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Introduction

In the theory of fully nonlinear elliptic equations a crucial role is played

by the Krylov-Safonov’s Harnack inequality for nonnegative solutions to the

linear equations in non-divergence form and rough coefficients. The key point

of this celebrated result is that the Harnack’s constant is independent of the

regularity of the operator coefficients, but it depends just on the bounds for

the eigenvalues of the coefficient matrix. After the proof of this profound

result in [24], the analysis developed by Caffarelli in [7] about fully nonlinear

operators pointed out a deep relation between the Krylov-Safonov-Harnack

inequality and the Alexandrov-Bakelman-Pucci maximum principle: nowa-

days the importance of this maximum principle for proving the result in [24]

is well-recognized (see e.g [17], Section 9.7-9.8).

On the other hand, in several research areas such as Complex or CR Ge-

ometry, there are fully nonlinear equations which are characterized by an

underlying sub-Riemannian structure and are not elliptic at any point, see

e.g. [29],[33],[30],[31],[9],[11],[28]. The existence theory for viscosity solutions

to such equations is well settled, mainly thanks to the papers [33],[30],[11].

On the contrary, the problem of the solutions regularity is still widely open.

This is mainly due to the lack of pointwise estimates for solutions to lin-

ear sub-elliptic equations with rough coefficients. In this context, a long-

standing open problem is an invariant Harnack inequality of Krylov-Safonov

type for positive solutions to horizontally elliptic equations on Lie groups, in

non-divergence form, and rough coefficients. Similarly, an analogous of the

Alexandrov-Bakelman-Pucci estimate in these settings is still unknown.

i
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However, Di Fazio, Gutiérrez, and Lanconelli in [15] developed an axiomatic

procedure to establish a scale-invariant Harnack inequality in very general

settings like doubling Hölder quasi-metric spaces. This approach allows to

handle both divergence and non-divergence linear equations. They proved

that the double-ball property and the ε-critical density are sufficient condi-

tions for the Harnack inequality to hold. What are these notions? These

properties arose just from the techniques in [7] for uniformly elliptic fully

non-linear equations. They were then extended to the linearized Monge-

Ampère equation in [8], where Caffarelli and Gutiérrez proved an invariant

Harnack inequality on some suitable sets. In [18] (Chapter 2) these notions

have been treated in depth for the classical case of linear uniformly elliptic

equations, and the Krylov-Safonov’s result have been there proved using this

alternative approach. In [15] the double ball and the critical density found

an abstract statement and the techniques for proving an Harnack result have

been generalized for the purpose of being used in general settings. A key role

is played in particular by a Besicovitch-type covering lemma which yields

a crucial power decay property. In [19] this general approach has been ex-

ploited in the setting of the Heisenberg group H: Gutiérrez and Tournier

proved, for second order linear operators which are elliptic with respect to

the vector fields generating H, the double ball property and, under an extra-

assumption on the coefficients of the operator, the critical density. Recently

we have investigated the double ball property in step two Carnot groups and

the critical density in H-type groups (respectively in [34] and [35]). In the

present thesis we want to show the results of these studies, develop them fur-

ther and give also a general presentation of the problem by trying to make

this manuscript as much self-contained as we can.

At the beginning of any chapter there is a very short introduction about

the topics analyzed therein. Here we want to give the general outline of the

thesis and to exhibit the main results.

In Chapter 1 we present the powerful approach adopted in [15]. The double

ball property and the critical density are displayed as the main notions. We
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will try to give a special attention to their close relationship and to their dif-

ferences even by discussing and changing the definitions. Moreover we treat

the power decay property and how it implies an abstract Harnack inequality.

We show also two possible proofs for the Hölder regularity result in this con-

text: one resulting from Harnack and one from a critical density estimate.

In Chapter 2 we talk about the uniformly elliptic operators and the appli-

cation to this case of the axiomatic approach, that is the Krylov-Safonov’s

result. To this aim we mainly follow [18], most of all for the presentation of

the critical density theorem. Regarding the double ball property, we show

a new proof of this fact based on the weak maximum principle and on the

barrier functions of the classical Hopf’s Lemma.

In Chapter 3, we investigate the application of the axiomatic approach to

the particular context of the homogeneous Carnot groups and for general

stratified groups. The horizontally elliptic operators are central for this dis-

cussion: they are peculiar second order degenerate elliptic operators which

are elliptic only with respect to the vector fields generating the first layer of

the Lie algebra. We will see how much the validity of the double ball and of

the critical density are intrinsic in these settings.

In Chapter 4 we highlight as the double ball property is related to the solv-

ability of a kind of exterior Dirichlet problem for horizontally elliptic oper-

ators in homogeneous Carnot groups. More precisely, it is a consequence of

the existence of some suitable interior barrier functions of Bouligand-type.

By following these ideas, we prove the double ball property for a generic

step two Carnot group, which is in fact our main result in [34]. If the step of

nilpotence is 2 we have indeed an explicit characterization of the vector fields

defining the operator which allows us to construct explicit barriers. We also

give a different proof for the particular case of the Métivier groups.

Finally, in Chapter 5, we generalize to the setting of H-type groups some ar-

guments regarding the critical density adopted in [19]. We recognize that the

critical density holds true in these peculiar contexts by assuming a Cordes-

Landis estimate for the coefficient matrix A. As a matter of fact we assume
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that A satisfies the following condition

sup
x

(

Tr(A(x)) + (Q+ 2−m)max‖ξ‖=1 〈A(x)ξ, ξ〉
min‖ξ‖=1 〈A(x)ξ, ξ〉

)

< Q+ 4,

where m and Q are some characteristic constants of the setting. We follow

the main points of the powerful arguments by Gutiérrez and Tournier in

the Heisenberg group, even if the condition on A they found is different. A

condition similar to ours was exploited by Landis in [26] in order to prove

an invariant Harnack inequality of Cordes type. We will use it for the same

purposes at the end of the thesis by showing our main result in [35], that is an

invariant Harnack in H-type groups (of Cordes-Landis type). The constants

appearing in such inequality will be uniform in the class of A with prescribed

bounds for the eigenvalues and satisfying a Cordes-Landis condition. They

will be thus independent of the regularity of the coefficients of the matrices A

in that class. This final proof will put together most of the notions discussed

through the thesis.
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Chapter 1

An axiomatic approach

We want to show here the axiomatic approach presented by Di Fazio,

Gutiérrez, and Lanconelli in [15]. As they did, we are going to present it in

the abstract setting of doubling quasi-metric Hölder spaces. We will highlight

the notions of double ball, critical density, and power decay and their crucial

role for obtaining an Harnack inequality.

1.1 The main notions

In order to clarify the setting we want to fix, we need some definitions.

Definition 1.1.1. Let Y be a non empty set. We say that Y is a quasi-metric

space if there exists a function d : Y × Y −→ [0,+∞) which is symmetric,

strictly positive away from {(x, y) ∈ Y × Y : x = y} and such that, for some

constant K ≥ 1, we have

d(x, y) ≤ K(d(x, z) + d(z, y))

for all x, y, z ∈ Y . We will call d a quasi-distance. The d-ball with center

x0 ∈ Y and radius R > 0 is given by

BR(x0) := {y ∈ Y : d(x0, y) < R}.

1



2 1. An axiomatic approach

Definition 1.1.2. Let (Y, d) be a quasi-metric space and µ be a positive

measure on a σ-algebra of subsets of Y containing the d-balls. We say that µ

satisfies the doubling property if there exists a positive constant Cd such that

0 < µ(B2R(x0)) ≤ Cdµ(BR(x0))

for all x0 ∈ Y and R > 0. In particular, this implies

µ(BR2(x0)) ≤ Cd

(

R2

R1

)Q

µ(BR1(x0)) (1.1)

for any 0 < R1 < R2, where Q := log2(Cd).

The previous definitions clarify what we mean for a doubling quasi-metric

space. Any doubling quasi-metric space is in particular of homogeneous type

(see [15], Definition 2.1, and the references therein).

Definition 1.1.3. Let (Y, d) be a quasi-metric space. The quasi distance d is

said to be Hölder continuous if there exist positive constants β and 0 < α ≤ 1

such that

|d(x, y)− d(x, z)| ≤ βd(y, z)α (d(x, y) + d(x, z))1−α

for all x, y, z ∈ Y .

A space satisfying all the three previous definitions is said to be a doubling

quasi-metric Hölder space. Of course, Rn with the Euclidean distance and

the Lebesgue measure is the first example to be recalled. Another remarkable

example is given by the homogeneous Lie groups. This case will be discussed

in Chapter 3 and it is pivotal for the main results of the thesis. Even the

Carnot-Carathéodory spaces identify a setting where the approach might be

applied: we will mention how at the end of the next Section.

Thus we fix a doubling quasi-metric Hölder space (Y, d, µ). In such a

space, let Ω be an open subset of Y . Let us give two more definitions in

order to complete all the structural assumptions we need.
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Definition 1.1.4. We say that (Y, d, µ) has the reverse doubling condition

in Ω if there exists 0 < δ < 1 such that

µ(BR(x0)) ≤ δµ(B2R(x0))

for every B2R(x0) ⊂ Ω.

Definition 1.1.5. We say that (Y, d, µ) satisfies a log-ring condition if there

exists a nonnegative function ω(ε), with ω(ε) = o((log(1
ε
))−2) as ε → 0+,

such that

µ
(

BR(x0)rB(1−ε)R(x0)
)

≤ ω(ε)µ(BR(x0))

for every ball BR(x0) and all ε sufficiently small.

Following the notations in [15], we denote by KΩ a family of µ-measurable

functions with domain contained in Ω. If u ∈ KΩ and its domain contains a

set A ⊂ Ω, we will write u ∈ KΩ(A). We suppose that

(I) KΩ is closed under multiplications by positive constants.

We are ready to give the statements of the double-ball property and the

ε-critical density.

Definition 1.1.6. (Abstract Double Ball Property) We say that KΩ

satisfies the double ball property if there exist ηD > 2 and γ > 0 such that,

for every BηDR(x0) ⊂ Ω and every u ∈ KΩ(BηDR(x0)) with infBR(x0) u ≥ 1,

we have

inf
B2R(x0)

u ≥ γ.

Definition 1.1.7. (Abstract ε-Critical Density) Let 0 < ε < 1. We

say that KΩ satisfies the ε-critical density property if there exist ηC > 2 and

c > 0 such that, for every BηCR(x0) ⊂ Ω and for every u ∈ KΩ(BηCR(x0))

with

µ({x ∈ B2R(x0) : u(x) ≥ 1}) ≥ εµ(B2R(x0)),

we have

inf
BR(x0)

u ≥ c.
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Actually, with respect to [15] we have changed a little bit these definitions.

There the constants ηD and ηC are fixed to be 4, whereas here we allow them

to change. Nonetheless, as we will see, this fact does not infer the results

they proved and the very meaning of these notions.

Remark 1.1.8. We stress that the ε-critical density property implies the ε′-

critical density for any ε′ ≥ ε (with the same constants ηC and c). Moreover,

if KΩ satisfies the double ball property for some ηD and γ (respectively, the

ε-critical density property for some ηC and c), then it satisfies the double ball

property also for any η̃D ≥ ηD and the same γ (resp., the ε-critical density

for any η̃C ≥ ηC and the same c): in our notations we have in fact that

KΩ(A
′) ⊆ KΩ(A) if A ⊆ A′ ⊂ Ω.

The two properties under investigation refer to an abstract family of func-

tions KΩ. We will see in Chapter 2 and in Chapter 3 that we should interpret

KΩ as the family of the nonnegative functions u satisfying Lu ≤ 0 for an el-

liptic or sub-elliptic operator L (see respectively (2.2) and (3.4)). In the

following sections we are going to show how the critical density and the

double ball property imply an abstract invariant Harnack inequality for the

non-negative solutions : this is in fact the main result in [15]. From such Har-

nack inequality, an Hölder regularity theorem follows by standard arguments.

On the other hand, it is also known that the ε-critical density property with

ε ≤ 1
2
is sufficient to get the Hölder regularity result (see [20], Theorem 4.10).

We now give a complete proof of this fact in our notations and settings.

Theorem 1.1.9. Let us suppose KΩ satisfies the ε-critical density with ε ≤ 1
2

(and for some ηC , c). Assume also that the following conditions hold true:

· u ∈ KΩ(BR(x0)) and u ≤M in BR(x0) ⇒ M − u ∈ KΩ(BR(x0));

· u ∈ KΩ(BR(x0)) and u ≥ m in BR(x0) ⇒ u−m ∈ KΩ(BR(x0)).

There exists ν ∈ (0, 1) depending just on c such that, for any locally bounded

function u ∈ KΩ(BηCR(x0)), we have

sup
BR(x0)

u− inf
BR(x0)

u ≤ ν

(

sup
B2R(x0)

u− inf
B2R(x0)

u

)
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Proof. Fix a locally bounded function u ∈ KΩ(BηCR(x0)). Let us denote

ω(R) := supBR(x0) u− infBR(x0) u. By the local boundedness we can also put

α2 = sup
B2R(x0)

u, and β2 = inf
B2R(x0)

u.

By the assumption (I) and the additional hypotheses in the statement, we

have
u− β2

α2 − β2
and

α2 − u

α2 − β2
∈ KΩ(BηCR(x0)).

It is simple to verify the following equivalences

u ≥ 1

2
(α2 + β2) ⇔ u− β2

α2 − β2
≥ 1

2
,

u ≤ 1

2
(α2 + β2) ⇔ α2 − u

α2 − β2
≥ 1

2
.

Thus, it holds true at least one of the following two cases:

µ

({

x ∈ B2R(x0) :
2(u(x)− β2)

α2 − β2
≥ 1

})

≥ 1

2
µ(B2R(x0)) or

µ

({

x ∈ B2R(x0) :
2(α2 − u(x))

α2 − β2
≥ 1

})

≥ 1

2
µ(B2R(x0)).

In both cases, we can exploit the critical density property by reminding

Remark 1.1.8. We get respectively

inf
BR(x0)

u ≥ β2 +
c

2
(α2 − β2) or sup

BR(x0)

u ≤ α2 −
c

2
(α2 − β2).

Let us set now

α1 = sup
BR(x0)

u and β1 = inf
BR(x0)

u.

Since α1 ≤ α2 and β1 ≥ β2, we have in any case that

ω(R) = α1 − β1 ≤
(

1− c

2

)

(α2 − β2) =: ν(α2 − β2) = νω(2R).

�

With very standard arguments (see [17], Section 8.9, for the elliptic case)

we can deduce the Hölder regularity result from the last theorem.
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Corollary 1.1.10. Under the hypotheses and the notations of the previous

theorem, there exist C, k0 > 0 and α0 ∈ (0, 1] such that, for any locally

bounded function u ∈ KΩ(B ηC
2

R(x0)), we have

|u(x)− u(y)| ≤ C

(

d(x, y)

R

)α0

sup
BR(x0)

|u| ∀ x, y ∈ B R
k0

(x0).

The constants C, k0 and α0 depend just on ηC , c and the fact that ε ≤ 1
2
.

Proof. Fix k0 = K(1+2K) and put r = 2KR
k0

. Thus we have Br(y) ⊂ BR(x0)

for any y ∈ B R
k0

(x0). Take u as in the statement. For any fixed y ∈ B R
k0

(x0),

let us denote by ω(ρ) the oscillation of u in the ball Bρ(y) as before. The

previous Theorem tells us that ω(1
2
ρ) ≤ νω(ρ) if 0 < ρ ≤ r. Hence, for any

positive integer m, we get ω( 1
2m
r) ≤ νmω(r). For any 0 < ρ < r there exists

a positive integer m such that 1
2m
r < ρ ≤ 1

2m−1 r. Since the function ω is

non-decreasing, we have

ω(ρ) ≤ ω

(

1

2m−1
r

)

≤ νm−1ω(r) =
νm

ν
ω(r) ≤ 1

ν

(ρ

r

)
log ν

log 1
2 ω(r)

where the last inequality is justified by the fact that

νm ≤
(ρ

r

)
log ν

log 1
2 ⇔ 1

2m
≤ ρ

r
.

Fix α0 =
log 1

ν

log 2
(which is less than 1, since c ≤ 1). By recalling the definition

of r and the fact that ω(r) ≤ 2 supBR(x0) |u|, we get

ω(ρ) ≤ C
( ρ

R

)α0

sup
BR(x0)

|u|

for a suitable positive constant C depending on K, ν. For any x ∈ B R
k0

(x0)

we have d(x, y) < 2KR
k0

= r. If we put ρ = d(x, y), the last inequality implies

u(x)− u(y) ≤ ω(ρ) ≤ C

(

d(x, y)

R

)α0

sup
BR(x0)

|u|.

By the symmetry in x and y, the proof is complete. �

Critical density and double ball property are in general independent but,

as already noticed in [15] (Proposition 4.3), if the ε-critical density holds true

for ε sufficiently small, then this implies the double ball property.
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Proposition 1.1.11. Suppose KΩ satisfies the ε-critical density property for

some 0 < ε < 1
C2

d

. Then KΩ satisfies the double ball property.

Proof. We are going to prove the double ball property with ηD = 2ηC and

γ = c. Let BηDR(x0) ⊂ Ω and u ∈ KΩ(B2ηCR(x0)) such that infBR(x0) u ≥ 1.

Suppose by contradiction that infB2R(x0) u < c. Then we get

µ({x ∈ B4R(x0) : u(x) ≥ 1}) < εµ(B4R(x0)).

Since BR(x0) ⊆ {x ∈ B4R(x0) : u(x) ≥ 1}, by the doubling condition we

would have

µ(BR(x0)) ≤ εµ(B4R(x0)) ≤ εC2
dµ(BR(x0)),

which is a contradiction if ε < 1
C2

d

. �

This is not the only relation between critical density and double ball

property. In Section 1.4 we will single out other aspects of this relationship.

Here and in the next Section we want to show how they can work together

(see [15], Proposition 4.4 and Lemma 4.5).

Note 1.1.12. In the fixed setting (Y, d, µ), if the family of functions KΩ

satisfies some properties, we will call structural a constant depending just on

the setting and the constants appearing in the definition of such a property.

For example, if KΩ satisfies Definition 1.1.6 and Definition 1.1.7, the constant

may depend on ε, ηC , c, ηD, γ, the constant K of the triangle-inequality, and

the doubling constants Cd and δ. Analogously for future properties.

Proposition 1.1.13. Assume that KΩ satisfies the double ball property and

the ε-critical density property for some 0 < ε < 1. Fix η = 1
2
max {ηC , ηD}.

Then, for any α > 0 and any u ∈ KΩ(BηR(x0)) with

µ({x ∈ BR(x0) : u(x) ≥ α}) ≥ εµ(BR(x0)),

we have

inf
BR(x0)

u ≥ αcγ.
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Proof. It is straightforward by applying first the critical density to the func-

tion u
α
and then the double ball property to the function u

cα
. This can be

done thanks to (I) and the definition of η. �

Lemma 1.1.14. Let KΩ satisfy the double ball property and the ε-critical

density for some 0 < ε < 1. There exist structural positive constants σ, M ,

θ satisfying the following condition. If u ∈ KΩ(BθR(x0)) with infBR(x0) u ≤ 1

and α > 0, ρ < 2KR, y ∈ BR(x0) are such that

µ({x ∈ Bρ(y) : u(x) > α}) ≥ εµ(Bρ(y)),

then ρ ≤ (M
α
)σR.

Proof. In order to make the arguments easier, we can assume that ηC =

ηD =: η by Remark 1.1.8. We are going to prove this lemma with

θ = K(1 + 2Kη), σ =
log 2

log γ−1
, M =

1

cγ
(4K)

1
σ .

Fix u, α, ρ, and y as in the statement. By the last Proposition we get

inf
Bρ(y)

u ≥ αcγ

since B η
2
ρ(y) ⊂ BθR(x0). Since also Bηρ(y) ⊂ BθR(x0), by the double ball

property we have

inf
B2ρ(y)

u ≥ αcγ2.

We could iterate this argument if B2p−1ηρ(y) ⊂ BθR(x0): in this case we would

have

inf
B2pρ(y)

u ≥ αcγp+1.

Let us now choose an integer number p ≥ 1 such that 2p−1 ≤ 2KR
ρ

≤ 2p.

With this choice the following inclusions hold true

BR(x0) ⊂ B2pρ(y), B2p−1ηρ(y) ⊂ BθR(x0).

Thus, we have just proved that

1 ≥ inf
BR(x0)

u ≥ inf
B2pρ(y)

u ≥ αcγp+1.
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Since 2 = γ−σ, we get

ρ ≤ 4KR2−p = 4KRγσp ≤ 4KR

(αcγ)σ
= R

(

M

α

)σ

.

�

1.2 Power decay

In the previous section we have presented the critical density and the

double ball property as the main notions of this thesis. Their importance is

due to the fact that they can imply a power decay property for the functions

in KΩ. This last property is crucial to get an Harnack inequality result. Let

us start with the definition.

Definition 1.2.1. The family KΩ satisfies the power decay property if there

exist constants η0, M0 > 1, and 0 < γ0 < 1 such that, for any u ∈
KΩ(Bη0R(x0)) with infBR(x0) u ≤ 1, we have

µ
({

x ∈ BR
2
(x0) : u(x) > Mk

0

})

≤ γk0µ
(

BR
2
(x0)

)

for k = 1, 2, . . . .

