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Abstract

Constructing ontology networks typically occurs at design time at the hands

of knowledge engineers who assemble their components statically. There

are, however, use cases that require ontologies to be assembled dynamically

as a network that is processed at runtime. Running Description Logics

reasoning on an ontology network that combines an ABox obtained from

multiple sources with its corresponding TBox, in turn combining multiple

schemas, is one such use case. It occurs, for example, in extensible service

frameworks which share a common knowledge base. Each application in the

framework needs to process concurrent service calls from multiple clients.

Each call, in turn, provides its own semantic payload for processing and

would require an ontology network to be assembled ad hoc, otherwise a

large chunk of the whole knowledge base would have to be processed on every

call. These concurrent ontology networks generated out of shared knowledge

resources, without altering the stored ontologies and without tampering

with one another, are what we call “virtual [ontology] networks”. Keeping

track of which virtual networks use an ontology in a certain configuration

is what we call “multiplexing”.

Issues may arise from the connectivity mechanism of ontology networks. In

many cases, simply appending each ontology as a subtree to a root node

will not work, because many ontology managers visit networks in a way

that can cause object property assertions to be erroneously interpreted as

annotations and ignored by reasoners. Moreover, repository managers need

to keep the knowledge base from growing uncontrollably, especially when it

is being fed large volatile data for use by only one service call or a few.

Our claim is that ontology engineering alone does not su�ce for tackling

these problems altogether, and that they should be handled by the software



that serves these ontology networks. However, when the underlying frame-

work is being observed, resource usage must be considered: the memory

footprint of an ontology network that maximizes connectivity for the cor-

rect interpretation of axioms should be comparable to the sum of those of

each ontology taken standalone. Also, multiple virtual networks that reuse

the same ontologies should optimize their cumulative memory footprint,

and where they cannot, this should occur for very limited periods of time.

We hypothesized that spreading the components required by an ontology

network across a 3-tier structure can reduce the amount of erroneously

interpreted axioms, under certain circumstances concerning the distribution

of raw statements across the components. To that end, we assumed OWL 2

to be the core language handled by semantic applications in the framework

at hand, due to the greater availability of reasoners and rule engines for

this language. We also assumed OWL axiom interpretation to occur in

the worst case scenario of pre-order visit, which we have verified to happen

with widespread OWL management software such as the OWL API and

Protégé. Because tackling ontology modularization is beyond the scope of

this work, we limited to contexts where it is always possible to determine the

minimal subset of the shared knowledge base that each application needs in

order to obtain expected reasoning results. We expected that an aggressive

ownership and persistence policy applied to the data payload (outer tier),

and a conservative policy applied to the shared knowledge base portions

(inner tiers), could reduce the memory occupation of virtual networks by at

least one third of the memory occupied by each ontology network if it were

fully in its own memory space.

To measure the e↵ectiveness and space-e�ciency of our solution, a Java

implementation was produced as the “Stanbol ONM” (Ontology Network

Manager) able to serve 3-tier virtual networks with REST services, there-

fore completely transparent to OWL applications. We compared the Java

Virtual Machine footprint of ontology network setups in this proposed 3-tier

configuration, against that of the same ontology networks when each runs

in its own Virtual Machine (i.e. the framework’s caching capabilities). We



measured the memory overhead of multiple ontology collector artifacts that

reference the same ontology (i.e. the framework overhead). Also, measures

applied to OWL axiom interpretation of virtual networks on a case-by-case

basis verified that a 3-tier structure can accommodate reasonably complex

ontology networks better than flat-tree import schemes can.

After a brief and informal introduction to the research challenges, Chapter 2,

as well as related work sections for other chapters, encompasses the state of

the art in the fields of research related to our work. Chapter 3 illustrates the

research problems we were faced with both initially and during the course of

the work, along with the goals that arose from them. The model for 3-tier

ontology multiplexing and the theoretical framework behind it are discussed

in Chapter 4, while Chapter 5 describes the step where said model can be

bound to a software architecture. The aforementioned implementation has

a dedicated description in Chapter 6, while Chapter 7 describes both the

qualitative evaluation on top of a graph-based theoretical framework, and

the quantitative evaluation of the memory e�ciency of the implementation.

The final chapter concludes this work with a discussion on lessons learnt

and the open endpoints for future work to be taken up from there.



If I have one dollar and you have one dollar and we trade them,

we will have one dollar each.

But if I have one idea and you have another idea and we share them,

we will have two ideas each.

(Sr. Don Rafael del Pino y Moreno)
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Terrazas for their invaluable guidelines on how to setup my research context.

Gabriele and Andrea, for sharing with strength most that I endured. Michael,

for shelter and bearing with me when I had nowhere to go in Amsterdam.

The others in the Vrije Universiteit for instantly making me one of the team:

Hans, Victor, Dan, Davide, Kathrin, Marieke, Riste, Paul, Christophe,

Willem, Frank, Michiel, Szymon, Rinke, Spyros, Elly, Jacco, Louren, Jan.



OpenWetWare for the LATEXtemplate1 that I just slightly modified for the

layout of this dissertation. And the LATEX guys and gals too, no less.

Leto-Sensei and fellow Shotokan Karate Do followers - Osu!

Stu↵ I (re-)discovered during the Ph.D. work: Asphyx, Diocletian, Jex

Thoth, Japanische Kampfhörspiele, The Obsessed, Sayyadina, Hybernoid,

Optimum Wound Profile, Co�ns, Primate, Perdition Temple, Totenmond,

Khlyst, Inner Thought, Scalplock, The Hounds of Hasselvander, Afgrund,

Resistant Culture, Watchmaker, Greymachine. What keeps the mind fresh.

The whole sta↵ behind “Strange Days”, a movie I totally fell in love with

on the very day my doctoral studies began.

People from 1980’s comedy who personally gave me a good laugh and a

blessing for my career: Maurizio Fabbri (tutti li donno!), Matteo Molinari

(lo squalo bianco) and my all-time idol Giorgio Bracardi (chettefreca?).

Friends who were all the time out there to remind me what I am, over and

above a computer scientist and whatnot. This isn’t over. Grind on – UH!

Dad watching from afar. Mom. Family. Anyone who has given me a chance.

1OpenWetWare LATEXtemplate for Ph.D. thesis, http://openwetware.org/wiki/LaTeX_template_

for_PhD_thesis

http://openwetware.org/wiki/LaTeX_template_for_PhD_thesis
http://openwetware.org/wiki/LaTeX_template_for_PhD_thesis


iv



Contents

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 From Linked Data to combining ontologies . . . . . . . . . . . . 3

1.1.2 The role of ontology networks . . . . . . . . . . . . . . . . . . . . 5

1.1.2.1 Use case: multi-user content directories . . . . . . . . . 6

1.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Ontologies and their management: state of the art 11

2.1 On Linked Data and the Semantic Web . . . . . . . . . . . . . . . . . . 12

2.2 Knowledge representation methods and technologies . . . . . . . . . . . 16

2.2.1 Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Thesauri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Serialization of ontologies . . . . . . . . . . . . . . . . . . . . . . 23

2.2.6 Querying and processing ontologies . . . . . . . . . . . . . . . . . 24

2.3 Networked ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Formal specifications . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Distributed ontology management . . . . . . . . . . . . . . . . . 28

v



CONTENTS

2.3.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Ontology repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Cupboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 The TONES repository . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 ontologydesignpatterns.org . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Oyster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 The OBO Foundry . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.6 The Open Ontology Repository . . . . . . . . . . . . . . . . . . . 36

2.4.7 COLORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Existing ontologies and knowledge vocabularies . . . . . . . . . . . . . . 37

3 Goal overview 43

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Final aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Host framework features . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Challenges in ontology management . . . . . . . . . . . . . . . . 47

3.2.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Intermediate objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Null hypothesis negation . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Public problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 A model for ontology network construction 59

4.1 The ontology network model . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1.1 Ontology sources . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1.2 Context-dependent OWL axioms and expressions . . . 67

4.1.2 Ontology networks . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.3.1 Referencing ontologies . . . . . . . . . . . . . . . . . . . 75

4.1.3.2 Ontology collectors . . . . . . . . . . . . . . . . . . . . 75

vi



CONTENTS

4.1.3.3 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.3.4 Ontology space . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.3.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.3.6 Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Virtual ontology network assembly in OWL 2 . . . . . . . . . . . . . . . 85

4.2.1 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Tier 1: core spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Tier 2: custom spaces . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Tier 3: sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.4.1 Example: multi-user content directories use case . . . . 92

4.2.5 Exporting to OWL . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Ontology referencing vs. naming . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Public keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Relation to other work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Architectural binding 109

5.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Service and component nomenclature . . . . . . . . . . . . . . . 109

5.1.2 The CRUD paradigm . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Components and factory components . . . . . . . . . . . . . . . . 111

5.2.2 Knowledge base . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.4 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Ontology network model bindings . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1.1 Unbound artifacts . . . . . . . . . . . . . . . . . . . . . 116

5.3.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2.1 Manage/unmanage ontology . . . . . . . . . . . . . . . 117

5.3.2.2 Attach/detach scope . . . . . . . . . . . . . . . . . . . . 119

5.4 RESTful service interface . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Service endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vii



CONTENTS

6 Implementing the model: the Stanbol ONM 137

6.1 Apache Stanbol overview . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.1 Relation to the software model . . . . . . . . . . . . . . . . . . . 139

6.1.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Stanbol ONM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.2 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.3 API implementations . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Evaluation 151

7.1 OWL axiom interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1.1.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1.2 Connectivity patterns . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1.2.1 Trivial connectivity pattern: flat with auxiliary root . . 156

7.1.2.2 Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1.2.3 Broken ring . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1.2.4 Multipartite . . . . . . . . . . . . . . . . . . . . . . . . 159

7.1.2.5 Tight replication with root cycling . . . . . . . . . . . . 161

7.1.2.6 Tight replication with intermediate layer cycling . . . . 162

7.1.2.7 Rooted polytree, or loose replication . . . . . . . . . . . 163

7.1.3 Distribution patterns . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.1.3.1 TA-simple . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.3.2 T-split . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1.3.3 TA-retroactive . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.3.4 A-split . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.1.3.5 mn-scatter . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.1.4.1 TA-simple . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.1.4.2 T-split . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.4.3 TA-retroactive . . . . . . . . . . . . . . . . . . . . . . . 178

7.1.4.4 A-split . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

viii



CONTENTS

7.1.4.5 nm-scatter . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.4 Framework caching . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2.5 Framework overhead . . . . . . . . . . . . . . . . . . . . . . . . . 191

8 Conclusions 199

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2 Relation to stated goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.2.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

References 211

Document references 231

Web references 235

ix



CONTENTS

x



List of Figures

1.1 Overview of a multi-user content directories use case . . . . . . . . . . . 7

2.1 Status of the Semantic Web stack implementation as of 2012 . . . . . . 13

2.2 Linked Data Cloud as of September 2011 . . . . . . . . . . . . . . . . . 15

4.1 Resolution of an ontology source to an ontology . . . . . . . . . . . . . . 64

4.2 Scenario with multiple referencing mechanisms in ontology spaces . . . . 79

4.3 Ontology referencing mechanism for scopes . . . . . . . . . . . . . . . . 82

4.4 Ontology referencing mechanism for sessions . . . . . . . . . . . . . . . . 84

4.5 Virtual ontology network composition diagram . . . . . . . . . . . . . . 86

4.6 Multiplexing in an ontology collector . . . . . . . . . . . . . . . . . . . . 87

4.7 Distribution of ontologies across tiers in virtual ontology networks . . . 88

4.8 Virtual ontology networks for multi-user content directories . . . . . . . 93

5.1 Component architecture overview . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Class diagram of artifacts from the ontology network model . . . . . . . 115

5.3 Management methods of the ontology collector interface . . . . . . . . . 117

5.4 Scope referencing methods of the session interface . . . . . . . . . . . . . 119

6.1 Apache Stanbol component architecture . . . . . . . . . . . . . . . . . . 138

6.2 Screenshot of the Apache Stanbol Ontology Network Manager . . . . . . 142

6.3 Stanbol Ontology Manager bundle dependencies . . . . . . . . . . . . . 144

6.4 Stanbol ONM technology stack (final iteration) . . . . . . . . . . . . . . 147

7.1 Flat connectivity pattern for n ontologies. . . . . . . . . . . . . . . . . . 156

7.2 (One-way) ring connectivity pattern . . . . . . . . . . . . . . . . . . . . 158

xi



LIST OF FIGURES

7.3 (One-way) broken ring connectivity pattern . . . . . . . . . . . . . . . . 158

7.4 Multipartite connectivity pattern with fixed path length. . . . . . . . . . 160

7.5 Multipartite connectivity pattern with variable path length. . . . . . . . 160

7.6 Tight replication connectivity pattern with cycling on root vertex . . . . 162

7.7 Tight replication connectivity pattern with intermediate layer cycling . 163

7.8 Rooted polytree connectivity pattern . . . . . . . . . . . . . . . . . . . . 164

7.9 Realization of an occurrence of the TA-simple distribution pattern . . . 174

7.10 Realization of an occurrence of the T-split distribution pattern . . . . . 177

7.11 Realization of an occurrence of the A-split distribution pattern . . . . . 179

7.12 Realization of an occurrence of the 22-scatter distribution pattern . . . 180

7.13 Linear fit on the volatile size of multiple ontology occurrences generated

by multiple concurrent requests . . . . . . . . . . . . . . . . . . . . . . . 190

7.14 Linear fit on the resident size of a custom ontology space with respect

to its number of ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . 195

xii



List of Tables

4.1 Context-dependent axioms and expressions with ambiguous RDF repre-

sentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 OWL 2 export of core spaces. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 OWL 2 export of core space ontology images. . . . . . . . . . . . . . . . 97

4.4 OWL 2 export of custom spaces. . . . . . . . . . . . . . . . . . . . . . . 98

4.5 OWL 2 export of custom space ontology images. . . . . . . . . . . . . . 99

4.6 OWL 2 export of scopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 OWL 2 export of scope ontology images. . . . . . . . . . . . . . . . . . . 100

4.8 OWL 2 export of sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 OWL 2 export of session ontology images. . . . . . . . . . . . . . . . . . 101

4.10 OWL 2 export of unmanaged ontologies. . . . . . . . . . . . . . . . . . . 102

5.1 Conditions for storing an ontology in the knowledge base given its input

source type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Overview of REST endpoints for ontology network management . . . . . 122

5.3 HTTP methods supported by the ontology manager REST resource. . . 123

5.4 Response table of the ontology manager REST resource. . . . . . . . . . 123

5.5 HTTP methods supported by the scope manager REST resource. . . . . 124

5.6 Response table of the scope manager REST resource. . . . . . . . . . . . 124

5.7 HTTP methods supported by the session manager REST resource. . . . 124

5.8 Response table of the session manager REST resource. . . . . . . . . . . 125

5.9 HTTP methods supported by the ontology entry REST resource. . . . . 126

5.10 Response table of the ontology entry REST resource. . . . . . . . . . . . 126

5.11 HTTP methods supported by a scope REST resource. . . . . . . . . . . 127

5.12 Response table of a scope REST resource. . . . . . . . . . . . . . . . . . 128

xiii



LIST OF TABLES

5.13 HTTP methods supported by a core space REST resource. . . . . . . . 129

5.14 Response table of a core space REST resource. . . . . . . . . . . . . . . 129

5.15 HTTP methods supported by a custom space REST resource. . . . . . . 129

5.16 Response table of a custom space REST resource. . . . . . . . . . . . . . 130

5.17 HTTP methods supported by an ontology image wrt. a scope REST

resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.18 Response table of an ontology image wrt. a scope REST resource. . . . 131

5.19 HTTP methods supported by a session REST resource. . . . . . . . . . 131

5.20 Response table of a session REST resource. . . . . . . . . . . . . . . . . 132

5.21 HTTP methods supported by an ontology image wrt. a session REST

resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.22 Response table of an ontology image wrt. a session REST resource. . . . 133

5.23 HTTP methods supported by an aliases REST resource. . . . . . . . . . 134

5.24 Response table of an aliases REST resource. . . . . . . . . . . . . . . . . 134

5.25 HTTP methods supported by a handles REST resource. . . . . . . . . . 134

5.26 Response table of a handles REST resource. . . . . . . . . . . . . . . . . 134

7.1 Summary of qualitative evaluation . . . . . . . . . . . . . . . . . . . . . 182

7.2 Memory footprint of multiple simulated request for an ontology . . . . . 187

7.3 Memory footprint of multiple simulated request for an ontology . . . . . 188

7.4 Memory overhead of scopes by ontology population. . . . . . . . . . . . 194

7.5 Memory overhead of sessions by ontology population. . . . . . . . . . . . 196

7.6 Memory overhead of ontologies obtained from a scope versus their plain

forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xiv



Glossary

ABox The assertional component of a

knowledge model.

