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ABSTRACT

Most electronic systems can be described in a very simplified way as an assem-
blage of analog and digital components put all together in order to perform a
certain function. Nowadays, there is an increasing tendency to reduce the analog
components, and to replace them by operations performed in the digital domain.
This tendency has led to the emergence of new electronic systems that are more
flexible, cheaper and robust. However, no matter the amount of digital process im-
plemented, there will be always an analog part to be sorted out and thus, the step
of converting digital signals into analog signals and vice versa cannot be avoided.
This conversion can be more or less complex depending on the characteristics of
the signals. Thus, even if it is desirable to replace functions carried out by analog
components by digital processes, it is equally important to do so in a way that

simplifies the conversion from digital to analog signals and vice versa.

In the present thesis, we have study strategies based on increasing the amount
of processing in the digital domain in such a way that the implementation of ana-
log hardware stages can be simplified. To this aim, we have proposed the use of
very low quantized signals, i.e. 1-bit, for the acquisition and for the generation of

particular classes of signals.

More specifically, on one hand, we have proposed a method for the generation
of sets of binary sequences to be used in multiple-input multiple-output active
sensing applications, such as radar, sonar and medical imaging. The generated
sets of sequences have very low auto- and cross-correlation sidelobes, a desired
property for this kind of applications, providing performance metrics far better

than those from other families of binary sequences, and a comparable performance
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to that of multibit approaches. The advantage of using binary sequences is, for in-
stance, the simplification of the implementation of the transmitters always present

in these applications.

On the other hand, we have proposed a new architecture for an analog to digital
converter. This architecture can be viewed as an extension of the functionalities of
a classical Delta-Sigma converter which, by taking 1-bit measurements at a rate
much bigger than that of the signal bandwidth, produces a signal estimate with
an accuracy that depends on the ratio between the sampling rate and the signal
bandwidth. In our case, relying on the structure of the signal of interest, and
assuming that its information content is much smaller than its bandwidth, we are
able to produce a signal estimate that depends on the ratio between the sampling

rate and the information content of the signal.
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1. INTRODUCTION

Although most modern electronics systems are composed by a combination of
analog and digital components, the rapidly evolving capabilities of digital elec-
tronics are shifting every function (before) handled in the analog domain into the

digital domain.

The advances in integrated circuits design have enabled the creation of digital
processing systems that are more flexible, cheaper and robust than their analog
counterparts. This has lead to one of the most significant development during
the last decades of electronic systems design: replacing analog components to

perform their operation in the digital domain.

However, for these systems to interface with the real world, conversions be-
tween analog signals and digital signals are required. Analog-to-Digital (AD) and

Digital-to-Analog (DA) converters are the responsible of that conversion.

Most AD and DA converters rely on the Nyquist-Shannon sampling theorem
that determines how any signal can be exactly recovered from a set of uniformly
spaced samples taken at a rate of at least twice the highest frequency present in

the signal of interest.

Nyquist-Shannon sampling theorem imposes a requirement on the time do-
main to the problem of how to represent an analog signal by a series of samples
without any lost of information. However, in order to process and store samples in
a digital system, we must be able to represent each sample using a finite number
of bits, and hence the measurements will typically be subject to the unavoidable

quantization error. By increasing the number of bits of the measurements, the
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quantization process can be neglected, or hidden with respect to processes present
in the system such as thermal noise. The main drawback of this approach, is that
the cost of increasing the number of bits for Nyquist based AD and DA converters
require a huge amount of analog hardware. As an example, “flash” AD convert-
ers exponentially increase its hardware complexity with the number of resolution
bits, and becomes impractical at resolutions over 8 bits due to the large number of

comparators required.

There is a different approach for AD and DA conversion that it is not based
on the Nyquist-Shannon sampling theorem. Delta-Sigma converters rely on the
utilization of a very small amount of bits to quantize signals (1-bit quantization is
the most typical value used). Delta-Sigma converters achieve this by trading-off
resolution with the sampling frequency. These converters oversample the signal
by a large factor with respect to its bandwidth and, by a filtering processing (ana-
log or digital) they are able to obtain a final signal represented with an accuracy

much bigger than the one used in the sampling process.

Among other advantages (low power, low cost) with respect to other converter
architectures, at the heart of the Delta-Sigma is the simplification on the quan-
tization stage that allows the converter to operate with no linearity degradation.
However, Delta-Sigma converters only allows to efficiently operate with signals
with a reduced spectra occupancy, due to the high oversampling ratio needed to

obtain the desired precision.

The main motivation of this dissertation is to study simplification strategies
for the implementation of analog hardware stages present in most mixed systems,
by increasing the amount of processing in the digital domain. We accomplished
this by proposing the utilization of very low quantized signals, i.e. 1-bit, for the
acquisition and for the generation of particular classes of signals. Following this
approach we have archived performances similar (or even better) than those ob-

tained through multibit approaches.

We first present the use of Legendre sequences (1-bit sequences) for the gener-



1. Introduction 3

ation of sets of sequences with good auto- and cross-correlation properties. These
Sets of Low Correlated Sequences can be used in MIMO (Multiple Input Mul-
tiple Output) active sensing systems achieving a significant improvement with
respect to other sets of binary sequences, and a similar performance to the one

achieved by multibit approaches.

Secondly, we present a new architecture for an Analog to Digital converter
(or more precisely, an Analog to Information Converter) that, based on a Delta-
Sigma converter, produces a stream of 1-bit measurements, and achieves a recon-
struction performance proportional to the signal information content instead of
that of the signal bandwidth.

1.1 Sets of Low Correlated Sequences

The design of sequences sets with low aperiodic auto- and cross-correlations is
present in many fields of engineering and plays an important role in many appli-
cations such as radar, sonar, communications, medical imaging and other active

sensing applications.

The task of designing sets of sequences with prescribed correlation properties
is a particular case of the general problem of waveform synthesis that is often
a key point in establishing the performance of transmission, synchronization, or

active sensing systems [1, 2].

Good auto-correlation properties means that any sequence in the set is nearly
uncorrelated with its own shifted version while good cross-correlation means that
any member of the sequences set is nearly uncorrelated with any other members
at any shift. A commonly used metric of the goodness of the correlation is the
Integrated Sidelobe Level (ISL), being good set of sequences those having a low
ISL value.

Although many state-of-the art algorithms were proposed for the minimization

of the ISL [3, 4, 2, 5, 6], their performance is largely impaired when quantization



1. Introduction 4

is taken into consideration. However, implementation constraints strongly favors
discrete-valued signals, possibly enforcing quantization to an extremely limited

number of levels.

What we propose here is a procedure to construct sets of antipodal sequences
with extremely low ISL. The resulting performance largely exceeds that of clas-

sical methods for the direct generation of low-ISL sets of sequences.

1.2 Analog to Information Converters

Analog to Digital conversion is one of the most important operations in signal
processing. It maps a continuous-time and real-value signal into a discrete se-
quence of discrete values. Classical sampling methods rely on the hypothesis that
the analog signal to be acquired is band-limited, and the Nyquist-Shannon the-
orem states the minimum distance between samples (or Nyquist rate) needed to

uniquely describe the analog signal by its samples.

While the assumption of bandlimited signals is of broad application, many
natural signals when represented in a proper basis, correspond to vectors in which
many components have a small value, or represent a small fraction of the total
energy. This characteristic called “sparsity” is usually exploited to represent the
signal with a much smaller amount of data, and closer to the signal information

content.

A novel sampling paradigm that goes against the common approach in data
acquisition has emerged in the last years and is called Compressive Sensing (C'S)
[7, 8, 9]. C'S theory asserts that one can recover certain signals and images from
far fewer samples or measurements than those used by traditional methods. This is
possible due to the fact that many natural signals are sparse or compressible, and,
by measuring in a particular way, it is possible to acquire the complete information

content of those kind signals.

Analog-to-Information converters relies on this idea, to measure the informa-
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tion content of the signal instead of measuring the complete redundant data avail-

able for a particular measurement domain.

Following this approach, we have proposed a novel architecture for an Analog-
to-Information converter that allows a simple hardware implementation for the

acquisition of large bandwidth signals that are sparse over a variety of supports.

1.3 Overview and Main Contributions

This thesis is mainly concerned on how signal processing techniques can be ap-
plied to real hardware applications and help to reduce the complexity of its imple-

mentation.

This work is divided into two parts, the first part tackle the problem of se-
quences synthesis, and how a proper design of simple antipodal signals can achieve
a performance similar to that obtained using multibit sequences for active sensing

applications. The main contributions of this part are:

e an analysis of the degradation of state-of-the-art algorithms for sequences

synthesis when quantization is imposed;

e a method based on generating functions for the calculation of the cross-

correlation components of the ISL of a set of sequences;

e a procedure to construct sets of antipodal sequences with extremely low
ISL;

e an analytical expression for the asymptotic ISL of sets of rotated Legendre

sequences.

The second part of the thesis concerns about the implementation of a Analog-
to-Information converter that produces a stream of 1-bit measurements and a final
resolution after reconstruction that is proportional to the information content of

the signal. The main contribution of this part are:
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a new architecture for compressive sensing that produces 1-bit measure-

ments;

e a new reconstruction algorithm for the proposed architecture that exploits
not only the sparsity hypothesis but also the hardware architecture of the

acquisition system;

e a theoretical analysis of the capabilities of a Delta-Sigma modulator to ex-
tract the information content of a signal, that is later extended for the anal-

ysis of the proposed architecture;

e a hardware implementation of the proposed architecture, and a measure-

ment setup to validate the theoretical analysis.

We conclude this thesis work with a summary of our findings in Chapter 7.
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2. INTEGRATED SIDELOBE LEVEL PROBLEM

2.1 Introduction

The design of sequences sets with good correlation properties is present in many
fields of engineering such as radar, sonar, communications, medical imaging and
so on. Active sensing applications, have been greatly beneficed by the use of
multiple-input multiple-output (MIMO) systems. This kind of systems, transmit
orthogonal waveforms via its antennas allowing to achieve a great increase virtual

aperture.

As an example, traditional phased-array radar system only transmits a single
waveform trough its antennas. However, by the use of MIMO radar system a
large increase in parameter identifiability [10], detection performance [11], and

resolution [12] can be achieved.

Besides orthogonality, good auto- and cross-correlation properties of the trans-

mitted waveforms are also often required [13, 14, 15].

Good auto-correlation properties means that any sequence in the set is nearly
uncorrelated with its own shifted version while good cross-correlation means that
any member of the sequences set is nearly uncorrelated with any other members

at any shift.

The design of a set of signals with small auto-correlation sidelobes and small
cross-correlation between sequences at any time delay ensure that the receiver
matched filter can extract the desired information while attenuating undesired sig-

nals.
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A commonly used metric of the goodness of the correlation is the Integrated
Sidelobe Level (ISL). The ISL of a set of M sequences each of N (possibly
complex) symbols that we will indicate with xg.” ) with j =20,...,N —1and
p=20,...,M — 1is defined as

M-1 N-1 M-1M-1 N-1
ISL=>" Y [Xe.w®)] + | X (B)]* (2.1)
p=0 k=—N+1 p=0 ¢=0 k=—N-+1
k#0 P74
where
min{N—k,N}—1
Xowam (k) = Z xg-p)x;f,z k=-N+1...N—1

j=max{0,—k}

is is the auto-correlation of the sequence x”), and

min{N—k,N}—1

X,z (k) = Z xgp)x;f,)c k=-N+1...N—1
j=max{0,—k}

is the cross-correlation between the sequences x(”) and x(?).

Good set of sequences are those having a low ISL value.

Due to the strong interest in the design of sequences with low ISL value, many
algorithms have been suggested for its minimization [4, 2, 5, 6, 1]. Such a problem
may be far from trivial when constraints are introduced. For example, reception
may have to be stopped after a certain time thus spoiling the adoption of peri-
odic signals and leading to the consideration of clipped or aperiodic correlations.

Further to that, implementation strongly favors discrete-valued signals, possibly
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enforcing quantization to an extremely limited number of levels.

This latter constraint, in particular, is known to make optimization-based meth-
ods hard to apply since continuous-optimization must either undergo quantization

or be simply discarded in favor of almost exhaustive scans.

Within this scenario, starting from the classical problem of designing an an-
tipodal sequence with a low Integrated Sidelobe Level (ISL) [16] we address its
generalization to sequence sets, for which “lobes” are considered both for auto-

correlation and for cross-correlations.

2.2 Problem Formulation

Given M and N, and based on (2.1) the general problem is that of finding the

sequence set minimizing the ISL.

Commonly, a further unimodularity constraint is put on the sequences thus
requiring that |x§.”)| =1forp=0,...,M—1andj =0,...,N — 1. Such a con-
straint is application-driven in that it eases the implementation of the transmitters

managing the electrical signals corresponding to the sequence symbols. In fact,
gp) 0\
(—m, 7] and design the set of phase sequences {0](-”)}§V:_U1 forp=0,...,.M — 1

in this case one may set ;' = €' , where i is the imaginary unit, with 9](-" ) €

that can be simply transmitted by constant-envelope modulations.

Given this constraint, it is known that the ISL cannot be decreased below its
lower bound [17]
ISL™® = N2M(M — 1)

so that the effectiveness of any approach can be measured in normalized terms by

_ Ispm
~ISL

better approaches featuring an € closer to 1.
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It is well known that sets of unimodular sequences with extremely high effec-
tiveness can be obtained by the application of algorithms [3] that are extensions

of those devised to minimize ISL in the single sequence case (M = 1) [16].

Yet, when those algorithms meet the even more implementation—friendly con-
straint of antipodal sequences, i.e. xg-p ) = +1 for p=20,....M —1and j =
0,...,N — 1, their effectiveness is largely impaired.

Actually, the antipodal problem is recognized as being much more difficult:
a known effect of the impossibility of addressing it with the tools of continuous
optimization and the need of resorting to enumeration-based discrete optimization

techniques.

In the following we concentrate on antipodal sequences.

Under such an assumption, the particular case M = 1 in which only auto-
correlation terms appear, has attracted a lot of attention by itself. This led to a
conspicuous literature analyzing more than a family of sequences for which ISL
or the equivalent Merit Factor MF = N?/ISL can be computed analytically at
least in the asymptotic case N — oo (see, e.g., [18, 19, 20, 21, 22]). Beyond that
a list of best known sequences [23] is available for /NV up to 304.

Our purpose is to develop an analytical expression that may drive optimization
in some particular difficult cases, most notably when the antipodal constrain (xg’ =
+1) is imposed.

