40◦C (i.e.

“phone on the beach”) and we increased the power consumption of eachcore (i.e. 2W per

core instead of 1W). This emulates a possible leakage power increase due to higher ambient

temperatures, aging and process variation. As shown in Fig.6.10 cores thermal controllers

must intervene to reduce power. Power reduction is different from each core and optimized to

maximize performance maintaining the temperature close toTmax.

186

./6_DarkSilicon/img/0090_Tabella_M2.eps

6.5 Experimental Results

350

360

340

[°
K

]

33

35

37

[J
]

0

1

2

[W
]

Temperature (cores=2,...,16) core 2,...,16
PCM

Controlled Power

Powers (cores=2,...,16)

zoom

0 0.1 0.2 0.3 0.4 time[s]

PCM
controller

intervention

Thermal
 controller

intervention

controlled
target

Ub

0 0.1 0.2 0.3 0.4 time[s]

0 0.1 0.2 0.3 0.4 time[s]

Figure 6.10: Non-nominal workload system response

187

./6_DarkSilicon/img/0100_OverPower.eps

6. GUARANTEED RE-SPRINTING IN MPSOCS EXPLOITING MPC

188

Bibliography

[1] www.activepower.com,Data center thermal runaway. A review of cooling challengesin high density mission critical

environments, White Paper 105, 2007.166

[2] Z. Luo, H. Cho, X. Luo, K. il Cho, System thermal analysis for mobile phone, Applied Thermal Engineering, Vol.

28(1415):1889 – 1895, 2008.166, 169

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling,

SIGARCH Comput. Archit. News, Vol. 39(3):365–376, June 2011. 166

[4] R. Yavatkar, M. Tirumala,Platform wide innovations to overcome thermal challenges, Microelectronics Journal, Vol.

39(7):930 – 941, 2008.166

[5] A. Marongiu, L. Benini,An openmp compiler for efficient use of distributed scratchpad memory in MPSoCs, Computers,

IEEE Transactions on, Vol. 61(2):222–236, Feb. 2012.166

[6] K. Wonyoung, G. M.S., W. Gu-Yeon, and D. Brooks.System level analysis of fast, per-core dvfs using on-chip switching

regulators, Proc. of HPCA, pp. 123–134, Feb. 2008.166

[7] N. Tolia, D. Andersen, and M. Satyanarayanan.Quantifying interactive user experience on thin clients, Computer, Vol.

39(3):46–52, Mar. 2006.166

[8] A. Oulasvirta, S. Tamminen, V. Roto, and J. Kuorelahti.Interaction in 4-second bursts: the fragmented nature of atten-

tional resources in mobile hci, Proc. of CHI ’05, pp. 919–928, 2005.166

[9] J. Benson.Thermal characterization of packaged semiconductor devices, 2002166

[10] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K.P. Pipe, T.F. Wenisch, M.M.K. Martin,Computational

Sprinting, In HPCA, Feb. 2012.167, 169, 170, 181, 182

[11] Apple iMovie http://itunes.apple.com/en/app/imovie/id377298193?mt=8167

[12] iOnRoad http://www.ionroad.com/167

[13] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R.F. Yazicioglu, P. Fiorini and V. Leonov.Human++: autonomous wireless

sensors for body area networks, Proc. of CICC, pages 13- 19, Sept. 2005167

[14] Climator. www.climator.com. 169

[15] A. Tilli, R. Diversi, A modular approach to dynamic modelling of heat exchangers in vapor compression cycles, in Proc.

of IFAC, Sept. 2011.170

[16] G. F. Franklin, J. D. Powell, M. L. Workman,Digital Control of Dynamic Systems, Addison-Wesley,1997.178

189

BIBLIOGRAPHY

190

Chapter 7

Conclusion and future developments

7.1 Conclusion

The demands for increasingly efficient systems caused the diffusion of MPSoCs architectures in

every sector of the worldwide economy, ranging from industries to everyday life products (e.g.

laptops, tablets, smartphones,. . .). Guided by the Moore’s law, the rush for high-performance

processors has seen single CPUs gradually disappear, due to the unsustainable power con-

sumes, in favor of multi-core processors, which are able to exploit parallelism greatly reducing

the power consumption. Nevertheless, several constraints imposed by technological scaling de-

termined an increase of the power density which translated in powers unevenly dissipated on the

chip and localized in “hot-spots” where the temperature reaches harmful values that strongly

undermines the reliability of the MPSoC. In this respect, studies have shown the correlation be-

tween high temperatures and chip failure mechanisms acceleration (e.g. electromigration and

stress migration) and the reduction of transistors speed and chip components lifetime. Cooling

and heat management are rapidly becoming the key limiters for high performance processors.

Another interesting issue, mainly present in mobile devices, is related to the limited power

budget and the economical and practical limitations of cooling infrastructures. Indeed, it is

now accepted, that in upcoming devices, all the units on a die cannot be repeatedly switched

on at the same time, as their total power consumption would exceed the Thermal Design Power

(TDP) – the maximum amount of power the cooling system is required to dissipate– leading

to thermal run-out.

In this context we developed reliable MPC-based control solutions that maximize perfor-

mance, limiting temperatures and power consumptions, at the same time. To do that we ex-

191

7. CONCLUSION AND FUTURE DEVELOPMENTS

ploited MPC controllers for implementing a DVFS technique more efficient than theone ob-

tained with other control theory based solutions. Our solution for managing the temperature of

the MPSoC is based on a distributed technology. Compared to the centralized solution present

in literature, we have obtained a greater reliability and a far lower computational complexity

with similar performance.

Due to the importance of model accuracy and complexity to perform the predictions of

the temperature, we explored three approaches respectively based ondistributed ARX,H∞

problem, and proper orthogonal decomposition techniques.

We proved the control feasibility of the centralized and distributed MPC solutions for the

family of thermal systems over any prediction horizon. This proof, usually disregarded in

literature, is extremely important for guaranteeing the respect of temperature constraints at each

time instant. The study has been conducted on a generic thermal model described by partial

differential equations and it has revealed other interesting properties for the simplification of

the control design.

The distributed MPC solution has been included in more complex control schemes:

• a two-layer control solution able to ensure feasibility and efficiency at the same time;

• a fully distributed solution able to maximize the energy saving;

• a communication-aware solution to allows the communication between cores in a mes-

sage passing context;

• a MPC hierarchical solution able to contrast the “Utilization Wall” issue in mobile de-

vices.

In particular this latter solution is based on the computational sprinting approach which

consist in running all cores at maximum speed only for short time intervals in order to not ex-

ceed the temperature limits. Differently respect to literature solutions, our controller is able to

maximize performance, and guarantee a time window where executing critical tasks at maxi-

mum speed, placed at the beginning of an initially specified time interval. The dimension of the

sprinting window has been increased exploiting an opportunely defined phase change material

(PCM).

In order to develop and test these control solutions we used the Matlab/Simulink environ-

ment. A processor thermal simulator has been implemented. Additionally a C/C++ solution has

192

7.2 Future works

been developed to estimate the time overhead necessary for computing the control decisions.

The code will be used for the implementation of the control algorithm on real hardware.

7.2 Future works

In the next future the work it is expected to continue, mainly focusing on three activities:

Implementation on real HW. The proposed control solution has been tested on a cycle-

accurate simulator. In the next future we expected to implement the control algorithm on a real

hardware. In this scenario it will be necessary to reformulate the problemin order to account

for the uncertainties unavoidably present on the identified model parameters, and the unmea-

surable disturbances acting on the real system which may compromise the effectiveness of the

model predictive controller. Under these nondeterministic conditions, literature suggests the

reformulation of the MPC controller as a “Robust MPC” problem, that is bounding uncertain-

ties and adopting worst-case approach. Although no robust MPC solutions exist in literature

for MPSoCs thermal issue, this approach is often too conservative and pessimistic. Thus, we

expected that a “Stochastic MPC” problem will be preferable due to its ability of using the ad-

ditional information of the probabilistic distribution of the uncertainty to reduce significantly

the conservativeness respect to classic approaches. The control algorithm will have soft con-

straints met with a desired probability instead of hard constraints, the objective function will

be formulated as an expected cost and the prediction models will incorporateinformation on

uncertainties. Due to the presence of unmeasurable states a Kalman filter will be designed. The

control solution will be implemented and tested on the SCC processor shown in AppendixB.

Hierarchical solution improvement. Another activity will address the “Utilization Wall”

issue by improving the hierarchical control solution shown in Chapter6. Initially, the effective-

ness of the controller respect to different chip layouts will be carefully checked. Then, a novel

hierarchical control structure will be designed eliminating some of the current assumptions and

improving the overall performances.

Heterogeneous multi-core.In the next future multi-core chips will be composed of many

specialty cores working in concert, each one with a particular role inside thedevice (e.g. mo-

bile phones already use heterogeneous cores). In this context the management of the different

resources must be carefully controlled to improve performance and reduce consumes. A “Hy-

brid MPC controller” able to handle both the temperature and the workload of the processors,

193

7. CONCLUSION AND FUTURE DEVELOPMENTS

and a consensus based task scheduling manager are interesting solutionsfor improving hetero-

geneous processors performance.

194

Chapter 8

Publications

C. Bonivento, M. Cacciari, A. Paoli, M. Sartini. (2010)Mathematical modeling for Software-

In-the-Loop prototyping of automated manufacturing systems.

Mathematical Methods in Engineering International Symposium, Coimbra 21-24Ottobre 2010.

A. Bartolini, M. Cacciari, A. Tilli, L. Benini, M. Gries. (2010)A virtual platform envi-

ronment for exploring power, thermal and reliability management control strategies in high-

performance multicores.

GLSVLSI ’10 Proceedings of the 20th symposium on Great lakes symposium on VLSI 2010.

Providence, Rhode Island (USA). May 16 -18-2010. (pp. 311 - 316). ISBN: 978-1-4503-0012-

4. : ACM (UNITED STATES).

A. Bartolini, M. Cacciari, A. Tilli, L. Benini. (2011)A Distributed and Self-Calibrating Model-

Predictive Controller for Energy and Thermal management of High-Performance Multicores.

Design, Automation & Test in Europe Conference & Exhibition, 2011. DATE’11. Grenoble,

France. 14-18 March 2011. NEW YORK: IEEE Press (UNITED STATES).

A. Bartolini, M. Cacciari, A. Cellai, M. Morelli, A. Tilli, L. Benini. (2011)Fault Tolerant

Thermal Management for High-Performance Multicores.

Design, Automation & Test in Europe Conference & Exhibition, 2011. DATE’11. Grenoble,

France. 18 March 2011. (workshop uPM2SoC)

C. Bonivento, M. Cacciari, A. Paoli, M. Sartini. (2011)Rapid prototyping of automated man-

195

8. PUBLICATIONS

ufacturing systems by software-in-the-loop simulation.

Chinese Control and Decision Conference, 2011. CCDC’11. 23-25 May 2011, pp.3968–3973.

A. Bartolini, M.S. Sadri, F. Beneventi, M. Cacciari, A. Tilli, L. Benini. (2011) A System Level

Approach to Multi-core Thermal Sensors Calibration.

PATMOS 2011.

A. Bartolini, M.S. Sadri, F. Beneventi, M. Cacciari, A. Tilli, L. Benini. (2011) SCC Ther-

mal Sensor Characterization and Calibration, MARC3 Symposium 2011.

A. Tilli, E. Garone, M. Cacciari, A. Bartolini. (2012)Thermal Models Characterization for

Reliable Temperature Capping and Performance Optimization in Multiprocessor Systems on

Chip.

ACC, June 2012.

A. Bartolini, M. Cacciari, A. Tilli, L. Benini. (2012)Thermal and Energy management of

High-Performance Multicores: Distributed and Self-Calibrating Model-Predictive Controller.

IEEE TDPS 2012 vol. 23.

A. Tilli, A. Bartolini, M. Cacciari, L. Benini. (2012)Don’t burn your mobile! Safe Com-

putational Re-Sprinting via Model Predictive Control.

ESWeek 2012, Tampere Hall, Finland.

196

Appendices

197

Appendix A

Mathematical Background

In this Appendix are reported useful contents relative to optimization problemand model pre-

dictive control.

A.1 Convex Linear MPC with quadratic cost function implemen-

tation

The main control tool we used in this thesis is the linear MPC algorithm. It is characterized by

a convex quadratic cost function and affine constraint functions. Themain contribution of this

Section is to give an idea of how the MPC algorithm is usually implemented.

Assume this is the optimization problem which must be solved to obtain the next control

decision:

min
U0

J0(x(0),U0), x(hp)
′Px(hp)+

hp−1

∑
k=0

x(k)′Qx(k)+u(k)′Ru(k) (A.1a)

s.t.

x(k+1) = Ax(k)+Bu(k) k= 0, . . . ,hp−1 (A.1b)

E x(k)+M u(k)≤ ψk k= 0, . . . ,hp−1 (A.1c)

x(0) = x(t) (A.1d)

whereP= P′ � 0, Q= Q′ � 0, R= R′ ≻ 0,U0 = [u(0), . . . ,u(hp−1)]′ is the control sequence

that we want to optimize,hp is the prediction horizon, (A.1b) is the model of the plant, and

x(t) is its current state. Notice that the problem and the model are time-invariant, therefore

the control sequence will depend only on the initial state. This is the reason why we putx(0)

199

A. MATHEMATICAL BACKGROUND

instead ofx(t|t) andU0 = [u(0), . . . ,u(hp−1)]′ instead ofUt→t+hp−1 = [u(t|t), . . . ,u(t +hp−

1|t)]′.

Assume that a full measurement of the statex(t) is available at the current timet (otherwise

an observer is necessary). Then, the optimization problem must be solvedat each sampling

time.

Each MPC problem has a different structure that depends on the application and the re-

quirements it has to satisfy. However, the implementation of an ad-hoc solver istime consum-

ing, and extremely inefficient. The usual way of solving linear quadratic MPC problems is to

translating the optimization problem into a QP problem for which efficient solvers based on

active-set methods and interior point methods are available.

The steps to obtain the QP formulation are presented below. First, we need to rewrite the

problem (A.1) in the matrix form,

min
U0

J0(x(0),U0), x(hp)
′Px(hp)+X′

0QX0+U ′
0RU0 (A.2a)

s.t.

X0 =Ax(0)+BU0 (A.2b)

EX0+MU0 ≤ Ψ (A.2c)

x(0) = x(t) (A.2d)

whereU0 = [u(0), . . . ,u(hp−1)]′ ∈ R
hp m, X0 = [x(0), . . . ,x(hp−1)]′ ∈ R

hp n, and

Q= diag{Q, . . . ,Q} ∈ R
hp n×hp n,

R= diag{R, . . . ,R} ∈ R
hp m×hp m,

E= diag{E, . . . ,E} ∈ R
hp nC×hp n,

M= diag{M, . . . ,M} ∈ R
hp nC×hp m.

Moreover, the matricesA ∈ R
hp n×n andB ∈ R

hp n×hp m can be defined as,

A=




A

A2

...

Ak




B=




0 0 0 · · · 0

B 0 0 · · · 0

AB B 0 · · · 0
...

...
...

. ..
...

Ahp−2 B Ahp−3 B · · · · · · 0




(A.3)

remembering that the state at each sampling time can be defined respect to the initial statex(0)

and eliminating the intermediate states as,

x(k) = Ak x(0)+
k−1

∑
j=0

A j Bu(k−1− j) (A.4)

200

A.2 Multi-parametric Quadratic Programming

SubstitutingX0 of equation (A.2b) in the equations (A.2a) and (A.2c) we obtain,

1
2

x(0)′YQPx(0)+min
U0

1
2

U ′
0QQPU0+x(0)′FQPU0 (A.5a)

s.t.

MQPU0 ≤WQP+EQPx(0) (A.5b)

(A.5c)

whereQQP=B′ Q̄B+R=Q′
QP≻ 0, FQP=A′ Q̄B, YQP=A′ Q̄A, andQ̄= diag{Q,P}. Notice

that bothQQP, FQP, MQP, WQP, EQP depend on the matricesQ andR, and that the term with

weight matrixYQP is usually avoided since it represent a fixed cost independent from thema-

nipulable variableU0. Notice also that in the unconstrained case the solution of this problem

can be easily obtained by zeroing the gradient of the cost function or alternatively in a recursive

way using the dynamic programming approach.

A.2 Multi-parametric Quadratic Programming

This Section presents the algorithm for solving a multi-parametric quadratic program (mpQP)

in order to determine explicitly the state feedback control law which minimizes the optimiza-

tion problem (A.5). According to the operations research jargon, amulti-parametric program

is a problem that depends on a vector of variables. In this case we want tofind a function

u◦(0) = f (x(0)) for all feasible values ofx. This approach represents an alternative to the on-

line computation presented in the previous Section which is sometimes impracticable due to

computing time and costs.

In this thesis we applied this approach to our linear quadratic MPC in order to find its

explicit solution. The starting point is the QP problem (A.5) influenced by the parameterx∈

X ⊆ R
n.

Assume there exists a subset of feasible parameters such that,

X◦ = {x(0) ∈ X : ∃U0 satis f ying MQPU0 ≤WQP+EQPx(0)} (A.6)

If the set is empty the problem could not be solved.

We can solve the problem (A.5) using the Karush-Kuhn-Tucker (KKT) conditions. For any

optimization problem with differentiable objective and constraint functions for which strong

duality obtains, any optimal solution of the primal and dual problems must satisfythe KKT

201

A. MATHEMATICAL BACKGROUND

conditions. Because our problem is convex, KKT conditions are also sufficient (1). The KKT

of our problem are:

QQPU◦
0 +F ′

QPx(0)+M′
QPλ = 0 (A.7a)

λi (M
i
QPU◦

0 −Wi
QP−Ei

QPx(0)) = 0 i = 1, . . . ,m (A.7b)

λ ≥ 0 (A.7c)

MQPU◦
0 ≤WQP+EQPx(0) (A.7d)

whereλ represents the vector of Lagrangian multipliers.

Solving forU◦
0 the equation (A.7a) becomes,

U◦
0 =−Q−1

QP(F
′
QPx(0)+M′

QPλ) (A.8)

where we remark thatQQP ≻ 0. Equation (A.8) can be simplified as,

U◦
0 =−Q−1

QP(F
′
QPx(0)+ M̃′

QPλ̃) (A.9)

where we indicated with the accent ˜ the constraints part relative to active constraints, i.e.

constraints holding with equality at the optimum. For inactive constraintsλi = 0. We can

substituteU◦
0 in the complementarity condition (A.7b) obtaining,

−M̃QPQ−1
QP(F

′
QPx(0)+ M̃′

QPλ̃) = W̃QP+ ẼQPx(0) (A.10)

Since the rows of̃MQP are linearly independents,̃MQPQ−1
QPM̃QP exists, and we can find̃λ as,

λ̃ =−(M̃QPQ−1
QPM̃′

QP)
−1 (W̃QP+(ẼQP+ M̃QPQ−1

QPFQP)x(0)) (A.11)

Thus,λ̃ is anaffine functionof x(0). Substituting (A.11) in (A.9) we obtain,U◦
0 as,

U◦
0 = Q−1

QP[M̃
′
QP(M̃QPQ−1

QPM̃′
QP)

−1(W̃QP+(ẼQP+ M̃QPQ−1
QPFQP)x(0))−FQPx(0)] (A.12)

Thus, also the optimizer functionU◦
0 is affine. Moreover, using the receding horizon strategy

u◦(0) = [I 0 . . . 0] ·U◦
0 that is affine too. However, this solution is valid only for the states

belonging to the region where the set of the active constraints remains unchanged. We define

this region as thecritical region(CRA), that is the set of parametersx for which the same setA of

constraints is active at the optimum. A new statex belongs to the critical region if the optimizer

functionU◦
0 meets the primal condition (A.7d) and (A.7c) keeps non-negative values. Thus if

MQPQ−1
QP[M̃

′
QP(M̃QPQ−1

QPM̃′
QP)

−1(W̃QP+(ẼQP+ M̃QPQ−1
QPFQP)x(0))−FQPx(0)]≤WQP+EQPx(0)

−(M̃QPQ−1
QPM̃′

QP)
−1 (W̃QP+(ẼQP+ M̃QPQ−1

QPFQP)x(0))≥ 0
(A.13)

202

A.2 Multi-parametric Quadratic Programming

theCRA set can be defined as,

CRA = {x∈ X : (A.13) are satis f ied}

As it is possible to see from (A.13) CRA is a polyhedron inX. After having defined the critical

regionCRA the rest of the space must be explored in order to generate other critical regions.

Summarizing, letAi(x̄) be the set of active constraints for ¯x∈ X◦, then we have proved that,

• CRA is a polyhedron;

• the optimizer functionU◦
0 is an affine function of the states insideCRA, i.e. U◦

0 = Gu,i ·

x+O f fRi ∀x∈CRA

• the value functionJ◦0(x) is a quadratic function of the states insideCRA, i.e. J◦0(x) =

x′ ·Mi ·x+ci ·x+di ∀x∈CRA

This is true for all critical regionCRAi associated to a specific set of active constraints. Finally,

it is also possible to prove that,

Proposition A.2.1. Consider the multi-parametric quadratic program (A.5) and let QAP ≻ 0.

Then, the optimizer U◦0 is continuous and piecewise affine in each polyhedral critical region,

and the optimal solution J◦0(x) is continuous, convex and piecewise quadratic on polyhedra.

Additionally, J◦0(x) is aC(1) function (3) (2).

A.2.1 A mpQP algorithm

The mpQP algorithm goal is to partition the feasible state spaceX◦ into a set of critical regions

CRAi and find the expression of the functionsU◦
0 andJ◦0(x). It usually comprises anactive

set generatorand aKKT solver. The former computes the set of active constraintsAi for a

particular value of the state, whereas the latter find theCRAi and the values ofU◦
0 andJ◦0(x)

associated to the states inside the region. The algorithm presented below is one of the simplest

algorithm developed in these years.

Algorithm .

1. Find the starting state vectorx0 inside the polyhedral setX◦ as the center of the largest

ball contained inX◦;

2. solve the QP problem forx(0) = x0 to obtain(U◦
0 ,λ ◦);

203

A. MATHEMATICAL BACKGROUND

3. determine the set of active constraintA0 for U◦
0 andx(0) = x0;

4. using the functions (A.11) and (A.12), characterize the regionCRA0;

5. partition the rest of the spaceX◦ in regionRi ;

6. for each newRi repeat the code from point (1).

The Fig.A.1 summarizes the procedure.

CR0
x0

X
-s

p
a

ce CR0
x0

R1

X
-s

p
a

ce

X0 X0

R2

R3
CR0

x0

R1

R4
R5

X-
sp

a
ce

X0

R2

R3
CR0

x0

R1

R4
R5

X-
sp

a
ce

X0

RR4RRR4

CR1

‘

Figure A.1: mpQP algorithm description (from dispenses of Prof. Bemporad).

It is worth to remark that of the optimal control sequenceU◦
0 only the first input is applied.

For this reason it is possible to reduce the number of critical regions by condensing the critical

regions for which the first element of the control vector is the same.

204

./8_Appendices/img/0010_A_mpQPAlgorithm.eps

Bibliography

[1] S. Boyd, L. Vandenberghe,Convex Optimization, Cambridge University Press, 2004.202

[2] F. Borrelli, A. Bemporad, M. Morari,Model Predictive Control for linear and hybrid systems, in preparation, last update

Nov, 2012.203

[3] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos,The explicit linear quadratic regulator for constrained systems,

Automatica, Vol. 38(1):3-20, 2002.203

205

BIBLIOGRAPHY

206

Appendix B

MPSoCs and Simulators

In the first part of the appendix a brief review of the terminology used in these thesis regarding

the chip system is presented. Then the accurate model used for simulationsis described.

B.1 The MPSoC System

When we look at a computing system we can distinguish two major topic: softwares and hard-

ware. Softwaresare all the programs that direct the actions of the hardware and are classified

in application softwareandsystem software. The former are all the application that can be in-

voked by a user, whereas the latter are interfaces between the system hardware and application

softwares. Theoperating systemis a part of the system software, that allows the applications to

use the hardware resources (thanks to application programming interfaceor API). An applica-

tion is usually divided in processes. Aprocess(or task) is an instance of a program which has

been executed. It is an independent execution unit that contains its own state information, use

its own address spaces, and only interact with other processes via interprocess communication

mechanisms. Each process can contain one or more threads. Athread is the smallest list of

instructions– the basic commands understood by the processor – that can be scheduled by the

operating system on a processor. Focusing onhardwareit comprises all the physical compo-

nents (processing units included). Eachprocessorlogically comprises two main components:

thedatapath, that performs arithmetic operations and thecontrol unit, that commands the dat-

apath, I/O devices, and memory according to the instructions of the program.The components

inside of a single-core processor comprises: an instruction decoder, which interprets the suc-

cessive instructions (fetched from memory), an arithmetic unit, which perform operations (add,

207

B. MPSOCS AND SIMULATORS

compare, move, . . .) on quantities contained in registers (and sometimes in memory), a pro-

gram counter which keeps track of the current location in the process, abus control circuitry

which handles communication with memory and I/O. It also includescache memories, which

holds values recently fetched from memory for quicker access (cache memories are small and

fast memories realized using the static random access memory (SRAM) technology. They act

as buffer for DRAM memory, are faster but more expensive than this latter).

With the advent of Multiprocessors Systems-on-Chip (MPSoCs) and multi-core, in the

same substrate of silicon we can find multiple processing units. It is important to notice the

difference existing between the previously mentioned processors and Multiprocessors. This

latter refer to systems with multiple processors but not on the same chip. From now we refer

to MPSoCs and multi-cores as synonyms. The idea under the rising of MPSoCs consists in

exploiting parallelism to increase the average throughput. This solution has been necessary

to reduce the power consumption, that reached unsustainable quantity dueto the failure of

Dennard’s scaling.

B.2 The Power Consumption

In the past years single-core processors performance increase exponentially, doubling every

two years. The primary drivers for this incredible trend were technologyand microarchitec-

tural improvements. Microarchitectural techniques exploit the abundanceof transistors to in-

crease processor efficiency with instruction level parallelism, extraction techniques, deeper

pipeline, Technology improvements mainly refers to transistor scaling. In 1974, a work of

Robert H. Dennard, a IBM fellow, proved that as transistors get smaller, they can switch faster

and use less power. This theory, called Dennard’s scaling theory, underlies the most famous

Moore’s law which states that the number of transistors on a chip double every two years.

A transistor can be seen as an on/off switch controlled by an electric signal.The first

transistors used on processors were nMOS, then substituted with CMOS for noise immunity

and low static power consumption reasons.

However, as the transistor dimensions reached atomic sizes, Dennard’s theory failed. At

every technology generation as transistor doubled and performance improved, the power con-

sumption exponentially increased. In the early 2000’s processors hit theso called “Power Wall”

that refers to the impossibility of improving processors performance by scaling. This because

the power consumption of the chip would have generated an amount of heatimpossible to

208

B.2 The Power Consumption

dissipate with conventional cooling systems. The cooling infrastructure costs and the heat ex-

traction limit imposed to the processor industries a change of strategy with the introduction of

the multi-core paradigm.

In order to understand better the problem we explain briefly how to compute the power

consumption of a processor.

The power consumption of a processor strictly depends on the power consumption of a

transistor. Indeed, every integrated circuit (as it is a processor) is made of transistors. In a pro-

cessor the number of transistors may be of billions. So lets start from the power consumption

of a CMOS transistor. The great of the power is spent in moments: during theswitching and

during the rest. The former component is usually calleddynamic powerwhile the latterstatic

power:

PCMOS= Pdynamic+Pstatic (B.1)

A CMOS transistor comprises an nMOS transistor in series with a pMOS transistor. The circuit

of a CMOS inverter is shown in Fig.B.1b whereVIN andVOUT are the input and output voltage,

C is the load capacitor, andVdd is the supply voltage.

VIN VOUT

IVdd

Vdd

C

Gate leakage

Subthreshold
leakage

Reverse-biased
Junction BTBT

Bulk

Substrate

G

DS

(c)(b)

(a)

B S
G

D

p-substrate

p+ n+ n+

BS
G

D

n-well

n+p+ p+

nMOS pMOS

Figure B.1: (a) CMOS transistor; (b) CMOS inverter circuit during switching low-to-high; (c)

Leakage current.

209

./8_Appendices/img/0020_C_CMOS.eps

B. MPSOCS AND SIMULATORS

The dynamic power is the power spent to charge and discharge the load capacitance, in

order to switch the output voltage from low-to-high or from high-to-low. The power can be ob-

tained multiplying the switching frequency (f req) by the energy dissipated for one switching.

Assuming an idealVIN with zero rise/fall time, this energy can be computed as the integral of

the instantaneous power over the period of interest:

EVdd =
∫ ∞

0
IVdd ·Vdddt =Vdd

∫ ∞

0
C ·

dVOUT

dt
dt =C ·Vdd

∫ Vdd

0
dVOUT =C ·V2

dd (B.2)

Thus, every time a capacitive node switches from ground toVdd, an energy ofC ·V2
dd is con-

sumed. The power drawn from the supply is given by,

Pdynamic=C · f req·V2
dd (B.3)

It is important to note that slower circuit (i.e. lowf req) consume less power not less energy,

and that power is a function of the voltage squared, therefore it is convenient to reduceVdd.

The failure of Dennard’s scaling depends on the impossibility of decreasing Vdd.

The static power is related to the currents flowing when theVIN voltage is unchanged. It is

usually referred to as leakage power. Ideally, the transistor has a null power consumption when

it is in steady-state. However real system has undesired currents flowing from the drain to the

source (subthreshold leakage), from the gate to the drain/source (gateleakage) and between the

p and n regions (Band-to-Band Tunneling current). These currents increase exponentially as

the size of transistors and the threshold voltage reduce (that is another reason to limit the lower

value of theVdd). After an estimation of these currents the static power is given by,

Pstatic= I ·Vdd (B.4)

The total power consumption of a transistor can be stated as,

PCMOS= f req·C ·V2
dd+ I ·Vdd (B.5)

Notice that the switching and the leakage power consumption are the most important con-

tributions, but not the only one in a real system. As an example, ifVIN transitions are not

instantaneous, there could be a period in which both the nMOS and the pMOS transistors si-

multaneously conduct, generating a current between power supply and ground terminals. The

short-circuit poweris the dissipation caused by this current (1).

We found the power consumption of a CMOS, but a processor counts manymillions of

transistors. How much power does it consume?

210

B.3 The Power Model

As a first approximation, the total power can be computed as the sum of the power con-

sumption of each transistor. However, the global power consumption at any given time is not

always the same. Indeed, the dynamic power is closely tied to the number of transistor that

change state. Therefore it is usual to find a constant A which pre-multiply the total dynamic

power,

PTOT = A· f req·CLOAD ·V
2
dd+ IEFF ·Vdd (B.6)

A represents the activity factor, that is the fraction of the circuit that is switching and it depends

on the workload requested,f req is the clock frequency of the processor,CLOAD is the circuit

equivalent capacitance,Vdd is the supply voltage (2).

B.3 The Power Model

How can we compute the power consumption practically?

The use of the equation (B.6) for characterizing a real platform often leads to inaccurate

Power Models which can compromise the efficiency of a control algorithm. There exist differ-

ent drawbacks that prevent the use of such a model,

1. the information of the internal architecture, material, geometry of the processor usually

are unknown because protected by intellectual property or because toocomplex to model;

2. each component on the chip is different from the others. This is the so called variability

issue which depends on the tolerance used during the production process. For this reason

even though we perfectly know the architecture we will encounter low accuracy;

3. the ageing effects can modify the behaviour of the system;

4. the parameterA that represents the relation between power dissipation and workload is

unknown.

For all these reasons the Power Model used in this thesis has been identified directly from

measurements obtained from a IntelR© server system S7000FC4UR1. It runs four quad-core

XeonR© X7350 processors at 2.93GHz and has a total memory capacity of 16GB based on

FBDIMMs. The XeonR© X7350 consists of two dual-core Core
TM

2 architecture dies in a single

package. Each of the two dual cores share a common 4MB sized L2 cache.

