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Introduction

Due to their versatility, electrical machines are even more used in very diffe-
rent applications, e.g. classical automation, industrial and domestic robotics,
energy conversion (from mechanical to electrical energy), up to the “new” auto-
motive scenario. Versatility means high efficiency and high compactness, i.e.
efficiency (~ 20%) and dimensions of an Internal Combustion Engine despite
the efficiency (~ 80%) and dimensions of an Electrical Machine. Electrical
machines are perfect bidirectional machines, in fact they work efficiently as a
converter from mechanical to electrical energy, and vicerversa, e.g. used either
as a engine to provide movement and as a Kinetic Energy Recovery System
(KERS) in autotive applications.

Electrical machines can be divided into two main categories: DC machines, i.e.
with the reactive magnetic field on the stator and as a consequence with the
needs of brushes to carry the armature current to the rotor, and AC machines,
i.e. with the reactive magnetic field on the rotor and with no needs of brushes.
In the category of the AC machines other two subcategories can be identified,
based on how the reactive magnetic field is created there are Induction Ma-
chines (IM) and Permanent Magnet Synchronous Machines (PMSM). For IMs
the reactive field is created by a portion of stator current so it is created every
time and only if a stator current is flowing, while for PMSM the reactive ma-
gnetic field is created once and during the building of the electrical machines,
so it is always present also with no flowing current.

Until few years ago, the trend describing the types of electrical motors used for
standard applications has been driven by the control capability of each motor.
The DC machines are the easiest to control, due to the fact that they must
be commanded by continuous currents, while the AC machines are difficult to
control, and only with an appropriate mathematical manipulation they can be
controlled as simple as a DC machine. Therefore, DC machines were initially
preferred and then have been substituted with the AC machines thanks to the
introduction of the appropriate theory behind this mathematical manipulation
and also thanks to the coming of high performances microcontroller that made
this theory applicable without a high time consume.

With the coming of the “age” of the AC machines, the IM was initially pre-
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ferred still for the (speed) control capability and for the stability properties
shown with respect to PMSM, i.e. the reactive magnetic field generated by
the stator current introduces an intrinsic stabilizing property, useful especially
for the first form of IM speed control algorithms called V /f, also erroneously
and commonly called Inverter as a synonym of variable speed control.

In the recent years, with the consolidation of control algorithms, among which
we can identify Scalar control methods and Vector control methods, or in
other words with no differences in terms of control capability and reached
performances between IM and PMSM, other criteria are driving the choice of
PMSM instead of IM in a given scenario, these criteria are the efficiency and
the scalability. In terms of efficiency PMSM are more efficient due to the fact
that no “extra” current is needed for the generation of the reactive magnetic
field in the rotor. In term of scalability PMSMs are better than IMs in fact is
simpler to replicate the realization scheme of a PMSM despite the productive
scheme of an IM to realize even low size and large size AC machines.

Scalar control methods are based on V/f algorithms, initially designed for
IM machines, which for PMSM machines are also called I/f methods. Vec-
tor control methods, based on a mathematical manipulation of the equations
describing the electrical machine, are usually adopted to ensure a high perfor-
mance regulation, nevertheless these methods require the perfect knowledge of
the position of magnetic field in the rotor that reacting with the stator ma-
gnetic field (generated by the stator currents) give rise to a torque, of course
when a speed control loop is implemented also the rotor speed measure for the
feedback is needed, but knowing the position the speed is straightforwardly
known.

Absolute encoders are able to cope with the task of measuring the rotor ma-
gnetic flux position, but the desire for reducing costs and the number of com-
ponents, to improve at the same time the system reliability, has stimulated
the research towards the so called sensorless control algorithms. A natural
choice to implement this control alghoritms is to enrich the system with an
observer and feed the controller with the estimated variables instead of the
sensor measured variables.

An intense research activity has been carried out to cope with this problem, it
has also been discussed in some monographs ([1], [2], [3]) concerning nonlinear
and adaptive control solutions applied to electrical drives regulation. Despite
the topic is mature, and many practical applications have been successfully
implemented, there is still room for improving the estimation scheme perfor-
mance, particularly under some well known critical conditions.

Literature on estimation of PMSM parameters is divided into two main cate-
gories. The first, usually referred as signal-based, includes all the approaches
based on high frequency voltage signals injection, used to get complete position
information exploiting the magnetic saliency (see |4], for instance). Differen-
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tly, the second category, usually referred as model-based, covers methods where
nominal models of PMSM are exploited in different ways to reconstruct the
rotor magnet position and speed through the back-emf induced on stator wind-
ings.

Classical model-based solutions contain extended Kalman filters (see [5] and [7]
among the others), or some other interesting solutions, for example in [8], [9],
[10] significant approaches, concerning analysis and improvement of robustness
with respect to parameters uncertainties, are presented along with some dis-
cussions on the stability properties of the adopted nonlinear schemes. Among
the others, the two solutions recently presented in [5] and [11] are particularly
attractive since, exploiting modern nonlinear observer design techniques (|12,
[13]), rigorous stability analysis has been carried out. It is well known and
quite consolidated that at low speed values, the performance of model-based
methods abruptly decreases due to a lack of observability of the system hence
these control methods are commonly adopted especially in medium or high
speed range of operation, and this is the case of energy conversion applications
for which zero speed is by definition avoided (see [5], [6] for more details on
observability analysis).

Another common problem of these approaches is the sensitivity to parameters
uncertainty, again particularly relevant at low speed. These two drawbacks
are even more significant when a linear approximation of the machine model
is taken to design the estimation system, hence the research effort has been
devoted to develop nonlinear observers for these applications. The stability
problems and performance decrease of the adaptive schemes at low speed are
worsen from the use of solid state converter, also called (Voltage Source) In-
verter ([|22]-[27]), for this reason an appendix to explore the nature of the
nonlinearities introduce by Inverters can be found.

Finally, the observer schemes presented in this thesis belongs to the family of
model based observer for the advantages presented above and because they
give the possibility to face with advanced stability theories, like Lyapunov sta-
bility theory or Adaptive theory.
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Chapter 1

Electromagnetic models for a

Permanent Magnet Synchronous
Machine

Introduction

In this chapter some electromagnetic models for a 3-phase PMSM will be de-
rived. First of all, some hypothesis will be done to derive simpler models for a
PMSM. These are constitutive hypothesis because are based on how the motor
is built, and how the motor is used.

The process to derive the models describing a PMSM starts with the descrip-
tion of the motor in a standard 3-phase stationary reference frame A, B, C', then
exploiting a matrix transformation, called Park transformation, the model will
be reported in the standard 2-phase stationary reference frame usually called
«,  and then after the last coordinates transformation, called Clarke transfor-
mation, the motor will be described in the standard 2-phase rotating reference
frame usually called d, q.
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1.1 PMSM Models

The following hypothesis for the derivation of the model for a PMSM are
supposed:

e Linear magnetic paths, i.e. no flux saturation in the magnetic paths

e Negligible leakages, i.e. hysteresis and Eddy current effects can be ne-
glected

e No differences on windings mutual inductances

The hypothesis above are often satisfied but for particular PMSM realization
these can be not true, especially the first of the three, for example in all those
motors where high Torque (current) and small dimensions must be fulfilled
together.

The electrical equations describing the three stator voltages uga, usp, Usc
on a 3-phase stationary reference frame, with the axes A, B,C aligned with
the three stator windings, are the following:

UsA Rs 0 0 isA d wA
Usp | = 0 Rs 0 isp| + p% wB (11>
UsC 0 0 Rs lsC wC

Where:
e p is the number of pole pairs,
e 7, is the stator winding resistance,
® i.4,1sB,1sc are the three stator winding currents,
e 4,15, are the three stator linkage fluxes,

As for the stator, supposing for the rotor to have a 3-phase (rotating) reference
frame a, b, ¢ aligned with the 3-phase rotor windings, similar equations can be
written for the rotor voltages t,q, Urp, Ure

Upq R, 0 0 lra d Qsa
Urp | = 0 RT 0 irb + pa qbb (1.2)
Upe 0 0 RT‘ Upe ¢c

Where:

e R, is the rotor winding resistance,
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® U4, 0, ire are the three rotor winding currents,

® O, Oy, ¢ are the three rotor linkage fluxes,

The equations above are the starting equations for the description of a generic
electrical motor. Therefore, if the described motor is an Induction Machine
(IM) the following property can be used:

® Uy = Uy = U = 0, in fact the rotor windings are shorted to have zero
voltage

If the described motor is a Permanent Magnet Synchronous Machine (PMSM)
the following property can be exploited

® i, =14 =1 =0, in fact on the rotor a PMSM there are no currents

The following equations describe the stator linkage fluxes in the 3-phase sta-
tionary reference frame with the axes aligned with the stator windings

Ya Ly Mg Mg UsA COS(pQ)
Yp| = | Mg Ls M| |isg| + ¢ |cos(pd —27/3) | + ...
Yo Mg Mgz L | |isc cos(pf + 2m/3)

cos(ph) cos(pf + 27 /3) cos(pf — 27/3)| |ira
ot My, | cos(pf — 2m/3) cos(ph) cos(pd + 27 /3) | i
cos(pd + 27/3) cos(ph — 27/3) cos(pb) Upe

Where

e L., Mg, are respectively, the auto-inductance of a stator winding, and
the mutual-inductance between windings on the stator

e ¢y, is the value (amplitude) of the rotor flux

e (, is the “mechanical” angle between the rotor winding a and the sta-
tor winding A, i.e. for a standard 3-phase electrical machine, the stator
windings A, B, C' are displaced of the mechanical angle 27r/(3p), the same
happens for the rotor windings a, b, c. The angle pf is the so called “elec-
trical” angle, and the electrical angle between stator or rotor windings is
27/3

e M., is the mutual-inductance between rotor corrents and stator flux

The following equations describe the rotor linkage fluxes in the 3-phase rotating
reference frame a, b, ¢ with the axes a aligned with the rotor magnet

¢a Lr3 Mr3 Mr3 ira 1
¢b = Mr3 Lr3 Mr3 Z.rb + ¢M —1/2 =+ ...
¢C M’r‘3 MT3 L?‘3 irc _1/2

cos(ph) cos(ph — 2m/3) cos(pf +27/3)| |isa
My, | cos(pf + 27/3) cos(p) cos(pd — 27 /3) | |ism
cos(pd — 27 /3) cos(ph + 27/3) cos(ph) lsC

3
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Where

e [,3, M,3, are respectively, the auto-inductance of a rotor winding, and
the mutual-inductance between windings on the rotor

The terms L3, L3 are the auto-inductance of the stator and rotor windings,
each of these terms is composed by two terms, a magnetizing term L3, Lym3
which represent the part of flux that going out from the winding is able to
generate magnetic cross coupling effects, and a leakage term Ly3, L,q3 which
despite to the first term represents the part of flux that does not go outside
the winding and hence is not able to generate cross coupling effects.

The terms M3, M3 are the mutual-inductance between the stator windings
and between the rotor windings respectively. These terms are due to the fact
that the windings in a 3-phase machine are displaced with an electrical angle
of 2m/3 and are coupled, in fact two windings are magnetically decoupled if
the angle between the windings is 7/2. By definition these terms are related
only with Lg,,3, Lyms, in fact the terms L3, Lyq3 cannot give rise to coupling
effects, because this part of flux does not go outside of the winding.

We have already said that for a PMSM the rotor currents are zero, i,, = i, =
ire = 0, so in the equations (1.3) (1.4) the term dependent on the rotor currents
can be neglected.

