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General introduction 
 

1. Importance and origin of cultivated cucurbits 

Cucurbits belong to the family Cucurbitaceae and consist of about 118 genera and 825 

species, according to the last taxonomic treatment of Jeffrey (1990). Cucurbits are present in 

both the New and Old World and are among the most important plant families that supply 

human with edible products and useful fibers. Cucurbits are divided into five sub-families: 

Fevilleae, Melothrieae, Cucurbitaceae, Sicyoideae, and Cyclanthereae. The most important 

cultivated genera are Cucurbita L., Cucumis L., Citrullus L., Lagenaria L., and Luffa L., 

found in the sub-family Cucurbitaceae, and Sechium L., found in the sub-family Sicyoideae 

(Whitaker and Davis, 1962). Among the cucurbits, watermelon is the most popular in the 

world. The United Nations' Food and Agriculture Organization (FAO) estimated an average 

annual area of cultivation of 2.5 million ha and an annual production of 46.6 million tons of 

watermelon fruits between 1996 and 1998. Next in total world production were cucumber, 

melon, squash and pumpkins. In terms of countries, China is the leading producer of major 

cucurbit crops followed by Turkey, Iran and Ukraine. In the Americas, Argentina is an 

important producer of squash and pumpkins and the United States is an important producer 

of cucumber, melon and watermelon (FAO, 1998). The most important cucurbits in Brazil 

are squash, watermelon and melon, whose total production in 1995 was 535 million fruits 

harvested from an area of 206,000 ha (IBGE, 1996).  

Although cultivated cucurbits are very similar in above ground development and root habit, 

they are extremely diverse for fruit characteristics. Fruits are eaten when immature (summer 

squash) or mature (watermelon). Fruits can be baked (squash), pickled (cucumber), candied 

(watermelon), or consumed fresh in salads (cucumber) or dessert (melon). Also, seeds, 

flowers (squash and pumpkins) and roots (chayote) are consumed by humans. Cucurbits are 

also produced for other uses than food. Fruits (bottle gourd) are used for storage, drinking 
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containers, bottles, utensils, smoking pipes, musical instruments, gourd craft decoration, 

masks, floats for fish net, and other items. The fiber of a mature loofah fruit can be used as a 

sponge for personal hygiene, household cleaning and various other purposes, including 

filtration. Seeds or fruit parts of some cucurbits are reported to possess purgatives, emetics 

and antihelmintics properties due to the secondary metabolite cucurbitacin content 

(Robinson and Decker-Walters, 1997). Therefore, cucurbits are among the largest and the 

most diverse plant families, have a large range of fruit characteristics, and are cultivated 

worldwide in a variety of environmental conditions (Bisognin, 2002). 

Cucurbits are associated with the origin of agriculture and human civilizations and are also 

among the first plant species to be domesticated in both the Old and the New World. 

Archaeological records of the New World suggest that Cucurbita was one of the first plants 

to be domesticated (NEE, 1990). One of the first species to be domesticated in the New 

World was C. pepo. The origin and early spread of all Cucurbita species was in the 

Americas. According to a recent comprehensive biosystematic monograph of Kirkbride 

(1993), the genus Cucumis includes 32 annual and perennial species divided in two very 

distinct groups defined by geographic origin and chromosome number (African group 2n = 

24 and Asiatic group 2n = 14 chromosomes): the African group includes melon (C. melo) 

and the Asiatic group includes cucumber (C. sativus). The genus Citrullus consists of eight 

species and sub-species. The most economically important Citrullus lanatus (watermelon) 

originated in Africa and India (Mallick and Masui, 1986).  

2. Cucurbit powdery mildew disease 

Within the over 200 disease affecting cucurbits (Zitter et al., 1996), powdery mildew is 

considered the most important widespread disease limiting the cucurbit production. Even 

there are some indications of records of Leveillula taurica (Lév.) G. Arnaud (1921) as a 

causal species of cucurbit powdery mildew (El Ammari and Wajid Khan, 1983; Branzanti 
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and Brunelli, 1992; Vakalounakis et al., 1994), the most common pathogens causing the 

disease are two obligate biotrophic ascomycetes fungi: Podosphaera fusca (syn. 

Podosphaera xanthii) and Golovinomyces orontii (syn. Golovinomyces cichoracearum). 

Symptoms induced by both pathogens are identical: a white powdery fungal mass composed 

by mycelia and conidia that appears generally first on lower and subsequently on upper leaf 

surface, petioles, stems (Figure 1) and rarely on fruits (Perez-García et al., 2009). With 

favorable environmental conditions such dry weather, temperature of 20-27 °C, low light 

intensity, dense plant growth and high fertility (Hansen, 2009), the colonies grow and 

develop very rapidly and reduce photosynthesis, causing yellowing and sometimes death of 

plants (Pérez-García et al., 2009).  

 

Figure 1 Symptoms of powdery mildew infections on zucchini (a, c, d) and melon (b). 
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2.1 Taxonomy and host range 

Both powdery mildew species belongs to Phylum Ascomycotina, Subdivision 

Pezizomycotina, Class Leotiomycetes, Order Erysiphales and Family Erysiphaceae. The 

nomenclature of both pathogens has been changed many times over the years.  

 

Podosphaera fusca 

P. fusca belongs to tribe Cystothecae and in the past was named Sphaerotheca fuliginea and 

Sphaerotheca fusca before the enclosing of the genus Sphaerotheca into Podosphaera on the 

basis of new molecular data (Braun and Takamatsu, 2000). Host range include families such 

Asteraceae, Scrophulariaceae, Solanaceae, Lamiaceae, Verbenaceae and Cucurbitaceae 

(Pérez-García et al., 2009). Braun (2001) proposed a separation of Podosphaera fusca from 

Podosphaera xanthii based on morphological features of the teleomorph: on cucurbits it 

seems that the fungus has large ascomata (75-100 µm) and large oculus (15-30 µm) and thus 

the cucurbit pathogen has been named P. xanthii. However, some authors, retain that define 

a species based just on morphologically features is not satisfactory (Moncalvo, 2005). In the 

case of P. xanthii, to define the species based on features of the teleomorph stage it is simply 

not correct because the presence of chasmothecia is considered rare and they were never 

observed in many areas and also because ascospores from fruit bodies produced in 

laboratory were not able to infect cucurbits (McGrath, 1994). Furthermore, molecular data 

based only on internal transcribed spacer (ITS) sequences are not sufficient to support a 

species separation, since a multi-gene approach has to be considered for recognition a fungal 

species. Thus, in the absence of new molecular data and host range experiments, P. xanthii is 

considered as a synonymous with P. fusca for many authors (Pérez-García et al., 2009). 

Golovinomyces orontii 

In the past, the pathogen was included in the genus Erysiphe and thus named Erysiphe 

cichoracearum. After that, the definition of the genus Golovinomyces as a section of the 
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genus Erysiphe named the pathogen Golovinomyces cichoracearum. Subsequently, based on 

anamorphic features and as a result of molecular phylogenetic studies the section was raised 

to the generic level (Braun, 1999) and Golovinomyces was moved to tribe Golovinomycetae 

(Braun and Takamatsu, 2000). The latter consist of three genera: Golovinomyces, 

Neoerysiphe and Arthrocladiella. Host range cover many families as Asteraceae (more than 

1000 hosts), Bolaginaceae, Scrophulariaceae, Solanaceae and Cucurbitaceae. 

Golovinomyces orontii was distinguished from G. cichoracearum by the presence of curved 

foot cells at the base of the conidiophores (Cunnington et al., 2009). However, the presence 

of these curved cells was described in G. cichoracearum (Braun, 1987). In fact some 

authors, like Shin (2000), did not recognize G. orontii as a species and continued to name the 

fungus G. cichoracearum. As the case of P. xanthii, morphological characters are not 

sufficient to discriminate at level of species and thus, the two names are considered as 

synonymous. 

2.2 Biology 

Both species, like other powdery mildews, are obligate biotrophic pathogens. The mycelium 

is totally epiphytic and is hyaline, septate and thin-walled. In particular the hyphae of P. 

fusca turn brown and become more or less thick-walled with age. From hyphae and at the 

end of the conidial germ tubes are formed structures called appressoria that allow mycelium 

to attach to the host. P. fusca has an indistinct appressorium characterized by a widening of 

the hyphae (Boeswinkel, 1977) that differ from that of G. orontii that is distinct and nipple-

shaped. From the center of attachment of the appressorium, originates and arise the 

haustorium, a penetration hypha that enters the epidermal cells of host by enzymatic 

degradation of the cuticle and wall and mechanical penetration. 

Asexual spores are called conidia. They are one-celled, uni-nucleate and vacuolated, and 

represent the anamorphic or imperfect stage of the fungi. They are produced singly or in 
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chains at the tip of structures called conidiophores that arise from superficial hyphae. The 

basal cell of conidiophores is called foot-cell.  

Conidia of the two species differ in shape and size:  

- P. fusca: elliptical or spherical and measure 25-37 × 14-25 µm (Figure 2a) 

-G. orontii: oval or cylindrical and measure 25-45 × 14-26 µm (Figure 2b) 

 

 

Figure 2 Conidia of the powdery mildew fungi P. fusca (a) and G. orontii (b). 

 

Furthermore, conidia of P. fusca present peculiar cell inclusions called fibrosin bodies 

(Figure 3). These particles are made of lipids (Kiss et al., 2011) and are refractive when 
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observed at light microscope in a 3% potassium hydroxide solution (Kable and Ballantyne, 

1963). This characteristic is typical of the genera Podosphaera, Cystotheca and Sawadaea. 

                                                 

 

Figure 3 Presence of fibrosin bodies in conidia of P. fusca. 

                                            

 

The two species differs also in the mode of conidia germination (Lebeda, 1983):  

- P. fusca: short, often lateral forked germ tube without conspicuous appressoria (Figure 4a). 

- G. orontii: single germ tube from the apical part of the conidia with a club-shaped 

appressoria (Figure 4b). 

 

Figure 4 Conidial germination in P. fusca (a) and G. orontii (b). 

 



16 

 

Like the majority of all Ascomycete fungi, both powdery mildew species produce sexual 

spores (ascospores) that are contained in a sac called ascus that represents the teleomorph or 

perfect stage.  

The asci of the major part of ascomycetes are produced in a fruit body called ascocarp, 

formed by an external wall (peridium) and by an internal layer (hymenia). Ascocarp of 

ascomycetes can be differentiated in: 

- Apothecium: asci are produced in an open-, cup- or saucer-shaped ascocarp 

(Discomycetes). 

- Pseudothecium: asci are formed directly within a stroma of mycelium 

(Loculoascomycetes). 

- Perithecium: asci are contained in an ascocarp that is more or less close but at maturity has 

an opening (ostiole) to release the ascospores (Pyrenomycetes). 

- Cleistothecium: the ascocarp is spherical and completely close having no predefined 

opening. The asci are irregular arranged and are discharged by the decay of the peridium.  

In the case of the powdery mildews, the ascocarp is completely close without an ostiole but 

the internal structure is rather perithecium-like because asci are regularly arranged in 

hymenia fascicles. Furthermore, in powdery mildew fungi asci are not discharged by decay 

of the fruit body but the latter is ruptured by swelling asci that causes a peculiar dehiscence 

of the ascocarp by vertical slits. The name proposed for this particular kind of ascocarp is 

chasmothecium (Braun et al., 2002). 

Chasmothecia of the two cucurbit powdery mildew species differ in size and number of asci 

and ascospores (Lebeda, 1983):  

- P. fusca: 65-98 µm in diameter and contains 1 ascus with 8 hyaline ascospores (Figure 5a). 

- G. orontii: 80-140 µm in diameter with 10-15 asci containing 2-3 ascospores (Figure 5b). 
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Figure 5 Chasmothecia of P. fusca (a) and G. orontii (b). Image “b” was taken from 

http://website.nbm-

mnb.ca/mycologywebpages/NaturalHistoryOfFungi/DiscomycetousPlectomycetes.html. 

 

Several studies conducted between the end of the 19th century and the middle of the 20th 

century suggested a great diversity of the sexual processes and attracted controversy over a 

long period (Braun et al., 2002). Ali (1988), Dörfelt et al. (1989) and Dörfelt and Ali (1996) 

carrying out detailed examinations using both light (LM) and transmission electron (TEM) 

microscopy, provided comprehensive interpretations of the sexual reproduction and ascoma 

development of powdery mildews. In particular, Dörfelt and Ali (1996) recognized three 

main developmental types: sexual types (mono and polyascus types), pseudosexual types 

and non-sexual types. The results obtained by the same authors can be summarized as 

follows: the sexual processes and the ascoma development are generally uniform in all 

powdery mildews. Uninucleate, morphologically differentiated, “sexual organs” (gamocysts) 

are formed as lateral branchlets of the mycelium. The ascogonium (gymnogamocyst) and 

antheridium (androgamocyst) encircle each other or orient themselves closelly parallel. 

Cystogamy occurs and the nucleous of the androgamocyst migrates into the ascogonium 

which becomes and remain dicaryotic). Karyogamy have never been observed (the two 

nuclei are, however, always close to each other and simulate a single nucleus; this 

phenomenon is undoubtedly the reason for the report of karyogamy by numerous authors). 

Dikaryotization is followed by divisions of the nuclei (in Podosphaera sect. Sphaerotheca, 

http://website.nbm-mnb.ca/mycologywebpages/NaturalHistoryOfFungi/DiscomycetousPlectomycetes.html
http://website.nbm-mnb.ca/mycologywebpages/NaturalHistoryOfFungi/DiscomycetousPlectomycetes.html
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the dikaryon remains for a relatively long time; in other genera with numerous asci, the 

division of nuclei is immediately initiated after transfer of the nucleus into the ascogonium). 

Immediately following the division of the nuclei, surrounding hyphae arise from the haploid 

“stalk cells” of the ascosonium and initiate the peridium of the fruitbody. Later, the 

multinucleate ascogonium is divided into a variable number of cells that are irregularly 

arranged. A single dikaryotic cell of the secondary ascogonium (monoascus type) or several 

cells (polyascus type) develop into asci. After meiosis and mitosis, haploid nuclei 

surrounded by cytoplasm and enveloped by a wall inside the ascus are formed: the 

ascospores (Braun et al., 2002).  

2.3 Life cycle and epidemiology 

Like other powdery mildew fungi, the two cucurbit powdery mildew species reproduce both 

sexually and asexually (Figure 6). The asexual cycle begins with the dispersion of conidia 

(usually by wind) from infected leaves. When conidia arrive on a susceptible host they 

produce a germ tube from which is differentiated a primary appressorium and a primary 

haustorium. A primary hypha is then formed from the primary appressorium (or from 

another pole of the conidium) and forms a secondary appressorium from which a secondary 

haustorium is formed. Subsequently, the primary hyphae originate the secondary hyphae 

from which arise the conidiophores with conidia at the tip. Secondary hyphae together with 

conidia form the white mycelia, typical of the powdery mildew fungi (Pérez-García et al., 

2009). 
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Figure 6 Life cycle of powdery mildew fungi (taken from Pérez-García et al., 2009). 

 

Regarding the sexual cycle, both species are heterothallic, forming chasmothecia when two 

hyphae of opposite mating type are encountered (McGrath, 1994). When chasmothecia 

releases either an ascus (P. fusca) or several asci (G. orontii) with ascospores inside, these 

are dispersed like conidia and can infect a susceptible host. Chasmothecia are produced on 

infected leaves or stems when the plants become senescent and usually represent the 

overwintering stage, with the ascospores being the cause of the primary infections. Then, 

these infections produce conidia that cause secondary infections during the growing season. 

However, the fungus may overwinter as mycelia or conidia. Chasmothecia of P. fusca have 

been observed in Germany (Ulbirch and Smolka, 1994), Hungary (Nagy, 1976), rarely in 

United States (McGrath, 1994), Greece (Valounakis and Klironomou, 1994) and Czech 

Republic (Kristková et al., 2009). By contrast, they were never reported on cucurbits in 

Spain (Álvarez and Torés, 1995) and southern Italy (Miazzi et al., 2011). However, in North 

of Italy, chasmothecia of P. fusca were found in abundance in the 80’s as reported by 

Branzanti and Brunelli (1987). Chasmothecia of G. orontii are considered to be rare: they 
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were observed just in Germany (Ulbirch and Smolka, 1994), Hungary (Nagy, 1976) and 

Czech Republic (Křístková et al. 2009). These observations suggest that the asexual stage 

seems to predominate in both species and which can be the epidemiological relevance of the 

sexual stage remains unclear. 

2.4 Ecological requirements 

Nagy (1976) studied the effects of temperature and relative humidity on germination of 

conidia and described the requirements of the two species. He observed that germination 

optimum for G. orontii was about 25°C with the minimum of 10-20°C and the maximum of 

30°C. The optimum of P. fusca was 22°C with a minimum of 20°C and maximum of 30°C. 

Below the minimum temperature and above 30°C germinating conidia of both pathogens 

were rarely found. On the basis of these observations, G. orontii seems to be the species with 

the widest range of temperature in which germination could be affordable. Considering that, 

in general, dry conditions are favoring the process of colonization, sporulation and dispersal 

of powdery mildew fungi (Butt, 1978); in the same study some differences were found in 

moisture requirements of the two species. P. fusca was found to be more sensitive to 

moisture than G. orontii because it requires 100% of relative humidity for conidia 

germination and tolerates higher moisture content than G. orontii. By contrat conidia from 

G. orontii germinates under relative lower moisture. 

2.5 Races and pathotypes 

The two cucurbit powdery mildew species are also highly variable in their pathogenicity and 

virulence, as evidenced by the existence of a large number of different pathotypes and races 

(Bertrand et al., 1992; Lebeda et al., 2004; Lebeda and Sedlàkovà, 2006; McCreight, 2006; 

Lebeda et al., 2007). Pathotypes of a fungus can cause differential reactions on plant species 

and cultivars with different levels of resistance. Differences in pathotypes can influence a 
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screening towards resistant plants. It is this knowledge on differential reactions towards 

fungal isolates that can discriminate the existence of pathotypes (Leus et al., 2002). Race can 

be defined as a population of individuals the members of which are similar to other such 

populations on morphological grounds but differ on physiological or pathological grounds. 

In pathogenic fungi, races are identified on the basis of infections on different species of the 

host. 

Pathogenic specialization in cucurbit powdery mildew is well known. There is often a very 

clear expression of compatibility or incompatibility in host plant–powdery mildew 

interactions that allows for the classification of pathotypes and races based on the reaction 

patterns of compatible and incompatible reactions on the differential hosts species or 

genotypes (Lebeda et al., 2008, 2011). A unified, objective system for the determination, 

denomination, and classification of pathotypes and races on cucurbits remains to be codified 

(Lebeda and Sedlàkovà, 2006; McCreight, 2006; Lebeda et al., 2007, 2008). Cucurbit 

powdery mildew pathotypes are based on intergeneric and interspecific differences in host–

pathogen interactions. For pathotype determination in P. fusca, two cultivars of the major 

cucurbit crops are normally used (Bertrand, 1991; del Pino et al., 2002; Lebeda et al., 2008). 

Most of the isolates are able to infect zucchini and melons cultivars, crop species that are 

very sensitive to powdery mildew. Differential responses are mostly associated with 

cucumber and watermelon cultivars, crop species that are either tolerant or traditionally 

resistant to the fungus, respectively (del Pino et al., 2002). 