1Those experiments were conducted by Andrea Bartolini in (3)

211

B. MPSOCS AND SIMULATORS

The power profile of the platform has been characterized performing three sets of tests.

The first test consists in running a power virus – a task that maximizes the power consumption

of the CPU – in order to extrapolate the static power of each core. Indeed the dynamic power

can be obtained subtracting the idle power (the power when all cores are inrest condition) from

the maximum power measured, and the static power by subtracting the dynamic power from

the TDP specification, that is,

Pdynamic= PMAX−PIDLE (B.7a)

Pstatic= PTDP−Pdynamic (B.7b)

The second test investigates the contribution to the whole power of voltage and frequency.

The experiment consisted on the one hand in forcing the cores to switch to different frequency

values without scaling voltage, and on the other hand in scaling also voltage.Comparing the

results obtained by scaling frequency (DFS) and scaling both frequency and voltage (DVFS),

DVFS shows that voltage reduction accounts for up to 10% of total system savings. Focusing

on the dynamic power reduction, it is super-linear on the frequency scaling factor for DVFS

(for a decrease in frequency by 1.83, the dynamic power reduces by 2.95 and 2.86 for power

virus and a memory bound benchmark respectively), whereas for DFS itis sub-linear (for a

decrease in frequency by 1.83, the dynamic power reduces by 1.68 and1.43 respectively) (3).

The results of the test has been used to fit the parameters of a simple analytical model of the

dynamic power at different voltage and frequency levels.

The third test goal is to characterize the relation between the core power consumption and

the workload at different performance levels. Indeed the previous test has been performed run-

ning the same power virus. In this test a set of synthetic benchmark with different memory

utilization has been executed on processors, which has been forced to run at different perfor-

mance levels. For each benchmark has been extracted the clocks per instruction (CPI) metrics,

that quantified the workload on the processor, and it has been correlated with the power con-

sumption. Note that the CPI is correlated to the activity factorA presented in the previous

section.

The simple model used in test two fits well for high CPI, but not for low one. Therefore, a

new analytical model has been adopted. The dynamic power is given by,

Pdynamic= kA · f req·V2
dd+kB+(kC+kD f req) ·CPIkE (B.8)

212

B.3 The Power Model

0

5

10

15

20

25

Clock per Istruction (CPI)

D
y

n
a

m
ic

 P
o

w
e

r
−

 [
W

]

0 20 40 60 80 100 120 140 160 180 200

1800MHz − Real 1600MHz − Real1600MHz − Fi1800MHz − Fi

2400MHz − Real 2140MHz − Real2140MHz − Fi2400MHz − Fi

 2970MHz − Real 2630MHz − Real2630MHz − Fi2970MHz − Fi

Frequency

Figure B.2: Per-core Power Based on Activity.

whereas the static power,

Pstatic= Z ·Vdd ·T
2 ·e

−q·Vt
K·T (B.9)

wherekA = 2.13e−3,kB =−1.45,kC =−4.1376,kD = 0.0051,kE =−0.3016,Z= 2.59e+02,

K = 1.38e−23,q= 1.60e−19,Vt is the threshold voltage, andT is the temperature.

These two equations constitute thePower Modelwe used in the thesis (sometimes referred

to as freq2powmodel). It relates the power consumption of the processor to the workload

(CPI), the clock frequency, the voltage supply and also the temperature.

It is worth to note that in order to simplify the inversion of the Power Model, the dynamic

power can be simplified as,

Pdynamic= a· f req2+b· f req+c (B.10)

wherea= 1.549e−6, b= 5.1e−3·CPI−0.3016−0.002003,c= 2.37−4.138·CPI−0.3016.

Notice that the supply voltage disappear from the function used to compute thedynamic

power. However, the contribution of the voltage is incorporated inside the term a · f req2. This

because theVdd is a nonlinear function of the frequency (h(f req)). It is common to find in

literature thef reqand theVdd related to the power with a function proportional tof reqγ where

1< γ < 2.

213

./8_Appendices/img/0030_C_PowVsCPI.eps

B. MPSOCS AND SIMULATORS

B.4 The Thermal plant

The transistor scaling trend dictated by the Moore’s Law will persist also in the next future.

As a result the power densities on the chip exponentially increase causing high temperatures

that affect the reliability of the processors. Heat dissipation has become akey issue for the

development of high performance MPSoCs.

From a construction point of view, the architecture of a chip is designed to dissipate the

heat generated from the active silicon device layer. The heat is conducted through the silicon

die, to the Thermal Interface Material (TIM) which, filling the gap between material asperities,

reduces the contact thermal resistance (see Fig.B.3a). Then, the heat flows through the heat

spreader and the heat sink and finally is convectively removed to the ambient air.

Heat

PCB

Heat Sink

Heat SpreaderDIE
TIM

Figure B.3: Chip thermal architecture.

In order to develop a correct thermal management strategy it is necessary to build a model

where to test the control algorithm before implementing them on a real hardware. Using a

model of the system (that in the follows we will call as plant) guarantees different advantages:

• it measures all the parameters;

• it allows the designers to rapidly modify the control algorithm;

• it allows the designers to rapidly change the chip architecture under exam;

• it saves time and costs;

• it avoids hardware breaking.

The dynamic thermal management techniques implemented in this thesis have been tested

on two different type of simulators, one realized in Matlab/Simulink (5) environment, the other,

more accurate and complex, is based on Simics (6).

214

./8_Appendices/img/0040_C_Chip.eps

B.4 The Thermal plant

B.4.1 Matlab/Simulink Simulator

The thermal model of a generic processor takes as inputs the frequency,the workload (CPI),

the voltage and the ambient information and it returns, as output, the temperature map of the

system (see Fig.B.4).

Thermal

Model

freq

Vdd
CPI Temperature

Ambient
Temperature

Temperature

Model

Power

Model

Power

Figure B.4: Thermal Model.

It is widely known that the relation between the aforementioned inputs and the temperature

is nonlinear. However, the nonlinearity affects only a part of the relation,the one between the

frequency, voltage, CPI and the power consumption. Instead the function that correlates power

and temperature is linear. For this reason, the thermal model can be obtainedin two steps,

first executing a nonlinear function to find the power, and then, a linear function to find the

temperature, that is,

T = F(PTOT,Tambient) = F(P(f req,CPI,Vdd),Tambient) (B.11)

whereF(·) andP(·) are respectively a linear function and a nonlinear function,T is the tem-

perature of the processor andTambient is the ambient temperature. In detail,P(·) is the Power

Model we discussed in the previous section. Thus, we can assume to knowit. Notice that the

definition of an accurate Power Model is quite a hard task and representsa crucial issue in

thermal control of MPSoCs. In the rest of the thesis, according to (B.10) and (B.9), we will

considerP(·) equal to the Power Model,

PTOT = Pdynamic+Pstatic=

kA · f req·V2
dd+kB+(kC+kD f req) ·CPIkE +Z ·Vdd ·T

2 ·e
−q·Vt
K·T

(B.12)

215

./8_Appendices/img/0050_C_ThermalModel.eps

B. MPSOCS AND SIMULATORS

TheF function, that we call Temperature Model according to the Fig.B.4, could be developed

using different mathematical instruments. A partial differential equation may describe the heat

flow inside a volume, as well as an analytical function where the parameters are identified from

the measurements. We chose a finite element approach which guarantees a good precision and

a relative low computational complexity (7) (8). We assumed the chip as a volume composed

by two layers: a silicon layer that represents the die and a copper layer that represents the heat

spreader. We decompose the layers in elementary cubic cells. Then exploiting the well-known

duality between heat transfer and electrical phenomena we associate to each cell a RC circuit,

as shown in Fig.B.5.

CCu

RCu,h

RSi,h

RCu,h

TE

TCu,k

+
-

RCu,h

RCu,h

CSi

RSi,h

Pk

TSi,k

RSi,h

RSi,h

RSi,v

RCu,v

C

o

p

p

e

r

S

i

l

i

c

o

n

Figure B.5: Finite element approach: equivalent electric circuit.

The current is the heat flow, the voltage represents the temperature difference. R is the

thermal resistance and C represents the thermal capacitance that models thetransient behavior

of the cells, i.e. the time necessary to reach the new temperature after the power input change.

Each cells is composed by a resistor for the vertical thermal dissipation (respectivelyRSi,v,

RCu,v for the silicon and copper cells), four resistors for the horizontal thermal dissipation (RSi,h,

RCu,h), a capacitance (CSi, CCu) and a current generator or a voltage generator depending on the

belonging layer. The former represents the power dissipated by the active silicon cell, while

the latter represents the ambient temperature close to the heat spreader.

216

./8_Appendices/img/0060_C_TModel.eps

B.4 The Thermal plant

Connecting the circuit of each cell to the neighbors we obtain the model:

ṪSi,k=
Pk

CSi
+

TCu,k−TSi,k

CSi ·RSi,v
+

#neighs

∑
i=1

TSi,neigh,i −TSi,k

2·CSi ·RSi,h

ṪCu,k=
TSi,k−TCu,k

CCu ·RSi,v
+

TE −TCu,k

CSi ·RCu,v
+

#neighs

∑
i=1

TCu,neigh,i −TCu,k

2·CCu ·RCu,h

(B.13)

whereTSi,k andTCu,k are respectively the temperatures of thek− th cell of silicon and copper,

andTSi,neig,i andTCu,neig,i are respectively the neighbors of thek− th silicon and copper cell.

The model is linear and can be re-written as,

x(t +1) = A x(t)+B Pcell(t)+BAMB TAMB(t)
T(t) =C x(t)

(B.14)

wherex(t) is the state vector containing all the cell temperatures at timet, A is the state matrix,

B andBAMB are the input matrix,Pcell is the input vector containing the power dissipation of

each cell,TAMB is the ambient temperature information,T is the vector containing the measured

temperature, andC is the output matrix.

It is worth to note that, althoughx represents the temperature of all the cells in which the

processor has been decomposed, only few of these values can be measured in a real processor.

Indeed processors has few thermal sensors for monitoring chip temperatures usually placed in

strategic positions. TheC matrix selects a subset of temperatures which represent the measured

temperatures. In this thesis we assumed to have one sensor per core placed in its center, imaging

to find here the highest temperatures (there exist techniques to optimize the location of the

sensors (9)). Another assumption of this thesis is that only cores are actuated, that is only the

power dissipation of the cores can be directly modified. The other components on the chip, as

cache, are indirectly controlled through the cores. Also this limitation is not dramatic because

the highest power density are consumed on cores where usually the most dangerous thermal

challenges occur.

As an example, the Fig.B.6a shows the approximative layout of the XeonR© X7350 (10)

where only cache and cores has been considered. The parameters values, shown on the right,

has been set according to the material properties and by comparing the temperature response

of the model with the response of the real processor. Fig.B.6b shows the results of these tests

for one core. The dash&dot line shows the temperature measurements, whereas the dashed

curve shows the input power step. The parameters set allow us to find the Cand R values of the

equivalent circuit (RSi,v = 1.6◦K/W, RCu,v = 150◦K/W, RSi,h = 22.9◦K/W, RCu,h = 1.2◦K/W,

CSi = 1e−3J/◦K, CCu = 1.2e−2J/◦K).

217

B. MPSOCS AND SIMULATORS

CORE 1 CORE 2

L2

L1

CORE 3 CORE 4

L1 L1 L1

L2

silicon thermal conductivity 150 · (300
T

) 4/ 3W/mK

silicon specific heat 1.628e− 12
J/um

silicon thickness 350um
copper thermal conductivity 400W/mK

copper specific heat 3.55e− 12
J/um 3K

copper thickness 2057um
elementary cell length 1312um
package-to-air conductivity 0.4K/W

Temperature and Power Input of Core 1

300

302

304

306

308

310

312

314

316

318
T

e
m

p
e
ra

tu
re

 [
°K

]

0 2 4 6 8 10 12 14 16 Time [s]
5

10

15

20

25

30

P
o

w
e

r [W
]

Model Temperature

Real Temperature

Power Input

35

(a) (b)

Figure B.6: Approx. IntelR© XeonR© X7350 Floorplan.

Each core has been decomposed in 24 silicon cells and 24 copper cells. Moreover, on the

chip can be present other components as for instance caches, even though these components

cannot be directly controlled with frequency and voltage knobs. Frequency, workload, and

voltage of the four cores have been converted into power dissipation using the Power Model

as an interface function. The cores power feeds the Temperature Model which returns the

temperatures of the measured cells. Fig.B.7 shows the temperature of all cells interpolated

along space.

0

5

10

15

20 0

2

4

6

8

10310

320

330

340

Cache2

C4
C3

C2
C1

Figure B.7: Temperature map.

218

./8_Appendices/img/0070_C_MPSoC2.eps
./8_Appendices/img/0080_C_Sample.eps

B.4 The Thermal plant

Finally, it is worth to note that the Power Model is different for each platform. Never-

theless, in this thesis we assumed the Power Model as a universal functionvalid for all the

processors. Although this assumption is not technically correct, the control algorithms pre-

sented in this work are not affected by the nonlinear function that could besubstituted with

any others. However, in almost all the architectures we considered, we tried to keep the same

proportion with the original architecture (e.g. duplicating the floorplan, scaling the dimensions

and the parameters)

B.4.2 Simics Simulator

The Matlab/Simulink simulator has been used as first environment where to testour control

solutions. However, this simulator presents different limitations: it relies on trace-driven sim-

ulations and it disregards the dependencies existing among power, thermaleffect, reliability

and performance. In order to take into account the interdependencies between control actions

and workloads, we test our solutions on a full-system virtual platform. Thisplatform relies on

a established system simulator called Simics (6) where models for estimating the power con-

sumption, the temperature distribution and the aging have been integrated (characterized from

real hardware). Simics is a commercial instruction set simulator that models a complete multi-

core platform based on in-order x86 cores with memory, I/O interfaces and operating systems.

We configured Simics to emulate the X7350 IntelR© core which comprises four PentiumR© 4

cores. Simics simulates each x86 instruction in one CPU clock time period. To account for

memory latency, and different execution times for different instructions Simics loads a cycle-

accurate memory timing-model called RUBY belonging to the GEMS (11) collection. During

simulation, RUBY is called from each core before executing each memory access. It deter-

mines the latency of memory accesses and stalls the target core until the reading phase finishes.

The RUBY and Simics cycle periods are the same. RUBY also contains a module for reading

Simics performance counters every arbitrarily chosen N cycles. The extracted data refer to

the number of instructions retired, the clock cycles and stall cycles expired, the halt instruc-

tions and other core events. Then, these data are used to compute the power consumption

and the temperatures of the chip. To compute the CPU power consumption, the Power Model

(B.8)-(B.9) has been integrated as a RUBY module. The power dissipated by memories can be

obtained by multiplying the memory usage (extracted by counters) by the powerestimated us-

ing CACTI in different working states. Also the thermal model has been integrated as a RUBY

module. It is the finite element model showed in the previous Section and it takes as inputs the

219

B. MPSOCS AND SIMULATORS

powers computed by the power module. The simulation time required by the virtualplatform

to execute 1 billion instructions is 1240s.

SIMICS

DVFS RUBY CORE PC

Power Model

Temperature Model

L1
CPU2

Network

DRAM

L2 L2

L1
CPUN

T
h

re
a

d
N

O.S.fi, VDD

�

fi Stall Mem
Access

M
A

T
L

A
B

L1
CPU1

T
h

re
a

d
1

T
h

re
a

d
N

T
h

re
a

d
1

HW

SW

#hlt
stall

active
cycles

Pcore, PL1, PL2
T
P

fi

fi

P, T

CPI

Simulink

Controller
MATLAB

Interface

CONTROLLER PLANT MODEL
f

T

T

SIMICS
f T, Tmax, P* T

Tmax, P*

(a) (b)

Figure B.8: (a) Virtual platform architecture; (b) Control development strategy.

The next step is to implement the control algorithm on the simulator previously described.

In order to simplify the control algorithm integration in the virtual platform a RUBY module

has been added to support the MATLAB engine library. This latter allows C programs to

use Matlab as a computational engine. At initialization time the virtual platform startsthe

MATLAB engine process that executes concurrently to the simulator. Then, the Simulink

controller model is loaded and initialized, and two communication channels are established

between the RUBY module and the Simulink control algorithm. The first channelprovides

input to the control algorithm. The second one leads controller outputs to the target simulated

system. At each sampling instant of the controller:

1. the Simulink controller initializes with the past internal states;

2. the performance counters are read and the data sent to the Matlab environment;

3. one step of Simulink simulation executes;

4. RUBY reads the data from Simulink (core frequencies);

5. Simulink saves the internal state

Fig. B.8a shows the architecture of the virtual platform. Instead, Fig.B.8b shows the steps re-

quired for the development of a control algorithm. First, the controller design is carried out in

the MATLAB/Simulink framework providing preliminary tests and rapid design adjustments.

Then, the tuned controller is directly interfaced with the virtual platform, exploiting the MAT-

LAB/Simulink interfacing features. For more details on the virtual platform architecture refer

to (3).

220

./8_Appendices/img/0085_C_VirtualPlatform.eps

B.5 Performance

B.5 Performance

In this thesis we often use the term performance for assessing the goodness of a control algo-

rithm. However, the definition of the performance metrics depends on the particular applica-

tion the processor is used for. As an example in a data center we are interested in the average

throughput, whereas in a smartphone it is far most important the responsiveness, that is to re-

spond fast to a request provided by the user. The main performance metric we use in this work

is the maximization of the frequency. Indeed, we expect that the higher is thecore speed and

the lower is the task execution time (it depends on the number of instructions in a program).

Thus, considering DFS or DVFS techniques for thermal and power management, it is clear that

these mechanisms necessarily affect performance, since impose a frequency decrease.

The usual way to measure performance is to use benchmarks – program specifically chosen

to measure performance – that form the workload of cores (i.e. the set ofprogram runs). In

order to test our controller we chose a benchmark suite called PARSEC (Princeton Application

Repository for Shared-Memory Computers) (12) that collects multithreaded programs. The

suite focuses on emerging workloads and was designed to be representative of next-generation

shared-memory programs for chip-multiprocessors. We select some corner-case benchmark:

Fluidanimate used for simulating the fluid dynamic for animation purposes with Smoothed

Particle Hydrodynamics (SPH) method;

Facesim used for simulating the motions of a human face;

Bodytrack used for the body tracking of a person;

Raytrace used for real-time raytracing;

Dedup used for next-generation compression with data deduplication.

Since our simulator is not designed for taking as input tasks and threads, we profiled the fre-

quency, the CPI, and the power consumption behaviors by running thesebenchmark on a real

platform (the IntelR© server system S7000FC4UR which runs four quad-core XeonR© X7350

processors at 2.93GHz and has a total memory capacity of 16GB based onFBDIMMs).

Fig. B.9 shows the traces obtained for the benchmark Fluidanimate for the core 1. In

electronic devices the clock determines when events take place in the hardware. The discrete

221

B. MPSOCS AND SIMULATORS

1500

2000

2500

3000

0

5

10

15

0 2000 4000 6000 8000 10000 12000 time[s]
0

10

20

30

Frequency [MHz]

CPI

Power [W]

‘

Figure B.9: Fluidanimate traces.

time interval are calledclock cyclesand the frequency of the processor is usually expressed as

clock ratethat is 1
clock period. The execution time of a program can be expressed as,

Execution time=Clockcycles· f requency

The number of clocks constituting a program can be achieved by multiplying thetotal number

of instructions by the average clock cycles per instruction (13). The average time each instruc-

tion takes to execute is defined as clock cycles per instruction (CPI). Depending on the type

of instruction the CPI varies (i.e. the lower is the CPI the lower are the accesses to memory).

In this thesis the CPI is computed as the ratio between the clock un-halted cyclesat reference

frequency and the instruction retired in the observed period. This metric expresses an instanta-

neous workload measurement.

B.6 The SCC platform

The Single-chip Cluod Computer (SCC) (14) is a 48-core experimental processor created by

Intel Labs. It supports on-chip message passing application, Networks-on-Chip (NoCs) com-

munications, and DVFS mechanisms. It is implemented in 45 nm high-K metal-gate CMOS

and it contains 1.3 billion transistors in a total die area of 567mm2.

222

./8_Appendices/img/0090_C_Fluid.eps

B.6 The SCC platform

Architecture . The cores are P54C CPU with x86 architecture. Each of them belongs to a

tile that can accommodate two cores. The tiles are arranged in a 6×4 grid. On each core we

can boot an operating system (Linux 2.6.38 kernel) which works independently from the others.

Each core has private L1 and L2 caches (16KB and 256KB respectively). Cache coherence is

managed through a software protocol as opposed to commonly used hardware protocols. Each

tile has a 54-ports, high-speed, and low latency router to connect with 4 neighboring routers

and set a 2D-mesh on-die network. According to Fig.B.10each tile has also a Message Passing

Buffer (MPB) used to increase performance of a message passing programming model whereby

cores communicate through local shared memory. Tile performance is scalable from 300 MHz

at 700 mV to 1.3 GHz at 1.3 V. The on-chip network scales from 60 MHz at 550 mV to 2.6

GHz at 1.3 V. The design target for nominal usage is 1 GHz for tiles and 2 GHz for the 2-

D network, when supplied by 1.1 V. Each tile in the SCC contains two ring-oscillator based

thermal sensors

TILE

TILE

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

JTAGPLL

System Interface + I/O

3.6mm

26.5mm

5
.2

m
m

2
1

.4
m

mD
D

R
3

 M
C

MPB

Core

Router

L2$

CoreL2$

‘

Figure B.10: SCC architecture.

Message Passing. The SCC includes an on-chip message passing application framework,

named RCCE, which is a lightweight message passing library developed by Intel and optimized

for SCC. It uses the hardware MPB to send and receive messages preventing the use of the

network layer abstraction and the TCP/IP protocol overhead for exchanging messages among

different physical cores. The library uses the two primitivesput andget to efficiently move

data respectively from the L1 cache of one core to the MPB of another one, and from the MPB

to the L1 cache of the same core.

223

./8_Appendices/img/0100_C_SCC.eps

B. MPSOCS AND SIMULATORS

DVFS. The processor presents 8 Voltage Islands and 28 Frequency Islands managed with

software-based DVFS techniques. The voltage islands are controlled bya VCR (Voltage Regu-

lator Controller) that contains two voltage regulators and it is addressable by every core (Volt-

age range:[0,1.3]V with 6.25mV steps). Two voltage islands supply the 2D-mesh and die

periphery, with the remaining 6 voltage islands being divided among the core area. 24 out of

the 28 frequency islands are associated to the tiles, one for the 2D-mesh and three for the sys-

tem interface, VRC, and memory controllers, respectively. Unlike voltage changes, frequency

can be changed faster (20nsvs about 1msfor voltage changes).

224

Bibliography

[1] P.F. Butzen, R.P. Ribas, Leakage Current in Sub-Micrometer CMOS Gates, 2010,

http://www.inf.ufrgs.br/logics/docman/bookemicrobutzen.pdf210

[2] L. Torres, P. Benoit, G. Sassatelli, M. Robert, F. Clermidy, D. Puschini, An Introduction to Multi-Core System on Chip

Trends and Challenges, in M. Hubner, J. Becker,Multiprocessor System-on-Chip: Hardware design and tool integration,

Springer, 2011.211

[3] A. Bartolini, Dynamic Power Management: from portable devices to high performance computing, Ph.D. dissertation,

University Of Bologna, Italy, 2011.211, 212, 220

[4] H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen,J. Wakil, Hotspot-Limited Microprocessors: Direct

Temperature and Power Distribution Measurements, IEEE Journal of Solid-State Circuits,Vol. 4, pp. 5665, Jan. 2007.

[5] The MathWorks. MATLAB & Simulink. http://www.mathworks.com/. 214

[6] Virtutech. Virtutech Simics. http://www.virtutech.com/. 214, 219

[7] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, D. Tarjan,Temperature Aware Microarchitecture, in

Proc. IEEE/ACM ISCA, San Diego, CA, USA, pp.213, 2003.216

[8] G. Paci, P. Marchal, F. Poletti, L. Benini.Exploring “temperature-aware” design in low-power MPSoCs, In Proc. DATE

06, Vol. 1, pp. 180, 2006.216

[9] S. Reda, R.J. Cochran, A. Nazma Nowroz,Improved Thermal Tracking for Processors Using Hard and Soft Sensor

Allocation Techniques, IEEE Trans. Comput., Vol. 60, pp. 841-851, 2011.217

[10] N. Sakran et al. The implementation of the 65nm dual-core 64b merom processor. In IEEE International Solid-State

Circuits Conference, 2007.217

[11] Martin Milo M. K. et al. Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH

Comput. Archit. News, 33(4):92-99, 2005.219

[12] C. Bienia, S. Kumar, J.P. Singh, K. Li,The PARSEC Benchmark Suite: Characterization and Architectural Implications,

PACT, 2008.221

[13] D.A. Patterson, J.L. HennessyComputer Organization and Design: the hardware/Software interface, 4th edition, Morgan

Kaufmann Publishers, 2009.222

[14] J. Howard et al.,A 48-core ia-32 processor in 45 nm cmos using ondie message-passing and dvfs for performance and

power scaling, IEEE Journal of Solid-State Circuits, Vol. 46(1):173183,Jan. 2011.222

225

BIBLIOGRAPHY

226

Appendix C

Accurate Model

In this Appendix part of the code used for simulations is presented.

C.1 The plant

In this Section is reported the Matlab code used to create the accurate thermalmodel (the

simulator) for testing our control algorithms.

The code has been split in part in order to simplify the comprehension to the reader.

C.1.1 Global parameters

1 clear all

2 clc

3

4 %% 0

5 %VV

6 %|| ||||||||||||||||||||||||

7 %%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %%%%%%%%%%%%%%%%%%%%%%%%%% GLOBAL PARAMETER %%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %|| ||||||||||||||||||||||||

11 %AA

12

13 N_CORE = 8; % Number Of Cores

14 N_COMP = 20; % Number Of Components (Cores,Caches,Empty Areas)

15

16 % Set the type of thermal model

17 %Type = ’Reduced1L’; % 1 Layer 1 cell per core

18 %Type = ’Reduced2L’; % 2 Layer 1 cell per core

19 Type = ’Full2L’ ; % 2 Layer many cell per core

20

227

C. ACCURATE MODEL

21 % Layout definition

22 Filename_FLOORPLAN=’floorplan8.txt’ ; % floorplan

23 Filename_SENSORS=’sensors8.txt’ ; % Sensor location

24 Filename_HOTSPOT=’powers8.txt’ ; % power distribution

25

26 % Each core has 4x6 cells each of them with dimension 1312x131 2

27 Chip_Dimensions.h=5248+5248+2624+5248+5248; % Height

28 Chip_Dimensions.L=7872+5248+5248+7872; % Width

29

30 % Ambient temperature (in the case of POD set 0

31 Tenvironment =310; % [K]

In this first part the global parameters are defined. The user must set the number of cores

and the total number of components belonging to the chip. As an example the processor pre-

sented in Fig.C.1has 8 cores and 20 components. Notice that it is not possible to have compo-

nents with more than a neighbor on the same edge. In this case it is required to split the single

real component in more parts. Each cache in figure has two neighbor cores on the same side,

hence we need to split the cache in two parts.

CORE 1

CORE 3

CORE 2

CORE 4

CORE 5

CORE 7

CORE 6

CORE 8

C
ach

e L2

C
ac

h
e

L2
C

ac
h

e
L2

C
ach

e L2

Empty space

Comp. 13

Comp. 17

Com
p. 1

4

Com
p. 1

8
Com

p. 1
5

Com
p. 1

9

Comp. 16

Comp. 20

Comp. 1

Comp. 5

Com
p. 2

Com
p. 6

Com
p. 3

Com
p. 7

Comp. 4

Comp. 8

Comp. 9 Comp. 10 Comp. 11 Comp. 12

Chip_Dimensions.L

C
hip_D

im
ensions.h

Figure C.1: Layout definition

Then, the user must select the type of model he wants to build. The approach used to build

the model lies on the finite element decomposition described in AppendixB (the processor

volume is split in cells each of which is associated to an equivalent electric RC circuit). The

program allows the user to create:

• models with 1 layer and 1 cell per component;

• models with 2 layers and 1 cell per components (total 2 cells);

• models with 2 layers and many cells per components;

Since we need an extremely accurate model and the accuracy increase withthe number of

the cells we decided for the third alternative. Notice that the first two solutionsare obtained

228

./8_Appendices/img/0010_D_Layout.eps

C.1 The plant

from the third solution making the parallel of all the vertical resistances of thecells compos-

ing a component, the parallel of the horizontal cells linking the component to theneighbor

component and neglecting the horizontal resistances between the cell inside the components.

The layout of the processors is described inside 3 textual files the names of which are

assigned to the variables:FilenameFLOORPLAN, FilenameSENSORS, FilenameHOTSPOT.

Finally, the dimensions of the chip and the initial ambient temperature are defined.