To facilitate the discussion, denote the sum of squares corresponding to the

auto-correlation terms as

N—-1

Xpwaw = Y 1 Xpwam (k)] (2.2)

k=—N+1
k0

and the sum of squares corresponding to the cross-correlation terms as



2. Integrated Sidelobe Level Problem 13

N-1
X, @) = Z | X oz (F)]? pPF#q (2.3)
k=—N+1
so that

M1 M-1M-1
ISL = Z X, g + Z Z X, g(@) (2.4)

p=0 p=0 ¢g=0

PF#q

A general method for the calculation of X ), of any sequences of odd
length is presented in [19, 24]. This method hinges on generating functions and
writes correlations as proper sums of their values on the unit circle in the complex
plane. The method works well when we have analytical insights on the generating

functions.

Extending the ideas of [19], in section 2.3 we devise a general method for the
calculation of X, . 1n (2.3) of any pair of real sequences of odd length and
thus, together with the result in [19, 24], the ISL for a set of sequences. In section
3.1 we use this method to obtain an asymptotic expression for the ISL value of a
set formed by different rotations of Legendre sequences. Finally, in section 3.2 we
propose an optimization procedure based on the latter expression where we find

the optimal rotations that minimize the ISL for any sequences length N.

Throughout this chapter we use the following asymptotic notation:

We say that

e two sequences ay and by are asymptotically equivalent, ay ~ by iff

e ay is asymptotically bounded by by, ay = O(by) iff
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IM > 0 and 3N, | lax| < M |by| VN > N,
2.3 Calculation of the cross-correlation terms in the ISL
Let ag,ay,...,ay_1 and by, by, ...,by_1 be two real sequences of length N, we

want to obtain an expression for Xg;.

If we define the generating functions of the two sequences as

N-1 N-1
=Y 0 Q) =Y 1
§=0 §=0

we have that

Q Z Xab

—N+1

and thus

1Qu(2)Q Z Z X (k) X g (1) 2!

—N+1l=—N+1

Now, set €; = ¢ %7 and note that for kil=—N+1,...,N—1,

N—1 . _

Zef’““: N if-l+k=-N,0,N
j .

§=0 0  otherwise

Hence, if we define
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= Y 1Qu(6) Q6

j*O
2N—-1 1
=N Z X Z Xab(k)Xab(k_N)+N Z Xab(k)Xab(k_'_N)
—N+1 k=1 k=—N+1
and (for NV odd)
N-1

= X 10u(-0)i(e)f

2N—1 —1
=N Z X Z Xab(k)Xab(k_N)_N Z Xab(k)Xab(k+N)
—N+1 k=1 k=—N+1

we can express X, (i.e. the sum of squares of cross-correlations as in (2.3)) as

N-—1
Sl S//
_ 2
Xab — Z Xab(k) ON

k=—N+1

To compute S” we use the Lagrange interpolation polynomials to calculate
the values of Q,(—¢;) from Q, () for j,k = 0,..., N — 1. In this special case
the data points () coincide with the complex roots of unity and, for N odd, the
[25, p. 89]. Then

Lagrange base polynomials simply reduce to < N - +E

Qul—e) = =3 —%Qu(er) 2.5)

By substituting (2.5) into S” and developing the product |Q,(—¢;)Q:(—¢;)|?

we get
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16 €k €
S" = ~i = +1€ Qalery) Z o +16* @ (1)
j=0 Lki=0 1 " "k =0 J " "h
N—1 N-1 €
6k2
Z e+ e Qb( k2) Z + Qb(€l2)
ka=0 1 k2 la=0 i €l
16 N—1 N—1N—1N-1
= N2 Qa le (Gll)Qb(Gb)Qb (612)
k1=011=0 ka=0[l>=0
N—-1
62(1 €Ly 672
pardly + €k, € T €, € + €k, € €],

in which we may exploit the fact that €; = 1 /€; to write

16 N—-1N-1N-1N-1
S"=— D erersQalen,) Q1) Quler,) Q5 (€1,)
k1=011=0 ka=012=0
N-1 1 e
X J 2.6
{]2:6 —|—6k1€]+€l163—|—6k2€]+6l2 2.6)

Let us define now the innermost sum of (2.6) as

N—-1 N—-1

1
Wklllk2l2 E fklkl€
( Y Y Y ] 6 _'_ 6k1 6] + Ell 6] _'_ ekz 6] + Elz 1,01,/2,02 J

J=0

with
2

(24 €)(2+€)(z+€)(z + €)

fp,q,r,s(z) =

Depending on p, ¢, r, s, the rational function f, ,, s(z) can be transformed into

a specific sum of simple rational parts. Each of these rational parts can be summed
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separately. This path is fully developed in [19] and we here exploit the results

therein.

In particular we have that

A) for0<p< N

1 /1 2 1
W(p.p,p,p) = 15 <§N4 + §N2> )

€p

B) for0<p#g<N

W(p,p,p,q) = W(p.p,q,p) = W(p,q,p,p) =

1 €+ €
W(Qapapap) = §N2 <61171)2>
P

(g — €p)

C) for0O<p#qg#r<N

W(p,p,q,7) =W(p,p,r,q) = W(p,q,p,r) =
W(p,r,p,q) =W(p,q,r,p) =W(p,7,q,p) =
Wi(q,p,r,p) =W(r,p,q,p) = W(q,r,p,p) =
1 1 1
—__N?
Wi(r.a,p.p) = = P —

D) for0<p#q< N

1
Wi(p,p,q,9) = W(p,q,p,9) = W(p,q.¢,p) = —§N2_76)z
q

E) for0<p#q#r#s<N
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W(p,q,r,s)=0
Taking into account all the above cases we may write

, 16
S =i (a+p+v+9)

, where the terms «, 3, -y, and  correspond to the contributions of the cases A, B,

C and D respectively.

For the cases included in A) we have that

1 1 N-1
o= <3N4 + N2> 1Qa(,) Q0 ()| (2.7)
p=0

for the cases in B) we have

5—1N2N§:1 <7Eq+€p ) 2.8
8 _ ep(€q — €)? * (2:8)

p,q=0
pFq

5 1Qu(6) P Qu(e) Q3 eo) +
ep€q |Qulep)[* Quleg) Qs (e)+
6;Qa(6p)QZ(6q) |Qs(€p) |2 +

Eqﬁan(GQ)QZ(ep) |Qb(€p)|2] }

for C') we have
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1., w— ~1
v =-N? X (2.9)
4 p,%:ﬂ{ (€q — €)(er — €p)
pAEGFET

[enea |Quler) [ Quleq) Q5 (e)+
ep6r |Qalep)[* Qo(er) Q3 (eg)+
EzQa(ep)QZ(Eq)Qb(ep)QZ(Er)+
€ Qa(6p) Q5 (6r)Qs(€) Qs (€g)+
eperQal€p) Qg (€q) Quler)Qy(€p)+
ep€qQa(€p) Q3 (€r) Qn(eg) Qy (€p)+
€46rQa(€) Q0 (€p) Qu(€r) Q3 (€p) +
er€qQa(€r) Q0 (€p) Qu(€g) Dy (€p) +
€€pQa(€q) @y (er) |Qu(ep) |2 +

GrEan(Er)QZ(Eq) |Qb(€p)|2] }

and for D)

N-1

1 —1
J :§N2 Z {72 X [ €y€q |Qalen)Quley))” + (2.10)
p,q=0 (GP - 6‘])
p#q

GZQa(ep)QZ(Gq)Qb(ep)QZ (€q) + Gpqua(Gp)QZ(Gq)Qb(ﬁq)Qz(Gp)] }

Summarizing, we can write the sum of squares corresponding to cross—correlations
terms of the ISL as
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%o = = 3™ 0ue) @D+ 2 (0t fy 4 8)
b—ﬁ; a€] (76] ma Y

where the quantities «, (3, v, ¢ are defined in (2.7), (2.8), (2.9), (2.10).

With the method presented above in conjunction with the method presented in
[19], we can have an analytical expression for the ISL for any set of real sequences
of odd length. The computation of the above equations seems to be hard at a first
look, but in a number of cases, in particular for sequences from difference sets

[24] may lead to significant results.

In the following, we use this method to evaluate the asymptotic trend of the
ISL of a set of sequences made up by different Rotations of a Legendre Sequence

(RLS set) when /N grows to infinity.



3. INTEGRATED SIDELOBE LEVEL OF SETS OF ROTATED
LEGENDRE SEQUENCES

3.1 Legendre Sequences

The Legendre Sequence (LS) (y, ..., N1 exists for any prime N and is defined

as

1 ifjisasquare (mod N)

—1 if jisanonsquare (mod N)

A LS may be cyclically rotated ¢, positions to the left to obtain a Rotated
Legendre Sequence (RLS) a; defined as

a5 = Yjtt, (mod N) = Lj+fu,N (mod N)

with f, =t,/N € [0,1].
The asymptotic value of X, for the family of RLS was calculated in [18] and

[19] ! noting that the asymptotic value of the modulus of the generating function
of the LS (|Q¢(¢;)]) is independent of j, yielding

! The first contribution relies on a “Postulate of Mathematical Ergodicity” to arrive at a result
which is formally proved by the second.
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1

. 2 1\°
X fa__‘+8<fa_§> (3.1)

~Zo4
N? 73

2

We follow the same path as in [19] but for the calculation of the cross-correlations
terms of the ISL X, [26].

To proceed, remember that the generating function of the LS is

1+0V/N ifj#0and N=1 (mod 4)
Qelej)) = 1+il;/N ifj#0and N =3 (mod 3) (3.2)
1 if j =0

Moreover, if we denote by (), (¢;) the generating function of the RLS a; =

Citt, (mod N)» then

Qalej) = €7 Qule;)

Assume now that the two sequences a; and b; are obtained by rotating ¢; by,

respectively, ¢, and ¢, positions to the left. We may compute S’ as

N-1 , N—1
S = | Qulen)er Qi) =D 1Quley)!
j=0 j=0

from (3.2) we know immediately that |Qy(¢;)|* ~ N2, then S" ~ N3. Let us now
compute the asymptotic values of «, 3, v and ¢ in (2.7), (2.8), (2.9), (2.10) for any
pair of RLS.

e For «vin (2.7) we have

1 /1
- _N4 _N2 SIN_N7
« ( + > I



3. Integrated Sidelobe Level of Sets of Rotated Legendre Sequences

e For fin (2.8)

1, = €+ €
= §N2 Z { (617(611 - ep)2> -

p,q=0
pFq

[21Qule) P e, Qule) Q)+
ep€q |Qelep) |2 Ezb—pQé(Eq)QZ(Ep)"‘
€§€Za_qu(€p)QZ (€g) 1Qe(ep) |2 +

qupgfla—le(G‘I)Qz (Ep) |QZ(GP) |2] }

N-1
1 €q T €
~ N S ) x
8 { (617(611 _ep)2>

p,q=0
pFq
(N2€p€q€]236;b_q + N2€p€qep6q6f]”_p+
NZEquezef;Lq + N2€p€q6peqef]‘1p> }

N—-1

1 0.0

— _N4 ( p-q >

8 p;(){ (1—€pq)?

pFq

tp+1 ty+2 1—tp —tp
(ep,q +e, , T6 4 He

ta+2 to+1 1—tq —tq
Ep—q + 6p_q + Ep—q + GP—Q) }



3. Integrated Sidelobe Level of Sets of Rotated Legendre Sequences 24

N—-1
1 4
= 3N > (Xu(k) + Xu(N — k)
k=—N+1
k#0
Gtkb‘i‘l _|_ 62})"‘2 _|_ ellc_tb + Glztb + Gt]:+2 _|_ 67]560,"‘1 + Gli_ta _|_ elgta

(1 — Gk)2

Note that Xy (k) + Xy (N — k) is the periodic correlation [24] of the LS.
Then, from [18] and [27] we know that | Xy (k) + X (N — k)| < 3 for Legendre
sequences. Then, using the fact that ij;ll m = O(N?) (see (3.3) and (3.6)

below and set ¢ = 0), and using the triangle inequality we get that 3 = O(N®).

e For the calculation of 7 in (2.9), following the same steps we did for 5 we have
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N-1
1 0,0
4 qtr th
v~ ZN E 1 1 (ep_req,pL
Pt (1 —ep-g)(1 —€&y)
747
—tp tp+1 to+1 ta+1 tp+1
pa€q—r T Epr g T Gpg T

—tp ta+1 ta+1_—tp —ta .~y
€p—r€p—q T €py Ep—g T € yEp— T

—ta —tp ta —ta
Epfrep—q + Ep—reqfr + Ep—qeqfr

14 = ngv—u XMN—’U—U
:ZNZ{_( ) + Xee(N — (v — w))

(e G

—t tpy+1 _ta+1 ta+1 _tp+1
eveufbfu +6ub+ Gva+ _|_6ua.+ Gvb+ _|_

—tp ta+1 ta+1 _—1 —ta .~y
E’LL 6'U + E’LL 6'U + 6'U 6u +

A ta —tla
€, "€, T €€, , T Gvﬁuﬂ,) }

and again we have that v = O(N°®)

e For 0 in (2.10) we have
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1, _1 )

5:§N ZO (€p — €4)? X |€p€q |Qelep) Qeleg)|” +
g

enep (Qulep) Qi (€q) ey Qeley) Q)+

Gpeqéﬁ,‘tiz(Gp)QZ (Gq)eéb—le(eq)Qz (ep)] }
N-1 —ty— 1—ty
~ 1]\[4 Z €pt ey Lt ey
2 (1 - Gqu)g

Ctat 1tott
N-1 (ek+6k“ "+ € “+b>

1
=— ;N (N —[k])
2 ——N+1 (1= e)?
k£0
N-—1 (Ek + Elgta*tb + Eli*ta‘}’tb)
— N (v = )
k=1 (1 - 6k)

Larger values of the summand are those for £ close to 1, which make the
denominator close to zero and numerator ~ ¢V for some constant ¢ (for k close

to N — 1, the denominator becomes also close to zero but the numerator is O(1)).

Exploiting this and using the small angle approximation for the complex ex-

ponential, we may write

—tla—1p 1—tq+tp
k + €

4m2
N

e +e
T S
k=1

(3.3)

To continue, we recall the definition of the Dilogarithm function and its series
expansion [28] valid for |z] < 1
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1 _ ok
Liy (2) = —/ Mdt =Y 5 (3.4)

0 k=1

=l

Taking the real part of (3.4) and evaluating on the unit circle gives [28, eq.
(8.7)]

o ikl 1, 1
Re {Liy (¢)} =Re < ) (=T 01T —10) (3.5)

k=1

Exploiting (3.5) and concentrating on the first period 0 < % < 1 we obtain

e(Si} B FLOED e

where ], =+ (mod 1).

