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ABSTRACT

Most ele
troni
 systems 
an be des
ribed in a very simpli�ed way as an assem-

blage of analog and digital 
omponents put all together in order to perform a


ertain fun
tion. Nowadays, there is an in
reasing tenden
y to redu
e the analog


omponents, and to repla
e them by operations performed in the digital domain.

This tenden
y has led to the emergen
e of new ele
troni
 systems that are more

�exible, 
heaper and robust. However, no matter the amount of digital pro
ess im-

plemented, there will be always an analog part to be sorted out and thus, the step

of 
onverting digital signals into analog signals and vi
e versa 
annot be avoided.

This 
onversion 
an be more or less 
omplex depending on the 
hara
teristi
s of

the signals. Thus, even if it is desirable to repla
e fun
tions 
arried out by analog


omponents by digital pro
esses, it is equally important to do so in a way that

simpli�es the 
onversion from digital to analog signals and vi
e versa.

In the present thesis, we have study strategies based on in
reasing the amount

of pro
essing in the digital domain in su
h a way that the implementation of ana-

log hardware stages 
an be simpli�ed. To this aim, we have proposed the use of

very low quantized signals, i.e. 1-bit, for the a
quisition and for the generation of

parti
ular 
lasses of signals.

More spe
i�
ally, on one hand, we have proposed a method for the generation

of sets of binary sequen
es to be used in multiple-input multiple-output a
tive

sensing appli
ations, su
h as radar, sonar and medi
al imaging. The generated

sets of sequen
es have very low auto- and 
ross-
orrelation sidelobes, a desired

property for this kind of appli
ations, providing performan
e metri
s far better

than those from other families of binary sequen
es, and a 
omparable performan
e



ii

to that of multibit approa
hes. The advantage of using binary sequen
es is, for in-

stan
e, the simpli�
ation of the implementation of the transmitters always present

in these appli
ations.

On the other hand, we have proposed a new ar
hite
ture for an analog to digital


onverter. This ar
hite
ture 
an be viewed as an extension of the fun
tionalities of

a 
lassi
al Delta-Sigma 
onverter whi
h, by taking 1-bit measurements at a rate

mu
h bigger than that of the signal bandwidth, produ
es a signal estimate with

an a

ura
y that depends on the ratio between the sampling rate and the signal

bandwidth. In our 
ase, relying on the stru
ture of the signal of interest, and

assuming that its information 
ontent is mu
h smaller than its bandwidth, we are

able to produ
e a signal estimate that depends on the ratio between the sampling

rate and the information 
ontent of the signal.
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1. INTRODUCTION

Although most modern ele
troni
s systems are 
omposed by a 
ombination of

analog and digital 
omponents, the rapidly evolving 
apabilities of digital ele
-

troni
s are shifting every fun
tion (before) handled in the analog domain into the

digital domain.

The advan
es in integrated 
ir
uits design have enabled the 
reation of digital

pro
essing systems that are more �exible, 
heaper and robust than their analog


ounterparts. This has lead to one of the most signi�
ant development during

the last de
ades of ele
troni
 systems design: repla
ing analog 
omponents to

perform their operation in the digital domain.

However, for these systems to interfa
e with the real world, 
onversions be-

tween analog signals and digital signals are required. Analog-to-Digital (AD) and

Digital-to-Analog (DA) 
onverters are the responsible of that 
onversion.

Most AD and DA 
onverters rely on the Nyquist-Shannon sampling theorem

that determines how any signal 
an be exa
tly re
overed from a set of uniformly

spa
ed samples taken at a rate of at least twi
e the highest frequen
y present in

the signal of interest.

Nyquist-Shannon sampling theorem imposes a requirement on the time do-

main to the problem of how to represent an analog signal by a series of samples

without any lost of information. However, in order to pro
ess and store samples in

a digital system, we must be able to represent ea
h sample using a �nite number

of bits, and hen
e the measurements will typi
ally be subje
t to the unavoidable

quantization error. By in
reasing the number of bits of the measurements, the
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quantization pro
ess 
an be negle
ted, or hidden with respe
t to pro
esses present

in the system su
h as thermal noise. The main drawba
k of this approa
h, is that

the 
ost of in
reasing the number of bits for Nyquist based AD and DA 
onverters

require a huge amount of analog hardware. As an example, ��ash� AD 
onvert-

ers exponentially in
rease its hardware 
omplexity with the number of resolution

bits, and be
omes impra
ti
al at resolutions over 8 bits due to the large number of


omparators required.

There is a different approa
h for AD and DA 
onversion that it is not based

on the Nyquist-Shannon sampling theorem. Delta-Sigma 
onverters rely on the

utilization of a very small amount of bits to quantize signals (1-bit quantization is

the most typi
al value used). Delta-Sigma 
onverters a
hieve this by trading-off

resolution with the sampling frequen
y. These 
onverters oversample the signal

by a large fa
tor with respe
t to its bandwidth and, by a �ltering pro
essing (ana-

log or digital) they are able to obtain a �nal signal represented with an a

ura
y

mu
h bigger than the one used in the sampling pro
ess.

Among other advantages (low power, low 
ost) with respe
t to other 
onverter

ar
hite
tures, at the heart of the Delta-Sigma is the simpli�
ation on the quan-

tization stage that allows the 
onverter to operate with no linearity degradation.

However, Delta-Sigma 
onverters only allows to ef�
iently operate with signals

with a redu
ed spe
tra o

upan
y, due to the high oversampling ratio needed to

obtain the desired pre
ision.

The main motivation of this dissertation is to study simpli�
ation strategies

for the implementation of analog hardware stages present in most mixed systems,

by in
reasing the amount of pro
essing in the digital domain. We a

omplished

this by proposing the utilization of very low quantized signals, i.e. 1-bit, for the

a
quisition and for the generation of parti
ular 
lasses of signals. Following this

approa
h we have ar
hived performan
es similar (or even better) than those ob-

tained through multibit approa
hes.

We �rst present the use of Legendre sequen
es (1-bit sequen
es) for the gener-
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ation of sets of sequen
es with good auto- and 
ross-
orrelation properties. These

Sets of Low Correlated Sequen
es 
an be used in MIMO (Multiple Input Mul-

tiple Output) a
tive sensing systems a
hieving a signi�
ant improvement with

respe
t to other sets of binary sequen
es, and a similar performan
e to the one

a
hieved by multibit approa
hes.

Se
ondly, we present a new ar
hite
ture for an Analog to Digital 
onverter

(or more pre
isely, an Analog to Information Converter) that, based on a Delta-

Sigma 
onverter, produ
es a stream of 1-bit measurements, and a
hieves a re
on-

stru
tion performan
e proportional to the signal information 
ontent instead of

that of the signal bandwidth.

1.1 Sets of Low Correlated Sequen
es

The design of sequen
es sets with low aperiodi
 auto- and 
ross-
orrelations is

present in many �elds of engineering and plays an important role in many appli-


ations su
h as radar, sonar, 
ommuni
ations, medi
al imaging and other a
tive

sensing appli
ations.

The task of designing sets of sequen
es with pres
ribed 
orrelation properties

is a parti
ular 
ase of the general problem of waveform synthesis that is often

a key point in establishing the performan
e of transmission, syn
hronization, or

a
tive sensing systems [1, 2℄.

Good auto-
orrelation properties means that any sequen
e in the set is nearly

un
orrelated with its own shifted version while good 
ross-
orrelation means that

any member of the sequen
es set is nearly un
orrelated with any other members

at any shift. A 
ommonly used metri
 of the goodness of the 
orrelation is the

Integrated Sidelobe Level (ISL), being good set of sequen
es those having a low

ISL value.

Althoughmany state-of-the art algorithms were proposed for the minimization

of the ISL [3, 4, 2, 5, 6℄, their performan
e is largely impaired when quantization
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is taken into 
onsideration. However, implementation 
onstraints strongly favors

dis
rete-valued signals, possibly enfor
ing quantization to an extremely limited

number of levels.

What we propose here is a pro
edure to 
onstru
t sets of antipodal sequen
es

with extremely low ISL. The resulting performan
e largely ex
eeds that of 
las-

si
al methods for the dire
t generation of low-ISL sets of sequen
es.

1.2 Analog to Information Converters

Analog to Digital 
onversion is one of the most important operations in signal

pro
essing. It maps a 
ontinuous-time and real-value signal into a dis
rete se-

quen
e of dis
rete values. Classi
al sampling methods rely on the hypothesis that

the analog signal to be a
quired is band-limited, and the Nyquist-Shannon the-

orem states the minimum distan
e between samples (or Nyquist rate) needed to

uniquely des
ribe the analog signal by its samples.

While the assumption of bandlimited signals is of broad appli
ation, many

natural signals when represented in a proper basis, 
orrespond to ve
tors in whi
h

many 
omponents have a small value, or represent a small fra
tion of the total

energy. This 
hara
teristi
 
alled �sparsity� is usually exploited to represent the

signal with a mu
h smaller amount of data, and 
loser to the signal information


ontent.

A novel sampling paradigm that goes against the 
ommon approa
h in data

a
quisition has emerged in the last years and is 
alled Compressive Sensing (CS)

[7, 8, 9℄. CS theory asserts that one 
an re
over 
ertain signals and images from

far fewer samples or measurements than those used by traditional methods. This is

possible due to the fa
t that many natural signals are sparse or 
ompressible, and,

by measuring in a parti
ular way, it is possible to a
quire the 
omplete information


ontent of those kind signals.

Analog-to-Information 
onverters relies on this idea, to measure the informa-
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tion 
ontent of the signal instead of measuring the 
omplete redundant data avail-

able for a parti
ular measurement domain.

Following this approa
h, we have proposed a novel ar
hite
ture for an Analog-

to-Information 
onverter that allows a simple hardware implementation for the

a
quisition of large bandwidth signals that are sparse over a variety of supports.

1.3 Overview and Main Contributions

This thesis is mainly 
on
erned on how signal pro
essing te
hniques 
an be ap-

plied to real hardware appli
ations and help to redu
e the 
omplexity of its imple-

mentation.

This work is divided into two parts, the �rst part ta
kle the problem of se-

quen
es synthesis, and how a proper design of simple antipodal signals 
an a
hieve

a performan
e similar to that obtained using multibit sequen
es for a
tive sensing

appli
ations. The main 
ontributions of this part are:

� an analysis of the degradation of state-of-the-art algorithms for sequen
es

synthesis when quantization is imposed;

� a method based on generating fun
tions for the 
al
ulation of the 
ross-


orrelation 
omponents of the ISL of a set of sequen
es;

� a pro
edure to 
onstru
t sets of antipodal sequen
es with extremely low

ISL;

� an analyti
al expression for the asymptoti
 ISL of sets of rotated Legendre

sequen
es.

The se
ond part of the thesis 
on
erns about the implementation of a Analog-

to-Information 
onverter that produ
es a stream of 1-bit measurements and a �nal

resolution after re
onstru
tion that is proportional to the information 
ontent of

the signal. The main 
ontribution of this part are:
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� a new ar
hite
ture for 
ompressive sensing that produ
es 1-bit measure-

ments;

� a new re
onstru
tion algorithm for the proposed ar
hite
ture that exploits

not only the sparsity hypothesis but also the hardware ar
hite
ture of the

a
quisition system;

� a theoreti
al analysis of the 
apabilities of a Delta-Sigma modulator to ex-

tra
t the information 
ontent of a signal, that is later extended for the anal-

ysis of the proposed ar
hite
ture;

� a hardware implementation of the proposed ar
hite
ture, and a measure-

ment setup to validate the theoreti
al analysis.

We 
on
lude this thesis work with a summary of our �ndings in Chapter 7.



Part I

LOW CORRELATED SEQUENCES





2. INTEGRATED SIDELOBE LEVEL PROBLEM

2.1 Introdu
tion

The design of sequen
es sets with good 
orrelation properties is present in many

�elds of engineering su
h as radar, sonar, 
ommuni
ations, medi
al imaging and

so on. A
tive sensing appli
ations, have been greatly bene�
ed by the use of

multiple-input multiple-output (MIMO) systems. This kind of systems, transmit

orthogonal waveforms via its antennas allowing to a
hieve a great in
rease virtual

aperture.

As an example, traditional phased-array radar system only transmits a single

waveform trough its antennas. However, by the use of MIMO radar system a

large in
rease in parameter identi�ability [10℄, dete
tion performan
e [11℄, and

resolution [12℄ 
an be a
hieved.

Besides orthogonality, good auto- and 
ross-
orrelation properties of the trans-

mitted waveforms are also often required [13, 14, 15℄.

Good auto-
orrelation properties means that any sequen
e in the set is nearly

un
orrelated with its own shifted version while good 
ross-
orrelation means that

any member of the sequen
es set is nearly un
orrelated with any other members

at any shift.

The design of a set of signals with small auto-
orrelation sidelobes and small


ross-
orrelation between sequen
es at any time delay ensure that the re
eiver

mat
hed �lter 
an extra
t the desired information while attenuating undesired sig-

nals.
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A 
ommonly used metri
 of the goodness of the 
orrelation is the Integrated

Sidelobe Level (ISL). The ISL of a set of M sequen
es ea
h of N (possibly


omplex) symbols that we will indi
ate with x

(p)

j

with j = 0; : : : ; N � 1 and

p = 0; : : : ;M � 1 is de�ned as

ISL =

M�1

X

p=0

N�1

X

k=�N+1

k 6=0

jX

x

(p)

x

(p)

(k)j

2

+

M�1

X

p=0

M�1

X

q=0

p6=q

N�1

X

k=�N+1

jX

x

(p)

x

(q)

(k)j

2

(2.1)

where

X

x

(p)

x

(p)

(k) =

minfN�k;Ng�1

X

j=maxf0;�kg

x

(p)

j

x

�(p)

j+k

k = �N + 1 : : :N � 1

is is the auto-
orrelation of the sequen
e x

(p)

, and

X

x

(p)

x

(q)

(k) =

minfN�k;Ng�1

X

j=maxf0;�kg

x

(p)

j

x

�(q)

j+k

k = �N + 1 : : : N � 1

is the 
ross-
orrelation between the sequen
es x

(p)

and x

(q)

.

Good set of sequen
es are those having a low ISL value.

Due to the strong interest in the design of sequen
es with low ISL value, many

algorithms have been suggested for its minimization [4, 2, 5, 6, 1℄. Su
h a problem

may be far from trivial when 
onstraints are introdu
ed. For example, re
eption

may have to be stopped after a 
ertain time thus spoiling the adoption of peri-

odi
 signals and leading to the 
onsideration of 
lipped or aperiodi
 
orrelations.

Further to that, implementation strongly favors dis
rete-valued signals, possibly
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enfor
ing quantization to an extremely limited number of levels.

This latter 
onstraint, in parti
ular, is known tomake optimization-basedmeth-

ods hard to apply sin
e 
ontinuous-optimization must either undergo quantization

or be simply dis
arded in favor of almost exhaustive s
ans.

Within this s
enario, starting from the 
lassi
al problem of designing an an-

tipodal sequen
e with a low Integrated Sidelobe Level (ISL) [16℄ we address its

generalization to sequen
e sets, for whi
h �lobes� are 
onsidered both for auto-


orrelation and for 
ross-
orrelations.

2.2 Problem Formulation

Given M and N , and based on (2.1) the general problem is that of �nding the

sequen
e set minimizing the ISL.

Commonly, a further unimodularity 
onstraint is put on the sequen
es thus

requiring that jx

(p)

j

j = 1 for p = 0; : : : ;M � 1 and j = 0; : : : ; N � 1. Su
h a 
on-

straint is appli
ation-driven in that it eases the implementation of the transmitters

managing the ele
tri
al signals 
orresponding to the sequen
e symbols. In fa
t,

in this 
ase one may set x

(p)

j

= e

i�

(p)

j

, where i is the imaginary unit, with �

(p)

j

2

(��; �℄ and design the set of phase sequen
es f�

(p)

j

g

N�1

j=0

for p = 0; : : : ;M � 1

that 
an be simply transmitted by 
onstant-envelope modulations.

Given this 
onstraint, it is known that the ISL 
annot be de
reased below its

lower bound [17℄

ISL

min

= N

2

M(M � 1)

so that the effe
tiveness of any approa
h 
an be measured in normalized terms by

� =

ISL

min

ISL

better approa
hes featuring an � 
loser to 1.
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It is well known that sets of unimodular sequen
es with extremely high effe
-

tiveness 
an be obtained by the appli
ation of algorithms [3℄ that are extensions

of those devised to minimize ISL in the single sequen
e 
ase (M = 1) [16℄.

Yet, when those algorithms meet the even more implementation�friendly 
on-

straint of antipodal sequen
es, i.e. x

(p)

j

= �1 for p = 0; : : : ;M � 1 and j =

0; : : : ; N � 1 , their effe
tiveness is largely impaired.

A
tually, the antipodal problem is re
ognized as being mu
h more dif�
ult:

a known effe
t of the impossibility of addressing it with the tools of 
ontinuous

optimization and the need of resorting to enumeration-based dis
rete optimization

te
hniques.

In the following we 
on
entrate on antipodal sequen
es.

Under su
h an assumption, the parti
ular 
ase M = 1 in whi
h only auto-


orrelation terms appear, has attra
ted a lot of attention by itself. This led to a


onspi
uous literature analyzing more than a family of sequen
es for whi
h ISL

or the equivalent Merit Fa
tor MF = N

2

=ISL 
an be 
omputed analyti
ally at

least in the asymptoti
 
ase N !1 (see, e.g., [18, 19, 20, 21, 22℄). Beyond that

a list of best known sequen
es [23℄ is available for N up to 304.

Our purpose is to develop an analyti
al expression that may drive optimization

in some parti
ular dif�
ult 
ases, most notably when the antipodal 
onstrain (x

p

j

=

�1) is imposed.