C.1.1.1 Layout Files Generation.m

1 %% 0

2 %VV

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%% USER DEFINITIONS %%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10 % Cells per core

11 core_cells_num_height = 4; % <---------------- Modifiable by the user

12 core_cells_num_width = 6; % <---------------- Modifiable by the user

13

14 % Cells per cache

15 cache_cells_num_height = 4; % <---------------- Modifiable by the user

16 cache_cells_num_width = 4; % <---------------- Modifiable by the user

17

18 % Cells subsampling (e.g. if subsplit_height=2 then core=4 x6 --> core=8x12)

19 subsplit_height = 1; % <---------------- Modifiable by the user

20 subsplit_width = 1; % <---------------- Modifiable by the user

21

22 % Matrices of ones with the dimensions of the cores and caches components

23 core = ones(core_cells_num_height * subsplit_height,

core_cells_num_width * subsplit_width);

24 cache = ones(cache_cells_num_height * subsplit_height,

cache_cells_num_width * subsplit_width);

25

26 % Sensor position in cores and caches (1 where there is the sen sor, 0 otherwise)

27 core_sens = zeros (core_cells_num_height * subsplit_height,

core_cells_num_width * subsplit_width);

28 core_sens(2 * subsplit_height, 3 * subsplit_width) = 1;

% <---------------- Modifiable by the user

29 cache_sens = zeros (cache_cells_num_height * subsplit_height,

cache_cells_num_width * subsplit_width); % <---------------- Modifiable by the

user

30

31 % Power distribution in cores and caches

32 % The total power of the component is divided by the maximum nu mber

229

C. ACCURATE MODEL

33 % assigned to the cells and the results is divided by the numbe r of cells

34 % with the same number to find the single cell power consumpti on

35 % Example: core=[1 1 1 1 1;1 2 3 2 1;1 1 1 1 1] --> 1 cells have a powe r

36 % equal to Pow_TOT/3/12, P(2 cells)=Pow_TOT/3/2, and P(2 ce lls)=Pow_TOT/3/1

37 core_hot = ones(core_cells_num_height * subsplit_height,

core_cells_num_width * subsplit_width);

38 core_hot(1 * subsplit_height+1:3 * subsplit_height, 1 * subsplit_width+1:5 * subsplit_width)

= 2; % <---------------- Modifiable by the user

39 cache_hot = ones(cache_cells_num_height * subsplit_height,

cache_cells_num_width * subsplit_width); % <---------------- Modifiable by the

user

40

41 % Floorplan definition using previously defined patterns

42 floorplan=[core 2 * cache 3 * cache 4 * core;

43 5* core 6 * cache 7 * cache 8 * core;

44 9* ones(2 * subsplit_height,core_cells_num_width * subsplit_width)

10* ones(2 * subsplit_height,cache_cells_num_width * subsplit_width)

11* ones(2 * subsplit_height,cache_cells_num_width * subsplit_width)

12* ones(2 * subsplit_height,core_cells_num_width * subsplit_width);

45 13* core 14 * cache 15 * cache 16 * core;

46 17* core 18 * cache 19 * cache 20 * core]; % <----------------

Modifiable by the user

47

48 % Sensors Layout definition using previously defined senso rs patterns

49 sensors=[core_sens cache_sens cache_sens core_sens;

50 core_sens cache_sens cache_sens core_sens;

51 zeros (2 * subsplit_height,20 * subsplit_width);

52 core_sens cache_sens cache_sens core_sens;

53 core_sens cache_sens cache_sens core_sens]; % <----------------

Modifiable by the user

54

55 % Power Distribution definition using previously defined p ower patterns

56 power=[core_hot cache_hot cache_hot core_hot;

57 core_hot cache_hot cache_hot core_hot;

58 ones(2 * subsplit_height,20 * subsplit_width);

59 core_hot cache_hot cache_hot core_hot;

60 core_hot cache_hot cache_hot core_hot]; % <----------------

Modificabile da utente

61

62

63 %% 1

64 %VV

65 %|| ||||||||||||||||||||||||

66 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

67 %%%%%%%%%%%%%%%%%%%%%% WRITING OF FILES %%%%%%%%%%%%%%%%%%%%%%%

68 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

69 %|| ||||||||||||||||||||||||

70 %AA

71

72

73 % Floorplan

74 floorplan_filename= ’floorplan8.txt’ ;

230

C.1 The plant

75

76 fp1 = fopen (floorplan_filename, ’w’);

77 for i=1: size (floorplan,1)

78 for j=1: size (floorplan,2)

79 fprintf (fp1, strcat(num2str (floorplan(i,j)), ’ \t’));

80 end

81 fprintf (fp1, ’\n’);

82 end

83 fclose (fp1);

84

85

86

87 % Sensors Layout

88 sensors_filename= ’sensors8.txt’ ;

89

90 fp2 = fopen (sensors_filename, ’w’);

91 for i=1: size (sensors,1)

92 for j=1: size (sensors,2)

93 fprintf (fp2, strcat(num2str (sensors(i,j)), ’ \t’));

94 end

95 fprintf (fp2, ’\n’);

96 end

97 fclose (fp2);

98

99

100

101 % Power Distribution

102 power_filename= ’powers8.txt’ ;

103

104 fp3 = fopen (power_filename, ’w’);

105 for i=1: size (power,1)

106 for j=1: size (power,2)

107 fprintf (fp3, strcat(num2str (power(i,j)), ’ \t’));

108 end

109 fprintf (fp3, ’\n’);

110 end

111 fclose (fp3);

These are the instructions used to generate the three files previously mentioned (shown

in Fig. C.2). In the first part of the code the number of cells composing the cores andof

the caches are defined. Then the matricesfloorplan, sensors, andpower are created by the

user. Each element of the matrix is associated to a single cell of the silicon layer. Thefloorplan

matrix assigns the cells to the components by numbering them. The cells belonging tothe same

component have the same number. The numeration of the components is from theleft to the

right and from the top to the bottom. Thesensorsmatrix localizes the sensors position. A cell

contains a temperature sensor if the correspondent value in the matrix is setto 1 otherwise its

231

C. ACCURATE MODEL

value is 0. Thepowermatrix instead defines the power distribution in the components. Wether

the power consumption of the whole component is equally dissipated by all the cells then

the elements of the matrix associated to these cells have the number 1, otherwise we discern

different areas with different power consumption by numbering the cells with increasing value.

Then, the total power is equally divided by the number of the defined areasand subsequently by

the number of cells belonging to that area in order to find the single cell powerconsumption.

To better understand this mechanism, let us consider the core 1 in Fig.C.2. The number of

areas in the power matrix of core 1 is 2. This means that each region consumes:

Powregion1 =
PowTOT

2 Powregion2 =
PowTOT

2

The power dissipated by each cell can be obtained as,

Powcells1 =
Powregion1

16 Powregion2 =
Powregion2

8

In the second part of the code the matrices are saved in a text file.

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 4 4

8 8 8 8 8 8

8 8 8 8 8 8

8 8 8 8 8 8

8 8 8 8 8 8

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

6 6 6 6

6 6 6 6

6 6 6 6

6 6 6 6

7 7 7 7

7 7 7 7

7 7 7 7

7 7 7 7

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

16 16 16 16 16 16

16 16 16 16 16 16

16 16 16 16 16 16

16 16 16 16 16 16

17 17 17 17 17 17

17 17 17 17 17 17

17 17 17 17 17 17

17 17 17 17 17 17

13 13 13 13 13 13

13 13 13 13 13 13

13 13 13 13 13 13

13 13 13 13 13 13

14 14 14 14

14 14 14 14

14 14 14 14

14 14 14 14

18 18 18 18

18 18 18 18

18 18 18 18

18 18 18 18

15 15 15 15

15 15 15 15

15 15 15 15

15 15 15 15

19 19 19 19

19 19 19 19

19 19 19 19

19 19 19 19

9 9 9 9 9 9

9 9 9 9 9 9

12 12 12 12 12 12

12 12 12 12 12 12

10 10 10 10

10 10 10 10

11 11 11 11

11 11 11 11

 oorplan8.txt

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

sensors8.txt

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

power8.txt ‘

Figure C.2: Layout files generated by the functionLayoutFiles Generation.m

C.1.2 Input Pattern Generation

1 %% 1

2 %VV

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%% INPUT PATTERN GENERATION %%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10 % Simulation time information

232

./8_Appendices/img/0020_D_Files.eps

C.1 The plant

11 Time = struct();

12 Time.Start = 0; % [s]

13 Time.End = 30; % [s]

14 Time.Points = 30000; % Number of points

15 Time.FrameRate=20; % frame per sec (only for 3D

vis.)

16 Time.Step = (Time.End - Time.Start)/Time.Points; % Step

17 Time.array = (Time.Start:Time.Step:Time.End)’; % Time vector

18

19 % Input vector with environmental temperature

20 Tenv = ones(length (Time.array),1) * Tenvironment;

21

22 % Power Input initialization

23 clear PowerCPU Power PowerCache

24 Power = zeros (length (Time.array),N_COMP);

25 PowerCPU = zeros (length (Time.array),N_CORE);

26

27 % Input cores power: Steps

28 % PowerCPU(:,1)=[zeros(floor(Time.Points/18),1); 30 * ones(floor(Time.Points/18),1);

zeros(floor(Time.Points/18 * 16)+3,1)];

29 % PowerCPU(:,2)=[zeros(floor(Time.Points/18 * 3),1); 30 * ones(floor(Time.Points/18),1);

zeros(floor(Time.Points/18 * 14)+2,1)];

30 % PowerCPU(:,3)=[zeros(floor(Time.Points/18 * 5),1); 30 * ones(floor(Time.Points/18),1);

zeros(floor(Time.Points/18 * 12)+2,1)];

31 % PowerCPU(:,4)=[zeros(floor(Time.Points/18 * 7),1); 30 * ones(floor(Time.Points/18),1);

zeros(floor(Time.Points/18 * 10)+3,1)];

32 % PowerCPU(:,5)=[zeros(floor(Time.Points/18 * 9),1); 30 * ones(floor(Time.Points/18),1);

zeros(floor(Time.Points/18 * 8)+2,1)];

33 % PowerCPU(:,6)=[zeros(floor(Time.Points/18 * 11),1);

30* ones(floor(Time.Points/18),1); zeros(floor(Time.Poin ts/18 * 6)+2,1)];

34 % PowerCPU(:,7)=[zeros(floor(Time.Points/18 * 13),1);

30* ones(floor(Time.Points/18),1); zeros(floor(Time.Poin ts/18 * 4)+3,1)];

35 % PowerCPU(:,8)=[zeros(floor(Time.Points/18 * 15),1);

30* ones(floor(Time.Points/18),1); zeros(floor(Time.Poin ts/18 * 2)+2,1)];

36

37 % Input cores power: PRBS

38 PowerCPU = [zeros (Time.Points/4,N_CORE);idinput([Time.Points * 3/4+1,N_CORE], ’prbs’ ,[0

0.5],[0 25])];

39

40

41 % Computation of the power dissipated by caches (30% of adjac ent cores)

42 percentage=0.6;

43 PowerCache(:,1) = ((PowerCPU(:,1)+PowerCPU(:,3))./2) * percentage;

44 PowerCache(:,2) = ((PowerCPU(:,2)+PowerCPU(:,4))./2) * percentage;

45 PowerCache(:,3) = ((PowerCPU(:,5)+PowerCPU(:,7))./2) * percentage;

46 PowerCache(:,4) = ((PowerCPU(:,6)+PowerCPU(:,8))./2) * percentage;

47

48 % Total power inputs (all components)

49 Power=[PowerCPU(:,1) PowerCache(:,1)./2 PowerCache(:, 2)./2 PowerCPU(:,2)

PowerCPU(:,3) PowerCache(:,1)./2 PowerCache(:,2)./2 Po werCPU(:,4)

zeros (Time.Points+1,4) PowerCPU(:,5) PowerCache(:,3)./2 Pow erCache(:,4)./2

PowerCPU(:,6) PowerCPU(:,7) PowerCache(:,3)./2 PowerCa che(:,4)./2 PowerCPU(:,8)];

233

C. ACCURATE MODEL

In this part of the code we described the input pattern applied to the thermal model.

First, the parameters concerning the time of the traces are specified. The user must insert the

values in a structure containing the following values:

Start: initial time in seconds;

End: stop time in seconds;

Points: the number of points;

FrameRate: the number of frame per second (used for the 3D visualization).

The time step between two sampling intervals and the array containing all the sampling

instants are computed automatically from the previously defined values.

The ambient temperature is defined as an array. Each element correspond to a sampling instants

(we assumed the ambient temperature constant in this case).

Then, it is specified the input power trace. Notice that this trace is used to simulate the temper-

ature of the processors. Subsequently, identification approaches areapplied on the collected

temperature data in order to make the thermal model treatable by the controller. Thus, at this

point of the code it is unnecessary to define the inputs as frequency andCPI traces and then

convert them into power traces.

The power trace (Powerin the code) is a matrix with a number of column equal to the number

of components and a number of row equal to the number of sampling instants. First, we defined

the power consumption of the cores (PowerCPU) as a PRBS input ranging from 0W to 25W.

Then, for the sake of simplification, we defined the power consumption of thecaches (Pow-

erCache) as the 30% of the power consumed by the adjacent core. Therefore, as an example,

at every sampling interval the power consumption of the cache number 1 is equal to the mean

of the power consumption of the cores number 1 and 3 multiplied for the 30%. Finally, the

PowerCPUand thePowerCachematrices are combined to obtain the finalPower vector(the

empty components have zero power)

C.1.3 Thermal Model Generation

234

C.1 The plant

1 %% 2

2 %VV

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%% THERMAL MODEL GENERATION %%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10 % Accurate Thermal model creation

11 Continuous_Discrete = -1; % 1 discrete time, -1 continuous time

12 [A,B,C,D] = mat_modeling(Filename_FLOORPLAN, Filename_ SENSORS, Filename_HOTSPOT,

Chip_Dimensions, Type, Continuous_Discrete);

13 TModel = ss(A,B,C,D); % SS object creation

14 X0 = ones(size (A,1),1) * Tenvironment; % Initial condition

15

16 % Continuous time simulation

17 Temp = lsim(TModel, [Power,Tenv], Time.array, X0);

18

19 % Modification of C to measure all the states

20 TModelX = ss(TModel.a,TModel.b, eye (size (TModel.a,1)), zeros (size (TModel.a,1),

N_COMP+1));

21 x_plant = lsim(TModelX,[Power,Tenv], Time.array,X0);

22

23

24 %%%%%%%%%%%%%%%%%%%%%%%% 3D visualization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 % Setting Parameters

26 data.OUT=x_plant(:,1: size (x_plant,2)/2);

27 data.IN=PowerCPU;

28 visual.OUT.xmin=1;

29 visual.OUT.xmax=20;

30 visual.OUT.ymin=1;

31 visual.OUT.ymax=18;

32 visual.OUT.zmin=310;

33 visual.OUT.zmax=460;

34 visual.OUT.x=1;

35 visual.OUT.y=1;

36 visual.OUT.z=1;

37 visual.IN.xmin=0;

38 visual.IN.xmax=2;

39 visual.IN.ymin=0;

40 visual.IN.ymax=4;

41 visual.IN.zmin=0;

42 visual.IN.zmax=30;

43 visual.IN.x=10;

44 visual.IN.y=-10;

45 visual.IN.z=10;

46

47 % visualization function call

48 Visualization3D(data,Time,visual,1)

235

C. ACCURATE MODEL

In order to build the accurate thermal model we exploit the functionmat modeling.mthat

returns the classical state matrix A, the input matrix B, the output matrix C and the feedforward

matrix D. The matrices are then used to create a SS Matlab object.

Then, the initial temperature of the cells has been set equal to the initial ambienttemperature.

Finally, the model is simulated using thelsim function. The function returns as output the

temperatures of the cells measured by the sensors usually located in the siliconlayer (the lower)

as specified in theFilenameSENSORSfile. In our case the sensor are 8, one for each core.

In this part of code there are also the instructions to modify the model in orderto obtain all the

temperature values of the states (this is useful for the identification based onPOD approach

where we assume to have an accurate model of the thermal system before reducing its size)

and to have a 3D visualization of the processor temperature distribution.

C.1.3.1 mat modeling.m

1 function [A,B,C,D]=mat_modeling(FILENAME_FLOORPLAN, FILENAME_ SENSORS,

FILENAME_HOTSPOT, CHIP_DIMENSIONS, TYPE,TS)

2 % MAT_MODELING. Generate A, B, C, D matrices.

3 % The function take as input 6 parameters:

4 %

5 % - FILENAME_FLOORPLAN: the string of the text file containi ng the floorplan

6 %

7 % - FILENAME_SENSORS: the string of the text file containing the location of

sensors

8 %

9 % - FILENAME_HOTSPOT: the string of the text file containing the distribution of

powers

10 %

11 % - CHIP_DIMENSIONS: a structure with 2 fields:

12 % -> h = Height of the chip (um)

13 % -> L = Width of the chip (um)

14 %

15 % - TYPE: the string containing the type of the model:

16 % -> ’Full2L’ for a model with high number of cell and 2 layers

17 % -> ’Full2LNL’ for a model with high number of cell and 2 layer s, but

non linear

18 % -> ’Reduced2L’ for a reduced model with two cells for each co re and 2

layers

19 % -> ’Reduced1L’ for a reduced model with one cells for each co re and 1

layer

20 %

21 % - TS: the sampling time in seconds:

22 % -> -1 to have continuous matrices (default)

23 %

24 %

236

C.1 The plant

25 % Example

26 % [a,b,c,d]=mat_modeling(’floorplan.txt’,’sensors.tx t’,’hotspots.txt’, chip_size,

’Full2L’,1e-3);

27 %

28 % NOTES: this function uses these functions:

29 % fine2L_linear coarsegrain2L coarsegrain1L Full2LNL dis cretization

30 %

31

32

33 %% 0

34 %|| ||||||||||||||||||||||||

35 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

36 %%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%

37 %%%%%%%%%%%%%%%%%%%%%%% CHECK %%%%%%%%%%%%%%%%%%%%%%%%%%

38 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

39 %|| ||||||||||||||||||||||||

40

41 if nargin <5,

42 error (’model:mat_modeling:none’ , ’The function needs more parameters’);

43 end

44

45 if ˜isa(FILENAME_FLOORPLAN, ’char’),

46 error (’model:mat_modeling:input’ , ’Floorplan file name must be a string.’);

47 end

48

49

50 if ˜isa(FILENAME_SENSORS, ’char’),

51 error (’model:mat_modeling:input’ , ’Sensors file name must be a string.’);

52 end

53

54

55 if ˜isa(FILENAME_HOTSPOT, ’char’),

56 error (’model:mat_modeling:input’ , ’Power Distribution file name must be a

string.’);

57 end

58

59

60 if ˜isa(CHIP_DIMENSIONS, ’struct’),

61 error (’model:mat_modeling:input’ , ’the fourth parameter must be a struct with 2

fields .h and .L.’);

62 elseif (˜isa(CHIP_DIMENSIONS.L, ’numeric’) || ˜isa(CHIP_DIMENSIONS.h, ’numeric’))

63 error (’model:mat_modeling:input’ , ’the fields of the fourth parameter must be

numerics.’);

64 end

65

66

67 if ˜isa(TYPE, ’char’),

68 error (’model:mat_modeling:input’ , ’Model type must be a string.’);

69 end

70

71

72 if nargin <6 || isempty (TS),

237

C. ACCURATE MODEL

73 TS=-1;

74 warning(’model:nlmodel:default’ , ’ Matrices are calculated for a continuous

model’);

75 end

76

77

78 %% 1

79 %|| ||||||||||||||||||||||||

80 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

81 %%%%%%%%%%%%%%%%%%%%%%% MODEL %%%%%%%%%%%%%%%%%%%%%%%%%%

82 %%%%%%%%%%%%%%%%%%%%%%% DATA %%%%%%%%%%%%%%%%%%%%%%%%%%

83 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

84 %|| ||||||||||||||||||||||||

85

86 % Parameters

87 clear TM

88

89 % Reading of the floorplan file

90 fp1= fopen (FILENAME_FLOORPLAN,’r’);

91 k=0;

92 row = fgets (fp1);

93 while ischar(row)

94 k=k+1;

95 TM.components_layout(k,:)= sscanf (row, ’%f\t’)’;

96 row = fgets (fp1);

97 end

98 fclose (fp1);

99

100 % Reading of the sensors file

101 fp2= fopen (FILENAME_SENSORS,’r’);

102 k=0;

103 row = fgets (fp2);

104 while ischar(row)

105 k=k+1;

106 TM.sensors_layout(k,:)= sscanf (row, ’%f\t’)’;

107 row = fgets (fp2);

108 end

109 fclose (fp2);

110

111 % Reading of the power distribution file

112 fp3= fopen (FILENAME_HOTSPOT,’r’);

113 power_distribution= zeros (size (TM.components_layout,1), size (TM.components_layout,2));

114 k=0;

115 row = fgets (fp3);

116 while ischar(row)

117 k=k+1;

118 power_distribution(k,:)= sscanf (row, ’%f\t’)’;

119 row = fgets (fp3);

120 end

121 fclose (fp3);

122

123

238

C.1 The plant

124 % Chip properties

125 TM.cells_num_height= size (TM.components_layout,1);

126 TM.cells_num_width= size (TM.components_layout,2);

127 TM.layer_num=2;

128

129 % Cells dimensions

130 TM.cell_height_Si=CHIP_DIMENSIONS.h/ size (TM.components_layout,1); %[um]

131 TM.cell_width_Si=CHIP_DIMENSIONS.L/ size (TM.components_layout,2); %[um]

132 TM.cell_thick_Si=350; %[um]

133 TM.cell_height_Cu=CHIP_DIMENSIONS.h/ size (TM.components_layout,1); %[um]

134 TM.cell_width_Cu=CHIP_DIMENSIONS.L/ size (TM.components_layout,2); %[um]

135 TM.cell_thick_Cu=2057; %[um]

136

137 TM.c_Si=1.628e-12; % Si specific heat [j/(K * umˆ3)]

138 TM.c_Cu=3.55e-12; % Cu specific heat [j/(K * umˆ3)]

139

140 % Kelvin degree between heat spreader and ambient for dissip ating 1 Watt (package

data)

141 KperW=0.4;

142 % Heat exchange coefficient with the ambient [W/(K * umˆ2)] =1.041667e-7;

143 TM.env_sup=1/KperW/TM.cells_num_height/TM.cells_num _width/ TM.cell_height_Cu/

TM.cell_width_Cu;

144

145 TM.thermal_conductivity_Si=1.25e-4; % Silicon thermal conductivity W/(K * um)

146 TM.thermal_conductivity_Cu=4e-4; % Copper thermal conductivity W/(K * um)

147

148 TM.components_num= max(max(TM.components_layout));

149

150

151 if ((size (TM.components_layout,1)˜= size (TM.sensors_layout,1))||

(size (TM.components_layout,2)˜= size (TM.sensors_layout,2)))

152 error (’Sensors and Floorplan files have different dimensions’)

153 end

154

155 if ((size (TM.components_layout,1)˜= size (power_distribution,1))||

(size (TM.components_layout,2)˜= size (power_distribution,2)))

156 error (’Distribution Power and Floorplan files have different dim ensions’)

157 end

158

159 %% 2

160 %|| ||||||||||||||||||||||||

161 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

162 %%%%%%%%%%%%%%%%%%%%%%% MATRICES %%%%%%%%%%%%%%%%%%%%%%%%%%

163 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

164 %|| ||||||||||||||||||||||||

165

166 switch lower (TYPE)

167 case { ’full2l’ }

168 [A,B,C,D]=fine2L_linear(TM);

169

170 case { ’reduced2l’ }

171 [A,B,C,D]=coarsegrain2L(TM);

239

C. ACCURATE MODEL

172

173 case { ’reduced1l’ }

174 [ACG_plant,BCG_plant,CCG_plant,DCG_plant]=coarsegra in2L(TM);

175 [A,B,C,D]=coarsegrain1L(TM,ACG_plant,BCG_plant);

176

177 otherwise

178 disp (’Unknown method. Possible choices: Full2L - Reduced2L - Red uced1L’)

179 end

180

181 % Matrix B modification for account the inhomogeneity of pow er distribution

182 for j=1:TM.components_num

183 support_matrix1=TM.components_layout==j;

184 support_matrix2=support_matrix1. * power_distribution;

185 maximum=max(max(support_matrix2));

186 for i=1:TM.cells_num_height * TM.cells_num_width

187 if B(i,j)˜=0

188 B(i,j)=B(i,j) * sum(sum(support_matrix1))/maximum/

sum(sum(support_matrix2==support_matrix2(floor ((i-1)/ TM.cells_num_width)+1,

mod((i-1), TM.cells_num_width)+1)));

189 end

190 end

191 end

192

193 % Discretization if required

194 if TS>0

195 [A,B,C,D]=discretization(A,B,C,D,TS);

196 end

The function takes as inputs the names of the files (FILENAME FLOORPLAN, FILE-

NAME SENSORS, FILENAME HOTSPOT) used to define the layout of the processor, the chip

dimensions (CHIP DIMENSIONS), and the variables that describe respectively the desired

model type (TYPE) and the temporal characteristic (TS) of the model (discrete-time continuous-

time). The function gives as output the matrices used to describe the linear model in the state-

space formalism.

The first part checks if the input parameters are correct. In the second part the layout file are

read and the useful parameters are collected in the structureTM (e.g. the cells number, the cells

dimensions, the silicon and copper thermal conductivity). Finally, in the third part the function

fine2L linear is called to create the model. The functiondiscretizationconverts the model from

continuous-time to discrete-time if requested, and the matrixB is modified to account for the

information contained in the power distribution file.

C.1.3.2 fine2L linear.m

240

C.1 The plant

1 function [A,B,C,D]=fine2L_linear(TM)

2 % FINE2L_LINEAR generates the model matrices

3 %

4 % It takes as inputs

5 % - cells_num_height: number of cells along y axe

6 % - cells_num_width: number of cells along x axe

7 % - layer_num: number of cell layers

8 % - components_num: number of components

9 % - cell_height_Si: height of the silicon cell

10 % - cell_width_Si: width of the silicon cell

11 % - cell_thick_Si: thickness of the silicon cell

12 % - cell_height_Cu: height of the copper cell

13 % - cell_width_Cu: width of the copper cell

14 % - cell_thick_Cu: thickness of the copper cell

15 % - c_Si: silicon specific heat

16 % - c_Cu: copper specific heat

17 % - env_sup: heat exchange coefficient with the ambient

18 % - thermal_conductivity_Si: silicon thermal conductivit y

19 % - thermal_conductivity_Cu: copper thermal conductivity

20 % - components_layout: components layout

21 % - sensors_layout: sensors layout

22 %

23

24 %% 1

25 %|| ||||||||||||||||||||||||

26 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

27 %%%%%%%%%%%%%%%%%%%%%%% MODEL %%%%%%%%%%%%%%%%%%%%%%%%%%

28 %%%%%%%%%%%%%%%%%%%%%%% DATA %%%%%%%%%%%%%%%%%%%%%%%%%%

29 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

30 %|| ||||||||||||||||||||||||

31

32

33 cells_num_height = TM.cells_num_height;

34 cells_num_width = TM.cells_num_width;

35 layer_num = TM.layer_num;

36 Si_cells_num = cells_num_height * cells_num_width;

37 components_num = TM.components_num;

38 input_num = components_num+1; % +1 for the T_amb;

39

40 cell_height_Si = TM.cell_height_Si; %[um]

41 cell_width_Si = TM.cell_width_Si; %[um]

42 cell_thick_Si = TM.cell_thick_Si; %[um]

43 cell_height_Cu = TM.cell_height_Cu; %[um]

44 cell_width_Cu = TM.cell_width_Cu; %[um]

45 cell_thick_Cu = TM.cell_thick_Cu; %[um]

46

47 c_Si = TM.c_Si; %calore specifico silicio j/(K * umˆ3)

48 c_Cu = TM.c_Cu; %calore specifico rame j/(K * umˆ3)

49

50 env_sup = TM.env_sup; %W/(K* umˆ2) %coefficiente di scambio del calore con l’ambiente

W/(K * umˆ2)

241

C. ACCURATE MODEL

51

52 thermal_conductivity_Si = TM.thermal_conductivity_Si; % Silicon thermal conductivity

[W/(K * um)]

53 thermal_conductivity_Cu = TM.thermal_conductivity_Cu; % Copper thermal conductivity

[W/(K * um)]

54

55 components_layout = TM.components_layout;

56 sensors_layout = TM.sensors_layout;

57

58 thermal_capacity_Si = c_Si * cell_height_Si * cell_width_Si * cell_thick_Si;

% [j/K]

59 thermal_capacity_Cu =c_Cu * cell_height_Cu * cell_width_Cu * cell_thick_Cu;

% [j/K]

60 G_Si_vertical=thermal_conductivity_Si * cell_width_Si * cell_height_Si/cell_thick_Si;

% [W/K]

61 G_Si_horizontal=thermal_conductivity_Si * cell_width_Si * cell_thick_Si/cell_height_Si;

% [W/K]

62 G_Cu_vertical=(thermal_conductivity_Cu * cell_width_Cu * cell_height_Cu/cell_thick_Cu) *
(env_sup * cell_width_Cu * cell_height_Cu)/

((thermal_conductivity_Cu * cell_width_Cu * cell_height_Cu/cell_thick_Cu)+

(env_sup * cell_width_Cu * cell_height_Cu)); % [W/K]

63 G_Cu_horizontal=thermal_conductivity_Cu * cell_width_Cu * cell_thick_Cu/cell_height_Cu;

% [W/K]

64

65 disp (’Horizontal resistance (Si/Cu):’)

66 disp (1/G_Si_horizontal)

67 disp (1/G_Cu_horizontal)

68

69 disp (’Vertical resistance (Si/Cu):’)

70 disp (1/G_Si_vertical)

71 disp (1/G_Cu_vertical)

72

73 disp (’Thermal Capacity (Si/Cu):’)

74 disp (thermal_capacity_Si)

75 disp (thermal_capacity_Cu)

76

77

78 %% 2

79 %|| ||||||||||||||||||||||||

80 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

81 %%%%%%%%%%%%%%%%%%%%%%% MATRICES %%%%%%%%%%%%%%%%%%%%%%%%%%

82 %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

83 %|| ||||||||||||||||||||||||

84

85

86 Z=ones(cells_num_height,cells_num_width);

87 Z=[zeros (cells_num_height,1) Z zeros (cells_num_height,1)];

88 Z=[zeros (1,cells_num_width+2);Z; zeros (1,cells_num_width+2)];

89

90 %------------------------------> A <----------------- ------------------

91 A=zeros (cells_num_height * cells_num_width * layer_num);

92

242

C.1 The plant

93 % A Matrix layer 1 (Silicon)

94 for i=2:(cells_num_height+1)

95 for j=2:(cells_num_width+1)

96 neighbors_counter=0;

97 if (Z(i-1,j)==1)

98 neighbors_counter=neighbors_counter+1;

99 A(cells_num_width * (i-2)+j-1,cells_num_width * (i-3)+j-1)= G_Si_horizontal/

(2 * thermal_capacity_Si);

100 end

101 if (Z(i+1,j)==1)

102 neighbors_counter=neighbors_counter+1;

103 A(cells_num_width * (i-2)+j-1,cells_num_width * (i-1)+j-1)= G_Si_horizontal/

(2 * thermal_capacity_Si);

104 end

105 if (Z(i,j-1)==1)

106 neighbors_counter=neighbors_counter+1;

107 A(cells_num_width * (i-2)+j-1,cells_num_width * (i-2)+j-2)= G_Si_horizontal/

(2 * thermal_capacity_Si);

108 end

109 if (Z(i,j+1)==1)

110 neighbors_counter=neighbors_counter+1;

111 A(cells_num_width * (i-2)+j-1,cells_num_width * (i-2)+(j))= G_Si_horizontal/

(2 * thermal_capacity_Si);

112 end

113 A(cells_num_width * (i-2)+j-1, cells_num_width * (i-2)+j-1)=

-(neighbors_counter * G_Si_horizontal/ (2 * thermal_capacity_Si))-

(G_Si_vertical/thermal_capacity_Si);

114 A(cells_num_width * (i-2)+j-1, cells_num_width * (i-2)+j-1+Si_cells_num)=

G_Si_vertical/ thermal_capacity_Si;

115 end

116 end

117

118

119 % A Matrix layer 2 (Copper)

120 for i=2:(cells_num_height+1)

121 for j=2:(cells_num_width+1)

122 neighbors_counter=0;

123 if (Z(i-1,j)==1)

124 neighbors_counter=neighbors_counter+1;

125 A(cells_num_width * (i-2)+j-1+Si_cells_num,

cells_num_width * (i-3)+j-1+Si_cells_num)= G_Cu_horizontal/

(2 * thermal_capacity_Cu);

126 end

127 if (Z(i+1,j)==1)

128 neighbors_counter=neighbors_counter+1;

129 A(cells_num_width * (i-2)+j-1+Si_cells_num,

cells_num_width * (i-1)+j-1+Si_cells_num)= G_Cu_horizontal/

(2 * thermal_capacity_Cu);

130 end

131 if (Z(i,j-1)==1)

132 neighbors_counter=neighbors_counter+1;

243

C. ACCURATE MODEL

133 A(cells_num_width * (i-2)+j-1+Si_cells_num,

cells_num_width * (i-2)+j-2+Si_cells_num)= G_Cu_horizontal/

(2 * thermal_capacity_Cu);

134 end

135 if (Z(i,j+1)==1)

136 neighbors_counter=neighbors_counter+1;

137 A(cells_num_width * (i-2)+j-1+Si_cells_num,

cells_num_width * (i-2)+(j)+Si_cells_num)= G_Cu_horizontal/

(2 * thermal_capacity_Cu);

138 end

139 A(cells_num_width * (i-2)+j-1+Si_cells_num,

cells_num_width * (i-2)+j-1+Si_cells_num)= -(neighbors_counter * G_Cu_horizontal/

(2 * thermal_capacity_Cu))- (G_Cu_vertical/thermal_capaci ty_Cu)-

(G_Si_vertical/thermal_capacity_Cu);

140 A(cells_num_width * (i-2)+j-1+Si_cells_num, cells_num_width * (i-2)+j-1)=

G_Si_vertical/ thermal_capacity_Cu;

141 end

142 end

143

144

145 %------------------------------> B <----------------- ------------------

146 B=zeros (cells_num_height * cells_num_width * layer_num,input_num);

147 % Parameter that links the power consumption input and the si licon temeperature

148 coefficient_1c=1/thermal_capacity_Si;

149 % Parameter that links the power consumption input and the si licon temeperature

150 coefficient_2c=G_Cu_vertical/thermal_capacity_Cu;

151

152 % Compute the ratio 1/(cells number for each component)

153 for i=1:components_num

154 ratio(i)=1/ length (find (components_layout==i));

155 end

156

157 % power contribution to B

158 for i=1:cells_num_height

159 for j=1:cells_num_width

160 B((i-1) * cells_num_width+j,components_layout(i,j))=

ratio(components_layout(i,j)) * coefficient_1c;

161 end

162 end

163

164 % Ambient temperature contribution to B

165 for i=Si_cells_num+1:(Si_cells_num * layer_num)

166 B(i,input_num)=coefficient_2c;

167 end

168

169

170 %----------------------------> C e D <----------------- ----------------

171 % C matrix

172 k=0;

173 n_sens= sum(sum(sensors_layout));

174 C=zeros (n_sens,Si_cells_num);

175 for i=1:cells_num_height

244

C.1 The plant

176 for j=1:cells_num_width

177 if sensors_layout(i,j)==1,

178 k=k+1;

179 C(k,cells_num_width * (i-1)+j)=1;

180 end

181 end

182 end

183 C=[C zeros (n_sens,Si_cells_num)];

184

185 % D matrix

186 D=zeros (n_sens,input_num);

The only input of the function is the recordTM. The values extracted from its fields are

used to compute the conductances and the thermal capacities of the silicon andcopper cells.