Hence, since we know that ¢ is real

SN (kB (= [t Bl -
o= Fli 0= [fa = £il)}

where we have defined f, = tﬁ“ and f, = tﬁ" Then, exploiting the symmetries of a
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quadratic form of a modulus function we have for 0 < f,, f, <1

2
~(1f+5-11-3)

2
- (16- 5l -3)

2 2
<|fa+fb_1|_%> + <|fa_fb|_%> ]

Based on the above we are now interested in computing the asymptotic value
of

[fat fols U= [fa+ fo];) =

[ I N

[fa - fb]1 (1 - [fa - fb]l) =

so that
1
§ ~ =NT
4

1 _ 1 li n L 3 E

2 2
er(lsn-i-g) w2 (lL-s-3) 6

Going back to our original problem for calculation of the ISL value of a set of
M sequences xg-p) withj =0,...,N—1landp =0,..., M — 1, where each )
is made by a different rotation f, of a LS (RLS set), replacing (3.1) and (3.7) into
(2.4) we finally have that

IS o 1 1\2
Z_4 S S
N2 3 Iy 2‘+8<f” 2) +
p=0
M—1M—12 1 2 1 2
§+2 |fp+fq_1|_§ +2 |fp_fq|_§ (3-8)
p=0
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ISL/NA2

ISL/N2

Fig. 3.1: Plots of ISL for M = 2 as a function of f; and fy: top: 3D-view, bottom:
iso-ISL lines

As an example, Figure 3.1 reports the 3D and contour plot of the right-hand
side of (3.8) for M = 2. Direct visual inspection of that Figure confirms that
minima exists and can be easily identified. In the next section we will exploit this
result where an optimization procedure is developed to find the optimal rotations

that minimize the ISL for any sequences length V.
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30

Rotations minimizing asymptotic ISL
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Fig. 3.2: Integrated Sidelobe Level as a function of sequence length. In blue, RLS with

rotations minimizing asymptotic ISL; in black, asymptotic value.

Arbitrary Rotation

15.5

15

14.5
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ISL / N2
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13}

12.5¢

12

——RLS
- = - Asymptotic value ||

0

200

400

600
N

800

1000

1200

Fig. 3.3: Integrated Sidelobe Level as a function of sequence length. In blue, RLS with
an arbitrary rotation; in black, asymptotic value.
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Comparison of an arbitrary and minimizing rotation

—— Rotation with minimum asymptotic ISL|]
—— Arbitrary rotation

ISL / N2

12 1 1 1 1 1 1
0 200 400 600 800 1000 1200

N

Fig. 3.4: Integrated Sidelobe Level as a function of sequence length. Comparison of an

RLS with an arbitrary rotation and RLS with rotations minimizing asymptotic
ISL.

As another example, in Figure 3.2, 3.3, 3.4 we plot the ISL for M = 4 as a

function of the sequence length V.

In Figure 3.2 the values of rotation are those that minimize the asymptotic ISL,
while in case Figure 3.3 we use an arbitrary rotation. In both cases we can see
that the trend of the plots is in agreement with the asymptotic value calculated.
In Figure 3.4, we plot together both curves to show that the one that achieves
the minimum asymptotic value of ISL, also achieves the minimum ISL value for
sequences length greater than approximately 20. For different choices of rotations

and different number of sequences (M), the behavior is the same than presented.

3.2 Sets of RLS minimizing ISL

The key idea [29] is to set xg-p ) = Zg-fp) for properly chosen rotations f,, p =
0,....,.M—1.
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Since only NN values for each f, lead to distinct rotations, a complete scan
requires “only” ( ]\]\/;) trials that, though far from the exponential explosion of a full

scan (that would entail 2 trials) may soon become prohibitive.

To cope with larger values of N we may resort to the asymptotic analysis made

in the previous section.

From equation (3.8) we see that asymptotic ISL is invariant if we change f,
into 1 — f, for any p. Therefore, by assuming fo < f; < --- < fyy1 < 1/2 one
may resolve all absolute values and easily compute the rotation values for which

% = 0. This yields

2p+1
o= AM

(3.9

that result in a minimum attainable IS = N? [M (M — 1) + {] and thus, in a

performance figure
RLS _ 6M(M —1)
6M(M —1)+1

(3.10)

indicating that, for large /V, the performance of a set of RLS should be within 8%

of the maximum possible, approaching it very rapidly as M increases.

Based on these asymptotic considerations it is easy to devise a much faster

scan that drastically reduces the number of trials by considering for the j-th ro-

2p+1
AM

such an interval may be decreased as N increases, the resulting search burden goes

tation only a narrow interval of possible values around Since the length of
from ( ]\A/;) trials to ()™ with (N) a function rapidly approaching a constant as
N increases (experimentally we verified #(N) ~ 20 for N larger than 200).

The results of such a scan yields the Optimum RLS set (ORLS) whose perfor-
mance is compared with that of other known algorithms or sequence families in

the following Section.
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3.3 Numerical results
Beyond ORLSs that exist for every prime /V, we consider

e Random sequences, that exist for any /N and are generated by assigning

(p)
j

land j = 0,...,N — 1. For each N and M we generate 10 sets of se-

2’ = %£1 with uniform probability and independently foreachp = 0, ..., M —

quences and record the best achieved performance.

e Gold sequences, that exist when N = 29 — 1 for some integer ¢ and are
obtained from the well known maximum-length sequences to maintain low
correlation and simultaneously be able to produce sets of sequences with
relatively large cardinality. Though they are produced by linear-feedback
shift registers, Gold sequences are designed to enjoy the same properties
of random sequences. For each N we draw 10® x N M M-tuples of Gold
sequences at random from those available, and we record the least ISL.

e Q.CAN sequences, that exists for any /V and are obtained by the CAN algo-
rithm described in [3] when quantization is applied at the end of the iterative
procedure. For the case of 1-bit quantization the option of leaving the al-
gorithm operate with continuous phases and quantize only the final result,
has been discarded , after experimentally verifying that it was leading to
poorer performance. In this case, quantization was applied at every step of

the iterative procedure.

e Optimally Rotated Best Sequences (ORBS) that leverage on the fact that
for each N up to 304 one or more sequences are recognized as the state-
of-the art solution to ISL. minimization problem for A/ = 1 (some of them
are known to be the true optimum solutions, some others are only the best
known solutions). For each of those sequences, we build a set of M se-
quences by trying all the possible relative rotations and selecting the set of

rotations yielding the minimum ISL.
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In figure 3.5 we evaluate how state-of-the-art algorithm for the synthesis of
ultra low-ISL sequences is affected when quantization is imposed. Note how the
performance of Q.CAN is hardly impaired for low quantization depth, and reach
the performance of ORLS when the number of quantization levels is greater than
13 for M = 4, 18 for M = 4 and 22 for M = 12 for the considered cases.

For different choices of M and N we have seen a similar trend, and that the
performance of Q.CAN is only better than that of ORLS when the number of
quantization bits of grater than 4, with an increasing trend as M increases. This

shows a great advantage in the use of ORLS.
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M=4
0.98f
0.96
0.94¢
L 0% ——ORLS
0.9+ I QCAN 4
0.88f
0.86f
0.84f
0.82— ‘ ‘ ‘ : ‘
5 10 15 20 25 30
Number of gantization steps (Q)
M=8
1 ;
0.98f
L 0% ——ORLS
——Q.CAN
0.94}
0.92,
5 10 15 20 25 30
Number of gantization steps (Q)
M=12
1 ‘ —
0.99¢
0.98}
——ORLS
@ 097 —— Q.CAN
0.96
0.95f
0.94— ‘ ‘ ‘ : ‘
5 10 15 20 25 30

Number of gantization steps (Q)

Fig. 3.5: Comparison between ORLS, with Q.CAN algorithm when quantization is im-
posed for (a) M = 4, (b) M = 8 and (c) M = 12, and fix value of N = 1033.
The performance metric as a function of the number of quantization steps. The
performance of Q.CAN exceeds the performance of the binary ORLS for Q
grater than 13 for M = 4, 18 for M = 4 and 22 for M = 12.
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Fig. 3.6: Comparison between ORLS, random sequences, Gold sequences and Q.CAN
sequences with binary quantization for (a) M = 2, (b) M = 3 and (¢c) M = 4.
The solid horizontal line at 1 identifies the theoretical maximum performance
while the dashed horizontal line marks the asymptotic performance achieved by
RLS.
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Figure 3.6 compares the performance of ORLS with that of random, Gold and
Q.CAN sequences with binary quantization for M = 2, M = 3 and M = 4.
Note how ORLS clearly outperform the other techniques for all reasonably large
N (say for N > 100) also revealing a distinct improving trends approaching the

theoretical limit as /V increases.

On the contrary the performance of random, Gold, and Q.CAN sequences
exhibits a clear decreasing trend. According to expectations, since Gold sequences
are designed to mimic a random behavior, the corresponding performances follow

an analogous trend.

Finally, though insufficient to reach ORLS, the optimization implicit in the
construction of Q.CAN sequences make the corresponding performance clearly

superior to that of random-like sequences.

In Figure 3.7 we compare each ORLS with the corresponding ORBS and with
Q.CAN sequences with binary quantization for M = 2, M = 3 and M = 4.
Again, ORLS perform uniformly better than ORBS for sufficiently large /V; ad-
ditionally ORBS do not exhibit a definite improvement with respect to Q.CAN at
least for M > 2. This shows that the good performance of the proposed ORLS is
only partially due to the exploitation of sequences that feature a good autocorre-

lation properties but also hinges on a structural property of Legendre Sequences.
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Fig. 3.7: Comparison between ORLS, ORBS and Q.CAN sequences for (a) M = 2, (b)
M = 3 and (¢c) M = 4. The solid horizontal line at 1 identifies the theoretical
maximum performance while the dashed horizontal line marks the asymptotic

performance achieved by RLS.
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3.4 Conclusion

We apply a method based on generating functions, which has already been pro-
posed for the calculation of the ISL of a sequence, to the calculation of the cross-

correlation components of the ISL of a set of sequences.

The apparent complexity of the resulting expressions can be tackled in the
asymptotic conditions for sequences whose generating function has a relatively
simple trend. Since this is the case of Legendre sequences, we are able to de-
rive an analytical expression for the asymptotic ISL of sets of rotated Legendre

sequences.

Based on the later result, we propose a simple procedure to construct sets
of antipodal sequences with extremely low ISL. Each sequence in the set is a
different rotation of the Legendre Sequence of the same length. Optimal rotations
are found by an exhaustive scan whose complexity is greatly reduced by exploiting
the asymptotic result yielding a general expression for the trend of the ISL of sets

of infinitely long sequences.

The resulting performance largely exceeds that of classical methods for the
direct generation of low-ISL sets of antipodal sequences. The method we propose
also outperforms a well-known algorithm able to generate extremely-low ISL sets
of unimodular continuous-phase sequences, which is nevertheless impaired by the

strong quantization needed to satisfy antipodality constraint.
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4. SIGNAL MODELS

4.1 Introduction

The classical acquisition approach based on the Nyquist-Shannon theorem states
that for any analog band-limited signal, all its information content can be ac-
quired by taking uniformed distributed samples at a rate that doubles the signal
bandwidth.

While this is one of the fundamentals theorems of Signal Processing, by taking
advantage on certain structures of the signal, a much clever acquisition strategy
can be develop in order to reduce the number of measurements and still acquire

its full information content.

In order to exploit the peculiarities of a given class of signal, we must be able
to properly represent those signals of interest with accurate models. This models
are useful to incorporate previous knowledge of a given class of signal, and to

distinguish them from other classes of maybe no interest.

Many classes of signals, especially when representing physical signals, can be
modeled to have a linear structure, i.e., if we sum two signals that belongs to that

class, the new signal will also belong to the same class.

We will treat signals as real-valued functions having domains that are either
continuous or discrete. In the case of a discrete signals, we can simply view them

as vectors in N-dimensional Euclidean space R .

For bandlimited analog signals with no frequency components above N/2, or

Nyquist rate equal to /N, we will also represent them as vectors with dimension
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equal to its Nyquist rate. Both representation are equivalent in the sense that one

can pass to another with standard techniques (sinc interpolation).

Note that the space dimension N of both kinds of signals described above de-
fines the degrees of freedom they have. In particular, although analog signals can
be more efficiently represented by other “representations”, any analog bandlim-
ited signal has at most /V degrees of freedom, and we have choose this model in

order to be able to directly compared with Nyquist-based acquisition.

Let ¥ denotes the N X N matrix with columns given by the set {’QZJZ}Z]\; - It
the vectors in this set are linear independent, then they span a basis in RY, and
any vector in this spaces has a unique representation as a linear combination of

the elements of that basis.

For any x € RY there exists € R" such that

N

x:\IfS:ZSilbi

=1

For analog signals, note that this representation is equivalent to:

z(t) = Z si(t);

, where the set of continuous time waveforms {1/(#);}~, are the sinc-interpolated
signals obtains from the vectors in {1;}.", (or equivalently, the vector in {¢;}

are form by taking samples of the waveform in {¢(t);}" | at a rate N).

4.2 Sparse Signals

With the models given above, we are able to represent any linear signal (discrete or
analog) of dimensionality equal to /V, and with NV degrees of freedom. However,

many natural signal that are found in real situations have a smaller number of
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degrees of freedom with respect to its dimensionality. In other words, not all

possible vectors in RY represents valid signals for a given class.

Many natural signals can be expressed as a linear combination of only just
a few vectors from a given basis. This class of signals are called to be sparse
signals, since only a small amount of its coefficients, when represented on that
basis, are different from zero. The information content of this class of signals is
concentrated only on the values of the non-zero components and on the position

of those components.

For an N dimensional vector a = (ag, ..., a,_;)' we define the support of a

as

supp (@) ={j =0,...,n —1]a; # 0}

, its sparsity spar (@) (sometimes indicated as L, norm) as the cardinality of

supp (a), and its usual p-norm as

n—1 /v
lall, = (Z Iajl”>
§=0

We will assume that a suitable basis exists whose vectors are the columns of
the N x N matrix W, and that the signal of interest is K -sparse, which means that
for any instance of x there is an /N-dimensional vector s such that x = Ws and
spar (s) < K.

Although the sparse model given above is of broad interest, it is difficult to
find real life signals to be truly sparse. However, many natural signals can be
very well approximated by sparse models. This classes of signals are called to be
compressible signals, and can be approximated by setting the smallest components

to zero and keeping the biggest K.

