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Abstract

The quest for universal memory is driving the rapid development of memories

with superior all-round capabilities in non-volatility, high speed, high endurance

and low power [23].

Memory is a vital part of every modern electronic device. As processors become

faster, the memory becomes the main bottleneck of performance, the slowest one

being the hard drive. The memory subsystem accounts for a significant cost

and power budget of a computer system. Current DRAM-based main memory

systems are starting to hit the power and cost limit. To resolve this issue the

industry is improving existing technologies such as Flash and exploring new ones.

Among those new technologies is the Phase Change Memory (PCM), which over-

comes some of the shortcomings of the Flash such as durability (about 104 times

more write cycles) and scalability. This alternative non-volatile memory technol-

ogy, which uses resistance contrast in phase-change materials, offers more density

relative to DRAM, and can help to increase main memory capacity of future sys-

tems while remaining within the cost and power constraints.

Chalcogenide materials can suitably be exploited for manufacturing phase-change

memory devices. However, their contradictory speed and stability properties

present a key challenge towards this ambition. As the device size decreases, the

phase-change mechanism changes from the material inherent crystallization mech-

anism (either nucleation- or growth-dominated), to the hetero-crystallization

mechanism, which resulted in a significant increase in PCRAM speeds. Reducing

the grain size can further increase the speed of phase-change. Such grain size

effect on speed becomes increasingly significant at smaller device sizes. Together

with the nano-thermal and electrical effects, fast phase-change, good stability

and high endurance can be achieved. These findings lead to a feasible solution to

achieve a universal memory. Ge2Sb2Te5 (GST) has been identified as the most

interesting material for industrial applications.

Charge transport in amorphous chalcogenide-GST used for memory devices is

modeled using two contributions: hopping of trapped electrons and motion of

band electrons in extended states. Crystalline GST exhibits an almost Ohmic

xiii
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I(V ) curve. In contrast amorphous GST (a-GST) shows a high resistance at low

biases while, above a threshold voltage, a transition takes place from a highly

resistive to a conductive state, characterized by a negative differential-resistance

behavior. A clear and complete understanding of the threshold behavior of the

amorphous phase not only plays a key role in the investigation of the transport

properties of GST, but is fundamental for exploiting such materials in the fabrica-

tion of innovative nonvolatile memories. The type of feedback that produces the

snapback phenomenon is described as a filamentation in energy that is controlled

by electron–electron interactions between trapped electrons and band electrons.

The model thus derived is implemented within a state-of-the-art simulator. An

analytical version of the model is also derived and is useful for discussing the

snapback behavior and the scaling properties of the device.



Sommario

Lo sviluppo dei sistemi di memoria di futura generazione è guidato principalmente

dalla ricerca di una tecnologia universale in grado di superare quelle attuali in

ogni loro specifica di funzionamento, dalla ritenzione di dato alla velocità di ac-

cesso, migliorando la durata e riducendo nel contempo il dispendio energetico.

Le memorie costituiscono una parte vitale per tutti i dispositivi elettronici mod-

erni, il cui sviluppo ha portato alla creazione di processori in grado di elaborare

quantità di dati sempre più ampie, tali da costringere ad una riorganizzazione

della gerarchia delle memorie, divenute l’attuale limite in termini di velocità di

calcolo per le odierne CPU, a partire dai dischi rigidi, ovvero gli attuali compo-

nenti di memoria più lenti ancora in uso.

Il sottosistema delle memorie assorbe una parte significativa delle risorse del

macro sistema costituito dal calcolatore, sia in termini di costi che di potenze

dissipate, tanto da aver quasi raggiunto il limite tecnologico nel caso delle odierne

memorie di tipo DRAM. Al fine di risolvere tale problematica, le industrie hanno

focalizzato la loro attenzione nello sviluppo dei dispositivi Flash e nelle ricerca di

nuove soluzioni in grado di superare i limiti imposti dall’attuale tecnologia basata

su transistor a gate flottante. Tra queste, la più promettente sembra essere quella

delle memorie a cambiamento di fase (PCM), in grado di colmare anche i limiti

mostrati dalla tecnologia Flash nell’ambito della durata e scalabilità.

Inoltre questa tecnologia alternativa di memorie non volatili, che sfrutta la dif-

ferenza di resistenza apprezzabile in determinati materiali in grado di cambiare

fase, offre una densità di implementazione delle singole celle in grado di superare

anche quella dei dispositivi DRAM ad elevate prestazioni, aprendo lo scenario a

futuri sistemi ad elevata capacità di immagazzinamento dei dati pur mantenendo

costanti i costi e l’energia dissipata.

I materiali che consentono di realizzare dispostivi a cambiamento di fase pilotato

elettricamente appartengono alla famiglia dei calcogenuri. La possibilità di scal-

ing di queste future memorie PCRAM risiede nell’acquisizione della tecnologia

per controllare il meccanismo di cristallizzazione che, a seguito della riduzione

delle dimensione diventa più rapido, come prospettato, ma nel contempo incre-

xv
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menta anche la sua instabilità passando da un meccanismo di cristallizzazione

inerte ad uno di cristallizzazione eterogenea.

Tra i diversi composti calcogenuri quello attualmente identificato come soluzione

di maggiore interesse per applicazioni industriali è il Ge2Sb2Te5(GST ).

Il trasporto di carica all’interno di dispositivi di memoria realizzati con tali mate-

riali è stato modellato considerando l’azione di due contributi differenti: hopping

di cariche intrappolate e moto di elettroni liberi in stati estesi. Il GST mostra

un comportamento elettrico pressoché Ohmico in fase cristallina mentre, in fase

amorfa, risulta essere poco conduttivo per basse correnti fino al superamento di

una tensione di soglia oltre la quale si assiste al passaggio da uno stato alta-

mente resistivo ad uno altamente conduttivo, caratterizzato da un andamento a

resistenza differenziale negativa (NDR).

L’accurata interpretazione di tale fenomeno costituisce una fase fondamentale

non solo per la comprensione del trasporto di carica in questo tipo di materiali

ma anche per la valutazione di tali composti nella fabbricazione di memorie non

volatili innovative.

Il meccanismo retroattivo che induce il fenomeno di snapback viene descritto come

filamentazione in energia controllata dalle interazioni tra elettroni liberi ed elet-

troni intrappolati. Il modello fisico ricavato è stato implementato all’interno di

un simulatore di dispositivi di ultima generazione ed è stato in seguito riprodotto

in una versione analitica semplificata in grado, però, di permettere una prima

analisi del comportamento elettrico del dispositivo e delle sue proprietà di scaling.



Introduction

Current computer systems consist of several cores on a chip, and sometimes

several chips in a system. As the number of cores in the system increases, the

number of concurrently running applications (or threads) increases, which in turn

increases the combined working set of the system. The memory system must be

capable of supporting this growth in the total working set. For several decades,

DRAM has been the building block of the main memories of computer systems.

However, with the increasing size of the memory system, a significant portion of

the total system power and the total system cost is spent in the memory system.

For example, Lefurgy et al. reported that in a commercial server equipped with

16 processors and 128 GB main memory (e.g., IBM eServer machine), the pro-

cessors are responsible for only 28% of the entire energy consumption while the

memory for 41% [47].

Therefore, technology researchers have been studying new memory technologies

that can provide more memory capacity than DRAM while still being competi-

tive in terms of performance, cost, and power [63].

Two promising technologies that fulfill these criteria are Flash and Phase Change

Memory(PCM). Flash is a solid-state technology that stores data using memory

cells made of floating-gate transistors. PCM stores data exploiting the property

of chalcogenide glass to switch between two states, amorphous and crystalline,

with the application of heat using electrical pulses. While both Flash and PCM

are much slower than DRAM, they provide superior density relative to DRAM.

Therefore, they can be used to provide a much higher capacity for the memory

system than DRAM within the same budget.

Chalcogenide-GST materials (e.g., Ge2Sb2Te5 ) can suitably be exploited for

manufacturing phase-change memory devices [13]. The principle of chalcogenide

memory was first proposed in the late 1960s by Ovshinsky [55]. While crystalline

GST exhibits an almost ohmic I(V ) curve, amorphous GST shows high resistance

at low biases, whereas, above a threshold voltage Vth, transition takes place from

a highly resistive to a conductive state. The transition is characterized by a swift

rise in the current, along with a voltage snapback, leading to an S-shaped I(V )

xvii
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curve. Such a behavior is sketched in Fig. 1. It is useful to remind that the

device is current driven, so the experiments actually yield one-valued N-shaped

V (I) curves. The difference in resistance between the two states is typically about

five orders of magnitude and can be used to infer logical states of binary data.

Explaining the negative differential resistance of the device is of utmost impor-

tance for exploiting the chalcogenide materials in the fabrication of alternative

nonvolatile memories. In fact, such an explanation provides the tool for modeling

the threshold behavior, the low-current temperature dependence, the geometrical

scaling properties of the device, and other important design properties.

In the last years, different interpretations of the voltage snapback effect have been

given in the literature. In the frame of a band-gap model for electric conduction

in amorphous- GST materials, the switching mechanism has been related to the

competing role of impact ionization and recombination. An alternative interpre-

tation based on trap-limited conduction indicates the field-assisted hopping and

the spatial non-uniformity of the electric field due to carrier heating as the effects

mainly responsible for the snapback behavior [32],[31].

The analysis of the negative differential resistance and its dependence on the de-

vices physical and geometrical parameters is open to further contributions. This

paper examines some aspects of the problem, starting from the relation between

the snapback effect and a number of generation–recombination phenomena. The

model that is worked out is a generalization of that presented in [12], where only

the hopping processes through localized states, due to a combination of tunnel-

ing and thermal excitation, were considered. As the initial and final states of

the hopping processes belong to a trap, the electrons involved are termed trap

electrons. Here, the transport model is enriched by considering a second con-

tribution to conduction due to the electrons occupying extended states (termed

band electrons), acting in parallel to the contribution of the hopping processes

of the trap electrons. Although the band electrons have a much higher mobility

than the trap electrons, the difference in mobility is not sufficient to explain the

negative differential resistance. The latter requires the occurrence of a specific

feedback mechanism inside the device, which is analyzed by combining the dif-

ference in mobility with the sharpness of the extraction mechanism responsible

for the trap-to-band transitions of the electrons.

In addition to phonon absorption, the possible extraction mechanisms are those

due to the electric field (impact ionization and field emission), and a cooperative

effect of the band electrons that act onto the trap electrons through electronelec-

tron interactions. The third effect is similar to impact ionization but requires

much lower energy of the band electrons. As the average electric field within the

device strongly decreases when snapback occurs, a feedback due to impact ion-

ization and/or field emission would not be able to provide a negative differential

resistance. As a consequence, the snapback effect cannot be ascribed entirely to
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the intensity of the electric field acting on the trapped electrons. The coopera-

tive effect previously cited is instead a good candidate to explain the negative

differential resistance. It will also be shown that the intensity of the field plays a

role anyhow, because it enhances the trap electron mobility in the subthreshold

region.

The model explains the snapback event, even in the simple case in which the

device is 1-D and spatially uniform. It provides macroscopic equations based on

a few parameters and, as shown below, lends itself to fitting experimental data

and to incorporating the equations into commercial simulation tools. Part I de-

scribes the main parameters used for the description of transport and provides

the macroscopic models for the generation–recombination mechanisms. Part II

illustrates the simplified analytical model of the device implemented into a state-

of-the-art device simulator: the feedback mechanism is analyzed and validated

against experiments.





Part I

VOLTAGE SNAPBACK IN

AMORPHOUS-GST

MEMORY DEVICES
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Chapter 

Structural Characterization

The idea of phase-change recording, as suggested by Ovshinsky [55], is based

on the differences in electrical and optical properties between amorphous and

crystalline phases of Te-based chalcogenides for data storage. The process of

phase-change recording is quite simple.

When a melt is cooled down slowly, such that the structure always remains in

thermal equilibrium, upon reaching the crystallization temperature the material

crystallizes, i.e. is transformed into a solid state with a well-defined periodic

structure. If, on the other hand, the cooling rate is fast, then at a certain tem-

perature the viscosity of the liquid increases to a degree such that the structure

can no longer relax following the changes in temperature; one obtains a super-

cooled liquid and then a glass. In contrast to the crystallization temperature, the

glass-transition temperature is not well defined. A range of temperatures exists

and the particular temperature of the glass transition depends on the cooling

rate.

Once in the solid state, the glass, if kept at a temperature close to the glass-

transition temperature, crystallizes. On the other hand, rapid heating of the

crystalline material to a temperature above the melting point and subsequent

rapid cooling (quenching) can produce a glassy state. This glass-formation dia-

gram is demonstrated by figure 1.1, where Tg is the glass-transition temperature

and Tm the melting point.

The material can also be heated by light. Exposure of an amorphous material

to a laser light (or an electrical heater) that heats it above the glass-transition

temperature results in crystallization while short and intense laser pulses melt

the material and (provided the heat-dissipation rate is fast enough) an amor-

phous recorded bit is formed. An ideal tool to investigate the local structure of

a material and its changes on the atomic scale independent of the state of the

material (crystalline or amorphous) is X-ray absorption fine-structure (XAFS)

3
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Figure 1.1: Schematic description of the phase-change process in chalcogenide
materials.

spectroscopy.

Extended X-ray absorption fine structure (EXAFS) allows one to obtain infor-

mation about the local structure around selected chemical species, such as the

average coordination number, the bond lengths, the chemical nature of the neigh-

boring species, as well as the bond-length disorder parameter, or mean-square

relative displacement (MSRD). The technique is selective to the absorbing atom,

which allows one to probe the local structure around different constituent ele-

ments independently.

X-ray absorption near-edge structure (XANES), which involves multiple scatter-

ing, additionally allows one to probe the local arrangement of atoms on a scale

somewhat beyond the first-nearest neighbors, in particular, it is sensitive to the

mutual arrangement of the neighboring atoms in space, i.e. includes bond-angle

information. As XANES features are also a consequence of transitions from oc-

cupied core states to unoccupied conduction-band states, the spectra also contain

information about the density of unoccupied conduction-band states. It is worth

mentioning that recent advances in theory have made it possible to simulate

EXAFS and XANES spectra with good accuracy [5].

1.1 Crystalline State

The stable crystal structure of GST is hexagonal [76, 53, 58]. Thin films, however,

crystallize into a different structure. Recent X-ray diffraction (XRD) studies have

lead to a conclusion that thin GST layers crystallize into the rock-salt structure

with Te atoms occupying sites on one face-centered cubic (fcc) sublattice with Ge
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Figure 1.2: Schematic chemical structure of metastable crystalline Ge–Sb–Te
as reported by X-ray diffraction measurements.

and Sb randomly forming the other fcc sublattice (20% of the sites being vacant)

(Fig. 1.2). A lattice parameter of 6.02 Å was reported. The isotropic atomic

displacements B0, which is a measure of atomic displacements from the ideal

crystallographic positions due e.g. to thermal vibrations, found via the fitting

pro- cess were 1.2 Å2 and 3.2 Å2 for the Te, and Ge(Sb) species, respectively,

which correspond to atomic dis- placements of 0.1 Å and 0.2 Å for the Te and

Ge(Sb) species, respectively.

It was suggested that the cubic structure of GST (which is rather isotropic and

hence more similar to the amorphous structure than any other crystal structure)

was the reason for the high-speed switching and stable performance.

Here, the recent efforts to investigate the local structure of GST using XAFS are

summarized. Measurements were performed at BL12C at the Photon Factory

(Tsukuba, Japan) and BL01B1 at SPring8 (Hyogo-ken, Japan). The Fourier-

transformed (FT) spectra for the Ge and Te edges of GST are shown in figure 1.1.

It should be noted that the r -space data shown in figure 1.1 are not real-space

radial distribution function data but the magnitude of the Fourier transforms

(FTs) of the k-space EXAFS data. The peak positions in the figure are shifted

from the actual interatomic distances toward lower r because of the photoelectron

phase shift δ(k) in the phase factor of the EXAFS oscillations. The spectra

measured at the Sb edge did not show any significant variation between the two

states and are not shown here. Details of the data analysis can be found elsewhere

[40]. The main results for crystalline GST are summarized below. Two types of

bond lengths exist, namely shorter bonds and longer bonds for both Te–Ge and
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Figure 1.3: Fourier-transformed Ge and Te K-edge EXAFS spectra of
Ge2Sb2Te5 measured for both the crystalline and amorphous states

Te–Sb (for Te–Ge: 2.83 ± 0.01 Å , and 3.2 ± 0.3 Å and for Te–Sb: 2.91 ± 0.01

Å and 3.2 ± 0.3 Å ). It should be noted here that the observation of splitting

of the bond lengths into two groups is very similar to the case of GeTe. The

uncertainties for the longer bonds are rather large. For this reason no definitive

conclusions could be drawn about the longer bonds. Thus, what follows shall

exclusively concentrates on the shorter bonds. It should be noticed here that

another commercially used material, AIST, also possesses subsets of shorter and

longer bonds.