To fa
ilitate the dis
ussion, denote the sum of squares 
orresponding to the

auto-
orrelation terms as

X

x

(p)

x

(p)

=

N�1

X

k=�N+1

k 6=0

jX

x

(p)

x

(p)

(k)j

2

(2.2)

and the sum of squares 
orresponding to the 
ross-
orrelation terms as
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X

x

(p)

x

(q)

=

N�1

X

k=�N+1

jX

x

(p)

x

(q)

(k)j

2

p 6= q (2.3)

so that

ISL =

M�1

X

p=0

X

x

(p)

x

(p)

+

M�1

X

p=0

M�1

X

q=0

p6=q

X

x

(p)

x

(q)

(2.4)

A general method for the 
al
ulation of X

x

(p)

x

(p)

of any sequen
es of odd

length is presented in [19, 24℄. This method hinges on generating fun
tions and

writes 
orrelations as proper sums of their values on the unit 
ir
le in the 
omplex

plane. The method works well when we have analyti
al insights on the generating

fun
tions.

Extending the ideas of [19℄, in se
tion 2.3 we devise a general method for the


al
ulation of X

x

(p)

x

(q)

in (2.3) of any pair of real sequen
es of odd length and

thus, together with the result in [19, 24℄, the ISL for a set of sequen
es. In se
tion

3.1 we use this method to obtain an asymptoti
 expression for the ISL value of a

set formed by different rotations of Legendre sequen
es. Finally, in se
tion 3.2 we

propose an optimization pro
edure based on the latter expression where we �nd

the optimal rotations that minimize the ISL for any sequen
es length N.

Throughout this 
hapter we use the following asymptoti
 notation:

We say that

� two sequen
es a

N

and b

N

are asymptoti
ally equivalent, a

N

� b

N

iff

lim

N!1

a

N

b

N

= 1

� a

N

is asymptoti
ally bounded by b

N

, a

N

= O(b

N

) iff
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9M > 0 and 9N

o

�

�

ja

N

j �M jb

N

j 8N > N

o

2.3 Cal
ulation of the 
ross-
orrelation terms in the ISL

Let a

0

; a

1

; : : : ; a

N�1

and b

0

; b

1

; : : : ; b

N�1

be two real sequen
es of length N, we

want to obtain an expression for X

ab

.

If we de�ne the generating fun
tions of the two sequen
es as

Q

a

(z) =

N�1

X

j=0

a

j

z

j

Q

b

(z) =

N�1

X

j=0

b

j

z

j

we have that

Q

a

(z)Q

�

b

(z) =

N�1

X

k=�N+1

X

ab

(k)z

�k

and thus

jQ

a

(z)Q

�

b

(z)j

2

=

N�1

X

k=�N+1

N�1

X

l=�N+1

X

ab

(k)X

ab

(l)z

�k+l

Now, set �

j

= e

2�i

N

j

and note that for k; l = �N + 1; : : : ; N � 1,

N�1

X

j=0

�

�k+l

j

=

8

<

:

N if �l + k = �N; 0; N

0 otherwise

Hen
e, if we de�ne
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S

0

=

N�1

X

j=0

jQ

a

(�

j

)Q

�

b

(�

j

)j

2

= N

N�1

X

k=�N+1

X

2

ab

(k)+N

2N�1

X

k=1

X

ab

(k)X

ab

(k�N)+N

�1

X

k=�N+1

X

ab

(k)X

ab

(k+N)

and (for N odd)

S

00

=

N�1

X

j=0

jQ

a

(��

j

)Q

�

b

(��

j

)j

2

= N

N�1

X

k=�N+1

X

2

ab

(k)+�N

2N�1

X

k=1

X

ab

(k)X

ab

(k�N)�N

�1

X

k=�N+1

X

ab

(k)X

ab

(k+N)

we 
an express X

ab

(i.e. the sum of squares of 
ross-
orrelations as in (2.3)) as

X

ab

=

N�1

X

k=�N+1

X

2

ab

(k) =

S

0

+ S

00

2N

To 
ompute S

00

we use the Lagrange interpolation polynomials to 
al
ulate

the values of Q

a

(��

j

) from Q

a

(�

k

) for j; k = 0; : : : ; N � 1. In this spe
ial 
ase

the data points (�

k

) 
oin
ide with the 
omplex roots of unity and, for N odd, the

Lagrange base polynomials simply redu
e to

2

N

�

k

�

j

+�

k

[25, p. 89℄. Then

Q

a

(��

j

) =

2

N

N�1

X

k=0

�

k

�

j

+ �

k

Q

a

(�

k

) (2.5)

By substituting (2.5) into S

00

and developing the produ
t jQ

a

(��

j

)Q

�

b

(��

j

)j

2

we get
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S

00

=

16

N

4

N�1

X

j=0

"

N�1

X

k

1

=0

�

k

1

�

j

+ �

k

1

Q

a

(�

k

1

)

N�1

X

l

1

=0

�

�

l

1

�

�

j

+ �

�

l

1

Q

�

a

(�

l

1

)

N�1

X

k

2

=0

�

k

2

�

j

+ �

k

2

Q

b

(�

k

2

)

N�1

X

l

2

=0

�

�

l

2

�

�

j

+ �

�

l

2

Q

�

b

(�

l

2

)

#

=

16

N

4

N�1

X

k

1

=0

N�1

X

l

1

=0

N�1

X

k

2

=0

N�1

X

l

2

=0

Q

a

(�

k

1

)Q

�

a

(�

l

1

)Q

b

(�

k

2

)Q

�

b

(�

l

2

)

N�1

X

j=0

�

k

1

�

j

+ �

k

1

�

�

l

1

�

�

j

+ �

�

l

1

�

k

2

�

j

+ �

k

2

�

�

l

2

�

�

j

+ �

�

l

2

in whi
h we may exploit the fa
t that �

�

j

= 1=�

j

to write

S

00

=

16

N

4

N�1

X

k

1

=0

N�1

X

l

1

=0

N�1

X

k

2

=0

N�1

X

l

2

=0

�

k

1

�

k

2

Q

a

(�

k

1

)Q

�

a

(�

l

1

)Q

b

(�

k

2

)Q

�

b

(�

l

2

)

�

�

N�1

X

j=0

1

�

j

+ �

k

1

�

j

�

j

+ �

l

1

1

�

j

+ �

k

2

�

j

�

j

+ �

l

2

�

(2.6)

Let us de�ne now the innermost sum of (2.6) as

W (k

1

; l

1

; k

2

; l

2

) =

N�1

X

j=0

1

�

j

+ �

k

1

�

j

�

j

+ �

l

1

1

�

j

+ �

k

2

�

j

�

j

+ �

l

2

=

N�1

X

j=0

f

k

1

;l

1

;k

2

;l

2

(�

j

)

with

f

p;q;r;s

(z) =

z

2

(z + �

p

)(z + �

q

)(z + �

r

)(z + �

s

)

Depending on p; q; r; s, the rational fun
tion f

p;q;r;s

(z) 
an be transformed into

a spe
i�
 sum of simple rational parts. Ea
h of these rational parts 
an be summed
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separately. This path is fully developed in [19℄ and we here exploit the results

therein.

In parti
ular we have that

A) for 0 � p < N

W (p; p; p; p) =

1

16

�

1

3

N

4

+

2

3

N

2

�

1

�

2

p

B) for 0 � p 6= q < N

W (p; p; p; q) = W (p; p; q; p) =W (p; q; p; p) =

W (q; p; p; p) =

1

8

N

2

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

C) for 0 � p 6= q 6= r < N

W (p; p; q; r) = W (p; p; r; q) = W (p; q; p; r) =

W (p; r; p; q) = W (p; q; r; p) =W (p; r; q; p) =

W (q; p; r; p) = W (r; p; q; p) =W (q; r; p; p) =

W (r; q; p; p) = �

1

4

N

2

1

�

q

� �

p

1

�

r

� �

p

D) for 0 � p 6= q < N

W (p; p; q; q) =W (p; q; p; q) = W (p; q; q; p) = �

1

2

N

2

1

(�

p

� �

q

)

2

E) for 0 � p 6= q 6= r 6= s < N
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W (p; q; r; s) = 0

Taking into a

ount all the above 
ases we may write

S

00

=

16

N

4

(� + � + 
 + Æ)

, where the terms �, �, 
, and Æ 
orrespond to the 
ontributions of the 
ases A, B,

C and D respe
tively.

For the 
ases in
luded in A) we have that

� =

1

16

�

1

3

N

4

+

2

3

N

2

�

N�1

X

p=0

jQ

a

(�

p

)Q

b

(�

p

)j

2

(2.7)

for the 
ases in B) we have

� =

1

8

N

2

N�1

X

p;q=0

p6=q

(

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

� (2.8)

h

�

2

p

jQ

a

(�

p

)j

2

Q

b

(�

p

)Q

�

b

(�

q

)+

�

p

�

q

jQ

a

(�

p

)j

2

Q

b

(�

q

)Q

�

b

(�

p

)+

�

2

p

Q

a

(�

p

)Q

�

a

(�

q

) jQ

b

(�

p

)j

2

+

�

q

�

p

Q

a

(�

q

)Q

�

a

(�

p

) jQ

b

(�

p

)j

2

i

)

for C) we have
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 =

1

4

N

2

N�1

X

p;q;r=0

p6=q 6=r

(

�1

(�

q

� �

p

)(�

r

� �

p

)

� (2.9)

h

�

p

�

q

jQ

a

(�

p

)j

2

Q

b

(�

q

)Q

�

b

(�

r

)+

�

p

�

r

jQ

a

(�

p

)j

2

Q

b

(�

r

)Q

�

b

(�

q

)+

�

2

p

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

p

)Q

�

b

(�

r

)+

�

2

p

Q

a

(�

p

)Q

�

a

(�

r

)Q

b

(�

p

)Q

�

b

(�

q

)+

�

p

�

r

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

r

)Q

�

b

(�

p

)+

�

p

�

q

Q

a

(�

p

)Q

�

a

(�

r

)Q

b

(�

q

)Q

�

b

(�

p

)+

�

q

�

r

Q

a

(�

q

)Q

�

a

(�

p

)Q

b

(�

r

)Q

�

b

(�

p

)+

�

r

�

q

Q

a

(�

r

)Q

�

a

(�

p

)Q

b

(�

q

)Q

�

b

(�

p

)+

�

q

�

p

Q

a

(�

q

)Q

�

a

(�

r

) jQ

b

(�

p

)j

2

+

�

r

�

p

Q

a

(�

r

)Q

�

a

(�

q

) jQ

b

(�

p

)j

2

i

)

and for D)

Æ =

1

2

N

2

N�1

X

p;q=0

p6=q

(

�1

(�

p

� �

q

)

2

�

h

�

p

�

q

jQ

a

(�

p

)Q

b

(�

q

)j

2

+ (2.10)

�

2

p

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

p

)Q

�

b

(�

q

) + �

p

�

q

Q

a

(�

p

)Q

�

a

(�

q

)Q

b

(�

q

)Q

�

b

(�

p

)

i

)

Summarizing, we 
an write the sum of squares 
orresponding to 
ross�
orrelations

terms of the ISL as
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X

ab

=

1

2N

N�1

X

j=0

jQ

a

(�

j

)Q

�

b

(�

j

)j

2

+

16

N

4

(� + � + 
 + Æ)

where the quantities �, �, 
, Æ are de�ned in (2.7), (2.8), (2.9), (2.10).

With the method presented above in 
onjun
tion with the method presented in

[19℄, we 
an have an analyti
al expression for the ISL for any set of real sequen
es

of odd length. The 
omputation of the above equations seems to be hard at a �rst

look, but in a number of 
ases, in parti
ular for sequen
es from differen
e sets

[24℄ may lead to signi�
ant results.

In the following, we use this method to evaluate the asymptoti
 trend of the

ISL of a set of sequen
es made up by different Rotations of a Legendre Sequen
e

(RLS set) when N grows to in�nity.



3. INTEGRATED SIDELOBE LEVEL OF SETS OF ROTATED

LEGENDRE SEQUENCES

3.1 Legendre Sequen
es

The Legendre Sequen
e (LS) `

0

; : : : ; `

N�1

exists for any prime N and is de�ned

as

`

0

= 1

`

j

=

8

<

:

1 if j is a square (mod N)

�1 if j is a nonsquare (mod N)

A LS may be 
y
li
ally rotated t

a

positions to the left to obtain a Rotated

Legendre Sequen
e (RLS) a

j

de�ned as

a

j

= `

j+t

a

(mod N)

= `

j+f

a

N (mod N)

with f

a

= t

a

=N 2 [0; 1℄.

The asymptoti
 value of X

aa

for the family of RLS was 
al
ulated in [18℄ and

[19℄

1

noting that the asymptoti
 value of the modulus of the generating fun
tion

of the LS (jQ

`

(�

j

)j) is independent of j, yielding

1

The �rst 
ontribution relies on a �Postulate of Mathemati
al Ergodi
ity� to arrive at a result

whi
h is formally proved by the se
ond.
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X

aa

N

2

�

2

3

� 4

�

�

�

�

f

a

�

1

2

�

�

�

�

+ 8

�

f

a

�

1

2

�

2

(3.1)

We follow the same path as in [19℄ but for the 
al
ulation of the 
ross-
orrelations

terms of the ISL X

ab

[26℄.

To pro
eed, remember that the generating fun
tion of the LS is

Q

`

(�

j

) =

8

>

>

>

<

>

>

>

:

1 + `

j

p

N if j 6= 0 and N = 1 (mod 4)

1 + i`

j

p

N if j 6= 0 and N = 3 (mod 3)

1 if j = 0

(3.2)

Moreover, if we denote by Q

a

(�

j

) the generating fun
tion of the RLS a

j

=

`

j+t

a

(mod N)

, then

Q

a

(�

j

) = �

�t

a

j

Q

`

(�

j

)

Assume now that the two sequen
es a

j

and b

j

are obtained by rotating `

j

by,

respe
tively, t

a

and t

b

positions to the left. We may 
ompute S

0

as

S

0

=

N�1

X

j=0

�

�

�

�t

a

j

Q

`

(�

j

)�

t

b

j

Q

�

`

(�

j

)

�

�

2

=

N�1

X

j=0

jQ

`

(�

j

)j

4

from (3.2) we know immediately that jQ

`

(�

j

)j

4

� N

2

, then S

0

� N

3

. Let us now


ompute the asymptoti
 values of �, �, 
 and Æ in (2.7), (2.8), (2.9), (2.10) for any

pair of RLS.

� For � in (2.7) we have

� =

1

16

�

1

3

N

4

+

2

3

N

2

�

S

0

�

1

48

N

7
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� For � in (2.8)

� =

1

8

N

2

N�1

X

p;q=0

p6=q

(

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

�

h

�

2

p

jQ

`

(�

p

)j

2

�

t

b

p�q

Q

`

(�

p

)Q

�

`

(�

q

)+

�

p

�

q

jQ

`

(�

p

)j

2

�

t

b

q�p

Q

`

(�

q

)Q

�

`

(�

p

)+

�

2

p

�

t

a

p�q

Q

`

(�

p

)Q

�

`

(�

q

) jQ

`

(�

p

)j

2

+

�

q

�

p

�

t

a

q�p

Q

`

(�

q

)Q

�

`

(�

p

) jQ

`

(�

p

)j

2

i

)

�

1

8

N

2

N�1

X

p;q=0

p6=q

(

�

�

q

+ �

p

�

p

(�

q

� �

p

)

2

�

�

�

N

2

`

p

`

q

�

2

p

�

t

b

p�q

+N

2

`

p

`

q

�

p

�

q

�

t

b

q�p

+

N

2

`

p

`

q

�

2

p

�

t

a

p�q

+N

2

`

p

`

q

�

p

�

q

�

t

a

q�p

�

)

=

1

8

N

4

N�1

X

p;q=0

p6=q

(

�

`

p

`

q

(1� �

p�q

)

2

�

�

�

�

t

b

+1

p�q

+ �

t

b

+2

p�q

+ �

1�t

b

p�q

+ �

�t

b

p�q

+

�

t

a

+2

p�q

+ �

t

a

+1

p�q

+ �

1�t

a

p�q

+ �

�t

a

p�q

�

)



3. Integrated Sidelobe Level of Sets of Rotated Legendre Sequen
es 24

=

1

8

N

4

N�1

X

k=�N+1

k 6=0

(X

``

(k) +X

``

(N � k))

�

t

b

+1

k

+ �

t

b

+2

k

+ �

1�t

b

k

+ �

�t

b

k

+ �

t

a

+2

k

+ �

t

a

+1

k

+ �

1�t

a

k

+ �

�t

a

k

(1� �

k

)

2

Note that X

``

(k) + X

``

(N � k) is the periodi
 
orrelation [24℄ of the LS.

Then, from [18℄ and [27℄ we know that jX

``

(k) +X

``

(N � k)j � 3 for Legendre

sequen
es. Then, using the fa
t that

P

N�1

k=1

1

j1��

k

j

2

= O(N

2

) (see (3.3) and (3.6)

below and set t = 0), and using the triangle inequality we get that � = O(N

6

).

