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Introduction

This thesis address the issue of generating texts in the style of an existing

author, that also satisfy structural constraints imposed by the genre of the

text. The style of a text is an important factor that determines its quality,

its legibility and its identity. The idea of generating new texts in the style of

an existing author has been popular since the invention of Markov processes,

that have shown to capture, at least in a first approximation, elements of

the style of a corpus [20, 22]. Markov processes represent faithfully local

properties of sequences, at varying orders, which makes them well-suited for

such a task.

However, a text is not just a Markovian sequence, and, notwithstanding

the issue of meaning, it has been shown that texts also exhibit statistical

long-range correlations [2, 1]. For instance, poems or song lyrics often have

rhymes or metric constraints, that are not always defined as local properties.

They induce long-range dependencies that violate the hypothesis of short-

term memory of Markov processes and demand long distance modeling. As

a consequence, most approaches in automatic generation of stylistically im-

itative texts based on Markov models fail to capture higher-level properties

of texts, which limit their use for practical applications, such as machine

translation [40] or automatic summarization [5].

This thesis shows that the framework of Constrained Markov Processes (CMP)

allows to precisely generate texts that are consistent with a corpus, while

being controllable in terms of rhymes and meter, a result that no other

technique, to my knowledge, could achieve to date. Constrained Markov
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12 Introduction

processes addresses the issue of imposing constraints to a Markov process

and generating structured Markov sequences by reformulating Markov Pro-

cesses as constraint satisfaction problems. This thesis will show that lyrics

generation can be formulated and solved in the CMP framework by express-

ing style as a set of Markov constraints, and properties of grammaticality,

rhymes, meter and even to some extent, semantics, as constraints in that

framework.

The first chapter of the thesis discusses related problems. The first part dis-

cuss what is the style of a text from a general point of view. Then it explains

how the style of a text can modeled as a Markov process learned from the

text itself. The second part introduces the field of natural language genera-

tion, starting from a brief history of natural language generation. The final

part of the chapter covers the state of the art literature about two subfields

of natural language generation, that are related to the goal of the thesis:

generation of text with style and poetry generation.

The second chapter describes the framework of Constrained Markov Pro-

cesses. The chapter begins by introducing Markov process and constraint

satisfaction. Each technique is formally described, showing its benefits and

drawbacks when used in the framework of natural language generation. Markov

processes allow for easy and fast generation of texts with style, but without

control on the structure of the generated texts. On the other hand con-

straint satisfaction techniques can easily used to generate texts that satisfy

structural constraints, but at the cost of loosing control on the style of the

generated texts. The final part of this chapter presents Constrained Markov

processes. showing than they can precisely generate texts that are stylisti-

cally consistent with a corpus, while being controllable in terms of structural

constraints.

The fourth chapter explains how to use Constrained Markov processes for

poetry generation. More precisely it shows that poetry generation can be

formulated and solved in the constrained Markov processes framework by

expressing style as a set of Markov constraints, and properties of grammat-
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icality, rhymes, meter and even to some extent, semantics, as control con-

straints.

The fifth chapter shows in details how the approach described in the previous

chapters can be used for the semi-automatic generation of lyrics in the style

of the songwriter Bob Dylan that has the same structure as an existing song

(Yesterday by The Beatles). The same generation process is used to create

lyrics in the style of more than 60 other authors. The results are listed at

the end of this chapter.

Chapter 6 presents an empirical evaluation of the control constraints pre-

sented in chapter 3. The approach presented in the thesis is evaluated by ask-

ing humans to rate texts generated by constrained Markov processes against

texts generated using pure Markov and pure constraint-based approaches.

This evaluation shows that constrained Markov processes generate better

texts in terms of syntactic correctness and semantic relatedness.

The last chapter of the thesis describes in details the implementation of

an augmented text editor, called Perec. This editor is intended to improve

creativity, by helping the user to write lyrics and poetry, exploiting the tech-

niques presented so far. The user can specify the metric and the rhyme

structure of the lyrics, and the concepts to talk about. Perec will then sug-

gest new verses that satisfy all the control constraints imposed by the user.

Finally the user can either accept or discard the proposed verses. The user

can eventually modify the suggestion or incorporate it as apart of human

created lyrics.





Chapter 1

Generating texts with style

1.1 The style of a text

Imagine a scientific paper wrote as a song by Bob Dylan, or a comedy

wrote using the dry lexicon of a software’s documentation. Nevertheless the

results can be somehow interesting, these examples show how the style of a

text is an important factor that determines its quality, its legibility and its

identity.

But what is style? Style can be loosely defined as the way something is done.

People can intuitively recognize if the styles of two novels, stories, or lyrics

are similar or different. Everyone tends to classify people or things according

to their different style, and style is one of the key aspect to appreciate or dis-

like an artwork. Style is a way to communicate our impressions and feelings

when talking about an author. Different kinds of style can be connected to

categories and movements, such as Romantic novel or beat generation. It is

even possible to discuss about the historical evolution of a certain style.

However, is it possible to define the style of a piece of text as precisely as

it is possible to define its length or the color of the ink used to write it? In

other words, is it possible to define some features or quantities that allow

us to directly “measure” the style of a text? The answer to this question

is quite elusive; though we all intuitively recognize different styles when we

15



16 1. Generating texts with style

see or hear them, it is difficult to say anything unified that relates the many

diverse aspects of style.

Many works exist in literature, attempting to solve this problems from a

computational point of view, see for example [32, 7, 4]. These works explore

the nature of style, how it is perceived, and how it is used, specifically in

terms of how information is represented, organized, and transformed in the

production and perception of different styles. These approaches aim to point

towards more general and comprehensive understandings of style and how it

works, as well as to enable development of more useful intelligent computer

systems.

This thesis does not want to answer directly the problem of modeling the

style. Instead, assuming that there exist techniques able to capture and

model the style of a text from a computational point of view, the goal of the

thesis is to show how these techniques can be exploited to generate texts,

and particularly poetry and lyrics, in a predefined style.

Markov processing are one of such techniques able to capture the style of a

text. In Natural Language processing Markov processes (sometimes called

N-grams, Statistical or Generative Language models) are widely used to solve

many type of language processing problems, such as speech recognition,

spelling error detection, document classification and retrieval sentimental

analysis [20]. Several studies (see [41] for a complete survey) have shown

that they are also able to capture the style of the author of a text. The basic

idea is that a given author can be modeled as a Markov process. Then, given

an unknown piece of text, the model can be used to compute the probability

that the text is generated by the Markov process that represent the author.

But this procedure can be reversed to generate new pieces of text in the style

of a given author, as shown in the next chapter.
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1.2 Generating texts with style: A natural

language task

Since this thesis deals with the problem of generating text in natural

language, it is part of a bigger research field called Natural Language Gener-

ation. This section reviews the field of natural language generation, starting

with a brief history of natural language generation. Then it covers the state

of the art literature about two subfields of natural language generation, that

are related to the goal of the thesis: generation of text with style and poetry

generation.

Natural Language Generation (NLG) is a subfield of natural language pro-

cessing (NLP) concerning the generation of natural language outputs from a

machine representation system such as a knowledge base or a logical form.

NLG is also known as language production when such formal representations

are interpreted as models for mental representations.

A NLG system can be thought as a translator that converts a computer based

representation into a natural language representation. NLG may be viewed

as the opposite of natural language understanding. Natural language under-

standing concerns the issue of disambiguating and understanding a natural

language input sentence to produce the machine representation. On the con-

trary, natural language generation concerns the issue of putting a machine

representation into words. A simple example of natural language systems

are systems that generate form letters. Such systems do not typically in-

volve complex grammar rules, but they generate letter by filling slots in a

template. More complex NLG systems dynamically create texts to meet a

communicative goal. As in other areas of natural language processing, this

can be done using either explicit models of language (e.g., grammars) and

the domain, or using statistical models derived by analyzing human-written

texts.
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1.2.1 A brief history of natural language generation

This section presents a brief history of natural language generation. For

more details, see [36]

The first works on what is called now language generation was carried out

in the 1950s and 1960s in the context of machine translation projects. The

first translation systems were principally concerned with mapping sentences

between languages. Also the first system that attempted to use natural lan-

guage grammars as a means of randomly generating well-formed sentences

wad developed in the 1960s.

In the 1970s appeared the first works on NLG which generate texts to com-

municate or explain non-linguistic information. These work were concerned

with the problem of mapping the predetermined content of a sentence into

an actual realization of that content. In 1970 also appeared the first PhD

theses devoted to NLG: in particular, Goldman’s research on choosing ap-

propriate words to express abstract conceptual content [19], and Davey’s [8]

work on generating appropriate textual structures and referring expressions

in descriptions of tic-tac-toe games. Thanks to these pioneering researches

came out that language generation was not simply the reverse of language

understanding: in fact important questions to be answered in natural lan-

guage generation started to appear, without no obvious corollaries in the

concerns of natural language understanding research.

Thanks to these understandings, the 1980s was the decade in which NLG

really grew in importance: several influential PhD theses appeared in the

early 1980s, most notable those of McKeown [27] and Appelt [3]. These

thesis strongly impacted the field, and implicitly drove a great number of

subsequent research.

the most significant trend was a move away from building large monolithic

systems that attempted to perform all aspects of the generation task, towards

specific NLG problems, such as syntactic realization, lexical choice, and text

planning.

The initial work on the influential Penman text generation system, appeared
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early in the decade [[25]]. The initial work on using Rhetorical Structure

Theory in text generation appeared mid-decade [26].

The NLG research community also started to acquire an identity by hold-

ing dedicated NLG workshops. The first International Workshop on Natural

Language Generation was held in 1983. By the end of the 1980s a significant

number of researchers had moved into the area, and two traditions developed.

Following the early work in the field, a considerable amount of research came

from an artificial intelligence perspective. At the same time, an other con-

siderable amount of research came more from linguistics and computational

linguistics.

In the 1990s NLG has continued to grow, with many more papers, PhD the-

ses, workshops, and available research software. Work in the field is now very

diverse, and it can be difficult to grasp the nature of the field as a whole.

In the 1990s also appeared the first real-world application systems that use

NLG technology, including the pioneering FoG system [18], which was the

first NLG system to enter everyday use. The Fog system was used by Envi-

ronment Canada to generate weather forecasts in French and English in the

early 1990s

In parallel with the emergence of applications has been an increased interest

in the research community in applied issues such as comparing the engineer-

ing costs and benefits of different NLG techniques, and a concern with the

evaluation of systems.

in the 2000s some new key themes emerged. One of them is the issue combin-

ing text generation with graphics generation. this is a realism borne of the

observation that most real world documents contain diagrams and pictures as

well as text, and analyzing how text compares to graphics as a communica-

tion medium raises many fundamental questions in cognitive science. There

is also more interest in multilingual generation, and in finding architectures

and techniques that can easily produce equivalent texts in several languages.

Among all these new trend, two of them will be covered more in the details in

the next two sections, as they are strongly related to the work of this thesis:
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generating text with style and poetry generation.

1.2.2 Other works about text generation and style

Only a few Natural Language Generation systems have been proposed to

generate technical texts in a given style.

[34] describes an approach for generating a wide variety of texts expressing

the same content. By treating stylistic features as constraints on the output

of a text planner, it explores the interaction between various stylistic features

(from punctuation and layout to pronominal reference and discourse struc-

ture) and their impact on the form of the resulting text. In this work the

Iconoclast system is proposed. This system generates patient information

leaflets. The style is parameterized by low-level parameters, such as para-

graph length or the use of specific technical terms.

Skillsum [37] generates feedback reports about people’s literacy and numer-

acy skills. In Skillsum, the style is governed by rules based on a manual

analysis of the corpus to imitate. In this work three mechanisms for incor-

porating style into NLG choice-making are explored: (1) explicit stylistic

parameters, (2) imitating a genre style, and (3) imitating an individual’s

style.

1.2.3 Poetry generation

On the other hand, poetry generation seems to be a more active research

field and several systems to generate poetic texts were proposed.

McGonagall [35] uses genetic algorithms to generate texts that are syntac-

tically correct, following imposed meter patterns and which broadly convey

a given meaning. The paper reports some experiments to properly handle

the multi-objective optimization nature of poetry generation as a stochastic

search that seeks to produce a text that simultaneously satisfies the proper-

ties of grammaticality (be syntactically correct), meaningfulness (convey a

given meaning), and poeticness (follow imposed meter patterns). However,
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this system is still unable to reach the goal of generating an entire poem.

The WASP system [15] and its evolution ASPERA [16] produce Spanish po-

etry from several input data, such as the choice of vocabulary and a poem

type. WASP is a forward reasoning rule-based system that takes as input

data a set of words and a set of verse patterns and returns a set of verses.

Using a generate and test method, guided by a set of construction heuristics

obtained from formal literature on Spanish poetry, the system can operate

in two modes: either generating an unrestricted set of verses, or generating

a poem according to one of three predefined structures (romance, cuarteto,

or terceto). ASPERA is a system that obtains from the user the intended

message, then applies a knowledge-based preprocessor to select the most ap-

propriate metric structure for the user’s wishes. By intelligent adaptation

of selected examples from a corpus of verses, it carries out a prose-to-poetry

translation of the given message. In the composition process, ASPERA com-

bines natural language generation and Case Base Reasoning techniques to ap-

ply a set of construction heuristics obtained from formal literature on Spanish

poetry.

In the field of lyrics generation, Tra-la-lyrics [31] automatically generates

percussive lyrics to accompany a given piece of music. Tra-la-Lyrics aims to

generate lyrics for given melodies, using three different strategies: random

words, generative grammars or generate-and-test.

[39] describes two natural language processing systems designed to assist

songwriters in obtaining and developing ideas for their craft. Titular Titular

automatically generates novel song titles to inspire songwriter in lyrics pro-

duction. LyriCloud is a word-level language browser which allows users to

interactively select words and receive lyrical suggestions in return.

It is important to note that none of these systems address explicitly the

problem of style. To our knowledge, the only systems that generates literary

texts with style are the poetry generator proposed in [17] and RKCP (Ray

Kurzweil’s Cybernetic Poet) [22].

In [17], the style is modeled as a ”blending principles choice”. [17] proposes
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a new approach to style, arising fromour work on computational media using

structural blending, which enriches the conceptual blending of cognitive lin-

guistics with structure building operations in order to encompass syntax and

narrative as well as metaphor. The central idea is to analyze style in terms of

blending principles, based on the finding that different principles from those

of common sense blending are needed for some creative metaphors Although

the authors claim that an existing style can be approximated by carefully

tuning these blending principles, they do not explain how to do it in prac-

tice.

RKCP is the closest system that looks at solving the same problem that the

one studied here, and uses Markov processes trained on a corpus of given

authors to generate poems in the same style. In fact RKCP reads a selection

of poems by a particular author or authors and then creates a ”language

model” of that author’s work. RKCP can then write original poems from

that model. The generation is controlled by parameters such as the type of

stanza and rhymes. However, RKCP uses a generate-and-test approach to

validate the verses generated by the Markov processes: when writing original

poems, RKCP first determines a set of ”goals” for the word, then searches

for the words that will fulfill this set of goals. This selection is, however, only

tentative because later consideration may cause the word to be ultimately re-

jected. This approach is therefore both incomplete and unbounded in terms

of execution time.

However it is possible to control Markov process to directly generate verses

that satisfy all the constraint imposed by the user, without the need of

generate-and-test. This can be achieved by the means of Constrained Markov

Processes. The next chapter will introduce this technique.