To prove such a property, Di Fazio, Gutiérrez, and Lanconelli established

a result of Besicovitch type for the metric balls in (Y, d, µ) (see [15], Lemma

3.1). From this result, by exploiting the log-ring condition of Definition 1.1.5,

they proved the following theorem.

Theorem 1.2.2. Assume that (Y, d, µ) satisfies the log-ring condition. Sup-

pose also that µ(BR0(ξ0)) < δµ(B2R0(ξ0)). If E ⊂ BR0(ξ0) is a µ-measurable

set with µ(E) > 0, then there exists a constant c(δ) ∈ (0, 1) (depending just

on δ) and a family of balls {Bj := Brj(xj)}∞j=1 with rj ≤ 3KR0 satisfying

(i) for any j the points xj are density points for E, i.e.
µ(Br(xj)∩E)

µ(Br(xj))
→ 1 as

r → 0+;

(ii) E ⊂ ∪∞
j=1Bj µ-almost everywhere;

(iii)
µ(Bj∩E)

µ(Bj)
= δ for j = 1, 2, . . .;
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(iv) µ(E) ≤ c(δ)µ
(

∪∞
j=1Bj

)

.

We say that the family {Bj := Brj(xj)}∞j=1 is a covering of E at the level δ.

We refer the reader to [15] (Theorem 3.3) for the proof. Here, we are

mainly interested in the properties of the functions. That is why we want

to show the statement and the complete proof of the power decay for KΩ

starting from the double ball and the critical density (Theorem 4.7 in [15],

set of assumptions (A)).

Theorem 1.2.3. Let us assume that the log-ring condition and the reverse

doubling condition in Ω hold true in (Y, d, µ). Suppose that KΩ satisfies the

double ball property and the ε-critical density for some 0 < ε < 1. Then,

the family KΩ satisfies the power decay property for some suitable structural

constants.

Proof. By Remark 1.1.8 we can assume that ε ≥ δ, where δ is the constant

in the reverse doubling condition. We are also going to keep the notations

of θ and M used in Proposition 1.1.13 and Lemma 1.1.14. Let η0 and M1

be positive numbers we will determine later. Fix u ∈ KΩ(Bη0R(x0)) with

infBR(x0) u ≤ 1 and denote η = max {ηC , ηD}. Let us put

Ek = {x ∈ Bη0R(x0) : u(x) ≥Mk
1 }, for k = 1, 2, . . . .

We claim that we can build up a family of balls Bk := Btk(x0) for a suitable

sequence R =: t0 > t1 > t2 > . . . > 1
2
R such that

µ(Bk+1 ∩ Ek+2) ≤ c(ε)µ(Bk ∩ Ek+1), for k = 0, 1, . . . . (1.2)

The constant c(ε) ∈ (0, 1) is the one appearing in Theorem 1.2.2. Once we

have proved it, we are done. As a matter of fact, we would have µ({x ∈
BR

2
(x0) : u(x) > Mk+2

1 }) ≤ µ(Bk+1 ∩ Ek+2) for any k and thus we get

µ
({

x ∈ BR
2
(x0) : u(x) > Mk+2

1

})

≤ (c(ε))k+1µ(BR(x0))

≤ (c(ε))k+1Cdµ
(

BR
2
(x0)

)
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by the doubling property. Let us now choose a positive integer k0 such that

c(ε)k0Cd < 1 and set γ0 = c(ε). If M0 =Mk0+2
1 , we deduce

µ
({

x ∈ BR
2
(x0) : u(x) > Mk

0

})

≤ µ
({

x ∈ BR
2
(x0) : u(x) > Mk+k0+1

1

})

≤ γk0µ
(

BR
2
(x0)

)

.

That is why it is enough to prove (1.2) for any k = 0, 1, . . ..

Case k = 0. Let us apply Theorem 1.2.2 to the set B1∩E2 at the level ε: we

will fix t1 later. The theorem gives us the existence of the covering {Brj(xj)},
where the xj’s are density points for B1 ∩ E2 and

ε =
µ
(

Brj(xj) ∩B1 ∩ E2

)

µ
(

Brj(xj)
) ≤ µ

(

Brj(xj) ∩ E2

)

µ
(

Brj(xj)
) . (1.3)

Moreover we have rj ≤ 3Kt1 ≤ 3KR for any j. We want to choose t1 such

that

Brj(xj) ⊂ B0 ∩ E1 ∀ j = 1, 2, . . . .

Thus the condition (iv) of Theorem 1.2.2 would imply (1.2) for k = 0. We

first prove that Brj(xj) ⊂ E1 for any j. If η0 > K(1+ 3
2
Kη), then B η

2
rj(xj) ⊂

Bη0R(x0) since xj ∈ B1. Hence u ∈ KΩ(B η
2
rj(xj)) and the equation (1.3) says

that

µ({x ∈ Brj(xj) : u(x) ≥M2
1}) ≥ εµ(Brj(xj)).

By Proposition 1.1.13 we get u ≥ M2
1 cγ in Brj(xj). If we pick M1 >

1
cγ
,

we thus have Brj(xj) ⊂ E1. For the second inclusion, we want to show that

rj ≤ 2KR for any j. By contradiction, suppose this is not true for some

fixed j. Then B2KR(xj) ⊂ Brj(xj). Since xj ∈ B1 and t1 < R, we get

inf
BR(x0)

u ≥ inf
B2KR(xj)

u ≥ inf
Brj

(xj)
u ≥M2

1 cγ > M1 > 1

which is a contradiction. We are now ready to prove that Brj(xj) ⊂ B0 for all

j by exploiting Lemma 1.1.14. In our notations y = xj, ρ = rj, and α =M2
1 .

If η0 ≥ θ we obtain rj ≤
(

M
M2

1

)σ

R. For ξ ∈ Brj(xj), the Hölder property of
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Definition 1.1.3 yields

d(ξ, x0) ≤ d(xj, x0) + β (d(xj, ξ))
α (d(xj, x0) + d(xj, ξ))

1−α

≤ t1 + β

(

M

M2
1

)σα

Rα

(

t1 +

(

M

M2
1

)σ

R

)1−α

.

Let us write t1 = T1R. By denoting β1 = βMσα,we get

d(ξ, x0) ≤
(

T1 + β1
1

M2σα
1

(

T1 +

(

M

M2
1

)σ)1−α
)

R.

Choose T1 =
3
4
. If M2

1 > 4
1
σM , the last inequality implies

d(ξ, x0) ≤
(

3

4
+ β1

1

M2σα
1

)

R.

If M1 is big enough such that β1
1

M2σα
1

< 1
4
, we have Brj(xj) ⊂ BR(x0) and

the case k = 0 is done.

Case k = 1. We argue similarly. For some t2, we apply Theorem 1.2.2 to the

set B2 ∩ E3 at the level ε. Thus we have a covering {Brj(xj)} for suitable

rj ≤ 3Kt2 ≤ 3KR such that the inequality corresponding to (1.3) holds

true. In order to conclude, we want as before a t2 = T2R < T1 = 3
4
R so

that Brj(xj) ⊂ B1 ∩ E2 for any j. The inclusion Brj(xj) ⊂ E2 is implied

by Proposition 1.1.13 for the same choice of η0 of the case k = 0: we have

indeed that

inf
Brj

(xj)
u ≥M3

1 cγ > M2
1 .

The arguments of the previous case yield also that rj ≤ 2KR (since xj ∈ B2).

Hence we can apply Lemma 1.1.14 and obtain

rj ≤
(

M

M3
1

)σ

R for any j.

If ξ ∈ Brj(xj), from the Hölder property of d we get

d(ξ, x0) ≤ d(xj, x0) + β (d(xj, ξ))
α (d(xj, x0) + d(xj, ξ))

1−α

≤ t2 + β

(

M

M3
1

)σα

Rα

(

t2 +

(

M

M3
1

)σ

R

)1−α

=

(

T2 + β1
1

M3σα
1

(

T2 +

(

M

M3
1

)σ)1−α
)

R.
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We note that T2 +
(

M
M3

1

)σ

< T1 +
(

M
M2

1

)σ

< 1 with the choice M2
1 > 4

1
σM .

This implies

d(ξ, x0) ≤
(

T2 + β1
1

M3σα
1

)

R.

The choice T2 = T1−β1 1
M3σα

1
gives us the desired inclusion and concludes the

case k = 1.

For the sake of clearness, let us try to sum up the proof for the general k.

We can fix η0 = θ > K(1+ 3
2
Kη). We are going to fix also a positive number

M1 > max { 1
cγ
, 2

1
σ

√
M}. Let us denote q = 1

Mασ . We choose the sequence

tk = TkR, for k = 0, 1, . . ., with

T0 = R, T1 =
3

4
, T2 = T1 − β1q

3, . . . , Tk = T1 − β1q
3

k−2
∑

l=0

ql.

We fix M1 big enough such that

β1q
3

+∞
∑

l=0

ql <
1

4
, in particular we have Tk >

1

2
∀ k.

No more choices are needed. Theorem 1.2.2 provides us a covering {Brj(xj)}
for the set Bk+1 ∩ Ek+2 at the level ε. The property

ε =
µ
(

Brj(xj) ∩ Bk+1 ∩ Ek+2

)

µ
(

Brj(xj)
) ≤ µ

(

Brj(xj) ∩ Ek+2

)

µ
(

Brj(xj)
)

allows us to say that u ≥Mk+2
1 cγ > Mk+1

1 in Brj(xj). Hence Brj(xj) ⊂ Ek+1.

Moreover, arguing as before, we get rj ≤
(

M

Mk+2
1

)σ

R. Thus, for ξ ∈ Brj(xj),

we have

d(ξ, x0) ≤ tk+1 + β

(

M

Mk+2
1

)σα

Rα

(

tk+1 +

(

M

Mk+2
1

)σ

R

)1−α

=

(

Tk+1 + β1q
k+2

(

Tk+1 +

(

M

Mk+2
1

)σ)1−α
)

R.

We note that Tk+1 +
(

M

Mk+2
1

)σ

< T1 +
(

M
M2

1

)σ

< 1. Therefore we deduce

d(ξ, x0) <
(

Tk+1 + β1q
k+2
)

R = TkR
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and Brj(xj) ⊂ Bk. The last condition in Theorem 1.2.2 yields

µ(Bk+1 ∩ Ek+2) ≤ c(ε)µ
(

∪∞
j=1Brj(xj)

)

≤ c(ε)µ(Bk ∩ Ek+1)

and the equation (1.2) is finally proved. We have already showed how to

conclude with the right choice of M0. �

In [15] it has been recognized another set of assumptions under which

the power decay property holds true. The general setting is always the one

of doubling Hölder quasi-metric spaces and the reverse doubling condition

is still assumed. The assumption which has been dropped is the log-ring

condition (Definition 1.1.5). We will see in Section 3.1 that this condition is

easily satisfied in homogeneous Lie groups, which is the setting we will fix

from Chapter 3 up to the end. Nonetheless, it might be difficult to verify this

condition without knowing explicitly the measure of the balls. The weaker

condition they took in consideration in [15] is the continuity of the metric

balls, i.e. they assumed

r 7→ µ(Br(x0)) is continuous for any x0 ∈ Y. (1.4)

Any doubling metric space satisfying the segment property verifies this conti-

nuity condition ([15], Lemma 2.8). The Carnot-Carathéodory spaces related

to families of vector fields in RN (with the Carnot-Carathéodory distance,

or control distance) do satisfy the segment property. Thus, this new set of

structural assumptions is enough general for being applied to the whole class

of Carnot-Carathéodory spaces. Without further comments, we just report

the statement of this alternative approach to the power decay proved in [15]

(Theorem 4.7, set of assumptions (B)).

Theorem 1.2.4. Let (Y, d, µ) be a doubling Hölder quasi-metric space where

the reverse doubling condition hold true in an open set Ω ⊂ Y . Suppose that

the condition (1.4) is satisfied. Then,

if KΩ satisfies the ε-critical density for some 0 < ε < 1
C2

d

,

the family KΩ satisfies also the power decay property for some suitable struc-

tural constants.
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1.3 An abstract Harnack inequality

We have mentioned everywhere throughout the thesis that the aim of this

approach is to get an Harnack inequality. For the sake of completeness, we

want to show the details of the last step in this direction: the power decay

property implies an abstract Harnack inequality result. We verbatim proceed

as in [15] (Theorem 5.1 and Theorem 5.2).

Theorem 1.3.1. Let (Y, d, µ) be a doubling quasi-metric Hölder space and

let Ω ⊂ Y be an open set. Suppose that KΩ satisfies the power decay property.

Let us assume in addition that

if u ∈ KΩ(BR(x0)) and u ≤M in BR(x0), then M − u ∈ KΩ(BR(x0)).

Then, there exist positive constants η, C independent of u, R, and x0 such

that, if u ∈ KΩ(BηR(x0)) is nonnegative and locally bounded, we have

sup
BR(x0)

u ≤ C inf
BR(x0)

u.

We start with the proof of the following lemma.

Lemma 1.3.2. We assume the same hypotheses of Theorem 1.3.1. Let

η0,M0, γ0 be the constants of the power decay and let Q be the constant ap-

pearing in (1.1). Let u ∈ KΩ(B2η0R(z0)) be such that infB2R(x0) u ≤ 1. Then,

there exists a structural constant c such that,

if x0 ∈ BR(z0) and k ≥ 2 are such that u(x0) ≥Mk

and Bρ(x0) ⊂ BR(z0) with ρ = cγ
k
Q

0 R,

then

sup
Bρ(x0)

u ≥
(

1 +
1

M0

)

u(x0).

Proof. Fix u, x0, k, and ρ as in the statement. By the power decay property

we have

µ(A1) := µ
(

{x ∈ BR(z0) : u(x) ≥Mk−1
0 }

)

≤ γk−1
0 µ(BR(z0)).
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Let us argue by contradiction. In particular, by the assumptions on KΩ, we

suppose that the function

w(x) =M0 + 1− M0

u(x0)
u(x)

belongs to KΩ(Bρ(x0)). By definition we have also w(x0) = 1 and then

infB ρ
η0

(x0)w ≤ 1. We thus can apply again the power decay and obtain

µ(A2) := µ
(

{x ∈ B ρ
2η0

(x0) : w(x) ≥M0}
)

≤ γ0µ
(

B ρ
2η0

(x0)
)

.

In our notations we have B ρ
2η0

(x0) ⊂ A1 ∪ A2. As a matter of fact, since

B ρ
2η0

(x0) ⊂ Bρ(x0) ⊂ BR(z0), if x ∈ B ρ
2η0

(x0)rA1 then u(x) < Mk−1
0 and so

w(x) > M0 + 1− Mk
0

u(x0)
≥M0 which means x ∈ A2. Therefore we get

µ
(

B ρ
2η0

(x0)
)

≤ µ(A1) + µ(A2) ≤ γk−1
0 µ(BR(z0)) + γ0µ

(

B ρ
2η0

(x0)
)

.

Since BR(z0) ⊂ B2KR(x0), the doubling property (1.1) gives us

µ(BR(z0)) ≤ µ(B2KR(x0)) ≤ Cd

(

4Kη0R

ρ

)Q

µ
(

B ρ
2η0

(x0)
)

.

Hence we have

µ
(

B ρ
2η0

(x0)
)

≤
(

γk−1
0 Cd

(

4Kη0R

ρ

)Q

+ γ0

)

µ
(

B ρ
2η0

(x0)
)

.

Since µ(B ρ
2η0

(x0)) > 0, this implies

1− γ0 ≤ γk−1
0 Cd

(

4Kη0R

ρ

)Q

=
Cd

γ0

(

4Kη0
c

)Q

.

By choosing c big enough we have a contradiction. �

Proof of Theorem 1.3.1. Fix η = K(1 + 2Kη0). We want to prove that,

for any fixed u as in the statement with in addition infBR(x0) u < 1, we have

supBR(x0) u ≤ C. To this aim, we will prove that, for any ball BR(z) with

z ∈ BR(x0), we have

u(x) ≤ C

(

R

R− d(x, z)

) ν
α

∀ x ∈ BR(z)
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for a structural constant ν, where α is the exponent in the Hölder property of

d. Once we have proved this, by taking x = z we get the desired inequality.

Fix ν > 0 such that γ
ν
Q

0 = 1
M0

, where here and in what follows we keep the

notations of the power decay property. Let us denote

f(x,R) =

(

R− d(x, z)

R

) ν
α

and define

D := sup
x∈BR(z)

u(x)f(x,R).

Since for D = 0 there is nothing to prove, let us assume D > 0 and let

0 < D∗ < D. We want to bound from above D∗ by a structural constant C.

Take x∗ ∈ BR(z) such that D∗ < u(x∗)f(x∗, R) and let k be an integer such

that

Mk
0 ≤ u(x∗) ≤Mk+1

0 .

Let k̄ be a structural constant we will fix later on. If k ≤ k̄, then

D∗ < M k̄+1
0 f(x∗, R) ≤M k̄+1

0

and we are done. Thus, suppose that k > k̄. We have

f(x∗, R) >
D∗

Mk+1
0

=
D∗

M0

γ
νk
Q

0 =
D∗

M0

( ρ

cKR

)ν

with ρ = cγ
k
Q

0 KR and c as in Lemma 1.3.2. We now assume by contradiction

that, for any possible structural constant β∗, we would have always

D∗

M0cνKν
≥ β

ν
α∗ .

By the definition of f we would get

R− d(x∗, z) > β∗R
1−αρα that is d(x∗, z) < R− β∗R

1−αρα. (1.5)

For any y ∈ Bρ(x
∗), the Hölder property of d implies that

d(y, z) ≤ d(z, x∗) + β(d(x∗, y))α(d(x∗, y) + d(z, x∗))1−α

≤ R− β∗R
1−αρα + βρα(ρ+R)1−α.
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Let us fix k̄ (bigger than 2) such that, for any k ≥ k̄,

(

1 +
ρ

R

)1−α

=

(

1 + cKγ
k
Q

0

)1−α

≤
(

1 + cKγ
k̄
Q

0

)1−α

< 2. (1.6)

With this choice, if in addition β∗ > 2β, we get

d(y, z) < R− β∗R
1−αρα + 2βραR1−α < R

which means Bρ(x
∗) ⊂ BR(z). Since z ∈ BR(x0) , we know also B2KR(z) ⊃

BR(x0) and infB2KR(z) u < 1. We recall that u(x∗) ≥ Mk
0 and we note that

u ∈ KΩ(B2KRη0(z)). Therefore we are in the position to apply Lemma 1.3.2.

This gives

sup
Bρ(x∗)

u ≥ u(x∗)

(

1 +
1

M0

)

>
D∗

f(x∗, R)

(

1 +
1

M0

)

.

On the other hand, since Bρ(x
∗) ⊂ BR(z), we have

sup
Bρ(x∗)

u ≤ D sup
y∈Bρ(x∗)

1

f(y,R)
=

D

f(x∗, R)
sup

y∈Bρ(x∗)

f(x∗, R)

f(y,R)
.

Using again the Holder property, we deduce

(

f(x∗, R)

f(y,R)

)α
ν

=
R− d(z.x∗)

R− d(y, z)
≤ R− d(z.x∗)

R− (d(z.x∗) + βρα(d(z, x∗) + ρ)1−α)

≤ 1

1− βρα(d(z,x∗)+ρ)1−α

β∗ραR1−α

≤ 1

1− 2β
β∗

where we have exploited the relations (1.5) and (1.6). By putting together

the two bounds for supBρ(x∗) u we obtain

1 +
1

M0

≤ D

D∗

(

β∗
β∗ − 2β

) ν
α

.

Letting D∗ → D, this leads to a contradiction since, for β∗ big enough (in

particular bigger than 2β), it is not possible that

1 +
1

M0

≤
(

β∗
β∗ − 2β

) ν
α

.
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Hence, for a suitable choice of β∗, we have D∗

M0cνKν ≤ β
ν
α∗ . For what we said

at the beginning of the proof, this completes the argument. �

The Hölder regularity result readily follows.

Corollary 1.3.3. In addition to the hypotheses of Theorem 1.3.1 we add

if u ∈ KΩ(BR(x0)) and u ≥ m in BR(x0), then u−m ∈ KΩ(BR(x0)).

Then there exist η ≥ 2, C̃, k0 > 0 and α0 ∈ (0, 1] such that, for any locally

bounded function u ∈ KΩ(BηR(x0)), we have

|u(x)− u(y)| ≤ C

(

d(x, y)

R

)α0

sup
BR(x0)

|u| ∀ x, y ∈ B R
k0

(x0).

Proof. We could say that the Harnack inequality implies the ε-critical den-

sity for any ε (see Remark 1.3.5 below) and then conclude via Theorem 1.1.9

and Corollary 1.1.10. Since the implication “Harnack ⇒ Hölder” is classical

in the literature, we want to use the standard arguments (as in [15], Theorem

5.3). Let η, C be the constants in Theorem 1.3.1. Fix k0 = K(1 + 2K) and

put r = 2KR
k0

. Thus we have Br(y) ⊂ BR(x0) for any y ∈ B R
k0

(x0). Take

a locally bounded function u ∈ KΩ(BηR(x0)), with KΩ as in the statement.