� For the 
al
ulation of 
 in (2.9), following the same steps we did for � we have
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 �

1

4

N

4

N�1

X

p;q;r=0

p6=q 6=r

(

�

`

q

`

r

(1� �

p�q

)(1� �

p�r

)

�

�

p�r

�

t

b

q�r

+

�

p�q

�

�t

b

q�r

+ �

t

b

+1

p�r

�

t

a

+1

p�q

+ �

t

a

+1

p�r

�

t

b

+1

p�q

+

�

�t

b

p�r

�

t

a

+1

p�q

+ �

t

a

+1

p�r

�

�t

b

p�q

+ �

�t

a

p�q

�

�t

b

p�r

+

�

�t

a

p�r

�

�t

b

p�q

+ �

p�r

�

t

a

q�r

+ �

p�q

�

�t

a

q�r

�

)

=

1

4

N

4

N�1

X

u;v=�N+1

u6=v 6=0

(

�

X

``

(v � u) +X

``

(N � (v � u))

(1� �

v

)(1� �

u

)

�

�

u

�

t

b

u�v

+

�

v

�

�t

b

u�v

+ �

t

b

+1

u

�

t

a

+1

v

+ �

t

a

+1

u

�

t

b

+1

v

+

�

�t

b

u

�

t

a

+1

v

+ �

t

a

+1

u

�

�t

b

v

+ �

�t

a

v

�

�t

b

u

+

�

�t

a

u

�

�t

b

v

+ �

u

�

t

a

u�v

+ �

v

�

�t

a

u�v

�

)

and again we have that 
 = O(N

6

)

� For Æ in (2.10) we have
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Æ =

1

2

N

2

N�1

X

p;q=0

p6=q

(

�1

(�

p

� �

q

)

2

�

h

�

p

�

q

jQ

`

(�

p

)Q

`

(�

q

)j

2

+

�

2

p

�

t

a

p�q

Q

`

(�

p

)Q

�

`

(�

q

)�

t

b

p�q

Q

`

(�

p

)Q

�

`

(�

q

)+

�

p

�

q

�

t

a

p�q

Q

`

(�

p

)Q

�

`

(�

q

)�

t

b

q�p

Q

`

(�

q

)Q

�

`

(�

p

)

i

)

��

1

2

N

4

N�1

X

p;q=0

p6=q

(

�

q�p

+ �

�t

a

�t

b

q�p

+ �

1�t

a

+t

b

q�p

(1� �

q�p

)

2

)

=�

1

2

N

4

N�1

X

k=�N+1

k 6=0

�

�

k

+ �

�t

a

�t

b

k

+ �

1�t

a

+t

b

k

�

(1� �

k

)

2

(N � jkj)

=�N

4

N�1

X

k=1

�

�

k

+ �

�t

a

�t

b

k

+ �

1�t

a

+t

b

k

�

(1� �

k

)

2

(N � jkj)

Larger values of the summand are those for k 
lose to 1, whi
h make the

denominator 
lose to zero and numerator � 
N for some 
onstant 
 (for k 
lose

toN � 1, the denominator be
omes also 
lose to zero but the numerator is O(1)).

Exploiting this and using the small angle approximation for the 
omplex ex-

ponential, we may write

Æ ��N

5

N�1

X

k=1

�

k

+ �

�t

a

�t

b

k

+ �

1�t

a

+t

b

k

�

4�

2

N

2

k

2

(3.3)

To 
ontinue, we re
all the de�nition of the Dilogarithm fun
tion and its series

expansion [28℄ valid for jzj � 1
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Li

2

(z) = �

Z

1

0

ln(1� zt)

t

dt =

1

X

k=1

z

k

k

2

(3.4)

Taking the real part of (3.4) and evaluating on the unit 
ir
le gives [28, eq.

(8.7)℄

Re

�

Li

2

�

e

i�

�	

= Re

(

1

X

k=1

e

ik�

k

2

)

=

1

6

�

2

�

1

4

j�j (2� � j�j) (3.5)

Exploiting (3.5) and 
on
entrating on the �rst period 0 �

t

N

� 1 we obtain

Re

(

1

X

k=1

�

t

k

k

2

)

= �

2

�

1

6

�

�

t

N

�

1

�

1�

�

t

N

�

1

��

(3.6)

where [�℄

1

= � (mod 1).

Hen
e, sin
e we know that Æ is real

Æ �

1

4

N

7

(

1

6

+

1

6

�

�

�

t

a

+ t

b

N

�

1

�

1�

�

�

t

a

+ t

b

N

�

1

�

+

1

6

�

�

t

b

� t

a

N

�

1

�

1�

�

t

b

� t

a

N

�

1

�

)

=

1

4

N

2

n

1

2

� [�f

a

� f

b

℄

1

(1� [�f

a

� f

b

℄

1

)�

[f

b

� f

a

℄

1

(1� [f

b

� f

a

℄

1

)

o

=

1

4

N

2

n

1

2

� [f

a

+ f

b

℄

1

(1� [f

a

+ f

b

℄

1

)�

[f

a

� f

b

℄

1

(1� [f

a

� f

b

℄

1

)

o

where we have de�ned f

a

=

t

a

N

and f

b

=

t

b

N

. Then, exploiting the symmetries of a
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quadrati
 form of a modulus fun
tion we have for 0 � f

a

; f

b

� 1

[f

a

+ f

b

℄

1

(1� [f

a

+ f

b

℄

1

) =

1

4

�

�

jf

a

+ f

b

� 1j �

1

2

�

2

[f

a

� f

b

℄

1

(1� [f

a

� f

b

℄

1

) =

1

4

�

�

jf

a

� f

b

j �

1

2

�

2

so that

Æ �

1

4

N

7

"

�

jf

a

+ f

b

� 1j �

1

2

�

2

+

�

jf

a

� f

b

j �

1

2

�

2

#

Based on the above we are now interested in 
omputing the asymptoti
 value

of

1

N

2

X

ab

=

1

2N

3

(S

0

+ S

00

) �

1

2N

3

�

N

3

+

16

N

4

(�+ � + 
 + Æ)

�

�

2

3

+ 2

�

jf

a

+ f

b

� 1j �

1

2

�

2

+ 2

�

jf

a

� f

b

j �

1

2

�

2

(3.7)

Going ba
k to our original problem for 
al
ulation of the ISL value of a set of

M sequen
es x

(p)

j

with j = 0; : : : ; N � 1 and p = 0; : : : ;M � 1, where ea
h x

(p)

is made by a different rotation f

p

of a LS (RLS set), repla
ing (3.1) and (3.7) into

(2.4) we �nally have that

ISL

N

2

�

M�1

X

p=0

2

3

� 4

�

�

�

�

f

p

�

1

2

�

�

�

�

+ 8

�

f

p

�

1

2

�

2

+

M�1

X

p=0

M�1

X

q=0

p6=q

2

3

+ 2

�

jf

p

+ f

q

� 1j �

1

2

�

2

+ 2

�

jf

p

� f

q

j �

1

2

�

2

(3.8)
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Fig. 3.1: Plots of ISL for M = 2 as a fun
tion of f

1

and f

2

: top: 3D-view, bottom:

iso-ISL lines

As an example, Figure 3.1 reports the 3D and 
ontour plot of the right-hand

side of (3.8) for M = 2. Dire
t visual inspe
tion of that Figure 
on�rms that

minima exists and 
an be easily identi�ed. In the next se
tion we will exploit this

result where an optimization pro
edure is developed to �nd the optimal rotations

that minimize the ISL for any sequen
es length N .
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Fig. 3.2: Integrated Sidelobe Level as a fun
tion of sequen
e length. In blue, RLS with

rotations minimizing asymptoti
 ISL; in bla
k, asymptoti
 value.
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Fig. 3.3: Integrated Sidelobe Level as a fun
tion of sequen
e length. In blue, RLS with

an arbitrary rotation; in bla
k, asymptoti
 value.
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Comparison of an arbitrary and minimizing rotation
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Fig. 3.4: Integrated Sidelobe Level as a fun
tion of sequen
e length. Comparison of an

RLS with an arbitrary rotation and RLS with rotations minimizing asymptoti


ISL.

As another example, in Figure 3.2, 3.3, 3.4 we plot the ISL for M = 4 as a

fun
tion of the sequen
e length N .

In Figure 3.2 the values of rotation are those that minimize the asymptoti
 ISL,

while in 
ase Figure 3.3 we use an arbitrary rotation. In both 
ases we 
an see

that the trend of the plots is in agreement with the asymptoti
 value 
al
ulated.

In Figure 3.4, we plot together both 
urves to show that the one that a
hieves

the minimum asymptoti
 value of ISL, also a
hieves the minimum ISL value for

sequen
es length greater than approximately 20. For different 
hoi
es of rotations

and different number of sequen
es (M ), the behavior is the same than presented.

3.2 Sets of RLS minimizing ISL

The key idea [29℄ is to set x

(p)

j

= `

(f

p

)

j

for properly 
hosen rotations f

p

, p =

0; : : : ;M � 1.
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Sin
e only N values for ea
h f

p

lead to distin
t rotations, a 
omplete s
an

requires �only�

�

N

M

�

trials that, though far from the exponential explosion of a full

s
an (that would entail 2

MN

trials) may soon be
ome prohibitive.

To 
ope with larger values ofN wemay resort to the asymptoti
 analysis made

in the previous se
tion.

From equation (3.8) we see that asymptoti
 ISL is invariant if we 
hange f

p

into 1� f

p

for any p. Therefore, by assuming f

0

� f

1

� � � � � f

M�1

� 1=2 one

may resolve all absolute values and easily 
ompute the rotation values for whi
h

�ISL

�f

p

= 0. This yields

f

p

=

2p+ 1

4M

(3.9)

that result in a minimum attainable ISL = N

2

�

M(M � 1) +

1

6

�

and thus, in a

performan
e �gure

�

RLS

=

6M(M � 1)

6M(M � 1) + 1

(3.10)

indi
ating that, for large N , the performan
e of a set of RLS should be within 8%

of the maximum possible, approa
hing it very rapidly asM in
reases.

Based on these asymptoti
 
onsiderations it is easy to devise a mu
h faster

s
an that drasti
ally redu
es the number of trials by 
onsidering for the j-th ro-

tation only a narrow interval of possible values around

2p+1

4M

. Sin
e the length of

su
h an interval may be de
reased asN in
reases, the resulting sear
h burden goes

from

�

N

M

�

trials to �(N)

M

with �(N) a fun
tion rapidly approa
hing a 
onstant as

N in
reases (experimentally we veri�ed �(N) ' 20 for N larger than 200).

The results of su
h a s
an yields the Optimum RLS set (ORLS) whose perfor-

man
e is 
ompared with that of other known algorithms or sequen
e families in

the following Se
tion.
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3.3 Numeri
al results

Beyond ORLSs that exist for every prime N , we 
onsider

� Random sequen
es, that exist for any N and are generated by assigning

x

(p)

j

= �1with uniform probability and independently for ea
h p = 0; : : : ;M�

1 and j = 0; : : : ; N � 1. For ea
h N and M we generate 10

4

sets of se-

quen
es and re
ord the best a
hieved performan
e.

� Gold sequen
es, that exist when N = 2

q

� 1 for some integer q and are

obtained from the well known maximum�length sequen
es to maintain low


orrelation and simultaneously be able to produ
e sets of sequen
es with

relatively large 
ardinality. Though they are produ
ed by linear-feedba
k

shift registers, Gold sequen
es are designed to enjoy the same properties

of random sequen
es. For ea
h N we draw 10

3

� NM M-tuples of Gold

sequen
es at random from those available, and we re
ord the least ISL.

� Q.CAN sequen
es, that exists for anyN and are obtained by the CAN algo-

rithm des
ribed in [3℄ when quantization is applied at the end of the iterative

pro
edure. For the 
ase of 1-bit quantization the option of leaving the al-

gorithm operate with 
ontinuous phases and quantize only the �nal result,

has been dis
arded , after experimentally verifying that it was leading to

poorer performan
e. In this 
ase, quantization was applied at every step of

the iterative pro
edure.

� Optimally Rotated Best Sequen
es (ORBS) that leverage on the fa
t that

for ea
h N up to 304 one or more sequen
es are re
ognized as the state-

of-the art solution to ISL minimization problem forM = 1 (some of them

are known to be the true optimum solutions, some others are only the best

known solutions). For ea
h of those sequen
es, we build a set of M se-

quen
es by trying all the possible relative rotations and sele
ting the set of

rotations yielding the minimum ISL.
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In �gure 3.5 we evaluate how state-of-the-art algorithm for the synthesis of

ultra low-ISL sequen
es is affe
ted when quantization is imposed. Note how the

performan
e of Q.CAN is hardly impaired for low quantization depth, and rea
h

the performan
e of ORLS when the number of quantization levels is greater than

13 forM = 4, 18 forM = 4 and 22 forM = 12 for the 
onsidered 
ases.

For different 
hoi
es of M and N we have seen a similar trend, and that the

performan
e of Q.CAN is only better than that of ORLS when the number of

quantization bits of grater than 4, with an in
reasing trend as M in
reases. This

shows a great advantage in the use of ORLS.
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Fig. 3.5: Comparison between ORLS, with Q.CAN algorithm when quantization is im-

posed for (a) M = 4, (b) M = 8 and (
) M = 12, and �x value of N = 1033.

The performan
e metri
 as a fun
tion of the number of quantization steps. The

performan
e of Q.CAN ex
eeds the performan
e of the binary ORLS for Q

grater than 13 forM = 4, 18 forM = 4 and 22 forM = 12.
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Fig. 3.6: Comparison between ORLS, random sequen
es, Gold sequen
es and Q.CAN

sequen
es with binary quantization for (a) M = 2, (b) M = 3 and (
) M = 4.

The solid horizontal line at 1 identi�es the theoreti
al maximum performan
e

while the dashed horizontal line marks the asymptoti
 performan
e a
hieved by

RLS.
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Figure 3.6 
ompares the performan
e of ORLS with that of random, Gold and

Q.CAN sequen
es with binary quantization for M = 2, M = 3 and M = 4.

Note how ORLS 
learly outperform the other te
hniques for all reasonably large

N (say for N > 100) also revealing a distin
t improving trends approa
hing the

theoreti
al limit as N in
reases.

On the 
ontrary the performan
e of random, Gold, and Q.CAN sequen
es

exhibits a 
lear de
reasing trend. A

ording to expe
tations, sin
e Gold sequen
es

are designed to mimi
 a random behavior, the 
orresponding performan
es follow

an analogous trend.

Finally, though insuf�
ient to rea
h ORLS, the optimization impli
it in the


onstru
tion of Q.CAN sequen
es make the 
orresponding performan
e 
learly

superior to that of random-like sequen
es.

In Figure 3.7 we 
ompare ea
h ORLS with the 
orresponding ORBS and with

Q.CAN sequen
es with binary quantization for M = 2, M = 3 and M = 4.

Again, ORLS perform uniformly better than ORBS for suf�
iently large N ; ad-

ditionally ORBS do not exhibit a de�nite improvement with respe
t to Q.CAN at

least forM > 2. This shows that the good performan
e of the proposed ORLS is

only partially due to the exploitation of sequen
es that feature a good auto
orre-

lation properties but also hinges on a stru
tural property of Legendre Sequen
es.
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Fig. 3.7: Comparison between ORLS, ORBS and Q.CAN sequen
es for (a) M = 2, (b)

M = 3 and (
) M = 4. The solid horizontal line at 1 identi�es the theoreti
al

maximum performan
e while the dashed horizontal line marks the asymptoti


performan
e a
hieved by RLS.
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3.4 Con
lusion

We apply a method based on generating fun
tions, whi
h has already been pro-

posed for the 
al
ulation of the ISL of a sequen
e, to the 
al
ulation of the 
ross-


orrelation 
omponents of the ISL of a set of sequen
es.

The apparent 
omplexity of the resulting expressions 
an be ta
kled in the

asymptoti
 
onditions for sequen
es whose generating fun
tion has a relatively

simple trend. Sin
e this is the 
ase of Legendre sequen
es, we are able to de-

rive an analyti
al expression for the asymptoti
 ISL of sets of rotated Legendre

sequen
es.

Based on the later result, we propose a simple pro
edure to 
onstru
t sets

of antipodal sequen
es with extremely low ISL. Ea
h sequen
e in the set is a

different rotation of the Legendre Sequen
e of the same length. Optimal rotations

are found by an exhaustive s
an whose 
omplexity is greatly redu
ed by exploiting

the asymptoti
 result yielding a general expression for the trend of the ISL of sets

of in�nitely long sequen
es.

The resulting performan
e largely ex
eeds that of 
lassi
al methods for the

dire
t generation of low-ISL sets of antipodal sequen
es. The method we propose

also outperforms a well-known algorithm able to generate extremely-low ISL sets

of unimodular 
ontinuous-phase sequen
es, whi
h is nevertheless impaired by the

strong quantization needed to satisfy antipodality 
onstraint.





Part II

ANALOG TO INFORMATION CONVERSION





4. SIGNAL MODELS

4.1 Introdu
tion

The 
lassi
al a
quisition approa
h based on the Nyquist-Shannon theorem states

that for any analog band-limited signal, all its information 
ontent 
an be a
-

quired by taking uniformed distributed samples at a rate that doubles the signal

bandwidth.

While this is one of the fundamentals theorems of Signal Pro
essing, by taking

advantage on 
ertain stru
tures of the signal, a mu
h 
lever a
quisition strategy


an be develop in order to redu
e the number of measurements and still a
quire

its full information 
ontent.

In order to exploit the pe
uliarities of a given 
lass of signal, we must be able

to properly represent those signals of interest with a

urate models. This models

are useful to in
orporate previous knowledge of a given 
lass of signal, and to

distinguish them from other 
lasses of maybe no interest.

Many 
lasses of signals, espe
ially when representing physi
al signals, 
an be

modeled to have a linear stru
ture, i.e., if we sum two signals that belongs to that


lass, the new signal will also belong to the same 
lass.

We will treat signals as real-valued fun
tions having domains that are either


ontinuous or dis
rete. In the 
ase of a dis
rete signals, we 
an simply view them

as ve
tors in N -dimensional Eu
lidean spa
e R

N

.

For bandlimited analog signals with no frequen
y 
omponents above N=2, or

Nyquist rate equal to N , we will also represent them as ve
tors with dimension
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equal to its Nyquist rate. Both representation are equivalent in the sense that one


an pass to another with standard te
hniques (sin
 interpolation).

Note that the spa
e dimensionN of both kinds of signals des
ribed above de-

�nes the degrees of freedom they have. In parti
ular, although analog signals 
an

be more ef�
iently represented by other �representations�, any analog bandlim-

ited signal has at most N degrees of freedom, and we have 
hoose this model in

order to be able to dire
tly 
ompared with Nyquist-based a
quisition.

Let 	 denotes the N � N matrix with 
olumns given by the set f 

i

g

N

i=1

. If

the ve
tors in this set are linear independent, then they span a basis in R

N

, and

any ve
tor in this spa
es has a unique representation as a linear 
ombination of

the elements of that basis.

For any x 2 R

N

there exist s 2 R

N

su
h that

x = 	s =

N

X

i=1

s

i

 

i

For analog signals, note that this representation is equivalent to:

x(t) =

N

X

i=1

s

i

 (t)

i

, where the set of 
ontinuous time waveforms f (t)

i

g

N

i=1

are the sin
-interpolated

signals obtains from the ve
tors in f 

i

g

N

i=1

(or equivalently, the ve
tor in f 

i

g

N

i=1

are form by taking samples of the waveform in f (t)

i

g

N

i=1

at a rate N ).