Moreover, for a built-in property of a PMSM the linkage rotor flux is mainly
due to permanent magnet flux, and the part of flux due to the stator currents
coupled to the rotor can be neglected, hence the following simplification can
be done

1 cos(pf) cos(pf — 27/3) cos(pf + 27/3) | |isa
Oum | —1/2| > My, |cos(pd + 27/3) cos(pb) cos(pf — 27 /3) | |ism
—1/2 cos(pf —27m/3) cos(pf + 2m/3) cos(pf) isC

(1.5)

Therefore, rewriting the equations above for a PMSM, instead of a generic
motor, and in more compact form, we obtain

UsA isA wA
Usp| = Rs isB + — 1/13 (16)
. dt
Usc lsC wC
ha isA A isA cos(p)
Yp| =Lss |isp| + | ¢8| = Lss |isg| + ¢m |cos(pf — 27/3) (1.7)
(e} e bc isC cos(pf + 2m/3)
Ga 1
O | =om |—1/2 (1.8)
0 —1/2

Where
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e 04, Pp,0c are the rotor fluxes ¢, Py, ¢, (expressed in the 3-phase rota-
ting reference frame a, b, ¢) reported in the 3-phase stationary reference
frame A, B,C

e For the resistance and inductance matrices we supposed

Ls3 MS3 M53 Rs 0 0
Ls3 = MS3 Ls3 Ms3 ) Rs = 0 Rs 0 (19)
Ms3 Ms3 Ls3 0 0 Rs

Now, once obtained the model of PMSM in 3-phase stationary reference frame
A, B, C'it is possible to derive the same model in a 2-phase stationary reference
frame «, 8 exploiting the so called Park transformation, that is identified by
the following matrices

1 —1/2 —1/2
T2<—3 =k 0 \/3/2 _\/3/2
, [ 1 0 (1.10)
Tyeo=— |—-1/2 /3/2
3k —1/2 —+/3/2

Where the matrix 75, 3 transform a 3-phase vector in a 2-phase vector, and
T3, o transform a 2-phase vector back to a 3-phase vector. There are infi-
nite Clark transformations parameterized with k£, in literature two particular
choices of k are known

e k = 2/3, gives rise to the so called iso-amplitude transformation, with
this choice the amplitude of a 3-phase vector transformed in its 2-phase
version has the same amplitude.

o k= \/ﬂ, gives rise to the so called iso-power transformation, with this
choice the amplitude of a 3-phase vector transformed in a its 2-phase
version does not has the same amplitude, but the inner products are
maintained, hence the power does not change.

In the following will be supposed the iso-amplitude Clarke transformation, i.e.
k=2/3.

Applying the Clarke transformation to the 3-phase model of a PMSM reported
in equations (1.6)(1.8)(1.7), after some simple analytical computations the
PMSM model in the standard 2-phase stationary reference frame «, 8 can be

obtained . 0 . d o
User| Sa Lsa el a
{“861 a { i R%J [Zﬂ] T Lﬂﬁ} (L1
wa - Lsa 0 l.sa ¢a
[W] Bl [ 0 Lsaa] [iSB] " [%} (1.12)

5
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{zﬂ = bu [Zfﬁéﬁgﬂ (1.13)

Where

e R, , = R, is the winding resistance for the model in the 2-phase sta-
tionary reference frame

e L, , = Ls3— Mg, is the winding inductance for the model in the 2-phase
stationary reference frame

From the equations (1.11)(1.12)(1.13), and for the sake of brevity defining
Ly, =L, R, = R, and dropping out the subscript “s” for the variables where
is redundant, the following state equations can be derived

Li, = —Ri, + Pwos + Ug

. (1.14)
Lig = —R’iﬁ — pwgba + ug
'a = Ua — R.a
Va = tha = B (1.15)
Vg = up — Rig
Pa = Pufs (1.16)
¢B - _pwgba

Now it is possible to derive the motor model in a generic 2-phase rotating
reference frame called d, ¢ using the so called Park transformation, and defined
by the following matrix transformation

zq| | cos(e,) sin(e,)
z,|  |—sin(e,) cos(e,)

To|  |cos(e,) —sin(e,)

zg|  |sin(e,)  cos(e,)
Where the variable x is a generic variable, i.e. the stator voltages uq,us the
stator currents i,, i3, etc..., and the angle € is the angle between the axis d and
the axis a, moreover, the speed of the rotating reference frame d, q is ¢y = wy.
Hence, applying the Park transformation to the motor model equations (1.11)

(1.12) (1.13) the motor model in the generic 2-phase rotating reference frame
d, q is the following

CA R [ [ T

] [fa 2 7]+ [¢] (119

6

(1.17)
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{iﬂ = ¢ {—C (;isr(l?éo_—pﬁg)] (1.20)

Where

e R,, = R, is the winding resistance for the model in the 2-phase rotating
reference frame

e Ly, = Ls,,, is the winding inductance for the model in the 2-phase
rotating reference frame

From the equations (1.18)(1.19)(1.20), and for the sake of brevity defining
L,, = L, R,,, = R, and dropping out the subscript “s” for the variables where
is redundant, the following state equations can be derived

Lig = —Rig+ woLi, + pwé, + ug

. ) . (1.21)
Lig = —Rig — woLiqg — pwg + uq
by = —Rig + +
Va . Wty + ta (1.22)
Yy = —Riy — wothag + 1y
Q.Sd = (wo — pw) oy (1.23)

Oq = —(wo — pw)Pa

To derive the expression of the motor torque at the shaft, we have to start from
the electrical power equation at the stator in the 3-phase stationary reference
frame and in the 2-phase rotating reference frame as follows

PSABC’ = UgAlsA + UsBlsB T UsClsC (1 24>
Psdq = Ugqlsd + usqisq

The power expressions in the different reference frames are related as follows

2 3
P =P =—PF; P
ABC k2T e T g0 T (1.25)

(k = 2/3 : iso-amplitude)

Furthermore, using the equations (1.21) to derive the expression of the stator
voltages and after some analytical computations, the following expression of
the power can be derived

P = ) (L(Zdzd +iglq) + R + 22) + pw(taiq — 77Z)qzd))
o dEMagn
S dt

(1.26)

+ Pd —|—me
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Where, Eyragn is the electrical energy stored in the magnetic fields due to the
inductances, Py are the electrical loss due to the winding resistances and T,
is the motor torque at the shaft and its expression is the following

Tm = Z) <wdzq 2ﬂqld)
(1.27)

= 2 (¢dlq ¢q2d)

It is important to say that when the motor is built with some saliency property
the magnetic circuits are not isotropic. The natural reference frame to describe
these PMSM motors is the 2-phase rotating reference frame d, ¢, in fact for
these motors the saliency is translated in a difference of inductances on the
two magnetic paths, i.e. d and ¢ paths (or axis). Therefore instead of a unique
inductance we have two inductances, Ly and L, and the motor model, even
based on the equations (1.21)(1.22)(1.23), becomes as follows

Lgiq = —Rig + woLyiy + pwo, + ug

. . A (1.28)
qud = —Rld — wOLdzd — pW¢d + Ugq
ha = —Rig + woty + u
Va 4 W0ty o+ ta (1.29)
Yy = —Rig — wotg + g
ha = (wo — pw
(bq = _(WO - pw)¢d
And the algebraic constitutive equations become
Ya = Lig + 4 N Ya = Laiq + 4 (1.31)

wq - qu + @Dd @bq - Lqiq + @ZJd
Also the torque equation shows some differences, and it becomes as follows

T = ;p(%iq — Yqlq)
2 (1.32)

= §p(¢diq — dgla + (La — Lg)iatg)
Where the term “(Ly—L,)iqi,” is the part of the toque produced by the saliency,
i.e. due to the difference of reluctance of the magnetic paths on d-axis and on
q-axis.



Chapter 2

PMSM Speed and Stator Flux
Adaptive Observer

Introduction

In this chapter a speed /stator flux observer for a PMSM is derived using adap-
tive and Lyapunov techniques. Adaptive technique is used for the estimation
of the rotor speed (considered as a constant parameter to be estimated), and
Lyapunov technique is used as a guide for the estimation of the stator fluxes.
The stability proof of the observer is initially done during the derivation of
the observer exploiting Lyapunov like theory for non linear systems, and then
using the Adaptive Framework as reported in [17]. The observer is derived
in a generic d, g rotating reference frame because of the rotor position is not
known, this generic reference frame used for the observer is not aligned with
the rotor magnet. The alignment condition is often needed to implement the
so called Field-Oriented control (FOC), so if this condition is needed an exter-
nal reference frame controller must be designed.

The chapter is organized as follows, section 2.1 is devoted to the step-by-step
design of the observer with ongoing stability considerations driving the design-
ing process, in subsection 2.1.1 the stability is carried out in a more rigorous
way, putting the model and the observer in a standard Adaptive framework.
In subsection 2.1.2 a modified version of the observer is given, to cope with
practical stability issues arising from considerations contained in the previous
section. Subsection 2.1.3 is devoted to design the reference frame controller,
also called Alignment Controller. In subsection 2.1.4 the tuning procedure for
the observer and the alignment controller is reported, with simulation results
reported in the ending section 2.2.
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2.1 Observer Design

The speed/flux observer is derived in a generic rotating reference frame with
angle €y and speed wy called (d, q).

In order to design the observer, the electro-magnetic dynamics of the PMSM
are rewritten using as state variables the stator currents and stator fluxes
instead of rotor fluxes. Stator and rotor fluxes are algebraically defined as:

Vg = Lig+ ¢g

W = Liy + o, (2.1)

Using stator fluxes as state variable the PMSM electro-magnetic model can be

rewritten as: .
L’id = —Rid + (wo — pW)Liq —+ pwwq —+ Uq

Liq = —Rig — (wo — pw)Lig — pwipg + uq
@Z'Jd = —Rig+ wmﬁq + uqg
Yy = —Rig — wotha +

To have a complete PMSM model the following equations must be added to
the previous ones:

(2.2)

0=uw
éo = W (23)
.3 . .

Jo = 5p(Yalq = Ygia) = Tioad

Expressing the electro-magnetic PMSM model as a function of stator fluxes
instead of rotor fluxes allows for the design of a speed/flux observer according
to Lyapunov method in a simpler way. Based on the electro-magnetic dynamics
of the PMSM in the (d, q) reference frame, the observer is designed according
to Lyapunov and adaptive control theory.

The observer is designed according to the following assumptions:

e Stator currents are known (measures), i.e. i4,14, are known through the
knowledge of 7,7, and €.

e Rotating reference frame angle ¢y and speed wy are known. The generic
reference frame speed is a control variable and can be properly designed
by a reference frame controller to achieve a particular configuration.

e PMSM parameters are supposed to be known, i.e. stator inductance L
and resistance R, and in particular the permanent magnet flux amplitude
® (i.e. bemf constant) are required to be known.

e Rotor angle § and speed w are not known, i.e. the speed will be estimated.

11
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e Rotor fluxes ¢4, ¢, are not known, i.e. the stator fluxes are not measur-
able.

e Winding stator voltages are equal to the command stator voltages de-
rived from the current controller uq, u,, the latter being the system input
are a priori known. To avoid performance degradation it is necessary to
compensate for dead-times effects and other inverter non-idealities that
make command voltages different from the winding stator voltages.

Two main choices for the (d, q) generic reference frame are possible:

e Stationary reference frame. In this case ¢g = wy = 0, so the reference
frame controller is not needed, and signals in the stationary reference
frame are exploited. At steady-state conditions in this reference frame,
currents, fluxes and voltages are sinusoidal signals with frequency pw,
i.e. the “electrical” frequency.

e Rotating and rotor aligned reference frame. In this case the (d,q) ro-
tating reference frame is defined in such a way that the d-axis tends
asymptotically to be aligned to the permanent magnet axis, so a refe-
rence frame alignment controller is needed to cope with this task. At
steady-state conditions it follows that wy = pw and ¢y = pf, i.e. the
initial misalignment of the rotor is compensated in order to be aligned
with the permanent magnet, i.e. ¢pq = ®, ¢, = 0. In this reference frame
at steady state all signals are constant.

We can start to derive the speed/flux observer designing current and flux
dynamics, as follows:

Liqg= —Rig + (wo — p@) Li, + Pwﬁzq + Ug + 1g
L%q = _REq - (WO - p@)Lid - pdm&d + Ug + g (2.4)
g = —Rig+ wolzq +uqg +&q

iﬂq = —Riq — wowd -+ Uq -+ fq
in which 74,74, v%4, 14, w, are respectively stator current, stator flux and rotor

speed estimates, while ngq, 74, {4, §; are auxiliary variables to be defined.
Defining the estimation error variables as

~ ~ ~

Zdzlld—%d7lq:iq—2q
&d:wd_ida &q:wq_éq (25)

wWw=w—-w

12
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the error system is as follows
L%d = —R;d — p(I)LZq + pwzﬁq + p(:)i;q — Nd
Liy = —Riy + pioLiq — pwibg + piba — ng
?/Nfd = wolzq —&a
J}q - _qujjd - gq

We can start to analyze the stability properties of the system choosing the
following Lyapunov function candidate

1 5 B ~2
V=3 (Lz'g +Li2 + %) (2.7)

In order to cancel out from the time derivative Lyapunov function V the un-
known terms pwi),, —pwipq the following change of variables is exploited

X =W (2.8)
Xq = Oﬂqu
The error system can be rewritten as follows
Lig = —Rig + pXq + po(by — Lig) = 1a
Li, = —Ri, — pxa — pio(ha — Lia) — 11,
' (2.9)

) w

Xd = WoXqg — w&q + ;Xd

) w

Xq = —WoXd — w&q + X
Some considerations on the PMSM Model:

e In the stationary reference frame, the rotor flux dynamics is an autono-
mous pure oscillator at frequency pw with non-null and unknown initial
conditions, with known amplitude ||(¢q4, ¢4)| = P.

e In the generic rotating reference frame, the rotor flux dynamics is a
pure oscillator at frequency wy — pw, hence in the rotor reference frame
(wp = pw) rotor flux is constant.

e In the generic rotating reference frame, the stator flux dynamics are
described by a pure non autonomous oscillator at frequency wy, fed by the
difference of stator voltage and resistance voltage drop. It is a neutrally
stable dynamics with unknown initial conditions (because of the rotor
fluxes initial conditions are unknown).