No Sb–Ge bonds were detected, in agreement with the fact that Sb and Ge do

not intermix in the solid phase but a second-nearest-neighbor Te–Te peak at 4.26

Å has been clearly observed.

It is worth noting that the mean-square relative displacements (MSRD) of the

Te–Ge bond length obtained in EXAFS are considerably lower (0.02 Å2) than

the isotropic atomic displacements of single atoms obtained from XRD (0.04 Å2).

This result demonstrates that Ge and Sb atoms do not deviate from the ideal

rock-salt positions in a random way but in a strongly correlated manner with

respect to the neighboring Te atoms, i. e. the crystalline structure is in fact a

distorted rock-salt-like structure similar to the case of the ferro-electric GeTe.

The off-center location of the Ge atoms means that there is a net dipole moment

and suggests that GST is a ferroelectric material.

1.2 Amorphous State

It was found that both Te–Ge and Te–Sb bonds get shorter (2.61 Å and 2.85 Å

respectively) and stronger upon amorphization, as evidenced by figure 1.1. At

the same time, the Te second-neighbor peak becomes considerably weaker but

does not disappear completely. The MSRD value de- creases from 0.02 Å2 in the
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crystalline state to 0.008 Å2 in the amorphous state. Such a behavior is highly

unusual for typical three- dimensional covalently bonded solids as, due to the an-

harmonicity of interatomic potentials, disordering typically results in an increase

of the bond lengths and the bond-length disorder. The obtained results reminds

one of the case of molecular solids where the presence of intermolecular and in-

tramolecular bonds determines the crystallization–amorphization behavior. In

the current case, a bond-strength hierarchy also exists and the following model

of structural re- arrangement can be envisaged. Upon melting, the longer Te–Ge

(and Te–Sb bonds) are broken and, as a result, the shorter bonds become even

shorter and stronger, i.e. the amorphous phase is locally more ordered than the

crystalline phase. Raman scattering experiments provided further grounds for

this model, namely, the Raman measurements for both GeTe and GST showed

that the spectra for the crystalline films are dominated by a peak located at lower

wavenumbers, i.e. “mode softening” takes place upon crystallization. This situa-

tion can be compared with the case of Se or Te when the interchain interaction is

weakened, giving rise to a Raman peak located at higher wave number. It should

be mentioned that an increased local bond order in the amorphous phase was

also observed for selenium.

To get further insight into the structure of the amorphous phase XANES simula-

tions have been performed, founding that the best agreement with experiment is

obtained when Ge is allowed to acquire its preferred tetrahedral surrounding in

the amorphous phase. This structural transformation is illustrated in fugure 1.4

where a Ge atom is shown within the fcc sublattice formed by Te atoms. The Ge

atoms occupy octahedral and tetrahedral symmetry positions in the crystalline

and amorphous states, respectively. The stronger covalent bonds are shown with

thicker lines than the weaker bonds (Fig. 1.4 left). An intense laser pulse induces

rupture of the weaker bonds and the Ge atom flips into the tetrahedral position

(Fig. 1.4 right). An alternative description of the structural transforma-tion

upon melting is an umbrella-flip distortion resulting in disordering of the Ge sub-

lattice. Notice, that the three covalent bonds remain intact. This conservation

of the system of stronger covalent bonds is crucial: the material is not molten in

a conventional sense.

Support for the aforementioned transformation comes from an estimate of the

Ge–Te distance from the crystallographic data. Using a lattice parameter of

GST obtained by X-ray diffraction, the Ge–Te distance (the Ge atoms being in

a tetrahedral symmetry position) can be easily calculated to be 2.61 Å , i.e. ex-

actly the value obtained from the EXAFS analysis. This consistency between the

results obtained using two different structural techniques is the ultimate proof of

the suggested structural modification as well as the generality of the structural

modification in GeTe-based alloys.

It is interesting to note that very similar bond lengths for the crystalline and
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Figure 1.4: Structural modification of GST upon transformation from the crys-
talline (left) to amorphous (right) state.

Figure 1.5: Intermediate-range-order crystallization–amorphization transition
upon changes in GST.

amorphous states were also observed for the binary GeTe, indicating that it is

the GeTe component of the quasibinary GeTe–Sb2Te3 that is mainly responsible

for the observed phase transition.

Sb-edge XANES does not exhibit any significant changes upon amorphization

(except for the Sb–Te bond shortening) implying that the local arrangement of

atoms around Sb remains essentially unchanged in accordance with the above

model. These results suggest that the Sb atoms mainly play the role of enhanc-

ing overall stability of the metastable crystal structure by participating in the

overall electron balance.

1.3 Intermediate Structure Changes

The structural change on an intermediate-range-order scale can be viewed as il-

lustrated in figure 1.5. After rupture of the weaker Ge–Te bonds the Ge atoms

flip into the tetrahedral symmetry position forming the GeTe4 tetrahedra. At the

same time, the broken weaker Ge–Te bonds no longer counterbalance the Sb–Te
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bonds on the opposite site and, as a result, the Sb–Te bonds become structure-

determining.

The structure relaxes making the Sb–Te bonds shorter (just as in amorphous Se

the intrachain bonds get shorter upon amorphization). The Sb–Te bond short-

ening upon amorphization has indeed been observed experimentally [40]. This

can be interpreted as the local phase separation into GeTe and Sb2Te3 phases.

Finally, the structure relaxation causes a distortion in the Te fcc sublattice. The

well-defined local (single-state) structure, without long-range periodicity, of the

amorphous state is the reason for the overall stability of the GST-based optical

media.





Chapter 

Transport Mechanism

Chalcogenide materials have recently been regarded as the most promising for im-

plementing next-generation memory due to their ability to repeatedly transform

between glassy (disordered) and crystalline (ordered) atomic structures. Thus, in

a chalcogenide memory cell, the data can be stored in a flat chalcogenide layer,

applying heat onto nanoscale memory grain. For example, optical memory disks

use laser light to convert small portions of a thin chalcogenide film between the

high and low reflective states. On the other hand, phase change memory (PCM)

uses a voltage bias to convert the material between the high and low resistive

states. PCM stores data in a smaller area and with higher speeds for both read

and write processes than the optical memory disks.

PCM is an emerging nonvolatile memory technology with the capability of ran-

dom access memory, it is sometimes referred as unified memory. Applications

explored for this technology span from wireless, embedded systems [41] to solid

state storage, [15] automotive, and space applications. Most recently, usage of

PCM in computer applications was suggested as Storage Class Memory (SCM)

[10].

Large, up to 1 gigabyte, memory arrays with PCM elements have been demon-

strated for 180 nm, [8] 90 nm, [54, 57] and 45 nm [68] technology nodes. In

PCM, each individual element is in series with an access/selector device. Both

MOS-based and BJT/diode-based selectors have been integrated with PCM.

Recently, PCM was integrated with a chalcogenide based thin film selector to

form PCMS arrays, opening a path for 3D stackable cross point phase change

memory. Understanding and optimizing the material properties of chalcogenide

nanoglasses in PCMS cells is a key enabler for this promising nonvolatile memory

technology [34].

The operation of PCM depends on charge transport in their constituent inclu-

11
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sions of chalcogenide glasses. When the device is in the reset state, the electrical

conduction can be non-ohmic under practical voltages and temperatures. This

non-ohmicity provides a way of supplying energy to the device faster than ohmic

conduction and it needs to be properly understood in order to improve future

device parameters. The goal of this chapter is to recall the established physics of

chalcogenide glasses and convey a broad picture of different mechanisms that are

relevant to the problem of non-ohmic conduction in these materials, providing a

starting point for the additional studies that are required to better understand

charge transport in PCM glasses.

The commonly observed non-linear current-voltage (IV ) characteristics (above

∼ 103−104 V/cm) are often attributed to the Poole-Frenkel (PF) effect after the

classical work [30, 26, 62] suggesting their plausible interpretation. An experi-

mental signature of PF conduction is a region of linearity in the plot of ln(I/I0)

vs. either
√
V or V where I0 is the pre-exponential factor. The underlying

mechanism is commonly related to the field-induced increase in free carrier con-

centration, as reflected in [16, 43, 9, 74] (except Refs. [32, 31], which proposes

hopping conduction).

Although there is general agreement about the observed PF-type of non-ohmicity

and the fact that I0 ∝ exp(−Ea/kT ), where Ea is the activation energy, k is the

Boltzmann constant, and T is the ambient temperature, particular features ob-

served and especially their interpretations vary dramatically between researchers.

Some of them present the observed non-ohmicity as ln(I/I0) ∝
√
V (e.g. Refs.

[67, 16]) , while others describe their observations as ln(I/I0) ∝ V (e.g. Refs.

[43, 74, 32, 38, 3]). Furthermore, some of the latter articles ([38, 3]) point at two

different domains in the IV data which exhibit different proportionality coeffi-

cients and temperature dependencies.

2.1 Survey of Conduction Mechanisms

Although the literature on transport phenomena in disordered materials is enor-

mously rich, there are still many open questions in this field due to various prob-

lems specific to such materials. In contrast to ordered crystalline semiconductors

with well-defined electronic energy structures consisting of energy bands and en-

ergy gaps, the electronic energy spectra of disordered materials can be treated

as quasi-continuous. Instead of bands and gaps, one can distinguish between

extended and localized states in disordered materials. In an extended state, the

charge carrier wavefunction is spread over the whole volume of a sample, while

the wavefunction of a charge carrier is localized in a spatially restricted region

in a localized state, and a charge carrier present in such a state cannot spread

out in a plane wave as in ordered materials. Actually, localized electron states

are known in ordered systems too. Electrons and holes can be spatially localized
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when they occupy donors or acceptors or some other impurity states or structural

defects in ordered crystalline materials. However, the localized states usually ap-

pear as δ-like discrete energy levels in the energy spectra of such materials. In

disordered semiconductors, on the other hand, energy levels related to spatially

localized states usually fill the energy spectrum continuously. The energy that

separates the extended states from the localized ones in disordered materials is

called the mobility edge. To be precise, we will mostly consider the energy states

for electrons in the following. In this case, the states above the mobility edge

are extended and the states below the edge are localized. The localized states lie

energetically above the extended states for holes. The energy region between the

mobility edges for holes and electrons is called the mobility gap. The latter is

analogous to the band gap in ordered systems, although the mobility gap contains

energy states, namely the spatially localized states. Since the density of states

(DOS), defined as the number of states per unit energy per unit volume, usually

decreases when the energy moves from the mobility edges toward the center of the

mobility gap, the energy regions of localized states in the vicinity of the mobility

edges are called band tails. We would like to emphasize that the charge trans-

port properties depend significantly on the energy spectrum in the vicinity and

below the mobility edge (in the band tails). Unfortunately this energy spectrum

is not known for almost all disordered materials. A whole variety of optical and

electrical investigation techniques have proven unable to determine this spectrum.

Since the experimental information on this spectrum is rather vague, it is difficult

to develop a consistent theoretical description for charge transport ab initio. The

absence of reliable information on the energy spectrum and on the structures of

the wavefunctions in the vicinity and below the mobility edges can be considered

to be the main problem for researchers attempting to quantitatively describe the

charge transport properties of disordered materials.

There are several additional problems that make the study of charge transport

in disordered materials more difficult than in ordered crystalline semiconductors.

The particular spatial arrangements of atoms and molecules in different samples

with the same chemical composition can differ from each other depending on

the preparation conditions. Hence, when discussing electrical conduction in dis-

ordered materials one often should specify the preparation conditions. Another

problem is related to the long-time relaxation processes in disordered systems.

Usually these systems are not in thermodynamic equilibrium and the slow relax-

ation of the atoms toward the equilibrium arrangement can lead to some changes

in electrical conduction properties. In some disordered materials a long-time elec-

tronic relaxation can affect the charge transport properties too, particularly at low

temperatures, when electronic spatial rearrangements can be very slow. At low

temperatures, when tunneling electron transitions between localized states dom-

inate electrical conduction, this long-time electron relaxation can significantly
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affect the charge transport properties.

In this section DC conduction in chalcogenide glasses has been analyzed, indi-

cating the shortcomings in the current state of understanding, and suggesting

avenues for further investigation. A brief overview of the pertinent experimental

data to provide some context for the key observations will be presented, followed

by a review of the physics of localized states that underlies the unique prop-

erties of chalcogenide glasses. This section will provide a survey of conduction

mechanisms that may explain the observed non-ohmic IV data, including: 1)

the original Poole-Frenkel mechanism; 2) Schottky decrease in interfacial barrier

near device electrodes; 3) field-induced delocalization of shallow band tail states

near the mobility edges; 4) space charge limited (injection) currents; and 5) field

effects in hopping conduction. Here, the possible mechanisms of DC conduction

in chalcogenide glasses will be discussed, including bulk materials and thin films

down to the nanometer scale. Finally, the summary of the candidate mechanisms

will be followed by the discussion of their validity and implications, along with

new indicative facts that are required to further evaluate these mechanisms.

Table 2.1: Table of conduction mechanisms along with the

related analytical expression and estimated field range of ap-

plicability. The current I is given in terms of the electric field

E , with the pre-exponential I0 ∝ (−Ea/kT ).

Mechanism ln(I/I0)
Field Range

(V/cm)

Poole-Frenkel
2
kT

√
q3E
ε

104 − 105

1-center activation

Poole-Frenkel aqE
kT < 104

2-center activation

Poole-Frenkel ~q2E2
3m

(
1
kT + 1

kTph

)2
> 105

1-center tunneling

Schottky
1
kT

√
q3E
kT

N/A
emission

Delocalization (
~qE√
m

)2/3 (
1
kT −

1
E0

)
∼ 105

of tail states

Continued on next page
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Table 2.1 – continued from previous page

Mechanism ln(I/I0)
Field Range

(V/cm)

Space-charge
εE

2πLqgkT ∼ 104

limited currents

Optimum channel
−
√

8Lλ
α + 1.6

√
qEL
kT

< EF
qL

hopping (thin films)

Optimum channel
−
√

8λEF
αqE � EF

qL
field emission

Percolation
η
√

LcqE
kT

> 104

band conduction

Percolation

η
√

LcqE
kT + Lc−L

2rc

[
ln
(

2Vmaxrc
kTL

)
+ 1
]

> 104band conduction

in thin films (L < Lc)

Crystalline
2ε
kT

√(
rx∆
q

)3
E 105 − 106

inclusions – I

Crystalline
εr2xE∆
qkT

< 105

inclusions – II

The parameters are defined as follows: k is the Boltzmann constant, T is

the temperature, q is the elementary charge, ε is the dielectric constant,

a is the inter-center distance, ~ is the reduced Plancks constant, m is the

effective carrier mass, kTph ∼ 0.01 − 0.03 eV is the characteristic phonon

energy, g = g0 exp(−E/E0) represents the characteristic decay of the density

of tail states dependent on E0, where E is the energy, L is thickness, λ ≈
− ln(g0kTaL

2) � 1 (here, g0 is the density of localized states), α is the

electron localization radius, EF is the Fermi energy, η ∼ 1 is a numerical

factor, Lc ∼ 10 nm is the percolation cluster correlation radius, rc is the

order parameter, rx is the crystallite radius, Vmax is the maximum percolation

transport barrier, and ∆ ∼ 0.4 eV is the band offset between crystalline and

amorphous phases.
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Figure 2.1: Left: Schematic illustration of the field induced decrease δ in ac-
tivation energy of a coulombic center. Dashed lines show zero field case, tilted
red line represents the electric potential of a uniform field. Gray arrow shows
vibration of the electron energy E due to electron-phonon coupling. Right: Field
induced decrease δ in activation energy of a pair of coulombic centers

2.1.1 Poole-Frenkel Effect

The originally suggested physics of the PF effect is the decrease in the ioniza-

tion energy of a single coulombic potential well in the direction of an applied

field (explaining ln I ∝
√
V ) or that of a pair of coulombic centers (explaining

ln I ∝ V ), as schematically illustrated in figure 2.1.1. The corresponding barrier

change δ increases the center ionization rate, proportional to which are the free

carrier concentration and the activated electric current I/I0 ∝ exp(δ/kT ). The

underlying assumption of a coulombic attractive potential is justified by its abil-

ity to give the required decrease in the ionization energy δ ∝ E or δ ∝
√
E . It is

worth noting that as originally proposed [34, 30], this mechanism was meant to

explain the data on noncrystalline materials. Surprisingly, the data on non-ohmic

conduction in doped crystalline semiconductors are typically described by other

dependencies [2], despite the fact that the coulomb nature of the defects therein is

well established. Therefore, the empirically observed relevance of PF-type depen-

dencies to noncrystalline materials may suggest that their nature is more related

to disorder effects rather than individual or pairs of coulomb centers. From that

point of view, the PF mechanism may be significantly over-emphasized.