For any fixed y ∈ B R
k0

(x0), let us denote by

M(ρ) := sup
Bρ(y)

u, m(ρ) := inf
Bρ(y)

u, ω(ρ) :=M(ρ)−m(ρ)

for 0 < ρ ≤ r. We can apply the Harnack inequality to the nonnegative

functions M(ρ)− u and u−m(ρ). This gives respectively

M(ρ)−m
(

1

2
ρ

)

≤ sup
Bρ(y)

(M(ρ)− u) ≤ C inf
Bρ(y)

(M(ρ)− u) ≤M(ρ)−M
(

1

2
ρ

)

,

M

(

1

2
ρ

)

−m(ρ) ≤ sup
Bρ(y)

(u−m(ρ)) ≤ C inf
Bρ(y)

(u−m(ρ)) ≤ m

(

1

2
ρ

)

−m(ρ).

By summing up these inequalities we get

ω(ρ) + ω

(

1

2
ρ

)

≤ C

(

ω(ρ)− ω

(

1

2
ρ

))

,
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which means

ω

(

1

2
ρ

)

≤ C − 1

C + 1
ω(ρ).

Therefore we have obtained the result of Theorem 1.1.9 by using the Harnack

inequality. The standard arguments in the proof of Corollary 1.1.10 allows

us to conclude the proof. �

Note 1.3.4. We have already said that, if we want KΩ to satisfy the critical

density and the double ball property (and then the power decay), we should

interpret it as the family of the nonnegative functions u satisfying Lu ≤ 0

for some specific operators. The additional hypotheses we have just seen

regarding

· u ∈ KΩ(BR(x0)) and u ≤M in BR(x0) ⇒ M − u ∈ KΩ(BR(x0))

· u ∈ KΩ(BR(x0)) and u ≥ m in BR(x0) ⇒ u−m ∈ KΩ(BR(x0)),

have to be interpreted as the request for KΩ to be the family of the non-

negative solutions to the equation Lu = 0. As a matter of fact the classical

Harnack inequality and the Hölder regularity result hold true for that family.

See also Theorem 1.1.9 and Corollary 1.1.10. In Chapter 2 all these notions

and notations will be clearer.

Remark 1.3.5. Theorems 1.2.3 and 1.3.1 tell us that the critical density

and the double ball property (with additional structural hypotheses) imply

Harnack inequality. We want to finish this Section by showing a kind of

reverse. To this aim, let us assume the Harnack inequality for KΩ as in the

statement of Theorem 1.3.1. If u ∈ KΩ(B2ηR(x0)) is a nonnegative locally

bounded function with infBR(x0) u ≥ 1, then we have

inf
B2R(x0)

u ≥ 1

C
sup

B2R(x0)

u ≥ 1

C

and the double ball property is satisfied. On the other hand, for a nonnegative

locally bounded function u ∈ KΩ(B2ηR(x0)) with infBR(x0) u <
1
C
, we have

sup
B2R(x0)

u ≤ C inf
B2R(x0)

u ≤ inf
BR(x0)

u < 1
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and thus we get

µ({x ∈ B2R(x0) : u(x) < 1}) = µ(B2R(x0)) ≥ εµ(B2R(x0))

for any 0 < ε < 1. Therefore also the ε-critical density is satisfied for any ε.

1.4 Inbetween definitions

We have already mentioned that we changed a little bit Definition 1.1.6-

1.1.7 with respect to [15]. We have introduced the constants ηD and ηC ,

instead of fixing them to 4. Here we want to consider other little variations.

We are going to allow the constant 2 to change: is the double radius ”special”

in some sense?

Definition 1.4.1. (”More” Abstract Double Ball Property) We could

say that KΩ satisfies the double ball property if there exist η′′D > η′D > 1 and

γ > 0 such that, for every Bη′′
D
R(x0) ⊂ Ω and every u ∈ KΩ(Bη′′

D
R(x0)) with

infBR(x0) u ≥ 1, we have

inf
Bη′

D
R(x0)

u ≥ γ.

Definition 1.4.2. (”More” Abstract ε-Critical Density) Let 0 < ε <

1. We could say that KΩ satisfies the ε-critical density property if there exist

η′′C > η′C > 1 and c > 0 such that, for every Bη′′CR(x0) ⊂ Ω and for every

u ∈ KΩ(Bη′′CR(x0)) with

µ({x ∈ Bη′CR(x0) : u(x) ≥ 1}) ≥ εµ(Bη′CR(x0)),

we have

inf
BR(x0)

u ≥ c.

Definition 1.1.6 and 1.1.7 seem to be less general than these ones. We are

going to show why and in which sense they are actually not. These modifica-

tions are not made just for speculative reasons. If we look at the proof of the

critical density and the double ball property in [18] (respectively Theorem
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2.1.1 and Theorem 2.1.2), we may see that the definitions are satisfied in this

latter and more abstract sense: we can also refer the reader to our Chapter

2 (Theorem 2.1.2, 2.1.3, and 2.1.4). On the other hand, by investigating the

little gap, we take the opportunity to discuss more in details the definitions

we have given and their relationships.

Remark 1.4.3. If the double ball property with respect to Definition 1.4.1

is satisfied with η′D ≥ 2, then it is trivial that the double ball property (w.r.t

Definition 1.1.6) holds true with ηD = η′′D and the same γ.

It is easy also the case of the ε-critical density w.r.t Definition 1.4.2 with

η′C ≤ 2. As a matter of fact, if this is satisfied, we put ηC = 2η′′C (any number

greater than
2η′′C
η′C

will be fine). If u ∈ KΩ(BηCR(x0)) is such that µ({x ∈
B2R(x0) : u(x) ≥ 1}) ≥ εµ(B2R(x0)), then we get u ≥ c in B 2

η′
C

R(x0) ⊇
BR(x0). Thus, the ε-critical density w.r.t Definition 1.1.7 is satisfied too.

Let us give a definitive answer to the problem of defining the double ball

property. We are going to exploit just that KΩ is closed under multiplications

by positive constants (assumption (I)).

Proposition 1.4.4. Definition 1.4.1 ”implies” Definition 1.1.6. Hence,

these definitions are equivalent.

Proof. Suppose the double ball property w.r.t Definition 1.4.1 is satisfied

(with constants η′′D, η
′
D, γ). By the last Remark, we are left with the case

1 < η′D < 2. Let n0 be the first positive integer such that (η′D)
n0 ≥ 2. Put ηD

any real number greater than η′′D(η
′
D)

n0−1, for example let us fix ηD = 2η′′D.

If u ∈ KΩ(BηDR(x0)) with u ≥ 1 in BR(x0), then by hypothesis we get u
γ
≥ 1

in Bη′DR(x0). Moreover, by (I) we have u
γ
∈ KΩ(BηDR(x0)). Thus, u ≥ γ2

in B(η′
D
)2R(x0) since η′′Dη

′
D ≤ 2. We can apply this argument n0 − 1 times

because we supposed ηD ≥ η′′D(η
′
D)

n0−1. At the end we will get

u ≥ γn0 in B(η′D)n0R(x0) ⊇ B2R(x0).

�
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We can thus stop taking care of Definition 1.4.1: from now on, we refer to

Definition 1.1.6 when we talk about double ball property. The critical density

property is more delicate. The following proposition shows that Definition

1.1.7 and Definition 1.4.2 are equivalent if we assume the double ball property.

Proposition 1.4.5. Suppose KΩ satisfies the double ball property. Then,

Definition 1.4.2 ”implies” Definition 1.1.7 (with the same ε).

Proof. Suppose the ε-critical density w.r.t Definition 1.4.2 is satisfied (with

constants η′′C , η
′
C .c). By Remark 1.4.3, we are left with the case η′C > 2.

We denote as usual by ηD, γ the constants of the double ball property. Fix

ηC = max{η′′C , ηD}. Let n0 be the first positive integer such that 1
2n0

≤ 2
η′C
.

If u ∈ KΩ(BηCR(x0)) with µ({x ∈ B2R(x0) : u(x) ≥ 1}) ≥ εµ(B2R(x0)),

then by hypothesis we get u
c
≥ 1 in B 2

η′
C

R(x0) since ηC >
2η′′C
η′C

. Now we can

argue similarly to the proof of the last proposition. By using (I), we have

also u
c
∈ KΩ(BηCR(x0)). By the double ball property, u ≥ cγ in B 4

η′
C

R(x0)

since ηC > 2ηD
η′C

. We can apply this argument n0 times because ηC ≥ ηD
2n0

η′C
.

At the end we will get

u ≥ cγn0 in B 2n0+1

η′
C

R
(x0) ⊇ BR(x0).

�

Roughly speaking, in Definition 1.4.2 we can always allow η′C to be larger;

but, if we want to make η′C smaller, we have to assume for example the double

ball property.

Remark 1.4.6. By applying the same arguments of Proposition 1.1.11, we

can see how the ε-critical density w.r.t Definition 1.4.2 implies the double

ball property if ε is small enough. To be precise, it has to be 0 < ε < 1
C2

d
(η′C)Q

(by exploiting (1.1)). Therefore, by the last Proposition, Definition 1.4.2 and

1.1.7 are equivalent if the first one is satisfied for small ε.

On the other hand, allowing ε to be bigger, we can see the same fact in a

different way. Suppose the ε-critical density w.r.t Definition 1.4.2 satisfied
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(with constants η′′C , η
′
C , c and η

′
C > 2) for some ε < 1

(η′
C
)Q
. Then, put ηC = η′′C

and ε′ = ε(η′C)
Q. Take u ∈ KΩ(BηCR(x0)) with

µ({x ∈ B2R(x0) : u(x) ≥ 1}) ≥ ε′µ(B2R(x0)).

Since Bη′
C
R(x0) ⊃ B2R(x0), by using (1.1) we get

µ({x ∈ Bη′CR(x0) : u(x) ≥ 1}) ≥ ε′

(η′C)
Q
µ(Bη′CR(x0)).

Thus, u ≥ c in BR(x0) and the ε′-critical density w.r.t Definition 1.1.7 is

satisfied.

Summing up, we have seen (beyond the problems of the definitions) how

the critical density and the double ball property are connected and once more

how they can work together. We would like to remark that the arguments we

used here are somehow similar to the ones in Proposition 1.1.13 and Lemma

1.1.14 and they will reappear in the next chapters.



Chapter 2

The elliptic case

Despite the shortness, this chapter is the core of all the investigations

pursued through the whole thesis. The notions studied and the arguments

developed in Chapter 1 find here a true justification. Furthermore, this is

the starting point for most of the discussions in the following chapters. We

are going to give complete proofs for the double ball property and the critical

density for uniformly elliptic operators: this gives us the Krylov-Safonov’s

Harnack inequality with a method different from [24]. To this aim, our main

reference is [18].

2.1 Uniformly elliptic operators

Let us consider a second order linear operator in non-divergence form

LA =
n
∑

i,j=1

aij(x)∂
2
xixj

, for x ∈ Ω ⊂ R
n. (2.1)

We suppose that the matrix A(x) = (aij(x))
n
i,j=1 is symmetric and uniformly

positive definite, i.e. there exist 0 < λ ≤ Λ such that, for any x, we have

λ ‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ ‖ξ‖2

for every ξ ∈ Rn. We are going to denote by Mn(λ,Λ) the set of the n ×
n symmetric matrices satisfying these bounds. We will write simply A ∈

25
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Mn(λ,Λ) instead of writing A(x) ∈ Mn(λ,Λ) for every x in the open set

Ω. With respect to the regularity of the coefficients of A(x), we can assume

they are smooth but we do not want that the estimates we are interested in

depend on this regularity.

We would like here to clarify the notations and the abstract language of

Chapter 1. The properties introduced in Section 1.1 will be showed for the

following families of functions

KA
Ω := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and LAu ≤ 0 in V }. (2.2)

with A ∈Mn(λ,Λ). We stress that the family KA
Ω clearly satisfies the invari-

ance property (I). In this situation, the doubling quasi-metric Hölder space

is Rn with the euclidean distance and the Lebesgue measure: without fur-

ther comments we can say that it easily satisfies any structural assumption

needed in the exposition of Chapter 1. In particular any ball BR(x0) in this

Chapter will be euclidean and the euclidean norm will be denoted by ‖·‖.

Remark 2.1.1. Keeping in mind the Krylov-Safonov’s result, we want some-

thing which depends on A just through the ellipticity constants λ and Λ. To

this aim, the family KA
Ω has to satisfy the double ball property and the critical

density uniformly for A belonging to the class Mn(λ,Λ).

Let us start with the double ball property. In [18] (Theorem 2.1.2) it is

proved the following theorem.

Theorem 2.1.2. Fix 0 < λ ≤ Λ. There exists a positive constant γ depend-

ing on n, λ,Λ such that for any A ∈Mn(λ,Λ), if

u ≥ 0 classically satisfies LAu ≤ 0 in Ω ⊃ B2R(x0) with inf
BR(x0)

u ≥ 1,

we have

u ≥ γ in B 3
2
R(x0).

The proof presented in [18] compares some powers of the function u with

a suitable barrier function. Those arguments are taken from [8] (Theorem 2),

where Caffarelli and Gutiérrez proved a doubling property for some peculiar
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sections in their study of the linearized Monge-Ampère equation. Here we

want to give a different proof. Our arguments rely on some barriers intro-

duced by Hopf in his celebrated Hopf’s Lemma (see [21]). Our proof suggests

a kind of link between the double ball property and the Dirichlet problem in

the exterior of the euclidean balls. The statement reads now as follows.

Theorem 2.1.3. Fix 0 < λ ≤ Λ. There exists a positive constant ν ∈ (1, 2)

depending on n, λ,Λ such that for any A ∈Mn(λ,Λ), if

u ≥ 0 classically satisfies LAu ≤ 0 in Ω ⊃ B2R(x0) with inf
BR(x0)

u ≥ 1,

we have

u ≥ 1

2
in BνR(x0).

Proof. We are going to prove the statement for R = 1 and x0 = 0. The

arguments hold true for any R and x0 with the same constant ν by rescaling

and translating the problem (we refer the mistrustful reader to our Remark

3.2.8). Fix a point ξ ∈ ∂B1(0) and take a ball Bρ(ξ0) which is tangent to

∂B1(0) at ξ and strictly contained in B1(0), that is

Bρ(ξ0)r {ξ} ⊂ B1(0).

Let’s say ξ0 = 1
2
ξ and ρ = 1

2
. For some positive constant α to be fixed,

consider the Hopf’s barrier function

h(x) := e−αρ2 − e−α‖x−ξ0‖2 .

We remark that h(ξ) = 0 and

{x ∈ R
n : h(x) ≤ 0}r {ξ} ⊆ B1(0).

Moreover a simple calculation shows

∂2xixj
h(x) = 2αe−α‖x−ξ0‖2 (δij − 2α(x− ξ0)i(x− ξ0)j)

for i, j = 1, . . . , n. For any A ∈Mn(λ,Λ) we thus get

LAh(x) = 2αe−α‖x−ξ0‖2
(

Tr(A(x))− 2α 〈A(x)(x− ξ0), (x− ξ0)〉
)

≤ 2αe−α‖x−ξ0‖2
(

nΛ− 2αλ‖x− ξ0‖2
)

=: H(x).
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The function H depends just on n, λ,Λ: it is uniform for A ∈Mn(λ,Λ). We

note that

H(ξ) = 2αe−αρ2
(

nΛ− 2αρ2λ
)

= 2αe−
α
4

(

nΛ− 1

2
αλ

)

.

Hence, if we fix α = 4nΛ
λ
, we get H(ξ) < 0 and there exists an open neigh-

borhood Uξ of ξ (depending just on H) where H is negative: with our choices

we can take Uξ = B 1
12
(ξ). Let us put Vξ = (Uξ ∩ B2(0))rB1(0), we have that

h ≥ 0 and LAh ≤ 0 in Vξ. Let us now consider the boundary ∂Vξ = Γ1 ∪ Γ2,

where Γ1 = ∂Vξ ∩ ∂B1(0) and Γ2 = ∂Vξ r Γ1. The number m = infΓ2 h is

strictly positive since {x ∈ ∂V : h(x) = 0} = {ξ}. The function w = 1− 1
m
h

is thus well defined. We get

LAw = − 1

m
LAh ≥ 0 in Vξ, w ≤ 1 on Γ1 and w ≤ 0 on Γ2.

Take now a function u as in the statement. We have

LAu ≤ LAw in Vξ, u ≥ w on ∂Vξ.

By the weak maximum principle for elliptic operators (see e.g. [17], Theorem

3.1), u ≥ w in Vξ. Since w(ξ) = 1, there exists an open neighborhood Wξ of

ξ contained in Uξ ∩ B2(0) such that w ≥ 1
2
in Wξ ∩ Vξ. The set Wξ depends

only on the barrier function and on Uξ. The compact set B1(0) is contained

in the open set O := B1(0) ∪
(

∪ξ∈∂B1(0)Wξ

)

. Hence there exists ν > 1 such

that Bν(0) ⊂ O. Therefore, we deduce

u ≥ 1

2
in Bν(0)

since u ≥ 1 in B1(0) and u ≥ w = wξ in Wξ ∩ Vξ. �

Theorem 2.1.2 and Theorem 2.1.3 are saying the same by Proposition

1.4.4: KA
Ω satisfies (uniformly for A ∈Mn(λ,Λ)) the double ball property. For

an identical reason (remind Proposition 1.4.5 or Remark 1.4.3) the following

theorem is the ε-critical density for KA
Ω. We report here the very elegant

proof which can be found in [18] (Theorem 2.1.1). This proof does not
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make use of the convex envelope, nor any explicit use of the Alexandrov-

Bakelman-Pucci estimate. The arguments follow instead an idea by Cabré

in [6] (Lemma 4.1), where he established a critical density estimate for some

non-divergent elliptic equations on Riemannian manifolds with nonnegative

sectional curvature. For any fixed ellipticity constants λ and Λ we are going

to see that KA
Ω satisfies (uniformly for A ∈ Mn(λ,Λ)) the ε-critical density

property for every 1 > ε ≥ 1 −
(

λ
7Λ

)n
. We denote by |E| the Lebesgue

measure of a measurable set E ⊂ Rn.

Theorem 2.1.4. Fix 0 < λ ≤ Λ. Then, for any A ∈ Mn(λ,Λ), if u ≥ 0 is

a classical solution of LAu ≤ 0 in B2R(x0) such that

∣

∣

∣

{

x ∈ B 7
4
R(x0) : u(x) ≥ 1

}∣

∣

∣ ≥
(

1−
(

λ

7Λ

)n) ∣
∣

∣B 7
4
R(x0)

∣

∣

∣ ,

we have

u ≥ 8

33
in BR(x0).

Proof. Fix A ∈ Mn(λ,Λ). Suppose u ≥ 0, LAu ≤ 0 in B2R(x0), and

infBR(x0) u < 1. We want to prove that

∣

∣

∣

∣

{

x ∈ B 7
4
R(x0) : u(x) <

33

8

}∣

∣

∣

∣

≥
(

λ

Λ

)n ∣
∣

∣
BR

4
(x0)

∣

∣

∣
=

(

λ

7Λ

)n ∣
∣

∣
B 7

4
R(x0)

∣

∣

∣
.

For any y ∈ BR
4
(x0), we put

φy(x) =
R2

4
u(x) +

1

2
‖x− y‖2 .

We look for the minimum of φy: it cannot be very far from x0. For x ∈
BR(x0), we have ‖x− y‖ ≤ 5

4
R and thus

inf
BR(x0)

φy <
R2

4
+

1

2

(

5

4
R

)2

=
33

32
R2.

On the other hand, if x ∈ B2R(x0)rB 7
4
R(x0), we have

‖x− y‖ ≥ ‖x− x0‖ − ‖y − x0‖ ≥ 3

2
R and φy(x) ≥

9

8
R2 =

36

32
R2.
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Hence we get

inf
B2R(x0)

φy = inf
B 7

4R
(x0)

φy

and there exists z ∈ B 7
4
R(x0) such that φy(z) = infB2R(x0) φy. Consider the

set

H :=

{

z ∈ B 7
4
R(x0) : ∃y ∈ BR

4
(x0) such that φy(z) = inf

BB2R(x0)

φy

}

.

We remark that, if z ∈ H and y is a related point as in the definition of H,

then we have

R2

4
u(z) ≤ R2

4
u(z) +

1

2
‖z − y‖2 = φy(z)

= inf
BB2R(x0)

φy ≤ inf
BBR(x0)

φy <
33

32
R2.

This implies

H ⊂
{

x ∈ B 7
4
R(x0) : u(x) <

33

8

}

. (2.3)

Since the points z ∈ H are minimum points for some φy, we have

∇φy(z) = 0 and Hφy
(z) ≥ 0,

where we denote by Hφy
(z) the Hessian matrix of φy at z. Hence we get

there is just one point y related to z: we have indeed

0 = ∇φy(z) =
R2

4
∇u(z) + z − y, i.e. y =

R2

4
∇u(z) + z.

Let us define the map

ϕ(z) =
R2

4
∇u(z) + z.