4.2 Sparse Signals

With the models given above, we are able to represent any linear signal (dis
rete or

analog) of dimensionality equal to N , and with N degrees of freedom. However,

many natural signal that are found in real situations have a smaller number of
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degrees of freedom with respe
t to its dimensionality. In other words, not all

possible ve
tors in R

N

represents valid signals for a given 
lass.

Many natural signals 
an be expressed as a linear 
ombination of only just

a few ve
tors from a given basis. This 
lass of signals are 
alled to be sparse

signals, sin
e only a small amount of its 
oef�
ients, when represented on that

basis, are different from zero. The information 
ontent of this 
lass of signals is


on
entrated only on the values of the non-zero 
omponents and on the position

of those 
omponents.

For an N dimensional ve
tor a = (a

0

; : : : ; a

n�1

)

>

we de�ne the support of a

as

supp (a) = fj = 0; : : : ; n� 1ja

j

6= 0g

, its sparsity spar (a) (sometimes indi
ated as L

0

norm) as the 
ardinality of

supp (a), and its usual p-norm as

kak

p

=

 

n�1

X

j=0

ja

j

j

p

!

1

=p

We will assume that a suitable basis exists whose ve
tors are the 
olumns of

theN �N matrix 	, and that the signal of interest isK-sparse, whi
h means that

for any instan
e of x there is an N -dimensional ve
tor s su
h that x = 	s and

spar (s) � K.

Although the sparse model given above is of broad interest, it is dif�
ult to

�nd real life signals to be truly sparse. However, many natural signals 
an be

very well approximated by sparse models. This 
lasses of signals are 
alled to be


ompressible signals, and 
an be approximated by setting the smallest 
omponents

to zero and keeping the biggestK.

In the following, we will treat 
ompressible signals and sparse signals as to

have a simple sparse representation. The error produ
ed by this approximation
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will be 
onsidered as if the sparse signal would have an intrinsi
 noise indepen-

dently of the sour
e where it is generated.



5. COMPRESSIVE SENSING

5.1 Introdu
tion

The newly introdu
ed paradigm of Compressive Sensing (CS) [7, 8, 9℄ exploits

spe
ial signal features to extra
t its information 
ontent with a smaller amount of

samples (or measurements in the general 
ase) with respe
t to a
quisition based

on the Nyquist-Shannon sampling theorem.

A

ording to the sampling theorem, we 
an perfe
tly re
onstru
t any ban-

dlimited signal by its samples provided that the sampling rate ex
eeds twi
e the

maximum frequen
y in the bandlimited signal. However, as we have seen before,

the information 
ontent of some 
lasses of signals is 
on
entrated in only few


oef�
ients for a given representation.

Taking advantage on the knowledge of the stru
ture of the signal, more so-

phisti
ated sampling methods 
an be developed in order to redu
e the number of

samples ne
essary to re
onstru
t the signal. Compressive sensing theory exploits

the �sparsity� representation in order to redu
e well below the number of mea-

surements stated by the Nyquist-Shannon theorem, and still be able to perfe
tly

re
onstru
t the original signal.

Redu
ing the number of measurements has noteworthy advantages. It 
an

redu
e the hardware 
omplexity, storage 
apa
ity, power 
onsumption, 
hannel

bandwidth, et
.

In the 
ompressive sensing framework, few nonadaptive linear measurements

of the signal are taken, i.e. proje
tions of the signal over ve
tors of a given basis.
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Based on these proje
tions, by means of a non-linear algorithm, it is possible to

re
over the signal.

To make the dis
ussion more 
on
rete, 
onsider the general 
ase where the

signal x 2 R

N

is measured throughM inner produ
ts of the form:

y = �x + e

where y 2 R

M

is the measured ve
tor, � is anM � N measurement matrix, and

e 2 R

M

is a ve
tor representing measurement noise.

In general, givenM < N , the matrix � represents a dimensionality redu
tion,

i.e., it maps a ve
tor in R

N

into a ve
tor in R

M

. Under this 
ondition, there are

in�nite different signals x that satisfy the above equation given the measurements

y.

At this point there are two main questions to be done: a) Under what 
ondi-

tions the appli
ation of the matrix � preserves the information of the signal x?

How it is re
overed the original signal x from the redu
ed set of measurements y?

We will try to answer these question in the following se
tions.

5.2 The Restri
ted Isometry Property

To partially answer the �rst question, lets �rst write the ve
tor x as

x = 	s

, and

y = �	s+ e = �s+ e

Relaying on the a-priori knowledge that spar (s) � K, it is possible to de�ne



5. Compressive Sensing 49

a subset of R

N


ontaining all the interesting instan
es of x. Then, the a
quisi-

tion me
hanism should map this subset into the measurement spa
e R

M

�quasi-

bije
tively� in a sense that will be made more pre
ise in the following.

One of the most striking, and useful, fa
ts that appear at this point is that,

when sparsity is one of the priors, if � 
an be thought of as a realization of a

random matrix with independent entries drawn a

ording to a variety of distribu-

tions, then mapping by means of � provides, with high probability, the needed

�quasi-bije
tion�.

More formally, we say that a matrix� is a restri
ted isometry [30℄ when there

is a 
onstant 0 � Æ

K

< 1 su
h that

(1� Æ

K

) ksk

2

2

� k�sk

2

2

� (1 + Æ

k

) ksk

2

2

whenever spar (s) � K. Hen
e, even if the dimensionalityM of the 
o-domain of

a restri
ted isometry is less than the dimensionalityN of its domain, the mapping

of K-sparse ve
tors leaves lengths substantially unaltered.

If � is made of independent random entries 
hara
terized by a sub-Gaussian

distribution then, with an overwhelming probability, the matrix � is a restri
ted

isometry with a 
onstant Æ provided that [31, 32, 33℄

M � CKlog(N=K) (5.1)

where C is some 
onstant depending on ea
h instan
e.

If � is a restri
ted isometry, on
e that supp (s) is known, we may restri
t � to

that domain and obtain an inje
tive mapping. If the measurements in y addition-

ally en
ode information on whi
h of the

�

N

K

�

possible supports must be 
hosen,

the overall mapping 
an be reversed to yield the whole s.

This is why a 
onstant ingredient in the re
ipes for all 
ompressive sensing

ar
hite
tures is randomness as a mean of 
apturing information that is known to
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be sparse. What is usually done is to overlook the fa
t that theory puts 
onditions

on the statisti
al stru
ture of � and design a system in whi
h � is random and

hopefully transfers its bene�
ial properties to � = �	.

An important side-effe
t of this assumption (widely veri�ed in pra
ti
e) is that

one does not design the a
quisitionmatrix� depending on the spe
i�
	 but relies

on randomness to impli
itly �s
an� all possible sparsity bases.

5.3 CS Re
onstru
tion Algorithms

On
e that a mapping allowing re
onstru
tion has been devised, its �inversion�

must be obtained by algorithmi
 means every time a measurement ve
tor 
omes

in.

Though re
onstru
tion me
hanisms may be designed jointly with the ar
hi-

te
tures produ
ing the measurements, they are 
lassi
ally addressed as separate


omponents of the overall a
quisition system. Their development and analysis

is a �ourishing �eld that has re
ently produ
ed strong and general results and

taxonomies [34℄.

We will here 
on
entrate on the most frequently adopted methods, and note

that those te
hniques fall in one of two 
ategories: optimization-based re
on-

stru
tion [30, 35, 36, 37, 38, 39℄ and iterative support-guessing re
onstru
tion

[40, 41, 42, 43, 44, 45℄.

Both types of te
hnique are 
ommonly devised and set up in the noiseless and

idealized 
ase (i.e., for e = 0 and neither quantization nor saturation) and are

proved (or simply seen) to work in more realisti
 settings.

5.3.1 Optimization Based Re
onstru
tion Algorithms

The key fa
t behind optimization-based methods is that, among all the possible


ounterimages s of the ve
tor y = �s the one that we are looking for is the �most
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sparse�, i.e., the one for whi
h spar (s) is minimum.

Sin
e we usually have spar (s) � K � N this assumption is sensible. More-

over, it leads to some beautiful results on the possibility of re
overing s by means

of simple optimization problems [30℄.

More formally, it 
an be shown that, if� is a restri
ted isometry with 
onstant

Æ �

p

2� 1 then the

^

s solution of the optimization problem

min k

^

sk

1

(5.2)

s:t: k�

^

s� yk

2

� �

is su
h that

k

^

s� sk

2

� C�

for some 
onstant C > 0.

Hen
e, if we use � to bound the maximum magnitude of the disturban
es in-

volved in the measurement pro
ess (for instan
e by setting it proportional to the

varian
e of the noise plus that of the quantization error) we 
an guarantee that the

re
onstru
tion error vanishes when disturban
es go to zero.

Though not impossible, the straightforward appli
ation of the above result,

depends on a reliable estimation of the parameter � that quanti�es the maximum

foreseeable deviation between the unperturbed measurement and its a
tual value

in presen
e of a mixture of known (e.g., quantization) and unknown (e.g., noise)

disturban
es.

It is therefore quite 
ommon to substitute k�

^

s� yk

2

� � with �

^

s = y by im-

pli
itly assuming that the system is working in a relative low-disturban
e regime

that allows to assume � ' 0. Within this approximation, it is 
onvenient to re-

express the resulting optimization problem within the framework of linear pro-

gramming by de�ning u = (1; : : : ; 1)

>

and by introdu
ing the auxiliary unknown



5. Compressive Sensing 52

ve
tor w = (w

0

; : : : ; w

n�1

)

>

to write

min u

>

w

s:t:

�

^

s = y

w � 0

�w �

^

s � w

(5.3)

where ve
tor inequalities are meant to hold 
omponent-wise.

The equality 
onstraints in (5.3) 
an be adjusted to 
ope with spe
i�
 features

of a given ar
hite
ture or to take into a

ount quantization or saturation.

In parti
ular, due to quantization, we know that the true value of the j-th mea-

surement is somewhere in the interval [y

j

�

�y

j

=2; y

j

+

�y

j

=2℄ with y

j

being the

value known to the algorithm and �y

j

the 
orresponding quantization step.

Hen
e, in presen
e of a 
oarse quantization, it is sensible to substitute the

equality 
onstraints �

^

s = y in (5.3) with y �

�y

=2 � �

^

s � y +

�y

=2, where

�y = (�y

0

; : : : ;�y

m�1

)

>

. Though it surely models the a
quisition pro
edure

with greater a

ura
y, this adjustment does not ne
essarily lead to improvements

and is 
ommonly employed only when one may expe
t the various �y

j

to be

substantially different one from the other.

It is interesting to note that optimization-based re
onstru
tion algorithmswork

without any knowledge of the exa
t value ofK further to that impli
it in the num-

ber of measurements that must be enough to allow re
onstru
tion. This may be a

plus in situations where K 
annot be exa
tly determined in advan
e. Regrettably,

this positive feature is balan
ed by the fa
t that, in general, linear programming

solution is 
omputationally more expensive that other kinds of iterative re
on-

stru
tion.
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5.3.2 Support-Guessing Re
onstru
tion Algorithms

As far an iterative support-guessing re
onstru
tion is 
on
erned, note that, if

supp (s) were known we 
ould drop the 
olumns in � that are surely multiplied

by 0 and the 
orresponding entries in s to obtain anM �K matrix �

supp(s)

and a

K-dimensional ve
tor s

supp(s)

for whi
h y = �

supp(s)

s

supp(s)

. Sin
e M > K, this

is an over
onstrained problem that may be effe
tively (even �optimally� in 
ase

of Gaussian disturban
es) inverted by using the Moore-Penrose pseudo-inverse

�

y

supp(s)

and 
omputing s

supp(s)

= �

y

supp(s)

y.

Iterative support-guessing methods are, in general, pro
edures that alternate

a rough, non-ne
essarily sparse, solution of y = �s from whi
h an estimate of

supp (s) is inferred (for example by thresholding on the magnitudes of the 
om-

ponents of the temporary solution) that is then exploited in a pseudo-inverse-based

step re�ning the value.

Though more sophisti
ated alternatives exists, a referen
e algorithm within

this 
lass is CoSaMP [40℄ that has some de�nite advantages. First, it works for

matri
es � that are restri
ted isometries and, if K is known and the isometry


onstant Æ

2K

for ve
tors with 2K non-zero 
omponents 
an be bounded by Æ

2K

�

0:025, then, given a toleran
e � > 0, the re
onstru
ted ve
tor �̂ satis�es

k

^

s� sk

2

� Cmax

�

�;

ks

0

k

2

p

K

+ k��k

2

�

where s

0

is the ve
tor that 
an be obtained by s by setting to zero its K=2 largest

entries.

The resulting algorithm is provably fast and, beyond the above formal guaran-

tee on its performan
e, it is usually extremely stable and effe
tive in re
overing

the original signal. These favorable properties are paid with the additional as-

sumption that the sparsity of s is known and that the isometry 
onstant Æ

2K

must

be quite low.

In analogy to what happens for optimization-based re
onstru
tion, CoSaMP
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an be tailored to spe
i�
 ar
hite
tures. This 
an be done, for example, if it is

known that errors in the magnitudes of the entries of s are 
orrelated by an impli
it

�ltering in the a
quisition s
heme. Su
h an effe
t 
an be exploited by inserting a

�ltering step when passing from support-guessing to pseudo-inversion.

5.4 Analog-to-Information Converters

From the two previous se
tions, we get that to de�ne a 
ompressive sensing sys-

tem we need to des
ribe two stages

� en
oder: a hardware system performing some mixed analog-digital opera-

tions on the in
oming signal to produ
e a stream of bits. The mixed analog-

digital operations are modeled as instan
e � of a random matrix linking the

signal samples to the measurements whose quantization yields the stream

of bits transferred from the en
oder to the de
oder;

� de
oder: an algorithm that takes the in
oming bits and, based on the knowl-

edge of �, re
onstru
ts the original signal.

In this se
tion we will dis
uss various strategies for designing systems for

a
quiring 
ompressive measurements of real-world signals.

Note that, in pra
ti
al implementation, we do not want to 
ommuni
ate � to

the de
oder and thusmost often exploit pseudo-random generators with a 
ommon

initialization to yield matri
es that 
an be simultaneously known at both stages.

Saturation and quantization are unavoidable in the signal path sin
e the 
om-

muni
ation between the two stages happens along a digital 
hannel thus implying

an ADC blo
k with a �nite range (we will assume [�V

max

; V

max

℄ for a 
ertain

V

max

) and a �nite number of levels.

In the following we will 
onsider the number B of bits generated by the en-


oder 
orresponding to the a
quisition of the input signal over a given time inter-

val. This is a
tually a �bit budget� sin
e it may be partitioned into digital words of
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different depths 
orresponding to different measurements. Additionally, in many

appli
ations the total number of bits is 
onstrained, whi
h suggests a tradeoff be-

tween the number of measurements and the number of bits per measurement.

5.4.1 Random-Modulation-Pre-Integration � RMPI

This is probably themost straightforward implementation of 
ompressive sens-

ing 
on
epts [46℄.

N
clock

b-bit 

ADC 

RNG

S 
k=0

N-1

+

b-bit 

ADC 

RNG

S 
k=0

N-1

+

x(t) yM-1

bxk

y0

b

Fig. 5.1: Blo
k s
heme of an RMPI en
oder. The samples of the input signal are mul-

tiplied by M different random sequen
es and a

umulated up to time N . The

a

umulated values are then quantized by a b bit AD 
onverter.

With referen
e to Figure 5.1 the samples of the in
oming signal x

k

are multi-

plied by the quantities �

j;k

for a given j and then fed into an a

umulation stage

to yields the value of the j-th measurement y

j

that is then quantized by an b-bit

ADC and aggregated with all the other quantized measurements into the stream

of bits that is passed to the de
oding stage.
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The implementation of the analog blo
ks pre
eding the ADC offers several

options.

The stru
ture of the multiplier depends on the quantities �

j;k

: some 
lassi-


al approa
hes adopt Gaussian random variables (Gaussian RMPI) and for
e the

deployment of 
omplete four-quadrant analog multipliers, while more aggressive

approa
hes suggest to 
onstrain �

j;k

2 f�1;+1g (antipodal RMPI) so that mul-

tipli
ation 
an be implemented by simple swit
hing.

The a

umulation stage may be implemented either as a 
ontinuous time in-

tegrator or as a swit
hed 
apa
itor sub
ir
uit that impli
itly mat
hes the dis
rete-

time operation of the multiplier. In any 
ase, the output of the a

umulating devi
e

will be subje
t to saturation.

Referring to a dis
rete-time implementation, where allegedly y

j

=

P

N�1

k=0

�

j;k

x

k

,

and relying on the following assumptions:

� x and � are independent sto
hasti
 pro
esses;

� the �

j;k

are independent and identi
ally distributed (either Gaussian or bi-

nary antipodal) random variables, with zero mean and unity varian
e;

� the energy of x in the a

umulation time window is 
onstant;

the random variable y

j

will 
onverge to a normal random variable independently

of the input signal x.

Given the above observation, the measurements y obtained with an RMPI ar-


hite
ture will have a range that is potentially

p

N -times larger than that of x

(e.g., �3� around the signal average). When 
omparing an RMPI solution with

a dire
t appli
ation of a Nyquist based AD 
onverter, and 
onsidering a uniform

quantizer in both 
ases, in order to maintain the same amount of quantization error

the number of bits needs to be in
reased for an RMPI implementation. Moreover,

sin
e a normal distribution is not limited, wherever the input range of the ADC

is set, there is an unavoidable non-zero probability that y

j

falls out of the ADC


onversion range.
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On one hand, RMPI ar
hite
ture allows to redu
e the number of measurements

for the a
quisition of a given 
lass of signals with respe
t to 
lassi
al Nyquist

based sampling. On the other hand, in order to obtain a given performan
e in

terms of re
onstru
tion error, the number of bits needed to en
ode ea
h of the

measurement would be bigger than for Nyquist based a
quisition. This suggests

a tradeoff between the number of measurements M and the number of bits per

measurement b.