Cucurbit powdery mildew races are characterized by the interactions of different isolates of a 

pathogen with different genotypes of a given host species (Bertrand 1991; Pitrat et al., 1998; 

Bardin et al., 1999; Lebeda and Sedlàkovà, 2010). Races of G. orontii and P. fusca have, to 

date, been differentiated only on melon (Lebeda et al., 2011). The most frequently used sets 

of melon differential lines include 11 genotypes of C. melo (Iran H, Védrantais, Top Mark, 

PMR 45, PMR 5, 
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WMR 29, Edisto 47, PI 414723, MR-1, PI 124111, PI 124112) that can differentiate races 

originating from melon (McCreight, 2006) and other cucurbits (Lebeda et al., 2004; Lebeda 

and Sedlàkovà, 2006; Lebeda et al. 2007; Lebeda et al., 2008; Lebeda and Sedlàkovà, 2010). 

To date, 2 races of G. orontii and 25 of P. fusca have been identified (Pitrat et al., 1998; 

Bardin et al., 1999; Hosoya et al., 2000; Bertrand, 2002; McCreight, 2006). This diversity of 

races is a serious problem for powdery mildew control because represents a serious 

limitation for the use of varieties only resistant to a limited number of races. In consequence, 

although many commercial varieties have been released with resistance to P. fusca, the 

development of new races of the pathogen hinders disease management through resistance 

breeding. 

2.6 Control 

According to current management practices, an integrated approach for management of 

powdery mildew fungi should include the use of the following components: powdery 

mildew-tolerant cultivars; biorational compounds, fungicides, biological agents, and 

chemical compounds that stimulate plant resistance. Cultivating plants with genetic 

resistance to powdery mildew is the best method of growing disease-free cucurbit crops. 

Consequently, an appropriate selection of tolerant or resistant cucurbit cultivars is the 

simplest way to deal with powdery mildew infections (Nuñez-Palenius et al., 2009). 

Unfortunately, as mentioned above, there are several races of cucurbit powdery mildew 

fungi and some powdery mildew-resistant cultivars might be susceptible to a specific race 

(Zitter et al., 1996). Although great efforts have been invested in plant breeding programs, 

growers still have important concerns about disease control and fungicides or other control 

agents must be employed to counteract the relentless cycles of a powdery-mildew disease in 

those tolerant or resistant cultivars. So, in practice, application of fungicides continues to be 

the principal tool for managing powdery mildew in most cucurbit crops (McGrath, 2001).  
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Table 1 Chemistries approved for cucurbit powdery mildew control in Italy in 2012 (Valmori, I.) 

Chemical group Common name Mode of action 

Target site Inhibited function 

Inorganic Sulphur Multi-site contact activity 

Dinitrophenoles Meptyldinocap 

 

Uncoupler of oxidative ATP formation 

phosphorylation                                                      

 

DMI fungicides Difenoconazole 

Bitertanole 

Fenbuconazole 

Myclobutanil 

Penconazole 

Propiconazole 

C14α-demethylase Sterol biosynthesis  

 Tetraconazole 

Triadimenol 

Tebuconazole 

  

Hydroxy-(2 amino-

) pyrimidines 

Bupirimate Adenosin deaminase Nucleic acids biosynthesis 

QoI fungicides Azoxystrobin 

Kresoxim-methyl 

Trifloxystrobin 

Cytochrome bc1 complex at Qo site Respiration 

Pyridine-

carboxamides 

Boscalid  Complex II: succinate 

dehydrogenase 

Spore germination and 

germ tube elongation 

Quinolines Quinoxyfen G-proteins (proposed) Signal transduction 

Amidoximes Cyflufenamid Unknown  

 

Intensive fungicide development has resulted in a large number of different fungicides and 

formulations, although the number of active ingredients available to growers is progressively 

decreasing for reasons such as fungicide resistance development or environmental protection 

(Table 1). Within traditional molecules, sulphur-based fungicides still have a good control of 

the disease. However, on some crops as cucumber, they have to be applied with caution 

because of phytotoxicity risk, especially on protected crops, in particular on cucumber 
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(Brunelli and Gengotti, 2007). As shown in the table, many of the active ingredients that can 

be used to combat cucurbit powdery mildew belongs to the class of DMI (DeMethylation 

Inhibitors) fungicides, which include the chemical group of triazoles that were introduced in 

the 80’ and 90’ (difenoconazole, fenbuconazole, myclobutanil, penconazole, propiconazole, 

tebuconazole, tetraconazole, triadimenol and fenarimol). Another molecule introduced in the 

same period was the hydroxypirimidin bupirimate. From the end of the 90’ several 

molecules were introduced: quinoxyfen (phenylquinoline group), the very popular among 

growers strobilurin fungicides (azoxystrobin, tryfloxystrobin, kresoxym-methyl) or QoI 

(Quinone Outside Inhibitors) and boscalid (carboxamide group). More recently, new 

molecules as cyflufenamid (amidoxime group) and pyriofenone (phenyl ketone group) have 

been introduced to improve the chemical control arsenal against powdery mildew (Collina et 

al., 2012).  

A good control strategy has to consider the different modes of action of these molecules and 

their persistency. Generally, application of fungicides is done at the appearance of the first 

symptoms but preventive application is recommended. Treatments with products based on 

molecules with specific mode of action have a good persistency and generally are sprayed in 

a 10 days interval. Because cucurbits are characterized by a scalar harvest, a critical point is 

represented by the pre-harvest interval (PHI) that must be respected after treatments 

(Brunelli and Gengotti, 2007). Products with the shortest PHI interval are QoI-based 

products with 3 days and the recent cyflufenamid based product with 1 day (Myrta et al., 

2012). Because of the potential of P. fusca for fungicide resistance development, strict anti-

resistance strategies, including limiting the treatments and the use of mixtures and 

alternations, are highly recommended when using single-site systemic fungicides against 

cucurbit powdery mildew. Preferably, these fungicides should be combined or alternated 

with multi-site fungicides that have a low resistance risk (McGrath, 2001). In fact, resistance 

to some of the above mentioned fungicides has been documented: DMI (Brunelli et al., 
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2010; López-Ruiz et al., 2010), QoI (Collina et al., 2006, Fernández-Ortuño et al., 2006; 

Collina et al., 2012;) and boscalid (Miyamoto et al., 2010; Ishii et al., 2011; Collina et al., 

2012). Nowadays fungicide resistance is an important factor to consider when planning an 

efficient control strategy against cucurbit powdery mildew. 

3. Population genetics in plant pathogens and evolutionary potential 

Genetic structure of a species is defined as the amount and distribution of genetic variation 

within and among populations of that species, which is determined by the evolutionary 

history of populations. Genetic structure is the result of the interactions between 5 factors 

affecting the evolution of populations: genetic drift, gene flow, mutation, modes of 

reproduction and selection (McDonald and Linde, 2002). Mutation is the fundamental source 

of genetic variation because it leads to the creation of new alleles in populations. Regarding 

plant pathogens, populations with more alleles have higher genetic diversity and, therefore, 

more likely to create strains capable of overcoming resistance genes or develop resistance to 

fungicides. The population size may affect the probability that a mutant is present and 

influence the genetic diversity of a population through a process called genetic drift. 

Mutation rates are relatively constant and almost always quite low, large populations 

typically have higher gene diversity (more mutant alleles) than small populations. Genetic 

drift occurs when a population is subjected to a bottle neck (catastrophic event causing a 

severe reduction in population size) or a founder effect (such as when a small population of 

the pathogen colonizes a new host population), circumstances in which the frequency of 

mutant alleles in the surviving populations or founders may differ significantly from the 

frequency of the original population (McDonald and Linde, 2002). 

Gene flow is the process by which certain alleles (genes) or individuals (genotypes) are 

exchanged between geographically separated populations. Gene flow, therefore, can 

substantially increase the size of a population through the increase in size of the "genetic 
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neighborhood" through which genes and genotypes exchange and facilitate movement of 

mutant alleles between individual populations of the pathogen. Therefore, plant pathogens 

that have a high degree of gene flow have higher genetic diversity because they present 

higher population size and tend to be those who produce propagules with capacity of long-

distance dispersal (McDonald and Linde, 2002). 

The mode of reproduction affects the way in which genetic diversity is distributed within and 

among populations. Reproduction can be sexual, asexual, or mixed, as it is the case of many 

fungi presenting both sexual and asexual reproduction. Many of the most destructive and 

dangerous plant pathogens show a combination of sexual and asexual cycles, which can 

generate high levels of gene and genotypic diversity. During the sexual cycle many new 

combinations of alleles (genotypes) are generated that can be tested in different 

environments, such as the presence of new gene combinations that confer resistance to 

fungicides. During the asexual phase most suitable genotypes are maintained through a 

clonal reproduction and may even increase their frequency. Temporal and spatial distribution 

of clones or clonal lines within or between populations will mainly depend on the 

capabilities of dispersal and survival of the asexual propagules. If spores or asexual 

propagules can disperse over long distances, then the clone with a higher capacity for 

survival may be widely distributed through a relatively quickly genotypic flow, causing an 

epidemic (McDonald and Linde, 2002)..  

Finally, selection is the main force driving the changes in frequency of mutant alleles. For 

example, there is a strong directional selection with the intensive use of a new resistance 

gene or a new fungicide, which leads to an increase in the frequency of mutants fungicide-

resistant or virulent (that have lost the elicitor complementary to the resistance gene). There 

are many examples of overcoming plant resistance genes and development of resistance to 

fungicides that demonstrate that selection is an effective evolutionary mechanism in the 
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majority of modern agro-systems that are based on the genetic uniformity of monocultures 

and intensive use of plant protection products (McDonald and Linde, 2002). 

3.1. Risk assessment: Evolutionary potential of powdery mildew fungi 

According to this approach, the pathogens of highest risk for agriculture are those presenting 

a higher evolutionary potential (higher genetic diversity). Once evaluated the evolutionary 

potential of a particular pathogen, disease management programs should be developed and 

designed to reduce the genetic diversity of the pathogen through the maintenance of low 

levels of pathogen populations; limiting the movement of genes and genotypes among 

populations; limiting the occurrence of sexual reproduction or the persistence and 

distribution of asexual propagules; using cultivars carrying various resistance genes or by the 

alternation of cultivars carrying different resistance genes; and above all diversifying the use 

of fungicides. Among the plant pathogens with the highest evolutionary risk, the powdery 

mildews can be highlighted because in them, the 5 evolutionary forces are set out clearly 

(McDonald and Linde, 2002). During most of the growing seasons they reproduce asexually 

in a prolific manner through the formation of conidia that are dispersed by the wind over 

long distances (Bardin et al., 1997; Pérez-García et al., 2009; Miazzi et al., 2011). They also 

have a sexual stage (teleomorph) which leads to the formation of chasmothecia, structures 

containing ascospores and ultimately responsible for genetic variability. Since disease 

control is practically reduced to the employment of resistant cultivars and of repeated 

application of fungicides (McGrath, 2001; Brunelli and Gengotti, 2007; Nuñez-Palenius et 

al., 2009 Pérez-García et al., 2009), they are subject to a strong selection. Finally, although 

mutation rates are unknown, it is known that, in many cases, fungicide resistance is linked to 

mutations in target genes (Bartlett et al., 2002; Miyamoto et al., 2010). 
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3.2. Tools and techniques of population genetics 

In many areas of investigation, the precise identification, discrimination and characterization 

of fungal species and populations are of relevant importance. However, sometimes this is 

difficult to achieve because this characterization is done mainly on the basis of 

morphological and biochemical criteria.  Molecular markers have become part of a repertoire 

of tools needed to assess the amount of genetic variation within populations (Rotondo, 

2011). In recent years, molecular markers and especially DNA-based markers, have been 

extensively used in many areas such as gene mapping and tagging (Karp and Edwards, 1997; 

Kliebenstein et al., 2001), characterisation of sex (Flachowsky et al., 2001), analysis of 

genetic diversity (Godt and Hamrick, 1999; Lerceteau and Szmidt, 1999; Martinez-Palacios 

et al., 1999; Erschadi et al., 2000) or genetic relatedness (Brookfield, 1992; Roa et al., 

1997;).  

According to Stansfield (1986), the term “marker” is usually used for “locus marker”. Each 

gene has a particular place along the chromosome called “locus”. Due to mutations, genes 

can be modified in several forms mutually exclusives called “alleles” (or allelic forms). All 

allelic forms of a gene occur at the same locus on homologous chromosomes. When allelic 

forms of one locus are identical, the genotype is called “homozygote” (at this locus), 

whereas different allelic forms constitute a “heterozygote”. In diploid organisms, the 

genotype is constituted by the two allelic forms of the homologous chromosomes. Thus, 

molecular markers are all loci markers related to DNA (markers can also be biochemical, or 

morphological).  

According to Solè (2003), a good molecular marker should be/have: 

1- Mendelian inheritance: transmit from one generation to another. 

2- Polymorphic: present several alleles at the locus investigated (multiallelic). 

3- Codominant: allow the discrimination between homo and heterozygotes. 

4- Neutral: all alleles have the same fitness. 
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5- Not epistatic: one can determine the genotype of a phenotype irrespective of the genotype 

of the other loci. 

6- Independent of environment: no phenotypic plasticity. 

7- Frequent occurrence in the genome. 

8- Even distribution throughout the genome. 

9- Highly reproducible. 

 

An outstanding advantage of this molecular approach is the immense amount of potential 

data that markers provide (Avise, 1994).  Moreover, rates of evolution of different parts of 

the genome are extremely variable, allowing molecular data to be applicable at any 

taxonomic level. Both dominantly (e.g. AFLP, RAPD, and ISSR) and codominantly 

inherited markers (e.g. allozymes, microsatellites) have been used to study population 

genetics and life history traits in many species. Among these, polymerase chain reaction 

(PCR)-derived markers obtained with non-species specific primers have become exceedingly 

popular since they do not request sequence information for the target species (Rotondo, 

2011). 

The first and so far most commonly used method in this group of techniques is called RAPD 

(Random Amplification of Polymorphic DNA) and was introduced in 1990 (Weir et al., 

1998, Pryor and Gilbertson, 2000; Roberts et al., 2000; Pryor and Michailides, 2002).  A few 

years later, the relatively similar techniques designated ISSR (Intersimple Sequence Repeats) 

(Hong et al., 2006; Park et al., 2008) and AFLP (Amplified Fragment Length 

Polymorphism) (Vos et al., 1995) were introduced.  However, despite of the obvious 

advantages of these methods related to the efficient and quick PCR amplification of 

polymorphic DNA fragments starting from small amounts of template, they have a number 

of limitations in the interpretation of the multi-band profiles produced. For example, 

heterozygotes cannot be detected because of their dominant nature and homology of 
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comigrating bands cannot be assigned certainly. From a technical point of view, competitive 

priming and the occurrence of artefactual bands produced by nested primer annealing or 

interactions within and between DNA strands during PCR, still remain potential problems 

(Halldén et al., 1996; Rabouam et al., 1999). The difficulty of achieving robust profiles, 

particularly in RAPDs, may make the reliability of these markers somehow questionable, but 

the reproducibility of RAPD analysis can be enhanced through improved laboratory 

techniques and band scoring procedures (Hansen et al., 1998), meanwhile AFLP and ISSR 

are less affected by the problem of reliability than RAPD because longer primers and higher 

annealing temperatures are employed (Zietkiewicz et al., 1994; Vos et al., 1995). In data 

compilations, estimates of genetic variation obtained with different types of dominant 

markers (AFLP, RAPD, ISSR) proved to be quite similar in magnitude, both for within and 

among populations (Meng and Chen, 2001).  

3.2.1. Amplified Fragment Length Polymorphism (AFLP) 

Amplified Fragment Length Polymorphism (AFLP) is a relatively fast, cheap, easy, and 

reliable method to generate hundreds of informative genetic markers (Vos et al., 1995; 

1997). The method is based on the observation of DNA polymorphisms. These 

polymorphisms are a result of point mutation or rearrangements (insertions, deletions, etc) in 

the DNA and are detected by scoring band presence versus absence in banding patterns. 

Because of that multiple loci can be analyzed in one experiment, AFLP can only be used to 

study dominant genetic markers. However, the main advantage of AFLP technique is its 

capacity of analyzing simultaneously many DNA regions distributed randomly throughout 

the genome. To achieve high reliability of the screen, genomic DNA is prepared in a way 

that combines the strengths of two methods: the repeatability of restriction fragment analysis 

and the power of the PCR (Vos et al., 1995; 1997). AFLP is also a very reliable and robust 
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technique, which is unaffected by small variations in amplification parameters (e.g. thermal 

cyclers, template concentration, PCR cycle profile). 

AFLP markers can be generated from DNA of any organism, and no initial investment in 

sequence analysis is required. Small amounts of DNA (~500 ng) are digested with a 

combination of one rare cutter and frequent cutter enzymes. Then, the adaptors, designed on 

the base of restriction site blunt ends, are ligated and so, the restriction sites are not 

reconstituted. Two subsequent PCR reactions are performed (pre-amplification PCR and 

selective PCR). The first is performed with no extension or a single-bp extension, followed 

by a more selective primer with up to a 3-bp extension (Figure 7). Generally, the band 

profiles are separated using polyacrylamide gel electrophoresis. 

 

Figure 7 The selective principle of the AFLP technology. Image was taken from Keygene 

(www.keygene.com). 

 

AFLP markers have been proved to be useful for assessing genetic differences among 

individuals, populations and independently evolving lineages, such as species.  For a wide 

range of taxa, including fungi, AFLP markers have been used to uncover cryptic genetic 

variation of strains, or closely related species that had been impossible to resolve with 

morphological or other molecular systematic characters (Huys et al., 1996; Janssen et al., 

1997). AFLP markers have found the widest application in analyses of genetic variation 

www.keygene.com)
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below the species level, particularly in investigations of population structure and 

differentiation.  The high resolution of AFLP markers also enables testing for clonal identity 

between individuals (i.e. absence of recombination), and thus permits inferences about 

sexual versus asexual modes of reproduction (Majer et al., 1996; Rosendahl and Taylor, 

1997; Majer et al., 1998). AFLP markers have the potential to resolve genetic differences at 

the level of DNA fingerprints for individual identification and parentage analysis.   

3.2.2. Multilocus Sequence Typing (MLST) 

Another method to study population genetics is represented by Multilocus Sequence Typing 

or MLST analysis. MLST, used first to study bacterial populations (Taylor, 2003), is a PCR-

based method that involves the amplification of DNA fragments of several housekeeping 

genes. After DNA sequencing and sequence alignment, sequence variations in the introns or 

exons can be observed among the isolates and haplotype could be differentiated. Because of 

that, this technique allows analyzing only a locus per experiment and of that locus it is 

possible to distinguish the allelic variation. MLST is considered to be a co-dominant marker. 

MLST, compared with other methods, such RAPD and RFLP, is highly reproducible and 

produces unambiguous and suitable data for epidemiological and population studies (Ahmed 

et al., 2006). However, due to DNA sequencing of several loci of a large number of isolates, 

MLST is expensive and require previous sequence information to design the corresponding 

MLST primers. This technique has been used successfully to study population genetics in 

powdery mildew species such as Erysiphe necator (Brewer and Milgroom, 2010) and 

Blumeria graminis (Inuma et al., 2007), the powdery mildews of grape and barley, 

respectively, and could represent an optimal approach to study population genetics of other 

powdery mildews.  
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4. Aim of the thesis 

Cucurbit powdery mildew is a major limitation for cucurbit production in Northern Italy. In 

order to achieve an effective disease control, a good understanding of the disease causal 

agent is needed. In the North of Italy, the presence of both main causal agents of cucurbit 

powdery mildew, G. orontii and P. fusca, has been documented. In order to determine the 

epidemiological relevance of both powdery mildew species in the most important cucurbit 

production areas of Northern Italy, detailed information about the occurrence and 

distribution of these powdery mildew species during the growing season is needed.  This 

data would allow a more effective use of the control tools available for these pathogens. In 

the same sense, information about the evolutionary potential of cucurbit powdery mildew 

fungi would be also very relevant for disease management. Information on genetic diversity 

of pathogen populations would allow, for example, predicting the durability of new 

resistance cultivars or novel chemical practices, this way leading to a more efficient and 

rational use of these control means. 

