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ATTIVITÀ DI RICERCA 

Durante il Dottorato di Ricerca mi sono occupato dello studio di “cell wall proteins” 

(Cwp) di Clostridium difficile utilizzando due diversi approcci. In particolare ho determinato 

la presenza, la sequenza e la variabilità d'espressione di antigeni identificati come putative 

Cwp tramite un approccio di Reverse Vaccinology. Inoltre, mediante la tecnologia del protein 

microarray, ho analizzato se tali proteine sono esposte sulla superficie batterica durante 

l’infezione e capaci di indurre una risposta immunitaria in hamsters infetti da C. difficile. Tra 

le tecnologie utilizzate nel mio studio rientrano : clonaggio, espressione e purificazione di 

proteine antigeniche di C. difficile, l’utilizzo di protein microarrays per l’analisi di sieri 

umani e di animali, la manipolazione di isolati clinici di C. difficile e studi di epidemiologia 

molecolare tramite l’utilizzo di software specifici. 

Nel periodo del Dottorato di Ricerca sono stato co-autore del seguente lavoro 

scientifico e di due elaborati relativi a congressi : 

 

Biazzo M. et al. “Diversity of cwp loci in clinical isolates of Clostridium difficile” 

(Submitted to Journal of Medical Microbiology, 2013). 

Biazzo M. et al. Poster: “Diversity of cwp loci in clinical isolates of Clostridium 

difficile”. 3
rd

 International Clostridium difficile Symposium, Bled – Slovenia 22 to 24 

September 2010. 

Biazzo M. et al. Poster: “Diversity of cwp loci in clinical isolates of Clostridium 

difficile”. 4
th

 International Clostridium difficile Symposium, Bled – Slovenia 20 to 22 

September 2012. 
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ABSTRACT 

An increased incidence of Clostridium difficile infection (CDI) is associated with the 

emergence of epidemic strains characterised by high genetic diversity. Among the factors 

that may have a role in CDI there is a family of 29 paralogs, the cell wall proteins (CWPs), 

which compose the outer layer of the bacterial cell and are likely to be involved in 

colonisation. Previous studies have shown that 12 of the29 cwp genes are clustered in the 

same region, named after slpA (cwp1) the slpA locus, whereas the remaining 17 paralogs are 

distributed throughout the genome.  

The variability of 14 of these 17 cwp paralogs was determined in 40 C. difficile 

clinical isolates belonging to six of the currently prevailing PCR ribotypes. Based on 

sequence conservation, these cwp genes were divided into two groups, one comprising cwp 

loci having highly conserved sequences in all isolates, and the other 5 loci showing low 

genetic conservation between isolates of the same PCR ribotype as well as between different 

PCR ribotypes. Three conserved CWPs, Cwp16, Cwp18 and Cwp25, and two variable ones, 

Cwp26 and Cwp27, were characterised further by Western blot analysis of total cell extracts 

or S-layer preparations of the C. difficile clinical isolates. Expression of genetically invariable 

CWPs is well conserved in all isolates, while genetically variable CWPs are not always 

expressed at comparable levels even in strains containing identical sequences but belonging 

to different PCR ribotypes.  

In addition, we chose to analyse the immune response obtained in a protection 

experiment, carried out in hamsters, using a protein microarray approach to study the in vivo 

expression and the immunoreactivity of several surface proteins, including 18 Cwps. 
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1. INTRODUCTION 

 

1.1 Clostridium difficile : general features 

 

Clostridium difficile is a spore-forming, Gram-positive, obligate anaerobic bacterium 

and is the most common cause of nosocomial infectious diarrhea. It is found in the 

commensal flora of 3% of the adults and 24 % of patients in hospitals (Gould and McDonald 

2008). Since the 1970s this species is recognized as a cause of human gastrointestinal 

infection, and now is known to cause the most frequent healthcare-acquired infectious 

diarrhea in developed countries (Voth and Ballard 2005; Barbut, Gariazzo et al. 2007).  

C. difficile infection (CDI) shows different clinical symptoms, ranging from 

uncomplicated asymptomatic carriage and mild diarrhea to life-threatening toxic megacolon 

and pseudomembranous colitis (PMC) requiring surgical intervention (Barbut, Gariazzo et al. 

2007). Over the last decade the incidence of C. difficile infection has dramatically increased 

due to the emergence of new lineages (such as PCR ribotypes 027, 017 and, more recently, 

078) that are more transmissible and cause more severe infections. A thorough analysis of 

strains from different sources and geographical regions shows significant microdiversity of 

clonal complexes demonstrating the evolution of C. difficile (Cairns, Stabler et al. 2012). 

The study of this pathogen takes into account a range of selective pressures created by 

human activity and practices in healthcare settings. Typical features of CDI include: watery 

diarrhea, abdominal pain and cramps, lower quadrant tenderness, fever, leukocytosis and 

hypoalbuminemia. Re-occurrences can arise in 20% of the cases after the first episode and in 

50% after the second episode even after treatment (Barbut, Gariazzo et al. 2007). 

Infection begins with the ingestion of C. difficile spores excreted from feces of infected 

patients. Spores are easily transmitted via persons (usually hands of healthcare staff), fomites 

and air, and they persist in the environment and are transmitted to new hosts (Barbut, 

Gariazzo et al. 2007). 

C. difficile is an important nosocomial pathogen in part due to the healthcare facility 

environment containing a high number of spores from infected patients; the hospital 

environment and patients taking antibiotics develop a discrete ecosystem where C. difficile 

persists and where certain virulent clones can survive. A major risk factor for CDI is age 

(≥65 years); this is generally believed to be due to a senescence of the immune response, 
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resulting from a combination of comorbidities, immune-related changes in the fecal flora and 

normal age-related changes (Ginaldi, Loreto et al. 2001). 

In addition, alterations of the intestinal microflora allow the overgrowth of C. difficile 

caused by the consumption of broad-spectrum antibiotics, such as clindamycin, penicillins, 

cephalosporin and the flouroquinolones (Schroeder 2005; Bartlett 2008; Hookman and 

Barkin 2009). 

Other contributory factors for CDI include: gastrointestinal surgery; chemotherapeutic 

agents for cancer, for example, methotrexate and proton-pump inhibitors, all of which affect 

the gastrointestinal microflora allowing C. difficile proliferation followed by the production 

of high levels of toxin(s). Several virulence factors have been described in C. difficile such as 

flagella (Eveillard, Fourel et al. 1993), fimbriae and proteolytic enzymes (Borriello, Davies et 

al. 1990), surface layer proteins (Bianco, Fedele et al. 2011). Among these, toxins A and B 

are recognized as the major factors responsible for CDI (Voth and Ballard 2005). 

One of the preconditions for the beginning of the infection is the colonization by C. 

difficile of the host’s intestinal tract and evasion of the immune system. The organism will 

then enter the host and survive numerous pressures to compete with the flora of the 

gastrointestinal tissue, produce and secrete the major virulence factors: toxins tcdA and tcdB 

(Wright, Drudy et al. 2008) 

C. difficile produces three toxins: TcdA, TcdB and the binary toxin (CTD). Several 

studies have reported that the most important virulence factors are the two toxins A and B, 

showing that the main symptoms of infection are due only to their action (Rupnik, Wilcox et 

al. 2009). 

The genes encoding them, tcdA and tcdB, are chromosomally located along with three 

accessory genes forming the 19.6-kb pathogenicity locus (Figure 1). These are: tdcR, which 

encodes an alternative RNA polymerase sigma factor positively regulating toxin production; 

tcdC, a negative regulator of toxin production that interferes with the RNA polymerase-TcdR 

complex; and tcdE, a gene encoding a holin-like protein, involved in the release of toxins 

(Dupuy, Govind et al. 2008). 
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Figure 1 Pathogenicity Locus (PaLoc) of Clostridium difficile 630 encodes the two large clostridial  toxins TcdA 

and TcdB and the two regulatory proteins TcdR and TcdC 

 

Both toxins belong to the family of large clostridial toxins (LCT) characterized by a 

size between 260-308 kDa, by cytotoxic activity and by a common mechanism of action (von 

Eichel-Streiber, Boquet et al. 1996). 

After their release into the environment, they enter in eukaryotic cells where they act 

with a mono-O-glucosylation (of a specific threonine residue) on Rho / Ras proteins, that are 

essential for many molecular mechanisms. As all the glucosyltransferase toxins, toxin A and 

toxin B are organized into four domains "ABCD": 

A: biological activity domain 

B: receptor binding domain 

C: auto proteolitic cleavage domain 

D: delivery domain 

The domain A has glucosyltransferase activity, is at the N-terminus of the toxin and is 

the only domain of the toxin to be translocated into the cytosol of the target cell. The B 

domain, at the C terminus, is involved in binding with receptors rich in carbohydrates and is 

characterized by regions composed of repeats. The domain C, situated directly downstream 

of the glucosyltransferase domain, has a self-protease activity and is responsible for the 

processing of the toxin. The domain D is the least characterized and is thought to be involved 

in the formation of transmembrane structures, during the formation of pores and in the 

translocation of the toxin into the cytosol (Belyi and Aktories 2010) (Figure 2).  
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Figure 2. ABCD-model of clostridial glucosylating toxins. The clostridial glucosylating toxins are constructed of 

at least 4 domains. The A-domain covers the glucosyltransferase activity. The B-domain consisting of 

polypeptide repeats is involved in receptor-binding. The C-domain is responsible for the autocatalytic cleavage 

of the toxins (arrow: cleavage site) and is a cysteine-protease with the catalytic residues DHC. Lysine-600 (K) 

was shown to be involved in InsP6-binding. InsP6 is necessary for activation of the cysteine protease. The D-

domain is likely involved in the delivery of the A-domain into the cytosol. This domain contains a hydrophobic 

region (indicated) suggested to be important for insertion of the toxin into endosome membranes. 

 

 

 

 

The two toxins have different tropisms for the host cell membrane: tcdA binds the 

apical portion of the cell, while tcdB prefers to attach to its basolateral portion (Rupnik, 

Wilcox et al. 2009) (Figure 3). 
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Figure 3. C. difficile colonizes the intestine (colon) after disruption of the normal intestinal flora. To what 

extent adhesion and biofilm production are involved in the pathogenesis of C. difficile is unknown; in the 

scheme, bacterial cells are shown as free cells and attached to host cells. Toxigenic strains produce toxin A and 

toxin B (TcdA and TcdB). TcdA binds to the apical side of the cell and, after internalization, causes cytoskeletal 

changes that result in disruption of tight junctions and loosening of the epithelial barrier, in cell death or in the 

production of inflammatory mediators that attract neutrophils. Disruption of tight junctions enables both TcdA 

and TcdB to cross the epithelium. TcdB binds preferentially to the basolateral cell membrane. Both toxins are 

cytotoxic and induce the release of various immunomodulatory mediators from epithelial cells, phagocytes 

and mast cells, resulting in inflammation and the accumulation of neutrophils. In an animal model, TcdB was 

shown to have a tropism for cardiac tissue, which would require that TcdB enters the bloodstream. 

 

After endocytosis, the proteolytic activity of TcdA and TcdB leads to cleavage of the 

catalytic domain from the holotoxin, which is then transferred into the cytoplasm through a 

toxin-mediated pore. This cleavage requires only inositol phosphate from the host cell as a 

co-substrate (Rupnik, Wilcox et al. 2009). 

In the cytosol the two toxins glucosylate the small GTPase Rho and Ras superfamily 

that are involved in many cellular processes: organization of the cytoskeleton, cell motility, 

regulation of transcription, cell cycle progression and apoptosis (Belyi and Aktories 2010). 

Besides the damage caused by TcdA and TcdB,  there could be additional damage 

caused by the action of the binary toxin CDT (Popoff, Rubin et al. 1988; Goncalves, Decre et 

al. 2004). The role of this protein in pathogenesis is not yet defined, but it is known  to act 

inside the host cell by modifying the polymerization of actin through ADP-ribosylation 

(Schwan, Stecher et al. 2009; Papatheodorou, Wilczek et al. 2012). 

CDI can be treated with a limited number of agents such as metronidazole and oral 

vancomycin (Owens 2007). Newer agents such as fidaxomicin have recently been licensed, 

though more knowledge of their effects is stiil needed from clinical practice (Louie, Miller et 

al. 2011). 

The use of fecal transplantation from healthy people to patients suffering CDI is an 

additional method which has been practiced in refractory cases of CDI with the aim of 

restoring normal microbiota. Furthermore, vaccination may lead to an improvement of the 

current treatment options (Lo Vecchio and Zacur 2012). 