For the case of two centers separated by distance 2a in the electric field of strength

E , the electron energy along the axis is given by

U(x) = − q2

ε(a− x)
− q2

ε(a+ x)
− Eqx , (2.1)
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where q is the electron charge and ε is the dielectric permittivity. The position

of the lowest barrier maximum, dU/dx = 0 is determined from the equation

x̃ = Ẽ
(
x̃2 − 1

)2
where x̃ =

x

a
, Ẽ =

E
q/4a2ε

. (2.2)

The original PF result x =
√
q/εE , δ =

√
4q3E/ε follows from Eqs. 2.1 and

2.2 when Ẽ � 1 (i.e. F � q/4εa2); however, it remains approximately valid

numerically even at Ẽ = 1. The characteristic field is q/4a2ε ∼ 104 V/cm for the

typically assumed [51, 32, 31] center concentration of ∼ 1018cm−3.

In the opposite limiting case of ‘weak’ fields, E � q/4εa2, Eqs. 2.1 and 2.2

yield x = a and δ = qEa, corresponding to the so called modified PF effect with

ln(I/I0) ∝ V emphasized in Ref. [32, 31].

The critical field q/4εa2 also implies that the notion of ‘weak’ or ‘strong’ fields

can be replaced by condition of low or high defect density (as related to a). Thus,

for a given field, the PF effect is dominant for a high defect concentration while

the modified PF effect pertains to a low defect concentration. In any event, it

has been observed that significant deviations from the standard PF results can

be expected under low fields E � 104 V/cm. This significantly narrows the ap-

plication of the modified PF mechanism in Refs. [32, 31] and [46], also ruling out

its role in the switching field region of E & 105 V/cm.

The two-center model that predicts ln(I/I0) ∝ V remains critically vulnerable

to effects of fluctuations. It is worth noting in this connection that the work in

Refs. [32, 31] and [46] was limited to a system of equidistant coulombic centers.

Random fluctuations in their concentration (present in all systems of centers

in solids so far explored) will generate random variations of activation energies

translating into exponentially broad distributions of ionization rates; variations

in center energies will make this distribution even broader. This results in lo-

cal carrier concentrations that vary exponentially between different locations. A

proper framework for analyzing these types of systems would be percolation the-

ory [71], which is yet to be applied to PF-type conduction (cf. however Ref. [39]).

Quantum tunneling imposes limitations on the activation PF effect. The corre-

sponding analysis by Hill [30] neglects the role of atomic vibrations on tunneling.

A more recent analysis [2] that accounts for electron-phonon interactions results

in a picture where the electron energy level moves up and down following os-

cillations of the atomic system to which it is coupled. As a result, the electron

tunneling becomes most likely when the electron energy is significantly above

its average position (Fig. 2.1.1), and the chief exponential term in non-ohmic

current can be written as follows

ln(I/I0) =
E2q2~

3 (kT ∗)2m
with

1

kT ∗
=

1

kT
+

1

kTph
, (2.3)

where m is the effective mass of a localized charge carrier, which is taken close

to the true electron mass for simplicity [45] and kTph is on the order of the
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characteristic phonon energy (∼ 0.01− 0.03 eV).

It was shown [2] that the standard PF results becomes invalid and the effect is

better described by Eq. 2.3 when

E > Et ≡
√

2mE

~2

kT ∗

q

(
kT ∗

E

)1/3

, (2.4)

where E is the ionization energy (≈ 0.4 eV in Ge2Sb2Te5). Using the above

numerical parameters, one can estimate Et ∼ 105 V/cm. The dependence in Eq.

2.3, rather than the standard PF law, was experimentally confirmed for many

crystalline semiconductors even for fields below 105 V/cm (see Chapter 10 in Ref.

[2]).

Overall, we conclude that, for the case of GST glasses, the standard PF expres-

sion ln(I/I0) ∝
√
E can apply in the field range of 104 − 105 V/cm. For weak

fields, E � 104 V/cm, the modified PF effect ln(I/I0) ∝ E can give a more ade-

quate description, however, the effects of fluctuations in the local concentration

of centers must be taken into account. For the high field region, E > 105 V/cm,

quantum effects lead to ln(I/I0) ∝ E2, predicting an increase in non-ohmicity

in the vicinity of the switching field. The above boundaries can be numerically

different for other chalcogenide glasses; however, the hierarchy of regimes remains

the same, as illustrated in figure 2.1.1. Experimental data [29, 69, 14] has exhib-

ited a sharp increase in current when the field is very close to its switching value

3×105 V/cm, however, it would be premature at this stage to attribute it to Eq.

2.3. Experimental verification of the temperature dependence in Eq. 2.3 could

clarify this issue.

2.1.2 Schottky Emission

The Schottky effect [73] originates from the image force induced lowering of the

interfacial energy for charge carrier emission when an electric field is applied.

This leads to

ln (I/I0) =
1

kt

√
q3E
ε

with I0 ∝ exp (−Φ/kT ) , (2.5)

where Φ is the interfacial barrier height between the semiconductor and the con-

tact metal.

The dependence in Eq. 2.5 was experimentally verified in the field range ∼
104 − 105 V/cm for various junctions of crystalline semiconductors with metals.

However, on empirical grounds, it is hard to believe that it can apply to the case

under consideration because of the established ln I0 ∝ (−Ea/kT ), where Ea is

half the mobility gap in the chalcogenide material and is independent of contact

properties. Some studies reveal that the current is independent of polarity and

electrode material, which is additional evidence against the Schottky mechanism

[16].
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Figure 2.2: The figure shows the three typical regions of the IV characteristic
of an unspecified chalcogenide PCM device that is representative of the results
discussed in the survey of conduction mechanisms. The low-field region is usually
described as ohmic, but in some cases of thin samples it is described as ln I ∝
V . The intermediate region has exponential dependence described as either
ln I ∝ V and/or ∝

√
V . Near and below room temperature, two slopes are

often observed in the intermediate region. The high field region corresponds to
a stronger dependence, possibly ln I ∝ V 2.

2.1.3 Field-Induced Delocalization of Tail States

Similar to the PF mechanism of decreasing the ionization energies of coulom-

bic centers, the electric field can decrease energies of localized tail states in the

mobility gap and even destroy them if they are shallow enough. Transforming

localized into delocalized states is tantamount to narrowing the mobility gap; this

exponentially increases the free carrier concentration and electric conductivity.

The latter mechanism, suggested in Ref. [44], is specific to noncrystalline materi-

als where the presence of band tails is well established. Tail states are related to

intrinsic structural disorder of amorphous materials rather than to any specific

defects. The disorder creates microscopic variations in the electric potential gen-

erated by different structural units in a material and felt by electrons or holes.

Some combinations of these microscopic variations form effective potential wells

capable of localizing charge carriers.

It was assumed in Ref. [44] that each fluctuation potential well has the same

radius r0 regardless of the energy of its localized state, thus governed only by the

well depth. Correspondingly, the condition of the electric field induced delocaliza-

tion was given in the form E < ED ≡ Eqr0. Assuming also a simple phenomeno-

logical representation of the density of tail states, g (E) = g0 exp (−E/E0),
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Figure 2.3: Density of states (DOS) in the mobility gap of a chalcogenide glass.
The electric field shifts the mobility edge for holes up by energy ED (similar effect
is verified for electrons)

the field-induced increase in concentration of charge carriers becomes n(E) ∝
g (ED) exp (ED/kT ), where the first multiplier describes the decrease in activa-

tion energy by ED, as illustrated in Fig. 2.1.3. As a result, the conductivity

increases with field as,

σ (E) = σ0 exp

[
Eqr0

(
1

kT
− 1

E0

)]
, (2.6)

where it is assumed that E0 > kT . The observed temperature dependence in

Ref. [44] was consistent with that in Eq. 2.6.

The above model could be refined by taking into account that the characteristic

size of the localized state of energy E is ~/
√
mE and so is that of its corresponding

potential well [49], as illustrated in figure 2.1.3. As a result the condition of delo-

calization, approximately Eq~/
√
mE = E, gives the characteristic delocalization

energy ED = (~qE/
√
m)

2/3
and, similar to Eq. 2.6,

σ (E) = σ0 exp

[(
~qE√
m

)2/3( 1

kT
− 1

E0

)]
. (2.7)

This prediction is in a numerically relevant range yielding ED ∼ 0.1 eV when

E ∼ 105 V/cm.

Further implementations of the theory of disordered systems [49] calls upon using
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Figure 2.4: Localized tail states for the electrons below the mobility edge (shown
as dash-dot line) have linear dimensions decreasing with energy E in the mobility
gap.

the density of tail states in the form,

g (E) = g0 exp

[
− E

E0

α]
, (2.8)

where α = 1/2 and α = 2 for the cases of uncorrelated and strongly correlated dis-

order corresponding respectively to the energies E � ~2/mr2
c and E � ~2/mr2

c .

If the correlation radius rc is identified with that of the medium range order in

a glass [17], then rc ∼ 1 nm and ~2/mr2
c ∼ 0.1 eV. Using Eq. 2.8 will obviously

modify the results in Eqs. 2.7 and 2.6 without changing them qualitatively.

Overall, it may be very difficult to experimentally discriminate between the

shapes predicted by Eqs. 2.7 and 2.6 or their modifications. What is impor-

tant is that these predictions pertain to a numerically relevant range ED ∼ 0.1

eV when E ∼ 105 V/cm, ensuring strong enough non-ohmicity to explain the

observed effects. Also, this model, in contrast to the PF model, gives a natural

explanation of why PF-type non-ohmicity (ln (I/I0) ∝
√
E or E) is typically ob-

served in glasses rather than in crystalline materials.

2.1.4 Space Charge Limited Current

The exponential current-voltage characteristic can be explained by space charge

limited current in a system with almost energy independent density of states [42].

This model is represented in Fig. 2.1.4 in the coordinate and energy spaces. Due

to low mobility, the charge carriers accumulate in a system (the logarithm of their

density is also shown in Fig. 2.1.4 as the quasi-Fermi level) and create the poten-

tial barrier further slowing down their transport. In energy space, charge carriers

occupy a layer of certain width δE near the Fermi energy (EF ). Therefore, their

charge density is estimated as ρ = g(EF )qδE. The corresponding electrostatic

potential is V ≈ 2πρL2/ε where L is the sample thickness. Expressing from here

δE through V and taking into account that the activation energy of conduction
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Figure 2.5: Localized tail states for the electrons below the mobility edge (shown
as dash-dot line) have linear dimensions decreasing with energy E in the mobility
gap.

is by δE lower than in the ohmic regime, one gets

σ (E) = σ (0) exp

(
E
E0

)
with E0 =

2πgqLkT

ε
(2.9)

Assuming realistic g = 1017cm−3 eV−1 and L = 100 nm yields a relevant field

scale of the non-ohmicity E0 ∼ 104 V/cm; however that scale strongly depends

on the system thickness and density of states, which can make E0 too large and

irrelevant to the observed non-ohmicity in some chalcogenide glasses. The ex-

planation of space charge limited current was put forward in Ref. [38] where

E0 linear in L was observed below room temperature. Near and above room

temperature, E0 was found to be thickness independent [38, 65, 14]. This data

may suggest that space charge limited transport mechanisms play an important

role in thicker samples (L > 1µm) below room temperature. Additional verifi-

cations of the space charge limited mechanism of room temperature conduction

in chalcogenide glasses could be obtained from the data on 1/f noise measure-

ments. Results show that the corresponding Hooge parameter increases with

bias, contrary to what is expected for the space charge limited currents [36].

2.1.5 Hopping Conduction

The intent of this section is not to provide a complete description of hopping con-

duction, since thorough reviews are available elsewhere [51]. Here, we provide a

brief explanation as to why hopping conduction was not observed experimentally

in chalcogenide glasses [51, 50].

A high density of localized states gF at the Fermi level (EF ) in non-crystalline
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semiconductors can give rise to hopping transport. The mechanism is based

on electronic tunneling (‘hops’) between localized states that are randomly dis-

tributed in real space and energy space [51, 44]. In materials where hopping does

occur, it dominates at low temperatures (T ) and is described by the Mott law

[51],

σ (T ) = exp
[
− (T0/T )1/4

]
with T0 = β/kgFα

3 , (2.10)

where α is the localization radius of the electron wave function, and β ∼ 1 is a

numerical factor. However, at room or higher T of practical interest, the primary

transport mechanism in bulk materials is typically band conduction.

It has long been established that room temperature conduction in chalcogenide

glasses is dominated by band transport [51]. One piece of evidence is that in all

chalcogenide glasses the activation energy of conduction is close to half the mo-

bility gap, Ea ≈ G/2, identified with the Fermi level pinned at that position. The

lack of hopping is explained by the abnormally strong polaron effect for localized

charge carriers [51, 4, 59], requiring electron transitions to be accompanied by the

inter-center transfer of atomic deformations (polaron cloud), which exponentially

suppresses the probability of hopping. The strong polaron effect makes chalco-

genide glasses significantly different from other amorphous semiconductors, such

as a-Si, where hopping conduction was experimentally observed [51, 37].

On a more quantitative level, we note that the polaron effect on hopping con-

duction was explicitly taken into account in Ref. [7]. It was shown (in Eq. (24)

of that work) that in the high temperature regime the exponent of conductivity

contains both the well known Mott term [51] (T0/T )1/4 and the polaron related

term W/2kT with the polaron shift W being close to G/4. The latter combina-

tion cannot be reduced to the observed activation conductivity exponent ≈ G/2.

Finally, a simple estimate can show how hopping cannot provide the high current

densities j ∼ 104 A/cm2 observed in the glassy state of modern PCM:

j ∼ qν

R2
exp

(
−Ea
kT

)
∼ 5 A/cm2 , (2.11)

where ν ∼ 1013s−1 is the frequency of attempts, inter-center distance R ∼ 10 nm,

and Ea = 0.4 eV. For comparison, the devices of area 10−10 cm2 with average

current of 1 µA used in Ref. [32, 31], correspond to a current density of 104

A/cm2, decades higher than expected for hopping from Eq. 2.11.

The latter estimate can be put in a more standard perspective using Motts

criterion of band conduction [51], according to which the thermally activated

conduction σ = σ0 exp(−E/kT ) should have a pre-exponential in the range

σ0 = 150− 600Ω−1cm−1.

Contrary to the above understanding, the authors of Refs. [32, 31] and [46]

proposed that conductivity in chalcogenide glasses is due to an altered form of

hopping.



24 CHAPTER 2. TRANSPORT MECHANISM

In that work it was assumed that electrons move without tunneling between

equally spaced centers. The same hopping-without-tunneling mechanism was

originally proposed for ionic conduction, i.e. for heavy (atomic) classical parti-

cles that possess continuous energy spectrum above the barrier[6, 56]. For the

case of light quantum particles, such as electrons or holes, the spectrum is discrete

and may have no quantum states between the barrier and the mobility edge.

The continuous energy spectrum needed for the purely activated transitions as-

sumed in Refs. [32, 31] and [46] starts at the mobility edge. Therefore, the

‘no-tunneling’ activated electronic transitions between the nearest neighbours

would have to go via intermediate states at the mobility edge. However, allowing

the electron or hole to utilize the states at the mobility edge is inconsistent with

hopping conduction. Indeed, carriers at the mobility edge would attain the band

mobility, which is well above that of hopping, thus giving rise to band transport

and the nearest neighbor concept would not apply. In other words, having ac-

tivated to the mobility edge, the charge carrier would become free and capable

of traveling considerable distances to other (far from the nearest) traps or even

to the device terminals. The above reasoning explains why the hopping-without-

tunneling mechanism has never been included in the existing theory of hopping

conduction in semiconductors. The work in Refs. [32, 31] and [46] interpreted

Ea ≈ G/2 as the activation energy of hopping to the nearest center, assuming

a transition through an intermediate state. In addition, it was assumed that all

the inter-center distances are the same, thereby neglecting fluctuations in cen-

ter concentration and activation energy, which are known to have exponentially

strong effects on hopping conduction and determine the temperature and field

dependence [71].

2.1.6 Optimum Channel Hopping

Optimum channel hopping describes the gigantic transverse conduction that has

been observed [61] in thin amorphous films. A thorough review of the related

work is provided in Ref. [64]. Similar to classical hopping conduction discussed

in section 2.1.5, optimum channel hopping involves tunneling between localized

states but it differs from the classical mechanism in the following ways: i) opti-

mum channel hopping does not occur on the macroscopically isotropic percola-

tion cluster but, rather, through untypical and nearly rectilinear hopping chains

of spatially close localized states; ii) it is characterized by laterally nonuniform

(or pinhole) current flow; and iii) it can dominate over typical band transport in

systems that are thin enough or subject to sufficiently strong electric fields. For

chalcogenides, we consider the possibility that optimum channels can be com-

prised of localized states that are not subject to strong polaron effects.