 

Considering the stated above, the aim of this thesis could be summarized in the following 

two particular objectives: 

1. To determine the occurrence and distribution of the cucurbit powdery mildew species 

during the cucurbit growing season in Northern Italy. 

2. To analyse the genetic diversity of the Podosphaera fusca populations, the main causal 

agent of cucurbit powdery mildew.  
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Part one: Epidemiology 

Species replacement of cucurbit powdery mildew-causing fungi in 

Northern Italy 

1. Introduction 

Cucurbit powdery mildew is probably the most important disease affecting cucurbitaceous 

plants worldwide. Like other powdery mildews, disease symptoms consist of a white 

powdery fungal mass that covers the entire surface of plants reducing the photosynthesis and 

thus reducing the yield and quality of crops (Pérez-García et al., 2009). Although great 

efforts have been invested in plant breeding programmes, growers still have important 

concerns about disease control, and the application of fungicides continues to be the 

principal practice for the management of powdery mildew in most cucurbit crops (McGrath, 

2001; Pérez-García et al., 2009).  

In Italy, cucurbits are cultivated from the North to the South of the peninsula. Only in the 

northern part of the country, 240.675 ha are cultivated representing the 26% of the total 

Italian cucurbit cultivated area of 910.583 ha (Istat, 2012). In particular, in the North 

cucurbits are mainly cultivated in Lombardia and Emilia-Romagna regions. Data on area of 

cultivated land and production of cucurbit crops in Italy are presented in Table 2. In Italy, 

like in many other countries of the Mediterranean basin, cucurbit powdery mildew is a major 

problem for these crops. 

Table 2 Cucurbit production in Italy. Data on surface cultivated (ha) and production yields (t) corresponding to 

2011 are given. Data were taken from Istat (2012). 

Crop Melon Watermelon Zucchini Cucumber 

 Field Tunnel Field Tunnel Field Tunnel Field Tunnel 

Surface  23.615 269.037 10.719
*
 135.061 14.199 391.728 1.430

*
 64.794 

Total 292.652 145.780 405.927 66.224 

Production 545.620 94.842 433.668
*
 76.510 359.320 179.657 30.538

*
 36.345 

Total 640.462 510.178 538.977 66.883 
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The disease in cucurbits can be caused either by the Ascomycetes fungi Podosphaera fusca 

(Fr.) Braun and Shishkoff (2000) and Golovinomyces orontii (Castagne) V.P. Heluta (1988). 

G. orontii is stably present in some temperate European countries like Northern Italy 

(Branzanti and Brunelli, 1987), Germany (Ulbirch and Smolka, 1994), Czech Republic 

(Lebeda, 1983), Hungary (Nagy and Kiss, 2006), France (Bertrand et al., 1992), Bulgaria 

(Velkov and Masheva, 2002), Switzerland (Corbaz et al., 1992) and Ukraine (Tomason and 

Gibson, 2006) while P. fusca is considered the predominant species in the Mediterranean 

basin (Bardin, 1997).  

In particular, P. fusca is the only species infecting cucurbits in Spain (del Pino et al., 2002; 

Fernández-Ortuño et al., 2006), Israel, Turkey (Kristkova et al., 2009), Greece 

(Vakalounakis and Krilomonou, 1994) and Morocco (Endo et al., 2012). Furthermore it is 

widespread distributed in Germany, Czech Republic (Lebeda, 1983), Italy (Branzanti and 

Brunelli, 1987), Bulgaria (Velkov and Masheva, 2002), Hungary (Nagy and Kiss, 2006) and 

Ukraine (Tomason and Gibson, 2006). Besides, it is also present in the United States of 

America (McGrath et al., 1996), China (Liu et al., 2011) and all the tropical and sub-tropical 

areas as Brazil (Reifschneider et al. 1985; de Melo Aguiar et al., 2012), Mexico (Felix-

Gastelum et al., 2005, Bojorquez-Ramos et al., 2012), Iraq (Ibrahim et al., 1985), Sudan 

(Mohamed et al., 1995), India (Gupta and Sharma, 2012) and Australia (Letham and Priest, 

1989). Furthermore, mixed infections of the two species have been recorded in the North of 

Italy (Branzanti and Brunelli, 1987), Czech Republic, Netherlands, Great Britain, Germany 

(Kristkova et al, 2009), Bulgaria (Velkov and Masheva, 2002), Hungary (Nagy, 1976) and 

rarely in France (Bertrand, 1992). 

As mentioned above, the occurrence of the two powdery mildew species has been 

documented in Northern Italy (Branzanti and Brunelli, 1987). In this area, understanding the 

epidemiology of the two species could be very useful to plan an efficient control strategy 

against cucurbit powdery mildew, especially considering that previous studies have 
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demonstrated a different sensitivity of these species to some fungicides (Bertrand, 1992; 

Sedláková and Lebeda, 2008). The aim of this work was to monitor the occurrence and 

distribution of the two cucurbit powdery mildew species in distinct locations in North of 

Italy during different growing seasons. In this way, relevant epidemiological data should be 

obtained which can be subsequently applied to the rational design of disease management 

programmes. 

2. Material and methods 

2.1. Sampling 

Samples were collected during the cucurbit-growing seasons 2010, 2011 and 2012 from 

different cucurbit crops and either from field or plastic tunnels, in farms located in the 

provinces of Bologna and Mantua, important areas of cucurbit production in the North of 

Italy (Figure 8). Host plants covered all of the major cultivated cucurbit crops: zucchini 

(Cucurbita pepo), melon (Cucumis melo), cucumber (Cucumis sativus) and pumpkin 

(Cucurbita maxima). Samples from watermelon (Citrullus lanatus) were not included 

because of the lower sensitivity of this species to cucurbit powdery mildew under field 

conditions. Location of farms subjected to sampling and the corresponding host plants are 

shown in Table 3.  

Each season, sampling started when the first powdery mildew infections were observed, that 

in the North of Italy usually happens at the end of May, and continued till the end of the crop 

season, usually at October-November. If possible, both infected leaves and chasmothecia 

were collected. At least 15 to 20 leaves showing typical powdery mildew symptoms were 

randomly collected in either field or plastic tunnel crops. In order to monitor the powdery 

mildew species composition during the crop season, sampling was repeated each 15-18 days 

on the same plants or, when a crop cycle ended, on plants of surrounding crops in the same 

http://link.springer.com/search?facet-author=%22B.+Sedl%C3%A1kov%C3%A1%22
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farms. From August till October, both infected senescent leaves and soil under the plants 

were collected to find chasmothecia. 

2.2. Isolation of chasmothecia 

Chasmothecia were extracted using a modification of the methods used by Pearson and 

Gadoury (1987), Cortesi et al. (1995) and Portillo (2010). About 50 g of leaves were placed 

in 500 ml flasks and double distilled water was added to cover completely them. After that, 

flasks were manually shacked for 3 min and the resulting solution was than filtered through a 

column of 4 test sieves (Retsch
®
, Haan, Germany) measuring 10, 30, 60 and 170 mesh 

corresponding to 2000, 600, 250 and 90 µm. To better clean chasmothecia and to facilitate 

the movement of them through the last two sieves, the column was washed under running 

water. The last two sieves were then washed with double distilled water and liquid 

suspension with chasmothecia was placed on filter paper (ultra-rapid). After filtration, filter 

papers with chasmothecia were placed in a 90 mm Petri dish, air-dried for at least 24 h and 

conserved at 4°C. For extraction of chasmothecia from soil the protocol was essentially the 

same as described above. The only difference was that 10 g of soil collected under infected 

senescent leaves were placed directly on the column and washed with running water. 

Presence of chasmothecia was finally verified under the stereo microscope.  

 

Table 3 Locations and crops subjected to sampling in the provinces of Bologna (BO) and Mantua (MN). 

Farm code Location Coordinates Host Crop 

cultivation 

BO1 Bologna 44°31'26.68"N 

11°23'3.90"E 
C. pepo/C. melo Tunnel 

BO2 Bologna 44°31'11.74"N 
11°23'27.40"E 

C. pepo Tunnel 

BO4 Granarolo  44°32'39.49"N 
11°25'2.63"E 

C. pepo Tunnel/Field 

BO6 Granarolo  44°32'35.39"N 
11°24'30.19"E 

C. pepo Tunnel/Field 
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BO7 Altedo  44°38'56.99"N 

11°29'45.45"E 
C. pepo Field 

MN1a Moglia  44°56'19.39"N 

10°55'58.81"E 
C. pepo Field 

MN1b Moglia  44°56'19.39"N 

10°55'58.81"E 
C. sativus Field 

MN2a Sermide  44°57'34.35"N 

11°15'23.32"E 
C. melo Tunnel 

MN2b Sermide  44°57'34.35"N 

11°15'23.32"E 
C. maxima Tunnel 

MN3 Sermide  44°59'11.30"N 

11°14'4.42"E 
C. melo Tunnel/Field 

MN4 Sermide  44°57'55.67"N 

11°13'42.76"E 
C. melo Tunnel/Field 

 

 

Figure 8 Sampling area of powdery mildew infected cucurbit plants in Northern Italy. Images were obtained 

from Google Earth software 6.1.0.5001 (Google Inc., Mountain View, California, USA). 

2.3. Species identification 

To verify the occurrence of the two powdery mildew species in a given sample, a precise 

identification of the two fungal pathogens was imperative. Species identification was carried 
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out both morphologically, by observation of conidial shape and germination under light 

microscopy, and molecularly, by means of a Multiplex-PCR reaction. 

2.3.1. Morphological identification 

The mode of germination is specific for a particular taxon and represents a useful diagnostic 

tool for the taxonomy of Erysiphaceae (Braun et al., 2002). Thus, the mode of germination 

was used to morphologically identify the two cucurbit powdery mildew species and to assess 

the percentage of them in each sample. Germination was assessed by taking from the pool of 

20 collected leaves, 5 groups of 4 leaves that were manually shaken on three dry well slides, 

in order to have repetitions of each count. The slides were supported by two toothpicks 

above a wet paper tissue in a Petri dish and incubated for 24 h at 25°C to induce germination 

(Zacarovitis, 1965). After that, well slides were observed under a light microscope (20×) and 

the percentage of conidia belonging to both species was calculated based on the total number 

of germinated conidia. For each well slide, 100 germinated conidia were counted and from 

this count, the percentage of conidia belonging to both species was assessed. Species were 

identified according to germination criteria described by Nagy (1976) and Lebeda (1983). 

Barrel-shaped conidia with single germ tubes produced apically were identified as belonging 

to G. orontii, whereas elliptical conidia with germ tubes usually forked and produced 

laterally were identified as belonging to P. fusca. 

 

Morphological features of chasmothecia were observed by placing a single chasmothecium 

in a glass slide with a water drop. After breaking it with a yellow pippette tip, examination 

was undertaken by light microscope. According to Lebeda (1983), the two species can be 

identified also on the basis of morphological differences of the teleomorphs: chasmothecia of 

P. fusca measure 65-98 µm in diameter and contains 1 ascus with 8 hyaline ascospores while 
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those of G. orontii measure 80-140 µm in diameter with 10-15 asci containing 2-3 

ascospores. 

2.3.2. Molecular identification 

For molecular identification of G. orontii and P. fusca, pieces of the same infected leaves 

used for morphological identifications were used to corroborate the results. DNA was 

extracted using a modification of the protocol of Doyle and Doyle (1987). Fungal biomass 

was recovered from infected leaf material by washing with 2 ml of CTAB-0.04% β-

mercaptoethanol solution, previously heated at 65°C for 1 h. After that, 1 ml of the conidial 

suspension was deposited in a 2 ml eppendorf tube, vortexed for 20-30 s and 2.5 µl of 

proteinase-K (10 mg ml
-1

) was added. The suspension was then heated at 65°C for 2 h. 

Subsequently, 1 ml of a mixture of chloroform-octanol (24:1) was added to the solution and 

centrifuged for 5 min at 8000 rpm. After the addition of 5 µl of RNAase (10 mg ml
-1

) to the 

supernatant, 1 ml of chloroform-octanol was added again and the solution was centrifuged as 

described above. DNA precipitation was carried out by adding 0.7-0.8 volumes of 

isopropanol to the supernatant and centrifuging for 20 min at 14000 rpm. After that, the 

pellet was dried under vacuum, washed with 500 µl of 70% ethanol and centrifuged for 5 

min at 12000 rpm. Finally, the pellet was air dried and re-suspended in 20-50 µl of sterile 

double distilled water. DNA concentration and ratio A260/A280 were assessed using an 

Infinite 200 NanoQuant spectrophotometer (Tecan
®
 Group Ltd., Grödig, Austria) while 

quality was verified by running 5 µl of DNA on 0.8% agarose gels in 0.5×TAE buffer. 

 

Molecular identification of the two pathogens was carried out by Multiplex-PCR using the 

ITS regions of ribosomal DNA of both species as target DNA. Amplification of the ITS 

regions was carried out using a modification of primers S1/S2 and G1/G2 previously 

described (Chen et al., 2008). After amplification and sequencing of the ITS regions of both 
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species with the universal primer pair ITS1F/ITS4, the reverse primers S2mod (5’-

CGCCACTCTGTCGCGAGATACA-3’) and G2mod (5’-

CAACACCAAGCCACACACACGGCG-3’) were designed. Primer pairs S1/S2mod and 

G1/G2mod were used in a Multiplex-PCR reaction for molecular identification of P. fusca 

and G. orontii, respectively. PCR reactions were carried out in 25 µl using 2.5 µl of TaKaRa 

10×buffer, 1.5 µl of 25 mM MgCl2, 1.5 µl of 10 mM dNTPs, 1 µl of 10 mM solution of each 

primers, 0.125 µl of TaKaRa Taq polymerase (5 U/ml) (Takara
®
 Bio Inc., Otsu, Japan), 

14.375 µl of double distilled water and 1 µl of genomic DNA (20-300 ng µl
-1

). PCR 

programme consisted of an initial denaturation step at 94°C for 5 min, followed by 30 cycles 

at 94°C for 40 s, 62°C for 60 s and 72°C for 1 min and 30 s, and a final extension step of 5 

min at 72°C (Chen et al., 2008). To verify reactions, 10 µl of each PCR product were 

separated on a 2% agarose gels in 0.5×TAE buffer, stained with ethidium bromide and 

visualized and photographed under UV light. 

 

Specificity of the primer pairs designed for diagnostic purposes was tested on DNA of the 

following phytopathogenic fungi and oomycetes that affect cucurbitaceous plants: Alternaria 

alternata, Dydimella bryoniae, Fusarium oxysporum, Pseudoperonospora cubensis and 

Sclerotinia sclerotiorum. 

2.4. Mating type identification 

Because only chasmothecia of P. fusca were found, molecular identification of the mating 

types was only planned for this species. From each location, several monoconidial isolates of 

P. fusca were obtained and subjected for molecular analysis. DNA isolation was carried out 

as described above. Subsequently, based on sequences of both mating types identified in P. 

fusca by Brewer et al. (2011), a Multiplex-PCR reaction to rapidly identify the allele at the 

locus MAT was developed. Based on sequences of P. fusca genes MAT 1-1-1 (GeneBank 
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HQ171903.1) and MAT 1-2-1 (GeneBank HQ171900.1), primer pairs aboxF2/aboxR2 and 

hmgF2/hmgR2 were designed (Table 4). PCR reactions were conducted in a volume of 25 µl 

using GoTaq DNA polymerase (Promega
®
, Fitchburg, Wisconsin, USA). PCR conditions 

consisted of an initial denaturation step at 95°C for 3 min, followed by 30 cycles at 95°C for 

30 s, 52°C for 30 s at and 72°C for 60 s, and a final extension step at 72°C for 5 min. After 

reaction, PCR products were directly used or stored at 4°C. PCR products were separated on 

1.5% agarose gels in 0.5×TAE buffer, stained with ethidium bromide and visualized under 

UV light. 

 

Table 4 Specific primers designed to amplify MAT 1-1-1 and MAT 1-2-1 gene fragments of P. fusca. Fragment 

size is referred to that observed after sequencing. 

Allele MAT 1-1-1 MAT 1-2-1 

Primer pairs aboxF2  

5’-GGCTTCAGAAGTATGTCATG-3’ 
 

aboxR2 

5’-CCGCAGAAATTATAGACCAC-3’ 

hmgF2 

5’-AAGGCTAAGCATGGAGAAAC-3’ 
 

hmgR2  

5’-CCTGTAACGATAACCTGGAT-3’ 

Fragment 

size 111 bp 216 bp 

2.5. Statistical analysis 

The chi-squared (χ
2
) non parametrical statistical inference test was used to test the null 

hypothesis that the frequencies of P. fusca mating types were equal. Chi-squared test was 

performed using GraphPad Prism 6.01 software (GraphPad Software Inc., La Jolla, 

California, USA).   

2.6. Collection of powdery mildew fungi from weeds, spontaneous plants and non-

cucurbitaceous crops 

To verify if spontaneous plants and non cucurbitaceous crops could represent alternative 

hosts for P. fusca and G. orontii, several samples of spontaneous species and non 

cucurbitaceous crops showing powdery mildew symptoms were collected at the same 
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locations during the 2012 growing season. After collection, powdery mildew species were 

identified by observations on the conidia germination (Zacarovitis, 1965). Only in the case 

of the powdery mildews collected on Convolvolus arvensis and Cichorium intybus molecular 

identification was carried out by amplification and sequencing of ITS regions of the 

ribosomal DNA using the universal primers ITS1F/ITS4. Furthermore, pathogenicity on 

cucurbits of the different powdery mildew species collected was tested by inoculation on 

zucchini cotyledons cv. Giambo. 

2.7. Climate data 

Climate data of temperature, relative humidity and rainfalls of Mantua sampling area was 

obtained from the database of the “Agenzia Regionale Prevenzione e Ambiente – ARPA” of 

Lombardia region (http://ita.arpalombardia.it/meteo/meteo.asp). Temperature and rainfalls 

data were recorded in weather stations n° 816 Sermide (Id sensors respectively n° 8223 and 

n° 8222) and n° 110 in Gonzaga (Id sensors n° 2134 and n° 2140), while relative humidity 

data were only available in the Gonzaga station n° 110  (Id sensor n° 2135). For Bologna 

area, data were obtained from the weather station of the experimental farm located in Altedo, 

managed by University of Bologna. 