RMPI ar
hite
ture presents a dire
t implementation of the 
ompressive sens-

ing 
on
epts developed in this se
tion. However, as it has been shown, some

design 
onsideration are needed to be taken. More pre
isely, the 
hoi
e of a

proper AD 
onverter is of 
ru
ial importan
e in order to obtain a given perfor-

man
e. Moreover, RMPI ar
hite
ture requires the used of a huge amount of 
ir-


uitry (
ontinuous-time or dis
rete-time analog multiply-and-a

umulate blo
ks,

multibit AD 
onverters) leading to an expensive system implementation in terms

of 
ost, power 
onsumption, and design effort.

5.4.2 Random Sampling � RSAM

In 
lassi
al a
quisition systems, samples of the signal are taken regularly on the

time axis at a given rate (usually not less than the Nyquist rate). Compressive

sensing ar
hite
tures relying on random sampling avoid this regularity to produ
e

a number of measurements that, on the average, are less than those produ
ed

by Nyquist sampling, while still allowing the re
onstru
tion of the whole signal

thanks to sparsity and other priors.
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DkDk
clock

RNG

x(t)
xkj

b-bit 

ADC 
yj

b

Dkj

Fig. 5.2: Blo
k s
heme of an random sampling en
oder. The samples are taken at random

positions in time, over a prede�ned grid.

In prin
iple, sampling instants 
an happen anywhere along the time axis.

Yet, a straightforward implementation 
hooses them among regularly spa
ed time

points that 
an be sele
ted by digital means. The result is s
hematized in Figure

5.2 where a ba
kward 
ounter is pseudo-randomly re-loaded ea
h time it rea
hes

zeros, triggering 
onversion. Grid spa
ing, and thus 
lo
k rate, depends on the

resolution with whi
h one wants to pla
e the sampling instants and thus may be

expe
ted to be larger that Nyquist rate.

To translate the above blo
k s
heme into formulas , say that su
h the 
lo
k

identi�es a ve
tor x

0

= (x

0

0

; : : : ; x

0

�N�1

)

>

that oversamples a bandlimited x(t) by

a fa
tor � with respe
t to x = (x

0

: : : ; x

N�1

)

>


ontaining the Nyquist samples.

The two ve
tors x

0

and x are linked by x

0

= Ax, being A an upsampling matrix.

With this, theM � N matrix � is nothing but the produ
t � = PA, where P

is the random sampling matrix de�ned by the M time instants k

0

< k

1

< � � � <

k

M�1

at whi
h the 
ounter rea
hes 0 as in

P

j;k

=

8

<

:

1 if k = k

j

0 otherwise
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The resulting sampling follows a so-
alled renewal-pro
ess in whi
h all the

inter-measurement intervals �k

j

= k

j+1

� k

j

are drawn as independent integer

random variables exponentially distributed in the interval [�k

min

;1℄.

The minimum inter-measurement gap�k

min

� 1 depends on the speed of the

ADC, whi
h must be ready for a new 
onversion ea
h time a measurement is taken

so that, by in
reasing �k

min

we loosen the 
onstraints on the ADC implementa-

tion. The exponential trend is then tuned to have an average inter-measurement

gap equal to

N

M

so that (at least for large N ) we expe
t an average ofM measure-

ments.

Ea
h of these measurements is 
ommonly quantized by means of a b-bit ADC

to yield the bit stream passed to the de
oder.

RSAM is only subje
t to the stati
 saturation due to the �nite input range of

the 
onversion stage. This poses no problem sin
e it 
an be ta
kled at design time

by simply res
aling the signal input range as in 
onventional a
quisition systems.

5.4.3 1-bit Compressive Sensing - 1bRMPI

Given a total bit budget B, the trade-off between the number of measurementsM

and the number of bits b = B=M spent to en
ode ea
h of them is a 
lassi
al theme

in signal a
quisition and 
oding and applies also to CS ar
hite
tures.

Among other issues, it may help 
oping with the unavoidable saturation of the

ADC sin
e the extreme solution b = 1 identi�es the ADC with a pure saturation


entered in 0, thus 
ompletely eliminating the problem.

In parti
ular, RMPI systems may be optimized in ea
h parti
ular setting to see

how mu
h information in our original signal 
an be inserted into B bits [47℄ and

is possible to think that ea
h measurement is represented by a single bit en
oding

its sign [48, 49℄.

There are several bene�ts to the 1-bit CS te
hnique. Given that the quantizer


an be implemented as a simple 
omparator that merely tests if a measurement is
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above or below zero, an ef�
ient hardware quantizer 
an be built to operate at high

speeds. Furthermore, 1-bit quantizers do not suffer from dynami
 range issues nor

linearity problems inherent of the implementation of a multibit AD 
onverter.

Sin
e signs give no hint on the magnitude of the involved signals, the problem

in (5.2), with � = 0, with y = sign(��̂) and where the sign(�) operator applied


omponent-wise, is re
ast into [48℄

min k�̂k

1

s:t:

y Æ��̂ � 0

k��̂k

2

= 1

(5.4)

where Æ stands for 
omponent-wise produ
t

1

and the se
ond, unit-energy 
on-

straint is introdu
ed as a s
ale-�xing prior. This approa
h is referred in [48℄ as

1-bit CS.

The above optimization problem is a non-
onvex problem and must be ad-

dressed by spe
ialized algorithms. Two state-of-the-art algorithms were presented

in the lasts years to address this problem. The Restri
ted Step Shrinkage [50℄ that

will be indi
ated here as RSS, and the Binary Iterative Hard Thresholding [51℄,

indi
ated here as BIHT. These algorithm are proved to a
hieve a higher average

re
overy SNR, and are an order of magnitude faster than other previous proposed

algorithms in [48℄ and [49℄.

Regrettably, even with BIHT, typi
al performan
e of an 1bRMPI ar
hite
ture

are largely inferior with respe
t to multibit RMPI or RSAM solutions for 
ompa-

rable bit budgets.

1

so that this result in a set ofM 
omponent-wise inequalities
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6.1 Introdu
tion and Motivation

As it has been shown in the previous se
tions, there is a trade-off between the

number of measurements needed to uniquely identify a given 
lass of signals, and

the number of bits that is ne
essary to represent them in order to obtain a given

pre
ision [47℄.

On one hand, under 
ertain assumptions on the signal stru
ture, 
ompressive

sensing theory allows to redu
e the number of measurement by in
reasing the

hardware ar
hite
ture 
omplexity. On the other hand, Delta-Sigma 
onverters

allows to redu
ed the number of bits per measurement, even to the extreme 
ase of

only 1-bit, by in
reasing the number of measurements and mixing time en
oding

information.

The fundamental question is: is it possible to 
ombine the advantages of both

theories in one single devi
e that allows to redu
e the total number of bits in a

measurement, and simplify the hardware system implementation?

The answer to this question is YES, and it is what we have 
alled The RADS

Converter [52, 53, 54℄.

In this se
tion we will introdu
e the RADS Converter whi
h 
onstitutes the

main 
ontribution of this thesis. We will start by des
ribing its hardware ar
hite
-

ture, and modeling the operations performed by the ar
hite
ture in the frequen
y

domain. This model will lead to an intuitive understanding of its working prin-


iple, and will give some insight on how the de
oding stage 
an be ef�
iently
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implemented.

We will next introdu
e a time domain analysis that, starting by the analysis of

a �=� modulator, and followed by the analysis of the whole RADS Converter

ar
hite
ture, will lead to a deeper understanding of 
apabilities of the system.

We will 
lose this se
tion by presenting a set of measurements performed on

an �off-the-shelf� implementation of theRADS Converter that 
onstitutes a proof

of 
on
ept of the proposed ar
hite
ture, and we dis
uss how it 
an be ef�
iently

implemented on a single sili
on devi
e.

In order to evaluate the performan
e of the 
onverter, we have extensively

appealed to numeri
al simulations. Performan
e is evaluated by mat
hing the

re
onstru
ted ve
tor

^

s with the original ve
tor s and using two merit �gures: the

Probability of Support Re
onstru
tion (PSR) and the Re
onstru
tion Signal-to-

Noise Ratio (RSNR), i.e.,

PSR = Pr

�

supp (s) � supp

minfsg=5

(

^

s)

	

ARSNR(dB)=E

"

dB

 

ksk

2

2

ks�

^

sk

2

2

!#

=E

"

dB

 

kxk

2

2

kx� x̂k

2

2

!#

where the thresholded support is 
onventionally de�ned as

supp

�

(a) = fj = 0; : : : ; n� 1jjja

j

j � �g

Probabilities and expe
tations were estimated using Monte Carlo simulations

for whi
h statisti
s was gather after 5000 trials.

6.1.1 Preliminaries: Delta-Sigma Modulation

In this subse
tion we will make a short review of the main 
on
epts that applies

to Delta-Sigma (�=�) modulators.
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Let model a basi
 1

st

-order �=� modulator stru
ture as in Figure 6.1 where

the blo
k [Q℄ represents a general quantizer and the blo
k [D℄ represents a one

time-step delay.

-
+

D

+
+

D

Q
yn znvn

Fig. 6.1: A time-domain blo
k diagram of a �rst order �=� modulator.

The input sequen
e y feeds the �=� modulator that produ
es a lower resolu-

tion output sequen
e z at every time step n.

The quantization stage of the modulator is usually implemented with a very

low resolution quantizer. Single bit quantizers are the most 
ommon option for

the implementation of this kind of 
onverters, sin
e it is parti
ularly appealing for

hardware implementations. The quantizer takes the form of a 
omparator to zero,

an extremely inexpensive and fast hardware devi
e. Furthermore, 1-bit quantizers

do not suffer from dynami
 range issues (the sign of the measurement remains

valid even if the quantizer saturates).

Though bene�
ial, 1-bit quantization is a very non-linear operation that makes

dif�
ult to obtain simple models for the operation of the 
onverter. In order to pro-

vide an insight into the operation of the modulator, the analysis is usually ta
kled

in the z-domain [55, 56, 57, 58℄, for whi
h the quantizer has been repla
ed by it

linear model as shown in Figure 6.2.
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-
+

z

+
+

Y(z) +
+

E(z)

V(z) Z(z)

z

Fig. 6.2: A z-domain linear model of a �rst order �=� modulator.

From the diagram we 
an write

V (z) = z

�1

V (z) +X(z)� z

�1

Z(z)

Thus

Z(z) = V (z) + E(z) = z

�1

V (z) +X(z)� z

�1

Z(z) + E(z)

and rearranging we get

Z(z) = X(z) + (1� z

�1

)E(z) (6.1)

Equation (6.1) 
an be written in the general form

Z(z) = STF (z)X(z) +NTF (z)E(z) (6.2)

where the STF refers to the Signal Transfer Fun
tion, that in this 
ase is unity,

and the NTF refers to the Noise Transfer Fun
tion and is equal to

NTF = 1� z

�1

(6.3)
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Equation (6.2) is the basi
 equation �=� modulator, and shows how the out-

put 
an be expressed as a sum of a term a

ounting for the signal, and a term

a

ounting for the quantization noise.

For the 
ase presented above, the NTF has 
learly a high pass response,

whi
h suppresses the quantization noise near d
, and ampli�es it out of the signal

band. This is the so 
alled noise shaping 
apabilities of the �=� modulators.

By repla
ing z in equation (6.3) by e

i2�f=M

, where M is the sampling fre-

quen
y, the power spe
tral density (PSD) of the output noise is found to be

S

q

(f) = 2(sin(�f=M))

2

S

e

(f)

, where S

e

(f) is the PSD of the quantization noise of the internal quantizer of the


onverter.

Consider a signal bandwidth of B Hertz, and approximate S

e

(f) = 2e

2

rms

=M .

By integrating S

e

(f) in the signal band, we get that the in-band noise, i.e., the

quantization noise present in the signal band, 
an be approximated as

q

rms

= e

rms

�

p

3

�

M

B

�

�3=2

(6.4)

As it 
an be seen from equation (6.4), the in band noise de
reases with in
reas-

ing the oversampling ratio, i.e., the ratio between the sampling frequen
y and the

signal bandwidth.

In oder to in
rease resolution, by repla
ing the quantizer stage in the blo
k

diagram of Figure 6.1 by a new 
opy 1

st

-order �=� modulator, we will get a

se
ond order �=� modulator. This pro
edure 
an be 
ontinued to obtain an L

th

-

order �=� modulator.

By extending the analysis we have made for the 1

st

-order, we 
an get a basi


expression for the NTF of an L

th

-order �=� modulator as
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NTF = (1� z

�1

)

L

(6.5)

By integrating the above equation in the signal band, we get that the power of

quantization noise of an L

th

-order �=� modulator is

q

rms

= e

rms

�

L

p

2L + 1

�

M

B

�

�(L+

1

2

)

(6.6)

The equation given above is an approximation for the 
al
ulation of the in-

band quantization noise of an �=� modulator. This approximation does not take

into 
onsideration quantizer overload thus in
reasing the total power of quanti-

zation noise. Moreover, for higher order modulators, it is possible to 
hange the

shape of the NTF to produ
e different behavior. However, for the sake of 
on-


reteness, it is enough the analysis made so far.
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6.2 RADS Converter ar
hite
ture

The RAndom Delta-Sigma (RADS) Converter illustrated in Figure 6.3 is noth-

ing but a 
onventional �=� 
onverter whose input signal is pre-multiplied by a

random sequen
e of symbols. RADS Converter exploits the noise shaping 
apa-

bilities of Delta Sigma (�=�) stru
tures and produ
e a number of measurements

(M � N ) ea
h 
oarsely quantized (a
tually with only 1 bit). The use of RADS

Converter with a proper exploitation of sparsity gives as a result a substantial 
om-

pression in the number of a
quired bits with respe
t to 
lassi
al a
quisition or to

simply �=� modulation. The simpli
ity of the ar
hite
ture also allows to oper-

ate at very high frequen
ies, making possible, for example, to a
quire frequen
y

sparse signals that are spread over a large bandwidth with a very high resolution.

+

clock

x(t)
xn yn

pn

zn

RNG
M

N

1-bit  DS 

t=n/M

Fig. 6.3: Blo
k s
heme of aRADS Converter. The input signal is multiplied by a random

sequen
e and fed into a �=� 
onverter made of a 1-bit ADC and a loop �lter in


harge of noise shaping.

The loop �lter and the nonlinear dynami
s of the �� produ
e a progressive

en
oding of widening windows from the original signals so that there is no one-

to-one relation between single bits and proje
tions.

On one hand, su
h a te
hnique has the desired effe
t to allow squeezing am-

plitude information into a sequen
e of sign informations. On the other hand, its

nonlinearity avoids the writing of a simple linear model linking the signal samples

x

n

with the bits produ
ed by the en
oder z

n

. Although, this is formally true, it
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will be ne
essary to waive the detailed modeling of the�� operations to 
on
en-

trate on its high-level fun
tionality of oversampling 
onverter with noise-shaping

abilities. In doing so, we will obtain a model that 
an be effe
tively plugged into

re
onstru
tion algorithms.

Without any lost of generality, we may fo
us on a normalized a
quisition time

of one se
ond, and model the signal x(t) to be sampled at the Nyquist rate N by


olle
ting x

k

= x

�

k

N

�

for k = 0; : : : ; N � 1. Clearly x 2 R

N

and x is sparse if

there is an N �N matrix 	 su
h that x = 	s for some ve
tor s 2 R

N

in whi
h at

mostK << N 
omponents are non-zero.

Given that the analog waveform x(t) 
orresponding to the samples in x is

sampled at frequen
yM , that in general is larger thanN , de�ning the oversampled

signal x

0

n

= x

�

n

M

�

for n = 0; : : : ;M � 1 we 
an link the two ve
tors x

0

and x

by a linear operation x

0

= Ax, being A an upsampling matrix that 
onsiders the


omponents of x as the Nyquist samples of a bandlimited signal. Hen
e, �=�

operations do not apply to the original 
omponents of the ve
tor but to a ve
tor

oversampled by a fa
torM=N .

The sin
-interpolation matrix A 2 R

M�N

is de�ned as:

A

j;k

= sin


�

N � 1

M � 1

(j � 1)� (k � 1)

�

j = 1; : : : ;M

k = 1; : : : ; N

and for the 
ase of N =M we have that A = I .

Note that sin
e we are dealing with 1-bit measurements we haveM = B, so

oversampling does not imply an in
rement in the total number of bits.

With referen
e to Figure 6.3, the samples in x

0

are multiplied by a Nyquist-

rate random sequen
e p

1

; p

2

; : : : ; p

N

. Applying a further linear operator indi
ated

with the symbol P whi
h is de�ned by
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P

j;k

=

8

<

:

p

d

j

N

M

e

if j = k

0 if j 6= k

(6.7)

, therefore, the input of the �� is the ve
tor Px

0

= PAx.

The binary output of the�=� at time n 
an be expressed as the sum of the 
or-

responding input sample and a term a

ounting for the quantization noise whi
h

spe
tral pro�le is di
tated by the Noise Transfer Fun
tion (NTF) of the 
onverter

loop [55℄. Hen
e

z = PAx+ �

where � a

ounts for the quantization noise introdu
ed by the�=� 
onverter.

Conventional �=� approa
hes have P equal to the identity and exploit this


onstru
tion by noting that low-pass �ltering z is equivalent to low-pass �ltering

PAx + � = Ax + � and thus invert upsampling to re
over x with an error equal

to the low-pass �ltering of � , a term that 
an be made very small by playing

with the NTF, i.e., making it as high-pass as possible given other implementation


onstraints.

In our 
ase, the matrix P is designed to introdu
e spreading in order to al-

low that higher frequen
y 
omponents of the upsampled signal enter the baseband

range in whi
h the bits in z are pro
essed. This alias normally prevents signal

re
onstru
tion. Yet, sparsity 
an be exploited to 
ounter alias and allow the a
qui-

sition of signal 
omponents that would otherwise fall out of the rea
h of the ��

range (or, 
onversely, allow smaller oversampling to a
quire the same signal).