Chapter 2

Constrained Markov processes

This chapter describe constrained Markov processes, a powerful tool to

generate texts in a given style that satisfy control constraints. As the name

suggest, constrained Markov processes combine traditional Markov processes

and constrain satisfaction techniques. The results of this combination is a

new technique that borrows the best features of each part, trying to avoid

the principal drawbacks of traditional Markov processes and constraint sat-

isfaction in the framework of sequence generation. In fact Markov processes

are able to generate texts that follow a given style, but without any control

on the structure of such sequences. On the other hand, using constraint

satisfaction it is possible to fully control the structure of the sequences to

generate, but at the drawback of loosing the notion of style. Constrained

Markov processes, as will be shown at the end of this chapter, ensure that

the generated sequences satisfy control constraints and follows the target

style.

This chapter is divide in three section. The first and the second section

introduce respectively Markov processes and constraint satisfaction. The

third section describes constrained Markov processes.

23
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2.1 Markov processes: style without control

Markov processes are a popular modeling tool used in content generation

applications, such as text generation, music composition and interaction.

Moreover, as seen in the previous chapter, they can be used to model the

style of a given given author.

Markov processes are based on the “Markov property” which states that

the probability of the future state of a sequence depends only on the last

state.

More formally, a Markov process is a sequence of random variables X1,

X2, X3, . . . with the Markov property. The Markov property states that,

given the present state, the future and past states are independent. i.e.,

p(Xn = sn|X1 = s1, . . . , Xn−1 = sn−1) = p(Xn = sn|Xn−1 = sn−1) (2.1)

The state space of the Markov process is the set S of all the possible values

that the random variables can assume. By abuse of notation, sometimes

p(sn|Xn−1 = sn−1). instead of p(Xn = sn|Xn−1 = sn−1). In general S is not

necessarily a finite or even countable, but this thesis (and NLP in general)

considers only Markov processes with finite state space.

A Markov process is said to be time-homogeneous if the transition prob-

abilities are time independent, i.e.

p(Xn = sn|Xn−1 = sn−1) = p(Xn+1 = sn+1|Xn = sn). (2.2)

Usually in NLP, if nothing else is specified, a Markov process is always sup-

posed to be time-homogeneous. Thanks to the these properties, a Markov

process can be represented by the transition matrix T , whose element are

the transition probabilities Tij = p(Xn = sj|Xn−1 = si). A Markov can be

also be described by a directed graph, whose vertex are the element of the

state space and the edges are labeled by the probabilities of going from one

state to the other states.

A simple example of graph representation is shown in figure 2.1. Each

node represent an element in the state space S = {s1, s2, s3} . According to
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x1 x2 R12 

 R11 

 R21 
x3 R23 

Figure 2.1: The directed graph representing a Markov process whose state

space is S = {s1, s2, s3} .

the graph, a s1 is followed by itself 75% of the time, by s2 20% of the time,

and by s3 the other 5%. The transition matrix for this Markov process is:

T =


0.75 0.2 0.05

0.1 0.8 0.1

0.5 0.25 0.25



2.1.1 Estimating a Markov process

Given a corpus of a training sequences, such as the corpus of all the texts

written by a given author, there are many approaches to estimated a Markov

process that model this corpus. In this thesis the maximum-likelihood esti-

mation is used. Maximum-likelihood estimation estimates a Markov process

from a corpus by computing the relative frequencies of each bigram, i.e., con-

tinuous sequence of elements that appear in the corpus. Namely, for each

couple of elements si and sj in the state space S the transition probability

p(sj|si) is:

p(sj|si) =
freq(sj, si)

freq(si)
(2.3)

where freq(sj, si) and freq(si) count respectively how many time the bigram

sjsi and the element si occur in the corpus. The prior probability p(si) of
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the element si is

p(si) =
freq(si)

N
(2.4)

where N is the size of the corpus.

As an example, let us consider the following corpus simple corpus Cex:

• Clay loves Mary

• Mary loves Clay

• Clay loves Mary today

• Mary loves Paul today

Applying maximum-likelihood estimation, a Markov processMex is estimated

from the corpus Cex. The state space ofMex is Sex = {Mary, Clay, Paul, loves, today}.
Labeling the state space {1 = Mary, 2 = Clay, 3 = Paul, 4 = loves, 5 = today}
the transition matrix of Mex is:

Tex =



0 0 0 2/3 1/3

0 0 0 1 0

0 0 0 0 1

1/2 1/4 1/4 0 0

0 0 0 0 0


The prior vector of Mex is:

(1/7 3/14 1/14 2/7 1/7)

The corresponding directed graph is represented in Figure 2.2.

More sophisticated techniques, such as smoothing techniques [20], can be

used, to deal with the problems caused by the sparsity of the RF estimate.

In this thesis maximum-likelihood estimation is used because, in the context

of text generation, it gives an acceptable estimate. However all the results

discussed below are independent of the way a Markov process is estimated,

and are therefore compatible with any estimation techniques.
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Clay loves1
0.25

Mary0.5

Paul

0.25

0.67 today

0.33

1

Figure 2.2: A Markov process learned from a simple corpus composed

by 4 sequences. The state space of the Markov process is S =

{Mary, Clay, Paul, loves, today}.

2.1.2 Generating sequence using Markov process

Once the model is learn, sequences can be generated simply by random

walk: the first item is chosen randomly using the prior probabilities; then, a

continuation is drawn using the model, and appended to the first item. This

is iterated to produce a sequence of length L. This process has the advantage

of being simple to implement and efficient.

Thanks to this simplicity and efficiency, Markov models are a common tool

for generating content in many domains. In addition to text generation, they

are widely used in music composition.

For instance, the Continuator [32] uses a Markov model to react interactively

to music input. Its success was largely due to its capacity to faithfully imitate

arbitrary musical styles, at least for relatively short time frames. Indeed, the

Markov hypothesis basically holds for most melodies played by users (from

children to professionals) in many styles of tonal music (classical, jazz, pop,

etc.). The other reason of its success is the variety of outputs produced for a
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given input. All continuations produced are stylistically convincing, thereby

giving the sense that the system creates infinite, but plausible, possibilities

from the user’s style.

On the other hand, in the field of text generation, the sequence generated

from a random walk are less satisfactory. Let us consider again the corpus

Cex used as example in the previous section. A random walk on the cor-

responding graph (showed in figure 2.2) could produce incorrect sequences

such as “loves Mary loves Clay loves”, or “Paul today”. This is caused by the

fact that Markov processes do not provide any control on the structure of the

generated sequences. For instance, a constraint that imposes the last word

of a 4-word sequence to be “today” and a constraint that imposes to the first

word to rhyme with “today” create a long distance dependency between the

first and the last word of the sequence. Indeed the only four-word sequences

that satisfy these constraints and can be generated by Mex are “Clay loves

Mary today” and “Clay loves Paul today”. Therefore, the first word of the

sequence must be “Clay”, excluding “Mary”, “Paul”, “loves” and “today” as

possible first states. This implicit dependency cannot be represented in the

initial Markov model.

Most approaches proposed to deal with the control issue consist in grafting

heuristic search on top of random walk: simulated annealing [9], case-based

reasoning [13], generate-and-test [12]. However, these methods do not offer

any guarantee that a solution will be found. Moreover, the solutions found

are not consistent with the underlying Markov model, i.e., the probability

to draw them is not the Markov probability. Lastly, these methods are not

efficient enough for interactive, real-time applications. It is important to

note that Hidden Markov Models (HMM) cannot be applied, because in this

context the Bellman principle does not hold. Control constraints cannot be

modeled as cumulative cost functions : even anchor constraints (imposing a

fixed value at a specific position) may have implications on the whole se-

quence, as shown below.

As outlined by [33], control constraints raise a fundamental issue since they
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establish relationships between items that violate the Markov hypothesis: ob-

viously as soon as the constraint scope (the variables on which the constraint

holds) is larger than the Markov scope, the information cannot be repre-

sented in a Markov model. However, even constraints that remain within

the Markov scope (e.g., unary constraints) create implicit dependencies that

violate the Markov hypothesis.

[33] show that the reformulation of the problem as a constraint satisfaction

problem allows, for arbitrary sets of control constraints, to compute optimal,

singular solutions, i.e., sequences that satisfy control constraints while being

optimally probable. However, what is often needed in practice is a distribu-

tion of good sequences. Therefore the approach of [33] cannot be used, as

it does not produce a distribution of sequences, but only optimal solutions.

Furthermore, it involves a complete search-optimization algorithm, which

limits real-time use.

The last section of this chapter shows that control constraints can be “com-

piled” into a new stochastic process that is statistically equivalent to the

initial one. This yields the advantage of retaining the simplicity of ran-

dom walk, while ensuring that control constraints are satisfied. This result

is obtained by establishing yet another bridge between Markov generation

and constraint satisfaction. However, before tis bridge can be established,

constraint satisfaction needs to be introduced.

2.2 Constraint satisfaction: control without

style

An other famous technique used to generate sequences is Constraint sat-

isfaction. Constraint satisfaction is the process of finding a solution to a

set of constraints that impose conditions that the variables must satisfy. In

opposition to Markov processes, constraint satisfaction allows full control on

the sequence to generate. However this technique does not guarantee that

the generated sequences follow the desired statistical distribution.



30 2. Constrained Markov processes

2.2.1 Introduction to CSP

In this subsection the theory of CSP is introduced , following the pre-

sentations of [29] and [10]. A constraint satisfaction problem is defined as a

set of variables that must satisfy a number of constraints. In general these

constraints can affect an arbitrary number of variables, but in this work only

binary constraints are considered.

Given two variable Xi and Xj having domains Di and Dj, a binary con-

straint Rij between these two variables is a subset of the Cartesian product

of the domains:

Rij ⊆ Di ×Dj (2.5)

In the case of Xi = Xj, Rii is a unary constraint on the variable Xi. A

binary constraint Rij can be represented using the characteristic function

χ : Di ×Dj → {0, 1}:

χ (xi,r, xj,s) =

1 if (xi,r, xj,s) ∈ Rij

0 otherwise.
(2.6)

Namely, assigning the values of the variables, the output of χ is 1 if these

values satisfy the constraint, 0 otherwise. The outputs of χ can be arranged

in a Ni×Nj matrix, where Ni and Nj are respectively the size of the domains

Di and Dj. The rows of the matrix correspond to the values of domain Di

and the columns to the values of Dj. The values of the matrix are:

Rijrs =

1 if (xi,r, xj,s) ∈ Rij

0 otherwise.
(2.7)

This matrix notation will prove to be very useful in combining Markov pro-

cesses and CSPs. For example, given two variables X1 and X2, both with

domain D1 = D2 = {a, b, c}, let be R12 = {(a, b), (b, a), (b, c), (c, b)} a binary
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x1

 R11 

x2 R12 
 R21 

x3 R23 

Figure 2.3: A constraint graph.

constraint among them. Therefore the matrix representation of R12 is

a b c

a

b

c


0 1 0

1 0 1

0 1 0


A network of binary constraint is a couple (X,R), where X is a set of

variable X1, . . . , Xn having domains D1, . . . , Dn, and R is a set of unary and

binary constraints imposed on the variables in X. The set of solution ρ is

the set of the n-tuples satisfying all the constraints, i.e.

ρ = {(x1, . . . , xn) |xi ∈ Di, (xi, xj) ∈ Rij, ∀i, j} (2.8)

A network of binary constraint can be represented as an undirected graph,

called constraint graph. The nodes of this graph represent the variables and

the edges represent the constraints among them, i.e. two nodes are connected

if a constraint imposed on their variables exists. Figure 2.3 shows an example

of constraint graph.

Several operations on constraints can be defined:

Definition 2.1 (Union). The union of two constraint R12 and S12imposed

on the same couple of variables is a new constraint U12 that allows all pairs

allowed by either one of them.
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Definition 2.2 (Intersection). The intersection of two constraint R12 and

S12 imposed on the same couple of variables is a new constraint I12 that

allows only pairs allowed by both.

Definition 2.3 (Composition). The composition of two constraint R12 and

R23 is a new constraint R13 that allows a pair of values (x1, x3) if and only

if there exists at least one value x2 ∈ D2 such that (x1, x2) ∈ R12 and

(x2, x3) ∈ R23.

In matrix notation these three operation can be obtained as follows. Let

be rij et sij the elements of R12 and S12. The elements uij of the union

U12 = R12 ∪ S12 are uij = max (rij, sij). The elements iij of the intersection

I12 = R12 ∩ S12 are iij = min (rij, sij). The composition of R12 and R23 can

be obtained by matrix multiplication: R13 = R12 ·R23.

2.2.2 Backtrack free problems

A common algorithm for solving CSPs is the Backtrack search algorithm.

In its simplest version, this algorithm traverses the constraint graph in a pre-

defined order. At the i-th step it assigns values to a subsequence (X1, . . . , Xi)

of variables and attempts to append to it a new instantiation Xi+1 such that

the whole set is consistent. An assignment of values to a subset of variables

is consistent if it satisfies all the constraints applicable to this subset. If no

consistent assignment can be found for the next variable Xi+1, a dead-end

situation occurs and the algorithm “backtracks” to the most recent vari-

ables, changes its assignment and continues from there. The algorithm for

finding one solution is given below. It is defined by two recursive proce-

dures, Forward and Go-back. The first tries to extend the current partial

assignment, and, it it is not possible, calls the second that handles dead-

end situations. Backtrack is initiated by calling Forward with i = 0, i.e.

the instantiated list is empty. The procedure Compute-candidates selects

all the values in the domain of Xi+1 which are consistent with the previous

assignments with respect to all applicable constraints Rj,i+1, j ≤ i.
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Algorithm 1 Forward(x1, . . . , xi)

1: if i = n then

2: return the current assignment

3: end if

4: Ci+1 ← Compute-candidates (x1, . . . , xi, Xi+1)

5: if Ci+1 is not empty then

6: xi+1 ← first element in Ci+1

7: remove xi+1 from Ci+1

8: Forward(x1, . . . , xi, xi+1)

9: else

10: Go-back(x1, . . . , xi)

11: end if

Algorithm 2 Go-back(x1, . . . , xi)

1: if i = 0 then

2: return . No solution exists

3: end if

4: if Ci is not empty then

5: xi ← first element in Ci

6: remove xi from Ci

7: Forward(x1, . . . , xi)

8: else

9: Go-back(x1, . . . , xi−1)

10: end if
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This algorithm naturally introduces a new class of problems: Backtrack

free problems. A Backtrack-free problems is a problem for which the back-

track algorithm terminates without backtracking. More formally:

Definition 2.4 (Backtrack free problem). A Backtrack free problem is a

problem for which it exists an ordering of the variables (X1, . . . , Xn) such

that, given any consistent assignment (x1, . . . , xi) it always exists a value

xi+1 in the domain of Xi+1 such that (x1, . . . , xi, xi+1) is consistent.

Backtrack free problems are very useful, because they can produce a so-

lution in linear time in the number of variables, simply applying the Forward

procedure. The remaining part of this section will show how to determine

if a CSP is equivalent to a backtrack free problem and how to construct

it, if exists. Two networks of constraint with the same set of variables are

equivalent if they are satisfied by the same set of solutions.

