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Abstract 

 

A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the 

evaluation of tangential and normal stresses in moderately thick functionally graded conical and 

cylindrical shells subjected to mechanical loadings. Several types of graded materials are 

investigated. The functionally graded material consists of ceramic and metallic constituents. A four 

parameter power law function is used. The UTSDT allows the presence of a finite transverse shear 

stress at the top and bottom surfaces of the graded  shell. In addition, the initial curvature effect 

included in the formulation leads to the generalization of the present theory (GUTSDT). The 

Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the 

governing equations, the external boundary conditions and the compatibility conditions. Transverse 

and normal stresses are also calculated by integrating the three dimensional equations of 

equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point 

of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of 

the power law functions are shown  for a wide range of functionally conical and cylindrical shells 

under various loading and boundary conditions. Finally, numerical examples of the available 

literature are worked out. 
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Chapter 1 
 

Third order Shear Deformation Theory 

 

Sommario 

Dopo aver analizzato lo stato dell’arte, si è fatta strada l’idea di sviluppare una teoria generale di 

deformazione a taglio del terzo ordine di tipo svincolato per gusci/pannelli  di rivoluzione a doppia 

curvatura, costituiti da uno strato singolo di materiale a stratificazione graduale. Si è operata la 

scrittura del modello cinematico a sette parametri indipendenti, delle relazioni tra deformazioni e 

spostamenti arricchite dell'effetto della curvatura, delle equazioni  costitutive per una lamina singola 

in materiale a stratificazione graduale e delle caratteristiche di sollecitazione in funzione degli 

spostamenti. Definiti i carichi esterni uniformi di natura trasversale, assiale e circonferenziale, è 

stato applicato il principio degli spostamenti virtuali per ricavare le equazioni indefinite di 

equilibrio e le condizioni al contorno. Pertanto si è proceduti alla scrittura della equazioni 

fondamentali con la sostituzione delle relazioni delle azioni interne espresse in funzione degli 

spostamenti, nelle equazioni indefinite di equilibrio. Compiuta la scrittura del sistema fondamentale 

si è pervenuti alla soluzione di esso in termini delle sette variabili di spostamento indipendenti, 

applicando la tecnica di quadratura differenziale di tipo generalizzato in tutti i punti della superficie 

di riferimento del panello/guscio. Dunque è stato possibile determinare le tensioni membranali in un 

punto arbitrario appartenente alla superficie di riferimento del panello/guscio ed elaborare poi la 

distribuzione di esse lungo lo spessore dell'elemento strutturale. Successivamente con il fine di 

pervenire alla determinazione completa del tensore delle tensioni, ovvero delle tensioni trasversali 

normale e tagliante, si è operata l'integrazione delle equazioni indefinite di equilibrio sfruttando la 

conoscenza delle tensioni membranali, determinate indirettamente dal sistema fondamentale, 

sempre utilizzando il metodo generalizzato di quadratura differenziale. Pertanto si è pervenuti alla 

determinazione dei profili di tensione trasversale normale e tagliante lungo lo spessore del 

panello/guscio. In ambito letterario, il percorso proposto ha degli attributi di autenticità in quanto 

consente di calcolare profili di tensione trasversale che soddisfano al pieno le condizioni al 

contorno, anche in presenza di carichi taglianti alle superfici di estremità. In tal modo viene 

superato uno dei limiti propri della teoria di Reddy che diversamente ritiene nulli a priori i carichi 

taglianti alle estremità del panello/guscio.  
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1.1 General literature trends 

Two significant classes of two dimensional shell theories can be found in literature: the first based 

on the assumed form of the displacement field and the second based on the assumed form of the 

stress field. In both cases, the displacement or stress fields are expanded in increasing powers of the 

thickness coordinate. Nevertheless, displacement – based theories are more recurrent because they 

do not require the strain/stress compatibility condition in addition to the kinematic and equilibrium 

equations. It is proved that a third order expansion of the displacement field is optimal because it 

gives quadratic variation of transverse strains and stresses, and require no “shear correction factors” 

compared to the first order theory, where the transverse strains and stresses are constant through the 

shell thickness. A brief overview of research done in third order shell theories is also included in 

here.  

The simplest and oldest plate theory is the classical Kirchhoff plate theory [1]. The so called 

Kirchhoff hypothesis includes the following assumptions: straight lines remain perpendicular to the 

reference surface and inextensible after deformation. In this manner both transverse shear and 

normal strains [2,3] are neglected. These assumptions in the model simplify the three dimensional 

problem to a two dimensional one and the governing equations are expressed in terms of three 

displacements of a point on the midsurface. Moreover the theory does not qualify to be called first 

order because the first order terms or rotations are not independent of the transverse displacement 

component. The theory is very useful in a wide range of problems when thickness is very small 

(two orders of magnitude less than the smallest in plane dimension). Transverse shear strains are 

also negligible. 

The simplest first order shear deformation shell theory (FSDT) often referred to as the Mindlin plate 

theory [4-6], is based on the displacement expansion till to the first order, where the first order 

terms are the rotations of a transverse normal line and are independent of the transverse 

displacement component. The first idea of such expansion can be found in earlier works by Basset 

[7], Hencky [8] and Hildebrand et al. [9]. The normality is not invoked and in this way the rotation 

are independent of membrane and transverse displacement components and the transverse shear 

strains are non zero but independent of out of plane coordinate. This leads to the introduction of 

shear correction factors in the evaluation of the transverse shear forces.  

Second order and higher order theories relax the Kirchhoff hypothesis further by allowing the 

straight lines normal to the midsurface before deformation to become curves. Second order shell 

theories are not so diffused because they also require shear correction factors. 

The third order theories provide a slight increase in accuracy relative to the FSDT solution, at the 

expense of an increase in computational effort and do no require shear correction factors.  
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Several third order plate theories have been developed by different researchers [10-24] but as 

pointed by Reddy [21] some of them are claimed to be new whereas they are not new, but only 

different in the form of the displacement expansions adopted.  

Reddy [19,20] is the first one to develop the equilibrium equations of a third order shell theory with 

vanishing tractions for composite structures, using the principle of virtual displacements. By means 

of these assumptions, Reddy’s theory reduces the independent displacement components from 

seven to five. The theory leads to the accurate reconstruction of the effective transverse shear 

components but it excludes the presence of transverse shear loads on the boundary surfaces of the 

shell. 

 

1.2 The aim of the present work 

In the present work, by moving from Leung’s idea [25] a third order shear deformation theory has 

been developed by neglecting the Reddy’s assumptions. The present third order model involves 

seven unknown independent parameters and it includes the possible presence of shear uniform loads 

in addition to the normal uniform one on the extreme surfaces of composite shell. As in the Reddy’s 

theory no correction factor is introduced.  

The third order shear deformation theory under discussion is formulated for a single lamina doubly 

curved shell of functionally graded material. The seven independent fundamental equations are 

achieved  by applying the principle of virtual displacements  and the fundamental system is solved 

by means of the GDQ method [26-62]. By using the GDQ solution in term of the generalized 

displacements of points on the reference surface, the membrane profiles of normal and shear 

stresses are determined throughout the thickness direction. Then, by considering the three 

dimensional equilibrium equations, by discretizing them via the GDQ method and by the 

knowledge of the membrane stress components, the transverse profiles of normal and shear stresses 

are determined with satisfaction of the boundary conditions at the extreme surfaces. The Reddy’s 

model lead to accurate transverse  stress profiles by supposing the null values of transverse shear 

stress component at the extreme surfaces, whereas the present one in conjunction with the stress 

recovery from the three dimensional equations leads to accurate transverse shear stress profiles even 

if shear uniform loadings are present on the boundary surfaces.  

 
1.3 Problem formulation  

In this study, a single lamina doubly curved shell of functionally graded material represents the 

basic configuration of the problem (Fig.1). , s  are the coordinates along the meridian and 

circumferential directions of the reference surface, respectively. The third orthogonal coordinate to 
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the middle plane along the shell normal is  .  - coordinate  defines the distance of each point 

from the shell mid surface 2 2h h    and h  is the thickness of the shell. The angle between 

the extended normal n to the reference surface and the axis of rotation 3x , or the geometric axis 

3x of the meridian curve, is defined as the meridian angle  . The angle formed by the parallel circle 

0 ( )R   and the 1x  axis is designated as the circumferential angle  . The meridian curves and the 

parallel circles are represented by the parametric coordinates  ( , s ) upon the middle surface of the 

shell. The curvilinear abscissa  s  of a generic parallel is related to the circumferential angle   by 

the relation 0s R . The horizontal radius 0 ( )R  of a generic parallel of the shell represents the 

distance of each point from the axis of revolution 3x . bR  is the shift of the geometric axis of the 

curved meridian 3x  with reference to the axis of revolution 3x . The curvature radius R for a shell 

of revolution is defined by the relation 0 sinR R  . For a general shell of revolution, ,R R  , 

0R are all independent of the  -angle. The well known equation of Gauss - Codazzi is also 

considered : 0 cosdR d R  . 

The position of an arbitrary point within the shell material is defined by the coordinates   

( 0 1    ), s ( 00 s s  ) upon the middle surface, and   directed along the outward normal and 

measured from the reference surface ( 2 2h h   ). In the present shell theory, the following 

assumptions are taken under consideration in the formulation: (1) the shell deflections are small and 

the strains are infinitesimal; (2) the transverse shear deformation is considered to influence the 

governing equations. In this manner the normal lines to the reference surface of the shell before 

deformation do not remain straight and normal after deformation; (3) the transverse normal strain is 

inextensible so that the normal strain is equal to zero; (4) the shell is moderately thick so that the 

transverse normal stress could be considered negligible; (5) the linear elastic behavior of composite 

materials is assumed; (5) the initial curvature effect is also taken into account.  

 

1.3.1 Third order displacement expansion 

Consistent with the assumptions of a moderately thick shell theory reported above, the displacement 

field considered in this study is that of the Third order Shear Deformation Theory and can be put in 

the following form : 

       
       
   

3

3

, , , , ,

, , , , ,

, , ,
s s s s

U s u s s s

U s u s s s

W s w s

          
       
  

  
  


 

(1)
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where u , su , w  are the displacement components of points lying on the reference surface ( 0  ) 

of the shell, along meridional, circumferential and normal directions, respectively.   and s  are 

normal to mid-surface rotations, respectively.   and s  are the higher order terms. The kinematic 

hypothesis expressed by Eq.(1) is enriched by the statement that the shell deflections are small and 

strains are infinitesimal, that is  ,w s h  .  

 

1.3.2  Relations between strains and displacements  

The relations of strains for a revolution shell are the followings [64]: 

 

1

1

U
W

R
R










 
       

 

                                                                                                           (2) 

 

0
0

1
cos sin

sin
1

U
U W

R
R


   

 
        

 

                                                                           (3) 

 
By considering 0s R    , Eq.(3) can be written in the following form: 

 

0 0

1 cos sin

1

s
s

U
U W

s R R

R





 


 
       
 

                                                                                   (3.1) 

                                                                            

n

W






                                                                                                                                           (4) 

 

1
1

1 1
n

UW
R

R
R R

R R


 


 

 


  

 
 

                             

                                                                  (5) 

 

0

0 0

1
1

1 1
n

UW
R

R
R R

R R






 


  

 
 

                        

                                                                   (6) 

 
By considering 0s R    , Eq.(6) can be written in the following form: 
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0

0

1
1

1 1

s
sn

UW
R

s R
R

R R


 


 

 
 

                        

                                                                     (6.1) 

 

0

1 1
cos

11

UU
U

RR
RR


 




 
 

 
                

                                                                 (7) 

 
By considering 0s R    , Eq.(7) can be written in the following form: 

 

0

1 1 cos

11

s
s s

UU
U

s R
R

RR








 

 
                

                                                                   (7.1) 

 
By substituting Eq.(1) in Eqs.(2-7.1), relations between strains and displacements become: 
 

 
31

1

u
w

R R
  


 

 
  

  

        
                  

(8)

 

 0 3

cos sin cos
1

1
cos

u
u w

R R

 
 


 



    
 


   



                  
        

(9)

 
By considering 0s R    , Eq.(9) can be written in the following form: 

 

 
0 0 0

3

0

cos sin cos

1
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s s
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s

u
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

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                                           (9.1) 

 

 
2 31 1 1

( 3 2 )
1

n

w
u

R R RR


   
  


    




     


                                                           (10) 
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 
2 3

0

1 1 1
( 3 2 )

1
n

w
u

R R RR


   
 

    



     


                                                           (11) 

 
By considering 0s R    , Eq.(11) can be written in the following form: 

 

 
2 31 1

( 3 2 )
1

s
sn s s s

w
u

R s RR  

    



     


                                                               (11.1) 

 

 

 

3

3

0

1

1

1
cos cos cos

1

u

R R

u
u

R R

  


 

  
  



   
  

 
      

  

      
              

     
                

 

(12)  

 
By considering 0s R    , Eq.(12) can be written in the following form: 

 

 

 

3

3

0 0 0

1

1

1 cos cos cos

1

s s s
s

s s s

u

R R

u
u

s R s R s RR


 

  



   
  

      


      
              

      
                 

 

(12.1)

 
The transverse normal strain is 0n   as in the assumptions.  

 
 
1.3.3 Relations between stresses and strains 

Relations between stresses and strains for a single lamina functionally graded shell are as follows: 

 

11 12

12 22

66

44

55

0

s

s s

n

s s

n n

sn sn

Q Q

Q Q

Q

Q

Q

 



 

 

  

  


 

 

 

 

 








                                                                                                                            (13) 

 
where [40,41]:  
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 
   

  
 

11 22 122 2

66 44 55

( )
,

1 ( ) 1

2(1 ( ))

EE
Q Q Q

E
Q Q Q

  
   


 

  
 

  


 (14)

  

The material properties of the functionally graded lamina vary continuously and smoothly in the 

thickness direction    and are functions of volume fractions of constituent materials. Young’s 

modulus ( )E  , Poisson’s ratio     and mass density     of the functionally graded lamina 

can be expressed as a linear combination of the volume fraction: 

 

   
   
   

( )

( )

( )

C M C M

C M C M

C M C M

V

E E E V E

V

     

 

     

  

  

  

                                                                                                       (15)

 

where  CV   is the volume fraction of the ceramic constituent material, while C , CE , C  and 

M , ME , M  represent mass density, Young’s modulus, Poisson’s ratio of the ceramic and metal 

constituent materials, respectively.  

In this work, the ceramic volume fraction  CV   follows two simple four parameter power law 

distributions[40,41]:  

 

1,2( , , , )

1 1
: ( ) 1

2 2

pc

a b c p CFGM V a b
h h

 
                 

                                                                  (16) 

 

where the volume fraction index p  ( 0 p   ) and the parameters a , b , c  determine the material 

variation profile along the thickness direction. The elastic engineering constants are written as 

follows: 

 

 
2

2 3 4 5 6 7 8 9
, , , , , , ,

2

, , (1, , , , , , , , , )

h

ij ij ij ij ij ij ij ij ij ij ij
h

A B D E F L H M N V Q d         




                            (17) 
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1.3.4 Internal forces and moment resultants  

Normal forces, moments, and higher order moments, as well as the shear force and higher order 

shear force are all defined by the following  expressions: 

 

 
2

3

2

, , (1, , ) 1

h

h

N M P d
R   


   




 
  

 
  

(18)

 

 
2

3

2

, , (1, , ) 1

h

s s s s
h

N M P d
R

   




 
   

 
  

(19)

 

 
2

3

2

, , (1, , ) 1

h

s s s s
h

N M P d
R   


   




 
  

 
  

(20)

  

 
2

3

2

, , (1, , ) 1

h

s s s s
h

N M P d
R   


   




 
   

 
  

(21)

 

 
2

2 3

2

, , (1, , ) 1

h

n
h

T Q S d
R   


   




 
  

 
  

(22)

 

2
2 3

2

( , , ) (1, , ) 1

h

s s s sn
h

T Q S d
R

   




 
   

 
  

(23)

 

By considering the effect of the initial curvature in the formulation, the stress resultants 

, ,s s sN M P    are not equal to the stress resultants , ,s s sN M P   , respectively. This assumption 

derives from the consideration that the ratios / R , / R  are not neglected with respect to unity. 

The effect of initial curvature is characterized by the following coefficients as firstly done by 

Toorani Lakis [63] and then improved by Tornabene [55]: 
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1 2 3 2
0 0 0

2

1 2 3 2
0 0 0 0 0

sin 1 1 sin 1 1 sin 1
, ,

1 sin sin sin 1 sin sin 1
, ,

a a a
R R R R R R R R

b b b
R R R R R R R R

    

  

  

    

   
            

   
   

            
   

 

(24)
 

1.3.5 Normal and shear forces 

By substituting Eqs.(13) in Eqs.(18-21), the following expressions are obtained:  

 

 

 

 

 

11 1 11 2 11 3 11 12 12
0

12 11 1 11 2 11 3 11
0

11 1 11 2 11 3 11 12
0

12 11 1 11 2 11 3 11 12
0

12

1 cos

sin 1

1 cos

1 cos

s

s

s

u u
N A a B a D a E A u A

R R s

A w A a B a D a E w
R R

B a D a E a F B
R R

B E a F a L a H E
s R R

E
s


 




















  


  




 
      

 

     


     



 
      

 






 

(25)
 

 

 

 

 

 

12 22 1 22 2 22 3 22
0

22 1 22 2 22 3 22

22 1 22 2 22 3 22 12
0

12 22 1 22 2 22 3 22
0

22 1 22 2 22 3 22

12

1 cos

sin 1

1 cos

1 cos

s

s

s

u
N A A b B b D b E u

R R

u
A b B b D b E

s

A b B b D b E w A w
R R

B B b D b E b F
R R

B b D b E b F
s

E
R R






















  




 



     




    



     


     




    




 


 

 

22 1 22 2 22 3 22
0

22 1 22 2 22 3 22
s

E b F b L b H

E b F b L b H
s





   


   



                                                           (26) 
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 

 

 

66 66 1 66 2 66 3 66 66
0

66 66 1 66 2 66 3 66 66
0

66 66 1 66 2 66 3 66 66
0

1 cos

1 cos

1 cos

s
s s

s
s

s
s

u u
N A A a B a D a E A u

s R R

B B a D a E a F B
s R R

E E a F a L a H E
s R R

















   


   


   
           
   

           
   

          

 

(27)
 

 

   

 

 

66 1 66 2 66 3 66 66

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0

66 66 1 66 2 66 3 66
0

66 1 66 2 66 3 66 66

1

cos

1 cos

1

s
s

s

s
s

s

u u
N A b B b D b E A

s R

A b B b D b E u B b D b E b F
R s

B B b D b E b F
R R

E b F b L b H E
s R


















  


 

 
     

 

  
             

 
          

 
    

 
 66 1 66 2 66 3 66

0

cos
sE b F b L b H

R

 


 
      
 

 

                                                                                                                                                                       (28)    
 
 
1.3.6 Moments 

By substituting Eqs.(13) in Eqs.(18-21), the following expressions are obtained:  

 

 

 

 

 

11 1 11 2 11 3 11 12 12
0

12 11 1 11 2 11 3 11
0

11 1 11 2 11 3 11 12
0

12 11 1 11 2 11 3 11 12
0

12

1 cos

sin 1

1 cos

1 cos

s

s

s

u u
M B a D a E a F B u B

R R s

B w B a D a E a F w
R R

D a E a F a L D
R R

D F a L a H a M F
s R R

F
s


 




















  


  




 
      

 

     


     



 
      

 






 

(29)
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 

 

 

 

 

12 22 1 22 2 22 3 22
0

22 1 22 2 22 3 22

22 1 22 2 22 3 22 12
0

12 22 1 22 2 22 3 22
0

22 1 22 2 22 3 22

12

1 cos

sin 1

1 cos

1 cos

s

s

s

u
M B B b D b E b F u

R R

u
B b D b E b F

s

B b D b E b F w B w
R R

D D b E b F b L
R R

D b E b F b L
s

F
R R






















  




 



     




    



     


     




    




 


 

 

22 1 22 2 22 3 22
0

22 1 22 2 22 3 22
s

F b L b H b M

F b L b H b M
s





   


   



 

(30)
 

 

 

 

66 66 1 66 2 66 3 66 66
0

66 66 1 66 2 66 3 66 66
0

66 66 1 66 2 66 3 66 66
0

1 cos

1 cos

1 cos

s
s s

s
s

s
s

u u
M B B a D a E a F B u

s R R

D D a E a F a L D
s R R

F F a L a H a M F
s R R

















   


   


   
           
   

           
   

          

 

(31)
 

 

 

 

 

 

66 1 66 2 66 3 66

66 66 1 66 2 66 3 66
0

66 1 66 2 66 3 66

66 66 1 66 2 66 3 66
0

66 1 66 2 66 3 66

66

1 cos

1 cos

1

s

s
s

s
s

u
M B b D b E b F

s

u
B B b D b E b F u

R R

D b E b F b L
s

D D b E b F b L
R R

F b L b H b M
s

F
R



















  







    


 

          


    


 
          


    




  66 1 66 2 66 3 66
0

coss
sF b L b H b M

R

 


 
        

 

(32)
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1.3.7 Higher order moments 

By substituting Eqs.(13) in Eqs.(18-21), the following expressions are obtained:  

 

 

 

 

 

11 1 11 2 11 3 11 12
0

12 12 11 1 11 2 11 3 11
0

11 1 11 2 11 3 11 12
0

12 11 1 11 2 11 3 11 12
0

12

1 cos

sin 1

1 cos

1 cos

s

s

s

u
P E a F a L a H E u

R R

u
E E w E a F a L a H w

s R R

F a L a H a M F
R R

F H a M a N a V H
s R R

H
s


 




















  


  





    




      




     



 
      

 






 

(33)
 

 

 

 

 

 

12 22 1 22 2 22 3 22
0

22 1 22 2 22 3 22

22 1 22 2 22 3 22 12
0

12 22 1 22 2 22 3 22
0

22 1 22 2 22 3 22

12

1 cos

sin 1

1 cos

1 cos

s

s

s

u
P E E b F b L b H u

R R

u
E b F b L b H

s

E b F b L b H w E w
R R

F F b L b H b M
R R

F b L b H b M
s

H
R R






















  




 



     




    



     


     




    




 


 

 

22 1 22 2 22 3 22
0

22 1 22 2 22 3 22
s

H b M b N b V

H b M b N b V
s





   


   



 

(34)
 

 

 

 

66 66 1 66 2 66 3 66 66
0

66 66 1 66 2 66 3 66 66
0

66 66 1 66 2 66 3 66 66
0

1 cos

1 cos

1 cos

s
s s

s
s

s
s

u u
P E E a F a L a H E u

s R R

F F a L a M a N F
s R R

H H a M a N a V H
s R R

















   


   


   
           
   

           
   

          

 

(35)
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 

 

 

 

 

66 1 66 2 66 3 66 66

66 1 66 2 66 3 66
0

66 1 66 2 66 3 66 66

66 1 66 2 66 3 66
0

66 1 66 2 66 3 66 66

1

cos

1

cos

1

s
s

s

s

s

s

u u
P E b F b L b H E

s R

E b F b L b H u
R

F b L b H b M F
s R

F b L b H b M
R

H b M b N b V H
s R


















 


 

 

 
     

 

 
       
 

 
     

 

 
       
 

 
    



 66 1 66 2 66 3 66
0

cos
sH b M b N b V

R



 




 
      
 

 

(36)
 
 
1.3.8 Shear forces 

By substituting Eqs.(13) in Eqs.(22,23), the following expressions are obtained:  

 

 

 

 

   

44 1 44 2 44 3 44

44 1 44 2 44 3 44

44 1 44 2 44 3 44

44 1 44 2 44 3 44 44 1 44 2 44 3 44

1

1

2
3

T A a B a D a E u
R

w
A a B a D a E

R

A a B a D a E

D a E a F a L E a F a L a H
R

 






 






 

     

  
        
    

       

 

(37)
 

 

   

   

55 1 55 2 55 3 55
0

55 1 55 2 55 3 55 55 1 55 2 55 3 55

55 1 55 2 55 3 55 55 1 55 2 55 3 55
0

sin

2sin
3

s s

s

s s

T A b B b D b E u
R

w
A b B b D b E A b B b D b E

s

D b E b F b L E b F b L b H
R





 

    


        



       

 

(38)
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   

 

   

44 1 44 2 44 3 44 44 1 44 2 44 3 44

44 1 44 2 44 3 44

44 1 44 2 44 3 44 44 1 44 2 44 3 44

1 1

2
3

w
Q D a E a F a L u D a E a F a L

R R

D a E a F a L

F a L a H a M L a H a M a N
R

 
 



 






 

  
             

    

       

 

(39)
 

   

   

 

55 1 55 2 55 3 55 55 1 55 2 55 3 55
0

55 1 55 2 55 3 55 55 1 55 2 55 3 55

55 1 55 2 55 3 55
0

sin

3

2sin

s s

s s

s

w
Q D b E b F b L u D b E b F b L

R s

D b E b F b L F b L b H b M

F b L b H b M
R



 

 


         



        

   

 

(40)
 
 
 

 

 

 

   

44 1 44 2 44 3 44

44 1 44 2 44 3 44

44 1 44 2 44 3 44

44 1 44 2 44 3 44 44 1 44 2 44 3 44

1

1

2
3

S E a F a L a H u
R

w
E a F a L a H

R

E a F a L a H

L a H a M a N H a M a N a V
R

 






 






 

     

  
        
    

      

 

(41)
 

   

   

 

55 1 55 2 55 3 55 55 1 55 2 55 3 55
0

55 1 55 2 55 3 55 55 1 55 2 55 3 55

55 1 55 2 55 3 55
0

sin

3

2sin

s s

s s

s

w
S E b F b L b H u E b F b L b H

R s

E b F b L b H L b H b M b N

H b M b N b V
R



 

 


         



        

   

 

(42)
 
 
1.3.9 Equilibrium equations 

Here we use the principle of virtual displacements to derive the equilibrium equations consistent 

with the displacement field equations (1). The principle of virtual displacements can be stated in 

analytical form as: 
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2

2

( )

0

h

s s s s n n sn sn s s
h

n s s s s

d d p u R d ds p u R d ds

p wR d ds m R d ds m R d ds r R d ds r R d ds

         

        

              

         



  

    

      

     

   

    

 

(43)
 
where: 
 

01 1d R d R d
R R
 

  
   

          
 

(43.1)

 

and  , , , , , ,s n s sp p p m m r r    are the external uniform loadings applied on the reference surface.  

