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ABSTRACT

Most eletroni systems an be desribed in a very simpli�ed way as an assem-

blage of analog and digital omponents put all together in order to perform a

ertain funtion. Nowadays, there is an inreasing tendeny to redue the analog

omponents, and to replae them by operations performed in the digital domain.

This tendeny has led to the emergene of new eletroni systems that are more

�exible, heaper and robust. However, no matter the amount of digital proess im-

plemented, there will be always an analog part to be sorted out and thus, the step

of onverting digital signals into analog signals and vie versa annot be avoided.

This onversion an be more or less omplex depending on the harateristis of

the signals. Thus, even if it is desirable to replae funtions arried out by analog

omponents by digital proesses, it is equally important to do so in a way that

simpli�es the onversion from digital to analog signals and vie versa.

In the present thesis, we have study strategies based on inreasing the amount

of proessing in the digital domain in suh a way that the implementation of ana-

log hardware stages an be simpli�ed. To this aim, we have proposed the use of

very low quantized signals, i.e. 1-bit, for the aquisition and for the generation of

partiular lasses of signals.

More spei�ally, on one hand, we have proposed a method for the generation

of sets of binary sequenes to be used in multiple-input multiple-output ative

sensing appliations, suh as radar, sonar and medial imaging. The generated

sets of sequenes have very low auto- and ross-orrelation sidelobes, a desired

property for this kind of appliations, providing performane metris far better

than those from other families of binary sequenes, and a omparable performane
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to that of multibit approahes. The advantage of using binary sequenes is, for in-

stane, the simpli�ation of the implementation of the transmitters always present

in these appliations.

On the other hand, we have proposed a new arhiteture for an analog to digital

onverter. This arhiteture an be viewed as an extension of the funtionalities of

a lassial Delta-Sigma onverter whih, by taking 1-bit measurements at a rate

muh bigger than that of the signal bandwidth, produes a signal estimate with

an auray that depends on the ratio between the sampling rate and the signal

bandwidth. In our ase, relying on the struture of the signal of interest, and

assuming that its information ontent is muh smaller than its bandwidth, we are

able to produe a signal estimate that depends on the ratio between the sampling

rate and the information ontent of the signal.
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1. INTRODUCTION

Although most modern eletronis systems are omposed by a ombination of

analog and digital omponents, the rapidly evolving apabilities of digital ele-

tronis are shifting every funtion (before) handled in the analog domain into the

digital domain.

The advanes in integrated iruits design have enabled the reation of digital

proessing systems that are more �exible, heaper and robust than their analog

ounterparts. This has lead to one of the most signi�ant development during

the last deades of eletroni systems design: replaing analog omponents to

perform their operation in the digital domain.

However, for these systems to interfae with the real world, onversions be-

tween analog signals and digital signals are required. Analog-to-Digital (AD) and

Digital-to-Analog (DA) onverters are the responsible of that onversion.

Most AD and DA onverters rely on the Nyquist-Shannon sampling theorem

that determines how any signal an be exatly reovered from a set of uniformly

spaed samples taken at a rate of at least twie the highest frequeny present in

the signal of interest.

Nyquist-Shannon sampling theorem imposes a requirement on the time do-

main to the problem of how to represent an analog signal by a series of samples

without any lost of information. However, in order to proess and store samples in

a digital system, we must be able to represent eah sample using a �nite number

of bits, and hene the measurements will typially be subjet to the unavoidable

quantization error. By inreasing the number of bits of the measurements, the



1. Introdution 2

quantization proess an be negleted, or hidden with respet to proesses present

in the system suh as thermal noise. The main drawbak of this approah, is that

the ost of inreasing the number of bits for Nyquist based AD and DA onverters

require a huge amount of analog hardware. As an example, ��ash� AD onvert-

ers exponentially inrease its hardware omplexity with the number of resolution

bits, and beomes impratial at resolutions over 8 bits due to the large number of

omparators required.

There is a different approah for AD and DA onversion that it is not based

on the Nyquist-Shannon sampling theorem. Delta-Sigma onverters rely on the

utilization of a very small amount of bits to quantize signals (1-bit quantization is

the most typial value used). Delta-Sigma onverters ahieve this by trading-off

resolution with the sampling frequeny. These onverters oversample the signal

by a large fator with respet to its bandwidth and, by a �ltering proessing (ana-

log or digital) they are able to obtain a �nal signal represented with an auray

muh bigger than the one used in the sampling proess.

Among other advantages (low power, low ost) with respet to other onverter

arhitetures, at the heart of the Delta-Sigma is the simpli�ation on the quan-

tization stage that allows the onverter to operate with no linearity degradation.

However, Delta-Sigma onverters only allows to ef�iently operate with signals

with a redued spetra oupany, due to the high oversampling ratio needed to

obtain the desired preision.

The main motivation of this dissertation is to study simpli�ation strategies

for the implementation of analog hardware stages present in most mixed systems,

by inreasing the amount of proessing in the digital domain. We aomplished

this by proposing the utilization of very low quantized signals, i.e. 1-bit, for the

aquisition and for the generation of partiular lasses of signals. Following this

approah we have arhived performanes similar (or even better) than those ob-

tained through multibit approahes.

We �rst present the use of Legendre sequenes (1-bit sequenes) for the gener-
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ation of sets of sequenes with good auto- and ross-orrelation properties. These

Sets of Low Correlated Sequenes an be used in MIMO (Multiple Input Mul-

tiple Output) ative sensing systems ahieving a signi�ant improvement with

respet to other sets of binary sequenes, and a similar performane to the one

ahieved by multibit approahes.

Seondly, we present a new arhiteture for an Analog to Digital onverter

(or more preisely, an Analog to Information Converter) that, based on a Delta-

Sigma onverter, produes a stream of 1-bit measurements, and ahieves a reon-

strution performane proportional to the signal information ontent instead of

that of the signal bandwidth.

1.1 Sets of Low Correlated Sequenes

The design of sequenes sets with low aperiodi auto- and ross-orrelations is

present in many �elds of engineering and plays an important role in many appli-

ations suh as radar, sonar, ommuniations, medial imaging and other ative

sensing appliations.

The task of designing sets of sequenes with presribed orrelation properties

is a partiular ase of the general problem of waveform synthesis that is often

a key point in establishing the performane of transmission, synhronization, or

ative sensing systems [1, 2℄.

Good auto-orrelation properties means that any sequene in the set is nearly

unorrelated with its own shifted version while good ross-orrelation means that

any member of the sequenes set is nearly unorrelated with any other members

at any shift. A ommonly used metri of the goodness of the orrelation is the

Integrated Sidelobe Level (ISL), being good set of sequenes those having a low

ISL value.

Althoughmany state-of-the art algorithms were proposed for the minimization

of the ISL [3, 4, 2, 5, 6℄, their performane is largely impaired when quantization
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is taken into onsideration. However, implementation onstraints strongly favors

disrete-valued signals, possibly enforing quantization to an extremely limited

number of levels.

What we propose here is a proedure to onstrut sets of antipodal sequenes

with extremely low ISL. The resulting performane largely exeeds that of las-

sial methods for the diret generation of low-ISL sets of sequenes.

1.2 Analog to Information Converters

Analog to Digital onversion is one of the most important operations in signal

proessing. It maps a ontinuous-time and real-value signal into a disrete se-

quene of disrete values. Classial sampling methods rely on the hypothesis that

the analog signal to be aquired is band-limited, and the Nyquist-Shannon the-

orem states the minimum distane between samples (or Nyquist rate) needed to

uniquely desribe the analog signal by its samples.

While the assumption of bandlimited signals is of broad appliation, many

natural signals when represented in a proper basis, orrespond to vetors in whih

many omponents have a small value, or represent a small fration of the total

energy. This harateristi alled �sparsity� is usually exploited to represent the

signal with a muh smaller amount of data, and loser to the signal information

ontent.

A novel sampling paradigm that goes against the ommon approah in data

aquisition has emerged in the last years and is alled Compressive Sensing (CS)

[7, 8, 9℄. CS theory asserts that one an reover ertain signals and images from

far fewer samples or measurements than those used by traditional methods. This is

possible due to the fat that many natural signals are sparse or ompressible, and,

by measuring in a partiular way, it is possible to aquire the omplete information

ontent of those kind signals.

Analog-to-Information onverters relies on this idea, to measure the informa-
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tion ontent of the signal instead of measuring the omplete redundant data avail-

able for a partiular measurement domain.

Following this approah, we have proposed a novel arhiteture for an Analog-

to-Information onverter that allows a simple hardware implementation for the

aquisition of large bandwidth signals that are sparse over a variety of supports.

1.3 Overview and Main Contributions

This thesis is mainly onerned on how signal proessing tehniques an be ap-

plied to real hardware appliations and help to redue the omplexity of its imple-

mentation.

This work is divided into two parts, the �rst part takle the problem of se-

quenes synthesis, and how a proper design of simple antipodal signals an ahieve

a performane similar to that obtained using multibit sequenes for ative sensing

appliations. The main ontributions of this part are:

� an analysis of the degradation of state-of-the-art algorithms for sequenes

synthesis when quantization is imposed;

� a method based on generating funtions for the alulation of the ross-

orrelation omponents of the ISL of a set of sequenes;

� a proedure to onstrut sets of antipodal sequenes with extremely low

ISL;

� an analytial expression for the asymptoti ISL of sets of rotated Legendre

sequenes.

The seond part of the thesis onerns about the implementation of a Analog-

to-Information onverter that produes a stream of 1-bit measurements and a �nal

resolution after reonstrution that is proportional to the information ontent of

the signal. The main ontribution of this part are:
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� a new arhiteture for ompressive sensing that produes 1-bit measure-

ments;

� a new reonstrution algorithm for the proposed arhiteture that exploits

not only the sparsity hypothesis but also the hardware arhiteture of the

aquisition system;

� a theoretial analysis of the apabilities of a Delta-Sigma modulator to ex-

trat the information ontent of a signal, that is later extended for the anal-

ysis of the proposed arhiteture;

� a hardware implementation of the proposed arhiteture, and a measure-

ment setup to validate the theoretial analysis.

We onlude this thesis work with a summary of our �ndings in Chapter 7.



Part I

LOW CORRELATED SEQUENCES





2. INTEGRATED SIDELOBE LEVEL PROBLEM

2.1 Introdution

The design of sequenes sets with good orrelation properties is present in many

�elds of engineering suh as radar, sonar, ommuniations, medial imaging and

so on. Ative sensing appliations, have been greatly bene�ed by the use of

multiple-input multiple-output (MIMO) systems. This kind of systems, transmit

orthogonal waveforms via its antennas allowing to ahieve a great inrease virtual

aperture.

As an example, traditional phased-array radar system only transmits a single

waveform trough its antennas. However, by the use of MIMO radar system a

large inrease in parameter identi�ability [10℄, detetion performane [11℄, and

resolution [12℄ an be ahieved.

Besides orthogonality, good auto- and ross-orrelation properties of the trans-

mitted waveforms are also often required [13, 14, 15℄.

Good auto-orrelation properties means that any sequene in the set is nearly

unorrelated with its own shifted version while good ross-orrelation means that

any member of the sequenes set is nearly unorrelated with any other members

at any shift.

The design of a set of signals with small auto-orrelation sidelobes and small

ross-orrelation between sequenes at any time delay ensure that the reeiver

mathed �lter an extrat the desired information while attenuating undesired sig-

nals.
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A ommonly used metri of the goodness of the orrelation is the Integrated

Sidelobe Level (ISL). The ISL of a set of M sequenes eah of N (possibly

omplex) symbols that we will indiate with x

(p)

j

with j = 0; : : : ; N � 1 and

p = 0; : : : ;M � 1 is de�ned as

ISL =

M�1

X

p=0

N�1

X

k=�N+1

k 6=0

jX

x

(p)

x

(p)

(k)j

2

+

M�1

X

p=0

M�1

X

q=0

p6=q

N�1

X

k=�N+1

jX

x

(p)

x

(q)

(k)j

2

(2.1)

where

X

x

(p)

x

(p)

(k) =

minfN�k;Ng�1

X

j=maxf0;�kg

x

(p)

j

x

�(p)

j+k

k = �N + 1 : : :N � 1

is is the auto-orrelation of the sequene x

(p)

, and

X

x

(p)

x

(q)

(k) =

minfN�k;Ng�1

X

j=maxf0;�kg

x

(p)

j

x

�(q)

j+k

k = �N + 1 : : : N � 1

is the ross-orrelation between the sequenes x

(p)

and x

(q)

.

Good set of sequenes are those having a low ISL value.

Due to the strong interest in the design of sequenes with low ISL value, many

algorithms have been suggested for its minimization [4, 2, 5, 6, 1℄. Suh a problem

may be far from trivial when onstraints are introdued. For example, reeption

may have to be stopped after a ertain time thus spoiling the adoption of peri-

odi signals and leading to the onsideration of lipped or aperiodi orrelations.

Further to that, implementation strongly favors disrete-valued signals, possibly
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enforing quantization to an extremely limited number of levels.

This latter onstraint, in partiular, is known tomake optimization-basedmeth-

ods hard to apply sine ontinuous-optimization must either undergo quantization

or be simply disarded in favor of almost exhaustive sans.

Within this senario, starting from the lassial problem of designing an an-

tipodal sequene with a low Integrated Sidelobe Level (ISL) [16℄ we address its

generalization to sequene sets, for whih �lobes� are onsidered both for auto-

orrelation and for ross-orrelations.

2.2 Problem Formulation

Given M and N , and based on (2.1) the general problem is that of �nding the

sequene set minimizing the ISL.

Commonly, a further unimodularity onstraint is put on the sequenes thus

requiring that jx

(p)

j

j = 1 for p = 0; : : : ;M � 1 and j = 0; : : : ; N � 1. Suh a on-

straint is appliation-driven in that it eases the implementation of the transmitters

managing the eletrial signals orresponding to the sequene symbols. In fat,

in this ase one may set x

(p)

j

= e

i�

(p)

j

, where i is the imaginary unit, with �

(p)

j

2

(��; �℄ and design the set of phase sequenes f�

(p)

j

g

N�1

j=0

for p = 0; : : : ;M � 1

that an be simply transmitted by onstant-envelope modulations.

Given this onstraint, it is known that the ISL annot be dereased below its

lower bound [17℄

ISL

min

= N

2

M(M � 1)

so that the effetiveness of any approah an be measured in normalized terms by

� =

ISL

min

ISL

better approahes featuring an � loser to 1.
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It is well known that sets of unimodular sequenes with extremely high effe-

tiveness an be obtained by the appliation of algorithms [3℄ that are extensions

of those devised to minimize ISL in the single sequene ase (M = 1) [16℄.

Yet, when those algorithms meet the even more implementation�friendly on-

straint of antipodal sequenes, i.e. x

(p)

j

= �1 for p = 0; : : : ;M � 1 and j =

0; : : : ; N � 1 , their effetiveness is largely impaired.

Atually, the antipodal problem is reognized as being muh more dif�ult:

a known effet of the impossibility of addressing it with the tools of ontinuous

optimization and the need of resorting to enumeration-based disrete optimization

tehniques.

In the following we onentrate on antipodal sequenes.

Under suh an assumption, the partiular ase M = 1 in whih only auto-

orrelation terms appear, has attrated a lot of attention by itself. This led to a

onspiuous literature analyzing more than a family of sequenes for whih ISL

or the equivalent Merit Fator MF = N

2

=ISL an be omputed analytially at

least in the asymptoti ase N !1 (see, e.g., [18, 19, 20, 21, 22℄). Beyond that

a list of best known sequenes [23℄ is available for N up to 304.

Our purpose is to develop an analytial expression that may drive optimization

in some partiular dif�ult ases, most notably when the antipodal onstrain (x

p

j

=

�1) is imposed.

To failitate the disussion, denote the sum of squares orresponding to the

auto-orrelation terms as

X

x

(p)

x

(p)

=

N�1

X

k=�N+1

k 6=0

jX

x

(p)

x

(p)

(k)j

2

(2.2)

and the sum of squares orresponding to the ross-orrelation terms as
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X

x

(p)

x

(q)

=

N�1

X

k=�N+1

jX

x

(p)

x

(q)

(k)j

2

p 6= q (2.3)

so that

ISL =

M�1

X

p=0

X

x

(p)

x

(p)

+

M�1

X

p=0

M�1

X

q=0

p6=q

X

x

(p)

x

(q)

(2.4)

A general method for the alulation of X

x

(p)

x

(p)

of any sequenes of odd

length is presented in [19, 24℄. This method hinges on generating funtions and

writes orrelations as proper sums of their values on the unit irle in the omplex

plane. The method works well when we have analytial insights on the generating

funtions.