The feasibility of achieving backtrack-free search relies heavily on the

topology of the constraint graph. Freuder [14] has identified sufficient condi-

tion for a CSP to yield backtrack-free solution hand has shown, for example,

that tree-like constraint graph can be made to satisfy these conditions with

a small amount of preprocessing. The remaining part of this section studies

classes of constraint graph leading themselves to back-track free solution and

show efficient algorithm for solving them. Then constraints can be selectively

deleted from the original specification so as to transform the original problem

into a backtrack-free one.

Definition 2.5 (Ordered constraint graph [14]). An ordered constraint graph

is a constraint graph in which the nodes are linearly ordered to reflect the

sequence of variable assignments executed by the Backtrack search algorithm.

The width of a node is the number of arcs that lead from that node to previous

nodes, the width of an ordering is the maximum width of all nodes, and the

width of a graph is the minimum width of all orderings of the graph

Figure 2.4 presents six possible orderings of a constraint graph. The

width of node C in the first ordering (from the left) is 2, while the second
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Figure 2.4: Six possible orderings of a constraint graph. The direction of

instantiation goes from the bottom to the top.

ordering is 1. The width of the first ordering is 2, while the ordering of the

second is 1. Therefore the width of the graph is 1. Freuder provided an

efficient algorithm for finding both the width of a graph and the ordering

corresponding to this width. Moreover he showed that a constraint graph is

a tree if and only if its width is 1.

Montanari [29] and Machworth [23] have introduced two kinds if local

consistencies among constraints named arc consistency and path consistency.

Their definitions assume that the graph is directed, i.e. each symmetric

constrain is represented by two directed arcs.

Let Ri,j (x, y) stand for the proposition that (x, y) is permitted by the

constraint Ri,j.

Definition 2.6 (Arc-consistency [23]). A directed arc (Xi, Xj) is arc-consistent

⇔ for any value x ∈ Di there is a value y ∈ Dj such that Ri,j (x, y).

Definition 2.7 (Path-consistency [29]). A path of length m through nodes

(i0, i1, . . . , im) is path-consistent if for any value x ∈ Di0 and y ∈ Dim such

that Ri0,im (x, y), there is a sequence of values z1 ∈ Di1 , . . . , zm−1 ∈ Dim−1

such that

Ri0,i1 (x, z1) and Ri1,i2 (z1, z2) and . . . Rim−1,im (zm−1, y)

. Ri0,im (x, y) may also be the universal relation, e.g. permitting all possible

pairs.
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A constraint graph is arc-consistent if each of its directed arcs is arc-

consistent. Similarly, a constraint graph is path-consistent is each of its

paths is path-consistent. “Achieving arc consistency” means deleting certain

values form the domains of certain variables such that the resulting graph

is arc-consistent while representing the same overall set of solutions. To

achieve path consistency, certain pairs of values that were initially allowed

by the input constraints should be disallowed. Montanari and Mackworth

have proposed polynomial-time algorithm for achieving arc consistency and

path consistency. In [24] it is shown that arc consistency can be achieved in

O (ek3) while path consistency can be achieved in O (n3k5), where n is the

number of variables, k is the number of possible values, and e is the number

of edges.

Theorem 2.2.1. Freuder [14]

1. If the constraint graph has a width 1 (i.e. it is a tree) and if it is

arc-consistent, then it admits backtrack-free solutions.

2. If the width of the constraint graph is 2 and it is also path consistent,

then it admits backtrack-free solutions.

The above theorem suggests that tree-like CSPs (CSPs whose constraints

graphs are trees) can be solved by first achieving arc consistency and then

instantiating the variable in any width-1 order. Since this backtrack-free

instantiation takes O (ek) steps, and in trees e = n−1, the entire problem can

be solved in O (nk3) [24]. The test for simplicity is also verified: it amounts

to testing whether a given graph is a tree, and can be accomplished by an

O (n2) spanning tree algorithm. Thus, tree-like CSPs are easy since they can

be made backtrack-free after a preprocessing phase of low complexity.

The second part of the theorem tempts to conclude that a width-2 con-

straint graph should admit a backtrack-free solution after passing through

a path consistency algorithm. In this case, however, the path consistency

algorithm may add arcs to the graph and increase its width beyond 2. This

happens when the algorithm disallows value pairs from nonadjacent variables
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(i.e. variables that were initially related by the universal constraint) and it is

often the case that the passage through a path consistency algorithm makes

the constraint graph complete. It may happen, therefore, that no advantage

could be taken of the fact that a CSP possess a width-2 constraint graph if

it is not already path consistent.

Dechter and Pearl [10] give weaker definitions of arc and path consistency,

which are also sufficient to guarantee backtrack-free solutions and have two

advantages over those defined by Montanari and Mackworth:

1. They can be achieved more efficiently.

2. They add fewer arcs to the constraint graph, thus preserving the graph

width in a larger class of problems.

These definitions and the algorithms that exploit them are presented in the

next two subsections

The case of width 1 (trees)

Achieving full arc consistency is more than is actually required for obtain-

ing backtrack-free solutions. For example, if the constraint graph in Figure

2.5 is ordered by (X1, X2, X3, X4), nothing is gained by making the directed

arc (X3, X1) consistent. To ensure backtrack-free assignment, it is needed

only that any value assigned to the variable X1 will have at least one con-

sistent value in D3. This can be achieved by making only the directed arc

(X1, X3) consistent regardless whether (X3, X1) is consistent or not. There-

fore arc consistency is required only with respect to a single direction, that

one in which Backtrack selects variables for instantiations. This motivates

the following definition.

Definition 2.8 (d-arc-consistency). Given an order d on the constraint graph

R, R is d-arc-consistent if all edges directed along d are arc-consistent.

Theorem 2.2.2. Dechter and Pearl [10]

Let d be a width-1 order of a constraint tree T . If T is d-arc-consistent, then

the backtrack search along d is backtrack-free.
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Figure 2.5: Directed constraint graph demonstrating the sufficiency of mak-

ing arc (X1, X3) directionally consistent. The direction of instantiation goes

from the bottom to the top.

Proof. Suppose that X1, X2, . . . , Xk where already instantiated. The vari-

able Xk+1 is connected to at most one previous variable (from the width-1

property), say Xi, which was assigned the value xi. Since the directed arc

(Xi, Xk+1) is along the order d, its arc consistency implies the existence of a

value xk+1 such that the pair (xi, xk+1) is permitted by the constraint Ri(k+1).

Thus the assignment of Xk+1 is consistent with all previous assignments.

Reasoning by induction over k proves the theorem.

An algorithm for achieving directional arc consistency for any ordered

constraint graph is given next (the order d = (X1, X2, . . . , Xn) is assumed).

Algorithm 3 DAC (d-arc-consistency)

for i = n to 1 by −1 do

for all arc (Xj, Xi); j < i do

revise(Xj, Xi)

end for

end for

The algorithm algorithm revise(Xj, Xi), given in [23] deletes values from

the domainDj until the directed arc (Xj, Xi) is arc-consistent. The algorithm

is proved to achieves d-arc-consistency if upon termination, any arc (Xj, Xi)
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Algorithm 4 revise(Xj, Xi)

1: for all x ∈ Dj do

2: if there is no value y ∈ Di such that Rji (x, y) then

3: delete x from Dj

4: end if

5: end for

along d (j < i) is arc consistent. The algorithm revises each d-directed arc

once. It remains to be shown that the consistency of an already processed arc

is not violated by the processing of subsequent arcs. Let arc (Xj, Xi) (j < i)

be an arc just processed by revise(Xj, Xi). To destroy the consistency of

(Xj, Xi) some values should be deleted from the domain of Xi during the

continuation if the algorithm. However, according to the order by which

revise is preformed, only lower indexed variables may have their set of

values updated. Therefore, once a directed arc is made arc-consistent its

consistency will not be violated.

The advantage of the directed-arc-consistency algorithm is that each arc is

processed exactly once. The complexity of the algorithm is optimal, because

even to verify directed arc consistency each arc should be inspected once,

and that takes k2 tests. Note that when the constraint graph is a tree, the

complexity of the directional-arc-consistency algorithm is O(nk2).

Theorem 2.2.3. Dechter and Pearl [10]

A tree-like CSP can be solved in O(nk2)

Proof. If the constraint graph is a tree, finding an order that will render it

of width 1 takes O(n) steps. A width-1 constraint tree can be made d-arc-

consistent in O(nkk) steps, using the DAC algorithm. Finally, the backtrack-

free solution on the resultant tree is found in O(nk) steps. Summing up,

finding a solution to tree-like CSPs takes O(nk) +O(nk2) +O(n) = O(nk2).

This complexity is also optimal since any algorithm for solving a tree-like

problem must examine each constraint at least once, and each such examina-

tion may take, in the worst case, k2 steps, especially when when no solution
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exists and the constraints permit very few pairs of values.

The case of width 2

Order information can also facilitate backtrack-free search on width-2

problems by making path consistency algorithm directional

Montanari had shown that, if a network of constraints is consistent with

respect to all path of length 2 then it is path consistent. This section will show

that directional path consistency with respect to length-2 path is sufficient

for ensuring backtrack-free search on width-2 problems.

Definition 2.9 (d-path-consistency). A constraint graphR is d-path-consistent

with respect to ordering d = (X1, X2, . . . , Xn) if for every pair of values (x, y),

x ∈ Xi and y ∈ Xj such that Rij(x, y) and for every k > i, j, there exists a

value z ∈ Xk such that Rik(x, z) and Rkj(z, y).

Theorem 2.2.4. Let d be a width-2 ordering of a constraint graph R. If R is

directional arc and path consistent with respect to d, then it is backtrack-free.

Proof. To ensure that a width-2 ordered constraint graph is backtrack-free

it is required that each variable selected for instantiation will have some

values consistent with all previous chosen values. Suppose X1, X2, . . . , Xk

were already instantiated. The width-2 property implies that variable Xk+1

is connected to at most two previous variables. If it connected to Xi and Xj,

i, j < k, then directional path consistency ensures that for any assignments

of values to Xi, Xj there exists a consistent assignment for Xk+1. If Xk+1 is

connected to one previous variable, then directional arc consistency ensures

the existence of a consistent assignment.

An algorithm for achieving directional path consistency on ordered graphs

must manage not only the changes made to the constraints, but also the

changes made to the graph, i.e. the addition of new arcs. To describe the

algorithm constraints are represented using the matrix representation, with a

diagonal matrix Rii representing the set of values permitted for the variable
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Xi. The algorithm is described using the operations of intersection and

composition, writing R′ij ∩R′′ij for the intersection of R′ij and R′′ij.

Given a network of constraintR = (V,E) and an ordering d = (X1, . . . , Xn),

the following algorithm achieves path consistency and arc consistency relative

to d.

Algorithm 5 DPC: d-path-consistency
1: Y = R

2: for k=n to 1 by −1 do

3: ∀i < k connected to k do Yii ← Yii ∩ Yik · Ykk · Yki
4: ∀i, j < k s.t. (Xi, Xk), (Xj, Xk) ∈ E do Yii ← Yii ∩ Yik · Ykk · Yki,

E ← E ∪ (Xi, Xj)

5: end for

Step 3 is equivalent to revise(i, k), and performs directional arc consis-

tency. Step 4 starts after completing step 3 for i < k. Step 4 updates

constraints between pairs of variables transmitted by a third variable which

ranks higher in d. If Xi, Xj, i, j < k are not connected to Xk, then the

constraint between the first two variables is not affected by Xk. If only one

variable Xi is connected to Xk, the effect of Xk on the constraint (Xi, Xj)

will be computed by the step 4 of the algorithm. The only time a variable

Xk affects the constraint between a pair of earlier variables is when it is con-

nected to both, and it is in this case that a new arc may be added to the

graph. The DPC algorithm will connect any parent node having a common

successor. note that the convenience of writing the algorithm using matrix

notation does not imply that it should be implemented that way. In fact

representing constraints as sets of compatible pairs of values is easier and

often requires less space. The complexity of the directional path consistency

algorithm is O(n3k3). The number of times the inner loop 4 is executed for

variable Xi is at most O(deg2(i)) (the number of different pairs of parents

of i), and each step is of order k3. The computation of loop 3 is completely

dominated by the computation of step 4 and can be ignored. Therefore, the
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Figure 2.6: A ring is a regular width-2 CSP, therefore it can be solved in

O(n3k3).

overall complexity is

n∑
i=2

(
k3 · deg2(i)

)
= O(n3k3).

Applying directional path consistency to a width-2 graph may increase

its width and therefore does not guarantee backtrack-free solutions. Conse-

quently, it is useful to define the following subclass of width-2 problems.

Definition 2.10 (Regular width-2). A constraint graph is regular width-2

if there exists a width-2 ordering of the graph which remains width-2 after

applying the d-path-consistency algorithm DPC.

A ring constitutes an example of a regular width-2 graph. Figure 2.6

shows an ordering of the ring’s nodes and the graph resulting from applying

the DPC algorithm to the ring. Both graph are of width-2.

Theorem 2.2.5. Dechter and Pearl [10].

A regular width-2 CSP can be solved in O(n3k3)

Proof. A regular width-2 problem can be solved by first applying the DPC

algorithm and then performing a backtrack-free search on the resulting graph.

The first takes O(n3k3) steps and the second O(ek) steps.
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The nice feature of regular width-2 CSPs is that they can be easily recog-

nized. The relationship between the width of the graph and the tractability

of the problem can be further generalized to higher widths and higher levels

of consistency, see [10]. The next subsection presents one such extension.

2.2.3 A general strategy for achieving backtrack-free

solutions

Both arc and path consistency cab thought of as preprocessing procedures

that install uniform levels of consistency on the constraint graph. A natural

generalization of these method is K-consistency defined by Freuder [14]. K-

consistency implies the following condition. Choose ant set of K−1 variables

along with values for each that satisfy all the constraint among them. Now

choose any Kth variable. There exists a value for the Kth variable such that

the K values taken together satisfy all constraints among the K variables.

Freuder has shown that the a K-consistency CSP having a width-(K − 1)

ordering admits a backtrack-free solution in that ordering. This suggest that

one should be able to preprocess a CSP for a backtrack-free solution by

passing it through an algorithm establishing K-consistency. However, since

algorithms that achieve K-consistency change the width of the graph, it is

difficult to determine in advance the level of K desired.

An alternative generalization called adaptive consistency [10] is specially

suited for directional consistency. Adaptive consistency lets the evolving

structure of directional constraint graph dictate the amount of processing

required for each node.

Adaptive consistency processes order in decreasing order. Given an or-

dering d, adaptive consistency lets each variable impose consistency among i

variables which precede it and are connected to it at the time of processing.

The size of this set represent the current width of the node. The variable Xi

imposes k-consistency on a set of k − 1 variables if any (k − 1) tuple of the

set is consistent with at least one value of Xi. The procedure is illustrated

in Figure 2.7. Consider the constraint graph of on the left of fig 2.7. Adap-
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Figure 2.7: An ordered graph before (on the left) and after (on the right)

being preprocessed by Adaptive consistency. Note that a constraint is added

between C and D

tive consistency in the order (E,D,C,A,B) starts at node B and, having

width 1, B imposes 2-consistency on D (i.e. establishes arc consistency on

(D,B)). The domain of D is thus tightened. When A is processed next, it

imposes 3-consistency on (C,D) (A width is 2) which may amount to adding

a constraint and an arc between C and D (as in the graph on the right in

figure 2.7). When the algorithm reaches node C, C’s width is 2 and, there-

fore, a 3-consistency needs to be imposed on (E,D) but since the arc between

(E,D) already exists, the effect would be merely tighten this constraint. The

resulting graph is shown on the fight side of figure 2.7.