Then the matricesA, B, C, D are build according to the equations (B.13) of AppendixB.

C.1.3.3 discretization.m

1 function [Ad,Bd,Cd,Dd]=discretization(A,B,C,D,TS)

2 % DISCRETIZATION discretizes the system defined by A, B, C, D

3 %

4 % It takes as inputs:

5 % - A,B,C,D: the 4 matrices that defines the linear model;

6 % - TS: the sampling time used for the discretization.

7 %

8 % Example

9 % [a,b,c,d]=discretization(A,B,C,D,1e-3)

10 %

11 if TS<=0

12 error (’model:discretization:time’ , ’Sampling time argument not valid’);

13 end

14

15

16 system=ss(A,B,C,D);

17 discrete_system=c2d(system,TS, ’zoh’);

18

19 %-- ------------------> AdCG

20 Ad=discrete_system.a;

21

22 %-- --------------------> Ad

23 Bd=discrete_system.b;

24

25 %-- --------------------> Ad

26 Cd=discrete_system.c;

27

28 %-- --------------------> Ad

29 Dd=discrete_system.d;

245

C. ACCURATE MODEL

The function discretizes the continuous-time model (the only input of the function).

C.1.3.4 Visualization3D.m

1 function []=Visualization3D(data,Time,visual,PowVis)

2 % VISUALIZATION3D: it shows the temperature variation duri ng time with a 3D

3 % visualization.

4 %

5 % Input parameters:

6 %

7 % data: structure containing the output and input data (data .OUT, data.IN)

8 %

9 % Time: structure containing the initial time (Time.Start) , the final time

10 % (Time.End), the time step (Time.Step) and the number of fra me per second

11 % (Time.FramRate)

12 %

13 % visual: structure containing the xmin, xmax, ymin, ymax, z min, zmax of

14 % the input and output data, and the x, y, z coordinates of the c amera:

15 % visual.OUT.xmin, visual.OUT.xmax, visual.OUT.ymin, vi sual.OUT.ymax,

16 % visual.OUT.zmin, visual.OUT.zmax, visual.OUT.x, visua l.OUT.y,

17 % visual.OUT.z, visual.IN.xmin, visual.IN.xmax, visual. IN.ymin,

18 % visual.IN.ymax, visual.IN.zmin, visual.IN.zmax, visua l.IN.x

19 % visual.IN.y, visual.IN.z

20 %

21 % PowVis: 0 for visualizing only output, 1 for visualizing in put and output

22

23

24 time.Points = floor ((Time.End - Time.Start)/Time.Step);

25 time.FR= floor ((1/Time.Step)/Time.FrameRate);

26

27 % Traccia 1 solo Sens

28 screensize= get (0, ’ScreenSize’);

29 f1= figure ;

30 set (f1, ’Position’ , [0 0 screensize(3) screensize(4)]);

31

32

33 for i=1:time.FR:time.Points

34 if PowVis>0

35 subplot (121),

36 else

37 subplot (111),

38 end

39 MatPlot= reshape (data.OUT(i,:),visual.OUT.xmax,visual.OUT.ymax);

40 sur= mesh(1:1:visual.OUT.ymax,1:1:visual.OUT.xmax,MatPlot);

41 axis ([visual.OUT.ymin visual.OUT.ymax visual.OUT.xmin visu al.OUT.xmax

visual.OUT.zmin visual.OUT.zmax]);

42 view ([visual.OUT.x,visual.OUT.y,visual.OUT.z])

43 title (strcat(’Time: ’ , ’ ’ , num2str (i * Time.Step), ’s’));

44 drawnow

45

246

C.2 The thermal model identification

46 if PowVis>0

47 subplot (122),

48 MatPow=reshape (data.IN(i,:),visual.IN.xmax,visual.IN.ymax);

49 MatPow=MatPow’;

50 h=bar3(MatPow);

51 for j = 1: length (h)

52 zdata = get (h(j), ’ZData’);

53 set (h(j), ’CData’ ,zdata)

54 % Add back edge color removed by interpolating shading

55 set (h, ’EdgeColor’ , ’k’)

56 end

57 axis ([visual.IN.xmin visual.IN.xmax+1 visual.IN.ymin visua l.IN.ymax+1

visual.IN.zmin visual.IN.zmax]);

58 view ([visual.IN.x,visual.IN.y,visual.IN.z])

59 title (’Distributed MPC frequency response’);

60 xlabel (’cores’); ylabel (’cores’); zlabel (’Core Frequency [MHz]’)

61 drawnow

62 end

63

64 end

For completeness we reported the 3D visualization function. The first inputparameter is a

record containing the data to be visualized (data). It has two fields: the input data and the output

data. Both are stored as matrices, where the number of columns is equal to thenumber of inputs

or the outputs respectively, whereas the rows are the value sampled at each time interval. The

parameterTimeis a structure containing the time information of the simulation data (the initial

time Time.Start, the final timeTime.End, the time stepTime.Stepand the number of frame per

secondTime.FramRate). Also thevisualparameter is a record which contains the visualization

settings decided by the user. FinallyPowVisallows the users to choose if visualizing simply

the outputs o both the outputs and the inputs.

The body of the function is a loop that at each iteration,

1. scans the data line by line;

2. reshapes each line as specified in thevisualparameters;

3. plots the values.

C.2 The thermal model identification

In this Section we reported the code used to reduce the order of the accurate thermal model.

The procedures are explained in Chapter4 and consist in thedistributed ARX identification

247

C. ACCURATE MODEL

solution, theH∞ identification solutionand thePOD-based solution.

C.2.1 distributed ARX identification

As shown in the code below the ARX identification approach is obtained by calling the function

MPSoCId Distr.m. The goal is to obtain a set of single-core models, which takes as inputs the

power consumption, the ambient temperature, and the neighbors temperatures, returning as

output the future core temperature.

1 %% 3

2 %VV

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%% SYSTEM IDENTIFICATION %%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10 % Parameters

11 model_order=2; % order for each single-core model

12 ARX_Method=1; % Identification solver

13 Cores_Deployment = [1 2; 3 4; 5 6; 7 8]; % relative cores position

14

15 % Identification

16 models=MPSoC_Id_Distr(Cores_Deployment, PowerCPU, Ten v, Temp, Time.Step,

model_order, ARX_Method);

First some parameters have been defined. Themodelorder represents the desired model

order for each single-core model. The ARX identification procedure allows the user to choose

the identification algorithm to use for finding the models. Actually two methods are im-

plemented, the first (ARXMethod=1) uses the arx function of Matlab, whereas the second

(ARXMethod=2) uses an ad-hoc approach implemented with CVX toolbox. The first method

has resulted more efficient than the second one. For this reason we will show only the first one.

TheCoresDeploymentmatrix, instead, contains the information about the relative position of

the cores. In the current case the core 5 has as neighbors the cores 3, 6, and 7.

Finally, the identification procedure is called.

C.2.1.1 MPSoCId Distr.m

1 function Models= MPSoC_Id_Distr(Deployment, Power, Tenvi, Temper ature, Tsampling,

ModelOrder, varargin)

2 % MPSoC_Id_Distr returns a structure containing the single -core models

248

C.2 The thermal model identification

3 %

4 % Inputs parameters:

5 %

6 % - Deployment : a map of the core

7 % - Power : a matrix with all the power data of the cores

8 % - Tenvi : the environment temperature data

9 % - Temperature : the temperature data of the cores

10 % - Tsampling : the sampling time

11 % - ModelOrder : the desired order of the model

12 % - varargin :

13 % -> parameter 1: put 1 for Matlab ARX identification method o r 2 for CVX

14 % -> parameter 2: string containing the destination path whe re to

15 % save the models

16 %

17 % Example:

18 % Models = MPSoC_Id_Distr(Deployment, Power, Tenv, Temper ature, Tsampling,

ModelOrder, 1,’path’)

19 %

20 % Notes: The size of the matrices b are equalt to the cores temp eratures + 2

21

22 %% 0

23

%%

24 %%%%%%%%%%%%%%%%%%%%%%% CHECK PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

25

%%

26

27 % Method and path management

28 if isempty (varargin)

29 Method=1;

30 save_model=0;

31 else

32 save_model=0;

33 if isempty (varargin{1})

34 Method=1;

35 else

36 if ischar(varargin{1})

37 error (’Libreria:MPSoC_Id_Distr:METHOD’ , ’The method variable must be a

number’);

38 else

39 if varargin{1}==1

40 Method=1;

41 else

42 Method=varargin{1};

43 disp (’CVX method will be used’)

44 end

45 end

46 end

47

48 % To save the single-core model to the path specified in varar gin{2}

49 if length (varargin)==2

249

C. ACCURATE MODEL

50 if isempty (varargin{2})

51 save_model=0;

52 else

53 if isnumeric(varargin{2})

54 error (’Libreria:MPSoC_Id_Distr:ADDRESS’ , ’The address must be a

string’)

55 else

56 save_model=1;

57 cd_old= cd ;

58 cd (varargin{2})

59 mkdir(’model_data’);

60 address=strcat(varargin{2}, ’\model_data\’);

61 cd (cd_old);

62 end

63 end

64 end

65 end

66

67 % Number of cores

68 n_core=0;

69 for i=1: size (Deployment,1)

70 for j=1: size (Deployment,2)

71 if Deployment(i,j)>n_core

72 n_core=Deployment(i,j);

73 end

74 end

75 end

76

77 % Understanding of the neighborhood relation

78 k=1;

79 neighbors= zeros (n_core);

80 Deployment_ext=[zeros (1, size (Deployment,2)+2); zeros (size (Deployment,1),1)

Deployment zeros (size (Deployment,1),1); zeros (1, size (Deployment,2)+2)];

81 while k<=n_core

82 for i=2: size (Deployment_ext,1)-1

83 for j=2: size (Deployment_ext,2)-1

84 if ((Deployment_ext(i-1,j)˜=k) && (Deployment_ext(i-1,j) ˜=0) &&

(Deployment_ext(i,j)==k))

85 neighbors(k,Deployment_ext(i-1,j))=1;

86 end

87 if ((Deployment_ext(i+1,j)˜=k) && (Deployment_ext(i+1,j) ˜=0) &&

(Deployment_ext(i,j)==k))

88 neighbors(k,Deployment_ext(i+1,j))=1;

89 end

90 if ((Deployment_ext(i,j-1)˜=k) && (Deployment_ext(i,j-1) ˜=0) &&

(Deployment_ext(i,j)==k))

91 neighbors(k,Deployment_ext(i,j-1))=1;

92 end

93 if ((Deployment_ext(i,j+1)˜=k) && (Deployment_ext(i,j+1) ˜=0) &&

(Deployment_ext(i,j)==k))

94 neighbors(k,Deployment_ext(i,j+1))=1;

95 end

250

C.2 The thermal model identification

96 end

97 end

98 k=k+1;

99 end

100

101 %% 1

102

%%

103 %%%%%%%%%%%%%%%%%%%%%%%% IDENTIFICATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%

104

%%

105

106 % Iterative procedure repeated for each core

107 for k=1:n_core

108 clc ;

109 disp (’Identification of the model’); disp (k);

110 j=0;

111 TempIn(:,1)=Tenvi; % TempIn contains the ambient and the neighbors temperature s

112 for i=1:n_core

113 if neighbors(k,i)==1

114 j=j+1;

115 TempIn(:,j)=Temperature(:,i);

116 end

117 end

118

119 % Identification: function call (Method=1 --> ARX, CVX othe rwise)

120 if Method==1

121 mod=SCI(Power(:,k),Tenvi,TempIn,Temperature(:,k),Ts ampling,ModelOrder);

122 else

123 mod=SCI_cvx(Power(:,k),Tenvi,TempIn,Temperature(:,k),Tsampling,ModelOrder);

124 end

125

126 % Change of coordinates to have C=[1 0 .. 0]

127 model_ARX_MISO=give_physics(mod);

128

129 % B matrix extension for the sake of future operation conveni ence:

130 % inclusion of all the temperatures as neighbors inputs

131 % (the unused inputs have correspondent B elements zeroed)

132 b(:,1:2)=model_ARX_MISO.b(:,1:2);

133 j=2;

134 for i=1:n_core

135 if neighbors(k,i)==1

136 j=j+1;

137 b(:,i+2)=model_ARX_MISO.b(:,j);

138 else

139 b(:,i+2)= zeros (size (model_ARX_MISO.b,1),1);

140 end

141 end

142 model_ARX_MISO.b=b;

143 model_ARX_MISO.d= zeros (1,n_core+2);

144

251

C. ACCURATE MODEL

145 % Computation of the initial state:

146 % - Case 1: initial state computed assuming the model in equil ibrium

147 % with the ambient temperature, the initial power equal to

148 % 0 and the neighbors temperature equal to the ambient one

149 % - Case 2: initial equilibrium different from the previous o ne. The

150 % initial power, hte initial neighbors temperature, and the

151 % core temperature is equal to the first sampled data.

152 states= ’syms’ ;

153 ics= ’ x’ ;

154 for i=1:(ModelOrder-1)

155 states=strcat(states,strcat(ics, num2str (i)));

156 end

157 eval (states)

158 for i=1:(ModelOrder-1)

159 xeq2(i,1)= eval (strcat(ics, num2str (i)));

160 end

161

162 if (Temperature(1,k)-1>(Tenvi(1,1)))

163 % Case 2

164 init_state=Temperature(1,k);

165 init_power=Power(1,k);

166 init_Tneigh=Temperature(1,:)’;

167 else

168 % Case 1

169 init_state=Tenvi(1,1);

170 init_power= zeros (1,1);

171 init_Tneigh=Tenvi(1,1) * ones(n_core,1);

172 end

173 % initial state estimation

174 xeq=[init_state;xeq2];

175 equilibrium= (model_ARX_MISO.a- eye (size (model_ARX_MISO.a,1))) * xeq+

model_ARX_MISO.b * [init_power;Tenvi(1,1);init_Tneigh];

176 solution=solve(equilibrium(1:(ModelOrder-1)));

177 if ModelOrder==2

178 x02=double(solution);

179 else

180 ics= ’double(solution.x’ ;

181 x02= zeros ((ModelOrder-1),1);

182 for i=1:(ModelOrder-1)

183 x02(i,1)= eval (strcat(ics, num2str (i), ’)’));

184 end

185 end

186 model_ARX_MISO.x0=[init_state;x02]; % Initial state of the model

187

188 % Gain matrix estimation for Luenberger observer

189 eigenvalues= eig (model_ARX_MISO.a) * 0.4;

190 model_ARX_MISO.k_obsv=(place(model_ARX_MISO.a’, mode l_ARX_MISO.c’

,eigenvalues))’;

191

192 % The k-th single-core model is saved to the address indicate d

193 if (save_model==1)

194 cd (address)

252

C.2 The thermal model identification

195 eval ([’Mod’ num2str (k) ’=model_ARX_MISO;’]);

196 eval ([’save(strcat(address,’’Mod’ num2str (k) ’’’),’’Mod’ num2str (k) ’’’);’]);

197 cd (cd_old);

198 end

199

200 % Sampling time

201 model_ARX_MISO.Ts=Tsampling;

202

203

204 % The k-th single-core model assigned to the output structur e

205 eval ([’Models.m’ num2str (k) ’=model_ARX_MISO;’]);

206

207

208 clear TempIn mod model_ARX_MISO xeq2 init_Tneigh

209 disp (’Done’)

210 end

This function takes as inputs the deployment of the cores, the data achievedby simulating

the accurate thermal model (the power consumptions and the temperature of all cores, and the

ambient temperature), the sampling time used for collecting the data, the desired model order

for the final models, and two optional inputs that are the method used for solving the ARX

identification algorithm and the address where to save the model. By default the algorithm

is solved using thearx function of Matlab and the models are not saved. The output of the

function consists of a record whose fields are described below.

models.





m1.





a
b
c
d
k obsv
Ts
x0

...
mN

wherem1, . . . ,mN are the models, a, b, c, d are the model matrices,k obsv is the gain

matrix of the Luenberger observer computed by using theplace Matlab function,Ts is the

sampling time, andx0 is the initial state of the model.

In the first part the input parameters are checked in order to save the ARX method to be applied

and the address where to save the model if present. Then, for each core, the relation of prox-

imity with the other cores is described with theneighborsmatrix. It is a square matrix with

dimension equal to the number of cores. The row number indicates the consideredi-th core

253

C. ACCURATE MODEL

and the columns are the possible neighbors. If the corej is a neighbor of thei-th core then the

element(i, j) is equal to 1, 0 otherwise (the same applies to the element (j,i)).

In the second part, a loop executes the following operations for each core,

1. the neighbors temperature data and the ambient temperature data are collected inTempIn;

2. theSCI.mfunction is called to solve the ARX algorithm;

3. thegive physics.mfunction is called to change the coordinate of the state space model re-

turned by theSCI.mfunction, in order to have the first state that represents the measured

core temperature;

4. the input matrixb is expanded in order to take as inputs all the neighbor temperatures

(the temperature of the cores that do not belong to the neighborhood are associated to 0

coefficients in the matrixb);

5. the initial state of the model is computed according to two cases: (i) the model isin

equilibrium when the initial power is 0 and the initial temperature of all cores areequal

to the ambient temperature, (ii) the model is in equilibrium when the initial power and

the initial temperature of all cores are equal to the first sample of the data used for

identification;

6. the gain matrix of the Luenberger observer is computed placing the eigenvalues of the

matrix (a+k obsv·c) at the values obtained by multiplying the eigenvalues ofa by 0.4;

7. the model is saved and assigned to the output record.

C.2.1.2 SCI.m

1 function model=SCI(MyPow,Tenv,NeighTemp,MyTemp,T_sampling,De gree,varargin)

2 % SCI Single Core Identification

3 % The function takes as input six parameters:

4 % - MyPow : the power of the core;

5 % - Tenv : the environment temperature;

6 % - NeighTemp : the neighbors temperature;

7 % - MyTemp : the temperature of the core;

8 % - T_sampling : the sampling time;

9 % - Degree : the order of the identified model;

10 % - varargin: visualization mode(0=nothing, 1=simulator, 2=predictor, 3=white

test).

11 %

12 % The result is a SS object.

254

C.2 The thermal model identification

13 %

14 % Example

15 % model=SCI(MyPow(:,1),Tenv(:,1),NeighTemp(:,1:2),My Temp(:,1),1e-3,2,2);

16 %

17

18 %% 0

19

%%

20 %%%%%%%%%%%%%%%%%%%%%%% CHECK PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

21

%%

22

23 if size (MyPow,2)>1

24 error (’SCI:input’ , ’MyPow size mismatch’)

25 end

26 if size (MyTemp,2)>1

27 error (’SCI:input’ , ’MyTemp size mismatch’)

28 end

29 if size (Tenv,2)>1

30 error (’SCI:input’ , ’Tenv size mismatch’)

31 end

32 if ((isempty (varargin)) || (varargin{1}>3))

33 visu_mode=0;

34 else

35 visu_mode=varargin{1};

36 end

37

38 % Adjusting data

39 num_neighbor= size (NeighTemp,2);

40 Out=MyTemp;

41 In=[MyPow Tenv NeighTemp];

42 data=iddata(Out,In, ’Ts’ ,T_sampling);

43 data.OutputName = { ’T’ };

44 data.OutputUnit = { ’K’ };

45

46 %% 1

47

%%

48 %%%%%%%%%%%%%%%%%%%%%%% IDENTIFICATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%

49

%%

50

51 % ARX function call

52 model1=arx(data, ’na’ ,Degree, ’nb’ ,Degree * ones(1,num_neighbor+2), ’Focus’ , ’Prediction’);

53 % model1=arx(data,’na’, Degree, ’nb’, Degree * ones(1,num_neighbor+2), ’nk’,

ones(1,num_neighbor+2)); % Equivalent to the upper one

54 % model1=pem(data,’na’, Degree, ’nb’, Degree * ones(1,num_neighbor+2), ’Focus’,

’Prediction’);

55 % model1=pem(data,’na’, Degree, ’nb’, Degree * ones(1,num_neighbor+2), ’SearchMethod’,

’lm’, ’Tolerance’,sqrt(eps));

255

C. ACCURATE MODEL

56

57 switch visu_mode

58 case 1

59 disp (’Comparison between real data and simulated data’);

60 compare(data,model1);

61 pause ();

62 close ;

63 case 2

64 disp (’Comparison between real data and predicted data’);

65 compare(data,model1,1);

66 pause ();

67 close ;

68 case 3

69 disp (’White test on the error as predictor’)

70 [yh,fit,x_init]=compare(data,model1,1);

71 er=Out-yh{1}.OutputData;

72 disp (’White test result:’);

73 disp (wtest(er));

74 plot (1: size (er,1),er); title (’Residual’)

75 pause ();

76 otherwise

77 disp (’No visualization selected.’)

78 end

79

80

81 %% 2

82

%%

83 %%%%%%%%%%%%%%%%%%%%%%% STATE-SPACE MODEL

%%%%%%%%%%%%%%%%%%%%%%%%%%%

84

%%

85

86 % Input/Output model convertion into a state-space form

87 for i=1: size (model1.b,1)

88 matrix(:,i)=tf(model1.b(i,:),model1.a,model1.Ts);

89 end

90 model=ss(matrix, ’min’);

TheSCI.mtakes as inputs the power consumption (MyPow), the temperature (MyTemp) and

the temperature of the neighbors (NeighTemp) of thek-th core. Moreover, it takes the ambient

temperature data (Tenv), the value of the sampling time (T sampling) according to with the data

are collected, the order of the searched model (Degree) and as optional the visualization mode.

The output is the model in a state-space form.

In the first part the function parameters are checked and the data are collected in a Matlab

IDDATA data object opportunely divided into inputs and outputs. The visualization mode is

assigned to the variablevisu mode.

256

C.2 The thermal model identification

In the second part of the code, the Matlabarx function is called. It takes as input the data

previously managed, the order of the polynomials related to the inputs and the outputs. The

commented instructions represent other functions to obtain the same result. Asa results we

obtain a input-output model of the form,

a(q) ·y(t) = B(q) ·u(t)+e(t)

wherea and b are polynomials contained as fields in the recordmodel1. According to the

visu modevariable the data obtained using the model as a simulator or a predictor can be

plotted and compared to the real data (visu mode=1andvisu mode=2, respectively). Setting

visu mode=3it is possible to plot the residual error between the predicted and real dataand the

result of the white test.

In the third part the model is converted in the state-space form.

C.2.1.3 give physics.m

1 function model=give_physics(mdl)

2 % GIVE_PHYSICS: The function transforms the ss-model ident ified with SCI

3 % function in a State-Space model with C matrix in the form [I_ n | 0_n]

4 % where n is the number of cores

5 % The function take as input one parameters:

6 % - mdl : the model identified with SCI function;

7 %

8 % The result is a structure. The A,B,C,D matrices are held in a ,b,c,d

9 %

10 %

11 % Example

12 % m=give_physics(SCI_model);

13 %

14

15 % Observability matrix

16 T = (obsv(mdl))ˆ-1;

17

18 % Change coordinate

19 model.a=Tˆ-1 * mdl.a * T;

20 model.b=Tˆ-1 * mdl.b;

21 model.c=mdl.c * T;

22 model.d= zeros (size (model.c,1), size (model.b,2));

The function uses the observability matrix,T, to change the coordinate of the state-space

model obtained from theSCI.mfunction. As a result the first state of the new model correspond

to the measured temperature, indeedC has the form[10 . . . 0] where the number of zeros

depends on the desired model order.

257

C. ACCURATE MODEL

C.2.2 H∞ identification

The H∞ identification approach relies on theMPSoCId Hinf.m function. The code below is

used in the main program to call the previously mentioned function that returnsas output the

set of single-core models collected in a record structure.

1 %% 3

2 %VV

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%% SYSTEM IDENTIFICATION %%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10 % Parameters

11 model_order=2; % order for each single-core model

12 Cores_Deployment = [1 2; 3 4; 5 6; 7 8]; % relative cores position

13

14 % Identification

15 models=MPSoC_Id_Hinf(Cores_Deployment, PowerCPU, Tenv , Temp, Time.Step, model_order);

First the order of the single-core models (modelorder) and the cores relative position

(Core Deployment) are defined, then the function is called.

C.2.2.1 MPSoCId Hinf.m

1 function Models=MPSoC_Id_Hinf(Deployment, Power, Tenvi, Tempera ture, Tsampling,

ModelOrder, varargin)

2 % MPSoC_Id_Hinf returns a structure containing the single- core models

3 %

4 % Inputs parameters:

5 %

6 % - Deployment : a map of the core

7 % - Power : a matrix with all the power data of the cores

8 % - Tenvi : the environment temperature data

9 % - Temperature : the temperature data of the cores

10 % - Tsampling : the sampling time

11 % - ModelOrder : the desired order of the model

12 % - varargin :

13 % -> parameter 1: string containing the destination path whe re to

14 % save the models

15 %

16 % Example:

17 % Models= MPSoC_Id_Hinf(Deployment, Power, Tenv, Tempera tureerature, Tsampling,

ModelOrder, ’path’)

18 %

19

258

C.2 The thermal model identification

20 %% 0

21

%%

22 %%%%%%%%%%%%%%%%%%%%%%% CHECK PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

23

%%

24

25 % Save management

26 if isempty (varargin)

27 save_model=0;

28 else

29 if isnumeric(varargin{1})

30 error (’Libreria:MPSoC_Id_Hinf:ADDRESS’ , ’The address must be a string’)

31 else

32 save_model=1;

33 cd_old= cd ;

34 cd (varargin{1})

35 mkdir(’model_data’);

36 address=strcat(varargin{1}, ’\model_data\’);

37 cd (cd_old);

38 end

39 end

40

41

42 % Number of cores

43 n_core=0;

44 for i=1: size (Deployment,1)

45 for j=1: size (Deployment,2)

46 if Deployment(i,j)>n_core

47 n_core=Deployment(i,j);

48 end

49 end

50 end

51

52

53

54 %% 0

55

%%

56 %%%%%%%%%%%%%%%%%%%%%%% IDENTIFICATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%

57

%%

58

59 fin= size (Temperature,1);

60 Deployment_ext=[zeros (size (Deployment,1)+2,1) [zeros (1, size (Deployment,2));

Deployment; zeros (1, size (Deployment,2))] zeros (size (Deployment,1)+2,1)];

61

62 % Iterative procedure repeated for each core

63 for j=1:n_core

64

259

C. ACCURATE MODEL

65 disp (’Identification of the model’); disp (j);

66

67 % Optimization variables definition

68 a=sdpvar(ModelOrder,1) ;

69 bpow=sdpvar(ModelOrder,1);

70 bTenv=sdpvar(ModelOrder,1);

71 b=sdpvar(ModelOrder,n_core);

72 x=sdpvar(1,1);

73

74 % Understanding neighbors

75 B=zeros (2,n_core+2);

76 B(:,1:2)=ones(2,2); %[bpow bTenv];

77 for rows=2: size (Deployment_ext,1)-1

78 for colums=2: size (Deployment_ext,2)-1

79 if Deployment_ext(rows-1,colums)˜=0 && Deployment_ext(ro ws-1,colums)==j

80 B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

81 end

82 if Deployment_ext(rows+1,colums)˜=0 && Deployment_ext(ro ws+1,colums)==j

83 B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

84 end

85 if Deployment_ext(rows,colums-1)˜=0 && Deployment_ext(ro ws,colums-1)==j

86 B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

87 end

88 if Deployment_ext(rows,colums+1)˜=0 && Deployment_ext(ro ws,colums+1)==j

89 B(:,Deployment_ext(rows,colums)+2)=ones(ModelOrder, 1);

90 end

91 end

92 end

93

94 % Constraints definition

95 Constraints = [Temperature(3:fin,j)-

a(1) * Temperature(2:fin-1,j)-a(2) * Temperature(1:fin-2,j)- ((B(1,:). * [bpow(1,1)

bTenv(1,1) b(1,:)]) * [Power(2:fin-1,j) Tenvi(2:fin-1,1)

Temperature(2:fin-1,1:n_core)]’)’- ((B(2,:). * [bpow(2,1) bTenv(2,1) b(2,:)]) *
[Power(1:fin-2,j) Tenvi(1:fin-2,1) Temperature(1:fin- 2,1:n_core)]’)’>=-x,

96 Temperature(3:fin,j)- a(1) * Temperature(2:fin-1,j)-

a(2) * Temperature(1:fin-2,j)- ((B(1,:). * [bpow(1,1) bTenv(1,1)

b(1,:)]) * [Power(2:fin-1,j) Tenvi(2:fin-1,1) Temperature(2:fin- 1,1:n_core)]’)’-

((B(2,:). * [bpow(2,1) bTenv(2,1) b(2,:)]) * [Power(1:fin-2,j) Tenvi(1:fin-2,1)

Temperature(1:fin-2,1:n_core)]’)’<=0];

97

98 % Cost function definition

99 Objective = x;

100

101 % Solving optimization problem

102 options = sdpsettings(’verbose’ ,1, ’solver’ , ’’);

103 sol = solvesdp(Constraints,Objective,options);

104

105 % The j-th single-core model

106 eval ([’Models.m’ num2str (j) ’.a=[double(a(1)) 1;double(a(2)) 0];’]);

107 eval ([’Models.m’ num2str (j) ’.b=[(B(1,:). * [double(bpow(1,1)) double(bTenv(1,1))

double(b(1,:))]);(B(2,:). * [double(bpow(2,1)) double(bTenv(2,1))

260

C.2 The thermal model identification

double(b(2,:))])];’]);

108 eval ([’Models.m’ num2str (j) ’.b(isnan(Models.m’ num2str (j) ’.b))=0;’]);

109 eval ([’Models.m’ num2str (j) ’.c=[1 0];’]);

110 eval ([’Models.m’ num2str (j) ’.d=zeros(1,10);’]);

111 eval ([’Models.m’ num2str (j) ’.Ts=Tsampling;’]);

112 eval ([’Models.m’ num2str (j) ’.x0=[Tenvi(1,1); (Models.m’ num2str (j)

’.a(2,1) * Tenvi(1,1)+Models.m’ num2str (j)

’.b(2,2:n_core+2) * (Tenvi(1,1) * ones(n_core+1,1)))/(1-Models.m’ num2str (j)

’.a(2,2))];’]);

113

114 % The j-th single-core model is saved to the address indicate d

115 if (save_model==1)

116 cd (address)

117 eval ([’Mod’ num2str (j) ’=Models.m’ num2str (j) ’;’]);

118 eval ([’save(strcat(address,’’Mod’ num2str (j) ’’’),’’Mod’ num2str (j) ’’’);’]);

119 cd (cd_old);

120 end

121

122 disp (’Done’)

123 end

This function takes as inputs the deployment of the cores (Deployment), the data achieved

by simulating the accurate thermal model (the power consumptions,Power, the temperature

of all cores,Temperature, and the ambient temperatureTenvi), the sampling time used for

collecting the data (Tsampling), the desired model order for the final models (ModelOrder),

and an optional input containing the address where to save the models (calledaddressin the

rest of the code). The output of the function consists of a record whose fields are described

below.

models.





m1.





a
b
c
d
Ts
x0

...
mN

wherem1, . . . ,mN are the models,a, b, c, d are the model matrices,Ts is the sampling

time, andx0 is the initial state of the model.