13
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e In the stationary reference frame, pure oscillator dynamics of the stator
fluxes are substituted by two pure integrators.

Some considerations on the up to here designed Observer:

e From the Eq.2.6, the stator flux estimation error dynamic 1/~}d, Qﬁq is a pure
oscillator at frequency wy fed by auxiliary terms which will be defined to
stabilize the overall system (or equivalently, the neutrally stable stator
flux dynamics is stabilized through feedback of the asymptotically stable
stator current dynamics). In the stationary reference frame, the stator
flux estimation error dynamic is described by two pure integrators, which
take into account the unknown initial conditions.

e By Lyapunov method, it is not possible to cancel out terms pwz/;d, pwzﬂq
if speed is not known. This is the reason for the introduction of variables
Xd» Xq, and since they are unknown as will be shown later they will be
estimated by X4, Xq-

e In the stationary reference frame the stator flux estimation errors ¢, ¥y,
with §; = 0,§, = 0, are constant; hence, assuming constant speed, also
Xa; Xb 10 the stationary reference frame are unknown constant to be es-
timated. Equivalently, in the rotating reference frame, these terms are
sinusoidal signals to be estimated. Since they are expected to tend to
zero, they will be sinusoidal signals whose amplitude will tend to zero.

Recalling the candidate Lyapunov function reported by Eq.2.7, its time deriva-
tive along the solution of the error system is as follows

: - - A - ) s W

V = — Ri? — Ri2 + p& — Lig)ig — (g — Lig)ig + —| + ...
= Ndld — Nglq + PXqld — PXdlq

Now we can define the following observation laws

Na = kpgd + p)%q

Mg = kplq = PXq (2.11)

b= = b= (b — Lig)ia - (tha — Lia)iy|
Terms 14,1, are composed by proportional terms (and integral terms, as can
be seen in the following), while speed estimation is based on classical adaptive
control theory.

It is worth noting that (@@q — L%q, —@ZA)d — L%d) are the estimated rotor fluxes.
If rotor speed is assumed to be constant, as usual in adaptive theory for the

14
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estimation of a constant parameter, in this case the rotor speed, the speed
estimation law can be defined as

& = (g = Lig)ia = (tha = Lia)iy) (2.12)
So we obtain the following time derivative of the Lyapunov function
V = —(R+ k) (i3 +i2) + pXqia — PXiq (2.13)

As already said, terms xg4, x, are unknown, and we try to estimate them by
Xd: Xq- T take into account the errors associated to these new estimates, we
add to the Lyapunov function the following terms (k%f(?l, k% )22), and supposing
constant speed, we obtain

P

V= —(R+ky)(i5+1i2) + -

-~ 2 ~ P . - ~

Xq(Xq + kita) + EXdO(d + kiig) (2.14)
So, to cancel out the last two terms we should have the following adaptation
laws:

R ~ w
Xd = WoXq — w&a — kilg + —Xa
w (2.15)

X ~ UJ
Xq = —WoXd — Wfq + kﬂd + ;Xq

Obviously we can not use the equations above because w is unknown, but
supposing constant speed we can try to use the following

Xa = toXe — hily. (2.16)

Xg = —WoXa + kila
As it will be shown in the following, terms dependent on current estimation
straightforward derives from Lyapunov analysis to cancel out coupling terms
in V. Defining the estimation errors Yq = x4 — Xa, Xq = Xq — Xg, for them we
have the following dynamics

~ ~ ~ w
Xd = WoXq T kilg + —Xa — w&a
W (2.17)

~ ~ ~ w
Xq = —WoXd — kita + an — wéy

It is worth noting that dynamics x4, X, describe a pure oscillator at frequency
wo fed by terms depending on current estimation and additional terms depen-
dent on rotor speed and acceleration.

The overall 7" order error system is here recalled (note that also x4, x, dy-
namics must be considered in the overall error dynamics because they are

15
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implicitly equivalent to the flux estimation error dynamics)

Lig = —(R + kp)ia + pXq + po(th, — Liy)
L%q =—(R+ kp)gq — PXd — p@(iﬁd — Lig)

. ~ W
Xd = WoXq + kitq + ;Xd — wéq

. W

Xq = ~WoXa — kila + —Xq = W& (2.18)
: W
Xd = WoXq — Wi + X
: w
Xg = —WoXa — w&g + X
& = =7 |(&hy = Lig)ia — (a — Lia)i]

Choosing now the following Lyapunov function

1( - - WP N -
V=3 (Lz’fl + Li2 + — %xfl + gxg + x5+ XZ) (2.19)

The time derivative of V' along the error system trajectories is
V=—(R+k)@3+i)+..
p. (w p. (w
+ EXd (aXd - Wfd) + k_in <5Xq - Wﬁq) + (2.20)
w
+- (X3 +X2) — w (€axa + &aXq)

Choosing null auxiliary terms §; = §, = 0 and supposing constant speed, it
follows that . o
V=—(R+k,)(ig+1i) <0 (2.21)

The time derivative of the Lyapunov function is negative semidefinite, hence
the boundedness of i, zq, Xds Xg»> Xd» Xq and w is straightforward assured.

Applying Barbalat’s Lemma to V' can be proved that i4, %, tend to zero asym-
ptotlcally Supposing bounded w, boundedness of x4, x, = boundedness of

wd, wq, and supposing boundedness of 14, ¢, = boundedness of wd, wq Looking
at the first two equations of Eq.(2.18), to state that also id, zq tend asympto-

tically to zero, must be proved that &d,d}q and id,iq are bounded, and this
is basically related just to external variables uq, ug, %4, tq, wo, and this must be
supposed.

Lyapunov function V is differentiable and has a finite limit, because of it is lower bounder

(V >=0) and V is uniformly continuous (bounded V is a suff. cond.), therefore V — 0.
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Equivalently can be stated that in case of persistence of excitation (which
always hold on practical operating conditions), it can be also proved that
Xd» Xq» W tend to zero.

It is important to remark that the oscillatory dynamics x4, x, is neutrally
stable and autonomous, in other words, it cannot be proved that the flux esti-
mation errors wd, wq tend to zero, but we have an estimate of them looking at
Xd ) Xq-

During speed transient with bounded acceleration, from exponential stability
of the origin of the overall error system, ultimate boundedness of estimation
errors follows.

Since according to this analysis it follows that x4, x, are bounded and recalling
that Y4, X, are an estimation of the flux estimation error (x4 = Wi, Xa = mﬁq),
can be proved that the right estimation of the stator fluxes are the following

Wa = +5 Xd
¢ (2.22)
% = wq + 5

The variables x4, X, are related to the estimation of the initial values of the
stator fluxes. In fact, looking at the stator flux estimates in Eq.(2.4), the
designed observer is based on pure integration of the stator equations for the
reconstruction of the stator fluxes. The initial values of the stator fluxes are
constant value in the stationary reference frame a,b, and of course these are
a pure oscillator at wy in the generic rotating reference frame d,q. The idea
behind this estimation scheme is based on the fact that apart from the initial
values, the stator flux is known because its derivative is known, so the only
parameters to be estimated are the initial values that are constant in a,b and
rotating in d, q.

From Eq.(2.22), rotor fluxes can be algebraically derived as follows

ba = a — Lig

G i1 (2.23)
g = Vg — L1

2.1.1 Adaptive Framework for the Stability Proof

First of all I want to thank you Doct. Eng. Andrea Tilli for the help gave me
for the study of the observer proposed in the previous section, and especially
for the idea of the stability proof carried out using the Adaptive framework
and reported in the following.

For the observer design reported in the previous section, Lyapunov theory has
been used as a guide to identify terms constituting the final observer, but a
rigorous stability proof of the designed observer can be done in the Adaptive
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Framework exploiting the stability results reported in [17].

The proof begins with some considerations on the motor model, that is knowing
the initial conditions of the stator flux dynamics (¢4(0),%,(0)) we can “mea-
sure” them by a pure integration of the stator voltages minus the resistance
voltage drop, as indicated in the third and fourth equation in Eq.(2.2), there-
fore we can suppose to perfectly know the stator flux dynamics. Nevertheless
these initial conditions are unknown, but they are constant by definition, an
as all constant parameters we can try to estimate them using the adaptive
theory. We can start dividing the stator fluxes into two parts, the first part is
a known part that is related to the pure integration of the stator voltages and
with null initial condition by definition, and an unknown part related to the
initial conditions and that will be estimated. So the following can be stated

Va(t) = Yao(t) + ¥a(t)
wq@) = qu (t) + @q(t)

Where the known part results as follows

(2.24)

’de = —Rid + wmﬁq + Ugq
’JJQ = —Ri, — wotha + U, (2.25)
@d(o) =0, @q(o) =0

The unknown part is the following

1/‘}d0 - <")0¢q0
a0 = —wotao (2.26)
1a0(0),0(0)  unknown

It is important to underline that initial conditions 14, 940 are time dependent
because they are expressed in the generic rotating reference frame d, ¢, in fact
the stator flux initial conditions are constant in the stationary reference frame
but in the rotating reference frame they are rotating with a speed —wy and
with constant amplitude.

Substituting Eq.(2.24) into the stator current dynamics in Eq.(2.2) we obtain

Lig = —Riy+ (wo — pw) Liy + pwipgo + pmﬂq + ug (2.27)
Liq = —Ri, — (wo — pw) Lig — pwibgy — pwibg + u, '

From the previous equations can be seen that the initial conditions are mul-
tiplied by the term pw so these products will be estimated instead of 140, ¥40
beacuse also the speed is supposed to be constant. This estimation will be
done exploiting the following change of coordinates

Xd = pw¢d0 y Xq = pw¢q0 (2'28>
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Therefore, the following dynamics for the new variables xq4, x, can be stated

Xd = pwibqo + woXq

. ) (2.29)
Xqg = paﬂ/}qo — WoXd

The equations above show that the initial conditions, constant in a stationary
reference frame, are rotating with the inverse of the speed of the reference
frame in a generic rotating reference frame.
Supposing now constant speed (w = 0) the following system, for which the
observer must be designed, can be obtained

2T i . - Xd

ia| _ —R/L (wo — pw) Zd]+[ 0 1/L p@bq/L] +[ud/L
io] |~wo—pw) —R/L | lig] [-1L 0 —pa/T) |7 |ug/L
Xd 0 wo 0 Xd

w | | 0 0 0] |w

(2.30)
The first two equations are the current dynamics that are also the measured
output, the last three equations are the variables to be estimated, the stator
flux initial condition and the rotor speed. The system can be expressed also

as follows
T=Ax+Tz+u

s Q- (2.31)
Where the following change of coordinates has been used
v =[ig,ig)" . 2= [xa Xew]" (2.32)
For this system the following full order observer can be designed
t=A2+Ts+u+
F= 4175 4 Q2 ' (2:33)
Where 7, Z are the estimates of z, z. Defining the estimation errors as
r=rx—2 , Z=2z—2
the following error system can be derived
T = Ai::FZ —-n (2.34)
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It is important to note that the term 7 should be used to place the poles of
the subsystem error related to z, i.e. n = FZ, otherwise the dynamic will be
driven only by the system matrix A.
Now the Lyapunov analysis can be done with the following candidate

1

V=3 (@3 +22)° (2.35)

The following time derivative of V' results
V=3"(A+F)z+3"Tz - 3T7% 4 27Qz (2.36)
It is straightforward to show the function V results as follows
V=3"(A+F)z (2.37)

and choosing opportunely the matrix I’ the Lyapunov function time derivative
is negative semidefinite, hence the error system is bounded. Moreover, it can
be shown that V is bounded, in fact it is a combination of bounded terms,
hence from direct application of Barbalat’s lemma to V' can be shown that

imV =0 = igi,—0 (2.38)
t—00
Other considerations on the stability of the error system are related to the pro-
perties of the function I'; and these are related principally to the persistence of

excitation of the two signals vy, qu, that will bring the system to the classical
asymptotic stability of the origin.