By construction we have BR
4
(x0) ⊂ ϕ(H). Then, by changing the variables

inside the integral, we have
∣

∣

∣
BR

4
(x0)

∣

∣

∣
≤
∫

H

|Jϕ(x)| dx,

where Jϕ(x) is the determinant of the Jacobian matrix of ϕ at x, that is

Jϕ(x) = det

(

R2

4
Hu(x) + In

)

= det
(

Hφ(·)
(x)
)

.

In particular, Jϕ(x) ≥ 0 for x ∈ H sinceHφ(·)
(x) is nonnegative definite. Now

we exploit the following fact generalizing the arithmetic-geometric inequality:
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if M is a symmetric and nonnegative definite n× n matrix we have

det(AM) ≤
(

Tr(AM)

n

)n

for any symmetric n× n matrix A ≥ 0.

In our situation M = R2

4
Hu(x) + In and A ∈Mn(λ,Λ). We get

∣

∣

∣
BR

4
(x0)

∣

∣

∣
≤ 1

nn

∫

H

1

det(A(x))

(

Tr

(

A(x)

(

R2

4
Hu(x) + In

)))n

dx

=
1

nn

∫

H

1

det(A(x))

(

R2

4
LAu(x) + Tr (A(x))

)n

dx

≤ 1

nn

∫

H

1

det(A(x))
(Tr (A(x)))n dx

by reminding that Tr(A(x)Hu(x)) = LAu(x) ≤ 0 in B2R(x0) ⊃ H. Since

A ∈Mn(λ,Λ) we have

Tr(A(x)) ≤ nΛ and det(A(x)) ≥ λn

and therefore
∣

∣

∣BR
4
(x0)

∣

∣

∣ ≤ Λn

λn
|H| .

By recalling (2.3) we deduce the inequality

∣

∣

∣BR
4
(x0)

∣

∣

∣ ≤ Λn

λn

∣

∣

∣

∣

{

x ∈ B 7
4
R(x0) : u(x) <

33

8

}∣

∣

∣

∣

and we conclude the proof. �

2.2 Krylov-Safonov’s Harnack inequality

Since the double ball property and the critical density are satisfied for

the family KA
Ω in (2.2), the machinery of Chapter 1 can be triggered. In

particular, by Theorem 1.2.3, KA
Ω satisfies the power decay property. The

constants involved in the power decay are what we called structural, i.e.

they depend just on the setting (Rn, ‖·‖ , |·|) and on the constants of the

main properties (ε, c, ηC , ηD, γ). Since we have seen that KA
Ω satisfies these
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properties uniformly for A ∈Mn(λ,Λ), we have uniformity even for the power

decay.

Regarding the Harnack inequality and the Hölder regularity result, we have

seen thatKΩ has to satisfy some extra assumptions (see Remark 1.3.4). These

are trivially not satisfied by KA
Ω: after all, the nonnegative solutions (not the

supersolutions) to an elliptic equation are the candidates for satisfying such

a Harnack inequality. That is why we consider the following subset of KA
Ω

KA
Ω := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and LAu = 0 in V }.

Theorem 1.3.1 gives us the following Harnack inequality for KA
Ω which is

uniform for A ∈Mn(λ,Λ).

Theorem 2.2.1. Fix 0 < λ ≤ Λ. Then there exist a positive constants

C, η depending just on n, λ,Λ such that, for any A ∈ Mn(λ,Λ), if u is a

nonnegative solution of LAu = 0 in Ω ⊃ BηR(x0), we have

sup
BR(x0)

u ≤ C inf
BR(x0)

u.

This is the celebrated result by Krylov and Safonov in [24]. Their original

method relied on some probabilistic techniques (see also [23]). The impor-

tance of this result is given by the fact that C and η are independent of the

regularity of the coefficient matrix A. This independence transfers directly

to the Hölder regularity result (see Corollary 1.3.3). We already mentioned

in the Introduction the impact it had on the theory of fully nonlinear elliptic

equations. We have made the proof descend from the axiomatic approach of

Chapter 1 in abstract settings. We refer the reader to [18] for an exhaustive

study of these arguments in the euclidean setting and for the connections of

this problem with the theory of the Monge-Ampère operator.



Chapter 3

The sub-elliptic case

A remarkable example of doubling Hölder quasi-metric space is given by

the homogeneous Lie groups. In this chapter we investigate the horizontally

elliptic operators as possible direction of application for the abstract theory

of Chapter 1.

3.1 An application

Beyond the double-ball property and the ε-critical density, there are five

assumptions (from Definition 1.1.1 up to Definition 1.1.5) in Chapter 1 con-

cerning just the structure of the setting we deal with. It had been already

stressed in [15] that an example where these structural assumptions are sat-

isfied is the setting of homogeneous Lie groups. Let us show the reasons.

Definition 3.1.1. Let G = (RN , ◦) a Lie group on RN , where we denote by

◦ the group operation. We say that G is an homogeneous Lie group if there

exist N real numbers 1 ≤ σ1 ≤ . . . ≤ σN such that the dilation defined by

δλ : RN −→ R
N , δλ(x1, . . . , xN) = (λσ1x1, . . . , λ

σNxN)

is an automorphism of G for any λ > 0.

We thus fix an homogeneous Lie group G = (RN , ◦, δλ). We will denote

always by g the Lie algebra of G. We refer the reader to [3] for any unclear

33
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notion we are going to exploit in these settings: where it is possible we try to

define everything we need in the exposition or to keep the notations adopted

there.

In such groups, the identity element is 0 and the exponential map Exp :

g −→ G is a globally defined diffeomorphism with inverse denoted by Log

(see e.g. [3], Theorem 1.3.28). We want to define also the Jacobian basis and

some peculiar norms.

Definition 3.1.2. For any x ∈ G, consider the Jacobian matrix Jτx at

the origin of the left translation τx (τx(y) := x ◦ y for y ∈ G). For any

j = 1, . . . , N , consider the vector field Zj whose coefficients are given by the

j-th column of Jτx. The set {Z1, . . . , ZN} is a basis of g and it is called the

Jacobian basis (see [3], Proposition 1.2.4-1.2.7 and Definition 1.2.15).

Definition 3.1.3. We call homogeneous symmetric norm on G any contin-

uous function d : G −→ [0,+∞) such that

(i) d is δλ-homogeneous of degree one, i.e. d(δλ(x)) = λd(x) for any λ > 0

and x ∈ G;

(ii) d(x) > 0 if and only if x 6= 0;

(iii) d(x−1) = d(x) for every x ∈ G;

(iv) d is smooth away from 0.

In a relevant subclass of homogeneous Lie groups, homogeneous symmet-

ric norms do exist.

Remark 3.1.4. Let us build up a good candidate for being an homogeneous

symmetric norm. For any x ∈ G, we can consider Log(x) =
∑N

j=1 yjZj where

{Z1, . . . , ZN} is the Jacobian basis. We may define

d(x) =
(

|y1|2σ2···σN + |y2|2σ1σ3···σN + |yN |2σ1···σN−1
)

1
2σ1···σN .

By exploiting the properties proved in [3] (Theorem 1.3.28 and Corollary

1.3.29) we can see that this function satisfies the conditions (i), (ii), and
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(iii) in Definition 3.1.3. Regarding the smoothness, it depends on the σj’s.

In the homogeneous Carnot groups (which is the setting we fix from the next

Section until the end), we can always take the σj’s as positive (consecutive)

integers and d is thus smooth. Therefore, in homogeneous Carnot groups d

is an example of homogeneous symmetric norm (see [3], Example 5.1.2).

Every homogeneous symmetric norm induces in a natural way a quasi-

distance in G. As a matter of fact, we can denote

d(x, y) := d(y−1 ◦ x) for x, y ∈ R
N .

By verbatim proceeding as in [3] (Proposition 5.1.6), we can say that there

exists K ≥ 1 such that

d(x, y) ≤ K(d(x, z) + d(z, y))

for all x, y, z ∈ RN . Thus (RN , d) is a quasi-metric space.

It is possible to prove also an improved version of this pseudo-triangle in-

equality. In [15] (Remark 2.5) it is indeed proved that there exist β such

that

d(x, y) ≤ d(x, z) + βd(y, z) ∀ x, y, z ∈ R
N

(see also [3], Proposition 5.14.1). This inequality readily implies the Hölder

property for d with respect to Definition 1.1.3 with α = 1.

Furthermore, let us denote by | · | the Lebesgue measure in RN . By the

δλ-homogeneity of the d-balls and the Proposition 1.3.21 in [3], we get

|BR(x0)| = |BR(0)| = RQ |B1(0)| =: cQR
Q, (3.1)

where Q :=
∑N

i=1 σi is the homogeneous dimension of G. Therefore, the

doubling property holds true with constant Cd = 2Q. This proves that

(RN , d, | · |) is a doubling Hölder quasi-metric space.

The equation (3.1) will be largely used in what follows. For example, it im-

plies also the other two structural assumptions involved in the approach of

Chapter 1. The reverse doubling property is easily satisfied with constant

δ = 1
2Q
. Finally, also the log-ring condition holds true since we have

∣

∣BR(x0)rB(1−ε)R(x0)
∣

∣ = cQR
Q(1− (1− ε)Q) ≤ Qε |BR(x0)| .
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Hence, this section justifies the fact that it is worthwhile to investigate of the

double ball property and ε-critical density in homogeneous Lie groups.

3.2 Horizontally elliptic operators

Suppose in addition G is stratified, i.e. G is an homogeneous Carnot

group (see e.g. [3], Definition 1.4.1 and Remark 1.4.2).

Definition 3.2.1. An homogeneous Lie group G is said to be an homogeneous

Carnot group if the following properties hold true

- R
N can be split in R

N = R
N1 ×R

N2 × . . .×R
Nr and the dilations take

the form

δλ(x) = δλ(x
(1), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r)) for x(i) ∈ R

Ni ;

- let Z1, . . . , ZN1 be the left invariant vector fields on G such that Zj(0) =
∂

∂xj
, then the smallest Lie algebra containing Z1, . . . , ZN1 has rank N

(i.e. it is the whole g).

We also says that G has step (of nilpotence) r and N1 =: m generators.

We denote by g1 the linear subspace of g composed by the left-invariant

vector fields δλ-homogeneous of degree one: at any x it is spanned by the

vectors Z1(x), . . . , Zm(x) of the definition. Fix a generic basis {X1, . . . , Xm}
for g1.

Remark 3.2.2. For j = 1, . . . ,m, let us write explicitly the vector fields

Xj’s as

Xj(x) =
N
∑

l=1

cjl(x)
∂

∂xl
.

By Proposition 1.3.5 in [3], the coefficients cjl(x) are polynomials for any

l = 1, . . . , N and any j = 1, . . . ,m: in particular cjl(x) are constants cjl

for any 1 ≤ l ≤ m. Also the vectors Z1, . . . , Zm are a basis for g1 and we

have Zj(0) = ∂xj
. The m × m constant matrix C = (cij)

m
i,j=1 is thus the
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one bringing the basis of g1 {Z1, . . . , Zm} into the basis {X1, . . . , Xm}. In

particular, C is a non-singular matrix.

Fix also an open set Ω ⊆ RN . We want to consider the linear second

order operator in non-divergence form

LA =
m
∑

i,j=1

aij(x)XiXj for x ∈ Ω. (3.2)

The symmetric matrix A(x) = (aij(x))
m
i,j=1 is supposed to be uniformly el-

liptic: we recall it means that there exist 0 < λ ≤ Λ such that, for every x,

we have

λ ‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ ‖ξ‖2

for every ξ ∈ RN . As in the previous chapter, we denote by Mm(λ,Λ) the

set of the m×m symmetric matrices satisfying these bounds.

Remark 3.2.3. If A ∈Mm(λ,Λ), then it is easy to see that the coefficients

of the matrices A(x) are uniformly bounded in x. For the diagonal elements

we get λ ≤ aii(x) = 〈A(x)ei, ei〉 ≤ Λ for any i. For i 6= j we have

2λ ≤ aii(x) + ajj(x) + 2aij(x) = 〈A(x)(ei + ej), (ei + ej)〉 ≤ 2Λ

and then we deduce |aij(x)| ≤ Λ − λ by the estimates for the diagonal

elements.

Definition 3.2.4. If A ∈ Mm(λ,Λ) for some 0 < λ ≤ Λ, the second order

linear operator in non-divergence form LA defined in (3.2) is called horizon-

tally elliptic operator.

It is well known that some Maximum Principles for this kind of operators

hold true. Since we are going to exploit a Weak Maximum Principle for LA,

we report here the statement and a sketch of the proof.

Theorem 3.2.5. (Weak Maximum Principle) Let LA be an horizontally

elliptic operator, for some A ∈ Mm(λ,Λ). Let O be an open bounded subset

of RN . Suppose u, v ∈ C(O) ∩ C2(O) satisfy u ≥ v on ∂O and LAu ≤ LAv

in O. Then, we have u ≥ v in O.
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Proof. In the notations of Remark 3.2.2, the operator LA take the form

LA =
N
∑

k,l=1

(Ct(x)A(x)C(x))kl
∂2

∂xk∂xl
+

N
∑

l=1

bl(x)
∂

∂xl
, (3.3)

where bl(x) =
∑m

i,j=1

∑N

k=1 cik(x)aij(x)
∂cjl(x)

∂xk
and C(x) = (cjl(x)) is anm×N

matrix. Moreover, denoting C1 = (c11, . . . , cm1), we have C1 is a constant

non-zero vector of Rm by Remark 3.2.2. Thus, we get the uniform bound

(Ct(x)A(x)C(x))11 = 〈A(x)C1, C1〉 ≥ λ ‖C1‖2. Furthermore, in the bounded

set O the functions bl are uniformly bounded since cjl(x) are smooth functions

and aij(x) are uniformly bounded by Remark 3.2.3. Therefore, under these

hypotheses the Weak Maximum Principle can be proved as in [25] (Corollary

1.3). �

In [4] it is proved an invariant Harnack inequality for horizontally elliptic

operators LA assuming an Hölder continuity for the coefficients of A. Here

we are interested in an Harnack inequality for horizontally elliptic operators

which is independent of the regularity of A(x). To this aim, we try to imitate

the case of uniformly elliptic operators (see (2.2)) and set

KA
Ω := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and LAu ≤ 0 in V }. (3.4)

Once more we stress that KA
Ω is closed under multiplications by positive

constants. We now fix the definitions of the double ball property and the ε-

critical density for KA
Ω in this specific context with the additional uniformity

condition with respect to the class Mm(λ,Λ).

Definition 3.2.6. (Double Ball Property for horizontally elliptic

operators) Fix an homogeneous Carnot group G = (RN , ◦, δλ) with m

generators. In G, fix an homogeneous symmetric norm d and the vector

fields X1, . . . , Xm generating g1. In the doubling quasi-metric Hölder space

(G, d, | · |), let Ω be an open set. We say that the double ball property for hori-

zontally elliptic operators is satisfied if, for every 0 < λ ≤ Λ, KA
Ω satisfies the

double ball property with respect to Definition 1.1.6 for any A ∈ Mm(λ,Λ).
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The constants γ and ηD have to depend on A just through the ellipticity

constants λ,Λ.

Definition 3.2.7. (Critical Density for horizontally elliptic opera-

tors) Fix an homogeneous Carnot group G = (RN , ◦, δλ) with m generators.

In G, fix an homogeneous symmetric norm d and the vector fields X1, . . . , Xm

generating g1. In the doubling quasi-metric Hölder space (G, d, | · |), let Ω be

an open set. We say that the critical density property for horizontally elliptic

operators is satisfied if, for every 0 < λ ≤ Λ, there exists 0 < ε < 1 such that

KA
Ω satisfies the ε-critical density property with respect to Definition 1.1.7 for

any A ∈Mm(λ,Λ). The constants c and ηC have to depend on A just through

the ellipticity constants λ,Λ.

Gutiérrez and Tournier considered in [19] the case of the Heisenberg group

H = H
1 with generators

X1 = ∂x1 −
x2

2
∂x3 and X1 = ∂x2 +

x1

2
∂x3 .

They chose the homogeneous norm

d(x1, x2, x3) = ((x21 + x22)
2 + µx23)

1
4

for some fixed constant µ. They worked in R3, but all the arguments and the

results work in R2n+1 (i.e. in Hn). In that context, they proved the double

ball property for horizontally elliptic operators as we have just defined. They

proved also a ε-critical density estimate by assuming a bound for the ratio
Λ
λ
(so the property is not verified for every λ ≤ Λ): they proved that KA

Ω

satisfies the critical density in H uniformly in the class of the matrices A

belonging to Mm(λ,Λ) and satisfying a prescribed bound for Λ
λ
.

Remark 3.2.8. If we look at the very definition of the double ball and

critical density properties, some relations have to be satisfied for all the balls

BηR(x0) ⊂ Ω. The properties of our setting and the choice of KA
Ω allows us

to check the relations just for some fixed R and x0. As a matter of fact,

suppose to have proved the property for a ball Bη(0) ⊂ Ω and every function
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u ∈ KA
Ω(Bη(0)), for any given A ∈ Mm(λ,Λ). Let us now take another ball

BηR(x0) ⊂ Ω and, for some fixed A ∈Mm(λ,Λ), a function v ∈ KA
Ω(BηR(x0)).

We put

u(x) := v(x0 ◦ δR(x)).

Since the Xj ’s are left-invariant and δλ-homogeneous of degree one, we get

LAu(x) = R2
∑

i,j=1m

aij(x)(XiXjv)(x0 ◦ δR(x)) = R2LÃv(x0 ◦ δR(x)) (3.5)

where Ã(x) = A(δ 1
R
(x−1

0 ◦ x)). Thus, u ∈ KÃ
Ω(Bη(0)) and we have assumed

to know it satisfies some properties. We note that the matrices A and Ã

have the same bounds of ellipticity, i.e. A and Ã belongs to the same class

Mm(λ,Λ). Hence, the properties under investigation transfer to v with the

same constants. In fact, we have

|B2R(x0)| = RQ |B2(0)| ,
|{x ∈ B2R(x0) : v(x) ≥ 1}| = RQ |{x ∈ B2(0) : u(x) ≥ 1}| ,

and also inf
B1(0)

u = inf
BR(x0)

v.

Remark 3.2.9. The hypothesis that our homogeneous Lie group is stratified

is crucial. The problem is not the one described in Remark 3.1.4 about the

existence of a homogeneous symmetric norm. The problem concerns the

properties we are asking to be satisfied by KA
Ω. Suppose G is an homogeneous

Lie group with the dilations given by consecutive integers from 1 up to r,

but assume G is not Carnot. Take a basis {X1, . . . , Xm} of the vector fields

δλ-homogeneous of degree one and denote by Lie{X1, . . . , Xm} the smallest

Lie algebra containing {X1, . . . , Xm}. Then the dimension as a vector space

of the set

{Z(x) : Z ∈ Lie{X1, . . . , Xm}}

is a constant (by left-invariance, see e.g. [3], Proposition 1.2.13) strictly less

than N . By Frobenius Theorem (see e.g. [32], 6-19, Theorem 5) there is a

local change of variables (y1, . . . , yN ) = y = ϕ(x) such that yN is not seen by
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the vector fields Xj’s, i.e.

XjϕN = 0 for any j (at least locally).

In this case an Harnack inequality for LA cannot be satisfied: in fact Bony

pointed out in [5] (Remarque 3.2) that for such operators we cannot hope

in a Strong Maximum Principle. We would like to stress here that in this

situation both the double ball property and the critical density for LA cannot

be satisfied too. The reasons are similar. Let us first consider the double

ball property. For any fixed intervals I1 ⊂ I1 ⊂ I2, it is not difficult to build

up, for every γ > 0, a positive function ψγ greater than 1 in I1 and less than

γ somewhere in I2. The functions defined by

u(x) = ψγ(ϕN(x))

falsify the double ball property w.r.t. Definition 3.2.6 since LAu = 0: we can

indeed consider

I1 := ϕN(BR(x0)) and I2 := ϕN(B2R(x0))

for some BR(x0) ∈ G. About the critical density, for the same choice of I1, I2

and for any c > 0, we can construct a positive function ψc less than c in I1

such that

|{t ∈ I2 : ψc(t) < 1}|

is as small as we want. The functions u(x) = ψc(ϕN(x)) show that the

ε-critical density cannot be satisfied for any 0 < ε < 1.

3.3 Independence of choices

Parallel to Section 1.4, we are going to discuss here Definition 3.2.6 and

Definition 3.2.7. They seem to depend on many possible choices we can do.

We would like to show why they actually do not and in which sense they are

somehow intrinsic.



42 3. The sub-elliptic case

First of all, the definition of horizontally elliptic operator in (3.2) depends

on the choice of the basis {X1, . . . , Xm} of the first layer g1. Let {Y1, . . . , Ym}
be another basis of g1: this means there exists anm×m invertible matrixD =

(dij)
m
i,j=1 such that Yi =

∑m

j=1 dijXj . We can consider, for any A ∈Mm(λ,Λ),

the operator L̃A =
∑m

i,j=1 ai,j(x)YiYj. By putting Ã(x) = DtA(x)D, we have

L̃A =
m
∑

i,j=1

(DtA(x)D)ijXiXj = LÃ.