In the following, we will treat compressible signals and sparse signals as to

have a simple sparse representation. The error produced by this approximation
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will be considered as if the sparse signal would have an intrinsic noise indepen-

dently of the source where it is generated.



5. COMPRESSIVE SENSING

5.1 Introduction

The newly introduced paradigm of Compressive Sensing (C'S) [7, 8, 9] exploits
special signal features to extract its information content with a smaller amount of
samples (or measurements in the general case) with respect to acquisition based

on the Nyquist-Shannon sampling theorem.

According to the sampling theorem, we can perfectly reconstruct any ban-
dlimited signal by its samples provided that the sampling rate exceeds twice the
maximum frequency in the bandlimited signal. However, as we have seen before,
the information content of some classes of signals is concentrated in only few

coefficients for a given representation.

Taking advantage on the knowledge of the structure of the signal, more so-
phisticated sampling methods can be developed in order to reduce the number of
samples necessary to reconstruct the signal. Compressive sensing theory exploits
the “sparsity” representation in order to reduce well below the number of mea-
surements stated by the Nyquist-Shannon theorem, and still be able to perfectly
reconstruct the original signal.

Reducing the number of measurements has noteworthy advantages. It can
reduce the hardware complexity, storage capacity, power consumption, channel
bandwidth, etc.

In the compressive sensing framework, few nonadaptive linear measurements

of the signal are taken, i.e. projections of the signal over vectors of a given basis.
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Based on these projections, by means of a non-linear algorithm, it is possible to

recover the signal.

To make the discussion more concrete, consider the general case where the

signal x € RY is measured through M inner products of the form:

y=ox +e

where y € RY is the measured vector, ® is an M x N measurement matrix, and

e € RM is a vector representing measurement noise.

In general, given M < N, the matrix ® represents a dimensionality reduction,
i.e., it maps a vector in RY into a vector in RM. Under this condition, there are
infinite different signals x that satisfy the above equation given the measurements
y.

At this point there are two main questions to be done: a) Under what condi-
tions the application of the matrix ® preserves the information of the signal x?

How it is recovered the original signal x from the reduced set of measurements y?

We will try to answer these question in the following sections.

5.2 The Restricted Isometry Property

To partially answer the first question, lets first write the vector x as

x = Us

, and

y=®Us+e=0s+e

Relaying on the a-priori knowledge that spar (s) < K, it is possible to define
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a subset of R containing all the interesting instances of x. Then, the acquisi-
tion mechanism should map this subset into the measurement space RM “quasi-

bijectively” in a sense that will be made more precise in the following.

One of the most striking, and useful, facts that appear at this point is that,
when sparsity is one of the priors, if © can be thought of as a realization of a
random matrix with independent entries drawn according to a variety of distribu-
tions, then mapping by means of © provides, with high probability, the needed
“quasi-bijection”.

More formally, we say that a matrix O is a restricted isometry [30] when there

is a constant 0 < dx < 1 such that

(1 —8x) [Isll3 < 1©sl3 < (1+6) [l

whenever spar (s) < K. Hence, even if the dimensionality M of the co-domain of
a restricted isometry is less than the dimensionality NV of its domain, the mapping

of K -sparse vectors leaves lengths substantially unaltered.

If © is made of independent random entries characterized by a sub-Gaussian
distribution then, with an overwhelming probability, the matrix © is a restricted

isometry with a constant ¢ provided that [31, 32, 33]

M > CKlog(N/K) (5.1)

where C is some constant depending on each instance.

If © is a restricted isometry, once that supp (s) is known, we may restrict © to
that domain and obtain an injective mapping. If the measurements in y addition-
ally encode information on which of the (%) possible supports must be chosen,

the overall mapping can be reversed to yield the whole s.

This is why a constant ingredient in the recipes for all compressive sensing

architectures is randomness as a mean of capturing information that is known to
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be sparse. What is usually done is to overlook the fact that theory puts conditions
on the statistical structure of © and design a system in which ® is random and

hopefully transfers its beneficial properties to © = ®W.

An important side-effect of this assumption (widely verified in practice) is that
one does not design the acquisition matrix ¢ depending on the specific ¥ but relies

on randomness to implicitly “scan’ all possible sparsity bases.

5.3 ('S Reconstruction Algorithms

Once that a mapping allowing reconstruction has been devised, its “inversion”
must be obtained by algorithmic means every time a measurement vector comes
in,

Though reconstruction mechanisms may be designed jointly with the archi-
tectures producing the measurements, they are classically addressed as separate
components of the overall acquisition system. Their development and analysis
is a flourishing field that has recently produced strong and general results and

taxonomies [34].

We will here concentrate on the most frequently adopted methods, and note
that those techniques fall in one of two categories: optimization-based recon-
struction [30, 35, 36, 37, 38, 39] and iterative support-guessing reconstruction
[40, 41, 42, 43, 44, 45].

Both types of technique are commonly devised and set up in the noiseless and
idealized case (i.e., for e = 0 and neither quantization nor saturation) and are

proved (or simply seen) to work in more realistic settings.

5.3.1 Optimization Based Reconstruction Algorithms

The key fact behind optimization-based methods is that, among all the possible

counterimages s of the vector y = Os the one that we are looking for is the “most
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sparse”, i.e., the one for which spar (s) is minimum.

Since we usually have spar (s) < K < N this assumption is sensible. More-
over, it leads to some beautiful results on the possibility of recovering s by means

of simple optimization problems [30].

More formally, it can be shown that, if O is a restricted isometry with constant

§ < v/2 — 1 then the § solution of the optimization problem

min 4] (5.2)
st |05 —yll, < e

is such that
s —sll, < Ce

for some constant C' > 0.

Hence, if we use € to bound the maximum magnitude of the disturbances in-
volved in the measurement process (for instance by setting it proportional to the
variance of the noise plus that of the quantization error) we can guarantee that the

reconstruction error vanishes when disturbances go to zero.

Though not impossible, the straightforward application of the above result,
depends on a reliable estimation of the parameter € that quantifies the maximum
foreseeable deviation between the unperturbed measurement and its actual value
in presence of a mixture of known (e.g., quantization) and unknown (e.g., noise)

disturbances.

It is therefore quite common to substitute [|O§ — y||, < e with ©§ = y by im-
plicitly assuming that the system is working in a relative low-disturbance regime
that allows to assume € ~ (. Within this approximation, it is convenient to re-
express the resulting optimization problem within the framework of linear pro-

gramming by definingu = (1,...,1)" and by introducing the auxiliary unknown



5. Compressive Sensing 52

vector w = (wy, ..., w,_1) ' to write
min u'w
Os =y
s.t w>0 (5.3)
—w<§s<w

where vector inequalities are meant to hold component-wise.

The equality constraints in (5.3) can be adjusted to cope with specific features

of a given architecture or to take into account quantization or saturation.

In particular, due to quantization, we know that the true value of the j-th mea-
surement is somewhere in the interval [y; — A%i/2, y; + A%/2] with y; being the

value known to the algorithm and Ay; the corresponding quantization step.

Hence, in presence of a coarse quantization, it is sensible to substitute the
equality constraints ©§ = y in (5.3) withy — &/2 < Os < y + 4¥/2, where
Ay = (Ayo, ..., Aym_1)". Though it surely models the acquisition procedure
with greater accuracy, this adjustment does not necessarily lead to improvements
and is commonly employed only when one may expect the various Ay; to be

substantially different one from the other.

It is interesting to note that optimization-based reconstruction algorithms work
without any knowledge of the exact value of K further to that implicit in the num-
ber of measurements that must be enough to allow reconstruction. This may be a
plus in situations where K cannot be exactly determined in advance. Regrettably,
this positive feature is balanced by the fact that, in general, linear programming
solution is computationally more expensive that other kinds of iterative recon-

struction.
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5.3.2  Support-Guessing Reconstruction Algorithms

As far an iterative support-guessing reconstruction is concerned, note that, if

supp (s) were known we could drop the columns in © that are surely multiplied

by 0 and the corresponding entries in § to obtain an M x K matrix Og,pps) and a

K -dimensional vector Sq,pp(s) for which y = Ogypn(5)Ssupp(s)- Since M > K, this

is an overconstrained problem that may be effectively (even “optimally” in case

of Gaussian disturbances) inverted by using the Moore-Penrose pseudo-inverse
T

@lupp(s) and computing Sq,pp(s) = @Supp(s)y.

Iterative support-guessing methods are, in general, procedures that alternate
a rough, non-necessarily sparse, solution of y = ©Os from which an estimate of
supp (s) is inferred (for example by thresholding on the magnitudes of the com-
ponents of the temporary solution) that is then exploited in a pseudo-inverse-based
step refining the value.

Though more sophisticated alternatives exists, a reference algorithm within
this class is CoSaMP [40] that has some definite advantages. First, it works for
matrices O that are restricted isometries and, if K is known and the isometry
constant d,x for vectors with 2K non-zero components can be bounded by 095 <

0.025, then, given a tolerance € > 0, the reconstructed vector & satisfies

A I
s sl < Cmax {e. 1502 4 jauy,

where s’ is the vector that can be obtained by s by setting to zero its K /2 largest

entries.

The resulting algorithm is provably fast and, beyond the above formal guaran-
tee on its performance, it is usually extremely stable and effective in recovering
the original signal. These favorable properties are paid with the additional as-
sumption that the sparsity of s is known and that the isometry constant d,x must

be quite low.

In analogy to what happens for optimization-based reconstruction, CoSaMP
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can be tailored to specific architectures. This can be done, for example, if it is
known that errors in the magnitudes of the entries of s are correlated by an implicit
filtering in the acquisition scheme. Such an effect can be exploited by inserting a

filtering step when passing from support-guessing to pseudo-inversion.

5.4 Analog-to-Information Converters

From the two previous sections, we get that to define a compressive sensing sys-

tem we need to describe two stages

e encoder: a hardware system performing some mixed analog-digital opera-
tions on the incoming signal to produce a stream of bits. The mixed analog-
digital operations are modeled as instance ¢ of a random matrix linking the
signal samples to the measurements whose quantization yields the stream

of bits transferred from the encoder to the decoder;

e decoder: an algorithm that takes the incoming bits and, based on the knowl-

edge of @, reconstructs the original signal.

In this section we will discuss various strategies for designing systems for

acquiring compressive measurements of real-world signals.

Note that, in practical implementation, we do not want to communicate P to
the decoder and thus most often exploit pseudo-random generators with a common

initialization to yield matrices that can be simultaneously known at both stages.

Saturation and quantization are unavoidable in the signal path since the com-
munication between the two stages happens along a digital channel thus implying
an ADC block with a finite range (we will assume [—V™® V™| for a certain

Vmaxy and a finite number of levels.

In the following we will consider the number B of bits generated by the en-
coder corresponding to the acquisition of the input signal over a given time inter-
val. This is actually a “bit budget” since it may be partitioned into digital words of
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different depths corresponding to different measurements. Additionally, in many
applications the total number of bits is constrained, which suggests a tradeoff be-

tween the number of measurements and the number of bits per measurement.

5.4.1 Random-Modulation-Pre-Integration — RMPI

This is probably the most straightforward implementation of compressive sens-

ing concepts [46].

clock ;@

v
Y
N7 b-bit Yo
>()——>| S /
= ADC ’b
e
Y
z(t) v N7 b-bit Yu—1
- /
T >®— kgo ADC s

Fig. 5.1: Block scheme of an RMPI encoder. The samples of the input signal are mul-
tiplied by M different random sequences and accumulated up to time N. The
accumulated values are then quantized by a b bit AD converter.

With reference to Figure 5.1 the samples of the incoming signal z; are multi-
plied by the quantities ®; ;, for a given j and then fed into an accumulation stage
to yields the value of the j-th measurement y; that is then quantized by an b-bit
ADC and aggregated with all the other quantized measurements into the stream

of bits that is passed to the decoding stage.
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The implementation of the analog blocks preceding the ADC offers several

options.

The structure of the multiplier depends on the quantities ®;;: some classi-
cal approaches adopt Gaussian random variables (Gaussian RMPI) and force the
deployment of complete four-quadrant analog multipliers, while more aggressive
approaches suggest to constrain ®;, € {—1,+1} (antipodal RMPI) so that mul-

tiplication can be implemented by simple switching.

The accumulation stage may be implemented either as a continuous time in-
tegrator or as a switched capacitor subcircuit that implicitly matches the discrete-
time operation of the multiplier. In any case, the output of the accumulating device
will be subject to saturation.

Referring to a discrete-time implementation, where allegedly y; = S "' ®; .24,

and relying on the following assumptions:

e x and ® are independent stochastic processes;

o the @, are independent and identically distributed (either Gaussian or bi-

nary antipodal) random variables, with zero mean and unity variance;

e the energy of x in the accumulation time window is constant;

the random variable y; will converge to a normal random variable independently
of the input signal z.

Given the above observation, the measurements y obtained with an RMPI ar-
chitecture will have a range that is potentially v/ N-times larger than that of z
(e.g., £30 around the signal average). When comparing an RMPI solution with
a direct application of a Nyquist based AD converter, and considering a uniform
quantizer in both cases, in order to maintain the same amount of quantization error
the number of bits needs to be increased for an RMPI implementation. Moreover,
since a normal distribution is not limited, wherever the input range of the ADC
is set, there is an unavoidable non-zero probability that y; falls out of the ADC

conversion range.
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On one hand, RMPI architecture allows to reduce the number of measurements
for the acquisition of a given class of signals with respect to classical Nyquist
based sampling. On the other hand, in order to obtain a given performance in
terms of reconstruction error, the number of bits needed to encode each of the
measurement would be bigger than for Nyquist based acquisition. This suggests
a tradeoff between the number of measurements M and the number of bits per

measurement b.

RMPI architecture presents a direct implementation of the compressive sens-
ing concepts developed in this section. However, as it has been shown, some
design consideration are needed to be taken. More precisely, the choice of a
proper AD converter is of crucial importance in order to obtain a given perfor-
mance. Moreover, RMPI architecture requires the used of a huge amount of cir-
cuitry (continuous-time or discrete-time analog multiply-and-accumulate blocks,
multibit AD converters) leading to an expensive system implementation in terms

of cost, power consumption, and design effort.

5.4.2 Random Sampling — RSAM

In classical acquisition systems, samples of the signal are taken regularly on the
time axis at a given rate (usually not less than the Nyquist rate). Compressive
sensing architectures relying on random sampling avoid this regularity to produce
a number of measurements that, on the average, are less than those produced
by Nyquist sampling, while still allowing the reconstruction of the whole signal

thanks to sparsity and other priors.
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Fig. 5.2: Block scheme of an random sampling encoder. The samples are taken at random
positions in time, over a predefined grid.