The first part of the code checks the input parameters to verify the consistency of the address

path entered by the user.

In the second part of the code, for each corei, the following instructions are executed through

261

C. ACCURATE MODEL

the use of a loop:

1. the identification variables are instanced;

2. a double loop is used to detect the neighbors cores of thei-th core and for building the

matrix B that has 1 coefficient in correspondence of the neighbor coresinput, and 0

otherwise;

3. the constraints of the optimization problem are defined (Constraints);

4. the cost function of the optimization problem is defined (Object);

5. the problem is solved with opportunely defined options (options);

6. the matrices of thei-th model are build according to the results of the optimization prob-

lem;

7. the model is saved and assigned to the output record.

It is worth to note that for defining the problem we used the Yalmip toolbox (3).

C.2.3 POD approach

The code below is used in the main program to call thePOD redu.mfunction for realizing the

model reduction of the accurate thermal system using the POD approach.

1 %% 3

2 %VV

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%% POD APPROACH %%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10

11 % Model Reduction

12 POD=POD_redu(x_plant,TModel,0.99,3);

13

14 % Model discretization

15 POD_discrete_Model=c2d(POD.Model,Time.Step, ’zoh’);

The code simply calls the functionPOD redu.mthat takes as inputs all the data concerning

the states of the accurate thermal model and other parameters, and returnsas output a record

structure with two fields:

262

C.2 The thermal model identification

Model: contains the reduced model;

Order: contains the final model order.

Then, the model is dicretized.

C.2.3.1 POD redu.m

1 function POD=POD_redu(Data,Model,Eig_importance,Order_bias)

2 % POD_redu computes the reducted model using the POD approac h to find

3 % the opttimal basis and the Galerkin projection to project t he system

4 % in the new space.

5 %

6 % Inputs:

7 % - Data: the data of the experiment (all the states);

8 % - Model: the original system model (SS object);

9 % - Eig_importance: the value of

10 % sum_1ˆorder(eigs(Correlation))/sum_1ˆ(all)(eig(Cor relation));

11 % - Order_bias: value added to the order that is automaticall y found;

12 %

13 % Example: POD=POD_redu(Data,Model,0.99,3)

14 %

15

16 %% 0

17

%%

18 %%%%%%%%%%%%%%%%%%%%%%% CHECK PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

19

%%

20

21 if ˜isnumeric(Data)

22 error (’Libreria:POD_redu:ADDRESS’ , ’Data must be a numeric matrix’);

23 end

24 if ˜isobject(Model)

25 error (’Libreria:POD_redu:ADDRESS’ , ’Model must be a Matlab SS object’);

26 end

27 if ˜isnumeric(Eig_importance)

28 error (’Libreria:POD_redu:ADDRESS’ , ’The Eig_importance variable must be a

number’);

29 end

30 if ˜isnumeric(Order_bias)

31 error (’Libreria:POD_redu:ADDRESS’ , ’The Order_bias variable must be a number’);

32 end

33

34

35 %% 1

36

%%

263

C. ACCURATE MODEL

37 %%%%%%%%%%%%%%%%%%%%%%% MODEL REDUCTION

%%%%%%%%%%%%%%%%%%%%%%%%%%%

38

%%

39

40 % snapshot matrix creation using the measurements x_plant

41 T_snap= Data’;

42

43 % mean subtraction

44 mean_value = mean(T_snap,2);

45 T_snap = T_snap - repmat(mean_value,1, size (T_snap,2));

46

47 % Find correlation matrix Corr

48 Corr=1/ size (T_snap,2) * T_snap * T_snap’;

49

50 % Solve eigenvalue problem

51 [eigenvectors,eigenvalues]= eig (Corr);

52 eigenvalues= diag (eigenvalues);

53

54 % Find the basis order M

55 M=0;

56 numerator=0;

57 denominator= sum(eigenvalues);

58 P_M=0;

59 while (P_M<Eig_importance)

60 M=M+1;

61 numerator=numerator+eigenvalues(M);

62 P_M=numerator/denominator;

63 end

64 POD_coeff=eigenvectors’ * T_snap;

65

66 % Eigenvalue spectrum

67 plot (1: size (eigenvalues,1),eigenvalues, ’ * b’);

68

69 % Reduced basis \Phi_M

70 n_modes=M+Order_bias;

71 POD.Order=n_modes;

72 basis=eigenvectors(:,1:n_modes);

73

74 % Reduced model (Galerkin)

75 Ar=basis’ * Model.a * basis;

76 Br=basis’ * Model.b;

77 Cr=Model.c * basis;

78 Dr=Model.d;

79 POD.Model=ss(Ar,Br,Cr,Dr,Model.Ts);

This function takes as inputs the data achieved by simulating the accurate thermal model

Data (i.e. a matrix with the value of all the model states on columns for each sampling interval

on rows), the accurate modelModel, that must be a SS Matlab object, and two other parameters

264

C.3 The distributed MPC control solution

for specifying the accuracy of the resulting model: theEig importance, that is a number in the

interval [0,1] and allows the function to automatically determine the model order, and the

Order bias, that allows the user to modify the order automatically obtained. The result is a

structure containing the reduced model and its final order.

In the first part of the code the input parameters are checked.

In the second part, the algorithm shown in Section4.1.3is implemented. First, the correlation

matrix of the data is found, then the basis order is automatically achieved (the variable M)

according to theEig importanceinput parameter. Then the order is modified according to the

Order bias input parameter, and finally the reduced order model is obtained by exploiting the

Galerkin projection mechanism on the original modelModel.

C.3 The distributed MPC control solution

In this Section we reported the code of the distributed MPC thermal controller implemented

using different toolboxes.

C.3.1 Hybrid Toolbox

The Hybrid Toolbox (2) is a MATLAB/Simulink toolbox that allows the user to design a con-

strained optimal controller for hybrid dynamical systems with either implicit or explicit form.

It also provides a Simulink library, multiparametric solvers for QP and LP problems, visualiza-

tion functions for polyhedral objects and a C-code generator for embedded applications.

We used this toolbox because it is more flexible of the MPC toolbox in the problemdefini-

tion and it allows us to manage explicit formulations of the controller. In the explicit solution

the state-space is divided in polyhedral partitions each one associated witha linear control law.

The number of these partitions is a good metric for measuring the complexity of thecontroller.

C.3.1.1 Textual version

In the piece of code reported below, we present a possible way for implementing the distributed

MPC thermal solution by using the hybrid toolbox. The code simulates the thermal behavior

of a chip controlled by using the aforementioned distributed MPC solution. It has been entirely

realized using textual instructions.

1 %% 4

2 %VV

265

C. ACCURATE MODEL

3 %|| ||||||||||||||||||||||||

4 %%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%%%%%% MPC CONTROLLER %%%%%%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%

7 %|| ||||||||||||||||||||||||

8 %AA

9

10 %% 4.1 Hybrid Toolbox

11

12 %% 4.1.2 Hybrid Toolbox for textual simulation

13

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 % Initialization

17 Vdd=1.35; % Vdd assumed constant for P_static (in P_dyn V_dd=h(f))

18 Temp_plant= zeros (Time.Points,N_CORE);

19 power_cores_cntrl_ideal= zeros (Time.Points,N_CORE);

20 frequency_cores_cntrl= zeros (Time.Points,N_CORE);

21 x_plant= zeros (Time.Points-1, size (TModel.a,1));

22 x_obsv= zeros (Time.Points-1, size (models.m1.a,1));

23

24 % Controller parameters

25 rho=10ˆ5; % weight of the slack variable (epsilon) for soft constraint s

26 Vy_max=0; % 0=hard 1=soft constraints

27 T_CRIT=330; % Critical temperature

28 R_u=1; % weight of each power error P_T-P_C

29

30

31 % For each core "i":

32 %

33 % min P_C_i’ * Q_qp_i * P_C_i + f_qp_i’ * P_C_i

34 % s.t.

35 % A_qp_i * P_C_i <= b_qp_i

36 %

37 % where

38 % f_qp_i = [- P_T_i * f_1 , 0]

39 % b_qp_i = T_CRIT + b_1_i * x_obsv + b_2_i * [Tenvironment, Tneigh]

40

41 ModelsName= ’models.m’ ;

42 for i=1:N_CORE

43 j=0;

44 eval ([’Q_qp_’ num2str (i) ’= [R_u zeros(size(R_u,1),1); zeros(1,size(R_u,1))

rho]. * 2;’]);

45 eval ([’f_1_’ num2str (i) ’=2 * R_u;’]);

46 support=strcat(ModelsName, num2str (i));

47 eval ([’aa_’ num2str (i) ’=’ ModelsName num2str (i) ’.a;’]);

48 eval ([’bb_’ num2str (i) ’=’ ModelsName num2str (i) ’.b(:,1:N_CORE+2);’]);

49 eval ([’cc_’ num2str (i) ’=’ ModelsName num2str (i) ’.c;’]);

50 eval ([’dd_’ num2str (i) ’=’ ModelsName num2str (i) ’.d(:,1:N_CORE+2);’]);

51 eval ([’A_qp_’ num2str (i) ’=[cc_’ num2str (i) ’ * bb_’ num2str (i) ’(:,1)

-Vy_max];’]);

52 eval ([’b_1_’ num2str (i) ’=-cc_’ num2str (i) ’ * aa_’ num2str (i) ’;’]);

266

C.3 The distributed MPC control solution

53 eval ([’b_2_’ num2str (i) ’=-cc_’ num2str (i) ’ * bb_’ num2str (i) ’(:,2:end);’]);

54 % Initial state of each observer

55 eval ([’x_obsv_’ num2str (i) ’=’ ModelsName num2str (i) ’.x0’’;’]);

56 end

57

58 % Plant

59 TModel_discrete=c2d(TModel,Time.Step, ’zoh’);

60 x_plant(1,:)=X0’;

61 Temp_plant(1,:)=(TModel_discrete.C * X0)’;

62

63 % Target trace (Fluidanimate)

64 frequency_cores_target = OFluidanimate.Freq(1:Time.Po ints, N_CORE);

65 CPI_cores_target = OFluidanimate.CPI(1:Time.Points ,N_ CORE);

66 power_cores_target = F_CPI_2_P(frequency_cores_target , CPI_cores_target, IDLE,

Tenv(1,1), Vdd);

67

68

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%% SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

70

71 % Simulation loop

72 for i=1:Time.Points-1

73

74 % Plant temperature and state

75 x_plant(i+1,:)= (TModel_discrete.a * x_plant(i,:)’+ TModel_discrete.b *
[power_cores_cntrl_ideal(i,:) Tenv(i,1)]’)’;

76 Temp_plant(i+1,:)= TModel_discrete.c * x_plant(i+1,:)’;

77

78 % Observer estimation

79 Temp_neighs(1,:)= zeros (1,N_CORE);

80 for j=1:N_CORE

81 eval ([’x_obsv_’ num2str (j) ’(i+1,:)=aa_’ num2str (j) ’ * x_obsv_’ num2str (j)

’(i,:)’’+ bb_’ num2str (j) ’ * [power_cores_cntrl_ideal(i,j) Tenv(i,1)

Temp_plant(i,:)]’’+ ’ ModelsName num2str (j) ’.k_obsv * (Temp_plant(i,j)’’- cc_’

num2str (j) ’ * x_obsv_’ num2str (j) ’(i,:)’’);’]);

82 eval ([’Temp_neighs(1,j) = x_obsv_’ num2str (j) ’(i+1,1); ’]);

83 end

84

85 % Solution of the QP and updating of QP matrices

86 for j=1:N_CORE

87 eval ([’f_qp_’ num2str (j) ’=[(-power_cores_target(i+1,j) * f_1_’ num2str (j)

’)’’;0];’]);

88 eval ([’b_qp_’ num2str (j) ’=T_CRIT+b_1_’ num2str (j) ’ * x_obsv_’ num2str (j)

’(i+1,:)’’+b_2_’ num2str (j) ’ * [Tenv(i+1,1) Temp_neighs(1,:)]’’;’]);

89 eval ([’s=qpsol(Q_qp_’ num2str (j) ’,f_qp_’ num2str (j) ’,A_qp_’ num2str (j) ’,

b_qp_’ num2str (j) ’, [], [], [’ ModelsName num2str (i) ’.x0(j) ’ ModelsName

num2str (i) ’.x0(j+N_CORE)], 4, inv(Q_qp_’ num2str (j) ’));’]);

90 power_cores_cntrl_ideal(i+1,j) = s(1)’;

91 end

92

93 % Power to frequency conversion (ideal)

94 frequency_cores_cntrl(i+1,:)= P_CPI_2_F(power_cores_ cntrl_ideal(i+1,:),

CPI_cores_target(i+1,:), IDLE, Tenv(1,1),Vdd);

267

C. ACCURATE MODEL

95

96 % Frequency to power conversion

97 power_cores_cntrl_ideal(i+1,:)= F_CPI_2_P(frequency_ cores_cntrl(i+1,:),

CPI_cores_target(i+1,:), IDLE, Tenv(1,1),Vdd);

98

99 end

100

101

102 %%%%%%%%%%%%%%%%%%%%%%%%%%% VISUALIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

103

104 y_NoContr=dlsim(TModel_discrete.a, TModel_discrete.b , TModel_discrete.c,

TModel_discrete.d, [power_cores_target(1:Time.Points ,:) Tenv(1:Time.Points,:)],

X0);

105

106 core_num=1;

107 ax(1) = subplot (611); plot (1:1:Time.Points-1, [Temp_plant(1:Time.Points-1,core _num),

y_NoContr(1:Time.Points-1,core_num)], ’LineWidth’ ,2); title (’Temperature’);

legend (’MPC’ , ’no MPC’ , ’Location’ , ’Best’);

108 ax(2) = subplot (612); plot (1:1:Time.Points-1,

frequency_cores_cntrl(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Provided

Frequency’)

109 ax(3) = subplot (613); plot (1:1:Time.Points-1,

power_cores_cntrl_ideal(1:Time.Points-1,core_num), ’LineWidth’ ,2);

title (’Provided power’); %

110 ax(4) = subplot (614); plot (1:1:Time.Points-1,

frequency_cores_target(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Target

Frequency’)

111 ax(5) = subplot (615); plot (1:1:Time.Points-1,

power_cores_target(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Target

power’);

112 ax(6) = subplot (616); plot (1:1:Time.Points-1,

CPI_cores_target(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Target CPI’);

113 linkaxes(ax, ’x’);

In the first part we initialized the variables used to storage the temperature and the states

of the plant (Tempplant andx plant respectively), the controlled frequency and power con-

sumption (frequencycorescntrl andpowercorescntrl ideal respectively), and the observer

state (x obsv). Notice that the variable name of the controlled power consumption, that is the

power provided to cores after being regulated, ends with the word “ideal”. This because we

assume that the controller perfectly know the future workload (CPI) applied to the cores in at

the next sampling interval, even though it is usually unpredictable. In other solutions we will

show how to avoid this assumption by assigning as future CPI value the one measured at the

previous sampling interval hypothesizing a low variability of the workload between two sam-

pling instants.

In lines 24-56 we have defined the controller parameters, those which could be define off-line.

268

C.3 The distributed MPC control solution

Assume the optimization problem for each local MPC controller is given by,

min
wi

1
2
·wT

i (t) ·Qqp,i ·wi(t)+ f T
qp,i ·wi(t) (C.1a)

s.t.

Aqp,i ·wi(t)≤ bqp,i (C.1b)

wherewi = [PC,i ε] is the manipulated variable.PC,i represents the power consumption of the

corei, namelypowercorescntrl ideal in the code.ε instead is a slack variable used to manage

the rigidity of the constraints: the greater isε the softer is the constraint.

T CRIT is the critical temperature threshold of the MPC local controller, the weights matrix

Qqp,i in (C.1a) containsR u, the weight for the power consumption, andrho, the weight for the

slack variable. The rest of the parameters of each local controller are defined inside the loop at

lines 41−56. Q qp i, A qp i areQqp,i andAqp,i respectively,aa i, bb i, cc i, anddd i are the

matrices names of the reduced order single-core thermal model of thei-th core (used in place

of the structure variables containing the model created during the identification process for the

sake of simplifying notation), andx obsvi is the state of the observe which is initialized. The

arrays fqp,i andbqp,i cannot be defined at this stage because are time-varying. We may only

defined some parameters (f 1, b 1, andb 2) that will be used to speed-up the computation of

fqp,i andbqp,i .

The accurate model of the system (i.e. the plant) is discretized with the same sampling time

of the controller. It is worth to note that this is a strong simplification because wedo not

consider the thermal variations between the sampling interval. However, we realized Simulink

simulations where the plant is continuous-time. We also realized textual simulationswhere the

sampling time of the controller is far slower than the one used for updating the system, but we

intentionally decide to not complicate this example with extra code lines.

Finally the frequency and the CPI of the trace to be simulated is defined. The target power of

the core can be obtained by exploiting the Power Model defined in AppendixB. Notice that the

Power Model accounts theVdd (set as constant at the beginning of the code) by including in the

dynamic power equation theVdd = h(f requency) function.Vdd is simply used to compute the

static power.

The second part of the code realized the simulation. It consists of a loop, where each

iteration represents a sampling interval. The operations executed during theloop are:

269

C. ACCURATE MODEL

1. updating of plant states and outputs;

2. estimation of the unknown state of each single-core thermal model by usingthe local

observers;

3. updating of the matricesf qp i andb qp i;

4. solution of the QP prolem for each local controller;

5. power-to-frequency conversion;

6. frequency-to-power conversion (not executed by the real control algorithm);

The instructions in the third part realized a visual comparison between the controlled and

uncontrolled solutions.

C.3.1.2 Simulink version

The same simulations can be obtained using a Simulink block diagram. The scheme isshown

in Fig. C.3where a 48-core processor is controlled by using 48 local controllers.

Inputs
(FT, CPI)

time

Clock
To Workspace

Core Controllers Plant

FC,1
FC,2
FC,3
FC,4
FC,5
FC,6
FC,7
FC,8
FC,9
FC,10
FC,11
FC,12
FC,13
FC,14
FC,15
FC,16
FC,17
FC,18
FC,19
FC,20
FC,21
FC,22
FC,23
FC,24
FC,25
FC,26
FC,27
FC,28
FC,29
FC,30
FC,31
FC,32
FC,33
FC,34
FC,35
FC,36
FC,37
FC,38
FC,39
FC,40
FC,41
FC,42
FC,43
FC,44
FC,45
FC,46
FC,47
FC,48

Core

1

Core

2

Core

3

Core

4

Core

5

Core

6

Core

7

Core

8

Core

9

Core

10

Core

11

Core

12

Core

13

Core

14

Core

15

Core

16

Core

17

Core

18

Core

19

Core

20

Core

21

Core

22

Core

23

Core

24

Core

25

Core

26

Core

27

Core

28

Core

29

Core

30

Core

31

Core

32

Core

33

Core

34

Core

35

Core

36

Core

37

Core

38

Core

39

Core

40

Core

41

Core

42

Core

43

Core

44

Core

45

Core

46

Core

47

Core

48

Temp

State

To Workspace

Temp

To Workspace

Figure C.3: Simulink control scheme using the Hybrid Toolbox

In the figure we can notice three main blocks. The first on the left providesthe input

benchmarks (frequency and CPI) for all cores, the central one contains the controllers, while the

270

./8_Appendices/img/0030_D_HybSimSol.eps

C.3 The distributed MPC control solution

right one contains the continuous time accurate model. Focusing on the block of the controllers,

Fig. C.4and Fig.C.5show the details of the implementation.

FT,1

CPI1

Temp
FT

CPI
FC

CntrCore1

FT,7

CPI7

Temp
FT

CPI
FC

CntrCore7

FT,2

CPI2

Temp
FT

CPI
FC

CntrCore2

FT,8

CPI8

Temp
FT

CPI
FC

CntrCore8

FT,3

CPI3

Temp
FT

CPI
FC

CntrCore3

FT,9

CPI9

Temp
FT

CPI
FC

CntrCore9

FT,4

CPI4

Temp
FT

CPI
FC

CntrCore4

FT,10

CPI10

Temp
FT

CPI
FC

CntrCore10

FT,5

CPI5

Temp
FT

CPI
FC

CntrCore5

FT,11

CPI11

Temp
FT

CPI
FC

CntrCore11

FT,6

CPI6

Temp
FT

CPI
FC

CntrCore6

FT,12

CPI12

Temp
FT

CPI
FC

CntrCore12

FT,1

CPI1

Temp
FT

CPI
FC

CntrCore1

FT,19

CPI19

Temp
FT

CPI
FC

CntrCore19

FT,14

CPI14

Temp
FT

CPI
FC

CntrCore14

FT,20

CPI20

Temp
FT

CPI
FC

CntrCore20

FT,15

CPI15

Temp
FT

CPI
FC

CntrCore15

FT,21

CPI21

Temp
FT

CPI
FC

CntrCore21

FT,16

CPI16

Temp
FT

CPI
FC

CntrCore16

FT,22

CPI22

Temp
FT

CPI
FC

CntrCore22

FT,17

CPI17

Temp
FT

CPI
FC

CntrCore17

FT,23

CPI23

Temp
FT

CPI
FC

CntrCore23

FT,18

CPI18

Temp
FT

CPI
FC

CntrCore18

FT,24

CPI24

Temp
FT

CPI
FC

CntrCore24

FT,25

CPI25

Temp
FT

CPI
FC

CntrCore25

FT,31

CPI31

Temp
FT

CPI
FC

CntrCore31

FT,26

CPI26

Temp
FT

CPI
FC

CntrCore26

FT,32

CPI32

Temp
FT

CPI
FC

CntrCore32

FT,27

CPI27

Temp
FT

CPI
FC

CntrCore27

FT,33

CPI33

Temp
FT

CPI
FC

CntrCore33

FT,28

CPI28

Temp
FT

CPI
FC

CntrCore28

FT,34

CPI34

Temp
FT

CPI
FC

CntrCore34

FT,29

CPI29

Temp
FT

CPI
FC

CntrCore29

FT,35

CPI35

Temp
FT

CPI
FC

CntrCore35

FT,30

CPI30

Temp
FT

CPI
FC

CntrCore30

FT,36

CPI36

Temp
FT

CPI
FC

CntrCore36

FT,37

CPI37

Temp
FT

CPI
FC

CntrCore37

FT,43

CPI43

Temp
FT

CPI
FC

CntrCore43

FT,38

CPI38

Temp
FT

CPI
FC

CntrCore38

FT,44

CPI44

Temp
FT

CPI
FC

CntrCore44

FT,39

CPI39

Temp
FT

CPI
FC

CntrCore39

FT,45

CPI45

Temp
FT

CPI
FC

CntrCore45

FT,40

CPI40

Temp
FT

CPI
FC

CntrCore40

FT,46

CPI46

Temp
FT

CPI
FC

CntrCore46

FT,41

CPI41

Temp
FT

CPI
FC

CntrCore41

FT,47

CPI47

Temp
FT

CPI
FC

CntrCore47

FT,42

CPI42

Temp
FT

CPI
FC

CntrCore42

FT,48

CPI48

Temp
FT

CPI
FC

CntrCore48

Temp

FC,18
FC,17

FC,16
FC,15

FC,14
FC,13

FC,12
FC,11

FC,10
FC,9

FC,8
FC,7

FC,30
FC,29

FC,28
FC,27

FC,26
FC,25

FC,24
FC,23

FC,22
FC,21

FC,20
FC,10

FC,42
FC,41

FC,40
FC,39

FC,38
FC,37

FC,36
FC,35

FC,34
FC,33

FC,32
FC,31

FC,48
FC,47

FC,46
FC,45

FC,44
FC,43

FC,1
FC,2

FC,3
FC,4

FC,5
FC,6

Figure C.4: The 48 core controllers

In Fig. C.4 the single local controllers are shown. As expected thei-th controller takes as

inputs the frequency and the CPI of the corei and the temperature of all cores. Notice that

to simplify the implementation we gave as inputs all cores temperatures, however,as already

mentioned, the coefficients of the input matrixB of the single-core model used for predictions

are equal to zero in correspondence of unusable temperatures (i.e. only the temperatures of the

i-th core and other ones of the neighbors are admitted).

State
Inputs Pcontrolled

Temp

Controller

State

Inputs
Fcontrolled

u

Tempi
Est_State

Ftarget

CPI
Ptarget

Temp

u

CPI
Pcontrolled

K

CPI

FT,i

F, CPI --> P

Observer

F, CPI --> P

P, CPI --> F

Saturation

Quantizer

freqTenv

Linear

MPC

Pcontrolled

State

Inputs

Temp
K2

Ptargetshift

DeltaP

Figure C.5: The single local controller

271

./8_Appendices/img/0040_D_HybSimControllers.eps
./8_Appendices/img/0050_D_HybSimSingleController.eps

C. ACCURATE MODEL

Fig. C.5 instead shows the single local controller. The target frequency and CPIare trans-

lated in a power consumption requirement. The obtained power and the ambienttemperature

enter as inputs in the controller block that returns as output the controlled power consumption

which maintains the temperature under the critical value. The controller poweris subsequently

converted into the controlled frequency that, after being quantized (we introduce quantization

as a disturbance element), is used to feed the plant. Notice that we also impose asaturation

to limit the power between the maximum and minimum values that are the power dissipated

by the core when it executes respectively at maximum and at minimum speed. The frequency

really assigned to the plant (the quantized one) is then used, coupled with thetemperature in-

formation, as input of the observer block which estimates the unknown second state (indeed

we assume, as we did during all this thesis, two states per single-core model).In Fig. C.5 it is

also possible to see how the controller is implemented. TheMPC block belongs to the Hybrid

Simulink library. The block can manage two types of problems: the regulation problem and

the tracking problem. The equation of the two problems are shown below.

minx′(t +N|t)Px(t +N|t)+
N−1

∑
k=0

x′(t +k|t)Qx(t +k|t)+u′(t +k)Ru(t +k)+ρε2 (C.2a)

s.t.

ymin− ε ≤ y(t +k|t)≤ ymax+ ε , k= 1, . . . ,Ny (C.2b)

umin ≤ u(t +k)≤ umax, k= 0, . . . ,Ncu (C.2c)

u(t +k) = Kx(t +k|t) , k≥ Nc (C.2d)

x(t +k+1|t) = Ax(t +k|t)+Bu(t +k) (C.2e)

y(t +k|t) =Cx(t +k|t)+Du(t +k) (C.2f)

272

C.3 The distributed MPC control solution

min
hp−1

∑
k=0

(y′(t +k|t)− r(t))S(y(t +k|t)− r(t))+∆u′(t +k)T∆u(t +k)+ρε2 (C.3a)

s.t.

ymin− ε ≤ y(t +k|t)≤ ymax+ ε , k= 1, . . . ,Ny (C.3b)

umin ≤ u(t +k)≤ umax, k= 0, . . . ,Ncu (C.3c)

∆umin ≤ ∆u(t +k)≤ ∆umax, k= 0, . . . ,Ncu (C.3d)

u(t +k) = Kx(t +k|t) , k≥ Nc (C.3e)

x(t +k+1|t) = Ax(t +k|t)+Bu(t +k) (C.3f)

y(t +k|t) =Cx(t +k|t)+Du(t +k) (C.3g)

As it is possible to see the problem are slightly different respect the one wesolved because it is

not possible to track the inputs (the power dissipation in our case). Our ideahas been to use the

regulation problem where the input is the power consumption errorDeltaP(i.e. the difference

between the target power consumptionPtarget and the controlled power consumptionPcontrolled).

However, this solution is not correct because not all the model inputs haveto be computed by

the optimization problem. The input signals that enter in the model can be classified in two

families, the manipulated inputs, which are the inputs that are calculated by the controller, and

the measured disturbances, namely the inputs that cannot be modified by the controller (e.g.

the ambient temperature and the temperature of the neighbors). Making some tests we noticed

that setting the weight of the measured disturbances to zero does not prevent their modification.

Our idea has been to exploit the superposition principle of the linear model, updating the state

with the measured disturbances contributions and giving this state (we called itshifted state)

as input to the regulation optimization problem. The controller returnsDeltaP that has to be

subtracted to thePtarget to obtainPcontrolled. The controller parameters inside theMPC block

can be obtained calling the functiondistrMPC Hybrid.mwith the code below.

1 %% 4.1.2 Hybrid Toolbox for Simulink simulation

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 T_CRIT=360 * ones(1,N_CORE); % Critical temperature threshold

6 H_p=2; % prediction horizon

7 H_c=1; % control horizon

8

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%% CENTRALIZED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

273

C. ACCURATE MODEL

10

11 Ctrl_Centr=centrMPC_Hybrid(model,T_CRIT,H_p,H_c,Tim e.Step);

12

13

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% DISTRIBUTED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 Ctrl_Distributed=distrMPC_Hybrid(models,T_CRIT,H_p, H_c,Time.Step);

distrMPC Hybrid.m

1 function Controller=distrMPC_Hybrid(models,T_CRIT,N,Nc)

2 % distrMPC_Hybrid returns:

3 % - Controller.c#.ctrl.impl = Implicit controller

4 % - Controller.c#.ctrl.expl = Explicit controller

5 % - Controller.c#.shift = the gain matrix for shifting the st ate (in

6 % Simulink scheme)

7 % - Controller.c#.Kobsvdiscr = the gain matrix of the observ er

8 % - Controller.c#.model = the model of the single core system

9 %

10 % The input parameters are:

11 % - models : a structure with the a, b, c, d matrix of each single -core model

12 % - T_CRIT : an array with the temperature limits of all the cor es

13 % - N : the prediction horizon

14 % - Nc : the control horizon

15

16

17 %% 0

18

%%

19 %%%%%%%%%%%%%%%%%%%%% CONTROL PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

20

%%

21

22 n_core= size (Modello.c,1);

23

24 % Control parameter definition for each core

25 for k=1:n_core

26

27

%%

28 %%%%%%%%%%%%%%%%%%%%%%%%%% IMPLICIT CONTROLLER

%%%%%%%%%%%%%%%%%%%%%%%%%%%

29

30 % System model definition

31 eval ([’sys=ss(models.m’ num2str (k) ’.a, models.m’ num2str (k) ’.b(:,1), models.m’

num2str (k) ’.c, models.m’ num2str (k) ’.d(:,1), models.m’ num2str (k) ’.Ts);’])

32 INname=’Delta P’ ;

274

C.3 The distributed MPC control solution

33 OUTname=’T’ ;

34 STATEname=’x’ ;

35 sys.InputName(1,1)={strcat(INname, num2str (k))};

36 sys.OutputName(1,1)={strcat(OUTname, num2str (k))};

37 sys.StateName(1,1)={strcat(OUTname, num2str (k))};

38 ModelOrder= size (sys.a,1);

39 for i=2:ModelOrder

40 sys.StateName(1+(i-1),1)={strcat(STATEname, num2str (k), ’_’ , num2str (i))};

41 end

42 % Limits

43 clear limits

44 limits.umin=- Inf ; % Lower bounds on Input

45 limits.umax= Inf ; % Upper bounds on Input

46 limits.ymin=0; % Lower bounds on Output

47 limits.ymax=T_CRIT(k); % Upper bounds on OUTput

48

49 % Costs

50 clear cost

51 cost.Q= diag (zeros (1,ModelOrder)); % State weight

52 cost.R=0.0001; % Input weight

53 cost.P= diag (zeros (1,ModelOrder)); % Final State weight

54 cost.rho= Inf ; % Hard constraints

55

56 % Intervals

57 clear interval

58 interval.Nu=Nc; % input horizon u(0),...,u(Nu-1)

59 interval.N=N; % output horizon \sum_{k=0}ˆ{Ny-1}

60 interval.Ncy=1; % output constraints horizon k=0,...,Ncy

61 interval.Ncu=1; % input constraints horizon k=0,...,Ncu

62

63 % Controller

64 eval (strcat(’Controller.c’ , num2str (k), ’.ctrl.impl = lincon(sys,’’reg’’, cost,

interval, limits);’));

65

66

67

%%

68 %%%%%%%%%%%%%%%%%%%%%%%%%% EXPLICIT CONTROLLER

%%%%%%%%%%%%%%%%%%%%%%%%%%%

69

70 % Range & Options

71 clear range options

72 range.xmin=[0 0];

73 range.xmax= [400 400];

74 range.umin=-50;

75 range.umax=5;

76

77 % Options

78 options.reltol=1e-7;

79 options.join=1;

80 options.verbose=1;

81 options.uniteeps=1e-3;

275

C. ACCURATE MODEL

82 options.qpsolver= ’qpact’ ; % Use active-set QP

83

84 % Explicit Controller

85 eval (strcat(’Controller.c’ , num2str (k), ’.ctrl.expl =

expcon(Controller.c’ , num2str (k), ’.ctrl.impl, range, options);’));

86

87

88

%%

89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SHIFT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

90

91 % matrix for computing the contribution of measured disturb ances

92 eval (strcat(’Controller.c’ , num2str (k), ’.shift = (models.m’ , num2str (k), ’.aˆ-1) *
models.m’ , num2str (k), ’.b;’));

93

94

95

%%

96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% OBSERVER

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

97

98 % Observer

99 eigenvalues = eig (model.a) * 0.4;

100 eval (strcat(’Controller.c’ , num2str (k), ’.Kobsvdiscr =

(place(models.m’ , num2str (k), ’.a’’, models.m’ , num2str (k), ’.c’’,

eigenvalues))’’;’));

101 eval (strcat(’Controller.c’ , num2str (k), ’.model = models.m’ , num2str (k), ’;’));

102 end

The function takes as inputs a structure containing the identified single-coremodels (mod-

els), the prediction (N) and the control horizon (Nc), respectively set to 2 and 1, and the critical

temperature thresholdT CRIT. The function returns as output the structure:

controllers.





c1.





ctrl

{
impl
expl

Kobsvdiscr
model
shi f t

...
cN

whereci contains the parameters useful for thei-th core simulation,ctrl contains the controller

parameters (impl the parameters of the implicit controller, andexpl those of the explicit con-

troller), Kobsvdiscris the gain matrix of the Luenberger observer,modelcontains the matrices

a, b, c, d of the model, andshift is the gain matrix that multiplied by the measured disturbances

276

C.3 The distributed MPC control solution

and added to the current state returns the shifted state.