Figure 6.4 shows the spe
trum at different points of the system. For simpli
ity,

assume that the spe
trum of p

n

is ��at� in the interval (�N;N) and negligible

outside that interval. Note that y is now band limited to

3

2

N and that, depending

on the value of the sampling frequen
yM , the repli
as of the spe
trum will alias

on the dis
rete time signal y

n

.
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-M -N -N/2 N/20 N M
f

|X(f)|
K

Fig. 6.4: Frequen
y o

upan
y at the different point of the system. From top to bottom:

spe
trum of the input sparse signal in the Fourier domain x; spe
trum of the

modulating signal p; spe
trum of the modulated signal y as a sum of different

shifts of the modulating signal; spe
trum of the output signal z with the addition

of the quantization noise shaped by the NTF of the�=� modulator; remaining

spe
trum after low-pass �ltering.

Given that we are multiplying the input signal by a pseudorandom sequen
e,

with a very high probability and independent of the sparsity basis, the resulting

signal after the modulation will be spread over a large bandwidth. Furthermore,

sin
e the rate of 
hange of the pseudorandom sequen
e is equal to the Nyquist

rate of the input signal, there will be always a 
ontribution of every 
omponent of
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the original signal into the low part portion of the bandwidth.
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6.3 De
oding and re
onstru
tion

In order to re
onstru
t the original signal x(t) form the 1-bit samples z

n

, sparsity

is only one of the two priors we have, the other is the high-pass nature of the

disturban
e introdu
ed by the �=� modulator. This further pie
e of information

allows us to remove the biggest amount of energy of the quantization noise, while

leaving enough information to re
onstru
t the original x(t) in the low-pass portion

of the spe
trum. Note that while signal energy de
reases linearly as the band

shrinks around DC, disturban
e energy de
reases polynomially thanks to the NTF

of the modulator [55℄.

The blo
k diagram shown in Figure 6.5 is used to re
over the original signal

x(t) from the 1-bit samples z

n

. The left-hand part of the blo
k diagram is a low-

pass �lter that removes the biggest 
ontribution of the quantization noise, and it is

followed by a de
imation operation that removes redundant samples.

CS Alg

�n

M

R
H

zn z
bn x�����

Fig. 6.5: De
oding and re
onstru
tion s
heme for RADS Converter. The 1-bit input sig-

nal is �rst �ltered, de
imated, and then pro
essed by a 
ompressive sensing re-


onstru
tion algorithm.

Consider a low-pass �lter with a 
utoff frequen
yR=2. Depending on the ratio

R=N , and 
onsidering a perfe
t �lter with a de
imation operation that leaves only

R signi�
ant samples, the remaining samples form a system of linear equations,

that forR=N < N (whi
h is the most 
ommon 
ase) is undetermined. This system

of equations 
an ef�
iently be solved by the right-hand part of the diagram that

represents any of the CS re
onstru
tion algorithm we have seen in se
tion 5.3 in

the previous 
hapter.
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Note that the band between �R=2 and R=2 
ontains the 
ontribution of all

possible shifts of the spe
trum of p

n

determined by the frequen
y values present

in x(t), as it is shown at the bottom of Figure 6.4. If spreading were not applied

before �=� modulation, only a portion of the signal would enter in su
h a band.

To determine the value of the 
utoff frequen
y of the �lter R=2, it is desirable

to take R as small as possible whi
h 
ontributes to remove the quantization noise

produ
ed by the �=� 
onverter.

On the other hand, the signal obtained after �ltering should 
ontain enough

information for the re
overy of the original sparse signal. In other words, the

number of signi�
ant 
omponents of the �ltered signal must be large enough to

guarantee that the CS re
onstru
tion algorithm 
an re
over the original signal

with a high probability of su

ess while removing as mu
h noise as possible. The


orre
t 
hoi
e of the bandwidth R will determine the system performan
e.

To model the �ltering pro
ess we use an l-order FIR �lter (l �M ) and arrange

its 
oef�
ients h

1

; h

2

; : : : ; h

l

as the rows of a matrix H ofM �M elements.

H

j;k

=

8

<

:

h

i

if j = k + i� 1

0 if j 6= k + i� 1

j; k = 1; : : : ;M

i = 1; : : : ; l:

As an example withM = 8 and h = [h1; h2; h3℄

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h

1

h

2

h

1

h

3

h

2

h

1

h

3

h

2

h

1

h

3

h

2

h

1

h

3

h

2

h

1

h

3

h

2

h

1

h

3

h

2

h

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7
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En
oding the downsampling operator in the matrix

D

j;k

=

8

<

:

1 if j =

R

M

k

0 if j 6=

R

M

k

j = 1; : : : ; R

k = 1; : : : ;M

we may �nally link the sparse ve
tor s with the �ltered and downsampled mea-

surement z

#

as

z

#

= DHPA	s+ DH�:

De�ne the matrix � = DHPA	 and the noise ve
tor e = DH� to have

z

#

= �s+ e, where � 2 R

NxR

with R < M . This re
asts the 
lassi
al Compres-

sive Sensing problem presented in se
tion 5.1 of the previous 
hapter, and 
an be

ef�
iently solved with a greedy algorithm or an L1-normminimization to �nd the

sparse ve
tor s.

6.3.1 Re
onstru
tion Signal to Noise Ratio Estimation

In this subse
tion, we estimate the performan
e in terms of RSNR a
hieved by

the RADS Converter. Sin
e no other errors are modeled in the previous analysis,

quantization noise limits the performan
e of the re
onstru
tion algorithm and of

the whole ar
hite
ture.

It is possible 
al
ulate the total power of quantization noise from equation

(6.6) 
onsidering the remaining bandwidth determined by the �lter 
utoff fre-

quen
y. On top of that, we have payed a pri
e when we de
ided to have a 
on-

tribution of every possible 
omponent of the signal in the low pass portion of the

band, i.e. we have spread the energy of every single 
omponent over the whole

bandwidth of the original signal. Given that signal energy is 
onserved as it pass

trough the random multipli
ation (we have multiplied by a �1 sequen
e), the
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magnitude of the signal that remains at the end of the re
onstru
tion algorithm

will be inversely proportional to the original signal bandwidth.

Finally, we 
an estimate the RSNR as

RSNR = 20log

10

0

�

kxk

2

Ne

rms

�

L

p

2L+1

�

M

R

�

�(L+

1

2

)

1

A

(6.8)

Note that it is possible to a
hieve a signi�
ant improvement with respe
t to


lassi
al �=� 
onversion by making R as small as possible, given that sin
e the

oversampling ratio in the above expression is 
al
ulated with respe
t to the �lter

bandwidth instead the signal bandwidth.

6.3.2 Numeri
al Experiments

In this subse
tion, we present the results of a set of numeri
al experiments de-

signed to verify and validate the RADS Converter ar
hite
ture.

All the simulated points showed in the plots are the mean value over more

than 5000 simulations where a new signal was generated with a random support

in every trial.

The 1-bit en
oding was made using third order�=� modulator designed with

delsig [59℄ toolbox for Matlab [60℄.

For all the simulations of this se
tion we have �xed a set of parameters that

illustrates the most signi�
ant 
ases. The number of samples was always �xed to

M = 2048 independently of the time s
ale used. We have 
onsidered an input

signal that is K-sparse in the Fourier domain , i.e. it is 
onstru
ted of up to K

different periodi
 tones, x = Fs where

F

j;k

= real

n

e

�

2�

N

(j�1)(k�1)

o

j; k = 1; : : : ; N
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and the value of N is varied a
ross the simulation.

In order to show deferents behaviors of the system, we have simulated a set

of different sparsity values of K (K = 4, 12, 20 and 28). The power of the input

signal was kept 
onstant along all values of K, whi
h implies a de
rease in the

value of every single 
omponent as the sparsity value in
reases.

The �=� modulator was 
hosen to be a third order modulator, whi
h is a

typi
al 
on�guration for this kind of 
onverters and due to the fa
t that in higher

order modulators instabilities are more frequent to happen in the loop �lter [55℄.

The CS re
onstru
tion algorithm at the end of the 
hain is CoSaMP, and the

number of iteration is �xed to 200.

In the �rst set of simulation we have estimated the RSNR and the PSR as a

fun
tion of the 
utoff frequen
y of the re
onstru
tion �lter. The results are plot in

Figure 6.6.
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Fig. 6.6: Effe
t of the re
onstru
tion �lter bandwidth for a RADS Converter with a third

order �=�modulator for different sparsity levels. On top: RSNR as a fun
tion

of �lter bandwidth R; bottom: PSR as a fun
tion of R. For every 
ombination

ofK and N there is an optimal value for R.

As it is shown in the plots, for small values of R, it is not possible to re-


onstru
t the original signal. This is due to the fa
t that only a small amount of

information is left after �ltering, and it is not possible to distinguish whi
h are the
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omponents present in the signal. In different words, there is a large probability

that more than one signal 
ould be a good 
andidate solution with this redu
ed set

of measurements.

As we in
rease the value of R, the probability of re
onstru
tion jumps from

almost 0 to almost 1, for small values of K. This behavior is 
onsistent for dif-

ferent values of R at every K we have simulated. At this point, there is enough

information to distinguish whi
h are the 
omponents present in the original signal

from the low pass portion of the mixed signal. The re
onstru
tion error is limited

by the quantization noise that is left in this portion.

As we 
ontinue in
reasing the �lter bandwidth, there is a de
reased in the per-

forman
e in terms of RSNR, as well as PSR. The deterioration in the RSNR


an be easily explained due to the fa
t that a larger bandwidth produ
es an in
re-

ment in the power of the quantization noise (see eq. (6.8)) , i.e., the residual noise

energy is large 
ompared to the signal energy.

On the other hand, for large values ofR, as we in
reaseK there is a de
rease in

performan
e in terms of PSR. As we have the same amount of quantization noise

power for a �xed R, in
reasing the value of K redu
es the power of every single


omponent present in the input signal, making it harder for the re
onstru
tion

algorithm to identify those 
omponents in a noisy environment (the magnitude of

the noise is 
omparable with the magnitude of the signal). This fa
t illustrates the

existing trade-off in the sele
tion of the R parameter. As we in
rease the value of

R in order to obtain a better performan
e in terms of PSR, there is a detriment in

terms of RSNR. The optimal value of R will be the smallest value that produ
es

a PSR near to one, and this value is a fun
tion of K as well as of N .

We have extensively studied the optimal value of R trough an empiri
al ap-

proa
h using numeri
al simulation. We have found that to obtain a PSR � 0:99

then

R � 1:4Klog

�

N

K

+ 6

�

+ 30 (6.9)
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. This equation is in a

ordan
e with equation (5.1) presented in se
tion 5.2 of

the previous 
hapter. However, in the following se
tion we will see how a further

exploitation of theRADS ar
hite
ture will lead to an improvement in both �gures

of merits.

In Figure 6.7, we show the simulation results for the optimal value of R given

by equation (6.9) as we vary the value of N . We have also added the 
urves given

by equation (6.8) in order to 
ompare the simulation result with the predi
ted

theoreti
al RSNR.
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Fig. 6.7: Simulation of the performan
e of RADS Converter using the optimal re
on-

stru
tion �lter bandwidth for different sparsity levels. RSNR as a fun
tion of

the oversampling ratioM=N . The support was 
orre
tly re
overed 100% of the

time. The solid line represents the simulation result, while the dashed line the

theoreti
al result from eq. (6.8).

The estimated RSNR follows the behavior of the simulated system, in terms

of variation of parameters K and N (the same o

urs with M , not shown). The

differen
es are due to the linear model used in the approximation of the in-band

noise of the �=� 
onverter (whi
h a very non-linear system), and the non-ideal
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behavior of the �lters used for the re
onstru
tion. Clearly, the expression in equa-

tion (6.8) 
an be used as a design guideline.

Note also that by taking just 1-bit measurements at Nyquist rate we 
an get

resolutions of up to 52dB, obtaining a 
ompression rate of about 8 times with

respe
t to Nyquist sampling for the same resolution.

Finally, in Figure 6.8 we have simulated the same setting as before. In this


ase, we have added some intrinsi
 noise to the original signal (i.i.d. additive

Gaussian noise) to get an input SNR of 30 dB.
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Fig. 6.8: Simulation of the performan
e of the RADS Converter using the optimal re-


onstru
tion �lter bandwidth for different sparsity levels. The input signal has

an intrinsi
 SNR of 30 dB. RSNR as a fun
tion of the oversampling ratio

M=N . The support was 
orre
tly re
overed 100% of the time.

As we 
an see in the plots, the performan
e of the 
onverter is limited by the

intrinsi
 noise present in the signal, even if there is a sort of denoising for the

smallest values of K.

In this se
tion we have shown how the RADS Converter 
an be employed
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to a
quire analog-sparse signals with a total number of bits mu
h smaller than

Nyquist multi-resolution analog-to-digital 
onverters. Simulation results have

shown that the proposed ar
hite
ture 
olle
ts the ne
essary information to su
-


essfully re
onstru
t sparse signals.

In the next se
tion we will see how we 
an exploit the pe
uliarities of the

a
quisition strategy to produ
e an improved estimate of the signal in terms of

a

ura
y and probability of su

essful re
onstru
tion over different sparsity 
on-

ditions. This further exploitation will derive in an algorithm that we have 
alled

FCoSaMP whi
h is free of the parameters that 
ompromise both �gures of merit.
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6.4 FCOSAMP

In general, signal re
onstru
tion for a CS a
quisition s
heme 
an be split into two

parts: support re
overy, i.e. the identi�
ation of the lo
ation of the nonzero 
om-

ponents, and amplitude estimation over that support. Consider �rst the situation

in whi
h the support is already known. If the 
olumns of the measurement matrix

� indexed by the lo
ation of the nonzero 
omponents form a full-rank matrix, the

natural approa
h is to re
onstru
t the signal by least squares, and the approxima-

tion error will be only limited by the power magnitude of the noise introdu
ed by

the measurement pro
ess.

On the other hand, in the general 
ase where the support is not known, most

algorithms 
an be ensured to work based on the RIP of the measurement matrix

as stated in the previous se
tion. For somematrix 
onstru
tion with entries that are

Gaussian or sub-Gaussian, the RIP is satis�ed with overwhelming probability if

the number of measurements is bigger than a multiple of the signal sparsityM �

CK log(N=K). If the number of measurements falls below a 
ertain minimum

number, the probability of su

essful re
onstru
tion 
hange from a very high to a

very poor one (see e.g. [61℄). This phenomena, in terms of 
ompressive sensing,

is the so 
alled phase transition effe
t.

As we have seen before, thanks to spreading, every non-zero entry in s implies

a waveform whose energy 
an be dete
ted at pra
ti
ally any frequen
y in
luding

those where the quantization error is redu
ed by the �=�. Hen
e, to remove the

quantization noise it is desirable to take only a small bandwidth around zero where

the high-pass nature of the disturban
e has only a small 
ontribution. On the other

hand, the 
onsidered signal should 
ontain enough information for the re
overy

of the original sparse signal.

This trade-off �ts parti
ularly well into algorithms iterating an elementary step

that estimates supp (s) and then 
al
ulates the 
orresponding non-null entries.

In these algorithms, it is possible to low-pass �lter (and de
imate to remove

redundant samples) the input ve
tor at ea
h iteration. Doing so, as the re
on-
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stru
tion pro
eeds, its re�nement happens with values that are progressively less

affe
ted by disturban
es sin
e, while signal energy de
reases linearly as the band

shrinks around DC, disturban
e energy de
reases polynomially thanks to the NTF.

The nature of the ar
hite
ture allows to develop an iterative algorithm that

re
overs the support with a very high probability, sin
e we start the estimation

pro
ess with a big number of measurements, and redu
es the quantization noise

to the minimum possible depending on the sparsity level.

The algorithm we propose to exploit this intuition is reported in Algorithm 1

and will be referred as FCoSaMP in the following.

We 
an model the �lter pro
ess as the appli
ation of an l-order FIR �lter (l �

m) and arrange its impulse response 
oef�
ients h

1

; h

2

; : : : ; h

l

as the rows of a

matrix H

(m)

of m � m elements, where m is the length of the sequen
e to be

�ltered.

H

(m)

j;k

=

8

<

:

h

i

if j = k + i� 1

0 if j 6= k + i� 1

j; k = 1; : : : ; m

i = 1; : : : ; l

Depending on the �lter 
utoff frequen
y, the �ltered sequen
e 
an be de
i-

mated by a fa
tor d. We 
an model this operator in the matrix D

(d;m)

of

�

m

d

�

�m

elements

D

(d;m)

j;k

=

8

<

:

1 if j =

�

k

d

�

0 if j 6=

�

k

d

�

j = 1; : : : ;

�

m

d

�

k = 1; : : : ; m

By writing the number of measurements as M = 2Kd

0

d

1

: : : d

J�1

with d

j

being a small downsampling fa
tor (typi
ally 2 or 3) and J being the total number

of downsampling steps of the algorithm, at the j-th iteration the outer loop �lters

the signal and downsample it by a fa
tor d

j

to redu
e quantization noise. In our
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implementation, low-pass �ltering was obtained by sin
 frequen
y pro�les with

lobes mat
hed with the subsampling ratio.

Downsampling 
ontinues until the number of available samples is 2K sin
e

this is the minimum information needed to dis
riminate between two different

K-sparse ve
tors.

The inner loop is performed a �xed number of times and is based on CoSaMP

to iteratively produ
e an improved estimation of s by least squares over a redu
ed

support made of the support of the previous iteration plus the support of the largest


omponents of the residuals of the previous iteration.
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Algorithm 1 Re
onstru
t x from 1-bit ve
tor z

�

�

Complex 
onjugate transpose of �.