In principle, sampling instants can happen anywhere along the time axis.
Yet, a straightforward implementation chooses them among regularly spaced time
points that can be selected by digital means. The result is schematized in Figure
5.2 where a backward counter is pseudo-randomly re-loaded each time it reaches
zeros, triggering conversion. Grid spacing, and thus clock rate, depends on the
resolution with which one wants to place the sampling instants and thus may be

expected to be larger that Nyquist rate.

To translate the above block scheme into formulas , say that such the clock
identifies a vector #’ = (zf,..., ) y_,)" that oversamples a bandlimited x(¢) by
a factor v with respect to # = (zg...,7y_1)' containing the Nyquist samples.

The two vectors z’ and x are linked by 2’ = Ax, being A an upsampling matrix.

With this, the M x N matrix ® is nothing but the product ® = PA, where P
is the random sampling matrix defined by the M time instants ky < k; < --- <

kar—1 at which the counter reaches 0O as in

ISVES ,
0 otherwise
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The resulting sampling follows a so-called renewal-process in which all the
inter-measurement intervals Ak; = k;41 — k; are drawn as independent integer

random variables exponentially distributed in the interval [Ak ., 00].

The minimum inter-measurement gap Ak, > 1 depends on the speed of the
ADC, which must be ready for a new conversion each time a measurement is taken
so that, by increasing Ak.,;, we loosen the constraints on the ADC implementa-
tion. The exponential trend is then tuned to have an average inter-measurement
gap equal to % so that (at least for large V) we expect an average of M measure-

ments.

Each of these measurements is commonly quantized by means of a b-bit ADC

to yield the bit stream passed to the decoder.

RSAM is only subject to the static saturation due to the finite input range of
the conversion stage. This poses no problem since it can be tackled at design time

by simply rescaling the signal input range as in conventional acquisition systems.

5.4.3 1-bit Compressive Sensing - IbRMPI

Given a total bit budget B, the trade-off between the number of measurements M
and the number of bits b = B/M spent to encode each of them is a classical theme

in signal acquisition and coding and applies also to CS architectures.

Among other issues, it may help coping with the unavoidable saturation of the
ADC since the extreme solution b = 1 identifies the ADC with a pure saturation

centered in 0, thus completely eliminating the problem.

In particular, RMPI systems may be optimized in each particular setting to see
how much information in our original signal can be inserted into B bits [47] and
is possible to think that each measurement is represented by a single bit encoding
its sign [48, 49].

There are several benefits to the 1-bit C'S technique. Given that the quantizer

can be implemented as a simple comparator that merely tests if a measurement is
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above or below zero, an efficient hardware quantizer can be built to operate at high
speeds. Furthermore, 1-bit quantizers do not suffer from dynamic range issues nor

linearity problems inherent of the implementation of a multibit AD converter.

Since signs give no hint on the magnitude of the involved signals, the problem
in (5.2), with e = 0, with y = sign(©d) and where the sign(-) operator applied

component-wise, is recast into [48]

min &,
Oa >0
vom = (5.4)
l©d], =1
where o stands for component-wise product' and the second, unit-energy con-
straint is introduced as a scale-fixing prior. This approach is referred in [48] as
1-bit CS.

The above optimization problem is a non-convex problem and must be ad-
dressed by specialized algorithms. Two state-of-the-art algorithms were presented
in the lasts years to address this problem. The Restricted Step Shrinkage [50] that
will be indicated here as RSS, and the Binary Iterative Hard Thresholding [51],
indicated here as BIHT. These algorithm are proved to achieve a higher average
recovery SN R, and are an order of magnitude faster than other previous proposed
algorithms in [48] and [49].

Regrettably, even with BTHT, typical performance of an 1bRMPI architecture
are largely inferior with respect to multibit RMPI or RSAM solutions for compa-
rable bit budgets.

I'so that this result in a set of M component-wise inequalities
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6.1 Introduction and Motivation

As it has been shown in the previous sections, there is a trade-off between the
number of measurements needed to uniquely identify a given class of signals, and
the number of bits that is necessary to represent them in order to obtain a given

precision [47].

On one hand, under certain assumptions on the signal structure, compressive
sensing theory allows to reduce the number of measurement by increasing the
hardware architecture complexity. On the other hand, Delta-Sigma converters
allows to reduced the number of bits per measurement, even to the extreme case of
only 1-bit, by increasing the number of measurements and mixing time encoding

information.

The fundamental question is: is it possible to combine the advantages of both
theories in one single device that allows to reduce the total number of bits in a

measurement, and simplify the hardware system implementation?

The answer to this question is YES, and it is what we have called The RADS
Converter [52, 53, 54].

In this section we will introduce the RAD.S Converter which constitutes the
main contribution of this thesis. We will start by describing its hardware architec-
ture, and modeling the operations performed by the architecture in the frequency
domain. This model will lead to an intuitive understanding of its working prin-

ciple, and will give some insight on how the decoding stage can be efficiently
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implemented.

We will next introduce a time domain analysis that, starting by the analysis of
a A/ modulator, and followed by the analysis of the whole RADS Converter

architecture, will lead to a deeper understanding of capabilities of the system.

We will close this section by presenting a set of measurements performed on
an “off-the-shelf” implementation of the RAD.S Converter that constitutes a proof
of concept of the proposed architecture, and we discuss how it can be efficiently

implemented on a single silicon device.

In order to evaluate the performance of the converter, we have extensively
appealed to numerical simulations. Performance is evaluated by matching the
reconstructed vector § with the original vector s and using two merit figures: the
Probability of Support Reconstruction (PSR) and the Reconstruction Signal-to-
Noise Ratio (RSNR), i.e.,

PSR = Pr{supp(s) C suppuingsy/s (8) }

2 2
dB( s ) dB( =1l )]
s =11 Il — 1

where the thresholded support is conventionally defined as

ARSNR(dB)=E —E

supp, (a) ={j = 0,...,n—1|[la;| > 7}

Probabilities and expectations were estimated using Monte Carlo simulations

for which statistics was gather after 5000 trials.

6.1.1 Preliminaries: Delta-Sigma Modulation

In this subsection we will make a short review of the main concepts that applies
to Delta-Sigma (A /3) modulators.
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Let model a basic 1¥-order A /Y modulator structure as in Figure 6.1 where

the block [Q] represents a general quantizer and the block [D] represents a one

=

time-step delay.

<
3

N
3

Yn :/\

Fig. 6.1: A time-domain block diagram of a first order A /% modulator.

The input sequence y feeds the A /Y. modulator that produces a lower resolu-

tion output sequence z at every time step n.

The quantization stage of the modulator is usually implemented with a very
low resolution quantizer. Single bit quantizers are the most common option for
the implementation of this kind of converters, since it is particularly appealing for
hardware implementations. The quantizer takes the form of a comparator to zero,
an extremely inexpensive and fast hardware device. Furthermore, 1-bit quantizers
do not suffer from dynamic range issues (the sign of the measurement remains

valid even if the quantizer saturates).

Though beneficial, 1-bit quantization is a very non-linear operation that makes
difficult to obtain simple models for the operation of the converter. In order to pro-
vide an insight into the operation of the modulator, the analysis is usually tackled
in the z-domain [55, 56, 57, 58], for which the quantizer has been replaced by it

linear model as shown in Figure 6.2.
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Y(z) /\ N\ V(=) /A Z(z)

Fig. 6.2: A z-domain linear model of a first order A /3 modulator.

From the diagram we can write

V() =2 V() +X(2) -2 ' Z(2)

Thus
Z(2) =V () + E(z) =2""V(2) + X(2) — 27" Z(2) + E(2)
and rearranging we get
Z(z)=X(z)+ (1 —-2""HE(2) (6.1)
Equation (6.1) can be written in the general form

Z(z) =STF(2)X(2) + NTF(2)E(z) (6.2)

where the STF refers to the Signal Transfer Function, that in this case is unity,

and the NT'F refers to the Noise Transfer Function and is equal to

NTF=1—2" (6.3)
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Equation (6.2) is the basic equation A /Y. modulator, and shows how the out-
put can be expressed as a sum of a term accounting for the signal, and a term

accounting for the quantization noise.

For the case presented above, the NT'F' has clearly a high pass response,
which suppresses the quantization noise near dc, and amplifies it out of the signal
band. This is the so called noise shaping capabilities of the A /Y modulators.

2w f /M

By replacing z in equation (6.3) by e , where M is the sampling fre-

quency, the power spectral density (PSD) of the output noise is found to be

Sq(f) = 2(sin(m f /M))*S.(f)

, where S, (f) is the PSD of the quantization noise of the internal quantizer of the

converter.

Consider a signal bandwidth of B Hertz, and approximate S,(f) = 2¢2,../M.

By integrating S.(f) in the signal band, we get that the in-band noise, i.e., the

quantization noise present in the signal band, can be approximated as

- M —3/2
Qrms = 6rmsﬁ <§> (6.4)

As it can be seen from equation (6.4), the in band noise decreases with increas-
ing the oversampling ratio, i.e., the ratio between the sampling frequency and the

signal bandwidth.

In oder to increase resolution, by replacing the quantizer stage in the block
diagram of Figure 6.1 by a new copy 1%¢-order A/Y modulator, we will get a
second order A /Y modulator. This procedure can be continued to obtain an -
order A /Y. modulator.

By extending the analysis we have made for the 1%¢-order, we can get a basic
expression for the NTF of an L*-order A /¥ modulator as
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NTF = (1 —z"")* (6.5)

By integrating the above equation in the signal band, we get that the power of

quantization noise of an L"-order A /Y modulator is

L ~(L+3)
Grms = €rms i % (66)
V2L+1\ B

The equation given above is an approximation for the calculation of the in-
band quantization noise of an A /> modulator. This approximation does not take
into consideration quantizer overload thus increasing the total power of quanti-
zation noise. Moreover, for higher order modulators, it is possible to change the
shape of the NT'F' to produce different behavior. However, for the sake of con-

creteness, it is enough the analysis made so far.
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6.2 RADS Converter architecture

The RAndom Delta-Sigma (RADS) Converter illustrated in Figure 6.3 is noth-
ing but a conventional A/ converter whose input signal is pre-multiplied by a
random sequence of symbols. RADS Converter exploits the noise shaping capa-
bilities of Delta Sigma (A /X)) structures and produce a number of measurements
(M > N) each coarsely quantized (actually with only 1 bit). The use of RADS
Converter with a proper exploitation of sparsity gives as a result a substantial com-
pression in the number of acquired bits with respect to classical acquisition or to
simply A /Y modulation. The simplicity of the architecture also allows to oper-
ate at very high frequencies, making possible, for example, to acquire frequency

sparse signals that are spread over a large bandwidth with a very high resolution.

clock

Y

1-bit AL o—> 2,

Fig. 6.3: Block scheme of a RAD S Converter. The input signal is multiplied by a random
sequence and fed into a A /Y converter made of a 1-bit ADC and a loop filter in
charge of noise shaping.

The loop filter and the nonlinear dynamics of the A produce a progressive
encoding of widening windows from the original signals so that there is no one-

to-one relation between single bits and projections.

On one hand, such a technique has the desired effect to allow squeezing am-
plitude information into a sequence of sign informations. On the other hand, its
nonlinearity avoids the writing of a simple linear model linking the signal samples

x, with the bits produced by the encoder z,. Although, this is formally true, it
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will be necessary to waive the detailed modeling of the AY operations to concen-
trate on its high-level functionality of oversampling converter with noise-shaping
abilities. In doing so, we will obtain a model that can be effectively plugged into

reconstruction algorithms.

Without any lost of generality, we may focus on a normalized acquisition time
of one second, and model the signal z(¢) to be sampled at the Nyquist rate N by
collecting rj, = x (%) fork =0,...,N — 1. Clearly x € R" and x is sparse if
there is an N x N matrix ¥ such that x = Ws for some vector s € R" in which at

most ' << N components are non-zero.

Given that the analog waveform z(¢) corresponding to the samples in x is
sampled at frequency M, that in general is larger than N, defining the oversampled
signal z), = x (%) forn = 0,...,M — 1 we can link the two vectors x' and x
by a linear operation x’ = Ax, being A an upsampling matrix that considers the
components of x as the Nyquist samples of a bandlimited signal. Hence, A/%
operations do not apply to the original components of the vector but to a vector

oversampled by a factor M/N.

The sinc-interpolation matrix A € RM*¥ is defined as:

N-1, =1, M
) — (k-1
VD=1 k=1,...,N

Aj,k = sinc

and for the case of N = M we have that A = 1.

Note that since we are dealing with 1-bit measurements we have M = B, so

oversampling does not imply an increment in the total number of bits.

With reference to Figure 6.3, the samples in x’ are multiplied by a Nyquist-
rate random sequence py, po, . . ., py. Applying a further linear operator indicated
with the symbol P which is defined by



6. RADS Converter 69

Prag) MI=H
0 if j £k

P = (6.7)

, therefore, the input of the AY is the vector Px’ = PAx.

The binary output of the A /3 at time n can be expressed as the sum of the cor-
responding input sample and a term accounting for the quantization noise which
spectral profile is dictated by the Noise Transfer Function (NTF) of the converter
loop [55]. Hence

z=PAx +(

where ( accounts for the quantization noise introduced by the A /3 converter.

Conventional A/Y approaches have P equal to the identity and exploit this
construction by noting that low-pass filtering z is equivalent to low-pass filtering
PAx + ( = Ax + ( and thus invert upsampling to recover x with an error equal
to the low-pass filtering of (, a term that can be made very small by playing
with the NTF, i.e., making it as high-pass as possible given other implementation

constraints.

In our case, the matrix P is designed to introduce spreading in order to al-
low that higher frequency components of the upsampled signal enter the baseband
range in which the bits in z are processed. This alias normally prevents signal
reconstruction. Yet, sparsity can be exploited to counter alias and allow the acqui-
sition of signal components that would otherwise fall out of the reach of the AX

range (or, conversely, allow smaller oversampling to acquire the same signal).

Figure 6.4 shows the spectrum at different points of the system. For simplicity,
assume that the spectrum of p, is “flat” in the interval (—N, N) and negligible
outside that interval. Note that 7 is now band limited to %N and that, depending
on the value of the sampling frequency M, the replicas of the spectrum will alias

on the discrete time signal y,,.
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Fig. 6.4: Frequency occupancy at the different point of the system. From top to bottom:
spectrum of the input sparse signal in the Fourier domain z; spectrum of the
modulating signal p; spectrum of the modulated signal y as a sum of different
shifts of the modulating signal; spectrum of the output signal z with the addition
of the quantization noise shaped by the NT'F' of the A /3 modulator; remaining
spectrum after low-pass filtering.