3. Results  

3.1. Occurrence and distribution of cucurbit powdery mildew species  

3.1.1. Morphological identification 

Samples were taken during the 2010–2012 growing seasons from powdery mildew diseased 

cucumber, melon, pumpkin and zucchini plants collected in the provinces of Bologna and 

Mantua in Northern Italy. In most cases the two more important cucurbit powdery mildew 

pathogens G. orontii (barrel-shaped conidia without fibrosin bodies and apical germination) 

and P. fusca (elliptical conidia with fibrosin bodies and lateral germination, in some cases, 

http://ita.arpalombardia.it/meteo/meteo.asp
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with forked germ tubes) were found. The graphics that illustrate the presence of the two 

powdery mildew pathogens during the crop season based on the percentage of germinated 

conidia belonging to both species are the following: 

Bologna 

During the three years of sampling, the first powdery mildew infections were recorded 

between the last week of May and the first half of June, with the only exception of farm 

BO7, where crops were grown in field conditions and powdery mildew symptom appeared 

during the second half of July (Figure 9Figure 10Figure 11). With the exception of farms 

BO1 and BO2 where in 2011 it was recorded a 5% of conidia belonged to P. fusca (Figure 

10), the only species causing the earlier infections was G. orontii. From then second half of 

June, in all farms it was observed a progressive increase of conidia belonging to P. fusca and 

a decrease of those of G. orontii. Conidia of the two species were found in the same 

proportions from the second to the third week of July in 2010 (Figure 9), from the first to the 

second week of July in 2011 (Figure 10) and from the last week of June to the first week of 

July in 2012 (Figure 11), only for farms BO1, BO2 and BO4. After those periods the 

predominant conidia found on infected leaves were those of P. fusca that became 

progressively the only species infecting cucurbits from the second week of August until the 

end of the crop season (September for BO1 and BO2 and October for BO4 and BO6). 
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Figure 9 Presence of the two cucurbit powdery mildew pathogens assessed as the percentage of germinated 

conidia belonging to both species in Bologna farms during the growing season 2010. 
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Figure 10 Presence of the two cucurbit powdery mildew pathogens assessed as the percentage of germinated 

conidia belonging to both species in Bologna farms during the growing season 2011. 
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Figure 11 Presence of the two cucurbit powdery mildew pathogens assessed as the percentage of germinated 

conidia belonging to both species in Bologna farms during the growing season 2012. 
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goes from the last half of June to the first half of July. After that and until the end of the crop 

season, the percentage of conidia belonging to P. fusca progressively increased, becoming 

the only species infecting cucurbits from the last week of July until the end of the crop 

season (September-October) with a 100% of conidia belonging to this species. 

  

Figure 12 Presence of the two cucurbit powdery mildew pathogens assessed as the percentage of germinated 

conidia belonging to both species in Mantua farms during the growing season 2010. 
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Figure 13 Presence of the two cucurbit powdery mildew pathogens assessed as the percentage of germinated 

conidia belonging to both species in Mantua farms during the growing season 2011. 
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Figure 14 Presence of the two cucurbit powdery mildew pathogens assessed as the percentage of germinated 

conidia belonging to both species in Mantua farms during the growing season 2012. 
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The results confirmed the same seasonal trend of the two species observed by conidia 

germination trials. An example is given in Figure 15 for farm BO6 for the three years of 

sampling. Double bands that represent the simultaneous presence of the two species, where 

obtained in a period that goes from the last half of June until the second/third weeks of July 

that corresponds, in the morphological observations, to about 40-60 % of conidia belonging 

to both species.  

 

Figure 15 Molecular detection of P. fusca and G. orontii by multiplex-PCR.  Presence of the two cucurbit 
powdery mildew species was investigated by multiplex-PCR in all farms sampled during the crop seasons 

2010, 2011 and 2012. Representative pictures of farm BO2 are given. DNA was isolated from diseased plants 

and amplified with the primers S1/S2mod and G1/G2mod as described in Materials and methods. PCR 

products were fractionated in 2% agarose gels. Genomic DNA from P. fusca (P.f.) and G. orontii (G.o.) were 

used as positive controls.  M is the molecular size marker 100 bp DNA ladder (New England BioLabs®, 

Ipswich, UK) for 2010 and 2012 and MassRuler Low Range DNA ladder (Thermo Scientific®, Waltham, 

Massachusetts, USA) for 2011, and NC is the negative control (no DNA was added). 
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 3.2. Chasmothecia collection and mating type identification 

Chasmothecia were found from the middle of August till the end of October only on 

senescent leaves of crop plants and mainly in October in the soil under the plants (Figure 

16a). No asci were found inside chasmothecia during the years 2010 and 2011 (Figure 16b). 

This is more likely due to the fact that, at the moment of collection, chasmothecia were not 

completely mature as they were light/dark brown. Considering that chasmothecia were found 

in infected plants or soil where only P. fusca was present, it was assumed that they belonged 

to this species. In 2012 chasmothecia were collected mature as they were already black when 

observed under the stereo microscope. Only one ascus containing eight ascospores was 

found inside (Figure 16d), a morphological feature that corresponds to chasmothecia from P. 

fusca. 

 

Figure 16 Chasmothecia from P. fusca. A dark mature chasmothecium formed on a zucchini leaf (a), empty 

chasmothecium lacking ascus (b), chasmothecium bearing one ascus with ascospores in formation (c), and 
mature chasmothecium bearing one ascus containing eight ascospores (d). 
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Considering that possibly only chasmothecia from P. fusca were found, a multiplex-PCR 

assay was designed to molecularly determine the frequency of mating types in a collection of 

monoconidial isolates of P. fusca and study the impact of sexual reproduction in the 

populations of Northern Italy. The primer pairs aboxF2/aboxR2 and hmgF2/hmgR2 were 

used to successfully amplify PCR products of 111 and 216 bp (length after sequencing), 

corresponding to the alleles MAT 1-1-1 and MAT 1-2-1, respectively (Figure 17). This 

difference of 105 bp in size of the amplified bands allowed an easy discrimination of the two 

alleles.  

 

Figure 17 Molecular detection of mating type alleles in P. fusca isolates. DNA was amplified by primers 

aboxF2/aboxR2 and hmgF2/hmgR2 designed and combined in a Multiplex-PCR reaction that allowed to detect 
the corresponding allele at the MAT locus. PCR products were separated on 1.5% agarose gels in 0.5×TAE 

buffer, stained with ethidium bromide and visualized under UV light. M is the molecular size marker 

MassRuler Low Range DNA ladder (Thermo Scientific®, Waltham, Massachusetts U.S.A.) and NC is the 

negative control (no DNA was added). Molecular size (bp) of amplified fragments is indicated on the right. 

 

 

 

This multiplex-PCR assay was used to evaluate the frequency of the two alleles in the areas 

under investigation (Figure 18). Results obtained from Multiplex-PCR indicated that the 

mating type ratio tended to be 1:1. To verify this tendency, mating type frequencies shown in 

Table 5 were analysed using the non parametric statistical chi-squared test (χ
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differences observed between the frequencies of the mating types are not statistically 

significant for P<0.05. In other words, the results observed indicated that the P. fusca 

populations of Northern Italy seem to be actively mating and, in consequence, recombination 

may occur. 

 

 

Figure 18. Frequency (%) of P. fusca mating types in Northern Italy. The mating type of monoconidial isolates 

of P. fusca was determined by PCR detection of alleles MAT 1-1-1 or MAT 1-2-1. Frequency of mating types 

was evaluated separately in isolates obtained from Bologna and Mantua farms during the crop seasons 2010, 

2011 and 2012. The number of isolates belonging to each mating type that were analyzed are indicated above 

each column. BO, Bologna; MN, Mantua. 
 

 

Table 5 Frequencies (%) of alleles MAT 1-1-1 and MAT 1-2-1 in P. fusca populations of Northern Italy during 
2010, 2011 and 2012 growing seasons. The total number of isolates identified for each MAT allele in each year 

of sampling is indicated in brackets. 

MAT allele Year of sampling 

2010 2011 2012 

MAT 1-1-1 43.6 (17) 46.0 (23) 36.2 (21) 

MAT 1-2-1 56.4 (22) 54.0 (27) 63.8 (37) 
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3.3. Powdery mildew species in alternative hosts 

During the three years of sampling, powdery mildew symptoms were observed in a number 

of host plants in the surroundings of the studied farms (Table 6). In order to determine 

whether these plants could act as reservoirs for the cucurbit powdery mildew species, conidia 

were collected from those plants, identified on the basis of criteria of conidial stage and 

inoculated on zucchini cotyledons from cv. Giambo maintained in Petri dishes. Conidia 

observation of powdery mildews collected on non cucurbitaceous hosts revealed that only 

the ones obtained from Taraxacum officinale showed elliptical conidia with a lateral forked 

germ tube and presence of fibrosin bodies, all of them characteristics of the genus 

Podosphaera. The rest of powdery mildews showed barrel-shaped conidia with an apical 

germ tube and lacked fibrosin bodies, which are typical features of genera Golovinomyces 

and Erysiphe. In addition, after performing BLASTn algorithm, ITS sequences obtained 

from powdery mildew collected on Convolvolus arvensis and Cichorium intybus showed an 

identity of 93% with Erysiphe cruciferarum (GeneBank AF031283.1) and 99% with 

Golovinomyces cichoracearum (GeneBank AF031282.1), respectively. Regarding 

pathogenicity for cucurbits, none of them could reproduce powdery mildew symptoms after 

inoculation on zucchini cotyledons, indicating that they did not belong to any of the major 

cucurbit powdery mildew species and that those host plants were not alternative hosts for 

these cucurbit pathogens. 
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 Table 6 Morphological features and pathogenicity of powdery mildew isolates collected from non 

cucurbitaceous plants. 

 

Observation 
                                                                  Host species 

Taraxacum 
officinale 

Convol-
volus 
arvensis 

Amaran-
thus 
retroflexus 

Helian-
tus 
tubero-

sus 

Chenopo-
dium album 

Panicu-
lum 
avicular

e 

Cichorium 
intybus 

Lactu-
ca 
sativa 

Number of  

samples  2 4 2 1 1 1 2 2 

Fibrosin  

bodies + - - - - - - - 

Germ 

tube lateral apical apical apical apical apical Apical apical 

Pathogenicity 

on zucchini - - - - - - - - 

Genus/  

species Podosphaera  Erysiphe Erysiphe  Erysiphe  Erysiphe Erysiphe  

G. 

cichoracea-

rum 

Erysiphe  

3.4. Climate data 

In order to find correlations between the presence of the cucurbit powdery mildew species in 

the North of Italy and the environmental conditions during the sampling periods, climate 

data of temperature (ºC), relative humidity (%) and rainfalls (mm) were recorded in Bologna 

and Mantua areas during the crop seasons 2010, 2011 and 2012 (Figure 19 and Figure 20).  

Year 2010 was characterized by frequent precipitations in both Bologna and Mantua 

provinces, especially during June and August. In the same year, the lowest value of humidity 

and the highest value of temperature were recorded in July. In 2011 precipitations were 

lower than 2010, in particular in the area of Mantua precipitations were higher than in 

Bologna especially in June and October. In Bologna area, minimum value of relative 

humidity were observed in August while in Mantua humidity tended to have lower value 

with a minimum recorded in May. In both areas temperature was the same, with a maximum 

recorded in August. In 2012 year, precipitations have low values like in 2011 and also in this 

year the lowest value of relative humidity and the highest of temperature were recorded in 

August in both provinces. 
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Figure 19 Environmental conditions, temperature (ºC) and relative humidity (%), recorded in Bologna and 

Mantua provinces during the periods of samplig in the crop seasons 2010, 2011 and 2012. 
 

 

Figure 20  Rainfalls (mm) recorded in Bologna and Mantua provinces during the periods of samplig in the crop 
seasons 2010, 2011 and 2012. 
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4. Discussion  

From morphological and molecular observations of powdery mildew diseased plants 

collected from cucurbit farms located in Bologna and Mantua provinces during the crop 

seasons 2010, 2011 and 2012, temporal variations in the cucurbit powdery mildew species 

composition were observed. These seasonal variations seem to be independent of the host 

plant but dependent on environmental conditions. In particular, G. orontii was the only 

species found in the earlier infections in all locations investigated and remained as the main 

species infecting cucurbits until a period that generally goes from the second half of June till 

the third week of July when P. fusca started to appear. After that time, P. fusca progressively 

became the only species causing powdery mildew till the end of the crop season in 

September-October. This peculiar behaviour could be influenced by different factors. The 

most obvious factor that could be considered is represented by the different ecological 

requirements of the two species in terms of temperature and relative humidity. According to 

Nagy (1976), optimum germination for G. orontii is about 25°C with a minimum of 10-20°C 

and a maximum of 30°C while that of P. fusca is 22°C with a minimum of 20°C and 

maximum of 30°C. From the same study, P. fusca was found to be more sensitive to 

moisture than G. orontii because it requires 100% of relative humidity for conidia 

germination and tolerates higher moisture content than G. orontii. Considering these 

differences, for example, P. fusca should appear in the second half of July because it requires 

higher temperature and relative humidity than G. orontii. However, as already hypothesized 

by Branzanti and Brunelli (1992), this should be in contrast to the fact that this pathogen is 

not found in the earlier infection that occurs when all crops are cultivated under plastic 

tunnels where the values of temperature and relative humidity are higher than in field 

conditions. The wide range of G. orontii in terms of temperature could explain why the 

species is the first to appear in May but not the fact that the pathogen was never found in the 
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new infections on crops in field conditions that usually occurs from the third week of July, 

normally the warmest period of the year.  

Moreover, comparing the climate graphics with those that illustrate the presence of the two 

species in farms in both provinces (Figure 9 and Figure 12) it is interesting to note that P. 

fusca tended to be the prevalent species from the middle of July that was the month with the 

lower value of relative humidity (RH) and the higher value of temperature (t). Normally this 

happen because in the same farms the crop cycle switch to field conditions and there, P. 

fusca was found to be the predominant species (for example as observed in farms BO7 and 

MN1a/b). However, the same behavior of species variation is observed in farms where the 

entire crop cycle is conducted under tunnel conditions that have higher values of t and RH 

than in field conditions. Comparing graphics of 2011 climate data with those of the two 

species (Figure 10 and Figure 13), it can be observed that species variation does not seem to 

correlate with any parameter related to climatic conditions because, like in the previous year, 

most part of crops were under the microclimatic conditions of plastic tunnel. Also, in farms 

where crop cycle switched to field conditions (June-July), values of t where lower than 2010 

and those of RH were higher but the species behavior observed was the same of 2010. So, 

the seasonal behaviour of cucurbit powdery mildew species appears not to be well correlated 

with the ecological requirements of both species. 

It is interesting to note that under plastic tunnels G. orontii was progressively replaced by P. 

fusca but, in the period that the crop cycles switch to field conditions (end of July-beginning 

of August), the first symptoms were caused by P. fusca. This could be observed in locations 

BO7 and MN1a where crops were always under field conditions. Only in case of farm 

MN1b, the first symptoms observed were induced by G. orontii. However, due to the use of 

a variety of early cucumber, this was the only location in which a crop was cultivated from 

May in field conditions, a period where only infection of G. orontii were observed in other 

farms. 
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These temporal variations in the cucurbit powdery mildew species composition seem to be 

clearly influenced also by the cultivation systems. As already mentioned, crops under plastic 

tunnels may represent an opportunity to G. orontii to start its life cycle on cucurbits. The fact 

that this species will be progressively replaced should be due by the major aggressiveness of 

P. fusca (Chat-Locussol and Lavoy, 1990; McGrath, 2011) but also because G. orontii could 

slack its life cycle and progressively produce latent mycelia. The fact that cultivation of 

cucurbits under field conditions starts in the middle summer affects also the powdery mildew 

species composition. From these observations we conclude that, in these areas, P. fusca 

easily infects cucurbits under field conditions. An explanation for this could be that 

chasmothecia of P. fusca, that overwinter in soil and crop residues, could play a significant 

role in initiating these field infections. In fact, an important factor to consider that could 

explain this temporal variation is represented by the different overwintering strategies of the 

two species. As indicated previously, only chasmothecia of P. fusca were collected. The 

lacking of chasmothecia of G. orontii suggests that this species should overwinter in form of 

mycelium on alternative hosts. In particular, the Bologna area is characterized by the 

cultivation in October-December, in the same farms monitored, of Lactuca serriola that 

could act as a secondary host for G. orontii. The same could happen with spontaneous plants 

and weeds. However, no symptoms were observed on zucchini cotyledons inoculated with 

powdery mildew isolates collected from non-cucurbitaceous species. The lack of 

pathogenicity to zucchini should be due to the particular artificial conditions of the 

experiment. In literature, however, pathogenicity of G. orontii on cucurbits was observed for 

isolates collected from Picridium vulgare and Senecio vulgaris (Álvarez and Torés, 1995) 

and Cichorium pumilum, Nicotiana tabacum and Lactuca serriola (Cohen and Eyal, 1988). 

The overwintering of G. orontii as mycelium, together with the fact that the pathogen is 

adapted to survive to a wide range of temperatures and relative humidities, could made that 

this species is ready to infect cucurbits in spring. 
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On the contrary P. fusca, overwintering as chasmothecia at least in the north of Italy, should 

infect crops more slowly because it starts from ascospore infections. Also, the fact that in the 

first part of the crop season (March-July) the crops are all under plastic tunnel, can 

negatively influence the preservation of chasmothecia over the next winter because plants 

are cultivated on black plastic material that is removed together with crop residues at the end 

of each season. Furthermore, the preservation of chasmothecia is facilitated in soil and plant 

material and could explain the fact that P. fusca predominate in the infections that occurs on 

field crops.  

However, chasmothecia should not be considered the only source of primary inoculum of P. 

fusca in the north of Italy. This species produce abundant fungal mass and, like other 

powdery mildew fungi, conidia can be efficiently disseminated by wind even to very long 

distances (Bardin et al., 1997; Pérez-García et al., 2009; Miazzi et al., 2011). Cucurbit 

cultivations in the southern part of Europe could represent an important source of primary 

inoculum. In South of Italy, especially in Apulia and Sicily regions, due to the different 

climatic conditions, cucurbit cultivation starts earlier in the season  (first transplanting from 

January on plastic tunnel and from April-May on field) than in Lombardia and Emilia-

Romagna regions and also powdery mildew infections appear early. In this area, Sirocco 

wind that blow in spring-summer from South-East could transport powdery mildew conidia 

to the northern part of the peninsula. Moreover, in southern Spain, especially in the regions 

of Andalusia and Murcia, the most important areas of cucurbit production in Europe, 

cucurbit cultivation never stops during the year, and therefore, they could be responsible of a 

continuous source of powdery mildew inoculum. In these areas South-Western winds like 

Libeccio (Lebeche in Spanish) could play a significant role in transporting powdery mildew 

conidia to the North of Italy. Genetic diversity analysis of P. fusca populations from 

Northern Italy and Southern could contribute to answer these questions. 
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A similar variation in the occurrence of the two cucurbit powdery mildew species, although 

not supported by molecular data, was observed in the same area in the middle of 1980s 

(Branzanti and Brunelli, 1992). In the same years, a very similar behaviour was reported in 

France. In open field cultivations in the South of France, G. orontii is more frequent in May-

June but P fusca is the predominant species in summer. From punctual observations, the 

arrival of P. fusca in open field cultivations is delayed in the North of the country compared 

with the South (Bertrand et al., 1992). However, mixed infections of the two species were 

recorded very rare in this country (Křístková et al., 2009). In Czech Republic, where G. 

orontii is considered the predominant species, observations carried out during 5 years 

indicated that, from the beginning, infections were caused by either G. orontii alone or 

mixed with P. fusca without any temporal succession. Only in Olomouc-Holice (Central 

Moravia) G. orontii appeared first and later it was followed by P. fusca, but both pathogens 

persisted until the end of the growing period (Křístková et al., 2009). 

The different period of appearance of the two cucurbit powdery mildew species could be of 

great interest in the management of cucurbit powdery mildew in Northern Italy. Differences 

between the two species in sensitivity to benomyl, bupirimate, and DMI fungicides 

(triadimefon, fenarimol and bitertanol) were observed in France (Bertrand et al., 1992). 