Formally, adaptive consistency can be described by the following proce-

dure. For each variable X, parents(X) is the set of all predecessor of X

currently connected to it. The parent set of each variable is computed only

when it needs to be processed.

The procedure consistency(X, SET records a constraint among the

variables in SET , induced by X. In other words, those instantiations of

variables in SET consistent with at least one consistent value of X are re-

tained, while the rest are discarded. To determine consistency, the procedure

consider all constraints, old and new, which were generated up to this point
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Algorithm 6 adaptive-consistency(X1, . . . , Xn)

1: for r=n to 1 by −1 do

2: compute parents(Xr)

3: perform consistency(Xr, parents(Xr))

4: connect by arcs all elements in parents(Xr) (if they are not yet con-

nected)

5: end for

by the algorithm, and which are applicable to the variables in V ∪ SET .

A constraint is considered applicable if it involves variable X and a subset

(possibly empty) of variables from SET . In figure 2.7, for instance, when

consistency(C, {D,E} is executed, the applicable constraints are the in-

put constraint (C,E) and the recorded constraint between C and D. These

two constraints will be considered to determine the set of value pairs of (D,E)

consistent with at least one value of C.

In general, an ordered constraint graph will be backtrack-free if for every

subset of consistently instantiated variables (X1, . . . , Xr) there exists a value

for Xr+1 which is consistent with the current instantiation of (X1, . . . , Xr).

Theorem 2.2.6. Dechter and Pearl [10].

An ordered constraint graph processed by adaptive consistency is backtrack-

free.

Proof. Suppose that the first r variables were already instantiated, and as-

sume that Xr+1 has a parent of size k, (X1, . . . , Xk). This parent set was

identified and processed by adaptive consistency, namely the procedure

consistency(Xr+1, (X1, . . . , Xk)) recorded a constraint on the k variables

ensuring that any k-tuple which is not consistent with at least one consistent

value of Xr+1 is discarded. Therefore, any consistent k-tuple having passed

this filter, has a consistent extension in Xr+1.

An important feature of the adaptive consistency technique is that, unlike

non directional K-consistency method, it permits the calculation of a bound
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on its complexity prior to conducting the search. Let W (d) be the width

associated with the ordering d and W ∗(d) the width of the graph induced by

adaptive consistency in that ordering. The worst-case complexity of adaptive

consistency along d is 2W
∗(d)+1 since the consistency procedures records a

constraint on W ∗(d) variables induced by their common successor, a process

comparable to solving CSP with W ∗(d) + 1 variables. W ∗(d) can be found

in O(n+ e) time [42] prior to the actual processing.

2.3 Constrained Markov processes: style and

control

In the previous two sections Markov processes and Constraint satisfaction

are introduced. Markov processes can be used to generate sequences that

follows a given style but without control on their structure. On the other

hand Constraint satisfaction can be used to generate sequences that satisfy

control constraints that impose a given structure, but loosing style. In this

section constrained Markov processes are introduced as a combination of

traditional Markov processes and constraint satisfaction, to fully solve the

problem of generating sequences that follow a given style and satisfy control

constraint at the same time.

2.3.1 Problem Statement

This section will show how to generate fixed-length sequences from a

Markov process M that satisfy control constraints. To use a random walk

approach, a Markov process M̃ that generates exactly the sequences satisfy-

ing the control constraints with the probability distribution defined by M .

In general, it is not possible to find such a Markov process because control

constraints violate the Markov property, as outlined by [33]. However, when

control constraints remain within the Markov scope, the rest of the section

will shows that such a model exists and can be created with a low complexity.
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A Markov process M is defined over a finite state space S = {s1, . . . , sn}.
A sequence s of length L is denoted by s = s1, . . . , sL with si ∈ A. SL is the

set of all sequences of length L generated by M with a non-zero probability:

pM(s) = pM(s1) · pM(s2|s1) · · · pM(sL|sL−1) (2.9)

Following [33], the sequence to generate is represented as a sequence of

finite-domain constrained variables {V1, . . . , VL}, each with domain S, and

Markov properties as Markov constraints on these variables, defined below.

Control constraints are also represented as finite-domain constraints. The

induced CSP is denoted by P and the set of solutions SC . Given these

notations, M̃ should verify:

(I) pM̃(s) = 0 for s /∈ SC ,

(II) pM̃(s) = pM(s|s ∈ SC) otherwise.

These properties state that M̃ generates exactly the sequences s ∈ SC .

Most importantly, sequences in SC have the same probabilities in M and M̃

up to a constant factor α = pM(s ∈ SC), i.e., ∀s ∈ SC , pM̃(s) = 1/α · pM(s).

The main result presented in this chapter is that for a certain class of

induced CSPs, hereafter referred to as Binary-Sequential CSPs (BSC), there

exists a non-homogeneous Markov process M̃ that satisfies (I) and (II). The

scope of a constraint is defined as the interval between its leftmost and right-

most variables. A Binary-Sequential CSP is a CSP that contains only con-

straints whose scope remains within the scope of the Markov order. With a

Markov order of 1, these constraints consist in 1) unary constraints and 2)

binary constraints among adjacent variables (see Section 2.3.2).

A non-homogeneous Markov process (NHM) is a Markov process whose

transition matrices change over time [21]. A NHM of length L is defined as

a series of transition matrices M̃ (i), i = 0, . . . , L− 1.

The next subsections will describe how to build M̃ fromM and its induced

BSC, and show that M̃ achieves the desired properties.
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2.3.2 Construction of M̃

M̃ is obtained by applying two successive transformations to the initial

model M . The first transformation exploits the induced CSP to filter out

state transitions that are explicitly or implicitly forbidden by the constraints.

This is achieved by replacing the corresponding transition probabilities by

zeros in the initial transition matrices. A side-effect is that the transition

matrices are not stochastic anymore (rows do not sum up to 1 any longer).

The second transformation consists in renormalizing those matrices to obtain

a proper (non-homogeneous) Markov model, a step which turns out to be non

trivial. Thanks to this step, the resulting model satisfies (I) and (II).

Induced CSPs

Let us consider a BSC with unary control constraints U1, . . . , UL and

binary constraints B1, . . . , BL−1. Ui defines the states that can be used at

position i in the sequence. Bi defines the allowed state transitions between

positions i and i + 1. Markov constraints, denoted by K1, . . . , KL−1, are

posted on all pairs of adjacent variables. Markov constraints represent the

following relation:

∀i,∀a, b ∈ A,Ki = true⇔ pM(b|a) > 0.

The first step of the process is to make P directional arc-consistent, using

the algorithm 3, described in the previous section.

It is important to note here that enforcing directional arc-consistency on

a BSC P is sufficient to allow the computation of the transition matrices

once for all, prior to the generation, with no additional propagation. This

can be shown as follows:

Proposition: If P is arc-consistent, then for all consistent partial sequences

s1 . . . si (i.e., sequences that satisfy all the constraints between variables

V1, . . . , Vi), the following properties hold:

(P1) ∃si+1 ∈ D(Vi+1) such that s1 . . . sisi+1 is consistent.
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(P2) s1 . . . sisi+1 is consistent ⇔ sisi+1 is consistent.

Proof. P is of width 2 as its constraint network is a tree; therefore arc-

consistency enables a backtrack-free resolution and e every partial consistent

sequence can be extended to a solution, which is equivalent to P1. The

condition in P2 is obviously sufficient; it is also necessary as no constraint

links Vi+1 back to any other variable than Vi.

P1 and P2 ensure that the domains of variables after arc-consistency

contain exactly the valid prefixes and suffixes of the corresponding transi-

tions. Note that arc-consistency of Markov constraints as such solves the

zero-frequency problem, regardless of control constraints: no choice made

during the random walk can lead to a zero-frequency prefix.

The next step is to extract the matrices from the domains.

2.3.3 Extraction of the Matrices

Recall that goal is to generate a non-homogeneous Markov model, repre-

sented by a series of transition matrices. An intermediary series of L matrices

Z(0), . . . , Z(L−1) are obtained by zeroing, in the initial matrix, the elements

that correspond to values or transitions that were removed during arc con-

sistency. More precisely, the procedure is:

• Inizialization:

Z(0) ←M0 (the prior probabilities of M),

Z(i) ←M , ∀i = 1, . . . , L− 1 (the transitions).

• For each ak ∈ A removed from the domain of Vi:

Z
(i)
j,k ← 0, ∀j = 1, . . . , n (set the k-th column to zero).

• All forbidden transitions in the binary constraints should also be re-

moved from the matrices:

Z
(i)
j,k ← 0, ∀i, j, k such that Bi(aj, ak) = false.

Modifying the initial matrix makes it non stochastic anymore. The next

section describes how to renormalize the matrices to satisfy property (II).
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2.3.4 Renormalization

The final transition matrices M̃ (i) of M̃ are build from the intermedi-

ary matrices Z(i). Transition matrices could be renormalized individually,

i.e., by dividing each row by its sum. This would indeed produce an non-

homogeneous Markov model, but this model does not satisfy property (II)

above, as it generates sequences with a different probability distribution than

M .

The normalization process should indeed maintain the initial probability

distribution. It turns out that a simple right-to-left process can precisely

achieve that. The idea is to back propagate the perturbations in the matrices

induced by individual normalization, starting from the right-most one.

To do this, first the last matrix Z(L−1) is normalized individually . Then

the normalization is propagated from right to left, up to the prior vector

Z(0). The elements of the matrices M̃ (i) and the prior vector M̃ (0) are given

by the following recurrence relations:

m̃
(L−1)
j,k =

z
(L−1)
j,k

α
(L−1)
j

, α
(L−1)
j =

n∑
k=1

z
(L−1)
j,k

m̃
(i)
j,k =

α
(i+1)
k z

(i)
j,k

α
(i)
j

, α
(i)
j =

n∑
k=1

α
(i+1)
k z

(i)
j,k 0 < i < L− 1

m̃
(0)
k =

α
(1)
k z

(0)
k

α(0) , α(0) =
n∑
k=1

α
(1)
k z

(0)
k

(2.10)

By construction, when α
(i)
j = 0, the j-th columns of the preceding Z(i)

contain only 0 as well. By convention, the division yields 0 since there is

no normalization to back propagate. These coefficients can be computed in

O(L× n2). It is now possible to show that this model satisfies the 2 desired

properties.

Proposition: The M̃ (i) are stochastic matrices and the non-homogeneous

Markov process M̃ defined by the M̃ (i) matrices and the prior vector M̃ (i)

satisfies (I) and (II).

Proof. The M̃ (i) matrices are stochastic by construction, i.e., each row sums
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up to 1. The probability of a sequence s = s1 . . . sL to be generated by M̃ is:

pM̃(s) = pM̃(s1) · pM̃(s2|s1) · . . . · pM̃(sL|sL−1)
= m̃

(0)
k1
· m̃(1)

k1,k2
· . . . · m̃(L−1)

kL−1,kL

= 1
α(0) · z

(0)
k1
· z(1)k1,k2

· . . . · z(L−1)kL−1,kL
,

(2.11)

where ki is the index of si in A. Hence, by construction of Z(i):

(I) pM̃ = 0 for s /∈ SC ,

(II) pM̃ = 1/α(0) · pM(s) otherwise.

α(0) is precisely the probability for sequences in M of satisfying the control

constraints, i.e., α(0) = pM(SC).

2.3.5 A simple example

Let us consider a Markov model M estimated from the simple corpus Cex

already used in the first section. To recall it, the corpus is composed by the

following 4 sequences:

• Clay loves Mary

• Mary loves Clay

• Clay loves Mary today

• Mary loves Paul today

The transition matrix of M is:

Tex =



0 0 0 0.67 0.33

0 0 0 1 0

0 0 0 0 1

0.5 0.25 0.25 0 0

0 0 0 0 0


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V1

 U1 

V2 K1 V3 K2 V4 K3 

 U4 

Figure 2.8: The constraint graph related to the CSP used in the example.

The prior vector of M is:

(1/7 3/14 1/14 2/7 1/7)

For simplicity, in the rest of this section, each words in the corpus is denoted

only by its initial, i.e. M = Mary, C = Clay, P = Paul, L = loves,

T = today.

This example consider the problem of generating sequences of 4 words. There

are 14 possible such sequences with non-zero probabilities. For instance,

sequence Clay loves Mary loves has probability:

pM(CLML) = pM(C)pM(L|C)pM(M |L)pM(L|M) =
1

14
.

The following control constraint are imposed: the first word has to rhyme

with the word “today” and the last word has to be exactly “today”. Trans-

lated in the constraint satisfaction formalism, the constraints are:

U1 = {Clay, today} ,

U4 = {today} .

Figure 2.8 shows the corresponding constraint graph. Once the induced CSP

is defined, it is possible to apply the directional arc consistency algorithm on

it to made it backtrack-free. Once the problem is backtrack free, it possible
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to extract the corresponding Z matrices as explained in section 2.3.3.

The matrices obtained for the example are the following:

Z(0) = (0 3/14 0 0 0)

Z(1) =



0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Z(2) =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0.5 0 0.25 0 0

0 0 0 0 0



Z(3) =



0 0 0 0 0.33

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


The final step consists in normalize these Z matrices to obtained he final

matrices for the example:

M̃ (0) = (0 1 0 0 0)

M̃ (1) =



0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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M̃ (2) =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

2/5 0 3/5 0 0

0 0 0 0 0



M̃ (3) =



0 0 0 0 1

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


The only two sequence allowed by the constraints imposed are Clay loves

Mary today and Clay loves Paul today. It easy to see that these two

sequences are the only that M̃ can generate. Moreover α = 5
56

, in fact

PM(CLMT ) = 1/28 = 5/56 ∗ 2/5 = αPM̃(CLMT ) and PM(CLPT ) =

3/56 = 5/56 ∗ 3/5 = αPM̃(CLPT ), as expected.

2.3.6 Generalization to non binary-sequential CSP

The process described in this chapter can be extended quite easily to

generic induced CSP, non necessarily binary-sequential. This is done by first

applying the adaptive consistency algorithm described in the previous sec-

tion on the direction d = 1, 2, . . . , L, to made the CSP backtrack-free. Then

the normalization is again back-propagated starting from the last variable

VL. The difference only is that, from a variable Vi, the normalization is back-

propagated to all the variables connected to them, not only to Vi−1. The

resulting stochastic process will not be a non-homogeneous Markov process

anymore, but a Bayesian network. However, applying adaptive consistency

can be very time consuming, due to its exponential computational complex-

ity. Moreover most of the control required to generate well formed poetic

texts can be expressed using a clever combination of unary constraints as

will be showed in the next chapters.



Chapter 3

Constraints for Poetry

generation

In the last chapter constrained Markov processes are introduced. These

kind of processes can be used to generated sequences that satisfy control

constraints. This chapter explains how constrained Markov processes can be

used to generate poetry and lyrics, by showing how high level features of a

poetic text can be represented by meaning of of unary constraint. Following

the model of poetry generation introduced in [35], the following classes of

text features are chosen to be represented:

1. Rhyme

2. Meter 1

3. Syntactic correctness

4. Semantic Relatedness

These four classes of features are listed from the easiest to the harder to

represent.