A variety of molecular typing approaches have been developed to study C. difficile and 

CDI including: multilocus sequence typing (MLST), multilocus variable-number tandem-

repeat analysis (MLVA), slpA gene sequence typing, amplified fragment length 

polymorphism, pulsed-field gel electrophoresis (PFGE), restriction endonuclease analysis 

(REA), toxinotyping (based on sequence data of toxins A and B) and PCR ribotyping 

(Killgore, Thompson et al. 2008). Generally, most of the methods are compatible, though 

PCR ribotyping is the most widely accepted in Europe with the Anaerobe Reference 



 
11 

 

Laboratory in Cardiff (UK) having a collection of the strains and also the role of assigning 

PCR ribotypes; more than 427 PCR ribotypes have been identified.  In North America, PFGE 

is the preferred method of typing.  

The PCR ribotyping is a typing method based on the amplification of the intergenic 

spacer region (ITS) between 16s and 23s rDNA of C. difficile. The number and length of 

ITSs vary in the genome of different C. difficile strains.  Consequently, different migrations 

patterns of migration of the PCR products are observed for different strains. Each pattern of 

migration corresponds to one PCR ribotype (Figure 4).  

 

 

Figure 4. Schematic view of the PCR ribotyping method. 

 

Alarmingly, in the past decade the emergence of a new group of highly virulent C. 

difficile strains (with PCR ribotype 027) has been reported that has caused outbreaks of 

increased disease severity in North America and Europe. In 2003 an epidemic of CDI was 

reported in southern Quebec and the Montreal district of Canada (Pepin, Valiquette et al. 

2004). 

Concurrently, a similar strain had also been isolated in several states of North America, 

and in March 2004, Stoke Mandeville Hospital (in the UK) reported a major outbreak 

including severe cases of CDI: 334 cases and 38 deaths (Cairns, Stabler et al. 2012). By 2005,  
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a considerable number of hospitals were reporting rates of CDI at five times their baseline 

rate (Loo, Poirier et al. 2005). Outbreaks in the UK, North America and Canada were found 

to be due to the dissemination of an epidemic strain subsequently identified as BI by REA, 

NAP1 by PFGE and PCR ribotype 027 by PCR ribotyping and referred to as BI/NAP1/027 

(Killgore, Thompson et al. 2008). In late 2005, other European countries documented 

outbreaks of this strain (van Steenbergen, Debast et al. 2005; Kuijper, Barbut et al. 2008; 

Bacci, St-Martin et al. 2009) and similar reports from many other countries across the globe 

including Australia (Riley, Thean et al. 2009), Korea (Tae, Jung et al. 2009), Japan (Kato, Ito 

et al. 2007), Hong Kong (Cheng, Yam et al. 2009) and Costa Rica (Quesada-Gomez, 

Rodriguez et al. 2010) were subsequently announced. Patients infected with PCR ribotype 

027 were found to have more severe diarrhea, higher mortality and more re-occurrences of 

symptoms (Borriello 1998). It has been thought that this increase in virulence and increase in 

re-occurrence rate were due to one or more of the following characteristics: exposure to 

fluoroquinolone antibiotics prior to CDI; increased production of toxin; prolonged production 

of toxin; and increased  sporulation, which in turn increases the risk of transmission. 

Exposure to the fluoroquinolone class of antibiotics has been thought to be the strongest risk 

factor for CDI with PCR ribotype 027 (McCusker, Harris et al. 2003). 

Epidemic strains of PCR ribotype 027 have been reported to produce significantly 

higher levels of toxins A and B compared with other strains (McDonald, Killgore et al. 2005). 

PCR ribotype 027 was also found to have an 18-bp deletion and a frameshift mutation due to 

a single base pair deletion at position 117 in the tcdC gene (Dupuy, Govind et al. 2008). The 

frameshift mutation results in a truncated protein and it is hypothesized that this leads to the 

deregulated expression of toxins A and B. 

Rates of CDI, most notably PCR ribotype 027 in the UK and other parts of Europe, 

appear to have declined in the last 4 years. Furthermore,  between 2007/2008 and 2010/2011, 

there was a 42.9% decrease in the number of PCR ribotype 027 strains isolated by the C. 

difficile Ribotype Network (CDRN) in the UK (Cairns, Stabler et al. 2012). This has occurred 

simultaneously with an increase in a variety of other PCR ribotypes, and now PCR ribotypes 

014, 001 and 078 represent the most prevalent strains in European hospitals, as observed in 

the last European surveillance performed in 2008 (Bauer, Notermans et al. 2011). Emergence 

of the animal-associated PCR ribotype 078 C. difficile is recognized as both a gut colonizer 

and a cause of CDI in domestic animals and livestock (Cairns, Stabler et al. 2012). PCR 

ribotype 078 isolates have been found to be the most predominant from animal species with 

CDI, most notably pigs, calves and horses (Rupnik, Widmer et al. 2008). C. difficile has also 

been found in contaminated food for human consumption, with PCR ribotype 078 being the 
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most frequently implicated (Simango and Mwakurudza 2008; Rodriguez-Palacios, Reid-

Smith et al. 2009; Songer, Trinh et al. 2009). 

Recently, a study found C. difficile in 4.8% (five out of 119) of seafood and fish 

samples from a grocery store and all toxin positive isolates were found to be PCR ribotype 

078 (Metcalf, Avery et al. 2011). 

A population-based cohort study found that community-acquired CDI affected those 

who lack the traditional risk factors such as hospitalization or antibiotic exposure, and 

patients with community-acquired CDI were also found to be younger (Khanna, Pardi et al. 

2012). The documented cases of community-acquired CDI also appear to be on the rise, and 

the increased incidence of community acquired infection with PCR ribotype 078 could be 

linked to the fact that this strain is found in both humans and animals (Cairns, Stabler et al. 

2012). In addition, with the increase in documented cases of isolation of C. difficile from 

food products for human consumption, concerns have been raised about possible 

transmission between animals and humans in the community. Although C. difficile is not a 

proven food borne pathogen, there is evidence that the same strain can cause symptomatic 

disease in both pigs and humans (Debast, van Leengoed et al. 2009). 

As PCR ribotype 027, PCR ribotype 078 has been described to be an emerging 

pathogen. 

The characterisation of the genetic conservation between strains belonging to different 

PCR ribotypes could help significantly to identify the genetic elements associated with the 

onset of CDI. It has already been established through sequencing of the genomes of a number 

of C. difficile strains of different origin that there is a high variability in gene composition 

and conservation between strains (Sebaihia, Wren et al. 2006; He, Sebaihia et al. 2010; Scaria, 

Ponnala et al. 2010). In this study, we analyse the distribution and variability of 14 cwp genes 

in 40 C. difficile clinical isolates of the 6 prevailing PCR ribotypes in Italy (Spigaglia, 

Barbanti et al. 2010) and, more generally, in Europe (Bauer et al., 2011).  

 

1.2 The “Reverse Vaccinology” approach 

Vaccines can be made from live-attenuated microbes, inactivated microorganisms, and 

purified microbial components such as polysaccharide-carrier protein conjugates. These 

approaches lead to the development of a conventional vaccine. However, they show several 

limitations. For example, immunogenic proteins are not necessarily protective antigens, often 

have a variable sequence and they are difficult to produce and/or purify on a large scale, 

leading to high production costs. In addition, the antigens chosen are only the most abundant 
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and not all of them can be analysed simultaneously. As a consequence these traditional 

approaches have failed against several infectious diseases and, thus, vaccines have not yet 

been developed. 

Bioinformatics and whole-genome sequencing of bacteria brought innovation to the 

vaccinology field, identifying potential vaccine candidates without the need to grow the 

pathogen. This approach, named ‘reverse vaccinology’ (Rappuoli 2000), reduces the time and 

cost of new vaccine identification also for those diseases for which conventional approaches 

have failed (Mora, Veggi et al. 2003). Scientists can now search for the potential surface 

protein sequences using various algorithms. This new approach allows systematic 

identification of all the potential antigens of a pathogen in order to develop a safe and 

efficacious vaccine against any infectious disease. 

After the genes coding for the pathogen proteins have been identified, they are cloned 

in E. coli, expressed and the corresponding proteins purified. Purified proteins are then used 

to immunize mice and the sera analysed in order to verify their predicted exposure and ability 

to trigger an immune response. Protective antigens are analysed again in vitro using 

opsonophagocytosis and bactericidal assays with the aim of final antigen selection. Potential 

candidates can also be determined on the basis of sequence conservation among different 

strains of the pathogen (Figure 5).  
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Figure 5. Approaches to vaccine development. Schematic demonstration of the essential steps required for 

vaccine development using the conventional approach (a), and reverse vaccinology (b). (Johri, Paoletti et al. 

2006) 

 

The sequencing of a bacterial genome gives the possibility to discover novel antigens 

missed by conventional vaccinology methodologies. The reverse vaccinology approach was 

first used to identify antigens for the development of a vaccine against serogroup B 

meningococcus (Mora, Veggi et al. 2003). The use of multi-genome sequence information 

for vaccine design represented a major change from the common concept that a single 

genome sequence is sufficient to produce a potential vaccine candidate. A single genomic 

sequence is not sufficient to represent the variability of bacterial populations. Therefore, 
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multiple sequences might be needed for a vaccine formulation that is effective in the case of a 

highly differentiated species. This is common to many important bacterial pathogens and this 

observation is in the context of the pan-genome reverse vaccinology era (Mora, Donati et al. 

2006). Thus a universal vaccine can be obtained by using a combination of antigens chosen 

from different strains and not only a single one. However, their selection should consider the 

population structure of the microorganism, giving importance to each representative strain in 

the epidemiology of the disease. 

The next step in order to reach a more comprehensive picture of bacterial populations 

will be population vaccinology. Vaccines will be then formulated from a collection of 

proteins that, together, protect against the major circulating populations of a pathogen. In 

addition, the sequencing of human and pathogen genomes has provided large amounts of data 

relevant to the study of human immune responses and complex host–pathogen interactions. 

Using and ameliorating immuno-informatic tools, such as T-cell and B-cell epitope-mapping 

algorithms, and of structure-oriented bioinformatics (Arcus, Lott et al. 2006; De Groot 2006) 

will lead to the refinement of the totally synthetic vaccine design containing strings of the 

best epitopes encoded by the microorganism (Figure 6). 
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Figure 6 Flow chart for antigen discovery and refinement of the search. Three major genome-based 

approaches are involved in the identification of new potential vaccine candidates: (a) analysis of a single 

genome sequence in order to select secreted or extra-cellular proteins to identify potential vaccine candidates, 

(b) comparison of multiple genomes of the same species to assess intra-species diversity, (c) population 

genomics to achieve a more comprehensive coverage against the major circulating species. These three steps 

lead to (d) population vaccinology, which takes into account antigen variability and population structure, (e) 

allowing a more rational design of a new generation of vaccine targets, and (f) in silico screening, such as 

epitope-mapping and structure-oriented bioinformatics, will enble refinement of  the search (Mora, Donati et 

al. 2006). 

 

In the case of C. difficile, 300 proteins have been identified as potential antigens by a 

reverse vaccinology approach based on sequence analysis of the genome of 10 different 

strains. Among these 300 putative antigens, a major group of proteins belonging to the same 

family is represented by the cell wall binding proteins or CWPs.  

In this study, we analyse the distribution and variability of cwp genes using two 

approaches. We have analysed the distribution of 14 cwp genes in 40 clinical isolates and 
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their conservation with respect to strain 630, we then focused on the characterisation of the in 

vitro expression of Cwp proteins (by Western blots) and also on the analysis of expression of 

Cwp proteins in vivo using a protein microarray approach. 

 

1.3 The cell wall proteins 

One of the main components of the bacterial surface is the S-layer, a protein structure 

that forms a regular two-dimensional network on the whole surface of the bacterium and  is 

present in many prokaryotes (Calabi, Ward et al. 2001). The S-layer is involved in virulence 

also in the case of other human pathogens (McCoubrey and Poxton 2001; Eidhin, Ryan et al. 

2006).  However, although the proteins that consitute the S-layer belong to the same protein 

family, between different species such proteins have a low or no similarity of sequence 

(Fagan, Albesa-Jove et al. 2009). 

The S-layer completely covers the surface of the bacterium and, acting as an adhesin, 

facilitates the bacteria-host cell interaction (Fagan, Albesa-Jove et al. 2009). 

The S-layer described for the first time in C. difficile by Kawata et al., in 1984, consists 

of two proteins of different molecular weight, which associate to form a solid complex 

(Fagan, Albesa-Jove et al. 2009). The molecular weight of the two subunits varies depending 

on the strain: the larger of the two proteins may vary from 48 to 56 kDa, whereas  the smaller 

varies from 37 to 45 kDa (McCoubrey and Poxton 2001; Eidhin, Ryan et al. 2006). 