Extending the ideas of [19℄, in setion 2.3 we devise a general method for the

alulation of X

x

(p)

x

(q)

in (2.3) of any pair of real sequenes of odd length and

thus, together with the result in [19, 24℄, the ISL for a set of sequenes. In setion

3.1 we use this method to obtain an asymptoti expression for the ISL value of a

set formed by different rotations of Legendre sequenes. Finally, in setion 3.2 we

propose an optimization proedure based on the latter expression where we �nd

the optimal rotations that minimize the ISL for any sequenes length N.

Throughout this hapter we use the following asymptoti notation:

We say that

� two sequenes a

N

and b

N

are asymptotially equivalent, a

N

� b

N

iff

lim

N!1

a

N

b

N

= 1

� a

N

is asymptotially bounded by b

N

, a

N

= O(b

N

) iff
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9M > 0 and 9N

o

�

�

ja

N

j �M jb

N

j 8N > N

o

2.3 Calulation of the ross-orrelation terms in the ISL

Let a

0

; a

1

; : : : ; a

N�1

and b

0

; b

1

; : : : ; b

N�1

be two real sequenes of length N, we

want to obtain an expression for X

ab

.

If we de�ne the generating funtions of the two sequenes as

Q

a

(z) =

N�1

X

j=0

a

j

z

j

Q

b

(z) =

N�1

X

j=0

b

j

z

j

we have that

Q

a

(z)Q

�

b

(z) =

N�1

X

k=�N+1

X

ab

(k)z

�k

and thus

jQ

a

(z)Q

�

b

(z)j

2

=

N�1

X

k=�N+1

N�1

X

l=�N+1

X

ab

(k)X

ab

(l)z

�k+l

Now, set �

j

= e

2�i

N

j

and note that for k; l = �N + 1; : : : ; N � 1,

N�1

X

j=0

�

�k+l

j

=

8

<

:

N if �l + k = �N; 0; N

0 otherwise

Hene, if we de�ne
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S

0

=

N�1

X

j=0

jQ

a

(�

j

)Q

�

b

(�

j

)j

2

= N

N�1

X

k=�N+1

X

2

ab

(k)+N

2N�1

X

k=1

X

ab

(k)X

ab

(k�N)+N

�1

X

k=�N+1

X

ab

(k)X

ab

(k+N)

and (for N odd)

S

00

=

N�1

X

j=0

jQ

a

(��

j

)Q

�

b

(��

j

)j

2

= N

N�1

X

k=�N+1

X

2

ab

(k)+�N

2N�1

X

k=1

X

ab

(k)X

ab

(k�N)�N

�1

X

k=�N+1

X

ab

(k)X

ab

(k+N)

we an express X

ab

(i.e. the sum of squares of ross-orrelations as in (2.3)) as

X

ab

=

N�1

X

k=�N+1

X

2

ab

(k) =

S

0

+ S

00

2N

To ompute S

00

we use the Lagrange interpolation polynomials to alulate

the values of Q

a

(��

j

) from Q

a

(�

k

) for j; k = 0; : : : ; N � 1. In this speial ase

the data points (�

k

) oinide with the omplex roots of unity and, for N odd, the

Lagrange base polynomials simply redue to

2

N

�

k

�

j

+�

k

[25, p. 89℄. Then

Q

a

(��

j

) =

2

N

N�1

X

k=0

�

k

�

j

+ �

k

Q

a

(�

k

) (2.5)

By substituting (2.5) into S

00

and developing the produt jQ

a

(��

j

)Q

�

b

(��

j

)j

2

we get
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S

00

=

16

N

4

N�1

X

j=0

"

N�1

X

k

1

=0

�

k

1

�

j

+ �

k

1

Q

a

(�

k

1

)

N�1

X

l

1

=0

�

�

l

1

�

�

j

+ �

�

l

1

Q

�

a

(�

l

1

)

N�1

X

k

2

=0

�

k

2

�

j

+ �

k

2

Q

b

(�

k

2

)

N�1

X

l

2

=0

�

�

l

2

�

�

j

+ �

�

l

2

Q

�

b

(�

l

2

)

#

=

16

N

4

N�1

X

k

1

=0

N�1

X

l

1

=0

N�1

X

k

2

=0

N�1

X

l

2

=0

Q

a

(�

k

1

)Q

�

a

(�

l

1

)Q

b

(�

k

2

)Q

�

b

(�

l

2

)

N�1

X

j=0

�

k

1

�

j

+ �

k

1

�

�

l

1

�

�

j

+ �

�

l

1

�

k

2

�

j

+ �

k

2

�

�

l

2

�

�

j

+ �

�

l

2

in whih we may exploit the fat that �

�

j

= 1=�

j

to write

S

00

=

16

N

4

N�1

X

k

1

=0

N�1

X

l

1

=0

N�1

X

k

2

=0

N�1

X

l

2

=0

�

k

1

�

k

2

Q

a

(�

k

1

)Q

�

a

(�

l

1

)Q

b

(�

k

2

)Q

�

b

(�

l

2

)

�

�

N�1

X

j=0

1

�

j

+ �

k

1

�

j

�

j

+ �

l

1

1

�

j

+ �

k

2

�

j

�

j

+ �

l

2

�

(2.6)

Let us de�ne now the innermost sum of (2.6) as

W (k

1

; l

1

; k

2

; l

2

) =

N�1

X

j=0

1

�

j

+ �

k

1

�

j

�

j

+ �

l

1

1

�

j

+ �

k

2

�

j

�

j

+ �

l

2

=

N�1

X

j=0

f

k

1

;l

1

;k

2

;l

2

(�

j

)

with

f

p;q;r;s

(z) =

z

2

(z + �

p

)(z + �

q

)(z + �

r

)(z + �

s

)

Depending on p; q; r; s, the rational funtion f

p;q;r;s

(z) an be transformed into

a spei� sum of simple rational parts. Eah of these rational parts an be summed
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separately. This path is fully developed in [19℄ and we here exploit the results

therein.

In partiular we have that

A) for 0 � p < N

W (p; p; p; p) =

1

16

�

1

3

N

4

+

2

3

N

2

�

1

�

2

p

B) for 0 � p 6= q < N

W (p; p; p; q) = W (p; p; q; p) =W (p; q; p; p) =

W (q; p; p; p) =

1

8

N

2

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

C) for 0 � p 6= q 6= r < N

W (p; p; q; r) = W (p; p; r; q) = W (p; q; p; r) =

W (p; r; p; q) = W (p; q; r; p) =W (p; r; q; p) =

W (q; p; r; p) = W (r; p; q; p) =W (q; r; p; p) =

W (r; q; p; p) = �

1

4

N

2

1

�

q

� �

p

1

�

r

� �

p

D) for 0 � p 6= q < N

W (p; p; q; q) =W (p; q; p; q) = W (p; q; q; p) = �

1

2

N

2

1

(�

p

� �

q

)

2

E) for 0 � p 6= q 6= r 6= s < N
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W (p; q; r; s) = 0

Taking into aount all the above ases we may write

S

00

=

16

N

4

(� + � +  + Æ)

, where the terms �, �, , and Æ orrespond to the ontributions of the ases A, B,

C and D respetively.

For the ases inluded in A) we have that

� =

1

16

�

1

3

N

4

+

2

3

N

2

�

N�1

X

p=0

jQ

a

(�

p

)Q

b

(�

p

)j

2

(2.7)

for the ases in B) we have

� =

1

8

N

2

N�1

X

p;q=0

p6=q

(

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

� (2.8)

h

�

2

p

jQ

a

(�

p

)j

2

Q

b

(�

p

)Q

�

b

(�

q

)+

�

p

�

q

jQ

a

(�

p

)j

2

Q

b

(�

q

)Q

�

b

(�

p

)+

�

2

p

Q

a

(�

p

)Q

�

a

(�

q

) jQ

b

(�

p

)j

2

+

�

q

�

p

Q

a

(�

q

)Q

�

a

(�

p

) jQ

b

(�

p

)j

2

i

)

for C) we have
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 =

1

4

N

2

N�1

X

p;q;r=0

p6=q 6=r

(

�1

(�

q

� �

p

)(�

r

� �

p

)

� (2.9)

h

�

p

�

q

jQ

a

(�

p

)j

2

Q

b

(�

q

)Q

�

b

(�

r

)+

�

p

�

r

jQ

a

(�

p

)j

2

Q

b

(�

r

)Q

�

b

(�

q

)+

�

2

p

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

p

)Q

�

b

(�

r

)+

�

2

p

Q

a

(�

p

)Q

�

a

(�

r

)Q

b

(�

p

)Q

�

b

(�

q

)+

�

p

�

r

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

r

)Q

�

b

(�

p

)+

�

p

�

q

Q

a

(�

p

)Q

�

a

(�

r

)Q

b

(�

q

)Q

�

b

(�

p

)+

�

q

�

r

Q

a

(�

q

)Q

�

a

(�

p

)Q

b

(�

r

)Q

�

b

(�

p

)+

�

r

�

q

Q

a

(�

r

)Q

�

a

(�

p

)Q

b

(�

q

)Q

�

b

(�

p

)+

�

q

�

p

Q

a

(�

q

)Q

�

a

(�

r

) jQ

b

(�

p

)j

2

+

�

r

�

p

Q

a

(�

r

)Q

�

a

(�

q

) jQ

b

(�

p

)j

2

i

)

and for D)

Æ =

1

2

N

2

N�1

X

p;q=0

p6=q

(

�1

(�

p

� �

q

)

2

�

h

�

p

�

q

jQ

a

(�

p

)Q

b

(�

q

)j

2

+ (2.10)

�

2

p

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

p

)Q

�

b

(�

q

) + �

p

�

q

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

q

)Q

�

b

(�

p

)

i

)

Summarizing, we an write the sum of squares orresponding to ross�orrelations

terms of the ISL as
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X

ab

=

1

2N

N�1

X

j=0

jQ

a

(�

j

)Q

�

b

(�

j

)j

2

+

16

N

4

(� + � +  + Æ)

where the quantities �, �, , Æ are de�ned in (2.7), (2.8), (2.9), (2.10).

With the method presented above in onjuntion with the method presented in

[19℄, we an have an analytial expression for the ISL for any set of real sequenes

of odd length. The omputation of the above equations seems to be hard at a �rst

look, but in a number of ases, in partiular for sequenes from differene sets

[24℄ may lead to signi�ant results.

In the following, we use this method to evaluate the asymptoti trend of the

ISL of a set of sequenes made up by different Rotations of a Legendre Sequene

(RLS set) when N grows to in�nity.



3. INTEGRATED SIDELOBE LEVEL OF SETS OF ROTATED

LEGENDRE SEQUENCES

3.1 Legendre Sequenes

The Legendre Sequene (LS) `

0

; : : : ; `

N�1

exists for any prime N and is de�ned

as

`

0

= 1

`

j

=

8

<

:

1 if j is a square (mod N)

�1 if j is a nonsquare (mod N)

A LS may be ylially rotated t

a

positions to the left to obtain a Rotated

Legendre Sequene (RLS) a

j

de�ned as

a

j

= `

j+t

a

(mod N)

= `

j+f

a

N (mod N)

with f

a

= t

a

=N 2 [0; 1℄.

The asymptoti value of X

aa

for the family of RLS was alulated in [18℄ and

[19℄

1

noting that the asymptoti value of the modulus of the generating funtion

of the LS (jQ

`

(�

j

)j) is independent of j, yielding

1

The �rst ontribution relies on a �Postulate of Mathematial Ergodiity� to arrive at a result

whih is formally proved by the seond.
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X

aa

N

2

�

2

3

� 4

�

�

�

�

f

a

�

1

2

�

�

�

�

+ 8

�

f

a

�

1

2

�

2

(3.1)

We follow the same path as in [19℄ but for the alulation of the ross-orrelations

terms of the ISL X

ab

[26℄.

To proeed, remember that the generating funtion of the LS is

Q

`

(�

j

) =

8

>

>

>

<

>

>

>

:

1 + `

j

p

N if j 6= 0 and N = 1 (mod 4)

1 + i`

j

p

N if j 6= 0 and N = 3 (mod 3)

1 if j = 0

(3.2)

Moreover, if we denote by Q

a

(�

j

) the generating funtion of the RLS a

j

=

`

j+t

a

(mod N)

, then

Q

a

(�

j

) = �

�t

a

j

Q

`

(�

j

)

Assume now that the two sequenes a

j

and b

j

are obtained by rotating `

j

by,

respetively, t

a

and t

b

positions to the left. We may ompute S

0

as

S

0

=

N�1

X

j=0

�

�

�

�t

a

j

Q

`

(�

j

)�

t

b

j

Q

�

`

(�

j

)

�

�

2

=

N�1

X

j=0

jQ

`

(�

j

)j

4

from (3.2) we know immediately that jQ

`

(�

j

)j

4

� N

2

, then S

0

� N

3

. Let us now

ompute the asymptoti values of �, �,  and Æ in (2.7), (2.8), (2.9), (2.10) for any

pair of RLS.

� For � in (2.7) we have

� =

1

16

�

1

3

N

4

+

2

3

N

2

�

S

0

�

1

48

N

7
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� For � in (2.8)

� =

1

8

N

2

N�1

X

p;q=0

p6=q

(

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

�

h

�

2

p

jQ

`

(�

p

)j

2

�

t

b

p�q

Q

`

(�

p

)Q

�

`

(�

q

)+

�

p

�

q

jQ

`

(�

p

)j

2

�

t

b

q�p

Q

`

(�

q

)Q

�

`

(�

p

)+

�

2

p

�

t

a

p�q

Q

`

(�

p

)Q

�

`

(�

q

) jQ

`

(�

p

)j

2

+

�

q

�

p

�

t

a

q�p

Q

`

(�

q

)Q

�

`

(�

p

) jQ

`

(�

p

)j

2

i

)

�

1

8

N

2

N�1

X

p;q=0

p6=q

(

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

�

�

N

2

`

p

`

q

�

2

p

�

t

b

p�q

+N

2

`

p

`

q

�

p

�

q

�

t

b

q�p

+

N

2

`

p

`

q

�

2

p

�

t

a

p�q

+N

2

`

p

`

q

�

p

�

q

�

t

a

q�p

�

)

=

1

8

N

4

N�1

X

p;q=0

p6=q

(

�

`

p

`

q

(1� �

p�q

)

2

�

�

�

�

t

b

+1

p�q

+ �

t

b

+2

p�q

+ �

1�t

b

p�q

+ �

�t

b

p�q

+

�

t

a

+2

p�q

+ �

t

a

+1

p�q

+ �

1�t

a

p�q

+ �

�t

a

p�q

�

)



3. Integrated Sidelobe Level of Sets of Rotated Legendre Sequenes 24

=

1

8

N

4

N�1

X

k=�N+1

k 6=0

(X

``

(k) +X

``

(N � k))

�

t

b

+1

k

+ �

t

b

+2

k

+ �

1�t

b

k

+ �

�t

b

k

+ �

t

a

+2

k

+ �

t

a

+1

k

+ �

1�t

a

k

+ �

�t

a

k

(1� �

k

)

2

Note that X

``

(k) + X

``

(N � k) is the periodi orrelation [24℄ of the LS.

Then, from [18℄ and [27℄ we know that jX

``

(k) +X

``

(N � k)j � 3 for Legendre

sequenes. Then, using the fat that

P

N�1

k=1

1

j1��

k

j

2

= O(N

2

) (see (3.3) and (3.6)

below and set t = 0), and using the triangle inequality we get that � = O(N

6

).