API Application Programming Interface,

the specification of a protocol for

software components to communi-

cate with each other.

CMS Content management system, a soft-

ware system that allows publishing,

editing and otherwise managing the

workflow of content on a website or

in a collaborative environment.

DAML+OIL An early ontology representation

language.

JSON JavaScript Object Notation, a data

interchange format whose syntax is

derived from that of arrays and ob-

jects in the JavaScript programming

language.

JSON-LD JSON syntax for Linked Data and

RDF.

MIME Multipurpose Internet Mail Exten-

sions, a standard for extending the

format email to support non-text

message bodies, also adopted in the

HTTP protocol.

N-Triples A serialization format for RDF de-

rived from N3 and Turtle, targeting

ease of parsing by software systems.

N3 Notation 3, a compact RDF serializa-

tion format.

OWA Open world assumption, a principle

of formal logic that holds in OWL.

OWL Web Ontology Language, a formal-

ism for representing ontologies in de-

scription logics. Can be applied on

top of RDF or represented in stan-

dalone formats.

OWL/XML A syntax for serializing OWL on-

tologies to XML documents directly.

RDF Resource Description Framework, a

standard for representing logical

statements using a subject-predicate-

object pattern.

RDF/JSON A serialization format for RDF

graphs in JSON notation.

RDF/XML The normative serialization format

of RDF graphs to an XML language.

RDFS RDF Schema, a knowledge repre-

sentation language for constructing

RDF vocabularies.

REST REpresentational State Trans-

fer, an architectural paradigm for

distributed systems, prominently

adopted for current-generation Web

Services.

RIF Rule Interchange Format, a proposed

standard for rule representation in

the Semantic Web.

SPARQL Recursive acronym for “SPARQL

Protocol and RDF Query Lan-

guage”, a query language for

databases that can retrieve and ma-

nipulate data stored in RDF.

SWRL Semantic Web Rule Language, a for-

malism for expressing rules compati-

ble with OWL.

TBox The terminological component of a

knowledge model.

Turtle Terse RDF Triple Language, a

human-readable RDF serialization

format built on top of N3.

UML Unified Modeling Language, a stan-

dard modeling technique in software

engineering.

xv



GLOSSARY

xvi



1

Introduction

It is an established fact that the World Wide Web is evolving in a multitude of direc-

tions: some involving the quantity and variety of data; others dealing with the diversity

and specialization of intelligent agents, no longer limited to humans, which are able to

consume and generate these data. The target state commonly known as the Web 3.0,

or the Web of Data [Hen10], involves features such as personalization [HF11, LK11]

and the Semantic Web [SBLH06]. The latter, in turn, heavily relies on manipulating

formally represented knowledge, what on a higher degree is known as ontologies. The

distributed nature of the Semantic Web hints at several use cases, some of which will

be exemplified across this thesis, where the reuse and combination of heterogeneous

ontologies into ontology networks can be beneficial.

Methodologies for ontology modeling have acknowledged this matter and are veer-

ing towards authoring ontology networks, rather than monolithic models. However,

ontology network assembly mostly remains a task for knowledge engineers to accom-

plish at authoring time, incognizant of the possible future uses of the same ontologies

into larger networks. A dynamic assembly process can itself be tricky and have non-

trivial implications, as ontology networks inappropriately assembled can lead to data

clutter and loss of expressivity. We argue that methods should exists for mildly knowl-

edgeable agents to construct ontology networks dynamically, and that these methods

should accommodate software applications in incorporating them into their workflows.
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1. INTRODUCTION

1.1 Background

In the transition period from the 2000s to the 2010s, we as researchers, engineers,

service providers and technology consumers, have witnessed numerous transformations

of the computing world and its relationship with automated, intelligent data processing.

More specifically, the Web industry and communities have acknowledged their interest

in data processing, reconciliation and harmonization practices [BCMP12] coming from

the artificial intelligence (AI) field. Initiatives like Google’s Knowledge Graph [Goo]

and OpenRefine [Opec], as well as the collective endorsement of Schema.org [Sch] by

the major Web search providers, are living proof that the Web industry is ultimately

acknowledging the importance of the Semantic Web, with its many alternative names.

On the verge of the much anticipated Big Data outbreak [LJ12], hardliner statisti-

cians have pointed out the importance of experimenting on well-chosen samples before

bringing techniques and applications out to the actual data bulks1, as well as to the

creeping dangers of not doing so. While we are not concerned with corroborating or dis-

proving this stance in the present work, we can distill it into something that Semantic

Web specialists can interpret as a piece of constructive criticism.

Sampled or not, Big Data need to scale [FMPA12]. Processing them with e↵ective

results and in an e�cient manner requires ways to (logically) break them apart, or

segment them, so that: (i) each segment can be fed to a component of a distributed

computing system; (ii) minimum to no significant output is lost, as if one were centrally

processing the entire dataset; (iii) the intermediate output of segment processing can

be monitored to provide reasonably frequent feedback at a minimum, but possibly also

to support iterative fine-tuning of phases in a process. None of these notions is new to

computer scientists and engineers in the era of distributed computing and predictive

data mining. However, in this very conjuncture where the data bulk reached far beyond

the critical mass, we may wonder whether the quality of data has reached a degree of

manageability that is aligned not only with their quantity, but also with processing

techniques. Should the aforementioned quality standard not be reached yet, we would

then have to resort to manipulation techniques that allow us to reconcile data with a

manageable equivalent.

1An online article by statistician Meta S. Brown, titled The Big Data Blasphemy [Bro], was widely

regarded as an omen to the ultimate failure of greedy data processing techniques applied to Big Data.

2



1.1 Background

1.1.1 From Linked Data to combining ontologies

As Big Data have a general scalability requirement, so do linked data [HB11a]. Linked

data (LD) are, in brief, structured data published on the Web that conform to a small

set of principles, as in Berners-Lee’s seminal article [BL06], whereby every datum is

identifiable in the same way as Web pages are, and provides some interlinking mecha-

nism that conforms to certain standards (RDF and SPARQL being some)1.

Over the turn of the past decade, Linked Data practices have seen a gradual and

steady uptake from content providers, although the vast majority of data published

this way comes from a restricted set of domains such as biology, medicine and scientific

publications. Other domain data providers, such as news and media publishing, have

begun to follow their example [Pel12], however, the race to linked data publishing alone

is not exempt from drawbacks and caveats.

In order to be published in Linked Data form, content providers need to conform

to some model that expresses the categories of, and relations between, the things de-

scribed in the contents they intend to publish. At a bare minimum, a vocabulary that

gives names to these categories and relations is necessary. If a restriction on the ex-

clusive usage of terms from a vocabulary is enforced, then the vocabulary is controlled.

However, if one wants these terms to represent something more meaningful than bare-

bone character sequences, some formal standard should be adopted for giving them

a structure for non-human agents to do something about. Ways for doing so include

assembling terms into a tree-like hierarchy called taxonomy, or relating them with one

another by using standard relations that also indicate similarity, complementarity etc.,

thereby constructing a thesaurus (cf. Section 2.2).

Taxonomies, thesauri, (controlled) vocabularies and other knowledge representation

paradigms such as topic maps [CGP+03] use di↵erent levels of expressivity to achieve

what is essentially a common goal, i.e. to provide amodel for structured data to conform

to. An all-encompassing concept that tries to summarize those mentioned above is that

of ontology, or Web ontology if kept within the realm of the Web. In fact, the concept

1In fact, the term “Linked Data” was originally coined to denote the publishing method and set of

principles in question, but its versatile semiotics allow for its usage to denote the data that conform to

them. To provide some form of disambiguation, we shall henceforth refer to the principles as “Linked

Data” in capitals, and to the data themselves as lowercase “linked data”. The intended meaning of the

LD acronym is to be drawn from context from time to time.
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1. INTRODUCTION

of ontology is broad enough to describe both the model and the published data that

conform to it, even in combined form. When we request information on an entity in

linked data by submitting its identifier, the structured information we receive in return

can be called an ontology, no matter if it contains only statements that describe that

entity directly, or also other entities that belong to its category.

There are a number of methods for consuming linked data on the Web [SM11],

depending on which ones each provider decides to support. For minimum Linked Data

compliance, it has to be possible to access data piecemeal, by resolving entity identifiers

one by one. However, data servers should also be able to respond to structured queries

that can encompass multiple entities. Some providers go as far as to make their whole

dataset available as a single resource [DBP]. This dataset can be either generated on-

the-fly upon request (live dump) or updated from its backend at scheduled intervals

(periodic dump). Size aside, the delivered results can be said to constitute an ontology,

whichever the method used. It is the case of entity-by-entity queries, whole dataset

dumps, and the results of certain queries that construct new knowledge graphs.

Note, however, that the reason behind querying linked data is to process them,

which implies that an agent on the client’s side will have to interpret them, and this

agent is not so likely to be human. In such a scenario, interpreting a large dataset dump

could be not only computationally unfeasible, but also an overkill if the objective is

to extract information on only a subset of those data. In addition, a dataset is not

necessarily self-descriptive: in fact, it should reference and reuse as much knowledge

already defined as it makes sense to do, for the sake of the “linked” property. In

practice, realizing this requirement at the instance level means stating in a dataset, for

example, that “Veronica Ciccone as described in dataset X is the same as Madonna as

described in dataset Y, and everything stated about either individual in either dataset

also holds for the other individual in the other dataset”, all the while maintaining,

by using the same formalism, that Madonna is a separate entity from Saint Mary, for

whom “Madonna” is one possible appellation.

It is not infrequent for the model of a dataset to be described in an ontology separate

from the data descriptions. Although it is a plausible practice of ontology engineering,

it is also an issue to be taken into account, in that if one wishes to infer additional

knowledge, it should be possible to have access to both the model and the data and

blend them together. More so, the terminology used in the model could either be totally
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1.1 Background

developed in-house, or reuse members of other shared and/or widespread vocabularies,

in which case it can be beneficial to include them as well in the knowledge base to be

processed. We conducted ourselves a study on heterogeneous Linked Data resources in

the multimedia domain, and detected datasets whose underlying model was not made

public, and yet it was still possible to extract an approximate yet nontrivial model, by

combining recurring patterns of vocabulary usage [PAA+11, PAG+11].

To add some realistically even greater complexity, the knowledge published by linked

data providers and ontology engineers does not necessarily make up all that is required

for performing certain knowledge-dependent tasks. For instance, if an application in a

multi-user system were to recommend its users open-air events that match their prefer-

ences, then the knowledge base should include material that is typically not published

as Linked Data. This could include, among others, a semantic representation of the

target user and her preferences (typically a piece of privileged information within the

system) and a representation of weather forecasts for the region of interest (e.g. a

weather reporting service feed that needs to be somehow turned into an ontology).

1.1.2 The role of ontology networks

The bottom line of this rather hurried and informal introduction is that we cannot

expect to work with a single source of knowledge for performing knowledge-intensive

operations. Structured knowledge is typically layered and distributed across the Web

and beyond. Di↵erent portions of knowledge are authored in di↵erent contexts, unaware

of what other a posteriori formal knowledge they will be combined with.

Along with the need to combine distributed Linked Data come ontology networks,

collections of ontologies somehow linked with one another. Although the majority of

the work carried out on ontology networks is rather recent [SFGPMG12b], mentions of

related terminology date up to a decade earlier [Var02]. So far, ontology networks were

treated mainly on the ontology engineering side, in that most phases of their lifecycle,

including design, reengineering, modularization, repair and argumentation, are focused

on developing ontologies according to a set of best practices. In other words, when

ontology management methodologies mention the usage of ontology networks, they

mainly refer to how formal knowledge should be organized at design time, and in that

context they encourage techniques such as reuse and modularity, which help shaping

knowledge in a network-like structure.
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1. INTRODUCTION

From such an angle, managing the networked architecture is a process that ends once

the ontology is deployed, with a new one starting the moment that ontology is reused as

part of another network; a network which is intended to follow a similar methodology

and persist on the Web upon deployment. To rephrase this more synthetically, ontology

network management is treated as a static process. This is natural for methodologies of

ontology engineering, to be summarized in the next chapter, and not to be intended as

a shortcoming on their part. However, the need for reusing and combining knowledge

manifests itself in dynamic forms as well. For use cases such as semantic mashups and

those described in the previous section, chunks of heterogeneous knowledge may have to

be combined, processed, and possibly even disposed thereafter. Well-structured linked

data reuse vocabularies from other sources and reference entities in other datasets

whenever possible, but they do so without necessarily referencing the sources where

those terms are defined, and whose definitions could have an impact on the outcome of

procedures applied to linked data. Creating the missing formal interlinks then becomes

a task for the agents that perform these procedures, which are di↵erent, in general,

from those that deployed those data. This process is akin to the creation of ontology

networks, although it is required to be performed dynamically.

Likewise, semantic agents such as reasoners typically treat a knowledge base as a

single artifact, therefore a set of seemingly disconnected ontologies needs to be presented

to them as if it were a single ontology [HPPR11]. This is a limitation that recent

approaches are trying to overcome by extending the ontology language models to allow

distributed reasoning [Mut12, VSS+08]. However, traditional reasoning techniques,

whose implementations are now tried-and-true, should still be accommodated where

this is possible. Once again, assembling these ontologies into networks dynamically can

help solve these issues.

1.1.2.1 Use case: multi-user content directories

One use case that will be a driving example across this dissertation comes from the

discipline of content management, which will be further contaxtualized in Chapter 3.

For now, let us consider a content management of system (CMS) to be a document

repository of scholarly publications, which multiple users can have access to, and cus-

tomize by supplying their own documents. The document repository contains a shared
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1.1 Background

directory, in turn containing documents which multiple users have access to, as well as

a private directory for each user.

Figure 1.1: Overview of a multi-user content directories use case - The boxes

next to users A, B and C show the view each user has on the documents she has access too,

according to criteria specific to each user. One way to implement this classification scheme

is by executing inference rules or reasoning on ontology networks built for each user.

The directory each user sees is initially flat, i.e. the publications are not organized

in a sub-directory structure as in file systems. In this use case, each user requires her

accessible papers to be organized according to a logical structure that reflects her pref-

erences and profile, including the possibility to retrieve one document under multiple

subdirectories. For example, one user (A) might want to retrieve documents in a di-

rectory structure that involves events associated to them (e.g. the conference where a

paper was presented, such as conferences/eswc/2012); another user (B) might want

to see them classified by topic, where the topics are categories in Wikipedia [Wik]

combined with Dewey decimal classes [Mit09]; a third user (C) might require only

the Dewey classification as well as a second classification by the place their authors

have in her social (e.g. friends, friends-of-friends, out-of-network) or corpo-

rate/academic networks (e.g. mine, my-group, collaborators, others); and so on. A
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1. INTRODUCTION

schematic representation of this use case is exemplified in Figure 1.1.

This process should be automated as much as possible. One of the ways to do so

is by classifying the content directory of each user by running classification tasks on

ontologies aggregated by combining data from various sources. These include metadata

extracted from the documents themselves and integrated with metadata from the Web,

as well as Linked Data such (the Dewey Linked Data representation being one [Dew])

and the ontologies that describe the vocabularies used. If too many di↵erent vocabu-

laries are used by the sparse Linked Data sources, additional ontologies that align them

to a restricted set of terminologies used by the application may have to be factored in.

Note that this scenario is akin to using symbolic links in a file system. In such a

scenario, one has to choose or create a directory where a file is initially placed, and only

then is it possible to make the same file appear in other locations by creating symbolic

links that point to the original file, possibly even with di↵erent names that make more

sense in the directory at hand.