The symmetric matrix Ã(x) is positive definite and we get Ã ∈Mm(λ̃, Λ̃) for

some λ̃ ≤ Λ̃ which are in general different from λ and Λ (see the Remark

below). Since the conditions in Definition 3.2.6 and 3.2.7 have to be satisfied

for every λ ≤ Λ, we deduce that, if they hold true for a particular choice of

{X1, . . . , Xm}, then they hold true for every choice. Thus, these definitions

are independent of the choice of the basis of g1.

Remark 3.3.1. We explicitly stress that the ratio between the maximum

and the minimum eigenvalue increases by passing from A to Ã without know-

ing anything a priori about A and D. The best we can expect is, indeed,

λ̃ = λσD and Λ̃ = ΛΣD, where σD and ΣD are respectively the smallest and

the biggest eigenvalue of DtD. As a matter of fact, for any x, we get

ΛΣD ‖ξ‖2 ≥ Λ ‖Dξ‖2 ≥
〈

Ã(x)ξ, ξ
〉

= 〈A(x)Dξ,Dξ〉 ≥ λ ‖Dξ‖2 ≥ λσD ‖ξ‖2

for every ξ ∈ Rm. Of course we have Λ̃
λ̃
≥ Λ

λ
and they are equal if and only

if D is a multiple of an orthogonal matrix.

Note 3.3.2. By the last considerations, if we allow the ellipticity constants

λ and Λ just to have a bounded ratio in the Definition 3.2.6 and 3.2.7 (and

not to be any possible λ ≤ Λ), the double ball property and the critical

density would not be stable under changes of basis. As we mentioned, this

is the case for the critical density in H proved by Gutiérrez and Tournier.

A very natural choice is the one regarding the Lebesgue measure. This is

the Haar measure for G: it is translation invariant and it is well behaved also

with the dilations of the group (see [3], Proposition 1.3.21). Hence, we are
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not going to change it. On the contrary, we would like to consider the choice

of the homogeneous symmetric norm. Let us take two different ones: let us

say d1 and d2. In [3] (Proposition 5.1.3), it is proved that the homogeneous

norms on G are all equivalent, i.e. there exists a constant K ≥ 1 such that

1

K
d2(x) ≤ d1(x) ≤ Kd2(x) for every x ∈ G.

This means that, for the d1-balls B
1
R(x0) and the d2-balls B

2
R(x0), there are

the following relations

B1
R(x0) ⊆ B2

KR(x0), B2
R(x0) ⊆ B1

KR(x0) for every R > 0, x0 ∈ G.

By exploiting the considerations we did in Section 1.4, we can prove the

following.

Proposition 3.3.3. The double d1-ball property is equivalent to the double

d2-ball property.

Proof. Suppose the double ball property is satisfied with respect to the d1-

balls. By Proposition 1.4.4, this is equivalent to suppose that, for any λ ≤ Λ,

there exist γ > 0 and η > 2K2 such that, if

u ∈ KA
Ω(B

1
ηR(x0)) with u ≥ 1 in B1

R(x0), we have u ≥ γ in B1
2K2R(x0)

(for every A ∈ Mm(λ,Λ)). Let us take a function u ∈ KA
Ω(B

2
ηR(x0)) with

u ≥ 1 in B2
R(x0). In particular we have u ∈ KA

Ω(B
1
ηR
K

(x0)) with u ≥ 1 in

B1
R
K

(x0). Thus, we get

u ≥ γ in B1
2KR(x0) ⊇ B2

2R(x0).

�

With regard to the critical density, its independence of the homogeneous

norm is more delicate. This is related to the discussions we had about Defi-

nition 1.4.2.

Proposition 3.3.4. The critical density property for the d1-balls implies the

critical density for the d2-balls w.r.t. Definition 1.4.2.
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Proof. Suppose the critical density is satisfied with respect to the d1-balls.

This means that, for any λ ≤ Λ, there exist 0 < ε < 1, c > 0 and ηC > 2

such that, if u ∈ KA
Ω(B

1
ηCR(x0)) with infB1

R(x0) u < c, we have

∣

∣{x ∈ B1
2R(x0) : u(x) < 1}

∣

∣ > (1− ε)
∣

∣B1
2R(x0)

∣

∣ .

Put η′′C = K2ηC and η′C = 2K2. Take u ∈ KA
Ω(B

2
η′′CR(x0)) ⊆ KA

Ω(B
2
KηCR(x0))

with infB2
R(x0) u < c. Since B2

R(x0) ⊆ B1
KR(x0), we have infB1

KR(x0) u < c.

Thus, we get

∣

∣{x ∈ B2
2K2R(x0) : u(x) < 1}

∣

∣ ≥
∣

∣{x ∈ B1
2KR(x0) : u(x) < 1}

∣

∣ >

> (1− ε)
∣

∣B1
2KR(x0)

∣

∣ ≥ (1− ε)
∣

∣B2
2R(x0)

∣

∣ =
1− ε

K2Q

∣

∣B2
2K2R(x0)

∣

∣ .

By noting that 0 < 1−ε
K2Q < 1, we can say that the (1 − 1−ε

K2Q )-critical density

w.r.t Definition 1.4.2 is satisfied. �

From what we have seen before and in Section 1.4, we can state that the

critical density is independent of the choice of the homogeneous norm if the

double ball property is satisfied for some (and then for any) norm.

Finally, we want to discuss what is going to happen if we change the Lie

group under isomorphism. With isomorphism we mean a diffeomorphism

with respect to the differential structure and an isomorphism with respect

to the group structure. It is known that homogeneous Carnot groups “are

not left in” homogeneous Carnot groups by isomorphisms (see [3], Remark

2.2.4). Since we know how to apply the axiomatic approach in the setting of

homogeneous Carnot groups, we could think of transferring this machinery

by isomorphism. Let us say that φ : G −→ G̃ is an isomorphism where

G = (RN , ◦, δλ) is an homogeneous Carnot group. By fixing an homogeneous

symmetric norm d in G, we could define

d̃(y1, y2) := d(φ−1(y1), φ
−1(y2)) = d((φ−1(y2))

−1 ◦ φ−1(y1))

for any y1, y2 ∈ G̃ and µ(E) = |φ−1(E)| for any set E ⊆ G̃ such that φ−1(E)

is Lebesgue-measurable. Then, d̃ is an Hölder continuous quasi-distance in
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G̃. Moreover, by definition we have B̃R(y0) = φ(BR(φ
−1(y0))) and so we

get µ(B̃R(y0)) = RQ |B1(0)|. In (G̃, d̃, µ) all the structural assumptions of

Chapter 1 are satisfied. For an open set Ω̃ = φ(Ω) in G̃ we can define by

isomorphism also

KΩ̃ := {u : u ◦ φ ∈ KΩ}

(we apologize for denoting by ◦ also the composition of functions): thus, the

double ball property (or the critical density) for KΩ̃ in this new setting is

equivalent by definition to the same property in the old one. What about

Definition 3.2.6 and 3.2.7? Do they have their own meaning in this new

setting? “To be a Carnot group” (not necessarily homogeneous) is an invari-

ant property under isomorphisms (see [3], Proposition 2.2.10). Moreover, if

g1⊕. . .⊕gr is a stratification for the Lie algebra ofG, then dφ(g1)⊕. . .⊕dφ(gr)
is a stratification for the Lie algebra of G̃, where dφ is the differential of the

isomorphism φ evaluated at the origin. Thus, fixing a basis X1, . . . , Xm of

g1, we have {Yj = dφ(Xj)}mj=1 is a basis of the first layer of the G̃ Lie algebra.

Since Yj(φ(x)) = dxφ(Xj(x)) for any x ∈ G, we get

KA
Ω̃
: = {u : u ◦ φ ∈ KA

Ω} =

=

{

u ∈ C2(φ(V ),R) : V ⊂ Ω, u(φ(x)) ≥ 0 and

m
∑

i,j=1

aij(x)XiXj(u ◦ φ)(x) ≤ 0 for every x ∈ V

}

=

=

{

u ∈ C2(φ(V ),R) : φ(V ) ⊂ Ω̃, u(y) ≥ 0 and

m
∑

i,j=1

aij(φ
−1(y))YiYj(u)(y) ≤ 0 for every y ∈ φ(V )

}

for every A ∈ Mm(λ,Λ). Putting Ã(y) = A(φ−1(y)), of course we have Ã ∈
Mm(λ,Λ). Hence, KA

Ω̃
is exactly what we would have naturally denoted by

KÃ
Ω̃
in order to define a double ball (respectively, a critical density) property

for horizontally elliptic operators with respect to {Y1, . . . , Ym} in (G̃, d̃, µ).
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Remark 3.3.5. Since we have already remarked that another choice for

the basis of the first layer does not affect the validity of our properties, we

could state that the double ball (critical density) property for horizontally

elliptic operators w.r.t g1 in (G, d, |·|) implies the double ball (critical density)

property for horizontally elliptic operators w.r.t dφ(g1) in (G̃, d̃, µ).

In [3] (Theorem 2.2.18) it is also proved that there is a “canonical” way

to build up an isomorphism from a Carnot group to an homogeneous one:

via the inverse of the exponential map we pass from the Carnot group to

its algebra and then we identify the algebra with RN by choosing a basis

for the algebra adapted to the stratification. Why is it “canonical” if it

depends on the choice of the adapted basis? After having fixed a stratification

g1⊕. . .⊕gr, if we choose two different bases adapted to it, we get two different

homogeneous Carnot groups G1 = (RN , ◦1, δλ) and G2 = (RN , ◦2, δλ). But

there is a linear isomorphism between them given by an invertible diagonal

blocks matrix C (see [3], Remark 2.2.20), where the dimension of the i-th

blocks corresponds to the dimension of gi. By exploiting the block-form of C,

we can transfer any homogeneous symmetric norm in G1 to any homogeneous

symmetric norm in G2. Since the norms in an homogeneous Carnot group

are all equivalent, we have just seen how to handle them. That’s why we are

going to give the following definitions.

Definition 3.3.6. (Double Ball Property in G) Let G be an N - dimen-

sional Carnot group of step r with m generators. We say that the double

ball property holds true in G if there exists a stratification of g such that the

double ball property for horizontally elliptic operators is satisfied in (G̃, d, |·|)
with respect to Xj’s (Definition 3.2.6) for every homogeneous Carnot group

G̃ = (RN , ◦, δλ) canonically isomorphic to G, for every homogeneous sym-

metric norm d in G̃ and for every choice of the generators X1, . . . , Xm.

Definition 3.3.7. (Critical Density in G) Let G be an N -dimensional

Carnot group of step r with m generators. We say that the critical density

property holds true in G if there exists a stratification of g such that the criti-

cal density property for horizontally elliptic operators is satisfied in (G̃, d, |·|)
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with respect to Xj’s (Definition 3.2.7) for every homogeneous Carnot group

G̃ = (RN , ◦, δλ) canonically isomorphic to G, for every homogeneous sym-

metric norm d in G̃ and for every choice of the generators X1, . . . , Xm.

We have seen in this section it is enough to prove the double ball property

for one fixed homogeneous group G̃, for one fixed homogeneous norm d in

G̃ and for a fixed set of generators. On the other hand, if the double ball

properties holds true in G for a certain stratification, in order to prove the

critical density it is enough to do it for some fixed G̃, d and {X1, . . . , Xm}
(w.r.t. the same stratification).

Note 3.3.8. Definition 3.3.6 and 3.3.7 are the last (but hopefully not the

least) definitions we give about the double ball and the critical density prop-

erties.





Chapter 4

Double Ball Property

The starting point of this chapter is our proof of Theorem 2.1.3. The

idea that the double ball property is related to a kind of solvability for an

exterior Dirichlet problem is transferred here in the setting of homogeneous

Carnot groups. In the particular case of step two Carnot groups we prove

the validity of the double ball property: this result can also be found in our

work [34].

4.1 Interior barriers in homogeneous settings

We fix an homogeneous Carnot group G = (RN , ◦, δλ), an homogeneous

symmetric norm d and a system of generators X1, . . . , Xm. The main tool

of the approach we want to outline is the existence of some interior barrier

functions. They have to play the role of the Hopf-type barrier in the proof of

Theorem 2.1.3. The important feature of these barriers for LA is that they

are uniform for A ∈Mm(λ,Λ): they have to be independent of the coefficients

of the matrix A(x) and of their regularity. Let us give the definition.

Definition 4.1.1. Let O be an open set of RN with non-empty boundary. Fix

x0 ∈ ∂O and 0 < λ ≤ Λ. A function h is an interior Lλ,Λ-barrier function

for O at x0 if

· h is a C2 function defined on an open bounded neighborhood U of x0,

49
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· h and U depend just on O, x0,Λ,λ (and on G, d and the Xj’s),

· LAh ≤ 0 in U for any A ∈Mm(λ,Λ),

· h(x0) = 0,

· {x ∈ U : h ≤ 0}r {x0} ⊆ O.

Looking at the definition, we can recognize that this is a kind of Bouligand

type barrier for the complement of O. In [34] we considered the case of step

two Carnot groups and we proved that the existence of an interior Lλ,Λ-barrier

for B1(0) at every point of its boundary implies the double ball property.

Here we want to generalize this fact to every homogeneous Carnot group and

every bounded open neighborhood of the origin.

Lemma 4.1.2. Let T be a compact subset of a bounded open set O ⊂ RN .

There exists ν0 > 1 such that

δνT ⊂ O

for all ν ∈ [1, ν0].

Proof. The sets T and RN r O are close and disjoint. Thus, their distance

δ is a positive number. Since T is bounded, there exists M > 0 such that, if

x = (x1, . . . , xN) ∈ T , we have |xj| ≤ M . Therefore, for x ∈ T and ν ≥ 1,

we get

dist(δν(x), T ) ≤ ‖δν(x)− x‖ ≤M

N
∑

j=1

(νσj − 1).

It is easy to choose ν0 > 1 such that supx∈T dist(δν(x), T ) < δ for all ν ∈
[1, ν0]. �

Let us fix a bounded open set B ⊂ RN such that 0 ∈ B. For any r > 0,

we denote by Br the set δrB. By the boundedness of B and the structure of

the dilations, there exist R0 ≥ r0 > 0 such that

Br0 ⊆ B1(0) ⊆ BR0 . (4.1)



4.1 Interior barriers in homogeneous settings 51

Keeping in mind (3.4), we denote

KA
0 =

{

u ∈ C2 (V,R) : B2 ⊆ V, u ≥ 0 and LAu ≤ 0 in B2

}

= KA
Ω(B2).

The following lemma generalizes what we have seen for Theorem 2.1.3 and is

the key fact: it is an application of the Weak Maximum Principle (Theorem

3.2.5).

Lemma 4.1.3. Suppose that, for some 0 < λ ≤ Λ, there exists an interior

Lλ,Λ-barrier function for B at every x0 ∈ ∂B. Then there exists 1 < ν < 2

such that, for any A ∈Mm(λ,Λ), if u ∈ KA
0 with u ≥ 1 in B, we have

u ≥ 1

2
in Bν .

Proof. Fix A ∈ Mm(λ,Λ) and x0 ∈ ∂B. Take the barrier function h = hx0 ,

which is defined in U = Ux0 . If we put V = (U ∩ B2) r B, we have that

h ≥ 0 and LAh ≤ 0 in V . Let us now consider the boundary ∂V = Γ1 ∪ Γ2,

where Γ1 = ∂V ∩ ∂B and Γ2 = ∂V r Γ1. The number m = infΓ2 h is strictly

positive since {x ∈ ∂V : h(x) = 0} = {x0}. Thus, the function w = 1− 1
m
h

is well defined. We get

LAw = − 1

m
LAh ≥ 0 in V, w ≤ 1 on Γ1 and w ≤ 0 on Γ2.

Hence, if u ∈ KA
0 with infB u ≥ 1, we have

LAu ≤ LAw in V, u ≥ w on ∂V.

By Theorem 3.2.5, u ≥ w in V . Since w(x0) = 1, there exists an open

neighborhood Wx0 of x0 contained in U ∩ B2 where w ≥ 1
2
. The sets Wx0

depend only on the barrier functions and on B: they are in fact independent

of the matrix A. The compact set ∂B is contained in the open set O =

∪x0∈∂BWx0 . By Lemma 4.1.2, there exists ν > 1 such that (Bν r B) ⊂ O.

Therefore, we deduce

u ≥ 1

2
on Bν

for all u ∈ KA
0 . �
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Now, in order to get the double ball property, we gather some considera-

tions present in Remark 3.2.8 and Proposition 3.3.3.

Proposition 4.1.4. Suppose that, for any 0 < λ ≤ Λ, there exists an interior

Lλ,Λ-barrier function for B at every point of ∂B. Then, the double ball

property holds true in G.

Proof. The condition (4.1) says that the sets x0◦BR are somehow equivalent

balls with respect to the d-balls BR(x0). Proposition 1.4.5 and Proposition

3.3.3 suggest us how to handle equivalent balls. Let us give the details.

Fix 0 < λ ≤ Λ and A ∈ Mm(λ,Λ). By putting ηD = 4R0

r0
, take a d-ball

BηD(0) ⊂ Ω and a function u ∈ KA
Ω(BηD(0)) with u ≥ 1 in B1(0). Consider

the function v1 = u ◦ δr0 . By definition (see also (3.5)), v1 ∈ KA1
Ω (B ηD

r0

(0))

with v1 ≥ 1 in B 1
r0

(0), where A1(x) = A(δr0(x)). Since we have B 1
r0

(0) ⊇ B,

B ηD
r0

(0) ⊇ BηD and ηD > 2, we get v1 ∈ KA1
0 and v1 ≥ 1 in B. By the last

lemma, the existence of a Lλ,Λ-barrier function for ∂B (and the fact that

A1 ∈Mm(λ,Λ)) implies v1 ≥ 1
2
in Bν for some fixed 1 < ν < 2. Now we put

v2 = 2v1 ◦ δν = 2u ◦ δr0ν . Thus, since ηD ≥ 4 > 2ν, we have v2 ∈ KA2
0 where

A2(x) = A1(δν(x)) = A(δr0ν(x)) ∈Mm(λ,Λ). Moreover, v2 ≥ 1 in B. Hence,

Lemma 4.1.3 implies again v2 ≥ 1
2
in Bν , i.e. v1 ≥ 1

4
in Bν2 . If ν

2 ≥ 2R0

r0
we

are done because in this case we get

u ≥ 1

4
in Br0ν2 ⊇ B2R0 ⊇ B2(0).

If ν2 < 2R0

r0
, the argument can be reapplied. As a matter of fact, let n0 be the

first integer such that νn0 ≥ 2R0

r0
: the existence of n0 is provided by ν > 1.

For any positive integer n < n0, we put

vn+1 = 2vn ◦ δν = 2nv1 ◦ δνn = 2nu ◦ δr0νn .

We can iterate the procedure since at every step we have vn+1 ≥ 1 in B and,

ensured by ηD ≥ 2νn, we have also vn+1 ∈ K
An+1

0 where An+1(x) = An(δν(x)).

Therefore, at the last step we get vn0 ≥ 1
2
in Bν , that is

u ≥ 1

2n0
=: γ in Br0ν

n0 ⊇ B2R0 ⊇ B2(0).
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In Remark 3.2.8, we have seen how to handle the case of generic d-balls

BηDR(x0) ⊂ Ω. Thus, if u ∈ KA
Ω(BηDR(x0)) with u ≥ 1 in BR(x0), we have

u ≥ γ in B2R(x0) (with the same constants ηD, γ). We stress that ηD depends

just on r0, R0 (i.e. on B, d,G) and γ depends jut on ν (i.e. on λ,Λ and the

barriers on ∂B). �

Thus, the double ball problem is “reduced” to finding the barrier functions

we have described. The Hopf-type functions we have used for the euclidean

case works in our more general setting for a large class of points.

Lemma 4.1.5. Let B0 be a bounded open set defined by

B0 = {x ∈ R
N : F (x) < 0},

where F is a real-valued function. Fix x0 ∈ ∂B0. Suppose that F is smooth

near x0 and

∇XF := (X1F, . . . , XmF ) 6= 0

at x0. Then, for any 0 < λ ≤ Λ, there exists an interior Lλ,Λ-barrier function

for B0 at x0.

Proof. Since F is smooth near x0 and ∇F (x0) 6= 0, we can consider an

euclidean ball Be
ρ(ξ0) tangent to ∂B0 at x0 such that Be

ρ(ξ0)r{x0} ⊂ B0. To

this aim, let us fix

ξ0 = x0 − ρ
∇F (x0)
‖∇F (x0)‖

with ρ small enough (depending on x0, F ). As in the proof of Theorem 2.1.3,

let us consider the function

h(x) = e−αρ2 − e−α‖x−ξ0‖2 .