� For the alulation of  in (2.9), following the same steps we did for � we have
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 �

1

4

N

4

N�1

X

p;q;r=0

p6=q 6=r

(

�

`

q

`

r

(1� �

p�q

)(1� �

p�r

)

�

�

p�r

�

t

b

q�r

+

�

p�q

�

�t

b

q�r

+ �

t

b

+1

p�r

�

t

a

+1

p�q

+ �

t

a

+1

p�r

�

t

b

+1

p�q

+

�

�t

b

p�r

�

t

a

+1

p�q

+ �

t

a

+1

p�r

�

�t

b

p�q

+ �

�t

a

p�q

�

�t

b

p�r

+

�

�t

a

p�r

�

�t

b

p�q

+ �

p�r

�

t

a

q�r

+ �

p�q

�

�t

a

q�r

�

)

=

1

4

N

4

N�1

X

u;v=�N+1

u6=v 6=0

(

�

X

``

(v � u) +X

``

(N � (v � u))

(1� �

v

)(1� �

u

)

�

�

u

�

t

b

u�v

+

�

v

�

�t

b

u�v

+ �

t

b

+1

u

�

t

a

+1

v

+ �

t

a

+1

u

�

t

b

+1

v

+

�

�t

b

u

�

t

a

+1

v

+ �

t

a

+1

u

�

�t

b

v

+ �

�t

a

v

�

�t

b

u

+

�

�t

a

u

�

�t

b

v

+ �

u

�

t

a

u�v

+ �

v

�

�t

a

u�v

�

)

and again we have that  = O(N

6

)

� For Æ in (2.10) we have
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Æ =

1

2

N

2

N�1

X

p;q=0

p6=q

(

�1

(�

p

� �

q

)

2

�

h

�

p

�

q

jQ

`

(�

p

)Q

`

(�

q

)j

2

+

�

2

p

�

t

a

p�q

Q

`

(�

p

)Q

�

`

(�

q

)�

t

b

p�q

Q

`

(�

p

)Q

�

`

(�

q

)+

�

p

�

q

�

t

a

p�q

Q

`

(�

p

)Q

�

`

(�

q

)�

t

b

q�p

Q

`

(�

q

)Q

�

`

(�

p

)

i

)

��

1

2

N

4

N�1

X

p;q=0

p6=q

(

�

q�p

+ �

�t

a

�t

b

q�p

+ �

1�t

a

+t

b

q�p

(1� �

q�p

)

2

)

=�

1

2

N

4

N�1

X

k=�N+1

k 6=0

�

�

k

+ �

�t

a

�t

b

k

+ �

1�t

a

+t

b

k

�

(1� �

k

)

2

(N � jkj)

=�N

4

N�1

X

k=1

�

�

k

+ �

�t

a

�t

b

k

+ �

1�t

a

+t

b

k

�

(1� �

k

)

2

(N � jkj)

Larger values of the summand are those for k lose to 1, whih make the

denominator lose to zero and numerator � N for some onstant  (for k lose

toN � 1, the denominator beomes also lose to zero but the numerator is O(1)).

Exploiting this and using the small angle approximation for the omplex ex-

ponential, we may write

Æ ��N

5

N�1

X

k=1

�

k

+ �

�t

a

�t

b

k

+ �

1�t

a

+t

b

k

�

4�

2

N

2

k

2

(3.3)

To ontinue, we reall the de�nition of the Dilogarithm funtion and its series

expansion [28℄ valid for jzj � 1
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Li

2

(z) = �

Z

1

0

ln(1� zt)

t

dt =

1

X

k=1

z

k

k

2

(3.4)

Taking the real part of (3.4) and evaluating on the unit irle gives [28, eq.

(8.7)℄

Re

�

Li

2

�

e

i�

�	

= Re

(

1

X

k=1

e

ik�

k

2

)

=

1

6

�

2

�

1

4

j�j (2� � j�j) (3.5)

Exploiting (3.5) and onentrating on the �rst period 0 �

t

N

� 1 we obtain

Re

(

1

X

k=1

�

t

k

k

2

)

= �

2

�

1

6

�

�

t

N

�

1

�

1�

�

t

N

�

1

��

(3.6)

where [�℄

1

= � (mod 1).

Hene, sine we know that Æ is real

Æ �

1

4

N

7

(

1

6

+

1

6

�

�

�

t

a

+ t

b

N

�

1

�

1�

�

�

t

a

+ t

b

N

�

1

�

+

1

6

�

�

t

b

� t

a

N

�

1

�

1�

�

t

b

� t

a

N

�

1

�

)

=

1

4

N

2

n

1

2

� [�f

a

� f

b

℄

1

(1� [�f

a

� f

b

℄

1

)�

[f

b

� f

a

℄

1

(1� [f

b

� f

a

℄

1

)

o

=

1

4

N

2

n

1

2

� [f

a

+ f

b

℄

1

(1� [f

a

+ f

b

℄

1

)�

[f

a

� f

b

℄

1

(1� [f

a

� f

b

℄

1

)

o

where we have de�ned f

a

=

t

a

N

and f

b

=

t

b

N

. Then, exploiting the symmetries of a
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quadrati form of a modulus funtion we have for 0 � f

a

; f

b

� 1

[f

a

+ f

b

℄

1

(1� [f

a

+ f

b

℄

1

) =

1

4

�

�

jf

a

+ f

b

� 1j �

1

2

�

2

[f

a

� f

b

℄

1

(1� [f

a

� f

b

℄

1

) =

1

4

�

�

jf

a

� f

b

j �

1

2

�

2

so that

Æ �

1

4

N

7

"

�

jf

a

+ f

b

� 1j �

1

2

�

2

+

�

jf

a

� f

b

j �

1

2

�

2

#

Based on the above we are now interested in omputing the asymptoti value

of

1

N

2

X

ab

=

1

2N

3

(S

0

+ S

00

) �

1

2N

3

�

N

3

+

16

N

4

(�+ � +  + Æ)

�

�

2

3

+ 2

�

jf

a

+ f

b

� 1j �

1

2

�

2

+ 2

�

jf

a

� f

b

j �

1

2

�

2

(3.7)

Going bak to our original problem for alulation of the ISL value of a set of

M sequenes x

(p)

j

with j = 0; : : : ; N � 1 and p = 0; : : : ;M � 1, where eah x

(p)

is made by a different rotation f

p

of a LS (RLS set), replaing (3.1) and (3.7) into

(2.4) we �nally have that

ISL

N

2

�

M�1

X

p=0

2

3

� 4

�

�

�

�

f

p

�

1

2

�

�

�

�

+ 8

�

f

p

�

1

2

�

2

+

M�1

X

p=0

M�1

X

q=0

p6=q

2

3

+ 2

�

jf

p

+ f

q

� 1j �

1

2

�

2

+ 2

�

jf

p

� f

q

j �

1

2

�

2

(3.8)
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Fig. 3.1: Plots of ISL for M = 2 as a funtion of f

1

and f

2

: top: 3D-view, bottom:

iso-ISL lines

As an example, Figure 3.1 reports the 3D and ontour plot of the right-hand

side of (3.8) for M = 2. Diret visual inspetion of that Figure on�rms that

minima exists and an be easily identi�ed. In the next setion we will exploit this

result where an optimization proedure is developed to �nd the optimal rotations

that minimize the ISL for any sequenes length N .
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Fig. 3.2: Integrated Sidelobe Level as a funtion of sequene length. In blue, RLS with

rotations minimizing asymptoti ISL; in blak, asymptoti value.
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Fig. 3.3: Integrated Sidelobe Level as a funtion of sequene length. In blue, RLS with

an arbitrary rotation; in blak, asymptoti value.
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Fig. 3.4: Integrated Sidelobe Level as a funtion of sequene length. Comparison of an

RLS with an arbitrary rotation and RLS with rotations minimizing asymptoti

ISL.

As another example, in Figure 3.2, 3.3, 3.4 we plot the ISL for M = 4 as a

funtion of the sequene length N .

In Figure 3.2 the values of rotation are those that minimize the asymptoti ISL,

while in ase Figure 3.3 we use an arbitrary rotation. In both ases we an see

that the trend of the plots is in agreement with the asymptoti value alulated.

In Figure 3.4, we plot together both urves to show that the one that ahieves

the minimum asymptoti value of ISL, also ahieves the minimum ISL value for

sequenes length greater than approximately 20. For different hoies of rotations

and different number of sequenes (M ), the behavior is the same than presented.

3.2 Sets of RLS minimizing ISL

The key idea [29℄ is to set x

(p)

j

= `

(f

p

)

j

for properly hosen rotations f

p

, p =

0; : : : ;M � 1.
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Sine only N values for eah f

p

lead to distint rotations, a omplete san

requires �only�

�

N

M

�

trials that, though far from the exponential explosion of a full

san (that would entail 2

MN

trials) may soon beome prohibitive.

To ope with larger values ofN wemay resort to the asymptoti analysis made

in the previous setion.

From equation (3.8) we see that asymptoti ISL is invariant if we hange f

p

into 1� f

p

for any p. Therefore, by assuming f

0

� f

1

� � � � � f

M�1

� 1=2 one

may resolve all absolute values and easily ompute the rotation values for whih

�ISL

�f

p

= 0. This yields

f

p

=

2p+ 1

4M

(3.9)

that result in a minimum attainable ISL = N

2

�

M(M � 1) +

1

6

�

and thus, in a

performane �gure

�

RLS

=

6M(M � 1)

6M(M � 1) + 1

(3.10)

indiating that, for large N , the performane of a set of RLS should be within 8%

of the maximum possible, approahing it very rapidly asM inreases.

Based on these asymptoti onsiderations it is easy to devise a muh faster

san that drastially redues the number of trials by onsidering for the j-th ro-

tation only a narrow interval of possible values around

2p+1

4M

. Sine the length of

suh an interval may be dereased asN inreases, the resulting searh burden goes

from

�

N

M

�

trials to �(N)

M

with �(N) a funtion rapidly approahing a onstant as

N inreases (experimentally we veri�ed �(N) ' 20 for N larger than 200).

The results of suh a san yields the Optimum RLS set (ORLS) whose perfor-

mane is ompared with that of other known algorithms or sequene families in

the following Setion.
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3.3 Numerial results

Beyond ORLSs that exist for every prime N , we onsider

� Random sequenes, that exist for any N and are generated by assigning

x

(p)

j

= �1with uniform probability and independently for eah p = 0; : : : ;M�

1 and j = 0; : : : ; N � 1. For eah N and M we generate 10

4

sets of se-

quenes and reord the best ahieved performane.

� Gold sequenes, that exist when N = 2

q

� 1 for some integer q and are

obtained from the well known maximum�length sequenes to maintain low

orrelation and simultaneously be able to produe sets of sequenes with

relatively large ardinality. Though they are produed by linear-feedbak

shift registers, Gold sequenes are designed to enjoy the same properties

of random sequenes. For eah N we draw 10

3

� NM M-tuples of Gold

sequenes at random from those available, and we reord the least ISL.

� Q.CAN sequenes, that exists for anyN and are obtained by the CAN algo-

rithm desribed in [3℄ when quantization is applied at the end of the iterative

proedure. For the ase of 1-bit quantization the option of leaving the al-

gorithm operate with ontinuous phases and quantize only the �nal result,

has been disarded , after experimentally verifying that it was leading to

poorer performane. In this ase, quantization was applied at every step of

the iterative proedure.

� Optimally Rotated Best Sequenes (ORBS) that leverage on the fat that

for eah N up to 304 one or more sequenes are reognized as the state-

of-the art solution to ISL minimization problem forM = 1 (some of them

are known to be the true optimum solutions, some others are only the best

known solutions). For eah of those sequenes, we build a set of M se-

quenes by trying all the possible relative rotations and seleting the set of

rotations yielding the minimum ISL.
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In �gure 3.5 we evaluate how state-of-the-art algorithm for the synthesis of

ultra low-ISL sequenes is affeted when quantization is imposed. Note how the

performane of Q.CAN is hardly impaired for low quantization depth, and reah

the performane of ORLS when the number of quantization levels is greater than

13 forM = 4, 18 forM = 4 and 22 forM = 12 for the onsidered ases.

For different hoies of M and N we have seen a similar trend, and that the

performane of Q.CAN is only better than that of ORLS when the number of

quantization bits of grater than 4, with an inreasing trend as M inreases. This

shows a great advantage in the use of ORLS.
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Fig. 3.5: Comparison between ORLS, with Q.CAN algorithm when quantization is im-

posed for (a) M = 4, (b) M = 8 and () M = 12, and �x value of N = 1033.

The performane metri as a funtion of the number of quantization steps. The

performane of Q.CAN exeeds the performane of the binary ORLS for Q

grater than 13 forM = 4, 18 forM = 4 and 22 forM = 12.
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Fig. 3.6: Comparison between ORLS, random sequenes, Gold sequenes and Q.CAN

sequenes with binary quantization for (a) M = 2, (b) M = 3 and () M = 4.

The solid horizontal line at 1 identi�es the theoretial maximum performane

while the dashed horizontal line marks the asymptoti performane ahieved by

RLS.
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Figure 3.6 ompares the performane of ORLS with that of random, Gold and

Q.CAN sequenes with binary quantization for M = 2, M = 3 and M = 4.

Note how ORLS learly outperform the other tehniques for all reasonably large

N (say for N > 100) also revealing a distint improving trends approahing the

theoretial limit as N inreases.

On the ontrary the performane of random, Gold, and Q.CAN sequenes

exhibits a lear dereasing trend. Aording to expetations, sine Gold sequenes

are designed to mimi a random behavior, the orresponding performanes follow

an analogous trend.

Finally, though insuf�ient to reah ORLS, the optimization impliit in the

onstrution of Q.CAN sequenes make the orresponding performane learly

superior to that of random-like sequenes.

In Figure 3.7 we ompare eah ORLS with the orresponding ORBS and with

Q.CAN sequenes with binary quantization for M = 2, M = 3 and M = 4.

Again, ORLS perform uniformly better than ORBS for suf�iently large N ; ad-

ditionally ORBS do not exhibit a de�nite improvement with respet to Q.CAN at

least forM > 2. This shows that the good performane of the proposed ORLS is

only partially due to the exploitation of sequenes that feature a good autoorre-

lation properties but also hinges on a strutural property of Legendre Sequenes.
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Fig. 3.7: Comparison between ORLS, ORBS and Q.CAN sequenes for (a) M = 2, (b)

M = 3 and () M = 4. The solid horizontal line at 1 identi�es the theoretial

maximum performane while the dashed horizontal line marks the asymptoti

performane ahieved by RLS.
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3.4 Conlusion

We apply a method based on generating funtions, whih has already been pro-

posed for the alulation of the ISL of a sequene, to the alulation of the ross-

orrelation omponents of the ISL of a set of sequenes.

The apparent omplexity of the resulting expressions an be takled in the

asymptoti onditions for sequenes whose generating funtion has a relatively

simple trend. Sine this is the ase of Legendre sequenes, we are able to de-

rive an analytial expression for the asymptoti ISL of sets of rotated Legendre

sequenes.

Based on the later result, we propose a simple proedure to onstrut sets

of antipodal sequenes with extremely low ISL. Eah sequene in the set is a

different rotation of the Legendre Sequene of the same length. Optimal rotations

are found by an exhaustive san whose omplexity is greatly redued by exploiting

the asymptoti result yielding a general expression for the trend of the ISL of sets

of in�nitely long sequenes.

The resulting performane largely exeeds that of lassial methods for the

diret generation of low-ISL sets of antipodal sequenes. The method we propose

also outperforms a well-known algorithm able to generate extremely-low ISL sets

of unimodular ontinuous-phase sequenes, whih is nevertheless impaired by the

strong quantization needed to satisfy antipodality onstraint.





Part II

ANALOG TO INFORMATION CONVERSION





4. SIGNAL MODELS

4.1 Introdution

The lassial aquisition approah based on the Nyquist-Shannon theorem states

that for any analog band-limited signal, all its information ontent an be a-

quired by taking uniformed distributed samples at a rate that doubles the signal

bandwidth.

While this is one of the fundamentals theorems of Signal Proessing, by taking

advantage on ertain strutures of the signal, a muh lever aquisition strategy

an be develop in order to redue the number of measurements and still aquire

its full information ontent.

In order to exploit the peuliarities of a given lass of signal, we must be able

to properly represent those signals of interest with aurate models. This models

are useful to inorporate previous knowledge of a given lass of signal, and to

distinguish them from other lasses of maybe no interest.

Many lasses of signals, espeially when representing physial signals, an be

modeled to have a linear struture, i.e., if we sum two signals that belongs to that

lass, the new signal will also belong to the same lass.

We will treat signals as real-valued funtions having domains that are either

ontinuous or disrete. In the ase of a disrete signals, we an simply view them

as vetors in N -dimensional Eulidean spae R

N

.

For bandlimited analog signals with no frequeny omponents above N=2, or

Nyquist rate equal to N , we will also represent them as vetors with dimension
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equal to its Nyquist rate. Both representation are equivalent in the sense that one

an pass to another with standard tehniques (sin interpolation).