2.1.2 Modified Stator Flux Dynamics

The stator flux adaptation laws (Eq.2.4) derived for the observer in the previ-
ous section are here recalled

Ya = —Rig + wothy + ug + Ea
@Eq = —Riq — Cd(ﬂ;d -+ Uq -+ fq

Supposing &g = £, = 0, these two equations represent the dynamic of a pure
oscillator at frequency wy. These observation laws are model-based and they
differ from the real one (see Eq.2.2) just for initial conditions, that for a PMSM

are not known?.

2For IM the rotor flux initial conditions are often supposed to be known because of the

rotor flux is generated from measured stator currents.
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It is well known that sensitivity to model uncertainties such as unknown resi-
stance, measurement errors on stator currents, actuation errors such as inverter
non-idealities (mismatching between command stator voltage and real stator
voltage due to distortion introduced by dead-time and switching device non-
idealities), is higher at low speed, i.e. at low electrical frequency.

In order to compensate for unknown initial conditions and to be robust to such
uncertainties, a modified version of the stator flux estimation laws is defined.
Defining the variable &4, §, as follows

&a = —ky(tha — V)
fq = _kzﬁ(l[’q - M;)

These two terms introduce a negative feed-back in a stable dynamic, which is
the stator flux pure oscillator dynamic, and the modified flux adaptation laws
is as follows

bg = —Rig+ wol/}q + Ug — kw(tﬂd —3)
Z&q = _Riq - WO"ﬁd + ug — kw(l/;q - ﬁ)

The variables (1}, 1) can be seen as reference stator fluxes and can be defined

as follows
Va = Lig+ &g
by = Lig + ¢g
where iy, iy, ¢, ¢, are respectively current and rotor flux references to be de-
fined.
In order to define these reference variables we have to look at the current con-
troller. Supposing the current controller is designed in a priori known reference
frame with angle €. and speed w,, therefore in this reference frame we have
current controller references ¢, 22, and we also know the nominal rotor fluxes
¢d, qb* With this assumption we can algebraically derive the desired reference
Varlables on the observer reference frame with the following equations
il | cos(eg —e€.) sin(ey — €)
LZ] a [— sin(eg — €.) cos(eg — 60)1 [ }
{(bﬂ B |:COS(€0 —€.) sin(eg — ec)} [ }
B os( )

o, —sin(eg —€.) cos(ey — €.

Moreover, if the current controller is designed according to Field-Oriented
Control (FOC), the current controller reference frame is aligned with the real
rotor flux, i.e. the d-axis is aligned with the rotor magnet, therefore for the
rotor flux reference variable the following result is known

(2.39)

=@
qE 0
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It is worth noting that if the observer is also designed in the same reference
frame used for the current controller we have ¢y = e..

Looking at the modified stator flux observer (Eq.2.39), the pure integrator is
substituted by a low-pass filter fed by the original input and an additional
term dependent on the reference stator flux, and the stator flux estimation
error dynamics become

Vg = wotly — kyta + ky(Ya — 1))
Py = —wothg — kythy + ky(1bg — Y.

The autonomous part of the stator flux error system is now exponentially sta-
ble, therefore the estimation error is bounded if the flux tracking error input
is bounded, i.e. (g — 1,1, — 97) is bounded, moreover the estimation error
tends to zero if the flux tracking error input also tends to zero.

It is not simple to obtain the proof of the stability of the modified observer
exploiting Lyapunov theory because of the V function is not negative definite
neither semidefinite negative. However, an explanation of the modified ob-
server will be given by physical/practical insight.

In order to understand the behavior of the modified stator flux observer, as-
sume for simplicity that wy = 0, i.e. the observer is designed in the stationary
reference frame. Expressing the stator flux dynamics with complex variables
and computing the Laplace transform we obtain

si(s) = u(s) — Ri(s)
$tm(s) = u(s) = Rils) = ks [dls) = 0°(5)
in which ¢, ¢, stand respectively for the unmodified stator flux estimation
(€4 = &, = 0) and modified stator flux estimation. Hence, it follows that

~ B S ~ l{w .
Inls) = ) +

Some consideration on the result obtained

e At high frequency (higher than k) the modified stator flux is similar to
the pure integrator dynamics, in fact we have ¥,,(s) = 1(s).

e At low frequency or frequency near k, (when pure integration results
critical) the integrator is substituted by a low-pass filter, hence the term
dependent on 1&(5), which has a low signal to noise ratio, is reduced
in order to avoid drift and estimation errors. The term dependent on
1&*(3) allows for compensation of phase-shift and amplitude attenuation
introduced by the substitution of the pure integrator with a low-pass
filter and adds a forcing term at low frequency.
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e Substitution of the pure integrator with the (asymptotically stable) low-
pass filter allows for convergence to zero of the dynamics dependent on
unknown initial conditions.

e At low frequency, the stator flux estimate tracks a low-pass-filtered ver-
sion of the reference stator flux, i.e. the estimation is open-loop because
the observer introduce a modification in the model to follow, and is based
on the assumption that the flux is correctly tracked (in phase). As a con-
sequence, operations at frequency lower than £, are allowed only for a
limited amount of time.

We can finally summarize the overall speed/flux observer in the generic refe-
rence frame with angle ¢y and speed wy with the following equations

Liq = —Rig + (wo — p@) Liy + pinby + ua + 14
Li, = —Riy — (wo — p@) Liq — pinby + ug+ 1,  a=id—1la
Vg = —Rig+ woﬁq + ug — kzﬁ(@zd — @2)

g =1 1

Ng = kp:zd + DXq

;o B - N 2.40
@;Dq }?Zq wfwd Tt k’w(@% wq) Nq = kpiq — PXa ( )
Xd = woXq — Kilg Vg = Lig+ ¢q
Xq = —WoXd + Kitd ¢; = LZZ + gb;

b= [(y — Lig)ia — (a — Lia)iy

2.1.3 Alignment Controller

The observer reference frame speed wy is designed to guarantee exponential
convergence of the d-axis to the permanent magnet axis, i.e. the reference
frame controller acts as an Alignment Controller. We can define the reference
frame speed as follows
0= (2.41)
Wo = pw + 1o
The first of the two equations above recall the fact that the controlled variable
is €g and as a consequence the plant to control is a pure integrator, and 7 is an
auxiliary term control containing the control action. The rotor flux dynamics
of a PMSM is as follows

di = (WO - pw)¢q = Qéd = _p(bgbq + 770?25q (242)

ng = —(wo — pw)dq Gg = PR + MNoPg

The objective of 1y is to achieve asymptotic flux alignment, i.e. to guarantee
that dy = arctan (¢,/¢4) — 0, and assuming that the rotor flux is known, we
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try to define the control term as follows
_ %) _
Ny = k. arctan o k 409 (2.43)
d

Differentiating dy and using the rotor flux equations (Eq.2.42), it follows that

_ deng qu Qsd

—MNo + = —ky0g + 2.44
¢d+¢§ Mo + pw 409 + pw ( )

Therefore, the designed control law guarantee exponential stability (with time
constant k4) and boundedness of alignment error in presence of speed estima-
tion error. In order to guarantee the alignment of the observer reference frame
with the rotor flux also with speed estimation error, an integral term must be
added. Hence, taking into account that the flux is not known but is estimated
by the observer designed in the previous sections the alignment controller is
as follows
wo = pw + 1o

Mo = k409 + X
wo = Kaidg (2.45)

X
5y = arctan (%)
Pa

Further, we can study what happens using estimated rotor fluxes (Eq.2.23)
instead of real rotor fluxes. Defining dp = dy — o9, recalling the dynamic of the
real angle error (Eq. 2.44) and the expression of 1y (Eq.2.45) we have

g = —kabs — Xwy + kadp + pi

' ’ (2.46)
Xwo = Kkai(0g — dp)

Some considerations on the results

e Studying the equilibrium point of the system above we ca say that, g =
dp — 59 — 0 and x,, — pw. Hence the controller with integral action
allows for the asymptotic alignment of the observer reference frame to the
estimated rotor flux and also an information about the speed estimation
error.

e During speed transient, where of course we have a speed estimation error
due to the adaptive nature of the observer, we have an observer reference
frame misalignment, recovered with the dynamic imposed with k4 and
k ;.
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2.1.4 Parameter Tuning Rules

We start recalling that for the observer designed in sections 2.1 and 2.1.2 and
for the alignment controller designed in section 2.1.3, the tuning parameters
are

e k,, ki, proportional and integral gain involved in the current estimation
e 7, gain involved in the adaptive speed estimation

e ky, pole of the filter introduced by the modified observer

e ka,ka; proportional and integral gain involved in the alignment control

First parameter that can be tuned is ky, because of this parameter does not
influence the remaining estimation dynamics of the observer.

As already said, the aim of ky is both to robustify the simple stable dynamic
in the stator flux estimates and to compensate for unknown initial conditions
in the stator flux estimates.

In terms of robustness of the observer, this parameter allows to filter out from
pure integration of the input voltages in the stator flux estimates the non-
ideality effects of the system, i.e. the dead-times. In terms of compensating
for unknown initial condition, setting the value of £k, to 0 means that QZJd, zzq
and g4, X4 are perfect sinusoidal signals not converging to the real values.
From the analysis reported in section 2.1.2, this parameter is the pole of the
filter approximating the pure oscillator at frequency wy in the stator flux esti-
mation dynamics, so this parameter is related to the minimum electrical fre-
quency for which the observer works properly, i.e. the approximation in the
observer model is good enough, and can be set approximately one decade be-
low this minimum electrical frequency (ky = pwinin/10).

The minor is the value of k;, and the minor will be the non-ideality ﬁlterlng
effect, and the longer will be the attenuation of the sinusoidal signals wd,wq
and X4, X4- It is worth noting that, as already said at the end of section 2.1,
the right stator flux estimates are

tha = 1)
= o )%q
= + —=

Simulations show that, even if variables @d, ﬁq and g4, X4 are sinusoidal signals
(with constant amplitude if k, = 0, or with decreasing amplitude if £k, # 0),

the sum of these variables generating g[)d, @Zq are not sinusoidal, and of course

these last stator fluxes estimates are better than &d, @@q.
It is important to recall that the alignment controller discussed in section 2.1.3
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is fed by the alignment estimation dp that is related to rotor flux estimates,
and of course if rotor flux estimates are derived from 1[1,1, ﬂq the alignment con-
troller (a PI regulator) will be fed by a sinusoidal input, of course if ky, # 0 the
amplitude of these sinusoidal variables will decrease, and after the transient
imposed by kw the alignment controller could be turn on. If instead of wd, wq

are used 1/)(1, wq the alignment controller can be turn on with the observer at
the same time, decreasing a lot the initial transient time.

Parameter k,, k; can be tuned with the following approximated procedure.
Supposing wyg = @ = 0 in the current estimation dynamics, we obtain two
decoupled systems as follows:

A I I R
_Xq_ L ki 0 Xl ) fita

| = [ ] i) [t R/ 2

)A(d i —]{Zl 0_ | Xd] L _kilq

The eigenvalues of the matrix defining the homogeneous part of the system
are the following

R+k, \/ (R+ky)? ki
- n _ 2.4
51,2 2L A2 L (2.48)

The equation above defines the exact equation of the “feed-back” system poles.
In fact using a feed-back control scheme to express the current estimation
dynamic, as shown on Figure 2.1 for the iy current, can be seen that the
“plant” to control is a pure integrator stabilized by a PI controller and with an
additive feed-forward term depending on the resistance R.

From linear control theory is quite known that this kind of feed-back system
gives raise to a zero with no possibility of cancellation, and of course the zero
is introduced by the PI controller as usual.

The frequency of this zero depends not only by the PI coefficients, but also by
the plant parameter due to the feed-forward term, in fact we have:

W, = kZ
° R+k

(2.49)

No cancellation is possible because the only pole of the plant is at zero fre-
quency, i.e. a pure integrator, and to place at zero frequency we should have
k, — oo, that is of course not possible.

The PI controller can be tuned supposing to desire a small integral control
action with respect to the proportional one. The reason of this choice is to
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Figure 2.1: Feed-back scheme for the i; current estimation dynamic. Blue
bounded blocks refer to the PI stabilizing term for observer stability and a

model-based term depending on the resistance R.

have a low bandwidth for the x4, X, estimation dynamics, in fact recalling the
adaptation law of these variables (Eq.2.40) coefficient k; defines their cut-off
frequency.

Variables x4, X4, and @ act with their dynamics on the current estimation dy-
namic, and are driven both by the current estimation errors g4, 5q.

If the dynamic of the variables g4, X, is faster than the dynamic of the variable
w, the current estimation errors will feed g4, X, despite to w.