By introducing  Eqs.(8-12.1;13) into Eq.(43) and considering Eqs.(18-23), the following terms of 

the integral can be separated as follows: 

 

 

2

2

0 0 0 0

h

h

d

u
N R d d N w R d d M R d d P R d d

 

  
   

 

  
        

  





   

 

       
              

 

     

                                                                                                                                                     (43.2)  
 

   

 

 

2

2

cos sin

cos

cos

h

h

u
d N R d d N u R d d N w R d d

M R d d M R d d

P R d d P R d d


        


    


    


           



      


      




   

 

 

 
     

     
    

    

 

 

  (43.3) 
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 

2

0 0 0

2

cos ( )

( cos )

h

h

u
d N R d d M R d d P R d d

u
N R d d N u R d d M R d d

M R d d P

  
    

 
      


   

         
  

 
       

 


   





   

  

 

       
                

    
          

 
    

    

  

  ( cos )R d d P R d d        


 




  (43.4) 

 

   

   

2

0 0 0

2

0 0

( )

3 2

h

n n
h

w
d T u R d d T R d d T R R d d

Q R R d d S R d d

       

    

         


     



   

 

 
       

 

    

 

           (43.5) 

 

    

   

2

0

2

0

sin

3 2 (sin )

h

n n
h

w
d T u R d d T R d d T R R d d

Q R R d d S R d d

         

     

          


      



   

 

        

 

    

  (43.6) 

 
By solving the integrals by parts in Eqs.(43.2-43.6), the resulting expressions are obtained: 
 
 

 0

0 0

N Ru
N R d d N R u u d d


   


     

 
 

  
         

   

(43.7)
 

 0

0 0

M R
M R d d M R d d


   


     

 
 

  
         

   

(43.8)
 

 0

0 0

P R
P R d d P R d d


   


     

 
 

  
         

   

(43.9)
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 N Ru
N R d d N R u u d d

 
     


     

 
 

  
         

   

(43.10)
 

 M R
M R d d M R d d

 
     

      
 

 

            
   

(43.11)
 

 P R
P R d d P R d d

 
     

      
 

 

            
   

(43.12)
 

 0

0 0

N Ru
N R d d N R u u d d


   


     

 
 

  
         

   

(43.13)
 

 0

0 0

M R
M R d d M R d d


   


     

 
 

  
         

   

(43.14)
 

 0

0 0

P R
P R d d P R d d


   

      
 

 

            
   

(43.15)
 

 N Ru
N R d d N R u u d d

 
     


     

 
 

  
         

   

(43.16)
 

 M R
M R d d M R d d

 
     


     

 
 

  
         

   

(43.17)
 

 P R
P R d d P R d d

 
     


     

 
 

  
         

   

(43.18)
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 0

0 0

T Rw
T R d d T R w wd d


 

      
 

 

            
   

(43.19)
 

 T Rw
T R d d T R w wd d

 
   

      
 

 

            
   

(43.20)
 
By setting the coefficients of , , , , , ,s s su u w          to zero separately, the equilibrium 

equations are obtained: 

u :  
0

1
cos 0s sN N N N T

p
R s R R

   


 




  
    

 
                                                                    (44)   

 

su : 
0 0

1
cos sin 0s s ss s

s

N N NN T
p

s R R R
  



 


 
    

 
                                                            (45)   

 

w : 
0 0

1 cos sin
0s

s n

T NT
T N p

R s R R R
 


 

 


 
     

 
                                                                 (46) 

 

 :  
 

0

1
cos 0

ss
M MM M

T m
R s R

 
 






 
    

 
                                                               (47)   

 

s :  
0

1
cos 0s s ss

s s

M M MM
T m

R s R
  






 
    

 
                                                                 (48)   

 

 : 
0

  1
cos 3 2 0s sP P P P S

Q r
R s R R

   
 

 




  
     

 
                                                            (49) 

 

s :  
0 0

1 sin
cos 3 2 0s s ss

s s s

P P PP
Q S r

R s R R
  






 
     

 
                                                     (50) 

 
It is worth noting that Eqs.(44-50) are derived by taking into account the definitions (18-23) of 

forces and moment resultants. The first three Eqs.(44,45,46) express the translational equilibrium 

along the meridional  , circumferential s , and normal   direction, respectively. The last four 

Eqs.(47,48,49,50) are rotational equilibrium equations about the s  and   directions, respectively. 

In particular, the first two are the effective rotational equilibrium equations, whereas the second two 

represent fictitious equations, which are derived by the computation of the additional terms of 

displacement. 
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Then, substituting the expressions (25-42) for the in-plane meridional, circumferential, and shearing 

force resultants , , ,s s sN N N N   , the analogous couples , , , , , , ,s s s s s sM M M M P P P P       and the 

transverse shear force resultants , , , , ,s s sT T Q Q S S   , Eqs.(44-50) yield the fundamental system of 

equations. 

It should be noted that the loadings on the middle surface can be expressed in terms of the loadings 

on the upper ( , ,t t t
s np p p )  and lower ( , ,b b b

s np p p ) boundary surfaces of the shell by using the static 

equivalence principle, as follows: 

0 0

0 0

0

sin sin
1 1 1 1

2 2 2 2

sin sin
1 1 1 1

2 2 2 2

sin sin
1 1 1 1

2 2 2

t b

t b
s s s

t b
n n n

h h h h
p p p

R R R R

h h h h
p p p

R R R R

h h h h
p p p

R R R

  
 

 

 

 

 



      
                    

      
                    

    
                 0

0 0

0 0

3

0

2

sin sin
1 1 1 1

2 2 2 2 2 2

sin sin
1 1 1 1

2 2 2 2 2 2

sin
1 1

8 2 2

t b

t b
s s s

t

R

h h h h h h
m p p

R R R R

h h h h h h
m p p

R R R R

h h h
r p p

R R

  
 

 

  




 

 



 
 
 

      
                    

      
                    

  
        

3

0

3 3

0 0

sin
1 1

8 2 2

sin sin
1 1 1 1

8 2 2 8 2 2

b

t b
s s s

h h h

R R

h h h h h h
r p p

R R R R



 



 

  
      

      
                    

                                               (51) 

 
where tp , t

sp , t
np  are the meridional, circumferential and normal forces applied to the upper 

surface, and  bp , b
sp  , t

np  are the meridional, circumferential and normal forces applied to the lower 

surface. 

The boundary conditions considered in this study are the fully clamped edge boundary condition 

(C), the simply supported edge boundary condition (S) and the free edge boundary condition (F). 

They assume the following form: 

Clamped edge boundary condition (C): 
 

0s s su u w             at 0   or 1    00 ,s s                                               (52)

0s s su u w             at 0s   or 0s s  0 1                                                   (53) 
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Simply supported boundary condition (S): 
 

0u w         0N M P      at 0   or 1   00 ,s s                                      (54) 

0s s su w       0  s s sN M P  at 0s   or 0s s  0 1                                             (55) 

 
Free edge boundary condition (F): 
 

0s s sN N T M M P P              

at 0   or 1,   00 s s                                                                                                         (56) 

0s s s s s s sN N T M M P P          

at 0s   or 0,s s  0 1                                                                                                            (57) 

 
In the above Eqs.(52-57) boundary conditions, it has been assumed 0 02s R . In order to analyze 

the whole shell of revolution, and not a panel, the kinematic and physical compatibility must be 

added to the previous external boundary conditions. They represent the condition of continuity 

related to displacements and internal stress resultants. Their analytical forms are proposed as 

follows: 

 
Kinematic compatibility conditions along the closing meridian 0( 0,2 )s R : 

 

0 0

0 0

0 0

0 0 1

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , )

s s

s s

s s

u u s u u s

w w s s

s s

s

 

 

 

   

     

       

      

 

 

 

  

                                                                                       (58)

 
 
Physical compatibility conditions along the closing meridian 0( 0,2 )s R : 

 

0 0

0 0

0 0

0 0 1

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , ) , ( ,0) ( , ),

( ,0) ( , ),

s s s s

s s s s

s s s s

s s

N N s N N s

T T s M M s

M M s P P s

P P s

 

 

 

   

   

   

    

 

 

 

  

                                                                                (59) 
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1.3.9.1 The first fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(44) the first fundamental equation is written as follows: 

 

   

 

 

2 2

11 1 11 2 11 3 11 66 1 66 2 66 3 662 2 2

31 2
11 1 11 2 11 3 11 11 11 113 2

11 1 11 2 11 3 11
0

12
0

1

1 1

cos

sin

u u
A a B a D a E A b B b D b E

R s

R u uaa a
A a B a D a E B D E

R R

u
A a B a D a E

R R

A
R R

 



  

 









     






 
       

 

     
                   


    




   

 

 

 

2

22 1 22 2 22 3 22
0

44 1 44 2 44 3 442

2 2

12 66

66 1 66 2 66 3 66
0

22 1 22 2 22 3 22
0

cos

1

1 1

cos

cos

s s

s

s

u A b B b D b E u
R

A a B a D a E u
R

u u
A A

R s R s

u
A b B b D b E

R s

u
A b B b D b E

R s

 




 



 





  
          

   

    

 
  

   

 
        


    



           (60)     
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   

 

 

12 11 1 11 2 11 3 11 44 1 44 2 44 3 442 2
0

31 2
11 1 11 2 11 3 11 11 11 113 2

11 1 11 2 11 3 11 2
0 0

sin 1 1

1 1

cos cos sin

w w w
A A a B a D a E A a B a D a E

R R R R

R aa a
A a B a D a E w B D E w

R R

A a B a D a E w
R R R

  



 




  

   

  

  
         

  

    
                 

      

   

 

22 1 22 2 22 3 22

2 2

11 1 11 2 11 3 11 66 1 66 2 66 3 662 2 2

11 1 11 2 11 3 113

31 2
11 11 112

11 1 11 2 11
0

1

1

1

cos

A b B b D b E w

B a D a E a F B b D b E b F
R s

R
B a D a E a F

R

aa a
D E F

R

B a D a E a
R R

 



 









 



 


   



   

  
            

 
    

 

  
        

    

 

 

3 11

2

12 22 1 22 2 22 3 22
0 0

44 1 44 2 44 3 44

2 2

12 66

sin cos

1

1 1s s

F

B B b D b E b F
R R R

A a B a D a E
R

B B
R s R s



 





 




  



 
 






 
       

 

    

 
  

   

    (60)      

 
 
 
 

 

 

 

 

 

66 1 66 2 66 3 66
0

22 1 22 2 22 3 22
0

2

11 1 11 2 11 3 112 2

2

66 1 66 2 66 3 66 2

1
11 1 11 2 11 3 11 11 113 2

cos

cos

1

1 1

s

s

B b D b E b F
R s

B b D b E b F
R s

E a F a L a H
R

E b F b L b H
s

R a
E a F a L a H F L

R R







 

 











  

  
        


    



 
       


    


  

     
  

 

32
11

11 1 11 2 11 3 11
0

cos

aa
H

E a F a L a H
R R








  




 
     


    



                  (60) 
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 

   

 

2

12 22 1 22 2 22 3 22
0 0

44 1 44 2 44 3 44 44 1 44 2 44 3 442

2 2

12 66 66 1 66 2 66 3 66
0

22 1 22 2 22 3
0

sin cos

3 2

1 1 cos

cos

s s s

E E b F b L b H
R R R

D a E a F a L E a F a L a H
R R

E E E b F b L b H
R s R s R s

E b F b L b H
R

 


 
 

 

  

 

  
 



 
       

 

        

  
      

    

    22 0s p
s 


 



                                  (60) 

 
 
1.3.9.2 The second fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(45) the second fundamental equation is written as follows: 

 

 

 

 

 

 

2 2

12 66

22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

2

22 1 22 2 22 3 22 2

2

66 1 66 2 66 3 662 2

66 1 66 2 66 3 663

1 1

cos

cos

1

1

s

s

u u
A A

R s R s

u
A b B b D b E

R s

u
A b B b D b E

R s

u
A b B b D b E

s

u
A a B a D a E

R

R
A a B a D a E

R

 

 











 









 
 

   


    




    



    


 

      


   


 

 

 

31 2
66 66 662

66 1 66 2 66 3 66
0

2

66 66 1 66 2 66 3 66
0 0

2

55 1 55 2 55 3 55
0

1

cos

sin cos

sin

s

s

s

s s

s

u

uaa a
B D E

R

u
A a B a D a E

R R

A u A b B b D b E u
R R R

A b B b D b E u
R









   




 






  
        


    



 
       

 

 
      
 
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 

 

 

 

 

22 1 22 2 22 3 22 12
0

55 1 55 2 55 3 55
0

2 2

12 66

22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

2

22 1 22 2 22 3 22

sin 1

sin

1 1

cos

cos

w w
A b B b D b E A

R s R s

w
A b B b D b E

R s

B B
R s R s

B b D b E b F
R s

B b D b E b F
R s

B b D b E b F



 

 









 
 





 
     

 


    



 
  

   


    




    



   

 

 

 

2

2

66 1 66 2 66 3 662 2

66 1 66 2 66 3 663

31 2
66 66 662

66 1 66 2 66 3 66
0

2

66 66 1 66 2 6
0 0

1

1

1

cos

sin cos

s

s

s

s

s

s

s

B a D a E a F
R

R
B a D a E a F

R

aa a
D E F

R

B a D a E a F
R R

B B b D b E
R R R



















 


   




 





    



 
    

 

  
        


    



 
     

 
 

 

6 3 66

55 1 55 2 55 3 55
0

sin

s

s

b F

A b B b D b E
R



 

 

    
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 

 

 

 

 

2 2

12 66

22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

2

22 1 22 2 22 3 22 2

2

66 1 66 2 66 3 662 2

66 1 66 2 66 3 663

1 1

cos

cos

1

1

s

s

s

E E
R s R s

E b F b L b H
R s

E b F b L b H
R s

E b F b L b H
s

E a F a L a H
R

R
E a F a L a H

R

 

 











 
 











 

 
  

   


    




    



    




    



    

 

 

 

 

31 2
66 66 662

66 1 66 2 66 3 66
0

2

66 66 1 66 2 66 3 66
0 0

55 1 55 2 55 3 55
0

2

55 1 55 2 55 3
0

1

cos

sin cos

sin
3

sin
2

s

s

s s

s

aa a
F L H

R

E a F a L a H
R R

E E b F b L b H
R R R

D b E b F b L
R

E b F b L b
R








   




  

 



  
        


    



 
       

 

    

 
     

 
 55 0s sH p  
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1.3.9.3 The third fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(46) the third fundamental equation is written as follows: 

 

 

 

 

 

44 1 44 2 44 3 442

11 1 11 2 11 3 112

12
0

31 2
44 1 44 2 44 3 44 44 44 443 2

22 1 22 2 22 3 22 122
0 0

1

1

sin

1 1

sin cos cos

u
A a B a D a E

R

u
A a B a D a E

R

u
A

R R

R aa a
A a B a D a E u B D E u

R R

A b B b D b E u A
R R














 

 










   

  


    




    




 



   
            

    

 44 1 44 2 44 3 44
0

cos

u
R

A a B a D a E u
R R











    
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 

 

 

 

 

55 1 55 2 55 3 55
0

12 22 1 22 2 22 3 22
0

2

44 1 44 2 44 3 442 2

2

55 1 55 2 55 3 55 2

44 1 44 2 44 3 443

1
44 42

sin

1 sin

1

1

1

s

s s

u
A b B b D b E

R s

u u
A A b B b D b E

R s R s

w
A a B a D a E

R

w
A b B b D b E

s
R w

A a B a D a E
R

a
B D

R

















 




    


 

     
 

 
      


    


 

    
 


 



 

 

 

 

32
4 44

44 1 44 2 44 3 44
0

12 11 1 11 2 11 3 112
0

2

22 1 22 2 22 3 22
0

44 1 44 2 44 3 44

11 1 11 2 112

cos

sin 1
2

sin

1

1

aa w
E

w
A a B a D a E

R R

A w A a B a D a E w
R R R

A b B b D b E w
R

A a B a D a E
R

B a D a E
R



 







  











   
       


    



     

 
      
 


    



    3 11a F 






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 

 

 

12
0

31 2
44 44 44 44 1 44 2 44 3 44

0

12 22 1 22 2 22 3 222
0 0

55 1 55 2 55 3 55

12 22 1 22 2 22
0

sin

1 cos

cos sin cos

1 sin

s

s

B
R R

aa a
B D E A a B a D a E

R R

B B b D b E b F
R R R

A b B b D b E
s

B B b D b E
R s R





 


 







 
  

   



 


 



  
           

     


    




    


 

   

 

 

3 22

44 1 44 2 44 3 44 44 1 44 2 44 3 442

11 1 11 2 11 3 11 122
0

31 2
44 44 44 44 1 44 2 44 3 443

2

3 2

1 sin

3 2

2

sb F
s

D a E a F a L E a F a L a H
R R

E a F a L a H E
R R R

Raa a
E F L E a F a L a H

R R

F
R

 

 

 

 


 

 





 
 

 
 

 
   






 
        

 

 
     

 

  
            



   

 

 

31 2
44 44 44

44 1 44 2 44 3 44 44 1 44 2 44 3 44
0 0

12 22 1 22 2 22 3 222
0 0

55 1 55 2 55 3 55

55 1 55 2 5
0

3cos 2cos

cos sin cos

3

2sin

s

aa a
L H

D a E a F a L E a F a L a H
R R R

E E b F b L b H
R R R

D b E b F b L
s

E b F b L
R



 


 



  

  

   





  
      

        

     


    



   

 

5 3 55 12

22 1 22 2 22 3 22
0

1

sin
0

ss

s
n

b H E
s R s

E b F b L b H p
R s








  

 


     

  
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1.3.9.4 The fourth fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(47) the fourth fundamental equation is written as follows: 

 

 

 

 

 

2

11 1 11 2 11 3 112 2

2

66 1 66 2 66 3 66 2

11 1 11 2 11 3 113

31 2
11 11 112

11 1 11 2 11 3 11
0

12
0 0

1

1

1

cos

sin cos

u
B a D a E a F

R

u
B b D b E b F

s
R u

B a D a E a F
R

uaa a
D E F

R

u
B a D a E a F

R R

B u
R R R







 
















 

   




 


   




    


 

    
 

  
        


    



   

 

 

 

2

22 1 22 2 22 3 22

44 1 44 2 44 3 44

2 2

12 66 66 1 66 2 66 3 66
0

22 1 22 2 22 3 22
0

1

1 1 cos

cos

ss s

s

B b D b E b F u

A a B a D a E u
R

uu u
B B B b D b E b F

R s R s R s

u
B b D b E b F

R s






 


 



 
     

 

    

 
      

    


    


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 

 

 

 

12 11 1 11 2 11 3 112
0

44 1 44 2 44 3 44

11 1 11 2 11 3 113

31 2
11 11 112

11 1 11 2 11 3 11
0

0

sin 1

1

1

1

cos

cos sin

w w
B B a D a E a F

R R R

w
A a B a D a E

R

R
B a D a E a F w

R

aa a
D B F w

R

B a D a E a F w
R R

R

 












 





  



 

 
     

 

  
        


    



  
       

    

  

 

 

 

 

22 1 22 2 22 3 222

2

11 1 11 2 11 3 112 2

2

66 1 66 2 66 3 66 2

31 2
11 1 11 2 11 3 11 11 11 113 2

11 1 11 2 11 3 11
0

1

1 1

cos

B b D b E b F w

D a E a F a L
R

D b E b F b L
s

R aa a
D a E a F a L E F L

R R

D a E a F a L
R R







  

 










 
     



   


    




    


    

              


   




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 

 

 

 

2

12 22 1 22 2 22 3 22
0 0

44 1 44 2 44 3 44

2 2

12 66

66 1 66 2 66 3 66
0

22 1 22 2 22 3 22
0

11 1 11 2 11 32

sin cos

1 1

cos

cos

1

s s

s

s

D D b E b F b L
R R R

A a B a D a E

D D
R s R s

D b E b F b L
R s

D b E b F b L
R s

F a L a H a
R

 




 



  



 
 





 
       

 
    

 
 

   


    




    


    

 

 

 

2

11 2

2

66 1 66 2 66 3 66 2

11 1 11 2 11 3 113

31 2
11 11 112

11 1 11 2 11 3 11
0

2

12 22 1 22 2
0 0

1

1

cos

sin cos

M

F b L b H b M
s

R
F a L a H a M

R

aa a
L H M

R

F a L a H a M
R R

F F b L b H
R R R





 




















 


   




 







    


 

    
 

  
        


    



 
     

 
 

   

   

22 3 22

44 1 44 2 44 3 44 44 1 44 2 44 3 44

2 2

12 66

66 1 66 2 66 3 66 22 1 22 2 22 3 22
0 0

2
3

1 1

cos cos
0

s s

ss

b M

D a E a F a L E a F a L a H
R

F F
R s R s

F b L b H b M F b L b H b M m
R s R s



 


 





 

 
 

 

 

        

 
  

   


         

 
 

                                                                                                                                                        (63) 
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1.3.9.5 The fifth fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(48) the fifth fundamental equation is written as follows: 

                    

 

 

 

 

 

2 2

66 12

22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

2

66 1 66 2 66 3 662 2

2

22 1 22 2 22 3 22 2

66 1 66 2 66 3 663

1 1

cos

cos

1

1

s

s

s

u u
B B

R s R s

u
B b D b E b F

R s

u
B b D b E b F

R s

u
B a D a E a F

R

u
B b D b E b F

s
uR

B a D a E a F
R

 

 











 







 

 
 

   


    




    




    




    




    
 



 

 

 

 

31 2
66 66 662

66 1 66 2 66 3 66
0

2

66 66 1 66 2 66 3 66
0 0

55 1 55 2 55 3 55
0

22 1 22 2 22 3 22 12
0

1

cos

sin cos

sin

sin 1

s

s

s s

s

uaa a
D E F

R

u
B a D a E a F

R R

B u B b D b E b F u
R R R

A b B b D b E u
R

w
B b D b E b F B

R s R







   




 





  
       


    



 
      

 

    


    



 

 

 

55 1 55 2 55 3 55

2 2

66 12

22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

1 1

cos

cos

w

s

w
A b B b D b E

s

D D
R s R s

D b E b F b L
R s

D b E b F b L
R s



 

 





 
 











    


 

  
   


    




    



                                                                (64) 
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 

 

 

 

2

66 1 66 2 66 3 662 2

2

22 1 22 2 22 3 22 2

31 2
66 1 66 2 66 3 66 66 66 663 2

66 1 66 2 66 3 66 66
0 0

0

1

1 1

cos sin

cos

s

s

ss

s
s

D a E a F a L
R

D b E b F b L
s

R aa a
D a E a F a L E F L

R R

D a E a F a L D
R R R R

R





 

 







     

  





    




    


    

              


     


    

 

 

 

2

66 1 66 2 66 3 66 55 1 55 2 55 3 55

22

66 12

22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

2

66 1 66 2 66 3 662 2

22 1 22

1 1

cos

cos

1

s s

s

D b E b F b L A b B b D b E

F F
R s R s

F b L b H b M
R s

F b L b H b M
R s

F a L a H a M
R

F b L



 







 


 








 
         

 


  
   


    




    



    



  

 

 

 

2

2 22 3 22 2

66 1 66 2 66 3 663

31 2
66 66 662

66 1 66 2 66 3 66
0

2

66 66 1 66 2 66 3 66
0 0

55 1 5

1

1

cos

sin cos

3

s

s

s

s

s s

b H b M
s

R
F a L a H a M

R

aa a
L H M

R

F a L a H a M
R R

F F b L b H b M
R R R

D b E














 


   




  


  




    
 

  
        


    



 
       

 

    5 2 55 3 55 55 1 55 2 55 3 55
0

2sin
0s s sb F b L E b F b L b H m

R

        
                    (64)
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1.3.9.6 The sixth fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(49) the sixth fundamental equation is written as follows: 

 

   

 

 

2 2

11 1 11 2 11 3 11 66 1 66 2 66 3 662 2 2

31 2
11 1 11 2 11 3 11 11 11 113 2

11 1 11 2 11 3 11
0

12
0 0

1

1 1

cos

sin cos

u u
E a F a L a H E b F b L b H

R s

R u uaa a
E a F a L a H F L H

R R

u
E a F a L a H

R R

E u
R R R

 



  

 










     




 

 
       

 

    
              


    




 


 

   

 

2

22 1 22 2 22 3 22

44 1 44 2 44 3 44 44 1 44 2 44 3 442

2 2

12 66 66 1 66 2 66 3 66
0

3 2

1 1 cos ss s

E b F b L b H u

D a E a F a L u E a F a L a H u
R R

uu u
E E E b F b L b H

R s R s R s



 
 

 


 


     



        

  
             

                    

                                                                                                                                                         (65) 
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 

 

 

 

 

22 1 22 2 22 3 22
0

12 11 1 11 2 11 3 112
0

44 1 44 2 44 3 44

44 1 44 2 44 3 442

11 1 11 2 11 3 113

112

cos

sin 1

3

2

1

1

su
E b F b L b H

R s

w w
E E a F a L a H

R R R

w
D a E a F a L

R

w
E a F a L a H

R

R
E a F a L a H w

R

F
R

 














 








    


 

     
 

  
        
  

        


    





 

 

 

 

 

31 2
11 11

11 1 11 2 11 3 11
0

22 1 22 2 22 3 222
0

2

11 1 11 2 11 3 112 2

2

66 1 66 2 66 3 66 2

11 1 11 2 11 3 113

cos

sin cos

1

1

aa a
L H w

E a F a L a H w
R R

E b F b L b H w
R

F a L a H a M
R

F b L b H b M
s

R
F a L a H a M

R









 



  



 







 

 
      

    

    


    




    


 

    
 

                                                                   (65) 
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 

   

 

31 2
11 11 112

11 1 11 2 11 3 11 12
0 0

2

22 1 22 2 22 3 22 44 1 44 2 44 3 44
0

44 1 44 2 44 3 44

2

12

1

cos sin

cos
3

2

1 s

aa a
L H M

R

F a L a H a M F
R R R R

F b L b H b M D a E a F a L
R

E a F a L a H
R

F
R s








 

 







   

  


  






  
        


    



 
          
 

    




 

 

 

 

 

 

2

66

66 1 66 2 66 3 66
0

22 1 22 2 22 3 22
0

2

11 1 11 2 11 3 112 2

2

66 1 66 2 66 3 66 2

11 1 11 2 11 3 113

1
112

1

cos

cos

1

1

1

s

s

s

F
R s

F b L b H b M
R s

F b L b H b M
R s

H a M a N a V
R

H b M b N b V
s

R
H a M a N a V

R

a
M N

R









 


















 




 

 


    




    



    




    


 

    
 


 



 

 

   

 

32
11 11

11 1 11 2 11 3 11
0

2

12 22 1 22 2 22 3 22
0 0

44 1 44 2 44 3 44 44 1 44 2 44 3 44

44 1 44 2 44 3 44

cos

sin cos

6
9

6 4

aa
V

H a M a N a V
R R

H H b M b N b V
R R R

F a L a H a M L a H a M a N
R

L a H a M a N
R







 


 






  




  

 



 
     


    



 
       

 

        

      

 

 

44 1 44 2 44 3 442

2 2

12 66

66 1 66 2 66 3 66
0

22 1 22 2 22 3 22
0

1 1

cos

cos
0

s s

s

s

H a M a N a V
R

H H
R s R s

H b M b N b V
R s

H b M b N b V r
R s




 





 
 





   

 
  

   


    




     


                          (65)
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1.3.9.7 The seventh fundamental equilibrium equation 

By substituting Eqs.(25-42) in Eq.(50) the seventh fundamental equation is written as follows: 

 

 

 

 

 

 

2 2

66 12 22 1 22 2 22 3 22
0

66 1 66 2 66 3 66
0

2

66 1 66 2 66 3 662 2

2

22 1 22 2 22 3 22 2

66 1 66 2 66 3 663

1 1 cos

cos

1

1

1

s

s

s

u u u
E E E b F b L b H

R s R s R s

u
E b F b L b H

R s

u
E a F a L a H

R

u
E b F b L b H

s
uR

E a F a L a H
R

  

 










 





 

  
     

    


    




    




    




    
 



 

 

 

31 2
66 66 662

66 1 66 2 66 3 66
0

2

66 66 1 66 2 66 3 66
0 0

55 1 55 2 55 3 55
0

2

55 1 55 2 55 3 5
0

cos

sin cos

sin
3

sin
2

s

s

s s

s

uaa a
F L H

R

u
E a F a L a H

R R

E u E b F b L b H u
R R R

D b E b F b L u
R

E b F b L b H
R







   




 





  
       


    



 
       

 

    

 
     

 
 

 

   

 

5

22 1 22 2 22 3 22 12
0

55 1 55 2 55 3 55 55 1 55 2 55 3 55

2 2

66 12

22 1 22 2 22 3 22
0

sin 1

2sin
3

1 1

cos

su

w w
E b F b L b H E

R s R s

w w
D b E b F b L E b F b L b H

s R s

F F
R s R s

F b L b H b M
R s





 

 







 
 





 
     

 

 
        

 

 
 

   


    


                                (66) 
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 

 

   

66 1 66 2 66 3 66
0

2

66 1 66 2 66 3 662 2

2

22 1 22 2 22 3 22 66 1 66 2 66 3 662 3

31 2
66 66 66 66 1 66 2 662

0

cos

1

1

1 cos

s

s s

s

F b L b H b M
R s

F a L a H a M
R

R
F b L b H b M F a L a H a M

s R

aa a
L H M F a L a M

R R R


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1.4 Equilibrium equations for doubly curved shells 

The elastic potential energy for a revolution shell can be expressed as follows: 
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                                                                                                                                                        (67) 
 
By assuming the work of external forces equal to zero, the total potential energy becomes equal to 

the deformation energy: 

 

eH W                                                                                                                      (67.1)

 

The principle of virtual displacement has been applied in order to write the 3D equilibrium 

equations. 