The positive constant α will be fixed later on. This function is strictly positive

out of Be
ρ(ξ0) and it vanishes on the sphere. By using the notations of Remark

3.2.2, for j = 1, . . . ,m we can compute

Xjh(x) = 2αe−α‖x−ξ0‖2
N
∑

l=1

cjl(x)(x− ξ0)l = 2αe−α‖x−ξ0‖2
(

C(x)(x− ξ0)
)

j
.
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For every λ ≤ Λ and A ∈Mm(λ,Λ), by the formula (3.3) we get

LAh(x) = 2αe−α‖x−ξ0‖2
(

Tr(Ct(x)A(x)C(x)) +
N
∑

l=1

bl(x)(x− ξ0)l+

− 2α
〈

A(x)
(

C(x)(x− ξ0)
)

,
(

C(x)(x− ξ0)
)〉

)

≤

≤ 2αe−α‖x−ξ0‖2 (NΛΣC +Mλ,Λ − 2αλ‖C(x)(x− ξ0)‖2
)

=: H(x),

where we denoted by

ΣC = max
x∈B0

{λC(x) : λC(x) is eigenvalue of Ct(x)C(x)}

(see Remark 3.3.1) and by Mλ,Λ = maxx∈B0
{∑N

l=1 |bl(x)| |(x− ξ0)l|}. The

fact that we can take a bound for bl’s which is uniform for A ∈ Mm(λ,Λ)

is justified in the proof of Theorem 3.2.5. That’s why we can state that

the function H depends on λ,Λ, x0, F,Xj , but it does not depend on the

coefficients of the matrix A. We also remark that

C(x0)(x0 − ξ0) =
ρ

‖∇F (x0)‖
C(x0)∇F (x0) =

ρ

‖∇F (x0)‖
∇XF (x0) 6= 0

by our key hypothesis. Hence, if we choose

α >
‖∇F (x0)‖2

ρ2 ‖∇XF (x0)‖2
NΛΣC +Mλ,Λ

2λ
,

we get H(x0) < 0. Therefore, there exists an open bounded neighborhood U

of x0 (depending just on the function H) where LAh ≤ H < 0. The function

h satisfies all the properties required to be an interior Lλ,Λ-barrier function

for B0 at x0. �

Definition 4.1.6. Let B0 be a bounded open subset of RN with a smooth

boundary. We say that a point x0 ∈ ∂B0 is characteristic for ∂B0 (with

respect to the vector fields X1, . . . , Xm) if all the vectors X1(x0), . . . , Xm(x0)

are tangent to ∂B0 at x0.
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Suppose B0 is given by B0 = {x ∈ RN : F (x) < 0} for some smooth

real-valued function F such that ∇F does non vanish at any point of ∂B0.

Then, since the normal direction to ∂B0 at x0 is given by ∇F (x0), x0 is

characteristic for ∂B0 iff the horizontal gradient ∇XF (x0) = 0.

Since the vector fields X1, . . . , Xm satisfy the Hörmander condition, a

result by Derridj ([13], Théorème 1) tells us that almost every point of ∂B0

(with respect to the surface measure on ∂B0) is non-characteristic for ∂B0,

provided that B0 is a bounded open set with smooth boundary. Thus, by

Lemma 4.1.5, we are able to build a barrier at almost every point of any open

bounded neighborhood B of the origin with smooth boundary. The hope of

finding such a B totally without characteristic points is frustrated by the

following example.

Example 4.1.7. In the Heisenberg group H = H1, fix the generators X1 =

∂x1 − x2

2
∂x3 and X1 = ∂x2 +

x1

2
∂x3. Take a bounded open neighborhood B

of 0 = (0, 0, 0) with a smooth boundary such that B is defined by a smooth

function F as in Lemma 4.1.5. Suppose B is homeomorphic to the sphere

S2 = {x ∈ R3 : ‖x‖ = 1}. Then, there exists at least one characteristic point

for ∂B0. As a matter of fact, for any x ∈ ∂B we can define

V (x) = V (x1, x2, x3) = (x2,−x1, 2)−
〈

(x2,−x1, 2),
∇F (x)

‖∇F (x)‖

〉 ∇F (x)
‖∇F (x)‖ .

By the regularity of the boundary, ∇F is always different from 0 at the bound-

ary points and so V defines a continuous vector field. Moreover, for any

x ∈ ∂B, V (x) is tangent to ∂B at x (it is a projection on the tangent bundle

of the vector field (x2,−x1, 2)). Since we cannot comb ∂B (i.e. for S2 we

have the hairy ball theorem), it has to exist x0 ∈ ∂B such that V (x0) = 0,

that is the non-null vector (x02,−x01, 2) has to be parallel to ∇F (x0). We

have chosen the vector field (x2,−x1, 2) just because it is orthogonal at every

point to both the vectors X1(x) = (1, 0,−x2

2
) and X2(x) = (0, 1, x1

2
). Hence,

∇F (x0) is orthogonal to both the vectors, i.e.

∇XF (x0) = 0
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4.2 The case of step two Carnot groups

In this section we want to give a conclusive answer to the double ball

problem in the case of an N -dimensional Carnot group of step two with

m generators. Up to fixing a stratification and applying a canonical isomor-

phism (see [3], Theorem 3.2.2, and our Definition 3.3.6), we can thus consider

an homogeneous Carnot group G = (RN , ◦, δλ) such that the composition law

◦ is defined by

(x, t) ◦ (x1, t1) =
(

x+ x1, t+ t1 +
1

2
〈Bx, x1〉

)

, (4.2)

for (x, t), (x1, t1) ∈ Rm × Rn = RN . Here we have denoted by 〈Bx, x1〉
the vector of Rn whose components are

〈

Bkx, x1
〉

(for k = 1, . . . , n) and

B1, . . . , Bn are m ×m linearly independent skew-symmetric matrices. The

group of dilations is defined as

δλ((x, t)) = (λx, λ2t)

and the inverse of (x, t) is (−x,−t). We can choose as homogeneous sym-

metric norm the function d : RN −→ R such that

d ((x, t)) =
(

‖x‖4 + ‖t‖2
)

1
4 ;

from here on we denote by ‖·‖ both the euclidean norms in Rm and in Rn.

Hence, we have BR(x0) = x0 ◦BR(0) where

BR(0) = {(x, t) ∈ R
N : ‖x‖4 + ‖t‖2 < R4}.

Let us fix m vector fields generating the Lie algebra of G, for example the

ones of the Jacobian basis: they are given by

Xi(x, t) = ∂xi
+

1

2

n
∑

k=1

(Bkx)i∂tk for i = 1, . . . ,m. (4.3)

By exploiting the approach we have drawn, we want to prove the double ball

property for horizontally elliptic operators in this setting. In particular, in
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order to apply Proposition 4.1.4, we are going to find, for any λ ≤ Λ, explicit

interior Lλ,Λ-barrier functions for B1(0) at every point of ∂B1(0). At the

non-characteristic points of ∂B1(0), we know how to do by Lemma 4.1.5.

Remark 4.2.1. We have already reminded that the set of the characteristic

points of ∂B1(0) has surface measure zero. Actually, we can explicitly say

which points are characteristic. If we denote with F the defining function of

B1(0), i.e.

F (x, t) = d4((x, t)) = ‖x‖4 + ‖t‖2 − 1,

we have

∇XF (x, t) = (X1F, . . . , XmF )(x, t) = 4 ‖x‖2 x+
n
∑

k=1

tkB
kx.

Since the matrices Bk’s are skewsymmetric, the vectors x and Bkx are or-

thogonal for every k = 1, . . . , n. This implies that

∇XF (x, t) = 0 ⇔ x = 0.

Thus, the characteristic set is {(0, t) : ‖t‖ = 1}, which is an n−1-dimensional

sphere.

For any t0 = (t01, . . . , t
0
n) 6= 0, we know that the matrix

∑n

k=1 t
0
kB

k is not

the null matrix. Actually, for an homogeneous Lie group with a composition

law as in (4.2), the linear independence of the matrices Bk’s is equivalent to

the Carnot property (see [3], Section 3.2).

Lemma 4.2.2. Let t0 = (t01, . . . , t
0
n) be a unit vector such that the matrix

∑n

k=1 t
0
kB

k is non singular. Then, for any λ ≤ Λ, we can find an interior

Lλ,Λ-barrier for B1(0) at (0, t0).

Proof. Consider the function

hM(x, t) = e−β − e−β(‖x‖4+‖t′‖2+〈t,t0〉),

where t′ = t− 〈t, t0〉 t0 is the projection of t on the orthogonal of t0 and β is

a positive constant to be fixed. If we define U0 = {(x, t) ∈ RN : 〈t, t0〉 > 0},
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we get that the set {(x, t) ∈ U0 : hM(x, t) ≤ 0} r {(0, t0)} is contained in

B1(0). Moreover, by denoting t′ = (t′1, . . . , t
′
n), we have ∂tk ‖t′‖

2 = 2t′k. Thus,

a straightforward calculation shows that

XjhM(x, t) = βe−β(‖x‖4+‖t′‖2+〈t,t0〉)

(

4 ‖x‖2 xj +
n
∑

k=1

t′k(B
kx)j+

+
1

2

n
∑

k=1

t0k(B
kx)j

)

=: βe−β(‖x‖4+‖t′‖2+〈t,t0〉)vj(x, t).

For any A ∈Mm(λ,Λ), by using that the product of a symmetric matrix and

a skew-symmetric matrix has zero trace, we get

LAhM(x, t) = βe−β(‖x‖4+‖t′‖2+〈t,t0〉)

(

4 ‖x‖2Tr(A(x, t))+

+ 8 〈A(x, t)x, x〉+
n
∑

k=1

(

t′k +
1

2
t0k

)

Tr
(

A(x, t)Bk
)

+

− 1

2

〈

A(x, t)
n
∑

k=1

t0kB
kx,

n
∑

k=1

t0kB
kx

〉

+
1

2

n
∑

k=1

〈

A(x, t)Bkx,Bkx
〉

− β 〈A(x, t)v(x, t), v(x, t)〉
)

≤ βe−β(‖x‖4+‖t′‖2+〈t,t0〉)

(

4Λ ‖x‖2 (m+ 2) +
Λ

2

n
∑

k=1

∥

∥Bkx
∥

∥

2
+

− λ

2

∥

∥

∥

∥

∥

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

2

− βλ ‖v(x, t)‖2


 .

Put M = maxk{
∥

∥Bk
∥

∥}. Since ∑n

k=1 t
0
kB

k is non singular, we have

∥

∥

∥

∥

∥

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

≥ σ ‖x‖ for every x ∈ R
m,

where σ =
∥

∥(
∑n

k=1 t
0
kB

k)−1
∥

∥. This fact and the orthogonality of x and Bkx
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imply that

‖v(x, t)‖ ≥
∥

∥

∥

∥

∥

4 ‖x‖2 x+ 1

2

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

−
∥

∥

∥

∥

∥

n
∑

k=1

t′kB
kx

∥

∥

∥

∥

∥

≥ 1

2

∥

∥

∥

∥

∥

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

− ‖t′‖nM ‖x‖ ≥
(σ

2
− nM ‖t′‖

)

‖x‖ .

If ‖t′‖ < σ
4nM

, we have ‖v(x, t)‖ ≥ σ
4
‖x‖. Hence, for ‖t′‖ < σ

4nM
, we get

LAhM(x, t) ≤ β

2
‖x‖2 e−β(‖x‖4+‖t′‖2+〈t,t0〉)

(

(8m+ 16 + nM2)Λ− (8 + β)
σ2

8
λ

)

which is not positive if β is big enough. Therefore, the function hM , defined

in the domain U = {(x, t) ∈ U0 : ‖t′‖ < σ
4nM

}, is an Lλ,Λ-barrier. �

Remark 4.2.3. In the Heisenberg group H = Hl with m = 2l generators in

R2l+1, there is just one (2l)× (2l) matrix B which is

B =

(

0 −Il

Il 0

)

.

Such a matrix is non singular: in fact it is an orthogonal matrix. By the last

lemma, we can find a barrier for B1(0) at (0,±1). Thus, we have found a

different proof for the result by Gutiérrez and Tournier ([19], Theorem 4.1)

in Hl. We note that, despite the differences in our techniques, their approach

exploits some kind of barriers which have a paraboloidal shape similar to hM .

In a generic step two Carnot group as in (4.2), the non-singularity of

the matrices
∑n

k=1 t
0
kB

k is not provided. It is easy, indeed, to build some

examples: if m is odd, the skew-symmetry implies the singularity. In the

following proposition, we overcome this difficulty.

Proposition 4.2.4. For any λ ≤ Λ, there exists an interior Lλ,Λ-barrier

function for B1(0) at every point of ∂B1(0).

Proof. By Lemma 4.1.5 and Remark 4.2.1, it is left the case of the points

(0, t0) ∈ ∂B1(0). Thus, fix t0 = (t01, . . . , t
0
n) with ‖t0‖ = 1. Since we have
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proved Lemma 4.2.2, we assume that the matrix
∑n

k=1 t
0
kB

k has a non-trivial

kernel. Let us denote by Q the orthogonal projector on Ker(
∑n

k=1 t
0
kB

k) and

by P the orthogonal projector on Range(
∑n

k=1 t
0
kB

k) = Ker(
∑n

k=1 t
0
kB

k)⊥

(also P is non-null because of the linear independence of the Bk’s). We

remind that x = Px+Qx and

∥

∥

∥

∥

∥

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

≥ σ ‖Px‖ for every x ∈ R
m,

where σ > 0 is the smallest positive singular value of
∑n

k=1 t
0
kB

k. Denote

by N1 the rank of the matrix P : we know that 0 < N1 ≤ m. We put also

M = maxk
∥

∥Bk
∥

∥. For a fixed

γ >
Λ

λ

(

5m

2N1

+
15 +m−N1

N1

+
5nM2

16N1

)

(in particular we note that γ > 2 and γ > Λ
λ
m−N1

N1
), we set

f(x, t) = ‖x‖4 + (‖Qx‖2 − γ ‖Px‖2)2 + ‖t′‖2 + 〈t, t0〉 ,

where t′ = t − 〈t, t0〉 t0 as in Lemma 4.2.2. For a positive constant β to be

fixed later on, we consider

h(x, t) = e−β − e−βf(x,t).

The function h vanishes at (0, t0) and it is negative if and only if f < 1.

Thus, we have

{(x, t) ∈ R
n : h(x, t) ≤ 0, 〈t, t0〉 > 0}r {(0, t0)} ⊂ B1(0).

A straightforward calculation shows that

Xjh(x, t) = βe−βf(x,t)

(

4 ‖x‖2 xj + 4(‖Qx‖2 − γ ‖Px‖2)(Qx− γPx)j

+
n
∑

k=1

t′k(B
kx)j +

1

2

n
∑

k=1

t0k(B
kx)j

)

= βe−βf(x,t)Xjf(x, t).
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For every λ ≤ Λ and A ∈Mm(λ,Λ), we get

LAh(x, t) = βe−βf(x,t)

(

4 ‖x‖2 Tr(A(x, t)) + 8 〈A(x, t)x, x〉+

+ 4(‖Qx‖2 − γ ‖Px‖2)
(

Tr(A(x, t)Q)− γ Tr(A(x, t)P )
)

+

+ 8 〈A(x, t)(Qx− γPx), Qx− γPx〉+

− 1

2

〈

A(x, t)
n
∑

k=1

t0kB
kx,

n
∑

k=1

t0kB
kx
〉

+

+
1

2

n
∑

k=1

〈

A(x, t)Bkx,Bkx
〉

− β 〈A(x, t)∇Xf(x, t),∇Xf(x, t)〉
)

≤ βe−βf(x,t)

(

4Λ ‖x‖2 (m+ 2) + 8Λ(‖Qx‖2 + γ2 ‖Px‖2)+

+ 4(‖Qx‖2 − γ ‖Px‖2)
(

Tr(A(x, t)Q)− γ Tr(A(x, t)P )
)

+

+
Λ

2

n
∑

k=1

∥

∥Bkx
∥

∥

2 − λ

2

∥

∥

∥

∥

∥

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

2

− βλ ‖∇Xf(x, t)‖2


 .

Since γ > Λ
λ
m−N1

N1
, we have

Tr(A(x, t)Q)− γ Tr(A(x, t)P ) ≤ (m−N1)Λ− γN1λ < 0.

We are going to consider two cases. If ‖Px‖2 ≤ 1
γ2 ‖Qx‖2, then in particular

‖Qx‖2 − γ ‖Px‖2 ≥ 2
5
‖x‖2 (since γ > 2). Hence, we get

LAh(x, t) ≤ βe−βf(x,t) ‖x‖2
(

4mΛ + 24Λ +
8

5
((m−N1)Λ− γN1λ) +

+
nM2

2
Λ

)

< 0

because of our choice of γ. Otherwise, if ‖Px‖2 > 1
γ2 ‖Qx‖2, then ‖Px‖2 ≥

1
1+γ2 ‖x‖2 and we have

‖∇Xf(x, t)‖ ≥
∥

∥

∥

∥

∥

4 ‖x‖2 x+ 4(‖Qx‖2 − γ ‖Px‖2)(Qx− γPx)+

+
1

2

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

−
∥

∥

∥

∥

∥

n
∑

k=1

t′kB
kx

∥

∥

∥

∥

∥

≥
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≥ 1

2

∥

∥

∥

∥

∥

n
∑

k=1

t0kB
kx

∥

∥

∥

∥

∥

− ‖t′‖
n
∑

k=1

∥

∥Bkx
∥

∥

≥ σ

2
‖Px‖ − ‖t′‖nM ‖x‖ ≥

(

σ

2
√

1 + γ2
− ‖t′‖nM

)

‖x‖ .

Here we have exploited the orthogonality of the vectors
∑n

k=1 t
0
kB

kx, Px and

Qx. Then, if in addition ‖t′‖ < σ

4nM
√

1+γ2
, we have

‖∇Xf(x, t)‖ ≥ σ

4
√

1 + γ2
‖x‖ .

Therefore we get

LAh(x, t) ≤ βe−βf(x,t) ‖x‖2
(

4Λ(m+ 2) + 4γ(γN1Λ− (m−N1)λ) +

+ 16Λγ2 + Λn
M2

2
− λ

2

σ2

1 + γ2
− βλ

σ2

16(1 + γ2)

)

.

By choosing β big enough, we obtain LAh < 0. Thus, the function h is

an interior Lλ,Λ-barrier for B1(0) at (0, t0) if we consider it on the domain

U =

{

(x, t) : 〈t, t0〉 > 0, ‖t′‖ < σ

4nM
√

1+γ2

}

. �

Putting together the last proposition and Proposition 4.1.4, we have

proved the following theorem, which is the main result of [34].

Theorem 4.2.5. The double ball property holds true in every Carnot group

of step two.

4.3 A naive proof in Métivier groups

The title of this Section forces us to start with a definition.

Definition 4.3.1. Let g be an N -dimensional Lie algebra and let us denote

by z its center. We say that g is a Métivier algebra (or an H-type algebra in

the sense of Métivier) if it admits a vector space decomposition g = g1 ⊕ g2

with

[g1, g1] ⊆ g2 and g2 ⊆ z
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such that, for every η ∈ g∗2, the skew-symmetric bilinear form on g1 defined

by

Bη : g1 × g1 −→ R Bη(X,X
′) = η([X,X ′])

is non degenerate, whenever η 6= 0.

We say that a Lie group is a Métivier group (or an H-type group in the sense

of Métivier) if its Lie algebra is a Métivier algebra.

This definition implies that every Métivier group is a particular stratified

group of step two (see [3], Remark 3.7.2). Moreover, if we look it in coor-

dinates through a canonical isomorphism, we get an homogeneous Carnot

group with composition law as in (4.2), for which every non-vanishing linear

combination of the matrices Bk’s is non singular (see [3], Proposition 3.7.4).

In particular, m has to be even. Every group of Heisenberg type is a Métivier

group ([3], Remark 3.7.5).

Remark 4.3.2. Hence, in an homogeneous Métivier group we have that, for

any unit vector t0 = (t01, . . . , t
0
n) ∈ Rn, the matrix

∑n

k=1 t
0
kB

k is non singular.

By Lemma 4.2.2, we know that the paraboloidal shaped functions denoted

by hM work as Lλ,Λ-barrier for B1(0) at every characteristic point of ∂B1(0).

Therefore, the proof of the double ball we have presented above is simpler in

the setting of Métivier groups.

We are going to give a different proof for the double ball property in

this setting. The approach we have described allows us to choose a basis of

the neighborhoods (i.e. to choose one bounded open neighborhood B of the

origin) which is different from the d-balls BR(x0) (i.e. from B1(0)). How can

we choose such a B? Looking at the proof of Lemma 4.1.5, we recognize that,

in order to find a barrier for B at x0, we exploited the existence of an interior

euclidean ball centered at ξ0 such that v = x0 − ξ0 is a non-characteristic

direction at x0 (that is v is not orthogonal to each Xj(x0)). Since the points

(0, t0) are characteristic for B1(0), it seems reasonable to us to consider a set

B as the one described by the following figure (the horizontal “axis” refers

to ‖x‖ and the vertical one to ‖t‖)
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Let us fix a smooth and convex function g = [0,+∞) −→ R such that

g(0) = 0, g′(0) < 0, g(R) = 1, g′(R) > 0

for some R > 0. Thus, there exists by convexity one point R0 ∈ (0, R) such

that g′(R0) = 0 and g(R0) = min g < 0. Even if it is not needed, let us fix

g(ρ) = 4ρ2 − 3ρ: for such a function R = 1, R0 = 3
8
and g(R0) = − 9

16
. We

define

B := {(x, t) ∈ R
N : g(‖x‖) + ‖t‖2 < 1}.