�

y

Pseudoinverse of �. �

y

= (�

�

�)

�1

�

�

.

w

jK

Set to zero all w but the K biggest 
omponent.

supp(w) Indexes of the nonzero 
omponents of w.

d

j

Downsampling ratios su
h thatM = 2Kd

0

d

1

: : : d

J�1

Require: Sampling matrix �, 1-bit ve
tor z, sparsity levelK.

m M

s( (0; : : : ; 0)

T

for j = 1; : : : ; J � 1 do

z( D

(d

j

;m)

H

(m)

z

�( D

(d

j

;m)

H

(m)

�

v( z� �s

m bm=d

j




for i = 1; : : : ; I do

w( �

�

v

T (

�

supp(w

jK

) [ supp(s

jK

)

	

b(T )( �(�; T )

y

s

b(f1; : : : ; NgnT )( (0; : : : ; 0)

T

s( b

jK

v( z��s

end for

T ( supp(s

jK

)

b(T )( �(�; T )

y

s

b(f1; : : : ; NgnT )( (0; : : : ; 0)

T

s( b

jK

end for

^

x( 	s

Intuitively, the high probability of 
orre
t support re
overy 
omes from the

fa
t that we estimate it under large noise 
ondition, but large number of measure-

ments. On
e the support is identi�ed (at every iteration the support estimation is

improved), the bandwidth is de
reased in order to redu
e the quantization noise.

The key fa
t is to note that the signal energy de
reases linearly when the fre-

quen
y de
reases, while noise energy de
reases polynomially thanks to the �=�
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noise shaping properties [55℄. This 
ombination of �ltering and estimation, has

the bene�t of re
overing the signal with a very high probability of su

ess, while

redu
ing the quantization noise to the minimum.

6.4.1 Numeri
al Experiments

The simulations run in this se
tion share the same set of parameters and 
on�gu-

ration as the simulations draw in Se
tion 6.3.2.

In the �rst experiment (Figure 6.9), we have run the same en
oding as that in

Figure 6.7, and we have made the de
oding with FCoSaMP. Note the in
rement

in terms ofRSNR of at least 30 dB in all the 
ases. It is also important to note the

largeRSNR that is a
hieved espe
ially for very sparse signals. Note that for M/N

= 1 we are just taking 1-bit measurement at Nyquist rate and obtaining a RSNR

of up to 90dB, whi
h translates into a 
ompression fa
tor of about 15 times with

respe
t to Nyquist sampling.
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Fig. 6.9: Simulation of the performan
e of RADS Converter using the FCoSaMP algo-

rithm in the re
onstru
tion for different sparsity levels. On top: RSNR as a

fun
tion of the oversampling ratioM=N ; bottom: PSR as a fun
tion ofM=N .

The large RSNR that is a
hieved translates into a 
ompression fa
tor of up to

15 times with respe
t to Nyquist based a
quisition

Another interesting fa
t is that the support re
overy was always 
orre
t for

K < 36, while it was substantially less than 100% only for K � 36 when low

oversampling ratios are 
onsidered. This is mainly due to the large bandwidth that
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remains at the end of the algorithm, i.e., to the residual noise energy that is large

with respe
t to the signal energy therefore large noise energy 
ompared with the

signal energy.

In the se
ond experiment, we have added intrinsi
 noise to the signal by adding

i.i.d. Gaussian noise to get an input SNR of 30 dB. The results are shown in

Figure 6.10.
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Fig. 6.10: Simulation of the performan
e of RADS Converter using the FCoSaMP algo-

rithm for re
onstru
tion, for different sparsity levels. The input signal has an

intrinsi
 SNR of 30 dB. On top: RSNR as a fun
tion of the oversampling

ratio M=N ; bottom: PSR as a fun
tion of M=N . The en
oding pro
ess and

the re
onstru
tion algorithm show to be robust against strong noise 
ondition.

As in the experiment presented in previous se
tion, the performan
e of the


onverter is limited by the intrinsi
 noise of 30 dB. However the denoising effe
t

is less evident in this simulation. This is due to the fa
t that as we �lter and
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de
imate iteratively, given the not ideal behavior of the �lters, part of the noise is

aliased into the low part of the band and added to the total noise energy at the end

of the algorithm.

In spite of this, it is shown that the en
oding pro
ess of the RADS Converter,

as well as the behavior of re
onstru
tion algorithm are robust against strong noise


ondition showing a behavior in terms of PSR similar to that of the previous

simulation.

To avoid possible biases due to the 
hoi
e of a parti
ular sparsity basis, in the

third experiment we have 
hanged the sparsity basis and we have simulated the

a
quisition of a signal that is sparse along a random basis obtained by orthonor-

malizing a matrix with Gaussian independent entries with zero average. The re-

sults are shown in Figure 6.11. Comparing this results with those in Figure 6.9,

note that there is a slight differen
e in terms of RSNR. This is due to the fa
t

that the former may 
ontain some 
omponents that when looked in the time do-

main 
on
entrate most of its energy in small time intervals. In other words, the

signal energy is not uniformly distributed along the time axis, making many of the

samples taken by the RADS Converter useless or without information.

In the extreme 
ase, when all the energy is 
on
entrated in a small period of

time 
ompared with the time-window used for the pro
essing, RADS Converter

will fail to de
ode this kind of signals.
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Fig. 6.11: Simulation of the performan
e of RADS Converter by using the FCoSaMP

algorithm for re
onstru
tion, for different sparsity levels. The input signal is

sparse in a random basis. On top: RSNR as a fun
tion of the oversampling

ratio M=N ; bottom: PSR as a fun
tion of M=N . The proposed ar
hite
ture

shows to work independently of the sparsity basis provided it is spread on the

time axis.

Finally, in the last experiment we have 
ompared the performan
e a
hieved

by our system with two state of the art 1-bit 
ompressive sensing algorithms, i.e.,
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the Restri
ted Step Shrinkage (RSS) [62℄ and Binary Iterative Hard Thresholding

(BIHT) [51℄, that are generi
 s
hemes working on measurement matri
es with

ni
e theoreti
al properties (Figure 6.12).
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Fig. 6.12: Comparison of the performan
e of RADS Converter de
oded with FCoSaMP

with 1bRMPI de
oded with the RSS and BIHT algorithms. RSNR as a

fun
tion of the oversampling ratio M=N for �x signal length N = 1024 and

sparsity level ofK = 10. The same amount of 1-bit samples are 
onsidered for

every 
ase.

In every trial we have simulated the a
quisition of a signal that is 10-sparse

along a random basis. Independently of the ar
hite
ture, the same amount of 1-bit

samples z are 
onsidered as input for the re
onstru
tion algorithm.

In all 
ases, the RADS s
heme was able to perfe
tly re
onstru
t the support

of the original signal and, as shown in Figure 6.12, it a
hieves an RSNR largely

superior to that of the referen
es.
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6.5 Time Domain Analysis

Up to now, we have made a high level analysis based on frequen
y domain as-

sumptions of the fun
tionality of the RADS 
onverter, and we have evaluated

two different re
onstru
tion algorithms that produ
e different results in terms of

the sele
ted performan
e metri
s.

It seems that in the studied 
ases, the a
hieved performan
e is limited by the

sele
ted re
onstru
tion algorithm, and not by the a
quisition ar
hite
ture itself.

The main question we want to answer in this se
tion is: what is the maximum

a
hievable performan
e of theRADS 
onverter (independently of the re
onstru
-

tion algorithm)?

To answer this question we 
annot perform only the high level analysis we

have made so far, but we need a deeper understanding of the en
oding pro
ess.

For this purpose, we will make a time-domain analysis of the 
onverter, starting

by a time-domain analysis of single 1

st

-order�=�modulator, then generalizing it

to a L

st

-order �=� modulator, and �nally analyzing the whole RADS Converter

ar
hite
ture. In addition, we will also show how to exploit the time-domain anal-

ysis made for theRADS 
onverter in order to re
onstru
t the original signal from

the one bit measurements.

6.5.1 �=� modulator time-domain analysis

1

st

-order �=� modulator time-domain analysis

Consider �rst a dis
rete time 1

st

-order�=� modulator as in �gure 6.13 with zero

initial 
onditions, where the dis
rete sequen
e y feeds the modulator, that outputs

the dis
rete sequen
e z, and where the internal state is de�ned by the state variable

v at any time n. The blo
k 
alled [Q℄ represents a general quantizer and the blo
k


alled [D℄ represents a one time-step delay.



6. RADS Converter 94

-
+

D

+
+

D

Q
yn znvn

Fig. 6.13: First order �=� modulator s
hemati
 diagram.

Following the signal path we 
an write the following equation at any time n:

v

n

= y

n

� z

n�1

+ v

n�1

(6.10)

and of 
ourse

v

n�1

= y

n�1

� z

n�2

+ v

n�2

(6.11)

Repla
ing (6.11) into (6.10) we get

v

n

= y

n

� z

n�1

+ y

n�1

� z

n�2

+ v

n�2

Extending the same reasoning up to n = 1 and for v

1

= 0 (zero initial 
ondi-

tions) we 
an write

v

n

= y

n

� z

n�1

+ y

n�1

� z

n�2

+ y

n�2

� z

n�3

+ v

n�3

v

n

= y

n

+ � � �+ y

1

� z

n�1

� � � � � z

1

=

n

X

i=1

y

i

�

n�1

X

i=1

z

i

(6.12)

This equation relates the 
urrent state variable v at any time n with the whole

history of input y and output z up to time n� 1.
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On the other hand, sin
e we are using a 1-bit quantizer [Q℄, without loss of

generality by en
oding the value

0

1

0

for all positive inputs of the quantizer (in-


luding zero), and the value

0

� 1

0

for all negative values of the input, we have

that

v

n

z

n

� 0 8n (6.13)

De�ning the ve
tors

y =

2

6

6

6

6

6

6

4

y

1

:

:

:

y

n

3

7

7

7

7

7

7

5

; v =

2

6

6

6

6

6

6

4

v

1

:

:

:

v

n

3

7

7

7

7

7

7

5

; z =

2

6

6

6

6

6

6

4

z

1

:

:

:

z

n

3

7

7

7

7

7

7

5

and the matri
es

Z =

2

6

6

6

6

6

6

6

6

6

6

6

4

z

1

0 0 : : : 0

0 z

2

0 : : : 0

0 0 z

3

: : : 0

: : :

: : :

: : :

0 0 0 : : : z

n

3

7

7

7

7

7

7

7

7

7

7

7

5

;

� =

2

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 : : : 0

1 1 0 : : : 0

1 1 1 : : : 0

: : :

: : :

: : :

1 1 1 : : : 1

3

7

7

7

7

7

7

7

7

7

7

7

5

; � =

2

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 : : : 0

1 0 0 : : : 0

1 1 0 : : : 0

: : :

: : :

: : :

1 1 1 : : : 0

3

7

7

7

7

7

7

7

7

7

7

7

5
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we 
an write

v = �

�

�y��

�

�z (6.14)

and

Zv � 0 (6.15)

where the last inequality is 
omponent-wise.

In this way, 
ombining equation (6.14) with equation (6.15), and given the

measurements z we 
an de�ne a solution spa
e for any input y:

Z�

�

�y � Z�

�

�z

This spa
e 
ontains all possible instan
es of the input y that are solutions of

the�=� modulation pro
ess.

L

th

-order �=� modulator time-domain analysis

Consider now a dis
rete time L

th

-order�=�modulator as in �gure 6.14 with zero

initial 
onditions.

Q

yn
znvnwn

L-order

Loop Filter

Fig. 6.14: L

th

-order �=� modulator s
hemati
 diagram.

In this 
ase, the ve
tor w 2 R

L

de�nes the state ve
tor of the loop �lter, while
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the state variable v is equal to the last 
omponent of the state ve
tor (w

:;L

).

The 
urrent state at time n 
an be 
omputed based on the previous states as

w

n

= By

n�1

+ Cz

n�1

+ Aw

n�1

where the matrix A 2 R

LxL

and the ve
tors B;C 2 R

L


ontain the 
oef�
ients

that determine the transfer fun
tion of the loop �lter.

The output of the loop �lter is simply v

n

= w

n;L

and the output of the modu-

lator is 
al
ulated as z

n

= sign(v

n

), where w

:;L

is the L

th


omponent of the state

ve
tor w.

Analogously as pro
eeded with the 1

st

-order modulator, we 
an write

w

n

= By

n�1

+ Cz

n�1

+ ABy

n�2

+ ACz

n�2

+ A

(2)

w

n�2

w

n

= A

(0)

By

n�1

+ � � �+ A

(n�2)

By

1

+ A

(0)

Cz

n�2

+ � � �+ A

(n�2)

Cz

1

w

n

= B

n�1

X

i=1

A

(i�1)

y

i

+ C

n�1

X

i=1

A

(i�1)

z

i

(6.16)

sin
e w

1

= 0 (zero initial 
onditions).

We also have that,

v

n

z

n

� 0 8n

De�ning the ve
tors



6. RADS Converter 98

y =

2

6

6

6

6

6

6

4

y

1

:

:

:

y

n�1

3

7

7

7

7

7

7

5

; v

0

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

w

2;1

w

2;2

:

:

w

2;L

w

3

:

:

:

w

n�1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; z =

2

6

6

6

6

6

6

4

z

1

:

:

:

z

n�1

3

7

7

7

7

7

7

5

and the matri
es

Z =

2

6

6

6

6

6

6

6

6

6

6

6

4

z

1

0 0 : : : 0

0 z

2

0 : : : 0

0 0 z

3

: : : 0

: : :

: : :

: : :

0 0 0 : : : z

n�1

3

7

7

7

7

7

7

7

7

7

7

7

5

;

De�ne

�

�

�

i

= A

(i)

B

Æ

Æ

Æ

i

= A

(i)

C

then,
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�

�
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=
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�

�

�

0
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�
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0
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�

�

�

2

�

�

�

1

�

�

�

0

: : : 0

: : :

: : :

: : :

�

�

�

n�2

�

�

�

n�3

�

�

�

n�4

: : : �

�

�

0

3

7

7

7

7

7

7

7

7

7

7

7

5

;

�

�

�

0

= �

2

6

6

6

6

6

6

6

6

6

6

6

4

Æ

Æ

Æ

0

0 0 : : : 0

Æ

Æ

Æ

1

Æ

Æ

Æ

0

0 : : : 0

Æ

Æ

Æ

2

Æ

Æ

Æ

1

Æ

Æ

Æ

0

: : : 0

: : :

: : :

: : :

Æ

Æ

Æ

n�2

Æ

Æ

Æ

n�3

Æ

Æ

Æ

n�4

: : : Æ

Æ

Æ

0

3

7

7

7

7

7

7

7

7

7

7

7

5

We 
an now write equation (6.16) in matrix form as

v

0

= �

�

�

0

y��

�

�

0

z (6.17)

In order to keep only the last 
omponent of the state ve
tor, de�ne the matrix

K 2 R

L(N�1)xN�1

as

K =

2

6

6

6

6

6

6

6

6

6

6

6

4

0 : : : 0; 1 0 0 : : : 0

0 0 : : : 0; 1 0 : : : 0

0 0 0 : : : 0; 1 : : : 0

: : :

: : :

: : :

0 0 0 : : : 0 : : : 0; 1

3

7

7

7

7

7

7

7

7

7

7

7

5

;
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where 0 represents a row ve
tor of size L with all zeros in its inputs.

De�ning v as

v =

2

6

6

6

6

6

6

4

v

1

:

:

:

v

n�1

3

7

7

7

7

7

7

5

to get

v = K�

�

�

0

y� K�

�

�

0

z

, and

v = �

�

�y��

�

�z (6.18)

where�

�

� = K�

�

�

0

and�

�

� = K�

�

�

0

.

As in the 1

st

-order 
ase we have,

Zv � 0 (6.19)

and 
ombining equation (6.18) with (6.19) to have

Z�y � Z�z (6.20)

The spa
e de�ned by equation (6.20) 
ontains all possible instan
es of the

input y that are solution of the �=� modulation pro
ess, given the measurements

z.

Now, we 
an highlight some observations for the above equation:
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� The input signal de�nes a point in the multi-dimensional spa
e that is 
on-

tained in the solution spa
e de�ned by the set of equations in (6.20).

� Fixing the dimension of the input signal, as we add new measurements,

every measurement will split the spa
e into two sub-spa
es. Only one of

those sub-spa
es will 
ontain possible solutions.

� The minimum number of measurements needed to de�ne a 
losed region is

equal to the dimension of the input signal plus one.

� Adding a new measurement, does not imply a redu
tion in the solution

spa
e.

� A smaller solution spa
e implies an estimation of the input signal with a

bigger a

ura
y. In other words, the smaller the solution spa
e, the bigger

the SNR of the estimated signal.

6.5.2 RADS Converter time-domain analysis

We now have all we need to analyze the whole RADS 
onverter ar
hite
ture.

The set of inequalities Z�y � Z�z de�ne the solution spa
e given by the �=�

modulator. In the same way as above, to 
ompletely model the RADS Converter

and the input signal itself, we 
an easily write

y = DAx = DA	s

to have

Z�DA	s � Z�z (6.21)

where the matrix A is the upsampling operator and the matrix D represents the

pre-modulation pro
ess, as we have de�ned before.
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We have now a 
omplete des
ription of the modulation pro
ess of the RADS

Converter ar
hite
ture in time domain. The main differen
es between the RADS

Converter and a �=� alone are two: �rst, the pre-modulation in
reases the prob-

ability that every new measurement modify the solution spa
e, in
reasing in this

way the a

ura
y in the estimation. Se
ondly, under the assumption that s is sparse

in a given domain, it is possible redu
e the solution spa
e to only those 
andidates

that satisfy this 
ondition, redu
ing even more the solution spa
e. Sin
e sparsity

is not a dimensionality redu
tion, it is not possible to know a priori whi
h are the

dire
tions to look at, but as we pro
eed with the measurements, there will be many


andidates to dis
ard sin
e they are not sparse enough to be a possible solution.

6.5.3 Spa
e Dimension Analysis

As we have seen before, it is possible to de�ne a monotoni
 dependen
e between

the size of the solution spa
e and the SNR of the estimation of the input signal.

As a measure of size, and 
onsidering that any point in the solution spa
e is a


andidate with the same probability, it is possible to 
onsider the hyper-volume of

that solution spa
e as a measure of pre
ision of the estimation of the input signal.

Regrettably, an analyti
al expression for the 
al
ulation of the hyper-volume

in high-dimensional spa
es is a dif�
ult task, and we need to resort to numeri
al

integration. For that purpose, we will use Monte-Carlo integration [63, 64℄ in

order to have an estimation of the hyper-volume of the solution spa
e as a fun
tion

of the number of measurements.