These proteins are encoded by the slpA gene as a single precursor. After a post 

translational cleavage of this precursor two mature proteins are produced, the HMW (high 

molecular weight) SLP and the LMW (low molecular weight) SLP (Figure 7). The SLPs 

facilitate adhesion to cultured cell lines and the LMW SLP is an immunodominant antigen 

(Calabi, Ward et al. 2001). 
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Figure 7. The precursor protein SlpA showing the cleavage sites generating the signal peptide (_) and the 

mature HMW SLP and LMW SLP (_). 

 

This is the first reported example in which the two S-layer proteins are derived from a 

single gene product and not by the expression of two separate genes (Calabi, Ward et al. 

2001). The precursor, responding to a signal sequence, is conducted through the cytoplasmic 

membrane to be processed into two proteins: the high molecular weight (HMW) SLP and the 

low molecular weight (LMW) SLP (Calabi and Fairweather 2002). 

These proteins are generated by posttranslational cleavage of the precursor SlpA by the 

cysteine protease Cwp84 (de la Riva, Willing et al. 2011). The two subunits are positioned in 

such a way that the HMW, facing the interior, acts as an anchor for the LMW exposed to the 

external environment (Fagan, Albesa-Jove et al. 2009) (Figure 8). 

 

Figure 8. Model of orientation of the subunits of the S-layer. The HMW SLP is shown interacting with the cell 

wall through one region of the protein; however, the extent and exact nature of this interaction is currently 

unknown. The LMW SLP interacts, through the interaction domain, with the HMW and is directed towards the 

external environment (Fagan, Albesa-Jove et al. 2009).  
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After analysing several strains, the LMW-SLP shows high sequence variability (Fagan, 

Albesa-Jove et al. 2009). This finding can be explained by considering the position of this 

subunit. In fact, the exposure to the external environment and the marked variability of 

LMW-SLP represent a strategy to escape the host immune system (Fagan, Albesa-Jove et al. 

2009). 

Furthermore, a TBLAST analysis of the genome of strain 630 with the amino acid 

sequence of SlpA, revealed sequence homology between the HMW SLP and 28 other gene 

products, 11 located in the same locus of the slpA gene and 17 in other regions of the genome 

(Calabi et al. 2001). These 28 genes encode the cell wall proteins. The slpA locus of strain 

630 is 36,661 bp long and includes 18 ORFs. Among these, only 12 ORFs, distributed both 

downstream and upstream of the slpA gene, code for Cwps (Calabi, Ward et al. 2001) (Figure 

9). 

 

Figure 9. Arrangement of predicted ORFs upstream and downstream of the C. difficile 630 slpA gene. All ORFs 

are transcribed in the same direction (left to right), and the size of each protein is proportional to the size of 

the box. The regions of proteins shaded in black indicate where sequence homology is found with N-acetyl 

muramoyl-L-alanine amidase, and those not shaded where sequence homology is lacking. Proteins indicated 

by hatched shading are unrelated to N-acetyl muramoyl-L-alanine amidase. 

 

Further analysis shows a significant sequence homology of HMW SLP with the family 

of autolysin of Bacillus subtilis, in particular with proteins LytCB and LytC. The latter is the 

main autolysin of B. subtilis and has an N-acetyl muramoyl-L-alanine amidase activity, 

involved in the destruction of the peptidoglycan. Although the involvement of these proteins 

in cell adhesion has been verified, the specific function has not yet been identified (Sebaihia, 

Wren et al. 2006). 

Several of the cwp genes are not conserved in all the C. difficile genomes characterised 

so far. In general, 12 of the 29 cwp genes are clustered in the same region of the genome, 

named after slpA (cwp1) the slpA locus (Calabi, Ward et al. 2001; Karjalainen, Waligora-

Dupriet et al. 2001), whereas the remaining 17 paralogs are distributed throughout the 

genome. We focused our study on the genes coding for the latter group of CWPs since they 

are poorly characterised.  
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Knowledge of the conservation of these genes in clinical isolates would offer useful 

information for the characterisation of the role that CWPs may have in C.difficile infection 

and also provide another tool for classifying newly emerging strains. 

To date, 29 cwp genes have been identified in C. difficile which code for a family of 

cell wall proteins involved in colonisation and pathogenesis. All of these CWPs have a 

conserved domain containing two or three copies of the Pfam 04122 motif, a putative cell 

wall binding repeat 2 (Fagan, Janoir et al. 2011)(Figure 10). 

 

Figure 10. Schematic representation of the domain composition of the 29 CWPs of C. difficile. 
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In addition, several of the CWPs show a second, more variable domain that may 

specify a unique function. Fagan et al., in 2009 suggested a model of the cell surface of C. 

difficile in which the continuous film of the S-layer is located above the peptidoglycan and is 

interrupted in several points by Cwps (Figure 11). 

 

 

 

Figure 11. The two SLPs are shown above the peptidoglycan layer: the HMW SLP (red), the LMW SLP (blue). 

Other minor cell wall proteins are shown as two-lobed structures ; the filled areas, indicating domains 

predicted to be exposed to the environment, are variable between these proteins. Putative cell wall polymers 

(Ganeshapillai, Vinogradov et al. 2008) including putative lipid-containing polymers (Poxton and Cartmill 1982) 

are shown as vertical orange bars. 

 

To better define the structure of the cell surface of C. difficile, the results of the studies 

by Davies and Borriello need to be taken into account. In 1990, they showed that many 

strains of C. difficile produced the capsule and that the genome of strain 630 contains a 

cluster of genes involved in the synthesis of extracellular polysaccharides (Davies and 

Borriello 1990; Sebaihia, Wren et al. 2006). 

Current knowledge of the molecular basis of pathogenesis is limited primarily to the 

activities and regulation of two major toxins. In contrast, little is known about the 

mechanisms involved in colonization of the enteric system and the role of CWPs. 

Some members of the CWP family have been investigated extensively. Among these, 

Cwp84 is a protease that cleaves the SlpA precursor and also degrades many proteins of the 

host cell extracellular matrix, Cwp66, which acts as an adhesin, and CwpV, a protein that is 

expressed in a phase variable manner (Emerson, Reynolds et al. 2009). 

De la Riva et al. in 2011 compared the phenotypes of C. difficile strains containing 

insertional mutations in either cwp84 or its paralog cwp13. They showed that the presence of 
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uncleaved SlpA in the cell wall of the cwp84 mutant resulted in aberrant retention of other 

cell wall proteins at the cell surface. The cwp13 mutant cleaved the SlpA precursor normally 

and had a wild-type-like colony phenotype. Both Cwp84 and Cwp13 are produced as 

proenzymes which are processed by cleavage to produce mature enzymes. In the case of 

Cwp84, this cleavage does not appear to be autocatalytic, whereas in Cwp13 autocatalysis 

was demonstrated (De la Riva, Willing et al. 2011). Cwp13 appears to have a role in the 

processing of Cwp84, but is not essential for Cwp84 activity. Cwp13 cleaves SlpA in the 

HMW SLP domain, and De la Riva suggested it may reflect a role in cleavage and 

degradation of misfolded proteins at the cell surface (Figure 12). 

 
 
 
 
 

 
Figure 12 Model for processing and activities of Cwp84 and Cwp13. SlpA, Cwp84, and Cwp13 are produced as 

preproteins containing signal peptides that are removed during processing by the sec system (step a). The 

propeptides of Cwp84 and Cwp13 are removed (step b), either by autocatalysis in the case of Cwp13 or by an 

unknown activity together with Cwp13 activity in the case of Cwp84, to form the active enzyme species that 

are incorporated into the S-layer (step c). Mature Cwp84 cleaves the SlpA precursor (step d), which results in 

the formation of the H/L complex (step e). Misfolded proteins are recognized by Cwp13 and are cleaved in 

their cell wall binding domains to prevent incorporation into the S-layer, resulting in detachment from the cell 

and deposition into the growth medium (step f). S-L, S-layer; PG, peptidoglycan; Mem, membrane;Cyt, 

cytoplasm (de la Riva, Willing et al. 2011). 
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CwpV is the largest member of the CWPs family and is expressed in a phase variable 

manner (Reynolds, Emerson et al. 2011). Reynolds et al., in 2011 showed that CwpV 

promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. CwpV is 

post-translationally cleaved at a conserved site leading to formation of a complex of cleavage 

products (like the SlpA processing). The highly conserved N-terminus anchors the CwpV 

complex to the cell surface (Figure 13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.Cartoon representation of the overall model for post-translational CwpV processing and 

incorporation into the S-layer with analogy to SlpA processing.  *,cleavage sites. Step 1, signal peptide (SP) 

cleavage and transport across the cell membrane. Step 2, cleavage of protein. SlpA is cleaved by Cwp84 into 

the LMW and HMW SLP. The protease responsible for CwpV cleavage is currently unknown. Step 3, formation 

of a complex of the products of cleavage, anchoring both products to the cell surface (Reynolds, Emerson et al. 

2011). 
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Protein translocation across the cytoplasmic membrane is an essential process in all 

bacteria. The Sec system, comprising at its core an ATPase, SecA, and a membrane channel, 

SecYEG, is responsible for the majority of this protein transport (Driessen and Nouwen 

2008). Recently, a second parallel Sec system has been described in a number of Gram-

positive species (Bensing and Sullam 2002; Lenz and Portnoy 2002; Chen, Wu et al. 2004; 

Siboo, Chaffin et al. 2008). This accessory Sec system is characterized by the presence of a 

second copy of the energizing ATPase, SecA2, and, in the systems studied, is responsible for 

the translocation of a subset of Sec substrates.  

In common with many pathogenic Gram-positive species, C. difficile possesses two 

copies of SecA. Fagan and Fairweather in 2011 described the first characterization of the C. 

difficile accessory Sec system and the identification of its major substrates, that are SlpA, 

Cwp2, CwpV, Cwp66 and Cwp84. Furthermore, they showed that expression of either 

dominant negative allele or antisense RNA knock-down of SecA1 or SecA2 dramatically 

impaired growth, indicating that both Sec systems are essential for C. difficile (Fagan and 

Fairweather 2011). 

In this study 18 cell wall proteins have been selected for further characterization using 

a protein microarray analysis of the immune response obtained in a protection experiment 

carried out in hamsters. Briefly, hamsters were vaccinated with various domains of Toxin A 

(p5 /6) and Toxin B and then challenged with a lethal dose of C. difficile strains 630 or B1. 

Only animals that developed protective immunity would survive the lethal challenge. We 

have used the sera from protected and from control animals to identify antigens capable of 

eliciting a specific immune response towards C. difficile toxins and surface proteins.  

Microarray technology has been a valuable approach to screen potential antigens useful 

for developing vaccines against C. difficile. Microarrays were implemented for the 

identification of the most immunogenic antigens and profiling of disease-specific antibody 

response to identify surface protein exposed during infection.  

 

1.4 The Protein Microarray Technology 

Traditionally, the properties of proteins have been elucidated by studying single 

molecules, one experiment at a time. Since this process is slow and labour intensive, in the 

last decade high-throughput methods have been developed in order to analyse a large number 

of molecules, such as DNA, proteins or metabolites simultaneously in a single experiment. In 

particular, DNA microarrays are a valuable tool in genomic research (Schena, Shalon et al. 

1995). They have been used for several applications: gene expression patterns, location of 

transcription factor binding sites and detection of sequence mutations and deletions on a large 
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scale (Hall, Ptacek et al. 2007). However, DNA microarrays are only informative of the 

genes themselves and provide little knowledge regarding the protein functions they encode. 

More recently, the application of high-throughput approaches has been extended to protein 

studies. These include profiling with mass spectrometry (Gavin, Bosche et al. 2002; Ho, 

Gruhler et al. 2002; Gavin, Aloy et al. 2006) and protein microarrays (MacBeath and 

Schreiber 2000; Zhu, Bilgin et al. 2001). 

Microarray technology allows the simultaneous analysis of many samples within a 

single experiment. The whole field of protein microarray technology has received 

considerable impetus as a result of the increasing genomic information available. New 

technologies such as automated protein expression and purification systems, used for the 

generation of capture molecules, and the need for analysis of whole ‘proteomes’ will be a 

driving force for fast developments within the field of protein microarray technology.  

Protein chips have emerged as a new approach for a variety of applications including 

the identification of protein-protein interactions, protein-phospholipid interactions, small 

molecule targets, and substrates of protein kinases or of other enzyme families (Winssinger, 

Ficarro et al. 2002). 

They can also be used for clinical diagnostics and to monitor diseases  (Hall, Ptacek et 

al. 2007). Typically, protein chips are prepared by immobilizing proteins on a treated 

microscope slide using a contact spotter (MacBeath and Schreiber 2000; Zhu, Bilgin et al. 