Given that we are multiplying the input signal by a pseudorandom sequence,
with a very high probability and independent of the sparsity basis, the resulting
signal after the modulation will be spread over a large bandwidth. Furthermore,
since the rate of change of the pseudorandom sequence is equal to the Nyquist

rate of the input signal, there will be always a contribution of every component of
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the original signal into the low part portion of the bandwidth.
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6.3 Decoding and reconstruction

In order to reconstruct the original signal x(¢) form the 1-bit samples z,, sparsity
is only one of the two priors we have, the other is the high-pass nature of the
disturbance introduced by the A /3 modulator. This further piece of information
allows us to remove the biggest amount of energy of the quantization noise, while
leaving enough information to reconstruct the original x(¢) in the low-pass portion
of the spectrum. Note that while signal energy decreases linearly as the band
shrinks around DC, disturbance energy decreases polynomially thanks to the NTF
of the modulator [55].

The block diagram shown in Figure 6.5 is used to recover the original signal
x(t) from the 1-bit samples z,. The left-hand part of the block diagram is a low-
pass filter that removes the biggest contribution of the quantization noise, and it is

followed by a decimation operation that removes redundant samples.

\/

Zn il H s J% 2 [ s aig P2/ M)

A

Pn

Fig. 6.5: Decoding and reconstruction scheme for RADS Converter. The 1-bit input sig-
nal is first filtered, decimated, and then processed by a compressive sensing re-
construction algorithm.

Consider a low-pass filter with a cutoff frequency R /2. Depending on the ratio
R/N, and considering a perfect filter with a decimation operation that leaves only
R significant samples, the remaining samples form a system of linear equations,
that for R/N < N (which is the most common case) is undetermined. This system
of equations can efficiently be solved by the right-hand part of the diagram that
represents any of the C'S reconstruction algorithm we have seen in section 5.3 in

the previous chapter.
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Note that the band between —R/2 and R/2 contains the contribution of all
possible shifts of the spectrum of p,, determined by the frequency values present
in x(t), as it is shown at the bottom of Figure 6.4. If spreading were not applied

before A /Y. modulation, only a portion of the signal would enter in such a band.

To determine the value of the cutoff frequency of the filter R/2, it is desirable
to take IR as small as possible which contributes to remove the quantization noise

produced by the /A converter.

On the other hand, the signal obtained after filtering should contain enough
information for the recovery of the original sparse signal. In other words, the
number of significant components of the filtered signal must be large enough to
guarantee that the CS reconstruction algorithm can recover the original signal
with a high probability of success while removing as much noise as possible. The

correct choice of the bandwidth R will determine the system performance.

To model the filtering process we use an [-order FIR filter (/ < M) and arrange

its coefficients Ay, ho, ..., h; as the rows of a matrix H of M x M elements.
Hj= _
0 ifj#k+i—1 1=1,...,1.

As an example with M = 8 and h = [h1, h2, h3]

hy
hy
hs hy hy
H— hs hs hy
hs he hy
hs hy ha
hs he hy

hs hy
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Encoding the downsampling operator in the matrix

D 1 ifj=£k j=1,...,R

b=

! 0 ifj# Lk k=1,...,M

we may finally link the sparse vector s with the filtered and downsampled mea-

surement Z 1 as

z, = DHPAUs + DH(.

Define the matrix © = DHPAV and the noise vector e = DH( to have
z, = Os + e, where © € RV*® with R < M. This recasts the classical Compres-
sive Sensing problem presented in section 5.1 of the previous chapter, and can be
efficiently solved with a greedy algorithm or an L/-norm minimization to find the

Sparse vector s.

6.3.1 Reconstruction Signal to Noise Ratio Estimation

In this subsection, we estimate the performance in terms of RSN R achieved by
the RADS Converter. Since no other errors are modeled in the previous analysis,
quantization noise limits the performance of the reconstruction algorithm and of

the whole architecture.

It is possible calculate the total power of quantization noise from equation
(6.6) considering the remaining bandwidth determined by the filter cutoff fre-
quency. On top of that, we have payed a price when we decided to have a con-
tribution of every possible component of the signal in the low pass portion of the
band, i.e. we have spread the energy of every single component over the whole
bandwidth of the original signal. Given that signal energy is conserved as it pass

trough the random multiplication (we have multiplied by a +£1 sequence), the
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magnitude of the signal that remains at the end of the reconstruction algorithm

will be inversely proportional to the original signal bandwidth.

Finally, we can estimate the RSN R as

]2

RSNR = 20[0910 B o 7(L+l) (68)
s 2
Nerms AL+1 (f)

Note that it is possible to achieve a significant improvement with respect to
classical A /Y conversion by making R as small as possible, given that since the
oversampling ratio in the above expression is calculated with respect to the filter
bandwidth instead the signal bandwidth.

6.3.2 Numerical Experiments

In this subsection, we present the results of a set of numerical experiments de-

signed to verify and validate the RADS Converter architecture.

All the simulated points showed in the plots are the mean value over more
than 5000 simulations where a new signal was generated with a random support

in every trial.

The 1-bit encoding was made using third order A /Y modulator designed with
delsig [59] toolbox for Matlab [60].

For all the simulations of this section we have fixed a set of parameters that
illustrates the most significant cases. The number of samples was always fixed to
M = 2048 independently of the time scale used. We have considered an input
signal that is K -sparse in the Fourier domain , i.e. it is constructed of up to K

different periodic tones, x = Fs where

Fj :real{e_zﬁw(j_l)(k_l)} g, k=1,...,N
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and the value of NN is varied across the simulation.

In order to show deferents behaviors of the system, we have simulated a set
of different sparsity values of K (/K = 4, 12, 20 and 28). The power of the input
signal was kept constant along all values of /K, which implies a decrease in the

value of every single component as the sparsity value increases.

The A/Y modulator was chosen to be a third order modulator, which is a
typical configuration for this kind of converters and due to the fact that in higher

order modulators instabilities are more frequent to happen in the loop filter [55].

The C'S reconstruction algorithm at the end of the chain is CoSaMP, and the

number of iteration is fixed to 200.

In the first set of simulation we have estimated the RSN R and the PSR as a
function of the cutoff frequency of the reconstruction filter. The results are plot in

Figure 6.6.
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Effect of the reconstruction filter bandwidth
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Fig. 6.6: Effect of the reconstruction filter bandwidth for a RADS Converter with a third
order A /¥ modulator for different sparsity levels. On top: RSN R as a function
of filter bandwidth R; bottom: PSR as a function of R. For every combination
of K and N there is an optimal value for R.

As it is shown in the plots, for small values of R, it is not possible to re-
construct the original signal. This is due to the fact that only a small amount of

information is left after filtering, and it is not possible to distinguish which are the
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components present in the signal. In different words, there is a large probability
that more than one signal could be a good candidate solution with this reduced set

of measurements.

As we increase the value of R, the probability of reconstruction jumps from
almost 0 to almost 1, for small values of K. This behavior is consistent for dif-
ferent values of R at every K we have simulated. At this point, there is enough
information to distinguish which are the components present in the original signal
from the low pass portion of the mixed signal. The reconstruction error is limited

by the quantization noise that is left in this portion.

As we continue increasing the filter bandwidth, there is a decreased in the per-
formance in terms of RSN R, as well as PSR. The deterioration in the RSNR
can be easily explained due to the fact that a larger bandwidth produces an incre-
ment in the power of the quantization noise (see eq. (6.8)) , i.e., the residual noise

energy is large compared to the signal energy.

On the other hand, for large values of R, as we increase K there is a decrease in
performance in terms of PSR. As we have the same amount of quantization noise
power for a fixed R, increasing the value of K reduces the power of every single
component present in the input signal, making it harder for the reconstruction
algorithm to identify those components in a noisy environment (the magnitude of
the noise is comparable with the magnitude of the signal). This fact illustrates the
existing trade-off in the selection of the R parameter. As we increase the value of
R in order to obtain a better performance in terms of PSR, there is a detriment in
terms of RSN R. The optimal value of R will be the smallest value that produces

a PSR near to one, and this value is a function of K as well as of V.

We have extensively studied the optimal value of R trough an empirical ap-
proach using numerical simulation. We have found that to obtain a PSR > 0.99
then

N
R > 1.4Klog <E + 6> +30 (6.9)
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. This equation is in accordance with equation (5.1) presented in section 5.2 of
the previous chapter. However, in the following section we will see how a further
exploitation of the RADS architecture will lead to an improvement in both figures

of merits.

In Figure 6.7, we show the simulation results for the optimal value of R given
by equation (6.9) as we vary the value of N. We have also added the curves given
by equation (6.8) in order to compare the simulation result with the predicted
theoretical RSN R.

Rads performance for optimal filter bandwidth

701

RSNR [dB]
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Oversampling ratio (M/N)

Fig. 6.7: Simulation of the performance of RADS Converter using the optimal recon-
struction filter bandwidth for different sparsity levels. RSN R as a function of
the oversampling ratio M /N. The support was correctly recovered 100% of the
time. The solid line represents the simulation result, while the dashed line the
theoretical result from eq. (6.8).

The estimated RSN R follows the behavior of the simulated system, in terms
of variation of parameters K and N (the same occurs with M, not shown). The
differences are due to the linear model used in the approximation of the in-band

noise of the A/Y converter (which a very non-linear system), and the non-ideal
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behavior of the filters used for the reconstruction. Clearly, the expression in equa-

tion (6.8) can be used as a design guideline.

Note also that by taking just 1-bit measurements at Nyquist rate we can get
resolutions of up to 52d B, obtaining a compression rate of about 8 times with

respect to Nyquist sampling for the same resolution.

Finally, in Figure 6.8 we have simulated the same setting as before. In this
case, we have added some intrinsic noise to the original signal (i.i.d. additive
Gaussian noise) to get an input SN R of 30 dB.

Rads performance for optimal filter bandwidth
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Fig. 6.8: Simulation of the performance of the RADS Converter using the optimal re-
construction filter bandwidth for different sparsity levels. The input signal has
an intrinsic SNR of 30 dB. RSNR as a function of the oversampling ratio
M/N. The support was correctly recovered 100% of the time.

As we can see in the plots, the performance of the converter is limited by the
intrinsic noise present in the signal, even if there is a sort of denoising for the

smallest values of K.

In this section we have shown how the RADS Converter can be employed
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to acquire analog-sparse signals with a total number of bits much smaller than
Nyquist multi-resolution analog-to-digital converters. Simulation results have
shown that the proposed architecture collects the necessary information to suc-

cessfully reconstruct sparse signals.

In the next section we will see how we can exploit the peculiarities of the
acquisition strategy to produce an improved estimate of the signal in terms of
accuracy and probability of successful reconstruction over different sparsity con-
ditions. This further exploitation will derive in an algorithm that we have called

FCoSaMP which is free of the parameters that compromise both figures of merit.
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6.4 FCOSAMP

In general, signal reconstruction for a C'S acquisition scheme can be split into two
parts: support recovery, i.e. the identification of the location of the nonzero com-
ponents, and amplitude estimation over that support. Consider first the situation
in which the support is already known. If the columns of the measurement matrix
O indexed by the location of the nonzero components form a full-rank matrix, the
natural approach is to reconstruct the signal by least squares, and the approxima-
tion error will be only limited by the power magnitude of the noise introduced by

the measurement process.

On the other hand, in the general case where the support is not known, most
algorithms can be ensured to work based on the R/ P of the measurement matrix
as stated in the previous section. For some matrix construction with entries that are
Gaussian or sub-Gaussian, the RI P is satisfied with overwhelming probability if
the number of measurements is bigger than a multiple of the signal sparsity M >
CK log(N/K). If the number of measurements falls below a certain minimum
number, the probability of successful reconstruction change from a very high to a
very poor one (see e.g. [61]). This phenomena, in terms of compressive sensing,

is the so called phase transition effect.

As we have seen before, thanks to spreading, every non-zero entry in s implies
a waveform whose energy can be detected at practically any frequency including
those where the quantization error is reduced by the A /3. Hence, to remove the
quantization noise it is desirable to take only a small bandwidth around zero where
the high-pass nature of the disturbance has only a small contribution. On the other
hand, the considered signal should contain enough information for the recovery

of the original sparse signal.

This trade-off fits particularly well into algorithms iterating an elementary step

that estimates supp (s) and then calculates the corresponding non-null entries.

In these algorithms, it is possible to low-pass filter (and decimate to remove

redundant samples) the input vector at each iteration. Doing so, as the recon-
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struction proceeds, its refinement happens with values that are progressively less
affected by disturbances since, while signal energy decreases linearly as the band

shrinks around DC, disturbance energy decreases polynomially thanks to the NTF.

The nature of the architecture allows to develop an iterative algorithm that
recovers the support with a very high probability, since we start the estimation
process with a big number of measurements, and reduces the quantization noise

to the minimum possible depending on the sparsity level.

The algorithm we propose to exploit this intuition is reported in Algorithm 1

and will be referred as FCoSaMP in the following.

We can model the filter process as the application of an [-order FIR filter (I <
m) and arrange its impulse response coefficients Ay, ho, ..., h; as the rows of a
matrix H™ of m x m elements, where m is the length of the sequence to be
filtered.

hi ifj=k+i—1 L k=1,...,m
0 ifj#Ak+i—1 i=1,...,1

(m) _
H;,' =

Depending on the filter cutoff frequency, the filtered sequence can be deci-
mated by a factor d. We can model this operator in the matrix D(®™ of L%J X m

elements

1 ifj=|
0 ifj#|

D(d’m) —

| =12
7,k
m

| E=1,...,

Ul s

By writing the number of measurements as M = 2Kdyd, ...d;—; with d;
being a small downsampling factor (typically 2 or 3) and .J being the total number
of downsampling steps of the algorithm, at the j-th iteration the outer loop filters

the signal and downsample it by a factor d; to reduce quantization noise. In our
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implementation, low-pass filtering was obtained by sinc frequency profiles with

lobes matched with the subsampling ratio.

Downsampling continues until the number of available samples is 2/ since
this is the minimum information needed to discriminate between two different

K -sparse vectors.

The inner loop is performed a fixed number of times and is based on CoSaMP
to iteratively produce an improved estimation of s by least squares over a reduced
support made of the support of the previous iteration plus the support of the largest

components of the residuals of the previous iteration.
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Algorithm 1 Reconstruct x from 1-bit vector z

e Complex conjugate transpose of ©.

of Pseudoinverse of ©. O = (0*0) 10*.