1.1.3 Issues

There can be stringent practical limitations to dynamic ontology network assembly.

Write access rights, for one, are enforced very e↵ectively on Web resources, and can

restrict the possibility to modify existing ontologies. Modification can be a fundamen-

tal requirement, since ontology networks can be constructed by injecting links into

the ontologies themselves. However, even assuming there were no access restrictions,

modifying the source of an ontology for creating a custom network could create race

conditions with other agents that intend to reuse the same ontology into another net-

work, or even use it as a singleton. Thus, creating ontology networks through an

intervention in their sources becomes an unacceptable practice.

Maintaining local copies of ontologies is then a fallback strategy that can be followed,

but it exposes agents responsible for assembling networks to other risks. For instance,

if these local copies were to be republished on the Web as parts of a network for

public consumption, this would give rise to redundancies that risk violating guidelines

and best practices for reconciling ontologies in the Web. That is, unless certain formal

precautions are taken, such as logically renaming local copies, before republishing them.

Drawbacks can be even more subtle. Generating an ontology network through a

näıve or brute-force approach, such as creating a single ontology that imports every
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other ontology in the prospective network, has a potential for causing loss of expressivity

in the resulting combined ontology, since the choice of a network structure can influence

the underlying logical profile. This is a creeping issue that can occur without throwing

error conditions, unless these are expected; it was proven in the early stage of our work

and formalized by negating our null hypothesis (cf. Section 3.5.1).

The motivations for the research work presented herein take into account not only

the issues described above, but also the great likelihood that, in this scenario, ontol-

ogy network assembly is treated on the side of knowledge consumers. Consumers (as

are human agents, e.g. users or application developers) are less likely to be ontology

specialists than the knowledge engineers who authored those datasets, vocabularies,

and more generally ontologies, in the first place. One of our aims is to provide some

guidance as to how ontology networks should be assembled even when lacking such

knowledge.

1.2 Structure of the dissertation

The remainder of this dissertation is structured as follows:

Chapter 2 - Ontologies and their management: state of the art. This chapter

outlines the seminal work, bodies of standards, similar problems and alternative solu-

tion proposals around our area of research, including a quick and by no means complete

introduction to the Semantic Web. Mentions of related work are also featured in other

chapters.

Chapter 3 - Goal Overview. The choice to tackle the issues arising in ontology

network management was partly made ab initio, partly specialized and corroborated

serendipitously as work proceeded. This chapter is a summary of the motivations

that drove the whole work, the research problems addressed, a sketch of the proposed

solution and the assumptions and restrictions adopted along the course.

Chapter 4 - A model for ontology network construction. This chapter de-

scribes the theoretical and logical framework that makes up the notions, both

existing and new, of ontology networks as are needed for understanding the present

work.

9
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Chapter 5 - Architectural framework. The model presented is made of theoret-

ical and logical components. However, since we are addressing ontology management

issues on the application side as well, a demonstration on how these components can be

brought into at least one meaningful software model is necessary. This chapter describes

a possible software architecture binding for modular application frameworks and

RESTful services.

Chapter 6 - Implementing the model: the Stanbol ONM. This thesis work

is backed by technological support for the hybrid architecture presented earlier. A

reference implementation was developed as part of a software project fully endorsed by

the Apache Software Foundation. This chapter provides an insight on the engineering

details of the Apache Stanbol Ontology Network Manager (ONM), as well as a quick

access guide and technological stack.

Chapter 7 - Evaluation and discussion. The aforementioned reference imple-

mentation was used as the testbed to evaluate our proposal. Various aspects of the

evaluation were taken into account, both qualitative with respect to ontology features

in description logics, and quantitative with regard to memory e�ciency. This chapter

describes all these aspects of the evaluation and discusses its results. A theoretical

framework grounded on graph theory is also outlined for a better comprehension of the

qualitative evaluation process.

Chapter 8 - Conclusions. A summary of the overall research activity and possible

lines of future work to be followed from the current state concludes the dissertation.
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2

Ontologies and their

management: state of the art

The aim of this chapter is to provide an overview of the research context of our work,

and guide the reader throughout this landscape so that the drivers of, and motives be-

hind, the arising requirements and implemented solutions, are justified and understood.

Rather than limiting this survey to what formal ontologies and controlled vocabularies

are being used in certain domains, which would be merely an exercise in researching in-

dustrial trends, we intend to make use-cases emerge, which can in turn raise nontrivial

requirements on the knowledge management front. To this end, it is paramount to give

an overview of the Semantic Web philosophy, the guidelines and e↵orts of Linked Data,

and their relationships with ontologies. These relationships are not obvious and not

uniformly perceived across scientific and technological communities. The understand-

ing of the threads that link these domains and philosophies is deeply influenced by the

cultural background of individual scholars, whether they are logicians, newly-formed

Web scientists or knowledge engineers; whether they were aware of, or contributing to,

the history of this field, and if so, on which side. Given the relative youth of the “on-

tologies for the Web” discipline, debates involving these di↵erent formae mentis are not

uncommon, nor is the tendency to call fundamentally equivalent concepts by di↵erent

names. As with many worldly things, the truth probably lies in the middle, therefore

it is our aim here to unify these notions in a way as harmonically comprehensive as

possible.
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2. ONTOLOGIES AND THEIR MANAGEMENT: STATE OF THE ART

2.1 On Linked Data and the Semantic Web

In 2001, Berners-Lee, Hendler and Lassila published an article [BLHL01] that antici-

pated an ongoing and foreseen transformation of the Web as it was known then. Ac-

cording to this vision, information that was almost exclusively open to consumption

by human agents would slowly be structured in ways that allow computing agents to

interpret and process it using techniques that mimicked human reasoning. This vision

was labeled Semantic Web, meaning in the authors’ own words:

a web of data that can be processed directly and indirectly by machines.

Clearly, this vision implies lending the Web to machine-processing techniques that

target human needs. Web laypersons would benefit from this extended Web by being

able to retrieve, share and combine information more easily than on the traditional

Web, unaware that this greater ease is guaranteed by the ability to unify the data

behind the information presented to them.

For a simple example, let us consider a customer who is searching for a record

album to purchase. The album is found to be sold by a digital music store as MP3

and by an online retail store on CD and vinyl, and also three second-hand copies are

sold on an online auction service. In a traditional Web, these would be six distinct

objects, not to mention the number of available copies on the retail store and the

potentially limitless digital downloads. These object would not be formally related

with each other, except by a few character strings, e.g. in their titles and tracklists,

which could still contain alternate spellings, di↵erent titles by country and mistakes.

The customer would have to monitor them as distinct items, and in order to retrieve

more instances of that record album she would have to issue a text search which may

or may not be resistant to inexact spelling. In a Semantic Web, the user would be

given a unique identifier of that album that is valid for the whole Web, and use it

in order to be notified of any digital downloads, retail availability, second-hand copies,

auctions, or special editions in any version and country. Besides this consumer-centered

example, the endless application areas and strategies of the Semantic Web also involve

the unification of knowledge for life sciences and healthcare, but also coordinating

distributed service-oriented architectures (SOA) for processes in eGovernment as well

as molecular biology. For an overview of the active and potential application areas and
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scenarios of the Semantic Web and related technologies, we refer to existing surveys

and in-use conference proceedings in literature [CHL07, FBD+02, BT05, HHK+10].

In this form, the Semantic Web is not tied to any specific standards or technolo-

gies, although its conception is necessarily rooted in the pre-existing, hypertext-based

Web and plans to leverage and extend its technologies and protocols. As the Internet

protocol suite, commonly known as the TCP/IP stack, is one possible and widespread

implementation of the OSI model of open systems (ISO/IEC 7498-1) [Com00], so was

an abstract architecture devised for the elaborate Semantic Web layered system – what

is known today as the Semantic Web stack, or Semantic Web layer cake1. It is essen-

tially an architectural paradigm aimed at covering every aspect of this extension of the

Web, assuming a working connectivity stack to be in place. The stack covers aspects

such as a shared lexicon, interchange and query mechanisms, knowledge structuring

and processing, up to the aspects of security, provenance and presentation.

Figure 2.1: Status of the Semantic Web stack implementation as of 2012 -

Retrieved from [Sem].

1First presented in a keynote at XML2000, slide available at: http://www.w3.org/2000/Talks/

1206-xml2k-tbl/slide10-0.html
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Not unlike the relationship between the OSI model and the TCP/IP stack, one aim

is to pair a technological stack with the abstract Semantic Web model and construct a

body of standards around it. In response, the World Wide Web Consortium (W3C) is

spearheading a full-scale initiative to create this body of standards iteratively [W3Cb].

Figure 2.1 displays the state of play of a reference implementation of the Semantic Web

stack at the time of this writing. The W3C has issued technological recommendations

that cover mainly syntactical and interchange standards, its cornerstones being:

• a schema of uniform identifiers for all the things that can be represented and

referenced, i.e. the Uniform Resource identifier (URI) [BLFM05];

• a data interchange format based on a simple linguistic paradigm (RDF) [MM04];

• a language for querying data in the agreed interchange format (SPARQL) [PS08];

• a vocabulary for the above interchange format that allows a simple organization

form for knowledge (RDFS) [BG04];

• languages for representing complex knowledge (OWL) [Gro09] and inference rules

for execution (SWRL) [HPSB+04] and interchange (RIF) [Kif08].

Many of the above formalisms incorporate the XML markup language as the base

syntax for structuring them1, plus a body of knowledge representation formats and

query languages.

As it turns out, the higher-order layers of the stack covering user interaction, presen-

tation, application (one example being the support for compressed RDF datastreams),

trust and provenance are going largely uncovered, and so is the vertical, cross-layer

security and privacy component. This has raised concerns over the short-term feasibil-

ity of a secure [Pal11] and interactive [HDS06] Semantic Web. However, e↵orts within

and outside the W3C are being undertaken for establishing de facto standards with the

potential for becoming recommendations and completing the Semantic Web stack ref-

erence implementation. These endeavors will be discussed in the course of this chapter,

along with many of the aforementioned technologies and standards.

1In response to the asserted redundancy of XML notation, standardization work is underway for

setting JSON as an alternate exchange syntax for serializing RDF, thus leading to proposals such as

RDF/JSON and JSON-LD [Woo].
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It is noteworthy from Figure 2.1, that this architectural stack includes a set of high-

level knowledge representation structures, and that this set of structures allowed for

ontologies in all of its revisions since 2001, alongside rule languages and as an extension

of taxonomies. Ontologies were always somehow legitimated as an integrating and

essential way to construct formal structures that could serve as a logical backbone

to all the references published by peers on the Web. This notion on ontologies and

their evolving trend towards networked, interconnected structures has encouraged us

to further study and support this field in the present work.

Figure 2.2: Linked Data Cloud as of September 2011 - The latest graphical snapshot

taken by the Linking Open Data community. Retrieved from [Lin], issued under a Creative

Commons License.

The Semantic Web stack is but a portion of the Semantic Web vision conceived by

Berners-Lee et al.: it describes the basis of any possible protocol suite that conforms to

its technological specifications, but does not cover the principles by which data should

be generated, formats aside. To that end, a method for publishing data accordingly

was outlined and called Linked Data (LD). The principles behind this method are

as simple as using HTTP URIs for identifying things, responding to standard lookups
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(e.g. SPARQL or URI dereferencing) with standard formats (e.g. RDF or a specific

XML schema for query results) and curating cross-links between things [BL06]. In

order to encourage the adoption of these principles and maintain a harmonic data

publishing process across the Web, the Linking Open Data (LOD) community project

brings guidelines and support to Linked Data publishing and performs analysis and

reporting on the state of a↵airs of the so-called “Linked Data cloud” [Lin].

The most recent report from the LOD group is summarized as the picture in Figure

2.2, where each node represents a dataset published by the LD principles, and a directed

arc between two nodes indicates that a reasonable amount of entities in one dataset is

described with relations that link them to entities in the other dataset. The purpose

of reproducing the LOD cloud in so small a scale in this dissertation is clearly not to

illustrate who the players and participants in the LOD cloud are, but to provide a visual

overview of how distributed and interlinked it is, as well as the apparent linking trend

to a limited range of datasets. Related figures report 295 datasets and over 31 billion

statements, or triples, over 42% of which coming from the eGovernment domain and

29% from the geographic and life science domains, totaling over 53 million cumulative

outgoing links [BJC11].

2.2 Knowledge representation methods and technologies

The following is a rapid survey on techniques, formalisms, standards and applica-

tions targeting the representation of knowledge (or knowledge representation, KR) in a

software-processable manner. Some of these will serve either as an inspiration for the

KR technologies to be researched and implemented, or as mechanisms that have been

extensively used in the past for encoding knowledge as in our proposed solution. A

tremendous amount of knowledge published as Linked Data over the years conforms to

vocabularies and specifications antecedent to the second revision of OWL, a state-of-

the-art KR language. Sometimes, this choice is dictated by computational constraints

and lower expressivity requirements even for up-to-date linked data providers. How-

ever, the Linked Data principles imply that backwards compatibility should be ensured

across representation languages, so long as an agreed-upon interchange format is used.

To our concern, this means that we should address the need for reusing third-party

knowledge and being compliant with the standards adopted for representing it. Yet,
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when generating ontology networks with our presented method, we should take state-

of-the-art technologies and standards into consideration as a preferred choice for KR.

Many of the KR standards described here are built upon, or compatible with,

a data model that has seen widespread adoption and usage in Web resources and

applications. The Resource Description Framework (RDF) [MM04] is a family

of World Wide Web Consortium (W3C) specifications for representing information on

the Web [Res]. Among these specifications, the RDF data model exploits a recurring

linguistic paradigm in Western languages, by representing all statements as subject-

predicate-object expressions, hence their name triples. In an RDF triple, subject and

predicate are resources identified by URIs, while the object can either identify a resource

or a literal value. Since the object of one triple, when a resource, can be the subject

of one or more triples, the resulting triple set forms a graph, whose nodes and arcs

represent resources depending on the roles of the latter in each triple.

2.2.1 Taxonomies

Many widespread and well-received knowledge representation schemes are hierarchical,

in that knowledge items are arranged in a tree structure according to a selected relation

or set of relations. In taxonomies, the relation in question is derived from the types

assigned to items, i.e. their categorization, thereby forming a subsumption hierarchy

[Mal88]. Taxonomies have been featured in a variety of application domains over the

years, including the linguistic domain and the problem of biological classification, one

prominent example being the Linnaean taxonomy from 1735 and its derived studies

[Ere00]. In the medical domain, the classification of diseases, or nosology, arranges

diseases based on their causes, pathogeneses, or symptoms [Sni03], all of which imply

the creation and assignment of categories and therefore a taxonomy. One core resource

is medical classification is the International Classification of Diseases (ICD) from the

World Health Organization [Int]. Other hierarchies other than taxonomies can adopt

relations other than subsumption, with meronomies established by part-whole relations

as their cornerstones.

Representation formalisms for taxonomies and hierarchical structures were generally

a responsibility of the knowledge domains where they generated. Little was achieved

in terms of standardization, beyond visual representation primitives and hierarchical

database models [BHN80], until the problem of representing more complex structures
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eventually accommodated taxonomies as well and led to the birth of the RDF Schema

(RDFS) [BG04]. Taxonomies cannot be represented using the RDF vocabulary alone,

since the latter o↵ers very limited semantic structure beyond the possibility to assign

a type to a resource, leaving it up to knowledge management processes to define ter-

minologies and subsumptions. RDFS provides a base mechanism for making these

terminologies shareable, by providing specifications and additional constructs for ex-

pressing classes and subsumption relationships, and by extension taxonomies [McB04].

2.2.2 Thesauri

Still predominantly a linguistic framework with a focus on term relationships, the the-

saurus is a knowledge structure that attracted great interest in a possible standardiza-

tion. A thesaurus is, in its broadest sense, a grouping of terms by their similarities in

meaning. At a bare minimum, thesauri admit a hierarchical relation as in taxonomies,

namely the hypernym/hyponym pair for specifying broader and narrower terms. The

semantics of these relations can be associated to those of weak subsumption, which

admits relations other than type subsumption, such as “myrtle green” (a shade of the

green color) being narrower than “green”, in turn being narrower than “color”. At this

stage, there is no distinction between instance-based and class-based subsumption. In

addition to taxonomies, thesauri can express term equivalency (synonym), similarity

(near-synonym) and opposition (antonym). Typically, a further associative relation ex-

ists for terms that are related, yet in none of the ways described above. This “related

term” indicator is no further specialized, thus its usage should be controlled [RT04].