 

0 U                                                                                                                             (67.2) 

 
By considering Eq.(67.2) in Eq.(67), the following relation is obtained: 
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By considering Eqs.(2-7.1) in Eq.(67.3), the total functional can be divided into six terms as 

follows: 
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By integrating by parts, the first part of the functional can be expressed as follows: 
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The second term of the functional is expressed as follows: 
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R R dV U                                                                                  (67.6) 

 
By considering Eqs.(2-7.1) in Eq.(67.6), the second term becomes: 
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By integrating by parts, the second part of the functional becomes: 
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The third term of the functional is the following:  
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By considering Eqs.(2-7.1) in Eq.(67.8), the third term becomes: 
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By means of integration by parts, the third part becomes: 
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The fourth part of the functional is written as follows: 
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By integrating by pars, the fourth part is written as follows: 
 

     
 

4 0sin

cos 0

V

R U R U

R U dV U

    

  

       
 

    

 
      

 

   


                                              (67.11) 

 
 
The fifth term of the functional is the following: 
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By considering Eqs.(2-7.1) in Eq.(67.12), the fifth term becomes: 
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By integrating by parts it becomes: 
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The sixth term is written as follows:  
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By integrating by parts, the sixth term becomes: 
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By adding the six terms of the potential elastic energy, the total potential energy is expressed as a 

function of the virtual displacements and the equilibrium equations can be derived as follows: 

 
The first equilibrium equation is written as follows: 
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The second equilibrium equation is written as follows: 
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The third equilibrium equation is written as follows: 
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1.4.1 Stress recovery via GDQ 

After solving the 2D problem, the solution of the 3D differential equilibrium equations can be 

reached. By means of the GQD solution of the fundamental system (Eqs.(60-66)), the membrane 

stresses are correctly estimated using the constitutive equations (Eqs.(13)). Then, by discretizing the 

3D equilibrium equations (Eqs.(68-70)) and by the knowledge of membrane stresses and their 

derivatives via the GDQ method, the transverse shear and normal stresses can be determined.  
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Figures. 
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Fig.1 Shell geometry: meridional section and circumferential section 
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Chapter  2 

Static analysis of functionally graded cylindrical shells and 

panels using the generalized unconstrained third order theory 

coupled with the stress recovery 

 

Sommario 

Dopo l’analisi dello stato dell’arte, si è proceduti con la scrittura di una teoria generale di 

deformazione a taglio del terzo ordine di tipo svincolato per gusci/pannelli cilindrici. Si è operata la 

scrittura del modello cinematico a sette parametri indipendenti, delle relazioni tra deformazioni e 

spostamenti arricchite dell'effetto della curvatura, delle equazioni  costitutive per una lamina singola 

in materiale a stratificazione graduale e delle caratteristiche di sollecitazione in funzione degli 

spostamenti. Definiti i carichi esterni uniformi di natura trasversale, assiale e circonferenziale, è 

stato applicato il principio degli spostamenti virtuali per ricavare le equazioni indefinite di 

equilibrio e le condizioni al contorno. Pertanto si è proceduti alla scrittura della equazioni 

fondamentali con la sostituzione delle relazioni delle azioni interne espresse in funzione degli 

spostamenti, nelle equazioni indefinite di equilibrio. Risolto il sistema fondamentale con il metodo 

generalizzato di quadratura differenziale, si è pervenuti alla conoscenza dei sette parametri 

indipendenti di spostamento, in tutti i punti della superficie di riferimento del panello/guscio 

cilindrico. Utilizzando le equazioni costitutive e la soluzione del sistema fondamentale, si è giunti 

alla determinazione delle tensioni membranali in un punto arbitrario della superficie di riferimento 

del panello/guscio, per poi elaborare la distribuzione di esse lungo lo spessore dell'elemento 

strutturale.  Per determinare le tensioni trasversali normale e tagliante, si è proceduti con la scrittura 

delle equazioni di equilibrio dell’elasticità tridimensionale. Compiuta la discretizzazione di esse con 

il metodo di quadratura differenziale di tipo generalizzato, sfruttando la conoscenza delle tensioni 

membranali determinate indirettamente dal sistema fondamentale, sono  stati calcolati i profili di 

tensione trasversale normale e tagliante lungo lo spessore del panello/guscio cilindrico. I profili di 

tensione trasversale ottenuti in questo modo soddisfano al pieno le condizioni al contorno anche in 

presenza di carichi taglianti alle superfici estreme. In questo modo è stato superato il limite della 

teoria di Reddy che assumeva nulli a priori i carichi taglianti alle superfici di estremità. Sono stati 

anche discussi l’influenza della curvatura iniziale e del materiale nei profili ottenuti.  
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2.1 Introduction 

Composite circular cylindrical shells are extensively used in many engineering applications.  As far 

as the behaviour of  cylindrical shells is concerned, by acting on  material type, fiber orientation and 

thickness, a designer can tailor different properties of a laminate to suit a particular application. 

However, serious shortcomings due to stress concentrations between layers could lead to 

delamination  failures. In order to overcome the variation of the material properties, the functionally 

graded material (FGM) was proposed by Koizumi and Yamanouchi [1,2], characterized by a 

smooth and continuous variation from the core to the external surfaces. The possibility to graduate 

the material properties through the thickness  avoids abrupt changes in the stress and displacement 

distributions. 

Many researchers have furnished several results in the study of the FGM cylindrical shell [3-32]. 

Basset [3] presented an overview on the extension and flexure of cylindrical and spherical thin 

shells. Bhimaraddi [4] developed a higher order theory for free vibration analysis of circular 

cylindrical shells. Obata and Noda [5] studied circular hollow cylinders structured from FGM 

material to analyze steady thermal stress at high temperature. Loy et al. [6] reached  frequency 

spectra of FGM cylindrical shells for simply supported boundary conditions. Hua and Lam [7] 

calculated the frequency characteristics of a thin rotating cylindrical shell using the generalized 

differential quadrature method. Horgan and Chan [8] analyzed the deformations of a FG cylinder 

composed of a compressible isotropic linear elastic material, where the elastic modulus was a power 

law function of the radius and the Poisson’s ratio was constant. Pradhan et al. [9]  investigated the 

vibration characteristics of a FGM shell made up of stainless steel and zirconia, for various 

boundary conditions.  Liew et al. [10] gave a three dimensional elasticity solution to the free 

vibration problem of thick cylindrical shell panels of rectangular platform. Wu et al. [11] 

formulated a high order theory to examine the electromechanical behavior of piezoelectric generic 

shells with graded material properties in the thickness direction. Zhu et al. [12] discussed the 

dynamic stability of functionally graded piezoelectric circular cylindrical shells. Shen and Noda 

[13] characterized post buckling phenomena of FGM under combined axial and radial mechanical 

loads in high-temperature state. Patel et al. [14] carried out the vibration analysis of a functionally 

graded shell using a higher order theory. Najafizadeh and Isvandzibaei [15] used a higher order 

shear deformation plate theory to study the vibration of simply supported FG cylindrical shells with 

ring supports. Wu and Syu [16] found exact solutions of functionally graded piezoelectric shells 

under cylindrical bending. Haddadpour et al. [17] conducted the free vibration analysis of 

functionally graded cylindrical shells including thermal effects. Arshad et al. [18] reported the 

frequency analysis of functionally graded material cylindrical shells with various volume fraction 
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laws. Iqbal et al. [19] examined the vibration characteristics of FGM circular cylindrical shells filled 

with fluid using wave propagation approach. Matsunaga [20] treated a higher order shear 

deformation theory in order to assess the natural frequencies and buckling stresses of functionally 

graded circular cylindrical shells. Tornabene and Viola [21] and Tornabene [22] dealt with the 

dynamic behavior of moderately thick FG cylindrical shells, by using the four parameter power law 

distribution. Zhao et al. [23] calculated the static response and free vibration of FGM cylindrical  

shells subjected to mechanical or thermomechanical loading using the element-free pk -Ritz 

Method. Sobhany Aragh and Yas [24,25] considered the three dimensional analysis of thermal 

stresses, static and free vibration analysis of continuously graded fiber reinforced cylindrical shells 

by using the generalized power law distribution. In the studies under consideration, the influence of 

the power-law exponent and the power-law distribution were investigated. Several symmetric, 

asymmetric, and classic profiles were considered. A recent work by Arshad et al. [26] furnished a 

detailed analysis of the effects of the exponential volume fraction law on the natural frequencies of 

FGM cylindrical shells under various boundary conditions. Alibeigloo [27] estimated the 

thermoelastic solution to static deformations of functionally graded cylindrical shell bonded to thin 

piezoelectric layers. Sepiani et al. [28] focused on the vibration and buckling analysis of  two 

layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary 

inertia. Nie and Batra [29] evaluated exact solutions and material tailoring for functionally graded 

hollow circular cylinders. Alibeigloo and Nouri [30] developed the static analysis of functionally 

graded cylindrical shells with piezoelectric layers using differential quadrature method. 

Sofiyev [31] presented an analytical study on the dynamic behavior of the infinitely long FGM 

cylindrical shell subjected to the combined action of axial tension, internal compressive load and 

ring shaped compressive pressure with constant velocity. Sobhani Aragh and Yas [32] studied the 

dynamic behavior of four parameter continuous grading fiber reinforced cylindrical panels resting 

on Pasternak foundation.  

In the last decades, numerous studies have been also conducted on FGM cylindrical shells and 

plates, dealing with a variety of subjects such as thermal elasticity [33-35], static bending [36], free 

vibration and dynamic response [37,38], buckling and post buckling [39], among others. 

Literature review shows that there are quite a few numerical works presenting static analysis of 

FGM cylindrical shells. Moreover, the  models proposed by different authors in literature are based 

on the classical theory, the first order shear deformation theory [33,40-44] and the third order shear 

deformation theory by Reddy [45,46]. 

To the best knowledge of the authors, the literature background on the static analysis of FGM 

cylindrical shells by using the unconstrained shear deformation theory of Leung [47] is quite poor. 
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It should be noticed that in Leung’s theory the additional constraint typical of Reddy’s third order 

shear deformation theory vanishes [45,46]. In addition, the use of four parameter power law 

distributions seems to be absent in the investigation of cylindrical shells, when the initial curvature 

effect is included in the model and a GDQ solution [21,22,48,49,50] to the problem is given.  

This paper is motivated by this lack of studies and presents a static analysis of thick FGM 

cylindrical shells by using an unconstrained third order shear deformation theory. The initial 

curvature effect is involved in the analytical formulation as it was  included in the first order shear 

deformation theory (FSDT) by Toorani and Lakis in the past decade [51] and recently improved by 

Tornabene et al. [52]. Furthermore, the stress recovery is worked out. 

Firstly, a basic scheme is followed to write the fundamental equilibrium equations. It starts with the 

definition of the displacement field which includes higher order terms, the strain components, the 

FGM material by means of a four parameter power law distribution, and the elastic engineering 

stiffnesses , the stress - strain  relations, as well as the relations between the internal actions and the 

generalized components of displacement and the definition of external applied loads.  

Secondly, seven indefinite equilibrium equations are determined by applying the principle of virtual 

displacements. The fundamental equations are obtained by substituting in them the constitutive 

equations expressed in terms of generalized components of displacement.   

Thirdly, the fundamental equations are discretized via GDQ [53-58] and the differential equilibrium 

equations appear in  the form of algebraic equations. The boundary conditions also take the 

analogous algebraic form. The solution is given in terms of generalized  components of 

displacement of nodal points on the middle surface domain.  

Fourthly, the through-thickness distribution of in plane stress ( , ,x s xs   ) are given.  

Fifthly, the in plane stress components calculated from the constitutive relations by using the third 

order unconstrained theory are compared with those determined via the first order shear 

deformation theory, for several types of functionally graded cylindrical shells. Both the transverse 

shear stress components ( ,xn sn  ) along the thickness direction are determined from the constitutive 

equations using the unconstrained first and  third order theories, respectively. In order to satisfy the 

zero shear conditions on the lateral surfaces which is not imposed a priori in the unconstrained 

theory, the transverse shear stress components ( ,xn sn   ) are calculated by integrating the 3D 

differential equilibrium equations in the thickness direction [20], using the in plane stress 

components ( , ,x s xs   ) determined via the constitutive relations. The effects of the material power 

law function and the initial curvature are discussed and graphically shown in all the numerical 

results.  
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Sixthly, the transverse normal stress component ( n  ) is  carried out by using the recovery 

technique, as for the transverse shear stress ( ,xn sn   ) components. All the recovered transverse stress 

components are improved as reported in [59]. 

Finally, in order to prove the validity of the present formulation, the numerical examples proposed 

by Aghdam et al. [60], Zhao et al. [61], Fereidoon et al. [62] and Ferreira et al. [63,64] are also 

considered. The center deflections of isotropic and functionally graded cylindrical panels were 

obtained in the present study and compared with the ones reported in [60] and [61]. The vertical 

displacements and membrane normal stresses in the central node of functionally graded rectangular 

plates were carried out and compared with those reported in [62] and [63,64]. The transverse 

displacement component, the membrane normal and transverse shear stresses calculated at an 

arbitrary point of functionally graded rectangular plates were compared with the ones derived from 

Zenkour [65].  

Further publications  are reported in [66-73]. 

 
 
2.2. Functionally graded composite cylindrical shell and fundamental system  
 
2.2.1 Fundamental hypotheses  
 

In this paper, a graded composite circular cylindrical shell is considered. 0L , 0R , h  denote the 

length, the mean radius and the total thickness of the shell, respectively. The position of an arbitrary 

point P within the shell is located by the coordinates x 0(0 ),x L  s 0 0(0 )s s R    upon the 

middle surface, and  directed along the outward normal n, and measured from the reference 

surface ( )2 2
h h   , as shown in Fig.1. 

When the general case of shell of revolution changes into the case under study, the radii of 

curvature in the meridional R  and circumferential directions R  assume the following values: 

 

0,xR R R R                                                                                                                            (1)   

 
The fundamental hypotheses which characterize the present formulation are the following : 

1. the normal strain is inextensible, so the corresponding deformation does not exist; 

2. the transverse shear deformation is taken into account in the governing equations, and the 

normal lines to the reference surface do not remain straight and normal after deformation; 

3. the shell deflections are small and the strains are infinitesimal; 

4. the shell is moderately thick, and consequently the normal stress could be negligible; 
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5. the shear correction factor vanishes and the presence of a finite shear transverse strain on the 

top and bottom of the cylindrical circular shell is accepted. Thus, the model releases the 

additional constrain imposed by the TSDT of Reddy [45,46]; 

6. the anisotropic material is assumed to be linearly elastic; 

7. the initial curvature effect is taken into account. 
 
 
2.2.2 Displacement field and constitutive equations 
 

The unconstrained third-order shear deformation theory is based on the following representation of 

the displacement field across the thickness of the cylindrical shell [47]: 
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where xU , sU , W  are the displacements along the meridional, circumferential and normal 

directions, respectively;  xu , su  are the in-plane displacements, w  is the transverse displacement of 

a point  ,x s  on the middle surface. The functions x , s  are rotations of the normal to the middle 

plane about s  and x  axes, respectively. The parameters x , s  are the higher order terms in 

Taylor’s series expansion and represent the higher order transverse cross-sectional deformation 

modes. 

By substitution of the displacement relations (2) into the strain-displacement equations of the 

classical theory of elasticity, the following relations are obtained [72]: 
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(7)

 
Eqs. (3-7) take the initial curvature 01 R effect into account. 

The shell material assumed in the following is a functionally graded composite linear elastic one. 

The elastic engineering stiffness , , , , , , ,, ,ij ij ij ij ij ij ij ij ij ijA B D E F L H M N V  are defined as [21,22]: 
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where the elastic constants ( )ij ijQ Q   depend on the thickness coordinate  and  assume the 

expressions suggested below: 
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In (9)  E  ,     are the  elastic parameters of the composite material which are also functions of 

the thickness coordinate  . 

The FGM shell under investigation consists of a mixture of two basic components : the ceramic (C) 

and the metal (M) constituents. Their properties follow a continuous and a smoothly change in the 

thickness direction  , and they are function of volume fractions of the constituent materials. The 

three characteristics parameters, the Young’s modulus  E  , the Poisson’s ratio ( )v  , the density 

( )  , which identify the FGM material, are presented in the form of  a linear combination, as 

follows [21,22]: 
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where , , ,C C C CE V  , and , , ,M M M ME V   are the volumic mass, the elastic modulus, the Poisson’s 

coefficient, the volume fraction of the ceramic (C), and the metal (M) constituents, respectively. 

The power law distributions for the volume fraction of the ceramic component are proposed, where 

four parameters are involved. As mentioned above, the material is inhomogeneous and the material 

properties varying through the thickness are described by the following four parameter power law 

distribution [21,22] : 
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In Eqs. (11-12) the four characteristic parameters are the volume fraction index  p ( 0 p   ), and 

the coefficients a,b,c. By varying them, the mode of variation of the ceramic volume fraction 

changes through the thickness. It is assumed that the sum of the volume fractions of the two basic 

components (ceramic and metal component) is equal to unity. Therefore, it can be noticed that when 

the exponent p is set to zero or equal to infinity, the FGM material becomes the homogeneous 

isotropic material, as stated below: 
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For the FGM shell the constitutive equations can be written as follows: 
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2.2.3 Forces and moments resultants 
 
Normal forces, moments, and higher order moments, as well as shear forces and higher order shear 

forces are all defined by the following  expressions: 

 

 
2

3

0
2

, , (1, , ) 1

h

x x x x
h

N M P d
R

   




 
  

 
  

(15)

 

 
2

3

2

, , (1, , )

h

s s s s
h

N M P d   




   

(16)

 

 
2

3

0
2

, , (1, , ) 1

h

xs xs xs xs
h

N M P d
R

   




 
  

 
  

(17)

 

 
2

3

2

, , (1, , )

h

sx sx sx xs
h

N M P d   




   

(18)

 

 
2

2 3

0
2

, , (1, , ) 1

h

x x x xn
h

T Q S d
R

   




 
  

 
  

(19)

 

2
2 3

2

( , , ) (1, , )

h

s s s sn
h

T Q S d   




   

(20)

 
By considering the effect of initial curvature in the formulation, the stress resultants , ,xs xs xsN M P are 

not equal to the stress resultants , ,sx sx sxN M P , respectively. This assumption derives from the 

consideration that the ratio 0/ R  is not neglected with respect to unity. The effect of initial 

curvature is emphasized by the following coefficients: 
 

1 1 2 32 3
0 0 0 0

1 1 1 1
; ; ;     a b b b

R R R R
 

(21)

 
Using Eqs. (3-7), (14-21), the relations which characterize the internal stresses as functions of the 
displacement parameters can be obtained. 
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2.2.3.1 Normal and shear  forces  
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2.2.3.2 Moments  
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2.2.3.3 Higher order moments  
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2.2.3.4 Shear Forces 
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2.2.3.5 Higher order shear resultants 
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2.2.4 Equilibrium equations 
 
Here we use the principle of virtual displacements to derive the equilibrium equations consistent 

with the displacement field equations (2). The principle of virtual displacements can be stated in 

analytical form as: 
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where: 
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R

 
 

   
 

 

 
and  , , , , , ,x s n x s x sp p p m m r r  are the external loads applied on the reference surface. Introducing  Eqs. 

(3-7) into Eq.(40), and integrating the resulting expressions by parts, and setting the coefficients of 

, , , , , ,x s x s x su u w        to zero separately, the following equations of equilibrium are 

obtained: 
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It is worth noting that Eqs.(41) are derived by taking into account the definitions (15-20) of forces 

and moment resultants. The first three Eqs.(41) express the translational equilibrium along the 

meridional x , circumferential s , and normal   direction, respectively. The last four Eqs.(41) are 

rotational equilibrium equations about the s  and x  directions, respectively. In particular, the first 
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two are the effective rotational equilibrium equations, whereas the second two represent fictitious 

equations, which are derived by the computation of the additional terms of displacement. 

Then, substituting the expressions (22-39) for the in-plane meridional, circumferential, and shearing 

force resultants , , ,x s xs sxN N N N , the analogous couples , , , , , , ,x s xs sx x s xs sxM M M M P P P P  and the 

transverse shear force resultants , , , , ,x s x s x sT T Q Q S S , Eqs.(41) yield the fundamental system of 

equations: 
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                                                                    (42) 

 
where the explicit forms of the equilibrium operators  ijR , , 1,...,7i j   are listed in Appendix A. 

It can be noticed that the analytical expressions of most of the equilibrium operators in (42) are 

characterized by the presence of the coefficients 1 1 2 3, , ,a b b b  (21), which incorporate the effect of the 

initial curvature, as declared above. By putting 1 1 2 3 0   a b b b , the effect of initial curvature 

can be neglected.  

It should be noted that the loadings on the middle surface can be expressed in terms of the loadings 

on the upper and lower surfaces of the shell as follows: 
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where t

xp , t
sp , t

np  are the meridional, circumferential and normal forces applied to the upper 

surface, and  b
xp , b

sp  , t
np  are the meridional, circumferential and normal forces applied to the lower 

surface. 

The boundary conditions considered in this study are the fully clamped edge boundary condition 

(C), the simply supported edge boundary condition (S) and the free edge boundary condition (F). 

They assume the following form: 

 
Clamped edge boundary condition (C): 
 

0x s x s x su u w            at 0x   or 0x L  00 ,s s                                                  (44) 

0x s x s x su u w            at 0s   or 0s s  00 x L                                                    (45)

 
Simply supported boundary condition (S): 
 

0x x xu w        0  x x xN M P  at 0x   or 0x L  00 ,s s                                          (46)

0s s su w       0  s s sN M P  at 0s   or 0s s  00 x L                                              (47)

 
Free edge boundary condition (F): 
 

0      x xs x x xs x xsN N T M M P P  

at 0x   or 0,x x  00 s s                                                                                                           (48) 

0      s sx s s sx s sxN N T M M P P  

at 0s   or 0,s s  00 x L                                                                                                           (49) 

 
In the above (44)-(49) boundary conditions, it has been assumed 0 02s R . In order to analyze the 

whole shell of revolution, and not a panel, the kinematic and physical compatibility must be added 

to the previous external boundary conditions. They represent the condition of continuity related to 

displacements and internal stress resultants. Their analytical forms are proposed as follows: 

 
Kinematic compatibility conditions along the closing meridian 0( 0,2 )s R : 
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Physical compatibility conditions along the closing meridian 0( 0,2 )s R : 
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2.3 Discretized equations and stress recovery 

 

The generalized differential quadrature method (GDQ) [53-58] is used to discretize the derivatives 

in the governing equations (42), as well as the external boundary conditions and the compatibility 

conditions. In this paper, the Chebyshev-Gauss-Lobatto grid distribution is adopted, where the 

coordinates of grid points along the reference surface are identified by the following relations: 

 
 

 

1 0
0

0

1
1 cos

1 2

1,2,...., , 0,

i

x xi
x x

N

i N for x L


        

 

                                                                                            (52) 

 

0

0

1
1 cos ,

1 2

1,2,...., , 0,

j

sj
s

M

j M for s s

        

 

 

 
where N , M  are the total number of sampling points which discretize the domain in x  and 

s directions, respectively. This particular choice of the C-G-L sampling points rule with respect to 

the others suggested in literature is justified by the tested efficiency of the GDQ technique. 