Following the approaches in Refs. [61] and [64] the analysis will concentrate on

optimum channel hopping through short distances via favorable yet sparse clus-
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Figure 2.6: Left: field emission via hopping through an optimum chain; circles
represent localized states. Right: same in the energy space.

ters of rather rigid localized states that form efficient transport pathways (see

Fig. 2.1.6). The conductivity will be dominated by optimum pathways that

are a compromise between a high transmission rate and not too low probabil-

ity of finding the pathways being considered. For the case of thin amorphous

films, it was shown [64, 48] that optimum channel hopping leads to a transverse

conductivity given by

σ ≈ exp

(
−8Lλ

α

)
, (2.12)

where L is the thickness, α is the localization radius, λ ≈ − ln(g0kTαL
2) � 1,

and g0 is the density of localized states. Because Eq. 2.12 is not widely known

to the microelectronic community, its simplified derivation will be mentioned.

Consider a hopping pathway formed by N -center chain of almost equidistant

centers. The probability of finding such a chain is estimated as pN = exp(−λN),

where λ ≡ ln(1/p) and p is the probability of finding one center in the pathway.

The probability of hopping through a distance L/N (between two nearest centers

in the chain) can be written in the form exp(−2L/Nα), where α is the localization

radius on the center. The product of these probabilities exp(−Nλ−2L/Nα) gives

a partial current through an N -center chain. Optimizing it with respect to N

determines the most efficient chains and results in Eq. 2.12; expressing λ through

the density of states takes a more accurate approach [64].

Optimum channels in thin films

For the case of thin amorphous films subject to moderate fields (E < EF /qL,

where EF is the Fermi level), it was shown [64, 48] that optimum channel hopping

leads to a transverse conductivity given by

σ ≈ σ0 exp

(
−
√

8Lλ

α
+ 1.6

√
qEL
kT

)
, (2.13)
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where the parameters are the same as in Eq. 2.12. Polaron effects are neglected in

Eq. 2.13 and, therefore, in chalcogenide glasses this form of hopping conduction

cannot rely on the typical electronic states near the Fermi level. However, these

channels through extremely thin films or in the presence of strong fields can be

formed by untypical spatially close states, for which the effects of polaron cloud

are less significant, or they can be formed by states far from the Fermi level

having much smaller polaron shifts; for the case of chemically imperfect thin

films, hopping in optimum channels could be due to extraneous states formed by

certain impurities.

Optimum channel field emission

The standard interpretation of field emission is based on the model of electron

tunneling through a triangular potential barrier with a slope E due to an electric

field [73]. The model discussed in this section proceeds from the premise of a

continuous energy spectrum of localized states in the mobility gap, typical of

amorphous materials and capable of giving rise to hopping conduction. Such

states lie high enough above the Fermi level that they can not be affected by

the strong polaron effect that suppresses hopping. The possibility of hopping

transport through such ‘rigid’ states far from the Fermi level is fully compatible

with the above-described suppressed hopping at the Fermi level.

For the case [48] of strong fields, E � EF /qL, Eq. 2.12 remains valid with the

substitution L→ l = EF /qE (see Fig. 2.1.6 right). As a result, one obtains

σ ≈ σ0 exp

(
−

√
8EFλ

αqE

)
, (2.14)

which is significantly different from the standard field emission conduction with

ln(σ/σ0) ∝ −1/E . One qualitatively distinctive feature of the above consid-

ered field emission is that it is significantly nonuniform and occurs through rare

optimum channels (as opposed to the standard uniform Fowler-Nordheim emis-

sion from contacts [73, 27]; this may lead to local heating, facilitating structural

transformations in chalcogenide glasses. Another feature related to such lateral

nonuniformity is that very small area devices, A . αL exp(
√
EFλ/αqE) may not

have an optimum channel with certainty, in which case their resistances will be

determined by the most efficient of available random channels; hence, there will

be strong variations between the conductances of nominally identical cells.

Overall, it should be noted that the field emission mechanism can be expected to

show up in very thin structures where the hopping resistance corresponding to

Eq. 2.14 is not blocked by a significantly larger resistance of the film in series.
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Figure 2.7: Left: Fragment of percolation cluster with mesh size Lc in a ma-
terial of thickness L. Right: equivalent circuit of a filament of the percolation
cluster where exponentially different resistors in series are depicted by resistors of
different sizes; the first and second maximum resistors are marked for illustration.

2.1.7 Percolation Conduction

In general, conductivity in randomly nonuniform materials is described in terms

of percolation [71]. This concept includes both the hopping conduction and band

conduction in a medium where charge carrier concentration exponentially varies

between different locations due to spatial variations in the electron potential en-

ergy. The concept of spatially varying mobility edge can be derived based on

the theory described in section 2.1.3 where a glass band structure is represented

by a set of random potential wells with localization/delocalization effects lead-

ing to the mobility edges. Some regions will contain predominantly deeper than

the average or shallower than the average potential wells corresponding to local

variations in the envelope electronic potential in the form of smooth wells or bar-

riers. The latter variations translate into the electric conductivity exponentially

varying in space.

Percolation conduction evolves on a mesh built of material regions with conduc-

tivity below a certain critical value σc ≡ σ0 exp(−ξc) such that the mesh enables

a connection between two flat electrodes, regardless of distance L between them.

Such a mesh is called an infinite percolation cluster and is characterized by the

correlation (mesh) radius Lc < L, as shown in Fig. 2.1.7. The topology of the

percolation cluster can be pictured as arising from a multitude of sites where the

nearest neighbors can be connected with random resistors R = R0 exp(ξ). Here

ξ is a random parameter. For example, ξ = EF /kT for the case of band percola-

tion conduction, where EF represent a random energy distance between the band

edge (which is spatially modulated) and the Fermi level. As another example,

ξ = 2∆r/α+∆E/kT for hopping conduction, where ∆r and ∆E are the distances
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between the two centers in the real and energy space respectively (α being the

localization radius on the center). The cluster forming connection proceeds in

sequence starting from the minimum resistor (ξ = 0) and adding larger ones up

to ξ = ξc, until the everywhere connected cluster is formed. The mesh structure

illustrated in figure 2.1.7 is built of filaments obtained by the series connection

of random resistors where the maximum resistor is close to R = R0 exp(ξc) for

each of the filaments.

Following a theory of high-field percolation conduction [70] each cell of the per-

colation cluster accommodates voltage Vc = V Lc/L. Because the resistors that

constitute the filament are exponentially different, the latter voltage almost en-

tirely concentrates on the strongest, first maximum resistor (1-max in Fig. 2.1.7).

That voltage, concentrated locally, affects the resistance of the element across

which it drops. The mechanism of the latter action can depend on the specific

system under consideration: changes in center occupation numbers for the case

of hopping, or field-induced ionization for the case of band transport. The field

affected maximum resistor in the filament decreases its resistance down to the

second maximum (2-max in Fig. 2.1.7), after which the voltage distributes evenly

between the two resistors (1-max and 2- max), modifying both of them, and then

extending to the third maximum resistor, and so on. Such equalization will se-

quentially take place in a number of resistors having ξi from the maximum one

(ξc) down to ξ0(V ) defined by the condition

ξc∑
ξ0

ξi =
qVc
kT

. (2.15)

Approximating the sum by the integral gives (ξc−ξ0)2/2ξmax = qVc/kT , where it

is assumed that the random parameter ξ is uniformly distributed in the interval

from 0 to ξmax ∼ ξc. As a result, the effective conduction is described by

σ ∝ exp (−ξ0) = exp

(
−ξc +

√
2ξmaxqVc
kT

)
. (2.16)

Substituting here the definition Vc = V Lc/L and E = V/L one finally obtains

σ (E) = σ (0) exp

(
η

√
qELc
kT

)
, (2.17)

where η ∼ 1 is a numerical coefficient.

Thus, the conductivity depends on electric field in a manner very similar to the

original PF result. Furthermore, assuming that each resistor has a linear dimen-

sion of the medium range order parameter rc, Lc can be numerically estimated

as rc(δEa/kT ) ∼ 10rc ∼ 10 nm, where δEa is interpreted as the amplitude of

variations of the activation energy of conduction. It is estimated as the valence
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band offset between the most conductive (close to crystalline GST) and least

conductive amorphous GST regions: δEa ≈ 0.4 eV. With the above estimate in

mind, Eq. 2.17 predicts significant non-ohmicity starting from E ∼ 3×104 V/cm,

in reasonable agreement with observations.

Finally, in the case of very thin films (L < Lc) the transversal conduction will be

determined by rare, most conductive channels formed by random regions of rela-

tively high carrier concentration, rather than the percolation cluster of mesh size

Lc. Assuming that the resistors with R = R0 exp(ξ) and ξ < ξL are involved, the

probability of finding the number L/2rc of such resistors forming a chain through

the film between the electrodes can be written as exp[(L/2rc) ln(ξL/ξmax)]. Di-

viding the latter by that chain resistance R0 exp(ξL) gives the partial conductance

of chains with ξ 6 ξL. Optimizing the exponent of the latter ratio with respect to

ξL gives the optimum chain parameter ξL = L/2rc. As a result, the conductance

of the film can be estimated as

σ ∝ exp

{
− L

2rc

[
ln

(
Vmax

kT

2rc
L

)
+ 1

]}
. (2.18)

In the latter equation, one can impose the condition σ = σ∞ ≡ σ0 exp(−Ea/kT )

when L = Lc, where σ∞ has the meaning of the bulk conductivity. As a result,

the effective conductivity of thin structures (L < Lc) can be written in the form

σ = σ (calE) exp

{
Lc − L

2rc

[
ln

(
Vmax

kT

2rc
L

)
+ 1

]}
, (2.19)

where σ(E) is given by Eq. 2.18. Here we have neglected the difference be-

tween logarithmic terms evaluated at Lc and L and have taken into account that

ξmathrmmax = Vmax/kT , where Vmax is the maximum transport barrier.

One prediction of Eq. 2.19 is that the effective activation energy of conduc-

tion Ea = |d ln(σ)/d(1/kT )| will decrease as the film thickness decreases below

L = Lc. Another prediction refers to the case of extremely small devices with

area below Ac ∼ r2
c exp{−(L/2rc) ln[(2rc/L)(Vmax/kT )]} so that the above de-

fined optimum channel is unlikely to be found within the device area. For such

devices, conductance will be determined by the most efficient of the available

channels, which will differ between samples; hence, there will be strong fluctua-

tions in conductance between nominally identical devices. According to a rough

estimation, that might occur well below the 10 nm scale.

2.1.8 Conduction Through Crystalline Inclusions in Amorphous

Matrix

It is known that the reset pulse in chalcogenide PCM melts the material which

then cools down fast enough to freeze in the amorphous phase, forming a dome

(sometimes called a ‘mushroom’) as sketched in figure 2.1.8. This melting-to-

freezing transition is believed [69, 28] to result in a number of crystalline particles
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Figure 2.8: Amorphous dome with crystalline inclusions as part of the typical
PCM structure including a small area electrode (SAE) and thermal insulator (TI).
R is the average distance between crystallites. Arrows represent the current flow
utilizing a path of minimum resistance.

embedded in the amorphous matrix. The latter scenario results in an interesting

possibility that the system conductance will be governed by potential fluctuations

created by the embedded crystallites. The presence of embedded crystallites fol-

lows from the standard thermodynamic consideration for the case of any glass

possessing a crystalline counterpart of lower chemical potential. The model is

based on the known valence band offset ∆ ≈ 0.4 eV between the amorphous

and crystalline phases (see Fig. 2.1.8). According to the standard principles of

heterojunction physics, this offset is accommodated by the system through elec-

trostatic screening. The screened potential is described by the standard Poisson

equation ∇2φ = −4πρ where the charge density is in turn related to the potential

φ. That relation depends on the density of electron states g(E), which, following

the approach in Ref. [51], is assumed constant. This gives ρ = φq2g and the

Poisson equation reduces to

∇2φ = −φ/r2
s with rs = 1/

√
4πq2g , (2.20)

where rs has the physical meaning of the screening radius. The solution of Eq.

2.20 for a spherically symmetric case is well known, φ ∝ r−1 exp(−r/rs). The

coefficient in front of it is determined by the boundary condition qφ(rx) = ∆,

where rx is the crystallite radius. As a result each crystallite creates a potential

φ (r) = ∆
rx
qr

exp

(
rx − r
rs

)
when r > rx ; (2.21)
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Figure 2.9: Top: a fragment of amorphous matrix with embedded crystallites.
Bottom: energy band diagram showing valence band edge Ev in the crystalline
and amorphous matrix (with offset ∆) and the activation energy Ea0 is an amor-
phous phase without crystallites. Dot-dashed line represents the chemical poten-
tial. Arrows show the current flow between two crystallites.

rs > 100 nm in the typical chalcogenide glasses. We note that the above as-

sumption of constant density of states is not very restrictive as long as we are

interested in distances shorter than rs that is φ(r) ≈ ∆rx/qr; this can be readily

verified for another standard case of a single-level density of states often used for

crystalline semiconductors.

The potential in Eq. 2.21 is the same as that of a coulombic center with effective

charge

Zq =
rxε∆

q
∼ 10q . (2.22)

Therefore, one can use the entire wealth of results known for systems of charged

centers in semiconductors to derive the following implications:

• Fluctuations of the electrostatic potential energy exist with the characteris-

tic screening radius rs and amplitude [71] δU = Zq2
√
ncr3

s/(εrs), where the

square root represents the fluctuation in the number of charged crystallites

of concentration nc in a volume of radius rs. Taking into account the above

definition for Z, one can write,

δU ≈ ∆

√
v
rs
rx
, (2.23)

where v ≡ ncr
3
x is the volume fraction occupied by crystalline particles.

Using the above mentioned parameters it can be rather significant, δU �
kT .

• The average decrease in the mobility edge, δEm ≈ Zq2(nc)
1/3/ε repre-

sentable as

δEm ≈ ∆v1/3 , (2.24)
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can be significant as well. The total decrease in activation energy of con-

ductivity due to percolation can be estimated as

δEa = δEm + νδU , (2.25)

where ν is a numerical multiplier of order unity. It is dominated by its fluc-

tuation component δU as long as the average distance between crystallites

is shorter than the screening radius, R < rs.

• The Poole-Frenkel effect appears here without any additional assumptions

about the presence of coulombic centers in a material. The consideration in

section 2.1.1 will apply with corresponding renormalizations of the centers

charge, q → Zq. For example, the critical field of interplay between the

regimes of one- and two-center field ionization regimes will become Ze/4εa2;

numerically, it is ∼ 105 V/cm when the distance between crystallites is

a ≈ 10 nm. The two-center ionization effect results in the current

I = I0 exp

(
εrxaE∆

qkT

)
, (2.26)

and the one-center effect becomes

I = I0 exp

 2ε

kT

√(
rx∆

q

)3

E

 . (2.27)

• All the implications of the percolation conduction mechanism in section

2.1.7 will be applicable here. One specification is that the correlation length

Lc [see Eq. 2.17] for a system of charged particles becomes equal to the

screening radius rs. In the case of very small devices with size L < rs, the

size will play the role of screening radius [52]. In the latter case, Eq. 2.1.7

reduces to σ(V ) = σ0 exp(η
√
qV/kT ). Overall, the mechanism described

in this subsection suggests the important role of the reset characteristics

that determine the shape and composition of the amorphous dome in PCM

devices.

2.2 Models Comparison and Recent Theories

A general theory about transport processes in amorphous materials was devel-

oped by Mott using the Miller and Abrahams rate equation for hopping events

via tunneling. This theory represents a milestone in the analysis of amorphous

materials, and has been widely applied since the 1960s. Nevertheless, classes of

amorphous materials such (e.g., the chalcogenide glasses) feature an electrical

switching behavior when a threshold field is reached. This electrical behaviour

cannot be explained by the pure Mott theory.
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The first model that tried to give an explanation was that of Adler and coworkers

in the early 1980s [1]. Amorphous materials like chalcogenide glasses are char-

acterized by charged defective states, a.k.a. valence alternation pairs (VAPs),

that act as recombination centers. Positive defects can be neutralized by acquir-

ing an electron (C+
3 +e → C0

3), whereas negative centers can combine with holes

(C−1 +h→C0
1 →C0

3), even though this second reaction is slower than the first one.

The equilibrium reaction 2C0
3 ↔C+

3 +C−1 must hold true at any time and at any

place. Electrons and holes are generated via impact ionization, so that extra

pairs of carriers are generated along the material and can interact with VAPs.