The study of thesauri was of particular interest to us mainly due to the heavy stan-

dardization work and subsequent bulks of computer-processable structured data that

derived from them. Aside from ontology languages and schemas to be described later in

this section, a state-of-the-art knowledge representation method to date is a language

for representing thesauri. The Simple Knowledge Organization System (SKOS),

a W3C Recommendation since August 2009 [MB09], is a purely RDF(S)-based vocab-

ulary that implements the above relationships and constitutes a leading approach for

bridging knowledge organization and the Semantic Web [MMWB05]. SKOS encom-

passes several formal languages for representing knowledge organization systems, thus

allowing to model taxonomies, thesauri [vAMMS06] and controlled vocabularies in

18



2.2 Knowledge representation methods and technologies

general [Can06]. The SKOS core is concept-centric, in that its primitives are abstract

concepts that are represented by terms.

Like the very notion of thesaurus, SKOS is a general-purpose knowledge representa-

tion schema that is widely used in domains such as eGovernment, scholarly publications

and digital libraries [MBS12]. Other contemporary controlled vocabularies rely on cus-

tom languages for thesauri: some being RDF-based, such as the AGROVOC language

for agricultural resources [SLL+04] and the representation schemes for the WordNet

linguistic resource [vAGS06]; others being built upon custom XML dialects such as the

Medical Subject Headings (MeSH) project [MTG09, NJH01].

2.2.3 Frames

Originally introduced by Minsky, linguistic frames, or knowledge frames, or simply

frames [Min81], are another contribution to studies in artificial intelligence to which

Web ontologies owe greatly. The author’s original definition follows:

A frame is a data-structure for representing a stereotyped situation.

In knowledge representation theory, the derivation of frames from taxonomies is

made explicit: there, a frame is a structure that aggregates facts about objects or

their types into a taxonomic hierarchy [RN10]. Frames, however, aggregate multiple

relations at once, which are held in slots. The slot values for a single frame determine

the set of all and only its valid predicates, or facets, hence the general assumptions

of a closed world being modeled in each frame. We will return to this notion shortly.

Another noteworthy feature of frames is that they allow for procedural attachments,

which hold procedures for setting constraints to slot values, e.g. “age” being a positive

number, or even computations, e.g. on how to calculate “age” given the value of “date

of birth”. So defined, frames e↵ectively served as seminal knowledge structures for the

object-oriented programming paradigm [Rat93].

To formally represent frames for consumption by computer agents has been one of

the key challenges prior to the paradigm shift towards ontologies. Frame languages tend

to incorporate specific frame logics. KL-ONE described frames as “concepts” and slots

as “roles”, and employed structured inheritance networks to define well-formed concepts

on the basis of their multiple inheritance [BS85]. It should also be observed that other

frame languages such as F-logic [KLW95] and the Ontology Inference Layer (OIL)
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[FvHH+01] laid the foundations of modern ontology languages and were among the

first to be concretely employed for, and conceived within, the Semantic Web, granted

that their semantics di↵er from the description logic most ontology languages are based

on. F-logic, for one, retains the closed world assumption typical of frames [WNR+06]

and, unlike common description logic fragments, is generally undecidable.

Consumption and usage of frames as expressed in frame languages is rare. However,

their employment in other forms such as Linked Data is not uncommon. One of the

largest publishing resources for frames to date is FrameNet [FBS02] [Fra], which stores

frames using custom XML schemas and exposes them using lexical units as bindings

between terms and their meanings.

2.2.4 Ontologies

Despite the historical significance of ontology as the branch of metaphysics that studies

categories of beings, the adoption of constructs in artificial intelligence called ontologies

is recent compared to those discussed in the previous sections. More precisely, the

consolidation of ontologies as theories of a modeled world open for consumption by

machines coincides with the birth of Web ontologies, i.e. ontologies represented in

formal languages that can be rendered using standards of wide acceptance on the Web.

In 1993, Gruber gave an initial definition of ontology that was widely accepted in

the computer science domain [Gru93a]:

An ontology is an explicit specification of a conceptualization.

This definition was further elaborated upon by the author, who wrote in 2009 [Gru09]:

...an ontology defines a set of representational primitives with which to

model a domain of knowledge or discourse. The representational primitives

are typically classes (or sets), attributes (or properties), and relationships

(or relations among class members). The definitions of the representational

primitives include information about their meaning and constraints on their

logically consistent application.

In literature, an ontology is also described as an artifact whose structure matches

both its domain and intended task, and where the design is motivated by some specific

purpose, e.g, the capability to solve some reasoning task or modeling problem [GP09].
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Web ontologies have since become widespread standard artifacts for representing

and reasoning upon knowledge. The formal concepts from these sets of knowledge are

defined either within a given domain or across multiple domains, along with the logical

relationships between and constraints upon these concepts. Ontologies combine many

types of semantic structures, both hierarchical (e.g. taxonomies, meronomies) and non-

hierarchical (e.g. the equality and opposition relationships in thesauri), and can do so

on any amount. Ontologies also allow for a significant, albeit conceptually lax, decom-

position into terminological and assertional components. A terminological component,

or TBox , is a statement that describes the mechanisms in a part of the world in terms

of controlled vocabularies. An assertional component, or ABox , is a statement that

describes the population of that part of the world in compliancy with the controlled

vocabularies defined by TBoxes; in other words, a fact. An alternative terminology has

TBoxes containing intensional knowledge and ABoxes containing extensional knowl-

edge [Gru93b]. While there are no strict rules set as to what levels of representation

should be handled by ABoxes rather than by TBoxes, this being in fact an open issue in

knowledge representation, this distinction has some essential implications on the prac-

tice of modeling systems. The ability to discern assertional components, such as factual

and domain knowledge on the objects and event occurrences in the real world, allows us

to keep controlled vocabularies general, reusable and independent, in principle, of the

model population. This is far less evident when dealing with conceptual models such as

those of relational databases, where the underlying semantics are implicitly expressed

in relational schemas. Note that the classical TBox/ABox dichotomy is not the only

decomposition of knowledge accepted in computer science: in fact, in the information

extraction field ontological knowledge can be modeled to distinguish referential domain

entities, conceptual hierarchies, entity relationships and the domain population [NN06].

The state of the art in Web ontology authoring is the Web Ontology Language

(OWL) [Gro09]. Its definition relies on a stack of representational schemas that cover

multiple layers of Berners-Lee’s Semantic Web layer cake (cf. Section 2.1). OWL pro-

vides the framework for bridging RDFS and ontologies, but its foundations are to be

traced back to frame languages and beyond. In fact, it superseded the earlier ontol-

ogy language DAML+OIL [MFHS02], which combined features of the OIL language

described earlier while discussing frames, with the DARPA Agent Markup Lan-
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guage (DAML), a United States defense program for the creation of machine-readable

representations for the Web [HM00].

OWL is actually a family of languages that allow knowledge engineers to model

domains under the principles of Description Logics (DL). These are knowledge rep-

resentation languages that model concepts, roles, individuals and their relationships

through an axiomatic theory. Languages in the OWL family are founded on model-

theoretic formal semantics and define fragments of the First-Order Logic (FOL) with

well-defined computational properties. In the first version of the languages, these frag-

ments are called OWL-Lite, OWL-DL and OWL-Full and consist of specifications of

which constructs of the OWL language should be used for coding ontologies and under

which restrictions. OWL fragments provide each a trade-o↵ of expressivity and decid-

ability [MvH04], with OWL-DL being the most widely used, as it is the most expressive

fragment that guarantees the decidability of OWL reasoning procedures.

A revision of the language for accommodating the feature requests that arose from

the heavy adoption of OWL in semantic applications led to an updated W3C recom-

mendation for the updated OWL 2 in late 2009 [Gro09]. In OWL 2, the distinction

between existing OWL fragments fell in favor of three new language profiles, all decid-

able but with di↵erent computational properties. These profiles are called OWL 2 EL,

OWL 2 QL and OWL 2 RL, and named after their intended usage in knowledge man-

agement procedures for largely expressive ontologies, query answering procedures and

rule systems, respectively [MGH+09]. Because they address computational complexity

issues rather than calculability, these profiles are also called tractable fragments, since

they pose several restrictions on OWL language constructs and axioms in order to ad-

dress certain scalability requirements deriving from interoperability with rule languages

and relational databases. Other innovations contributed by the OWL 2 specification

that are interesting for our work include the introduction of reflexive, irreflexive, and

asymmetric object properties, i.e. properties holding between individuals; a clearer dis-

tinction between ontology locations, set in statements following an import-by-location

scheme, and their logical names; a versioning system with an impact on physical and

logical referencing; use of the Internationalized Resource Identifier (IRI) [DS05] as a

generalization of the URI for referencing entities and ontologies; and support for pun-

ning, a meta-modeling capability that allows the same term to reference, under certain
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restrictions, more entities of di↵erent types, e.g. classes, individuals and properties

[GWPS09].

2.2.5 Serialization of ontologies

This section briefly reviews the most common existing formats that can be used to

serialize, or marshall, an ontology into a document, e.g. a text file or data stream.

For each format, the Multipurpose Internet Mail Extensions) (MIME) type for content

negotiation using the HTTP protocol is also indicated.

• RDF/XML is the normative syntax for serializing RDF for machine readability

[MM04]. It is a standard method for writing RDF graphs to an XML format and

can fully accommodate the OWL language [Bec04] (application/rdf+xml).

• Notation 3 (N3) is a compact text-based RDF serialization format [BLC11]. It

allows triples, which share either the subject or the subject+predicate pair, to be

collapsed. N3 has a few additional capabilities on top of RDF, such as the ability

to express rules [BLCPS05] (text/rdf+n3).

• Terse RDF Triple Language (Turtle) is a variant of N3 that support prefixes

and qualified names [BBL11] (text/turtle, or application/x-turtle prior to

type registration as a standard).

• N-Triples is a subset of both Turtle and Notation 3 designed for ease of parsing

by software systems, thus lacking the shortcuts provided by qualified names and

grouping [GBM04] (text/rdf+nt).

• JSON-LD (JSON for Linked Data) is a Linked Data interchange language for

JavaScript and Web Service environments, as well as unstructured databases

[JSO]. There is a specific syntax for serializing RDF graphs in JSON-LD, thereby

embedding OWL as well [SL12] (application/json).

• RDF/JSON is a proposed, non-normative syntax for serializing RDF graphs

using the JavaScript object notation [RDF] (application/rdf+json (not regis-

tered) or application/json if JSON-LD is not being used alongside).
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• OWL functional syntax uses the actual grammar that formally defines the

OWL language [MPSP+09]. It is the text serialization of the OWL abstract

syntax, which expresses ontologies in terms of their axioms. As such, it has full

support for the OWL 2 language features (text/owl-functional).

• The Manchester OWL syntax is a derivative of the OWL functional syntax

that is more concise and built for human readability, especially by practitioners

with a lesser background in description logics. It supports nearly the full OWL

2 specification, with a few exceptions such as annotations on undeclared entities

and general concept inclusions [HDG+06] (text/owl-manchester).

• OWL/XML is the recommended syntax for serializing OWL 2 ontologies in an

XML format without transforming them to RDF graphs first. As such, it is not

directly interoperable with RDF/XML [MPPS+12] (application/owl+xml).

Note that only OWL/XML and the OWL functional and Manchester OWL syntaxes

are native OWL formats, in that they store axioms and entities in terms of what

constructs they are in the OWL languages. Every other format is used to encode RDF

graphs, which have to be interpreted in OWL according to RDF mapping guidelines

of the W3C recommendation [PSMG+09]. As the next chapter will clarify, however,

these guidelines do not cover the whole spectrum of possible side-e↵ects.

In this thesis, we shall make use of the OWL functional syntax as a litmus test for

evaluating the interpretation of non-native ontological resources as OWL ontologies.

This syntax will be used for representing the interpretations, be they actual, optimal

or expected, of non-natively expressed ontologies.

2.2.6 Querying and processing ontologies

The core language for querying RDF data, and by extension LD sets and ontologies

serialized in an RDF format, is called SPARQL. It is based on the expression of triple

patterns for retrieving matches in the target RDF graphs. The initial W3C recommen-

dation of 2008 [PS08] implements verbs for retrieval only, either as arbitrary results

sets (SELECT verb), or as RDF graphs in their turn (CONSTRUCT and DESCRIBE

verbs). This specification had no support for create, update and delete operations and
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supports OWL only as one possible RDF vocabulary. Recent proposed recommenda-

tions for an updated SPARQL 1.1 specification are targeting extended features [SPA]

such as graph update [GPP12], concatenated triple patterns [Sea10], federated query-

ing [PBAS+12] and, most importantly for the current context, support for querying

entailed triples according to OWL entailment regimes [GOH+12], among others.

The underlying formal semantics of OWL is also being applied to rules and rule

systems in the Semantic Web, where a rule is an implication axiom that defines condi-

tional facts. The Semantic Web Rule Language (SWRL) [HPSB+04] is one such

language that combines OWL DL and Lite with Datalog [HG85]. SWRL retains the

expressivity of OWL DL, albeit at a price paid in decidability, and is supported by a

variety of applications of OWL and RDF too [MB06]. Other rule language, such as the

Stanbol Rule Language [Apai], a derivative of the Semion rule system [NGCP10],

aim at versatility and selectively compute the applicability of clauses depending on

their target application being OWL (SWRL) or RDF (SPARQL). Versatility is also

addressed on the interoperability department, with proposed standards such as the

Rule Interchange Format (RIF), which proposes dialects for porting basic logics

and production rules across di↵erent rule systems [Kif08].

Because of its strong foundation on formal logics, OWL lends itself to semantic

processing by DL reasoners, i.e. software engines with the ability to infer the log-

ical consequences from a set of formal axioms belonging to the realm of Description

Logics. Among the most widespread ontology reasoner implementations we cite Pel-

let [SPG+07], HermiT [DRS09], FaCT++ [FaC] and the commercial RacerPro [Rac].

In addition, the interoperability protocol OWLlink provides a unified interface for

accessing reasoning services [LLNW11]. An OWLlink implementation exists as an ex-

tension of the OWL API library [OWLb] and is interoperable with most of the reasoners

mentioned above.

Implementations of DL reasoning sport a great variety in terms of the Description

Logics they can support, as well as the classes of consequences they are able to infer.

Some reasoners are limited to detecting the specific DL flavor of an ontology and check-

ing whether it is consistent, in that the truth or falsehood of every fact in the ontology

can be stated. Others can derive inferred taxonomies and arbitrary predicates that

hold implicitly for general TBoxes (subsumption, satisfiability, and classification) and

ABoxes (retrieval, conjunctive query answering).
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2.3 Networked ontologies

In recent literature [SFGPMG12a], an ontology network, or network of ontologies,

was defined to be

a collection of ontologies related together via a variety of relationships, such

as alignment, modularization, version and dependency.

The ontologies in such a collection are then called networked ontologies. The above

definition is wilfully ample in scope, as it is not established a priori, but a partial

consequence of existing practices in the management of ontologies and linked data,

which were moving towards consolidation faster than an all-encompassing formalization

could be attempted on them.

Let us consider one of the core principles of Linked Data, which advocates referenc-

ing of shared entities across multiple data sources, each of them improving upon the

description of an entity monotonically, i.e. by adding statements that further describe

it and consolidate its model. Then if we treat every such portion of linked data as

an ontology, we can intuitively argue that these linked data chunks altogether form an

ontology network, where the connectivity mechanism is provided by reuse. Although

reuse is not specifically addressed by the above definition, it can be implied by other

relationships such as alignment and dependency, where if an entity is depended upon

or must be aligned with, then the goal is to reuse it.

This section provides a summary of known research e↵orts targeting the treatment

of ontologies as networked artifacts. Aspects both formal and practical/methodological

will be illustrated in order to set a comprehensive context for our work.