By writing the fundamental equilibrium equations (42) by means of GDQ technique, the following 

matrix form is obtained: 
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In the present formulation the subscripts b and d  stand for boundary and domain, respectively. The 

b -equations define the external boundary conditions and compatibility conditions written on the 

constrained edges of the cylindrical shell, and the d -equations represent the scripture of the 

fundamental equations at the points which belong to the domain. The solution procedure by means 

of the GDQ technique is implemented with the support of  a MATLAB code. 

According to the Reddy’s constrained theory, the transverse shear stresses satisfy a priori the zero 

shear condition on the upper and lower surfaces of the graded cylindrical shell. As it is well known, 

and differently from the constrained theory by Reddy, the transverse shear stress determined from 

the 2D-Unconstrained Theory of first and third order does not satisfy the zero shear condition on the 

lateral surfaces of the cylindrical shell. A possible approach for solving this difficulty is to recovery 

the out of plane shear stress using 3D-equilibrium equations. In the case of plates, a general 

presentation of the stress recovery problem is reported in [59].  

Using the stationary principle of total potential energy, the 3D elastic equilibrium equations for a 

functionally graded cylindrical shell are written as follows: 
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By the knowledge of the membrane stresses ( , ,x s xs   ) and their derivatives in all the points of the 

3D cylindrical shell, the present equations (54-56) of the first order can be solved via the GDQ 

along the thickness direction. The  C-G-L  grid distribution is selected for the grid points m  along 

the thickness direction: 
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                                                                     (57)

 
By imposing the boundary conditions at the bottom surface of the shell, equations (54) and (55) are 

written via the GDQ method in the algebraic form and solved in terms of ,xn sn   .  
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The  shear stress distributions ,xn sn    carried out by the linear systems (58) and (59) do not satisfy 

the boundary condition at the top surface of shell structure. Consequently, the transverse shear 

stress representations are improved via the refinement suggested by Auricchio and Sacco [66] and 

Tornabene et al. [59], in the following manner: 
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Finally, the transverse normal stress n   profiles are derived by solving the equation (56) via the 

GDQ method: 
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In order to satisfy the boundary condition at the top surface, the n   distributions are also corrected 

as follows: 
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2.4 Numerical results 
 
2.4.1 Classes of graded materials 
 
In this numerical study, the static analysis of FGM cylindrical shells is conducted and the through 

the thickness stress distributions are furnished. The theoretical formulations are based on two shear 

deformation models: the generalized unconstrained third (GUTSDT) and first order (GFSDT)  shear 

deformation theories. They are labeled as generalized because they are enriched by the initial 

curvature effect. The stress recovery is also proposed in order to define the correct profile of the 
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transverse shear and normal stress profiles, by the knowledge of the membrane stress components 

derived from the 2D shear deformation model. In this manner the shear effect is definitely 

improved. The numerical analysis is  done by means of the GDQ numerical technique. 

The basic constituents of FGM materials are taken to be zirconia (ceramic component) and 

aluminum (metal component). Young’s modulus and Poisson’s ratio for the zirconia are 

168CE GPa , 0.3C  , and for the aluminum are 70ME GPa , 0.3M  , respectively. The 

ceramic volume fraction is varied by means of the four parameter power law distribution [21,22]. 

 

 

The main objectives of the numerical study reported in this section are the followings: 

1. to study the role of the four parameters of the power law function for various classes of 

graded materials; 

2. to compare the numerical results via the unconstrained third order model with those via the 

first order one; 

3. to clarify the influence of the initial curvature effect in the numerical analysis, developed 

herein; 

4. to emphasize the key role of the stress recovery technique in determining the transverse 

normal and tangential stress components.  

In order to characterize the effect of the volume fraction gradation as a function of the material 

coefficients, eight types of graded materials are investigated. In Fig.2a the distributions of the 

ceramic volume fraction CV  across the thickness for a wide range of p -values are presented for the 

(1,0,0,p)FGM1 class. It should be noticed that the lower surface  0.5h    of the composite 

structure is fully ceramic, and the top surface  0.5h   is purely metallic. For 0.1 p 2   

(Fig.2a), the material composition is continuously graded throughout the thickness. Differently, for 

p 5  the ceramic volume fraction gradually changes only for 0.5 0.25h   , and for the remaining 

thickness it attains a null value. For p 8 , the ceramic volume fraction is continuously graded from 

the bottom surface to the middle layer, and for the rest  it has a null value. For p 50,100 , the 

variation of the ceramic volume fraction is very restricted to the layers which are closer to the 

bottom one, and moving away the ceramic volume fraction becomes equal to zero. In Fig.2b, the 

distributions of the ceramic volume fraction are shown for the (1,1,4,p)FGM1 class for several p-values 

[22]. All the (1,1,4,p)FGM1 composite shells are fully ceramic at the top and bottom surfaces. For 

p 1  the ceramic volume fraction  remains higher than 50%, whereas  for p 2  the ceramic 
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volume fraction CV  has the analogous trend but it reaches values lower than 50%. For 0 0.5h   

and p 1 , the ceramic volume fraction rapidly increases and it remains higher than 50%. For 

p 0.05 , the distribution of the ceramic volume fraction is quasi ceramic. For p 20,50  the 

graded microstructure only belongs to the lower and upper layers of the (1,1,4,p)FGM1 cylindrical 

shell, and reveals an homogeneous composition rich in the metal constituent inside the composite 

structure. In Fig.2c, the ceramic volume fraction of the (1,0.5,2,p)FGM1  graded material is plotted 

versus the dimensionless shell thickness [22]. The bottom surface of the composite shell structure is 

fully ceramic for all the p - values. The top surface is made of a mixture of  ceramic and metallic 

constituents for p 0.6,2,5 , with increasing metallic content with respect to the ceramic one, 

respectively. For p 10,20,50  the ceramic volume fraction is continuously graded  from the bottom 

surface till h  variable,  respectively, equal to 0.25, -0.25, -0.375. Consequently, the resulting 

composite material for p 50  is prevalently metallic. In Fig.2d, the distributions of the ceramic 

volume fraction across thickness for several a -values are presented for the (a,0.2,3,2)FGM1 class 

[24,32]. It appears that the bottom surface of the composite structure is purely ceramic, and the top 

surface changes its composition with the variation of the a -parameter. For a 0.2  the top surface of 

the (a,0.2,3,2)FGM1  cylindrical shell is also ceramic. By varying the a -parameter from 0.3 to 1, the 

top surface becomes a mixture of ceramic and metallic constituents. In particular, with the increase 

of a , the top surface becomes richer and richer of the metallic component. In Fig.3a, the 

distributions of the ceramic volume fraction across the thickness for several a -values are presented 

for the (a,0.2,3,2)FGM2 class. In contrast with the previous case, it appears that the top surface of the 

composite structure is purely ceramic, and the bottom surface changes its composition with the 

variation of the a -parameter. For a 0.2  the bottom surface of the (a,0.2,3,2)FGM2  cylindrical shell is 

also ceramic. By varying the a -parameter from 0.3 to 1, the bottom surface is made from a mixture 

of ceramic and metallic constituents. In particular, with the increase of a , the bottom surface 

becomes richer and richer of the metallic component. For all the a -values, the ceramic volume 

fraction is continuously graded throughout the shell thickness. In Fig.3b, the distributions of the 

ceramic volume fraction across the thickness for several a -values are presented for the 

(0,b,2,1)FGM2 class [24,32]. It appears that the top surface of the composite structure is purely 

ceramic, and the bottom surface changes its composition with the variation of the b -parameter. By 

varying the b -parameter from -0.2 to -0.9, the bottom surface is made from a mixture of ceramic 

and metallic constituents. In particular, with the decrease of b , the bottom surface becomes richer 
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and richer of the metallic component. For b 1   the bottom surface is purely metallic. From Figs. 

3a,b it appears that for all the a  and b  values, the ceramic volume fraction is continuously graded 

throughout the shell thickness. In Fig.3c, the ceramic volume fraction of the (1,0.5,c,2)FGM1  curves 

versus the shell thickness is presented. It is noted that the top surface is compositionally made of  

the 25% in the ceramic constituent, and the 75% in the metallic one, for all the c -values. 

Differently, the bottom layer is fully ceramic. In Fig.3d the ceramic volume fraction profiles of the 

(1,1,c,1)FGM1  are also proposed [24,32]. For all the c-values the ceramic volume fraction follows a 

parabolic pattern. The external surfaces are ceramic rich. With decreasing values of the c – 

parameter the ceramic volume fraction attains maximum values at layers nearer to the middle one. 

 
2.4.2  Stress profiles of  (1,0,0,p)FGM1 cylindrical panels 

2.4.2.1 Generalized and traditional unconstrained theories 
 
Prevalently, the geometric and boundary conditions, as well as the external loading, are always 

taken as in the reference configuration, which is defined as follows: the shell thickness  is assumed 

0.1h m , the  -angle is equal to 120°, the parallel radius 0R  and the cylinder height 0L  are both 

equal to 1m. The boundary condition of clamped edges is considered and the radial ( np ) constant 

compressive pressure, equal to 0.1MPa, is applied over the top layer. The normal and shear stresses  

are calculated at the point ( 0 00.25 ;0.25L s ) along the  - direction, being 0 02s R . All the stress 

components are furnished by using the scaled form as follows: 
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                                                                                                                  (63) 

where g  or *g  represent the scaled stress component, g  is  the stress component calculated at a 

fixed point and   the scale factor used for the representation and reported in caption. 

In Figs.4a,b,c,d,e,f  the shear * *, , xsxn sn    and normal x , s , *
n  stresses distributions are shown for 

the (1,0,0,0.1)1FGM  and (1,0,0,2)1FGM  cylindrical panels, by adopting in the calculation the standard 

geometrical data, loading distribution value and boundary condition. The tangential and normal 

stresses distributions are plotted across the dimensionless panel thickness for two p - values, via the 

GUTSDT, UTSDT and stress recovery technique with regard to the transverse stress components. 

In Fig.4a the transverse shear *
xn  stress curves are presented and the initial curvature effect does not 

appear relevant. Differently, by considering the transverse shear *
sn  stress profiles in Fig.4b, the 

differences between the stress curves are quite significant as well as the unconstrained third order 

formulation is enriched by the initial curvature effect. In Figs.4c,d the membrane shear xs  and 
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normal x  stress distributions are proposed. At a fixed p - value the deviations between the xs  

stress curves gradually reduce from the inner to the outer layer, whereas the opposite trend 

characterizes the x  stress distributions with and without the improved initial  curvature effect. In 

Fig.4e the membrane s  stress distributions are suggested by means of the GUTSDT and UTSDT. 

It appears that the stress curves from the GUTSDT and the UTSDT theories are significantly 

divergent for both p-values. In Fig.4f  the transverse normal *
n  stress component is showed and the 

deviation between the stress curves with and without the initial curvature effect addition is 

negligible throughout  the panel thickness.  

 

 
2.4.3 Stress profiles of (1,1,4,p)FGM1 cylindrical shells 

2.4.3.1 Generalized unconstrained third and first order theories 
 
In Figs.5a,b,c,d the tangential *

xn  and normal *, ,x s n    stress distributions along the thickness 

direction are presented for p 0,0.5,5 , via the GUTSDT and GFSDT coupled with the stress 

recovery, when the radial uniform compressive pressure np  is only considered. The geometrical 

parameters and boundary conditions adopted in the numerical example are as in the standard case. 

With the elevation of the power exponent, the divergence between the stress profile via the 

GUTSDT and GFSDT results very restricted for the most part of the stress components. It appears 

that, by considering the *
xn  shear stress curves in Fig.5a, the deviation between the first and third 

order static response slightly appears around the *
xn  maximum shear stress values.  

 
2.4.4  Stress profiles of  (1,0.5,2,p)FGM1 cylindrical shells 

2.4.4.1 Generalized and traditional unconstrained theories  
 
In Figs.6a,b,c,d the tangential and normal stress distributions along the  direction are shown for 

the (1,0.5,2,p)FGM1 cylindrical shells by using the GUTSDT and UTSDT with the stress recovery. The 

geometric parameters are assumed as in the standard configuration. The edges of the cylindrical 

shell are clamped and supported, and the composite structure is subjected to the radial compressive 

pressure, equal to 0.1MPa. All the stress profiles are calculated for 5,10p  . In Fig.6a, the shear 

stress profiles via the generalized unconstrained theory approach to a maximum value, which is 

lower that the one of the corresponding shear stress curves obtained by the  unconstrained theory, 

where the initial curvature effect is neglected. In Fig.6b the normal x  stress curves exhibit no 

significant variations by considering or not the initial curvature effect. Differently, the influence of 

the initial curvature effect on the normal s  stress curves is more significant away from the 
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reference layer, as shown in Fig.6c. In Fig.6d, the transverse normal stress curves derived from the 

stress recovery are presented. It appears that the normal *
n  stress curves show  little differences for 

both p-values, by considering or not the initial curvature effect.   

 

2.4.5  Stress profiles of  (a ,0.2,3,2)FGM1  and (a ,0.2,3,2)FGM2  cylindrical panels 

2.4.5.1  The generalized  unconstrained theory  
 
In Figs.7a,b,c,d,e,f  the tangential ( * *, , xsxn sn   ) shear  and normal ( *, ,x s n   ) stress profiles of the 

(a,0.2,3,2)FGM1,2  cylindrical panels are presented for several a -values, by using the reference 

configuration. All the stress profiles refer to four values of the parameter a 0.2,0.4,0.8,1 . The 

GUTSDT with the stress recovery is considered for the numerical analysis. It appears that by 

increasing the a-value, the deviation between the stress curves of the structure graded by means of 

the first form and the ones corresponding to the second form of the four parameter power exponent 

function, significantly increases.  

 
2.4.6  Stress profiles of  (1,0.5,c,2)FGM1  cylindrical panels 

2.4.6.1 Generalized unconstrained first and third order theories 
 
In Figs.8a,b,c,d,e,f the stress profiles of the (1,0.5,c,2)FGM1  cylindrical shells are determined by 

means of the unconstrained first and third order theories. All the geometric and boundary conditions 

are unvaried with respect to the reference configuration. The loading condition consider the radial 

and axial compressive pressures at the top surface, both equal to 0.1MPa. The GUTSDT with the 

stress recovery is used in the present numerical analysis. In Fig.8a, the transverse shear *
xn  stress 

curves are almost juxtaposed for both c-values and for both the shear deformation models. It is 

noticed how by considering the further action of the axial constant compressive pressure at the top 

layer, the transverse shear *
xn   stress profile releases the external load at the top layer and the null 

value at the inner one, by making the boundary condition satisfied. In Fig.8b, the transverse shear 

*
sn  stress profiles are plotted along the shell thickness and a little deviation is recognizable between 

the static response of the first and third order around the *
sn  maximum value. For the rest, the 

divergence between the two order is negligible for the membrane shear xs  stress curves and for the 

transverse normal *
n  ones. Whereas it could be considered limited  as far as the membrane normal 

( x , s ) distributions are examined along the panel thickness, as shown in Fig.8d,8e. 
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2.4.7  The stress recovery approach for the generalized unconstrained first and third 
order theories  
 

In Figs.9a,b,c,d and 10a,b,c,d  the transverse shear stress  *,xn xn   and  *,sn sn   curves, respectively,  

are plotted along the panel thickness, by means of the first and third order unconstrained model for 

four different types of graded materials: (1,0,0,2)FGM1 , (1,0.5,2,5)FGM1 , (0, 0.5,2,1)FGM2  , (1,1,5,1)FGM1 . 

The geometric and boundary configuration are considered as in the reference configuration. For 

each couple of tangential stresses, the loading condition is inclusive of one ( np ), two ( ,x np p ) or 

( ,s np p ), or all the three radial ( np ), axial ( xp ) and circumferential ( sp ) constant compressive 

pressures at the top surface of the graded structure. The distributed compressive pressure is fixed at  

0.1 MPa in every direction. All the transverse shear stress curves are derived from the first and third 

order formulations and also reconstructed via the stress recovery technique.  

It is quite evident how the static response urges the need of the stress recovery approach in order to 

achieve the correct pattern which satisfies the boundary conditions in all the loading cases 

suggested. In particular, the divergence between the first and third order static response in terms of 

both transverse shear stresses under investigation results quite relevant by comparing the recovered 

stress profiles with the unrecovered ones. Differently from the Constrained order theory by Reddy, 

the Unconstrained one coupled with the Stress recovery allows the computation of the external 

shear loading pressures on the boundary surfaces of the cylindrical structure under consideration. 

The relaxation of the Reddy's hypothesis on the boundary, which enforces the null value of shear 

pressure at the outer and inner layer, is the proper advantage in using the UTSDT and the Stress 

recovery.  

 
2.5  Literature numerical examples worked out for comparison 
 
In this section several numerical examples are considered in order to compare the present results 

with the existing ones in literature. Aghdam et al. [60] investigated the bending of moderately thick 

clamped functionally graded (FG) conical panels subjected to uniform and non uniform distributed 

loadings. They used the first order shear deformation theory by taking into account the initial 

curvature effect in the formulation. In the present work, the numerical results reported in [60] for a 

cylindrical isotropic panel are considered for comparison. The material properties are:  

3.1ME  GPa, 0.3Mv   and the geometry parameters are: 11.46   , 0 2.54R  m, 

0 0.00125h R  , 0 0.2L R  . The cylindrical isotropic panel is clamped and subjected to the  

transverse distributed load  275.8 Pa. The maximum center deflection  is reported in Table 1a, and 

the numerical value from the reference under consideration is compared with the ones calculated in 
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this paper by using the first and third order shear deformation theories. Zhao et al. [61] analyzed the 

static response of metal and ceramic functionally graded shells, by means of the first order shear 

deformation theory (FSDT). Here, the prediction reported in [61] for a cylindrical isotropic panel is 

suggested for comparison. Material properties and geometrical parameters are the same as above. 

The cylindrical isotropic panel is clamped and subjected to a transverse distributed  load  257.9 Pa. 

Table 1b shows a comparison between the vertical displacements at the panel center obtained from 

the first and third order theories, respectively,  and the one reported in [61]. In the same paper [61] 

the numerical results concerning the non dimensional center deflections of Al/ZrO2 cylindrical 

panels under a uniform transverse load, are also reported. The results refer to the following material 

properties: 70AlE  GPa, 0.3Alv  , 
2

151ZrOE  GPa, 
2

0.3ZrOv  , and geometrical parameters: 

11.46   , 0 1R  m, 0.01h  m, 0.2L  m. The functionally graded cylindrical panel is subjected 

to a uniform transverse load 1MPa and the external edges are variously constrained (i.e. all edges 

simply supported (SSSS), all edges clamped (CCCC), two opposite edges simply supported and two 

clamped (CSCS), two edges clamped and two opposite edges free (CFCF), and one edge clamped 

and the other three edges free (CFFF)). By varying the power exponent law, the non dimensional 

center deflection ( w w h ) is calculated by means of several theories. The numerical values 

calculated according to these theories, are  reported in Tables 2a,b and compared with those of  

Zhao et al. [61]. The effect of two distinct values of the radius to thickness ratio at the center 

deflection ( w w h ) is also analyzed, as far as Al/ZrO2 cylindrical panels under a transverse 

uniform pressure are concerned. Several p  values are considered and the following geometrical 

parameters  11.46   , 0 1R  m, 0.2L  m, 0.02h  m or 0.005m, are assumed.  

Tables 3a,b shows the results of central displacement for simply supported and clamped cylindrical 

panels via the present theories and the one from Zhao et al [61]. From Tables 2a,b and Tables 3a,b  

it appears that the present results agree well with those obtained by Aghdam et al. [60] and Zhao et 

al. [61].  

The numerical results from the present theory  are also verified by considering the existing results in 

literature about the rectangular plates. Fereidoon et al. [62] developed the bending analysis of thin 

rectangular plates using the GDQ method. They considered  functionally graded square plates 

subjected to a distributed transverse load with all simply supported edges and the following material 

properties: 1xL  m, 0.02h  m, 10
1 5 10E   N/m2, 0.3v  , 5

0 1 10q   N/m2. Table 4 presents the 

maximum dimensionless deflection  4
0 0 xw D q L w , with    3 2

0 1 12 1D E h v   for different 

values of  the following parameters: the non homogeneity power (p), the non homogeneity ratio 
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( 2 1E E ), and the aspect ratio ( x yL L ). It appears that our results agree quite closely with the ones 

reported in [62].  

Ferreira et al. [63,64] conducted the analysis of composite plates using higher order shear 

deformation theory and a finite point formulation based on the multiquadric radial basis function 

method. A simply supported square isotropic plate under uniform load is considered. The length and 

thickness of the plate are denoted by L and h , respectively. The modulus of elasticity and the 

Poisson’s ratio are 10920 Pa, and 0.25v  , respectively. In the central node of the plate the 

following normalized displacement and normal stress are considered 

3 2 410 ( 2, 2,0)w Eh w a a qL , 2 2( 2, 2, 2)x x L L h h qL   . The numerical results achieved 

from the present theories are in good agreement with solutions by [63,64,69,70], as shown in Table 

5. Zenkour[65] presented the static response for a simply supported functionally graded rectangular 

plate subjected to a transverse uniform load. He simplified the theory by enforcing traction free 

boundary condition at the plate faces. Here, the center deflection w  and the distribution across the 

plate thickness of in - plane longitudinal stress x  and longitudinal tangential stress xy  are 

compared with the results of the classic solution [70], 3D solution by Werner [71] and Zenkour 

[65], as shown in Tables 6,7. Moreover, the effect of the  volume fraction exponent on the 

dimensionless stresses and displacements of a FGM square plate ( 10xL h  ) is investigated. The 

various non dimensional parameters used are:    0 2, 2x x x yh a q L L  , 

   0 2,0, 6xn x xn xh L q L h  ,    3 4
010 2, 2,c x x yw h E L q w L L ,    0 0, 2,0yn x yn yh L q L  . 

Tables 8,9,10,11a,11b,12a,12b show comparisons between results for graded plates subjected to 

uniform distributed load as in  Zenkour [65] and the  theories developed in the present study. It is 

noted that the present results are in good agreement with the ones from literature, as far as the 

transverse displacement and membrane stresses are concerned.  

 

2.6 Final remarks and conclusion  
 
The cylindrical shell problem described in terms of seven differential equations (42) has been 

solved by using the GDQ method. Among the methods of approximation, the GDQ procedure starts 

directly from the strong statement of the problem under consideration. It should be noted that the 

GDQ technique of obtaining algebraic equations does not require the construction of any variational 

formulation of the problem. As it is well known, the GDQ method is based on the idea that the 

partial derivative of a field variable at the i-th discrete point in the computational domain is 

approximated by a weighted linear sum of values of the field variable, along the line that passes 
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through that point, which is parallel to the coordinate direction of the derivative [21,22]. The 

weighting coefficients, associated with the derivatives, may be obtained directly from an explicit 

recursive formula [53-58].  

The suggested theoretical model which involves the initial curvature effect, solved by means of the 

GDQ procedure, was derived from a 2-D third order shear deformation theory. Such theory does not 

enforce any boundary condition and maintains the unconstrained nature proper of the pioneer shear 

deformation theory by Timoshenko [70]. The resultant 2D theory under discussion is more 

complicated than Reddy’s one, due to the introduction of two additional generalized displacement 

parameters (the higher order terms in the displacement field) and, consequently, the addition of 

fictitious internal actions. In the proposed formulation, the initial hypotheses regarding the null 

entity of the transverse normal stress is removed with its calculation by means of the integration of 

the three dimensional equilibrium equations. The source data which are useful for the integration 

are the membrane stresses derived from the solution of the fundamental system via the GDQ 

method. In this manner, the transverse shear stress are re-calculated and make the boundary 

condition satisfied, just as in the Reddy’s constrained model. The proper advantage deriving from 

the use of GUTSDT with respect to the constrained one by Reddy is due to the possibility to apply 

distributed loads of various nature over the extreme surfaces, which are sliding bounded in the 

constrained model by Reddy. In fact, by considering the shear deformation model by Reddy, the 

null value of transverse shear stresses is a priori enforced inside the formulation. Whereas the 

unconstrained theory suggested in this paper leads to the accurate determination of transverse stress 

profiles even if distributed meridional and circumferential pressures are applied at the top or bottom 

surfaces. As shown in the numerical results, the stress recovery becomes a powerful technique to 

reconstruct the correct distribution of  transverse stress components under various loading 

combination at the extreme surfaces.  

The main contribute given by the present study consists in determining accurate stress profiles in 

functionally graded cylindrical shells. A global higher order theory, that accounts for the 

unconstrained third order formulation and the transverse normal and shear stress recovery, has been 

set up from the 3D elastic equilibrium equations. 