2001) or a non-contact microarrayer that applies capillaries or inkjet technology to deposit 

nanolitre–picolitre droplets onto the surface of the slide (Delehanty 2004; Jones, Gordus et al. 

2006). 

Proteins must remain in a wet environment. For this reason, the printing process is 

carried out in a humidity-controlled environment and the proteins are exposed to samples 

containing the corresponding binding molecules in solution. Different slide surfaces can be 

used for protein chips. When choosing a slide surface, the proteins should be immobilized on 

the chip maintaining their conformation and  functionality, thus achieving maximum binding 

capacity (Zhu, Bilgin et al. 2003). Proteins can be oriented either randomly or uniformly on 

the slide surface. They can be attached randomly through amines, aldehyde- and epoxy-

derivatized glass surfaces (Kusnezow, Jacob et al. 2003). Coating the glass surface with 

nitrocellulose, gel pads, or poly-L-lysine also leads to a random orientation as the proteins are 

passively adsorbed onto the surface (Angenendt, Glokler et al. 2002; Charles, Goldman et al. 

2004).  Reactive proteins can be located on a proteome chip with small molecule probes 

coupled to either fluorescent, affinity, photochemical, or radioisotope tags. Fluorescent labels 

are generally preferred as they are safe, effective and are compatible with readily available 
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microarray laser scanners. Antibodies are the most prominent capture molecules used to 

identify targets.  Selectivity of the capture molecules is the most crucial issue in the context 

of all array-based proteomic approaches. 

Protein chips are used in a wide range of applications; they have been used to unravel 

the functions of previously uncharacterized proteins and to discover new functions for known 

proteins. Proteome chips have been used to study protein-protein interactions (Zhu, Bilgin et 

al. 2001), protein-DNA interactions (Hall, Zhu et al. 2004), protein-lipid interactions (Zhu, 

Bilgin et al. 2001), protein-drug interactions (Huang, Zhu et al. 2004), protein-receptor 

interactions (Jones, Gordus et al. 2006), and antigen-antibody interactions (Michaud, Salcius 

et al. 2003). These microarrays could be used to study protein–protein interactions on a 

genome-wide scale, many known interactions could be confirmed and a set of novel binding 

proteins could be detected (Figure 14). Experiments designed to detect protein–lipid 

interactions have shown that the identification of proteins able to bind low molecular weight 

compounds is possible. This opens the possibility to examine an entire proteome directly for 

protein–drug interactions. Microarray immunoassays are of general interest also for all 

diagnostic applications where several parameters of one sample have to be analysed in 

parallel (Mendoza, McQuary et al. 1999; Schweitzer, Wiltshire et al. 2000). 

In addition, proteome chips have been used to study kinase activities (Ptacek, Devgan 

et al. 2005) and serum profiling (Zhu, Hu et al. 2006). Proteomic research and diagnostic 

applications will be the two major fields addressed by protein microarray technologies. In 

medical research, protein microarrays will accelerate immune diagnostics significantly by 

analysing in parallel all relevant diagnostic parameters of interest. The reduction of sample 

volume is of great importance for all applications in which only minimal amounts of samples 

are available. One example might be the analysis of multiple tumour markers from a 

minimum amount of biopsy material. 

Proteome chips have also been used successfully to screen patient’s sera for the 

presence of autoantibodies (Kattah, Alemi et al. 2006) or viral specific antibodies (Zhu et al., 

2006). Thus proteome chip technology is a valuable high-throughput method for probing a 

group of proteins for a specific function or property. It is an exceptional new way to discover 

unknown proteins, as well as new functions of already known proteins. 
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Figure 14 Applications of functional protein microarrays. A representative sample of the different assays that 

have been performed on functional protein microarrays. Proteins are immobilized at high spatial density on a 

microscope slide and the slide can then be probed for various interactions. While Cy5 is the fluorophore 

shown, many other fluorophores can be used for detection (Hall, Ptacek et al. 2007). 

 

The growing field of protein microarray technology also requires the development of 

methods for high-throughput generation of recombinant proteins. Such methods are a 

prerequisite for the growing demand for thousands of specific capture molecules. In addition 

to their use in the generation and isolation of appropriate capture molecules, recombinant 

proteins will be used to generate microarrays that allow a rapid and efficient screening for 

high-affinity binders with minimal, or no, cross-reactivity to other proteins.  

Detection of captured targets is performed by laser scanners with confocal detection 

optics (Templin, Stoll et al. 2002). Readout systems based on different techniques such as 

fluorescence, chemiluminescence or radioactivity can be used to detect complex formation 

within each spot (Figure 15).  
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Figure 15. Schematisation of the protein microarray technique.  
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New trends in technology, mainly in nanotechnology and microfluidics, newly 

established detection systems and improvements in computer technology and bioinformatics 

have been rapidly integrated into the development of microarray-based assay systems. 

Microarrays built from tens of thousands of different probes per square centimetre, are now 

well established high-throughput hybridization systems that generate huge sets of data within 

a single experiment. 

Accurate quantification with protein microarrays can be achieved by including positive 

and negative control spots and/or internal calibration spots. Hence, this will lead to robust 

and reliable diagnostic assays.  

 

2. Materials and Methods 

        2.1 Bacterial strains and growth conditions  

C. difficile clinical isolates collected by the Istituto Superiore di Sanità, Italy (1987-

2010) were used in this study (Table 1). Strains were isolated from symptomatic patients in 

13 different Italian hospitals. In particular, strains C192, C193, C252, C253, AR1, AR2, TR2, 

TR3, An45 and An56 were isolated during five different outbreaks that occurred in hospitals 

C, D, E, F and G. C. difficile isolates were typed as PCR ribotype 001 (two isolates), 012 (ten 

isolates), 014 (two isolates), 018 (ten isolates), 078 (ten isolates) and 126 (six isolates). 

Strains were cultured at 37°C under anaerobic conditions on Brucella agar plates containing 

vitamin K1 (0.5 mg/ml), haemin (5 mg/ml) and 5% defibrinated sheep red blood cells or in 

brain heart infusion (BHI) broth (Difco Laboratories). C. difficile strains 630, R20291 and 

M120 were used as control strains for PCR ribotype 012, 027 and 078/126, respectively. C. 

difficile 630 was obtained from the University of Paris-Sud, Chatenay Malabry, France. C. 

difficile strains R20291 and M120 were obtained from the Microbial Pathogenesis 

Laboratory, Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom. 

 

The E. coli strains were grown in LB or HTMC medium. 

- LB (Luria Bertani broth) 

Composition: 10 g/L Trypton, 5 g/L Yeast extract, 10 g/L NaCl  pH 7.6; 100 μg/ml 

ampicillin  

- HTCM (High Throughput Complex Medium) 

Composition: 15 g/L Glycerol (or Glucose); 0.5 g/L MgSO4 (2mM); 30 g/L yeast 

extract (Difco); 16 g/L K2HPO4; 6 g/L KH2PO4; 200 μg/ml ampicillin; pH 7.35 

-BHI (Brain Heart Infusion Broth) 
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Composition: 17.5 g/L Brain Heart Infusion, 10 g/L Enzymatic Digest of Gelatin, 2 g/L 

Dextrose, 5 g/L NaCl, 2.5 g/L Na2HPO4 , pH 7.4 ± 0.2 at 25°C 

-Brucella agar plates: 

Composition: 39 g/L Columbia Agar Base (OXOID), 5 g/L Yeast extract (OXOID). 0.5 

mg/ml vitamin K1, 5 mg/ml haemin and 5% defibrinated sheep red blood cells 
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Table 1. Clostridium difficile clinical isolates analysed in this study 

  

Isolate Year Origin§ TcdA TcdB Binary toxin Toxinotype PCR ribotype 

F III 10 2005 A + + - 0 001 

IT0843 EU 2008 B + + - 0 001 

C192 1987 C + + - 0 012 

C193 1987 C + + - 0 012 

C252 1987 D + + - 0 012 

C253 1987 D + + - 0 012 

AR1 1987 E + + - 0 012 

AR2 1987 E + + - 0 012 

TR2 1989 F + + - 0 012 

TR3 1989 F + + - 0 012 

An45 1989 G + + - 0 012 

An56 1989 G + + - 0 012 

F II 3 2005 H + + - 0 014 

IT0855 EU 2008 D + + - 0 014 

IT0603 2006 A + + - 0 018 

IT0707 2007 A + + - 0 018 

IT0807 2008 I + + - 0 018 

IT0808 2008 I + + - 0 018 

IT0825 2008 L + + - 0 018 

IT0829 2008 L + + - 0 018 

IT0839 EU 2008 B + + - 0 018 

IT0840 EU 2008 B + + - 0 018 

IT0926 2009 M + + - 0 018 

IT0929 2009 M + + - 0 018 

CD5 1998 H + + + 5 078 

IT0810 2008 I + + + 5 078 

IT0834 2008 I + + + 5 078 

IT0901 2009 N + + + 5 078 

IT0909 2009 O + + + 5 078 

IT0918 2009 I + + + 5 078 

IT0919 2009 I + + + 5 078 

IT0925 2009 M + + + 5 078 

IT0936 2009 M + + + 5 078 

IT1003 2010 D + + + 5 078 

1991 2001 H + + + 5 126 

2350 2002 H + + + 5 126 

3360 2006 H + + + 5 126 

IT0820 2008 L + + + 5 126 

IT0824 2008 L + + + 5 126 

IT0846 EU 2008 I + + + 5 126 

§ Strains were isolated at 13 Italian hospitals (arbitrarily denominated A to O). 
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2.2 Cloning and expression of Clostridium difficile recombinant proteins 

C. difficile ORFs were PCR-amplified using chromosomal DNA of strain 630 as a 

template. PCR products were cloned into a modified pET15b
+
 expression vector (Novagen) 

using the PIPE cloning method (Figure 16) (Klock, Koesema et al. 2008). The PCR-

amplified vector (vector PCR, V-PCR) and the PCR-amplified ORFs (insert PCR, I-PCR) 

were mixed and used to transform the E. coli HK100 strain (Klock, White et al. 2005). 

 

Figure 16. The pET-15b vector carries an N-terminal His-Tag sequence followed by a thrombin site and three 

cloning sites. Unique sites are shown on the circular map. Note that the sequence is numbered by the pBR322 

convention, so the T7 expression region is reversed on the circular map. The cloning/expression region of the 

coding strand transcribed by T7 RNA polymerase is shown in panel B.  

A 

B 
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In order to reduce the number of transformants carrying the empty pET15b
+
 vector, 

used as V-PCR template, pET15b+ was modified by cloning the toxic CcdB gene into it 

using the PIPE technique. The CcdB-Chloramphenicol cassette was excised from the 

SpeedET vector (Klock, Koesema et al. 2008) and cloned into pET15b
+
 using the permissive 

E. coli strain DB3.1. After PCR colony screening and plasmid sequencing, a DB3.1 clone 

containing the correct pET15b-CcdB/cm construct was selected and used to amplify and 

purify the plasmid that was then used as DNA template for the V-PCR. The oligonucleotide 

primers used to prepare the V-PCR and the 15 bases at the 5’ ends of the primers used to 

prepare the I-PCRs were designed in such a way that a Tobacco Etch Virus (TEV) cleavage 

site was introduced between the vector sequence coding for the N-term hexa-histidine tag and 

the ORF sequence. The forward and the reverse oligonucleotides used to obtain the V-PCR 

were 5’-TAACGCGACTTAATTCTAGCATAACCCCTTGGGGCCTCAAACGG-3’ and 

5’G C C C T G G A A G T A C A G G T T T T C G T G A T G A T G A T G A T G A T G G C T G

C T G C C C A T G G T A T A T C - 3 ’  respectively. The forward and reverse 15 base long 5’ 

tails of the oligonucleotides used to obtain the I-PCRs were 5’-CTGTACTTCCAGGGC-3’ 

and 5’-AATTAAGTCGCGTTA-3’, respectively. 2 μl of V-PCR were mixed with 2 μl of 

each I-PCR and 3 μl of these mixtures were used to transform Ca
2+

 competent HK100 cells. 

Transformants were then selected by PCR screening and DNA sequencing of the plasmids 

extracted from the PCR-positive clones. In order to express cloned ORFs, the plasmids were 

prepared from the positive clones in HK100 and used to transform Ca
2+

-competent BL21-

DE3T1r (New England Biolabs) or the T7 Express competent E. coli cells (New England 

Biolabs). The new clones were screened for expression of the heterologous proteins. The 

wells of 96 deep well plates containing 1.5 ml of LB medium with the addition of 100 μg/ml 

ampicillin were inoculated with the expression clones and grown at 37 °C up to OD600 nm= 

0.5. Protein expression was then induced by adding 1 mM IPTG and incubating the culture at 

the same temperature for an additional 3 h. To check protein expression and solubility, the 

induced cells were lysed with B-Per buffer (Pierce, Rockford, ILU.S.A.) using the 

manufacturer’s instructions. The results were evaluated by analysing total and soluble protein 

extracts in SDS-PAGE.  
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2.3 Clostridium difficile DNA isolation, amplification and sequencing. 