2.3.1 Formal specifications

We have recorded some attempts, both prior and contemporary to our work, at pro-

viding specifications of the relationships in multiple ontologies, which can be used to

establish connectivity to one another. Those which surfaced first are actually the result

of a bottom-up analysis work on domain ontologies, and as such have a bias towards the

similarities that occur at a conceptual level [KA05]. Some such properties, albeit not

formally defined at this stage, descend from the perspective on ontologies as collections

of agreements over domain terminologies, and identify relations such as sharing the
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same conceptualizations (e.g. by equivalence of applied logical theories), resemblance,

simplification and composition of ontologies.

A further step towards a rigorous definition of these relationships came in the form of

an ontology itself, i.e. the Descriptive Ontology of Ontology Relations (DOOR)

[AdM09]. This is a modeling approach to the problem of formal ontology relations, as

it uses the primitives and rules of ontological languages to define a hierarchy of possible

relations that may occur within an ontology network, namely binary relations occurring

between two ontologies in a collection of ontologies, or ontology space. Note that the

notion of ontology space is di↵erent from those given in other contexts, such as the Cup-

board ontology repository (cf. Section 2.4.1) and even our own ontology network model,

where the matching concept is that of knowledge base. We will return to this aspect in

due course, as Chapter 4 is introduced. DOOR distinguishes relationships holding at

the lexicographic, syntactic, structural, semantic and temporal levels. On the top level

of the hierarchy, there are inclusion relations, agreement and disagreement (which are

further specialized using compatibility factors which can cause incoherence or incon-

sistency), ABox/TBox connections, alignments, similarities and versioning (which, in

turn, incorporates aspects of ontology evolution on the conceptual front).

Diaz et al. argued that the relationships described in DOOR require further specifi-

cation, claiming that the logical constructs in the original ontology aimed at classifying

relations in a hierarchical structure, rather than applying them directly. Therefore,

they proceeded to provide DL-based definition of some relations extracted from DOOR,

namely isTheSchemaFor, isAConservativeExtensionOf and mappingSimilarTo, as well

as extending them with a purely syntactic relation called usesSymbolsOf [DMR11].

The work presented in this thesis partly takes inspiration from the bottom-up work

that led to DOOR, and is contemporary to the attempts made at formalizing its ap-

proach. However, our theoretical goal is not to provide a framework for describing ex-

isting relations, rather, a general-purpose framework that can be used to accommodate

relations resulting from bottom-up analysis, and then some; so, if further connectivity

factors emerge from future ontology use, our proposal can serve as a base toolkit for

rendering them formally. Another reason for us to come up with a basic theoretical

framework is that the aforementioned approaches do not take into account the discrep-

ancy between the ontologies as high-level logical artifacts and their raw sources which

have to be interpreted as such, and only deal with the former level. This is expectable,
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as these approaches were the result of an analysis work over the way ontologies are

engineered. However, if the content of these sources alone, in terms of raw statements

that map to logical axioms, no longer matches these axioms deterministically, as we

will later verify, then any formal specification falls short of practicability. For instance,

if an ontology that is supposed to extend an object property of another ontology turns

out having its extensions classified as annotation properties, then a relation such as

isAConservativeExtensionOf can no longer hold between these.

2.3.2 Distributed ontology management

Many research directions somehow related to ours are often found as part of the dis-

cipline that goes by umbrella term “distributed ontology management”. The various

meanings of this term can be grouped into two categories. One, more closely related

to ontology networks even in the dynamic context targeted by our work, is the class

of operations that can be performed on top of a set of ontologies scattered around

a distributed system like the Web, and which can, in some cases, sport logical con-

nectivity as in ontology networks. These forms of distributed ontology management

address several popular challenges such as ontology evolution, versioning and modular-

ization. The other category concerns performing distributed computation on ontologies

that could possibly even be large and standalone. As such, it addresses computational

issues including federated querying and scalability in reasoning processes.

One of the seminal approaches to tackling several problems in ontologies as dis-

tributed Web artifacts dates back to the early 2000’s [MMS+03] and was a precursor in

terms of providing a modeling framework that could encompass both standalone and

distributed ontologies, where a distributed ontology is implicitly defined to be formed

of some ontologies stemming from others via reuse and domain-specific adaptation. In

such cases, aspects of versioning ontologies and managing change propagations [Kle04]

come into play and were explicitly addressed with respect to the formalisms and tech-

nologies available then.

Understandably, distributed ontology versioning is also a concern of engineering dis-

ciplines, and appears in proposed implementations of ontology management systems.

The aptly-named DOMS (Distributed Ontology Management System) was a proposal

that came prior to the normative recommendation of version IRIs in the OWL 2 spec-

ification. DOMS was a comprehensive ontology management service provider backed
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by a relational database system (RDBMS) for storing ontologies. Version control was

managed internally as part of the embedded schema in the backend RDBMS, therefore

it was mainly an internal use case that would typically not be reflected on the publish-

ing process of ontologies in DOMS, as it was mostly meaningful to DOMS users only.

In this and other cases [NM04, SHL10, PNC12], distributed ontology versioning was

tackled mainly from the point of view of detecting, tracing and managing changes in

an ontology [Yil06], rather than from that of transparency, i.e. representing di↵erent

versions in a meaningful way for ontologies published on the Web.

One interesting notion in distributed ontology management, which we considered

in the definition of our theoretical model, is that of dependency [KSKM07]. Depen-

dency is defined in terms of specific relationships holding between descriptions of one

or more concepts in multiple ontologies. Some dependency types are defined from class

hierarchy, such as super-sub relations, while others are defined from cross-referencing

in class restrictions and so on. While dependency detection and management is crucial,

in our view, for understanding the subtleties of ontology management in distributed

environments, the experiments we have taken hinted that it should also be escalated

to dependency relations holding between ontologies and the resources that represent

them.

We briefly review some advancements in terms of computational aspects on dis-

tributed management. Lee et al. [LPP+10] propose a model and method for decom-

posing ontology queries in a distributed way and optimizing the results from the various

decompositions. This method heavily relies on mapping techniques and assumes the

triple, in terms of binary relation, as the atomic component of any ontology. As such,

queries are treated as triple patterns, a notion that maps very reasonably with low-level

languages like SPARQL but would require further abstraction work to high-level repre-

sentation languages like OWL. Most of other related work in this department concerns

the distribution of reasoning or query execution agents across a network built around

the peer-to-peer model. Edutella [NWQ+02] was one such ad-hoc network, which

however was broadcasting queries across all peers, until the system evolved with the in-

troduction of routing strategies based on peer clustering techniques in 2003 [NWS+03].

Other systems concentrated on distributing reasoning process rather than optimizing

queries: it is the case of the DRAGO framework, which still relies on a peer-to-peer

architecture, where every peer holds not only a set of ontologies assigned to it, but
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also a set of mappings from its local ontologies onto those managed by a selection

of other peers. DRAGO was focused on TBox reasoning and inferring subsumption

relationships [ST05].

Once again we could find little mention, in these approaches, of the problem of

assessing the impact of the interpretation of distributed sources as ontologies, since

many such approaches assumed ontological axioms (TBox, ABox and non-logical) to

be already computed at the time reasoning or querying takes place. One exception is

the KAONp2p system, which, although mainly concentrated on distributed querying

and reasoning, introduced a first hint at a “virtual ontology” system that would mimic

a standalone ontology on top of a distributed set [HW07].

2.3.3 Methodologies

Taxonomies, thesauri and ontologies in general follow a life-cycle of which development

is merely a part. Ontologies need to be both built at one time and maintained after-

wards, therefore the choice of methods and best practices for engineering them becomes

a concern. It should also be noted that ontology development is a practice that involves

domain experts as much as seasoned knowledge engineers, therefore methodologies and

best practices become crucial if it is the users who are expected to author knowledge

and/or semantic content based thereupon.

Early ontology development methodologies, such as On-To-Knowledge [DFv02,

SS02] andMETHONTOLOGY [FGPJ97], did not focus on a possible distributed na-

ture of the ontologies under development, being mainly concerned with ontology gener-

ation from semi-structured industry documentation for the former, and the application

of software engineering activities to ontology development for the latter [CFLGPLC03,

PSM08]. Subsequent development methodologies, however, embodied a degree of aware-

ness of ontology networks and related conceptual and structural features, hence their

mentions in this overview. DILIGENT [VPST05] expanded upon methodologies like

the above, by including a five-step process for managing the evolution of ontologies

rather than their initial design, thus recognizing knowledge as a tangible yet moving

target. The NeOn Methodology [SFGP09] is arguably the best-known methodology

to openly address ontology networks as its target – NeOn standing for “Networked

Ontologies” [NeOa]. This methodology introduced and formalized the collaborative
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aspects of ontology development and reuse, as well as the dynamic evolution of ontol-

ogy networks in distributed environments. At the di↵erent stages of the development

process, contextual information may be introduced by domain experts and ontology

practitioners. Great focus is given on practices such as reuse, reengineering [VT12] and

modularization [dSSS09], which became the keystones of ontology network management

[SFGPMG12b].

One peculiar case is that of pattern-based methodologies. These are methodolo-

gies that make extensive use of so-called Ontology Design Patterns (ODPs) [GP09],

or ready-to-use building blocks for solving atomic modeling problems. Most method-

ologies of this type cover primarily the logical level, in that they provide support for

ontology learning, enrichment and similar tasks [NRB09, Blo09], while putting little to

no focus on solving concrete modeling problems. However, it should be noted that their

ultimate products are most necessarily ontology networks connected through reuse at

a bare minimum, but possibly also through versioning and dependency management.

Examples of pattern-based methodologies include the Ontology Pre-Processor Lan-

guage (OPPL) [IRS09] and methods for applying it as a means for logical ODP reuse;

the high-level pattern language proposed by Noppens and Liebig [LvHN05]; and eX-

treme Design (XD) [PDGB09, BPDG10], which adopts the use of competency ques-

tions [GF94] as a reference source for requirement analysis. XD focuses on producing

modular networked ontologies that extensively reuse ODPs, and applies best practices

of software engineering and a test-driven development approach for ontologies.

Finally, we note that many of the methodologies mentioned earlier come with a

degree of tool support that integrates with software systems for authoring ontologies.

Recent development platforms such as Protégé 4 [Pro], the NeOn Toolkit [NeOb],

and the commercial TopBraid Composer [Top], provide support for methodologies

such as XD and the NeOn Methodology and, to various extents, acknowledge the

networked nature of the ontologies under development. Most of these tools rely on a

plugin-based architecture and support basic functionalities such as graphical editing of

ontological elements and axioms, but also more advanced features such as visualization,

reasoning, and query support.

The reason behind this quick overview is that ontology networks are typically ob-

jects whose creation and assembly is mainly a design process and a responsibility of
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teams that combine domain experts and knowledge engineers who follow a certain de-

sign paradigm. As such, ontology design occurs in a controlled environment where,

for example, there is next to no ambiguity in treating knowledge objects as classes,

individuals or properties of a certain type, or on what are the types of axioms handled.

Serializing the resulting ontology networks into a set of resources that are not natively

ontological (i.e. whose raw statements are not coded as high-level axioms), such as

RDF, is an operation performed often automatically and under the assumption that no

resolution ambiguity will occur when the resources are deserialized back into ontolo-

gies. However, outside these controlled environments such as at runtime assembly, this

assumption is heavily put under question, as Chapter 3 is set to demonstrate.

2.4 Ontology repositories

The present work is strongly tied to pre-existing and ongoing advancements in the field

of ontology repositories. In its most general form, an ontology repository [VTMH12]

is a location where the content of ontologies is stored. On top of this vague notion, the

goal of an ontology repository also defines its more specific features. Ontology reposi-

tories can exist for simply preserving ontology data, and as such will almost exclusively

sport storage capabilities. Other repositories are aimed at serving ontologies to Web

applications, thereby providing service interfaces for accessing them, negotiating their

formats for applications, rendering them for Web browsers and indexing them for search

engines. Others are focused on the interaction between ontologies and their users or

developers, and therefore may provide advanced functionalities for collaborative edit-

ing, peer review and version control. Finally, some repositories can be used for storing

knowledge on specific domains, and therefore can restrict some of their functionalities,

such as indexing, search facets and key concept detection, to these domains.

As will become clearer further in this dissertation, our interest in ontology reposi-

tories for the sake of this work is not so much on specific ontology repositories available

on the Web, rather, on the software systems used for setting them up and deploying

them. These, in turn, can consist of redistributable packages that in e↵ect make up the

skeleton of multiple ontology repositories. Throughout this dissertation, these pack-

ages will be interchangeably labeled ontology repository systems, ontology repository

software or ontology servers.
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Dedicating a section to state-of-the-art ontology repository software has purposes

not only comparative, but also complementary. Some evaluation results (cf. Chapter

7) will imply that our approach fares better than, or equal to, other existing software

architectures. However, the novelty of the approach introduced herein is not necessarily

incompatible with these architectures. On occasion, it can be regarded as a companion

architecture that can either extend the functionalities of another repository system, or

serve as a backend for it, or even be part of its reference implementation.

2.4.1 Cupboard

Cupboard [dEDL09, dL09] is an online ontology repository with dedicated functional-

ity packages targeted at human-ontology interaction. Being a multi-agent environment

that can be used to host multiple configurations for ontology sets, it is also self-described

as an ontology repository hosting system. Each Cupboard user can setup a space to

upload her own set of ontologies, independent from those of other users, and make them

selectively available to the community and the Web. Uploaded ontologies are indexed

for retrievability by services such as the Watson API [dM11], which is also available

within Cupboard, and can be peer-reviewed and rated publicly. Argumentation in

Cupboard implements the TS-ORS open rating system [Ld10]. Ontology alignment

services are also incorporated within Cupboard via the Alignment API [Ali], and allow

users to produce alignments between the ontologies loaded into their personal spaces.

In slight anticipation of the description of our virtual ontology network infrastruc-

ture, to be described in the remainder of this dissertation, Cupboard does feature a

notion of ontology space too. However, even though this definition lies in a similar ambit

as ours, they are not in contrast for the most part. An ontology space in Cupboard is a

private resource associated to a user account, where all management operations (incl.

alignment, indexing and search) are confined. Ontologies loaded in multiple Cupboard

spaces can be completely redundant and map to distinct graphs, and the notion of

sharing ontology networks applies within a single ontology space, rather than across

multiple spaces. In the architecture we devise, an ontology space is a component of

one or more virtual ontology networks, with privileged write access depending not on

user account preferences, but on the state of its associated ontology networks at one

time. Multiple spaces can expose a shared graph as multiple Web resources for the
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same ontology, and the policies defined for spaces define whether a stored ontology can

outlive the spaces that manage it or not.

Plans exist for making the Cupboard repository software available as a redis-

tributable open source package [dEDL09]. At the time of writing, a release is still

expected.

2.4.2 The TONES repository

Part of the Thinking ONtologiES (TONES) project, [TONa], the TONES repos-

itory [TONb] is mainly targeted at application developers who need to reference com-

mon and diverse ontologies for testing purposes. At the time of writing, the repository

hosts 219 ontologies containing up to one million logical axioms. The repository can

be browsed by ontology DL expressivity, size in number of axioms, signature size and

conformance to the OWL 2 EL profile. A RESTful service allows each ontology to

be exported in either RDF/XML or OWL/XML, although no recombination services

are available other than exporting the whole repository as a single merged ontology.

The repository is not publicly write-accessible and the framework it is built upon is

not redistributed. However, it has been disclosed that the TONES repository uses the

OWL API [OWLa] [HB11b] for ontology access, export and rendering.