Analyzing the code, the instructions to be executed to each core are contained inside a loop.

First a SS Matlab object containing the model is obtained. Subsequently the parameters of the

controller are set and the functionlincon, belonging to the Hybrid Toolbox library, is called to

generate the implicit controller data structure. The same steps are executed toobtain the ex-

plicit controller data structure, but this time the function called isexpcon. Finally the observer

gain matrix and the shift matrix are computed.

C.3.2 Yalmip Toolbox

The distributed MPC thermal solution has been implemented also using the Yalmip toolbox

(3), a language for modeling and solving convex and non-convex optimizationproblems. It is

a free toolbox for MATLAB that allows the user to describe the problem at high level without

caring about how the problem will be solved.

C.3.2.1 Textual version

As for the Hybrid Toolbox, the piece of code reported below simulates the thermal behavior of

a chip controlled by the distributed MPC thermal solution. The code is entirely realized using

textual instructions.

1 %% 4.2 Yalmip Toolbox

2

3 %% 4.2.1 Yalmip Toolbox for textual simulation

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 % Trace name (structure with fields)

8 trace1 = ’Fluidanimate’ ;

9 trace2 = ’Facesim’ ;

10 trace3 = ’Bodytrack’ ;

11 trace4 = ’Dedup’ ;

12 trace5 = ’Raytracing’ ;

13 n_traces = 5; % number of traces to be simulated

14 Vdd = 1.35; % Vdd assumed constant for P_static (in P_dyn V_dd=h(f))

15 IDLE = 1;

16 P_MIN = 0.254043439071652; % power dissipated when cores run the min freq

17

18 % Controller parameters

19 R_u = eye (1); % weight of each power error P_T-P_C

20 rho = 10ˆ5; % weight of the slack variable (epsilon) for soft constraint s

21 Vy_max = zeros (1,1); % 0=hard 1=soft constraints

22 MPC_Thresh = 360 * ones(N_CORE); % MPC temperature threshold

277

C. ACCURATE MODEL

23 Q_qp = [R_u zeros (size (R_u,1),1); zeros (1, size (R_u,1)) rho]; % weight matrix

24

25

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%% SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27

28 % For each trace

29 for ii=1:n_traces

30

31 % Initialization

32 clear frequency_cores_target CPI_cores_target CPI_cores_tar get_delayed

power_cores_target_delayed power_cores_cntrl power_to t_cntrl

frequency_cores_cntrl

33 time_trace = size (eval (strcat(eval ([’trace’ num2str (ii) ’’]), ’.Freq’)),1);

34 power_cores_cntrl = zeros (time_trace,N_CORE);

35 power_tot_cntrl = zeros (time_trace,N_COMP);

36 frequency_cores_cntrl = zeros (time_trace,N_CORE);

37

38 % Plant

39 TModel_discrete = c2d(TModel,Time.Step, ’zoh’);

40 x_plant = zeros (time_trace-1, size (A,1));

41 x_plant(1,:) = X0’;

42 Temp_plant = zeros (time_trace,N_CORE);

43 Temp_plant(1,:) = (TModel_discrete.C * X0)’;

44

45 % Target Benchmarks

46 frequency_cores_target = eval (strcat(eval ([’trace’ num2str (ii) ’’]),

’.Freq(1:time_trace,1:N_CORE)’));

47 CPI_cores_target = eval (strcat(eval ([’trace’ num2str (ii) ’’]),

’.CPI(1:time_trace,1:N_CORE)’));

48 % Delayed CPI: to simulate unpredictability of workload the CPI used by

49 % the MPC is equal to the CPI measured the previous sampling ti me

50 CPI_cores_target_delayed = [CPI_cores_target(1,:); CPI _cores_target(1: end -1,:)];

51 power_cores_target_delayed = F_CPI_2_P(frequency_core s_target,

CPI_cores_target_delayed, IDLE, Tenv(1,1), Vdd);

52

53 % Observer initialization

54 for j=1:N_CORE

55 eval ([’x_obsv_’ num2str (j) ’=zeros(time_trace,size(models.m’ num2str (j)

’.a,1));’]);

56 eval ([’x_obsv_’ num2str (j) ’(1,:)=models.m’ num2str (j) ’.x0’’;’]);

57 eval ([’K_obs_’ num2str (j) ’=(place(models.m’ num2str (j) ’.a’’, models.m’

num2str (j) ’.c’’, (eig(models.m’ num2str (j) ’.a). * 0.4)))’’;’]);

58 end

59

60 % Simulation loop (for each sampling time)

61 for j=1:time_trace

62

63 % Plant output

64 Temp_plant(j,:)=TModel_discrete.c * x_plant(j,:)’;

65

66 % Computation of the Local MPC solution (QP problem)

67 for jj=1:N_CORE

278

C.3 The distributed MPC control solution

68 clear pot

69 pot=sdpvar(2,1);

70

Objective=pot’ * Q_qp* pot+pot’ * [(-power_cores_target_delayed(j,jj) * 2* R_u)’;0];

71 eval ([’Constraints=[[models.m’ num2str (jj) ’.c * models.m’ num2str (jj)

’.b(:,1) -Vy_max] * pot<=MPC_Thresh-models.m’ num2str (jj) ’.c * models.m’

num2str (jj) ’.a * x_obsv_’ num2str (jj) ’(j,:)’’-models.m’ num2str (jj)

’.c * models.m’ num2str (jj) ’.b(:,2:end) * [Tenv(j,1) Temp_plant(j,:)]’’,

pot(1,1)>=P_MIN];’]);

72 Options=sdpsettings(’verbose’ ,0, ’solver’ , ’’);

73 sol = solvesdp(Constraints,Objective,Options);

74 power_cores_cntrl(j,jj)=double(pot(1,1));

75 end

76

77 % Frequency to power conversion (with delayed CPI)

78 frequency_cores_cntrl(j,:)= P_CPI_2_F(power_cores_cn trl(j,:),

CPI_cores_target_delayed(j,:), IDLE, Tenv(1,1), Vdd);

79

80 % power to frequency conversion (without delayed CPI)

81 power_cores_cntrl(j,:)= F_CPI_2_P(frequency_cores_cn trl(j,:),

CPI_cores_target(j,:), IDLE, Tenv(1,1), Vdd);

82

83 % Total power array (need to add caches power)

84 power_tot_cntrl(j,:)=[power_cores_cntrl(j,1),(power _cores_cntrl(j,1)+

power_cores_cntrl(j,3))./4. * percentuale,

(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4. * percentuale,

power_cores_cntrl(j,2:3),

(power_cores_cntrl(j,1)+power_cores_cntrl(j,3))./4. * percentuale,

(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4. * percentuale,

power_cores_cntrl(j,4), zeros (1,4), power_cores_cntrl(j,5),

(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4. * percentuale,

(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4. * percentuale,

power_cores_cntrl(j,6:7),

(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4. * percentuale,

(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4. * percentuale,

power_cores_cntrl(j,8)];

85

86

87 % Computation of the plant state

88 x_plant(j+1,:)= (TModel_discrete.a * x_plant(j,:)’+ TModel_discrete.b *
[power_tot_cntrl(j,:) Tenv(j,1)]’)’;

89

90 % Observer

91 for jj=1:N_CORE

92 eval ([’x_obsv_’ num2str (jj) ’(j+1,:)= models.m’ num2str (jj) ’.a * x_obsv_’

num2str (jj) ’(j,:)’’+ models.m’ num2str (jj) ’.b * [power_cores_cntrl(j,jj)

Tenv(j,1) Temp_plant(j,:)]’’+ K_obs_’ num2str (jj) ’ * (Temp_plant(j,jj)’’-

models.m’ num2str (jj) ’.c * x_obsv_’ num2str (jj) ’(j,:)’’);’]);

93 end

94 end

95 eval ([’save(’’data’ num2str (ii) ’’’, ’’Temp_plant’’, ’’frequency_cores_cntrl’’,

’’power_cores_cntrl’’, ’’frequency_cores_target’’, ’’ power_cores_target’’,

279

C. ACCURATE MODEL

’’CPI_cores_target’’);’])

96 end

97

98

99 %%%%%%%%%%%%%%%%%%%%%%%%%%% VISUALIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

100

101 y_NoContr=dlsim(TModel_discrete.a, TModel_discrete.b , TModel_discrete.c,

TModel_discrete.d, [power_cores_target(1:Time.Points ,:) Tenv(1:Time.Points,:)],

X0);

102

103 core_num=1;

104 ax(1) = subplot (611); plot (1:1:Time.Points-1, [Temp_plant(1:Time.Points-1,core _num),

y_NoContr(1:Time.Points-1,core_num)], ’LineWidth’ ,2); title (’Temperature’);

legend (’MPC’ , ’no MPC’ , ’Location’ , ’Best’);

105 ax(2) = subplot (612); plot (1:1:Time.Points-1,

frequency_cores_cntrl(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Provided

Frequency’)

106 ax(3) = subplot (613); plot (1:1:Time.Points-1,

power_cores_cntrl(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Provided

power’); %

107 ax(4) = subplot (614); plot (1:1:Time.Points-1,

frequency_cores_target(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Target

Frequency’)

108 ax(5) = subplot (615); plot (1:1:Time.Points-1,

power_cores_target(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Target

power’);

109 ax(6) = subplot (616); plot (1:1:Time.Points-1,

CPI_cores_target(1:Time.Points-1,core_num), ’LineWidth’ ,2); title (’Target CPI’);

110 linkaxes(ax, ’x’);

In the first part the parameters of the controllers are set. Differently from the textual version

realized with the Hybrid Toolbox, the code uses a loop to simulate a set of benchmarks instead

of a single one. Inside the benchmark loop the variables, the plant, and the observers are ini-

tialized, and the target frequencyfrequencycorestarget and the CPICPI corestarget of the

ii -th benchmark are loaded. Before starting the simulation the target frequency and the CPI are

used to compute the target powerpowercorestarget delayed. It is worth to note that, differ-

ently from the code realized with the Hybrid Toolbox, we assumed the unpredictability of the

CPI, therefore we delayed the CPI (CPI corestarget delayed) of one sampling time. Clearly

this affects the controller efficiency since the predicted CPI provides a wrong estimation of the

target power consumption.

These operations are realized off-line. The second loop realizes the simulation by updating the

plant output, and solving the optimization problem at each sampling time. The optimization

problem has been defined using the functions of the Yalmip library.sdpvardefines the name

280

C.3 The distributed MPC control solution

and the dimension of the optimization variable (i.e.pot, a 2×1 array where the first element is

the controlled power of the core and the second element represents the slack variableε). In Ob-

jectiveandConstraintsthe cost function and the constraints are respectively defined. Finally,

the problem is solved using the functionsolvesdp, according to the options defined in theop-

tionsvariable, and the solution is assigned to the power controlled variablepowercorescntrl.

This power is translated to frequency, thefrequencycorescntrl, and assigned to the plant. At

this point the plant simulator requires the computation of the power consumption from the

controlled frequency and the CPI information in order to compute the temperature of the chip.

However, it is worth to note that the CPI we used in this case is not the delayed, but the real

one. Thus the controlled power consumption that feeds the plant is suboptimal.

When the simulation is completed the data are saved and then visualized.

C.3.2.2 Simulink version

Also the Yalmip-based implementation can be used in Simulink, however there are no Simulink

libraries to use. The idea is to build a Matlab function that computes the solution of the op-

timization problem. Then using a standardMATLAB functionblock it is possible to call the

function. The function is reported below.

distrMPC Yalmip.m

1 function [power_cores_cntrl] = distrMPC_Yalmip(N_CORE, models, p ower_target_past,

MPC_Thresh, Tenv, Temp, Temp_past, pow_past)

2

3 % Controller parameters initialization

4 Vy_max=zeros (1,1);

5 rho=10ˆ5;

6 R_u=eye (1);

7 Q_qp=[R_u zeros (size (R_u,1),1); zeros (1, size (R_u,1)) rho];

8 pot=sdpvar(2,1);

9 power_cores_cntrl= zeros (8,1);

10

11 % Local MPC controller solution

12 for i=1:N_CORE

13 % x_2 estimation (no need of observer)

14 eval ([’state=[Temp(i); models.m’ num2str (i) ’.a(2,1) * Temp_past(i)+ models.m’

num2str (i) ’.b(2,:) * [pow_past(i); Tenv; Temp_past]];’]);

15

16 % Objective function definition

17 Objective=pot’ * Q_qp* pot+ pot’ * [(-power_target_past(i) * 2* R_u)’; 0];

18

281

C. ACCURATE MODEL

19 % Constraints definition

20 eval ([’Constraints=[[models.m’ num2str (i) ’.c * models.m’ num2str (i) ’.b(:,1)

-Vy_max] * pot<= MPC_Thresh- models.m’ num2str (i) ’.c * models.m’ num2str (i)

’.a * state- models.m’ num2str (i) ’.c * models.m’ num2str (i) ’.b(:,2:end) *
[Tenv;Temp],pot(1,1)>= 0.254043439071652];’]);

21

22 % QP problem solution

23 Options=sdpsettings(’verbose’ , 0, ’solver’ , ’’);

24 sol = solvesdp(Constraints, Objective, Options);

25 power_cores_cntrl(i)= double(pot(1,1));

26 end

The function take as input the number of the coreN CORE, the structure with the iden-

tified modelsmodels, the power consumption of the cores estimated with the delayed CPI

measurementspower target past, the critical temperature thresholdMPC Thresh, the ambi-

ent temperatureTenv, the current cores temperatureTemp, and the temperatureTemppastand

powerpow past at the previous sampling time. The function gives as output the controlled

power consumption.

In the first part the parameters of the optimization problem are set. Subsequently a loop solve

independently the local optimization problem. Focusing on the loop, the first instruction is to

estimate the unknown state of the model (in this case we do not use the Luenberger observer).

To complete this operation we need to storage the cores temperature and power consumption

of the prior sampling interval. Then the objective function and the Constraintsare defined and

the problem solved using the specified options.

C.3.3 qpOASES

In this Section we have reported the distribute algorithm realized in C/C++ language. The code

is briefly explained below.

1 // The program solves the problem below uteratively

2 //

3 // min (Pd-P)’ * H* (Pd-P)

4 // s.t.

5 // T<T_CRIT

6 //

7 // that can be translated into a QP problem

8 //

9 // min x * Q* x + g’ * x

10 // s.t.

11 // A * x < ubA

12 // 0 < x

13 //

282

C.3 The distributed MPC control solution

14 // with x=[P_1 P_2...P_n eps]’ where eps is the slack variabl e for constraints

rigidity

15

16 #include <QProblem.hpp>

17 #include <sys/time.h>

18 #include <iostream>

19 #include <sstream>

20 #include <string>

21 #include <cstdlib>

22 #include "Distributed_Matrices.h.h"

23 #define Ka_DEFAULT 3.8696e-008 // frequency to power parameters

24 #define Kb_DEFAULT 2.4090

25 #define Kc_DEFAULT 1.1025

26 #define Kd_DEFAULT 0.0051

27 #define Ke_DEFAULT -4.1376

28 #define Kf_DEFAULT -0.3016

29 #define Z_DEFAULT 2.59E+02

30 #define K 1.38e-23

31 #define q 1.6e-19

32 #define alpha 1.5

33 #define KIDLE_STATIC 0.33

34 #define F_MIN 1600 // Minimum frequency

35 #define F_MAX 3000 // Maximum frequency

36 #define TOLLERANZA 1.e-6

37 #define MAX_ITERATION 1

38

39 #define NITER 5000 // Iteration number

40 #define HARD_SOFT 0.0 // 0/1 = Hard/Soft

41 #define WEIGHT1 2.0 // Weights of the Hessian matrix (x 2)

42 #define WEIGHT2 200000.0 // Weights of the Hessian matrix (slack variable)

43 #define TEMP_LIM 330 // Maximum temperature allowed

44 #define NUM_IT_QP_SOLVER 10 // Maximum iteration number (solver algorithm)

45 #define N_CORE 4 // Cores number

46 // Input Files

47 #define FIN_DEF_FREQ "inputFreqFluid.txt" // Frequency input

48 #define FIN_DEF_CPI "inputCPIFluid.txt" // CPI input

49 // Output Files

50 #define FOUT_DEF_TEMP"outputCTempFreqDistrNF.txt" // Temperatures

51 #define FOUT_DEF_POW"outputCPowFreqDistrNF.txt" // Power controlled

52 #define FOUT_DEF_FREQ"outputCFreqDistrNF.txt" // Frequency controlled

53 #define FOUT_DEF_TIME "outputCTempiFreqDistrNF.txt" // Times

54

55

56 // I/O Function

57 void readVect(int dim,FILE * fin, double * vett); // Reading of a vector from a file

58 void writeVect(double * y, int dim, FILE * fout); // Writing of a vector in a file

59 void printVect(double * vett, int dim); // Writing of a vector on the monitor

60 void printMat(double * mat, int righe, int columns); // Writing of a matrix on the

monitor

61

62

63 // Conversion function (frequency/power)

283

C. ACCURATE MODEL

64 double Psta(float * p);

65 double f2p(double freq, float * p);

66 double f2p_inv(double freq, float * p);

67 double Amsterdam_Method(double (* f)(double , float *), double a, float * ap, double c,

double tolerance, int max_iterations, int * err);

68

69

70 typedef struct {

71 double H[2 * 2]; //={{WEIGHT1,0},{0,WEIGHT2}};

72 double g[2]; //={0.0, 0.0};

73 double A[1 * 2]; //={0.0,HARD_SOFT};

74 double b_1[2]; //={0.0,0.0};

75 double b_2[N_CORE+1]; //={0.0};

76 double ubA[1];

77 double lb[1]; //=0.0;

78 double x_obsv[2]; //={0,0};

79 double u_found_pow[N_CORE+2];

80 } QP_Object;

The first inclusion is related to the qpOASES library (4) that we employed to solve the

quadratic programming inside the MPC controller. qpOASES is an open-source C++ imple-

mentation of the recently on-line active set strategy proposed in (5), particularly suited for

model predictive control (MPC) applications. Among the other classical inclusions, it is pos-

sible to notice the fileDistributedMatrices.hwhich contains the accurate thermal model ma-

trices and the matrices of all the single-core models. The file is obtained using aMatlab script

and the matrices are defined as follows:

Distributed Matrices.h

1 // Plant

2 int dim1P_A=192; //how many rows for the A matrix?

3 int dim2P_A=192; //how many rows for the A matrix?

4 double P_A[192][192]={{0.520788,...}};

5 int dim1P_A=192; //how many rows for the B matrix?

6 int dim2P_A=192; //how many rows for the B matrix?

7 double P_A[192][192]={{0.520788,...}};

8 int dim1P_C=4; //how many rows for the C matrix?

9 int dim2P_C=192; //how many rows for the C matrix?

10 double P_C[4][192]={{0.000000,...}};

11 int dim1P_D=4; //how many rows for the D matrix?

12 int dim2P_D=5; //how many rows for the D matrix?

13 double P_D[4][5]={{0.000000,...}};

14 int dim1P_X0=192;

15 int dim2P_X0=1;

16 double P_X0[192][1]={{310.000000},{...}};

17 // Single-core Models

18 int dim1M_A=4; // how many A matrices?

19 int dim2M_A=2; // how many rows for each A matrix?

284

C.3 The distributed MPC control solution

20 int dim3M_A=2; // how many rocolumns for each A matrix?

21 double M_A[4][2][2]={{{0.000000, 1.000000},{-0.511909, 1.509 581}},{{0.000000,

1.000000},{-0.511610, 1.507963}},{{0.000000, 1.000000 },{-0.510852,

1.507153}},{{0.000000, 1.000000},{-0.511115, 1.508757 }}};

22 int dim1M_B=4; // how many B matrices?

23 int dim2M_B=2; // how many rows for each B matrix?

24 int dim3M_B=6; // how many rocolumns for each B matrix?

25 double M_B[4][2][6]={{{0.031718, 0.000414, 0.000000, -0.00230 7, 0.000000,

0.000000},{0.017709, 0.001040, 0.000000, 0.000322, 0.00 0000,

0.000000}},{{0.031760, 0.000448, -0.002290, 0.000000, - 0.010885,

0.000000},{0.017826, 0.001124, 0.000532, 0.000000, -0.0 04477,

0.000000}},{{0.031744, 0.000488, 0.000000, -0.008217, 0 .000000,

-0.005814},{0.017783, 0.001223, 0.000000, -0.003106, 0. 000000,

-0.001285}},{{0.031734, 0.000404, 0.000000, 0.000000, - 0.001108,

0.000000},{0.017719, 0.001014, 0.000000, 0.000000, 0.00 0981, 0.000000}}};

26 int dim1M_C=4; // how many C matrices?

27 int dim2M_C=1; // how many rows for each C matrix?

28 int dim3M_C=2; // how many rocolumns for each C matrix?

29 double M_C[4][1][2]={{{1.000000, 0.000000}},{{1.000000, 0.00 0000}},{{1.000000,

0.000000}},{{1.000000, 0.000000}}};

30 int dim1M_D=4; // how many D matrices?

31 int dim2M_D=1; // how many rows for each D matrix?

32 int dim3M_D=6; // how many rocolumns for each D matrix?

33 double M_D[4][1][6]={{{0.000000, 0.000000, 0.000000, 0.000000 , 0.000000,

0.000000}},{{0.000000, 0.000000, 0.000000, 0.000000, 0. 000000,

0.000000}},{{0.000000, 0.000000, 0.000000, 0.000000, 0. 000000,

0.000000}},{{0.000000, 0.000000, 0.000000, 0.000000, 0. 000000, 0.000000}}};

34 int dim1M_X0=4; // how many initial state vectors?

35 int dim2M_X0=1; // how many rows for each initial state vectors?

36 int dim3M_X0=2; // how many rocolumns for each initial state vectors?

37 double M_X0[4][1][2]={{{310.000000, 310.586759}},{{310.0000 00,

313.945288}},{{310.000000, 314.198166}},{{310.000000 , 310.218260}}};

38 int dim1K_Obsv=4; // how many observer gain matrix?

39 int dim2K_Obsv=2; // how many elements

40 double K_Obsv[4][2]={{0.905748, 0.937297},{0.904778, 0.93461 9},{0.904292,

0.933791},{0.905254, 0.936473}};

41 double x_plant[192]; // plant state dimension

42 double x_plant_old[192];

Subsequently, we defined the constants values: the parameters of the power model (for

frequency to power conversions), the parameters of the optimization problem, and the name of

the file where the input traces are read and the computed values are stored.

Then, the functions used inside the code are defined. Some functions simplify the reading and

writing of the files and the writing of the data on the monitor, the others are used toconvert

power to frequency and frequency to power. In particular, theAmsterdamMethod function

allows us to invert the nonlinear equation which relates frequency to power(it can be found as

open source file on the web).

285

C. ACCURATE MODEL

Finally, the type of structureQP Object is defined. It is a support structure that groups all

the parameters necessary to define the local MPC controller (QP problem parameters, observer

states, and controlled power consumption). For each core (in the code weused 4 cores) there

will be an instance of theQP Object.

1

2 int main(int argc, char ** argv)

3 {

4

5 //--- --------------

6 // Variabili

7 //--- --------------

8 using namespace qpOASES;

9

10 // Time variables

11 timeval t_start, t_stop, t_step;

12 double time[NITER];

13

14 // loop variables

15 int i,ii,j,k, numPar, numVinc, nWSR;

16

17 // QP object

18 QP_Object QP[N_CORE];

19

20 // Input arrays

21 double inPow[N_CORE+1];

22 double input[N_CORE+2];

23 double inFreq[N_CORE+1];

24 double inCPI[N_CORE];

25

26 // Output arrays

27 double Temp_plant[N_CORE];

28 double Temp_plant_old[N_CORE];

29

30 // Controlled power arrays (P_C)

31 double u_found_pow[N_CORE+1];

32 double u_found_freq[N_CORE+1];

33 double u_neig_tot[N_CORE+1];

34

35 // Observers

36 double inno;

37 double x_obsv_old[2];

38

39 // Variables necessary for frequency conversions

40 float param[5] = {1,1,310,1.35,0.5}; // param = [CPI, Idle, Temp, Vdd, Vt]

41 float pinv[2] = {1,3};

42 double P_static=0.0;

43 double P_dyn=0.0;

44 int err;

45

286

C.3 The distributed MPC control solution

46 // File pointers inizialization

47 FILE * fin_Freq;

48 FILE * fin_CPI;

49 FILE * fout_Temp;

50 FILE * fout_Pow;

51 FILE * fout_Freq;

52 FILE * fout_Time;

53 fin_Freq=fopen(FIN_DEF_FREQ, "r");

54 fin_CPI=fopen(FIN_DEF_CPI, "r");

55 fout_Temp=fopen(FOUT_DEF_TEMP, "w");

56 fout_Pow=fopen(FOUT_DEF_POW, "w");

57 fout_Freq=fopen(FOUT_DEF_FREQ, "w");

58 fout_Time=fopen(FOUT_DEF_TIME, "w");

The first instructions in the main are devoted to instantiate the variables used in the code:

the time variables (to store the time elapsed for finding the control decision), thecounter vari-

ables, a vector containing the four instances of theQP Object, the vectors that will contain

the input trace data and the computed output data (plant temperature and controlled power),

the support variables used to update the observers states and the observer states values, some

parameters used for frequency to power conversion, and the pointer variables addressing the

files where the data will be saved.

1

2 //--- --------------

3 // Initializations

4 //--- --------------

5

6 // Parameters number

7 numPar=dim2M_C+1;

8

9 // Constraints number

10 numVinc=dim2M_C;

11

12 // QP objects initializations

13 for (i=0;i<N_CORE;i++){

14 QP[i].H={WEIGHT1,0,0,WEIGHT2};

15 QP[i].g={0.0, 0.0};

16 QP[i].A={0.0,HARD_SOFT};

17 QP[i].b_1={0.0,0.0};

18 QP[i].b_2={0.0};

19 QP[i].lb={0.0};

20 QP[i].x_obsv={0.0,0.0};

21 }

22

23 // Definition of the constraints matrix A

24 for (k=0;k<N_CORE;k++){

25 for (i=0;i<2;i++){

26 QP[k].A[0]+=M_C[k][0][i] * M_B[k][i][0];

287

C. ACCURATE MODEL

27 }

28 }

29

30

31 // Definition of b_1 and b_2

32 for (k=0;k<N_CORE;k++){

33 for (i=0;i<dim2M_A;i++){

34 for (j=0;j<dim2M_A;j++){

35 QP[k].b_1[j]+=-M_C[k][0][i] * M_A[k][i][j];

36 }

37 for (j=0;j<N_CORE+1;j++){

38 QP[k].b_2[j]+=-M_C[k][0][i] * M_B[k][i][j+1];

39 }

40 }

41 }

42

43

44 // State initialzation of observers

45 for (k=0;k<N_CORE;k++){

46 for (i=0;i<2;i++){

47 QP[k].x_obsv[i]=M_X0[k][0][i];

48 }

49 }

50

51

52 // Setting up QProblem object.

53 QProblem MPC_1(numPar,numVinc);

54 QProblem MPC_2(numPar,numVinc);

55 QProblem MPC_3(numPar,numVinc);

56 QProblem MPC_4(numPar,numVinc);

57

58

59 // Plant

60 for (j=0;j<dim1P_C;j++){

61 Temp_plant[j]=0;

62 for (k=0;k<dim2P_C;k++){

63 Temp_plant[j]+=P_C[j][k] * P_X0[k][0];

64 }

65 }

66 writeVect(Temp_plant, dim1P_C, fout_Temp);

In this piece of code the variables are initialized. The number of optimization variables

and constraints are set, the constant parameters of the QP problem are set inside the vector of

QP Object, theQProblemobject of the qpOASES library are defined (MC 1,. . . ,MPC 4), and

the plant is initialized.