This set is an open neighborhood of the origin. Moreover it is bounded, since

we have

(x, t) ∈ B ⇒ ‖x‖ < R = 1, ‖t‖ <
√

1− g(R0) =
5

4
.

Remark 4.3.3. The boundary ∂B = {(x, t) ∈ R
N : g(‖x‖) + ‖t‖2 = 1} is

a smooth hypersurface of RN except from the points (0, t0) with ‖t0‖ = 1.

Thus, the set of non-regular points is an n− 1-dimensional sphere and it has

surface measure zero. The defining function of ∂B is

F (x, t) = g(‖x‖) + ‖t‖2 − 1.

It turns out that the horizontal gradient of F is non-vanishing at the regular

points. As a matter of fact, we have

∇XF (x, t) =
g′(‖x‖)
‖x‖ x+

n
∑

k=1

tkB
kx.

By the skew-symmetry, the vectors x and
∑n

k=1 tkB
kx are orthogonal vectors

of Rm. Since x 6= 0 at a regular point, we get

∇XF (x0, t0) = 0 ⇔ g′(‖x0‖) = 0 and
n
∑

k=1

t0kB
kx0 = 0
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for a regular point (x0, t0) ∈ ∂B where t0 = (t01, . . . , t
0
n). Our hypotheses on g

imply that g′(‖x0‖) = 0 iff ‖x0‖ = R0. On the other hand, if
∑n

k=1 t
0
kB

kx0 =

0, the fact that the group is Métivier implies that t0 = 0 and so we have

g(‖x0‖) = 1. Since g(R0) 6= 1, it is not possible that ∇XF (x0, t0) = 0 at a

regular point. In other terms, each regular point of ∂B is non-characteristic.

Hence, we know by Lemma 4.1.5 how to build a barrier at every point

(x0, t0) ∈ ∂B with x 6= 0. The other points are going to be considered in the

following proposition.

Proposition 4.3.4. For any 0 < λ ≤ Λ, there exists an interior Lλ,Λ-barrier

function for B at every point of ∂B.

Proof. Fix 0 < λ ≤ Λ. By the last remark, we are left with the case of

the boundary points (0, t0) for any fixed unit vector t0 = (t01, . . . , t
0
n). We

are going to build a conic shaped barrier. To this aim, we fix a number

γ > − 2
g′(0)

= 2
3
. If the point (x, t) satisfies γ ‖t− t0‖ ≤ ‖x‖, we have

g(‖x‖) + ‖t‖2 ≤ g(‖x‖) + (‖t− t0‖+1)2 ≤ g(‖x‖) + (
1

γ
‖x‖+1)2 =: G(‖x‖).

Since G(0) = 1 and G′(0) = g′(0)+ 2
γ
< 0, there exists δ > 0 such that G < 1

in the interval (0, δ). Thus we get

{(x, t) ∈ R
N : γ ‖t− t0‖ ≤ ‖x‖ < δ}r {(0, t0)} ⊆ B.

Let us define the function

h(x, t) = 1− e‖x‖
2−γ2‖t−t0‖2 .

We have just seen that {(x, t) : ‖x‖ < δ, h(x, t) ≤ 0} r {(0, t0)} ⊆ B. For

j = 1, . . . ,m, we can compute

Xjh(x, t) = −e‖x‖2−γ2‖t−t0‖2
(

2xj − γ2
n
∑

k=1

(t− t0)k(B
kx)j

)

=: −e‖x‖2−γ2‖t−t0‖2vj(x, t).
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For A ∈Mm(λ,Λ), a straightforward calculation shows that

LAh(x, t) = e‖x‖
2−γ2‖t−t0‖2

(

−2Tr(A(x, t)) +
γ2

2

n
∑

k=1

〈

A(x, t)Bkx,Bkx
〉

+

− 〈A(x, t)v(x, t), v(x, t)〉
)

≤

≤ e‖x‖
2−γ2‖t−t0‖2

(

−2mλ+
γ2

2
Λ

n
∑

k=1

∥

∥Bkx
∥

∥

2 − λ ‖v(x, t)‖2
)

=

= : H(x, t).

By definition, we have H(0, t0) = −2mλ < 0. Hence, there exists an open

neighborhood U0 of (0, t0) where LAh ≤ 0 for any A ∈ Mm(λ,Λ). The set

U0 depends just on the function H and thus it depends on A just through

λ,Λ. Therefore the function h, defined in U = {(x, t) ∈ U0 : ‖x‖ < δ}, is an
interior Lλ,Λ-barrier for B at (0, t0). �

Let us recap we have just showed a different proof for the double ball

property in the Métivier case (and in particular for the Heisenberg case):

the approach is the same of Section 4.1, but there are different barriers and

“balls” with respect to Section 4.2.



Chapter 5

Critical density property

In this last chapter we generalize a result in [19] by Gutiérrez and Tournier

for the Heisenberg group by identifying a class for which the critical density

property is uniformly satisfied. Our approach works in any H-type groups.

The class we identify is different from the one in [19] and it is related to a

Landis condition. The resulting invariant Harnack inequality we report here

is also our main result in [35].

5.1 The case of H-type groups

We have to start with a definition.

Definition 5.1.1. An H-type algebra is a finite-dimensional real Lie algebra

(g, [·, ·]) which can be endowed with an inner product 〈·, ·〉 such that

[z⊥, z⊥] = z,

where z is the center of g. Moreover, for any fixed z ∈ z, the map Jz : z
⊥ −→

z⊥ defined by

〈Jz(v), w〉 = 〈z, [v, w]〉 ∀w ∈ z⊥

is an orthogonal map whenever 〈z, z〉 = 1. We say that a simply connected

Lie group is an H-type group if its Lie algebra is an H-type algebra.

67
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The H-type groups are particular Carnot groups of step two: a stratifica-

tion is just given by

g = z⊥ ⊕ z.

We are going to denote b = z⊥ and ‖q‖ = 〈q, q〉 for q ∈ g. Moreover,

we put m = dim(b) and n = dim(z). The associated homogeneity in the

Lie group is thus given by the dilations δλ((x(1), x(2))) = (λx(1), λ
2x(2)) (for

(x(1), x(2)) ∈ RN = Rm × Rn) and the homogeneous dimension is equal to

Q := m+ 2n.

We now fix an orthonormal (with respect to 〈·, ·〉) basis X1, . . . , Xm for b

and an orthonormal basis Z1, . . . , Zn for z. Then X1, . . . , Xm, Z1, . . . , Zn is

an orthonormal basis for g and we have

v + z =
m
∑

j=1

〈v,Xj〉Xj +
n
∑

k=1

〈z, Zk〉Zk ∀ v ∈ b, ∀ z ∈ z.

For any z ∈ z, the map Jz satisfies, among the others, the following properties

〈Jz(v), v〉 = 0 and ‖Jz(v)‖ = ‖z‖ ‖v‖ ∀ v ∈ b. (5.1)

A proof of these facts and other nice properties of H-type groups can also be

found in [12] (Section 6) and in [3] (Chapter 18).

Example 5.1.2. As it is well-known, the Heisenberg-Weyl group is a par-

ticular H-type group. If the generic point of R2k+1 is given by (x1, . . . , x2k, z)

and the vector fields

Xj = ∂xj
− xj+k

2
∂z, Xj+k = ∂xj+k

+
xj

2
∂z (for j ∈ {1, . . . , k}),

Z = Z1 = ∂z

form the usual basis of the Lie algebra, then the standard inner product in-

duced by the basis {X1, . . . , X2k, Z} is the one needed for satisfying Definition

5.1.1. Furthermore, in this case the map J(·) is given by

JcZ

(

2k
∑

j=1

ajXj

)

= c

k
∑

j=1

(−aj+kXj + ajXj+k).
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Following Kaplan’s notations, we define the functions v : G −→ b and

z : G −→ z by the following relation

x = Exp(v(x) + z(x)), for x ∈ G,

where Exp denotes the exponential map. We remind that Exp is a globally

defined diffeomorphism with inverse denoted by Log. Thus, for any x ∈ G

we have

v(x) :=
m
∑

j=1

〈Log(x), Xj〉Xj, and z(x) :=
m
∑

k=1

〈Log(x), Zk〉Zk.

The approach of Chapter 1 requires the choice of an homogeneous symmetric

norm in order to define a quasi distance d and the d-balls. In the H-type

groups there are some preferable choices. As a matter of fact, let us consider

the function

ϕ(x) = (‖v(x)‖4 + 16 ‖z(x)‖2) 2−Q
4 .

Kaplan proved in [22] (Theorem 2) that there exists a positive constant k such

that kϕ is the fundamental solution at the origin (in the sense of Definition

5.3.1 in [3]) of the sub-Laplacian ∆G =
∑m

j=1X
2
j .

Definition 5.1.3. A ∆G-gauge on G is an homogeneous symmetric norm d,

smooth out of the origin and satisfying

∆G(d
2−Q) = 0 in Gr {0}.

If Γ is a fundamental solution at the origin for ∆G, then

d(x) :=

{

(Γ(x))
1

2−Q if x 6= 0

0 if x = 0

is a ∆G-gauge on G (see [3], Proposition 5.4.2).

Thus, as homogeneous symmetric norm we choose the following ∆G-gauge

function

d(x) := (‖v(x)‖4 + 16 ‖z(x)‖2) 1
4 . (5.2)
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Danielli, Garofalo and Nhieu proved in [12] (Theorem 6.8) that d has also

the remarkable property to be horizontally-convex. A direct proof of the

fact that d is an homogeneous symmetric norm can be found in [3] (Remark

18.3.2). Hence, the d-ball of radius R centered at x0 has the following form

BR(x0) = x0 ◦BR(0) = x0 ◦ {x ∈ G : ‖v(x)‖4 + 16 ‖z(x)‖2 < R4}.

Note 5.1.4. In every homogeneous Carnot group the balls of the gauge have

a great importance in the analysis of the sub-Laplacian and more in general

in the geometry of the group. As a matter of fact, it is very well-known that

some mean-value representation formulas hold true on such balls (see e.g.

[3], Theorem 5.5.4). In what follows we will use the kernel of the surface

mean-value formula at 0. We recall it is given by

ψ0(ξ) =
‖∇Xd(ξ)‖2
‖∇d(ξ)‖ and

β

RQ−1

∫

∂BR(0)

ψ0(ξ) dσ(ξ) = 1 (5.3)

for some positive constant β. Here we have denoted by dσ the (N − 1)-

dimensional Hausdorff measure and, with an abuse of notations, by ‖·‖ even

the euclidean norms in Rm and in RN .

For A ∈Mm(λ,Λ) we are interested in the horizontally elliptic operators

LA as in (3.2), where the Xj’s are the orthonormal vector fields we have

fixed. We want to prove a critical density estimate for KA
Ω. To this aim,

we follow the main steps of the proof adopted in [19]. The crucial point is

the existence of a very specific barrier function. To show this fact, let us

compute explicitly the horizontal gradient ∇Xd and the horizontal Hessian

matrix (XiXjd)
m
i,j=1. We put

φ = d4 = ‖v(x)‖4 + 16 ‖z(x)‖2 ,

which is a smooth function in the whole G. If we define for any fixed x ∈ G

the functions

φj(t) = φ(x ◦Exp(tXj)) and φi,j(s, t) = φ(x ◦Exp(sXi) ◦Exp(tXj))
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for s, t ∈ R and i, j ∈ {1, . . . ,m}, by definition we have

Xjφ(x) = φ′
j(0) and XiXjφ(x) =

∂2

∂s∂t
φi,j(0, 0).

We remind that the Campbell-Hausdorff formula for step two Lie algebras

state that

Exp(A) ◦ Exp(B) = Exp

(

A+ B +
1

2
[A,B]

)

∀A,B ∈ g.

Thus, since z(x) ∈ z, we get

Exp
(

v(x ◦ Exp(sXi) ◦ Exp(tXj)) + z(x ◦ Exp(sXi) ◦ Exp(tXj))
)

=

= x ◦ Exp(sXi) ◦ Exp(tXj) =

= Exp(v(x) + z(x)) ◦ Exp
(

sXi + tXj +
st

2
[Xi, Xj ]

)

=

= Exp

(

v(x) + z(x) + sXi + tXj +
st

2
[Xi, Xj ] +

s

2
[v(x), Xi] +

t

2
[v(x), Xj ]

)

.

Since we have

v(x) + sXi + tXj ∈ b and

z(x) +
st

2
[Xi, Xj ] +

s

2
[v(x), Xi] +

t

2
[v(x), Xj] ∈ z,

we deduce

v(x ◦ Exp(sXi) ◦ Exp(tXj)) = v(x) + sXi + tXj and

z(x ◦Exp(sXi) ◦ Exp(tXj)) = z(x) +
st

2
[Xi, Xj ] +

s

2
[v(x), Xi] +

t

2
[v(x), Xj ].

For s = 0, this gives also

v (x ◦ Exp(tXj)) = v(x)+ tXj and z (x ◦ Exp(tXj)) = z(x)+
t

2
[v(x), Xj ].

Now we have an explicit expression for φj(t) and φi,j(s, t) and we can perform

explicit calculations.

Remark 5.1.5. By definition we have

φj(t) = ‖v(x) + tXj‖4 + 16

∥

∥

∥

∥

z(x) +
t

2
[v(x), Xj]

∥

∥

∥

∥

2

=

=
(

‖v(x)‖2 + t2 + 2t 〈v(x), Xj〉
)2

+

+ 16

(

‖z(x)‖2 + t 〈z(x), [v(x), Xj ]〉+
t2

4
‖[v(x), Xj ]‖2

)

.
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Since 〈z(x), [v(x), Xj ]〉 =
〈

Jz(x)(v(x)), Xj

〉

, by differentiating we get

Xjφ(x) = 4
〈

‖v(x)‖2 v(x) + 4Jz(x)(v(x)), Xj

〉

. (5.4)

On the other hand we have

φi,j(s, t) = ‖v(x) + sXi + tXj‖4 +

+ 16

∥

∥

∥

∥

z(x) +
st

2
[Xi, Xj ] +

s

2
[v(x), Xi] +

t

2
[v(x), Xj]

∥

∥

∥

∥

2

=

=
(

‖v(x)‖2 + s2 + t2 + 2s 〈v(x), Xi〉+ 2t 〈v(x), Xj〉+ stδij
)2

+

+ 16

(

‖z(x)‖2 + s2t2

4
‖[Xi, Xj ]‖2 +

s2

4
‖[v(x), Xi]‖2 +

+
t2

4
‖[v(x), Xj]‖2 + st 〈z(x), [Xi, Xj ]〉+ s 〈z(x), [v(x), Xi]〉+

+ t 〈z(x), [v(x), Xj ]〉+
s2t

2
〈[Xi, Xj ], [v(x), Xi]〉+

+
st2

2
〈[Xi, Xj ], [v(x), Xj ]〉

st

2
〈[v(x), Xi], [v(x), Xj ]〉

)

.

By differentiating this formula and observing that

〈[v(x), Xi], [v(x), Xj ]〉 =
n
∑

k=1

〈JZk
(v(x)), Xi〉 〈JZk

(v(x)), Xj〉 ,

we finally get

XiXjφ(x) = 4 ‖v(x)‖2 δij + 8 〈v(x), Xi〉 〈v(x), Xj〉+ 16 〈z(x), [Xi, Xj ]〉+

+ 8
n
∑

k=1

〈JZk
(v(x)), Xi〉 〈JZk

(v(x)), Xj〉 . (5.5)

By the equality (5.4) and the properties in (5.1), we deduce the relation

‖∇Xφ(x)‖2 = 16 ‖v(x)‖2 φ(x),

which implies

‖∇Xd(x)‖2 =
‖v(x)‖2
d2(x)

. (5.6)
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This relation had already been remarked in [12] (Lemma 6.3). On the other

hand, for i, j ∈ {1, . . . ,m} we get

XiXjd(x) = − 3

d(x)
Xid(x)Xjd(x) +

1

4d3(x)
XiXjφ(x) =

=
‖∇Xd(x)‖2 δij − 3Xid(x)Xjd(x)

d(x)
+

+
2

d3(x)

(

〈v(x), Xi〉 〈v(x), Xj〉 + 2 〈z(x), [Xi, Xj ]〉+

+
n
∑

k=1

〈JZk
(v(x)), Xi〉 〈JZk

(v(x)), Xj〉
)

.

If A ∈ Mm(λ,Λ), since the matrix (〈z(x), [Xi, Xj ]〉)mi,j=1 is skew-symmetric

and the product of a symmetric matrix with a skew-symmetric one has zero

trace, we have

LAd(x) =
1

d(x)
〈(Tr(A(x))Im − 3A(x))∇Xd(x),∇Xd(x)〉+

+
2

d3(x)

(

〈A(x)V (x), V (x)〉+
n
∑

k=1

〈A(x)JkV (x), JkV (x)〉
)

(5.7)

where we have denoted the two vectors of Rm

V (x) := (〈v(x), Xj〉)mj=1 and JkV (x) := (〈JZk
(v(x)), Xj〉)mj=1.

We are almost ready to prove our main Lemma, which is the counterpart

of Lemma 3.1 in [19]. Before doing it, let us state the following condition:

we say that a positive definite coefficient matrix A satisfies the δ-Landis

condition in Ω if there exists δ ∈ (0, 2] such that

Tr(A(x))+(Q+2−m) max
‖ξ‖=1

〈A(x)ξ, ξ〉 ≤ (Q+4−δ) min
‖ξ‖=1

〈A(x)ξ, ξ〉 ∀ x ∈ Ω.

(5.8)

We are going to fully discuss the meaning of this condition in the next section.

Lemma 5.1.6. Fix 0 < λ ≤ Λ and 0 < δ ≤ 2. For any open set O such that

O ⊆ B1(0), we consider the function

h(x) = − 1

Q− δ

∫

O

(

d(x−1 ◦ ξ)
)−Q+δ

dξ.
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For ε > 0, let ηε ∈ C∞([0,+∞)) such that 0 ≤ ηε ≤ 1, ηε(ρ) = 0 for

0 ≤ ρ < ε and ηε(ρ) = 1 for ρ ≥ 2ε. Consider the C∞ function

hε(x) = − 1

Q− δ

∫

O

ηε(d(x
−1 ◦ ξ))

dQ−δ(x−1 ◦ ξ) dξ

which converges uniformly to h as ε → 0+. Then, for any compact set

O′ ⊂ O, we have

LAhε(x) ≥ Cλ ∀x ∈ O′, (5.9)

for every A ∈Mm(λ,Λ) satisfying the δ-Landis condition,

and for every 0 < 2ε < d(O′, ∂O) := inf {d(ξ−1 ◦ x) : x ∈ O′, ξ ∈ ∂O}.

The positive constant C has to depend just on δ, d, Q, and the Xj’s.

Proof. Fix α = Q − δ. Put also g(ξ) = − 1
α
d−α(ξ) and gε(ξ) = g(ξ)ηε(d(ξ)).

By the symmetry of d, these functions are symmetric, i.e. g(ξ−1) = g(ξ) and

gε(ξ
−1) = gε(ξ). Thus, we have

hε(x) =

∫

O

gε(x
−1 ◦ ξ) dξ =

∫

O

gε(ξ
−1 ◦ x) dξ.

We note that, for x ∈ B1(0), we have B1(0) ⊆ B2K(x). The smoothness of

gε and the left-invariance of the vector fields imply, for every i, j = 1, . . . ,m,

that

XiXjhε(x) =

∫

O

(

XiXjgε(ξ
−1 ◦ ·)

)

(x)dξ =

∫

O

(XiXjgε) (ξ
−1 ◦ x)dξ =

=

∫

B2K(x)

XiXjgε(ξ
−1 ◦ x)dξ −

∫

B2K(x)rO

XiXjgε(ξ
−1 ◦ x)dξ =

=

∫

B2K(0)

XiXjgε(ξ
−1)dξ −

∫

B2K(x)rO

XiXjgε(ξ
−1 ◦ x)dξ.

Since dξ is also inversely invariant and the balls are symmetric, we get

XiXjhε(x) =

∫

B2K(0)

XiXjgε(ξ)dξ −
∫

B2K(x)rO

XiXjgε(ξ
−1 ◦ x)dξ =

=

∫

∂B2K(0)

Xjgε(ξ)
Xid(ξ)

‖∇d(ξ)‖ dσ(ξ)−
∫

B2K(x)rO

XiXjgε(ξ
−1 ◦ x)dξ,
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where the last equality is justified by the divergence theorem: the vector

fields Xi’s are indeed divergence-free because of the δλ-homogeneity (see [3],

Remark 1.3.7). Assume now 0 < ε < 1. Then, if ξ belongs to a small

open neighborhood of ∂B2K(0), gε(ξ) = g(ξ). Moreover, let O′ be a compact

subset of O such that 0 < 2ε < d(O′, ∂O). If x ∈ O′ and ξ ∈ B2K(x) r O,

then gε(ξ
−1 ◦ x) = g(ξ−1 ◦ x). Thus, for x ∈ O′, we get

XiXjhε(x) =

=

∫

∂B2K(0)

Xjg(ξ)
Xid(ξ)

‖∇d(ξ)‖ dσ(ξ)−
∫

B2K(x)rO

XiXjg(ξ
−1 ◦ x)dξ =

=

∫

∂B2K(0)

Xjd(ξ)Xid(ξ)

(2K)α+1 ‖∇d(ξ)‖ dσ(ξ)−
∫

B2K(x)rO

XiXjd(ξ
−1 ◦ x)

(d(ξ−1 ◦ x))α+1 dξ +

+ (α + 1)

∫

B2K(x)rO

Xid(ξ
−1 ◦ x)Xjd(ξ

−1 ◦ x)
(d(ξ−1 ◦ x))α+2 dξ.