Genomic DNA was isolated by a standard protocol for Gram-positive bacteria using a 

NucleoBond AX-G kit (Macherey-Nagel) according to the manufacturer’s instructions. 

Genes were amplified using primers specific for regions external to each ORF and are listed 

in Table 3. Only for cwpV were primers designed for amplifying a conserved internal 

segment (904 bp) of the otherwise highly variable coding region (Emerson, Reynolds et al. 

2009). When primers were used in a multiplex PCR reaction, the two sets were added at 

different concentrations: 1 μM and 0.3 μM for primers specific for the longer gene and the 

shorter gene, respectively. DNA amplification was performed using 1 μl of purified genomic 

DNA (50 ng) in a final volume of 50 μl. The nucleotide sequences of PCR products were 

determined using a BigDye Terminator V3.1 kit (Applied Biosystem) in an ABI PRISM 3700 

Analyzer (Applied Biosystems). The nucleotide sequences have been submitted to the 

GenBank database under accession numbers JQ389122-JQ389476. 

2.4 Sequence alignments and phylogenetic analysis. 

The percentage of sequence identity was calculated by pair wise BLAST with the 

VECTOR NTI SUITE 11 (Informax, Bethesda), with gaps included. Sequence alignments 

were performed using CLUSTAL W (1.83, GCG Wisconsin Package version 11.1) and 

phylogenetic trees were inferred by the neighbour-joining-distance-based method and 

bootstrapped 1,000 times. 

2.5 Protein expression. 

 

 C. difficile protein extraction 

 

Total protein and S-layer extracts 

The preparation of whole cell lysates was obtained from cultures grown in BHI broth to 

stationary phase (OD600 nm ≈ 1) by a method based on a freeze-thaw procedure (Fagan and 

Fairweather 2011). Briefly, cultures of C. difficile were harvested by centrifugation at 5,000 x 

g for 10 min at 4°C and the pellets frozen at -20°C. Bacteria were thawed, suspended in PBS 

to an OD600 nm = 20 and incubated at 37°C for 10 min. Three such freeze-thaw cycles were 

carried out in order to obtain consistent and reproducible lysis. 

The extraction of S-layer was performed following a previously described method 

(Fagan and Fairweather 2010).  

To obtain S-layer-associated proteins of C. difficile strains, bacteria were grown in a 50 

ml BHI broth for 16-18 h, harvested by centrifugation at 3500 x g for 10 minutes and washed 
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in 5 ml of PBS. Cells were re-suspended in 0.5 ml (1\100 starting culture) of 0.2 M Glycine, 

pH 2.2 plus protease inhibitors (Complete Mini EDTA-free, Roche) and digestion was 

allowed to proceed for 20 min at room temperature with gentle agitation. Then the bacterial 

suspension was transferred to microfuge tubes and harvested by centrifugation at 3500 x g for 

10 minutes at 4°C. The supernatant, which contains the surface proteins, was recovered and 

the pH was modified by the addition of 2 M Tris base to achieve a pH in the range of 7–8.  

For SDS-PAGE and Western blot analysis, 3.5 µl of each total cell extract and 5 µl of 

each S-layer extract were used.  

 

Extraction of Flagella 

 

C. difficile strains were inoculated in Falcon tubes containing 2 ml of BHI. Tubes were 

incubated overnight in an anaerobic hood. 250 µl of each culture were plated onto 4 plates.  

After incubation overnight, the colonies were collected from the plates with a loop and re-

suspended in 500 µl of H2O.  All the samples were mixed by vortexing for 3 min in 500 µl of 

H2O and centrifuged for 5 min at 13000 rpm at 4°C. The supernatant containing the flagella 

was transferred to a clean tube and used for SDS-PAGE analysis. 

 

    Expression of recombinant His-tagged proteins 

 

Selected clones were first grown in 25 ml LB medium with 100 µg/ml ampicillin 

overnight at 37°C with agitation at 180 rpm. The starter culture was then diluted to 500 ml of 

the same growth medium in a 2-liter flask and grown at 30°C with agitation at 180 rpm. 

When the culture reached an O.D.600 nm value ranging from 0.4 to 0.7, 1 mM IPTG (final 

concentration) was added for induction of expression. The culture was incubated at 25°C for 

3.5 h with agitation at 180 rpm.  

 

 Protein expression using HTFS (High Throughput Fermentation System) 

This system is based on in-house adapted 50 ml Falcon tubes, prepared by boring three 

round holes in the cap: one in the centre for air intake and two lateral exit holes. The air 

intake hosts a 2 ml Falcon pipette connected to a fluximeter and the air exit is filtered by two 

shortened ART1000 filtered tips (Figure 17). Selected clones were then grown in 4 ml 

Glucose-HTCM at 37°C with agitation until bacteria reached the exponential phase. Thirty 

five microliters of each culture were inoculated into a solution containing 35 ml of Glycerol-

HTCM and 50 µl PPC (poly propylene carbonate anti-foam solution, 1/10 diluted) in a 
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Falcon tube. The Falcon tubes were placed on a heater set to 26.1°C (to keep the temperature 

from dropping under 26°C) and air flux (which also provides agitation) was set to 3 VVM 

(volume gas / [volume liquid / minute]). The bacteria were grown for 36 h, then the Falcon 

tube caps are replaced with new ones and tubes were centrifuged at 4000 x g at 4°C for 40 

min. Supernatants were discarded and pellets were stored at -20°C. 

 

Figure 17. HTFS machinery has been developed in house at the Novartis Vaccines Fermentation Lab, by Erwin 

Swennen and colleagues. The system is composed of 2 block heaters holding a maximum number of 24 

standard 50 ml Falcon tubes with 3 holes manually drilled in the cap. Filtered ART1000 tips are used as air-exits 

and the central hole is attached to a fluximeter set to 3 VVM  

 

2.6  Protein purification. 

 Poly-Prep Column His-Tagged protein purification 

Pellets were thawed at room temperature and resuspended in 10 ml B-PER buffer 

(Bacterial- Protein Extraction Reagent, Pierce) containing 20 μl of 50 mM MgCl2, 100μl 

DNAse I (100 K units Sigma D-4263) in PBS, 1 mg/ml lysozyme (Sigma L-7651) in PBS. 

Lysis solution was transferred to 50 ml centrifuge tubes, kept at room temperature for 40 

min, vortexed a few times and then centrifuged at 40000 g for 25 min. Poly-Prep columns 

were prepared and equilibrated with 1 ml Ni-Activated Chelating Sepharose Fast Flow in 50 

mM phosphate buffer and 300 mM NaCl at pH 8 before the supernatant was loaded. Column 

flow-through was discarded. Ten milliliters of 20 mM imidazole, 50 mM phosphate, 300 mM 

NaCl buffer at pH 8 were added to remove impurities.  

Proteins bound to the column were eluted with 4.5 ml of 250 mM imidazole, 50 mM 

phosphate, 300 mM NaCl buffer at pH 8 and collected in three 1.5 ml fractions. 15μl of 200 

mM DTT (Dithiothreitol) (2mM final concentration) were added to each fraction. Protein 

concentration of each fraction was estimated by the Bradford assay and 10 μg of each protein 

sample were loaded onto an SDS-PAGE gel. Proteins were then stored at 4°C. Poly-Prep 

Column GST-Tagged protein purification pellets were thawed at room temperature and 
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resuspended in 10 ml B-PER buffer (Bacterial-Protein Extraction Reagent, Pierce), 20 μl of 

50 mM MgCl2, 100 μl DNAse I (100 K units Sigma D-4263) in PBS, 1 mg/ml lysozyme 

(Sigma L-7651). Lysis solution was transferred to 50 ml centrifuge tubes, kept at room 

temperature for 40 min, vortexed a few times and then centrifuged at 40000 x g for 25 min. 

Poly-Prep columns were prepared, equilibrated with 0.5 ml Glutathione-Sepharose 4B, 

washed with 2 ml H2O and 10 ml PBS, pH 7.4 before loading the supernatant. Column flow-

through was discarded. 10 ml of PBS, pH 7.4 was added to remove impurities. Proteins 

bound to the column were eluted with 50 mM TRIS and 10 mM reduced glutathione at pH 8 

and collected in three 1.5 ml fractions. 2 mM DTT was added to each fraction. Protein 

concentration of each fraction was estimated by the Bradford assay and 10 μg of each protein 

sample were loaded onto an SDS-PAGE gel.  

 

2.7  SDS-PAGE and immunoblotting.  

 Extracts were separated by SDS-PAGE in a 12% polyacrylamide gel, followed by 

Western blotting and immunodetection with specific antibodies. Antisera against Cwp16, 

Cwp18, Cwp25, Cwp26 and Cwp27 were raised in mice immunised with purified 

recombinant CWPs obtained by overexpressing the corresponding ORFs of C. difficile strain 

630 using the pET15b
+
 vector (Novagen) and the E. coli strain BL21(DE3) (Invitrogen) 

expression system. Primary antibodies, used at a 1:2,000 dilution in blocking buffer, were 

detected using horseradish peroxidase-conjugated goat anti-mouse immunoglobulin G 

(1:20,000; Invitrogen) and the SuperSignal West Pico chemiluminescent substrate (Thermo 

Scientific Pierce). A marker for direct visualization of standard bands (MagicMark XP 

Western Protein Standard, Invitrogen) was used routinely for protein molecular mass 

estimation directly on Western blots.  
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2.8  Protein microarray 

 Design 

A total of 89 proteins were selected among those predicted, or known, to be secreted or 

surface exposed in C. difficile. Designing the chip layout is a key step in microarray-based 

research to overcome some limitations of the technique. For this experiment, we have 

designed a layout  with four replicates of each protein (Figure 18). The same layout was then 

printed four times within the same slide, in order to obtain a microarray with a total of 16 

replicates of each protein. The core of the Arrayjet technology, the JetSpyder, enables the 

inkjet print head to be simultaneously primed with multiple samples for microarray printing.  

The design also included various types of controls, mostly serial dilutions of control 

proteins or immunoglobulins (at a concentration ranging from 0.008 to 0.5 mg/ml). A 

solution of 40% glycerol in PBS (PBS-Gly) buffer was spotted in at least twice the number of 

the protein spots and used to detect non-specific signals caused by cross-contamination 

during spotting (Figure 18).  
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Figure 18 Microarray layout. Spots of C. difficile surface proteins are represented by white boxes, PBS_Gly 

buffer spots are highlighted in blue.  
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 Preparation and Spotting 

 

Purified C. difficile proteins were dialyzed in PBS with the Slide-A-Lyzer Dialysis 

Cassette system (Thermo Scientific) and diluted to obtain a concentration of 0.5 mg/ml.  

Each protein solution was then transferred to two 384-well polypropylene microplates 

(15 μl/well). The plates contained serial dilutions, ranging from 0.5 mg/ml to 0.016 mg/ml, of 

seven controls: Human IgG, Human IgM, Human IgA, Mouse IgG, Hamster IgG, Cy3 and 

Cy5-labelled BSA (Amersham Biosciences) and biotin-labelled BSA. All samples were 

spotted onto nitrocellulose-coated slides by using the Arrayjet Marathon Microarrayer.  

The Arrayjet Marathon Microarrayer transfers samples of biological liquids from 

microplates onto microarray slides. The samples are transferred by means of an inkjet print 

head and a patented JetSpyderTM. The JetSpyderTM allows 12 or 32 samples to be drawn 

from wells into the print head as follows: the print head is purged with clean buffer liquid 

(50% water, 50% glycerol and 0.05% Triton X100); the print head picks up the JetSpider, 

which is then purged with buffer via the print head; the Jet Spider, with 12 capillaries 

projecting downwards in a 4x3 array at 9 mm spacing, or 32 in a 8x4 array at 4.5 mm 

spacing, is lowered into a microtitre plate. Samples are drawn from the wells via the 

JetSpyder into the nozzles of the print head; the JetSpider is returned to its cleaning station; 

the print head prints the slides and the cycle is repeated until all the samples in the plates are 

printed. The Jet Spider draws 0.7 µl of sample and each nozzle prints 0.1 nl/spot (0.05 ng of 

protein/spot) for a final spot diameter of 90–100 μm. 