WK Set to zero all w but the K biggest component.

supp(w) Indexes of the nonzero components of w.

d; Downsampling ratios such that M = 2K dydy ...dj_1

Require: Sampling matrix O, 1-bit vector z, sparsity level K.

m <+ M
s < (0,...,0)T

forj=1,...,J—1do
7 < Dlim) gm),
O <« Dmgmg
y<z—0Os
m  m/d;]
fori=1,...,1do
w < O%
T <= {supp(wx) U supp(s;x) }
b(T) <= O(-,T)'s
b({1,...,N\\T) < (0,...,0)T
s <:b|K
y<z—Os
end for
T <= supp(six)
b(T) <= 0O(-,T)'s
b({1,...,N}\\T) < (0,...,0)T
s <:b‘K
end for
x < Us

Intuitively, the high probability of correct support recovery comes from the
fact that we estimate it under large noise condition, but large number of measure-
ments. Once the support is identified (at every iteration the support estimation is
improved), the bandwidth is decreased in order to reduce the quantization noise.
The key fact is to note that the signal energy decreases linearly when the fre-

quency decreases, while noise energy decreases polynomially thanks to the A /X
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noise shaping properties [55]. This combination of filtering and estimation, has
the benefit of recovering the signal with a very high probability of success, while

reducing the quantization noise to the minimum.

6.4.1 Numerical Experiments

The simulations run in this section share the same set of parameters and configu-

ration as the simulations draw in Section 6.3.2.

In the first experiment (Figure 6.9), we have run the same encoding as that in
Figure 6.7, and we have made the decoding with FCoSaMP. Note the increment
in terms of RSN R of at least 30 dB in all the cases. It is also important to note the
large RS N R that is achieved especially for very sparse signals. Note that for M/N
=1 we are just taking 1-bit measurement at Nyquist rate and obtaining a RSN R
of up to 90d B, which translates into a compression factor of about 15 times with

respect to Nyquist sampling.
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Rads performance with FCoSaMP
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Fig. 6.9: Simulation of the performance of RADS Converter using the FCoSaMP algo-
rithm in the reconstruction for different sparsity levels. On top: RSNR as a
function of the oversampling ratio M /N; bottom: PSR as a function of M/N.
The large RSN R that is achieved translates into a compression factor of up to
15 times with respect to Nyquist based acquisition

Another interesting fact is that the support recovery was always correct for
K < 36, while it was substantially less than 100% only for K > 36 when low

oversampling ratios are considered. This is mainly due to the large bandwidth that
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remains at the end of the algorithm, i.e., to the residual noise energy that is large
with respect to the signal energy therefore large noise energy compared with the

signal energy.

In the second experiment, we have added intrinsic noise to the signal by adding
i.i.d. Gaussian noise to get an input SNR of 30 dB. The results are shown in
Figure 6.10.
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Rads performance with FCoSaMP
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Fig. 6.10: Simulation of the performance of RAD.S Converter using the FCoSaMP algo-
rithm for reconstruction, for different sparsity levels. The input signal has an
intrinsic SN R of 30 dB. On top: RSNR as a function of the oversampling
ratio M /N; bottom: PSR as a function of M /N. The encoding process and
the reconstruction algorithm show to be robust against strong noise condition.

As in the experiment presented in previous section, the performance of the
converter is limited by the intrinsic noise of 30 dB. However the denoising effect

is less evident in this simulation. This is due to the fact that as we filter and



6. RADS Converter 90

decimate iteratively, given the not ideal behavior of the filters, part of the noise is
aliased into the low part of the band and added to the total noise energy at the end
of the algorithm.

In spite of this, it is shown that the encoding process of the RADS Converter,
as well as the behavior of reconstruction algorithm are robust against strong noise
condition showing a behavior in terms of PSR similar to that of the previous

simulation.

To avoid possible biases due to the choice of a particular sparsity basis, in the
third experiment we have changed the sparsity basis and we have simulated the
acquisition of a signal that is sparse along a random basis obtained by orthonor-
malizing a matrix with Gaussian independent entries with zero average. The re-
sults are shown in Figure 6.11. Comparing this results with those in Figure 6.9,
note that there is a slight difference in terms of RSN R. This is due to the fact
that the former may contain some components that when looked in the time do-
main concentrate most of its energy in small time intervals. In other words, the
signal energy is not uniformly distributed along the time axis, making many of the

samples taken by the RAD.S Converter useless or without information.

In the extreme case, when all the energy is concentrated in a small period of
time compared with the time-window used for the processing, RADS Converter

will fail to decode this kind of signals.
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Rads performance with FCoSaMP
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Fig. 6.11: Simulation of the performance of RADS Converter by using the FCoSaMP
algorithm for reconstruction, for different sparsity levels. The input signal is
sparse in a random basis. On top: RSN R as a function of the oversampling
ratio M /N; bottom: PSR as a function of M /N. The proposed architecture
shows to work independently of the sparsity basis provided it is spread on the
time axis.

Finally, in the last experiment we have compared the performance achieved

by our system with two state of the art 1-bit compressive sensing algorithms, i.e.,
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the Restricted Step Shrinkage (RSS) [62] and Binary Iterative Hard Thresholding
(BIHT) [51], that are generic schemes working on measurement matrices with

nice theoretical properties (Figure 6.12).

Comparison of RADS, RSS and BIHT
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Fig. 6.12: Comparison of the performance of RAD S Converter decoded with FCoSaMP
with 1bRM PI decoded with the RSS and BIHT algorithms. RSNR as a
function of the oversampling ratio M /N for fix signal length N = 1024 and
sparsity level of K = 10. The same amount of 1-bit samples are considered for
every case.

In every trial we have simulated the acquisition of a signal that is 10-sparse
along a random basis. Independently of the architecture, the same amount of 1-bit

samples z are considered as input for the reconstruction algorithm.
In all cases, the RADS scheme was able to perfectly reconstruct the support
of the original signal and, as shown in Figure 6.12, it achieves an RSN R largely

superior to that of the references.
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6.5 Time Domain Analysis

Up to now, we have made a high level analysis based on frequency domain as-
sumptions of the functionality of the RADS converter, and we have evaluated
two different reconstruction algorithms that produce different results in terms of

the selected performance metrics.

It seems that in the studied cases, the achieved performance is limited by the

selected reconstruction algorithm, and not by the acquisition architecture itself.

The main question we want to answer in this section is: what is the maximum
achievable performance of the RAD.S converter (independently of the reconstruc-

tion algorithm)?

To answer this question we cannot perform only the high level analysis we
have made so far, but we need a deeper understanding of the encoding process.
For this purpose, we will make a time-domain analysis of the converter, starting
by a time-domain analysis of single 1%*-order A /Y modulator, then generalizing it
to a L*"-order A /¥ modulator, and finally analyzing the whole RADS Converter
architecture. In addition, we will also show how to exploit the time-domain anal-
ysis made for the RADS converter in order to reconstruct the original signal from

the one bit measurements.

6.5.1 A/Y. modulator time-domain analysis
15'-order A /Y modulator time-domain analysis

Consider first a discrete time 1*-order A /Y modulator as in figure 6.13 with zero
initial conditions, where the discrete sequence y feeds the modulator, that outputs
the discrete sequence z, and where the internal state is defined by the state variable
v at any time n. The block called [Q] represents a general quantizer and the block

called [D] represents a one time-step delay.
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Yn N N\ “ 1 Qq Zn

il

Fig. 6.13: First order A /Y modulator schematic diagram.

Following the signal path we can write the following equation at any time n:

Up = Yn — Zn—1 + Un_1 (610)

and of course

Un—1 = Yn-1 = Zn-2 T Up—2 (611)

Replacing (6.11) into (6.10) we get

Un =Yn — Zn—1+Yn-1—2n-2+ U2

Extending the same reasoning up to n = 1 and for v; = 0 (zero initial condi-

tions) we can write

Un =Yn — Zn—1 t Yn—1 — Zn—2 + Yn—2 — Zn—3 + Un_3

n n—1
vnzyn+---+y1—zn71—---—zlZZyi—Zzi (6.12)
i=1 i=1

This equation relates the current state variable v at any time n with the whole

history of input y and output z up to time n — 1.
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On the other hand, since we are using a 1-bit quantizer [Q], without loss of
generality by encoding the value "1’ for all positive inputs of the quantizer (in-
cluding zero), and the value ' — 1’ for all negative values of the input, we have
that

UnZp > 0 Vn (6.13)
Defining the vectors
[ Y1 | [ U1 ] [ 21 ]
y= V= R =
L Yn N L Up, i | Zn i
and the matrices
(2, 0 0 . . . 0]
0 Z3
Z = ;
0 0 O Zn, |
10 | [0 0 1
11 10
11 1 1
Y= A=
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we can write

y="Sy— Az (6.14)

and

Zv >0 (6.15)

where the last inequality is component-wise.

In this way, combining equation (6.14) with equation (6.15), and given the

measurements z we can define a solution space for any input y:

Z%y > ZAz

This space contains all possible instances of the input y that are solutions of

the A /Y modulation process.

L"-order A /S modulator time-domain analysis

Consider now a discrete time L™-order A /¥ modulator as in figure 6.14 with zero

initial conditions.

Yo W, Up Zn
L-order Q
Loop Filter

Fig. 6.14: L -order A /% modulator schematic diagram.

In this case, the vector w € R” defines the state vector of the loop filter, while
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the state variable v is equal to the last component of the state vector (w. r,).

The current state at time n can be computed based on the previous states as

Wn = Bynfl +Cz + AW,

where the matrix A € RX*! and the vectors B, C € R” contain the coefficients

that determine the transfer function of the loop filter.

The output of the loop filter is simply v,, = w,, ;, and the output of the modu-
lator is calculated as z,, = sign(v,), where w; 1, 1s the Lt component of the state

vector w.

Analogously as proceeded with the 15'-order modulator, we can write

w, =By, 1+Cz,_1 +ABy, s +ACz,_» +APw, _,

w, =AOBy, 1+ -+A" By, + AOCz,_5 + - -+ A"

n—1 n—1
wo=B> AUy 4> Az (6.16)
i=1 i=1

since w; = 0 (zero initial conditions).

We also have that,

Up2n > 0 Vn

Defining the vectors
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and the matrices

Define

then,

n

Yn—1

Wa,1

Wa,2

= W21,

s W

i Wn—1
21 0 0
0 Z9 0
0 0 Z3
0O 0 O

o, =AYB

6; =AYC

Zn—1

21

Zn—1
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O 0
(on] O

09 (o8] O

» =
| On—2 Op—3 Op_4
[ 6 0
0y do
0o 01 4o
A =—
L 61172 67173 61174

We can now write equation (6.16) in matrix form as

vV =Xy — Az

Oy

(6.17)

In order to keep only the last component of the state vector, define the matrix

K ¢ RL(N—l)mN—I as




6. RADS Converter 100

where 0 represents a row vector of size L with all zeros in its inputs.

Defining v as

U1

to get

vy =K¥'y — KA’z

, and

y=Sy— Az (6.18)

where ¥ = K¥' and A = KA.

As in the 1%t-order case we have,

Zv >0 (6.19)

and combining equation (6.18) with (6.19) to have

Z¥y > ZAz (6.20)

The space defined by equation (6.20) contains all possible instances of the
input y that are solution of the A /Y modulation process, given the measurements

Z.

Now, we can highlight some observations for the above equation:
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e The input signal defines a point in the multi-dimensional space that is con-

tained in the solution space defined by the set of equations in (6.20).

e Fixing the dimension of the input signal, as we add new measurements,
every measurement will split the space into two sub-spaces. Only one of

those sub-spaces will contain possible solutions.

e The minimum number of measurements needed to define a closed region is

equal to the dimension of the input signal plus one.

e Adding a new measurement, does not imply a reduction in the solution

space.

e A smaller solution space implies an estimation of the input signal with a
bigger accuracy. In other words, the smaller the solution space, the bigger
the SNR of the estimated signal.

6.5.2 RADS Converter time-domain analysis

We now have all we need to analyze the whole RADS converter architecture.
The set of inequalities ZYy > ZAz define the solution space given by the A/X
modulator. In the same way as above, to completely model the RADS Converter

and the input signal itself, we can easily write

y = DAx = DA Vs

to have

ZYDAVs > ZAz (6.21)

where the matrix A is the upsampling operator and the matrix D represents the

pre-modulation process, as we have defined before.
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We have now a complete description of the modulation process of the RADS
Converter architecture in time domain. The main differences between the RADS
Converter and a A /Y alone are two: first, the pre-modulation increases the prob-
ability that every new measurement modify the solution space, increasing in this
way the accuracy in the estimation. Secondly, under the assumption that s is sparse
in a given domain, it is possible reduce the solution space to only those candidates
that satisfy this condition, reducing even more the solution space. Since sparsity
is not a dimensionality reduction, it is not possible to know a priori which are the
directions to look at, but as we proceed with the measurements, there will be many

candidates to discard since they are not sparse enough to be a possible solution.

6.5.3 Space Dimension Analysis

As we have seen before, it is possible to define a monotonic dependence between

the size of the solution space and the SNR of the estimation of the input signal.

As a measure of size, and considering that any point in the solution space is a
candidate with the same probability, it is possible to consider the hyper-volume of

that solution space as a measure of precision of the estimation of the input signal.

Regrettably, an analytical expression for the calculation of the hyper-volume
in high-dimensional spaces is a difficult task, and we need to resort to numerical
integration. For that purpose, we will use Monte-Carlo integration [63, 64] in
order to have an estimation of the hyper-volume of the solution space as a function

of the number of measurements.

Monte Carlo integration is a technique for numerical integration that uses ran-
dom numbers, and is particularly useful for higher dimensional integrals. Infor-
mally, to estimate the volume of a given domain D, we have first, to pick a simple
domain E whose volume is easily calculated and which D is contained. Then, we
generate a sequence of random points that fall within E, some of which will also
fall within D. Finally, we calculate the area of D as the area of E by the fraction

of points that fall between E.
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In this case, we have set the container volume as an hyper-cube of 1 x 1 X
1 x +-+ x 1 and we have generated 500,000 x M random points with uniform

distribution within this range for every point in the plot.

We have plot in Figure 6.15 the hyper-volume of the solution space as a func-
tion of the number of measurements for two cases: using a single A /Y converter
(equation (6.20)); and using the RADS Converter architecture (equation (6.21)).
As a reference, we have also plot a line with slope —1/2*. This line will occur
only when every cut of the space produced by a new measurement divides the

solution space exactly into two equal parts.
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Monte Carlo Integration of the Solution Space
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Fig. 6.15: Monte Carlo integration of the hyper-volume of the solution space for RADS
Converter and for A /3 converter. On top: volume in linear scale as a function
of the number of measurements M ; bottom: volume in logarithmic scale as
a function of M. The encoding performed by RADS is more effective in
reducing the size of the solution space.