1

2 //--- --------------

3 // Algorithm

288

C.3 The distributed MPC control solution

4 //--- --------------

5

6

7 //--- ---------------------------

8 // Cold start

9 //--- ---------------------------

10

11 // Reading of inputs

12 readVect(N_CORE+1,fin_Freq,inFreq);

13 readVect(N_CORE,fin_CPI,inCPI);

14

15

16 // Frequency to power conversion

17 for (i=0;i<N_CORE;i++){

18 param[0]=inCPI[i];

19 P_static = Psta(param);

20 inPow[i]=f2p(inFreq[i], param);

21 inPow[i]+=P_static;

22 }

23 inPow[N_CORE]=inFreq[N_CORE];

24

25

26 // Input grouping: u_i=[P_i Tenv Tvicini(tutti)]

27 u_neig_tot[0]=inPow[N_CORE];

28 input[1]=inPow[N_CORE];

29 for (j=0;j<N_CORE;j++){

30 input[j+2]=Temp_plant[j];

31 u_neig_tot[j+1]=0.0;

32 }

33

34

35 // Plant future state

36 for (j=0;j<dim1P_A;j++){

37 x_plant[j]=0;

38 for (k=0;k<dim1P_A;k++){

39 x_plant[j]+=P_A[j][k] * P_X0[k][0];

40 }

41 for (k=0;k<dim2P_B;k++){

42 x_plant[j]+=P_B[j][k] * inPow[k];

43 }

44 }

45

46

47 // Observers states

48 for (k=0;k<N_CORE;k++){

49 input[0]=inPow[k];

50 inno=0.0;

51 for (i=0;i<dim3M_C;i++){

52 inno+=M_C[k][0][i] * M_X0[k][0][i];

53 }

54 inno=Temp_plant[k]-inno;

55 for (i=0;i<dim2M_A;i++){

289

C. ACCURATE MODEL

56 QP[k].x_obsv[i]=0.0;

57 for (j=0;j<dim3M_A;j++){

58 QP[k].x_obsv[i]+=M_A[k][i][j] * M_X0[k][0][j];

59 }

60 for (j=0;j<dim3M_B;j++){

61 QP[k].x_obsv[i]+=M_B[k][i][j] * input[j];

62 }

63 QP[k].x_obsv[i]+=K_Obsv[k][i] * inno;

64 }

65 }

66

67

68 // Plant output updating

69 for (j=0;j<dim1P_C;j++){

70 Temp_plant[j]=0;

71 for (k=0;k<dim2P_C;k++){

72 Temp_plant[j]+=P_C[j][k] * x_plant[k];

73 }

74 }

75 writeVect(Temp_plant, dim1P_C, fout_Temp);

76

77

78 // Reading of input predictions

79 readVect(N_CORE+1,fin_Freq,inFreq);

80 readVect(N_CORE,fin_CPI,inCPI);

81

82

83 // Frequency to power conversion

84 for (i=0;i<N_CORE;i++){

85 param[0]=inCPI[i];

86 P_static = Psta(param);

87 inPow[i]=f2p(inFreq[i], param);

88 inPow[i]+=P_static;

89 }

90 inPow[N_CORE]=inFreq[N_CORE];

91

92

93 // Updating of g and input array total=[Tenv Tneights] build ing

94 u_neig_tot[0]=inPow[N_CORE];

95 for (j=0;j<N_CORE;j++){

96 QP[j].g[0]=-inPow[j] * 2;

97 u_neig_tot[j+1]=QP[j].x_obsv[0];

98 }

99

100

101 // Computing ubA (b) --as---> uba= y_max - b_1 * x_obsv - b_2 * Tenv

102 for (j=0;j<N_CORE;j++){

103 QP[j].ubA[0]=TEMP_LIM+QP[j].b_1[0] * QP[j].x_obsv[0] +

QP[j].b_1[1] * QP[j].x_obsv[1] + QP[j].b_2[0] * u_neig_tot[0] +

QP[j].b_2[1] * u_neig_tot[1] + QP[j].b_2[2] * u_neig_tot[2] +

QP[j].b_2[3] * u_neig_tot[3] + QP[j].b_2[4] * u_neig_tot[4];

104 }

290

C.3 The distributed MPC control solution

105

106

107 // Cold QP solutions

108 nWSR=NUM_IT_QP_SOLVER;

109 gettimeofday(&t_start,NULL); // <--------------- TIC

110 MPC_1.init(QP[0].H,QP[0].g,QP[0].A,QP[0].lb,NULL,NU LL,QP[0].ubA, nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

111 MPC_2.init(QP[1].H,QP[1].g,QP[1].A,QP[1].lb,NULL,NU LL,QP[1].ubA, nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

112 MPC_3.init(QP[2].H,QP[2].g,QP[2].A,QP[2].lb,NULL,NU LL,QP[2].ubA, nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

113 MPC_4.init(QP[3].H,QP[3].g,QP[3].A,QP[3].lb,NULL,NU LL,QP[3].ubA, nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

114 gettimeofday(&t_stop,NULL); // <--------------- TOC

115 timersub(&(t_stop),&(t_start),&(t_step));

116 time[0]=(t_step.tv_sec + t_step.tv_usec/1000000.0)/N_ CORE;

117

118

119 // Storing of the controlled powers values

120 MPC_1.getPrimalSolution(&(u_found_pow[0]));

121 MPC_2.getPrimalSolution(&(u_found_pow[1]));

122 MPC_3.getPrimalSolution(&(u_found_pow[2]));

123 MPC_4.getPrimalSolution(&(u_found_pow[3]));

124 u_found_pow[N_CORE]=inPow[N_CORE];

125

126

127 // Power -> Frequency & Frequency -> Power conversions

128 for (i=0;i<N_CORE;i++){

129 param[0]=inCPI[i];

130 P_static=Psta(param);

131 P_dyn=u_found_pow[i]-P_static;

132 if (P_dyn<0) P_dyn = 0;

133 if (f2p(F_MIN,param)>=P_dyn){

134 u_found_freq[i]=F_MIN;

135 }

136 else {

137 if (f2p(F_MAX,param)<=P_dyn){

138 u_found_freq[i]=F_MAX;

139 }

140 else {

141 pinv[0]=param[0];

142 pinv[1]=P_dyn;

143 u_found_freq[i]=Amsterdam_Method(f2p_inv, F_MIN, pinv , F_MAX,

TOLLERANZA, MAX_ITERATION, &err);

144 }

145 }

146 u_found_pow[i]=f2p(u_found_freq[i], param);

147 u_found_pow[i]+=P_static;

148 }

149

150 for (j=0;j<N_CORE;j++){

151 QP[j].u_found_pow[0]=u_found_pow[j];

291

C. ACCURATE MODEL

152 QP[j].u_found_pow[1]=inPow[N_CORE];

153 }

Although efficient QP solvers based on active-set methods and interior point methods are

available, the computational overhead for finding the solution demands significant on-line com-

putation effort. The solving algorithm implemented in qpOASES library is more efficient,

since, after having computed the first solution of a QP problem, it can compute the new solu-

tion starting the search from the previous one (this property is namedhot start). In the reported

part of code we show the algorithm to find the first solution of each QP problem (we called it

cold start).

The first sample of the input trace is read. The functionreadVectreads the frequency and the

CPI of each core from the input file. Then, the frequency is convertedto power using the func-

tion f2p, and the input vector for each single-core model is prepared in order toestimate the

future temperature of the plant. The plant states, the observer states, andthe plant output are

computed. The estimations of the next input are read (we assume to know exactly the work-

load of the next sample interval), the time-varying matrices of the QP problem are updated, and

then each QP problem is solved invoking the functionMPC i.init of the qpOASES library. The

function MPC i.getPrimalSolution(of the qpOASES library) assigns to the controlled power

vectoru foundpow the solution of the problems. Notice that the solving time is computed

using the functiongettimeofdaysubtracting to the timet stop, saved after the QP problem has

been solved, the timet start, saved at the beginning of the computation. Finally the controlled

power of the cores obtained by solving the QP problems is converted in frequency using the

AmsterdamMethodfunction.

1

2 //--- ---------------------------

3 // Hot start

4 //--- ---------------------------

5

6 for (i=0;i<NITER-1;i++){

7

8 // Plant future state

9 for (j=0;j<dim1P_A;j++){

10 x_plant_old[j]=x_plant[j];

11 }

12

13 for (j=0;j<dim1P_A;j++){

14 x_plant[j]=0.0;

15 for (k=0;k<dim1P_A;k++){

16 x_plant[j]+=P_A[j][k] * x_plant_old[k];

292

C.3 The distributed MPC control solution

17 }

18 for (k=0;k<dim2P_B;k++){

19 x_plant[j]+=P_B[j][k] * u_found_pow[k];

20 }

21 }

22

23

24 // Storing past Temperature & grouping of neighbors in the in put array

25 for (j=0;j<N_CORE;j++){

26 Temp_plant_old[j]=Temp_plant[j];

27 for (k=0;k<N_CORE;k++){

28 QP[k].u_found_pow[j+2]=Temp_plant[j];

29 }

30 }

31

32

33 // Plant outputs updating

34 for (j=0;j<dim1P_C;j++){

35 Temp_plant[j]=0.0;

36 for (k=0;k<dim2P_C;k++){

37 Temp_plant[j]+=P_C[j][k] * x_plant[k];

38 }

39 }

40 writeVect(Temp_plant, dim1P_C, fout_Temp);

41

42

43 // Start Clock

44 gettimeofday(&t_start,NULL); // <--------------- TIC

45

46

47 // Observers states

48 for (k=0;k<N_CORE;k++){

49 for (j=0;j<dim2M_A;j++){

50 x_obsv_old[j]=QP[k].x_obsv[j];

51 }

52 inno=0.0;

53 for (j=0;j<dim3M_C;j++){

54 inno+=M_C[k][0][j] * x_obsv_old[j];

55 }

56 inno=Temp_plant_old[k]-inno;

57 for (ii=0;ii<dim2M_A;ii++){

58 QP[k].x_obsv[ii]=0.0;

59 for (j=0;j<dim3M_A;j++){

60 QP[k].x_obsv[ii]+=M_A[k][ii][j] * x_obsv_old[j];

61 }

62 for (j=0;j<dim3M_B;j++){

63 QP[k].x_obsv[ii]+=M_B[k][ii][j] * QP[k].u_found_pow[j];

64 }

65 QP[k].x_obsv[ii]+=K_Obsv[k][ii] * inno;

66 }

67 }

68

293

C. ACCURATE MODEL

69

70 // Reading of inputs

71 readVect(N_CORE+1,fin_Freq,inFreq);

72 readVect(N_CORE,fin_CPI,inCPI);

73

74

75 // Frequency --> Power conversion

76 for (j=0;j<N_CORE;j++){

77 param[0]=inCPI[j];

78 P_static = Psta(param);

79 inPow[j]=f2p(inFreq[j], param);

80 inPow[j]+=P_static;

81 }

82 inPow[N_CORE]=inFreq[N_CORE];

83 u_neig_tot[0]=inPow[N_CORE];

84

85

86 // Update of g and input array totale=[Tenv Tneights] buildi ng

87 for (j=0;j<N_CORE;j++){

88 QP[j].g[0]=-inPow[j] * 2;

89 u_neig_tot[j+1]=QP[j].x_obsv[0];

90 }

91

92

93 // Computing ubA (b) --as--> uba= y_max - b_1 * x_obsv- b_2 * Tenv

94 for (j=0;j<N_CORE;j++){

95 QP[j].ubA[0]=TEMP_LIM+QP[j].b_1[0] * QP[j].x_obsv[0] +

QP[j].b_1[1] * QP[j].x_obsv[1] + QP[j].b_2[0] * u_neig_tot[0] +

QP[j].b_2[1] * u_neig_tot[1] + QP[j].b_2[2] * u_neig_tot[2] +

QP[j].b_2[3] * u_neig_tot[3] + QP[j].b_2[4] * u_neig_tot[4];

96 }

97

98

99 // Hot QP solutions

100 MPC_1.hotstart(QP[0].g,QP[0].lb,NULL,NULL,QP[0].ubA , nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

101 MPC_2.hotstart(QP[1].g,QP[1].lb,NULL,NULL,QP[1].ubA , nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

102 MPC_3.hotstart(QP[2].g,QP[2].lb,NULL,NULL,QP[2].ubA , nWSR,0

);nWSR=NUM_IT_QP_SOLVER;

103 MPC_4.hotstart(QP[3].g,QP[3].lb,NULL,NULL,QP[3].ubA , nWSR,0

);nWSR=NUM_IT_QP_SOLVER; // !!!! <------------- ogni volta viene azzerato

(tenuto quello del ciclo precedente) !!!!

104

105

106

107 // Storing of the controlled powers values

108 MPC_1.getPrimalSolution(&(u_found_pow[0]));

109 MPC_2.getPrimalSolution(&(u_found_pow[1]));

110 MPC_3.getPrimalSolution(&(u_found_pow[2]));

111 MPC_4.getPrimalSolution(&(u_found_pow[3]));

112 u_found_pow[N_CORE]=inPow[N_CORE];

294

C.3 The distributed MPC control solution

113

114

115 // Power -> Frequency conversion

116 for (j=0;j<N_CORE;j++){

117 param[0]=inCPI[j];

118 P_static=Psta(param);

119 P_dyn=u_found_pow[j]-P_static;

120 if (P_dyn<0)P_dyn = 0;

121 if (f2p(F_MIN,param)>=P_dyn){

122 u_found_freq[j]=F_MIN;

123 }

124 else {

125 if (f2p(F_MAX,param)<=P_dyn){

126 u_found_freq[j]=F_MAX;

127 }

128 else {

129 pinv[0]=param[0];

130 pinv[1]=P_dyn;

131 u_found_freq[j]=Amsterdam_Method(f2p_inv, F_MIN, pinv , F_MAX,

TOLLERANZA, MAX_ITERATION, &err);

132 }

133 }

134

135 }

136

137

138 // Stop Clock

139 gettimeofday(&t_stop,NULL); // <-------------- TOC

140 timersub(&(t_stop),&(t_start),&(t_step));

141 time[i+1]=(t_step.tv_sec + t_step.tv_usec/1000000.0)/ N_CORE;

142

143 // Frequency --> Power conversion

144 for (j=0;j<N_CORE;j++){

145 param[0]=(float)inCPI[j];

146 P_static=Psta(param);

147 u_found_pow[j]=f2p(u_found_freq[j], param);

148 u_found_pow[j]+=P_static;

149 }

150

151 for (j=0;j<N_CORE;j++){

152 QP[j].u_found_pow[0]=u_found_pow[j];

153 QP[j].u_found_pow[1]=inPow[N_CORE];

154 }

155 }

156

157

158 // Writing of the time file

159 for (i=0;i<NITER;i++)

160 fprintf(fout_Time, "%f\n" ,time[i]);

161

162 return 0;

163 }

295

C. ACCURATE MODEL

The code described for the cold start, is repeated for all the other samplingtimes with a

loop. The only difference regards the name of the function called for solving the QP problems

that isMPC i.hotstartthat allows the algorithm to compute the next solution starting from the

previous one.

1 //--- --------------

2 // Functions

3 //--- --------------

4

5 // Reading of a vector from a file

6 void readVect(int dim,FILE * fin, double * vett)

7 {

8 int i;

9 char ch;

10 for (i=0;i<dim;i++){

11 fscanf(fin, "%lf " ,&vett[i]);

12 }

13 fscanf(fin, "\r%c\n" ,&ch);

14 }

15

16

17 // Writing of a vector in a file

18 void writeVect(double * y, int dim, FILE * fout)

19 {

20 int i;

21 for (i=0;i<dim;i++){

22 fprintf(fout, "%f " ,y[i]);

23 }

24 fprintf(fout, ";\r\n");

25 }

26

27

28 // Writing of a vector on the Monitor

29 void printVect(double * vett, int dim)

30 {

31 int i;

32 for (i=0;i<dim;i++)

33 printf("%f " ,vett[i]);

34 printf(";\n");

35 }

36

37 // Writing of a matrix on the Monitor

38 void printMat(double * mat, int righe, int columns)

39 {

40 int i,j;

41 for (i=0;i<righe;i++){

42 for (j=0;j<columns;j++){

43 printf("%f " ,mat[i * columns+j]);

296

C.4 The complex MPC control solutions

44 }

45 printf(";\n");

46 }

47 }

48

49

50

51 // Functions for frequency conversions

52

53 double Psta(float * p)

54 {

55 return (double)(Z_DEFAULT * p[3] * p[2] * p[2] * exp((-q * (p[4]))/(K * p[2])));

56 }

57

58 double f2p(double freq, float * p)

59 {

60 double Pdyn;

61 if (p[0]!=0){

62 Pdyn = (Ka_DEFAULT* (pow((freq),Kb_DEFAULT)) + Kc_DEFAULT) +

(Ke_DEFAULT+(Kd_DEFAULT* freq)) * pow(p[0],Kf_DEFAULT);}

63 else {Pdyn=0;}

64 Pdyn = Pdyn * p[1];

65 return Pdyn ;

66 }

67

68 double f2p_inv(double freq, float * p)

69 {

70 return ((Ka_DEFAULT * (pow((freq),Kb_DEFAULT))+ Kc_DEFAULT +

(Ke_DEFAULT+(Kd_DEFAULT* freq)) * pow(p[0],Kf_DEFAULT)) - p[1]);

71 }

Finally the implementation of the functions.

C.4 The complex MPC control solutions

In this Section we provided the code of the complex control solutions presented in Chapter5.

These algorithms re-call the functions shown in the previous Section.

C.4.1 A feasible two-layer distributed MPC approach to thermal control of Mul-
tiprocessor Systems on Chip

The simulation of the two-layer solution has been entirely executed in the Simulink environ-

ment. The block diagram of the solution is represented in Fig.C.6.

The scheme comprises four main blocks:

Inputs contains some typical benchmark traces selectable with thetrace selectorblock;

297

C. ACCURATE MODEL

trace_num

target_freq

CPI

1

trace selector

inputs
MPC Layer

Safety Layer

Sampling
time

target_freq

tTemp

CPI

controlled_freq

controlled_pow

target_pow

Temp switch_freq

controlled_freq

CPI

Temp

Out_Pow_Target

To workspace

Out_Pow_Cntrl

To workspace

Min

Time

To workspace

Sampling
time

Out_Freq_Cntrl

To workspace

Out_Temp

To workspace

Plant

MATLAB
Function

MPC

1/z
Delay

1/z
Delay

Temp

Trigger

MATLAB
Function

F_CPI_2_P

MATLAB
Function

P_CPI_2_F

controlled_pow

controlled_freq

CPI

target_freq

1/z
Delay

1

Idle
310

Idle
1.35

Vdd

Temp switch_target_pow

Switch1

Temp switch_target_pow

Switch2

Temp switch_target_pow

Switch3

Temp switch_target_pow

Switch4

Temp switch_target_pow

Switch5

Temp switch_target_pow

Switch6

Temp switch_target_pow

Switch7

Temp switch_target_pow

Switch8

switch_freq1

Idle
310

T
1.35

Vdd

1001X8

CPI
MATLAB
Function

P_CPI_2_F

Temp

Trigger

RelayGain

-1Temp switch_target_pow

distrMPC_Yalmip(mod,u(1:8),Th_MPC,310,u(9:16),u(17:24),u(25:32))

Figure C.6: Simulink block diagram of the two-layer solution.

MPC Layer contains the distributed MPC thermal controller;

Safety Layercontains the switch controllers;

Plant contains the accurate thermal model of the processor.

The InputsandPlant blocks are not described here. We will focus on theMPC Layerand

the Safety Layerblocks. With regard to the former, the block receives the frequency andthe

CPI values as inputs. Each sampling interval (10ms) these values are converted into a power

consumption requirement (using the blockF CPI 2 P), which is an input of theMPC Matlab

function block. This block calls the functiondistrMPC Yalmip, already shown in the Para-

graphC.3.2.2, in order to solve the optimization problem of each local controller. The function

returns the controlled power of all cores which is converted into frequency by the function

block P CPI 2 F. This frequency vector is the output of theMPC Layerblock. It is worth to

note that inside theMPC Layerblock three delay blocks are present (highlighted in yellow).

The first on the left simulates the unpredictability of the workload (i.e. the CPI at the current

time is equal to the one computed in the previous sampling interval). The other two store the

298

./8_Appendices/img/0060_D_FeasibleSolution.eps

C.4 The complex MPC control solutions

past temperature and power consumption of each core in order to estimate theunknown states

of each single-core model inside theMPC block.

TheSafety Layerblock, instead, contains the set of switch controllers used for guaranteeing

the feasibility of the global controller. As it is possible to see in Fig.C.6, each switch controller

(one per core) can be simulated using a standard Simulink block, theRelayblock, which im-

plements an hysteresis function. The gain block is only needed to adopt ourrequirements to

the hysteresis block. TheSafety Layerblock takes as inputs the temperatures measured on the

cores. The temperature of thei-th core enters as input into the correspondentSwitch#iblock. At

each sampling time (0.1ms), each temperature is compared to the switch temperature threshold

(τSWITCH). If the temperature violates the threshold the controller trims the power consump-

tion of that core to the minimum value (PMIN) until the temperature decrease below the lower

hysteresis threshold. Otherwise the controller return the maximum power consumption. The

power is finally converted in frequency and given as output of theSafety Layerblock.

Notice that aminimumblock allows the controller to choose, for each core, the correct

frequency between the one outgoing from theMPC Layerblock and the one outgoing from the

Safety Layerblock. That frequency feeds the cores of the plant.

C.4.2 Communication-aware solution

We reported below the code used for simulating the communication-aware solution.

1 %% 5

2

3 %VV

4 %|| ||||||||||||||||||||||||

5 %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%%%%%%%%%%%% CONTROLLER %%%%%%%%%%%%%%%%%%%%%%%%%%

7 %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

8 %|| ||||||||||||||||||||||||

9 %AA

10

11 % Communication-Aware Approach:

12 % - performance maximization

13 % - thermal capping

14 % - matching frequency between cores

15

16

17

18 %%%

19 %%%%%% Parameters

20 Vdd=1.35; % Supply voltage

21 IDLE=1;

299

C. ACCURATE MODEL

22 F_MAX=3000; % maximum frequency

23 F_MIN=1600; % minimum frequency

24 P_MIN=F_CPI_2_P(1600,100,IDLE,Tenv(1,1),Vdd); % minimum power consumption

25 time_trace = 30000; % trace duration

26

27

28 %%%

29 %%%%%% MPC Controller Init

30 T_CRIT=360 * ones(NC,1); % critical temperature

31 Vy_max=zeros (NC,1); % 0=hard 1=soft constraints

32 rho=10ˆ5; % weight of the slack variable

33 weight=100; % weight of the communication

34 w=1; % weight of the power error

35 Q_qp=w* eye (NC);

36

37 %%%

38 %%%%%% Benchmarks

39 % Time

40 clear power_tot_target power_cache_target power_cores_targe t frequency_cores_target

CPI_cores_target

41

42 % Inputs

43 frequency_cores_target = idinput([time_trace,NC], ’prbs’ ,[0 0.005],[1600 3000]);

44 CPI_cores_target=1.5 * ones(time_trace,NC); % Note: we know the future CPI

45 CPI_cores_target(:,2) = 0.5+(100-0.5). * rand (time_trace,1);

46

47 % Target Power (Conversion using the Power Model function CP I2Pow)

48 power_cores_target=CPI2Pow(frequency_cores_target,C PI_cores_target,IDLE,Tenv(1,1),Vdd);

49

50 % Caches Power (the 30% of the adjacent core powers)

51 clear power_caches_target power_tot_target

52 power_caches_target(:,1) =

((power_cores_target(:,1)+power_cores_target(:,3)). /2). * percentuale;

53 power_caches_target(:,2) =

((power_cores_target(:,2)+power_cores_target(:,4)). /2). * percentuale;

54 power_caches_target(:,3) =

((power_cores_target(:,5)+power_cores_target(:,7)). /2). * percentuale;

55 power_caches_target(:,4) =

((power_cores_target(:,6)+power_cores_target(:,8)). /2). * percentuale;

56

57 % Total Power

58 power_tot_target=[power_cores_target(:,1) power_cach es_target(:,1)./2

power_caches_target(:,2)./2 power_cores_target(:,2) p ower_cores_target(:,3)

power_caches_target(:,1)./2 power_caches_target(:,2) ./2 power_cores_target(:,4)

zeros (time_trace,4) power_cores_target(:,5) power_caches_t arget(:,3)./2

power_caches_target(:,4)./2 power_cores_target(:,6) p ower_cores_target(:,7)

power_caches_target(:,3)./2 power_caches_target(:,4) ./2 power_cores_target(:,8)];

59

60

61 %%%

62 %%%%%% Initialization

63 % Plant

300

C.4 The complex MPC control solutions

64 sysd=c2d(TModel,Time.Step, ’zoh’); % Discretization of the plant

65 x_plant= zeros (time_trace-1, size (A,1));

66 x_plant(1,:)=X0’;

67 Temp_plant= zeros (time_trace,NC);

68 Temp_plant(1,:)=(sysd.C * X0)’;

69

70 % Controlled Inputs

71 power_cores_cntrl= zeros (time_trace,NC);

72 power_tot_cntrl= zeros (time_trace,N_COMP);

73 frequency_cores_cntrl= zeros (time_trace,NC);

74

75 % Observer

76 x_obsv(1,:)=model.x0’;

77 K_obs=(place(model.a’,model.c’,(eig (model.a). * 0.4)))’;

We skip the code used for the implementation of the accurate model and the identification

of the prediction model (this solution is not distributed). In the first part of the code the usual

parameters of the controller are defined. Subsequently, the input benchmark is defined, the

frequency (a PRBS signal) and the CPI (a random input) are translated inpower requirements.

The plant and the observer are initialized.

1

2 %%%

3 %%%%%% Simulazione

4 for j=1:time_trace

5 % Calcolo uscita plant

6 Temp_plant(j,:)=sysd.c * x_plant(j,:)’;

7

8 % Communication request

9 if j<(time_trace/3)

10 Communicating_Core_vector=[1 1 0 0 0 0 0 0];

11 else

12 Communicating_Core_vector=[1 0 0 0 1 0 0 0];

13 end

14

15 % Matrices Update

16 [Q_additive g_additive]=communication(Communicating_ Core_vector,

CPI_cores_target(j,:), F_MAX, F_MIN, weight);

17 g_qp=(-2 * power_cores_target(j,:) * Q_qp)’;

18 g_qp_tot=g_qp+g_additive’;

19 Q_qp_tot=[Q_qp. * 2+Q_additive zeros (size (Q_qp,1),1); zeros (1, size (Q_qp,1))

rho. * 2];

20

21 % QP problem

22 clear pow

23 pow=sdpvar(NC+1,1);

24 Objective=[0.5 * pow’ * Q_qp_tot * pow+pow’ * [g_qp_tot;0]];

25 Constraints=[[model.c * model.b(:,1:NC) -Vy_max] * pow <= T_CRIT-model.c * model.a *
x_obsv(j,:)’-model.c * model.b(:,NC+1: end) * Tenv(j,1),pow(1:NC,1) >=

301

C. ACCURATE MODEL

0.254043439071652];

26 Options=sdpsettings(’verbose’ ,0, ’solver’ , ’’);

27 sol = solvesdp(Constraints,Objective,Options);

28 power_cores_cntrl(j,1:NC)=double(pow(1:NC,1));

29

30

31 % Power-to-frequency conversion

32 frequency_cores_cntrl(j,:)=

Pow2Freq_main2(power_cores_cntrl(j,:),CPI_cores_tar get(j,:),IDLE,Tenv(1,1),Vdd);

33

34 % Frequency-to-Power conversion

35 power_cores_cntrl(j,:)=

CPI2Pow(frequency_cores_cntrl(j,:),CPI_cores_target (j,:),IDLE,Tenv(1,1),Vdd);

36

37 % Total power (we add the power of the caches)

38 power_tot_cntrl(j,:)= [power_cores_cntrl(j,1),

(power_cores_cntrl(j,1)+power_cores_cntrl(j,3))./4. * percentuale,

(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4. * percentuale,

power_cores_cntrl(j,2:3),

(power_cores_cntrl(j,1)+power_cores_cntrl(j,3))./4. * percentuale,

(power_cores_cntrl(j,2)+power_cores_cntrl(j,4))./4. * percentuale,

power_cores_cntrl(j,4), zeros (1,4), power_cores_cntrl(j,5),

(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4. * percentuale,

(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4. * percentuale,

power_cores_cntrl(j,6:7),

(power_cores_cntrl(j,5)+power_cores_cntrl(j,7))./4. * percentuale,

(power_cores_cntrl(j,6)+power_cores_cntrl(j,8))./4. * percentuale,

power_cores_cntrl(j,8)];

39

40 % The future state of the plant

41 x_plant(j+1,:)= (sysd.a * x_plant(j,:)’+sysd.b * [power_tot_cntrl(j,:) Tenv(j,1)]’)’;

42

43 % Observer

44 x_obsv(j+1,:)= model.a * x_obsv(j,:)’+ model.b * [power_cores_cntrl(j,:)

Tenv(j,1)]’+ K_obs * (Temp_plant(j,:)’- model.c * x_obsv(j,:)’);

45

46 end

47

48

49 %%%

50 % Visualization

51 core1=[1 2 5];

52 ax(1) = subplot (611); plot (1:1:time_trace-1, Temp_plant(1:time_trace-1,core1)) ;

title (’Temperature’); legend (’MPC’ , ’Location’ , ’Best’);

53 ax(2) = subplot (612); plot (1:1:time_trace-1,

frequency_cores_cntrl(1:time_trace-1,core1), ’LineWidth’ ,2); title (’Provided

Frequency’)

54 ax(3) = subplot (613); plot (1:1:time_trace-1,

power_cores_cntrl(1:time_trace-1,core1), ’LineWidth’ ,2); title (’Provided power’); %

55 ax(4) = subplot (614); plot (1:1:time_trace-1,

frequency_cores_target(1:time_trace-1,core1), ’LineWidth’ ,2); title (’Target

Frequency’)

302

C.4 The complex MPC control solutions

56 ax(5) = subplot (615); plot (1:1:time_trace-1,

power_cores_target(1:time_trace-1,core1)); title (’Target power’);

57 ax(6) = subplot (616); plot (1:1:time_trace-1, CPI_cores_target(1:time_trace-1,c ore1));

title (’Target CPI’);

58 linkaxes(ax, ’x’);

In this part of the code the simulation of the input trace is performed. The codeis similar

to the code shown in the previous example, except for two minor differences. First, the vector

CommunicatingCore vectorwhich contains the information on the communicating cores. The

dimension of the vector corresponds to the number of cores. The indexesof the elements

with 1 represent the cores that must have the same frequency. In the code we imposed the

communication between the cores 1 and 2 for the first 10 seconds and between the cores 1

and 5 for the rest of the simulation. Notice that theCommunicatingCore vector vector is

assumed to be provided by a high level software manager. The second difference regards the

use of the functioncommunicationthat takes as inputs theCommunicatingCore vector, the

target CPI vector, the maximum and the minimum frequencies and the weight constant of the

communication and it returns the arraysQ additiveandg additive. Assuming the QP problem

to be solved to find the control decision has, in the nominal case (that is the case without cores

communications) the form,

min
pow

1
2
· powT(t) ·Qqp · pow(t)+gT

qp · pow(t) (C.4a)

s.t.

Aqp · pow(t)≤ bqp (C.4b)

then, the arraysQ additiveandg additiveadded to the matricesQqp andgqp allows the con-

troller to take into account the communication between the cores as explained in Section5.3.1.1.

Notice that the communication between more than two cores is possible by calling multiple

times the functioncommunication.

C.4.2.1 communication.m

In the code below thecommunicationfunction is shown

1 function [H_additive g_additive]=communication(Communicating_ Core_vector,

CPI_vector, F_MAX, F_MIN, weight)

2 % COMMUNICATION returns the weight matrices of the cost func tion of the QP

3 % problem.

303

C. ACCURATE MODEL

4 %

5 % The input parameters:

6 % - Communicating_Core_vector : vector with dimension 1 x n_ cores, the

7 % indexes of the element equal to 1 are the core communicating the other

8 % elements are 0 (only two value can be different from zero)

9 % - CPI_vector : vector containing the CPI of all cores

10 % - F_MAX,F_MIN : maximum and minimum value of the frequency

11 % - weight : weight value for the communication in the QP probl em

12 %

13 %

14 % Example:

15 %

16 % Communicating_Core_vector=[1 1 0 0 0 0]; % the cores are 6, t he communicatin core

are the 1 and the 2

17 % CPI_vector=[0.1 1 23 100 0.5 8];

18 % F_MAX=3000; F_MIN=1600; weight=100;

19 % [H_additive g_additive]=communication(Communicating _Core_vector, CPI_vector,

F_MAX, F_MIN, weight)

20

21

22 if size (Communicating_Core_vector)˜= size (CPI_vector)

23 error (’communication:communication:none’ , ’The first two inputs must have the

same dimensions’);

24 end

25

26 if sum (Communicating_Core_vector)˜=2

27 error (’communication:communication:none’ , ’Only two core can communicate!