In the OFF state (high resisitivity), the generation and recombination rates for

holes and the equation describing the kinetics of equilibrium hold true and a

local equilibrium is always present. However, when the electrical field reaches a

critical value, a great concentration of holes is generated near the anode and the

material can switch to the ON state (low resistivity). The holes neutralize C−1
traps in the bulk, leaving there and excess of positive defects. Then, according to

the kinetics of equilibrium, these defects react with electrons (from the cathode),

leaving an excess of negative charges, that are compensated by positive charges

from the anode. When the new equilibrium is established, since the majority of

VAPs are now neutral, a conductive filament where electrons can transit without

being trapped is created, and the conductivity is greatly enhanced. In the ON

region high fields are sustained by depletion layers close to the anode and the

cathode, keeping the VAPs in the bulk neutral.

The ideas of Adler have been questioned in the last 10 years, when the interest

for chalcogenide glasses has been growing since their exploitation in the field of

non-volatile memories. The main skepticism on the Adler’s interpretation was

about the size of the filament featuring the ON state, whose radius is expected in

the micrometer range. More recent experimental investigation have shown that

the switching behavior is present also in smaller devices, this giving origin to

alternative interpretations.

The non-ohmic conduction mechanisms previously described are listed in Table

2.1 along with their characteristic relations and corresponding domains of appli-

cability. Based on the experimental data, the only ones that can be excluded

outright are Schottky emission and classical hopping conduction.

More than one non-ohmic domain with different temperature and thickness de-

pendencies is typically observed, with a faster growing current in the pre-switching

region. Each model presented here is able to fit the IV characteristics in a par-

ticular operative domain. These observations indicate that IV data fitting alone

may not be conclusive enough to identify the most adequate model of transport

in chalcogenide glasses.

Due to this lack of certainties about models validity, new theories have been

worked out until now. The model proposed by Lacaita and coworkers [60] still
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relies on VAPs and impact ionization, but they are modeled within the more

common framework of semiconductor band transport.

VAPs give origin to minibands inside the band gap and close to the band edges,

while neutral defects originate a tail on top of the valence band, this reducing

the mobility gap of the material. Defect states are crucial to describe the carrier

generation-recombination mechanisms, which are modeled by means of a capture

cross-section following the SHR theory. According to this model, the generation

mechanism must also be dependent on the electric field in order to describe the

subthreshold exponential behavior of the I(V ) characteristics, and on the carrier

density in order to achieve the switching point. These considerations suggest im-

pact ionization as the main transport scheme of the model, where traps act like a

pillar of a bridge between the valence and the conduction bands. At low currents

generation via impact ionization and recombination via trap centers balance each

other. As the current increases, traps are more and more filled since the genera-

tion rate is high. The recombination process instead is weakly dependent on the

bias, so that a critical point where recombination cannot balance recombination

any longer is found. The unique way to establish a new equilibrium is obtained

by reducing the bias, thus the generation rate. Since the currents are high, this

condition must be accompanied by an increased concentration of carriers with

high mobility in the conduction band.

Two arguments can be opposed to this model. The first deals with the generation

mechanism. Though favored by trap states within the band gap that reduce the

energy differences, carries still must acquire a large energy before ionizing, which

becomes possible only if the mean free path is long, unless a broad distribution

of the defects on the energy scale is considered. Next, impact ionization does not

account for the activation energy that stems from the analysis of experimental

data taken at different temperatures, and the correct dependence on temperature

can only be obtained with appropriate temperature-dependent coefficients.

The latter consideration on the activation energy opens the way to two other

models, that are currently still debated. One, proposed by Karpov and cowork-

ers [35, 72], stems from the system free-energy balance and brings back the idea

of crystalline filaments surrounded by an amorphous matrix proposed by Ovshin-

sky.

Crystalline nuclei can form inside the chalcogenide amorphous matrix due to local

energy dissipation, mainly in the region close to the cathode where the dissipa-

tion is higher. Due to their high conductance, crystalline particles concentrate

the electric field, which is a key condition for the reduction of the system free-

energy. As a consequence, a local stronger field favors the creation of further

crystalline nuclei at the particle edges. As the switching point is approached, a

crystalline rod is formed and new nuclei add up to the rod itself. The elongation

of the rod makes the field even more intense, this self-sustaining the nucleation
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and growth mechanism. Eventually, the initial rod spans across the whole device

shunting the electrodes and percolate paths can also form. The presence of high

conductive crystalline filaments surrounded by an amorphous matrix makes it

possible a large increase in the current without a significant effect on (or a small

reduction of) the potential drop.

The second model relies on the idea of switching as a result of an electronic pro-

cess and is due to Ielmini and coworkers [32, 31]. Contrarily to Karpov, who

used the energy to activate the nucleation process, in the Ielmini’s model the

activation energy refers directly to the transport mechanism, being the energy

required by a carrier to reach the bottom of the conduction-band mobility-edge

[ammesso che si dica cos]. According to this theory, transport can be described

as a sequence of thermally-assisted hops between traps (a generic descriptions of

the defectiveness of the system), resulting in a trap-limited conduction scheme.

Since an applied field bends the mobility edge, given a pair of traps, the forward

and the backward fluxes are differently influenced by the field with an expo-

nential dependence. If the current, thus the field, is low, the difference can be

neglected and the conventional Ohmic behavior is found. For higher fields, the

exponential dependence of the energy barrier on the field makes one flux much

larger than the other one and the exponential regime of the I(V ) characteristic

is recovered. The presence of a large field let also carriers access trap states

closer to the conduction-band mobility edge that were inaccessible due to their

high energy, thanks to thermal emission of direct ballistic tunneling. The energy

gain from the field is counterbalanced by a relaxation process, but, eventually,

a heated population is found sufficiently far from the cathode. The switching

condition stems from the balance between the electric field, field-induced energy

gain and energy relaxation, and is always accompanied by the non-uniformity

of the electric field along the device. Even though the Ielmini’s model is not

free from oversimplifying hypotheses, such as a fixed carrier concentration which

prevents any self-consistency with the Poisson equation and does not match the

filling of the traps along the device, it proved to be successful in interpreting a

high number of experimental evidences.

2.3 Alternative Charge Transport Model

Classical concepts like carrier concentration, average velocity, and current den-

sity are used for describing the carrier collective motion. The symbols N , n, and

nT will denote the concentrations of traps, band electrons, and trap electrons,

respectively. The band electrons are free to move along the device and may also

undergo scattering processes with the lattice. When this happens they exchange

part of their energy with the lattice, without necessarily becoming trapped. In

turn, trap electrons are able to move from one trap to another by tunnel effect,
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Figure 2.10: (Left) Schematic band diagram showing the position of the valence-
and conduction-band edges, Fermi level, and ground state of the traps. A tail
of the valence band due to structural defects is also shown. (Right) Schematic
description of the electron transitions.

possibly assisted by thermal excitation, or by thermionic emission. They may

also be scattered by exchanging phonons with the lattice and moving among the

localized energy levels of a trap. The traps are neutral when filled. Also, it is

assumed that each trap can release one electron at most, because the energy nec-

essary for the second ionization of the trap is too large.

The effects described here are schematically illustrated in figure 2.3. The distance

between the traps is large enough to make the electron wave functions localized

within each trap, hence discrete energy states exist. The horizontal arrow indi-

cates a tunnel transition between traps. The mobility of the trap electrons in the

analytical model is related to the probability of such transitions. As shown later,

it is influenced by the electric field.

Trap electrons also scatter to different energy states (e.g., vertical arrow in the

left trap). A small population of high-mobility electrons belong to the band states

(grey region). They exchange energy due to collisions (vertical arrows within the

band). A band electron may also be scattered back into a trap (dotted vertical

arrow in the right trap).

Letting 0 ≤ PT ≤ 1 denote the occupation probability of the traps, it is nT =

NPT , with 0 ≤ nT ≤ N , while the concentration of empty traps is p
.
= N (1 −

PT ) = N −nT , also with 0 ≤ p ≤ N . Instead of describing the current across the

traps as due to the average motion of the electron concentration nT , one might

picture it as the result of the motion of the hole concentration p in the opposite

direction. This representation is useful for adapting a standard semiconductor-

device simulator to the numerical analysis of the device at hand. In the spatially-

uniform case (N , n, nT = const) the charge density

% = −q(n+ nT −N) = q(p− n) (2.28)
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of the material vanishes everywhere because the positive charge of the ionized

traps compensates the negative charge of the band electrons at the same spatial

position.

In the equilibrium condition the trap-occupation probability PT reduces to the

Fermi statistics with Fermi level EF ,

P eq
T =

1

(1/dT ) exp [(E − EF ) /(kBTL)] + 1
, (2.29)

where kB is the Boltzmann constant, TL the lattice temperature, and dT the

degeneration coefficient. In particular, for TL → 0 all traps are filled while

the band states are empty, namely, neq = 0, neq
T = N . At TL > 0, trap-to-

band transitions occur due to phonon absorption, and the traps involved in the

phenomenon become positively ionized. At room temperature the population of

the band electrons is much smaller than that of the trapped electrons.

If a perturbation is applied to the device, e.g., through a voltage or current

generator connected to the external leads, both populations contribute to the

total current density J (see Fig. 2.3) where the transport mechanism in the

high-field induced condition is described. The contribution of the band electrons

is modeled by the standard drift-diffusion expression

Jn = qµnnE + qDn gradn , (2.30)

where µn, Dn = (kBTL/q)µn are the mobility and diffusivity of the band electrons

and E the electric field. The latter must be calculated by solving a Poisson

equation where the charge density is given by (2.28). The contribution of the

trap electrons to J is obtained by an equation similar to (2.30), where n, µn,

Dn are replaced with nT , µT , DT = (kBTL/q)µT , respectively. Combining the

definitions of the current density JT and mobility µT ,

JT = −qnTvT , vT = −µTE . (2.31)

The average velocity vT of the trap electrons in (2.31) can be obtained from

a Monte Carlo calculation as in [12], running the code in the spatially-uniform

case. Then, mobility is derived from vT = −µTE. Drift is considered as the only

contribution to the trap-electron current density because trap electrons do not

interact among each other.
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Figure 2.11: Schematic description of electron transitions in a high-field case.
The distance between the traps is large enough to keep the electron wave functions
at lower energies localized within each trap. However, because of the bending
of the trap edge due to the external field, the states at higher energies become
continuous (grey regions within the traps). The probability of tunnel transitions
between traps is still low. Trapped electrons also scatter to different energy
states (e.g., vertical arrow in the left trap). The population of high-mobility
electrons strongly increases with respect to the low-field case due to trap-to-
band tunneling (horizontal arrow from the grey region of the right trap to the
band). Band electrons exchange energy due to collisions (vertical arrows within
the band). Their probability of being scattered back into a trap is small (dotted
vertical arrow in the right trap).



Chapter 

Generation-Recombination

Mechanism

The main mechanisms that produce the electron transitions between the traps

and the band are discussed in this section. They are thermal generation and

recombination, Auger recombination, impact ionization due to the interaction

between a high-energy band electron and a trap electron, field emission, and the

cooperative electron-electron interaction between the low-energy band electrons

and a trap electron.

3.1 Thermal Generation and Recombination

The net thermal-recombination rate is given by

Uth = αnn (N − nT )− en nT , (3.1)

where αn > 0 is the electron-transition coefficient from the band to an empty

trap, and en > 0 the electron-emission coefficient from a trap to the band. One

notes that (3.1) is identical to that used in the standard semiconductor theory

for describing the net thermal recombination assisted by traps. However, an

important difference is that in the standard theory the above equation must be

supplemented with a companion one describing the transitions between the traps

and the valence band. Such an equation is not necessary here. The combination of

the two equations shows that in the standard theory both populations (electrons

in the conduction band and holes in the valence band) are able to simultaneously

increase. In contrast, (3.1) alone makes the population of the band electrons to

increase at the expense of that of the trap electrons, and viceversa. Remembering

39
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(2.29) and letting

nB
.
=

1

dT
neq exp [(E0 − EF ) /(kBTL)] , (3.2)

where E0 is the ground level of the traps, the following relation holds due to the

detailed balance:

eeq
n = nB α

eq
n . (3.3)

In the non-degenerate condition it is neq = NC exp[(EF − EC)/(kBTL)], where

NC , EC are the effective density of states and bottom energy of the conduction

band, respectively. It follows

nB = NC exp [(E0 − EC) /(kBTL)] . (3.4)

3.2 Impact Ionization and Auger Recombination

In the standard semiconductor theory both electrons and holes are able to induce

such transition processes. Here, Auger recombination induced by holes does not

occur because the traps can not ionize twice. Similarly, impact ionization induced

by holes does not occur because the maximum hole energy equals the ground state

of the trap, hence it can not become very large. As for the transitions induced by

electrons, the net recombination rate due to the Auger recombination and impact

ionization reads

UAI = cnn
2 (N − nT )− bn nnT , (3.5)

where cn > 0, bn > 0 are the transition coefficients for the Auger recombination

and impact ionization, respectively. In particular, bn strongly increases when

the electric field E increases. The second term at the right hand side of (3.5) is

different from the corresponding expression used in the standard semiconductor

theory. This is due to the constraint 0 ≤ nT ≤ N . The same reasoning leading

to (3.3) provides also beq
n = nB c

eq
n . For Auger recombination induced by elec-

trons to occur it is necessary that n2 be very large. This, however, happens only

in heavily-doped materials because the band concentration becomes very large.

Therefore, Auger recombination can be considered negligible in materials like the

one examined in this thesis.

Impact ionization is a typical non-equilibrium process which requires a large

electric field. An electron (or hole) in the conduction (or valence) band gains

its energy by external electric fields and becomes so highly energetic that it can

create an electron-hole pair by colliding with an electron in the valence band and

exciting it to the conduction band.

In GST memory devices impact ionization may occur because, even in the equi-

librium condition, some electrons make a trap-to-band transition by absorbing a

phonon. As the current generator is switched on, the increase in the potential
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drop inside the device makes the kinetic energy of the band electrons to increase

as well. If a collision occurs between a high-energy band electron and a trap

electron, the latter may absorb enough energy from the collision to make a tran-

sition to the band possible. In this way the number of band electrons becomes

larger. For the phenomenon to occur it is necessary that the electron originally

in the band i) travels for a distance long enough to acquire a sufficient energy

from the external field and, ii) does not interact with the phonons in the mean-

while. If such an interaction occured, the energy gained from the field would

in fact be released to the phonons. From the above description it follows that

impact ionization is a non-uniform phenomenon. For instance, the energy of the

band electrons near the injection contact is close the bottom of the band. As a

consequence, impact ionization can not occur near the injection contact, while

it may occur near the other contact. In turn, non uniformity implies that the

charge density is different from zero.

3.3 Field Emission

Field emission occurs because the field that is produced by the application of

the external current bends the upper edge of the potential-energy profile of the

traps. Due to this, a trapped electron has a non-negligible probability to tunnel

out of the trap and become a band electron. As the field grows the tunneling

distance shortens, so the tunnel probability sharply increases. In this way the

number of band electrons becomes larger. In contrast with the case of impact

ionization, when the electric field is uniform the field-emission phenomenon has

the same probability of occurring regardless of the trap’s position. Numerical

simulations carried out using the Synopsys TCAD tools show that the electric

field is indeed uniform when the trap distribution is such. As noted above, the

device considered here is current driven: it follows that when a high-field effect

promotes trapped electrons to the band, the increase in conductivity makes the

field to die out. As a consequence, the explanation of the snap-back phenomenon

should not be based on impact ionization or field emission. On the other hand

field emission enhances the subthreshold mobility. The phenomenon is thus im-

portant for explaining the shape of the V (I) curve in the subthreshold region but

cannot always provide a self-sustained feedback mechanism, as required for the

negative-differential resistance to occur.

3.4 Electron–electron Interaction

This mechanism is similar to impact ionization, but involves only low-energy

band electrons. It seems a promising candidate to explain the feed-back effect



42 CHAPTER 3. GENERATION-RECOMBINATION MECHANISM

[11],[20].

Macroscopic models describing the generation process induced by the Coulomb

interaction of a trapped electron with band electrons make use of a generation

rate. To derive the latter from first principles a numerical approach [11] has

been used, exploiting a solver of the two-electron, time-dependent Schrödinger

equation. Basing on this approach one evaluates the detrapping probability as

a function of the current density in terms of the number of band electrons at a

given initial energy.

While in [21],[20] a single trap level was considered (the ground state), here the

analysis is generalized to the case of several levels. The restriction of assuming

that the band electrons have the same energy is removed as well. The analysis

confirms the dependence of the snap-back phenomenon on the driving current.

It also shows that the feed-back process is actually made of the combination of

two mechanisms.

Letting fk be the filling fraction of the kth level Ek of a trap, in the equilibrium

condition the Fermi statistics for fk holds, which keeps the majority of traps filled

and makes the population of the band and of the upper trap levels negligible.