2.4.3 ontologydesignpatterns.org

ontologydesignpatterns.org (ODP.org) [ont] is an ontology repository specifically

targeting the lifecycle management of ontology design patterns [BJ08]. It is mainly

intended to store ontology design patterns, and encourage reuse thereof, for the benefit

of ontology engineering tasks [PDGB09]. In addition, it serves as a backend for several

tasks in the XD methodology (cf. Section 2.3.3). However, ODP.org also stores ontol-

ogy networks that incorporate design patterns, such as the C-ODO Light meta-model

for modeling the design aspects of ontology network management [APH+12], as well as

a limited range of singleton (non-networked) ontologies. The repository is characterized

by a feature-rich Web interface targeting user interaction with ontologies, encouraging

formal specifications, strict reviewing processes, trust and provenance indications and

argumentation. The storage mechanism of ODP.org is filesystem-based and ontologies

are served verbatim in the same format as they are stored, mainly the XML serialization

of RDF. Therefore, the ontology networks hosted by it are static and must be imported
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as they are, making it impossible to add runtime dependencies to an ontology without

undergoing the strict review process that applies to final changes to the ontology. It is

also worth mentioning that ODP.org implements its own registry mechanism for logi-

cally organizing ontologies into libraries, and tool support exists as part of the eXtreme

Design toolkit, for resolving references contained in libraries, browsing registries and

interpreting their metadata vocabulary [PBDG12].

2.4.4 Oyster

The Oyster ontology sharing system is a rather peculiar entry in this section, in that

it is a software system for maintaining not ontology repositories, but ontology registries

[PHGP06, Pal09]. An ontology registry of this form stores and maintains metadata on

ontologies, rather than their contents. Oyster uses a metadata vocabulary called OMV

[APH+12] for managing such metadata in a collaborative, multi-user environment. It

is mentioned in this section for two reasons: one, if we abstract on the distributed

information sources referenced by a registry, we can consider the combination of a

registry management system and its sources as an ontology repository; two, because of

vocabulary support provided by OMV for these features, Oyster does provide a host

of change capture and version management features for ontologies, which are typical

of repository systems. An alternative angle on registry systems is to view them as

client agents for ontology repositories. On the change capturing side, Oyster can be

set to monitor a referenced ontology and store modifications as atomic axioms in an

internal metalevel ontology compliant to the OMV. On the versioning side, the Osyter

specification assign precise semantics to the versions assigned to revised ontologies,

although it is not concerned with the syntactic binding of version publishing. This

aspect was later addressed in the OWL 2 specification, which we adopted as a base

mechanism for identifying an ontology stored in our system, and distinguishing it from

its disposable variants created by our virtualization method. Reusing parts of the

OMV for representing the metadata of our system is one possible evolution direction

for recording change management and propagation from dependencies. However, we

anticipate that the policy taken by the OMV and other approaches, which assume a

total ordering for ontology versions, is not compatible with our proposed solution (cf.

Sections 4.1.3.1 and 4.3) and restricts the potential of the OWL 2 version specification

which we chose to exploit.
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2.4.5 The OBO Foundry

The Open Biological and Biomedical Ontologies (OBO) is an open community

that fosters the application of the scientific method to the discipline of ontology engi-

neering. This community spearheads a collaborative experiment of ontology authoring

in the biomedical and biological domains called theOBO Foundry [CMBR11]. Its goal

is to create a suite of orthogonal interoperable reference ontologies in these domains.

The OBO has established a set of basic principles for authoring, reusing and version-

ing ontologies published through the Foundry, and provides some degree of software

support. Although CVS, a first-generation general-purpose versioning system [CVS],

is encouraged for versioning ontologies, this initiative is notable for providing a toolkit

for preparing an OBO ontology for release. This toolkit, called Oort (OBO ontology

release tool), provides facilities like pre-release classification using OWL reasoners

and just-in-time compilation which is akin to the interpretation of non-natively OWL

ontologies. Although the OBO community does not explore the realm of ontology net-

works in depth, it does show awareness of the need for organizing multiple ontologies in

certain ways, for instance by distinguishing bridge ontologies (containing alignments)

from a single main ontology and the remaining reference ontologies. The Oort features

ontology merging mechanisms based on MIREOT (Minimum information to ref-

erence an external ontology term), which replaces direct OWL imports with a

term-by-term selective mechanism [CGL+11]. MIREOT is essentially a way to prove

fine-grained imports, however its experiments did not prove to solve, or even consider,

the problem of erroneous OWL interpretations deriving from imperfect connectivity

between ontologies.

2.4.6 The Open Ontology Repository

The Open Ontology Repository (OOR) initiative [Opea] is a community e↵ort to

promote the global reuse and sharing of ontologies on levels both methodological and

technological [BS09]. OOR contributes with a modular, open source repository software

with multiple deployments and a set of best practices for sharing. Ongoing work in OOR

concerns registry management functions, support for multiple knowledge representation

languages, alignment features, recommenders based on text analytics, curation policies

and user interfaces for managing them. Great concern is also present for ontology
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version control, provenance and change management. Moreover, the OOR community

has shown awareness of the practical problems arising from inconsistent imports in

OWL ontology networks, which are among the non-logical semantic structures that our

proposed solution manipulates. Although the reference implementation of our solution

was ultimately deployed within a separate project incubated in the Apache Software

Foundation [Apag], we are closely following the evolution of the OOR initiative and

participating in the argumentation occurring therein. While by no means a high-

priority nor short-term goal, contributing our theoretical framework and part of its

implementation to the OOR remains a possibility.

2.4.7 COLORE

Finally, we cite a very recent notable contribution provided by the COLORE ontology

repository [COL], an extended instance of an OOR prototype. Like ODP.org, COL-

ORE also uses ontology design patterns, but it also relies upon them as a backend for

a general-purpose, cross-domain repository. It is based on techniques such as relative

interpretation to characterize the models of ontologies based on a set of stored core on-

tologies [GK12]. Although the concept is never mentioned in the context of COLORE,

this technique has strong similarities with ontology network management and sports

an application of a logical framework to them. Therefore, a possible integration or

reformulation of the underlying logics in the context of our work is possible and under

consideration.

2.5 Existing ontologies and knowledge vocabularies

As the nature of the Semantic Web and ontologies is assumed to be an open world, many

knowledge engineering methodologies advocate the reuse of knowledge and discourage

the re-authoring of basic concepts and shared domain entities from scratch. In order to

achieve this goal and support semantic interoperability, several Semantic Web projects,

communities, and representatives are devising vocabularies of shared knowledge, which

describe very general concepts that can be regarded as the same across all domains.

Other ontologies focus on selected abstract domains, such as planning or state machines,

in order to serve as references for certain widespread fields of practice and research. This

way, processes such as the annotation and retrieval of knowledge will require minimum
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e↵ort in the alignment of concepts. The following is a quick and by no means complete

survey on some well-known or scientifically relevant ontologies and ontology networks

used for modeling domains, e.g. as core vocabularies for Linked Data or the semantic

annotation of content.

We have already cited SKOS (cf. Section 2.2.2) as a leading example for modeling

controlled vocabularies. Another noteworthy resource of shared foundational knowl-

edge is the WonderWeb upper ontology library [OSV05], whose core module, the

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)

[Des], uses first-order logic to capture the categories of beings from a cognitive per-

spective, i.e. through the cognitive artifacts of human perception, natural language

and common sense [GGM+02]. The nature of DOLCE ascribes it as a foundational

ontology.

The Description and Situation (DnS) ontology [GM03] aims at the e�cient and

expressive representation of contextualized knowledge: it allows knowledge engineers to

re-interpret types and relations asserted in so-called ‘ground ontologies’ from a context-

sensitive angle. DnS is reused as a pattern in specific domain ontologies including the

Computational Ontology of Mind (COM) [FO04] and the Core Ontology for

MultiMedia (COMM) [ATS+07]. DnS is aligned with DOLCE, which is used in its

top level, so that a light version of DnS+DOLCE exists. DUL is a reworked version of

DnS+DOLCE that retains most of its expressivity while significantly improving upon

the original on the computational side [Gana].

One of the greater challenges in knowledge representation is the modeling of con-

text [Guh91, McC93], a versatile term by its own right, as it can concern the linguis-

tic, environmental, or social domain, among many others. The domain of ubiquitous

computing [BBRC09] regards context as a collection of attribute values of a physi-

cal environment. Recently, several proposed context models for household automa-

tion, application development and reasoning, have also surfaced in ontological form

[KC06, OGA+06, WZGP04]. Constructive Description and Situations (c.DnS)

[Gan08] is a fork of DnS that does not depend on DOLCE. C.DnS can be used jointly

with any ontology, be it foundational or domain-oriented. It represents di↵erent notions

of context, such as situational, descriptive, informational, social and formal. The ex-

pressive power of c.DnS lies at the level where the semiotic activity of cognitive systems

occurs, i.e. where agents encode expressions that have a meaning in order to denote
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or construct entities in the world. c.DnS enables the representation of complex con-

figurations of contexts that could occur simultaneously, but need to be distinguished

in order to identify the most relevant contextual entities in a certain situation, e.g. a

social network (a social entity) together with a tag cloud (an information entity) and

a model (a formal entity).

Static and dynamic models of evolving and contextualized knowledge are a major

focus of research on ontological grounding, which identifies some key aspects to be taken

into account in order to create a bridge between the modeling layer and real-world facts

and event occurrences. One such approach involves the meta-level manipulation of on-

tologies: the C-OWL language is an extension to OWL that introduces a discrepancy

between local semantics and global semantics [BGH+03]. C-OWL adds bridge rules

for the creation of context mappings, thus generating embedded ontologies that are

contextualized, in that they do not share their data with the outside world. Other

approaches tackle the more pragmatic aspects of contexts by providing knowledge en-

gineers ways to model actual contexts and the phenomena that alter their states. It

is the case of the Time Indexed Participation ontology design pattern [Gand] and

Linked Open Descriptions of Events (LODE) [STH], two lightweight ontologies

consisting of a limited amount of semantic terms for describing events, their spatial

and temporal coordinates, and the agents and objects involved therein.

Other ontological approaches have dealt with the modeling issues deriving from

planning tasks and workflows, as is the case of the work presented by Rajpathak and

Motta in [RM04] as well as a DnS-based plan ontology that comes in versions with

light [Ganc] and full [Ganb] axiomatization. The world of software engineering has also

contributed to this field with formal methods for representing state-driven behavioral

models, as in Dolog’s Ontology for State Machines [Dol].

On the side of linguistic and semiotic approaches, the Linguistic meta-model

(LMM) addresses the representation of thesauri and controlled vocabularies, yet does

so on the basis of lexical and semiotic entities and multilingualism [PGG08]. LMM is

an ontology network that extends DUL and is aligned with SKOS, the meta-model of

OWL and the WordNet data-model. A pure structure-oriented approach is given by a

model called Linguistic Information Repository (LIR) [PMPdCGP06, APH+12],

also deployed as an OWL ontology. The LIR uses an internal OWL meta-model for

directly associating lexical entries to ontology terms, thus allowing straightforward
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localization of the terminological layer, and organizes linguistic information within and

across languages.

In the horizontal domain or ontology engineering, several meta-models have been

proposed and are currently in use. The Ontology Metadata Vocabulary (OMV),

a standalone ontology that provides a specification of reusability features for enhancing

ontologies for human- and machine-processing. TheCollaborative Ontology Design

Ontology (C-ODO) Lite, an ontology network with light axiomatization and heavy

reuse of ontology desigs patterns, aimed at modeling and exploiting the design features

of the entire lifecycle of ontology networks [APH+12].

Alongside general-purpose semantic frameworks as the ones mentioned above, the

collective e↵ort to elicit a set of shared vocabularies for data-related knowledge has

brought increasingly popular results. Friend of a Friend (FOAF) [GCB07] is an

agent-centric vocabulary meant for describing persons, the interlinking between them,

their occupations, related concepts and activities, with a special focus on the social

(network) identity of an individual on the Web. It includes specific properties for

instant-messaging identifiers, homepages and online accounts, while it does not repre-

sent their historical information, other than discerning past and present. Other pop-

ular Web domains, such as e-commerce and online communities, have given birth to

vocabularies like GoodRelations [Hep08], which is used as a Web content annotation

vocabulary for describing products, pricing, producer and payment methods; Smart

Product Description Object (SPDO), a DUL-based core model for semantically

describing physical consumer products in communicative environments [MJ09]; and

Semantically-Interlinked Online Communities (SIOC) [BDHB06], a vocabulary

for describing the structure and contents of communities. As an example of semantic

interoperability achieved through shared vocabularies, SIOC allows for reuse of the

FOAF vocabulary for describing individual community members.

Cross-domain controlled vocabularies also exist, which by all means can be treated

as ontologies, although their specification does not allow them to qualify as foundational

ontologies, but rather as annotation vocabularies. In this respect we cite Schema.org

[Sch], a cross-domain controlled vocabulary endorsed by major stakeholders of the Web

search market. It is recommended for usage with the annotation of Web pages for bet-

ter content ranking, retrieval and recommendation. As a response to the concerns that

had risen over the migration from existing vocabularies to a shared one, Schema.org
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was made extensible and interoperable with other vocabularies, through a review and

approval process that determines whether search engines should support these exten-

sions.

On top of the above, most common RDF vocabularies that deal with authored

material are open to reuse of terms deriving from the Dublin Core metadata element

set, a standard vocabulary for digital libraries [SBW02]. The RDF specification of the

Dublin Core set [NPJN08] allows the straightforward definition of relationships such as

creator, subject, format or language for any authored object.

Formal models for the representation of policies, such as copyright and access rights,

have also proved to be an essential subject matter of investigation. The wide availabil-

ity of vocabularies for describing content (whatever content is agreed to be within each

context) also calls for models that define how this content should be allowed to be

treated and by whom, and models that share the same basic formal semantics as these

vocabularies. One such attempt to define a copyright ontology, aimed at the develop-

ment of a semantic Digital Right Management (DRM) system, was developed by Gil

and Garćıa in 2006 [GG06] and 2008 [GG09]. The ontology itself is monolithic, yet it

models parts of the copyright domain in separate phases, such as creation, economic

and moral rights, actions (e.g. redistribution, public performance, transformation etc.),

licenses, roles, obligations and event patterns (e.g. peer-to-peer exchange). The pro-

posal makes extensive use of cardinality restrictions and other DL features for modeling

the complex domain of copyright. Another policy representation model is Rei [Kag02],

implemented in OWL-Lite, which allows specification of policies as constraints applied

to a resource, as well as conflict resolution and ‘what-if’ policy analysis. Another pol-

icy representation approach was defined as the KAoS Policy Ontologies, originally

developed in DAML, then migrated to OWL [UBJ+03]. An example of a non-OWL

approach is Ponder, a declarative object-oriented language that defines policies as

system rules declared between sets of subjects and targets [DDLS01]. Ponder allows

for the definition of obligation and authorization policies, as well as composite policies

such as roles and relationships. A comparison of KAoS, Rei and Ponder was made

available as of 2006 [TBJ+03].

Significant advancements were also spotted with respect to formal models for inter-

action and presentation. What is possibly the most mature RDF-based and application-

independent proposal to date is Fresnel, an RDF vocabulary for application-independent
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data presentation. Fresnel was designed an a response to the limitations of prior pre-

sentations models, which were argued to be excessively tied to the assumed data-model

of the domain where the data belong, or the framework in which they are managed

[PBKL06]. Fresnel is founded on the definition of lenses and formats. Lenses define

which properties of an RDF resource, or group of related resources, should be displayed

and in what order. Formats determine how resources and properties are rendered, and

provide a way to relate to existing styling languages such as CSS. Implementations of

Fresnel-based rendering engines are present in applications such as the faceted RDF

browsers Longwell [Lon] and Piggy-Bank [Pig], and the IsaViz graph modeler [Isa],

which is able to render specific properties as indicated by Fresnel formats.
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Goal overview

The world of ontology-based knowledge management has been evolving across multiple

directions. It has been creating cross-discipline hybrids, specializing for domain-based

adoption and developing new branches, all the while consolidating some of its stan-

dards, methods and technologies as the foundations of a discipline that can be taught

as it gets steadily improved upon [GJ10]. In a context so vast and varied, it is inevitable

for any study on ontologies to adopt a specific course of actions, based on which as-

sumptions and restrictions are established, yet still with minimum loss of generality.

As part of the aforementioned category, this work is no exception: while it stemmed

from the requirements and aims set within the domain of ontologies in content manage-

ment, service frameworks and data repositories, it stays as true as possible to de facto

standards, World Wide Web Consortium recommendations [W3Ca] and the doctrine

built thereupon. This chapter rolls out the motives, purposes and directions taken

for the present work, in the traditional form of problem statements, assumptions and

restrictions [AMH08].