Similarly, Sedláková and Lebeda (2008) observed differences in sensitivity to fenarimol, 

dinocap and benomyl fungicides in 108 powdery mildew isolates tested. The results obtained 

in this work could be of great relevance if differences between both species could be found 

in the sensitivity to modern fungicides. Considering the actual critical situation in fungicide 

efficacy against cucurbit powdery mildew and the upcoming new limitations on fungicide 

applications in 2014 in the European Union, research on sensitivity to QoI, DMI, boscalid, 

cyflufenamid and quinoxyfen based fungicides in the cucurbit powdery mildew populations 

from Northern Italy must be carried out, in order to obtain information on fungicide 
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resistance. This information should allow designing new disease management programmes 

and improving the control efficacy. 
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Part two: Population genetics 

 

Genetic diversity analysis of the cucurbit powdery mildew fungus 

Podosphaera fusca suggests a clonal population structure 

 

1. Introduction 

As illustrated above, in the North of Italy like in many areas of the world, P. fusca is the 

predominant species causing cucurbit powdery mildew. Furthermore, in this area, an 

abundant production of chasmothecia has been confirmed, since they can be easily collected 

from senescent leaves and soil. This is a very interesting observation from the 

epidemiological point of view especially since the epidemiological relevance of the sexual 

reproduction in P. fusca is still uncertain (Pérez-García et al., 2009).  

In literature, sexual stage of P. fusca has been found in Italy (Marras and Corda, 1977; 

Branzanti and Brunelli, 1987), Germany (Ulbirch and Smolka, 1994), Hungary (Nagy, 

1976), Bulgaria (Velkov and Masheva, 2002), United States (McGrath, 1994), Greece 

(Vakalounakis and Klironomou, 1995), France (Bardin et al., 1997) and Morocco (Endo et 

al. 2012) but never observed in Spain (Álvarez and Torés, 1995) nor in the South of Italy 

(Miazzi et al., 2011). Sexual stage of G. orontii was never found in the area of study, 

according to the fact that chasmothecia of this species are considered to be rare. In fact, they 

were observed just in Germany (Ulbirch and Smolka, 1994), Hungary (Nagy, 1976) and 

Bulgaria (Velkov and Masheva, 2002). Considering that the epidemiological study 

conducted in North of Italy (previous chapter) evidenced the presence of chasmothecia only 

of P. fusca and that this is considered to be the most important and widespread species 

causing powdery mildew on cucurbits we asked whether sexual reproduction in P. fusca 

populations of North of Italy would have a significant impact on the genetic diversity of this 

pathogen. 
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As illustrated above, there are some geographical differences in chasmothecia production of 

P. fusca; so, it could be of great interest to investigate the genetic structure of P. fusca 

populations to determine if there is any evidence of recombination in the areas where 

chasmothecia were found and also to understand the role that sexual reproduction and 

recombination could play in the life cycle of this species. Information regarding the genetic 

structure within P. fusca populations is very scarce. Bardin and coworkers (1997), 

performing RAPD (Random Amplification of Polymorphic DNA) analysis, revealed a low 

degree of polymorphism in 28 isolates of P. fusca from different countries, and cluster 

analysis did not separate any group. In contrast, RAPD analysis performed by Miazzi and 

coworkers (2011) revealed high genetic variation within 82 isolates of P. fusca from Apulia 

(southern Italy) but, also in this case, cluster analysis did not separate groups and no markers 

could be associated with host plants and geographical origin of the isolates. Similarly, RAPD 

analysis conducted on P. fusca isolates from southern Spain revealed no variations among 

the isolates (Pérez-García, pers. comm.).  

Fernández-Ortuño (2007) within a study on strobilurin resistance in P. fusca populations 

from southern Spain sequenced ITS regions from 25 isolates; only one nucleotide 

substitution was found in two isolates and in different positions. An AFLP (Amplified 

Fragment Length Polymorphism) study conducted by Naruzawa et al. (2011) evidenced high 

variability within 22 isolates of P. fusca from Brazil with a Jaccard similarity coefficient 

ranging between 0.23 and 0.69. However, the dendrogram obtained evidenced no separation 

of groups in relation to races, geography and host plants. Interestingly, in the same work, the 

same isolates did not show any sequence variation within the 5.8S ITS region. 

Pathogen populations must constantly adapt to changes in their environment to survive. In 

agricultural ecosystems, environmental changes may include introduction of resistant 

varieties, applications of fungicides and fertilizers, irrigation, and crop rotation. It is clear 

that agricultural systems impose strong directional selection on pathogen populations. 
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Control strategies must target a population instead of an individual if they are to be effective 

(McDonald, 1997). The cucurbit powdery mildew fungus P. fusca is pathogen of difficult 

control (McGrath, 2001; Pérez-García et al., 2009). Given the versatility exhibited by the 

pathogen to adapt not only to environmental conditions but also to overcome different 

control strategies, understanding the genetics of P. fusca populations is a crucial aspect to 

anticipate how populations will evolve in response to new control strategies. With the 

fragmentary information about the genetic diversity of P. fusca populations, we considered 

to examine this question by different approaches. In order to shed some light in this 

fundamental aspect of P. fusca biology, in this chapter a population genetics study on P. 

fusca has been addressed using both MLST (Multilocus Sequence Typing) and AFLP 

techniques. 

 

2. Material and methods 

2.1. Fungal collection, maintenance and conservation 

Podosphaera fusca isolates were obtained from powdery mildew infected plants from 

cultivated cucurbits in North of Italy in Bologna and Mantua provinces. Furthermore, to 

expand the area of study, isolates from South of Italy, South-Central Spain, France, Czech 

Republic, Bulgaria, United States, Canada and Central-South America were gently supplied 

by collaborators who sent powdery mildew strains as infected leaves or extracted DNA. 

Isolates of P. fusca used in the work are listed in Table 7. 

 

Table 7 Isolates of P. fusca used in this study. 

Isolate Location Year of collection Host 

GI18 Bologna (Italy) 2009 Cucurbita pepo 

RA23 Ravenna (Italy) 2010 Cucurbita pepo 

210 Bologna (Italy) 2010 Cucurbita pepo 
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410 Bologna (Italy) 2010 Cucurbita pepo 

810 Sermide (Italy) 2010 Cucumis melo 

2310 Moglia (Italy) 2010 Cucurbita pepo 

2610 Cadriano (Italy) 2010 Cucurbita pepo 

2710 Cadriano (Italy) 2010 Cucumis sativus 

3210 Altedo (Italy) 2010 Cucurbita pepo 

4010 Bologna (Italy) 2010 Cucurbita maxima 

4311 Bologna (Italy) 2011 Cucurbita pepo 

4811 Imola (Italy) 2011 Cucurbita pepo 

4911 Sermide (Italy) 2011 Cucumis melo 

5011 Sermide (Italy) 2011 Cucumis melo 

5211 Novellara (Italy) 2011 Cucumis melo 

5311 Sermide (Italy) 2011 Cucumis melo 

5411 Sermide (Italy) 2011 Cucurbita maxima 

5611 Sermide (Italy) 2011 Cucumis melo 

5711 Sermide (Italy) 2011 Cucumis melo 

5811 Sermide (Italy) 2011 Citrullus lanatus 

6111 Ragusa (Italy) 2011 Cucumis melo 

6211 Ragusa (Italy) 2011 Cucumis melo 

6311 Moglia (Italy) 2011 Cucumis melo 

6411 Moglia (Italy) 2011 Cucumis sativus 

6511 Moglia (Italy) 2011 Cucumis sativus 

6611 Imola (Italy) 2011 Cucumis sativus 

6711 Altedo (Italy) 2011 Cucurbita moschata 

7811 Cadriano (Italy) 2011 Cucurbita pepo 

IO12 Castelnuovo Rangone (Italy) 2012 Cucurbita pepo 

AT12 San Miniato (Italy) 2012 Cucubita maxima 
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EL12 Sestola (Italy) 2012 Cucurbita pepo 

FE12 Molveno (Italy) 2012 Cucurbita pepo 

F.1-5 Monopoli (Italy) 2011 Cucumis melo 

F.1-7 Monopoli (Italy) 2011 Cucumis melo 

F.2-1 Monopoli (Italy) 2011 Cucumis melo 

F.2-2 Monopoli (Italy) 2011 Cucumis melo 

F.2-3 Monopoli (Italy) 2011 Cucumis melo 

F.2-4 Monopoli (Italy) 2011 Cucumis melo 

F.3-2 Monopoli (Italy) 2011 Cucumis melo 

SSa12 Alghero (Italy) 2012 Cucurbita pepo 

SSb12 Alghero (Italy)  2012 Cucurbita pepo 

3_11 Olomouc-Holice  

(Czech Republic) 

2011 Cucurbita pepo 

42_11 Konecchlumi  

(Czech Republic) 

2011 Cucurbita pepo 

49_11 Olomouc-Holice  

(Czech Republic) 

2011 Cucurbita maxima 

60_11 Kvasice (Czech Republic) 2011 Cucurbita pepo 

81_11 Novy Jicin-Kojetin  

(Czech Republic) 

2011 Cucumis melo 

BUa12 Krumovo  (Bulgaria) 2012 Cucumis melo 

BUb12 Krumovo  (Bulgaria) 2012 Cucumis melo 

BUc12 Saedinenie  (Bulgaria) 2012 Cucurbita maxima 

BUd12 Saedinenie  (Bulgaria) 2012 Cucurbita maxima 

SF60 Greece 1999 Cucurbita pepo 

SF61 Greece 1999 Cucumis  sativus 

2086 Greece  1997 Cucumis melo 

221088 Almeria (Spain) 2006 Cucurbita pepo 

311127 Murcia (Spain) 2006 Cucumis melo 

311119 Murcia (Spain) 2006 Cucumis melo 

311120 Murcia (Spain) 2006 Cucumis melo 
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311287 Murcia (Spain) 2008 Cucumis melo 

221231 Almeria (Spain) 2008 Cucurbita pepo 

211242 Almeria (Spain) 2008 Cucumis melo 

221301 Almeria (Spain) 2008 Cucurbita pepo 

311251 Murcia (Spain) 2008 Cucumis melo 

311271 Murcia (Spain) 2008 Cucumis melo 

811301 Badajoz (Spain) 2008 Cucumis melo 

711319 Ciudad Real (Spain) 2008 Cucumis melo 

711349 Ciudad Real (Spain) 2008 Cucumis melo 

23775 Almeria (Spain) 2004 Cucumis sativus 

SF218 Malaga (Spain) 1999 Cucurbita pepo 

31784 Murcia (Spain) 2004 Cucumis melo 

81695 Badajoz (Spain) 2003 Cucumis melo 

311128 Murcia (Spain) 2006 Cucumis melo 

98SM65 Almeria (Spain) 1998 Cucumis melo 

00SM39 Bouches-du-Rhône (France)  2000 Cucumis melo 

04SM1 Bouches-du-Rhône (France) 2004 Cucumis melo 

04SM2 Bouches-du-Rhône (France) 2004 Cucumis melo 

SM1R2 Vaucluse (France) 1987 Cucumis melo 

085M9 France 2008 Cucumis melo 

MX12 Sinaloa (Mexico) 2012 Cucumis sativus 

Scr48.2 Argentina 1993 Cucurbita maxima 

Scc187.1 Martinique (French Caribbean) 1994 Cucumis sativus 

Scc76.2 Quebec (Canada) 1994 Cucumis sativus 

Sm41.1 USA 1993 Cucumis melo 

Scc140.1 California (USA) 1994 Cucumis sativus 

S-9 New York (USA) 2012 Cucurbita maxima 
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11.13-X New York (USA) 2012 Cucurbita maxima 

US1 New York (USA) 2012 Cucurbita pepo 

US2 New York (USA) 2012 Cucurbita pepo 

US3 New York (USA) 2012 Cucurbita pepo 

US4 New York (USA) 2012 Cucurbita pepo 

US5 New York (USA) 2012 Cucurbita pepo 

US6 New York (USA) 2012 Cucurbita pepo 

US7 New York (USA) 2012 Cucurbita pepo 

US8 New York (USA) 2012 Cucurbita pepo 

 

Fungal material was collected from crops in fields or plastic tunnels. From all material 

collected, monoconidial isolates were obtained. With an ethanol disinfected eyelash one 

conidia chain was taken from an infected leaf and inoculated on zucchini cotyledons cv. 

Giambo maintained in vitro at 22°C. Cotyledons were previously disinfected in 0.1% HgCl2, 

rinsed twice in sterile distilled water, air dried in a laminar flow cabinet and kept in 60 mm 

diameter Petri dishes containing 40 g l
-1

 of saccharose, 10 g l
-1

 of agar-agar and 30 mg l
-1

 of 

benzimidazole (Álvarez and Torés, 1997). Isolates were initially maintained by transferring 

every 7 days a single conidia chain to a fresh cotyledon. The process was repeated three 

times to obtain a pure monoconidial colony. After that, isolates were maintained by 

transferring conidia every 2-3 weeks to fresh cotyledons as described above. Finally, the 

fungal biomass was in part used for DNA extraction and in part preserved at -80°C using 

silica gel as described by Pérez-García et al. (2006). 

2.2 Morphological identification 

To confirm that we were working with strains of P. fusca, from each monoconidial colony 

conidia were taken and examined by light microscopy to determine the lateral position of 
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germ tubes and the presence of fibrosin bodies as typical identifiying features of P. fusca 

conidia (Kable and Ballantyne, 1963; Zacarovitis, 1965). 

2.3. DNA isolation  

DNA extraction was carried out as described in the previous chapter. The only difference 

was that biomass of the powdery mildew isolates was collected 15-20 days after inoculation 

and deposited in a 2 ml eppendorf tube and freezed at -80°C overnight. After that, CTAB 

buffer-0.04% β-mercaptoethanol solution (previously heated at 65°C for 1 h) and 2.5 µl of 

proteinase K 10 (mg ml
-1

) were added to fungal mass. The protocol of extraction and 

quantification of DNA followed the steps previously described. To get higher DNA yields, 

several samples were whole genome amplified by the Multiple Displacement Amplification 

method using the protocol of “Illustra GenomiPhi” kit  (GE Healthcare Bioscience, 

Piscataway, USA) as described by Fernandez-Ortuño et al. (2007). 

2.4 Primers design for Multilocus Sequence Typing (MLST) analysis 

To address fungal diversity by a MLST approach, we planned to sequence the following 

gene regions: α-tubulin (tub-1), chitin synthase I (csI), intergenic spacer (IGS), translation 

elongation factor α (tef-1α), and mitochondrial small subunit of ribosomal DNA (mt SSU 

rDNA). To isolate fragments from the genes described above, primers were designed on 

conserved gene regions by comparing sequences of other powdery mildew fungi that are 

phylogenetically close to P. fusca using Clone Manager Professional Suite 7.11 software. 

These powdery mildew species were Blumeria graminis (barley powdery mildew), 

Golovinomyces orontii (Arabidopsis powdery mildew) and Erysiphe pisi (pea powdery 

mildew). The genomes of these species were recently obtained (Spanu et al., 2010) and 

sequences are available at www.blugen.org for B. graminis and on on-line databases of the 

Max Planck Institute for Plant Breeding Research at Cologne (Germany) 
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(http://www.mpipz.mpg.de/14157/fungal_genomes) for G. orontii and E. pisi. Sequences of 

other Ascomycete fungi obtained from NCBI database (GeneBank) were also aligned for 

primer design. Sequence accession numbers and genome contigs of species used for primer 

design are shown in Table 9. Only in case of translation elongation factor 1-α, the gene 

fragment was obtained using the degenerated primers 983F/EF-gr (Rehner, 2001). 

 

Table 9 Accession numbers and sequence information used for primer design. B. graminis contigs are available 

on-line at www.blugen.org while those of G. orontii and E. pisi can be found at 

http://www.mpipz.mpg.de/14157/fungal_genomes. 

 

 

Species 

 

 

tub-1 

 

 

csI 

 

 

IGS 

 

 

mt SSU 

rDNA 

 

 

B. graminis 

 

 

G. orontii 

 

 

 

E. pisi 

 

 

E. necator 

 

 

S. sclerotiorum 

 

 

 

contig_006388 
 

 

Go_V1_Contig97

05.1 

 

 

Ep_V2_Contig02

881 

 

- 

 

 
XM001597669.1 

 

 

 

 AF188934.1 
 

 

Go_V1_Con

tig1307.1 

 

         

          - 

 

 

- 

 

  
- 

 

 

HM538452.1 
 

 

Go_V1_Contig

33130.1 

 

 

- 

 

    

GQ255476.1 

 

         

 

 

       - 
 

 

Go_V1_

Contig15

5831.1 

 

- 

 

 

- 

 

 
- 

 

Oligonucleotides were synthesized by Invitrogen
®

 (Life Technologies, Carlsbad, California, 

USA). All PCR reactions were conducted in a volume of 25µl using 5 µl of Promega
®

 

GoTaq Green Buffer 5×, 1 µl of 10 mM dNTPs, 2 µl of 25 mM MgCl2, 1 µl of each primer 

(10mM) , 0.125-0.25 µl of GoTaq flexi DNA polymerase (5 u/µl) Promega
®
 (Madison, 

Wisconsin, USA), 13,875-13,75 µl of double distilled water and 1 µl of DNA sample. PCR 

reactions were conducted in Bio-Rad
® 

T100TM Thermal Cycler (Hercules, California, USA). 

PCR conditions were as follows: an initial denaturation step of 95°C for 3 min, followed by 

35 cycles of 95°C for 30 s, 55-60°C (depending on primer sets) for 30 s, and 72°C for 1 min, 

and a final extension step of 72°C for 5 min. To improve the specificity of primers and to 

http://www.mpipz.mpg.de/14157/fungal_genomes
http://www.blugen.org/
http://www.mpipz.mpg.de/14157/fungal_genomes
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increase the yield of PCR products, the amplifications of mt SSU rDNA and tef-1α were 

carried out using a touchdown-PCR protocol that consisted of an initial denaturation at 95°C 

for 3 min, 10 cycles of 30 s at 95°C, 30 s at annealing temperature of 60°C decreasing each 

cycle 1°C in order to reach a final temperature of 50 °C for the remaining 35 cycles, and an 

extension step at 72°C for 60 s for each cycle, with a final extension step at 72ºC for 5 min 

(Rehner, 2001). PCR products were separated on 1.5 % agarose gel in 0.5× TAE buffer, 

stained with ethidium bromide and visualized under UV illumination. PCR products were 

purified using GFX™ PCR DNA and Gel Band Purification kit (GE Healthcare Bioscience, 

Piscataway, New Jersey, USA). Purified PCR products were sequenced at Macrogen Europe 

(Amsterdam, The Netherlands). All sequences obtained from sequencing were corrected and 

assembled using Contig Express software (Vector NTI Advance 10.3.0) and aligned with 

ClustalW2 Multiple Alignment Software at http://www.ebi.ac.uk/Tools/msa/clustalw2. 

In addition to tub-1, csI, IGS, TEF1-α and MTS-rDNA genes, for MLST analysis the 

following genes were also amplified and sequenced: Internal Transcribed Spacer (ITS) using 

universal primers PN23/PN34 (Mouyna and Brygoom 1993), sterol 14-α-demethylase 

(cyp51) with primers Cyp51-F/Cyp51-R (López-Ruiz, unpublished), and β-tubulin (tub-2) 

with primers Ibtub1-F/Ibtub-R  (Vela-Corcía, unpublished).  