Because of x4, X, are related with flux estimation, and w is by definition re-
lated with speed estimation, choosing a slower dynamic for yg, X, than the
dynamic of @ is equivalent to prefer the estimation of the speed instead of the
estimation of the stator fluxes and vice versa.

It is important to note that the stator flux estimates are used by the align-
ment controller, described in section 2.1.3, to achieve the correct reference
frame alignment, so if the correct alignment is more important than speed
estimation, one should think to choose a tuning procedure that makes x4, X,
dynamics faster the w one.

Choosing a small integral control action for the PI controller is equivalent to
have one low frequency pole (w,, ) and one high frequency pole (w,, ). The
low frequency pole is attracted by the zero, which will be at low frequency too,
so to design the low frequency pole is possible to design a low frequency zero.
From Eq.(2.48) and supposing a small integral action, we can neglect from the
square root the term dependent on k;, so we can derive the expression of the
high-frequency pole and consequently define the value for £,:

Rtk
o = z P~k =w,, L~ R (2.50)

The value of the high frequency pole w,,, should take into account for the
bandwidth of the current controller, for the noise on the current measures, and
if the current estimates 74,7, are used as a measure by the current controller
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instead of the real current measure 74,7, Current estimates are the filtered
version of real current measure, and if current estimates are used by the current
controller, a high filtering action cannot be imposed, to not give raise to a
instability of the feed-back current control.

If current estimates are not used by the current controller, which in this case
uses the real measure, one could think to use the current estimation dynamic
to filter out the noise in the observer variables, of course introducing a phase
lag in all estimated variables.

Once defined k,, it is possible to define the value for k; recalling the Eq.(2.49)
as follows:

" R+k,

= ki = (R+ kp)wy,, = (R4 k)25 (251)

Wprp =~ Wy

Where the relation w,,,, = wp,,/k has been used, and a typical value for k
could be 50 = 100.

Of course the value of each pole/zero must be realizable, especially for high
frequency pole/zero in a discrete time realization, and for this purpose the
effective expression of the poles/zeros of the system must be used, i.e using
Eq.(2.48).

It is important to remark that the value of k; defines the band-width of the
estimation of x4, X, and must be compared with the band-with of the speed
estimation dynamic @ that will be reported in the following part of the tuning
procedure.

Another consideration about the value of parameter £, k; in case of presence
of dead-times non-ideality must be done.

Dead-times act as a disturbance voltages (dq4, d,) on the input voltages ug, u,
applied to the motor windings.

These disturbances are quite complex in frequency, in fact the frequency spec-
trum of dg4, d, contains components from zero to high frequencies, of course
with an amplitude decreasing with frequency. It is important to remark that
dead-times disturbance voltages described in a stationary a, b reference frame
are periodic signals with period ~ 27 /pw, so the Fourier analysis of dead-times
give rise to a frequency discretized spectrum.

Dead-times act on input voltages but their effect can be seen on %d,gq, and
of course it propagates to all the observer estimates. From simulations can
be seen that the major effect of dead-times is on variables x4, X,, and as a

consequence on variables 1, zZA)q, so be careful when these variables are used to
derive the rotor flux estimates used by the alignment controller. To attenuate
the effect of dead-times on Y4, X, the parameter &k, must be increased, main-
taining k; unchanged.

For the definition of the adaptation gain 7, involved in the estimation of the
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speed, the following approximated procedure can be used. Supposing, wy = 0,
¢d = VYa— Lig =~ ¢, ¢y = g — Li, =~ 0, and considering y, as an input (due to
its slow dynamic imposed) the following system can be exploited:

@l [0 Yo W —79iq
[gq] - [_pfq& _@} {%J " l(uq + kpiqg — pXa)/L (2:52)

The eigenvalues of the homogeneous part of the system above are the solutions
of the following II order equation:
R+k 2

2 P
—_— — 2.
s°+ 7 s+mL (2.53)

It is important to stress that the value of the coefficient £,, designed from the
estimation current tuning procedure, is involved also in the definition of the
adaptive gain for the speed estimation, as shown in the equation above.
Recalling the expression of a I order equation using the damping coefficient ¢
and the natural pulsation w,, as follows

§% + 20wy s + w2 (2.54)

the value of v can be derived choosing a value for the natural pulsation w, as

follows: ) )
L (w, L hprF>

y=—|— | =— | —*¢ 2.55

(%) -5 (™ 259

A typical value for h can be 10 + 50. It important to note that the value of
the damping parameter § must be checked because with this tuning procedure
it is just a result, and a typical value for ¢ could be 0.9.

Finally, it is important to remark that the dynamic of px, and p(ﬁddz, in the

equation of %q, are pure integrators with bandwidth pk; and py¢? respectively,
therefore these values must be chosen to prefere the dynamic of stator flux
estimates instead of the dynamic of the speed estimate, or vice versa.

Once tuned the speed/stator flux observer, parameters kg, k4; are still left
to tune. The tuning procedure for these parameters is based on Eq.(2.41) and
on the fact that the plant to control is a pure integrator, i.e. we act on wy
to control €y, and €y = wy. From theory of linear systems design, controlling
a pure integrator with a PI controller to impose a damping J and a natural
frequency w, the following equations can be straightforward derived

]CA = 2(5(,«)”

2.56
kai = wz ( )

Typical values for these two parameters could be § = 0.7+1.0 and w,, = 1+20.
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Motor inertia J [K gm?] n.a.
Nominal angular speed wyen, [rad/s| 1.60
Rotor flux ® [Wh] 5.50
Nominal torque T, [Nm)| 680 x 103
Stator resistance R [ 9.0 x 1073
Stator inductance L [H] 3.0x 1073
Number of pole pairs p 50

Table 2.1: Motor parameters for a realistic scenario simulation.

2.2 Simulation Results

In this section the performances of the proposed observer are simulated in an
ideal set-up: without noise measure (i.e. current measures and DC-Bus voltage
measure), without inverter non-idealities, and adopting a discrete time version
of the observer (fs = 2.5[kHz|). The observer is used as the core of a sensorless
torque controller designed on the estimated d — ¢ reference frame for which the
alignment with the rotor flux is achieved by the Alignment Controller.
Simulations are performed using machine parameters reported in Tab.2.1.
With these machine parameters and following the parameter tuning procedure
reported in section 2.1.4 the following standard parameterization has been im-
posed: ky = 3, k, = 0.506, k; = 1.138, v = 04, ka = 20.7, ka; = 132.25.
Results obtained with the standard parameterization are shown in Figure 2.2,
in which the sensorless algorithm is turn on when the rotor is rotating at a
speed of 0.42[rad/s] (nearly 1/3 of the nominal speed) and from this figure
it is interesting to note that, ¢) the rotor flux alignment is reached (subplot
(b)), it) the presence of ky, reduces the amplitude of the sinusoidal part present
in &d,zﬂq and Y4/w,X,/w (subplots (e)(f)). The parameter ky is crucial when
noise measure and inverter non-idealities are present, and in this case cannot
be null.

In Figure 2.3 is shown the same simulation with different parameterization,
i.e. with k,ht null, and with the alignment controller turn off. In this figure
it is important to note that: 4) the rotor flux alignment is not reached, ii) the
sinusoidal part present in wd,wq and Y4/w,X,/w is persistent, but can be easily
seen that the sum: wd + Xa/w, wq + X4/w are constant at steady state due to
the delay of m between the two components.
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Figure 2.2: (s) solid, (d) dashed , (o) dotted. Convergence of the Observer
variables supposing standard parameterization.
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Figure 2.3: (s) solid, (d) dashed , (o) dotted. Convergence of the Observer
variables supposing k, = 0 and Alignment Controller turn off (k4 = k4; = 0).
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Chapter 3

A Synchronous Coordinates
Approach Observer for a PMSM

Introduction

This chapter focus on a new observer for a PMSM based on rotor flux dyna-
mics?.

In the observer proposed, the reference frame used for the observer design is
a generic d q reference frame with angle 6. This reference frame is pushed
toward the synchronous one by forcing it to be intrinsically aligned with the
estimated back-emf vector dependent on rotor flux vector, in other words the
generic reference frame d, ¢ is forced to be aligned with the Field-Oriented d, q
reference frame.

The design of suitable adaptation laws allows for the estimation of speed, angle
and back-emf amplitude. The intrinsic alignment of the reference frame with
the rotor flux allows us to drop any form of alignment controller as mentioned
in chapter 2.

Stator flux dynamics are not used in this approach, therefore the model based
part of the observer will not contain the stator flux (simply) stable dynamics,
improving the robustness of the solution adopted with respect to voltage and
current measurement uncertainties, an allowing us to drop any form of observer
modification to cope with this fact. The stability analysis of the observer is
carried out using a singular perturbation framework and using Linear Control
and Lyapunov theory.

The chapter is organized as follows, in section 3.1 first the definition of the

IThe results achieved has been presented at MED 2012, 20** Mediterranean Conference
on Control and Automation, Barcellona (ES).
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model of a PMSM in a generic u, v reference frame is reported, then the same
model is described in the so called “field-oriented” d, g reference frame. After
that, the Observer is proposed in the estimated field-oriented CZ,Q reference
frame and the development of the Singular Pertubation Framework for the
stability proof is reported. Section 3.2 is devoted for the tuning procedure of
the Observer, with simulations results reported in the ending section 3.3.
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3.1 Observer Design

This novel and simple observer for PMSM has been designed taking the cue
from the approach proposed in [14], in which the main idea is to build an
observer in a generic reference frame ci, G, and imposing for the beck-emf vector
a representation equivalent to the one it would have in the so-called Field-
Oriented reference frame d, q.

In this way, an implicit alignment of the observer reference frame is forced
between the adopted reference frame and the estimated back-emf vector, while
its amplitude along with the rotor speed and position can be suitably adapted
to obtain asymptotic reconstruction of the stator currents.

No pure integration of the stator flux dynamics are exploited, since the stator
current dynamics are directly exploited as an indirect measurement of the back-
emf vector. This leads to an intrinsic robustness to many kinds of voltage and
current measurement uncertainties. Time scale separation between the stator
current dynamics and the remainder of the observer dynamics is exploited to
provide practical semiglobal asymptotic stability as will be shown later.
According to standard planar representation of three-phase electric motors,
in the following the PMSM electro-magnetic model is reported in a generic
2-phase u, v reference frame rotated by an angle ¢, with respect to a stator
winding aligned stationary reference frame

Wy Uy + dy
p¢+

: R .
by = — =10y + Woly +

L L L
L . . pw¢u Uy + dv
1y = —sz — Woly — i + 7 (3.1)

(Z‘bu = _(pw - WO)(bv
év = (pw - WO)(bu

Where, wy = € is the angular speed of the arbitrary selected reference frame
u, v; p are the pole pairs; R, L are stator winding resistance and inductance; w
is the actual rotor mechanical speed; 7,1, are the stator currents; ¢,, ¢, are
the components given by the projection in the considered reference frame of
the rotor magnet flux vector, whose amplitude will be indicated as .

In this framework, the angle # and 6., such that 6 = w and 0, = pw, can be
used to represent respectively the mechanical and the so-called electrical angle
of the rotor magnet flux vector with respect to the stator-aligned stationary
reference frame. Finally, u, + d, and u, + d, give the voltages applied to the
stator windings. It is worth noting that these voltages have been represented
by the sum of the expected voltages u,, u, and unknown signals d,, d,. In fact,
stator voltages are usually actuated by means of switching power converters
(commonly referred as inverters) and direct measurements are not available
or not accurate as they should be. Therefore, d,, d, account for measurement
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errors and/or inverter non-idealities (such as Dead-Time effect, IGBT/MOS
voltage drop, etc...).

From now on, and with no loss of generality, p = 1 will be taken, therefore w
will be directly the so-called electrical rotor speed, and the mechanical angle
0 and the electric angle 6, will be the same.

As it is well known (see for example [1]) defining a reference frame d, ¢ with
the d-axis aligned with the rotor flux vector, the back-emf component on the
d-axis disappears, and the model (3.1) reads as follows

: R. . ugtdg

g = —fzd + wiy +

. R . w® oy, +d,

lg = g T Wa T T T (3.2)
¢a =10

¢q:0

With this choice for the reference frame, the speed wy and angle ¢, become
exactly the electrical rotor speed w and the rotor flux vector angle . There-
fore, this reference frame is usually referred as Field-Oriented reference frame,
and d and ¢ stand for direct and quadrature axis.

In sensorless control of PMSM a fundamental issue is to achieve an estima-
tion of the rotor flux vector angle 6 and speed w, since no direct measurements
are available. This goal is crucial to build standard and also some kind of
advanced speed-torque controllers based on field-orientation concepts (see for
example [1]).