Note that the spae dimensionN of both kinds of signals desribed above de-

�nes the degrees of freedom they have. In partiular, although analog signals an

be more ef�iently represented by other �representations�, any analog bandlim-

ited signal has at most N degrees of freedom, and we have hoose this model in

order to be able to diretly ompared with Nyquist-based aquisition.

Let 	 denotes the N � N matrix with olumns given by the set f 

i

g

N

i=1

. If

the vetors in this set are linear independent, then they span a basis in R

N

, and

any vetor in this spaes has a unique representation as a linear ombination of

the elements of that basis.

For any x 2 R

N

there exist s 2 R

N

suh that

x = 	s =

N

X

i=1

s

i

 

i

For analog signals, note that this representation is equivalent to:

x(t) =

N

X

i=1

s

i

 (t)

i

, where the set of ontinuous time waveforms f (t)

i

g

N

i=1

are the sin-interpolated

signals obtains from the vetors in f 

i

g

N

i=1

(or equivalently, the vetor in f 

i

g

N

i=1

are form by taking samples of the waveform in f (t)

i

g

N

i=1

at a rate N ).

4.2 Sparse Signals

With the models given above, we are able to represent any linear signal (disrete or

analog) of dimensionality equal to N , and with N degrees of freedom. However,

many natural signal that are found in real situations have a smaller number of
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degrees of freedom with respet to its dimensionality. In other words, not all

possible vetors in R

N

represents valid signals for a given lass.

Many natural signals an be expressed as a linear ombination of only just

a few vetors from a given basis. This lass of signals are alled to be sparse

signals, sine only a small amount of its oef�ients, when represented on that

basis, are different from zero. The information ontent of this lass of signals is

onentrated only on the values of the non-zero omponents and on the position

of those omponents.

For an N dimensional vetor a = (a

0

; : : : ; a

n�1

)

>

we de�ne the support of a

as

supp (a) = fj = 0; : : : ; n� 1ja

j

6= 0g

, its sparsity spar (a) (sometimes indiated as L

0

norm) as the ardinality of

supp (a), and its usual p-norm as

kak

p

=

 

n�1

X

j=0

ja

j

j

p

!

1

=p

We will assume that a suitable basis exists whose vetors are the olumns of

theN �N matrix 	, and that the signal of interest isK-sparse, whih means that

for any instane of x there is an N -dimensional vetor s suh that x = 	s and

spar (s) � K.

Although the sparse model given above is of broad interest, it is dif�ult to

�nd real life signals to be truly sparse. However, many natural signals an be

very well approximated by sparse models. This lasses of signals are alled to be

ompressible signals, and an be approximated by setting the smallest omponents

to zero and keeping the biggestK.

In the following, we will treat ompressible signals and sparse signals as to

have a simple sparse representation. The error produed by this approximation
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will be onsidered as if the sparse signal would have an intrinsi noise indepen-

dently of the soure where it is generated.



5. COMPRESSIVE SENSING

5.1 Introdution

The newly introdued paradigm of Compressive Sensing (CS) [7, 8, 9℄ exploits

speial signal features to extrat its information ontent with a smaller amount of

samples (or measurements in the general ase) with respet to aquisition based

on the Nyquist-Shannon sampling theorem.

Aording to the sampling theorem, we an perfetly reonstrut any ban-

dlimited signal by its samples provided that the sampling rate exeeds twie the

maximum frequeny in the bandlimited signal. However, as we have seen before,

the information ontent of some lasses of signals is onentrated in only few

oef�ients for a given representation.

Taking advantage on the knowledge of the struture of the signal, more so-

phistiated sampling methods an be developed in order to redue the number of

samples neessary to reonstrut the signal. Compressive sensing theory exploits

the �sparsity� representation in order to redue well below the number of mea-

surements stated by the Nyquist-Shannon theorem, and still be able to perfetly

reonstrut the original signal.

Reduing the number of measurements has noteworthy advantages. It an

redue the hardware omplexity, storage apaity, power onsumption, hannel

bandwidth, et.

In the ompressive sensing framework, few nonadaptive linear measurements

of the signal are taken, i.e. projetions of the signal over vetors of a given basis.
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Based on these projetions, by means of a non-linear algorithm, it is possible to

reover the signal.

To make the disussion more onrete, onsider the general ase where the

signal x 2 R

N

is measured throughM inner produts of the form:

y = �x + e

where y 2 R

M

is the measured vetor, � is anM � N measurement matrix, and

e 2 R

M

is a vetor representing measurement noise.

In general, givenM < N , the matrix � represents a dimensionality redution,

i.e., it maps a vetor in R

N

into a vetor in R

M

. Under this ondition, there are

in�nite different signals x that satisfy the above equation given the measurements

y.

At this point there are two main questions to be done: a) Under what ondi-

tions the appliation of the matrix � preserves the information of the signal x?

How it is reovered the original signal x from the redued set of measurements y?

We will try to answer these question in the following setions.

5.2 The Restrited Isometry Property

To partially answer the �rst question, lets �rst write the vetor x as

x = 	s

, and

y = �	s+ e = �s+ e

Relaying on the a-priori knowledge that spar (s) � K, it is possible to de�ne
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a subset of R

N

ontaining all the interesting instanes of x. Then, the aquisi-

tion mehanism should map this subset into the measurement spae R

M

�quasi-

bijetively� in a sense that will be made more preise in the following.

One of the most striking, and useful, fats that appear at this point is that,

when sparsity is one of the priors, if � an be thought of as a realization of a

random matrix with independent entries drawn aording to a variety of distribu-

tions, then mapping by means of � provides, with high probability, the needed

�quasi-bijetion�.

More formally, we say that a matrix� is a restrited isometry [30℄ when there

is a onstant 0 � Æ

K

< 1 suh that

(1� Æ

K

) ksk

2

2

� k�sk

2

2

� (1 + Æ

k

) ksk

2

2

whenever spar (s) � K. Hene, even if the dimensionalityM of the o-domain of

a restrited isometry is less than the dimensionalityN of its domain, the mapping

of K-sparse vetors leaves lengths substantially unaltered.

If � is made of independent random entries haraterized by a sub-Gaussian

distribution then, with an overwhelming probability, the matrix � is a restrited

isometry with a onstant Æ provided that [31, 32, 33℄

M � CKlog(N=K) (5.1)

where C is some onstant depending on eah instane.

If � is a restrited isometry, one that supp (s) is known, we may restrit � to

that domain and obtain an injetive mapping. If the measurements in y addition-

ally enode information on whih of the

�

N

K

�

possible supports must be hosen,

the overall mapping an be reversed to yield the whole s.

This is why a onstant ingredient in the reipes for all ompressive sensing

arhitetures is randomness as a mean of apturing information that is known to
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be sparse. What is usually done is to overlook the fat that theory puts onditions

on the statistial struture of � and design a system in whih � is random and

hopefully transfers its bene�ial properties to � = �	.

An important side-effet of this assumption (widely veri�ed in pratie) is that

one does not design the aquisitionmatrix� depending on the spei�	 but relies

on randomness to impliitly �san� all possible sparsity bases.

5.3 CS Reonstrution Algorithms

One that a mapping allowing reonstrution has been devised, its �inversion�

must be obtained by algorithmi means every time a measurement vetor omes

in.

Though reonstrution mehanisms may be designed jointly with the arhi-

tetures produing the measurements, they are lassially addressed as separate

omponents of the overall aquisition system. Their development and analysis

is a �ourishing �eld that has reently produed strong and general results and

taxonomies [34℄.

We will here onentrate on the most frequently adopted methods, and note

that those tehniques fall in one of two ategories: optimization-based reon-

strution [30, 35, 36, 37, 38, 39℄ and iterative support-guessing reonstrution

[40, 41, 42, 43, 44, 45℄.

Both types of tehnique are ommonly devised and set up in the noiseless and

idealized ase (i.e., for e = 0 and neither quantization nor saturation) and are

proved (or simply seen) to work in more realisti settings.

5.3.1 Optimization Based Reonstrution Algorithms

The key fat behind optimization-based methods is that, among all the possible

ounterimages s of the vetor y = �s the one that we are looking for is the �most
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sparse�, i.e., the one for whih spar (s) is minimum.

Sine we usually have spar (s) � K � N this assumption is sensible. More-

over, it leads to some beautiful results on the possibility of reovering s by means

of simple optimization problems [30℄.

More formally, it an be shown that, if� is a restrited isometry with onstant

Æ �

p

2� 1 then the

^

s solution of the optimization problem

min k

^

sk

1

(5.2)

s:t: k�

^

s� yk

2

� �

is suh that

k

^

s� sk

2

� C�

for some onstant C > 0.

Hene, if we use � to bound the maximum magnitude of the disturbanes in-

volved in the measurement proess (for instane by setting it proportional to the

variane of the noise plus that of the quantization error) we an guarantee that the

reonstrution error vanishes when disturbanes go to zero.

Though not impossible, the straightforward appliation of the above result,

depends on a reliable estimation of the parameter � that quanti�es the maximum

foreseeable deviation between the unperturbed measurement and its atual value

in presene of a mixture of known (e.g., quantization) and unknown (e.g., noise)

disturbanes.

It is therefore quite ommon to substitute k�

^

s� yk

2

� � with �

^

s = y by im-

pliitly assuming that the system is working in a relative low-disturbane regime

that allows to assume � ' 0. Within this approximation, it is onvenient to re-

express the resulting optimization problem within the framework of linear pro-

gramming by de�ning u = (1; : : : ; 1)

>

and by introduing the auxiliary unknown
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vetor w = (w

0

; : : : ; w

n�1

)

>

to write

min u

>

w

s:t:

�

^

s = y

w � 0

�w �

^

s � w

(5.3)

where vetor inequalities are meant to hold omponent-wise.

The equality onstraints in (5.3) an be adjusted to ope with spei� features

of a given arhiteture or to take into aount quantization or saturation.

In partiular, due to quantization, we know that the true value of the j-th mea-

surement is somewhere in the interval [y

j

�

�y

j

=2; y

j

+

�y

j

=2℄ with y

j

being the

value known to the algorithm and �y

j

the orresponding quantization step.

Hene, in presene of a oarse quantization, it is sensible to substitute the

equality onstraints �

^

s = y in (5.3) with y �

�y

=2 � �

^

s � y +

�y

=2, where

�y = (�y

0

; : : : ;�y

m�1

)

>

. Though it surely models the aquisition proedure

with greater auray, this adjustment does not neessarily lead to improvements

and is ommonly employed only when one may expet the various �y

j

to be

substantially different one from the other.

It is interesting to note that optimization-based reonstrution algorithmswork

without any knowledge of the exat value ofK further to that impliit in the num-

ber of measurements that must be enough to allow reonstrution. This may be a

plus in situations where K annot be exatly determined in advane. Regrettably,

this positive feature is balaned by the fat that, in general, linear programming

solution is omputationally more expensive that other kinds of iterative reon-

strution.
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5.3.2 Support-Guessing Reonstrution Algorithms

As far an iterative support-guessing reonstrution is onerned, note that, if

supp (s) were known we ould drop the olumns in � that are surely multiplied

by 0 and the orresponding entries in s to obtain anM �K matrix �

supp(s)

and a

K-dimensional vetor s

supp(s)

for whih y = �

supp(s)

s

supp(s)

. Sine M > K, this

is an overonstrained problem that may be effetively (even �optimally� in ase

of Gaussian disturbanes) inverted by using the Moore-Penrose pseudo-inverse

�

y

supp(s)

and omputing s

supp(s)

= �

y

supp(s)

y.

Iterative support-guessing methods are, in general, proedures that alternate

a rough, non-neessarily sparse, solution of y = �s from whih an estimate of

supp (s) is inferred (for example by thresholding on the magnitudes of the om-

ponents of the temporary solution) that is then exploited in a pseudo-inverse-based

step re�ning the value.

Though more sophistiated alternatives exists, a referene algorithm within

this lass is CoSaMP [40℄ that has some de�nite advantages. First, it works for

matries � that are restrited isometries and, if K is known and the isometry

onstant Æ

2K

for vetors with 2K non-zero omponents an be bounded by Æ

2K

�

0:025, then, given a tolerane � > 0, the reonstruted vetor �̂ satis�es

k

^

s� sk

2

� Cmax

�

�;

ks

0

k

2

p

K

+ k��k

2

�

where s

0

is the vetor that an be obtained by s by setting to zero its K=2 largest

entries.

The resulting algorithm is provably fast and, beyond the above formal guaran-

tee on its performane, it is usually extremely stable and effetive in reovering

the original signal. These favorable properties are paid with the additional as-

sumption that the sparsity of s is known and that the isometry onstant Æ

2K

must

be quite low.

In analogy to what happens for optimization-based reonstrution, CoSaMP
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an be tailored to spei� arhitetures. This an be done, for example, if it is

known that errors in the magnitudes of the entries of s are orrelated by an impliit

�ltering in the aquisition sheme. Suh an effet an be exploited by inserting a

�ltering step when passing from support-guessing to pseudo-inversion.

5.4 Analog-to-Information Converters

From the two previous setions, we get that to de�ne a ompressive sensing sys-

tem we need to desribe two stages

� enoder: a hardware system performing some mixed analog-digital opera-

tions on the inoming signal to produe a stream of bits. The mixed analog-

digital operations are modeled as instane � of a random matrix linking the

signal samples to the measurements whose quantization yields the stream

of bits transferred from the enoder to the deoder;

� deoder: an algorithm that takes the inoming bits and, based on the knowl-

edge of �, reonstruts the original signal.

In this setion we will disuss various strategies for designing systems for

aquiring ompressive measurements of real-world signals.

Note that, in pratial implementation, we do not want to ommuniate � to

the deoder and thusmost often exploit pseudo-random generators with a ommon

initialization to yield matries that an be simultaneously known at both stages.

Saturation and quantization are unavoidable in the signal path sine the om-

muniation between the two stages happens along a digital hannel thus implying

an ADC blok with a �nite range (we will assume [�V

max

; V

max

℄ for a ertain

V

max

) and a �nite number of levels.

In the following we will onsider the number B of bits generated by the en-

oder orresponding to the aquisition of the input signal over a given time inter-

val. This is atually a �bit budget� sine it may be partitioned into digital words of
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different depths orresponding to different measurements. Additionally, in many

appliations the total number of bits is onstrained, whih suggests a tradeoff be-

tween the number of measurements and the number of bits per measurement.

5.4.1 Random-Modulation-Pre-Integration � RMPI

This is probably themost straightforward implementation of ompressive sens-

ing onepts [46℄.

N
clock

b-bit 

ADC 

RNG

S 
k=0

N-1

+

b-bit 

ADC 

RNG

S 
k=0

N-1

+

x(t) yM-1

bxk

y0

b

Fig. 5.1: Blok sheme of an RMPI enoder. The samples of the input signal are mul-

tiplied by M different random sequenes and aumulated up to time N . The

aumulated values are then quantized by a b bit AD onverter.

With referene to Figure 5.1 the samples of the inoming signal x

k

are multi-

plied by the quantities �

j;k

for a given j and then fed into an aumulation stage

to yields the value of the j-th measurement y

j

that is then quantized by an b-bit

ADC and aggregated with all the other quantized measurements into the stream

of bits that is passed to the deoding stage.



5. Compressive Sensing 56

The implementation of the analog bloks preeding the ADC offers several

options.

The struture of the multiplier depends on the quantities �

j;k

: some lassi-

al approahes adopt Gaussian random variables (Gaussian RMPI) and fore the

deployment of omplete four-quadrant analog multipliers, while more aggressive

approahes suggest to onstrain �

j;k

2 f�1;+1g (antipodal RMPI) so that mul-

tipliation an be implemented by simple swithing.

The aumulation stage may be implemented either as a ontinuous time in-

tegrator or as a swithed apaitor subiruit that impliitly mathes the disrete-

time operation of the multiplier. In any ase, the output of the aumulating devie

will be subjet to saturation.

Referring to a disrete-time implementation, where allegedly y

j

=

P

N�1

k=0

�

j;k

x

k

,

and relying on the following assumptions:

� x and � are independent stohasti proesses;

� the �

j;k

are independent and identially distributed (either Gaussian or bi-

nary antipodal) random variables, with zero mean and unity variane;

� the energy of x in the aumulation time window is onstant;

the random variable y

j

will onverge to a normal random variable independently

of the input signal x.