Meter and rhyme are the easiest features because they are objective feature.

Two verses rhyme or not according to the phonetics of the last syllables,

1Actually in [35] rhyme and meter are grouped together in the “poeticness” class.

55
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which are well coded and listed in pronunciation dictionaries. Similarly it

is easy to count the number of syllables of a verse and the position of the

stressed vowels.

Ensuring the syntactic correctness of a generated verses is harder. In fact,

there is no simple algorithm to ensure that a verse or a sequence of verses are

correctly well formed in the language of the text. Moreover, in poetry and

lyrics generation the frontier between correct and incorrect verses is partic-

ularly fuzzy. However the combination of Markov probabilities and a simple

template-based approach [11] suffices to enforce syntactic correctness is en-

forced, as will be shown later in the chapter.

Semantic relatedness is the hardest features to achieve. In fact, understand-

ing the meaning of a text, and moreover writing a text that cover an aimed

meaning is a difficult task even for humans. Therefore a simple approach is

chosen, assuming that a certain verses cover a given topic if it contains words

that are semantically related to the topic. This is, of course, an assumption

too restrictive, but in practice it is enough to ensure that generated verses

are semantically related to the aimed topics. The next subsections describe

on details the constraints that enforce all these features and can be used to

generate poetic text.

3.1 Rhyme Constraints

A rhyme is a repetition of similar sounds in two or more words, most

often at the end of lines in poems and songs. Since the pronunciation of

a word in a given language, such as English or Italian, is a well coded and

objective feature, it is natural to represent rhymes unary constraints on the

ending words of verses. Given a target word s, a rhyme constraint is satisfied

by all the words in the corpus that rhyme with s, according to its phonetic

spelling.

Since this thesis focus on the generation of texts in English the Carnegie Mel-

lon University (CMU) pronunciation dictionary [38] is chosen to extract the
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phonetic spelling of words. The CMU pronouncing dictionary is a machine-

readable pronunciation dictionary for North American English that contains

over 125,000 words and their transcriptions. This format is particularly useful

as it has mappings from words to their pronunciations in the given phoneme

set. The current phoneme set contains 39 phonemes, for which the vowels

may carry lexical stress:

0 Non stressed vowel

1 Stressed stress 2

The complete list of 39 phonemes is given in table 3.1. Two words are said

to rhyme if the suffixes of their spellings from the last stressed vowels are the

same. For example “today” ([T, AH0, D, EY1]) rhymes with “pray” ([P, R,

EY1]). More formally, lets PH the set of all phonemes. Given the word w,

pr(w) = ph1 . . . phn, phi ∈ C is the pronunciation of w according to the CMU

pronunciation dictionary. The rhyme suffix of w is rhy(w) = phk . . . phn,

where k is the position of the last stressed vowels, i.e. the position of the last

symbol tagged with 1 (note that in the CMU dictionary the consonant are

not tagged). Therefore two words w and v rhymes if rhy(w) = rhy(v). This

leads to the following definition of rhyme constraint.

Definition 3.1 (Rhyme constraint). Given a word w, the rhyme constraint

Rrhy
w imposed by w, is the unary constraint defined by the set

Rrhy
w = {v|rhy(w) = rhy(v)} .

3.2 Rhythmic Templates

In poetry, meter is the basic rhythmic structure of a verse, and it is de-

fined by the number and position of the stressed syllables in a verse. Using

2Actually the CMU pronunciation dictionary contains also vowels tagged with the

symbol 2 (Secondary stress), but for simplicity in this thesis all the stressed vowels are

tagged with symbol 1.
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Table 3.1: The complete list of the 39 phonemes used by the CMU pronun-

ciation dictionary.

Phoneme Example Translation Phoneme Example Translation

AA odd AA D AE at AE T

AH hut HH AH T AO ought AO T

AW cow K AW AY hide HH AY D

B be B IY CH cheese CH IY Z

D dee D IY DH thee DH IY

EH Ed EH D ER hurt HH ER T

EY ate EY T F fee F IY

G green G R IY N HH he HH IY

IH it IH T IY eat IY T

JH gee JH IY K key K IY

L lee L IY M me M IY

N knee N IY NG ping P IH NG

OW oat OW T OY toy T OY

P pee P IY R read R IY D

S sea S IY SH she SH IY

T tea T IY TH theta TH EY T AH

UH hood HH UH D UW two T UW

V vee V IY W we W IY

Y yield Y IY L D Z zee Z IY

ZH seizure S IY ZH ER
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the the CMU dictionary it is easy to extract and represent the meter of a

verse, by labeling each word with a rhythmic tag. The rhythmic tag rtm(w)

of a word w is a sequence of 0 and 1, defined by the sequence of the lexical

stresses of the vowels composing the word. For instance, the rhythmic tag of

“today” [T, AH0, D, EY1] is rtm(today) = 01. The meter of a verse is then

the list of the rhythmic tags of its words. For instance the meter of the verse

“Innocence of a story I could leave today” is [101, 1, 1, 10, 1, 1, 1, 01].

Meter can be imposed on a verse by a sequence of unary constraints, called a

rhythmic template. A rhythmic template is a sequence of unary constraints,

called rhythmic constraint that impose the rhythm on the underlying con-

strained words.

Definition 3.2 (Rhythmic constraint). Given a rhythm tag t, the rhythmic

constraint Rrtm
t imposed by t, is the unary constraint defined by the set

Rrtm
t = {w|rtm(w) = t} .

A rhythmic template is a sequence of rhythmic constraints.

3.3 Syntax: Part-of-Speech Templates

A poetic text is of course not simply a concatenation of words that satisfy

some formal requirements, but must be syntactically well- formed and convey

some meaningful message. This section shows as unary constraints are well-

adapted to ensure syntactical correctness.

Syntactic correctness is enforced by the combination of Markov proba-

bilities and a template-based approach [11]. A part-of-speech template is a

sequence of part-of-speech (POS).

A part of speech (also known as a word class, a lexical class, or a lexical

category) is a linguistic category of words (or more precisely lexical items),

which is generally defined by the syntactic or morphological behavior of the

lexical item in question. Common linguistic categories include noun and

verb, among others.
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Each word in the state space is tagged with one or more part-of-speech

. For instance the word “run” is tagged with the POS Noun and Verb. A

part of speech template is then a sequence of part-of-speech tags. The idea

behind part-of-speech templates is that a well constructed template can be

used to generate verses that will be syntactically well formed. For example

the template [PRP, VBD, IN, PRP, RB] (Personal pronoun, Verb past tense,

Preposition, Adverb) is satisfied by the verse “she knocked upon it anyway”.

More formally, let POS be the set of all available part-of.speech tags.

Given a word w, let be pos(w) = {p1, . . . , pn}, pi ∈ POS, its part-of-speech

tagging. This tagging leads to the following definition: part-of-speech con-

straints.

Definition 3.3 (Part-of-speech constraint). Given a part-of-speech tag p, the

part-of-speech constraint Rpos
p imposed by p, is the unary constraint defined

by the set

Rpos
p = {w|p ∈ pos(w)} .

A part-of-speech template is a sequence of part-of-speech constraints.

In practice, all the sentences in the corpus used to generate the Markov

process are tagged using the Stanford Log-Linear part-of-speech tagger [43],

tagging each word with one or more POS. The table 3.2 contains the set of

tags used by Stanford Log-Linear POS tagger. Note that this tags are proper

to English language.

Therefore each verse in the training corpus induces a template. According

to [39], these templates will be retained as well formed templates if they

appear in at least two verses in the corpus, to reject incorrect templates that

may occur due to errors in the POS tagging procedure. These templates will

be then used to control constrained Markov processes to ensure syntactic

correctness. The creation of this template library will be explained more in

details in chapter 4.
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Table 3.2: The complete list of the 37 part-of-speech tags used by the Stan-

ford Log-Linear POS tagger.

Tag Description Tag Description

CC coordinating conjunction CD cardinal number

DT Article EX existential there, Pronoun

FW foreign word IN preposition

JJ Adjective JJR Adjective, comparative

JJS Adjective, superlative LS list item marker

MD modal NN Noun, singular or mass

NNS Noun, plural NNP proper Noun, singular

NNPS proper Noun, plural PDT predeterminer

POS possessive ending PRP personal Pronoun

PRP$ possessive Pronoun RB Adverb

RBR Adverb, comparative RBS Adverb, superlative

RP particle SYM symbol

TO to UH interjection

VB Verb, base form VBD Verb, past tense

VBG Verb, gerund VBN Verb, past participle

VBP Verb, singular present VBZ Verb, 3rd person

WDT wh-determiner,Pronoun WP wh-Pronoun

WP$ possessive wh-Pronoun WRB wh-Adverb

PCT punctuation
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3.4 Semantic Constraints

The dimension of meaning is, of course, the most difficult computational

task to achieve in general. This section shows that constrained Markov pro-

cesses are well-adapted to enforce a semantic relatedness between a target

concept and the generated verse. This is done by assuming that a verse is

semantic related to a target concept if it contains words that are semantically

related to the target concept. This assumption may seem too simplistic, but

chapter 5 will show that it is enough to generate semantically relates verses.

The need to determine semantic relatedness or between two lexically ex-

pressed concepts is a problem that pervades much of natural language pro-

cessing. Measures of relatedness or distance are used in such applications

as word sense disambiguation, determining the structure of texts, text sum-

marization and annotation, information extraction and retrieval, automatic

indexing, lexical selection, and the automatic correction of word errors in

text. It’s important to note that semantic relatedness is a more general con-

cept than similarity; similar entities are semantically related by virtue of

their similarity (bank vs. trust company), but dissimilar entities may also

be semantically related by lexical relationships such as meronymy (car vs.

wheel) and antonymy (hot vs. cold), or just by any kind of functional re-

lationship or frequent association (pencil vs. paper, penguin vs Antarctica,

rain vs. flood).

Given a measure of semantic similarity, dsim(w, v) is the semantic simi-

larity between two word w, v. It is possible to use this measure to define

semantic constraints.

Definition 3.4 (Semantic constraint of size n). Given a target concept c

and an integer n, the semantic constraint Rp imposed by p, is the unary

constraint defined by the set

Rsim
c,n = {w s.t. | {v s.t. dsim(v, c) < dsim(w, c)} | < n}

Therefore for a target concept c, the semantic constraint is satisfied by

the n words in the corpus most related to w.
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In this thesis the Wikipedia Link-Based Measure [28] is used to compute

semantic relatedness. This measure computes semantic relatedness between

terms using the links found within their corresponding Wikipedia articles.

Unlike other techniques based on Wikipedia, Wikipedia Link-Based Measure

is able to provide accurate measures efficiently, using only the links between

articles rather than their textual content. The measure is calculated from

the links going into and out of each page. Links that are common to both

pages are used as evidence that they are related, while links that are unique

to one or the other indicate the opposite. Formally the measure is:

dsim(w, v) =
log (max (|W |, |V |))− log (|W ∩ V |)

log (N)− log (min (|W |, |V |))

where w and v are the two words of interest, W and V are the set of all

articles that link to the articles corresponding to w and v respectively. N

is the number of articles in the entire Wikipedia. Wikipedia Link-Based

Measure is chosen because it is proved to be an effective compromise between

ease of computation and accuracy.





Chapter 4

Generating text with style and

constrains

In the previous chapter several classes of constraints were introduced to

represent high level features of poetry: rhyme constraints and rhythmic tem-

plates to represent rhyme and meter, part of speech templates to represent

syntactic correctness and semantic constraint to represent semantic related-

ness.

This chapter will show how these classes of control constraints can be

effectively used to drive constrained Markov process to generate verses in

the style of a given author. The first section will describe in details the

generation of lyrics in the style of famous songwriter Bob Dylan. Then the

same generation process is used to generate lyrics in the style of more than

60 authors. Some of the generated lyrics are presented in the section 4.2.

4.1 Lyrics in the style of Bob Dylan

This section describes an application of the techniques presented before

to the semi-automatic generation of lyrics in the style of Bob Dylan with an

imposed structure. Bob Dylan is chosen as target author because of its well

known and personal style. Moreover he has written a very large number of

65
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songs, therefore the corpus composed by all the lyrics written by Bob Dylan

is large enough to capture his style from a statistical point of view. This

corpus, , hereafter referred to as the Dylan corpus is described in the next

subsection.

4.1.1 The Dylan corpus

The Dylan corpus is composed by 12408 verses from 393 songs for a total

of 96089 words. This corpus is used to build the Markov process MDylan using

the maximum-likelihood estimation. The state space of MDylan is composed

by 7600 different words.

The pronunciation of these words is then extracted using the CMU pronunci-

ation dictionary, as explained in the previous chapter, to assign to each word

w its rhyme rhy(w) and its rhythmic tag rtm(w). This procedure results in

a set of 3036 separate rhymes and 38 separate rhythmic tags.

The 12408 verses in the corpus are tagged by the Stanford Log-linear POS

tagger, as described in the previous chapter. Table 4.2 shows the distribution

of the POS tags over the 7600 words composing the state space of MDylan.

The tagged verses are then used to create a library of POS templates to im-

pose syntactical correctness to the verses to generate. For example, the verse

“The answer is blowin’ in the wind” will induce the template [DT NN VBZ

VBG ” IN DT NN] (article, noun, 3rd person verb, gerund verb, preposition,

article, noun). Even if the POS tagger is quite accurate (the version used

in this thesis has an overall accuracy greater that 96%) it is not error free,

therefore a template is retained in the library only if it is the result of the

tagging of at least two verses in the corpus. This procedure will create a li-

brary of 605 templates. All the statistics of the Dylan corpus are summarized

in table 4.1
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Table 4.1: The statistics of the Dylan corpus.

Number of songs: 393

Number of verses: 12408

Number of words: 96089

Number of different words: 7600

Number of rhymes: 3036

Number of rhythmic tags: 38

Number of POS templates: 605

4.1.2 Satan whispers to the bride

that God is in the wrong side

Once the Dylan corpus is built and the related Markov process MDylan

is learned, it is possible to used them to generate verses. This subsection

describes in the details the creation of the two verses used as title. These two

verses are created sequentially, in fact the rhyme imposed on the second verse

depends on the ending of the first verse. Initially a random POS template

is randomly picked from the POS template library. The selected templates

is: NN VBZ IN DT NN (Noun, 3rd person verb, preposition, article, noun).

Then each slot in the template is filled with a rhythmic tag. These rhythmic

tags are chosen in a clever way to ensure that for each POS tag in the template

there exists at least one word in the corpus tagged with the chosen rhythmic

tag. Moreover the rhythmic tags are chosen so that the total number of the

syllables in the verse will be seven. The resulting rhythmic template is then:

10 10 1 1 1. Finally, the first noun (in this case the first word) has to be

related to the concept “God”, i.e. the semantic constraint Rsim
god,20 is imposed.

Since this is the first verse, no rhyme constraint is imposed on it. Using this

constraints, the constrained Markov process M̃1
Dylan is created and used to

generate the verse “Satan whispers to the bride”.