Usually, in model-based observer approaches, speed and position estimation
task is performed by defining a suitable observer exploiting the electromagne-
tic model of the PMSM, while no relevant information is assumed available
on the mechanical model, due to the low accuracy of the mechanical model
parameters, like inertia and viscous coefficient, and due to the problem arising
from a good measurement of the load torque.

On the other hand, the speed dynamics is assumed much slower than the elec-
tromagnetic one, therefore the speed is assumed constant (or slowly varying)
for the formulation of the above-mentioned estimation problem.

Beside this basic problem, also the estimation of the amplitude of the rotor
magnet flux vector is often considered to enable very accurate torque control
(the flux amplitude can be time varying because depending on the working
temperature [1]).

Bearing in mind these considerations, the following general objectives can be
defined for an observer based on the electromagnetic model of PMSM:

1. Guaranteeing estimation of rotor magnet vector position, , and speed
w along with its amplitude ®, under constant speed condition (w = 0),
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assuming stator currents and expected stator voltages available from
measures and actuations, respectively, and considering null voltage un-
certainties (these conditions will be referred as nominal conditions).

2. Achieving as large as possible bandwidth in the estimation of the speed
w in order to compensate for the lack of knowledge of the mechanical
model and cope with variable speed conditions.

3. Obtaining large voltage disturbances rejection, i.e. attenuation of the
dq, d, disturbances.

The basic idea comes by imposing in a generic reference frame called cZ, q, with
angle 0 and speed &, the model (3.2) which is valid only in the Field-Oriented
reference frame, for this purpose feedback estimation laws are designed in or-
der to push the angle and the speed of the observer reference frame toward 6
and w of the Field-Oriented reference frame, therefore, the proposed observer
reference frame can be seen as an estimation of the Field-Oriented reference
frame.

An additional important step in the line defined above is the coordinate chan-
ging defining the back-emf components as state variables, therefore defining

Xq = wWog

3.3
Xq = Wq 33

the synchronous model (3.2) can be revised leading to the following observer
model in the d-¢ reference frame

X R uy
ZJ:—ZZJ—FCUZQ—Ff-i-ﬁd
A R . A+U,j+
lg=—Flg—Wij— =+ — + 14
L L L
2 (3.4)
A=y,
0=vo+w (O=v,+d)
&=,

where i , 15 and u g, uz are the stator currents and expected voltages, available
from measurements and actuator commands and reported in (J—Q frame by a
trigonometric transformation, the variable A is the estimation of the back-emf
term w® in (3.2), while the meaning of 0 %q, 6 and & is straightforward from
the considerations already done.

Differently, nq, ng, Va, M. and v, are feedback terms for observer convergence
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and defined as follows

Nd = kp;oi
Mg = kp;é
Vo = —Lk1kpig
A . (3.5)
N = ’YL—kchz
V, = kQLik:p%J

where Ed =15;— icz, gq =15 — 2@. It is worth noting that a sort of PI structure
has been adopted for the 0 estimation, but just & will be considered as output
speed estimation of the proposed observer.

To better understand the observer equations in (3.4) can be useful to specify
that the part of the observer devoted to the rotor flux estimation is not de-
scribed using standard Cartesian coordinates, but it is described in the stator
reference frame using Polar coordinates, where A is the amplitude and w the
speed of the real unknown back-emf rotating vector, and can be intuitively
inferred that v, is devoted to the estimation of the amplitude of the rotor flux,
while v, + & to the estimation of the rotor flux angle (position). In fact, to
describe a pure oscillator, i.e. the rotor flux on the a,b stationary reference
frame, we can equivalently use standard Cartesian coordinates obtaining the
following model

Q'ba = _pwgbb
Q.Sb = pw¢a

or using Polar coordinates obtaining the following model

d=0 | (@:m) (3.7)

0=pw |, (w=0)

(3.6)

with appropriate initial conditions to have consistent systems.
Finally, recalling the motor model (3.1), substituting u, v with d,§ in it, and
reformulating the equations using x;, x; defined in (3.3), the PMSM model
can be expressed in the d,q observer reference frame as follows

. R - ug+dg
@'J:—fz‘d+wiq+%+—“d2 d
- R “. X ug + d;
cepea et
. ~ w
Xi=—(w—wxa+ x4

%

Xg= (W—w)xg+ —Xa



3.1 Observer Design CHAPTER 3. A SYNCHRONOUS COORDINATES OBSERVER FOR A PMSM

where x; x4 enlighten the back-emf projections in the considered frame as al-
ready said. Variables d;, d; and w has been reported because in section (3.2),
with focus on a parameter tuning procedure, will be evaluated the effect on
the observer performances of the voltage uncertainties and non-constant speed
conditions.

In the remaining part of this section a stability analysis of the proposed

solution is reported. As already mentioned, the stability analysis is carried out
assuming nominal conditions defined in Objective 1 at the end of section 3.1,
hence the perturbation introduced by the disturbances on the actuated voltages
and by non constant rotor speed, appearing in (3.8), will be neglected. These
additional input signals will be considered in next section, dedicated to derive
the observer gains tuning rules according to Objectives 2-3 defined at the end
of section 3.1.
A model to suitably represent the behavior of the observation error can be
defined by considering the current errors i j and Eq, previously introduced, and
adding the following errors variables related to the estimation of the back-emf
components and speed

Xi=Xi—A, Xa=xq » O=w-w (3.9)
It is worth to note that, looking at the expression of y; is clear the fact that
the estimated value of the back-emf on axis g is forced to be 0, introducing the
effect of the asymptotic alignment the observer reference frame to the Field-
Oriented one.
By subtracting (3.4) from (3.8), neglecting dj, d4, w, the dynamics of the above
defined estimation errors is the following

Zdz—ﬁdJr%

P Xd

q q

. - L (3.10)
Xg= —(0—Vy)Xg — Va

Xg= (@ —w)(Xg+A)

&= —n,

Exploiting the adaptation laws defined in (3.5), defining € = é, and using the
following change of coordinates

Xd, = Xa/ Lk
Vo, = Vo Lk, )
Ay = A/Lk,
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the system (3.10) can be expressed as

iy = —ig+ X
62@ = —13 — X4,
X, = —(@ — kaAyig) X, + knig (3.12)
Xar = (@ — ko Avig) (g, + Ar)
W= —yAig

This can be easily seen as a standard singular perturbation model [15]|, where
the time scale separation between the current error dynamics and the back-emf
and speed error dynamics is parametrized by the gain k,. Therefore, assuming
a sufficiently high value of k, has been chosen (more details will be given in the
next section ), the problem of the estimates convergence can be approached
by considering the overall system as the interconnection of a fast subsystem,
represented by the current error variables (EdA, %4), and a slow subsystem given
by the other dynamics (Yz, Xg, ©)-

According to [15] and [16], we start by studying the so-called boundary layer
system related to the fast dynamics. First, define the quasi steady-state value

for the current errors imposing € = 0 in the fast subsystem as follows

Q5= Xq(t
~'d Xq~( ) (3.13)
ig = —Xg,(t)
Then, defining the following change of coordinates
Ya = Eci - ijl
Yo = g T X4, (3.14)
t=c€T

after some computation, consisting in freezing the slow varying variables by
setting € = 0, the following boundary layer system is obtained

dyd dyq
e (3.15)
It’s trivial to verify that the origin of (3.15) is globally exponentially stable,
uniformly in both the slow variables and the time, since it is a LTI system with
Hurwitz state matrix. Note that the quasi steady-state definition enlightens
how the current errors can be used as indirect measure of the back-emf esti-
mation errors, thanks to time scale separation imposed by £,.

Again according to [15] and [16], we now put the focus on the reduced dynamics
obtained by substituting the fast variables i;, i4 with their quasi steady-state
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approximation, i; = ¥, (
last three equations in (3
system results

t), ig = —X 4, (t), in the slow dynamics given by the
12). After some computation the following reduced

X, = —(@ = k2 Ar X )X, — k1,

Xar = (@ = k2 A1 X, ) (Xg, + A1) (3.16)
w = —7A1Xq

It’s worth noting that, the system is non-autonomous for the presence of the
estimate of the back-emf A;, and this is a time dependent parameter indepen-
dently from the constant speed hypothesis, hence uniformity for the following
stability statement is not straightforward. To investigate the stability of (3.16)
consider the following Lyapunov candidate function

L, o, &
V= §(Xa§1 +Xg t 7) (3.17)

The following derivative along the system trajectories can be obtained
V ==k — kARG <0 (Vi >0,Vky > 0) (3.18)
From direct application of Barbalat’s lemma ([15]) to V/, it can be stated that

lIimV =0 = tlggoxczl =0 , }E&X@l =0 (3.19)

t—o00

Applying the same Lemma to y; and Yy, can be stated also that

lim g, =0 , lim yg =0 (3.20)

t—o00

For the application of Barbalat’s lemma to x; and Xj,, the following conditions
are necessary:

L. X4, Xg must have a finite limit;
2. Y Qs )L(ql must exist and must be uniformly continuous;

First condition comes directly from (3.19), i.e. the limits exist and are 0 for
both variables. Condition 2) can be fulfilled exploiting the following property

X4, Xq bounded = 2)
To have y i jéélbounded the following are needed:

e The Lyapunov candidate function V is lower bounded (V' > 0) and not in-
creasing (V' < 0) and these (sufficient) conditions ensure that y; , Xg,, @

are bounded, and as a consequence also @, A, A; are bounded;
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e Supposing Lk, # 0, and by the fact that if w is bounded also x;, x4 are
bounded, then also 121, A are bounded;

Y Qv >;<q1 are bounded because sum of bounded terms;

Y Qs )%,31 are bounded because sum of bounded terms;

Therefore, the origin of the reduced dynamics is globally asymptotically stable.
From the previous considerations and using the singular perturbation results
as formulated in [16] (which actually covers also averaging and ISS analysis),
the following proposition defining the properties for the overall error dynamics
(3.12) can be drawn.

Proposition 1 For the system (3.12), replacing for simplicity current coordi-
nates, %3, %q, with the above defined yq = %& — Xars Yg = %g + X4, there exist two
class ICL functions By and s such that, for each § > 0 and for every compact
sets Qy C R? and Qg C R?, there exists € such that Ve = k:;l € (0, €], the

following inequalities hold

)47 <5 (a0 O /) 5
Y[ya(0), 3, (0)]" €
” [f(&l (t)v )Z(?I (t)v (D(t)]TH Sﬁs (H [Xd} (O)v )241 (0)7 (I)(O)]TH, t) +0

(3.22)
VX4, (0), X4, (0), @(0)]" €

Hence, semiglobal practical stability can be stated for the overall error dynamics
(3.12), provided that a sufficiently large k, has been selected.

3.2 Parameter Tuning Rules

In this section the tuning rules are defined according to time scale separation
requirements derived during the observer stability analysis and the general
objectives defined in section 3.1. A preliminary step toward this goal is to
rewrite the error dynamics (3.10) taking into account the voltage disturbances
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and the perturbation given by non-constant speed as follows

ig = kp(—1g+ Xa +dg,)
ig = —ky(ig + X4, + day)
Xgy = (@ = )Xoy = Var + —(Xg, + A1) (3.23)

. . A w .
Xa = (@ —v)(Xg, + A1) + X

(f):—nw+d)

Where the following definition has been used d; = d;/Lk,,d;, = dg/Lk,.
The origin of the system, [Y; X4 @] = 0, is an equilibrium point, so linearizing
the system near the origin and defining ®; = ®/Lk,, we obtain the following
LTT system

ig = kp(—i4+ Xq +dg,)

ig = kp(—ig — Xg, +dg,)
Xi, = —Vay + WP (3.24)
)%(fl = ((ZJ - Vw)q)lw

Ww=—"N,+w

The input @ acts on @ and ¥ 4, and its presence is useful for the evaluation
of the sensitivity of the error variables with respect to variable speed, i.e. to
evaluate the observer bandwidth. Other inputs in the error dynamics (3.24)
are the voltage disturbances dj;, d4, and these variables allow to evaluate the
disturbance rejection.