Given the above observation, the measurements y obtained with an RMPI ar-

hiteture will have a range that is potentially

p

N -times larger than that of x

(e.g., �3� around the signal average). When omparing an RMPI solution with

a diret appliation of a Nyquist based AD onverter, and onsidering a uniform

quantizer in both ases, in order to maintain the same amount of quantization error

the number of bits needs to be inreased for an RMPI implementation. Moreover,

sine a normal distribution is not limited, wherever the input range of the ADC

is set, there is an unavoidable non-zero probability that y

j

falls out of the ADC

onversion range.
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On one hand, RMPI arhiteture allows to redue the number of measurements

for the aquisition of a given lass of signals with respet to lassial Nyquist

based sampling. On the other hand, in order to obtain a given performane in

terms of reonstrution error, the number of bits needed to enode eah of the

measurement would be bigger than for Nyquist based aquisition. This suggests

a tradeoff between the number of measurements M and the number of bits per

measurement b.

RMPI arhiteture presents a diret implementation of the ompressive sens-

ing onepts developed in this setion. However, as it has been shown, some

design onsideration are needed to be taken. More preisely, the hoie of a

proper AD onverter is of ruial importane in order to obtain a given perfor-

mane. Moreover, RMPI arhiteture requires the used of a huge amount of ir-

uitry (ontinuous-time or disrete-time analog multiply-and-aumulate bloks,

multibit AD onverters) leading to an expensive system implementation in terms

of ost, power onsumption, and design effort.

5.4.2 Random Sampling � RSAM

In lassial aquisition systems, samples of the signal are taken regularly on the

time axis at a given rate (usually not less than the Nyquist rate). Compressive

sensing arhitetures relying on random sampling avoid this regularity to produe

a number of measurements that, on the average, are less than those produed

by Nyquist sampling, while still allowing the reonstrution of the whole signal

thanks to sparsity and other priors.
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DkDk
clock

RNG

x(t)
xkj

b-bit 

ADC 
yj

b

Dkj

Fig. 5.2: Blok sheme of an random sampling enoder. The samples are taken at random

positions in time, over a prede�ned grid.

In priniple, sampling instants an happen anywhere along the time axis.

Yet, a straightforward implementation hooses them among regularly spaed time

points that an be seleted by digital means. The result is shematized in Figure

5.2 where a bakward ounter is pseudo-randomly re-loaded eah time it reahes

zeros, triggering onversion. Grid spaing, and thus lok rate, depends on the

resolution with whih one wants to plae the sampling instants and thus may be

expeted to be larger that Nyquist rate.

To translate the above blok sheme into formulas , say that suh the lok

identi�es a vetor x

0

= (x

0

0

; : : : ; x

0

�N�1

)

>

that oversamples a bandlimited x(t) by

a fator � with respet to x = (x

0

: : : ; x

N�1

)

>

ontaining the Nyquist samples.

The two vetors x

0

and x are linked by x

0

= Ax, being A an upsampling matrix.

With this, theM � N matrix � is nothing but the produt � = PA, where P

is the random sampling matrix de�ned by the M time instants k

0

< k

1

< � � � <

k

M�1

at whih the ounter reahes 0 as in

P

j;k

=

8

<

:

1 if k = k

j

0 otherwise
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The resulting sampling follows a so-alled renewal-proess in whih all the

inter-measurement intervals �k

j

= k

j+1

� k

j

are drawn as independent integer

random variables exponentially distributed in the interval [�k

min

;1℄.

The minimum inter-measurement gap�k

min

� 1 depends on the speed of the

ADC, whih must be ready for a new onversion eah time a measurement is taken

so that, by inreasing �k

min

we loosen the onstraints on the ADC implementa-

tion. The exponential trend is then tuned to have an average inter-measurement

gap equal to

N

M

so that (at least for large N ) we expet an average ofM measure-

ments.

Eah of these measurements is ommonly quantized by means of a b-bit ADC

to yield the bit stream passed to the deoder.

RSAM is only subjet to the stati saturation due to the �nite input range of

the onversion stage. This poses no problem sine it an be takled at design time

by simply resaling the signal input range as in onventional aquisition systems.

5.4.3 1-bit Compressive Sensing - 1bRMPI

Given a total bit budget B, the trade-off between the number of measurementsM

and the number of bits b = B=M spent to enode eah of them is a lassial theme

in signal aquisition and oding and applies also to CS arhitetures.

Among other issues, it may help oping with the unavoidable saturation of the

ADC sine the extreme solution b = 1 identi�es the ADC with a pure saturation

entered in 0, thus ompletely eliminating the problem.

In partiular, RMPI systems may be optimized in eah partiular setting to see

how muh information in our original signal an be inserted into B bits [47℄ and

is possible to think that eah measurement is represented by a single bit enoding

its sign [48, 49℄.

There are several bene�ts to the 1-bit CS tehnique. Given that the quantizer

an be implemented as a simple omparator that merely tests if a measurement is
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above or below zero, an ef�ient hardware quantizer an be built to operate at high

speeds. Furthermore, 1-bit quantizers do not suffer from dynami range issues nor

linearity problems inherent of the implementation of a multibit AD onverter.

Sine signs give no hint on the magnitude of the involved signals, the problem

in (5.2), with � = 0, with y = sign(��̂) and where the sign(�) operator applied

omponent-wise, is reast into [48℄

min k�̂k

1

s:t:

y Æ��̂ � 0

k��̂k

2

= 1

(5.4)

where Æ stands for omponent-wise produt

1

and the seond, unit-energy on-

straint is introdued as a sale-�xing prior. This approah is referred in [48℄ as

1-bit CS.

The above optimization problem is a non-onvex problem and must be ad-

dressed by speialized algorithms. Two state-of-the-art algorithms were presented

in the lasts years to address this problem. The Restrited Step Shrinkage [50℄ that

will be indiated here as RSS, and the Binary Iterative Hard Thresholding [51℄,

indiated here as BIHT. These algorithm are proved to ahieve a higher average

reovery SNR, and are an order of magnitude faster than other previous proposed

algorithms in [48℄ and [49℄.

Regrettably, even with BIHT, typial performane of an 1bRMPI arhiteture

are largely inferior with respet to multibit RMPI or RSAM solutions for ompa-

rable bit budgets.

1

so that this result in a set ofM omponent-wise inequalities
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6.1 Introdution and Motivation

As it has been shown in the previous setions, there is a trade-off between the

number of measurements needed to uniquely identify a given lass of signals, and

the number of bits that is neessary to represent them in order to obtain a given

preision [47℄.

On one hand, under ertain assumptions on the signal struture, ompressive

sensing theory allows to redue the number of measurement by inreasing the

hardware arhiteture omplexity. On the other hand, Delta-Sigma onverters

allows to redued the number of bits per measurement, even to the extreme ase of

only 1-bit, by inreasing the number of measurements and mixing time enoding

information.

The fundamental question is: is it possible to ombine the advantages of both

theories in one single devie that allows to redue the total number of bits in a

measurement, and simplify the hardware system implementation?

The answer to this question is YES, and it is what we have alled The RADS

Converter [52, 53, 54℄.

In this setion we will introdue the RADS Converter whih onstitutes the

main ontribution of this thesis. We will start by desribing its hardware arhite-

ture, and modeling the operations performed by the arhiteture in the frequeny

domain. This model will lead to an intuitive understanding of its working prin-

iple, and will give some insight on how the deoding stage an be ef�iently
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implemented.

We will next introdue a time domain analysis that, starting by the analysis of

a �=� modulator, and followed by the analysis of the whole RADS Converter

arhiteture, will lead to a deeper understanding of apabilities of the system.

We will lose this setion by presenting a set of measurements performed on

an �off-the-shelf� implementation of theRADS Converter that onstitutes a proof

of onept of the proposed arhiteture, and we disuss how it an be ef�iently

implemented on a single silion devie.

In order to evaluate the performane of the onverter, we have extensively

appealed to numerial simulations. Performane is evaluated by mathing the

reonstruted vetor

^

s with the original vetor s and using two merit �gures: the

Probability of Support Reonstrution (PSR) and the Reonstrution Signal-to-

Noise Ratio (RSNR), i.e.,

PSR = Pr

�

supp (s) � supp

minfsg=5

(

^

s)

	

ARSNR(dB)=E

"

dB

 

ksk

2

2

ks�

^

sk

2

2

!#

=E

"

dB

 

kxk

2

2

kx� x̂k

2

2

!#

where the thresholded support is onventionally de�ned as

supp

�

(a) = fj = 0; : : : ; n� 1jjja

j

j � �g

Probabilities and expetations were estimated using Monte Carlo simulations

for whih statistis was gather after 5000 trials.

6.1.1 Preliminaries: Delta-Sigma Modulation

In this subsetion we will make a short review of the main onepts that applies

to Delta-Sigma (�=�) modulators.
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Let model a basi 1

st

-order �=� modulator struture as in Figure 6.1 where

the blok [Q℄ represents a general quantizer and the blok [D℄ represents a one

time-step delay.

-
+

D

+
+

D

Q
yn znvn

Fig. 6.1: A time-domain blok diagram of a �rst order �=� modulator.

The input sequene y feeds the �=� modulator that produes a lower resolu-

tion output sequene z at every time step n.

The quantization stage of the modulator is usually implemented with a very

low resolution quantizer. Single bit quantizers are the most ommon option for

the implementation of this kind of onverters, sine it is partiularly appealing for

hardware implementations. The quantizer takes the form of a omparator to zero,

an extremely inexpensive and fast hardware devie. Furthermore, 1-bit quantizers

do not suffer from dynami range issues (the sign of the measurement remains

valid even if the quantizer saturates).

Though bene�ial, 1-bit quantization is a very non-linear operation that makes

dif�ult to obtain simple models for the operation of the onverter. In order to pro-

vide an insight into the operation of the modulator, the analysis is usually takled

in the z-domain [55, 56, 57, 58℄, for whih the quantizer has been replaed by it

linear model as shown in Figure 6.2.
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-
+

z

+
+

Y(z) +
+

E(z)

V(z) Z(z)

z

Fig. 6.2: A z-domain linear model of a �rst order �=� modulator.

From the diagram we an write

V (z) = z

�1

V (z) +X(z)� z

�1

Z(z)

Thus

Z(z) = V (z) + E(z) = z

�1

V (z) +X(z)� z

�1

Z(z) + E(z)

and rearranging we get

Z(z) = X(z) + (1� z

�1

)E(z) (6.1)

Equation (6.1) an be written in the general form

Z(z) = STF (z)X(z) +NTF (z)E(z) (6.2)

where the STF refers to the Signal Transfer Funtion, that in this ase is unity,

and the NTF refers to the Noise Transfer Funtion and is equal to

NTF = 1� z

�1

(6.3)
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Equation (6.2) is the basi equation �=� modulator, and shows how the out-

put an be expressed as a sum of a term aounting for the signal, and a term

aounting for the quantization noise.

For the ase presented above, the NTF has learly a high pass response,

whih suppresses the quantization noise near d, and ampli�es it out of the signal

band. This is the so alled noise shaping apabilities of the �=� modulators.

By replaing z in equation (6.3) by e

i2�f=M

, where M is the sampling fre-

queny, the power spetral density (PSD) of the output noise is found to be

S

q

(f) = 2(sin(�f=M))

2

S

e

(f)

, where S

e

(f) is the PSD of the quantization noise of the internal quantizer of the

onverter.

Consider a signal bandwidth of B Hertz, and approximate S

e

(f) = 2e

2

rms

=M .

By integrating S

e

(f) in the signal band, we get that the in-band noise, i.e., the

quantization noise present in the signal band, an be approximated as

q

rms

= e

rms

�

p

3

�

M

B

�

�3=2

(6.4)

As it an be seen from equation (6.4), the in band noise dereases with inreas-

ing the oversampling ratio, i.e., the ratio between the sampling frequeny and the

signal bandwidth.

In oder to inrease resolution, by replaing the quantizer stage in the blok

diagram of Figure 6.1 by a new opy 1

st

-order �=� modulator, we will get a

seond order �=� modulator. This proedure an be ontinued to obtain an L

th

-

order �=� modulator.

By extending the analysis we have made for the 1

st

-order, we an get a basi

expression for the NTF of an L

th

-order �=� modulator as
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NTF = (1� z

�1

)

L

(6.5)

By integrating the above equation in the signal band, we get that the power of

quantization noise of an L

th

-order �=� modulator is

q

rms

= e

rms

�

L

p

2L + 1

�

M

B

�

�(L+

1

2

)

(6.6)

The equation given above is an approximation for the alulation of the in-

band quantization noise of an �=� modulator. This approximation does not take

into onsideration quantizer overload thus inreasing the total power of quanti-

zation noise. Moreover, for higher order modulators, it is possible to hange the

shape of the NTF to produe different behavior. However, for the sake of on-

reteness, it is enough the analysis made so far.
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6.2 RADS Converter arhiteture

The RAndom Delta-Sigma (RADS) Converter illustrated in Figure 6.3 is noth-

ing but a onventional �=� onverter whose input signal is pre-multiplied by a

random sequene of symbols. RADS Converter exploits the noise shaping apa-

bilities of Delta Sigma (�=�) strutures and produe a number of measurements

(M � N ) eah oarsely quantized (atually with only 1 bit). The use of RADS

Converter with a proper exploitation of sparsity gives as a result a substantial om-

pression in the number of aquired bits with respet to lassial aquisition or to

simply �=� modulation. The simpliity of the arhiteture also allows to oper-

ate at very high frequenies, making possible, for example, to aquire frequeny

sparse signals that are spread over a large bandwidth with a very high resolution.

+

clock

x(t)
xn yn

pn

zn

RNG
M

N

1-bit  DS 

t=n/M

Fig. 6.3: Blok sheme of aRADS Converter. The input signal is multiplied by a random

sequene and fed into a �=� onverter made of a 1-bit ADC and a loop �lter in

harge of noise shaping.

The loop �lter and the nonlinear dynamis of the �� produe a progressive

enoding of widening windows from the original signals so that there is no one-

to-one relation between single bits and projetions.

On one hand, suh a tehnique has the desired effet to allow squeezing am-

plitude information into a sequene of sign informations. On the other hand, its

nonlinearity avoids the writing of a simple linear model linking the signal samples

x

n

with the bits produed by the enoder z

n

. Although, this is formally true, it
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will be neessary to waive the detailed modeling of the�� operations to onen-

trate on its high-level funtionality of oversampling onverter with noise-shaping

abilities. In doing so, we will obtain a model that an be effetively plugged into

reonstrution algorithms.

Without any lost of generality, we may fous on a normalized aquisition time

of one seond, and model the signal x(t) to be sampled at the Nyquist rate N by

olleting x

k

= x

�

k

N

�

for k = 0; : : : ; N � 1. Clearly x 2 R

N

and x is sparse if

there is an N �N matrix 	 suh that x = 	s for some vetor s 2 R

N

in whih at

mostK << N omponents are non-zero.

Given that the analog waveform x(t) orresponding to the samples in x is

sampled at frequenyM , that in general is larger thanN , de�ning the oversampled

signal x

0

n

= x

�

n

M

�

for n = 0; : : : ;M � 1 we an link the two vetors x

0

and x

by a linear operation x

0

= Ax, being A an upsampling matrix that onsiders the

omponents of x as the Nyquist samples of a bandlimited signal. Hene, �=�

operations do not apply to the original omponents of the vetor but to a vetor

oversampled by a fatorM=N .

The sin-interpolation matrix A 2 R

M�N

is de�ned as:

A

j;k

= sin

�

N � 1

M � 1

(j � 1)� (k � 1)

�

j = 1; : : : ;M

k = 1; : : : ; N

and for the ase of N =M we have that A = I .

Note that sine we are dealing with 1-bit measurements we haveM = B, so

oversampling does not imply an inrement in the total number of bits.

With referene to Figure 6.3, the samples in x

0

are multiplied by a Nyquist-

rate random sequene p

1

; p

2

; : : : ; p

N

. Applying a further linear operator indiated

with the symbol P whih is de�ned by
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P

j;k

=

8

<

:

p

d

j

N

M

e

if j = k

0 if j 6= k

(6.7)

, therefore, the input of the �� is the vetor Px

0

= PAx.

The binary output of the�=� at time n an be expressed as the sum of the or-

responding input sample and a term aounting for the quantization noise whih

spetral pro�le is ditated by the Noise Transfer Funtion (NTF) of the onverter

loop [55℄. Hene

z = PAx+ �

where � aounts for the quantization noise introdued by the�=� onverter.