Once the first verse is created, a new POS template is randomly selected
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Table 4.2: The distribution of the POS tags over the 7600 words composing

the state space of MDylan, resulting from the tagging by the Stanford Log-

linear POS tagger. Note that only the tags that are used at least once to tag

a word are listed.
Tag Number of words Tag Number of words

JJ 1031 RB 260

DT 18 TO 1

RP 12 RBR 11

RBS 1 JJS 26

FW 27 JJR 33

NN 2687 NNPS 26

VB 677 VBN 487

PDT 2 VBP 392

WP$ 1 PRP 34

MD 16 WDT 4

VBZ 259 WP 4

IN 71 VBG 599

POS 1 EX 1

VBD 470 UH 17

PRP$ 8 NNS 994

CC 9 CD 48

NNP 1131 WRB 6
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for the second verse. The selected template is: IN NN VBZ IN DT JJ NN

(Preposition , noun, 3rd person verb, preposition, article, adjective, noun).

Following the same procedure used for the first verse the slot of this template

are filled with rhythmic tags. The chosen rhythmic template is 1 1 1 1 1 1

1. The same semantic constraint Rsim
god,20 is imposed on the first noun in the

template (in this case the second word). Finally on the last word the rhyme

constraint Rrhy
bride is imposed. A new constrained Markov process M̃1

Dylan is

created and used to generate the verse “that God is in the wrong side”. In

this way two rhyming verses composed by seven syllables and semantically

related to the concept “God” are created. In the next section a more complex

example of verse generation is described.

4.1.3 Today

In this example the same rhyme and meter structure as that of the song

“Yesterday” by the Beatles is imposed on the verses to generate. In other

words, Bob Dylan’s songwriting style is mapped onto the structure of “Yes-

terday”, very much like one can map a texture onto an existing shape.

The generation process is semi-automatic. Although a fully automatic

generation process is possible, the interaction with a human user improves

the global coherence of the lyrics. The verses are generated one by one,

prompting the user at each step to select one verse out of five different candi-

dates, using a lyrics editor called Perec, described more in details in chapter

6.

The initial Markov process is again MDylan, as described before. The

constraints imposed on the song to enforce rhyme are as follows. Initially, no

constraint is set. The rhyme structure of Yesterday is AAABBCAAAAA, as

shown in table 4.4. This implies that after the first verse v1 is selected by the

user, all the verses tagged A (verses v2, v3, and v7 to v11) will be generated

with a unary constraint that forces them to rhyme with v1. Similarly, the

verse v4 is generated with no rhyme constraint, but the verse v5 will be

constrained to rhyme with v4.
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Table 4.5: The verse chosen to start the lyrics, with the control constraints

used to generated it.

Innocence of a story I could leave today

NN IN DT NN PRP MD VB NN

100 1 1 10 1 1 1 01

[EY1]

{today}

The rhythm constraints are enforced by rhythmic templates according

to the rhythmic structure of “Yesterday” (see table 4.4 for the complete

structure).

For each verse, a POS template is drawn randomly from the POS tem-

plates induced by the corpus that have the same length than the correspond-

ing verse in Yesterday. For instance, the POS templates for the first verse

are those templates with eight words.

The song is entitled intentionally “Today”, a word that has the same

meter as “away”, the last word of the first Yesterday’s verse. Accordingly, the

word “today” is imposed as the last word of the first verse. As a consequence,

verses v2, v3, and v7 to v11 are constrained to rhyme with “today”. Note

that, after imposing “today” at the end of the first verse, the candidate POS

templates are those that: have eight words; appear at least twice in the

corpus; are compatible with “today”, i.e., end with NN. An example is [NN,

IN, DT, NN, PRP, MD, VB, NN], the one actually chosen.

These constraints control a constrained Markov process that generates

the candidates for the first verse. Figure 4.1 shows the verses proposed. “In-

nocence of a story I could leave today” is selected. The complete generation

process of the song is the following.

v1: “today” is imposed as being the last word. The rhythm template is

that of “Yesterday, all my troubles seem so far away”, i.e., [101, 1, 1,
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Figure 4.1: Five verses proposed by the constrained Markov process for the

first verse of the song. Each of them satisfies the control constraints: rhyth-

mic template [100, 1, 1, 10, 1, 1, 1, 01]; POS template [NN, IN, DT, NN,

PRP, MD, VB, NN]; “today” imposed as the last word.

10, 1, 1, 1, 01].

v2: Yesterday’s rhythmic templates, namely [1, 1, 1, 1, 1, 1, 1, 1, 1]; rhyme

with “today”.

v3: Rhythm [1, 1, 01, 1, 101]; rhyme with “today”.

v4: Rhythm [100, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Semantic constrain related to

“pray” on the first word. Free rhyme.

v5: Rhythm [1, 1, 1, 10, 10, 10, 1]. Rhyme with “sin”.

v6: Rhythm [1, 101, 1, 100]. “Paradise” imposed as being the last word.

v7: Rhythm [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Rhyme with “today”.

v8: Rhythm [1, 1, 10, 1, 1, 1, 1, 1, 101]. Rhyme with “today”.

v9: Rhythm [101, 1, 1, 1, 1, 10, 1, 1, 1]. “Innocence” imposed as being the

first word. Rhyme with “today”.
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v10: Rhythm [1, 1, 1, 1, 1, 1, 1, 01]. Semantic constraint related to “knock”

on the third word. Rhyme with “today”.

v11: As in the original song this verse is equal to the third verse, therefore

it is not generated by a constrained Markov process, but is simply a

copy.

4.2 Other 60 authors

Since the generation process can be completely automated, it is very easy

to generate several lyrics in the style of many authors, provided that for each

author a corpus of his or her lyrics is available to be learned by a Markov

process. To collect these corpora, the lyrics dataset described in [39] is used.

This dataset is composed by 137787 lyrics by 15940 unique authors . Since

only well represented authors are useful in the framework described in this

thesis, only a small part of the dataset is retained. In practice only the lyrics

written by the authors who wrote at least 100 lyrics are selected. In this way

60 corpora are created and each of them contains at least 100 lyrics. The

represented authors are: (Hed) P.E., 10,000 Maniacs, 10cc, 311, 38 Special,

4Him, 54-40, A Global Threat, A Masterpiece Of Failure, A1, Aaliyah, Aaron

Neville, ABBA, Acappella, Accept, ACDC, Aerosmith, AFI, Alabama, Alice

Cooper, ALL, Amy Grant, Ani DiFranco, B.B. King, Barbra Streisand, Bee

Gees, Counting Crows, Johnny Cash, Joni Mitchell, Kenny Rogers, Kiss,

Kitty Wells, KoRn, Loretta Lynn, Lou Reed, Madonna, Malvina Reynolds,

Mariah Carey, Marilyn Manson, Marty Robbins, Merle Haggard, Missy El-

liott, Motorhead, Neil Diamond, Neil Young, Nick Cave And The Bad Seeds,

NOFX, Pearl Jam, Perry Como, Porter Wagoner, Prince, R. Kelly, R.E.M.,

Ricky Nelson, Rod Stewart, Roy Orbison, Sesame Street, Sonic Youth, The

Beach Boys, The Kinks.

Using these corpora, many constrained Markov process are created, by im-

posing each time the same constraints described in section 4.1.3. In this

section some of the generated lyrics are shown, by choosing one lyrics for
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each of them. For the complete set of all the generated lyrics (10 lyrics for

each of the 61 authors) please visit

http://www.csl.sony.fr/MarkovCt/lyrics/.

ABBA

Boomerang you’re only a thing that you play

Dance don’t care if you know that they

Dance and believe me when you play

Every show was the time of your eyes and see

She will be dancing in the morning

So different from the first in

Life is to be the one you must have thought they

Live a little too hard to find but I can say

Everything I see is a movie on the way

Off her back and let me float away

ACDC

Fortunate if you wanna take you out to play

Stage I’m big and I want to say

I get enough and I can play

Satellite blues yeah yeah yeah yeah yeah you shook me

Toss off buddy she’s gotta see

A fireball in the back once

Stage I’m in the high I said it’s way

Toss off buddy she’s got it and I’m hey

Fortunate if you ain’t nothin I can play

Played all the time you just keep away

Alice Cooper

Everyone in the mirror if you don’t play
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Play with me and I wasn’t a way

I want eighteen I gotta play

Radio back to the world and all ships at sea

Cut off our heads like we thought we

With longitude and latitude

Off of the time I was in the same old way

Live for pleasure to be what they got a long way

Radio to the rules that I was in the day

Play with me and you just go away

B.B. King

Nobody like my baby I know what I play

Sing my love burned like a flame to stay

Sings but I’m not the way they

Nobody sing to me I’m not the way she

The way sammy sings and I could be

From every side every

Sings but I want you tell me I can’t stay

Off me really it held it in and I know they

Nobody and I got more worries that I play

Sings and I don’t know till today

Barbra Streisand

Video it’s scary I won’t display

Play don’t know I know there are may

Play with the house swept and the way

Video it’s nice to know you’re with me

Like some music in a fire he

Word every sigh every

Live more love and it’s all you had to pay

Stage and flashes back to me that we don’t stay
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Everything I say I’m ready I can play

Show me to know you’re far away

Bee Gees

Secretly you know baby you and I can say

Show me you see I’m proud to say

Not live without you in the way

Secretly you know what I will find the way she

Couldn’t figure it’s making me

’re nobody till somebody

Dance with me and I will love you when the day

Live on laughter but you you’re a holiday

Secretly you know I’m living for the day

Dance with me and when you break away

Johnny Cash

Theater of your liquor I don’t take pay

Gone in the clouds how to live this way

Hit him again and when my way

Theater of your plans I’m down and tell me

Played the boogie in the saddle he

A wanderer a wandering

Play for you and I know what’s the way they

Played the boogie in the harp with the key the way

Honeycomb and live in the water and bread they

Play in the sun and I rode away

Joni Mitchell

Constantly in the future I know and I play

Play for you and I know and I play
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Live out in the name of the way

Constantly in the news and it’s in the sea

Of an actor who fears for the key

Of sacrifice and compromise

News and it’s a field in a month they say

News comes knocking at your eyes they’re in my way

Constantly in the news and it’s a long way

Play if you’re bound to love today

Kiss

Secretly she’s gonna make it all away

Show your stuff come on it’s the way

Want a romance I don’t play

Secretly she’s the way you want to tell me

Five six seven eight oh oh tell me

To everyone oh everyone

Dance the night my heart I’m down on my way

Lived each moment as if what I know what you may

Secretly she’s on your finger on the day

Off take it off take it all away

KoRn

Paranoid it’s nothing that I see the play

Hit the ground that I must find a way

Rape me inside you see the play

Everything I have lived the best I can see me

Show you feelings that I can’t be

To every night every

Play you know it’s in my head have to say

But I never meant to show up here anyway

Realize that you all I wanna see the play
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Play you know that I must look away

Lou Reed

Listening to me the news at one time or way

Play for you and you have a nice day

’s rage inside you so please play

Memories of the way the news the world that we

Ah show business is just a waste he

From syllable to syllable

Play for you and I know it’s the way they

Off of broadway he’s all you’re the one they

Politics of hate in a movie or a play

Show that you don’t you slip away

Madonna

Radio star with just one of the past away

Stage world is a thing of the world they

’s dance tonight don’t you say

Radio star with just one of the heart should be

As the music move to the world we

My memory in hollywood

Live and I stripped it and I’m here to stay

Dance with someone else will be a girl on the way

Radio star with just one of the things you say

Show you what I have to go away

Mariah Carey

Typically I would never think that I be play

Show the world you’re not the same way

Play it again this is my way
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Camera up in you when I just let it be

If you only lived for me to be

Is wonderful so wonderful

Hit on the bed I just let you in the way

If you only lived for me and then I bet they

Camera up in the sea turning out the way

Lived for me to be so far away

Marilyn Manson

Possible we’re hating it’s hard to play

Off I’m gone I’m on my way

Show this is what you don’t play

Audience well when you do you want to be me

Live I wanna live I wanna be

You celebrate the enemy

Show this isn’t me I’m spun and I say

Live I wanna hear you say it is and it may

Audience well when you’re going or which way

Off I’m vague and I hate today

Missy Elliott

Listening to the music y all don’t say

Play with my man don’t have to say

Can hear myself but I cant play

Radio hands on the way you do you need me

Could play janet and you gonna be

Shake somebody’s leftovers

Hit hard like I got his boy’s in the way

I live baby girl I ma love you anyway

Radio hands on the way missy like to say

Show’em how to get it in valet
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Neil Young

Buffalo used to live my life in the sky they

News when I got the way that you pay

News when I see you yesterday

Buffalo used to live my life in the years we

Hit the city and I don’t see

Ways separate ways separate

Played the old church on the wood and the sky they

Hit the city and I lost and I didn’t say

Buffalo used to live close to you when I say

Played the old church on the road today

Nick Cave And The Bad Seeds

Episode on a dead man in my life away

Live the day I know what you say they

Screen there’s one of her eyes they

Episode on a tree don’t care now I see

We pressed our faces to the three

A memory a memory

Lived and for you I will roll on the hill lay

News from nowhere let me out of her hair is gray

Episode on a tree don’t give me some day

Plays in the way that you do today

NOFX

Arrogant you’re going to live in fear they

Ads and we don’t you love it they

From miles around to hear him play

Radio but I don’t just go to the sea

Play his mama told him someday he
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A sacrifice to benefit

Play I don’t like the one when I got way

We’re going to live up to the matinee

Radio but I got a better off this way

Hit in the way I don’t betray

Pearl Jam

Motorbike in the corner on my clothes I play

Off for what’s clean is pure but hey

Lead him away when she could play

Magazine to read ooh yeah I said to me free

Off a larger one’s a man we

Of destiny your sanity

Live like a tear in all the things that you say

Off the corner on a ledge she’s not theirs they

Magazine to read ooh yeah I’m the man they

Hit me with a plan it’s okay

Prince

Radio oh oh baby I could fly away

Played used to tell us what u can say

I play because I can I say

Radio come on don’t smack and I can be

Plays the music baby u can see

It every day every

Play it all I know what I know what I play

Show me baby do it it’s what all the way

Radio oh oh yeah I wanna do is play

Play in the back of my life away
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R.E.M.

Everywhere you’re tired and you do I play

News and I’m what you do I play

Fame thing I’m what you can stay

News and I can’t look to me and you said we

Show me something that I can not see

’re beautiful more beautiful

News and I feel fine I’m what you can stay

Show me something that I’m sure you know the way

Gardening at night it’s what you do I play

News and I’m straight I’m away

Rod Stewart

Somebody I’m sorry but you don’t play

Off of my heart now that I’m gay

And so confused I can’t play

Telephone line when it’s all you need to be

Take me dancing but I wanna be

And every night every

Live some and you think that you know what you say

Wasn’t gonna to be lived with you yesterday

Everywhere you go with me baby can you play

Sports car on my way to go away

Roy Orbison

Microphone’s a heavy load it’s the way

Hit with me and I do you can say

You see because my heart I play

Microphone’s a new love it up and treat me

To live our dreams could never be
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Man medicine man medicine

Show that you’re mine that’s a new star way

Hit the bottom now I know how I know the way

Microphone’s a new star sparkling in the way

Dance with you I couldn’t stay away

The Kinks

Radios of the nation but it’s the way

Live in a dark and it won’t say

N’t be afraid to come and play

Radio on all the days down all the things we

Show a little song for me to be

Of homicide and suicide

Live I do what I say I’m not the way

Show a little song for me to do what I say

Radio now that I’m staring at the way

Play what I’m just a blink away

The Beach Boys

Everywhere add some music to you can you say

Five long days and I know one thing they

I’m afraid it’s all play

Radio from the girls in the sky just what she

When the music all the faces we

At huntington and malibu

Hit the road on the land in the sky is gray

Hit the water like you dig the way for the day

Everywhere add some add some music to your day

Show your love is that you ran away



Chapter 5

Evaluation of the control

constraints

The previous chapter showed that using constrained Markov processes

is possible to generate verses in style of a given author that also satisfy

structural constraints. Some classes constraints, described in chapter 3, are

defined to try to capture high level features of a poetic text: rhyme, me-

ter, syntactic correctness and conceptual consistency. This chapter discuss

an evaluation of these control constraint, to investigate to what extent the

proposed constraints effectively ensure that the generated texts exhibit the

aimed properties.