As can be observed in Figure 6.15 the difference in size of the solution space
obtained using the RADS Converter approach is orders of magnitude more conve-

nient than using classical A/ modulation. This difference is much more evident
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as the number of measurements is increased. However, as the plot shows it is still
possible to obtain an important improvement, since the line indicating the optimal

cuts is far away from the one described by the RADS Converter.

6.5.4 LI-norm Minimization

It was demonstrated above that the set of inequalities given by equation (6.21) de-
fine the solution space of the RAD.S modulation process. This space still contains
many possible input vectors s, but we are particularly interested in the sparsest
vector that exist in this space. In order to find such a vector we can recast to a L/-
norm minimization, since from the observed in the previous chapter, it enforces

sparsity across all possible solutions.

We can write the following minimization problem

N
§ = argmin Z |si| st. ZYDAVs > ZAz (6.22)
i=1
which from now on we will call L1min.

6.5.5 Numerical Experiments

In this section we will show the results from a series of simulation we have run in

order to evaluate the minimization problem presented in equation (6.22).

We have setup the same conditions for the simulation in section 6.3.2, except
that in this case we have reduced the number of measurements from 2048 to 1024.
It was necessary to reduce this number for the simulation to be computational
feasible, since every measurement produce a new constrain to be pass to the solver.

The minimization problem was solved by the software cplex [65].

Figure 6.16 shows the performance achieved by FCoSaMP compared with that
obtained using the minimization problem of equation (6.22), by fixing the sparsity

number to K = 8.
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As it is observed in the plot, L1min outperforms FCoSaMP by around 10 dB
in the whole range. This behavior can be verified using different experimental

setups not shown.

Performance comparison
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Fig. 6.16: Performance comparison of FCoSaMP and Llmin. RSNR as a function of
oversampling ratio M /N for an 8-sparse signal encoded with RAD S converter.

The main drawback of this reconstruction algorithm is the running time needed
to solve the minimization problem. In Figure 6.17 we have plotted the relation-
ship between the average simulation time taken by L1min over the time taken by
FCoSaMP.
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Fig. 6.17: Reconstruction algorithm execution time for FCoSaMP and L1msn. Relation-
ship between the time taken by L1lmin and FCoSaMP as a function of the
oversampling ratio M /N.

As it is shown in the plot, the time needed for L1min is between 50 and 250
times longer than that of FCoSaMP. As we increase the oversampling ratio more
equations enter into play, which reduce the search space of the minimization algo-
rithm. However, this long reconstruction time make this algorithm only feasible

in particular cases.
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6.6 Hardware Implementation

108

In this section we propose a hardware implementation of the RAD.S Converter in
order to validate the ideas presented above by a real application.

The implementation was made in a reduced size PCB with off-the-shelf com-
ponents. Some constrains were imposed in the design of the board, since the out-

signal_in

z(t)

put of the A /Y converter must be a 1-bit output, but it is rather difficult to find a
include the decimation filter as well).
Figure 6.18 shows a simplified schematic diagram of the implemented archi-

commercial A /Y converter with this characteristic in the market (most converters

tecture, and the aspects of the implemented board can be observed in Figure 6.19.

v clock_in
£ )

= AX
iw V-

data_out

» z[n]
Converter.

<« p[n]

RNG_in
Fig. 6.18: Simplified schematic diagram of the hardware implementation of the RADS

Fig. 6.19: Picture of the hardware implementation of the RAD.S Converter.

From the user point of view the converter presents two inputs: a clock and a
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random sequence, and one output: the 1-bit RADS Converter output. The clock
input and input for the random sequence must be synchronized, and the frequency
relationship must be the oversampling ratio determined by the application. The
1-bit output is synchronized with the input clock and must be read before the next

rising edge of the incoming clock.

The first stage of the converter is nothing but an amplifier, which functions
is to convert the signal from single-ended to differential, and to adapt the signal

input level to the A/ converter level.

After this stage, the signal is passed trough a combination of switches, that
change the polarity of the signal as it is commanded by the RNG input. This

processing is equivalent to the multiplication stage showed in Figure 6.3.

The last block is a conventional A /3 converter, which produces a 1-bit output
stream. The chosen converter was an AD7401A, from Analog Devices, which is

a 2nd order discrete time modulator with a maximum sampling rate of 20MSPS.

Note that in an integrated implementation the whole architecture can be di-
rectly implemented with a slight modification of the first stage of a discrete time

A/¥ converter.

6.6.1 Measurement Setup

Figure 6.20 and Figure 6.21 show the measurement setup. The complete setup
is composed by the RADS converter board, a Spartan 6 Development Board re-
sponsible for to generating the pseudorandom sequence and to interface it to a PC
trough a USB port, a signal generator with GPIB interface, a power supply, and a
laptop for the control and the acquisition of the measurements.
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Fig. 6.20: Picture of the RADS Converter connected to a Spartan 6 FPGA development
kit.

(age2s2s W Ly
=) N N -

Fig. 6.21: Measurement setup for the evaluation of the hardware implementation of the
RADS Converter.

The measurement procedure is described below:

e Set the number of measurements (1), the Nyquist rate of the input signal
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to be generated (/V), the sparsity level (/), and choose a basis of sparsity

for the signal.

e Generate the samples of the signal to be acquired in the PC with Matlab,
and send them through the GPIB interface to the signal generator.

e Start the acquisition with the RAD.S board, save the measurements tempo-
rally in the Spartan 6 development board, and transfer them to the PC trough
USB.

e Process the acquired samples in the PC with FCoSaMP and compare the

reconstructed signal with the synthetically generated signal.

The proposed measurement setup is very flexible and allows to exploit the

whole space of parameters of the acquisition process.

6.6.2 Measurements and Validation

We have made a series of measurements in order to validate the functioning of
RADS Converter. We have fixed the sampling frequency to 10/ H z and we have

vary the time window in order to change the number of acquired measurements.

As an example, Figure 6.6.2 shows a plot of an 8-sparse (in a random basis
with a Nyquist rate of 51 H z) synthetic signal generated in Matlab, and superim-
posed to it, it is the signal acquired with RADS Converter and reconstructed with
FCoSaMP. The obtained RSN R was of 32dB.
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Example of Signal Aquisition with RADS Converter
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Fig. 6.22: Acquisition of an analog signal with RAD.S Converter. The input signal is 8-
sparse in a random basis and with a Nyquist rate half the sampling frequency.
On top: the synthetic signal superimposed to the reconstructed signal for the
whole acquisition window; on bottom: a zoom-in of the same acquired signal.

Figure 6.6.2 shows the signal input spectrum. As it is shown, the spectrum
occupancy is of 2.5M H z, which implies a Nyquist rate of 5M Hz. With the bit
budget utilized by RADS Converter in the acquisition of this signal, it would be

obtained a maximum SN R of 12d B by the used of a classical Nyquist converter.
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Input Signal Spectrum
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Fig. 6.23: Spectrum of the input signal acquired by RAD.S Converter. The spectrum has
a full occupancy for frequencies up to 2.5M H z

Another example using a sparse signal in the Fourier domain is presented in
the 6.24. The plot shows the mean value over 10 measurements obtained by the
RADS converter board.
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Measurements over Rads converter
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Fig. 6.24: Performance of the hardware implementation of the RADS Converter by us-
ing the FCoSaMP algorithm for reconstruction, for different sparsity levels.
RSNR as a function of the oversampling ratio M /N. The support recovery
was always correct for the 10 measurements.

As can be observed, the trend is the same to that obtained in the simulation,
but the performance archived in terms of RSN R is inferior to the expected by
the simulation. These differences can be due to, imperfections in the utilized
switches (on/off resistance, switching time, frequency response), different sources
of noise (power supply noise, noise introduced by the amplifier, thermal noise,
quantization noise in the signal generator) and most important, the bandwidth of
the input stage of the utilized A /¥ converter (the modulated signal that enter into

the A /Y converter exceeds greatly the converter specification).

In spite of this, the implementation of the converter has shown that this archi-
tecture is promising as an analog-to-information converter, significantly reducing
the total number of bits with respect to Nyquist based sampling for specific classes

of signals.
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6.7 Conclusion

In this chapter we have introduced the RADS Converter, we have evaluated its
performance through theoretical results, numerical simulations and a hardware
implementation of the acquisition architecture. We have proposed a number of
reconstruction algorithms among those we highlight the FCoSaMP and the L/-

norm minimization.

The proposed architecture allows a “simple” hardware implementation for the
acquisition of large bandwidth signals that are sparse over a variety of supports,
obtaining a very high resolution after reconstruction. This contrast with classical
sampling methods, where the resolution drastically decreases with the sampling

frequency.

We have also evaluated numerically the quality of the algorithm to retrieve
a correct support under different input signal condition, obtaining a very high

probability over a wide range of sparsity levels.

Finally we have proposed a different approach for the study of the RADS
Converter and for A /3 modulators in general. Contrary to what is found in the
literature for this kind of converters, usually evaluated in the frequency domain

[55, 56, 57, 58], the proposed approach is based on a time-domain analysis.






7. CONCLUSIONS

This thesis builds on the field of signal processing, and illustrates with two differ-
ent applications how, by increasing the efforts in the digital domain, it is possible

to reduce the requirements for the implementation of analog hardware.

Specifically, we have focused on the analysis of the use of very coarse quan-
tization, more precisely 1-bit quantization, with the aim of obtaining a simplifi-
cation in the implementation of both, analog to digital converters, and digital to
analog converters. We have shown that a proper exploitation of binary quantiza-
tion can lead to performances that are similar, and sometimes even better, than

those obtained using multibit approaches.

In the first part we have proposed the use of Legendre sequences (binary se-
quences) for the utilization in MIMO active sensing systems. We have proposed
the construction of set of sequences, where each of the sequences in the set is
made from a different rotation of the same Legendre sequence. We have found
that optimal rotations exist, and that the set formed by this binary sequences has
a performance in terms of ISL beyond the one obtained by other sets of binary
sequences. We have also found that the performance obtained by our sequences is
comparable to state-of-the-art algorithms that produce real value sequences, when

quantization is imposed to them up to a certain level of quantization depth.

In order to obtain the optimal rotations, we have presented an analytical ex-
pression for the calculation of the cross-correlation components of the ISL of a
set of sequences. This expression, put together with a previously obtained ex-

pression for the calculation of the ISL of a single sequence, allowed the creation



7. Conclusions 118

of a complete expression for the ISL of a set of sequences. Under asymptotic
conditions, this expression can be used to calculate the ISL of sequences whose
generating function has a relatively simple trend. Since this is the case of Legen-
dre sequences, we were able to derive an analytical expression for the asymptotic
ISL of sets of rotated Legendre sequences. Such an expression was exploited to
drive the optimization procedure needed to construct small-ISL sets of antipodal
sequences of any sequence length with potential applications to communication

and active sensing systems.

We have started the second part of this thesis by introducing the models nec-
essary to represent the classes of signals of interest, i.e. sparse signals. We have
shown how many high-dimensional signals actually have a limited number of de-
grees of freedom compared to its dimensionality. These classes of signals are
known as sparse signals, which are one of the main ingredients for the develop-

ment of the compressive sensing theory.

In this part of the thesis we have dealt particularly with the design and de-
velopment of a hardware architecture for the implementation of a compressive
sensing system. Based on the motivation of this thesis work, one of the requisite
we have impose for the implementation of such a system, was that it must lead

into a simple hardware/system implementation.

In this way , we have introduced a new architecture for an Analog to Informa-
tion converter that was called the RAD.S Converter. The proposed architecture is
based on a well-known A /3 converter that produces 1-bit measurements of the
incoming signal. Starting from a A/ converter, a straightforward modification
of the input stage topology lead to the implementation of the RADS Converter
architecture.

The reconstruction performance obtained using the proposed converter was
found to depend on the signal information content, instead of depending on the
signal bandwidth, as it is in the case for a classical A /Y converter. This results in

the possibility of acquisition of large bandwidth signals that are sparse over a vari-
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ety of supports, with an extremely high accuracy after being processed. Based on
compressive sensing concepts, RADS Converter is able exploit the sparse signal

structure to capture all its information content by taking single bit measurements.

An important finding of this work, was that by exploiting the peculiarities of
the acquisition strategy we were able to develop a new reconstruction algorithm
that produces an improved estimate (with respect to general algorithms) of the
signal in terms of accuracy and probability of successful reconstruction. This
suggest that, while most of the reconstruction algorithms for compressive sensing
are based on guaranties on the structure of the measurement matrix (R/P based
algorithms), it is possible to get a profit by generating more clever algorithms that

match with the acquisition architecture itself.

The modeling of the RADS Converter in the frequency domain has led to
an intuitive understanding of the encoding process, and has given light on how

proceed to efficiently reconstruct the input signal from the measurements.

However, in order to get a deeper insight into the functioning of the proposed
converter, we were able to develop a time-domain model of the operations per-
formed to the signal in the encoding process. With this aim we have raised an
algebraic analysis of the space determined by the measurements, and its reduc-
tion as new measurements come into consideration. The study of the size of that
space, evidences the difference between the RADS encoding and the A/Y en-
coding, and allows the calculation/ estimation of the theoretical maximum limit

that can be expected by taking 1-bit measurements of any form.

The different perspective given by the time domain modeling of the encoding
process, has led to the proposal of a new reconstruction algorithm for the RADS
Converter architecture. This algorithm is based on classical compressive sensing
concepts that promotes sparsity through the minimization of the L1-norm. It has
been demonstrated that the use of this algorithm can produce a better estimate
of the signal than its frequency-based counterpart. However, the complex task

of minimizing the L1-norm over the huge amount of constraints, makes this im-
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provement be achieved at the expense of an increase in execution time, making

this application only feasible for certain applications.

Besides the extensively numerical simulations performed during the devel-
opment of this thesis to validate the results, we have implemented the RADS

Converter architecture in a reduced size PCB with off-the-shelf components.

The implementation of the converter has demonstrated that this architecture is
promising as an analog to information converter, significantly reducing the total
number of bits with respect to Nyquist based sampling, for specific classes of

signals.

Although the performance attained by the hardware implementation differs
from the one achieved in simulations, we believe that a proper implementation of
the RADS Converter in a specifically designed integrated device can lead to an

increase in the performance close to the obtained in the simulation.
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