Conventional �=� approahes have P equal to the identity and exploit this

onstrution by noting that low-pass �ltering z is equivalent to low-pass �ltering

PAx + � = Ax + � and thus invert upsampling to reover x with an error equal

to the low-pass �ltering of � , a term that an be made very small by playing

with the NTF, i.e., making it as high-pass as possible given other implementation

onstraints.

In our ase, the matrix P is designed to introdue spreading in order to al-

low that higher frequeny omponents of the upsampled signal enter the baseband

range in whih the bits in z are proessed. This alias normally prevents signal

reonstrution. Yet, sparsity an be exploited to ounter alias and allow the aqui-

sition of signal omponents that would otherwise fall out of the reah of the ��

range (or, onversely, allow smaller oversampling to aquire the same signal).

Figure 6.4 shows the spetrum at different points of the system. For simpliity,

assume that the spetrum of p

n

is ��at� in the interval (�N;N) and negligible

outside that interval. Note that y is now band limited to

3

2

N and that, depending

on the value of the sampling frequenyM , the replias of the spetrum will alias

on the disrete time signal y

n

.
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-M -N -N/2 N/20 N M
f

|X(f)|
K

Fig. 6.4: Frequeny oupany at the different point of the system. From top to bottom:

spetrum of the input sparse signal in the Fourier domain x; spetrum of the

modulating signal p; spetrum of the modulated signal y as a sum of different

shifts of the modulating signal; spetrum of the output signal z with the addition

of the quantization noise shaped by the NTF of the�=� modulator; remaining

spetrum after low-pass �ltering.

Given that we are multiplying the input signal by a pseudorandom sequene,

with a very high probability and independent of the sparsity basis, the resulting

signal after the modulation will be spread over a large bandwidth. Furthermore,

sine the rate of hange of the pseudorandom sequene is equal to the Nyquist

rate of the input signal, there will be always a ontribution of every omponent of
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the original signal into the low part portion of the bandwidth.
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6.3 Deoding and reonstrution

In order to reonstrut the original signal x(t) form the 1-bit samples z

n

, sparsity

is only one of the two priors we have, the other is the high-pass nature of the

disturbane introdued by the �=� modulator. This further piee of information

allows us to remove the biggest amount of energy of the quantization noise, while

leaving enough information to reonstrut the original x(t) in the low-pass portion

of the spetrum. Note that while signal energy dereases linearly as the band

shrinks around DC, disturbane energy dereases polynomially thanks to the NTF

of the modulator [55℄.

The blok diagram shown in Figure 6.5 is used to reover the original signal

x(t) from the 1-bit samples z

n

. The left-hand part of the blok diagram is a low-

pass �lter that removes the biggest ontribution of the quantization noise, and it is

followed by a deimation operation that removes redundant samples.

CS Alg

�n

M

R
H

zn z
bn x�����

Fig. 6.5: Deoding and reonstrution sheme for RADS Converter. The 1-bit input sig-

nal is �rst �ltered, deimated, and then proessed by a ompressive sensing re-

onstrution algorithm.

Consider a low-pass �lter with a utoff frequenyR=2. Depending on the ratio

R=N , and onsidering a perfet �lter with a deimation operation that leaves only

R signi�ant samples, the remaining samples form a system of linear equations,

that forR=N < N (whih is the most ommon ase) is undetermined. This system

of equations an ef�iently be solved by the right-hand part of the diagram that

represents any of the CS reonstrution algorithm we have seen in setion 5.3 in

the previous hapter.
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Note that the band between �R=2 and R=2 ontains the ontribution of all

possible shifts of the spetrum of p

n

determined by the frequeny values present

in x(t), as it is shown at the bottom of Figure 6.4. If spreading were not applied

before �=� modulation, only a portion of the signal would enter in suh a band.

To determine the value of the utoff frequeny of the �lter R=2, it is desirable

to take R as small as possible whih ontributes to remove the quantization noise

produed by the �=� onverter.

On the other hand, the signal obtained after �ltering should ontain enough

information for the reovery of the original sparse signal. In other words, the

number of signi�ant omponents of the �ltered signal must be large enough to

guarantee that the CS reonstrution algorithm an reover the original signal

with a high probability of suess while removing as muh noise as possible. The

orret hoie of the bandwidth R will determine the system performane.

To model the �ltering proess we use an l-order FIR �lter (l �M ) and arrange

its oef�ients h

1

; h

2

; : : : ; h

l

as the rows of a matrix H ofM �M elements.

H

j;k

=

8

<

:

h

i

if j = k + i� 1

0 if j 6= k + i� 1

j; k = 1; : : : ;M

i = 1; : : : ; l:

As an example withM = 8 and h = [h1; h2; h3℄

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h

1

h

2

h

1

h

3

h

2

h

1

h

3

h

2
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Enoding the downsampling operator in the matrix

D

j;k

=

8

<

:

1 if j =

R

M

k

0 if j 6=

R

M

k

j = 1; : : : ; R

k = 1; : : : ;M

we may �nally link the sparse vetor s with the �ltered and downsampled mea-

surement z

#

as

z

#

= DHPA	s+ DH�:

De�ne the matrix � = DHPA	 and the noise vetor e = DH� to have

z

#

= �s+ e, where � 2 R

NxR

with R < M . This reasts the lassial Compres-

sive Sensing problem presented in setion 5.1 of the previous hapter, and an be

ef�iently solved with a greedy algorithm or an L1-normminimization to �nd the

sparse vetor s.

6.3.1 Reonstrution Signal to Noise Ratio Estimation

In this subsetion, we estimate the performane in terms of RSNR ahieved by

the RADS Converter. Sine no other errors are modeled in the previous analysis,

quantization noise limits the performane of the reonstrution algorithm and of

the whole arhiteture.

It is possible alulate the total power of quantization noise from equation

(6.6) onsidering the remaining bandwidth determined by the �lter utoff fre-

queny. On top of that, we have payed a prie when we deided to have a on-

tribution of every possible omponent of the signal in the low pass portion of the

band, i.e. we have spread the energy of every single omponent over the whole

bandwidth of the original signal. Given that signal energy is onserved as it pass

trough the random multipliation (we have multiplied by a �1 sequene), the
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magnitude of the signal that remains at the end of the reonstrution algorithm

will be inversely proportional to the original signal bandwidth.

Finally, we an estimate the RSNR as

RSNR = 20log

10

0

�

kxk

2

Ne

rms

�

L

p

2L+1

�

M

R

�

�(L+

1

2

)

1

A

(6.8)

Note that it is possible to ahieve a signi�ant improvement with respet to

lassial �=� onversion by making R as small as possible, given that sine the

oversampling ratio in the above expression is alulated with respet to the �lter

bandwidth instead the signal bandwidth.

6.3.2 Numerial Experiments

In this subsetion, we present the results of a set of numerial experiments de-

signed to verify and validate the RADS Converter arhiteture.

All the simulated points showed in the plots are the mean value over more

than 5000 simulations where a new signal was generated with a random support

in every trial.

The 1-bit enoding was made using third order�=� modulator designed with

delsig [59℄ toolbox for Matlab [60℄.

For all the simulations of this setion we have �xed a set of parameters that

illustrates the most signi�ant ases. The number of samples was always �xed to

M = 2048 independently of the time sale used. We have onsidered an input

signal that is K-sparse in the Fourier domain , i.e. it is onstruted of up to K

different periodi tones, x = Fs where

F

j;k

= real

n

e

�

2�

N

(j�1)(k�1)

o

j; k = 1; : : : ; N
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and the value of N is varied aross the simulation.

In order to show deferents behaviors of the system, we have simulated a set

of different sparsity values of K (K = 4, 12, 20 and 28). The power of the input

signal was kept onstant along all values of K, whih implies a derease in the

value of every single omponent as the sparsity value inreases.

The �=� modulator was hosen to be a third order modulator, whih is a

typial on�guration for this kind of onverters and due to the fat that in higher

order modulators instabilities are more frequent to happen in the loop �lter [55℄.

The CS reonstrution algorithm at the end of the hain is CoSaMP, and the

number of iteration is �xed to 200.

In the �rst set of simulation we have estimated the RSNR and the PSR as a

funtion of the utoff frequeny of the reonstrution �lter. The results are plot in

Figure 6.6.
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Fig. 6.6: Effet of the reonstrution �lter bandwidth for a RADS Converter with a third

order �=�modulator for different sparsity levels. On top: RSNR as a funtion

of �lter bandwidth R; bottom: PSR as a funtion of R. For every ombination

ofK and N there is an optimal value for R.

As it is shown in the plots, for small values of R, it is not possible to re-

onstrut the original signal. This is due to the fat that only a small amount of

information is left after �ltering, and it is not possible to distinguish whih are the
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omponents present in the signal. In different words, there is a large probability

that more than one signal ould be a good andidate solution with this redued set

of measurements.

As we inrease the value of R, the probability of reonstrution jumps from

almost 0 to almost 1, for small values of K. This behavior is onsistent for dif-

ferent values of R at every K we have simulated. At this point, there is enough

information to distinguish whih are the omponents present in the original signal

from the low pass portion of the mixed signal. The reonstrution error is limited

by the quantization noise that is left in this portion.

As we ontinue inreasing the �lter bandwidth, there is a dereased in the per-

formane in terms of RSNR, as well as PSR. The deterioration in the RSNR

an be easily explained due to the fat that a larger bandwidth produes an inre-

ment in the power of the quantization noise (see eq. (6.8)) , i.e., the residual noise

energy is large ompared to the signal energy.

On the other hand, for large values ofR, as we inreaseK there is a derease in

performane in terms of PSR. As we have the same amount of quantization noise

power for a �xed R, inreasing the value of K redues the power of every single

omponent present in the input signal, making it harder for the reonstrution

algorithm to identify those omponents in a noisy environment (the magnitude of

the noise is omparable with the magnitude of the signal). This fat illustrates the

existing trade-off in the seletion of the R parameter. As we inrease the value of

R in order to obtain a better performane in terms of PSR, there is a detriment in

terms of RSNR. The optimal value of R will be the smallest value that produes

a PSR near to one, and this value is a funtion of K as well as of N .

We have extensively studied the optimal value of R trough an empirial ap-

proah using numerial simulation. We have found that to obtain a PSR � 0:99

then

R � 1:4Klog

�

N

K

+ 6

�

+ 30 (6.9)
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. This equation is in aordane with equation (5.1) presented in setion 5.2 of

the previous hapter. However, in the following setion we will see how a further

exploitation of theRADS arhiteture will lead to an improvement in both �gures

of merits.

In Figure 6.7, we show the simulation results for the optimal value of R given

by equation (6.9) as we vary the value of N . We have also added the urves given

by equation (6.8) in order to ompare the simulation result with the predited

theoretial RSNR.
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Fig. 6.7: Simulation of the performane of RADS Converter using the optimal reon-

strution �lter bandwidth for different sparsity levels. RSNR as a funtion of

the oversampling ratioM=N . The support was orretly reovered 100% of the

time. The solid line represents the simulation result, while the dashed line the

theoretial result from eq. (6.8).

The estimated RSNR follows the behavior of the simulated system, in terms

of variation of parameters K and N (the same ours with M , not shown). The

differenes are due to the linear model used in the approximation of the in-band

noise of the �=� onverter (whih a very non-linear system), and the non-ideal
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behavior of the �lters used for the reonstrution. Clearly, the expression in equa-

tion (6.8) an be used as a design guideline.

Note also that by taking just 1-bit measurements at Nyquist rate we an get

resolutions of up to 52dB, obtaining a ompression rate of about 8 times with

respet to Nyquist sampling for the same resolution.

Finally, in Figure 6.8 we have simulated the same setting as before. In this

ase, we have added some intrinsi noise to the original signal (i.i.d. additive

Gaussian noise) to get an input SNR of 30 dB.
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Fig. 6.8: Simulation of the performane of the RADS Converter using the optimal re-

onstrution �lter bandwidth for different sparsity levels. The input signal has

an intrinsi SNR of 30 dB. RSNR as a funtion of the oversampling ratio

M=N . The support was orretly reovered 100% of the time.

As we an see in the plots, the performane of the onverter is limited by the

intrinsi noise present in the signal, even if there is a sort of denoising for the

smallest values of K.

In this setion we have shown how the RADS Converter an be employed
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to aquire analog-sparse signals with a total number of bits muh smaller than

Nyquist multi-resolution analog-to-digital onverters. Simulation results have

shown that the proposed arhiteture ollets the neessary information to su-

essfully reonstrut sparse signals.

In the next setion we will see how we an exploit the peuliarities of the

aquisition strategy to produe an improved estimate of the signal in terms of

auray and probability of suessful reonstrution over different sparsity on-

ditions. This further exploitation will derive in an algorithm that we have alled

FCoSaMP whih is free of the parameters that ompromise both �gures of merit.
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6.4 FCOSAMP

In general, signal reonstrution for a CS aquisition sheme an be split into two

parts: support reovery, i.e. the identi�ation of the loation of the nonzero om-

ponents, and amplitude estimation over that support. Consider �rst the situation

in whih the support is already known. If the olumns of the measurement matrix

� indexed by the loation of the nonzero omponents form a full-rank matrix, the

natural approah is to reonstrut the signal by least squares, and the approxima-

tion error will be only limited by the power magnitude of the noise introdued by

the measurement proess.

On the other hand, in the general ase where the support is not known, most

algorithms an be ensured to work based on the RIP of the measurement matrix

as stated in the previous setion. For somematrix onstrution with entries that are

Gaussian or sub-Gaussian, the RIP is satis�ed with overwhelming probability if

the number of measurements is bigger than a multiple of the signal sparsityM �

CK log(N=K). If the number of measurements falls below a ertain minimum

number, the probability of suessful reonstrution hange from a very high to a

very poor one (see e.g. [61℄). This phenomena, in terms of ompressive sensing,

is the so alled phase transition effet.

As we have seen before, thanks to spreading, every non-zero entry in s implies

a waveform whose energy an be deteted at pratially any frequeny inluding

those where the quantization error is redued by the �=�. Hene, to remove the

quantization noise it is desirable to take only a small bandwidth around zero where

the high-pass nature of the disturbane has only a small ontribution. On the other

hand, the onsidered signal should ontain enough information for the reovery

of the original sparse signal.

This trade-off �ts partiularly well into algorithms iterating an elementary step

that estimates supp (s) and then alulates the orresponding non-null entries.

In these algorithms, it is possible to low-pass �lter (and deimate to remove

redundant samples) the input vetor at eah iteration. Doing so, as the reon-
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strution proeeds, its re�nement happens with values that are progressively less

affeted by disturbanes sine, while signal energy dereases linearly as the band

shrinks around DC, disturbane energy dereases polynomially thanks to the NTF.

The nature of the arhiteture allows to develop an iterative algorithm that

reovers the support with a very high probability, sine we start the estimation

proess with a big number of measurements, and redues the quantization noise

to the minimum possible depending on the sparsity level.

The algorithm we propose to exploit this intuition is reported in Algorithm 1

and will be referred as FCoSaMP in the following.

We an model the �lter proess as the appliation of an l-order FIR �lter (l �

m) and arrange its impulse response oef�ients h

1

; h

2

; : : : ; h

l

as the rows of a

matrix H

(m)

of m � m elements, where m is the length of the sequene to be

�ltered.

H

(m)

j;k

=

8

<

:

h

i

if j = k + i� 1

0 if j 6= k + i� 1

j; k = 1; : : : ; m

i = 1; : : : ; l

Depending on the �lter utoff frequeny, the �ltered sequene an be dei-

mated by a fator d. We an model this operator in the matrix D

(d;m)

of

�

m

d

�

�m

elements

D

(d;m)

j;k

=

8

<

:

1 if j =

�

k

d

�

0 if j 6=

�

k

d

�

j = 1; : : : ;

�

m

d

�

k = 1; : : : ; m

By writing the number of measurements as M = 2Kd

0

d

1

: : : d

J�1

with d

j

being a small downsampling fator (typially 2 or 3) and J being the total number

of downsampling steps of the algorithm, at the j-th iteration the outer loop �lters

the signal and downsample it by a fator d

j

to redue quantization noise. In our
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implementation, low-pass �ltering was obtained by sin frequeny pro�les with

lobes mathed with the subsampling ratio.

Downsampling ontinues until the number of available samples is 2K sine

this is the minimum information needed to disriminate between two different

K-sparse vetors.