At this point a fundamental distinction has to be done between the four

types of poetic features and, by consequence, between the four classes of

constraints. In fact, as already pointed out, rhyme and meter are objective

constraints, in the sense that it is quite straightforward to check if a given

piece of text exhibit these properties. By consequence these feature are easily

captured by control constraints. Therefore a text generated by a constrained

Markov process controlled by the correct rhyme constraints and rhythmic

templates always exhibit the aimed properties. On the other hand this is

not true in the case of syntactic correctness. In fact natural languages are

not formal languages and sometimes it is very hard to check if a piece of

85
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text is syntactically correct. This is even worse in poetry generation, where

sometimes a syntactic error is intentionally made by the author as an artis-

tic license. Finally, conceptual consistency is the harder property either to

achieve and to verify on a text. For these reasons, only POS templates (that

should ensure syntactic correctness) and semantic constraints (that should

ensure conceptual consistency) are evaluated.

Firstly, constraint Markov processes (CM ) are compared against a pure

Markov approach (PM ) that generates texts using only the initial Markov

model without control constraints. The goal of this evaluation is to evalu-

ate how much the constraints affect the quality of the generated texts and

improve syntactic correctness and conceptual consistency.

Secondly, constraint Markov processes are compared against a pure con-

straint solving approach (PC ) that generates texts using only the control

constraints, without the supply of any Markov process. This evaluation has

a double goal. The first goal is to evaluate if the probabilistic informations

carried by the Markov process affects the quality of the generated text in

term of syntax and conceptual consistency. The second goal is to evaluate

the generation system presented in this thesis against other state-of-the art

poetic generation system. In fact the Pure constraint approach is similar

to the approaches in [15], [16], [30] and [39]. It is not possible to compare

directly these techniques because they differ in many ways from CM (for

instance the choice of the language, the dictionary and the semantic related-

ness measure used) and these parameters affect the quality of the generated

texts, as pointed out in [15]. Therefore the same constraints in PC and CM

are used to ensure a fair evaluation.

Automatic evaluations of both syntactic correctness and semantic relat-

edness are still open problems (see respectively [6] and [44]) and to my knowl-

edge there is no reliable method to automatically evaluate these properties.

An automatic evaluation of semantic relatedness is presented in [35], but

this evaluation requires an optimal solution to the problem (for example a

human-generated text). In fact this evaluation computes the similarity be-
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Table 5.1: The 16 titles of the poems. Each title is used for three poems,

generated using the three different techniques (CM , PM and PC). A title

imposes a topic to the corresponding poems.

television religion politics sky

jealousy envy joy laugh

love moon sun music

paradise hell peace war

tween generated texts and a target form, considered as an optimal solution

of the problem. Therefore the proposed evaluation cannot exploited here be-

cause one of the goals of the proposed generation system is to generate novel

material instead of rewriting existing lyrics, and in this case the optimal

solution of the problem, if it exists, is not known.

For these reasons an empirical evaluation is proposed, by asking humans

to rate syntactic correctness and semantic relatedness of texts generated by

CM, PM and PC. The next section will present the generation of the test

poems for the evaluation, then the empirical evaluation itself is described.

5.1 Generation of the Test Poems

For each technique, 16 poems are generated, to make a total of 48 poems.

To measure semantic relatedness, each of the 16 poems is entitled with a

one-word title, that defines the concept to which the poem should be related,

and four verses. The 16 titles (listed in Table 5.1) are manually selected, in

order to have well defined and easily understandable concepts. The Markov

process used by PM and CM is MDylan, i.e. the process learned from the

Dylan corpus (see 4.1). For each of the 16 poems, a set of control constraints

is defined as follows. The Dylan corpus provides a library of POS templates

and a collection of rhythmic tags as explained in the previous chapter. For
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each verse a POS template is randomly selected. Than for each POS tag p

in the POS template, a rhythmic tag is randomly selected in the set

{
r |Rpos

p ∩Rrtm
r 6= ∅

}
,

i.e. the set of all the rhythmic tags for which there exists at least one word

in the corpus that is tagged either with the given POS tag and the given

rhythmic tag. Then, in each verse, one position is randomly chosen among

the open tags (i.e., adjectives, nouns, adverbs, and verbs) of the POS tem-

plate. The corresponding word is imposed to be semantically related to the

title word. The rhyme structure is ABAB, therefore the rhyme constraints

are specified to ensure that the first (respectively second) and third (resp.

fourth) verses rhyme with the word wA (resp. wB). wA and wB are randomly

chosen from the set of words that rhyme with at least 10 other words of the

corpus.

The CM approach generates the 16 poems with a constrained Markov

process combining MDylan with the control constraints. The PC approach

generates the poems by drawing each verse randomly in the space of the

verses that satisfy the control constraints. The PM approach generates the

poems with a naive random walk on MDylan. The length of each verse is

randomly chosen between 5 and 8 words. For each approach, the poems

listed below are generate automatically. Each poem is intended to be related

to its title. The two letters between parenthesis indicate the generation

technique. Note that, unlike CM and PC, the PM poem do not satisfy the

structural constraints, such as the rhyme and the rhythm.

TELEVISION (CM)

you hit the highway with my face

play in the sun sets on the mound

actor in a suitcase

lives in a little round



5.1 Generation of the Test Poems 89

TELEVISION (PC)

there show an picnic past their grace

pal as an rug sweat in each pound

pilot like some someplace

play through a ripper hound

TELEVISION (PM)

paws and he always is blessed with a

dive one day though you might call it paradise

fifteen baths a day or

clear county lakes and streams and

RELIGION (CM)

pray that i heard the sound

that reason i am in the sea

bible he would not like the sound

that reason i am in the sea

RELIGION (PC)

god fight one means both wound

one magic all steps up no pea

language who wand less but those wound

ya reasons its ceased or this tea

RELIGION (PM)

wondered bout the time the door that

visions of the hill of heaven my love

veronica not around nowhere mavis just ai not

mavis just ai not gonna grieve no more
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POLITICS (CM)

i left by the side

rules the arrow on the man

business with a woman down in the tide

she left that night to the man

POLITICS (PC)

he rule for both bride

pressed some warfare with no can

business both no journey queen for both pied

we ruled all lamp out the an

POLITICS (PM)

laying round in a ditch so

i really miss my baby from midnight

possessed in my pockets and my days are gonna

nightsticks and water flowing through the toiling ranks

SKY (CM)

god with the country club and the gate

they complained in the wind will

lest you wind up on the golden gate

god i am on the way that will

SKY (PC)

glow out these taxi r or no state

all depends next some blue il

of you wound back for no native date

blues seams cats worth a waist but trill
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SKY (PM)

compelled me from this town this morning feeling blue

halloween give her my hand at bribery

delightful to see you yeah and we can have

gruel in the cold eyes of judas on him

JEALOUSY (CM)

hatred and a bottle of bread

love i am in the way that will

of your love just like a lead

love i am in the darkness that will

JEALOUSY (PC)

sadness through that contact yet head

blame weight may yet this dwell at thrill

with their hate once in that sled

hate wool lake at that cover by il

JEALOUSY (PM)

bitter dance of loneliness fading into space

shun that house in the cold eyes of judas

spellbound an swallowed until the house falls in

gate you know must hear the news he said

ENVY (CM)

love i am in a dream that made

my love for her parasite

love you do i wonder what is made

your love cuts like a bullet of light
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ENVY (PC)

lust lane ploughs or an date by blade

who hate past us candlelight

cheat whom helped her tighten there show swayed

ya blamed gone on these satins but might

ENVY (PM)

gods are dead and whose queens are in the

romeo he is dead but his

harmonica job begun to play ball with the curly

swagger and he always is blessed with a ghost

JOY (CM)

paths in a little girl in the whole

they follow the path you are as fine

you please make it through the hole

you frightened of the line

JOY (PC)

joy till half danny mirth past these pole

what happen both forms its do or pine

s formed laid he and some pole

us contact as this sign

JOY (PM)

acquaintance of ours a greater place to be heard

rely no more no more no more no more

partner just the opposite of what i am

lakes and streams and mines so
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LAUGH (CM)

smile like a little glimpse of the year

you see the frowns on the man

you please make it through the clear

you see the frowns on the man

LAUGH (PC)

fear than those scoundrel loan yet some dear

mine can both joke since the man

her greet lulled there like no near

she grabbed half laugh since all bran

LAUGH (PM)

jam i guess you will do your bidding comrade

weekend with you when i am still a

folly while his genocide fools and his cabin

28 29 i am still a million miles

LOVE (CM)

but your love just like a man

for the love of a time

to her beauty fades and i got man

loved a woman in a time

LOVE (PC)

up one hates that and half stan

though that songs with an prime

next me wisdom diff past that school an

hates some earthquakes till half lime
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LOVE (PM)

ohh we bone the editor ca not get

orphan with his wife and five children

rumblin in the cold eyes of judas on him

icy wind that is in the cold

MOON (CM)

he is the light in the wall

sun sinking like a little round

in the hour of the day that all

the sky is on the battleground

MOON (PC)

one forged each earth through each haul

glow ladder lest that bended pound

while this highlands since those boot to hall

both core swears on some underground

MOON (PM)

asking myself how long it can go on

untrodden path once where the current is

padre will recite the prayers of old greek shoes

curlin and the day is a-gettin dark

SUN (CM)

that love that i wo not matter no

know i believe in the sun to go

in the sun to go

stars fell down and the need to go



5.1 Generation of the Test Poems 95

SUN (PC)

each flip decked she changed why sundown dough

beads pad applause nor all clouds while slow

if an clouds both slow

lights wars streets as all strands lest glow

SUN (PM)

trackin us down and die when his gladness comes

judges were talking to somebody but i am still

drumming in the cold eyes of

spoiling me too you know must hear the news

MUSIC (CM)

there is a note in his eyes

him back the beat of the key

down the song in my eyes

him back the beat of the sea

MUSIC (PC)

its pine this notes from all tries

your wakes no band like all three

so half beat worth whose ties

that leave those schools of those c

MUSIC (PM)

swimmy from the cold eyes of judas on

handful of rain temptin you to be heard

therefore i remain at my window wishing

nighttime is the one said the joker to
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PARADISE (CM)

serpent eyes of the night away

he sinned i got in the sunrise

hell of a time they

you have chosen me to the lies

PARADISE (PC)

satan wig nor this blue okay

we sinned us grass since the sunrise

cain once these trucks they

you cheat appears whom while the cries

PARADISE (PM)

daydreaming bout the time the door that

murder in the cold eyes of judas on

complaining bout what i am still

autumn night stars up in the cold eyes

HELL (CM)

hell i am about to break into

hell of a woman down in the chill

god in the home of voodoo

heaven but i have to kill

HELL (PC)

faith ’em rots asleep both left into

christ through both anton klux nor all sill

damn but a clark past corkscrew

spirit out whose scout till till
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HELL (PM)

sharp in the cold eyes of judas on

niagara falls in love with you when i am

preaching faith and salvation waiting for the

cassius clay here i know plenty of

PEACE (CM)

i know no peace that the rain

love i am on the wall to where

the process of the train

my love she is in despair

PEACE (PC)

they chat this hopes in that plain

war morn pants worth this spice once wear

both honors while this jane

i hope ya whipped just affair

PEACE (PM)

forgave the germans now too much confusion i

somewhere when i am still a million miles from

compete with you when i am

edges soon said i but you and

WAR (CM)

games that you will die in your meadows

play games with each other in

horse with your position and your nose

join the army if you have in
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WAR (PC)

crime through whom screamed cough while their willows

job horse while both instant spin

first on its mohammed to s froze

sleep half weapon that he church thin

WAR (PM)

ah my friends from the cold eyes of judas

damage read me no questions but please

glad i have laid down the street the

outsiders they can talk to me mr. pussyman

5.2 Empirical Evaluation

Following [15], a team of 12 volunteers is asked to rate syntactic correct-

ness and semantic relatedness of each poem. The evaluators were instructed

to rate syntactic correctness according to the following scale:

1. The poem is strongly grammatically incorrect.

2. The poem presents some grammatical errors.

3. The poem is almost or completely grammatically correct.

The evaluators were instructed to rate semantic relatedness according to the

following scale:

1. The poem is semantically unrelated to the title.

2. The poem is weakly semantically related to the title.

3. The poem is strongly semantically related to the title.

The results of these evaluations are shown in Figure 5.1.
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Figure 5.1: Box plots illustrating the distribution of “syntactic correctness”

and “semantic relatedness” ratings assigned by evaluators to CM, PM and

PC outputs. Boxes represent the interquartile ranges, with the medians

indicated by thick black lines. Whiskers on either side span the minimum

and maximum values of each distribution.

5.3 Discussion

Results clearly show that the CM technique performs better regarding

syntactic correctness and semantic relatedness. The results are statistically

significant for both experiments (Mann-Whitney test with p < 0.05, multi-

ple tests are corrected using the Bonferroni method). Surprisingly, PC is the

lowest-preforming technique with respect to syntactic correctness, whereas

the results performed by PM and CM are more similar. This may be due

to the fact that the POS tags used are not detailed enough. This is clear

when observing the second verse of the poem about “Music” generated using

the PC approach. In this verse there is a clear mistake: “you wakes”. This

mistake is because the tag PRP (personal pronoun) does not contain any

information about the person. Of course, a better POS tagging will improve

the grammaticality rating of PC, however CM will also benefit from such as

an improvement. It is interesting to observe that mistakes like “you wakes”

are prevented by the use of a Markov model. Therefore the interaction be-

tween the information carried by the Markov model and the POS templates

explains the high grammatical score of CM.
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As expected, PM generates semantically unrelated poems, because no

information about semantics is provided to the generator. The fact that

the average semantic relatedness is not exactly 1 is due to the presence, by

chance, of words related to the desired concept, such as, in the “Music” poem

generated by PM , the word “heard”, related to concept of “music”. The

fact that the meaningfulness rating of CM is better than the rating of PM

is again probably due to the information carried by the Markov model. For

example, the word “beat” appears both in the CM and PC poems related to

“music”. In the CM poem this word is more related to the concept “music”

thanks to the sequence “back to beat”, that enforce such a relatedness.



Chapter 6

Perec: an interactive lyrics

editor

This thesis introduces constrained Markov Processes and shows how they

can be exploited to generate poetic text in the style of a given author. This

chapter describes Perec, an interactive lyrics editor that implements in prac-

tice all the tools and the techniques presented so far, from the generation

of the initial Markov process that models the style of a given author to the

implementation of several graphical user interface (GUI) intended to help

the user to easily impose control constraints on the text to generate. Figure

6.1 shows the main frame of the Editor.

6.1 An augmented text editor

Perec is designed to be a text editor with some extra functionalities that

allow the user to get hints and suggestions from the system to generate texts.