The initial curvature effect is discussed and the role of the four parameters in the power law 

function is clarified. The role of the power exponent law is presented for the 

  (1,1,4,p)1,0,0,pFGM1 , FGM1 , (1,0.5,2,p)FGM1  cylindrical shells. The effects of the a , b , c  parameters on the  

stress responses are illustrated for the (a,0.2,3,2)FGM1, 2 , (0,b,2,1)FGM2 , (1,0.5,c,2)FGM1 , (1,1,c,1)FGM1  cylindrical 

shells and panels. Various theories have been examined and numerical examples have been worked 

out to see how theories are similar and how they are different.  
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It should be noted that the procedure introduced in this paper can be also extended to other types of 

graded shells [67].  
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Fig.1 Geometric parameters of the cylindrical shell 
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2a.  1,0,0,pFGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b.  1,1,4,pFGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c.  1,0.5,2,pFGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d.  a,0.2,3,2FGM1  

Figs.2a,b,c,d: Ceramic volume fraction cV  versus dimensionless thickness h  for the FGM1 class.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0.25 0.5 0.75 1
-0.5

-0.25

0

0.25

0.5

p=0

p=0.1

p=0.5
p=0.6

p=1

p=2

p=5

p=8

p=50

p=100

h

CV
0 0.25 0.5 0.75 1

-0.5

-0.25

0

0.25

0.5

p=0.05

p=0.2

p=0.5p=1

p=2
p=5

p=20

p=50

h

CV

0 0.25 0.5 0.75 1
-0.5

-0.25

0

0.25

0.5

p=0.6

p=2
p=5p=10p=20

p=50

h

CV
0 0.25 0.5 0.75 1

-0.5

-0.25

0

0.25

0.5

a=0.2
a=0.3

a=0.4
a=0.5

a=0.8

a=1
h

CV



 85

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a.  a,0.2,3,2FGM2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b.  0,b,2,1FGM2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c.  1,0.5,c,2FGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d.  1,1,c,1FGM1  

Figs.3a,b,c,d: Ceramic volume fraction cV  versus dimensionless thickness h  for the FGM1 and 
FGM2 classes.  
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4a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f. transverse normal stress ( *

n ) 
Figs.4a,b,c,d,e,f: Comparisons between stress [Pa] profiles for the generalized (GUTSDT) and 
unconstrained (UTSDT) third order theories (scale factor: 410  ). 
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5a. tangential shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d. transverse normal stress ( *

n ) 
Figs.5a,b,c,d: Stress profiles comparison between the GUTSDT and GFSDT for  tangential and 
normal stresses [Pa] (scale factor: 510  ).  
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6a. tangential shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d. transverse normal stress ( *

n ) 
Figs.6a,b,c,d: Stress profiles comparison between two theories for tangential and normal stresses 
[Pa] (scale factor: 510  ). 
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7a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
7d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f. transverse normal stress ( *

n ) 
Figs.7a,b,c,d,e,f: Stress profiles using the GUTSDT for tangential and normal stresses [Pa] (scale 
factor: 410  ). 
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8a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f. transverse normal stress ( *

n ) 
Figs.8a,b,c,d,e,f: Stress profiles comparison between the GUTSDT and GFSDT for tangential and 
normal  stresses [Pa] (scale factor: 410  ). 
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9a. (1,0,0,2)FGM1 cylindrical panel under np  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b. (1,0.5,2,5)FGM1  cylindrical panel under xp , np  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c. (0, 0.5,2,1)FGM2   cylindrical panel under sp , np  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d. (1,1,5,1)FGM1  cylindrical panel under ,x sp p , np  

Figs.9a,b,c,d: Stress profiles comparison among GUTSDT, GFSDT and the stress recovery (SR) 

technique for transverse shear stress *,xn xn   [Pa] (scale factor: 410  ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-12 -10 -8 -6 -4 -2 0 2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

GUTSDT
GUTSDT - SR
GFSDT
GFSDT - SR

h

*,xn xn 
-30 -25 -20 -15 -10 -5 0 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

GUTSDT
GUTSDT - SR
GFSDT
GFSDT - SR

h

*,xn xn 

*
xnxn

-6 -5 -4 -3 -2 -1 0 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

GUTSDT
GUTSDT - SR
GFSDT
GFSDT - SR

h

*,xn xn 
-14 -12 -10 -8 -6 -4 -2 0 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

GUTSDT
GUTSDT - SR
GFSDT
GFSDT - SR

h

*,xn xn 



 92

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a. (1,0,0,2)FGM1 cylindrical panel under np  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b. (1,0.5,2,5)FGM1  cylindrical panel under xp , np  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c. (0, 0.5,2,1)FGM2   cylindrical panel under 

sp , np  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10d. (1,1,5,1)FGM1  cylindrical panel under 

,x sp p , np  
Figs.10a,b,c,d: Stress profiles comparison among GUTSDT, GFSDT and the stress recovery (SR) 

technique for  transverse shear stress  *,sn sn   [Pa] (scale factor: 410  ). 
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Tables. 
 
 

Table 1a: Center transverse  displacement of a clamped cylindrical shell under the uniform load 275.8 Pa 
                                                                                     w mm  

Reference  60  0.2880 

FSDT 0.2869 
GFSDT 0.2887 
UTSDT 0.2869 

Present theories 

GUTSDT 0.2887 
 
 
 

Table 1b: Center transverse  displacement of a clamped cylindrical shell under the uniform load 257.9 Pa 
                                                                                     w mm  

Reference  61  0.28128 

FSDT 0.26995 
GFSDT 0.26996 
UTSDT 0.26996 

Present theories 

GUTSDT 0.26996 
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Table 2a: Non dimensional center deflections of  Al/ZrO2 cylindrical panels under  uniform load with 0 50R h   

  p 0 0.2 0.5 1 2 5 

SSSS   w  w  w  w  w  w  
Reference [61] 0.042760 0.048170 0.054370 0.060860 0.066720 0.072510 

FSDT 0.042991 0.048413 0.054633 0.061137 0.067027 0.072850 
GFSDT 0.043019 0.048446 0.054671 0.06118 0.067076 0.072901 
UTSDT 0.042967 0.048384 0.054600 0.061104 0.067004 0.072842 

 Present 
theories 

GUTSDT 0.042995 0.048416 0.054638 0.061147 0.067052 0.072894 
CCCC         

Reference [61] 0.01341 0.015140 0.01702 0.019050 0.020910 0.022780 
FSDT 0.013831 0.015563 0.017553 0.019644 0.021563 0.023488 

GFSDT 0.013834 0.015566 0.017556 0.019647 0.021566 0.023492 
UTSDT 0.013802 0.015529 0.017514 0.019605 0.021534 0.023477 

 Present 
theories 

GUTSDT 0.013805 0.015532 0.017517 0.019608 0.021538 0.023481 
CSCS         

Reference [61] 0.021220 0.023910 0.027000 0.030220 0.033100 0.035930 
FSDT 0.021749 0.024508 0.027671 0.030966 0.033921 0.036819 

GFSDT 0.021757 0.024518 0.027682 0.030977 0.033932 0.036833 
UTSDT 0.021735 0.024487 0.027645 0.030945 0.033927 0.036869 

 Present 
theories 

GUTSDT 0.021744 0.024496 0.027656 0.030956 0.033938 0.036882 
 
 

Table 2b: Non dimensional center deflection of  Al/ZrO2 cylindrical panels under a uniform load with 0 200R h   

  p 0 0.2 0.5 1 2 5 

CFCF   w  w  w  w  w  w  
Reference [61] 0.027780 0.031300 0.03535 0.039560 0.043330 0.047030 

FSDT 0.028823 0.032484 0.03668 0.041050 0.044968 0.048804 
GFSDT 0.028830 0.032456 0.03661 0.040936 0.044828 0.048690 
UTSDT 0.028818 0.032469 0.03666 0.041037 0.044992 0.048888 

 Present 
theories 

GUTSDT 0.028825 0.032435 0.03657 0.040902 0.044828 0.048752 
CFFF         

Reference [61] 0.44603 0.50162 0.56555 0.63307 0.69574 0.75900 
FSDT 0.45155 0.50779 0.57259 0.64091 0.70428 0.76839 

GFSDT 0.45157 0.51119 0.57972 0.65174 0.71743 0.78013 
UTSDT 0.45084 0.50700 0.57162 0.63983 0.70319 0.76698 

 Present 
theories 

GUTSDT 0.45088 0.51091 0.57983 0.65221 0.71802 0.78043 
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Tables 3a,b:  Aspect ratio effect  on the  center deflections ( w ) of  Al/ZrO2 cylindrical panel under a uniform load 
     3a. 

R h   SSSS CCCC 

50 p 0.5 1.0 2.0 0.5 1.0 2.0 
Reference [61] 0.00382400 0.00427900 0.0046830 0.001309000 0.00146500 0.0016110 

FSDT 0.00386875 0.00432800 0.0047361 0.001347535 0.00150780 0.0016573 
GFSDT 0.00387155 0.00433115 0.0047396 0.001347650 0.00150810 0.0016576 
UTSDT 0.00385875 0.00431800 0.0047290 0.001335200 0.00149545 0.0016477 

Present 
theories 

GUTSDT 0.00386150 0.00432110 0.0047324 0.001335450 0.00149570 0.0016479 
 
     3b. 

R h   SSSS CCCC 

200 p 0.5 1.0 2.0 0.5 1.0 2.0 
Reference [61] 0.65030 0.72830 0.80570 0.20260 0.22690 0.25090 

FSDT 0.65140 0.72946 0.80710 0.20644 0.23118 0.25576 
GFSDT 0.65176 0.72990 0.80760 0.20646 0.23120 0.25578 
UTSDT 0.65132 0.72940 0.80706 0.20638 0.23112 0.25572 

Present 
theories 

GUTSDT 0.65170 0.72984 0.80756 0.20640 0.23114 0.25574 
 
 

Table 4 : Maximum dimensionless deflection of FG plates calculated by means of  a few theories 
 

   Reference Present theories 

   [62] FSDT UTSDT 

p Lx/Ly E2/E1 w  w  w  
1 0.5 0.5 0.01536013000 0.0140417582 0.0140417582 
  1 0.01109343000 0.0101417582 0.0101417582 
  2 0.00768006000 0.0070287910 0.0070287910 
      

2 1 0.5 0.00629457 0.00608700 0.00608750 
  1 0.00444773 0.00407000 0.00407070 
  2 0.00314728 0.00304300 0.00304370 
      

5 2 0.5 0.00100004 0.00102000 0.00101930 
  1 0.00069333 0.00063700 0.00063630 
  2 0.00050002 0.00051000 0.00050970 
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Table 5: Square isotropic plate under uniform load 

L h    w  x  

10 Reddy [68] 4.770000 0.28990 

Exact  [73] 4.791000 0.27620 
Ferriera et 

al. [64] 
4.790600 0.27620 Reference 

Ferriera et 
al. [63] 

4.701500 0.27390 

UTSDT 4.789695 0.27785 

 

Present 
theories FSDT 4.790468 0.27627 

20 Reddy [68] 4.570000 0.26830 

Exact [73] 4.625000 0.27620 
Ferriera et 

al. [64] 
4.623600 0.27620 Reference 

Ferriera et 
al. [63] 

4.559400 0.27370 

UTSDT 4.625362 0.27666 

 

Present 
theories FSDT 4.625399 0.27627 

50 Reddy [68] 4.496000 0.266700 

Exact [73] 4.579000 0.276200 
Ferriera et 
al.  [64] 

4.569200 0.275700 Reference 

Ferriera et 
al.  [63] 

4.634100 0.266700 

UTSDT 4.578982 0.276331 

 

Present 
theories FSDT 4.578987 0.276268 

100 Reddy [68] 4.482000 0.26640 

Exact  [73] 4.572000 0.27620 
Ferriera et 

al. [64] 
4.538300 0.27440 Reference 

Ferriera et 
al.  [63] 

4.752500 0.28440 

UTSDT 4.572356 0.27629 

 

Present 
theories FSDT 4.572357 0.27627 
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Table 6: Center deflection of isotropic homogeneous plates 

h[m]  w m  

 Reference Present theories 

 
Classic 

[70] 
3D 
[71] 

Zenkour 
[65] 

UTSDT FSDT 

0.01 44360.900 44384.700 44383.840 44383.864 44383.880 
0.03 1643.0000 1650.9400 1650.6460 1650.6526 1650.6576 
0.1 44.36090 46.74430 46.65481 46.65730 46.65940 

 
Table 7: Normal and shear stress at the bottom surface of isotropic homogeneous plates 

 

h[m] (0.5 ,0.5 , 2)x x yL L h   [Pa] 

 Reference Present theories 
 3D[71] Zenkour[65] UTSDT FSDT 

0.01 2873.3000 2873.3900 2873.3754 2873.2000 
0.03 319.4000 319.4450 319.4173 319.2421 
0.1 28.8900 29.9307 28.9087 28.7316 

 
 

h[m]  0,0, 2xy h   [Pa] 

 Reference Present theories 
 3D[71] Zenkour[65] UTSDT FSDT 

0.01 1949.600 1949.360 1945.864 1945.500 
0.03 217.1100 217.1560 216.6606 216.2766 
0.1 19.9200 20.0476 19.8866 19.4836 
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Table 8. Volume fraction exponent effect on the dimensionless transverse displacement w  of a FGM square plate  

p   w  

1 Reference [65] 0.928700 

 UTSDT 0.928796 

 
Present 
theories FSDT 0.928796 

2 Reference [65] 1.1940 

 UTSDT 1.1940 

 
Present 
theories FSDT 1.1910 

3 Reference [65] 1.320000 

 UTSDT 1.319854 

 
Present 
theories FSDT 1.312330 

4 Reference [65] 1.389000 

 UTSDT 1.388748 

 
Present 
theories FSDT 1.376968 

5 Reference [65] 1.435600 

 UTSDT 1.435410 

 
Present 
theories FSDT 1.420478 

6 Reference [65] 1.472700 

 UTSDT 1.472462 

 
Present 
theories FSDT 1.455400 

7 Reference [65] 1.504900 

 UTSDT 1.504686 

 
Present 
theories FSDT 1.486750 

8 Reference [65] 1.534300 

 UTSDT 1.534060 

 
Present 
theories FSDT 1.515782 

9 Reference [65] 1.561700 

 UTSDT 1.561496 

 
Present 
theories FSDT 1.543332 

10 Reference [65] 1.587600 

 UTSDT 1.587412 

 

Present 
theories 

 FSDT 1.569666 
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Table 9. Volume fraction exponent effect on the dimensionless membrane stress x  of a FGM square plate 
 

p   x  

1 Reference [65] 4.4795 

 UTSDT 4.4706 

 
Present 
theories FSDT 4.4406 

2 Reference [65] 5.2296 

 UTSDT 5.2264 

 
Present 
theories FSDT 5.1852 

3 Reference [65] 5.6108 

 UTSDT 5.6094 

 
Present 
theories FSDT 5.5575 

4 Reference [65] 5.8915 

 UTSDT 5.8916 

 
Present 
theories FSDT 5.8314 

5 Reference [65] 6.1504 

 UTSDT 6.1511 

 
Present 
theories FSDT 6.0856 

6 Reference [65] 6.4053 

 UTSDT 6.4049 

 
Present 
theories FSDT 6.3363 

7 Reference [65] 6.6547 

 UTSDT 6.6547 

 
Present 
theories FSDT 6.5846 

8 Reference [65] 6.8999 

 UTSDT 6.8992 

 
Present 
theories FSDT 6.8285 

9 Reference [65] 7.1383 

 UTSDT 7.1368 

 
Present 
theories FSDT 7.0661 

10 Reference [65] 7.3689 

 UTSDT 7.3665 

 
Present 
theories FSDT 7.2962 
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Table10. Volume fraction exponent effect on the dimensionless membrane stress y  of a FGM square plate 

p   y  

1 Reference [65] 2.1692 

 UTSDT 2.1680 

 
Present 
theories FSDT 2.1748 

2 Reference [65] 2.0338 

 UTSDT 2.0321 

 
Present 
theories FSDT 2.0417 

3 Reference [65] 1.8593 

 UTSDT 1.8571 

 
Present 
theories FSDT 1.8694 

4 Reference [65] 1.7197 

 UTSDT 1.7173 

 
Present 
theories FSDT 1.7313 

5 Reference [65] 1.6104 

 UTSDT 1.6080 

 
Present 
theories FSDT 1.6228 

6 Reference [65] 1.5214 

 UTSDT 1.5191 

 
Present 
theories FSDT 1.5340 

7 Reference [65] 1.4467 

 UTSDT 1.4445 

 
Present 
theories FSDT 1.4592 

8 Reference [65] 1.3829 

 UTSDT 1.3810 

 

Present 
theories 

 FSDT 1.3951 

9 Reference [65] 1.3283 

 UTSDT 1.3267 

 
Present 
theories FSDT 1.3401 

10 Reference [65] 1.2820 

 UTSDT 1.2806 

 

Present 
theories 

 FSDT 1.2933 
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Table11a. Volume fraction exponent effect on the dimensionless transverse shear stress yn  of a FGM square plate 

p   yn  

1 Reference [65] 0.5446 

 UTSDT 0.5452 

 UTSDT+SR 0.5300 

 

Present 
theories 

FSDT 0.4979 

2 Reference [65] 0.573400 

 UTSDT 0.573939 

 UTSDT+SR 0.526141 

 

Present 
theories 

FSDT 0.485400 

3 Reference [65] 0.5629 

 UTSDT 0.5647 

 UTSDT+SR 0.5097 

 

Present 
theories 

FSDT 0.4443 

4 Reference [65] 0.5346 

 UTSDT 0.5374 

 UTSDT + SR 0.4974 

 

Present 
theories 

FSDT 0.4026 

5 Reference [65] 0.5031 

 UTSDT 0.5060 

 UTSDT + SR 0.4894 

 

Present 
theories 

FSDT 0.3688 

6 Reference [65] 0.4755 

 UTSDT 0.4782 

 UTSDT+SR 0.4840 

 

Present 
theories 

 FSDT 0.3444 
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Table11b. Volume fraction exponent effect  on dimensionless transverse shear stress yn  of a FGM square plate 

p   yn  

7 Reference [65] 0.4543 
 UTSDT 0.4565 
 UTSDT+SR 0.4800 
 

Present 
theories 

FSDT 0.3282 
8 Reference [65] 0.4392 
 UTSDT 0.4409 
 UTSDT+SR 0.4769 
 

Present 
theories 

FSDT 0.3183 
9 Reference [65] 0.4291 
 UTSDT 0.4303 
 UTSDT+SR 0.4744 
 

Present 
theories 

FSDT 0.3130 
10 Reference [65] 0.4227 

 UTSDT 0.4235 
 UTSDT+SR 0.4722 
 

Present 
theories 

 FSDT 0.3109 

 
 

Table12a. Volume fraction exponent effect on the dimensionless transverse shear stress xn  of a FGM square plate 
p   xn  

1 Reference [65] 0.5114 

 UTSDT 0.4964 

 UTSDT+SR 0.5003 

 

Present 
theories 

FSDT 0.4050 

2 Reference [65] 0.470000 

 UTSDT 0.458503 

 UTSDT+SR 0.472992 

 

Present 
theories 

FSDT 0.344600 

3 Reference [65] 0.4367 

 UTSDT 0.4292 

 UTSDT+SR 0.4596 

 

Present 
theories 

FSDT 0.2986 

4 Reference [65] 0.4204 

 UTSDT 0.4151 

 UTSDT + SR 0.4548 

 

Present 
theories 

FSDT 0.2742 

5 Reference [65] 0.4177 

 UTSDT 0.4130 

 UTSDT + SR 0.4531 

 

Present 
theories 

FSDT 0.2653 

6 Reference [65] 0.4277 

 UTSDT 0.4178 

 UTSDT+SR 0.4525 

 

Present 
theories 

FSDT 0.2652 
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Table12b. Volume fraction exponent effect on the dimensionless transverse shear stress xn  of a FGM square plate 
p    xn  

7 Reference [65]  0.4310 

 UTSDT 4.25E+05 0.4253 

 UTSDT+SR 4.52E+05 0.4522 

 

Present 
theories 

FSDT 2.70E+05 0.2697 

8 Reference [65]  0.4399 

 UTSDT 4.33E+05 0.4331 

 UTSDT+SR 452133.50 0.4521 

 

Present 
theories 

FSDT 276151.95 0.2762 

9 Reference [65]  0.4481 

 UTSDT 4.40E+05 0.4403 

 UTSDT+SR 452147.98 0.4521 

 

Present 
theories 

FSDT 283142.70 0.2831 

10 Reference [65]  0.4552 

 UTSDT 4.46E+05 0.4463 

 UTSDT+SR 4.52E+05 0.4523 

 

Present 
theories 

FSDT 2.90E+05 0.2900 
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Appendix. 
 
In the  followings  all the equilibrium operators are reported. 
  
Equilibrium operators of the 1st fundamental equation 1 jR , 1...7j   

 
2 2 2 2

11 11 66 1 11 1 66 2 66 3 662 2 2 2

   
     

   
R A A a B b B b D b E

x s x s           (A.1)   

 

 
2

12 12 66R A A
x s


 

 
                                                                           (A.2) 

13 12
0

1
R A

R x





                                                                                     (A.3)

 
2 2 2 2

14 11 66 1 11 1 66 2 66 3 662 2 2 2

   
     

   
R B B a D b D b E b F

x s x s
          (A.4)  

 
2

15 12 66R B B
x s


 

 
                                                                           (A.5) 

 
2 2 2 2

16 11 66 1 11 1 66 2 66 3 662 2 2 2

   
     

   
R E E a F b F b L b H

x s x s
          (A.6)   

 
2

17 12 66R E E
x s


 

 
                                                                           (A.7)

 
Equilibrium operators of the 2nd fundamental equation 2 jR , 1...7j   

 

 
2

21 12 66R A A
s x


 

 
                                                                                                                   (A.8) 

 

 

2 2 2 2

22 66 11 66 1 66 1 11 2 11 3 112 2 2 2 2
0

1 66 2 66 3 662
0

1

1

   
       

   

  

R A A A a B b B b D b E
x s R x s

b B b D b E
R

                                  (A.9) 

 
 

       11 66 1 11 66 2 11 66 3 11 66
23

0 0 0 0

     
       

A A b B B b D D b E E
R

R s R R R s
                                (A.10)   

 
2

24 12 66R B B
s x


 

 
                                                                                                                 (A.11)

 

 

 

2 2 2 2
66

25 66 11 1 66 1 11 2 11 3 112 2 2 2
0

1 66 2 66 3 66

0

   
       

   

 


A
R B B a D b D b E b F

x s R x s

b B b D b E

R

                                      (A.12) 
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 
2

26 12 66  R E E
s x


 

 
                                                                                                               (A.13) 

 

 
2 2 2 2

27 66 11 66 66 1 66 1 11 2 11 3 112 2 2 2
0 0

31 2
66 66 66 66 66 66

0 0 0 0 0 0

1 2
3 + +

2 2 2
+  (3 )  (3 ) (3 )

    
           

    

R E E D E a F b F b L b H
x s R R x s

bb b
E F F L L H

R R R R R R

             (A.14)    

 
Equilibrium operators of the 3rd fundamental equation 3 jR , 1...7j   

12
31

0

A
R

R x


 


                                                                                                                             (A.15) 

       66 11 1 66 11 2 66 11 3 66 11
32

0 0 0 0

     
       

A A b B B b D D b E E
R

R s R R R s
                             (A.16)   

 

 

 

2 2 2 2
11

33 66 66 1 66 1 66 2 66 3 662 2 2 2 2
0

1 11 2 11 3 11

2
0

   
      

   

 


A
R A A a B b B b D b E

x s R x s

b B b D b E

R

                                       (A.17) 

 

12
34 66 1 66

0

B
R A a B

R x x

   
       

                                                                                                  (A.18) 

 

11 11 11 11
35 66 1 66 2 66 3 66

0 0 0 0

         
                         

B D E F
R A b B b D b E

R s R R R s                              (A.19)   

12
36 66 1 66

0

3 3
E

R D a E
R x x

   
       

                                                                                              (A.20) 

66 11 66 11
1 66 2 66

0 066 11
37 66

0 66 11
3 66

0

2 2
3 3

2
3

2
3

     
       

                           

F F L L
b E b F

R RE E
R D

R s sH H
b L

R

            (A.21)

 
Equilibrium operators of the 4th fundamental equation 4 jR , 1...7j   

 

 
2 2 2 2

41 11 66 1 11 1 66 2 66 3 662 2 2 2

   
     

   
R B B a D b D b E b F

x s x s
                                                 (A.22) 

                              

 
2

42 12 66R B B
x s


 

 
                                                                                                                 (A.23) 
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12
43 66 1 66

0

B
R A a B

R x x

   
       

                                                                                                  (A.24) 

 
2 2 2 2

44 11 66 66 1 11 1 66 2 66 3 66 1 662 2 2 2

   
       

   
R D D A a E b E b F b L a B

x s x s
                            (A.25)  

 
2

45 12 66R D D
x s


 

 
                                                                                                                (A.26) 

 
2 22 2

46 11 66 66 1 11 1 66 2 66 3 66 1 662 2 2 2
3 3

  
       

   
R F F D a L b L b H b M a E

x s x s                         (A.27)  

 
2

47 12 66R F F
x s


 

                                                                                                                   (A.28) 

 
Equilibrium operators of the 5th fundamental equation 5 jR , 1...7j   

 

 
2

51 12 66R B B
x s


 

 
                                                                                                                 (A.29) 

 

 

 

2 2 2 2
66

52 66 11 1 66 1 11 2 11 3 112 2 2 2
0

1 66 2 66 3 66

0

   
      

   

 


A
R B B a D b D b E b F

x s R x s

b B b D b E

R
                                       (A.30) 

 
 

11 11 11 11
53 66 1 66 2 66 3 66

0 0 0 0

         
                         

B D E F
R A b B b D b E

R s R R R s
                             (A.31)   

 
2

54 12 66R D D
x s


 

 
                                                                                                              (A.32) 

 

 

 

2 2 2 2

55 66 11 66 1 66 1 11 2 11 3 112 2 2 2

1 66 2 66 3 66

   
       

   
  

R D D A a E b E b F b L
x s x s

b B b D b E

                                      (A.33)

 
2

56 12 66R F F
x s


 

 
                                                                                                                 (A.34) 
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 
2 2 2 2

57 66 1 66 11 1 11 2 11 3 112 2 2 2

66 66 1 66 66 2 66 66
0 0 0

3 66 66
0

2 2 2
3 3 3

2
3

   
      

   
     

                
     
 

   
 

R F a L F b L b H b M
x x s s

D E b E F b F L
R R R

b L H
R

                                              (A.35)

 
 
Equilibrium operators of the 6th fundamental equation 6 jR , 1...7j   

 

 
2 2 2 2

61 11 66 1 11 1 66 2 66 3 662 2 2 2

   
     

   
R E E a F b F b L b H

x s x s
                                          (A.36)  

 
2

62 12 66R E E
x s


 

 
                                                                                                          (A.37) 

12
63 66 1 66

0

3 3
E

R D a E
R x x

   
       

                                                                                        (A.38) 

 
 

   
2 2 2 2

64 11 66 1 11 1 66 2 66 3 66 66 1 662 2 2 2
3

   
       

   
R F F a L b L b H b M D a E

x s x s
               (A.39)   

 
 
 

 
2

65 12 66R F F
x s


 

 
                                                                                                           (A.40)

 
2 2 2 2

66 11 66 66 1 11 1 66 2 66 3 66 1 662 2 2 2
9 9

   
       

   
R H H F a M b M b N b V a L

x s x s
               (A.41)   

 
2

67 12 66R H H
x s


 

 
                                                                                                         (A.42)

 
Equilibrium operators of the 7th fundamental equation 7 jR , 1...7j   

 

 
2

71 12 66R E E
x s


 

 
                                                                                                                  (A.43) 

 

 
2 2 2 2

66
72 66 11 66 1 66 1 11 2 11 3 112 2 2 2

0 0

66 66 3 661 2
66 66 66

0 0 0 0 0 0

21
3

2 2 2
3 3 3

    
             
     

          
     

E
R E E D a F b F b L b H

x s R R x s

F L b Hb b
E F L

R R R R R R

                (A.44)   
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11 11 11 11
73 66 1 66 2 66 3 66

0 0 0 0

3 3 3 3
         
                                

E F L H
R D b E b F b L

R s R R R s
                        (A.45)   

 

 
2

74 12 66R F F
x s


 

 
                                                                                                                 (A.46) 

 

 
2 2 2 2

75 66 11 1 66 1 11 2 11 3 112 2 2 2

66 66 66 66
66 1 66 2 66 3 66

0 0 0 0

2 2 2 2
3 3 3 3

   
      

   
       

                     
       

R F F a L b L b H b M
x s x s

E F L H
D b E b F b L

R R R R
                                 (A.47)   

 
2

76 12 66R H H
x s


 

 
                                                                                                                (A.48) 

 

   

 

2 2 2 2

77 66 11 1 66 1 11 2 11 3 112 2 2 2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0 0

66 1 66 2 66 3 662
0

2 6
3 3

4

   
     

   
 

           
 

   

R H H a M b M b N b V
x s x s

F b L b H b M L b H b M b N
R R

H b M b N b V
R

                           (A.49) 
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Chapter 3 

Static analysis of functionally graded conical shells and panels 

using the generalized unconstrained third order theory 

coupled with the stress recovery 

 

Sommario 
 
Dopo l’analisi dello stato dell’arte, si è proceduti con la scrittura di una teoria generale di 

deformazione a taglio del terzo ordine di tipo svincolato per gusci/pannelli conici. Si è operata la 

scrittura del modello cinematico a sette parametri indipendenti, delle relazioni tra deformazioni e 

spostamenti arricchite dell'effetto della curvatura, delle equazioni  costitutive per una lamina singola 

in materiale a stratificazione graduale e delle caratteristiche di sollecitazione in funzione degli 

spostamenti. Definiti i carichi esterni uniformi di natura trasversale, assiale e circonferenziale, è 

stato applicato il principio degli spostamenti virtuali per ricavare le equazioni indefinite di 

equilibrio e le condizioni al contorno. Pertanto si è proceduti alla scrittura della equazioni 

fondamentali con la sostituzione delle relazioni delle azioni interne espresse in funzione degli 

spostamenti, nelle equazioni indefinite di equilibrio. Risolto il sistema fondamentale con il metodo 

generalizzato di quadratura differenziale, si è pervenuti alla conoscenza dei sette parametri 

indipendenti di spostamento, in tutti i punti della superficie di riferimento del panello/guscio conico. 