An external perturbation (typically produced by a current generator) results in

an increase in the band population. The electron concentration n of the band

is described through a modified Fermi statistics in which the Fermi level EF
is replaced with the quasi-Fermi level En. This is equivalent to shifting the

statistics along the energy axis. This description is acceptable because in the

typical operating conditions the band electrons do not become significantly hot

[21]. The higher number of band electrons increases the probability of the trap-

to-band transitions per unit time due to the cooperative effect. Such a probability

is the largest for the highest trap level (EM in figure 3.1) because the transition

energy EC − EM (with EC the bottom of the band) is the smallest. However,

as the population of EM is initially negligible, so is the number of electrons

that are promoted to the band. On the other hand the cooperative effect induces

transitions among all pairs of trap levels; such transitions, in turn, tend to equalize

the level populations, including that of EM . The increased population of EM
provides a larger supply of electrons that can be promoted to the band, this

providing one of the two contributions to the feed-back mechanism. Finally, the

larger concentration of band electrons makes the cooperative effect stronger, this

providing the other contribution to feed-back. As more current is injected into

the device, n keeps increasing at the expense of the population of the trap levels.

The two contributions to feed-back are investigated in the next paragraphs.

3.4.1 Transition Probabilities: General Theory

The Es ↔ Ek transition probabilities per unit time between the levels of indices s,

k combine the effects of the phonon stimulated-emission/absorption and electron
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Figure 3.1: Schematic view of a trap with energy levels E1 < E2 . . . < EM .
The grey area above indicates the energy band, whose minimum energy is EC .

interactions, Ṗks = Ṗsk = ṖPsk + ṖEsk. These terms do not include the spontaneous

emissions, which are treated separately. The rate ṖEsk has been obtained adopting

the same approach as that used in [22],[19],[18] to model the degradation phe-

nomena related to interface traps; namely, indicating with γ the density of states

per unit volume of the band, with f the filling fraction of the band states, with

u = u(Ee) the angular average of the group velocity of the band electrons, and

letting ∆sk = |Es − Ek|, one has

ṖEsk =

∫ ∞
∆sk

γ uσ f dEe . (3.6)

In the above,

σ = σ0

(
Ee −∆sk

E0

)r
, Ee ≥ ∆sk , r > 0 . (3.7)

is the Keldysh-like cross section of the interaction between the trap electron

belonging to level Ek and the band electrons, while Ee is the band-electron energy

relative to the minimum EC of the band and E0 a constant.

The discussion focuses on the integrand of (3.6), where all factors in it are non

negative. The energy dependence of the product γu, albeit complicated, is fixed

by the lattice structure; the cross section σ is a sharply increasing function of

energy because the exponent r is large. In fact, in the problem of [22] the value

r = 11 is used; in the fully quantum-mechanical approach of [20], a power of the

order of a few tens enters the probability that an electron leaves the trap due to

multiple scattering with band electrons. For a power law of the type of (3.6), with
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r ∼ 10, the sharp increase of σ starts at the threshold energy Eth
sk = ∆sk + E0.

As the filling fraction f has an exponentially-decreasing tail, the product σf is

expected to have a peak, whose value depends on the position of the tail along

the energy axis. As discussed in the introduction, such a position shifts when the

device is driven into a non-equilibrium condition by the application of an external

current.

The product σf is shown in figure 3.2; as expected, the curves exhibit a peak,

whose value turns out to depend strongly on the shift of the quasi-Fermi level

En. In the figure, the shift in the Fermi distributions is obtained by changing

ηn = (En − EC − ∆sk)/(kBTL) by one unit (kB is the Boltzmann constant, TL
the lattice temperature).

In contrast, the dependence of the peaks’ position on ηn is much weaker: solving

r exp(ηn − η) = η − r for η with r = 11 shows that a change ∆ηn = 2 moves the

peak by ∆η ' 0.02; in the more realistic case r = 15 one needs ∆ηn ' 5.5 to

obtain the same ∆η.

As a consequence, the integration domain in (3.6) is not changed appreciably

by the shift of En. This is important for the purpose of the present discussion,

because in the calculation of the integral one leaves the structural factor γu

unchanged when En changes. As a consequence, the changes in σf are not

masked by the local features of γu, and the exponential-like dependence of σf

on En is inherited by the integral. To further discuss the properties of ṖEsk we

recall the analysis of [19], that shows that σ can also be approximated by a step

function
σ = 0 , Ee < ∆sk

σ = σ0 , Ee > ∆sk
(3.8)

whose two branches are connected by an exponential. Using this form in (3.6)

yields

ṖEsk ' σ0

∫ ∞
∆sk

γ u f dEe =
σ0

q
Jn(∆sk) , (3.9)

with Jn(∆sk) ≥ 0 the current density of the band electrons having Ee > ∆sk.

Transition Probabilities: Approximation

In the case of a density of state (DOS) with parabolic-dispersion the transition

probability can be approximated and one can obtain an analytical expression.

Letting E−EF ← E−EF−qϕ← E−En−qϕ = Ee−q(ϕ−ϕn), with Ee = E−EC
and −qϕn = En −EC , and considering the following Fermi function f , the DOS

in the parabolic-dispersion case γ and the modulus of the group velocity of the

band electrons u:

1/f = 1 + exp

[
Ee − q(ϕ− ϕn)

kBTL

]
, (3.10)

γ =

√
2

π2~3
m3/2
e

√
Ee , (3.11)
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Figure 3.2: The continuous line shows the interaction cross section σ calculated
by letting σ0 = 1, r = 11 in (3.6). Using the normalized energy η = (E −
∆sk)/(kBTL) yields σ = ηr. Each bell-shaped curve shows the product of σ
by the shifted Fermi distribution 1/[exp(η − ηn) + 1] indicated with the same
symbols on the left part of figure (ηn is defined in the text). The shift in the
Fermi distributions is obtained by changing ηn = (En − EC − ∆sk)/(kBTL) by
one unit. The corresponding shift in the peak value of the bell-shaped curves is
found by solving r exp(ηn − η) = η − r for η. The area of each bell-shaped curve
is Γ(r + 1)Φr(ηn), thus its dependence on ηn is the same as that of the Fermi
integral. In the classical limit it becomes Γ(r + 1) exp(ηn).

u =

√
2

me
Ee , (3.12)

the transition probability can be expressed as follows:

ṖEMB '
∫ ∞

0

√
2

π2~3
m3/2
e

√
Ee

√
2

√
me

√
Ee σ0

(
Ee −∆MB

E0

)r
f dEe . (3.13)

Here ∆MB = EM −EC , where the indexes M and B refers to the highest energy

level of a trap (EM ) and the conduction band energy level EC (see Fig. 3.1). It

will be shown in section 3.4.3 that ṖEMB is the only relevant transition rate.

Defining

x =
Ee
kBTL

− ∆MB

kBTL
, ξ =

q

kBTL
(ϕ− ϕn) , δ = ξ − ∆MB

kBTL
, (3.14)
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The expression of ṖEMB can be rewritten as

ṖEMB =

√
2

π2~3
m3/2
e

√
2

√
me

σ0(kBTL)2

(
kBTL
E0

)r ∫ ∞
0

(
x+

∆MB

kBTL

)
xr

exp(x− δ) + 1
dx .

In the non-degenerate limit, when δ � 0 holds, the transition probability can be

approximated as

ṖEMB '
√

2

π2~3
m3/2
e

√
2

√
me

σ0(kBTL)2

(
kBTL
E0

)r
r!

(
r + 1 +

∆MB

kBTL

)
exp(δ) . (3.15)

Following the previous definitions the band-electron concentration results:

n =

∫ ∞
0

γf dEe =

√
2

π2~3
m3/2
e

∫ ∞
0

√
Ee f dEe = (3.16)

=

√
2

π2~3
(mekBTL)3/2

∫ ∞
0

x̃1/2 dx̃

exp(x̃− ξ) + 1
'

'
√

2

π2~3
(mekBTL)3/2

√
π

2
exp(ξ) ,

with x̃ = Ee/(kBTL). Finally, from 3.15 and 3.16 the expression of the transition

probability is found:

ṖEMB ' σ0 vr n exp[−∆MB/(kBTL)] =
σ0

q
Jn (∆MB, r) , (3.17)

where vr can be interpreted as the electrons drift velocity and is defined as

vr = 2

(
r + 1 +

∆MB

kBTL

)
r!

(
kBTL
E0

)r (2kBTL
πme

)1/2

. (3.18)

In conclusion, in the parabolic-dispersion case the transition probability results to

be proportional to the current density related to band-electrons at high energies

(above the threshold energy ∆MB as it will be described in the next section).

On the other hand, the current density shows a strong dependence on r justifying

the abrupt transition from the high resistive state to the high conductive state

above threshold.

3.4.2 Threshold Condition

It will be shown in section 3.4.3 that the kinetic energy that defines the onset

of the feed-back mechanism (that is, the threshold switching condition of the

device) is ∆MB = EC − EM (for the symbols refer also to figure 3.1). It follows

that, at threshold, the states of the conduction band with energy 0 ≤ Ee ≤ ∆MB

are filled, whereas those with Ee > ∆MB are empty. The current density at

threshold J th
n can be approximated as

J th
n '

∫ ∆MB

0
qγ u dEe . (3.19)
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In the spatially-uniform case considered here, the relation between the total cur-

rent density J and the band-electron current density Jn is [21, Eqs. (17,18)]

Jn
J

= θ(n) , θ(n) =
µnn

µnn+ µT (N − n)
, (3.20)

where µn, µT are the band and trap mobility, respectively. The total current

density at threshold J th turns out to be

J th =
µnn

th + µT (N − nth)

µnnth
J th
n , (3.21)

where nth is the concentration of the band electrons at threshold. Its value

could be calculated using an approximation similar to (3.19). However, it will

be determined later from another expression. In turn, the concentration of the

trapped electrons at threshold is N − nth. When the current generator provides

a current density J larger that the threshold one, some states with energy above

∆MB become populated, whence

Jn = J th
n + Jn(∆MB) > J th

n . (3.22)

As a consequence, the coefficient ṖEMB activates due to (3.9).

3.4.3 Band Population

The derivation of the balance equations for the energy levels is formally the same

as, e.g., in laser theory. All traps are equal to each other and provide a set of M

energy levels E1 < E2 < . . . < EM . The trap concentration is N , while Nk = Nfk
is the concentration of traps whose Ek level is filled. The time variation of Nk

due to the Ei ↔ Ek transitions is Rik = Ṗik (Ni − Nk) − Nk (1 − fi)/τki, with

1 < k < M , Ei < Ek, and τki the lifetime of spontaneous phonon emission. The

expression for the Ek < Ei case is found by exchanging i with k.

The exchange rate between Ek and the band has a slightly different form be-

cause empty band states are always available. It reads RkB = (ṖPkB + ṖEkB)Nk −
αBknN(1 − fk), where ṖPkB, ṖEkB are the trap-to-band emission coefficients for

the phonon and electron interactions, and αBk the band-to-trap transition coef-

ficient including the effect of spontaneous phonon emission. An Auger-like term

is not included in the above expression; this approximation does not violate the

microscopic-balance condition because (3.9) vanishes at equilibrium. In this case

from RkB = 0 one finds

[ṖPkB fk]
eq = [αBkn(1− fk)]eq , (3.23)

with f eq
k the Fermi statistics. It follows[

ṖPkB/αBk

]eq
= neq d exp

(
Ek − EF
kBTL

)
, (3.24)
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where d is the degeneracy coefficient.

The form of the exchange rates simplifies considerably if one assumes that the

transitions occurring between neighboring levels are dominant. This is justified

by the observation that in this case the energy required to induce the transition

is minimum. If, in addition, the electron-interaction perturbation is large enough

to make ṖErs dominant with respect to the phonon-related coefficients ṖPrs and

1/τsr, expressions similar to (2a,b,c) of [22] are reached. It follows that in steady

state the level populations Nk equalize, N1 = . . . = NM , as is ascertained easily

starting from the balance equation for the ground level E1 and continuing with

those for E2, E3, . . .. Due to the form of the balance equation for level EM , the

equalization makes the exchange rate RMB to vanish. From this, the expression

of the common value of the populations is found to be

N1 = . . . = NM =
nN

n+ bM
, bM =

ṖPMB + ṖEMB

αBM
. (3.25)

In the uniform case the charge density

% = q(N − n−
∑
k

Nk) (3.26)

vanishes; still considering the situation where ṖErs is dominant, the vanishing of

% coupled with the equalization of the level populations yields

N − n−M nN

n+ bM
= 0 . (3.27)

Then, letting ν = bM + (M − 1)N , the band concentration is found to be

n =
√
ν2/4 +NbM − ν/2 . (3.28)

Note that (3.28) holds only above threshold, because the equalization of the

level population is implied in its derivation. This, in turn, holds only when the

electron-interaction perturbation is dominant. Combining (3.28) with the second

of (3.25) and with (3.9) provides a relation between n and Jn(∆MB). On the

other hand, due to (3.22), it is Jn(∆MB) = Jn − J th
n . As a consequence, the

relation thus found has the form n = n(Jn). The threshold value for the band

concentration is then found as nth = n(Jn = J th
n ).

If the trap levels are grouped into a single one, then M = 1, ν = bM and the

expression for n simplifies to (14) of [21]. To date, the available experimental

data are not sufficient for providing a reliable fit for the two parameters bM and

N appearing in the definition of ν above. However, the aim of this section is to

estimate the sharpness of the dependence of the band-electron concentration on

the current density. To this purpose we proceed by letting M = 1, so that

ν = bM = nB + β Jn(∆MB) , (3.29)
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Figure 3.3: The relation n = n[Jn(∆MB)] for n ≥ nth, as found from (3.28).
It is Jn(∆MB) = Jn − J th

n . The definition of β is given in (3.30).
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Figure 3.4: Zoom of the n(bM ) graph of figure 3.3 near threshold.
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Figure 3.5: The figure describes the three phases of the gradual transition from
a charge transport mainly due to hopping processes through localized states to
a conduction governed by band electrons only: A) the band-electron concentra-
tion is negligible and the charge transport is mainly due to hopping processes
through localized states (EM < EnA < EC); B) Conduction due to the electrons
occupying extended states starts acting in parallel to the contribution of the hop-
ping processes ( EC < EnB < EC + ∆MB + E0 ); C) after the snap-back event
the conduction is mainly due to the band electrons (EnC > EC + ∆MB + E0 ).
Threshold condition: ∆MB + E0 = EC − EM + E0.

with

nB =
ṖPMB

αBM
, β =

σ0

qαBM
. (3.30)

The definition of nB in (3.30) is the same as in [21, Eqs. (5,6)]. The form of n =

n[Jn(∆MB)] is shown in figure 3.3. Following [21], the values of the parameters

have been fixed to nB = 1014 cm−3, N = 1019 cm−3. After an initially sharp

increase, the concentration of the band electrons saturates at N . A qualitative

analysis of the threshold condition is shown in figure 3.4.3 where the alternation

between hopping- and band-transport is described.

In the spatially-uniform case considered here, the relation between the total

current density J and the band-electron current density Jn is [21, Eqs. (17,18)]

Jn
J

= θ(n) , θ(n) =
µnn

µnn+ µT (N − n)
, (3.31)

where µn, µT are the band and trap mobility, respectively.

Inserting the expression n(Jn − J th
n ) worked out above into (3.31) provides an

intrinsic relation Jn(J). After calculating Jn for each value of the bias current

density J , one determines the corresponding concentration n. Then, the electric

field E for each bias point is found from Jn = qµnnE . In this way the branch of

the V (I) characteristic above threshold is determined.
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Finally, the total current density at threshold J th is determined from

J th =
µnn

th + µT (N − nth)

µnnth
J th
n . (3.32)
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Chapter 

Physical Model

The electron-electron interaction between the low-energy band electrons and the

trap electrons has recently been tackled from the microscopic viewpoint in a fully

quantum-mechanical approach [11]. In this chapter, the phenomenon, previously

described, is simply illustrated in the thermodynamical aspects, considering traps

with a single energy level and the three systems {n}, {nT }, {B} made, respec-

tively, of the band electrons, trap electrons, and lattice. The generator injects

the current I and provides a power P = V I, where V is the voltage drop across

the device. Such a power is absorbed by the band and trap electrons. The two

systems in turn exchange energy between each other via electron-electron inter-

actions, and with the lattice via phonon exchange. In a non-equilibrium situation

the net flow of energy makes the average energy of the trap electrons to increase.

This was already pointed out, e.g., in [33], to show that the energy absorption by

the trap electrons increases the probability of a transition from a trap to another.