2.5. Mating type identification 

To identify the mating type of each P. fusca isolate, the primer sets aboxF2/aboxR2 and 

hmgF2/hmgR2 described in the previous chapter were used to amplify the alleles MAT 1-1-1 

and MAT 1-2-1, respectively. 
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2.6. AFLP (Amplified Fragment Length Polymorphism) analysis 

AFLP analysis was performed following the method described by Vos et al. (1995) with 

minor modifications. Genomic DNA was digested using two restriction enzymes: Tr1I 

(MseI) (frequent cut) and EcoRI (rare cut) supplied by Fermentas® (Thermo Fisher 

Scientific, Vilnius, Lithuania). Each digestion reaction was carried out in a volume of 40 µl: 

25 µl of double distilled water, 8 µl of 5× RL buffer, 0.5 µl of EcoRI (15 u/µl), 0.5 µl of 

Tr1I (10 u/ µl) and 6 µl of genomic DNA (50 ng µl
-1

). Digestion was obtained by incubation 

at 37°C for 1 hour. After digestion, MSE and ECO adapters were ligated to digested 

genomic DNA in a reaction mixture composed by 2 µl of 5× RL buffer, 1 µl of each adapter 

(10 mM), 1 µl of 10 mM ATP and 0.2 µl of T4 DNA ligase (1 unit/ µl) supplied by 

Invitrogen® (Life Technologies, Carlsbad, California, USA) in a final volume of 10 µl that 

were added to the 40 µl of digestion reaction. Ligation was carried out by incubation at 37°C 

for 3 h, and after that, 450 µl of double distilled water were added to each ligation mixture.  

Following, the pre-amplification reaction with primers M01 (Eco RI + A) and M02 (MseI + 

C) was performed in a total volume of 20 µl: 4 µl of Promega
®
 5× colorless buffer, 0.4 µl of 

10mM dNTPs, 1.2 µl 25mM MgCl2, 1 µl of each primer (10mM), 0.08 µl of GoTaq 

Promega
®
 DNA polymerase (5 u/ µl), 7.32 µl of double distilled water and 5 µl of diluted 

ligation mixture. PCR protocol consisted of an initial denaturation at 94°C for 1 min 

followed by 40 cycles of 94°C for 30 s, 62°C for 30 s and 72°C for 1 min, with a final 

extension step of 72°C for 5 min. PCR reactions were performed in Bio-Rad
®

 T100
TM

 

Thermal Cycler. PCR products were stored at 4°C or used immediately for the selective 

amplification reaction.  

Before to proceed to the selective amplification, PCR products from pre-amplification 

reaction were diluted at different dilution factors ( 1:5, 1:10, 1:20, 1:30, 1:40, 1:50) and 

amplified by selective amplification primers. Each amplification reaction was conducted in a 
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total volume of 20 µl: 4 µl of Promega® 5× colorless buffer, 0.4 µl of 10mM dNTPs, 1.2 µl 

of 25mM MgCl2, 1 µl of each primer (10mM), 0.08 µl of GoTaq Promega® DNA 

polymerase (5 u/µl), 7.32 µl of double distilled water and 5 µl of diluted pre-amplification 

product. PCR protocol consisted of an initial denaturation at 94°C for 2 min followed by a 

cycle of 94°C for 1 min, 65°C for 30 sec and 72°C for 1 min. After, 12 cycles of 94°C for 30 

sec, 64.3°C for 30 sec with a decrease in temperature of 0.7°C in each cycle, and 72°C for 1 

min were performed. Subsequently, 12 cycles at 94°C for 30 sec, 56°C for 30 sec and 72°C 

for 1 min were performed. Final extension consisted of 72°C for 7 min. PCR products were 

conserved at 4°C. The optimal dilution factor obtained after selective amplification reaction 

(described below) was 1:5. After that, a preliminary screening using 16 primer combinations 

was performed on 8 isolates in order to select the appropriate primers for selective 

amplification reactions. Primers tested had three or two more nucleotides at the 3’ end of the 

adapter sequences. Primers used for screening and number of polymorphisms evidenced for 

each primer combination are illustrated in Table 8. Primer names were taken from universal 

codes at www.keygene.com. 

Table 8 Primers used for preliminary screening and number of polymorphisms observed on 8 isolates tested. 

Primer names and extensions MseI primers 

 

EcoRI primers 

 

M47 M48 M50 

MseI + CAA MseI + CAC MseI + CAT 

E31 EcoRI + AAA 0 4 0 

E32 EcoRI + AAC - 4 2 

E14 EcoRI + AT 3 1 0 

E24 EcoRI + TC 5 6 4 

E20 EcoRI + GC 2 2 5 

E11 EcoRI + AA - 1 0 

http://www.keygene.com/
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On the basis of this screening, only primer combinations that showed at least 4 

polymorphisms were chosen for selective amplification reactions: M48+E31, M48+E32, 

M47+E24, M48+E24, M50+E24, M50+E20. Selective amplification reactions and protocol 

used were the same described above. Separation of amplified fragments was carried out by 

electrophoresis on 5% polyacrylamide gels containing 54 ml of TBE urea (42 g of urea, 20 

ml of 5× TBE and 34 ml of double distilled H2O), 8 ml of 40% acrylamide, 8 ml of 2% bis-

acrylamide, 45 µl of TEMED (Sigma-Aldrich
®

, St. Louis, Missouri, USA) and 300 µl of 

10% APS (ammonium persulphate) solution.  A pre-run was performed for about 30 min at 

65W and 45°C. Before gel loading, each PCR product was denaturated by adding 10 µl of 

denaturing solution (1 mg ml
-1

 bromophenole blue, 1 mg ml
-1

 xylene cianol, 98% formamide 

and 0.5 M EDTA), then heated for 3 min at 95°C and cooled in ice. After, 4.5 µl of each 

denaturated PCR product was loaded on gel and run was performed for 2 h and 45 min in the 

same pre-running conditions. After electrophoresis, gels were fixed in about 2 l of 10 % 

glacial acetic acid solution for 30 min in constant agitation and washed twice in 2 l of double 

distilled water. After fixation, gels were silver stained in 1.5 l solution of 1 g l
-1

 AgNO3 and 

2.2 ml of 37 % formaldehyde for 1 h in agitation and then washed with 2 l of double distilled 

water for about 20 s. Gel developing was done in 2 l of sodium carbonate (30 g l
-1

) solution 

prior adding 3 ml of 37 % formaldehyde and 400 µl of sodium thiosulphate (10 mg ml
-1

). 

Each of the 6 AFLP gels was manually analyzed by giving score of 1 for the presence of a 

common band and 0 for a band absence. Resulting data from all primer combinations were 

combined in a binary matrix. After the conversion in a distance matrix, cluster analysis was 

performed both by unweighted pair group method with arithmetic mean (UPGMA) method 

based on simple matching similarity coefficient with NTSYS software, and by neighbor-

joining algorithm using MEGA 5 software. Finally, a dendrogram from UPGMA analysis 

and a phylogenetic tree from neighbour-joining analysis were generated using the same 

software. 
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2.7. Cloning of AFLP polymorphic bands 

AFLP polymorphic bands were selected, manually excised from gels and re-amplified with 

the corresponding selective primers. After that each PCR product was cloned in a plasmid 

using the pGEM-T Vector System kit (Promega
®
). Each ligation reaction consisted of 2.5 µl 

of T4 DNA ligase buffer with 2×ATP, 0.5 µl of plasmid pGEM, 05 µl of DNA ligase units 

(1 u/µl) and 1.5 µl of PCR product. Reaction was carried out at 4°C overnight. 

Transformation was performed using the heat shock method. For each transformation 

reaction, 100 µl of E. coli DH5α competent cells and 2 µl of ligation reaction were mixed in 

a 1.5 ml eppendorf tube, and incubated for 30 min in ice. Subsequently, eppendorf tubes 

were incubated at 42°C for 45 s and rapidly transferred back to ice for 2 min.  After that 900 

µl of SOC medium were added to each tube and cell suspension was incubated at 37°C for 1 

h.  Finally, 0.1 ml of each cell suspension were inoculated on Petri dishes containing LB 

medium supplemented with ampicillin (50 µg ml
-1

), IPGT (24 mg ml
-1

) and X-Gal (20 mg 

ml
-1

). Petri dishes were incubated at 37°C for 24 h. After incubation, white colonies were 

selected and transferred to new Petri dishes with LB and ampicillin (50 µg ml
-1

) medium and 

incubated at 37°C for 8 h. Subsequently, single colonies were transferred to a sterile 15 ml 

propylene tube containing 5 ml of LB and 5 µl of ampicillin (50 µg ml
-1

) and incubated at 

37°C overnight. Plasmid extraction was carried out by the following protocol. Cells were 

centrifuged at 3000 rpm for 10 min and pellet was resuspended with 0.2 ml of A solution (50 

mM glucose, 10 mM EDTA and 25mM Tris-HCl pH 8) and transferred to ice. After, 0.4 ml 

of 0.2 N NaOH and 1% SDS solution were added, and tubes were incubated in ice for 5 min 

and mixed by inversion. Subsequently, 0.3 ml of NaOAc 3M (pH 5.2) were added to each 

tube, gently mixed and centrifuged at maximum speed for 10 min. After centrifugation, 0.85 

ml of each solution was transferred to new tubes and 0.6 ml of cold isopropanol was added. 

Tubes were then gently mixed and left for precipitation for 10 min. A maximum speed 

centrifugation was performed for 20 min and then 2 volumes of cold 100% ethanol were 



79 

 

added for precipitation. Finally, pellets were air dried and re-suspended in 50 µl of sterile 

double distilled water. When necessary, incubation at 65ºC for 10 min was carried out to 

facilitate pellet re-suspension. Plasmid extraction efficacy was verified by electrophoresis on 

1% agarose gels in 0.5× TAE buffer. Plasmid inserts were sequenced with universal primers 

SP6 and T7 at Macrogen Europe (Amsterdam, The Netherlands). 

3. Results 

3.1. Isolation of housekeeping gene fragments 

All degenerated primers designed and primers 983F/EF-gr successfully amplified the 

corresponding gene fragments in all isolates tested of P. fusca. A total of 5 different 

housekeeping gene fragments were amplified. For tub-1, csI and tef1-α genes it was 

necessary to design new specific primers on the sequences obtained with degenerated or 

semi-degenerated primers, to improve the specificity and yield of the PCR amplification. 

With semi-degenerated primers atuba1 5’- GGCCAAGGMAAATAYGTACC-3’ and atubb2 

5’- CAGATGGTGAAATGCGATCC-3’ a fragment 700 bp of tub-1 was amplified, then 

specific primers abtubbs/abtubas were designed. For csI, degenerated primers cs1f 5’-

CGAACTCGAGCMGTYCTAGC-3’ and cs1r 5’-GGMAGCTTCTCRGCYTTRTC-3’ 

amplified a fragment of 1500 bp, then specific primers csIs-a/csIs-b were designed. 

Degenerated primers 983F/EF-gr (Rehner, 2001) successfully amplified a 900 bp fragment 

of tef1-α containing an intron, then specific primers efspf1/efspf2 were designed. Gel 

pictures showing the PCR products obtained for each marker gene are illustrated in Figure 

21. After sequencing of each gene fragment, useful sequence information was reduced in 

about 50 to 100 bp due to sequencing reaction, so the final lengths were reduced compared 

to those observed in gel. Features of the new primers designed and others used for MLST 

analysis are showed in Table 9, while gene fragment structures are showed in Figure 22.  
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Figure 21 Amplification of MLST markers in P. fusca isolates: tub1 (a), tef1-α (b), csI (c), mt SSU rDNA (d) 

and IGS (e). Different molecular size markers (M) were used: 100 bp DNA ladder Promega® (a and d), 

MassRulerTM Low Range DNA ladder (b and c) and GeneRulerTM 100bp Plus DNA ladder (e), both supplied 

by Fermentas®. NC is the negative control (no DNA was loaded). 

 

 

 

a 

d 
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Table 9 Gene fragmentes used for MLST analysis in P. fusca. 

Targe

tgene 

Primer 

names 
Primer sequences (5’-3’) 

Annealing 

tempera-

ture (C°) 

Fragmen

t
1
 size 

(bp) 

Intron 

size 

(bp) 

Identity
2
 (%) 

tub1   

              

 

abtubbs 

abtubas 

 

ATTGCGACCTTGAGCCCAAC 

GTTAGCCCTGCGAAAGCTTC 
60 650 79 89 

 csI 

 

csIs-a 

csIs-b 

 

GAGTATACGACCCAGGTCAG

ACATATGCCACGGATCGAAG 
60 1100 43 95 

tef1-α 

 

efspf1 

efspf2 

 

TATCATCGCTGCTGGAACTG 

CGATAACCTGTGCCATGAAG 
52 700 50 91 

 IGS 

 

igs1 

igs2 

 

GGAAAGCCACYACTSRTAGC 

GGSWGRRTCAMCCAGGTAAC 
55 290 - 

 

82 

mt 

SSU 

rDNA 

 

mtssu1 

mtssu2 

 

TGCCAGCAGTCGCGGTAATC 

TGTTCGCTACCCGAGCCTTC 
50* 250 - 88 

 

ITS 

 

PN23 

PN34 

 

CACCGCCCGTCGCTACTACCG 

TTGCCGCTTCACTCGCCGTT 

 

60 

 

800 

 

- 

 

Mouyna 

and 

Brygoo, 

1993 

cyp51 
cyp51-F 

cyp51-R 

 

CTTTCTCAGAGGCGCGATGG 

CGGATCTTCCTCGCCTCACA 

 

 

62 

 

1000 

 

52 

López-

Ruiz, 

unpublishe

d 

tub2 
Ibtub1-F 

Ibtub1-R 

GGGCGCCAAGCCTTCACTCG 

AAAGGGACCAGCGCGAACAG 
55 1200 20-62 

   Vela-

Corcía, 

unpublishe

d 

                                   

1
 Fragment size referred to those of useful sequence obtained after sequencing. 

2
 Identity shows the result after using Blastx (for tub-1, csI and tef1-α) or Blastn (for IGS and mt SSu rDNA) tools at    

http://blast.ncbi.nlm.nih.gov/Blast.cgi  

 

 

 

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 22 Gene fragment structures of tef1-α (a), tub1 (b) , csI (c), cyp51 (d) and tub2 (e) and sites where 

specific primers were designed. Prediction of gene structure of  tef1-α, tub1 and csI was obtained by comparing 

sequences with genome of S. sclerotiorum using HMM-based gene structure prediction tool at 

http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind while cyp51 and 

tub2 were obtained from Lopez-Ruiz (unpublished) and Vela-Corcia (unpublished). 

 

 

 

 

1265       1284

csIs-b

8        27

atubbs

105             455       505             714 

9        28 727       746

efspf1                                                            efspf2

63            508        585  613

682 701

atubas

2   36               147                                                  691    735                           1052

22     41

csIs-a

Exon

Intron

Unknown region

ATG

(a)

(b)

(c)

1                                         457      509                                                                   1068
(d)

Cyp51F Cyp51R

Ibtub1-F Ibtub1-R

(e)

ATG

1                                                                                                  879                       1151          1237  

http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind
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3.2. Genetic diversity analysis of P. fusca populations by MLST method 

Once the specific primers of the new marker genes were designed and tested, a systematic 

MLST analysis of P. fusca isolates was undertaken. From the different isolates, each marker 

was sequenced three times from three independent PCR amplifications. After sequencing, 

consensus sequences were obtained for each isolate and marker. Subsequently, sequences 

from the same marker were aligned in order to find genetic variation. As shown in Table 10, 

no variations were observed among the isolates; only 1 allele was found for each of the eight 

marker genes analysed.  

 

Table 10 MLST analysis in P. fusca. Number of isolates sequenced and alleles observed for each marker. 

MLST 

marker 
ITS IGS tub1 tub2 csI tef-1α 

 

mt SSU 

rDNA 

 

cyp51 

Sequence 

length (bp) 
800 290 650 1200 1100 700 250 1000 

Isolates 

sequenced 
70 68 67 81 53 72 78 42 

Number of 

alleles 
1 1 1 1 1 1 1 1 

 

 

3.3. Frequencies of P. fusca mating types 

Primer pairs aboxF2/aboxR2 and hmgF2/hmgR2 were used to molecularly characterised the 

mating type (MAT 1-1-1 or MAT 1-2-1, respectively) of the different P. fusca isolates and 

this way estimate the mating type frequencies in relation to the geographical origin of the 

isolates (Figure 23). As shown in the figure, ratio of MAT frequencies of isolates from 

Northern Italy tended to be 1:1 as already observed above in “Part one: Epidemiology”. A 

similar tendency was observed in other countries such Czech Republic, Greece and Bulgaria, 

although it is important to note that only a small number of isolates was tested. By contrast, 

P. fusca populations from Spain, France and from the American continent showed an 
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unbalanced ratio, where the proportion of isolates belonging to MAT 1-2-1 allele was 

prevalent.  

 

 

Figure 23 Frequencies of mating type alleles in P. fusca populations from European countries and American 

continent. Mating type alleles were molecularly identified by a Multiplex-PCR using primer pairs 

aboxF2/aboxR2 and hmgF2/hmgR2. Numbers above columns indicate the number of isolates identified for 

each allele in each country. 

 

3.3. AFLP fingerprinting 

Using the six primer pairs described previously for the selective amplification reaction, 

presence and absence of polymorphisms and common main bands were observed in each 

AFLP gel and scored for the binary matrix construction. AFLP gels obtained can be 

visualized in Annexes, while markers selected from each primer combination and relative 

percentage of polymorphism are illustrated in Table 11. 
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Table 11 AFLP analysis in P. fusca. Number of markers selected for AFLP analysis and percentage of markers 

that were polymorphic. 

Primers M48-E24 M47-E24 M50-E20 M50-E24 M48-E31 M48-E32 Total 

Markers 30 36 25 23 28 27 169 

Polymorphic 

markers 
10 10 8 8 10 20 66 

Polymorphism 

(%) 
33.33 27.77 32.00 34.78 35.71 74.07 39.05 

 

Afterwards, cluster analysis with UPGMA method using simple matching similarity 

coefficient was performed and a dendrogram showing genetic similarity was obtained 

(Figure 24). 

 

Figure 24 Dendrogram obtained from cluster analysis showing genetic diversity of P. fusca isolates. The 

binary matrix was converted to a distance matrix by NTSYS software and then cluster analysis was performed 

using UPGMA algorithm with simple matching similarity coefficient.  
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As shown in the dendrogram, genetic similarity was very high as it ranged from 0.91 and 

1.00. Isolates did not cluster in groups in function of geography, host plant, years of 

collection or mating type. Minimum genetic similarity was observed between isolates 6711 

and 311120 while maximum similarity of 1.00 was observed in four groups. The first group 

is composed by isolates 811301, 711349 and 211242 (all from Spain), the second group by 

isolates 311287 (Spain), 2086 (Greece), 5211,6411, 2610, 4311, 4811, EL12, AT12, GI18 

(all from North of Italy) and US2 (U.S.A.), the third group by isolates 3210 (North of Italy) 

and US5 (U.S.A.) and the fourth group by isolates US1 and 11.13-X (all from U.S.A.).  