Applying to the error system (3.24) the results deriving from singular per-
turbation properties enlightened in subsection 3.1, the following quasi-steady
state equations can be considered

—ig+Xa +dg 0 —ig— Xa, +dg 0 (3.25)

From the equation (3.25) can be clearly seen that disturbance voltages propa-
gates now up to the current errors, corrupting the measure of the back-emf.
Thus, the reduced error dynamics can be linearized as follows

X4, = k1(=Xg, +dg,) + @
Xir = w10 — ka(w®1)? (Xq + dy,) (3.26)

w = —ywd, ()qu + dd}) +w
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The linear system derived has the following state matrix Az and input matrix
Bp with respect to the input vector [d; dg w]”

—ky 0 0 0 kh @
AR = 0 —k2(®1w)2 <I>1w R BR = LLkp —kg(w(I)l)Q 0 0 (327)
0 —vA; 0 —yw®, 0 Lk,

State matrix Ag in (3.27) has the following eigenvalues

4y
—1+ \/1 — W‘ (3.28)

It is possible to find the value of ko, v to impose the damping coefficient ¢ and
the angular natural frequency w, for the eigenvalues A3 using the following
equations

k?Q (wq)l)Q

A==k, Aoz = 5

b 20,0 B
2 — (w®1)2 ) 7 -

(3.29)

-+ B

(wdq)?

With these formulas at hand, and bearing in mind the introduction of this
section, the tuning parameter must be chosen to cope with:

1. Frequency separation, between fast dynamics of gdl, qu and slow dy-
namics of X, Xg, @-

2. High Bandwidth Observer, for good estimation during speed varia-
tions, i.e. low sensitivity to w.

3. Disturbance rejection for high robustness to common disturbances
due to Inverter non-idealities, i.e. low sensitivity to dj, d;.

Obviously, frequency separation can be obtained choosing large k,. The upper
bound for this parameter is usually related to the common discrete time reali-
zation of the observer. In fact k, represents the bandwidth for the current i B
54 reconstruction.

High observer bandwidth can be obtained acting on ky, k3 and v but, actually,
this is in contrast with disturbance rejection requirement.

First of all, a good practice is to chose ki, ks and ~ such that they identify three
distinct eigenvalues for the matrix Ag, to avoid ill conditioned problem. Para-
meter k; is related only on the bandwidth of the x; dynamic. Its value must
be chosen to be lower than the faster dynamic imposed by k, (e.g. k1 = k,/50),
recalling that a low value for this parameter produces a low sensitivity to w.
Parameter ks and v can be chosen to impose damping coefficient § and natural
frequency w, of eigenvalues A9 3 of the reduced order system, as reported in
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(3.29). For the value of w,, the same considerations as for k; hold, i.e. w,
must be lower than the fast dynamic imposed by k, (e.g. w, = k,/80), but
not too low to not compromise the observer bandwidth.

The damping of the eigenvalues Ay 3 (§ < 1) can be chosen to lightly augment
the frequency of the eigenvalue related to it, but its major effect is to introduce
a resonant frequency behavior, giving low disturbance rejection for a particular
disturbance band frequency.

For what concerns the disturbance rejection, a preliminary task is the identi-
fication of the disturbance band frequency. Inverter non-idealities introduce
voltage disturbances with frequencies n-times the actual electrical frequency,
and from practical experiments for the main disturbance component n = 6.
The worst case is when the rotor rotates at low speed, when also the elec-
trical speed and disturbances are at low frequency, and because the observer
has as usual a low-pass filter behavior, so it has a relatively high gain at low
frequency.

(a) erl - J (b) )2121 - J

20 20,

—s L —8o0l_ .

< =) ey = =) ey
10 10° 10" 107 10 10 10° 10" 107 10

[rad/s] |rad/s|

(d) Xg, - @

=0,

()@-d

—80!
EXCR

10° 10" 10° 10° 10 * 10° 10° 107 10°
[rad/s| |rad/s|

=0,

o REN
<

—s80! ~ -
10 * 106° 10" 1075 1067

|rad/s|

Figure 3.1: d-Sensitivity Bode diagrams (a,b,c) (d=[d; ds]") and w-Sensitivity
Bode diagrams (d,e).

To give an example of a realistic parameter tuning process following the rules
mentioned above, the data of a realistic set-up reported in the second column
of Tab.2.1 has been taken (these data will be exploited later for simulations).
Supposing for the motor a speed range of [33 — 70]|rad/s|, the main distur-
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bances frequency is about [200 — 420][rad/s|. Recalling [14] for the analysis
of sensitivity to disturbances for the linearized system (3.27), it is possible to
verify that the sinusoidal voltage disturbances can be taken counter-rotating
or rotating equivalently, thanks to the structure of the couple Ag, Bg. Three
transfer functions must be drawn, each for one of the error variables X; ,Xg
@ of the reduced system (3.27).

To have a good static disturbance rejection k, can be set as 900, higher val-
ues for this parameter are not allowed due to its discrete time realization
(fs = 2.5]kHz|). The parameter k; has been chosen as 10, i.e. ky ~ k,/100,
and with k; = 0.0075 and v = 0.0627 we obtain 6 = 0.9 and w,, = 15 supposing
a rotor speed of 33|rad/s|. With these parameters, the three Bode diagrams of
the sensitivity transfer functions related to voltage distrurbances and the two
diagrams for evaluating the observer bandwidth are reported in Fig.3.2.
From plots (a), (b) and (c), it can be noted that, in the disturbances frequency
band, we have a minimum attenuation of —36dB for x; , —27dB for x4 and
—44dB for w.

To better evaluate the observer bandwidth, in plots (d) and (e) of Fig.3.2 the
transfer function obtained with no feedback actions in the observer has been
added. That is ®;/s for the Bode diagram of y; - w, and 1/s for the @ - w.
From these plots a bandwidth of 10[rad/s| can be inferred.

3.3 Simulation Results

In this section the performances of the proposed observer are simulated in a
realistic set-up: with noise on current measures, inverter non-idealities, and
adopting a discrete time version of the observer (fs = 2.5|kHz|). The observer
is used as the core of a sensorless torque controller designed on the cZ,cj refe-
rence frame. For this realistic set-up, a more accurate model of the electrical
converter has been simulated, introducing PWM technique ( fpwn = 2.5[kHz|)
effects and inverter non-idealities (dead-times, solid state devices voltage drop
and turn ON/OFF time delays), i.e. to introduce the disturbance voltages
dg,d,, in order to validate the robustness of the estimator with respect to the
most common disturbances in practical applications. Simulations of the sce-
nario are performed using machine parameters reported in Tab.2.1 reported
in section 2.2. The observer parameters, tuned according to linear analysis
discussed in 3.2, are: k, = 928.8, k; = 9.29, k; = 0.0058, v = 0.0375. For this
simulation scenario an estimate for the initial rotor speed is known, hence a
good estimate for the initial value of the rotor speed itself (@) and bemf (A)
are known.

Fig.3.2 allows for the performance evaluation of the proposed observer in a
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torque tracking control scheme during a typical torque-speed profile for wind-
turbine applications. The observer is turn on with a non null rotor speed, after
a brief transient time the speed and the torque request augment reaching their
respective nominal values. To better evaluate the observer performance some
error variables are reported, speed error (plot b), torque error (plot d) and
angle error (plot e).

It is worth noting that on plot (d), the torque error is due to the use of the
rotor flux estimate (¢ = A/&) for the transformation of the torque set-point
to the current set-point, and when inverter non-idealities are present the rotor
flux estimate is corrupted by the dc-component of the disturbance voltages.
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Figure 3.2: (s) solid, (d) dashed. Torque tracking performance in a carachte-

ristic profile for a wind turbine application (with simulation of Dead-Time).
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Figure 3.3: (s) solid, (d) dashed. Torque tracking performance in a carachte-

ristic profile for a wind turbine application (with no Dead-Time simulation).
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Conclusions

In this thesis, the industrial application of control a Permanent Magnet Syn-
chronous Motor in a sensorless configuration (without encoder measure) has
been faced, and in particular the task of estimating the unknown “parameters”
necessary for the application of standard motor control algorithms. In litera-
ture several techniques have been proposed to cope with this task, but in this
thesis only the techniques based on model-based nonlinear observer has been
followed.

Model-based observers give the possibility to work with the physical nature
of the motor, working on the estimation of its electromagnetic variables and
parameters.

The hypothesis of neglecting the mechanical dynamics from the motor model
has been applied due to practical and physical considerations deriving from
the industrial field, in fact in these applications parameters and/or variables
describing the mechanical motor model are unknown, or known with a very
small precision, therefore only the electromagnetic dynamics has been used for
the design of the observers, that are described by the motor voltage equations,
supposing to know the stator currents (stator current sensors), and to know
the effective stator voltages (no inverter nonlinearities).

First observer proposed (Chapter 2) is based on stator currents and Stator
Flux dynamics described in a generic rotating reference frame. Stator current
dynamics are dynamics that can be estimated and measured, so their estima-
tion errors can be fed-back in all the observer dynamics, and this is a common
feature also for the second observer proposed. Stator flux dynamics are known
apart their initial conditions which are estimated, with the speed that is also
unknown, through the use of the standard Adaptive Theory. Stability results
are global and asymptotic, without exponential properties which can be just
local results, as expected in the framework of the adaptive theory, for which
the asymptotic behavior is guaranteed thanks to the persistence of excitation
of the system, related to how the motor is used.

The stator flux dynamics is a pure oscillatory stable dynamic, with the known
problems of estimated parameter drifting due to offset measures and parameter
uncertainties, therefore practical and effective modifications has been proposed
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to face with this problems.

The second observer proposed (Chapter 3) is based on stator currents and Ro-
tor Fluxr dynamics described in a generic reference frame with the property of
auto-alignment. These last dynamics are described in the stationary reference
frame exploiting polar coordinates instead of classical Cartesian coordinates,
by means the estimation of amplitude and speed of the rotor flux. The stability
proof has been designed in a Singular Perturbation Framework, which allows
for the use the current estimation errors as a measure of rotor flux estima-
tion errors, rotor flux that is otherwise unmeasurable. Singular perturbation
framework is a sort of frequency separation principle, on which certain vari-
ables (estimated current variables) are faster than other variables (estimated
rotor fluxes and speed), and the overall system can be divided in two (or more)
subsystems. The stability properties has been derived using a specific theory
for systems with time scale separation, which guarantees for the overall system
a semi-global practical stability.

It is important to remark that differently from the first observer, for which
the observer reference frame alignment is obtained by means of an additive
active controller called alignment controller, for the second observer the refe-
rence frame is aligned to the rotor permanent magnet automatically, without
utilizing an additive active device.

For the two observer ideal simulations and real simulations have been per-
formed to prove the effectiveness of the observers proposed, real simulations
on which the effects of the Inverter nonlinearities have been introduced, show-
ing the already known problems of the model-based observers for low speed
applications, on which the signal to noise ratio is particularly small.
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Appendix A

Modeling of Inverter

Nonlinearities

Introduction

In this appendix a description of the inverter nonlinearities will be given, to
allow for the simulation of these effects on inverter based schemes, that are
generally all those schemes with DC or AC electric power control realized by
means of power electronic devices, e.g. photo voltaic DC energy conversion,
wind energy conversion trough control of electrical motor control, etc...

The inverter non linearities effects are important because they introduce in the
system a corrupting noise on the voltages applied to the load, this is equivalent
to say that the effective voltages applied to the load are not the expected com-
mand voltages coming out from the control algorithm, e.g. in a PMSM control
scheme the command voltages are the stator voltages, hence with the inverter
non linearities the stator voltages are corrupted and using the command values
instead of the real ones introduce a simplification that comes untrue as far as
the applied voltages are small. Therefore, when the applied voltages are small,
the effect of inverter non linearities cannot be neglected and the signal-noise
ratio increase, this is the reason why adaptive observers schemes proposed in
chapters 2 and 3 fail at low speed.

Beside the simulation of the inverter nonlinearities modeling these nonlinear-
ities gives the opportunities to understand their effects on the control system
and gives the opportunity to realize algorithms for their compensation, with
open loop or closed loop schemes.
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Figure A.1: 3-phase inverter with a pure inductive load.

A.1 Inverter Nonlinearities

A typical application based on Inverter is schematically reported in Figure
A.1. In this scheme the power electronic core of the inverter is realized by
means of MOS and free-wheeling Diodes, while the load is depicted as a pure
inductive load, of course instead of MOS as active device other power electronic
devices can be used, i.e. IGBT, PNP/NPN transistor, etc..., each one used for
a specific application, but for our modeling purpose the choice of the active
device is not important because only the main common effects of these devices
will be considered, so for simplicity from now on it will be referred to the MOS
as a general active device.

The inverter nonlinearities modeled are:

e Voltage drop on the MOS and on the free-wheeling Diode, from now on
for brevity called Diode.

e Switch ON/OFF time delay
e Dead-Times effects

Referring to the voltage drop on the MOS/Diode, the overall effect can be
modeled with a constant term, Vs and Vp respectively, plus a linear term
proportional with the flowing current (< RI), but for our modeling purposes
the linear term can be neglected due to the fact that these electronic devices
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Figure A.2: Switch ON/OFF phases of an Inverter.

have a very low resistance.