The inner loop is performed a �xed number of times and is based on CoSaMP

to iteratively produe an improved estimation of s by least squares over a redued

support made of the support of the previous iteration plus the support of the largest

omponents of the residuals of the previous iteration.
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Algorithm 1 Reonstrut x from 1-bit vetor z

�

�

Complex onjugate transpose of �.

�

y

Pseudoinverse of �. �

y

= (�

�

�)

�1

�

�

.

w

jK

Set to zero all w but the K biggest omponent.

supp(w) Indexes of the nonzero omponents of w.

d

j

Downsampling ratios suh thatM = 2Kd

0

d

1

: : : d

J�1

Require: Sampling matrix �, 1-bit vetor z, sparsity levelK.

m M

s( (0; : : : ; 0)

T

for j = 1; : : : ; J � 1 do

z( D

(d

j

;m)

H

(m)

z

�( D

(d

j

;m)

H

(m)

�

v( z� �s

m bm=d

j



for i = 1; : : : ; I do

w( �

�

v

T (

�

supp(w

jK

) [ supp(s

jK

)

	

b(T )( �(�; T )

y

s

b(f1; : : : ; NgnT )( (0; : : : ; 0)

T

s( b

jK

v( z��s

end for

T ( supp(s

jK

)

b(T )( �(�; T )

y

s

b(f1; : : : ; NgnT )( (0; : : : ; 0)

T

s( b

jK

end for

^

x( 	s

Intuitively, the high probability of orret support reovery omes from the

fat that we estimate it under large noise ondition, but large number of measure-

ments. One the support is identi�ed (at every iteration the support estimation is

improved), the bandwidth is dereased in order to redue the quantization noise.

The key fat is to note that the signal energy dereases linearly when the fre-

queny dereases, while noise energy dereases polynomially thanks to the �=�
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noise shaping properties [55℄. This ombination of �ltering and estimation, has

the bene�t of reovering the signal with a very high probability of suess, while

reduing the quantization noise to the minimum.

6.4.1 Numerial Experiments

The simulations run in this setion share the same set of parameters and on�gu-

ration as the simulations draw in Setion 6.3.2.

In the �rst experiment (Figure 6.9), we have run the same enoding as that in

Figure 6.7, and we have made the deoding with FCoSaMP. Note the inrement

in terms ofRSNR of at least 30 dB in all the ases. It is also important to note the

largeRSNR that is ahieved espeially for very sparse signals. Note that for M/N

= 1 we are just taking 1-bit measurement at Nyquist rate and obtaining a RSNR

of up to 90dB, whih translates into a ompression fator of about 15 times with

respet to Nyquist sampling.
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Fig. 6.9: Simulation of the performane of RADS Converter using the FCoSaMP algo-

rithm in the reonstrution for different sparsity levels. On top: RSNR as a

funtion of the oversampling ratioM=N ; bottom: PSR as a funtion ofM=N .

The large RSNR that is ahieved translates into a ompression fator of up to

15 times with respet to Nyquist based aquisition

Another interesting fat is that the support reovery was always orret for

K < 36, while it was substantially less than 100% only for K � 36 when low

oversampling ratios are onsidered. This is mainly due to the large bandwidth that
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remains at the end of the algorithm, i.e., to the residual noise energy that is large

with respet to the signal energy therefore large noise energy ompared with the

signal energy.

In the seond experiment, we have added intrinsi noise to the signal by adding

i.i.d. Gaussian noise to get an input SNR of 30 dB. The results are shown in

Figure 6.10.
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Fig. 6.10: Simulation of the performane of RADS Converter using the FCoSaMP algo-

rithm for reonstrution, for different sparsity levels. The input signal has an

intrinsi SNR of 30 dB. On top: RSNR as a funtion of the oversampling

ratio M=N ; bottom: PSR as a funtion of M=N . The enoding proess and

the reonstrution algorithm show to be robust against strong noise ondition.

As in the experiment presented in previous setion, the performane of the

onverter is limited by the intrinsi noise of 30 dB. However the denoising effet

is less evident in this simulation. This is due to the fat that as we �lter and
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deimate iteratively, given the not ideal behavior of the �lters, part of the noise is

aliased into the low part of the band and added to the total noise energy at the end

of the algorithm.

In spite of this, it is shown that the enoding proess of the RADS Converter,

as well as the behavior of reonstrution algorithm are robust against strong noise

ondition showing a behavior in terms of PSR similar to that of the previous

simulation.

To avoid possible biases due to the hoie of a partiular sparsity basis, in the

third experiment we have hanged the sparsity basis and we have simulated the

aquisition of a signal that is sparse along a random basis obtained by orthonor-

malizing a matrix with Gaussian independent entries with zero average. The re-

sults are shown in Figure 6.11. Comparing this results with those in Figure 6.9,

note that there is a slight differene in terms of RSNR. This is due to the fat

that the former may ontain some omponents that when looked in the time do-

main onentrate most of its energy in small time intervals. In other words, the

signal energy is not uniformly distributed along the time axis, making many of the

samples taken by the RADS Converter useless or without information.

In the extreme ase, when all the energy is onentrated in a small period of

time ompared with the time-window used for the proessing, RADS Converter

will fail to deode this kind of signals.
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Fig. 6.11: Simulation of the performane of RADS Converter by using the FCoSaMP

algorithm for reonstrution, for different sparsity levels. The input signal is

sparse in a random basis. On top: RSNR as a funtion of the oversampling

ratio M=N ; bottom: PSR as a funtion of M=N . The proposed arhiteture

shows to work independently of the sparsity basis provided it is spread on the

time axis.

Finally, in the last experiment we have ompared the performane ahieved

by our system with two state of the art 1-bit ompressive sensing algorithms, i.e.,
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the Restrited Step Shrinkage (RSS) [62℄ and Binary Iterative Hard Thresholding

(BIHT) [51℄, that are generi shemes working on measurement matries with

nie theoretial properties (Figure 6.12).
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Fig. 6.12: Comparison of the performane of RADS Converter deoded with FCoSaMP

with 1bRMPI deoded with the RSS and BIHT algorithms. RSNR as a

funtion of the oversampling ratio M=N for �x signal length N = 1024 and

sparsity level ofK = 10. The same amount of 1-bit samples are onsidered for

every ase.

In every trial we have simulated the aquisition of a signal that is 10-sparse

along a random basis. Independently of the arhiteture, the same amount of 1-bit

samples z are onsidered as input for the reonstrution algorithm.

In all ases, the RADS sheme was able to perfetly reonstrut the support

of the original signal and, as shown in Figure 6.12, it ahieves an RSNR largely

superior to that of the referenes.
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6.5 Time Domain Analysis

Up to now, we have made a high level analysis based on frequeny domain as-

sumptions of the funtionality of the RADS onverter, and we have evaluated

two different reonstrution algorithms that produe different results in terms of

the seleted performane metris.

It seems that in the studied ases, the ahieved performane is limited by the

seleted reonstrution algorithm, and not by the aquisition arhiteture itself.

The main question we want to answer in this setion is: what is the maximum

ahievable performane of theRADS onverter (independently of the reonstru-

tion algorithm)?

To answer this question we annot perform only the high level analysis we

have made so far, but we need a deeper understanding of the enoding proess.

For this purpose, we will make a time-domain analysis of the onverter, starting

by a time-domain analysis of single 1

st

-order�=�modulator, then generalizing it

to a L

st

-order �=� modulator, and �nally analyzing the whole RADS Converter

arhiteture. In addition, we will also show how to exploit the time-domain anal-

ysis made for theRADS onverter in order to reonstrut the original signal from

the one bit measurements.

6.5.1 �=� modulator time-domain analysis

1

st

-order �=� modulator time-domain analysis

Consider �rst a disrete time 1

st

-order�=� modulator as in �gure 6.13 with zero

initial onditions, where the disrete sequene y feeds the modulator, that outputs

the disrete sequene z, and where the internal state is de�ned by the state variable

v at any time n. The blok alled [Q℄ represents a general quantizer and the blok

alled [D℄ represents a one time-step delay.
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Fig. 6.13: First order �=� modulator shemati diagram.

Following the signal path we an write the following equation at any time n:

v

n

= y

n

� z

n�1

+ v

n�1

(6.10)

and of ourse

v

n�1

= y

n�1

� z

n�2

+ v

n�2

(6.11)

Replaing (6.11) into (6.10) we get

v

n

= y

n

� z

n�1

+ y

n�1

� z

n�2

+ v

n�2

Extending the same reasoning up to n = 1 and for v

1

= 0 (zero initial ondi-

tions) we an write

v

n

= y

n

� z

n�1

+ y

n�1

� z

n�2

+ y

n�2

� z

n�3

+ v

n�3

v

n

= y

n

+ � � �+ y

1

� z

n�1

� � � � � z

1

=

n

X

i=1

y

i

�

n�1

X

i=1

z

i

(6.12)

This equation relates the urrent state variable v at any time n with the whole

history of input y and output z up to time n� 1.
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On the other hand, sine we are using a 1-bit quantizer [Q℄, without loss of

generality by enoding the value

0

1

0

for all positive inputs of the quantizer (in-

luding zero), and the value

0

� 1

0

for all negative values of the input, we have

that

v

n

z

n

� 0 8n (6.13)

De�ning the vetors

y =

2

6

6

6

6

6

6

4

y

1

:

:

:

y

n

3

7

7

7

7

7

7

5

; v =

2

6

6

6

6

6

6

4

v

1

:

:

:

v

n

3

7

7

7

7

7

7

5

; z =

2

6

6

6

6

6

6

4

z

1

:

:

:

z

n

3

7

7

7

7

7

7

5

and the matries

Z =

2

6

6

6

6

6

6

6

6

6

6

6

4

z

1

0 0 : : : 0

0 z

2

0 : : : 0

0 0 z

3

: : : 0

: : :

: : :

: : :

0 0 0 : : : z

n

3

7

7

7

7

7

7

7

7

7

7

7

5

;

� =

2

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 : : : 0

1 1 0 : : : 0

1 1 1 : : : 0

: : :

: : :

: : :

1 1 1 : : : 1

3

7

7

7

7

7

7

7

7

7

7

7

5

; � =

2

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 : : : 0

1 0 0 : : : 0

1 1 0 : : : 0

: : :

: : :

: : :

1 1 1 : : : 0

3

7

7

7

7

7

7

7

7

7

7

7

5
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we an write

v = �

�

�y��

�

�z (6.14)

and

Zv � 0 (6.15)

where the last inequality is omponent-wise.

In this way, ombining equation (6.14) with equation (6.15), and given the

measurements z we an de�ne a solution spae for any input y:

Z�

�

�y � Z�

�

�z

This spae ontains all possible instanes of the input y that are solutions of

the�=� modulation proess.

L

th

-order �=� modulator time-domain analysis

Consider now a disrete time L

th

-order�=�modulator as in �gure 6.14 with zero

initial onditions.

Q

yn
znvnwn

L-order

Loop Filter

Fig. 6.14: L

th

-order �=� modulator shemati diagram.

In this ase, the vetor w 2 R

L

de�nes the state vetor of the loop �lter, while
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the state variable v is equal to the last omponent of the state vetor (w

:;L

).

The urrent state at time n an be omputed based on the previous states as

w

n

= By

n�1

+ Cz

n�1

+ Aw

n�1

where the matrix A 2 R

LxL

and the vetors B;C 2 R

L

ontain the oef�ients

that determine the transfer funtion of the loop �lter.

The output of the loop �lter is simply v

n

= w

n;L

and the output of the modu-

lator is alulated as z

n

= sign(v

n

), where w

:;L

is the L

th

omponent of the state

vetor w.

Analogously as proeeded with the 1

st

-order modulator, we an write

w

n

= By

n�1

+ Cz

n�1

+ ABy

n�2

+ ACz

n�2

+ A

(2)

w

n�2

w

n

= A

(0)

By

n�1

+ � � �+ A

(n�2)

By

1

+ A

(0)

Cz

n�2

+ � � �+ A

(n�2)

Cz

1

w

n

= B

n�1

X

i=1

A

(i�1)

y

i

+ C

n�1

X

i=1

A

(i�1)

z

i

(6.16)

sine w

1

= 0 (zero initial onditions).

We also have that,

v

n

z

n

� 0 8n

De�ning the vetors



6. RADS Converter 98

y =

2

6

6

6

6

6

6

4

y

1

:

:

:

y

n�1

3

7

7

7

7

7

7

5

; v

0

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

w

2;1

w

2;2

:

:

w

2;L

w

3

:

:

:

w

n�1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; z =

2

6

6

6

6

6

6

4

z

1

:

:

:

z

n�1

3

7

7

7

7

7

7

5

and the matries

Z =

2

6

6

6

6

6

6

6

6

6

6

6

4

z

1

0 0 : : : 0

0 z

2

0 : : : 0

0 0 z

3

: : : 0

: : :

: : :

: : :

0 0 0 : : : z

n�1

3

7

7

7

7

7

7

7

7

7

7

7

5

;

De�ne

�

�

�

i

= A

(i)

B

Æ

Æ

Æ

i

= A

(i)

C

then,
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�
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Æ
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Æ
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5

We an now write equation (6.16) in matrix form as

v

0

= �

�

�

0

y��

�

�

0

z (6.17)

In order to keep only the last omponent of the state vetor, de�ne the matrix

K 2 R

L(N�1)xN�1

as

K =

2

6

6

6

6

6

6

6

6

6

6

6

4

0 : : : 0; 1 0 0 : : : 0

0 0 : : : 0; 1 0 : : : 0

0 0 0 : : : 0; 1 : : : 0

: : :

: : :

: : :

0 0 0 : : : 0 : : : 0; 1

3

7

7

7

7

7

7

7

7

7

7

7

5

;
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where 0 represents a row vetor of size L with all zeros in its inputs.

De�ning v as

v =

2

6

6

6

6

6

6

4

v

1

:

:

:

v

n�1

3

7

7

7

7

7

7

5

to get

v = K�

�

�

0

y� K�

�

�

0

z

, and

v = �

�

�y��

�

�z (6.18)

where�

�

� = K�

�

�

0

and�

�

� = K�

�

�

0

.

As in the 1

st

-order ase we have,

Zv � 0 (6.19)

and ombining equation (6.18) with (6.19) to have

Z�y � Z�z (6.20)

The spae de�ned by equation (6.20) ontains all possible instanes of the

input y that are solution of the �=� modulation proess, given the measurements

z.

Now, we an highlight some observations for the above equation:
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� The input signal de�nes a point in the multi-dimensional spae that is on-

tained in the solution spae de�ned by the set of equations in (6.20).

� Fixing the dimension of the input signal, as we add new measurements,

every measurement will split the spae into two sub-spaes. Only one of

those sub-spaes will ontain possible solutions.

� The minimum number of measurements needed to de�ne a losed region is

equal to the dimension of the input signal plus one.

� Adding a new measurement, does not imply a redution in the solution

spae.

� A smaller solution spae implies an estimation of the input signal with a

bigger auray. In other words, the smaller the solution spae, the bigger

the SNR of the estimated signal.

6.5.2 RADS Converter time-domain analysis

We now have all we need to analyze the whole RADS onverter arhiteture.

The set of inequalities Z�y � Z�z de�ne the solution spae given by the �=�

modulator. In the same way as above, to ompletely model the RADS Converter

and the input signal itself, we an easily write

y = DAx = DA	s

to have

Z�DA	s � Z�z (6.21)

where the matrix A is the upsampling operator and the matrix D represents the

pre-modulation proess, as we have de�ned before.
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We have now a omplete desription of the modulation proess of the RADS

Converter arhiteture in time domain. The main differenes between the RADS

Converter and a �=� alone are two: �rst, the pre-modulation inreases the prob-

ability that every new measurement modify the solution spae, inreasing in this

way the auray in the estimation. Seondly, under the assumption that s is sparse

in a given domain, it is possible redue the solution spae to only those andidates

that satisfy this ondition, reduing even more the solution spae. Sine sparsity

is not a dimensionality redution, it is not possible to know a priori whih are the

diretions to look at, but as we proeed with the measurements, there will be many

andidates to disard sine they are not sparse enough to be a possible solution.

6.5.3 Spae Dimension Analysis

As we have seen before, it is possible to de�ne a monotoni dependene between

the size of the solution spae and the SNR of the estimation of the input signal.

As a measure of size, and onsidering that any point in the solution spae is a

andidate with the same probability, it is possible to onsider the hyper-volume of

that solution spae as a measure of preision of the estimation of the input signal.