Utilizzando le equazioni costitutive e la soluzione del sistema fondamentale, si è giunti alla 

determinazione delle tensioni membranali in un punto arbitrario della superficie di riferimento del 

panello/guscio, per poi elaborare la distribuzione di esse lungo lo spessore dell'elemento strutturale.  

Per determinare le tensioni trasversali normale e tagliante, si è proceduti con la scrittura delle 

equazioni di equilibrio dell’elasticità tridimensionale. Compiuta la discretizzazione di esse con il 

metodo di quadratura differenziale di tipo generalizzato e sfruttando la conoscenza delle tensioni 

membranali, determinate indirettamente dal sistema fondamentale, sono  stati determinati i profili di 

tensione trasversale normale e tagliante lungo lo spessore dell'elemento strutturale in esame. I 

profili di tensione trasversale ottenuti in questo modo soddisfano al pieno le condizioni al contorno 

anche in presenza di carichi taglianti alle superfici estreme. In questo modo è stato superato il limite 

della teoria di Reddy che assumeva nulli a priori i carichi taglianti alle superfici di estremità. Sono 

stati anche discussi l’influenza della curvatura iniziale, del materiale e dei parametri geometrici nei 

profili ottenuti. 
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3.1  Introduction 

As it is well known, the classical bending and shear deformation theories have been developed for 

the analysis of composite structures. Structures with a ratio of thickness to representative 

dimensions equal to 1/20 or less are considered to be thin and the classical bending theory will be 

adopted, whereas structures with the ratio grater than 20 are studied by means of  shear deformation 

theories. Reissner [1,2] proposed the first order shear deformation plate and shell theories based on 

kinematics analysis. Mindlin [3] suggested a first order shear deformation plate theory that included 

rotary inertia terms for the free vibrations of plates. Because the first order shear deformation 

theories based on Reissner - Mindlin kinematics violated the zero shear stress condition on the top 

and bottom surfaces of the shell or plate, a shear correction factor was required to compensate for 

the error due to a constant shear strain assumption through the thickness. The Reissner-Mindlin 

theory has been applied to the analysis of a variety of structures. Whitney [4,5] investigated the 

shear correction factors for orthotropic laminates under static loads and analysed the effects of shear 

deformation on the bending of laminated plates. Whitney and Pagano [6] considered the shear 

deformation of heterogeneous anisotropic plates and Reissner [7] developed a consistent treatment 

of transverse shear deformations in laminated anisotropic plates. However, in order to obtain a 

better prediction of shear deformation and transverse normal strains in laminated structures, higher 

order theories are required. Over the years, several higher order shear deformation theories have 

been developed by different authors [8-20], prevalently with reference to the plate structure and 

cubic expansion of displacement field. Lo et al. [9] wrote a theory of homogeneous plate 

deformation which accounts for the effects of transverse shear deformation, transverse normal 

strain, and a nonlinear distribution of the in plane displacements with respect to the thickness 

coordinate. A particular problem involving a plate acted upon by a sinusoidal surface pressure was 

considered. Later, they extended their third order formulation to laminated plates [10]. Murthy [11] 

presented an improved transverse shear deformation theories for laminated anisotropic plates under 

bending. The displacement field was chosen so that the transverse shear stress vanished on the plate 

surfaces with the aim to remove the use of shear correction factor in computing shear stresses. 

Levinson [12] presented a refined theory for the static and dynamic analyses of isotropic plates by 

using different displacement field expressions. Reddy [15] pointed out that the equilibrium 

equations derived by Murthy [11] and Levinson [12] resulted variationally inconsistent. He wrote a 

simple higher order theory for laminated composites plates with a consistent derivation of the 

displacement field and associated equilibrium equations. He considered the membrane displacement 

components as cubic function of the thickness coordinate and the transverse displacement as 

constant. Later, Reddy and Liew [16] extended the higher order shear deformation theory to shells. 
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Therefore, the aforementioned higher order shear deformation theories often fail to provide accurate 

three dimensional stresses and strains at the ply level near geometric and material discontinuities. 

So, several layerwise models were developed which contain full three dimensional kinematics and 

constitutive relations. Reddy [17] suggested a layer wise theory by giving an accurate description of 

the three dimensional displacement field which was expanded as a linear combination of thickness 

coordinate and unknown functions of position of each layer. Di Sciuva [18,19] formulated an 

improved shear deformation theory, the so called zig-zag theory. He considered a two dimensional 

theory by adopting a displacement field with piecewise linear variation of the membrane 

displacement and constant value of the transverse displacement through the thickness. The 

fulfilment of the static and geometric continuity conditions was obtained and the influence of the 

distortion of the deformed normal was included. Reddy [20] pointed out that all the higher order 

theories are substantially disguised in the form of the displacement expansions used. Moreover, 

even when the displacement used was the same, the equilibrium equations were carried out in two 

different ways. Some authors used the vector approach, the equations did not contain the effect of 

higher order terms in the form of higher order stress resultants. The higher order terms were 

included in the strains computed. The other approach was to use the principle of virtual 

displacements which gave many more additional terms in the form of higher stress resultants. In this 

manner, the resulting set of equations for all the theories higher than first order were different from 

those obtained using the vector approach. Bisegna and Sacco [21] derived a general procedure, 

based on the conjecture that plate theories can be carried out from the three dimensional elasticity, 

by imposing suitable constraints on the stress and strain fields. By following the framework of the 

constrained three dimensional elasticity, the imposed constraint was assumed to be frictionless. And 

by taking into account the reactive fields, the equilibrium, congruence and constitutive equations 

turned out to be exactly satisfied. They used the equilibrium equations to carry out the shear stress 

in the thickness of the plate. A layer wise laminate theory rationally deduced from the three 

dimensional elasticity was also presented [22]. Bischoff and Ramm [23] discussed on the physical 

significance of higher order kinematic and static variables in a three dimensional shell formulation. 

Auricchio and Sacco [24] presented new mixed variational formulations for a first order shear 

deformation laminate theory and considered the out of plane stresses as primary variables of the 

problem. They determined the shear stress profile either by independent piecewise quadratic 

functions in the thickness or by satisfying the three dimensional equilibrium equations written in 

terms of midplane strains and curvatures. Carrera [25,26] proved that the Reissner's mixed 

variational theorem offered a convenient way of analyzing multilayered structures, as well as 

interlaminar continuity of transverse stresses and the zig-zag form of displacements in the thickness 



 112

plate/shell direction are easily introduced. He traced a critical overview which showed the 

capability of the Reissner’s mixed variational theorem (RMVT) to study multilayered plates and 

shells. He stated that the interface continuity of transverse shear stresses, as well as the zig-zag form 

of displacements in the thickness shell direction, were easily introduced by RMWT. Kulikov and 

Plotnikova [27] developed models for the analyses of multilayered Timoshenko-Mindlin-type shells 

for the analysis of composite shells where the effect of transverse shear and transverse normal 

strains were included. They calculated  the axial displacement, the vertical displacement, and the 

moments resultant by varying the geometric shell parameters. Carrera and Brischetto [28] extended 

the thickness locking mechanism to shell geometries by considering thin shell theory, first order 

shear deformation theory, higher order theories, mixed theories and layer wise theories. Their 

investigation confirmed that the thickness locking can be identified as a shell theory problem and 

had no relation with the numerical methods. Moreover, they observed that in order to avoid the 

thickness locking the shell theories would require at least a parabolic distribution of transverse 

displacement component. Matsunaga [29] determined the natural frequency, the buckling stress and 

the stress distribution of functionally graded shallow shells. He used the method of power series 

expansion of displacements components and derived the fundamental set of governing equations 

through the Hamilton's principle. With the aim to calculate the transverse shear and normal stresses, 

he conducted the integration of the fundamental equilibrium equation with satisfying the surface 

boundary conditions of  the shell structure. He proved that a 2D higher order deformation theory 

can predict accurately not only the natural frequencies and buckling stresses but also the through the 

thickness stress and displacement distributions. Cinefra et al. [30] proposed a variable kinematic 

shell model, based on Carrera's unified formulation, to dynamic and static shell cases. They 

compared classical shell theories with the refined ones based on the Reissner mixed variational 

theorem. They furnished a better exploitation of the response of various shell theories by 

considering the distribution of the vibration modes and stress components in the thickness shell 

directions. Carrera et al. [31] evaluated the effect of thickness stretching in functionally graded 

plate/shell structures in the thickness direction. They compared plate/shell theories with constant 

transverse displacement with the ones where the transverse displacement function is expanded till to 

the fourth order in the thickness direction. They considered various FGM plates and shells with 

different geometry and material properties as proposed by Zenkour [32] and Kashtalyan [33]. They 

confirmed the Koiter's recommendation [34] which states that an increase in the order of expansion 

for in plane displacements can result meaningless if the thickness stretching is discarded in the 

plate/shell theories (constant transverse displacement). Liew at al. [35] presented an overview on 

the development of element free or meshless methods in the analysis of composite structures. 
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Meshless methods can provide more accurate approximations for structures with complex 

geometries than FEM. Their distinctive feature is related to the shape functions which are 

constructed in terms of higher order continuous weight functions. Their applications involve static 

analysis, free vibration, buckling and post buckling, non linear analysis and transient dynamics. 

Recently, Asemi et al. [36] furnished an elastic solution of a two dimensional functionally graded 

thick truncated cone with finite length under hydrostatic combined loads, such as internal, external, 

and axial pressure. They applied finite element method (FEM) by using Rayleigh – Ritz energy 

formulation. They analyzed the influence of semi vertex angle of the cone and the power law 

exponents on different distributions of displacements and stresses. They proposed numerical 

solutions for all types of axisymmetric structures as thick hollow cylindrical and truncated conical 

shells with finite and infinite lengths, and various loading and boundary conditions. Aghdam et al. 

[37] conducted the bending analysis of moderately thick functionally graded conical panels, 

subjected to uniform and non uniform distributed loadings. They applied the first order shear 

deformation theory and solved the governing equations by the extended Kantorovich method. The 

influence of the volume fraction exponent on the distribution of the normalized deflection and 

moment was underlined.  

A lot of works deals with  the dynamic response of conical shells [38-63]. For the sake of brevity 

only a few will be quoted [38-47]. 

Khatri and Asnani [38] conducted the vibration and damping analysis of multilayered conical shells. 

They wrote the governing equation of motion for axisymmetric and antisymmetric vibrations of a 

general multilayered conical shell consisting of an arbitrary number of orthotropic material layers. 

They applied the Galerkin method for finding the approximate solutions of the shell with various 

edge conditions. Lam et al. [39] used the generalized differential quadrature method as numerical 

technique for the analysis of the free vibration of truncated conical panels. They considered 

clamped and simply supported isotropic truncated conical panels and studied the effect of the semi 

vertex angle on the frequency characteristics. Liew et al. [40] studied the free vibration of conical 

shells via the element free kp Ritz method, by using the classical thin shell theory. They reached the 

frequency characteristics of the conical shell by varying the semi vertex angle and the boundary 

conditions. Li et al [41] calculated the natural frequencies and the forced vibration responses of 

conical shell, using the Rayleigh-Ritz method. Sofiyev [42] analysed the vibration and stability 

behaviour of freely supported truncated and complete FGM conical shells subjected to external 

pressure. The material properties were assumed to vary continuously through the thickness of the 

conical shells, by following a simple power law. According to the thin shell theory, the basic 

relations, the dynamic stability and compatibility equations of FGM truncated conical shells were 
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written. The buckling pressures, the fundamental cyclic frequencies and corresponding waves 

numbers of FGM conical shells were found by recurring to the Galerkin method. The overall effects 

of the conical shell geometrical characteristics and material composition profiles on the buckling 

pressure and fundamental frequencies were examined in the numerical results. The dynamic 

behaviour of functionally graded conical shells by means of the FSDT and the GDQ numerical 

technique was analysed in [43-44]. A double form of the simple power law distributions was 

considered and the effect of the power exponent  on the natural frequencies of the graded conical 

shells was studied. The domain was discretized by making use of different types of non-uniform 

grid point distributions. The formulation was based on the FSDT and the GDQ technique. The role 

of the power exponent and the other material coefficients on the natural frequencies of the graded 

conical shells was clarified. Cinefra et al. [45] arrived to closed form solutions of free vibration 

problems of simply supported functionally graded shells. By considering  the framework of the 

Carrera unified formulation, the variable kinematic shell model was carried out. The numerical 

results showed that the used theory appeared to be able to obtain accurate stress values throughout 

the thickness direction. Zhao and Liew [46] developed the free vibration analysis of functionally 

graded conical shell panels by a meshless method. The element free kp Ritz method was adopted 

and the FSDT theory is used. The accuracy of the proposed method is verified by executing 

convergence studies in terms of the number of nodes. They monitored the effects of the volume 

fraction, boundary condition, semi-vertex angle, and length to thickness ratio on the frequency 

characteristics of the functionally graded conical shells. Recently, Tornabene et al. [47] recently 

studied the functionally graded and laminated doubly curved shells and panels of revolution with a 

free-form meridian. They furnished a 2D G.D.Q. solution for free vibration, by deriving the 

theoretical formulation with the use of the first order shear deformation theory (FSDT). They 

generalized the shell theory with the inclusion of the curvature effect in the formulation.  

Among the numerical works which dealt with the bucking of conical shell, the following ones are 

considered. Seide [48] examined the axisymmetric buckling of circular cones under axial 

compressions. Mushtari and Sachenkov [49] focused on the stability of cylindrical and conical 

shells of circular cross section by considering the simultaneous action of axial compression and 

external normal pressure. Singer [50] analyzed the buckling of circular conical shells under 

axisymmetric external pressure. Seide [51] developed calculations for the stability of thin conical 

frustums subjected to external uniform hydrostatic pressure and axial load. Singer [52] furnished 

Donnel type equation for buckling of orthotropic conical shells. Serpico [53] studied the elastic 

stability of orthotropic conical and cylindrical shells subjected to axisymmetric loading conditions.  
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Lu and Chang [54] examined the non linear thermal buckling of conical shells. Baruch et al. [55] 

analyzed the influence of  in plane boundary conditions on the stability of conical shells under 

hydrostatic pressure. Bushnell and Smith [56] studied the  buckling of non uniformly heated 

cylindrical and conical shells. Wu and Chiu [57] focused on the thermally induced dynamic 

instability of composite conical shells. Dulmir et al. [58] studied the axisymmetric static and 

dynamic buckling of composite truncated conical cap. Bhangale et al. [59] characterized the linear 

thermoelastic buckling and free vibration behaviour of functionally graded truncated conical shells. 

Sofiyev [60] analyzed the stability of functionally graded truncated conical shells under aperiodic 

impulsive loading. Naj et al. [61] examined the thermal and mechanical instability of functionally 

graded conical shells. Sofiyev [62] analyzed the stability behaviour of freely supported FGM 

conical shells subjected to external pressure. Recently, Sofiyev [63] characterized the influence of 

the initial imperfection on the linear buckling response of FGM truncated conical shells.  

The  aim of  the present study is to extend the previous formulation by the authors [64] to the 

determination of accurate stress profiles for functionally conical shells and panels. As far as the  

static analysis of functionally graded conical panels and shells is concerned, shear deformation 

theories of various degree have been applied. The kinematic model of the first order conceived by 

Reissner and Mindlin has been overcome by the higher order theories which lead to the accurate 

determination of the sliding strain. By fixing the Taylor's expansion of displacement field at the 

third order and taking constant the transverse displacement, two third order shear deformation 

theories are recurrent in the literature background: the third order theories of constrained and 

unconstrained nature. The first one was originally formulated by Reddy [16], whereas the second 

one was firstly proposed by Leung [65] and is considered as an evolution of the FSDT. The need to 

constrain the resulting kinematic model in the Reddy's formulation by enforcing the null value of 

sliding strains on the boundary surfaces, has the proper advantage to make the boundary conditions 

satisfied. Differently, the Leung's third order model does not introduce any constraint and it also 

allows to consider shearing loads even if  it does not satisfy the boundary condition.  

In this paper, the authors reconsider the unconstrained third order theory and write it for the 

functionally graded conical panels and shells. As in the previous work for the FGM cylindrical 

shells and panels [64], they combine the Leung's theory with the stress recovery technique in order 

to conduct the static analysis with the satisfaction of boundary conditions under shear and normal 

constant loads at the extreme surfaces of graded conical shell or panels.  

Here, open conical shell and panels made up of a single functionally graded layer are considered. 

The ceramic volume fraction follows a four parameter power exponent law. They start from the 

definition of a seven parameter displacement field, use the strain - displacement  relations enriched 
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by the initial curvature effect and the constitutive equations and the internal actions in terms of the 

displacement parameters. With the definition of the external transverse and shear uniform loads 

written in terms of the ones acting on the upper and lower surfaces, the principle of virtual 

displacement is applied and the indefinite equilibrium equations and the boundary conditions are 

derived. The substitution of the internal actions in terms of  generalized displacements in the 

indefinite equilibrium equation system leads to seven fundamental equations. The generalized 

differential quadrature method (GDQ) [66-90] is applied in order to solve the fundamental system 

and obtain the solution in terms of the seven independent displacement parameters. Using the 

constitutive equations, the membrane meridional and circumferential stress response along the 

thickness direction for different class of functionally graded materials are determined. With the in 

plane stress components indirectly derived from the GDQ - solution [66-90] of the fundamental 

system, the integration of the three dimensional indefinite equilibrium equations  is carried out. In 

order to satisfy the boundary condition at extreme surfaces, the determined transverse shear or 

normal stress was refined as shown in the previous paper by the authors [64]. In this manner, the 

throughout the thickness transverse and normal stress could be plotted by means of the GDQ 

solution of the 3D indefinite equilibrium equation along the thickness direction, for different types 

of functionally graded open conical panels and shells. The influence of the initial curvature effect, 

the semi vertex angle of the conical shell, the open angle of the conical panel, the thickness to 

radius ratio, the thickness to length ratio on the stress profiles are set forth. Moreover, the 

comparisons between the first and third order mechanical response, the effect of the material 

coefficients, the difference between the mechanical behaviour of  cylindrical and open conical 

structures are studied and shown. 

Further publications related with the present paper are reported in [91-94]. 
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3.2 Functionally graded composite conical shells and fundamental systems 

3.2.1 Fundamental hypotheses 

In this paper  a graded truncated conical shell is considered. 0 0, ,L R h  denote the height, the parallel 

radius and the total thickness of the shell, respectively. The position of an arbitrary point P within 

the shell is located by the coordinates x ( 0 00 cos  x x L  ), s ( 0 00   s s R ) upon the middle 

surface, and   directed along the outward normal n, and measured from the reference surface 

( 2 2)h h   , as shown in Fig.1. The  - parameter is the angle of the semi-vertex of the cone and  

the   - parameter is the angle between the normal to the shell surface and the '
3x - axis. The bR - 

radius represents the shift of the '
3x - axis with respect to the 3x - axis of revolution. When the 

general case of shell of revolution changes into the case under study, the radii of curvature in the 

meridional R and circumferential R  directions assume the following values: 

 
  xR R ,  0 0sin cos , sin    b bR x R x R x R R                                                                  (1)    

 
 

It is noticed that the conical structure derives from the one under consideration for 0 , and the 

circular plate for 2  . 

The fundamental topics which characterize the present formulation are : 

1. the normal strain is inextensible, so the corresponding deformation does not exist; 

2. the transverse shear deformation is taken into account in the governing equations, and the 

normal lines to the reference surface do not remain straight and normal after deformation; 

3. the shell deflections are small and the strains are infinitesimal; 

4. the shell is moderately thick, and consequently the normal stress could be negligible; 

5. the shear correction factor vanishes and the presence of a finite shear transverse strain on the 

top and bottom of the open conical shell is accepted. Thus, the model releases the additional 

constrain imposed by the TSDT of Reddy [16]; 

6. the anisotropic material is assumed to be linearly elastic; 

7. the initial curvature effect is taken into account. 
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3.2.2 Displacement field and constitutive equations 

The unconstrained third-order shear deformation theory is based on the following representation of 

the displacement field across the thickness of the open conical shell: 
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where xU , sU , W  are the displacements along the meridional, circumferential and normal 

directions,  respectively; xu , su  are the in-plane displacements, w  is the transverse displacement of 

a point  ,x s  on the middle surface. The functions x , s  are rotations of the normal to the middle 

plane about s  and x  axes, respectively. The parameters x , s  are the higher order terms in 

Taylor’s series expansion and represent the higher order transverse cross-sectional deformation 

modes. 

By substitution of the displacement relations (2) into the strain-displacement equations of the 

classical theory of elasticity, the following relations are obtained: 
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Eqs.(3-7) take into account the initial curvature effect into account. The shell material assumed in 

the following is a functionally graded composite linear elastic one. The elastic engineering stiffness 

, , , , , , ,, ,ij ij ij ij ij ij ij ij ij ijA B D E F L H M N V  are defined as [64]: 
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where the elastic constants ( )ij ijQ Q   depend on the thickness coordinate  and they assume the 

expressions suggested below: 

 

11 22 2

12 2

44 55 66

16 26 45

( )

1 ( )

( ) ( )

1 ( )

( )

2(1 ( ))

0

E
Q Q

E
Q

E
Q Q Q

Q Q Q


 

  
 


 

 





  


  

                                                  (9) 

 
In (9)  E  ,     are the  elastic parameters of the composite material which are also functions of 

the thickness coordinate  . 