3.1 Motivation

As stated earlier in the introductory chapter, there is a technological and conceptual

gap between the publication of semantically structured data on the Web and their

manipulation in the form of ontologies. This gap can be summarized as a vexata

quaestio, i.e. a scientific and ideological problem over which a debate exists between
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schools of thought in the research community: should semantic applications be aware

that the data they process represent ontologies?

The implications of how this matter is approached are crucial. Application develop-

ers in the various fields where linked data are explored, consumed or created, are faced

with wondering what the benefit of bringing ontologies into their workflows would be.

This means ignoring that, when applications handle linked data and the vocabularies

they are built with, they are actually manipulating ontologies, albeit at a lower level

in terms of logical profiles.

There is a clash of doctrines at the basis of this debate [DW03]. The pure Se-

mantic Web doctrine as in Berners-Lee’s vision states that the ultimate goal of the

Semantic Web is to make heterogeneous information available for agents to consume

autonomously in order to satisfy high-level user goals. This implies that the Web should

have its own harmonization mechanisms for manipulating structured data before pre-

senting them to client agents. It would then be guaranteed that an agent that obtains

information from various sources will know that it is reliable, accurate and consistent.

This is indeed one goal of the currently un-implemented layers of the Semantic Web

stack such as Trust, Proof, and the Unifying Logic according to which harmonization

should occur. This doctrine justifies the existence of ontologies and the OWL language

in the Semantic Web, as well as the need for reasoning processes taking place in the

back-end of semantic data providers. It is then implied that, when a client obtains

a chunk of data using a query language like SPARQL, these data would already con-

tain the inferences and entailments that follow from treating the original resources as

ontologies.

Another doctrine, which we may dub as the “pure Linked Data perspective”, states

that the Semantic Web is merely a way of publishing meaningful yet disaggregated

information. Such information is made available for for consumption by agents, and it

is up to them to decide which information to consider trustworthy and accurate, which

should be considered for consistency issues and which should not. This leaves the choice

of employing formal ontologies, rule systems and reasoners up to the responsibility of

application developers. According to this perspective, the very need for unifying logics

or even ontologies as components of the Stack is put into question, as clients should

need to support no more than RDF, SPARQL and the technologies that form the basis

for Linked Data.
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In the introductory chapter, a use case was sketched in the realm of content man-

agement systems (CMS). The community around these systems is relatively new to

semantic technologies, yet it had begun to show interest in Linked Data [HB11a] as a

resource to be consumed in order to integrate or enhance pieces of content in a mul-

titude of ways [MK12]. While eager to improve their knowledgeability, community

members are rarely knowledge management experts, and viewed the Semantic Web

from a perspective rather technological than scientific. Bringing awareness of the on-

tology language layers of the Semantic Web into this community is itself a research

challenge, which can be conducted in accordance with either of the doctrines described

earlier.

On the other hand, the great quantities of data that can potentially be stored

or consumed by a CMS translate into equally great quantities of semantic data, and

by extension ontologies, if the CMS is backed by a Semantic-Web-aware framework

[MK12]. Thus a scalability problem ensues [Var02], as combining all the semantic data

that are fed or stored into a single, huge ontology network can be unthinkable at times,

as it may lead to an unbearable computational overhead for the responsiveness of a

system that should be as close to real-time as possible.

A set of requirements for an ontology-enabled CMS [Pre12] pointed out the impor-

tance of cutting down a knowledge base by (de-)activating portions thereof, depending

on the computational task being performed. This requirement analysis was part of the

preliminary work for this thesis [ABG+10] and has led us to take up from it and tackle

one problem emerging from these requirements. This problem is described next.

3.2 Final aim

Although it can specialize in ways that will be discussed further in the chapter, a generic

formulation of our ultimate scientific target is as follows:

To exploit good practices of software solutions in order to manage

concurrent ontology networks built dynamically, by maximizing

reuse but with reduced usage of computational resources.

Very informally, this statement is akin to assuming that building “good” ontologies is

not enough for guaranteeing that their intense and concurrent usage does not place
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an unreasonably high burden on the software that makes these ontologies available;

or, to state something less obvious, that it is much less than enough. A great deal

of research work has gone into laying out definitions of what a “good” ontology is

(cf. 2.3.3 for details), and by extension, practices for managing their lifecycles. Most

recommendations head towards authoring ontologies within manageable logical profiles

(as do the tractable fragments, or “profiles”, of the OWL 2 language [MGH+09]) and

advocate reuse and connectivity techniques [SF10]. However, there comes a point where

applications need to come to terms with the combined usage of ontologies in ways that

their respective authors could hardly have foreseen.

Tackling the above problem is well above the level of a mere exercise in program-

ming. Several factors are to be taken into consideration, such as the shape of an

ontology network; its relationship with standard ontology languages; the persistence of

network components based on their provenance, and so on. The serendipitous emer-

gence of these factors gave rise to additional problems worth of study, some of which

we accepted to tackle over the course of this research.

3.2.1 Host framework features

The aspect of computational resource usage is usually treated on the side of reasoners.

Not as much publicity on this aspect is given to the side of ontology repositories and

servers, having historically delegated its treatment to database specialists concerned

with building e�cient triple stores or quad stores [RDE+07]. However, graph persis-

tence is but one low-level angle to regard resource usage from. Between that and the

application level there can be additional stages in the ontology management pipeline to

be considered, depending on the desired versatility. If the only use case of an ontology

repository is to serve each ontology from a remote file as-is to one client at a time,

there is virtually no resource usage issue in intermediate layers. If a more elaborate set

of requirements and functionalities is at hand, though, its complexity could bottleneck

the communication between repository and client(s) if not paid heed to.

The setting of our work falls in this latter category. The context of this work is

based around the software model of a modular, extensible framework for Semantic Web

applications, which will henceforth be called host, having the following characteristics:
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• shared knowledge base: it features a single knowledge base shared across all

applications in the framework;

• Web services: it provides a Web interface for external applications, i.e. based

on the HTTP protocol, to expose its functionalities and those of its hosted appli-

cations;

• concurrency support: it needs to serve multiple requests for potentially di↵er-

ent tasks and services at the same time;

• locality: it needs to process the payload of one or more requests in a privileged

space, without altering other privileged spaces in unpredictable ways.

The challenge we were faced with was to introduce ontology management in such a

software framework at a less than trivial level, that is, by making sure the requirements

listed above held for ontology management as well, once appropriately ported to fit the

domain.

3.2.2 Challenges in ontology management

In the early stage of this research, a preliminary requirement study was conducted, con-

cerning what features a modular software framework should require from an ontology

network when it needs to manage or utilize one [ABG+10]. The domain was content

management, so the model of the framework in question was a platform for backing

CMSs with semantic technology support. As a consequence, some requirements encom-

passed several horizontal domains of content management: an ontology network within

this context was required to include ontologies that modeled domains such as trust

and provenance for content items, users, linguistic and lexical resources, organizations,

communities and workflows.

If we escalate the issue to general problems in ontology network management on a

modular software platform, i.e. the host, then the distinction between domain ontolo-

gies loses its relevance. However, several orthogonal requirements can still be singled

out. For full detail on ontological requirements for CMS applications, we refer to re-

lated publications [Pre12] and technical reports [ABG+10]. Requirements that concern

the present study on a general host are listed below. According to them, an ontology
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network management system, or ontology network provider, is a software system able

to:

1. enable or disable an ontology (node, or vertex) within an ontology network upon

request;

2. add ontologies to an ontology network;

3. remove ontologies from an ontology network;

4. bind one or more ontologies to a hosted software component;

5. unbind one or more ontologies from a hosted software component;

6. retrieve, parse and translate across standards and formats, ontologies and other

models defined externally to the host system;

7. modify and extend ontologies in an ontology network;

In addition, a particular requirement encompassed the software binging of ontology

networks, that is:

1. the software components registered with the host that can be bound to networked

ontologies must share a common interface.

There is a degree of fuzziness in some of these requirements, due to their nature

as software requirements aimed at addressing scalability. For instance, the meaning

of “enabling” or “disabling” an ontology is unspecified in ontology theory. So should

the di↵erences between enabling (resp. disabling) and adding (resp. removing) and

ontology be cleared out in the context of ontology networks. On the practical side, if

enabling or disabling ontologies in a network were to require an intervention in their

axioms, there would be a risk of shortfalls due to the lack of access rights on some

ontologies. That is, unless they are somehow copied over to the host and served by it.

In that case, there would be a risk of creating a mismatch between the actual location

of an ontology and the one expected by its logical identifier. In addition, a specification

of “binding” an ontology to, or “unbinding” one from, a software component would be

necessary at least from a software-architectural perspective, in terms of what procedural
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impact it has on a software component, but also what structural impact it has on

ontology networks.

One objective of this thesis is to shed some light on these underspecified notions

and their practical utility. Before formulating the issues described above as research

questions, though, let us review the framework characteristics in terms of ontology

management. An application able to serve ontologies from, and manage ontologies

submitted by, client agents should:

• be able to extract ontological artifacts from the storage facility (or facilities)

associated with the host, where applicable (shared KB);

• serialize ontological artifacts to multiple formats and perform content negotiation

to select the appropriate format on a per-request basis; allow create-read-update-

delete (CRUD) operations [Mar83] via HTTP methods (Web services);

• serve and handle multiple ontologies and multiple occurrences of the same ontol-

ogy through simultaneous client requests (concurrency support);

• for each client request, provide a network of ontologies that combines stored data

and schemas with data supplied by the request. Changes triggered by, or a↵ecting

the supplied data should not be reflected into the ontology networks of other client

requests (locality).

As a consequence of the Web services requirement, since ontological artifacts are

to be serialized to data streams in standard formats, we have to take account how

client applications typically consume these data streams and “restore” their status as

ontologies. In other words, this means we have to pay heed to what procedures these

applications follow for interpreting these resources as ontologies.

3.2.3 Research questions

Let us now formulate the above challenges in terms of research questions:

RQ1. In a modular host framework with a shared knowledge base, is there a way for

each application to combine a portion of the knowledge base with ontologies from

outside the knowledge base, without a↵ecting the ontologies managed by another

application? Can ontology network management be an e↵ective way of doing so?
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RQ2. If the answer to the last question in RQ1 is yes, how can we define theoretically

the following operations: (a) enabling and disabling ontologies in an ontology

network, and (b) add/remove operations of ontologies in an ontology network, if

there even is a need for (a) and (b) to di↵er?

RQ3. How structurally complex should the ontology networks built by the software

system be, in order to reduce the likelihood of an erroneous interpretation of

their contents?

RQ4. How can we bind a method for the dynamic construction of ontology networks

to a procedural pattern for ontology-aware applications, so that they can set up

ontology networks that respect the principles of RQ2 and RQ3?

RQ5. How can we maximize or encourage reuse of ontologies across ontology networks,

with no disruptive impact on the memory footprint of these networks?

RQ1 is a direct consequence of having locality and a shared knowledge base as fea-

tures of the host framework (cf. Section 3.2.1) and, at the same time, a requirement

for managing ontologies retrieved externally, either verbatim or by reengineering non-

ontological resources [VT12]. RQ2 openly addresses the requirements concerning en-

able, disable, add and remove operations on ontologies in an ontology network. RQ3

is subject to verifying whether the structure of an ontology network a↵ects its in-

terpretation in terms of axioms, which will be addressed shortly. RQ4 concerns the

application of the theory behind the previous research questions, and treats the prob-

lem of describing how a software system registered with the host, or otherwise using its

functionalities, should behave in order to exploit ontology networks. Last, RQ5 covers

e�ciency aspects, their critical nature being a consequence of the fact that the host

framework supports concurrency. A measure of a non-disruptive memory footprint is

that, if an ontology belongs to multiple ontology networks and there are n requests for

it in a short time, then the cumulative memory footprint of the requested resources

should be less than n times the memory taken by a single occurrence of the ontology.

The combination of requirements 1-3 for ontology network providers and research

question RQ5 can be summarized by stating that ontology networks managed dynam-

ically need to scale, hence the title of this dissertation.
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3.3 Intermediate objectives

In order to answer the research questions above, and tackle the final aim as of Section

3.2, a number of intermediate targets were scheduled for accomplishment. These set

objectives can be either methodological/theoretical i.e. aimed at delivering a combi-

nation of theory and best practices, or technological i.e. focused on delivering tangible

products in terms of software and data.

Methodological/theoretical objectives

O1. To outline a theoretical framework that accommodates notions of “ontology net-

work” and “interpreting as an ontology” and others related.

O2. Based upon the theoretical framework in O1, to define a method for constructing

ontology networks dynamically. This will be based on the concept of “virtual

ontology network”, to be introduced alongside the theoretical framework itself.

O3. To provide an architectural specification of an ontology network provider that

implements the elements required for executing the method in O2.

Technological objectives

O4. To provide the specification of a RESTful Web Service API for manipulating

ontology networks, and the networked ontologies therein.

O5. To implement the ontology network construction method, as well as the part of

the software-architectural framework in O3 that concerns the ontology network

provider.

3.4 Assumptions

The work presented herein is based on the following assumptions, which we deemed

reasonable with regard to the current state of play in Semantic Web science and appli-

cations:

A1. Any RDF-based resource on the Web can be interpreted as a set of axioms in the

OWL language, even where the OWL vocabulary is not explicitly used. Therefore,
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when discussing ontologies we shall also intend these resources, most including

those retrieved from Linked Data.

A2. Both ontologies and other resources from which knowledge can be extracted as

ontologies, are freely available with no restrictions to read-access or reuse, repub-

lishing rights included.

A3. An ontology is published on a Web resource by a certain peer, e.g. its author

or otherwise rights holder (limited as per A2), and no one but that peer can

physically modify the content of that resource.

A4. Software tools exist, both as end-user application and as service clients, that are

able to consume networks of OWL ontologies built on import declarations, as well

as interpret RDF resources in OWL.

A5. For each member of a set of axioms, it is always possible to determine whether it

is part of volatile knowledge, which should not outlive the duration of a task, or

persistent knowledge, which is worth storing and maintaining over time.

A6. Ontologies on the Web are not published optimally OWL-wise, i.e. there are

redundant ontologies with the same axioms published as di↵erent Web resources

with no adequate version indication, or with no OWL identifier.

A7. Rule engines and DL reasoners are freely available and support the OWL and

OWL 2 languages.

A8. We are not given the details on how the software tools from A4 proceed in con-

verting a resource into an ontology, nor can we assume them to always be free

and open-source software (FOSS) [Fre].

A9. Practitioners and software developers who wish to consume ontologies do not

necessarily know how to combine them into ontology networks.

Some of these assumptions, such as A1 and A4, are actually provable by exam-

ple. Applications and program libraries that can be used to verify these assumptions

were illustrated as part of Chapter 2. This software-related aspect is crucial to the

completeness of our research setting, because the theoretical work done on ontology
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management, as well as the documental contributions provided by the World Wide

Web Consortium, do not fully address the problem space delimited by the aspects of

networking and relatedness. Therefore, part of the burden of addressing these problems

lies upon application developers, who are faced with computational resource manage-

ment issues and the need to trade them o↵ with the normative specifications above.

Assumptions A4 (i.e. the existence of software) and A8 (i.e. the black-box nature of its

ontology interpretation functions) altogether form this complementary space, which is

both a solution provider and a problem source, as verified further on in Section 3.5.1.

3.5 Hypotheses

The objectives identified earlier, under the assumptions made, allow us to formulate a

series of hypotheses, to be proven or disproven as our research work proceeds.

H0. (null hypothesis) The layout of ontology networks, i.e. the ways networked on-

tologies are connected with one another, has no e↵ect on their interpretation in

OWL.

H1. If each application sets up dedicated ontology artifacts that reference the (persis-

tent and volatile) knowledge required, then each artifact determines a standalone

ontology network that lives independently on any other ontology network.

H2. Spreading the components required by an ontology network across a 3-tier on-

tological structure will reduce the amount of axioms that cannot possibly be

interpreted correctly compared to using a flat import scheme.

H3. An aggressive ownership and persistence policy applied to the data payload, and

a conservative policy applied to the shared knowledge base portions, can reduce

the memory occupation of concurrent ontology networks by at least one third of

the memory occupied by each ontology network if it were fully in its own memory

space.