The wells must be filled to a level adequate for the planned printing, and must not 

contain dirt or air bubbles. Centrifuging the plates at 3000 rpm for 5 minutes should remove 

bubbles, but the plates should be inspected and re-centrifuged if necessary. The software 

allows the user to specify a print run; initialise the instrument; load plates and slides; perform 

the print run; unload trays and slides; and shut down the instrument. The software will 

produce a GAL file describing the mapping of the contents of the wells onto spots on the 

slides. The GAL file is needed to map the positions of the samples in the plates to the 

positions of the corresponding spots on the slides. 

 Hybridization and Staining 

The slides were washed with PBS at 20°C for 5 min and then with PBS-T (0.05% 

Tween 20 in PBS) at 20°C for 1 min followed by 1 h incubation in the dark with shaking in 

Protein Blocking Buffer (Whatman code: 10485356). Slides were incubated with 100 µl of 

hamster sera diluted 1:300 in Protein Blocking Buffer for 1 h at 25°C in the dark with 

shaking and then washed 3 times (at 25°C, 5 min each time) with PBS-T. Anti-hamster 

IgG/Alexa Fluor647 secondary antibody (Invitrogen, cod.A21451) at a 1:800 dilution in 
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Protein Array Blocking buffer, was added and incubation prolonged for 1 h at 25°C in the 

dark with shaking.  Only in the last slide (00282619) an Anti-hamster IgG/Cy3 (abcam, code: 

ab6969), diluted 1:800 in Protein Array Blocking Buffer was added.  Slides were washed 

twice with PBS-T (25°C, 5 min each time), once with PBS (25°C, 10 min), and once with 

sterile milliQ H2O (25°C, 30 sec).  Slides were removed from the incubation chamber, 

washed once with sterile milliQ H2O and dried with nitrogen. 

An example of the scheme used for a hybridization experiment of the 8 hamster sera 

analysed in this work is given below 
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 Data collection 

 

The fluorescence signals were detected using a high resolution laser scanner 

PowerScanner™ (Tecan) to detect the specific fluorophore used, with 0.1% laser intensity 

and 300% of gain for all the slides, except for the last slide (00282619) in which a 0.1% laser 

intensity and 90% of gain were used.  

The signal was then quantified with the program ImaGene 9.0 (Biodiscovery Inc, CA, 

USA). The data collected were analysed using the in-house developed program "Protein 

Chip". The mean fluorescence intensity (MFI) of each spot was calculated as an average 

fluorescence intensity of  the 16 replicates, minus the background fluorescence intensity. To 

determine specific binding of an antibody-probe to a recombinant protein, a mean 

fluorescence intensity value of 2000 was established as the threshold for scoring positive 

results. Average intensities of fluorescence below this value were scored as negative. 
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3. RESULTS 

3.1 Sequence conservation of cwp genes 

Sequence alignment of ORFs predicted to code for CWPs in published C. difficile 

genomes (Table 2) was used to identify conserved flanking regions suitable for designing 

primers for the amplification of the corresponding cwp ORFs. 

 

Table 2. List of published C. difficile genomes, available until 2011. 
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Among the public genomes, we selected three fully sequenced genomes  to use as 

reference in our analysis. The genomes chosen correspond to the strains 630, R20291 (SM) 

and M120. Strain 630 (ribotype 012) is multi-drug resistant, and was isolated from a patient 

with severe pseudomembranous colitis that had spread to dozens of other patients in the same 

ward in Zurich, Switzerland in 1982. Subsequently, strain 630 has become the most widely 

used strain in the laboratory. The strain R20291 (SM) was isolated in the UK in 2006. This 

strain (PCR ribotype 027) is characterised by high level fluoroquinolone resistance, hyper-

production of the pathogenic toxins A and B and  has been implicated in the increase of 

incidence, recurrence and mortality of C. difficile associated disease (CDAD) in hospitalised 

patients. The strain M120, a PCR ribotype 078 strain, was isolated from an Irish diarrheic 

patient in 2007. The PCR ribotype 078 strains are generally those most frequently present in 

domestic animals.  

Twelve of the 29 cwp genes encoding the cell wall proteins are clustered in the same 

region of the genome, named after slpA (cwp1) the slpA locus (Calabi, Ward et al. 2001; 

Karjalainen, Waligora-Dupriet et al. 2001), whereas the remaining 17 paralogs are distributed 

throughout the genome (Figure 19). We conducted our analysis on all genes not included in 

the slpA locus, as this locus is already been characterized by other groups (Karjalainen, 

Saumier et al. 2002; Eidhin, Ryan et al. 2006; Kirby, Ahern et al. 2009; Chapeton Montes, 

Collignon et al. 2013). 
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Figure 19.Distribution of cwp genes in the genome of C.difficile. Genes in pink represent the genes  analysed in 

our study. Only the 17 cwp ORFs not included in the slpA locus were taken into consideration. 

 

 In several cases only one of the two flanking regions was conserved in all the 

published genomes. In these cases, different sets of primers were designed that would allow 

the amplification of the corresponding ORF in all the known variants of the locus. A list of 

the primers used is given in Table 3.  
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Table 3.Oligonucleotides used in this study 

  

Oligonucleotide    Sequence (5’-3’) 

cwp13-for AAGGGGGAGAAAGCGTGAAAA 

cwp13-rev AAACTTATACTACATAAATTTAAAGCTG 

cwp13-for1 GTCCAACAAAAAGTTTTAATACAAATC 

cwp13-rev1 GATATATTTAAGCTTTTTAATTGTTGTTC 

cwp13-for2 GTATATTTGTAAATACTTGATATTTAGTC 

cwp15-for1 CTTAATAGGTGGAACTTCTGTATTAA 

cwp15-rev2 ATCATCTATAACTACATCATCCAC 

cwp16-for GGCAATAAATGATATAGTGAAGATAA 

cwp16-rev TAATTACATTCTTATCTTATAGCTTTAGT 

cwp16-for1 GAAAAATGGTTCAGATAAGGTAG 

cwp17-for GGGTTAGATACACTTTGACATATT 

cwp17-rev CAAATGTACATACAGTCTTACTATTG 

cwp17-for1 GAAACAGCAGTTAAAATAAGTAAAGA 

cwp18-for GCTATATCATTCTTTATAAGTCAAGC 

cwp18-rev CTATATTGAAATATAACTTAGTTTACTTG 

cwp19-for TACACTTGATTACAAAATGCATATAG 

cwp19-rev TACACTTGATTACAAAATGCATATAG 

cwp19-for1 ACCCAGGTTTACCAGAAGTTA 

cwp19-rev1 CAAGTAAAGTTATTTTAATTGGAGGA 

cwp20-for ATTATTAAAAAGGGAAAGAGGTAATG 

cwp20-rev GTCATAGAGCTATGGGAGCTA 

cwp20-for1 GTTATATAAAAAGCTATACTTATAAAAGC 

cwp20-for2 GAGTATCTGGTATGTCATTTACTAA 

cwp20-rev1 GATGCAGTAAGCATTGGAGCT 

cwp22-for AAGATTCATGGAGATGGCAAAG 

cwp22-rev GCTTTTATTGATTGAATTTCACATCT 

cwp24-for AGCGTAGATGTAATACTATGTTA 

cwp24-rev GAAATTGGAAAAATCAAAACCATTCC 

cwp25-for CCTTTTATGGAGAAAGAAGGTATT 

cwp25-rev CTTATCTCCATTTGATAGCCTC 

cwp26-for ATAATTTAGGTGAAAATATTTAAGAGAAG 

cwp26-for1 GAAAAAATAGAGTGGACACCTCATT 

cwp26-rev ATGAACTCCACTCTATAGATTGTA 

cwp27-for GTGACAAAATTTTGAAATATAAACTAATTTC 

cwp27-rev GAAACATAAAATTTTAATACTTATCGTC 

cwp28-for GCAATTTTACATAAGTTTGTTAAGTAC 

cwp28-rev CCTCCTAGTTAATTTCTTATATTACAC 

cwp29-for GGAGGAAAAGAAAATTTAATGTAGAAT 

cwp29-rev GAGACATTTACATACCACATAGT 
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All the sets of primers whose sequence was highly conserved in all published genomes 

or, alternatively, could discriminate for the presence/absence of a specific cwp gene were 

combined as two sets in a multiplex PCR reaction and tested on control genomic DNAs 

extracted from strains 630, R20291 and M120. With this approach, amplification of a 

conserved PCR fragment becomes a positive control for the negative result obtained when 

using primers specific for genomic regions that are not present in all published genomes 

(Figure 20).  

 

 

 

 

 

 

Figure 20. . Results from duplex PCR amplification of loci cwp13 and cwp29 performed on the clinical 

isolates of Table1 

 

PCR fragments of the expected length were obtained with all sets of primers, except for 

those designed for the amplification of cwp14, cwp21 and cwp23. Hence, these genes were 

excluded from our analysis that was focused on the remaining 14 cwp genes listed in Figure 

22. Amplification of the corresponding 14 cwp ORFs was carried out on genomic DNA 

extracted from 40 strains isolated from patients at 13 Italian hospitals and representative of 

the 6 PCR ribotypes prevalent in Italy (Table 1). The nucleotide sequence was then 

determined for all of the PCR fragments obtained (Figure 21).  
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Figure 21 Distribution of the 14 cwp genes in 40 Italian clinical isolates and their conservation with respect to 

strain 630. Reference strains are highlighted in the blue box. Strains also tested for expression of a specific 

Cwp by Western blot analysis are indicated by a full circle (●) when found positive or by an open circle (O) 

when a specific band could not be detected. 

 

In total, 511 ORFs were sequenced and analysed for sequence conservation using the 

multiple alignment program Clustal W (Chenna, Sugawara et al. 2003). The ORFs were 

found to be conserved in all 40 isolates for eight of the cwp genes analysed, while the 
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remaining six cwp ORFs were absent or, when present, not conserved in at least one of the 

clinical isolates. In particular, cwp27 and cwp29 were absent in all the PCR ribotypes 

078/126 isolates as already reported for M120, the reference strain for PCR ribotype 078 (He, 

Sebaihia et al. 2010). Similarly, the ten PCR ribotype 018 strains of our collection lack 

cwp28, while in the same isolates the other 13 cwp genes were found to be present and 

conserved (Figure 21). A PCR fragment of the expected length for cwp17 was obtained in all 

isolates except for two, one PCR ribotype 078, which lacks also cwp16, and one PCR 

ribotype 126 strain.  

Moreover, the sequence of cwp17 in all the remaining isolates of PCR ribotype 078 and 

126 showed a lower level of conservation with respect to strain 630 than the isolates of the 

other PCR ribotypes. Finally, the cwp26 gene was found to be alternatively absent/present 

but variable or conserved in different isolates of the same PCR ribotype with the exception of 

the ten PCR ribotype 018 isolates, which all shared identical cwp26 sequences. The number 

of single nucleotide polymorphisms (SNPs) found in each cwp gene among the various PCR 

ribotypes with respect to the ortholog sequence in strain 630 and the corresponding amino 

acid substitutions are reported in Table 4. 

 

Table 4.Gene variability in 14 cwp genes of Clostridium difficile. The sequence determined in a representative 
clinical isolate for each PCR ribotype was compared to the equivalent sequence in strain 630 by measuring the 
number of SNPs and amino acid substitutions observed. 
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The sequences of the 14 cwp ORFs in one isolate for each PCR ribotype, arbitrarily 

selected as representative of all strains that belong to the same PCR ribotype, were joined in a 

single string and compared with the corresponding cwp sequences of strain 630, also joined 

in a string.  

The phylogenetic tree inferred from the sequences of the 14 cwp loci among the clinical 

isolates and constructed by the use of the neighbour-joining algorithm is shown in Figure 22. 

Two interesting observations can be drawn from this analysis. First, strains that belong to 

PCR ribotypes 078 and 126 always have identical cwp sequences in the clinical isolates of 

our collection. Conversely, the reference strain for PCR ribotype 078 M120 and strain QCD-

23M63, another PCR ribotype 078 strain whose genome sequence has been characterised 

(Forgetta, Oughton et al. 2011), show some variability for these cwp genes (Figure 23). 

Second, the two PCR ribotypes 078 and 126 are clearly more closely related to the 

hypervirulent PCR ribotype 027 than to any of the other PCR ribotypes analysed in our study. 

. 