The FGM shell under investigation consists of a mixture of two basic components : the ceramic (C) 

and the metal (M) constituents. Their properties follow a continuous and a smoothly change in the 

thickness direction  , and they are function of volume fractions of the constituent materials. The 

three characteristics parameters, the Young’s modulus ( )E  , the Poisson’s ratio ( )  , the density 

( )  , which identify the FGM material, are presented in the form of  a linear combination, as 

follows [64]: 
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                                                                                                             (10)

 
where , , ,C C C CE V  , and , , ,M M M ME V   are the volumic mass, the elastic modulus, the Poisson's 

coefficient,  the volume fraction of the ceramic (C), and the metal (M) constituents, respectively.  
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The power law distribution for the volume fraction of the ceramic component are suggested, where 

four parameters are involved. As mentioned above, the material is inhomogeneous and the material 

properties varying through the thickness are described by the following two four parameter power 

law distributions [64]: 
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In Eqs. (11-12) the four characteristic parameters are the volume fraction index p ( 0 p   ), and 

the coefficients a , ,b c . By varying them, the mode of variation of the ceramic volume fraction 

changes through the shell thickness. It is assumed that the sum of the volume fractions of the two 

basic component (ceramic and metal component) is equal to unity. Therefore, it can be noticed that 

when the exponent p is set to zero or equal to infinity, the FGM material becomes the homogeneous 

isotropic material, as stated below: 
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For the FGM shell the constitutive equations can be written as follows: 
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3.2.3 Forces and moments resultants 

Normal forces, moments, and higher order moments, as well as the shear force and higher order 

shear force are all defined by the following  expressions: 
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By considering the effect of the initial curvature in the formulation, the stress resultants 

, ,xs xs xsN M P  are not equal to the stress resultants , ,sx sx sxN M P , respectively. This assumption 

derives from the consideration that the ratio 0/ R  is not neglected with respect to unity. The effect 

of initial curvature is emphasized by the following coefficients: 

 

   2 3

1 1 2 32 3
0 0 0 0

sin sinsin sin
; ; ;a b b b

R R R R

  
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(21)

 

Using Eqs. (3-7), (14-21) the relations which characterize the internal stresses as function of the 

displacement  parameters can be obtained. 
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3.2.3.1 Normal and shear forces  
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3.2.3.2  Higher order moments 
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3.2.3.3  Shear forces  
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3.2.3.4  Higher order shear resultants 
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3.2.4 Equilibrium equations  

Here we use the principle of virtual displacements to derive the equilibrium equations consistent 

with the displacement field equations (2). The principle of virtual displacements can be stated in 

analytical form as:  
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where :  
 

01d R d dx
R

 
 

   
 

 

 
and , , , , , ,x s n x s x sp p p m m r r  are the external loads acting on the reference surface. Introducing Eqs. 

(3-7) into Eq. (40) and integrating the resulting expression by parts, and setting the coefficients of 

, , , , , ,x s x s x su u w        to zero separately, the following equations of equilibrium are 

obtained: 
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It is worth noting that Eqs. (41) are derived by taking into account the definitions (15-20) of forces 

and moment resultants. The first three equations of Eqs.(41) express the translational equilibrium 

along the meridional x , circumferential s , and normal   direction, respectively. The last four Eqs. 

(41) are rotational equilibrium equations about the s  and x  directions, respectively. In particular, 

the first two are the effective rotational equilibrium equations, whereas the second two represent 

fictitious equations, which derive by the computation of the additional terms of displacement.  

Then, substituting the expressions (22-39) for the in-plane meridional, circumferential, and shearing 

force resultants ( , , , )x s xs sxN N N N , the analogous couples ( , , , )x s xs sxM M M M , and the transverse 

shear force resultants ( , , , , , )x s x s x sT T Q Q S S , Eqs. (42) yield:  
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                                                                   (42) 

 
where the explicit forms of the equilibrium operators  ijS , , 1,...,7i j   are listed in Appendix A. 

It can be noticed that the analytical expressions of most of the equilibrium operators in (42) are 

characterized by the presence of the coefficients 1 1 2 3, , ,a b b b  (21), which take into account the effect 



 127

of the initial curvature, as declared above. By putting 1 1 2 3 0   a b b b , the effect of initial 

curvature can be neglected.  

It should be noted that the loadings on the middle surface can be expressed in terms of the loadings 

on the upper and lower surfaces of the shell as follows.  
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where t

xp , t
sp , t

np  are the meridional, circumferential and normal forces applied to the upper 

surface, and  b
xp , b

sp , b
np   are the meridional, circumferential and normal forces applied to the lower 

surface. 

The boundary conditions  considered in this study are the fully clamped edge boundary condition 

(C), the simply supported boundary condition (S) and the free edge boundary condition (F). They 

assume the following form: 

 
Clamped edge boundary condition (C): 
 

0x s x s x su u w            at 0x   or 0x x , 00 ,s s                                                  (44) 

0x s x s x su u w            at 0s   or 0s s , 00 ,x x                                                  (45)

 
Supported edge boundary condition (S): 
 
 0   x x xu w   , 0  x x xN M P at 0x   or 0x x , 00 ,s s                                        (46)   

 0   s s su w   , 0  s s sN M P  at 0s   or 0s s , 00 ,x x    (47)
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Free edge boundary condition (F): 
 

0      x xs x x xs x xsN N T M M P P   

at 0x   or 0,x x  00 ,s s                                                                                                           (48)

0      s sx s s sx s sxN N T M M P P  

at 0s   or 0,s s  00 ,x x                                                                                                           (49) 

 
In the above (44-49) boundary conditions, it has been assumed 0 02s R . In order to analyze the 

whole shell of revolution, and not a panel, the kinematic and physical compatibility must be added 

to the previous external boundary conditions. Their analytical forms are proposed as follows: 

 
Kinematic compatibility conditions along the closing meridian 0( 0,2 )s R : 
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                                                                                        (50) 

 
Physical compatibility conditions along the closing meridian 0( 0,2 )s R : 

 

0 0

0 0

0 0

0 0

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , ), ( ,0) ( , ),

( ,0) ( , ) , ( ,0) ( , ),

( ,0) ( , ), 0

 

 

 

  

s s sx sx

s s s s

sx sx s s

sx sx

N x N x s N x N x s

T x T x s M x M x s

M x M x s P x P x s

P x P x s x x

                                                                                   (51) 

 
 
3.3 Discretized equations and stress recovery 

The generalized differential quadrature method (GDQ) [66-90] is used to discretize the derivatives 

in the governing equations (42), as well as the external boundary conditions and the compatibility 

conditions. In this paper, the Chebyshev-Gauss-Lobatto grid distribution is adopted, where the 

coordinates of grid points along the reference surface are identified by the following relations: 
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where N , M  are the total number of sampling points which discretize the domain in x  and 

s directions, respectively. This particular choice of the C-G-L sampling points rule with respect to 

the others suggested in literature is justified by the tested efficiency of the GDQ technique. 

By writing the fundamental equilibrium equations (42) by means of GDQ technique, the following 

matrix form is obtained: 

 

     
     

     
bb bd b b

db dd d d

K K δ p

K K p
                                                                                                                (53)

 
In the present formulation the subscripts b and d  stand for boundary and domain, respectively. The 

b -equations define the external boundary conditions and compatibility conditions written on the 

constrained edges of the conical shell, and the d -equations represent the scripture of the 

fundamental equations at the points which belong to the domain. The solution procedure by means 

of the GDQ technique is implemented with the support of  a MATLAB code. 

According to the Reddy’s constrained theory, the transverse shear stresses satisfy a priori the zero 

shear condition on the upper and lower surfaces of the graded conical shell. As it is well known, and 

differently from the constrained theory by Reddy, the transverse shear stress determined from the 

2D-Unconstrained Theory of first and third order does not satisfy the zero shear condition on the 

lateral surfaces of the open conical shell. A possible approach for solving this difficulty is to 

recovery the out of plane shear stress using 3D-equilibrium equations. Using the stationary principle 

of total potential energy, the 3D elastic equilibrium equations for a functionally graded conical shell 

are written as follows: 
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By the knowledge of the membrane stresses ( , ,x s xs   ) and their derivatives in all the points of the 

3D conical shell, the present equations (54-56) of the first order can be solved via the GDQ along 

the thickness direction. The  C-G-L  grid distribution is selected for the grid points m  along the 

thickness direction: 
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                                                                     (57)

 

By imposing the boundary conditions at the bottom surface of the shell, equations (54) and (55) are 

written via the GDQ method in the algebraic form and solved in terms of ,xn sn   .  
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(59) 
 
The  shear stress distributions ,xn sn    carried out by the linear systems (58) and (59) do not satisfy 

the boundary condition at the top surface of shell structure. Consequently, the transverse shear 

stress representations are improved via the refinement suggested by Auricchio and Sacco [24] and 

Tornabene et al. [86], in the following manner: 
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Finally, the transverse normal stress n   profiles are derived by solving the equation (56) via the 

GDQ method: 
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In order to satisfy the boundary condition at the top surface, the n   distributions are also corrected 

as follows: 
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3.4 Stress profiles  

In this numerical study, the static analysis of FGM open conical panels and shells is conducted and 

the through the thickness stress distributions are furnished. The theoretical formulations are based 

on two shear deformation models:  the generalized unconstrained third (GUTSDT) and  first order 

(GFSDT) shear deformation theories. They are labeled as generalized because they are enriched by 

the initial curvature effect. The stress recovery is also proposed in order to define the correct profile 

of the transverse shear and normal stress profiles, by the knowledge of the membrane stress 

components derived from the 2D shear deformation model. In this manner the shear effect is 

definitely improved. The numerical analysis is done by means of the GDQ numerical technique.  

The basic constituents of FGM materials are taken to be 2 3Al O  (ceramic component) and aluminum 

(metal component). Young’s modulus, Poisson’s ratio for the 2 3Al O  are 380cE GPa , 0.3c  , 

and for the aluminum are 70ME GPa , 0.3.M   The ceramic volume fraction is varied by means 

of the four parameter power law distribution [64]. 

The main objectives of this numerical study are the followings: 

1. to study the role of the four parameters of the power law function for various classes of 

graded materials; 

2. to analyze the effect of geometric parameters ( ,  angles; 0 /R h ,  0 / cosL h  aspect 

ratios) on the stress responces; 

3. to compare the numerical results via the unconstrained third order model with those via the 

first order one; 

4. to clarify the influence of the initial curvature effect in the numerical analysis, developed 

herein; 

5. to compare the stress distributions of the open conical conical shell or panel with the ones 

for the cylindrical shell or panel; 

6. to emphasize the key role of the stress recovery technique in determining the transverse 

normal and tangential stress components.  

In order to characterize the effect of the volume fraction gradation as a function of the material 

coefficients, eight types of graded materials are investigated. In Fig.2a the distributions of the 

ceramic volume fraction CV  across the thickness for a wide range of p -values are presented for the 

(1,0,0,p)FGM1 class. It should be noticed that the lower surface  0.5h    of the composite 

structure is fully ceramic, and the top surface  0.5h   is purely metallic. For 0.1 p 2   

(Fig.2a), the material composition is continuously graded throughout the thickness. Differently, for 

p 5  the ceramic volume fraction gradually changes only for 0.5 0.25h   , and for the remaining 
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thickness it attains a null value. For p 8 , the ceramic volume fraction is continuously graded from 

the bottom surface to the middle layer, and for the rest  it has a null value. For p 50,100 , the 

variation of the ceramic volume fraction is very restricted to the layers which are closer to the 

bottom one, and moving away the ceramic volume fraction becomes equal to zero. In Fig.2b, the 

distributions of the ceramic volume fraction are shown for the (1,1,4,p)FGM1 class for several p-values 

[103]. All the (1,1,4,p)FGM1 composite shells are fully ceramic at the top and bottom surfaces. For 

p 1  the ceramic volume fraction  remains higher than 50%, whereas  for p 2  the ceramic 

volume fraction CV  has the analogous trend but it reaches values lower than 50%. For 0 0.5h   

and p 1 , the ceramic volume fraction rapidly increases and it remains higher than 50%. For 

p 0.05 , the distribution of the ceramic volume fraction is quasi ceramic. For p 20,50  the 

graded microstructure only belongs to the lower and upper layers of the (1,1,4,p)FGM1 cylindrical 

shell, and reveals an homogeneous composition rich in the metal constituent inside the composite 

structure. In Fig.2c, the ceramic volume fraction of the (1,0.5,2,p)FGM1  graded material is plotted 

versus the dimensionless shell thickness [103]. The bottom surface of the composite shell structure 

is fully ceramic for all the p - values. The top surface is made of a mixture of  ceramic and metallic 

constituents for p 0.6,2,5 , with increasing metallic content with respect to the ceramic one, 

respectively. For p 10,20,50  the ceramic volume fraction is continuously graded  from the bottom 

surface till h  variable,  respectively, equal to 0.25, -0.25, -0.375. Consequently, the resulting 

composite material for p 50  is prevalently metallic. In Fig.2d, the distributions of the ceramic 

volume fraction across thickness for several a -values are presented for the (a,0.2,3,2)FGM1 class 

[103]. It appears that the bottom surface of the composite structure is purely ceramic, and the top 

surface changes its composition with the variation of the a -parameter. For a 0.2  the top surface of 

the (a,0.2,3,2)FGM1  cylindrical shell is also ceramic. By varying the a -parameter from 0.3 to 1, the 

top surface becomes a mixture of ceramic and metallic constituents. In particular, with the increase 

of a , the top surface becomes richer and richer of the metallic component. In Fig.3a, the 

distributions of the ceramic volume fraction across the thickness for several a -values are presented 

for the (a,0.2,3,2)FGM2 class. In contrast with the previous case, it appears that the top surface of the 

composite structure is purely ceramic, and the bottom surface changes its composition with the 

variation of the a -parameter. For a 0.2  the bottom surface of the (a,0.2,3,2)FGM2  cylindrical shell is 

also ceramic. By varying the a -parameter from 0.3 to 1, the bottom surface is made from a mixture 

of ceramic and metallic constituents. In particular, with the increase of a , the bottom surface 
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becomes richer and richer of the metallic component. For all the a -values, the ceramic volume 

fraction is continuously graded throughout the shell thickness. In Fig.3b, the distributions of the 

ceramic volume fraction across the thickness for several a -values are presented for the 

(0,b,2,1)FGM2 class [103]. It appears that the top surface of the composite structure is purely ceramic, 

and the bottom surface changes its composition with the variation of the b -parameter. By varying 

the b -parameter from -0.2 to -0.9, the bottom surface is made from a mixture of ceramic and 

metallic constituents. In particular, with the decrease of b , the bottom surface becomes richer and 

richer of the metallic component. For b 1   the bottom surface is purely metallic. From Figs. 3a,b it 

appears that for all the a  and b  values, the ceramic volume fraction is continuously graded 

throughout the shell thickness. In Fig.3c, the ceramic volume fraction of the (1,0.5,c,2)FGM1  curves 

versus the shell thickness is presented. It is noted that the top surface is compositionally made of  

the 25% in the ceramic constituent, and the 75% in the metallic one, for all the c -values. 

Differently, the bottom layer is fully ceramic. In Fig.3d the ceramic volume fraction profiles of the 

(1,1,c,1)FGM1  are also proposed [103]. For all the c-values the ceramic volume fraction follows a 

parabolic pattern. The external surfaces are ceramic rich. With decreasing values of the c – 

parameter the ceramic volume fraction attains maximum values at layers nearer to the middle one. 

 
3.4.1 The reference configuration 

The sample configuration for the open conical panel and shell in terms of geometric parameters, 

boundary and loadings condition are assumed as follows. The thickness h  is fixed at 0.1m, the 

parallel radius bR  and the conical length 0L  are both equal to 1m. The  -angle is equal to 11.25°, 

and the  -angle for the panel is assumed equal to 120°. For the truncated conical panel, the 

boundary condition considers clamped all the edges (west, north, east, south). With reference to the 

conical shell the north and south edges are clamped, whereas the west and east edges shared the 

compatibility condition. Both the conical panel and shell are subjected to the uniform np  pressure, 

fixed at -0.1MPa on the top surface of the graded panel or shell. The normal and shear stresses  are 

calculated at the point ( 0 00.25 ;0.25L s ) along the  - direction, being 0 02s R . All the stress 

components are furnished by using the scaled form as follows: 
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where g  or *g  represent the scaled stress component, g  is  the stress component calculated at a 

fixed point and   the scale factor used for the representation and reported in caption. 

 

3.4.1.1  The influence of the initial curvature effect with the semi vertex angle 

The (1,0,0, )1 pFGM  conical panels and shells are firstly considered. The ceramic volume fraction is 

continuously graded from the top metallic layer to the bottom ceramic one. The reference 

configuration is considered. By varying the  -angle, the initial curvature is investigated on the 

tangential * *, , xsxn sn    and normal *, ,x s n    stress profiles of the (1,0,0,0.5)1FGM conical panel under 

top normal pressure 0.1np   MPa, as shown in Figs.4a-f. The stress distributions *
xn , *, ,x s n    are 

also proposed for the  (1,0,0,0.5)1FGM conical shell under top normal and meridional constant loadings 

0.1n xp p   MPa, as shown in Figs.5a-d. The GUTSDT and UTSDT are applied with the normal 

and shear stress recovery. It should be noticed that by fixing 0    the panel or shell under study 

becomes the cylindrical one.  

Generally, by varying the  - semi vertex angle its own influence appears significant in all the stress 

distributions along the dimensionless thickness direction, except for the transverse normal ones 

which seem to be juxtaposed. The shear and circumferential stresses *
sn , s  in Figs.4b,e and the 

meridional and circumferential stresses ,x s   in Figs.5b,c are influenced by the initial curvature 

effect, with particular reference to layers near to the middle one for the *
sn - stress in Fig.4b, and 

layers near to the extreme surfaces for the x - stress in Fig.5b and the s -stress in Fig.4e,5c. 

The (0, ,2,1)2 bFGM  conical panels and shells are secondly considered. The ceramic volume fraction is 

continuously graded from the top ceramic layer to the bottom metallic one. The geometrical, 

boundary and loading conditions are unvaried with respect to the previous numerical examples for 

both the panel and the shell. The throughout the thickness tangential * *, , xsxn sn    and normal 

*, ,x s n    stress profiles of the (0, 1,2,1)2FGM  conical panel and the stress distributions 

*
xn , *, ,x s n    for the (0, 1,2,1)2FGM  conical shell are shown, respectively in Figs.6a-f and Figs.7a-d. 

Analogous considerations could be done as in the previous case.  
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3.4.1.2 The influence of the initial curvature effect with the p - power exponent 

The initial curvature effect is studied by considering the normal and shear stress response along the 

thickness direction of the (1,0,0, )1 pFGM  conical shells and panels for three values of the p - power  

exponent. The reference configuration is selected for the numerical analyses and the  - semi - 

vertex angle  is fixed at 30°. The GUTSDT and UTSDT are applied with the normal and shear 

stress recovery. In Figs.8a-f the tangential * *, , xsxn sn    and normal *, ,x s n    stress profiles are 

proposed for the (1,0,0, )1 pFGM conical panels, whereas in Figs.9a-d the tangential *
xn  and normal 

*, ,x s n    stress distributions are suggested for the graded conical shells under investigation. It is 

noticed that by varying the p-power exponent the initial curvature effect could be appreciable on the 

*
sn - shear stress profiles in Fig.8b and the s - normal stress profiles in Fig.8e and in Fig.9c. Slight 

variations could be recognizable by examining the x  - normal stress response in  Fig.8d for the 

panel and the x  normal ones in Fig.9b  for the shell.  

 

3.4.1.2.1 Comparisons between the first  and third order stress responses with the 

initial curvature effect and the p-power exponent 

The (1,0,0, )1 pFGM conical panels are considered for 0.5,2p  . The reference configuration is adopted 

and the shear constant load 0.1sp   MPa  is applied on the top layer in addition to the normal one 

0.1np   MPa. The  - semi vertex angle is fixed at 30°. The first order and third order shear 

deformation theory are applied with the normal and shear stress recovery.  

It appears that the shear * *, , xsxn sn   - stress distributions in Figs.10a-c and the normal *, ,x s n    

stress ones in Figs.10d-f  of the first and third order are strictly coincident.  

 
3.4.1.3  The influence of the initial curvature effect with the a – material coefficient 

The ( ,0.2,2,1)2 aFGM  conical panels and shells are investigated for 0.2,0.4,0.6a  . The top layer is 

completely ceramic. With the ceramic volume fraction variation throughout the thickness by 

increasing the a – material coefficient, the bottom layer passes from fully ceramic to partially 

ceramic and prevalently metallic microstructure. The reference configuration is chosen and the top 

0.1n xp p MPa   uniform loadings are involved. The GUTSDT is applied with the normal and shear 

stress recovery. The tangential * *, , xsxn sn    and normal *, ,x s n    stress profiles of the graded panels 

are plotted along the thickness direction in Figs.11a-f,  



 137

whereas the shear *
xn  and normal *, ,x s n    stress distributions of the graded shells are shown in 

Figs.12a-d. Both the effect of the a - material coefficient and the initial curvature are emphasized by 

the s -stress distributions  suggested in Fig.11e for the panel and in Fig.12c for the shell. In the 

other shear and normal stress responses furnished in the figures mentioned above, by varying the a - 

material coefficient the stress profiles appear less divergent and the influence of the initial curvature 

effect is more limited.  

 

3.4.1.3.1 Comparisons between the first and third order stress responses with the 

initial curvature effect and the a-material coefficient 

The ( ,0.2,2,1)2 aFGM  conical panels  are investigated for 0.8,1.a   The reference configuration is 

considered with the  -semi vertex angle fixed at 30° and the  -angle at 180°. The top meridional 

and circumferential 0.1x sp p MPa    uniform loadings are applied. The GFSDT and the GUTSDT  

are used with the normal and shear stress recovery. The tangential * *, , xsxn sn    and normal 

*, ,x s n    stress profiles are shown in Figs.13a-f. It is noticed that the x  - stress curves in Fig.13d 

show relevant deviations between the  GFSDT (or FSDT) and GUTSDT (or UTSDT) responses, in 

correspondence to layers near to the extreme surfaces. Whereas the s , *
n  ones in Figs.13e,f  

exhibit the analogous divergence only nearer the top surface of the graded panels.   

 

3.4.1.4  Comparisons between the first and third order stress responses with the initial 

curvature effect and the b-material coefficient 

 
The (0, ,2,1)2 bFGM  conical panels  are analyzed for 0.2, 1b    . The ceramic volume fraction which 

are under examination create two different kind of composite structures , the former graded panel is 

characterized by a fully ceramic top layer and a prevalently ceramic and partially metallic bottom 

one. The latter graded panel is completely ceramic at the top and metallic at the bottom layer. The 

reference configuration is selected and the  -semi vertex angle is fixed at 22.5°. The top 

meridional and circumferential 0.1x sp p MPa    uniform loadings and the bottom normal 

0.1np MPa   constant pressure are applied. The GFSDT  and the GUTSDT  are used with the 

normal and shear stress recovery. The tangential * *, , xsxn sn    and normal *, ,x s n    stress 

distributions are plotted along the thickness direction  in Figs.14a-f. The influence of the degree of 

the shear deformation theory remains limited in all the stress profiles. The initial curvature effect is 
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enhanced by considering the s - stress curves in Fig.14e. In all the stress distributions, the effect of 

the b-material coefficient appears considerable with its own variation at the two levels under study.  

 

3.4.1.5  The influence of the /L h  aspect ratio with the  - angle 

 
The (1,0,0, )1 pFGM  conical panels are investigated for 1.p   The ceramic volume fraction undergoes 

a linear pattern from the top metallic to the bottom ceramic layer. The geometrical parameters are 

chosen as follows: 11.25 ,22.5    ; 120   ; 1bR m ; 0.1h m . The  /L h - aspect ratio is considered 

at three levels: 10,20,40. The tangential * *, , xsxn sn    and normal *, ,x s n    throughout the thickness 

stress distributions are shown in Figs.15a-f. The top normal constant pressure 0.1np   MPa is 

applied. The GUTSDT  is  used with the normal and shear stress recovery. It is observed that the 

divergence between the stress curves in Fig.15a-e exists both when the  -angle is taken constant 

and the /L h - aspect ratio is varied and also in the opposite case. The *
n - transverse stress profiles 

in Fig.15f show more limited deviations with the change of the  -angle or the /L h - aspect ratio.  

 
3.4.1.5.1 The influence of the /L h  aspect ratio with the  - angle 

The (1,1,4, )1 pFGM  conical panels are investigated for 2.p  Both the top and bottom layers are 

ceramic and the ceramic volume fraction undergoes a parabolic variation along the thickness 

direction.  The geometrical parameters are fixed as follows: 1bR m ; 0.1h m ; 30   ; 90 ,180    . 

The  /L h - aspect ratio is considered at three levels: 10,20,40. The tangential * *, , xsxn sn    and normal 

*, ,x s n    throughout the thickness stress distributions are shown in Figs.16a-f. The top normal 

constant pressure 0.1np   MPa is applied. The GUTSDT  is  used with the normal and shear stress 

recovery. Analogous consideration could be formulated as in the previous case.  

 
3.4.1.6 Comparisons between the first and third order recovered and un-recovered  

transverse stress distributions 

 
The ( ,0.2,3,2)1 aFGM  conical panels are investigated for 0.5.a  The ceramic volume fraction passes 

from the 50%wt at the top layer to the full ceramic microstructure at the bottom one. The reference 

configuration is under consideration with the  - angle  equal to 30°. The first and third order 

responses are compared as carried out from the 2D-shear deformation theory with the responses 

achieved by the shear stress recovery. Various loading conditions are taken under consideration. 

The un - recovered ,xn sn   and recovered * *,xn sn   shear stress distributions are suggested for the 
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(0.5,0.2,3,2)1FGM  conical panels under meridional and circumferential top uniform loadings 

0.1x sp p   MPa in Fig.17a,b,c,d and also under bottom normal pressure 0.1np   MPa in 

Fig.17b,d. It is noticed that the recovered shear stress pattern satisfies the boundary condition by 

considering every  shear or normal constant loadings at the extreme surfaces.  

 
3.4.1.7 The influence of   boundary conditions  

3.4.1.7.1 The influence of the   -angle with the initial curvature effect 

The (1,1, ,1)1 cFGM  conical panels are investigated for 5c  . By following a parabolic pattern the 

ceramic volume fraction decreases away from the external layers which are entirely ceramic. The 

minimum value which it assumes is higher than 50%wt. The geometrical parameters are chosen as 

follows: 0 ,22.5 ,90     ; 120   ; 1bR m ; 0.1h m . The normal uniform pressure 0.1np   MPa is 

considered on the top external surface of the composite structure. The north-south-west-east edges 

of the graded structure are simply supported. The GUTSDT  is  used with the normal and shear 

stress recovery. The tangential * *, , xsxn sn    and normal *, ,x s n    throughout the thickness stress 

distributions are shown in Figs.18a-f. With the  - angle at 0° and 22.5° the deviation between the 

stress profiles by considering or not the initial curvature effect can be more appreciated in Fig.18e. 

The stress profiles for 90    are referred to a circular sector plate and exhibit strong differences 

with respect to the others. 