At a first glance Perec looks like a normal text editor: it has a menu bar ,

a toolbar with some quite canonical icons (like , , and ), a central

tabbed text field, where the current open texts are shown and something

that looks like a text terminal at the bottom of the frame. In fact, Perec

can be used as a normal text editor. The user can open an existing text

101
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Figure 6.1: The main frame of Perec, an interactive lyrics editor that allows

the user to generate poetic text and song lyrics.
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file or create a new one. Then, to edit the file, the user can directly write

some text inside the text field of the currently opened document. Once

the editing phase is ended the user can save its works. But Perec is not a

simple text editor. In fact, it can suggest some verses to the user in the

style of a given author that satisfy user defined control constraints. Perec let

the user to decide about the degree of details about the control constraints

to be imposed, from a very detailed and low level specification of all the

unary constraints to be imposed to a global, high level description of some

properties that the generated texts should exhibit. Final Perec is equipped

with some plug-ins that enable the introspection of the creation process and

the analysis of the control constraints that can be imposed and their effect

on the verses to generate. The next section will explains more in detail all

the feature of Perec.

6.2 Overview of the interface

Perec manage files and documents in a standard way. It is possible to

create a new document by using the button , by selecting “New” in the

“File” menu or by pressing Ctrl+N on the keyboard. Once the new document

is created it can be saved either by using the button , selecting “Save” on

the “File” menu or by pressing Ctrl+S on the keyboard. To save a document

with a different name, it possible to use the “Save as” command, by selecting

“Save as...” on the “File” menu or by pressing Ctrl+Maiusc+S. Since Perec

can manage several documents in parallels, it is possible to save all of them

by using the button , by selecting “Save All” on the “File menu” or by

pressing Ctrl+Maiusc+A. To open an existing document the user can either

press the button, select “Open...” on the “File” menu or press Ctrl+O on

the keyboard.

Once a document is created or opened, it is ready to be edited by the

user. The user can simply write some text in completely free way, but the

more interesting feature of Perec is its capability to suggest verses to the
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Figure 6.2: The statement pop-up allows the user to specify high level fea-

tures to the verse to generate: the rhyme and the concept discussed by the

generated verse.

user. The most easy way to receive suggestion is by pressing either the state

button or the continuation button . (Note that pressing Ctrl+Space on

the keyboard is equivalent to pressing the button ). The state will suggest

some statements, the continuation button will suggest some continuations.

The difference between a statement and a continuation will explained below.

In both the case Perec will prompt a pop-up like the one showed in picture

6.2. This pop-up allows the user to specify high level features to the verse to

generate. The rhyme field is used to specify what is the rhyme of the verse to

generate. The concept field is used to specify to which concept the generated

verses should be semantically related. Once this field are filled, by pressing

the button “Generate”, Perec will propose a list of verses that satisfies the

given constraints in a new windows, like the one showed in picture 6.3. Once

the user select a verse, it will be inserted in the current edited document.

After the verse is inserted, it can be modified as each other part of the

document. In this way, if the user find one of the suggestion only partially

interesting, it can edit the uninteresting part.

When the “Generate” button is pressed on the statement pop-up, Perec

tries to map the provided high level feature on a set of control constraints.

The mapping of the rhyme on the equivalent rhyme feature is quite straight-

forward. On the other part the mapping of the target semantic concept is
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Figure 6.3: This window let the user select a verse generated by Perec that

is semantically related to the concept “music” and rhymes with the word

“day”.

more complicated. In fact, once the concept is and the rhyme are set, Perec

randomly draws a POS template in the POS library induced by the current

corpus (see below for more details about the corpus management by Perec).

Then one of the open tags (noun, verb and adjective tags) in the template is

randomly selected and a semantic constraint is imposed to the word placed

in the position relative to the selected POS tag. Of course, the semantic con-

straint depends on the concept specified in the pop-up. Finally, the rhyme

constraint is imposed on the last word. When all the control constraints are

set, Perec builds the corresponding constrained Markov process and uses it

to generate the verse the will proposed to the user.

The continuation button works similarly to the statement button, in fact

both trigger the same pop-up when pressed. The only difference is in the way

the contents of the fields in the pop-up (rhyme and concept) are mapped to

control constraint when the “Generate” button is pressed. The continuation

button will try to continue the last line in the main Perec text field, by

including the last n word lw1, . . . , lwn of this line in the specification of

the control constraints (n is a parameter that can be set in the “Option”

menu). In practice the first n control constrains will impose to the generated

words to be exactly lw1, . . . , lwn, in order to have a smoothed transition
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from these words to the rest of the verse. Since in this way the generated

verses will always start by the prefix lw1, . . . , lwn, and this prefix is already

in the document, only the rest part of the verses is proposed to the user.

For example if the last line of the text is “Perec is great” and n = 2, all the

verses to be generate as a continuation will start by “is great ...”. Suppose

now that the relative constrained Markov process will generate, for example,

“is great when used to write lyrics”. Therefore only “when used to write

lyrics” will be prompt to the user.

6.2.1 Corpus management

When Perec is started, the corpus loaded by default is the Dylan corpus,

but the user can load an other corpus by pressing the button , by selecting

“Open Corpus...” on the “Corpus” menu or by pressing Ctrl+L. Perec will

then open a file browser to let the user select the Corpus to load. At the

moment Perec is not able to build itself a corpus from scratch, but it needs an

already well formed corpus. However a corpus is just a collection of text files,

containing the content of the corpus tagged by a POS tagger, in the form

word1/tag1, word2/tag2, . . . wordn/tagn. Therefore Perec does not depend on

the POS tagger used to tag the corpus, and other tagger different from the

Standford Log-Linear tagger can be used. Moreover, nothing blocks the user

to use a manually tagged corpus.

6.3 The constraint terminal

If the user wants more control on the constraint to impose than the one

offered by the statement and continuation buttons, it can use the termi-

nal placed at the bottom of the Perec main frame, called the constraint

terminal. The constraint terminal is composed by the actual terminal, on

which is possible to directly specify the constraints in a text form, and three

buttons: , and . The control constraints can be specified to Perec

via the constraint terminal, using a very simple language. A sequence of
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control constraint is represented in the from ct1 ct 2 . . . ctn, i.e. the

control constraints are separated by spaces. A constraint is of the form

<pos>/<concept>/<rhythm>, where <pos> defines the POS tag of the POS

constraint, <concept> defines the concept of the semantic constraint and

<rhythm> defines the rhythmic tag of the rhythmic constraint. For example

NN/love/01 imposes the constraint Rpos
NN ∩Rsim

love,n ∩Rrtm
01 . Note that the size

n of the semantic constraint is a global parameter, that can be set in the

Perec’s “Option” menu.

If <pos>, <concept> or <rhythm> are empty, this means that the correspond-

ing constraint is not imposed.

For example //01 imposes only the rhythmic constraint Rrtm
01 . If <rhythm>

is empty the second / in the constraint definition can be omitted. If both

<concept> and <rhythm> are empty, both the first and second / can be

omitted, except in the case where also <pos> is empty (i.e. no constraint is

imposed). In this case at least one / is need to inform Perec that no con-

straint is imposed at this position.

For example the string DT NN/love / imposes Rpos
DT on the first word, Rpos

NN ∩
Rsim
love,n on the second word and nothing on the third word.

The rhyme constraints are a special case, as they can occur only once at the

end of a sequence. A rhyme constraint is of the form #<rhyme> and has to

be the last constraint of the string to pass to the constraint terminal. As

expected, #<rhyme> imposes Rrhy
rhyme.

For example the string DT NN/love VBZ #hello imposes Rpos
DT on the first

word, Rpos
NN ∩Rsim

love,n on the second word and Rpos
V BZ ∩R

rhy
hello on the third word.

Once the good string is entered in the constraint terminal, by pressing Enter

on the keyboard or the button Perec will translate them in the corre-

sponding sequence of control constraints and use it to generate verses. These

verses are then proposed to the user as in the case of the statement and con-

tinuation buttons. If the string passed in the constrain terminal is not well

formed and Perec cannot understand it, an error message is showed to the

user. At this point it is important to stress that, using the constraint termi-
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Figure 6.4: The template selector allows the user to access the template

library and select one template according to various properties.

nal, it is possible to create a sequence of constraints for which the induced

POS template does not belong to the template library of the current corpus.

This will not raise an error and Perec will try to generate verses that satisfy

the imposed constraints, if such verses exist. If the solution space is empty,

Perec will inform the user that the imposed constraint are to strict.

Since sometimes can be hard to enter a well formed string to the con-

straint terminal, or simply the user want to exploit the template library of

the corpus, two tools are provided: the template selector and the graphical

constraint manager.

The template selector (showed in figure 6.4) can always be called by

pressing on the button . The template selector allows the user to access the

template library and select one template according to various properties such

as: the template’s type (action if the template contains a verb, description

otherwise), the length or the frequency, i.e. how many time it appears in the
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Figure 6.5: The graphical constraint manager provides a graphical, more in-

tuitive way to modify the string that will be passed to Perec via the constraint

terminal.

corpus. Once a template is selected, the constrain terminal is filled with the

corresponding string. Therefore the template selector is a very useful tool to

send a well formed string to the constraint terminal.

The second tool is the graphical constraint manager. It can be called

by pressing the button . This button is enabled only if the string in the

constraint terminal is not empty. In fact the graphical constraint manager

provides a graphical, more intuitive way to modify the string that will be

passed to Perec via the constraint terminal. When the graphical constraint

manager is called, it parses the string in the constraint terminal and, if the

string is well formed, translates it in a more graphical form. One example of

the action of the graphical constraint manager is showed in figure 6.5. This

graphical form can be edited by the user to modify the imposed constraints.

Each modification in the graphical constraint manager will be translate in

a modification of the string in the constraint terminal. At the moment the

graphical constraint manager does not support rhythmic templates. To easily

generate verses that satisfy user defined rhythmic templates, Perec exploits

an other plug-in, the rhythm manager, described below.

Therefore It is useful to exploit together the template selector and the

graphical constraint manager to define constraint to pass to Perec via the

constraint terminal. First, a POS template is selected using the template se-

lector, then this template is enriched with other constraints using the graph-

ical constraint manager.
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6.4 Other plug-ins

Using the statement and continuation buttons and the constraint terminal

is possible to define which constraints to impose on the suggestion generated

by Perec at many level, from a very local to a very global level, but sometimes

is still difficult to decide what are the best constraint to impose to have the

best suggestions from Perec. In fact if the constraints are too strict, no

verse that satisfies them exists. On the other hand if the constraints are

too permissive, too many verses are generated and the interesting ones are

drowned among the uninteresting ones. Moreover, depending on the corpus

used, the same sequence of control constraints can lead to completely different

results. Therefore Perec comes with some plug-ins designed to help the user

to select the good combination of control constraints.

6.4.1 Semantic cluster viewer

The first of such plug-ins is the semantic cluster viewer. The semantic

viewer is a tool to inspect semantic constraints. It is called by pressing on

the button on the toolbar. When the semantic cluster viewer is called, it

ask the user what is the concept to inspect. Once a concept c is given, all

the words in Rsim
c,n are displayed on the screen. Figure 6.6 shows an example

of semantic cluster viewer. The corpus used is the Dylan corpus, the selected

concept is “God” and the size n is set to 30.

6.4.2 Rhyme viewer

The rhyme viewer is the equivalent to the semantic viewer in the case of

rhyme constraints. It is called by pressing on the button on the toolbar.

When the rhyme viewer is called, it ask the user what is the rhyme to inspect.

Once a rhyme r is given, all the words in Rrhy
r are displayed on the screen.

Figure 6.7 shows an example of rhyme viewer. The corpus used is the Dylan

corpus, the selected rhyme is “but”.
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Figure 6.6: The semantic cluster viewer. It shows the words in Rsim
god,30 in

the Dylan corpus, i.e. the 30 words in the Dylan corpus most semantically

related to the concept “God”.

Figure 6.7: The rhyme viewer. It shows the words in Rrhy
but in the Dylan

corpus, i.e. all the words in the Dylan corpus that rhyme with “but”.
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6.4.3 Rhythm manager

The rhythm manager is the most extended plug-in, in fact it can ever

thought as an editor itself. The rhythm manager is designed to be used when

the rhythm is an important feature of the verses to generate. It is called by

pressing on the button on the toolbar. When the rhythm manager is

called, it ask the user for an existing song to be used as a global rhythmic

template in the following way: provided the song, the rhythm manager ex-

tracts the rhythmic templates of each verse in the input song, and use them

as a skeleton for new lyrics to be generated. Figure 6.8 shows the global

rhythmic template extracted from the song “Yesterday” by The Beatles.

Then the user can interactively set other control constraints on this skeleton,

by clicking on the slot in the various rhythmic templates and adding con-

straint using the same language used to impose constraints through the con-

straint terminal. Once all the control constraint are set, it is possible to tell

to the rhythm manager to generate verses by clicking on the red arrows. The

rhythm manager was used to generate the lyrics of “Today”, the song showed

in section 4.1.3. It is possible to watch a video showing the whole generation

process on the web, at http://www.csl.sony.fr/MarkovCt/lyrics/.
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Chapter 7

Conclusion

This thesis demonstrated that constrained Markov processes can be used

to generate texts that imitate a given style while satisfying structural prop-

erties. This is achieved by proposing a general solution to the issue of con-

trolling finite-length sequences generated by Markov processes. The solution

exploits the fruitful connection between Markov processes and constraint sat-

isfaction, initiated in [33]. The thesis shows that for constraints that remain

within the Markov scope, directed arc-consistency enables to compile control

constraints in the form of a non-homogeneous Markov model. This model

can in turn be used straightforwardly with random walk to generate texts

that satisfy the constraints with their original probabilities.

Then the thesis shows how high level properties of a poetic texts, such as

syntactic correctness, rhymes and meter can be formulated as unary con-

trol constraints. Moreover this same framework enables the verses to be

semantically biased towards a given semantic constraint. Once these control

constraints are defined, they are used to generate poetic texts and lyrics.

First, the semi-automatic generation of lyrics in the style of the songwriter

Bob Dylan that has the same structure as an existing song (Yesterday by

The Beatles) is described. Then several examples in the style of more 60 au-

thors are listed, demonstrating how this approach can be used to create the

lyrics of a song that is both stylistically coherent while satisfying structural

115
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constraints.

The control constraints are then evaluated empirically. The evaluation is

done by asking humans to evaluate texts generated by constrained Markov

processes against texts generated by two other approaches: a pure Markov

approach and a pure constraint satisfaction approach. This evaluation shows

that constrained Markov processes generate better texts in terms of syntactic

correctness and semantic relatedness.

Finally an augmented text editor, called Perec is described. Perec exploits

constraint Markov process to help the user to write poems and lyrics. In fact

Perec can suggest at verses that satisfy control constraint proposed by the

user.

This thesis has shown that constrained Markov processes can fruitfully

be used to generate lyrics in a given style that also satisfy control constraints

imposed by the user. However constrained Markov processes ensure that

the generated texts are “in the style of” only from a computational point

of view. Therefore, in the future, it will be interesting to study how control

constraints impact the perceived style of the generated texts. An other pos-

sible future work will concern the impact of Perec on the writing style of the

user. Can Perec improve the creativity of the user? Do some styles improve

the creativity more than others? And what happens if the style set in Perec

is the style of the user itlself? Some experiments should be designed to try

to answer all these question.
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