Subsequently, with the same distance matrix a neighbor-joining tree was constructed (Figure 

25). Even if two groups are clearly separate, tree is not informative as isolates did not 

separate in function of geography, host plant, years of collection or mating types. 
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Figure 25 Neighbor-joining tree of 59 isolates of P. fusca. Tree was performed on distance matrix using 

MEGA 5 software. The distances between nodes in the tree are represented as different lengths of the branches 

connecting the nodes. The greater the length of the branch that joins two nodes, the greater the distance 

between these nodes. 
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3.4. Cloning of polymorphic bands 

Although, in general, a low degree of genetic diversity was observed, AFLP analysis could 

reveal some polymorphisms among P. fusca isolates. In order to get insights into the DNA 

sequences that were apparently subjected to variation, 12 of these polymorphic bands were 

isolated from AFLP gels, cloned into plasmids and sequenced. After sequencing, Blastn and 

Blastx algorithms were performed in order to find similarity to sequences deposited on 

databases. The results of this analysis are illustrated in Table 12. As shown in the table, 

polymorphisms from isolates 8511, US6 and 311271 showed similarity to microsatellite 

sequences, from 31119 and 5311 to a polyprotein associated to a Long Terminal Repeat 

(LTR) transposable element, from 31784 to a transposon, from 41.1 with the sub-unit 1 of 

citochrome c oxidase. The rest of isolates showed similarities to different proteins. In 

particular, polymorphisms from isolate 085M9 showed simililarity to an ABC transporter 

protein, from isolate 31119 to a guanylate binding protein and to nitrite reductase and finally, 

from isolate 8511 to alcohol dehydrogenase II and to RNA polymerase II mediator complex. 
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Table 12 Isolation and sequencing of some polymorphisms revealed by AFLP analysis of P. fusca isolates. 

Only the results of the best hit of Blastn or Blastx analysis are shown. 

GEL 
Isolate 

number 

Progressive 

number in 

polyacrilamide gel 

Polymorphism 

number on gel 

Accession 

number 
Putative function Identity 

(%) 

2 (M47-E24) 311119 7 34 AAZ28935.1 

polyprotein 

associated to a 

LTR transposon 

47 

2 (M47-E24) 5311 20 34 AAZ28935.1 
polyprotein 

associated to a 

LTR transposon 

47 

2 (M47- E24) 8511 34 32 HQ885810.1 
microsatellite 

100 

3 (M50-E20) 085M9 41 24 CCD54073.1 ABC transporter 80 

3 (M50-E20) US6 54 19 HQ884420.1 
microsatellite 

100 

4 (M50-E24) 41.1 49 23 AB070473.1 
sub-unit 1 of 
citochrome c 

oxidase 

91 

5 (M48-E31) 311271 6 22 HQ888161.1 
microsatellite 

89 

5 (M48-E31) 311119 7 19 EGG23654.1 
guanylate binding 

protein 1 

38 

5 (M48-E31) 31874 8 21 XP_002478092.1 transposon 53 

5 (M48-E31) 8511 34 20 
XP_001396235.1 

 

alcohol 

deydrogenase 2 

70 

5 (M48-E31) 8511 34 23 EFY89126.1 

 

RNA polymerase II 

mediator complex 

component 

 
 

51 

6 (M48-E32) 311119 7 24 BAH95949.1 nitrite reductase 81 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/365771086?report=genbank&log$=nuclalign&blast_rank=1&RID=FAVU9JJH01R
http://www.ncbi.nlm.nih.gov/protein/347839501?report=genbank&log$=prottop&blast_rank=3&RID=FAW2N6GT015
http://www.ncbi.nlm.nih.gov/nucleotide/365769696?report=genbank&log$=nuclalign&blast_rank=1&RID=FAWDMZWN014
http://www.ncbi.nlm.nih.gov/nucleotide/51491347?report=genbank&log$=nuclalign&blast_rank=1&RID=FAWPG4CD01R
http://www.ncbi.nlm.nih.gov/nucleotide/365773437?report=genbank&log$=nuclalign&blast_rank=1&RID=FAXFCVUW01R
http://www.ncbi.nlm.nih.gov/protein/328875289?report=genbank&log$=protalign&blast_rank=1&RID=FAXUPJ7A014
http://www.ncbi.nlm.nih.gov/protein/242772710?report=genbank&log$=protalign&blast_rank=1&RID=FAY9HAEP01R
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4. Discussion 

 

In this study, fragments of five housekeeping genes from P. fusca were isolated and used for 

MLST analysis, demonstrating that designing primers on conserved sequences of 

phylogenetically close related species is a good way to find genes in a species of unknown 

genome. Those markers together with ITS, tub-2 and cyp51 markers were used to investigate 

the genetic variability in P. fusca. Some of these markers have been successfully use in 

population genetics studies in other powdery mildew species such as E. necator (Brewer and 

Milgroom, 2010) and B. graminis (Inuma et al., 2007). However, in P. fusca, they did not 

reveal genetic variation despite the fact that isolates from geographical origins very distant 

were included in the analysis. Using these markers, this species seems to be a clonal 

population. This result is in contrast with the occurrence of chasmothecia and the mating 

type ratio 1:1 observed, for example, in the North of Italy, that suggests the existence of 

actively mating populations. Under this circumstances, recombination should occur, this way 

introducing some degree of genetic variability at least in Italian populations of P. fusca. 

During sexual reproduction, meiosis results in independent assortment of chromosomes and 

recombination within chromosomes. This has two major effects on population structure: 

relatively high levels of genotypic diversity and random association between alleles at 

different loci, such that genotype frequencies can be predicted from the allele frequencies at 

each locus. These two characteristic of population structure distinguish sexual from most 

asexual populations. Also, the first major effect of sexual reproduction at the population 

level is the production of recombinant genotypes (Milgroom, 1996). This seems not to be the 

case for P. fusca. Even if sexual stage is easy to find in the North of Italy, the lack of genetic 

variation arises an important question: what is the relevance and the role of the sexual stage 

in the life cycle of P. fusca?  

It is known that one of the advantages of recombination is to produce novel genotypes that 

may allow organisms to adapt quickly to changing environments (Milgroom, 1996). 
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Although in literature the appearance of sexual stage of P. fusca is considered rare or was 

never observed in some areas (McGrath, 1994), in the North of Italy the fungus seems to 

overwinter as chasmothecia because of the absence of host plants during the autumn and 

winter seasons and this is also supported by the fact that an equilibrium between the 

frequencies of both MAT alleles was observed. On the contrary, in the South of Spain, where 

cucurbits are cultivated during all year, chasmothecia have never been found (Álvarez and 

Torés, 1995) and as shown by this study, MAT genes seems to be under a selection that tends 

to favour the MAT 1-2-1. However, despite this difference in mating type frequencies, no 

genetic variation was found between Italian, Spanish and other European isolates of P. fusca. 

We expected to find, however, at least some geographical differences between European and 

American isolates. Population genetic studies of grape powdery mildew (E. necator) 

evidenced greater haplotype richness and nucleotide diversity within Eastern U.S. 

populations with respect to European populations (Brewer and Milgroom, 2010). This is 

because of the pathogen originated from the Eastern part of the U.S. country and only two 

genetic groups were separately introduced in Europe. Because of the Central-South 

American origin of some cultivated cucurbits, in particular of the genus Cucurbita 

(Bisognin, 2002), this should be also the case of P. fusca. However, using MLST markers 

this was not the case, since no differences were observed between European and American 

isolates. A similar situation has been observed in Fusarium oxysporum f.sp. ciceris where no 

variations were observed using EF1-α, β-tubulin, histone H3, actin and calmodulin gene 

markers (Jimenez-Gasco et al., 2002). An interpretation given by authors to explain the lack 

of variation is that this species is thought to derive from a small founder population that 

became pathogenic to Cicer spp. This could be also the case of P. fusca that could be a 

pathogen of a recent speciation on cultivated cucurbits and that the differentiation in 

pathotypes and races should be due to relatively recent and minor genetic changes. 
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Given the absence of genetic variation observed in the populations of P. fusca by MLST, 

genetic diversity was addressed by the AFLP technique. Using 59 of the 92 isolates analysed 

by MLST, genetic similarity resulted to be again very high as it ranged between 0.91 and 

1.00. Unlike the AFLP study of Naruzawa et al. (2011) performed only on Brazilian strains, 

the isolates analysed in this study showed a higher similarity. Both dendrogram and 

neighbour-joining tree did not group isolates in function of geographical origin, host plants, 

climate areas, cultivation systems or mating types. In particular, dendrogram looks like a 

random mating population. Considering the epidemiology of this pathogen and the role that 

winds may play in the spread of this species, the absence of geographical groups separated 

could make sense. Accordingly, differences among isolates are very little as they are all 

distributed in a very little range of similarity coefficient.  

To explain these little differences among isolates several factors can be considered. One of 

these factors could be found in the genomes of these obligate biotrophic pathogens. Recent 

genome sequencing of phylogenetically close related powdery mildew species such B. 

graminis, E. pisi and G. orontii revealed that genomes of these species are 120, 151 and 160 

Mb in size, respectively, which means that they are four times larger than the median of 

other ascomycete fungi. It is interesting to note that because of the obligate biotrophism, 

these genomes are characterized by the deficiency in several classes of conserved primary 

and secondary metabolism genes. These include the nitrate and sulfate assimilation pathways 

and plant cell wall hydrolytic enzymes. In addition, a massive proliferation of transposable 

elements (TEs) was found. In B. graminis, where TEs account for 64% of the genome size, 

the most abundant families comprise non–long terminal repeat (LTR) retrotransposons 

lacking LTRs. According to the authors of this study, these hallmarks may represent a 

tradeoff between advantages of increased genetic variation independent of sexual 

recombination and irreversible deletion of genes dispensable for biotrophy (Spanu et al., 

2010). A similar genome is also presented in the ectomicorrhizal symbiont ascomycete 
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Tuber melanosporum that is 125 Mb in size and TEs account for approximately 58% of the 

genome (Martin et al., 2010). Like those powdery mildew fungi, it could be possible that 

genome of P. fusca could be similar in size and that the genetic variation could be mostly 

due to TEs. To support this hypothesis, three of the AFLP polymorphic fragment sequenced 

showed a high identity with transposons and polyproteins associated to LTR TEs. In  

accordance, two TEs have been also found associated with the only two full-length genes 

cloned so far from P. fusca, the cyp51 and tub2 genes (Pérez-García, pers. comm.). 

According to MLST results, no polymorphic AFLP fragments belonging to housekeeping 

genes were identified. This suggest that such genes are very much conserved in P. fusca and 

that are not suitable for MLST analysis. As illustrated in Table 4, sequencing of AFLP 

polymorphic bands showed high identities with other interesting genes that could explain, at 

least in part, the differences observed among isolates in the AFLP dendrogram. So, the 

second factor to consider is the nature of the different selection pressures that could act on 

each individual. The application of fungicides is the principal tool in most cucurbit crops for 

managing powdery mildew disease (Pérez-García et al., 2009) and, therefore, most of the 

fungal populations must be submitted to a continuous selection. Accordingly, P. fusca has 

shown a high potential to develop fungicide resistance (McGrath, 2001). Thus, in response to 

the different modes of action of fungicides, the interactions with natural enemies or 

antagonists such as the hyperparasite fungus Ampelomyces quisqualis or the antagonistic 

bacterium Bacillus subtilis, or even the action of host plant defence compounds, selection 

could account for little changes in the genotype (point mutations, small insertions, deletions, 

etc) to cope with these factors. Such factors could select molecular changes in the 

individuals that are not detected as genetic variation using housekeeping marker genes.  

Supporting this hypothesis, two AFLP fragments showed high similarities with two 

interesting proteins: an ABC transporter and a guanylate binding protein. ABC transporter 

proteins are thought to contribute to fungicide resistance in plant-pathogenic fungi by 
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helping cell detoxification (del Sorbo et al., 2000; Stergiopoulos et al., 2002). In particular, 

they have been extensively studied in Botrytis cinerea. It was found that ABC transporter 

proteins played a role in fungal protection against the plant defence compounds phytoalexins 

such as resveratrol, and fungicides such as fenpiclonil and fludioxonil (Schoonbeek et al., 

2001; Vermeulen et al., 2001). Moreover, Pane et al. (2008) observed that an ABC protein is 

immediately activated to defend B. cinerea against H2O2 produced by plants in the earlier 

stage of infection. Similarly, Vermeulen et al. (2001) affirmed that other fungicides such as 

the azole fungicide tebuconazole and the strobilurin fungicide trifloxystrobin also induced 

transcription of some of the ABC transporter genes in the same pathogen. The same authors 

proposed that several ABC transporters possibly work in protection of the fungus against 

fungicides and could be responsible of multi-drug resistance development.  

Studying hypovirulence of strains of the chestnut blight fungus Cryphonectria parasitica 

harboring RNA viruses of the genus Hypovirus, a guanylate binding protein was found to be 

involved in a virus-mediated attenuation of fungal virulence (Choi et al., 1995). 

Considerations must be done about the perspectives resulting from the finding of these two 

proteins associated with AFLP polymorphism in P. fusca. It is interesting to think that ABC 

transporters and guanylate binding proteins could probably exert some influence on control 

strategies and virulence processes, respectively. In the case of P. fusca ABC transporters 

could be very important in fungicide resistance, for example in relation to the yet not clear 

mechanism of resistance to QoI fungicides (Fernandez-Ortuño et al., 2008), since a similar 

efflux-transporter-mediated mechanism of resistance to QoI fungicides has been reported in 

field isolates of Pyrenophora triticirepentis (Died) Dreschsler (Reimann and Deising, 2005). 

Another AFLP polymorphism resulted to be the sub-unit 1 of the mitochondrial cytochrome 

c oxidase. Cytochrome c oxidase subunit I (cox1) is a mitochondrial encoded gene, which is 

recognized as an extremely useful DNA barcode capable of accurate species identification in 

a very broad range of eukaryotic life forms (Hebert et al., 2004; Ward et al. 2005; 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b40
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Hajibabaei et al,. 2006; Seifert et al., 2007). Cox is the default DNA barcode approved by 

GeneBank and the Consortium for the Barcode of Life (CBOL) and has proven to be very 

useful in phylogenetic studies of the oomycete genus Phytophthora (Martin and Tooley 

2003; Kroon et al., 2004) and in the barcoding of red algae (Saunders, 2005). Robideau et al. 

(2011) studying the utility of cox and ITS for phylogeny of oomycetes, concluded that cox 

sequencing is a very useful addition to the oomycete molecular toolbox and that the use of 

both ITS and cox rather than one or the other, is recommended for taxonomic identification 

of oomycetes. Considering the lack of variation in the ITS region in P. fusca, further studies 

using the citochrome c oxydase subunit 1 marker gene must be conducted. 

Together with fungicide resistance, the other phenotype that could be analyzed in P. fusca is 

virulence, for example in terms of race or pathotype identification. It is important to note that 

information about race or pathotype identification in the collection of isolates used in the 

present study is very scarce and fragmentary. This makes impossible to observe any 

grouping in the AFLP dendrogram and tree based on these elements. In previous studies, it 

was reported a noticeable variation both in virulence and fungicide resistance in the 

populations of P. fusca of south-central Spain (de Pino et al., 2002; Fernández-Ortuño et al., 

2006; López-Ruiz et al., 2010). Although genetic diversity studies should be focused in 

DNA sequences not subjected to selection pressure (Robles et al., 2004), it would interesting 

to know whether AFLP polymorphisms in P. fusca could be indeed associated with 

phenotypes of different virulence (race/pathotype) or fungicide sensitivity. 

Considering the results of genetic diversity in P. fusca obtained by Naruzawa et al. (2011) 

and that in this study only three isolates from Central-South America (Argentina, Martinique 

and Mexico) were included, to better investigate the genetic diversity in this pathogen further 

studies should be conducted with more isolates from this part of the American continent and 

also with samples obtained from Africa and Asia continents, where the other genera of 

cucurbits are originated (Bisognin, 2002). In any case, our results suggest that the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b34
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195333/#b32
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populations of P. fusca are likely to be a clonal population, with some differences among 

isolates probably due to agricultural practices such as fungicides treatments and cultivated 

hosts. In addition, even when the sexual stage could be found in the North of Italy or in other 

few countries, the impact of sexual reproduction on disease epidemiology seems to be minor, 

although this aspect should be studied further. Thus far, with the data we have in hand, the 

asexual cycle, with the production of a lot of fungal biomass and thousands of conidia, 

appears to be the most common way to the spread and colonization of this pathogen and it 

should be the target of the different control approaches to combat the disease. 
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General discussion 
 

Although the occurrence of G. orontii and P. fusca had been previously documented in the 

North of Italy (Branzanti and Brunelli, 1992), in this study we described for the first time the 

population dynamics of both pathogens in the Bologna and Mantua areas during three 

consecutive growing seasons. After three years of survey, our results unequivocally showed 

that G. orontii was the first species to appear, in most cases around May. The other species, 

P. fusca, usually appeared in middle June and, after a short period of coexistence of the two 

species, rapidly become the only agent causing powdery in cucurbits during the second part 

of the growing season. In other words, our data clearly illustrated a replacement of species 

causing powdery mildew in cucurbits during the growing season. However, considering the 

incidence of the disease and severity of the symptoms, the prevalence during the growing 

season and the final impact on crop productivity, it is clear to us that P. fusca is the most 

important causal agent of cucurbit powdery mildew in Northern Italy and, in consequence, 

this species should be considered the main target of disease management practices. 

According to Gause (1934), species sharing the same resource cannot stably co-exist and this 

behavior could be influenced by several factors. Giving the lack of correlation observed 

between occurrence of these species and climate conditions (the behaviour was the same in 

farms with plastic tunnel/field cultivation and in farms with only the micro-climatic 

conditions of plastic tunnels), there are no obvious climatic reasons that could explain the 

seasonal behaviour observed for both species. What are then the factors that govern the 

species dynamics observed in the North of Italy? A similar temporal succession, where 

epidemiology is influenced by the different overwintering strategies of the two species, has 

been observed in France for Erysiphe quercicola and Erysiphe alphitoides, the causal agents 

of oak powdery mildew (Feau, 2012). Perhaps a close examination of the perennation 
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strategies of the cucurbit powdery mildew pathogens could add some clues to answer the 

question.  

Perennation is the process of bridging a period of restricted activity (overwintering or 

oversummering). Because powdery mildews are obligate parasites, they must be able to 

survive during seasons when susceptible host tissue is unavailable for infection. Knowledge 

of how perennation proceeds in a given powdery mildew/host/environment system is useful 

in devising effective control strategies (Glawe, 2008). There are three primary means of 

perennation in powdery mildews. Production of chasmothecia, which are the structures 

resulting from sexual reproduction in powdery mildews. Chasmothecia are well-adapted to 

serve as resistant structures in regions with cold winter temperatures and also provide a 

means of surviving hot, dry summers. Bud perennation that occurs when the fungus 

overwinters within dormant buds. Infected buds can contain hyphae with haustoria, 

conidiophores, and conidia. After breaking dormancy, infected buds give rise to “flag 

shoots” that can be covered with profusely sporulating mycelia, supplying the primary 

inoculum to initiate the disease cycle. The third kind of perennation involves mycelia that 

persist through unfavorable conditions, either the winter on hosts with persistent leaves or 

when high temperatures suppress growth and sporulation (Glawe, 2008). 

In the area of sampling, chasmothecia of P. fusca were easily collected from senescent 

leaves and soil, indicating that this species goes through the sexual stage in the North of 

Italy. By contrast, chasmothecia of G. orontii were never found. Chasmothecia of P. fusca 

were never or rarely found is many cucurbit production areas of several countries (McGrath, 

1994; Álvarez and Torés, 1995; Bardin et al., 1997; Miazzi et al., 2011) and more 

importantly, even when chasmothecia production has been obtained in laboratory conditions 

(McGrath, 1994), successful ascospore infections have been never reported. These are the 

main reasons why the epidemiological role of the sexual cycle of P. fusca has yet to be 

determined. Interestingly, the occurrence of chasmothecia was also supported by an 
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estimated ratio for mating types of 1:1, indicating the existence of populations of the 

pathogen actively mating and suggesting that P. fusca, could undergo sexual recombination 

at least in the North of Italy.  