As depicted in Figure A.2, for each leg of the Inverter, and depending on the
current sign (i > 0: current flowing to the load, i < 0: current flowing to the
Inverter), the following four 4 switch ON/OFF configurations arise:

A) When the high-side command of the inverter is ON and a positive current
(¢ > 0) is present, the high-side MOS is ON and the current is flowing
on it. Therefore, the voltage applied to the load is Vpe — Vg instead of

B) When the low-side command of the inverter is ON and a positive current
(1 > 0) is present, the low-side Diode is ON and the current is flowing
on it. This configuration is active also during Dead-Time with the same
sign of the current. Therefore, the voltage applied to the load is —Vp
instead of 0.

C) When the high-side command of the inverter is ON and a negative current
(1 < 0) is present, the high-side Diode is ON and the current is flowing
on it. This configuration is active also during Dead-Time with the same
sign of the current. Therefore, the voltage applied to the load is Vpe+Vp
instead of Vpe.

D) When the low-side command of the inverter is ON and a negative current
(i < 0) is present, the low-side MOS is ON and the current is flowing on
it. Therefore, the voltage applied to the load is +Vjs instead of 0.
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Figure A.3: High-side and low-side commands during a PWM period along

with current sign.

Aside the voltage applied to the load as explained before, the following two
effects are modeled:

e Dead-Time (DT), that is the time on which both the high-side and the
low-side command are OFF to give to the MOS the opportunity of effec-
tively turn OFF before to switch on the other MOS and to prevent the
so called leg short-circuit. During this phase, as explained above, due to
the fact that the current is a state variable, and therefore it cannot be
discontinuous, it is flowing in the free-wheeling Diodes, which Diode is
determined by the current sign.

e Turn OFF /ON time delays (Tpnm, Tof i, Tonr, Toffr), that are the amount
of time which the MOS (H: high-side, L: low-side) take to effectively
turn OFF/ON, e.g. supposing the high-side MOS is ON and its switch
OFF is commanded, the MOS does not immediately turn OFF, but it
takes an amount of time to stop the current flowing on it, i.e. T, ¢p.

It is important to remark that Dead-time is introduced to take account for the
four turn ON/OFF switching times, and of course Dead-time must be greater
than the maximum between the turn ON and the turn OFF time. The Figure
A3 is reported to show how DT and Tonu, Tonr, Tofsm, Torsr interact during
a period of a PWM (Pulse-Width Modulation), supposing to have the DT
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contribute inserted just on the low-side commands.

Furthermore, given a desired duty-cycle (p = u*?/Vpe) which correspond to a
desired average voltage (u®?) over a single PWM period, the effective average
voltages applied to the load, depending on the current sign, are the following:

(i>0)

Ton - TO
Ton = (,0 - i L

) Trwym s Torf = TPwm — Ton
Tpwm

u= 1" (Vpe — Vs) + Tol) (=Vp) =u™ —du’" (A1)
Trwm PWM

w”P = pVpe

Sut — Tona — Tofrn Voo + TonVs + Topf VD

Trwm Trwm

(i <0)

2DT — T, + T,
Ton = (p + ALE L

) Tewy 5 Torf = Trwm — Ton
Tpwm

Ton (Ve + Vp) + TTi (+Vs) = u’ + du~

Trwm PWM
w = pVie

2DT +T,,, — T,
Su” =+ L —olfby, 4
TPWM TPWM

u =

TonVs + Toff VD

(A.2)
The equations (A.1)(A.2) are the command voltage for each phase of the in-
verter and are referred to the negative of the DC-link, therefore for each phase
k of the inverter the following voltage equation can be written as follows

+ou™ (Zk > 0)

—ou~ (Zk < 0) <A3>

* *

Furthermore, supposing to have a 3-phase system, it is possible to describe the
effect of the voltage noise due to the inverter nonlinearities on the star center
instead of on the negative of the DC-Link, and to do this it is necessary to
define the star center voltage of a 3-phase system, that is as follow

1 1 1
— - — - o 5 A4
" 3 k; c e 3 k; c o 3 k; c e ( )

Due to the fact that, if the three currents are not null at the same time, is not
possible that all the three currents (i, %,7.) have the same sign, the noise on
the star center is quantized with the following two values

<mN:-}:awﬂ:{%@&ﬁ—awm%@uh-%uw} (A5)
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Therefore, the noisy winding voltages can be expressed as follows

UpN = Upg — UN = ... = Upy — Ok, (kK =a,b,¢)
1
Upy = Upg — 3 Z Upg
3 k=a,b,c (A6)
1
Ouwk = 0Ukp — g k§céum

Again, due to the fact that, if the three currents are not null at the same time,
is not possible that the three currents (i, 4,7.) have the same sign, the noise
on the voltage winding is quantized with the following four values

1 1
b = { = 00"+ 8u0), ~ 5 (0w 4 00 4 0ut + 60), S ou + o)}
(A7)

The quantization values reported in (A.7) are changed during the zero-crossing
of the current for each phase, as shown on plot (d) in the figure A.4.
Furthermore, neglecting from the inverter nonlinearities analysis above the
effects of the voltage drop on the electronic devices (Vs = Vp = 0), and the
effects of the turn ON/OFF time delays (Lo = Torra = Tonr = Toprr = 0),
it is possible to have an estimate of the major contributes of the voltage noise
due to the inverter nonlinearities, in fact with this hypothesis is trivial to verify
that
dut =0

2DT (A.8)

ou~ >0

Trwm

The variables duq, duyg, e along with the currents iy, 7, 7. and the variables
Owas Owp, Owe are reported in the figure A.4, in a simulation scenario where the
inverter is trying to impose a sinusoidal current on the stator windings of a
PMSM to cope with a torque control task, and with a DC-Link voltage of
Vpe = 1070[V], with a PWM period of Tpyp = 400[us], and with a Dead-
Time of DT = 3[us], therefore the maximum noise on the voltage windings is
mar — (2/3)ou” = 10.7[V].

Furthermore, looking at the quantization levels reported in (A.7) and looking
at the plot (d) of the figure A.4 it is possible to give a description of one of
the three signals through a Fourier analysis, as follows

2 & [cos(km) — 14 cos(%™) —cos(&)\ [/ 2rkt
Sk = g(éu + du ); ( — sin 0y

(A.9)
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Where T7j is the period of the signal d,, that is the period of the current as
can be shown in the figure. It is straightforward to verify the for £ =1

2 3\ . (27t 2,4 . (27t
Owka = 3((5u +du") (W> sin < P > 3(5u + du” ) sin ( T ) (A.10)

The equation above shows that one of the most important contribute of the
inverter nonlinearities has the same frequency of the current flowing to the
load (w = 27f), i.e. in a PMSM, where the current is synchronous with the
rotor flux, in the rotating reference frame d, g we have a constant corrupting
contribute on the stator voltages. While high order harmonics (k > 1) due
to inverter nonlinearities can be seen through the current measure or through
the stator voltage applied to have a sinusoidal current, in the d, ¢ reference
frame the 0 frequency term (k = 1) cannot be measured, so the high order
noise harmonics can be canceled out enriching the state of the system, i.e.
introducing a number of oscillators equal to the number of harmonics that will
be compensated.

Another idea to exploit the analysis of the inverter nonlinearities, and espe-
cially this last Fourier analysis is that using the relation linking the amplitude
of the harmonics each other (A.9), through the estimation of one of the high
order harmonic is possible to estimate also that harmonics synchronous with
the current, otherwise unmeasurable.
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Figure A.4: (s) solid, (d) dashed , (o) dot-dashed. Inverter nonlinearities from
a real simulation scenario with Vpe = 1070[V], Trwar = 400[us|, DT = 3[us].
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Appendix B

PMSM Characteristics of

Functioning

Introduction

In this appendix the description of functioning characteristics of a PMSM are
reported. Theses characteristics are extensively treated in literature ([29]-[31])
and are based on the iso-Torque, iso-Voltage and iso-Current loci. These char-
acteristics give rise to the so called MTPA (Maximum Torque per Ampere),
FW (Field-Weakening) and MTPV (Maximum Torque per Voltage) loci, and
from these loci a polytopes, describing the area of correct functioning of the
motor in the Cartesian plane 74,7, can be drawn.



APPENDIX B. B.1 MTPA, FW, MTPYV Loci

FW B/

~ MTPA

\_’/
-4
-4 3 2 1 0 1 2 3 4
id

Figure B.1: Cartesian plane 7,4, %, with MTPA, FW and MTPV characteristics.
Torque (hyperbolic) loci are in blue (T > Tp), Voltage (elliptic) loci are green
(low speed, point B) and red (high speed, point P), Maximum Current (circle)

locus is in black.

B.1 MTPA, FW, MTPV Loci

The standard MTPA, FW and MTPV loci (see Figure B.1) can be derived
through the analytic manipulation of the stator current equations (1.21) and
the Torque equation (1.32), described in the permanent magnet aligned re-
ference frame (¢4 = Ppu,¢, = 0), and supposing steady-state conditions
(ig = iy = 0) as follows:

3 ) .
ip ((I)MZQ + (Ld - Lq)’Lqu) =T S Tmaa:
Ri 2 Ri 2 242 U2
(—ﬁ +qu'q> + (ﬁ +Ldid+(I>M) _ d 0 < Zmoa (B.1)
w w w w
ig+il=1<1I

— T max
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B.2 From Torque set-point to iq,iq Current set-points APPENDIX B.

The three equations above describe respectively the Torque (hyperbolic) loci
(blue lines in Figure B.1), the Voltage (elliptic) loci (green (low speed) and
red (high speed) lines in Figure B.1) and the Current (circle) loci (black line
in Figure B.1) in the ¢4, 7, plane.

The MTPA locus is obtained from the intersection of the Torque equation and
the Current equation, the FW locus is derived from the intersection of the
Voltage equation and the Current equation, the MTPV locus can be analyti-
cally derived from the Torque equation and the Voltage equation.

It is important to remark that the presence of the MTPV locus depends on the
value of the rotor flux, in fact if ®5;/Lg > I,4, the “end” point (high speed) of
the MTPYV is outside the maximum current circle, and the MTPV locus does
not exist. Whenever ®,,/Ly < I, the motor can magnetically work for all
speed, also for “infinite” speed, this is of course an abstraction.

When the motor work on the FW or the MTPV loci, the maximum motor
torque is not available (the maximum torque is reached in the point B in Fig-
ure B.1), despite to the FW characteristic, in the MTPV the i4 value increase,
therefore is erroneous to call Field-Weakening the MTPV characteristic.

Neglecting the resistive voltage drop (R = 0) the following three equations, for
the expression of i4 as a function of the i,, can be derived for the MTPA, the
FW and the MTPYV loci respectively:

Dy o\’
. _ _ ¥ 2 B.2
Ld, MTPA 2(La—Ly) (2(Ld — Lq)> + 2 (B.2)
L e [en® (Lt (et — [l (B.3)
&.EW Ly Ly (prd)2
. _ <I>7M 2Lq — Lq +
L4, MTPV = > To(La— L) .
B.4
((I)M 2Lq — Lq )2 _ 03/ — (Lqiq)? _ Le®% By
2 L¢(La — Lg) Lg Lg(Ld — L)

B.2 From Torque set-point to i4,7, Current set-
points

Usually, the motor is driven by a torque reference (7), also when a speed
control loop is present, i.e. the mechanical dynamic is driven by a torque
reference, therefore it can be useful to transform the torque reference into the
two 14,7, current references, especially when the inner current control loops
are present.
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APPENDIX B. B.2 From Torque set-point to iq,iq Current set-points

The algorithm to transform the Torque reference to the ig4, 7, current references,
fulfilling the MTPA, FW and MTPV loci, is a minimum problem, and can be
stated as follows:

) min(ys]) + min((1 — )@y [i])
) s = ((I)M,Ld,Lq,Zd,Zq) —T* <0
CQ) [Dm'm < Zd ) ([Dmm < 0)
) ’Ld < 0
) il < I3
) lull” < Upaa
Where, P) is the minimum problem and ¢;)...¢c;) are the constraints.
The function to minimize is composed by two terms, the first is related to the
minimization of the Torque error (called s), and the second is related to the
minimization of the norm of the current vector (||i||).
The constraint ¢y is a further constraint to impose to the iy current to be
greater than a minimum value (Ipy,,), to overcome the problem of the rotor
demagnetization with high negative 74 current.
The constraint ¢, is the Current loci in Figure (B.1), while the constraint c; is
the Voltage loci. The parameter 7 is a weight that allow to move the minimum
search from the search of Torque minimum (7 — 1) to the search of Current
minimum (n — 0).
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