The investigation of [11] has shown that such an absorption is also able to pro-

vide trap-to-band transitions. Macroscopically, this is described as a generation

process induced by the Coulomb interaction of a trap electron with a number

of band electrons. This type of interaction does not produce a recombination

process because a band electron can not occupy an already filled trap. It follows

that the net recombination rate describing the phenomenon is

UJ = −eJ nT , (4.1)

where the emission coefficient eJ ≥ 0 depends on the current density Jn of the

band electrons. The current density JT of the trap electrons may also contribute

to the phenomenon. If so, the emission coefficient is further enhanced. In order to

preserve the microscopic-balance principle, the dependence on the current density

is such that eeq
J = 0. With reference to the discussion above, in equilibrium it is

P = 0 and the exchanges of energy balance independently for each pair of systems

55
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{n, nT }, {n,B}, {nT , B}. The emission coefficient in (4.1) strongly increases with

the current density. As shown in section 4.1, the phenomenon does provide a

negative differential resistance.

For the sake of simplicity, the discussion about the analytical model carried out

here assumes a one-dimensional, uniform current density. In this case each current

is proportional to the corresponding current density, and the emission coefficient

becomes a function of the band-electron current In. The validation shown in

section 4.3 is based, instead, on the general three-dimensional model. From the

above discussion it follows that, taking the steady-state case and neglecting Auger

recombination, impact ionization, and field emission, the continuity equations for

the band electrons and trap electrons read

divJn = qUth + qUJ , divJT = −qUth − qUJ . (4.2)

The total current is J = Jn + JT , with divJ = 0. Equations (4.2) are coupled

with the transport equations (given by (2.30) for Jn, and the like for JT ) and

with the Poisson equation −ε∇2ϕ = % = q(N − n − nT ). Due to the considered

one-dimensional and spatially-uniform case the concentration N is constant. The

band-electron concentration n and the trap electron concentration nT are con-

stant as well. This rules out the diffusive contribution to carrier transport. The

need to solve the Poisson equation is ruled out as well, because the scalar electric

field E (albeit unknown) is constant. As the device is globally neutral, spatial

uniformity implies charge neutrality whence, from (2.28),

nT = N − n , N ≥ nT , n . (4.3)

and the expression (2.30) for the band-electron current reduces to the drift-only

case,

Jn = qµnnE . (4.4)

In turn, (4.2) combine into J = Jn + JT = const. Still due to spatial uniformity

the left hand sides in (4.2) are equal to zero independently from each other. It

follows that, in the one-dimensional, steady-state condition it is Uth + UJ = 0,

namely, using (3.1), (4.1), and (4.3),

αnn
2 = (en + eJ) (N − n) , (4.5)

which expresses the balance between recombination and generation events. Let-

ting b
.
= (en + eJ)/αn, one extracts n from (4.5):

n =

√
b2

4
+Nb− b

2
. (4.6)

Thanks to spatial uniformity the current through the device is given by I = AJ ,

where A is the cross-sectional area. As anticipated in chapter 3, in the worst
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case (that is, when the trap-electron current density does not contribute to the

emission process) the emission coefficient eJ can be considered a function of

Jn = In/A. The band-electron concentration n attains the upper value when

eJ , hence b, becomes very large. It is easily found that limb→∞ n = N , as is

apparent also from (4.5). The minimum of n corresponds to the equilibrium

case of (4.6) where, remembering (3.3) and the definition of b given above, it is

beq = b(eJ = 0) = nB.

Approximating the ratio en/αn with its equilibrium value nB and letting eJ/αn
.
=

nC r(Jn, JT ), with nC > 0, yields

b = nB + nC r(Jn, JT ) , r ≥ 0, (4.7)

with nB and nC concentrations. The worst-case expression of r(Jn, JT ) is

r = exp(Jn/JK)− 1 , (4.8)

with JK a fitting parameter. Expression (4.8) derives from the microscopic anal-

ysis of [11] and fulfills the condition eeq
J = 0 stated above. Indicating with L

the length of the amorphous chalcogenide-GST material and using J = Jn + JT ,

I = AJ one finds the expressions relating the field and current with the material’s

conductance GC = GT +Gn:

J = GC
L

A
E , GT = q

A

L
µTnT , Gn = q

A

L
µnn , (4.9)

with nT = N − n. The conductance GC depends on Jn through (4.6,4.7,4.8). It

is readily expressed in terms of J by dividing Jn = Gn LE/A by the first of (4.9),

to find an intrinsic relation Jn(J) of the form

Jn
J

=
µnn

µTnT + µnn
. (4.10)

The analysis of the conductance starts from the observation that in equilibrium it

is n� nT = N−n. When a current I is injected into the device, n increases at the

expense of nT ; however, as long as the perturbation with respect to equilibrium

is small, the contribution of µT (N −n) = µTnT to the conductance still prevails.

When I further increases, n eventually becomes equal or larger than nT . On the

other hand it is always µT < µn because the trap electrons move only by hopping

from a trap to another. It follows that GC increases with I because n increases

with In. Eventually GC must saturate: this occurs in the limiting case when all

initially-trapped electrons have become band electrons.

The model for µT is important for the above analysis. The conductance GC ,

obtained using the parameters listed in section 4.3, is drawn in normalized form

in figure 4.1 with µT = µT0 = const (solid line), and with (4.14) as mobility model

(dashed line). To make the difference between the two curves more visible, J has
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Figure 4.1: Graph of the normalized conductance LGC/(AqµTN) vs. normal-
ized current as obtained using the parameters listed in section 4.3. The difference
between the two curves is explained in the text.

been used in place of Jn in (4.8). The derivative of r with respect to the current

density determines the sharpness of the transition between the low- and high-

conductance condition.

It must be remarked that GC is not the only contribution to the conductance

of the whole device. Rather, the device is better described as the series of the

amorphous material and of a constant resistance RS due to the heater, crystalline

cap, and upper contact. The structural details mentioned here are visible, e.g.,

in [13]. The total resistance is thus R = RS + 1/GC , and the voltage drop across

the whole device is

V =

(
RS +

1

GC

)
I . (4.11)

Using in (4.11) the parameters listed in section 4.3 yields a V (I) curve with an

N-shaped form, that corresponds to a snap-back behavior in the I(V ) representa-

tion. The central portion of the curve exhibits a negative differential resistance.

Finally, the first of (4.9) provides the electric field in terms of the current den-

sity. As a consequence, any model that expresses the concentration of the band

electrons as a function of the current density is readily converted into a model

based on the electric field.
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4.1 Feedback and Scaling Properties

The V (I) relation (4.11) is non linear because of the dependence of GC on the

current. The non-linearity is such that in a region of operation the total device

resistance R = RS + 1/GC decreases as I increases. The phenomenon thus pos-

sesses an intrinsic feedback mechanism that may give rise to a negative differential

resistance. It is useful to remind why bulk-material devices may exhibit such a

behavior. In voltage-controlled devices the phenomenon is due the formation of

high-voltage regions (domains, see, e.g., [73, Ch. 14.2]), whereas in the current-

controlled ones the phenomenon is due to the formation of high-current regions

(filaments, same reference).

As the device under investigation is very thin, the formation of spatial filaments

is unlikely. The concept of filament may however be kept, if one considers that

the two sets of band electrons and trap electrons can be viewed as filaments sep-

arated in energy rather than in space. Another observation is that the condition

dR/dI < 0 is not sufficient to produce the negative differential resistance. The

condition for it, in fact, is

dV

dI
< 0 =⇒ dGC

dI
>
GC
I

(1 +RSGC) . (4.12)

The type of feedback in terms of the sharpness of the trap-to-band transition is

described with the aid of figure 4.2, where current and voltage have been normal-

ized to dimensionless quantities. If the conduction were due to the trap electrons

only, the conductance would be low, corresponding, e.g., to a v(i) relation given

by the line from the origin through the points A and G. If the conduction were

due to the band electrons only, the conductance would be high, corresponding

to a v(i) relation given by the line from the origin through the points B . . . F .

Actually, the conductance remains low in the current interval from i = 0 to the

current corresponding to point A. Here the device makes a transition to the

high-conductance case. The sharpness of the transition determines the type of

feedback.

An example of a situation where the negative differential resistance occurs is the

v(i) characteristic that goes from the origin to A, then from A to C, and finally

to D . . . F . The voltage decrease due to the increase of the conductance prevails

over the voltage increase due to the current increase. As consequence, the portion

of the v(i) characteristic after point A has a negative differential resistance. This

happens in the realistic cases as shown by the experiments.

The currents corresponding to the threshold and holding voltages are the roots

of dV/dI = 0, and fix the boundaries of the interval over which the snap-back

occurs. Remembering (4.12) one finds that the equation to be solved is

1 +RSGC =
dGC/GC

dI/I
=

dGC/GC
dJ/J

. (4.13)
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Figure 4.2: Schematic voltage vs. current relations used to illustrate the dif-
ferent types of feedback. The curve from the origin through points ABCDEF
describes an abrupt transition (at A all electrons move from the traps to the
band). The curves from the origin through points ADEF and AEF describe the
cases where the voltage increase due to the current increase is or is not compen-
sated by the voltage decrease due to the increase of the conductance.

The second form of (4.13) is more convenient for discussing the scaling properties,

because GC embeds the generation function (4.8) that depends on a current

density. Despite the possible complicacies involved in its actual solution, equation

(4.13) provides some hints about how the threshold and holding currents scale

when the device geometry is changed. In fact, the right hand side is invariant with

respect to the physical and geometrical scaling factors of GC and (independently)

of J . The result shows that in this model the threshold and holding currents

densities are invariant with respect to such scaling factors, in agreement with

experimental results [32]. In contrast, (4.13) does not provide information about

the scaling properties of the threshold and holding voltages themselves. Clearly

the observations about the scaling properties are based on the one-dimensional,

uniform model considered in this section, and must be corroborated by a more

general analysis that solves the full model numerically. The result of such an

analysis is shown in section 4.3.

4.2 Experimental Measurements Setup

The model presented here has been validated against experimental data acquired

using individual carbon nanotubes (CNTs) as nanoscale heaters to induce ultra-
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narrow phase change regions in GST, while applying currents on the order of 10

µA. The CNTs used here were grown by chemical vapor deposition (CVD) with

Fe catalyst particles on SiO2/Si substrates. The as-grown CNTs span Ti/Pd

(0.5/40 nm)metal contacts with 1 to 5 mm of separation (see Fig. 4.2) and then

created nanoscale gaps in the CNTs through electrical breakdown in air or under

Ar flow. This simple approach yielded a wide range of nanogaps (from ∼ 20 to

300 nm), which was essential for the subsequent scaling study.

The nanogap is typically near the middle of the CNT, consistent with the elec-

trical breakdown location and with negligible Pd contact resistance. Then, a

∼10-nm GST film was sputtered over the device surface, with settings previously

found to preserve the good electrical characteristics of CNTs. This deposition

fills the CNT nanogaps, creating selfaligned lateral PCM bits. Such devices can

be readily switched and examined by atomic forcemicroscopy (AFM); however, a

∼5-nm SiO2 capping layer deposited after the GST without breaking vacuum is

used to prolong the switching lifetimes.

GST sputtering is compatible with CNT devices, with conformal deposition and

little apparent damage to the CNT. The low currents needed to induce phase

change are a result of the excellent thermal stability (up to > 1000 ◦C) and ex-

tremely small diameter (<5 nm) of the CNT heaters.

CNT devices are grown directly on SiO2 and contacted with Pd electrodes as

described in Refs. [75]. Both single-wall and small diameter (<5 nm) multiwall

CNTs can be obtained and used to induce phase change in GST. A 10 nm amor-

phous film of GST has been sputtered on top of the CNT devices, as shown in

figure 4.2. Atomic force microscope (AFM) measurements confirm the thin GST

is conformal, and surface roughness is minimally increased from ∼0.3 nm (bare

SiO2) to ∼0.5 nm (after GST deposition) [75]. Moreover, electrical measurements

of the CNT before and immediately after GST sputtering indicate only ∼20%

change in CNT resistance, suggesting little damage to the nanotube from the

sputtering process.

After GST sputtering several compliance-limited DC current sweeps has been

performed, while monitoring the voltage across the device. Although the thin

GST film spans between the two electrodes, its amorphous resistivity is very high

(∼100 Ω·cm), and the current is entirely carried by the CNT during the initial

sweep. Subsequent sweeps to higher currents lead to increasing conductivity with

voltage snapback, attributed to a gradual transition of the GST surrounding the

CNT from amorphous to crystalline phase. At higher currents the temperature

of the CNT increases significantly, and a low-resistance crystalline GST “sleeve”

begins to form around the CNT. Once the phase transition occurs, the crystalline

state of GST is preserved generating hysteresis loops where each forward sweep

follows the previous backward sweep.

The current compliance limit has been gradually increased in 20 µA increments.
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Figure 4.3: Schematic description of the device under test.

Consequently, the resistance of the CNT-GST structure has been reduced by

more than an order of magnitude, as an increasing volume of GST surrounding

the CNT gradually heats up and crystallizes, introducing a parallel current flow

path. Once the current reached ∼160 µA the GST is irreversibly damaged, but

the measured IV returned along the original path, indicating the CNT itself was

still conducting, unchanged, and undamaged. The last point highlights the re-

silience of CNTs even under the most extreme conditions, and their durability as

nanoscale GST heaters. We note the heating current at which GST phase tran-

sition first occurs (∼25 µA) is much lower than in conventional PCM, although

voltages are higher due to the relatively long, resistive CNT (∼400 kΩ). Shorter

CNTs (¡1 µm) with good contacts have resistance an order of magnitude lower,

and would yield effective heating at voltages that are proportionally decreased as

well.

4.3 Extension of the Model and Validation

The low-current branch of the V (I) curve (namely, from equilibrium to snap

back) is independent of the band-electron mobility. In fact, the concentration of

band electrons is negligible in that region, hence the current is essentially due to

the motion of the trap electrons. Also, in the model discussed so far the branch is

linear because the mobility of the trap electrons is kept independent of the field.

On the other hand, the experiments show that the low-current branch is lin-

ear only near the origin, whereas at relatively higher currents it exhibits an
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exponentially-increasing behavior. The model must then be improved. Observ-

ing that at low currents the band electrons do not contribute to the transport,

the model is changed by making the mobility of the trap electrons to increase

with the electric field. This is consistent with the description of the transport by

trap electrons as due to the hopping between traps, as illustrated in chapter 3.

In fact, although the field is not high enough to make the trap-to-band transition

possible, an increase in the field makes the trap-to-trap hopping easier, hence the

mobility becomes larger.

The dependence of the mobility on the field due to this effect is of the exponen-

tial type, as shown by the investigations in [33] on tunneling and Poole-Frenkel

emission. Moreover, below snap back the relation between field and current is

monotonic because the contribution of the band electrons to transport is negli-

gible. Thus the mobility of the trap electrons may be made to depend exponen-

tially on the current instead of field. This is more consistent with the fact that

the model must account for the property of the device of being current driven.

The following expression has been assumed for the mobility of the trap electrons

before snap-back,

µT = µT0 exp(J/JF ) , (4.14)

with JF a parameter. It is also consistent with the interpretation of the sub-

threshold current as due to a conduction of the Poole-Frenkel type [33] (in this

case JF depends on temperature). Clearly an unlimited increase in µT is un-

physical. However, at snapback the vanishing of the trap-electron concentration

occurs, which makes the contribution of the conductance GT irrelevant. In the

numerical simulations the expression (4.14) is used only up to the snap-back cur-

rent, then a fixed value is assumed.The use of (4.14) before snap-back only, and

the extraction of the parameters µT0 and JF are detailed in the explanation of

the fitting procedure given below.

The electron-transition coefficient from the band to an empty trap is estimated

from the relation αn = σnuth, where the capture cross section is set to σn ∼ 5×
10−15 cm2 and, at room temperature, the thermal velocity is set to uth ∼ 2× 107

cm/s. The trap concentration is fixed to N = 1019 cm−3, in line with the findings

of other works (e.g., [33]).

Using the analytical model, the best fit of the experiments is carried out as fol-

lows. First, the products µT0N and µnN are determined from the slope of the

V (I) characteristic near the origin and, respectively, in the after-snap-back re-

gion.

The dependence of (4.14) on J is neglected in this phase because the threshold

condition is not influenced by it. Next, the ratio n/N is tackled which, due to

(4.6,4.7,4.10), is expressed in terms of the parameters nB/N , nC/N , and JK .

The latter are found by a best fit of the snap-back and after-snap-back portions

of the V (I) characteristic. Using nB/N in (4.6) one may also determine the ratio
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neq/N . The last parameter JF is then found by fitting the subthreshold region

with (4.14) while leaving the previously-determined parameters unchanged. The

best-fit curve resulting from the procedure depicted above is the continuous line

in figure 4.4.