Monte Carlo integration is a te
hnique for numeri
al integration that uses ran-

dom numbers, and is parti
ularly useful for higher dimensional integrals. Infor-

mally, to estimate the volume of a given domain D, we have �rst, to pi
k a simple

domain E whose volume is easily 
al
ulated and whi
h D is 
ontained. Then, we

generate a sequen
e of random points that fall within E, some of whi
h will also

fall within D. Finally, we 
al
ulate the area of D as the area of E by the fra
tion

of points that fall between E.
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In this 
ase, we have set the 
ontainer volume as an hyper-
ube of 1 � 1 �

1 � � � � � 1 and we have generated 500; 000 � M random points with uniform

distribution within this range for every point in the plot.

We have plot in Figure 6.15 the hyper-volume of the solution spa
e as a fun
-

tion of the number of measurements for two 
ases: using a single �=� 
onverter

(equation (6.20)); and using the RADS Converter ar
hite
ture (equation (6.21)).

As a referen
e, we have also plot a line with slope �1=2

M

. This line will o

ur

only when every 
ut of the spa
e produ
ed by a new measurement divides the

solution spa
e exa
tly into two equal parts.
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Fig. 6.15: Monte Carlo integration of the hyper-volume of the solution spa
e for RADS

Converter and for �=� 
onverter. On top: volume in linear s
ale as a fun
tion

of the number of measurements M ; bottom: volume in logarithmi
 s
ale as

a fun
tion of M . The en
oding performed by RADS is more effe
tive in

redu
ing the size of the solution spa
e.

As 
an be observed in Figure 6.15 the differen
e in size of the solution spa
e

obtained using theRADS Converter approa
h is orders of magnitudemore 
onve-

nient than using 
lassi
al�=� modulation. This differen
e is mu
h more evident
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as the number of measurements is in
reased. However, as the plot shows it is still

possible to obtain an important improvement, sin
e the line indi
ating the optimal


uts is far away from the one des
ribed by the RADS Converter.

6.5.4 L1-normMinimization

It was demonstrated above that the set of inequalities given by equation (6.21) de-

�ne the solution spa
e of theRADS modulation pro
ess. This spa
e still 
ontains

many possible input ve
tors s, but we are parti
ularly interested in the sparsest

ve
tor that exist in this spa
e. In order to �nd su
h a ve
tor we 
an re
ast to a L1-

norm minimization, sin
e from the observed in the previous 
hapter, it enfor
es

sparsity a
ross all possible solutions.

We 
an write the following minimization problem

ŝ = argmin

N

X

i=1

js

i

j s.t. Z�DA	s � Z�z (6.22)

whi
h from now on we will 
all L1min.

6.5.5 Numeri
al Experiments

In this se
tion we will show the results from a series of simulation we have run in

order to evaluate the minimization problem presented in equation (6.22).

We have setup the same 
onditions for the simulation in se
tion 6.3.2, ex
ept

that in this 
ase we have redu
ed the number of measurements from 2048 to 1024.

It was ne
essary to redu
e this number for the simulation to be 
omputational

feasible, sin
e every measurement produ
e a new 
onstrain to be pass to the solver.

The minimization problem was solved by the software 
plex [65℄.

Figure 6.16 shows the performan
e a
hieved by FCoSaMP 
ompared with that

obtained using the minimization problem of equation (6.22), by �xing the sparsity

number toK = 8.
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As it is observed in the plot, L1min outperforms FCoSaMP by around 10 dB

in the whole range. This behavior 
an be veri�ed using different experimental

setups not shown.
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Fig. 6.16: Performan
e 
omparison of FCoSaMP and L1min. RSNR as a fun
tion of

oversampling ratioM=N for an 8-sparse signal en
oded withRADS 
onverter.

Themain drawba
k of this re
onstru
tion algorithm is the running time needed

to solve the minimization problem. In Figure 6.17 we have plotted the relation-

ship between the average simulation time taken by L1min over the time taken by

FCoSaMP.
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Fig. 6.17: Re
onstru
tion algorithm exe
ution time for FCoSaMP and L1min. Relation-

ship between the time taken by L1min and FCoSaMP as a fun
tion of the

oversampling ratioM=N .

As it is shown in the plot, the time needed for L1min is between 50 and 250

times longer than that of FCoSaMP. As we in
rease the oversampling ratio more

equations enter into play, whi
h redu
e the sear
h spa
e of the minimization algo-

rithm. However, this long re
onstru
tion time make this algorithm only feasible

in parti
ular 
ases.



6. RADS Converter 108

6.6 Hardware Implementation

In this se
tion we propose a hardware implementation of the RADS Converter in

order to validate the ideas presented above by a real appli
ation.

The implementation was made in a redu
ed size PCB with off-the-shelf 
om-

ponents. Some 
onstrains were imposed in the design of the board, sin
e the out-

put of the �=� 
onverter must be a 1-bit output, but it is rather dif�
ult to �nd a


ommer
ial�=� 
onverter with this 
hara
teristi
 in the market (most 
onverters

in
lude the de
imation �lter as well).

Figure 6.18 shows a simpli�ed s
hemati
 diagram of the implemented ar
hi-

te
ture, and the aspe
ts of the implemented board 
an be observed in Figure 6.19.

clock_in

data_out

V+

V-

DS 

+

-

+

-

x(t)

signal_in

RNG_in

z���

	���
V_ref

Fig. 6.18: Simpli�ed s
hemati
 diagram of the hardware implementation of the RADS

Converter.

Fig. 6.19: Pi
ture of the hardware implementation of the RADS Converter.

From the user point of view the 
onverter presents two inputs: a 
lo
k and a
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random sequen
e, and one output: the 1-bit RADS Converter output. The 
lo
k

input and input for the random sequen
e must be syn
hronized, and the frequen
y

relationship must be the oversampling ratio determined by the appli
ation. The

1-bit output is syn
hronized with the input 
lo
k and must be read before the next

rising edge of the in
oming 
lo
k.

The �rst stage of the 
onverter is nothing but an ampli�er, whi
h fun
tions

is to 
onvert the signal from single-ended to differential, and to adapt the signal

input level to the�=� 
onverter level.

After this stage, the signal is passed trough a 
ombination of swit
hes, that


hange the polarity of the signal as it is 
ommanded by the RNG input. This

pro
essing is equivalent to the multipli
ation stage showed in Figure 6.3.

The last blo
k is a 
onventional�=� 
onverter, whi
h produ
es a 1-bit output

stream. The 
hosen 
onverter was an AD7401A, from Analog Devi
es, whi
h is

a 2nd order dis
rete time modulator with a maximum sampling rate of 20MSPS.

Note that in an integrated implementation the whole ar
hite
ture 
an be di-

re
tly implemented with a slight modi�
ation of the �rst stage of a dis
rete time

�=� 
onverter.

6.6.1 Measurement Setup

Figure 6.20 and Figure 6.21 show the measurement setup. The 
omplete setup

is 
omposed by the RADS 
onverter board, a Spartan 6 Development Board re-

sponsible for to generating the pseudorandom sequen
e and to interfa
e it to a PC

trough a USB port, a signal generator with GPIB interfa
e, a power supply, and a

laptop for the 
ontrol and the a
quisition of the measurements.
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Fig. 6.20: Pi
ture of the RADS Converter 
onne
ted to a Spartan 6 FPGA development

kit.

Fig. 6.21: Measurement setup for the evaluation of the hardware implementation of the

RADS Converter.

The measurement pro
edure is des
ribed below:

� Set the number of measurements (M ), the Nyquist rate of the input signal
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to be generated (N ), the sparsity level (K), and 
hoose a basis of sparsity

for the signal.

� Generate the samples of the signal to be a
quired in the PC with Matlab,

and send them through the GPIB interfa
e to the signal generator.

� Start the a
quisition with the RADS board, save the measurements tempo-

rally in the Spartan 6 development board, and transfer them to the PC trough

USB.

� Pro
ess the a
quired samples in the PC with FCoSaMP and 
ompare the

re
onstru
ted signal with the syntheti
ally generated signal.

The proposed measurement setup is very �exible and allows to exploit the

whole spa
e of parameters of the a
quisition pro
ess.

6.6.2 Measurements and Validation

We have made a series of measurements in order to validate the fun
tioning of

RADS Converter. We have �xed the sampling frequen
y to 10MHz and we have

vary the time window in order to 
hange the number of a
quired measurements.

As an example, Figure 6.6.2 shows a plot of an 8-sparse (in a random basis

with a Nyquist rate of 5MHz) syntheti
 signal generated in Matlab, and superim-

posed to it, it is the signal a
quired withRADS Converter and re
onstru
ted with

FCoSaMP. The obtained RSNR was of 32dB.
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Fig. 6.22: A
quisition of an analog signal with RADS Converter. The input signal is 8-

sparse in a random basis and with a Nyquist rate half the sampling frequen
y.

On top: the syntheti
 signal superimposed to the re
onstru
ted signal for the

whole a
quisition window; on bottom: a zoom-in of the same a
quired signal.

Figure 6.6.2 shows the signal input spe
trum. As it is shown, the spe
trum

o

upan
y is of 2:5MHz, whi
h implies a Nyquist rate of 5MHz. With the bit

budget utilized by RADS Converter in the a
quisition of this signal, it would be

obtained a maximum SNR of 12dB by the used of a 
lassi
al Nyquist 
onverter.
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Fig. 6.23: Spe
trum of the input signal a
quired by RADS Converter. The spe
trum has

a full o

upan
y for frequen
ies up to 2:5MHz

Another example using a sparse signal in the Fourier domain is presented in

the 6.24. The plot shows the mean value over 10 measurements obtained by the

RADS 
onverter board.
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Fig. 6.24: Performan
e of the hardware implementation of the RADS Converter by us-

ing the FCoSaMP algorithm for re
onstru
tion, for different sparsity levels.

RSNR as a fun
tion of the oversampling ratio M=N . The support re
overy

was always 
orre
t for the 10 measurements.

As 
an be observed, the trend is the same to that obtained in the simulation,

but the performan
e ar
hived in terms of RSNR is inferior to the expe
ted by

the simulation. These differen
es 
an be due to, imperfe
tions in the utilized

swit
hes (on/off resistan
e, swit
hing time, frequen
y response), different sour
es

of noise (power supply noise, noise introdu
ed by the ampli�er, thermal noise,

quantization noise in the signal generator) and most important, the bandwidth of

the input stage of the utilized�=� 
onverter (the modulated signal that enter into

the�=� 
onverter ex
eeds greatly the 
onverter spe
i�
ation).

In spite of this, the implementation of the 
onverter has shown that this ar
hi-

te
ture is promising as an analog-to-information 
onverter, signi�
antly redu
ing

the total number of bits with respe
t to Nyquist based sampling for spe
i�
 
lasses

of signals.



6. RADS Converter 115

6.7 Con
lusion

In this 
hapter we have introdu
ed the RADS Converter, we have evaluated its

performan
e through theoreti
al results, numeri
al simulations and a hardware

implementation of the a
quisition ar
hite
ture. We have proposed a number of

re
onstru
tion algorithms among those we highlight the FCoSaMP and the L1-

norm minimization.

The proposed ar
hite
ture allows a �simple� hardware implementation for the

a
quisition of large bandwidth signals that are sparse over a variety of supports,

obtaining a very high resolution after re
onstru
tion. This 
ontrast with 
lassi
al

sampling methods, where the resolution drasti
ally de
reases with the sampling

frequen
y.

We have also evaluated numeri
ally the quality of the algorithm to retrieve

a 
orre
t support under different input signal 
ondition, obtaining a very high

probability over a wide range of sparsity levels.

Finally we have proposed a different approa
h for the study of the RADS

Converter and for �=� modulators in general. Contrary to what is found in the

literature for this kind of 
onverters, usually evaluated in the frequen
y domain

[55, 56, 57, 58℄, the proposed approa
h is based on a time-domain analysis.





7. CONCLUSIONS

This thesis builds on the �eld of signal pro
essing, and illustrates with two differ-

ent appli
ations how, by in
reasing the efforts in the digital domain, it is possible

to redu
e the requirements for the implementation of analog hardware.

Spe
i�
ally, we have fo
used on the analysis of the use of very 
oarse quan-

tization, more pre
isely 1-bit quantization, with the aim of obtaining a simpli�-


ation in the implementation of both, analog to digital 
onverters, and digital to

analog 
onverters. We have shown that a proper exploitation of binary quantiza-

tion 
an lead to performan
es that are similar, and sometimes even better, than

those obtained using multibit approa
hes.

In the �rst part we have proposed the use of Legendre sequen
es (binary se-

quen
es) for the utilization in MIMO a
tive sensing systems. We have proposed

the 
onstru
tion of set of sequen
es, where ea
h of the sequen
es in the set is

made from a different rotation of the same Legendre sequen
e. We have found

that optimal rotations exist, and that the set formed by this binary sequen
es has

a performan
e in terms of ISL beyond the one obtained by other sets of binary

sequen
es. We have also found that the performan
e obtained by our sequen
es is


omparable to state-of-the-art algorithms that produ
e real value sequen
es, when

quantization is imposed to them up to a 
ertain level of quantization depth.

In order to obtain the optimal rotations, we have presented an analyti
al ex-

pression for the 
al
ulation of the 
ross-
orrelation 
omponents of the ISL of a

set of sequen
es. This expression, put together with a previously obtained ex-

pression for the 
al
ulation of the ISL of a single sequen
e, allowed the 
reation



7. Con
lusions 118

of a 
omplete expression for the ISL of a set of sequen
es. Under asymptoti



onditions, this expression 
an be used to 
al
ulate the ISL of sequen
es whose

generating fun
tion has a relatively simple trend. Sin
e this is the 
ase of Legen-

dre sequen
es, we were able to derive an analyti
al expression for the asymptoti


ISL of sets of rotated Legendre sequen
es. Su
h an expression was exploited to

drive the optimization pro
edure needed to 
onstru
t small-ISL sets of antipodal

sequen
es of any sequen
e length with potential appli
ations to 
ommuni
ation

and a
tive sensing systems.

We have started the se
ond part of this thesis by introdu
ing the models ne
-

essary to represent the 
lasses of signals of interest, i.e. sparse signals. We have

shown how many high-dimensional signals a
tually have a limited number of de-

grees of freedom 
ompared to its dimensionality. These 
lasses of signals are

known as sparse signals, whi
h are one of the main ingredients for the develop-

ment of the 
ompressive sensing theory.

In this part of the thesis we have dealt parti
ularly with the design and de-

velopment of a hardware ar
hite
ture for the implementation of a 
ompressive

sensing system. Based on the motivation of this thesis work, one of the requisite

we have impose for the implementation of su
h a system, was that it must lead

into a simple hardware/system implementation.

In this way , we have introdu
ed a new ar
hite
ture for an Analog to Informa-

tion 
onverter that was 
alled the RADS Converter. The proposed ar
hite
ture is

based on a well-known �=� 
onverter that produ
es 1-bit measurements of the

in
oming signal. Starting from a �=� 
onverter, a straightforward modi�
ation

of the input stage topology lead to the implementation of the RADS Converter

ar
hite
ture.

The re
onstru
tion performan
e obtained using the proposed 
onverter was

found to depend on the signal information 
ontent, instead of depending on the

signal bandwidth, as it is in the 
ase for a 
lassi
al �=� 
onverter. This results in

the possibility of a
quisition of large bandwidth signals that are sparse over a vari-
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ety of supports, with an extremely high a

ura
y after being pro
essed. Based on


ompressive sensing 
on
epts, RADS Converter is able exploit the sparse signal

stru
ture to 
apture all its information 
ontent by taking single bit measurements.

An important �nding of this work, was that by exploiting the pe
uliarities of

the a
quisition strategy we were able to develop a new re
onstru
tion algorithm

that produ
es an improved estimate (with respe
t to general algorithms) of the

signal in terms of a

ura
y and probability of su

essful re
onstru
tion. This

suggest that, while most of the re
onstru
tion algorithms for 
ompressive sensing

are based on guaranties on the stru
ture of the measurement matrix (RIP based

algorithms), it is possible to get a pro�t by generating more 
lever algorithms that

mat
h with the a
quisition ar
hite
ture itself.

The modeling of the RADS Converter in the frequen
y domain has led to

an intuitive understanding of the en
oding pro
ess, and has given light on how

pro
eed to ef�
iently re
onstru
t the input signal from the measurements.

However, in order to get a deeper insight into the fun
tioning of the proposed


onverter, we were able to develop a time-domain model of the operations per-

formed to the signal in the en
oding pro
ess. With this aim we have raised an

algebrai
 analysis of the spa
e determined by the measurements, and its redu
-

tion as new measurements 
ome into 
onsideration. The study of the size of that

spa
e, eviden
es the differen
e between the RADS en
oding and the �=� en-


oding, and allows the 
al
ulation/ estimation of the theoreti
al maximum limit

that 
an be expe
ted by taking 1-bit measurements of any form.

The different perspe
tive given by the time domain modeling of the en
oding

pro
ess, has led to the proposal of a new re
onstru
tion algorithm for the RADS

Converter ar
hite
ture. This algorithm is based on 
lassi
al 
ompressive sensing


on
epts that promotes sparsity through the minimization of the L1-norm. It has

been demonstrated that the use of this algorithm 
an produ
e a better estimate

of the signal than its frequen
y-based 
ounterpart. However, the 
omplex task

of minimizing the L1-norm over the huge amount of 
onstraints, makes this im-
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provement be a
hieved at the expense of an in
rease in exe
ution time, making

this appli
ation only feasible for 
ertain appli
ations.

Besides the extensively numeri
al simulations performed during the devel-

opment of this thesis to validate the results, we have implemented the RADS

Converter ar
hite
ture in a redu
ed size PCB with off-the-shelf 
omponents.

The implementation of the 
onverter has demonstrated that this ar
hite
ture is

promising as an analog to information 
onverter, signi�
antly redu
ing the total

number of bits with respe
t to Nyquist based sampling, for spe
i�
 
lasses of

signals.

Although the performan
e attained by the hardware implementation differs

from the one a
hieved in simulations, we believe that a proper implementation of

the RADS Converter in a spe
i�
ally designed integrated devi
e 
an lead to an

in
rease in the performan
e 
lose to the obtained in the simulation.
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