Regrettably, an analytial expression for the alulation of the hyper-volume

in high-dimensional spaes is a dif�ult task, and we need to resort to numerial

integration. For that purpose, we will use Monte-Carlo integration [63, 64℄ in

order to have an estimation of the hyper-volume of the solution spae as a funtion

of the number of measurements.

Monte Carlo integration is a tehnique for numerial integration that uses ran-

dom numbers, and is partiularly useful for higher dimensional integrals. Infor-

mally, to estimate the volume of a given domain D, we have �rst, to pik a simple

domain E whose volume is easily alulated and whih D is ontained. Then, we

generate a sequene of random points that fall within E, some of whih will also

fall within D. Finally, we alulate the area of D as the area of E by the fration

of points that fall between E.
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In this ase, we have set the ontainer volume as an hyper-ube of 1 � 1 �

1 � � � � � 1 and we have generated 500; 000 � M random points with uniform

distribution within this range for every point in the plot.

We have plot in Figure 6.15 the hyper-volume of the solution spae as a fun-

tion of the number of measurements for two ases: using a single �=� onverter

(equation (6.20)); and using the RADS Converter arhiteture (equation (6.21)).

As a referene, we have also plot a line with slope �1=2

M

. This line will our

only when every ut of the spae produed by a new measurement divides the

solution spae exatly into two equal parts.
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Fig. 6.15: Monte Carlo integration of the hyper-volume of the solution spae for RADS

Converter and for �=� onverter. On top: volume in linear sale as a funtion

of the number of measurements M ; bottom: volume in logarithmi sale as

a funtion of M . The enoding performed by RADS is more effetive in

reduing the size of the solution spae.

As an be observed in Figure 6.15 the differene in size of the solution spae

obtained using theRADS Converter approah is orders of magnitudemore onve-

nient than using lassial�=� modulation. This differene is muh more evident
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as the number of measurements is inreased. However, as the plot shows it is still

possible to obtain an important improvement, sine the line indiating the optimal

uts is far away from the one desribed by the RADS Converter.

6.5.4 L1-normMinimization

It was demonstrated above that the set of inequalities given by equation (6.21) de-

�ne the solution spae of theRADS modulation proess. This spae still ontains

many possible input vetors s, but we are partiularly interested in the sparsest

vetor that exist in this spae. In order to �nd suh a vetor we an reast to a L1-

norm minimization, sine from the observed in the previous hapter, it enfores

sparsity aross all possible solutions.

We an write the following minimization problem

ŝ = argmin

N

X

i=1

js

i

j s.t. Z�DA	s � Z�z (6.22)

whih from now on we will all L1min.

6.5.5 Numerial Experiments

In this setion we will show the results from a series of simulation we have run in

order to evaluate the minimization problem presented in equation (6.22).

We have setup the same onditions for the simulation in setion 6.3.2, exept

that in this ase we have redued the number of measurements from 2048 to 1024.

It was neessary to redue this number for the simulation to be omputational

feasible, sine every measurement produe a new onstrain to be pass to the solver.

The minimization problem was solved by the software plex [65℄.

Figure 6.16 shows the performane ahieved by FCoSaMP ompared with that

obtained using the minimization problem of equation (6.22), by �xing the sparsity

number toK = 8.
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As it is observed in the plot, L1min outperforms FCoSaMP by around 10 dB

in the whole range. This behavior an be veri�ed using different experimental

setups not shown.
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60

65

70

75

80

85

Oversampling ratio (M/N)

R
S

N
R

 [d
B

]
Performance comparison
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Fig. 6.16: Performane omparison of FCoSaMP and L1min. RSNR as a funtion of

oversampling ratioM=N for an 8-sparse signal enoded withRADS onverter.

Themain drawbak of this reonstrution algorithm is the running time needed

to solve the minimization problem. In Figure 6.17 we have plotted the relation-

ship between the average simulation time taken by L1min over the time taken by

FCoSaMP.
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Fig. 6.17: Reonstrution algorithm exeution time for FCoSaMP and L1min. Relation-

ship between the time taken by L1min and FCoSaMP as a funtion of the

oversampling ratioM=N .

As it is shown in the plot, the time needed for L1min is between 50 and 250

times longer than that of FCoSaMP. As we inrease the oversampling ratio more

equations enter into play, whih redue the searh spae of the minimization algo-

rithm. However, this long reonstrution time make this algorithm only feasible

in partiular ases.
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6.6 Hardware Implementation

In this setion we propose a hardware implementation of the RADS Converter in

order to validate the ideas presented above by a real appliation.

The implementation was made in a redued size PCB with off-the-shelf om-

ponents. Some onstrains were imposed in the design of the board, sine the out-

put of the �=� onverter must be a 1-bit output, but it is rather dif�ult to �nd a

ommerial�=� onverter with this harateristi in the market (most onverters

inlude the deimation �lter as well).

Figure 6.18 shows a simpli�ed shemati diagram of the implemented arhi-

teture, and the aspets of the implemented board an be observed in Figure 6.19.

clock_in

data_out

V+

V-

DS 

+

-

+

-

x(t)

signal_in

RNG_in

z���

	���
V_ref

Fig. 6.18: Simpli�ed shemati diagram of the hardware implementation of the RADS

Converter.

Fig. 6.19: Piture of the hardware implementation of the RADS Converter.

From the user point of view the onverter presents two inputs: a lok and a
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random sequene, and one output: the 1-bit RADS Converter output. The lok

input and input for the random sequene must be synhronized, and the frequeny

relationship must be the oversampling ratio determined by the appliation. The

1-bit output is synhronized with the input lok and must be read before the next

rising edge of the inoming lok.

The �rst stage of the onverter is nothing but an ampli�er, whih funtions

is to onvert the signal from single-ended to differential, and to adapt the signal

input level to the�=� onverter level.

After this stage, the signal is passed trough a ombination of swithes, that

hange the polarity of the signal as it is ommanded by the RNG input. This

proessing is equivalent to the multipliation stage showed in Figure 6.3.

The last blok is a onventional�=� onverter, whih produes a 1-bit output

stream. The hosen onverter was an AD7401A, from Analog Devies, whih is

a 2nd order disrete time modulator with a maximum sampling rate of 20MSPS.

Note that in an integrated implementation the whole arhiteture an be di-

retly implemented with a slight modi�ation of the �rst stage of a disrete time

�=� onverter.

6.6.1 Measurement Setup

Figure 6.20 and Figure 6.21 show the measurement setup. The omplete setup

is omposed by the RADS onverter board, a Spartan 6 Development Board re-

sponsible for to generating the pseudorandom sequene and to interfae it to a PC

trough a USB port, a signal generator with GPIB interfae, a power supply, and a

laptop for the ontrol and the aquisition of the measurements.
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Fig. 6.20: Piture of the RADS Converter onneted to a Spartan 6 FPGA development

kit.

Fig. 6.21: Measurement setup for the evaluation of the hardware implementation of the

RADS Converter.

The measurement proedure is desribed below:

� Set the number of measurements (M ), the Nyquist rate of the input signal
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to be generated (N ), the sparsity level (K), and hoose a basis of sparsity

for the signal.

� Generate the samples of the signal to be aquired in the PC with Matlab,

and send them through the GPIB interfae to the signal generator.

� Start the aquisition with the RADS board, save the measurements tempo-

rally in the Spartan 6 development board, and transfer them to the PC trough

USB.

� Proess the aquired samples in the PC with FCoSaMP and ompare the

reonstruted signal with the synthetially generated signal.

The proposed measurement setup is very �exible and allows to exploit the

whole spae of parameters of the aquisition proess.

6.6.2 Measurements and Validation

We have made a series of measurements in order to validate the funtioning of

RADS Converter. We have �xed the sampling frequeny to 10MHz and we have

vary the time window in order to hange the number of aquired measurements.

As an example, Figure 6.6.2 shows a plot of an 8-sparse (in a random basis

with a Nyquist rate of 5MHz) syntheti signal generated in Matlab, and superim-

posed to it, it is the signal aquired withRADS Converter and reonstruted with

FCoSaMP. The obtained RSNR was of 32dB.
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Fig. 6.22: Aquisition of an analog signal with RADS Converter. The input signal is 8-

sparse in a random basis and with a Nyquist rate half the sampling frequeny.

On top: the syntheti signal superimposed to the reonstruted signal for the

whole aquisition window; on bottom: a zoom-in of the same aquired signal.

Figure 6.6.2 shows the signal input spetrum. As it is shown, the spetrum

oupany is of 2:5MHz, whih implies a Nyquist rate of 5MHz. With the bit

budget utilized by RADS Converter in the aquisition of this signal, it would be

obtained a maximum SNR of 12dB by the used of a lassial Nyquist onverter.
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Fig. 6.23: Spetrum of the input signal aquired by RADS Converter. The spetrum has

a full oupany for frequenies up to 2:5MHz

Another example using a sparse signal in the Fourier domain is presented in

the 6.24. The plot shows the mean value over 10 measurements obtained by the

RADS onverter board.
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Fig. 6.24: Performane of the hardware implementation of the RADS Converter by us-

ing the FCoSaMP algorithm for reonstrution, for different sparsity levels.

RSNR as a funtion of the oversampling ratio M=N . The support reovery

was always orret for the 10 measurements.

As an be observed, the trend is the same to that obtained in the simulation,

but the performane arhived in terms of RSNR is inferior to the expeted by

the simulation. These differenes an be due to, imperfetions in the utilized

swithes (on/off resistane, swithing time, frequeny response), different soures

of noise (power supply noise, noise introdued by the ampli�er, thermal noise,

quantization noise in the signal generator) and most important, the bandwidth of

the input stage of the utilized�=� onverter (the modulated signal that enter into

the�=� onverter exeeds greatly the onverter spei�ation).

In spite of this, the implementation of the onverter has shown that this arhi-

teture is promising as an analog-to-information onverter, signi�antly reduing

the total number of bits with respet to Nyquist based sampling for spei� lasses

of signals.
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6.7 Conlusion

In this hapter we have introdued the RADS Converter, we have evaluated its

performane through theoretial results, numerial simulations and a hardware

implementation of the aquisition arhiteture. We have proposed a number of

reonstrution algorithms among those we highlight the FCoSaMP and the L1-

norm minimization.

The proposed arhiteture allows a �simple� hardware implementation for the

aquisition of large bandwidth signals that are sparse over a variety of supports,

obtaining a very high resolution after reonstrution. This ontrast with lassial

sampling methods, where the resolution drastially dereases with the sampling

frequeny.

We have also evaluated numerially the quality of the algorithm to retrieve

a orret support under different input signal ondition, obtaining a very high

probability over a wide range of sparsity levels.

Finally we have proposed a different approah for the study of the RADS

Converter and for �=� modulators in general. Contrary to what is found in the

literature for this kind of onverters, usually evaluated in the frequeny domain

[55, 56, 57, 58℄, the proposed approah is based on a time-domain analysis.





7. CONCLUSIONS

This thesis builds on the �eld of signal proessing, and illustrates with two differ-

ent appliations how, by inreasing the efforts in the digital domain, it is possible

to redue the requirements for the implementation of analog hardware.

Spei�ally, we have foused on the analysis of the use of very oarse quan-

tization, more preisely 1-bit quantization, with the aim of obtaining a simpli�-

ation in the implementation of both, analog to digital onverters, and digital to

analog onverters. We have shown that a proper exploitation of binary quantiza-

tion an lead to performanes that are similar, and sometimes even better, than

those obtained using multibit approahes.

In the �rst part we have proposed the use of Legendre sequenes (binary se-

quenes) for the utilization in MIMO ative sensing systems. We have proposed

the onstrution of set of sequenes, where eah of the sequenes in the set is

made from a different rotation of the same Legendre sequene. We have found

that optimal rotations exist, and that the set formed by this binary sequenes has

a performane in terms of ISL beyond the one obtained by other sets of binary

sequenes. We have also found that the performane obtained by our sequenes is

omparable to state-of-the-art algorithms that produe real value sequenes, when

quantization is imposed to them up to a ertain level of quantization depth.

In order to obtain the optimal rotations, we have presented an analytial ex-

pression for the alulation of the ross-orrelation omponents of the ISL of a

set of sequenes. This expression, put together with a previously obtained ex-

pression for the alulation of the ISL of a single sequene, allowed the reation
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of a omplete expression for the ISL of a set of sequenes. Under asymptoti

onditions, this expression an be used to alulate the ISL of sequenes whose

generating funtion has a relatively simple trend. Sine this is the ase of Legen-

dre sequenes, we were able to derive an analytial expression for the asymptoti

ISL of sets of rotated Legendre sequenes. Suh an expression was exploited to

drive the optimization proedure needed to onstrut small-ISL sets of antipodal

sequenes of any sequene length with potential appliations to ommuniation

and ative sensing systems.

We have started the seond part of this thesis by introduing the models ne-

essary to represent the lasses of signals of interest, i.e. sparse signals. We have

shown how many high-dimensional signals atually have a limited number of de-

grees of freedom ompared to its dimensionality. These lasses of signals are

known as sparse signals, whih are one of the main ingredients for the develop-

ment of the ompressive sensing theory.

In this part of the thesis we have dealt partiularly with the design and de-

velopment of a hardware arhiteture for the implementation of a ompressive

sensing system. Based on the motivation of this thesis work, one of the requisite

we have impose for the implementation of suh a system, was that it must lead

into a simple hardware/system implementation.

In this way , we have introdued a new arhiteture for an Analog to Informa-

tion onverter that was alled the RADS Converter. The proposed arhiteture is

based on a well-known �=� onverter that produes 1-bit measurements of the

inoming signal. Starting from a �=� onverter, a straightforward modi�ation

of the input stage topology lead to the implementation of the RADS Converter

arhiteture.

The reonstrution performane obtained using the proposed onverter was

found to depend on the signal information ontent, instead of depending on the

signal bandwidth, as it is in the ase for a lassial �=� onverter. This results in

the possibility of aquisition of large bandwidth signals that are sparse over a vari-
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ety of supports, with an extremely high auray after being proessed. Based on

ompressive sensing onepts, RADS Converter is able exploit the sparse signal

struture to apture all its information ontent by taking single bit measurements.

An important �nding of this work, was that by exploiting the peuliarities of

the aquisition strategy we were able to develop a new reonstrution algorithm

that produes an improved estimate (with respet to general algorithms) of the

signal in terms of auray and probability of suessful reonstrution. This

suggest that, while most of the reonstrution algorithms for ompressive sensing

are based on guaranties on the struture of the measurement matrix (RIP based

algorithms), it is possible to get a pro�t by generating more lever algorithms that

math with the aquisition arhiteture itself.

The modeling of the RADS Converter in the frequeny domain has led to

an intuitive understanding of the enoding proess, and has given light on how

proeed to ef�iently reonstrut the input signal from the measurements.

However, in order to get a deeper insight into the funtioning of the proposed

onverter, we were able to develop a time-domain model of the operations per-

formed to the signal in the enoding proess. With this aim we have raised an

algebrai analysis of the spae determined by the measurements, and its redu-

tion as new measurements ome into onsideration. The study of the size of that

spae, evidenes the differene between the RADS enoding and the �=� en-

oding, and allows the alulation/ estimation of the theoretial maximum limit

that an be expeted by taking 1-bit measurements of any form.

The different perspetive given by the time domain modeling of the enoding

proess, has led to the proposal of a new reonstrution algorithm for the RADS

Converter arhiteture. This algorithm is based on lassial ompressive sensing

onepts that promotes sparsity through the minimization of the L1-norm. It has

been demonstrated that the use of this algorithm an produe a better estimate

of the signal than its frequeny-based ounterpart. However, the omplex task

of minimizing the L1-norm over the huge amount of onstraints, makes this im-
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provement be ahieved at the expense of an inrease in exeution time, making

this appliation only feasible for ertain appliations.

Besides the extensively numerial simulations performed during the devel-

opment of this thesis to validate the results, we have implemented the RADS

Converter arhiteture in a redued size PCB with off-the-shelf omponents.

The implementation of the onverter has demonstrated that this arhiteture is

promising as an analog to information onverter, signi�antly reduing the total

number of bits with respet to Nyquist based sampling, for spei� lasses of

signals.

Although the performane attained by the hardware implementation differs

from the one ahieved in simulations, we believe that a proper implementation of

the RADS Converter in a spei�ally designed integrated devie an lead to an

inrease in the performane lose to the obtained in the simulation.
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