 

 

 

Figure 22.Phylogenetic tree, rooted on C. difficile strain 630, of cwp sequences among C. difficile clinical 
isolates. The tree was constructed from the sequence results inferred from 14 cwp gene sequences by using 
the neighbour-joining algorithm. Bootstrap confidence values for each node of the tree were calculated over 
100 replicate trees (only bootstrap values >80% are indicated). The number of nucleotides representing all 
polymorphisms found in each PCR ribotype is given in parentheses. 
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3.2 Analysis of in vitro expression of Cwp proteins 

Five of the CWPs under study were characterised further by Western blot analysis of 

total cell extracts or S-layer preparations of the C.difficile clinical isolates. Three conserved 

CWPs, Cwp16, Cwp18 and Cwp25, and two variable ones, Cwp26 and Cwp27, were selected 

for this analysis since antisera showing high specificity for these Cwps were available. For 

simplicity, total cell extracts were prepared from only one representative isolate for each PCR 

ribotype as well as from any strain showing variable alleles. A similar mode of expression 

was detected in total extracts of all the clinical isolates analysed for the highly conserved 

cwp16, cwp18 and cwp25 genes (Figure 23).  

 

Figure 23. Analysis of expression of conserved CWPs. Western blot analysis of total cell extracts of C. difficile 
reference strains (630, R20291 and M120) and clinical isolates representing different PCR ribotypes using anti-
Cwp16, anti-Cwp18 and anti-Cwp25 antibodies. A marker for direct visualization of standard bands 
(MagicMark XP Western Protein Standard, Invitrogen) was used for protein molecular mass assessment 
directly on Western blots. 
  

Cwp16 mature form:71.1 kDa 

Cwp18 mature form:34.7kDa 

Cwp25 mature form:31 kDa 
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However, it is noteworthy that strain IT0901, the only isolate from which we were not 

able to amplify the cwp16 gene, shows a Cwp16-positive band of the same intensity and 

molecular mass as all the other strains. This suggests that the cwp16 flanking regions that we 

used to design the primers are not conserved in strain IT0901. Moreover, since we were also 

not able to amplify the adjacent cwp17 gene in this isolate, we propose that in strain IT0901 

the entire region may contain some degree of sequence variability that does not compromise 

expression of Cwp16. For this reason, we believe Cwp16 could be included in the group of 

the highly conserved CWPs, thus bringing to 9 the number of conserved CWPs versus 5 

variable ones. In the literature there is a paucity of information on Cwps. To date, only SlpA, 

CwpV, Cwp84 and Cwp13 have been characterised.  The main aspect that they all have in 

common is that they are processed through a complex pathway before exposure on the 

bacterial surface. We believe that Cwp 16 is subjected to the same processing, as a band is 

visible at a lower molecular weight in all the samples. 

Conversely, analysis of the data obtained on expression of Cwp26 revealed that a 

protein of the expected molecular mass (49 kDa) is present in total cell extracts of the 027 

reference strain R20291 and the PCR ribotype 001 strains, but missing in the remaining 

isolates (Figure 24 A). A weaker band visible at approximately 31 kDa in all samples, 

representing a cross-reaction of the Cwp26-specific polyclonal antibody with Cwp25 (data 

not shown), was used as a sample loading control for the Cwp26-negative samples. To verify 

if the absence of Cwp26 in total cell extracts was due to the sample preparation procedure or 

to differences in expression/localisation, the Western blot analysis was repeated on S-layer 

preparations of the same strains. S-layer extracts showed the presence of a 49 kDa Cwp26-

positive band in the PCR ribotype 078 and 126 strains as well as in the 027 and 001 isolates 

already found to be positive in total cell extracts (Figure 24 B). 



 
54 

 

 

Figure 24. Expression of Cwp26. Western blot analysis of C. difficile reference strains (630, R20291 and M120) 
and clinical isolates representing different PCR ribotypes using anti-Cwp26 antibodies. Total cell extracts (A) 
and S-layer extracts (B) were separated by SDS-PAGE, followed by Western blotting with Cwp26-specific 
antibodies. A marker for direct visualization of standard bands (MagicMark XP Western Protein Standard, 
Invitrogen) was used for protein molecular mass assessment directly on Western blots. The grey arrow 
indicates the position of the expected molecular mass for the mature form of Cwp26, while the white arrow 
indicates the Cwp26-positive band at approximately 70 kDa. 

 

Likewise, the strains that belong to the PCR ribotypes 012, 014 and 018 showed a 

strong positive signal only in S-layer preparations, though the strong band recognised in these 

strains has a significantly higher molecular mass (approx. 70 kDa) than that predicted from 

the cwp26 gene sequence (Figure 24B). In addition, it should be noted that the same strong 

signal at 70 kDa is also visible in S-layer preparations of the two 012 isolates, TR2 and TR3, 

that were found cwp26-negative by PCR analysis (Figure 21). Of the other two cwp26-

negative isolates reported in Figure 1, strain CD5 displayed two positive bands at 48 and 49 

kDa, while strain F II 3 did not show any specific band recognised by the anti-Cwp26 

antibodies (Figure 24 B). Although we cannot offer an explanation for the results obtained in 

isolates TR2, TR3 and CD5, it can be inferred that F II 3 is the only strain that clearly does 

not contain a cwp26 ortholog. The results of the Western blot analysis of the expression of 

Cwp27 are shown in Figure 25.  
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Figure 25. Expression of Cwp27. Western blot analysis of C. difficile reference strains (630, R20291 and M120) 

and clinical isolates representing different PCR ribotypes using anti-Cwp27 antibodies. Total cell extracts (A) 

and S-layer extracts (B) were separated by SDS-PAGE, followed by Western blotting with Cwp27-specific 

antibodies. A marker for direct visualization of standard bands (MagicMark XP Western Protein Standard, 

Invitrogen) was used for protein molecular mass assessment directly on Western blots. 

 

Two bands of the expected molecular mass for the mature form (38 kDa) and precursor 

(41 kDa) of Cwp27, as inferred from the Cwp27 sequence analysis using the PSORT (Nakai 

and Horton 1999) and VECTOR NTI prediction programs, were seen in total extracts as well 

as in S-layer preparations of the two reference strains 630 and R20291 used as positive 

controls. Conversely, no band was visible in M120, a strain that does not have a cwp27 

ortholog.  

In clinical isolates of PCR ribotype 012, 014 and 018 the same two bands were present 

with the same intensity ratio in S-layer extracts but with varying intensities in total cell 

extracts. However, both the PCR ribotype 001 isolates of our collection, which contain a 

conserved cwp27 gene, did not show any positive signal; thus indicating that these strains do 

not express Cwp27 at detectable levels in our conditions. On the contrary, the lack of a 

positive signal in PCR ribotype 078 and 126 isolates confirms the absence of a cwp27 

ortholog in these strains. 
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3.3 Analysis of in vivo expression by Protein Microarray 

Reverse Vaccinology highlights how antigens that confer a broad range of protective 

antibody responses are highly expressed surface-exposed proteins, usually secreted as toxins 

or virulence factors well conserved among the pathogen strains. The identification of 

antigens able to confer protective immunity can be achieved with several approaches. In this 

study, we chose to analyse the immune response obtained in a protection experiment, carried 

out in hamsters, using a protein chip approach. Briefly, hamsters were vaccinated with 

various domains of Toxin A (p5 /6) and Toxin B and then challenged with a lethal dose of C. 

difficile strains 630 or B1. We have used the sera from protected and from control animals to 

identify antigens capable of eliciting a specific immune response towards C. difficile toxins 

and surface proteins. Putative antigens or proteins predicted to be secreted or surface exposed 

by genomic and proteomic approaches were purified in a His-tagged form, and used to 

generate protein microarrays on nitrocellulose-coated slides. Approximately 80 proteins were 

selected by using a combined in silico and proteomic approach (Table 5). 

Table 5. List of proteins spotted onto the chip. 

Tube N° Name note 

1 A 16 small His  ToxA+ToxB_1 

2 B4 His  ToxA+ToxB_2 

3 Chimera 9 His  ToxA+ToxB_3 

4 Chimera 12 His ToxA+ToxB_4 

5 N-G-BB His  N-G-BB His  

6 PTA2 His ToxA_1 

7 Tox A-B2 His   ToxA_2 

8 Tox A-GT-WT ToxA_3 

9 Tox A-GT-M2  ToxA_4 

10 Tox A-GT-M3 ToxA_5 

11 Tox B-GT His   ToxB_1 

12 Tox B1 His   ToxB_2 

13 Tox B4 His    ToxB_3 

14 ToxB4 ToxB_4 

15 FliC_630 FliC_630 (native) 

16 FliC_SM FliC_SM (native) 

17 FliC_001 FliC_001 (native) 

18 FliC_014 FliC_014 (native) 

19 FliC_018 FliC_018 (native) 

20 FliC_078 FliC_078 (native) 

21 FliC_126 FliC_126 (native) 

22 HMW_630 HMW_630 (native) 

23 HMW_SM HMW_SM (native) 
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24 DIF 2 His  
Leader present, peptidoglycan catabolic process, putative cell 
wall protein (no lpxtg) 

25 Dif 14 B His (domain) flagellar cap protein FliD family 

26 DIF 15 His  No leader, PSORT:extracellular, flagellar protein 

27 DIF 16 His   Lipoprotein leader 

28 20f30-563 His   Leader present, lpxtg present, cna_B domains 

29 20f560-975 His   Leader present, lpxtg present, cna_B domains 

30 DIF SleC His  SleC His  

31 DIF 40 His   Leader present, fimbrial protein 

32 DIF 44 His   Leader present, cell wall-binding domain cwp25 

33 DIF 51 His   Lipoprotein signal 

34 DIF 52 His   Leader present, bruttina, lpxtg like signal present 

35 Dif 53 His   cwp18 

36 Dif 55 His   putative cell wall hydrolase 

37 DIF 75A His  Leader present, cell wall binding domain present cwp20 

38 Dif 89 His   Lipoprotein signal 

39 Dif 104 His Lipoprotein signal 

40 Dif 106C cwp24 

41 DIF 109B His  No leader, PSORT:extracellular 

42 DIF 114 His   Lipoprotein signal 

43  Dif 130 His   Lipoprotein signal 

44  Dif 139 His   cwp14  

45 Dif 144 His   cwp7 

46 Dif 145 His   cwp6 

47 Dif 146 His   cwp5  

48 Dif 149 His   cwp11 

49 Dif 167 His   Leader present 

50 Dif 170 His   Leader present, NLPC_P60 domain 

51 
DIF 171 A His   Leader present, lpxtg like motif, cna_B domains, 95% identity 

with DIF20 

52 
DIF 171 B His   Leader present, lpxtg like motif, cna_B domains, 95% identity 

with DIF20 

53 Dif 173 His   Leader present 

54 Dif 184 His No leader, collagen binding protein 

55 Dif 187 His   cwp27 

56 Dif 189 A His   Leader present, cw binding domains cwpV 

57 
Dif 189 A (dominio)  Leader present, cw binding domains cwpV 

58 Dif 189 B His   Leader present, cw binding domains cwpV 

59 DIF 192 His   Leader present, cw binding domains cwp16 

60 Dif 194 His   Signaling protein 

61 DIF 196 His   Leader present, cw binding domains cwp13 

62 Dif 201His   cwp29 

63 Dif 204 His   cwp66  

64 Dif 205A   SlpA (from 630) recombinant 

65 DIF 207 His Leader present, cw binding domains cwp10 

66 DIF 208A His   Leader present, lpxtg like motif, cna_B domains 

67 DIF 208B His   Leader present, lpxtg like motif, cna_B domains 

68 DIF 210 His   Leader present, lpxtg like motif 

69 DIF 211 His   Leader present, cw binding domains cwp21 

70 DIF 212 His  Leader present, lpxtg like motif 
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71 DIF 225 His   Leader present, lpxtg like motif 

72 Dif 227 His   Leader present 

73 DIF 231 His   Leader present, lpxtg like motif 

74 DIF 232 His   Leader present, lpxtg like motif 

75 Dif 234 His   Lipoprotein signal 

76 Dif 327A His   SlpA (from SM) recombinant 

77 Dif 340 His Leader present 

      

78 DIF 12 His Leader present , NLPC_P60 domain, sh3 domain (CD0183) 

79 DIF 153  leader present (CD2830) 

80 DIF 183 His Lipoprotein signal (CD3669) 

81 DIF192 dominio 1 His Leader present, cw binding domains cwp16 

82 DIF208 His Leader present, lpxtg like motif, cna_B domains 

83 DIF210 dominio1 His Leader present, lpxtg like motif 

84 DIF 251His Leader present, lpxtg like protein (CD1858) 

85 CD0855   lipoprotein 

86 CD0873  lipoprotein 

87 CD1653   lipoprotein 

88 CD2029   lipoprotein 

89 CD2672  lipoprotein 

 

All of the selected proteins belong to the C. difficile strain 630, except for Dif 327A, 

HMW_SM and FliC-SM that belong to the strain R20291. Among the proteins selected for 

this screening 14 are fragments of toxins A and B, representing different domains of the two 

toxins. 