The occurrence of chasmothecia from only one of the two species observed in the North of 

Italy clearly indicates the different perennation strategies of both pathogens. Although not 

shown in this work, G. orontii could survive the winter on alternative host as previously 

described (http://triscience.com/Plant/Crops/alternate-hosts-of-cucumber-powdery- 

mildew/doculite_view; Sharma, 1989). This finding together with its wider adaptation to 

environmental conditions, could explain why this species is responsible of the first powdery 

mildew symptoms observed in the growing season. In P. fusca, however, overwintering 

should be due to chasmothecia, like other powdery mildew fungi such as Erysiphe necator 

(Gadoury et al., 2012). In this case, only after breaking these structures ascospores are 

released to act as primary inoculum and initiate the disease cycle. The optimal conditions for 

breaking chasmothecia seem to occur in middle spring, which may explain the delay in the 

appearance of the pathogen on cucurbit crops.  

However, for powdery mildews, the production of huge numbers of spores, which are wind 

dispersed from one susceptible host to another, is essential for reproduction and survival 

because these pathogens are completely dependent on living host tissue for survival (Brown 

and Hovmøller, 2002). In this sense, long-distance dispersal of cucurbit powdery mildew 

spores could also and additional be source of primary inoculum especially for P. fusca, 

which is the predominant species in the Mediterranean basin where cucurbits are grown year 

around and the pathogen is always present either on protected crops or open fields (Bardin et 

al., 1997; Miazzi et al., 2011). If this was case, an unbalanced ratio of mating types should 

have been observed, considering the fact that, as shown in Chapter 3, in Spain the most 

important country for cucurbit production, a preferential selection for MAT 1-2-1 is 



100 

 

observed. In Figure 26 we present a model summarizing the epidemiology of cucurbit 

powdery mildew disease in Northern Italy. 

 

Figure 26 Epidemiology of cucurbit powdery mildew disease in Northern Italy during the growing season. The 

two pathogens may have different overwintering strategies. As indicated by question marks, there are a number 
of questions that remain to be answered.  

 

The different occurrence of the two species during the growing season could be very 

important to plan new control strategies against the disease, which are mainly based on 

fungicide applications and the use of resistant or tolerant cultivars (McGrath, 2001; Brunelli 

and Gengotti, 2007; Pérez-García et al., 2009). Regarding fungicide use, some differences in 

fungicide sensitivity have been found (Bertrand et al., 1992; Sedláková and Lebeda, 2008) 

but further studies on sensitivity to modern molecules such as boscalid, quinoxyfen and 

cyflufenamid must be carried out. The lack of information makes difficult to plan a 

differential strategy for a chemical-based control of the two species. Regarding cultivar use, 

as already mentioned, although great efforts have been made in plant breeding programmes, 

the great variety of races especially in the case of P. fusca (Pitrat et al., 1998; Bardin et 

al.,1999; Hosoya et al., 2000; Bertrand, 2002; McCreight 2006, Lebeda et al., 2011) makes 

P. fusca

overwintering as mycelia on 

alternative hosts

overwintering as

chasmothecia ?

G. orontii

Growing season

asexual 

infections

ascospore 

infections?

conidia transported by winds 

from Southern Europe?



101 

 

really difficult to select cultivars with resistance against the various races that can be present 

in a given area and that can be different over the growing season. 

The occurrence of chasmothecia only from P. fusca is an interesting finding that arises two 

important questions: what are the importance and the role of the chasmothecia on the 

epidemiology of the disease? How chasmothecia production can influence the life cycle of 

this pathogen? To answer these questions we planned to investigated the genetic structure of 

P. fusca, using for that purpose isolates not only from North of Italy but also from the 

Southern part of the peninsula and from other countries where the disease is present: Spain, 

France, Czech Republic, Greece and from American continent. We hypothesized that 

because no chasmothecia are found in some of the above mentioned countries and that some 

geographical barriers may exist to avoid contact between populations, at least some genetic 

diversity should be evidenced among isolates. To our surprise, using fragments of 8 

housekeeping genes as molecular markers for a Multilocus Sequence Typing (MLST) 

scheme, no differences were found within the isolates in neither intronic nor coding regions, 

suggesting that P. fusca was a clonal population. 

These results are in clear contrast to the results obtained in other powdery mildew fungi. In 

particular, in a MLST study on B. graminis (barley powdery mildew), csI and tub-2 provided 

high levels of phylogenetic signals especially in the intronic regions and at the third base 

position of exons, and were found to be more informative than ITS and 28S regions (Inuma 

et al., 2007). Moreover, ITS/IGS regions of nuclear rDNA, tef1-α and tub-2 were used 

successfully in a phylogeography and population structure study of E. necator  (grape 

powdery mildew). Also in this case all of the polymorphisms in protein-coding genes were 

found in introns or as synonymous substitutions in coding regions (Brewer and Milgroom, 

2010). According to similar data, several authors affirm that in the Erysiphales, the evolution 

rates of protein-coding genes are faster than those of non-coding rDNA regions (Wyand and 

Brown, 2003; Inuma et al., 2007). This seems not to be the case for P. fusca, as no variations 
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were observed in both introns and exons of protein-coding genes and in non-coding rDNA 

regions. 

Resident pathogen populations are expected to be more diverse than introduced populations 

because introduced populations have smaller effective population sizes due to losses in 

genetic diversity from population bottleneck and genetic drift associated with small founder 

population sizes (Nei et al., 1975; Dlugosch et al., 2008; Brewer and Milgroom, 2010). In 

addition, for sexually reproducing organisms, recombination from sexual reproduction may 

be more prevalent in resident or native populations, whereas clonal reproduction may 

dominate in introduced or marginal populations since multiple mating types necessary for 

sexual reproduction may not be present (Goodwin et al., 1994; Milgroom et al., 2008; 

Brewer and Milgroom, 2010). This could be the case for P. fusca. It could be possible that 

all the isolates analyzed may represent a single population and, although both mating types 

and chasmothecia were found in North of Italy, clonal reproduction appears to predominate 

in this species. Moreover, the pathogen could be of a recent speciation on cultivated 

cucurbits. Fungi of the Erysiphaceae family probably originated during the Cretaceous (Mori 

et al. 2000, Takamatsu and Matsuda, 2004; Takamatsu et al., 2010). Within the five tribes 

forming the family, tree-parasitic fungi take basal position and herb-parasitic fungi have 

derived positions (Takamatsu et al., 2010), suggesting that the early host plants of the 

Erysiphaceae were trees (Mori et al., 2000). Multiple host shifts from trees to herbs may 

have then occurred during the Tertiary (Takamatsu, 2004). Also, as suggested by some 

authors, the species infecting cucurbits could be a separate species distinct from P. fusca and 

already namely P. xanthii (Braun et al., 2000). Alternatively, housekeeping genes are maybe 

highly conserved and thus unsuitable for a genetic diversity study of this species.  

Because of the lack of genetic variation among the isolates, it was not possible to study the 

phylogeography of the species. In particular, the lack variation between American and 

European isolates was surprisingly. In the case of E. necator, genetic diversity was greater in 
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Eastern U.S. populations than European and Western U.S. population (Brewer and 

Milgroom, 2010). This means that introduced populations have lower genetic diversity than 

the Eastern U.S. native population from which the pathogen originated. In the case of P. 

fusca, no differences were observed within American isolates even when this continent is the 

area of origin of the genus Cucurbita. Considering the hypothesis that the clonal population 

observed could be an introduced population that lost genetic diversity, it could be interesting 

to analyze a larger number of the isolates from South America and also from Africa and Asia 

where the Cucumis and Citrullus genera originated (Bisognin, 2002). Maybe wild 

populations of the pathogen from these continents could be more diverse populations. 

A similar, but a bit more informative result was obtained by Amplified Fragment Length 

Polymorphism (AFLP) analysis. In this case, genetic similarity of isolates was distributed 

between similarity coefficients of 0.91 and 1.00. This result indicated that diversity observed 

by this technique was also very low, a result that was congruent with that obtained by the 

MLST method. In particular, it is interesting to note that in both dendrogram and neighbor-

joining tree, isolates seem to be randomly grouped, with no clustering in function of 

geographical origin, host plant or mating types. The results from this molecular analysis also 

suggested that indeed P. fusca populations showed a clonal structure. 

The results of genetic diversity analysis in P. fusca are in contrast with the occurrence of 

chasmothecia in North of Italy and the possibility that, at least in this area, recombination 

may occur. So, if there is no genetic variation at all and recombination does not take place, 

which is the role of chasmothecia for this species? Is it perhaps the main role to serve as a 

overwintering structure? The dendrogram obtained by AFLP analysis showed clearly that 

isolates from North of Italy are grouped isolates from the South of the peninsula and Spain. 

This reinforces the hypothesis that the populations of P. fusca that infect cucurbits in the 

middle spring and summer could come from Southern countries and that those areas are 

continuous sources of inoculum for the populations of the North of Italy. By these 
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observations, importance of the sexual stage in the life cycle of the pathogen seems to be 

very low. However, because of the lack of host species during the winter and to overcome 

the unfavorable climatic conditions, the species goes under sexual stage to overwinter and, 

therefore, an equilibrium between the two mating type is maintained.  

To better investigate the relevance of sexual (ascospores) and asexual (conidia) infections 

may play during the growing season in the North of Italy, a systematic analysis of the 

genetic diversity of P. fusca populations during the entire growing season should be 

conducted. A similar approach has been used to study the contribution of sexual 

recombination to population structure of Mycosphaerella graminicola (Cowger et al., 2008). 

If genetic differences are found at the beginning of the season when the first powdery 

mildew symptoms start to appear, it could be possible to affirm that the primary inoculum is 

from ascospores and thus from chasmothecia. This could justify the delay in the appearance 

of the species, because ascospore infections are presumably slower than infections from 

mycelia (Glawe, 2008). As indicated above, no ascospore infections have been obtained 

using chasmothecia produced under laboratory conditions (McGrath, 1994). It could be of 

great interest to demonstrate the viability of ascospores from chasmothecia collected in the 

field. To address this, one method could be the use of fluorescein diacetate (Widholm, 1972). 

By this method, ascospore viability was recently determined in chasmothecia of E. necator 

(Portillo et al., 2012).  

From the results obtained in this study, asexual reproduction producing a lot of conidia and 

fungal biomass appears to be the most important type of reproduction in P. fusca and 

represents an important source of inoculum for the dispersion of the pathogen that can be 

efficiently spread by the wind (Bardin et al., 1997; Pérez-García et al., 2009; Miazzi et al., 

2011). However, how can one explain the high biological diversity exhibited by P. fusca in 

terms of, for example, variety of races and pathotypes or resistance to fungicides? Cloning 

and sequencing of some of the polymorphic bands from the AFLP analysis may add some 
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clues on that. From the 12 AFLP polymorphisms that were analysed any of them was 

associated with housekeeping genes, which is in agreement with the results of the MLST 

analysis. Genetic variation was found to be linked to transposable elements (TEs) that are 

presumably very abundant in the P. fusca genome, to genes involved in activities related to 

environmental survival such as cell detoxification and defense, or involve in metabolic 

functions such as the respiratory chain. These little differences that characterize particular 

individuals within a given population could probably be the result of a selection pressure 

exerted by different factors. As already mentioned, P. fusca is considered a difficult 

pathogen to control (McGrath, 2001; Pérez-García et al., 2009) and, for this reason, it is 

submitted to a continuous selection pressure of different origins such applications of 

fungicide or the use of resistant cultivars (Brunelli and Gengotti, 2007; Nuñez-Palenius et 

al., 2009).  

The scarce genetic variation observed in this study could be result of the selection of new 

genotypes as a consequence of changes in agricultural practices. As pointed out by 

McDonald and Linde, (2002), factors affecting the evolution of a population as mutations 

and selection induce changes in populations and create strains capable of overcoming 

resistance genes or develop resistance to fungicides. Indeed, changes in genotypes caused by 

mutations have been observed in the pathogen in response to fungicides (Collina et al., 2006; 

Miyamoto et al., 2010; Ishii et al., 2011). Similarly, races and pathotypes have been 

developed by the pathogen in response to the use of resistance cultivars, affecting the 

virulence of the species (del Pino et al., 2002; Lebeda et al. 2011). In B. graminis a family of 

virulence effectors seems to have coevolved with a particular family of retransposons 

(Sacristán et al., 2009). As suggested by the authors, the coevolution of these two entities 

may reflect a mutual benefit to the association, which could ultimately contribute to parasite 

adaptation and success. Genomes of powdery mildews are full of transposable elements, 

which seem to be key elements for the evolutionary success of these pathogens (Spanu et al., 
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2010). Although the P. fusca genome has not been sequenced yet, several TEs have been 

already identified. Our hypothesis is that these elements could be also essential for the rapid 

adaptation of  P. fusca to overcome the deployment of new resistant cultivars. 

According to McDonald and Linde (2002), rusts and powdery mildews stand among the 

plant pathogens with the highest potential risk of evolution because these species are 

particularly subjected to the 5 evolutionary forces. In their theoretical approach, a mixed 

reproduction system is a key element to provide genetic variation through recombination. In 

P. fusca, however, the apparent absence of recombination does not seem to be an obstacle 

for evolutionary success. The main forces driving P. fusca evolution could be mutation and 

selection that are the forces responsible for the creation and selection of new genotypes that 

could allow the pathogen to rapidly adapt to changes in agricultural practices. In addition, 

the massive production of conidia through asexual reproduction and the easy dispersion of 

these propagules by the wind would ensure the spread of the more adapted genotypes 

through gene flow. The fifth evolutionary force, genetic drift, maybe has occurred in P. fusca 

for example when the pathogen became pathogenic to cucurbits as a consequence of a 

founder effect. This process that causes genetic loss may have been relatively recent in time 

and thus being responsible for the lack of genetic diversity observed in housekeeping genes. 

In conclusion, as shown in Figure 27, from an epidemiological perspective, asexual 

reproduction is the most important system of reproduction and spread of the pathogen and 

probably the means of creating of new genetic variants that will be selected or not depending 

on agricultural practices.  
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Figure 27 Epidemiological importance of the asexual life cycle of P. fusca. See text for details. 

 

The genetic structure of P. fusca illustrated by this study and the high risk of the pathogen to 

evolve rapidly must be taken into consideration to improve the control of the disease when 

planning control strategies. The second cucurbit powdery mildew agent, G. orontii, has a 

relative minor distribution and lower economic importance as a species causing of cucurbit 

powdery mildew disease in South of Europe. This study showed its occurrence for a short 

period during the growing season in the North of Italy where no chasmothecia were 

collected. These factors affected the collection of an appropriate number of isolates for a 

population genetics study and, in consequence, the genetic structure of this species was not 

analyzed. This powdery mildew species has a wide host range than P. fusca and in literature 

some isolates from non cucurbitaceous plants were able to infect cucurbits (Cohen and Eyal, 

1988). It could be interesting to address the genetic structure of this species to compare with 

that of P. fusca, especially considering that the two species are in competition for a common 

host habitat.  
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Conclusions 
 

The main conclusions arising from this work are the following: 

1. In Northern Italy there is a replacement of species of fungi causing cucurbit powdery 

mildew, P. fusca being the predominant species during most of the growing season.  

2. The temporal variations observed in the occurrence of cucurbit powdery mildew fungi in 

Northern Italy should lead to reconsider the current management strategies of cucurbit 

powdery mildew disease in the examined areas. 

3. The occurrence of P. fusca chasmothecia and a mating type ratio of 1:1 suggest that 

populations of P. fusca could be actively mating in Northern Italy.  

4. The low genetic diversity evidenced by MLST and AFLP analyses suggests the existence 

of populations of P. fusca with a clonal structure.  

5. Although chasmothecia can be easily collected in the North of Italy and other cucurbit 

production areas, sexual reproduction seems to be a minor source of genetic variation in P. 

fusca populations, suggesting that the sexual cycle is of minor importance for the 

epidemiology of the disease.  

6. The AFLP polymorphisms indentified in P. fusca suggest that the pathogen could evolve 

rapidly in response to selection pressure and adapt to changes in agricultural practices. 

7. The high risk of epidemics evidenced for P. fusca is not linked to a mixed reproduction 

system. In this case, other evolutionary forces should be responsible for the high 

evolutionary potential and biological success exhibited by the pathogen. 
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Annexes 
 

GEL 1 M48-E24 

 

Figure 28 AFLP Gel 1 picture. Progressive numbers from to 59 indicate the isolates, numbers in column on the 

right the common main bands considered and numbers in the middle of gel with arrows the polymorphic bands 

considered. M is the molecular DNA marker 100 bp Gene Ruler supplied by Fermentas® (Thermo Fisher 

Scientific, Vilnius, Lithuania). As isolate 30 was not well digested, it was not included in the analysis. 
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GEL 2 M47-E24 

 

Figure 29 AFLP Gel 2 picture. Progressive numbers from 1 to 60 indicate the isolates, numbers in column on 

the right the common main bands considered and numbers in the middle of gel with arrows the polymorphic 

bands considered. M is the molecular DNA marker 100 bp Gene Ruler supplied by Fermentas® (Thermo 

Fisher Scientific, Vilnius, Lithuania). NC is the negative control (no DNA was added) As isolate 30 was not 

well digested, it was not included in the analysis. 
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GEL 3 M50-E20 

 

Figure 30 AFLP Gel 3 picture. Progressive numbers from 1 to 60 indicate the isolates, numbers in column on 

the right the common main bands considered and numbers in the middle of gel with arrows the polymorphic 

bands considered. M is the molecular DNA marker 100 bp Gene Ruler supplied by Fermentas® (Thermo 

Fisher Scientific, Vilnius, Lithuania). NC is the negative control (no DNA was added) As isolate 30 was not 

well digested, it was not included in the analysis. 
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GEL 4 M50-E24 

 

Figure 31 AFLP Gel 4 picture. Progressive numbers from 1 to 60 indicate the isolates, numbers in column on 

the right the common main bands considered and numbers in the middle of gel with arrows the polymorphic 

bands considered. M is the molecular DNA marker 100 bp Gene Ruler supplied by Fermentas® (Thermo 

Fisher Scientific, Vilnius, Lithuania). NC is the negative control (no DNA was added) As isolate 30 was not 

well digested, it was not included in the analysis. 
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GEL 5 M48-E31 

 

Figure 32 AFLP Gel 5 picture. Progressive numbers from 1 to 60 indicate the isolates, numbers in column on 

the right the common main bands considered and numbers in the middle of gel with arrows the polymorphic 
bands considered. M is the molecular DNA marker 100 bp Gene Ruler supplied by Fermentas® (Thermo 

Fisher Scientific, Vilnius, Lithuania). NC is the negative control (no DNA was added) As isolate 30 was not 

well digested, it was not included in the analysis. 
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GEL 6 M48-E32 

 

Figure 33 AFLP Gel 6 picture. Progressive numbers from 1 to 60 indicate the isolates, numbers in column on 
the right the common main bands considered and numbers in the middle of gel with arrows the polymorphic 

bands considered. M is the molecular DNA marker 100 bp Gene Ruler supplied by Fermentas® (Thermo 

Fisher Scientific, Vilnius, Lithuania). NC is the negative control (no DNA was added) As isolate 30 was not 

well digested, it was not included in the analysis. 
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