The parameters of the trap mobility (4.14) are found to be µT0 = 1.22 cm2/(Vs),

JF = 4.18× 106 A/cm2. The value of the band-electron mobility turns out to be

µn = 22.74 cm2/(Vs). It is easily found that the condition µn > µT used in the

discussion of chapter 4 always holds. Finally, the best fit of the snap-back region

provides the following optimal values for the parameters of (4.15): nB = 1014

cm−3, nC = 5.12 × 10−14 cm−3, JK = 7.65 × 104 A/cm2. The model demon-

strates a fair agreement with experiments despite the sharpness of the snap-back

transition. The quality of the fitting at different temperatures and size of the

samples is similar.

The model illustrated in this paper has been implemented into the D-2010.03-SP1

version of Synopsys’ Sentaurus T-CAD c©. Both the analytical form described in

sections 4, 4.1 and the general form described in sections 2.3, 3 have been com-

pared with experimental V (I) curves. The fabrication of the GST layers and the

measurements have been carried out at the Micro- and Nanotechnology Labo-

ratory of the University of Illinois at Urbana-Champaign [24]. As shown in [75]

the conductivity of the carbon nanotubes that form the device contacts is much

higher than that of the GST layer. The length of the latter is thus equal to the

gap between the nanotubes. Side effects of the current flux within the GST are

possible. They may produce variations in the fitting parameters, but do not alter

the structure of the model.

Preliminary results about the analytical model have already been shown in [66].

Here the discussion will focus on the general model, with the aid of figure 4.4

that shows Sentaurus T-CAD’s outcomes (lines) along with experimental results

(symbols). The length and diameter of the device used in the experiments are

110 nm and 4.3 nm, respectively. The model has been implemented into the

code by describing the empty traps as holes (namely, p = N − nT as anticipated

in section 2.3) and using the recombination-generation function U = Uth + UJ
described in chapter 3. The expression of U is rewritten below in terms of the

parameters introduced in chapter 4:

U = αn [np− (nB + nC r) (N − p)] . (4.15)

The architecture of Sentaurus T-CAD is such that the mobility and recombination-

generation models can be defined by the user, whereas the transitions involving

the traps are not accessible. As a consequence, the use of the general model

within the code requires an additional step, namely, the decrease of the hole mo-

bility in the region after snap back, in accordance with the discussion carried out

earlier. This is achieved by eliminating the exponential factor in (4.14).

The model has been tested against experimental data. GST layers have been
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Figure 4.4: Comparison of the model with the experimental curve at T = 295
K. The device is a 10-nm GST layer deposited over a 110-nm gap opened within a
4.3 nm-diameter carbon nanotube [24]. The symbols show the experiments, while
the continuous line has been calculated by Sentaurus T-CAD using the best-fit
parameters described in the text. The other curves also show Sentaurus T-CAD
outputs sharing the same parametrization.

deposited using the method described in section 4.2, which makes use of carbon

nanotubes (CNTs) as electrodes.

An example of the fitting is shown in figure 4.5, demonstrating a fair agreement

despite the sharpness of the snap-back transition. The quality of the fitting at

different temperatures and size of the samples is similar (see Fig. 4.6).

The general model in the region below snap back has also been used to test the

dependence of the threshold and holding currents on the device geometry. After

completing the best fit, the V (I) curve has been calculated again after varying

the cross-sectional area or the length of the device, leaving the fitted parameters

unchanged. The results are shown in figure 4.4. They show that increasing or

decreasing the length leaves the threshold current unchanged, whereas increasing

or decreasing the cross-sectional area leaves the threshold voltage unchanged, this

in line with the discussion of section 4.1 based on the analytical model.

Another feature of the model is the agreement of the temperature dependence of

GC = GT + Gn with the experiments. The discussion of this aspect is based on

(4.9). In the equilibrium condition the electrons distribute in the energy states

according to the Fermi statistics and, if the temperature TL becomes larger, the

concentration n of the band electrons increases as well. Also, it is µT → µT0

when J → 0. As the dependence of n on TL is much stronger than that of µn,
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Figure 4.5: Fitting of the model to the experimental curve (T = 295 K).
The device is fabricated as described in [75]. The best fit yields nM ∼ N =
5 × 1018cm−3, nm = 10−4N,nM ∼ N,µn/µT0 = 20.26, IC = 0.79µA, IK =
0.01µA, IF = 0.58µA.

µT0, it follows (assuming for simplicity a non-degeneracy condition)

GC(TL) = GC0 +GC1 exp[−Ea/(kBTL)] , (4.16)

with GC0, GC1, Ea parameters that depend weakly on temperature. GC1 is

dominant over GC0 because of the high µn/µT0 ratio. Furthermore, as the data

in figure 4.7 have been extracted from the linear region of the experimental results

of [32] and [25], Ea in (4.16) represents the low-field limit of the activation energy.

Figure 4.7 shows a comparison between (4.16) and the experimental results. The

value of parameter Ea is 0.33 ± 0.01 eV in both cases. The agreement with

experiments of the temperature dependence of the conductance near equilibrium

provides a sensible indication supporting the existence and nature of the extended

states in the material.

4.4 Implementation of the cooperative electron-electron

interaction model on Sentaurus TCAD c©

Charge transport in amorphous chalcogenide-GST used for memory devices is

modeled by means of two contributions: hopping of trapped electrons and motion

of band electrons. The former constitutes the main contribution to conduction in

the subthreshold region while the latter becomes relevant only after the snapback
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Figure 4.6: The figure shows other fittings of the experimental curves for dif-
ferent sizes of the device under test.
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Figure 4.7: Arrhenius plots at small fields of the GC(TL) relation (continuous
lines) compared with the experimental results (symbols) of [32] (left) and [25]
(right).

event occurs. As a consequence, the total current density J is expressed in terms

of the current density Jn, related to the band electrons, and the current density

JT of the trap electrons:

J = Jn + JT = const , (4.17)

where J = const because the device is current driven. The model has been im-

plemented into the code by describing the filled traps as holes (p = nT , thus

Jp = JT ). In order to separate the contributions of the charge carriers in the

two regions (below and above threshold), donor and acceptor traps have been

included.

In the equilibrium case the donor traps are empty while the acceptor are filled.

The hole concentration in the valence band depends on the p-type doping con-

centration that determines the quasi-Fermi level position (see Fig. 4.8).

Above threshold the population of high-mobility electrons strongly increases with

respect to the low current case due to the cooperative electron-electron interac-

tion. This physical behavior has been reproduced adopting symmetrical capture

and emission rates for the two types of traps, such that above threshold the holes

are captured by the donor traps while the electrons are injected in the conduction

band through the acceptor traps. Due to these processes the quasi-Fermi level

shifts below the conduction band energy EC . In this case the hole concentration

becomes negligible and the total current is mainly due to the band electrons.
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Figure 4.8: Schematic description of the traps position and carriers transitions.
Here, EC , EV , EA, ED indicates the energy levels of the conduction band, valence
band, acceptor traps and donor traps, respectively. The dotted arrows refer to
phonon-assisted transitions while the other arrows denotes the transitions due to
electron-electron interactions.

4.5 Electrostatic potential and Fermi statistics

Due to the configuration depicted above, the electrostatic potential φ is the so-

lution of the following Poisson equation:

∇ · ε∇φ = −q (p− n−NA)− ρtrap , (4.18)

where ε is the electrical permittivity, q the elementary electronic charge, n and

p the electron and hole densities, NA the concentration of ionized acceptors and

ρtrap the charge density contributed by traps, which will be discussed in the next

section.

Electron and hole densities can be computed from the electron and hole quasi-

Fermi potentials, and vice-versa. If Fermi statistics is assumed, the formulas read:

n = NC F1/2

(
EF,n − EC

kT

)
,

p = NV F1/2

(
EV − EF,p

kT

)
, (4.19)
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Figure 4.9: Schematic band diagram showing the position of the valence- and
conduction-band edges and quasi-Fermi levels, in the equilibrium case (a) and at
high current (b).

where F1/2 is the Fermi integral of order 1/2.

Alternatively, the equations (4.19) can be rewritten as follows:

n = γnNC exp

(
EF,n − EC

kT

)
,

p = γpNV exp

(
EV − EF,p

kT

)
, (4.20)

where γn and γp are the functions of ηn and ηp:

ηn =
EF,n − EC

kT
, ηp =

EV − EF,p
kT

, (4.21)

γn =
n

NC
exp (−ηn) , γp =

p

NV
exp (−ηp) , (4.22)

In the equilibrium condition the quasi-Fermi levels are close to the valence band

energy EV and move below the energy level EC when the current increases due

to the electrons injection from traps (see Fig. 4.9).

4.6 Trap occupation dynamics
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4.6.1 Acceptor traps

Acceptor traps are uncharged when unoccupied and they carry the charge of one

electron when fully occupied.

The capture rate cn for an empty trap and the emission rate en for a full trap

are defined as follows:

cnC = αn · n · (N − p) ,
enC = αn · [nB + nC · r(I)] · p , (4.23)

where the subscript C denotes the conduction band as the reservoir of carriers.

The acceptor traps are coupled with the conduction band only. This is necessary

to control the electrons concentration avoiding the generation of holes during the

snapback event. As a consequence, cnV = enV = 0.

The electron occupation fn of an acceptor trap is a number between 0 and 1,

and changes due to the capture and emission of electrons:

∂fn

∂t
=
∑
i

rni , (4.24)

rni = (1− fn) cni − fneni , (4.25)

where the index i denotes the reservoir.

For the stationary state, the time derivative in eq. (4.24) vanishes. The occupa-

tion becomes:

fn =

∑
cni∑

(cni + eni )
, (4.26)

Replacing the equations (4.23) in (4.26), one finds:

fn =
αn · n · (N − p)

αn · {n · (N − p) + [nB + nC · r(I)] · p}
. (4.27)

In the equilibrium case with r (I) = 0 when I = 0 the occupation becomes:

fn =
n (N − p)

n (N − p) + nB · p
. (4.28)

In the subthreshold region the band electron concentration n is negligible com-

pared to the hole concentration p, thus the coefficient nB must be calibrated to

obtain a trap electron concentration equal to p. The latter must be close, but

not equal, to the total trap concentration N to ensure fn > 0.

Above threshold r (I) � 0 and enC � cnC , thus fn becomes equal to zero, as

expected, due to the injection of electrons from the traps to the band.
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4.6.2 Donor traps

Donor traps are uncharged when unoccupied and they carry the charge of one

hole when fully occupied.

The capture and emission rates are symmetrical to those described above for the

acceptor traps and can be obtained replacing n with p and vice-versa:

epV = αp · p · (N − n) ,

cpV = αp · [pB + pC · r(I)] · n , (4.29)

where the subscript V denotes the valence band as the reservoir of carriers. The

donor traps are coupled with the valence band only. This is necessary to reduce

the holes concentration during the snapback event and to mimic the emptying of

the chalcogenide material’s traps. As a consequence, cpC = epC = 0.

The electron occupation fn for donor traps is found to be:

fn =
αp · p · (N − n)

αp · {p · (N − n) + [pB + pC · r(I)] · n}
(4.30)

In the equilibrium case with r (I) = 0 when I = 0 the occupation becomes:

fn =
p (N − n)

p (N − n) + pB · n
(4.31)

At low current the band electron concentration n is negligible compared to the

hole concentration p, thus the capture term always prevails on the emission term.

As a consequence, in the subthreshold region fn ∼ 1, which means that the hole

occupation fp is equal to zero.

At high current r (I)� 0 and enC � cnC , thus fn becomes equal to zero (fp ∼ 1),

as expected, due to the capture of holes from the valence band to the traps.

4.7 Results and improvement of the TCAD code

The V (I) relation found by the present model, in a 1-D uniform case, is N-shaped,

this corresponding to the expected snap-back behavior of the V (I) curve (see Fig.

4.10). The latter is obtained by fixing the following values for the parameters of

(4.23) and (4.29): N = 1019 cm−3, NA = 1018 cm−3, nB = nC = 10−2 cm−3, pB =

6 cm−3, pC = 10−20 cm−3, αp = σputh,p and αn = σnuth,n, where the capture cross

sections are set to σn = σp ∼ 5× 10−17 cm2, and, at room temperature the ther-

mal velocities are set to uth,n ∼ 2×107 cm/s and uth,p ∼ 1.6×107 cm/s. The trap

mobility is set to 0.04 cm2/ (Vs) while the threshold current IK = 0.1× 10−7 A.

As shown in Fig. 4.11 and Fig. 4.12, the code is able to reproduce the alternation
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Figure 4.10: V (I) characteristics for different values of the hole mobility.

of two different charge carriers, the holes in the subthreshold region and the band

electrons after the snapback. The former can be treated as trapped electrons by

enabling one of the built-in TCAD mobility models, such as the Poole-Frenkel

model, or creating an ad-hoc PMI which fits the experimental V (I) characteris-

tics behavior.

Another feature of the code is the capability to represent the quasi-Fermi level

shift during the current sweep (see Fig. 4.13), depending on the function r(I)

and the parameters nC and pC .

In the previous code (version TCAD D-2010 described in section 4.3) the traps

were not included and the model was implemented through a PMI for the defi-

nition of the generation-recombination rate.

Due to the electron-hole pair generation during the snapback event, it was nec-

essary to limit the charge carrier concentration considering the holes as empty

traps and decreasing their mobility after the snapback. As a consequence, in

the subthreshold region the hole concentration was low, while became close to

N at high current. However, Jp was made negligible with respect to Jn through

the PMI mobility model. This unphysical issue has been overridden in the new

code where, at snapback, the vanishing of the trap-electron concentration (de-

scribed by holes) occurs, which makes its contribution to the total current density

irrelevant.
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Figure 4.11: The figure shows the alternation of two different contribution to
the total current: the hole current in the subthreshold region and the electron
current above snapback.

Figure 4.12: Electron and hole concentration at the equilibrium for I = 0 (left)
and at high current (right).
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Conclusion

An overview of different DC transport mechanisms based on the established

physics of chalcogenide glasses has been presented. Several models are capa-

ble of accounting for the various observed exponential field dependencies of the

conductivity. Unfortunately, almost all the considered mechanism are candidate

explanations. Only Schottky emission and classical hopping conduction can be

ruled out. It is difficult to identify a particular mechanism through the analysis

of IV data alone and further studies are required to discriminate between the

different mechanisms.

At this purpose, the overview has been followed by the introduction of a new

transport model that is able to physically explain the electrical behaviour of

the device in each operative region, not only in a defined domain. The feed-

back mechanism that produces the snap-back phenomenon in amorphous-GST

memory devices is described as a filamentation in energy: electrons that belong

to low-energy states within the traps move by phonon-assisted hopping among

traps, while electrons belonging to higher-energy, extended states move within

the conduction band. The former group of carriers has a much smaller mobility

that the latter. Trap-to-band transitions are induced mainly by the Coulomb

interactions of a trap electron with a number of band electrons; phonon absorp-

tion and emission also play a role. The different types of transitions are modeled

by a net recombination-generation rate including a term describing the effects

of the collective Coulomb interactions. The analysis of the feedback shows that

the snap-back effect is determined by both the sharpness of such a term and the

difference in mobility between the trap and band electrons.

Thus, the heuristic expression of [21] for the Jn dependence has been replaced

here by a physical derivation through equation (3.9) combined with the analysis

of the band population carried out in this thesis.

The effect of the many-level transitions induced by the cooperative interactions

between band and trap electrons has been investigated inthis work. The main

results are i) the role of the power-like energy dependence of the cross section

σ has been clarified:the parameters ∆sk, E0, and r fix the threshold energy and

77
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the sharpness of the behavior of ṖEsk around threshold. ii) The dependence of

ṖEsk on the external perturbation is due to the form of the energy distribution

of the bandelectrons; the estimate of the integral (3.6) confirms that ṖEsk is an

exponentially-increasing function of En, which in turn explains the positive feed-

back mechanism in the transport process [21]. iii) The analysisalso shows that

two mechanisms contribute to the feed-back: they arethe tendency of the level

populations to equalize and the increase inṖEsk with the band population; the first

one provides alarger supply of electrons able to make a transition from EM to

theband; then, the second one makes n to further increase at theexpense of the

traps’ population. iv) In the uniform case thedependence n = n(ṖErs) is worked

out explicitly.

The transport model is completed by coupling the continuity equations for trap

and band electrons, incorporating the new recombination-generation rate, with

the transport and Poisson equations. The model has been applied in two ways:

first, in a version that lends itself to an analytical expression of the device con-

ductance, second in the full version implemented into a state-of-the-art device-

simulation code. The analytical version is useful to discuss the feedback mecha-

nism and the scaling properties of the device. Despite its simplicity, the analytical

model proved able to exhibit the snap-back behavior even in the case of one-

dimensional, uniform structures. The implementation into the device-simulation

code corroborates the findings obtained from the analytical version, and provides

the basis for investigating device architectures featuring non-uniform physical

properties and more complex geometries.
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