Modify the CPI vector’);

28 end

29

30 % Power Model Fitting Parameters

31 KA1=3.8696e-008;

32 KA2=1.1025;

33 KB=2.4090;

34 KC=-4.1376;

35 KD=0.0051;

36 KE=-0.3016;

37

38 % Finding of the communicating cores

39 index = find (Communicating_Core_vector ˜= 0);

40

41 % Preparing of the parameters for computing alpha and beta

42 Delta_CPI=CPI_vector(index(1))ˆKE-CPI_vector(index(2))ˆKE;

43

44 F_lim=[F_MIN, F_MAX];

45 P_lim=(KA1. * F_lim.ˆKB +KA2) + (KC+KD. * F_lim). * (CPI_vector(index(2))).ˆKE;

46

47 Delta_P=P_lim(2)-P_lim(1);

48 Delta_F=F_lim(2)-F_lim(1);

49

50 % Computing of alpha and beta

51 alpha=KD * Delta_F * Delta_CPI/Delta_P;

304

C.4 The complex MPC control solutions

52 beta =(KC+(KD * (F_lim(1) * P_lim(2)-F_lim(2) * P_lim(1)))/Delta_P) * Delta_CPI;

53

54 % Computing of the H_additive array

55 H_additive= zeros (max(size (CPI_vector)));

56 H_additive(index(1),index(1))=2 * weight;

57 H_additive(index(1),index(2))=-2 * weight * (1+alpha);

58 H_additive(index(2),index(1))=-2 * weight * (1+alpha);

59 H_additive(index(2),index(2))=2 * weight * (1+alpha)ˆ2;

60

61 % Computing of the g_additive array

62 g_additive= zeros (1, max(size (CPI_vector)));

63 g_additive(index(1))=-2 * beta * weight;

64 g_additive(index(2))=2 * beta * weight * (1+alpha);

The code simply computes theα andβ parameters as shown in equation (5.22) in Sec-

tion 5.3.1.1. Then the two parameters are used to create theQ additiveandg additivematrices

as shown in equation (5.26).

C.4.3 Guaranteed Re-sprinting in MPSoCs exploiting MPC

The simulation of the re-sprinting solution has been executed in the Simulink environment in

order to simplify the management of the sampling time. Indeed the plant is continuous time,

whereas the two hierarchical MPC controllers has different sampling times.The block diagram

of the solution is represented in Fig.C.7.

The scheme comprises five main parts:

1. On the left of Fig.C.7, we can see aMultiport switchblock used for selecting the desired

input trace. The output of the block is a vector signal containing the powerconsumptions

of the 16 cores (remember that the first one is the power of the leader corewhich is always

active).

2. TheU boundblock contains the time-varying limit on PCM internal energy.

3. ThePCM MPC layerblock contains the centralized MPC controller used for the PCM

management. As explained in Chapter5 this control layer is necessary for ensuring

the re-sprinting capabilities of the regulated system when mixed criticalities tasksare

present.

4. TheThermal MPC layerblock contains the distributed MPC thermal controller.

5. Theplant block contains the accurate thermal model of the processor.

305

C. ACCURATE MODEL

Sampling
time

Temp
T_pcm
targ_pow
Tenv
U_max
U_max_fut

targ_pow_PCM

PCM MPC Layer

Sampling
time

Temp

T_pcm

targ_pow
cntrled_pow

Thermal MPC Layer

pow

Tenv

Plant

U

Temp_core

T_pcm

Trace_num

targ_pow+Tenv

targ_pow+Tenv

targ_pow+Tenv

targ_pow+Tenv

targ_pow+Tenv

Step

P_max*2

mixed1

mixed2

guaranteed

U
_m

ax

U
_m

ax
_f

u
t

U bound
Temp

T_pcm
T_env

targ_pow
U_max

MATLAB
Function

Centralized

1/z
Delay

1/z
Delay

targ_pow_PCM

U_max_fut

Trigger

Temp
T_pcm

targ_pow

MATLAB
Function

Distributed

cntrled_pow

Trigger

Energy
bound

Transport
delay

U_max

U_max_fut

 nd_pow(u(1:16),u(17),u(18),u(19:34),u(35),u(36),u(37:38),u(39:40),param_funz)

distrMPC_Yalmip(u(1:16),u(17),u(18:33),distr)

Multiport

switch

Figure C.7: Simulink block diagram of the re-sprinting solution.

The part of the code related to the inputs and the plant are skipped in orderto focus our at-

tention on the control part of the code. However, before illustrating the details of the remaining

parts of the block diagram we need to show the script where the parametersused in the code

are defined.

C.4.3.1 Simulation Initialization

1 %Thermal + Energy control based on MPC (ALL CORES CONTROLLED EXCEPT CORE1)+ Frequency

2

3 % Outline:

4 % 1 - Parameters initialization

5 % 2 - Thermal Model Generationn

6 % 3 - Prediction model generation

7 % 4 - MPC controller definition

8

9 clear all

10 clc

11

12 % *** ********* %

13 % ******************* (1) PARAMETERS ******************** %

14

306

./8_Appendices/img/0070_D_resprintingSolution.eps

C.4 The complex MPC control solutions

15 N_CORE = 16 ; % Number Of Cores

16

17 % Ambient temperature

18 Tenvironment_max = 273+45; % [K] Maximum ambient temperature

19 Tenvironment = 273+25; % [K] Nominal ambient temperature

20

21 % Power data of the cores

22 P_MAX=16; % [W] Chip maximum power (all cores=1W)

23 P_MIN=1+15* 0.05; % [W] Chip minimum power (core1=1W, other=0.05W)

24 P_max=1; % [W] Maximum power consumption of one core

25 P_min=0.15; % [W] minimum power consumption of one core

26 P_idle=0.05; % [W] Idle power of the cores

27

28 % PCM layer parameters (mixed Cu + Climsel C70)

29 T_melt=273+70; % [K] PCM melting temperature

30 T_Sprint_Max=1; % [s] Sprinting duration

31 PCM_density= 1700; % [Kg/mˆ3] PCM density

32 PCM_spec_lat_heat=396; % [KJ/Kg] PCM specific latent heat

33 % PCM specific heat Solid/Liquid

34 parameters.specific_heat_solid=3.526520000000000e-0 12; % [J/(K * umˆ3)]

35 parameters.specific_heat_liquid=3.526520000000000e- 012; % [J/(K * umˆ3)]

36 % PCM layer area

37 parameters.cell_width=6800; % [um]

38 parameters.cell_height=6800; % [um]

39 % PCM resistance

40 Chip_Dimensions.R_PCM= 7.9; % [* K/W]

41 % Energy quantity from when PCM starts melting to when the PCM is melted

42 Delta_U=((P_MAX- (T_melt-Tenvironment_max)/ Chip_Dime nsions.R_PCM) * T_Sprint_Max);

43 % PCM layer thickness

44 parameters.cell_thickness= (Delta_U)/ 1000/ PCM_spec_l at_heat/ PCM_density/ 10ˆ-18/

parameters.cell_width/ parameters.cell_height; % [um]

45 % Energy when PCM start melting

46 parameters.u_min=T_melt * parameters.specific_heat_solid * parameters.cell_width *
parameters.cell_height * parameters.cell_thickness;

47 % Energy when PCM is completely melted

48 parameters.u_max= parameters.u_min + Delta_U;

49 % PCM conductivity

50 Cu20PCM80_conductivity=3.2012e-004; % 20% Cu + 80% Climsel C70

51

52 % Chip Data

53 FileName_FLOORPLAN=’floorplan.txt’ ;

54 FileName_SENSORS=’sensori.txt’ ;

55 FileName_HOTSPOT=’potenze.txt’ ;

56 % Silicon layer area

57 Chip_Dimensions.h=parameters.cell_height;

58 Chip_Dimensions.L=parameters.cell_width;

59 % Two layers thickness

60 Chip_Dimensions.thick_1L=350; % silicon layer thickness

61 Chip_Dimensions.thick_2L=parameters.cell_thickness; % PCM layer thickness

62

63 % Simulation data

64 guaranteed_window=0.2; % [s]

307

C. ACCURATE MODEL

In this first part of the code we set the data of the processor we have simulated. First, the

number of cores, the nominal and maximum ambient temperatures, and the power consump-

tions of the chip and of the single cores are defined. Subsequently, the PCM layer data are

inserted in order to guarantee a maximum sprinting time of 1s, when all the cores at the max-

imum speed. Notice that also the energy values in which the PCM starts and finishes melting

are extrapolated (parameters.umin andparameters.umax). The names of the files containing

the layout of the cores, the locations of the sensors, and the power consumption distribution

are entered. Finally, the guaranteed time window for re-sprints is defined by the user (guaran-

teedwindow).

1

2 %%

3 % *** ******************** %

4 % ******************** (2) THERMAL MODEL GENERATION********************* %

5

6 TM3=EmbeddedModeling(FileName_FLOORPLAN, FileName_SE NSORS, FileName_HOTSPOT,

Chip_Dimensions, Cu20PCM80_conductivity);

The code calls the functionEmbeddedModeling.m, a function similar tomat modeling.m

in SectionC.1.3.1, for generating the accurate model of the chip. The state vector comprises

the temperatures of each core and the internal energy of the PCM cell. As output the function

returns the input, output and state matrices of the model.

1

2 %%

3 % *** ******************** %

4 % ******************* (3) PREDICTION MODEL GENERATION******************* %

5

6 model=EmbeddedCGModeling(FileName_FLOORPLAN, FileNam e_SENSORS, FileName_HOTSPOT,

Chip_Dimensions, Cu20PCM80_conductivity);

7 model.x0=[Tenvironment * ones(N_CORE,1) ;parameters.u_min];

Then, it is called the functionEmbeddedCGModeling.m, used for the generation of the

prediction model. The function does not use any identification procedure,but physical ap-

proximations. The cells belonging to one component are reduced to a single cell by making

the parallel of the vertical resistances of the equivalent electric circuit shown in SectionB.4.1,

neglecting the horizontal resistances of the cells inside the components, andparallelizing the

horizontal resistances linking the cell of one component to the ones of another component.

308

C.4 The complex MPC control solutions

1

2 %%

3 % *** ******************** %

4 % ******************* (4) MPC CONTROLLERS DEFINITION ******************** %

5

6 % ---------------> Centralized MPC Energy manager (PCM) <- ------------- %

7

8 % Sampling time

9 time_centr=10e-3;

10

11 % prediction model (MPC for PCM layer)

12 centr.model.a=model.a(end , end);

13 centr.model.b=[model.a(end ,1: end -1) model.b(end , end -1: end)]; % ingressi=[T1 T2 ...

T_N_CORE T_pcm T_amb]

14 centr.model.c=model.c(end , end);

15 centr.model.d= zeros (1,N_CORE+2);

16 centr.model=c2d(ss(centr.model.a, centr.model.b, cent r.model.c, centr.model.d),

time_centr, ’zoh’);

17 centr.init_state=0;

18

19 % Controller parameters if we use a QP problem solver

20 centr.rho=10ˆ5;

21 centr.Vy_max= zeros (1,1); % 0=hard 1=soft constraints

22 centr.ubA=parameters.u_max; % maximum energy (PCM is completely melted)

23 centr.ubA_modified=parameters.u_max+5; % maximum energy + margin

24 centr.reference=360 * ones(N_CORE-1,1); % Reference trajectory

25 centr.input_weight= eye (N_CORE-1); % Hessian matrix in QP problem

26 % QP matrices

27 centr.Q_qp=[centr.input_weight zeros (size (centr.input_weight,1),1);

zeros (1, size (centr.input_weight,1)) centr.rho]. * 2;

28 centr.f_1=2 * centr.input_weight;

29 centr.A_qp=[centr.model.c * centr.model.b(1,2:N_CORE) -centr.Vy_max];

30 centr.b_1=-centr.model.c * centr.model.a;

31 centr.b_2=-centr.model.c * [centr.model.b(:,1) centr.model.b(:,N_CORE+1:N_CORE+ 2)];

32

33 % Simulink function parameters for PCM layer (if we don’t use a QP solver)

34 param_fun.model.a=centr.model.a;

35 param_fun.model.b=centr.model.b; % ingressi=[T1 T2 ... T_N_CORE T_pcm T_amb]

36 param_fun.model.c=centr.model.c;

37 param_fun.model.d=centr.model.d;

38 param_fun.model.x0=centr.init_state;

39 param_fun.R_pcm=Chip_Dimensions.R_PCM+0.02;

40 param_fun.P_MIN=P_MIN;

41 param_fun.P_max=P_max;

42 param_fun.P_idle=P_idle;

43 param_fun.P_min=P_min;

44 param_fun.T_melt=T_melt;

45 param_fun.T_amb_max=Tenvironment_max;

46 param_fun.Ts=time_centr;

47 param_fun.time_centr=time_centr;

48 param_fun.N_CORE=N_CORE;

309

C. ACCURATE MODEL

49 param_fun.u_min=parameters.u_min;

50 param_fun.u_max=parameters.u_max;

51 param_fun.C_si=6.586887999999999e-005 * 400; % Silicon equivalent Capacity

52 param_fun.G_si=0.004166666666667 * 400; % Silicon equivalent Conductance

53 % Energy bound: Final value of the energy bound

54 deltaU=(P_MAX-(T_melt-Tenvironment_max)/ param_fun.R _pcm) * guaranteed_window;

55 U_N=parameters.u_max-deltaU;

56 % Energy bound: duration of slanted side of the trapezoid

57 param_fun.sliding_time=deltaU/(P_MIN-(T_melt-Tenvir onment_max)/param_fun.R_pcm);

58 param_fun.u_n=U_N;

59 % Margin on Energy bound parameters

60 tau=param_fun.C_si/param_fun.G_si * (P_MAX-P_MIN);

61 param_fun.u_max_marg=param_fun.u_max-tau;

62 param_fun.u_n_marg=param_fun.u_n-tau;

In this part of the code we initialized the parameters of the centralized MPC thatmanages

the PCM energy. First, the sampling time is assigned to thetime centrvariable, the prediction

model of the centralized controller is extrapolated from the general model found with theEm-

beddedCGModeling.mfunction, and the parameters of the optimization problem are defined.

Notice that the parameter of the controller will be used into the function called in the Simulink

block diagram to find the control decision of the centralized MPC controller.However, in the

proposed Simulink scheme we used a simpler ad hoc algorithm that uses the parameters con-

tained into the structureparamfun considerably reducing the computational complexity. The

structure will be given as input to the function called in the Simulink file to find the control

decision of the centralized controller. The last data are used for building the energy bound,

U N andsliding time are computed on the basis of the data specified in the first part of the

code. These data are finally shifted of a margin to account uncertainties and sample time.

1

2 % -----------------> Distribuito per Temperatura cores <- ---------------- %

3

4 % Sampling time

5 time_distr=2.5e-3;

6

7 % Thermal MPC parameters

8 distr.rho=10ˆ5; % slack variable weight

9 distr.Vy_max=0; % 0=hard 1=soft

10 distr.ubA=360 * ones(1,N_CORE); % Maximum temperatures

11 distr.input_weight=1; % R_u

12

13

14 stringa= ’distr.models.m’ ;

15 for i=1:N_CORE

16 j=0;

17 % Building of the single-core prediction model from the cent ralized

310

C.4 The complex MPC control solutions

18 % prediction model

19 eval ([stringa num2str (i) ’.a= model.a(i,i);’])

20 eval ([stringa num2str (i) ’.b= [model.b(i,i) model.b(i,end-1) model.a(i,

1:end-1)];’])

21 eval ([stringa num2str (i) ’.b(1,i+2)= 0;’])

22 eval ([stringa num2str (i) ’.c= model.c(i,i);’])

23 eval ([stringa num2str (i) ’.d= zeros(1,N_CORE+2);’])

24 eval ([stringa num2str (i) ’= c2d(ss(’ strcat(stringa, num2str (i)) ’.a, ’

strcat(stringa, num2str (i)) ’.b, ’ strcat(stringa, num2str (i)) ’.c, ’

strcat(stringa, num2str (i)) ’.d), time_distr, ’’zoh’’);’]);

25 eval ([’distr.init_state_’ num2str (i) ’=Tenvironment;’])

26

27 % QP problem parameters

28 eval ([’distr.Q_qp_’ num2str (i) ’=[distr.input_weight

zeros(size(distr.input_weight,1),1); zeros(1,size(di str.input_weight,1))

distr.rho]. * 2;’]);

29 eval ([’distr.f_1_’ num2str (i) ’=2 * distr.input_weight;’]);

30 acca=strcat(stringa, num2str (i));

31 eval ([’distr.aa_’ num2str (i) ’=’ stringa num2str (i) ’.a;’]);

32 eval ([’distr.bb_’ num2str (i) ’=’ stringa num2str (i) ’.b(:,1:N_CORE+2);’]);

33 eval ([’distr.cc_’ num2str (i) ’=’ stringa num2str (i) ’.c;’]);

34 eval ([’distr.dd_’ num2str (i) ’=’ stringa num2str (i) ’.d(:,1:N_CORE+2);’]);

35 eval ([’distr.A_qp_’ num2str (i) ’=[distr.cc_’ num2str (i) ’ * distr.bb_’ num2str (i)

’(:,1) -distr.Vy_max];’]);

36 eval ([’distr.b_1_’ num2str (i) ’=-distr.cc_’ num2str (i) ’ * distr.aa_’ num2str (i)

’;’]);

37 eval ([’distr.b_2_’ num2str (i) ’=-distr.cc_’ num2str (i) ’ * distr.bb_’ num2str (i)

’(:,2:end);’]);

38 eval ([’distr.x_obsv_’ num2str (i) ’=distr.init_state_’ num2str (i) ’’’;’]);

39 end

The same data defined for the central controller are defined for the distributed one. First,

the sampling time of the controller is defined (time distr), then the parameters of each local

controller are stored in thedistr structure: the thermal model of each core (extrapolated from

the general model found with theEmbeddedCGModeling.m), the optimization problem param-

eters and the initial state and the gain matrix of the observer. Notice that the observer in this

case is not necessary since each model has only one state coincident withthe measured output.

It is also worth to note that the optimization problem solved by each controller is very simple,

therefore, as for the case of the centralized controller, we proposed asimpler ad hoc function

that returns at any sampling time the control decision using a simple “if” statement.Using this

function the control computational complexity considerably reduces.

C.4.3.2 Simulink block diagram details

In this Section we provide details of the block diagram shown in Fig.C.7.

311

C. ACCURATE MODEL

The U boundblock The blockU boundgives as output the maximum energy that the PCM

layer can storage at each sampling time in order to ensure the re-sprinting every period. The

signal outgoing from this block has the shape of a trapezius repeated every period defined by the

user. It has been realized using the standard Simulink blockRepeating Sequence. The signal

is then delayed by one sampling time (time centr=10ms). The delayed value of the energy

bound,U max, represents the actual value of the constraints, while the original value is the

future value of the bound (U max fut). This trick is necessary since the centralized controller

needs the future value of the constraint in order to regulate the power consumption of the cores

for the next interval and prevent the energy bound violation.

The PCM MPC Layerblock The blockPCM MPC Layertakes as input the information on

the energy bound (U max fut andU max), the temperature of the cores, of the PCM and of

the ambient, and the target power consumption required by the high level manager. It returns

as output the target power of the cores (targ pow PCM) opportunely trimmed to prevent the

energy bound violation. This reduction is realized by the MPC used for PCMmanagement.

Looking at the Fig.C.7we notice that the MPC is implemented calling the functionfind pow.m

with the Matlab function blockCentralized. The code below show the implementation of the

function.

1 function [out] = find_pow(Temp, T_pcm, T_amb, P_core_in, u_max, u_m ax_future,

state, memory, parameters)

2

3 N_CORE=16; % number of cores

4 % Initialization of the variables

5 P_core_out=P_core_in;

6 state_out=state;

7 memory_out=memory;

8 memory_out(2)=P_core_in(2); % Storing of past power (core 2)

9 % Energy estimation

10 u_estim=parameters.model.a * memory(1)+parameters.model.b * [Temp(1: end -1); T_pcm;

T_amb];

11 memory_out(1)=u_estim; % Storing of energy

12

13 % State 1

14 if state(1)==1

15 if (u_estim>=u_max_future)

16 % If violation of energy bound, then computing of ideal targe t power

17 P_ideal= (((u_max_future-u_max)/ parameters.Ts)- P_cor e_in(1)+ (T_pcm-T_amb)

/parameters.R_pcm)/ (N_CORE-1);

18 % If ideal target power lower than P_MIN --> assign P_idle to c ores

2,...,N_CORE

19 if (P_ideal>parameters.P_idle && P_ideal<parameters.P_mi n)

312

C.4 The complex MPC control solutions

20 P_ideal=parameters.P_idle;

21 end

22 if (P_ideal<parameters.P_idle)

23 P_ideal=parameters.P_idle;

24 end

25 % Target power consumption

26 P_core_out=[P_core_in(1); P_ideal * ones(parameters.N_CORE-1, 1)];

27 % Changing of the state

28 state_out(1)=0;

29 state_out(2)=1;

30 end

31 end

32

33 % State 2

34 if state(2)==1

35 % Computing of ideal target power

36 P_ideal= (((u_max_future-u_max)/ parameters.Ts)- P_cor e_in(1)+ (T_pcm-T_amb)/

parameters.R_pcm)/ (N_CORE-1);

37 % If ideal target power lower than P_MIN --> assign P_idle to c ores 2,...,N_CORE

38 if (P_ideal>parameters.P_idle && P_ideal<parameters.P_mi n)

39 P_ideal=parameters.P_idle;

40 end

41 if (P_ideal<parameters.P_idle)

42 P_ideal=parameters.P_idle;

43 end

44 P_core_out= [P_core_in(1); min (P_core_out(2:parameters.N_CORE),

P_ideal * ones(parameters.N_CORE-1, 1))];

45 % If the energy bound minimum value is reached or another spri nting is requested

46 if ((u_max_future>u_max+0.1)||(P_core_in(2)>memory(2)))

47 % Target power consumption

48 P_core_out=P_core_in;

49 % Changing of the state

50 state_out(1)=1;

51 state_out(2)=0;

52 end

53 end

54

55 out=[P_core_out; state_out; memory_out]; % Outputs update

56

57 return

The function, beside the parameters entering thePCM MPC Layerblock, takes as input the

variableparametersthat is the structure containing the value defined in SectionC.4.3.1. Notice

also the parametersstateandmemory. These are not really inputs, but variables that should be

kept in memory at each sampling time. Thus, we feedback their values at eachsampling time

adding a one sample delay block. The output of the function is an array containing the power

consumption value and the values to be stored (i.e.stateandmemory).

313

C. ACCURATE MODEL

In the first part of the code we initialized the output variables, and we computed a prediction

of the internal energy of the system (u pred) at the next sampling time. The variablememoryis

a vector with two elements. The first contains the past power consumption of the core number

2, while the second contains the predicted energy. The controller can be implemented as a

two states automata. The controller remains in the state 1 if the predicted energy isbelow

the future value of the energy bound. In this case there is no need to trim thetarget power

consumption requested to the core (targ pow PCM=targ pow). Otherwise, if there is a energy

bound violation, the controller switch to the state 2 where the target power consumption in input

is reduced to the valueP ideal, that is the value that maintains the energy of the next sampling

interval close to the energy bound. This value is assigned to the output variabletarg pow PCM)

until the energy bound reach the minimum value or another re-sprint is requested (the input

power of the core 2 is greater than the past one).

The Thermal MPC Layerblock The blockThermal MPC Layertakes as input the infor-

mation on the temperature of the cores and of the PCM, and the target power consumption

opportunely updated by thePCM MPC Layerblock. It returns as outputs the controlled power

of the cores (cntrled pow). Fig. C.7 shows that the MPC is implemented calling the known

functiondistrMPC Yalmip.mwith the Matlab function blockDistributed. However, as already

mentioned, it is possible to use a simpler function for reducing complexity.

1 function [power_cores_cntrl] = distrMPC_Simple(Temp,T_pcm,powe r_cores_target,distr)

2

3 N_CORE=16; % number of cores

4 P_idle=0.05; % power consumption of a core when it is turned off

5 P_min=0.15; % power consumption of a core when the freq is the minimum

6 for j=1:NC

7 % Computing of the future ideal power by inverting the model t o obtain T_MAX

8 eval ([’p_ideal= (distr.ubA(j)-distr.model.m’ num2str (j) ’.c * distr.model.m’

num2str (j) ’.a * Temp(j)- distr.model.m’ num2str (j) ’.c * distr.model.m’

num2str (j) ’.b * [0; T_pcm; Temp(1:end-1)])/ (distr.model.m’ num2str (j)

’.c * distr.model.m’ num2str (j) ’.b(1));’]);

9 % If the ideal power is lower than the requested --> trim, othe rwise do nothing

10 if power_cores_target(j) <= p_ideal

11 power_cores_cntrl(j)=power_cores_target(j);

12 else

13 power_cores_cntrl(j)=p_ideal;

14 end

15 end

16

17 % if P_idel < ideal power < P_MIN --> ideal power = P_MIN

18 power_cores_cntrl(power_cores_cntrl<=P_idle)=P_idle ;

19 power_cores_cntrl((power_cores_cntrl<P_min)& (power_ cores_cntrl>P_idle))=P_min;

314

C.4 The complex MPC control solutions

20

21 return

The function takes as inputs the same parameters of theThermal MPC Layerblock and the

distr parameters defined in SectionC.4.3.1. The output is the vector containing the controlled

power of each local controller and that will feed the cores of the chip. For each core the

function computes, by inverting the single-core model, the ideal power (p ideal) needed at the

next sampling time to maintain the temperature exactly at the critical value. The controlled

power given as output will be the minimum between thep idealand the target power requested

by thePCM MPC Layer.

315

C. ACCURATE MODEL

316

Bibliography

[1] The MathWorks Inc.MATLAB 7.9.0, Natick, MA, 2009.

[2] A. Bemporad,Hybrid Toolbox - User’s Guide, http://cse.lab.imtlucca.it/∼bemporad/hybrid/toolbox, 2004.265

[3] J. Löfberg,YALMIP : A Toolbox for Modeling and Optimization in MATLAB, in Proc. of the CACSD Conference, Taipei,

Taiwan, 2004.262, 277

[4] qpOASES,Homepage, http://homes.esat.kuleuven.be/∼optec/software/qpOASES/284

[5] H. J. Ferreau, H. G. Bock, M. Diehl,An online active set strategy to overcome the limitations ofexplicit MPC, International

Journal of Robust and Nonlinear Control, Vol. 18(8):816-830, 2008.284

317

	List of Figures
	1 Introduction
	1.1 MPSoCs and Multi-core basics
	1.2 Motivations
	1.3 Thesis contributions
	1.4 Thesis Overview

	Bibliography
	2 MPSoCs Issues and Solutions
	2.1 Processors issues from the beginning
	2.1.1 The ``Power Wall''
	2.1.2 The ``Thermal Wall''
	2.1.3 The ``Utilization Wall''

	2.2 Related Works
	2.2.1 Solutions for thermal issue
	2.2.2 Solutions for utilization issue

	Bibliography
	3 Model Predictive Control
	3.1 Background
	3.1.1 History
	3.1.2 Advantages and disadvantages

	3.2 MPC structure
	3.2.1 Prediction models
	3.2.2 Constrained optimization problem
	3.2.3 Different MPC solutions

	3.3 Explicit MPC
	3.4 Distributed/Decentralized MPC for large scale systems
	3.5 Feasibility, Stability, and Computational Complexity
	3.5.1 MPC Feasibility
	3.5.2 MPC Stability
	3.5.3 MPC Complexity

	3.6 Notes

	Bibliography
	4 MPC thermal controller for MPSoCs
	4.1 The prediction model
	4.1.1 Distributed ARX identification
	4.1.2 H identification
	4.1.3 POD approach

	4.2 The Distributed Thermal Controllers
	4.3 Design choices motivations
	4.3.1 Distributed solution vs. Centralized solution
	4.3.2 Model accuracy
	4.3.3 Power Model accuracy
	4.3.4 Distributed solution vs. PID solution

	4.4 Control feasibility and other properties
	4.4.1 The thermal problem
	4.4.2 Thermal system physical properties
	4.4.3 The constraint reduction property
	4.4.4 The feasibility issue
	4.4.5 Discretization issues
	4.4.6 Notes on stability

	Bibliography
	5 Complex control solutions
	5.1 Thermal and Energy management of High-Performance Multi-cores
	5.1.1 The Architecture
	5.1.1.1 Local Self-Calibration Routine
	5.1.1.2 The Local Energy Manager
	5.1.1.3 The Local MPC-based Thermal Controller

	5.1.2 The Implementation
	5.1.3 Experimental Results

	5.2 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor Systems on Chip
	5.2.1 The Architecture
	5.2.1.1 Local Iterative Identification Procedure
	5.2.1.2 Local Safety Controller
	5.2.1.3 Local MPC Controller

	5.2.2 The Implementation
	5.2.3 Experimental Results

	5.3 Communication-aware solution
	5.3.1 Architecture
	5.3.1.1 Problem update

	5.3.2 The Implementation
	5.3.3 Experimental Results

	Bibliography
	6 Guaranteed Re-sprinting in MPSoCs exploiting MPC
	6.1 Overview
	6.2 Sprinting Architecture
	6.2.1 Platform Characteristics
	6.2.2 Thermal Modeling (Simulator)
	6.2.3 Guaranteed re-sprinting definition

	6.3 Architecture
	6.3.1 The Lower-layer thermal controller
	6.3.2 The Higher-layer PCM controller

	6.4 The Implementation
	6.5 Experimental Results
	6.5.1 Generic workload
	6.5.2 Guaranteed re-sprints
	6.5.3 Non-nominal conditions

	Bibliography
	7 Conclusion and future developments
	7.1 Conclusion
	7.2 Future works

	8 Publications
	Appendices
	A Mathematical Background
	A.1 Convex Linear MPC with quadratic cost function implementation
	A.2 Multi-parametric Quadratic Programming
	A.2.1 A mpQP algorithm

	Bibliography
	B MPSoCs and Simulators
	B.1 The MPSoC System
	B.2 The Power Consumption
	B.3 The Power Model
	B.4 The Thermal plant
	B.4.1 Matlab/Simulink Simulator
	B.4.2 Simics Simulator

	B.5 Performance
	B.6 The SCC platform

	Bibliography
	C Accurate Model
	C.1 The plant
	C.1.1 Global parameters
	C.1.1.1 Layout_Files_Generation.m

	C.1.2 Input Pattern Generation
	C.1.3 Thermal Model Generation
	C.1.3.1 mat_modeling.m
	C.1.3.2 fine2L_linear.m
	C.1.3.3 discretization.m
	C.1.3.4 Visualization3D.m

	C.2 The thermal model identification
	C.2.1 distributed ARX identification
	C.2.1.1 MPSoC_Id_Distr.m
	C.2.1.2 SCI.m
	C.2.1.3 give_physics.m

	C.2.2 H identification
	C.2.2.1 MPSoC_Id_Hinf.m

	C.2.3 POD approach
	C.2.3.1 POD_redu.m

	C.3 The distributed MPC control solution
	C.3.1 Hybrid Toolbox
	C.3.1.1 Textual version
	C.3.1.2 Simulink version

	C.3.2 Yalmip Toolbox
	C.3.2.1 Textual version
	C.3.2.2 Simulink version

	C.3.3 qpOASES

	C.4 The complex MPC control solutions
	C.4.1 A feasible two-layer distributed MPC approach to thermal control of Multiprocessor Systems on Chip
	C.4.2 Communication-aware solution
	C.4.2.1 communication.m

	C.4.3 Guaranteed Re-sprinting in MPSoCs exploiting MPC
	C.4.3.1 Simulation Initialization
	C.4.3.2 Simulink block diagram details

	Bibliography