Hence, for A ∈Mm(λ,Λ) and for x ∈ O′, we have

LAhε(x) =

=

∫

∂B2K(0)

〈A(x)∇Xd(ξ),∇Xd(ξ)〉
(2K)α+1 ‖∇d(ξ)‖ dσ(ξ) +

−
∫

B2K(x)rO

∑m

i,j=1 aij(x)XiXjd(ξ
−1 ◦ x)

(d(ξ−1 ◦ x))α+1 dξ +

+ (α + 1)

∫

B2K(x)rO

〈A(x)∇Xd(ξ
−1 ◦ x),∇Xd(ξ

−1 ◦ x)〉
(d(ξ−1 ◦ x))α+2 dξ ≥

≥ λ

(2K)α+1

∫

∂B2K(0)

‖∇Xd(ξ)‖2
‖∇d(ξ)‖ dσ(ξ)−

∫

B2K(x)rO

(LAξ
d)(ξ−1 ◦ x)

(d(ξ−1 ◦ x))α+1 dξ +

+ (α + 1)

∫

B2K(x)rO

〈A(x)∇Xd(ξ
−1 ◦ x),∇Xd(ξ

−1 ◦ x)〉
(d(ξ−1 ◦ x))α+2 dξ,

where Aξ(x) = A(ξ ◦ x). By recognizing that the term ‖∇Xd(ξ)‖2
‖∇d(ξ)‖ = ψ0(ξ) and

using (5.3), we have

LAhε(x) ≥ λ

β
(2K)Q−2−α −

∫

B2K(x)rO

(LAξ
d)(ξ−1 ◦ x)

(d(ξ−1 ◦ x))α+1 dξ +

+ (α + 1)

∫

B2K(x)rO

〈A(x)∇Xd(ξ
−1 ◦ x),∇Xd(ξ

−1 ◦ x)〉
(d(ξ−1 ◦ x))α+2 dξ.
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Exploiting (5.7) and denoting by ΛAx
= max‖ξ‖=1 〈A(x)ξ, ξ〉, we deduce that

LAhε(x) ≥

≥ λ

β
(2K)Q−2−α − 2ΛAx

∫

B2K(x)rO

‖V (ξ−1 ◦ x)‖2 +
∑n

k=1 ‖JkV (ξ−1 ◦ x)‖2

(d(ξ−1 ◦ x))α+4 dξ

+

∫

B2K(x)rO

〈((α + 4)A(x)− Tr(A(x))Im)∇Xd(ξ
−1 ◦ x),∇Xd(ξ

−1 ◦ x)〉
(d(ξ−1 ◦ x))α+2 dξ

=
λ

β
(2K)Q−2−α −

∫

B2K(x)rO

(

(2 + 2n)ΛAx
+ Tr(A(x))

)

‖v(ξ−1 ◦ x)‖2

(d(ξ−1 ◦ x))α+4 dξ +

+ (α + 4)

∫

B2K(x)rO

〈

A(x) ∇Xd(ξ−1◦x)
‖∇Xd(ξ−1◦x)‖ ,

∇Xd(ξ−1◦x)
‖∇Xd(ξ−1◦x)‖

〉

‖v(ξ−1 ◦ x)‖2

(d(ξ−1 ◦ x))α+4 dξ,

where in the last equality we have used the second property in (5.1) and

the orthonormality of the basis X1, . . . , Xm, Z1, . . . , Zn. Assuming that A

satisfies the condition (5.8), then for any unit vector ζ we have

(α + 4) 〈A(x)ζ, ζ〉 = (Q+ 4− δ) 〈A(x)ζ, ζ〉 ≥ Tr(A(x)) + (2 + 2n)ΛAx

uniformly in x. Therefore we finally get

LAhε(x) ≥
λ

β(2K)α+2−Q
=

λ

β(2K)2−δ

for any x ∈ O′.

Note 5.1.7. The proof of this Lemma is the only part of the arguments

where the condition (5.8) is needed. In [19] Gutiérrez and Tournier made

different estimates for LAh and thus they found a different condition written

in terms of the maximum and minimum eigenvalue of A. See the next Section

for further comments between (5.8) and other conditions.

We stress that the uniform convergence of hε (and the resulting continuity

of h) is given by the condition Q − δ < Q, that is δ > 0 (see [3], Corollary

5.4.5). Moreover, in [19] it has been remarked the following nice fact.

Remark 5.1.8. Fix x ∈ G. Among all the possible sets O with a fixed

measure, the one who maximizes the function
∫

O

1

(d(x−1 ◦ ξ))α dξ
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is the ball centered at x. As a matter of fact, consider the ball Bρ(x) where

ρ > 0 is such that |Bρ| = |O|, i.e. |B1| ρQ = |O|. We have

|O rBρ(x)| = |Bρ(x)rO| and

∫

O

1

(d(x−1 ◦ ξ))α dξ =

∫

O∩Bρ(x)

1

(d(x−1 ◦ ξ))α dξ +
∫

OrBρ(x)

1

(d(x−1 ◦ ξ))α dξ

≤
∫

O∩Bρ(x)

1

(d(x−1 ◦ ξ))α dξ +
1

ρα
|O r Bρ(x)|

=

∫

O∩Bρ(x)

1

(d(x−1 ◦ ξ))α dξ +
1

ρα
|Bρ(x)rO|

≤
∫

Bρ(x)∩O

1

(d(x−1 ◦ ξ))α dξ +
∫

Bρ(x)rO

1

(d(x−1 ◦ ξ))α dξ

=

∫

Bρ(x)

1

(d(x−1 ◦ ξ))α dξ

This means that

0 ≥ h(x) ≥ − 1

α

∫

Bρ(x)

(

d(x−1 ◦ ξ)
)−α

dξ.

By the behavior of the Lebesgue measure under translations and dilations,

for such ρ we get

0 ≥ h(x) ≥ −ρ
Q−α

α

∫

B1(0)

(d(ξ))−α
dξ =: −γ |O|

δ
Q . (5.10)

By keeping in mind the arguments in [19] (Theorem 3.2-3.3), we can now

prove the following theorem.

Theorem 5.1.9. Fix 0 < λ ≤ Λ and 0 < δ ≤ 2. The family KA
Ω satisfies

the critical density property for any A ∈ Mm(λ,Λ) satisfying the δ-Landis

condition. The constants ε, ηC , and c depend just on λ,Λ, δ, and the setting

we have fixed.

Proof. Fix A ∈ Mm(λ,Λ) as in the statement. By Remark 3.2.8 we can

prove the property for R = 1
2
and x0 = 0. Let us prove the critical density
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with ηC = 4 and c = 1
2
. Take u ∈ KA

Ω(B2(0)) and suppose there exists a

point x in B 1
2
(0) where u is less than 1

2
. We want to prove that

|{x ∈ B1(0) : u(x) < 1}| ≥ ε |B1(0)|

for some 0 < ε < 1 depending just on λ,Λ, δ and the structural constants of

G.

In order to prove it, we use the barrier of the Lemma 5.1.6 and an auxiliary

function involving φ = d4. In our notations, by (5.5) we get

LAφ(x) = 4 ‖v(x)‖2 Tr(A(x)) +

+ 8 〈A(x)V (x), V (x)〉+ 8
n
∑

k=1

〈A(x)JkV (x), JkV (x)〉 ≤

≤ 4Λ(m+ 2 + 2n) ‖v(x)‖2 ≤ 4(Q+ 2)Λ

for any x ∈ B1(0). If C is the positive constant in (5.9), we set

w(x) =
Cλ

8(Q+ 2)Λ
(u(x) + φ(x)− 1).

By the hypothesis LAu ≤ 0, hence we have LAw ≤ C
2
λ in B1(0). Moreover,

w is nonnegative on ∂B1(0) and

w(x) ≤ Cλ

8(Q+ 2)Λ

(

1

2
+

1

24
− 1

)

= − 7C

128(Q+ 2)

λ

Λ
.

We put O := {x ∈ B1(0) : w(x) < 0}. We remark that O is an open set

such that

O ⊆ {x ∈ B1(0) : u(x) < 1}.

This set is non-empty since x ∈ O. With this choice of O, we build the

barrier h of Lemma 5.1.6 and we consider the continuous function h − w.

We claim that h − w ≤ 0 in O. We already know that this inequality holds

true on ∂O since w ≥ 0 on ∂B1(0). Suppose by contradiction that there

exists ξ0 ∈ O such that h(ξ0) − w(ξ0) = 2δ > 0. Of course, this implies the

existence of ε0 > 0 such that hε(ξ0) − w(ξ0) ≥ δ if ε ≤ ε0. Now, for any

compact set O′ ⊂ O containing ξ0, by the weak maximum principle (Theorem
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3.2.5) we would get max∂O′ (hε − w) ≥ δ if ε < min {1
2
d(O′, ∂O), ε0} since

LA(hε − w) ≥ C
2
λ in O′. Letting ε → 0+, we deduce max∂O′ (h− w) ≥ δ for

any O′ which is a contradiction since h−w ≤ 0 on ∂O. Thus we have proved

the claim. In particular we get

− 7C

128(Q+ 2)

λ

Λ
≥ w(x) ≥ h(x) ≥ −γ |O|

δ
Q

by the relation (5.10). Therefore we have

|{x ∈ B1(0) : u(x) < 1}| ≥ |O| ≥
(

7C

128γ(Q+ 2)

λ

Λ

)
Q
δ

=: ε |B1(0)|

and the theorem is proved. �

5.2 An invariant Harnack inequality under a

Landis condition

In this last section of the thesis we want to sum up and discuss the results

achieved. First of all we go back to the δ-Landis condition (5.8). What does

it mean? Let us state it again in the following equivalent form

sup
x∈Ω

(

Tr(A(x)) + (Q+ 2−m)max‖ξ‖=1 〈A(x)ξ, ξ〉
min‖ξ‖=1 〈A(x)ξ, ξ〉

)

< Q+ 4. (5.11)

This is a Cordes-type condition, in the sense that it imposes a limitation on

the spreading of the eigenvalues of the coefficient matrix A.

Remark 5.2.1. Suppose A ∈Mm(λ,Λ) with

Λ

λ
<
Q+ 3

Q+ 1
,

then the condition (5.11) is satisfied. Moreover, the constant δ in the δ-Landis

condition can be taken as

δ = (Q+ 1)

(

Q+ 3

Q+ 1
− Λ

λ

)

.
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As a matter of fact we have

Tr(A(x)) + (Q+ 2−m)max‖ξ‖=1 〈A(x)ξ, ξ〉
min‖ξ‖=1 〈A(x)ξ, ξ〉

=

=
Tr(A(x))−min‖ξ‖=1 〈A(x)ξ, ξ〉

min‖ξ‖=1 〈A(x)ξ, ξ〉
+ (Q+ 2−m)

max‖ξ‖=1 〈A(x)ξ, ξ〉
min‖ξ‖=1 〈A(x)ξ, ξ〉

+ 1

≤ (m− 1)
Λ

λ
+ (Q+ 2−m)

Λ

λ
+ 1 = (Q+ 1)

Λ

λ
+ 1

which is less than Q + 4 if Λ
λ
< Q+3

Q+1
. Moreover δ can be chosen as we said

since

(Q+ 1)
Λ

λ
+ 1 = Q+ 4− (Q+ 1)

(

Q+ 3

Q+ 1
− Λ

λ

)

= Q+ 4− δ.

Estimates of Cordes-type in subelliptic settings for operators in non-

divergence form are already present in the literature. They have been con-

sidered for the problem of interior regularity of p-harmonic functions in the

Heisenberg group in [16] and in the Grušin plane in [14].

Remark 5.2.2. The original Cordes’ condition introduced in [10] is actually

not very similar to (5.11). For a symmetric positive definite m×m matrix A,

the Cordes’ condition involves the Frobenius norm of A (which is
√

Tr(A2))

and the trace: it is equivalent to asking that

sup
x∈Ω

Tr ((A(x))2)

(Tr(A(x)))2
<

1

m− 1
.

Our condition involves the trace and the operator norms of A and A−1, i.e.

the maximum and the minimum eigenvalue. It is closer in the aspect and

in the purposes to the one used by Landis in [26] (see also [27], Chapter 1,

Section 7). Landis’ condition reads indeed as follows

sup
x∈Ω

Tr (A(x))

min‖ξ‖=1 〈A(x)ξ, ξ〉
< m+ 2.

Before the work [24] by Krylov and Safonov, Landis proved in [25] an in-

variant Harnack inequality for non-divergence elliptic operator under this

additional condition. In this way Landis obtained the same result by Cordes
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but exploiting different techniques. In particular Landis used his extra con-

dition for a reason which is very similar to our needs inside Lemma 5.1.6.

That is why we have referred to (5.8) as the δ-Landis condition.

For 0 < λ ≤ Λ, we denote byMm(λ,Λ, δ) the class of all the A ∈Mm(λ,Λ)

satisfying the δ-Landis condition for some δ ∈ (0, 2]. Both here and in the

previous section we have mentioned that δ has to be between 0 and 2. The

reason is simple and we explain it now.

Remark 5.2.3. There are no matrices satisfying the δ-Landis condition for

δ bigger than 2. We have indeed that

Tr(A(x))

min‖ξ‖=1 〈A(x)ξ, ξ〉
+ (Q+ 2−m)

max‖ξ‖=1 〈A(x)ξ, ξ〉
min‖ξ‖=1 〈A(x)ξ, ξ〉

≥

≥ m+Q+ 2−m = Q+ 2

The same inequality shows us that

A ∈Mm(λ,Λ, 2) ⇐⇒ Λ = λ and A = λIm

Furthermore we note that A ∈Mm(λ,Λ, δ) implies that A ∈Mm(λ,Λ, δ
′) for

any 0 < δ′ ≤ δ.

With these new notations, let us summarize and state again the main

result obtained in the previous section (Theorem 5.1.9).

Theorem 5.2.4. In an H-type group G, let {X1, . . . , Xm} be an orthonormal

basis of the first layer of g and let d be as in (5.2). Consider the horizontal

elliptic operators as in (3.2) built with such a basis. The family KA
Ω in (3.4)

satisfies the critical density property uniformly in the class Mm(λ,Λ, δ).

Note 5.2.5. By Remark 5.2.1 this critical density property is uniform in

the whole class Mm(λ,Λ) if
Λ
λ
< Q+3

Q+1
.

Analogously to Remark 3.3.1 and to the classical Cordes result, we stress

that also the class Mm(λ,Λ, δ) is not stable under change of variables or

generators. That is why it is very important the right choice of the basis
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{X1, . . . , Xm}. For a better understanding, let us make a digression and

some concrete examples.

As remarked by Kaplan in [22] (Corollary 1), there exist H-type algebras

with center of any given dimension. We want to show here a representative

class. Since these algebras are nilpotent of step 2, we look at the model

described in Section 4.2. We recall that the composition law ◦ in R
N = R

m+n

is given by

(x, t) ◦ (x1, t1) =
(

x+ x1, t+ t1 +
1

2
〈Bx, x1〉

)

for (x, t), (x1, t1) ∈ R
N ,

for some suitable m ×m matrices B1, . . . , Bn. According to [3] (Definition

3.6.1), such a group is called prototype group of H-type if the following

properties are satisfied:

· Bj is skew-symmetric and orthogonal for any j ≤ n;

· BiBj = −BjBi for every i, j ∈ {1, . . . , n} with i 6= j.

This class of homogeneous Lie groups belongs to the class of H-type groups

and any H-type group is isomorphic to one of these ([3], Theorem 18.2.1).

Consider the vector fields X1, . . . , Xm of the Jacobian basis as in (4.3). The

standard inner product on g with respect to the basis

X1, . . . , Xm,
∂

∂t1
. . . ,

∂

∂tn

induces on g the structure of H-type algebra. Moreover, in these groups the

exponential map is the identity map on RN and the gauge function d we have

exploited is

d(x, t) = ‖x‖4 + 16 ‖t‖2

(see e.g. [3], Remark 18.3.3).

Example 5.2.6. The Heisenberg-Weyl group is also a particular prototype

group of H-type. It is easy to see that the matrix B showed in Remark 4.2.3

satisfies the assumptions of skew-symmetry and orthogonality. The vector

fields Xj’s of the Jacobian matrix are just the usual generators in Example
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5.1.2.

Let us take other examples from [3] (Remark 3.6.6). In R7 = R4 × R3, we

can consider the matrices

B1 =













0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0













B2 =













0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0













B3 =













0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0













These matrices satisfy the prototype H-type group conditions. This gives us

an example of H-type group with m = 4 and a center of dimension n = 3.

The jacobian vector fields can be easily constructed through (4.3).

Despite the fact that any H-type group is isomorphic to a prototype one,

we have to be careful and we do think it is useful to give another example.

The problem has been already mentioned and it will be clear in a moment:

our result is not stable under a change of the basis {X1, . . . , Xm}. Let us

consider the Lie group on R5 with the usual composition law as in (4.2) and

B = B1 =













0 −1 0 0

1 0 0 0

0 0 0 −2

0 0 2 0













Here m = 4 and n = 1. The matrix B is not orthonormal and so it is not

a prototype H-type group, but it is an H-type group since it is isomorphic

to the Heisenberg group H2. This group is well-studied in the literature.

In [1] (Example 6.6) Balogh and Tyson gave an explicit expression for the

fundamental solution of the canonical sublaplacian ∆G =
∑4

j=1X
2
j , where

Xj = ∂xj
+ 1

2
(Bx)j∂t (j = 1, . . . , 4) are the horizontal fields of the Jacobian
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basis. If we look at that formula, we can recognize it is different from being

a power of ‖v(x)‖4 + 16 ‖z(x)‖2 (or to a power of ‖x‖4 + 16 ‖t‖2 since also

here the exponential map is the identity). In [2] Bonfiglioli proved that

the gauge function associated to ∆G is not even horizontally convex. The

problem is that the Jacobian basis is not orthonormal with respect to the

scalar product inducing in this group the structure of H-type group. Thus,

if we want to apply our result on the horizontally elliptic operator in this

group LA =
∑m

i,j=1 aij(x, t)XiXj we need that our Cordes-Landis condition

is satisfied not for the matrix A but for the matrix DtA(x, t)D where D

brings an orthonormal basis in {X1, . . . , Xm}. It is easy to verify that, in

this situation, the basis X1, X2,
1√
2
X3,

1√
2
X4 is orthonormal. Hence, the right

choice of the vector fields is crucial: this allowed us in particular to make the

right choice of the gauge function related to the sub-Laplacian.

We can now put together the results obtained in the last two chapters and

the approach showed in Chapter 1. We thus deduce an invariant Harnack

inequality in H-type groups for horizontally elliptic operators LA with A ∈
Mm(λ,Λ, δ). The constants appearing in the Harnack inequality will depend

on A ∈ Mm(λ,Λ, δ) just through the constants λ,Λ, δ, the structure of the

group, the orthonormal vector fields Xj ’s and the norm d. In particular, they

are independent of the regularity of A(x)’s coefficients. Once more we stress

that, if we suppose Λ
λ
< Q+3

Q+1
, we have an invariant Harnack inequality which

is uniform in the class of A ∈Mm(λ,Λ).

Theorem 5.2.7. Let G be an homogeneous Lie group whose algebra is of

H-type. Suppose 0 < λ ≤ Λ and 0 < δ ≤ 2. There exist constants C and

η depending just on Λ, λ, δ such that, for any A ∈ Mm(λ,Λ, δ), if we have a

function u with

u ≥ 0 and LAu = 0 in Ω ⊃ BηR(x0),

then it has to be

sup
BR(x0)

u ≤ C inf
BR(x0)

u.
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Proof. Consider (G, d, |·|), where |·| is the Lebesgue measure and d is the

gauge function defined in (5.2). By what we showed in Section 3.1, this is a

doubling quasi metric Hölder space satisfying the reverse doubling condition

and the log-ring condition. Consider the horizontally elliptic operators LA as

in (3.2) and the family of functions KA
Ω defined in (3.4). By Theorem 4.2.5,

the family KA
Ω satisfies the double ball property uniformly for A ∈Mm(λ,Λ)

for any 0 < λ ≤ Λ. Furthermore, for a fixed δ as in the statement, KA
Ω

satisfies the critical density property uniformly for A ∈ Mm(λ,Λ, δ). By

Theorem 1.2.3, KA
Ω satisfies also the power decay property uniformly for

A ∈ Mm(λ,Λ, δ). By keeping in mind Section 2.2, we define the following

subset of KA
Ω

KA
Ω := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and LAu = 0 in V }.

The family KA
Ω verifies all the assumptions of Theorem 1.3.1. Therefore that

theorem gives us the desired Harnack inequality. We thus complete the proof

and the thesis. �
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