 
3.4.1.7.2 Comparisons between the first and third order stress responses with  

the  -angle variation and the initial curvature effect 

The (1,0.5,2, )1 pFGM  conical panels are investigated for 2p  . The ceramic volume fraction is varied 

with decreasing its value from the 100%wt at the lower surface to the 25% at the top one. The 

geometrical parameters are chosen as follows: 0 ,22.5 ,90     ; 120   ; 1bR m ; 0.1h m . The 

meridional, circumferential and normal uniform loadings 0.1x s np p p    MPa are applied on the 

top external surface of the composite structure. The north edge is clamped and all the others are 

free. The GUTSDT and GFSDT are used with the normal and shear stress recovery. The tangential 

* *, , xsxn sn    and normal *, ,x s n    throughout the thickness stress distributions are shown in 

Figs.19a-f. By fixing the  - angle, the third and first order stress responses show small deviation 

by considering both the stress curves derived from the generalized first and third order shear 

deformation theories and the un-generalized ones. 
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3.5 Comparison study  

Aghdam et al. [37] conducted the static analysis of functionally graded conical panels under 

uniform distributed transverse pressure. They used the first order shear deformation theory and 

added the contribution of the initial curvature to the basic formulation of the first order. In the 

present paragraph, the  results reported in the numerical work of Aghdam [37] are used for 

comparison. The graded material consists of the ceramic part (
1

380cE GPa  or 
2

151cE GPa , 0.3v  ) 

and the metallic one ( 70mE GPa , 0.3v  ). Various L h  ratios form moderately thick ( 10L h  ) to 

thin ( 40L h  ) (1,0,0,2)2FGM  conical panels are considered. Panels are subjected to the uniform 

loading with geometric parameters: L R , 45   . Tables 1 and 2 demonstrate variations of the 

normalized central deflection for conical panels  with different semi vertex angle  . Numerical 

results show very good agreement.  

 
3.6 Conclusion 

The generalized third order shear deformation theory with the normal and shear stress recovery is 

extended to various types of functionally graded truncated conical panels and shells. By means of 

the GDQ method the shear * *, , xsxn sn    and normal *, ,x s n    stress distributions are accurately 

determined along the thickness direction. By considering the present formulation it is possible to 

apply uniform loading of various nature with the satisfaction of the boundary conditions in all the 

loading cases. It  is shown how the mechanical response for graded open conical panels or shells  

changes with the variation of model (GUTSDT, UTSDT, GFSDT, FSDT), the  - angle, the  - 

angle, the aspect ratios ( /L h , /R h ), the boundary conditions. It should be noticed that the 

procedure introduced in this paper can also be extended to other types of graded panels or shells.  
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Fig.1:  Open – conical shell geometry: Meridional Section (A.), Parallel Section (B.) 
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2a.  1,0,0,pFGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b.  1,1,4,pFGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c.  1,0.5,2,pFGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d.  a,0.2,3,2FGM1  

Figs.2a,b,c,d: Ceramic volume fraction cV  versus dimensionless thickness h  for the FGM1 class.
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3a.  a,0.2,3,2FGM2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b.  0,b,2,1FGM2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c.  1,0.5,c,2FGM1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d.  1,1,c,1FGM1  

Figs.3a,b,c,d: Ceramic volume fraction cV  versus dimensionless thickness h  for the FGM1 and 
FGM2 classes.  
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4a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f. transverse normal stress ( *

n ) 

Figs.4a,b,c,d,e,f. Stress profiles for (1,0,0,p)FGM1 (p 0.5)  truncated conical panels via the  

GUTSDT under top normal pressure  (scale factor: 410  ) 
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5a.  transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b. membrane normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c. membrane normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d. transverse normal stress ( *

n ) 

Figs.5a,b,c,d: Stress profiles for (1,0,0,p)FGM1 (p 0.5)  truncated conical shells via the  GUTSDT 

under top normal and meridional constant loadings (scale factor: 410  ) 
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6a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f. transverse normal stress ( *

n ) 

Figs.6a,b,c,d,e,f: Stress profiles for (0,b,2,1)FGM2 (b 1)   truncated conical panels via the  

GUTSDT under top normal uniform pressure (scale factor: 410  ). 
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7a.  transverse shear stress   ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b. membrane normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c. membrane normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d. transverse normal stress ( *

n ) 

Figs.7a,b,c,d: Stress profiles for (0,b,2,1)FGM2 (b 1)   truncated conical shells via the  GUTSDT 

under top and bottom normal constant pressures (scale factor: 410  ). 
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8a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f. transverse normal stress ( *

n ) 

Figs.8a,b,c,d,e,f: Stress profiles for (1,0,0,p)FGM1  truncated conical panels via the  GUTSDT and 

UTSDT under top normal constant pressure (scale factor: 410  ). 
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9a.  transverse shear stress   ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b. membrane normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c. membrane normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d. transverse normal stress ( *

n ) 

Figs.9a,b,c,d: Stress profiles for (1,0,0,p)FGM1  truncated conical panels via the  GUTSDT and 

UTSDT under top normal constant pressure (scale factor: 410  ). 
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10a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f. transverse normal stress ( *

n ) 

Figs.10a,b,c,d,e,f: Stress profiles for (1,0,0,p)FGM1 truncated conical panels via the first and third 

order theories  under top normal and circumferential uniform loadings (scale factor: 410  ). 
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11a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
11d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
11f. transverse normal stress ( *

n ) 

Figs.11a,b,c,d,e,f: Stress profiles for (a,0.2,2,1)FGM2 truncated conical panels via the GUTSDT 

under top normal and meriodional uniform loadings (scale factor: 410  ). 
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12a.  transverse shear stress   ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b. membrane normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c. membrane normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d. transverse normal stress ( *

n ) 

Figs.12a,b,c,d: Stress profiles for (a,0.2,2,1)FGM2  truncated conical shells via the GUTSDT under 

normal and meridional uniform loadings (scale factor: 410  ). 
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13a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
13f. transverse normal stress ( *

n ) 

Figs.13a,b,c,d,e,f: Stress profiles for (a,0.2,2,1)FGM2 truncated conical panels via the GUTSDT 

under top meridional and circumferential uniform loadings (scale factor: 410  ). 
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14a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
14f. transverse normal stress ( *

n ) 

Figs.14a,b,c,d,e,f: Stress profiles for (0,b,2,1)FGM2 truncated conical panels via the first and third 

order theories  under top meridional and circumferential uniform pressures and bottom normal 
uniform pressure (scale factor: 410  ). 
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15a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f. transverse normal stress ( *

n ) 

Figs.15a,b,c,d,e,f: Stress profiles for (1,0,0,p)FGM1 (p 1) truncated conical panels via the GUTSDT 

under top normal uniform pressure  (scale factor: 410  ). 
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16a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f. transverse normal stress ( *

n ) 

Figs.16a,b,c,d,e,f: Stress profiles for (1,1,4,p)FGM1 (p 2) truncated conical panels via the GUTSDT 

under top normal uniform pressure  (scale factor: 410  ). 
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17a. unrecovered ( xn ) and recovered ( *
xn ) 

shear stress under x np p  top uniform  

loadings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17b. unrecovered ( xn ) and recovered ( *
xn ) 

shear stress under x sp p  top uniform 

 loadings and np  bottom uniform pressure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

17c. unrecovered ( sn ) and recovered ( *
sn ) 

shear stress under x np p  top uniform  

loadings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

17d. unrecovered ( sn ) and recovered ( *
sn ) 

shear stress under x sp p  top uniform  

loadings and np  bottom uniform pressure  

Figs.17a,b,c,d Stress profiles for (a,0.2,3,2)FGM1 (a 0.5) truncated conical panels via the GUTSDT 

under various top and bottom uniform loadings  (scale factor: 410  ). 
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18a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
18f. transverse normal stress ( *

n ) 

Figs.18a,b,c,d,e,f: Stress profiles for (1,1,c,1)FGM1 (c 5)  truncated conical panels via the GUTSDT 

or UTSDT under top normal uniform pressure  (scale factor: 410  ). 
 
 
 

-35 -30 -25 -20 -15 -10 -5 0 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

=0° GUTSDT 

=0° UTSDT

=22.5° GUTSDT

=22.5° UTSDT

=90° UTSDT

*
xn

h

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

=0° GUTSDT

=0° UTSDT

=22.5° GUTSDT

=22.5° UTSDT

=90° UTSDT

h

*
sn

-20 -15 -10 -5 0 5 10 15
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

=0° GUTSDT

=0° UTSDT

=22.5° GUTSDT

=22.5° UTSDT

=90° UTSDT

h

xs
-200 -150 -100 -50 0 50 100 150

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

=0° GUTSDT

=0° UTSDT

=22.5° GUTSDT

=22.5° UTSDT

=90° UTSDT

h

x

-120 -100 -80 -60 -40 -20 0 20 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

=0° GUTSDT

=0° UTSDT

=22.5° GUTSDT

=22.5° UTSDT

=90° UTSDT

h

s
-10 -8 -6 -4 -2 0 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

=0° GUTSDT

=0° UTSDT

=22.5° GUTSDT

=22.5° UTSDT

=90° UTSDT

h

*
n



 166

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a. transverse shear stress ( *

xn ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b. transverse shear stress ( *

sn ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c. membrane shear stress ( xs ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d. meridional normal stress ( x ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e. circumferential normal stress ( s ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f. transverse normal stress ( *

n ) 

Figs.19a,b,c,d,e,f: Stress profiles for (1,0.5,2,p)FGM1 (p 2)  truncated conical panels via the 

GUTSDT or GFSDT under top normal, circumferential, meridional uniform loadings  (scale factor: 
410  ). 
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Tables. 
 

 
Table 1a. Normalized central deflection of  graded conical panel (

1
380cE GPa )  under uniform loading 

 
p    L h    w  

2 11.25° 10 ANSYS[37] 0.019500 

   
Reference 

[37] 0.019600 

   FSDT 0.020057 

   GFSDT 0.02003 

   UTSDT 0.02003 

   

Present 
theories 

GUTSDT 0.019952 

  20 ANSYS[37] 0.008850 

   
Reference 

[37] 0.00884 

   FSDT 0.0090231 

   GFSDT 0.0089951 

   UTSDT 0.0090271 

   

Present  
theories 

GUTSDT 0.0089991 

  40 ANSYS[37] 0.0027500 

   
Reference 

[37] 0.00269 

   FSDT 0.0027931 

   GFSDT 0.0027860 

   UTSDT 0.0027934 

   

Present  
theories 

GUTSDT 0.0027871 

 
 
 

Table 1b. Normalized central deflection of  graded conical panel (
1

380cE GPa ) under uniform loading 

 
p    L h    w  

 22.5° 10 ANSYS[37] 0.0241000 

   
Reference 

[37] 0.024200 

   FSDT 0.024749 

   GFSDT 0.024706 

   UTSDT 0.024714 

   

Present 
theories 

GUTSDT 0.024671 

  20 ANSYS[37] 0.011400 

   
Reference 

[37] 0.0114 

   FSDT 0.01612 

   GFSDT 0.01584 

   UTSDT 0.01617 

   

Present 
theories 

GUTSDT 0.01589 

  40 ANSYS[37] 0.0036300 

   
Reference 

[37] 0.0035700 

   FSDT 0.0036890 

   GFSDT 0.0036813 

   UTSDT 0.0036890 

   

Present 
theories 

GUTSDT 0.0036821 

 
  
 
 



 168

 
 

Table 1c. Normalized central deflection of  graded conical panel (
1

380cE GPa ) under uniform loading 

 
p    L h    w  

 45° 10 ANSYS[37] 0.0354000 

   
Reference 

[37] 0.0356000 

   FSDT 0.036121 

   GFSDT 0.036108 

   UTSDT 0.036108 

   

Present 
theories 

GUTSDT 0.036119 

  20 ANSYS[37] 0.0200000 

   
Reference 

[37] 0.0202000 

   FSDT 0.020351 

   GFSDT 0.020330 

   UTSDT 0.020362 

   

Present 
theories 

GUTSDT 0.020341 

  40 ANSYS[37] 0.0075600 

   
Reference 

[37] 0.0075400 

   FSDT 0.0076616 

   GFSDT 0.0076534 

   UTSDT 0.0076620 

   

Present 
theories 

GUTSDT 0.0076543 

 
 
 
Table 1d. Normalized central deflection of  graded conical panel (

1
380cE GPa ) under uniform loading 

 
p    L h    w  

 60° 10 ANSYS[37] 0.043300 

   
Reference 

[37] 0.043900 

   FSDT 0.044278 

   GFSDT 0.044281 

   UTSDT 0.044350 

   

Present 
theories 

GUTSDT 0.044354 

  20 ANSYS[37] 0.0297000 

   
Reference 

[37] 0.0300000 

   FSDT 0.030127 

   GFSDT 0.030129 

   UTSDT 0.030153 

   

Present 
theories 

GUTSDT 0.030144 

  40 ANSYS[37] 0.0144000 

   
Reference 

       [37] 0.0145000 

   FSDT      0.014575 

   GFSDT 0.014567 

   UTSDT 0.014576 

   

Present 
theories 

GUTSDT 0.014568 
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Table 2a. Normalized central deflection of  graded conical panel (

2
151cE GPa ) under uniform loading 

 
p    L h    w  

2 11.25 10 ANSYS[37] 0.012700 

   
Reference 

[37] 0.012700 

   FSDT 0.01313111 

   GFSDT 0.013132017 

   UTSDT 0.013064822 

   

Present 
theories 

GUTSDT 0.013066634 

  20 ANSYS[37] 0.005980 

   
Reference 

[37] 0.00596 

   FSDT 0.006106534375 

   GFSDT 0.00610285375 

   UTSDT 0.006107195 

   

Present 
theories 

GUTSDT 0.00610360875 

  40 ANSYS[37] 0.0019400 

   
Reference 

[37] 0.001900 

   FSDT 0.001965713281 

   GFSDT 0.00196394375 

   UTSDT 0.001966008203 

   

Present 
theories 

GUTSDT 0.00196428672 

 
 
 

Table 2b. Normalized central deflection of  graded conical panel (
2

151cE GPa ) under uniform loading 

 
p    L h    w  
 22.5 10 ANSYS[37] 0.0156000 

   
Reference 

[37] 0.015600 

   FSDT 0.01611321 

   GFSDT 0.01611925 

   UTSDT 0.01605432 

   

Present 
theories 

GUTSDT 0.01606036 

  20 ANSYS[37] 0.007680 

   
Reference 

[37] 0.00767 

   FSDT 0.00782321562 

   GFSDT 0.007820761875 

   UTSDT 0.0078244425 

   

Present 
theories 

GUTSDT 0.00782198875 

  40 ANSYS[37] 0.0025600 

   
Reference 

[37] 0.0025200 

   FSDT 0.002592894441 

   GFSDT 0.002591124609 

   UTSDT 0.002593189063 

   

Present 
theories 

GUTSDT 0.002591419531 
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Table 2c. Normalized central deflection of  graded conical panel (

2
151cE GPa ) under uniform loading 

 
p    L h    w  

 45° 10 ANSYS[37] 0.0226000 

   
Reference 

[37] 0.0226000 

   FSDT 0.02310753 

   GFSDT 0.02312112 

   UTSDT 0.02306072 

   

Present 
theories 

GUTSDT 0.02307431 

  20 ANSYS[37] 0.0132000 

   
Reference 

[37] 0.0133000 

   FSDT 0.0134078562 

   GFSDT 0.0134088 

   UTSDT 0.0134106275 

   

Present 
theories 

GUTSDT 0.0134116312 

  40 ANSYS[37] 0.0052600 

   
Reference 

[37] 0.0052300 

   FSDT 0.005308357813 

   GFSDT 0.005306942188 

   UTSDT 0.005308652734 

   

Present 
theories 

GUTSDT 0.005307296094 

 
 
 

Table 2d. Normalized central deflection of  graded conical panel (
2

151cE GPa ) under uniform loading 

 
p    L h    w  

 60° 10 ANSYS[37] 0.0274000 

   
Reference 

[37] 0.0276000 

   FSDT 0.02792292 

   GFSDT 0.027935 

   UTSDT 0.02789423 

   

Present 
theories 

GUTSDT 0.0279048 

  20 ANSYS[37] 0.0191000 

   
Reference 

[37] 0.0192000 

   FSDT 0.0193232812 

   GFSDT 0.0193270562 

   UTSDT 0.0193289437 

   

Present 
theories 

GUTSDT 0.0193327187 

  40 ANSYS[37] 0.0097500 

   
Reference 

[37] 0.0097900 

   FSDT 0.009835644531 

   GFSDT 0.009835644531 

   UTSDT 0.009836824219 

   

Present 
theories 

GUTSDT 0.009836824219 
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Appendix. 
 
The equilibrium operators 1,...,7; 1,...,7ijS i j   for the functionally graded conical shell are 

reported in this section. It should be noticed that the ones 1,...,7; 1,...,7ijR i j   for the 

functionally graded cylindrical shell are equal to ijS by fixing 2  . 

 
Equilibrium operator of the 1st fundamental equation 1 jS , 1...7j   

 

   
2 2

11 11 1 11 66 1 66 2 66 3 662 2

2

11 11 1 11 1 11 2 11 3 11
0 0 0

cos sin cos
( )

S A a B A b B b D b E
x s

A B a A b B b D b E
R R x R

  

 
      

 

    
              

                                  (A.1)   

      
2

12 12 66 66 11 1 66 11 2 66 11
0

cos
S A A A A b B B b D D

x s R s

 
       

  
                               (A.2)   

 

 12
13 11 1 11 2 11 3 112

0 0

sin cos sinA
S A b B b D b E

R x R

  
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
                                                          (A.3)   

 

   

 

2 2

14 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11
0

cos sin

cos

S B a D B b D b E b F B D a
x s R R x

B b D b E b F
R
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

    
               

 
    
 

 (A.4)  

 

          
2

15 12 66 11 66 1 11 66 2 11 66 3 66 11
0

cos
S B B B B b D D b E E b F F

x s R s

 
         

        (A.5)

 
 

   

 

2 2

16 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11
0

cos sin

cos

S E a F E b F b L b H E F a
x s R R x

E b F b L b H
R

 



     
                  

 
    
 

 

                                                                                                                                                      (A.6) 
 
 

        
2

17 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S E E E E b F F b L L b H H

x s R s

 
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Equilibrium operator of the 2nd fundamental equation 2 jS , 1...7j   

 
 

          
2

21 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S A A A A b B B b D D b E E

s x R s

 
         

  
      (A.8) 

   

   

2 2

22 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2 2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0 0

cos sin

cos sin

S A a B A b B b D b E A B a
x s R R x

A b B b D b E A b B b D b E
R R

 

 

    
               

   
          
   

 

                                                                                                                                                      (A.9) 
 

   23 11 1 11 2 11 3 11 66 1 66 2 66 3 66
0 0

sin sin
S A b B b D b E A b B b D b E

R s R s

  
       

 
                     (A.10) 

        
2

24 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
( )S B B B B b D D b E E b F F

s x R s

 
         

  
   (A.11) 

 

   

   

2 2

25 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0 0

cos sin
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B b D b E b F A b B b D b E
R R
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 
        
 

 (A.12) 

          
2

26 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
 +S E E E E b F F b L L b H H

s x R s
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        

  
   (A.13)
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   

 

2 2

27 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0 0

2

66 1 66 2 66 3 66
0

cos sin

cos sin
3

sin
2

S E a F E b F b L b H E F a
x s R R x

E b F b L b H D b E b F b L
R R

E b F b L b H
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

    
              

 
         
 

 
    

 

    (A.14)
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Equilibrium operator of the 3rd fundamental equation 3 jS , 1...7j   

 31 12 11 1 11 2 11 3 112
0 0

sin sin cos
S A A b B b D b E

R x R

  
     


                                                     (A.15) 

      32 11 66 1 11 66 2 11 66 3 11 66
0

sin
( )S A A b B B b D D b E E

R s

 
        


                              (A.16) 
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
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 
    
 

 

                                                                                                                                                    (A.17) 
 

   

  

34 66 1 66 12 66 1 66
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0

sin cos

sin cos
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                                                       (A.18) 

 

   35 66 1 66 2 66 3 66 11 1 11 2 11 3 11
0

sin
S A b B b D b E B b D b E b F

s R s

 
       

 
                              (A.19) 

   

 

36 66 1 66 12 66 1 66
0 0

66 11 1 11 2 11 3 112
0

sin cos
3 3

sin cos
3

S D a E E D a E
x R x R

E E b F b L b H
R

 

 

 
     

 

    
                                                 (A.20) 

 

    
66 1 66 2 66 3 66

37
66 11 1 66 11 2 66 11 3 66 22

0

3

sin
2 2 2 (2

D b E b F b L

S
E E b F F b L L b H H s

R


    

            
 

                      (A.21)

 
Equilibrium operator of the 4th fundamental equation 4 jS , 1...7j   

 
 

   

 

2 2

41 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11
0

cos sin

cos

S B a D B b D b E b F B D a
x s R R x

B b D b E b F
R

 



    
               

 
    
 

           

                                                                                                                                                   (A.22)   

          
2

42 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S B B B B b D D b E E b F F

x s R s

 
         

  
  (A.23) 

   43 12 66 1 66 11 1 11 2 11 3 112
0 0

sin sin cos
S B A a B B b D b E b F

R x x R

   
      

 
                           (A.24)   
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   

 

2 2

44 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11 66 1 66
0

cos sin

cos
( )

S D a E D b E b F b L D E a
x s R R x

D b E b F b L A a B
R

 



    
               

 
      
 

(A.25) 

        
2

45 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S D D D D b E E b F F b L L

x s R s

 
         

  
     (A.26) 

   

   

2 2

46 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11 66 1 66
0

cos sin

cos
3

S F a L F b L b H b M F L a
x s R R x

F b L b H b M D a E
R

 



    
               

 
      
 

(A.27) 

        
2

47 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
( )S F F F F b L L b H H b M M

x s R s

 
         

  
 (A.28)

 
Equilibrium operator of the 5th fundamental equation 5 jS , 1...7j   

 

        
2

51 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
( )S B B B B b D D b E E b F F

x s R s

 
         

  
   (A.29) 

 

   

   

2 2

52 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0 0

cos sin

cos sin

S B a D B b D b E b F B D a
x s R R x

B b D b E b F A b B b D b E
R R

 

 

    
               

 
        
 

(A.30)

 

   53 11 1 11 2 11 3 11 66 1 66 2 66 3 66
0

sin
S B b D b E b F A b B b D b E

R s

  
          

                               (A.31) 

      
2

54 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
( )S D D D D b E E b F F b L L

x s R s

 
         

  
    (A.32) 

 

   

   

2 2

55 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0

cos sin

cos

S D a E D b E b F b L D E a
x s R R x

D b E b F b L A b B b D b E
R

 



    
               

 
        
 

(A.33)

          
2

56 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S F F F F b L L b H H b M M

x s R s

 
         

  
(A.34) 
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   

   

 

2 2

57 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0

66 1 66 2 66 3 66
0

cos sin

cos
3

2sin

S F a L F b L b H b M F L a
x s R R x

F b L b H b M D b E b F b L
R

E b F b L b H
R

 





    
              

 
         
 

   

   (A.35) 

 
 
Equilibrium operator of the 6th fundamental equation 6 jS , 1...7j   

 

   

 

2 2

61 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11
0

cos sin

cos

S E a F E b F b L b H E F a
x s R R x

E b F b L b H
R

 



    
               

 
    
 

    

              (A.36) 
 
 

        
2

62 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
( )S E E E E b F F b L L b H H

x s R s

 
         

  
          

                                                                                                                                               (A.37) 

   63 12 66 1 66 11 1 11 2 11 3 112
0 0

sin sin cos
3S E D a E E b F b L b H

R x R

    
         

                    (A.38) 

   
         

   

   

2 2

64 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11 66 1 66
0

cos sin

cos
3

S F a L F b L b H b M F L a
x s R R x

F b L b H b M D a E
R

 



    
               

 
      
 

 

                                                                                                                                               (A.39) 
 

        
2

65 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S F F F F b L L b H H b M H

x s R s

 
         

  
  

                                                                                                                                               (A.40)   

   

   

2 2

66 11 1 11 66 1 66 2 66 3 66 11 11 12 2
0 0

2

11 1 11 2 11 3 11 66 1 66
0

cos sin

cos
9

S H a M H b M b N b V H M a
x s R R x

H b M b N b V F a L
R

 



    
               

 
      
 

                                                                                                                                               (A.41) 
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          
2

67 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S H H H H b M M b N N b V V

x s R s

 
         

  
        

                                                                                                                                                    (A.42)   
 
 
Equilibrium operator of the 7th fundamental equation 7 jS , 1...7j   

 

        
2

71 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
( )S E E E E b F F b L L b H H

x s R s

 
         

  
    (A.43) 

 

   

   

 

2 2

72 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0 0

2

66 1 66 2 66 3 66
0

cos sin

cos sin
3

sin
2

S E a F E b F b L b H E F a
x s R R x

E b F b L b H D b E b F b L
R R

E b F b L b H
R

 

 



    
                

 
         
 

 
    

 

  (A.44) 

73 11 66 1 11 66 2 11 66 3 11 66
0 0 0 0

sin sin sin sin
3 3 3 3S E D b F E b L F b H L

R s R R R s

            
                                

 

                                                                                                                                                      (A.45)
 

          
2

74 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S F F F F b L L b H H b M M

x s R s

 
         

  
     

                                                                                                                                                      (A.46)  
 

   

 

   

2 2

75 66 1 66 11 1 11 2 11 3 112 2

2

66 66 1 66 1 66 2 66 3 66
0 0 0

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0

cos sin cos

2sin
3

S F a L F b L b H b M
x s

F L a F b L b H b M
R R x R

D b L b H b L E b F b L b H
R

  



 
      

 

    
               

       

                            (A.47) 

          
2

76 12 66 11 66 1 11 66 2 11 66 3 11 66
0

cos
S H H H H b M M b N N b V V

x s R s

 
         

  
 

                                                                                                                                                      (A.48) 
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   

   

 

2 2

77 66 1 66 11 1 11 2 11 3 11 66 66 12 2
0 0

2

66 1 66 2 66 3 66 66 1 66 2 66 3 66
0

66 1 66 2 66 3 66 66 1 66 2 66 3
0 0

cos sin

cos
9

sin sin
6 6

S H a M H b M b N b V H M a
x s R R x

H b M b N b V F b L b H b M
R

F b L b H b M L b H b M b
R R

 



 

    
                

 
         
 

        

 

66

2

66 1 66 2 66 3 66
0

sin
4

N

H b M b N b V
R





 
    

 

 

                                                                                                                                                      (A.49)
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