The mature form of each C. difficile protein was overexpressed in E. coli as an N-

terminal His-tag fusion protein and purified from the bacterial soluble fraction. After 

purification, the proteins were printed onto nitrocellulose-coated glass slides in sixteen 

replicates. 

Serial dilutions of Biotinylated Bovine Serum Albumin (BSA), Cy3/Cy5-labeled BSA, 

Mouse, Human and Hamster IgG were also spotted on each array as controls for fluorophore-

conjugated secondary antibodies, and for the behaviour of every pin on each printed slide 

during the spotting session. Proteins were spotted onto nitrocellulose-coated slides with the 

Arrayjet spotter.  

Hamster IgGs (HaIgG) were also spotted onto the array at 5 serial dilutions 

(concentrations from 0.008 to 0.5 mg/ml) and used as detection and calibration controls. 

Validation of the experimental conditions used for detecting protein-antibody recognition 

was obtained by observing that the Ha-IgG values of Mean Fluorescence Intensities (MFI) of 

HaIgG spots, detected after exposure with Alexa Fluor647-conjugated secondary antibody, 

were fitted best by sigmoid curves (Figure 26).  
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Other samples were printed onto the array and used as controls for spotting and 

detection. These included PBS–Glycerol buffer, which was used to detect protein carryover 

during spotting and for setting the background value, and NN-His extract (cell extract of E. 

coli not expressing any C. difficile genes), which were used to detect aspecific signals. 

On the basis of the results of the validation experiments, we arbitrarily set as a 

constraint for scoring a positive result as a real recognition, in a scale of MFI from 0 to 

65000, a value greater than 2000 MFI. 

To identify antigens recognised by the hamster sera, each serum was hybridized to the 

microarray and antigen recognition was detected with fluorophore-labelled secondary 

antibodies, Anti-hamster IgG/Alexa Fluor647 (Invitrogen, cod.A21451) or Anti-hamster 
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Figure 26. Graphic representation of the Ha-IgG control curves. On the x axis are indicated the different Ha-

IgG concentrations, MFI values are reported on the y axis and the continuous line correspond to the 

interpolated resulting curve. The figure is the graphic representation of the distribution of MFI values 

measured after incubation with Alexa Fluor647-conjugated secondary antibody. 
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IgG/cy3 (Abcam, code: ab6969). All the incubation steps were conducted under agitation 

using the HS 4800 hybridization station (TECAN). 

The arrays were incubated with the hamster sera reported in Table 6 

 

 

Table 6. Sera obtained from hamsters in protection experiments. 

 

 

 

 

There were two sera (number 2 and 5) obtained from control hamsters infected with C. 

difficile without previous vaccination. Also, when more than one hamster was used for a 

specific immunization/infection scheme, the sera of hamsters belonging to the same group 

were pooled prior to hybridization to the protein arrays. 

Table 7 reports the MFI values obtained for all the protein spots. Overall, 39 samples, 

which include 7 different CWP proteins, showed MFI values higher than 2000 and were 

scored as positive. MFI values reported in Table 6 have already been normalised by 

subtracting the value of the negative control (NNHis). 

 

serum 
infecting 

strain 
immunization hamster clinical outcome 

1 (negative control) ------ ------ Not infected  ------ 

2 630 no vaccine H9 died 

3 630 p5/6 + ToxB-B H1-H6 survived + diarrhea 

4 630 p5/6 + ToxB-GT H1-H6  No diarrhea 

5 B1 no vaccine H9-H10 died 

6 B1 p5/6 + ToxB-B H2-H6 survived + diarrhea 

7 B1 p5/6 + ToxB-B + ToxB-GT H2 died 

8 B1 p5/6 + ToxB-B + ToxB-GT H1,H3-H6 survived + diarrhea 
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Table 7. MFI values obtained after incubation with hamster sera. 
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The results obtained specifically for the toxin A and B fragments are presented in 

Figure 2. These data clearly show that the highest MFI values were observed with sera from 

vaccinated hamsters while, as expected, the sera from hamsters infected without a previous 

vaccination displayed very low values. The toxins that show the highest MFI values are 

ToxB4, ToxA-B2 His and ToxB1 (Figure 27). 

 

 

 

 

When comparing the values observed for the toxins with those of proteins not used for 

vaccination (Figure 28), it is noted that there was a good level of recognition by a number of 

sera with several surface proteins: Dif15, Dif75A, Dif212. Similar results were obtained also 

for three CWPs (particularly with sera 7 and 8): CwpV and Cwp21. 
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Figure 27. Protein microarray results obtained specifically for the toxin A and B fragments. 
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The same proteins gave different results when using the hamster sera obtained from 

non-vaccinated infected hamsters (Figure 29). In fact, with these sera MFI values are very 

low for all the proteins. The serum that showed higher values was the serum (number 4) from 

the hamster that was challenged with strain B1. However, it should also be noted that the 

results obtained with serum 2 (hamster not vaccinated and not infected) are above our 

threshold (2000 MFI) for several of the spotted proteins.  
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Figure 28. Comparison between values observed for the toxins with those of proteins not used for 

vaccination. In this figure are shown the results obtained with sera from all vaccinated hamsters. 
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Hence, we will consider as positive only values that are at least two-fold higher than 

those obtained for the same samples from the serum 9 “negative control”. Based on this 

consideration, the proteins that we can postulate as being expressed in vivo at levels 

sufficiently high to elicit a good immune response are: ToxA-GT, Dif104, Cwp21, CwpV, 

Cwp10.   

 

 

 

 

To demonstrate the reproducibility of the results obtained, we repeated the 

hybridization experiment with the serum 3 sample changing only the method of detection. In 

particular, a secondary anti-hamster Cy3-conjugated antibody was used instead of the Alexa 

Fluor 647-labelled antibody used in previous experiments. The results obtained (Figure 30) 
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Figure 29 .Comparison between values observed for the toxins with those of proteins not used for 

vaccination. In this figure are shown the results obtained with sera from all non-vaccinated hamsters 
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are similar, and the differences are possibly due to a generally less intense emission when 

using the Cy3 fluorophore. 
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Figure 30. Comparison between values observed for serum 3 and two 

different secondary antibodies : Alexa Fluor 647 and Cy3 
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4. DISCUSSION 

The observation that the emergence of new C. difficile strains is associated with an 

increased incidence and virulence of CDI suggests that strain differences play an important 

role in the onset and subsequent outcome of disease. For this reason, many recent studies 

have focused on the characterisation of the genetic variability found in clinical isolates 

belonging to PCR ribotypes recurrent in outbreaks of CDI (Stabler, Gerding et al. 2006; He, 

Sebaihia et al. 2010; Scaria, Ponnala et al. 2010; Forgetta, Oughton et al. 2011). Among the 

genetic traits considered to be important for pathogenicity, we have chosen to investigate the 

variability of a number of genes coding for a family of surface exposed proteins, the CWPs 

or cell wall proteins.  

Our analysis was carried out on 14 of the 29 known cwp genes in 40 Italian clinical 

isolates that belong to PCR ribotypes 001, 012, 014, 018, 078 and 126. The data have 

provided insight into the extent of sequence variability between strains of different PCR 

ribotypes as well as between different isolates of the same PCR ribotype. On the basis of the 

degree of sequence conservation, these cwp genes could be divided into two groups. One 

comprises 9 highly conserved cwp genes that have identical sequences in all the isolates of 

the same PCR ribotype and only a few polymorphisms between PCR ribotypes, and the other 

group includes 5 variable cwp genes with low sequence conservation between isolates of the 

same PCR ribotype as well as between different PCR ribotypes. Interestingly, the latter group 

comprises cwp27 and cwp29, two genes coding for CWPs that do not contain putative 

domains assigned to a known function (Fagan and Fairweather 2011). A search for sequence 

homology of their unassigned C-terminal regions, however, showed that both have some 

sequence similarity with phage proteins (data not shown); thus implying that these genes 

could have been acquired through horizontal gene transfer events. All the other Cwps contain 

two or three cell wall binding motifs in addition to a unique domain that is proposed to 

specify a function. 

Moreover, the results of our phylogenetic analysis show that certain PCR ribotypes 

always display the same type of variability for most of the cwp genes included in our study. 

This is the case for PCR ribotypes 014 and 018, or 078 and 126. In particular, all ten PCR 

ribotype 078 isolates of our collection have polymorphisms identical to those found in the six 

PCR ribotype 126 strains, while they differ, albeit just for a few nucleotides, from the 078 

reference strains M120 and QCD23M63 (Figure 22).  

This is in agreement with previous studies, where PCR ribotypes 078 and 126 are 

always assigned to the same lineage (Spigaglia, Barbanti et al. 2010; Reil, Erhard et al. 2011), 
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a clade which is frequently associated with livestock as well as with humans (Keel, Brazier et 

al. 2007; Goorhuis, Debast et al. 2008; Hensgens, Keessen et al. 2012). Another interesting 

outcome of our study is the finding that, with regard to cwp gene variability, PCR ribotypes 

078/126 are more closely related to PCR ribotype 027 than to any of the other PCR ribotypes 

analysed (Figure 22). Recently, a number of reports have focused their interest on 

determining which genetic factors PCR ribotypes 027 and 078/126 may have in common that 

would help to explain the similarity in CDI outcome observed for these “hypervirulent” 

strains (Knetsch, Hensgens et al. 2011; Barbut and Rupnik 2012; Walk, Micic et al. 2012). 

Our data clearly suggest that 14 of the 29 predicted CWPs share a high degree of sequence 

similarity in strains that belong to PCR ribotypes 078/126 and 027. As CWPs are surface 

components of C. difficile possibly involved in colonisation and onset of CDI, it is proposed 

that several of the 14 CWPs characterised in this work may represent common traits of these 

PCR ribotypes which contribute to their “hypervirulent” behaviour.  

The genetic diversity found among the six PCR ribotypes is not evenly distributed 

between the 14 cwp genes of interest and can be used to discriminate between highly 

conserved and variable cwp genes. Likewise, expression of conserved CWPs seems to be 

well conserved in all isolates (Figure 23), while variable CWPs are not always expressed at 

comparable levels even in strains containing identical sequences but belonging to different 

PCR ribotypes, as seen for the expression of Cwp27 in PCR ribotype 001 isolates (Figure 25). 

Our results highlight how difficult it is to characterise key components of the C. difficile cell 

surface due to the exceedingly high overall genetic complexity present in different C. difficile 

isolates.  

One approach to identify  the proteins that could be immunogenic is to examine the 

hamster immune response to bacterial infection. This not only provides information about the 

expression of proteins in the host, but also may serve to identify proteins involved in 

pathogenesis. In fact, by the use of protein microarray analysis, some Cwps such as Cwp10, 

CwpV and Cwp21, were shown to be the most immunogenic Cwps under our conditions. The 

majority of the Cwps present on the chip are recombinant proteins, but estimates on their 

expression levels and in vivo exposure are not currently available. 

For these two reasons, the low values obtained for the other Cwps should not be 

interpreted as lack of expression of these proteins in vivo, but they are more easily correlated 

with low immunogenic properties of these Cwps and our experimental approach, which 

involves the use of recombinant proteins. 

The in vitro expression of these proteins was confirmed by our Western blot results. In 

the case of conserved cwp genes, the results obtained are very clear. Indeed, in the case of the 
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extremely variable cwp26 gene, although we were not able to amplify and sequence this 

ortholog in several isolates (Figure 21), expression of a Cwp26-like protein could be detected 

in most of the PCR negative strains. Moreover, in all the PCR ribotype 001, 012, 014 and 018 

strains analysed expression of Cwp26 was observed only in S-layer extracts, indicating that 

Cwp26 is a complex constituent of the S layer in these PCR ribotypes (Figure 24B). The 70 

kDa bands may indicate a propensity of Cwp26 to form stable complexes with other Cwps. 

As it is known that the few Cwps characterized so far are processed (de la Riva, Willing et al. 

2011; Reynolds, Emerson et al. 2011), it cannot be excluded that a similar mechanism also 

applies to the mature form of Cwp26. 

In summary, we propose that the conserved CWPs may correspond to essential 

components of the bacterial surface, while the highly variable CWPs could be more recent 

acquisitions of additional surface elements.  

As the specific function of the majority of the CWPs analysed in our study remains 

unclear, it is not currently possible to elucidate if there is a correlation between the presence 

of a particular Cwp in the S-layer and C. difficile interspecies transmission, or increased 

spread and severity of CDI. All these aspects need to be addressed urgently in order to be 

able to contain the significant increase in disease incidence and mortality reported in recent 

years. Finally, due to the complexity of the genetic variability observed in C. difficile strains, 

a unique method for typing newly emerging strains of C. difficile is still not available. The 

analysis of cwp gene diversity could offer an additional tool for the classification of C. 

difficile clinical isolates. 
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