3.5.1 Null hypothesis negation

That the null hypothesis H0 be untrue under the assumptions made, it can be verified

through a simple counterexample to begin with. In the following, the original ontologies

have been serialized in Turtle syntax.
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Given the following prefix assignment:

@prefix : <http://www.ontologydesignpatterns.org/ont/test/ontonet#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix connected: <http://www.ontologydesignpatterns.org/ont/test/

ontonet/imports-connected/> .

@prefix disconnected: <http://www.ontologydesignpatterns.org/ont/test/

ontonet/imports-disconnected/> .

let ontology network O
disconn

have the following root node (i.e. the ontology that

is encountered first when visiting the whole network):

disconnected:root.owl rdf:type owl:Ontology ;

owl:imports disconnected:abox.owl , disconnected:tbox.owl .

The root ontology therefore directly imports both a TBox ontology and an ABox

ontology. The imported ABox ontology is encoded as follows:

disconnected:abox.owl rdf:type owl:Ontology .

:Alex a :Person ;

:knows :Begona .

:Begona a :Person .

The imported TBox ontology is encoded as follows:

disconnected:tbox.owl rdf:type owl:Ontology .

:knows a owl:ObjectProperty .

When root.owl was loaded using the OWL API 3 [OWLa] (e.g. by using Protégé

4.2) [Pro], the following OWL interpretation was returned (in OWL functional syntax)1:

1This ontology network example is available online at the intended URL http://www.

ontologydesignpatterns.org/ont/test/ontonet/imports-disconnected/root.owl

54

http://www.ontologydesignpatterns.org/ont/test/ontonet/imports-disconnected/root.owl
http://www.ontologydesignpatterns.org/ont/test/ontonet/imports-disconnected/root.owl


3.5 Hypotheses

Declaration(ObjectProperty(:knows))

ClassAssertion(:Person :Alex)

ClassAssertion(:Person :Begona)

AnnotationAssertion(:knows :Alex :Begona)

Note the presence of the axiom AnnotationAssertion(:knows :Alex :Begona).

The fact that it was interpreted as an annotation assertion in OWL implies the impos-

sibility to reason on it, as non-logical axioms are not computed in DL. In terms of the

leading example introduced in Section 1.1.2.1, this means that, even if we were able to

place the papers authored by Begona in the friends directory of Alex, we would still

be unable to place those from people in Begona’s network in the friends-of-friends

directory, unless we fell back to low-level querying such as SPARQL.

Now let ontology network O
conn

have the following root node:

connected:root.owl rdf:type owl:Ontology ;

owl:imports connected:abox.owl .

The root now only imports an ABox ontology, which is exactly the same as before,

except that it imports the TBox ontology:

connected:abox.owl rdf:type owl:Ontology ;

owl:imports connected:tbox.owl .

:Alex a :Person ;

:knows :Begona .

:Begona a :Person .

The imported TBox ontology is also the same as before, except for its name:

connected:tbox.owl rdf:type owl:Ontology .

:knows a owl:ObjectProperty .
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When root.owl is loaded using the same OWL API version, the following OWL

interpretation is given1:

Declaration(ObjectProperty(:knows))

ClassAssertion(:Person :Alex)

ClassAssertion(:Person :Begona)

ObjectPropertyAssertion(:knows :Alex :Begona)

That is, what was interpreted as an annotation assertion in the network layout of

O
discconn

, is interpreted as an object property assertion in O
conn

. The latter is more

desirable, since it respect the explicit declaration of :knows as an object property made

in each TBox ontology.

This counterexample proves that simply appending each ontology as subtrees to a

root node will not work, because there are common ontology management applications

which visit ontology networks (in this case built on OWL import declarations) in a way

that can cause object property assertions to be interpreted as annotations, and to be

potentially ignored by reasoners.

Further tests, here omitted for simplicity, have also invalidated the null hypothesis,

and hinted that the manipulation of ontology network structures could be one way to

counter the problem of erroneous OWL interpretation.

3.6 Restrictions

In order to draw reasonable conclusions from it, the contributions as per this disser-

tation were delivered under a set of restrictions. These restrictions limit the scope of

our work, but also set potential future objectives established by relaxing some of them.

They are:

R1. The time-e�ciency of managing ontology networks using our method was not

considered, so long as ontologies whose order of magnitude is up to 103 axioms

can be provided in realtime on standard desktop hardware.

1This ontology network example is available online at the intended URL http://www.

ontologydesignpatterns.org/ont/test/ontonet/imports-connected/root.owl
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R2. We will refer to software engines able to parse ontology documents and interpret

them in OWL by visiting the import graphs in pre-order from a single start node,

and performing interpretations greedily and on the first visit only.

R3. It is never the case that all the applications accessing the shared knowledge base

need to construct ontology networks that are completely disjoint from one another

at once.

R4. Multitenancy [CCW06] and security features, such as user account management,

account-based access restrictions and encrypted data transfer, were not considered

as locality factors for ontology networks.

R5. Ontology modularization [TDL+11, dSSS09, OY12, SCG12] was not contem-

plated at this stage of the work. We originally aimed at preserving the state

of physical mappings of an ontology references to a set of axioms, with modular-

ization support scheduled for future work.

R6. Following R5, we will limit to contexts where it is always possible to determine

the minimal subset of the shared knowledge base that each application needs in

order to obtain expected results in terms of reasoning and other procedures that

process ontologies.

3.7 Summary of the contributions

The result of this research work is articulated into several products and byproducts.

These include a base theoretical framework, logical and architectural specifications,

open-source software, and even hints at a novel analytic approach to ontology network

analysis. We hope these can serve as the drivers for future developments in ontology

networking and aid the blending of so called “ontology-oriented” and “Linked-Data-

oriented” mindsets.

In summary, this thesis is the result of a 3-year work that delivered the following:

C1. a dissertation on the state of play of ontology management that tries to harmonize

the standpoints of Web ontology science and Linked Data technology;

C2. an overview of use cases, and classes thereof, where the need for processing dy-

namically generated ontology networks is felt;
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C3. the formulation of a theoretical framework for describing ontology networks; the

artifacts, concepts and relations that connect them with the logical theory behind

traditional ontologies;

C4. a method, called 3-tier multiplexing, for combining ontologies of heterogeneous

provenance and logical profiles into ontology networks that do not exist in their

original form;

C5. the specification of a software architecture that maps the artifacts of the 3-tier

multiplexing method with the artifacts of an extensible service framework for

serving ontologies;

C6. a Web Service interface specification for Web clients to interact with dynamically

generated ontology networks;

C7. Stanbol ONM, an implementation of the above specifications, as part of an open

source project maintained by the Apache Software Foundation;

C8. an evaluation method for ontology network interpretation grounded on graph

theory;

C9. an insight as to how the above method, and by extension its implementation in

Apache, could be automated or improved, and the possible directions to that end.

It is of particular note that contributions C3 through C7 are intended to fulfill the

intermediate objectives O1 through O5 respectively, in the given order (cf Section 3.3).

3.8 Public problem statement

Although my first public statement on tackling ontology network architectures as a doc-

toral thesis work was made at the ESWC12 conference [Ada12], my active involvement

with this line of research began in 2009, one year prior to enrolling as a Ph.D. student.

It is worth mentioning that a similar problem statement was made on the same occasion

[Roh12], which focuses on the sub-problem of formally specifying ontology network. A

future integration of the work described in Section 4.1 with the one mentioned above,

once its ultimate results are disclosed, is being kept in thorough consideration.
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A model for ontology network

construction

Ontology networks are a relatively recent concept [PVSFGP10, GPSF09], therefore

their theoretical background is still expanding and has not fully dealt with the notions,

methods and caveats associated with the practical use of ontology networks. In Section

2.3.1, an overview on the few existing approaches in that direction was presented. It

was noted then, that those approaches were mainly a product of nontrivial analysis

work performed on existing distributed ontologies, with a degree of variety in defining

the relationships that establish connectivity between ontologies . Additionally, being

these approaches either conceptual, as in DOOR [AdM09], or purely DL-based, as in

the extension of DOOR relations by Dı́az et al. [DMR11], they assume to be operating

with artifacts that are natively ontological, i.e. whose axiomatization was deterministic.

In the reality of the Semantic Web, however, we have to come to terms with the

facts that semantic information sources are heterogeneous; that their data need to be

combined and interpreted before they can be treated as an ontology network; and that

the transition between these two states is non straightforward.

Having outlined our research problem, its related challenges and technological land-

scape, we shall now proceed to describe the architectural perspective of our proposed

solution to the dynamic assembly of ontology networks. Two models are required for

exhaustively describing our approach, i.e. the ontology network model and the architec-

tural framework. The former describes the connected structure that is enforced upon

a given set of ontologies that need to be assembled together. The latter draws a cor-
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respondence between components of the software framework at hand and elements of

the ontology network model, e↵ectively depending on the former. These two models

denote each an architecture by its own right and are described in the given order in

this chapter and the next.

The theoretical framework described in this chapter does not oppose to those de-

scribed in Section 2.3.1 in general, nor is it aimed at extending them. Rather, one of

its aims is to accommodate formal specifications from bottom-up approaches such as

those described earlier and then some. Then, the specific relations from these other ap-

proaches could be described in terms of this more general framework. We will provide

an insight as to how multiple ontologies can be connected; the meaning of “interpret-

ing” a resource as an ontology, and why this distinction is to be made; the meaning

of “giving a name” to an ontology and what its potential implications are. Further

in the chapter, we apply this theoretical framework to a method, compounded with

algorithmic support, for improving the expressivity of ontology networks once their re-

sources are interpreted as such. No specific focus exists on one given underlying logic,

but working in a decidable logic, such as OWL-DL or tractable fragments of OWL 2,

is a reasonable assumption.

On a historical note, this model, and by extension this chapter describing it as

well as the whole doctoral work, are a consequence of, and justified by, the hardships

encountered – some unexpectedly – while developing an application whose design did

not involve any interpretation of the ontology network model. Had it been possible

to deploy the application straight ahead, it would not be the subject of this work

presently. In a process closer to agile software development methodologies than to a

plain bottom-up approach, the application under development (the description of which

is deferred to Chapter 6) ended up incorporating the solutions to ontology modeling

problems encountered along the way.

This chapter describes the ontology network model as follows. Sections 4.1.1 and

4.1.2 are devoted to porting non-novel concepts, such as ontologies and ontology net-

works, into our model. To that end, these concepts will be given definitions compatible

with the theoretical framework being established, and backed up by additional defini-

tions of preliminary concepts. Section 4.1.3 defines the newer concepts and artifacts

that we introduce in the model, and in section 4.2 these concepts are instantiated, that

is to say, a method is described for combining them so that ontology networks can be
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generated dynamically. The remainder of this chapter will be devoted to describing

how the ontology network model can relate to, and exploit the features of, OWL and

ontology languages in general. Section 4.2.5 describes how ontology networks so gener-

ated can be rendered in the OWL 2 language. Section 4.3 explains how the ambiguity

between logical names and physical references of ontologies can be tamed. Finally in

Section 4.4, we explore related work in this specific area that was not exhaustively

covered by the chapter on the general state of the art for the sake of uniform narration.

We then single out its relationships and potential integration points with our work.

4.1 The ontology network model

Cognitive, logical and information studies on ontologies, as well as their technologi-

cal applications, apparently deliver discordant definitions of ontologies from di↵erent

viewpoints. Consequently some practitioners, such as Semantic Web technology con-

noisseurs, think of them as something di↵erent from Linked Data, or “more complex”

than RDF graphs. Discrepancies range from believing that an ontology “must be made

in OWL or RDFS and cannot be made in RDF”, to considering OWL as “yet another

vocabulary for RDF” to be used alongside vocabularies like Dublin Core or SKOS. In

truth, an interpretation of Linked Data, RDF graphs and ontologies as the same thing

would not be that far-fetched. There is, however, a degree of plausibility in this discord,

due to the sparseness of application support which tends to favor one viewpoint at the

expense of the others.

Earlier in this dissertation (cf. Section 2.2.4), we cited conceptual and linguistic

definitions of ontologies, and mentioned some knowledge representation languages, such

as OWL, that are apt to encode the description logics that ontologies are founded

on. We will henceforth restrict to considering an ontology to be any artifact already

expressed in such description-logical languages, namely OWL itself. With that cleared,

we can then formally distinguish ontologies from other resources, such as the files, RDF

graphs and Web service endpoints that encode their “raw” forms. Also, the name of

an ontology can be distinguished from the filename, URL or database key of such a

resource. These and other distinctions will be formally laid out in this section as our

model of ontology networks is gradually uncovered.
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4.1.1 Fundamentals

So far we have given or assumed informal, intuitive and o�cially accepted definitions

of what an ontology is (cf. Section 2.2). This reflects the actual mutability of this

notion and its interpretation in diverse contexts. In Linked Data parlance, for instance,

there is a tendency to refer to a set of instance data as “dataset” and the underlying

formal model as “ontology”, DBPedia itself being a well-known example of such a

distinction [BLK+09]. However, the term “ontology” applies to either of the above, as

a well as combinations of them. In knowledge extraction disciplines, the umbrella term

“ontology” can encompass any piece of structured information such as an XML tree or

a relational database, or even unstructured information such as natural language text,

so long as a formal knowledge model can be extracted from them. Here, we apply a

simple formal restriction that encompasses many notions of ontology, provided that a

logical representation of its atoms is possible.

Definition (ontology). An ontology o is a triplet o = (N,T,A), where N is a set

of non-logical axioms, T is a set of terminological axioms and A is a set of assertional

axioms. All axioms in T and A can be represented in description logics.

We are therefore focusing on the relationship between description logics and ontol-

ogy representation and maintaining the classic TBox/ABox dichotomy [Gru93b], here

represented by the sets T and A, respectively. Non-logical axioms are all those ax-

ioms that do not influence the model of the domain referred to by the ontology, and

from which no other axioms can be inferred. They are, therefore, either annotations or

statements that identify the ontology itself as a concept, plus any further annotations

on that concept. No restrictions are set on the representation formalism for axioms, so

long as it is able to map them to some description logics. Both the DL syntax and the

functional syntax of OWL 2 [MPSP+09] will be regarded as reference formalisms for

axioms.

Definition (knowledge base). Given O the set of all ontologies, a knowledge base

O is any subset of O, i.e. O 2 }(O). Then O is also called the universal knowledge base.
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4.1.1.1 Ontology sources

It is a common mistake for ontology laypersons to consider ontologies to be, among other

things, XML documents that follow a particular schema (XSD). In early 2008, two years

before this research work began, I was submitted a set of semantically annotated Web

Service manifests for review. These were XSD and WSDL 1.1 documents [CCMW01]

supposedly annotated in accordance with the SAWSDL standard [FL07]. Although this

standard recommends that XML elements in Web Service manifests reference entities

described in some semantic model using full URIs or qualified names, the manifests at

hand were referencing them using XPath predicates. XPath is a query language used for

navigating XML trees [CD99], which meant it could not be used to retrieve knowledge

about these entities from ontologies in non-XML formats (e.g. Turtle or Manchester

OWL syntax) or with a di↵erent RDF/XML serialization than the one expected. This

unorthodox annotation method was a consequence of identifying an ontology with the

document it was serialized into. It is a limiting and misleading notion, but it called on

us to try to keep this ambiguity under consideration.

The next definition can then be useful for disambiguating a knowledge model and

its serialized form.

Definition (ontology source). An ontology source s
o

for an ontology o is an object

so that a resolution function f exists, that can be applied to s
o

in order to produce o.

It is then said that f(s
o

) = o, or s
o

resolves to o, or s
o

is a source for o.

By interpreting the above definition practically, an ontology source can be of any

commonly used type of artifact known for storing an ontology, i.e. a file, the out-

put of a Web Service, or a named graph in a triple store. Other sources such as a

relational database, an RSS feed or a text document, imply more complex resolution

functions that involve data reengineering and natural language processing, yet can still

be regarded as legal ontology sources. As for the resolution function f , we will not

go into detail as to what such functions are, because in Section 3.4 we made the rea-

sonable assumption that, for any object we deem interpretable as an ontology, there

is the machinery for doing so. Thus the resolution function exists and that object is

a valid ontology source. Intuitively, resolution functions can combine syntactic parsers

for representation languages, rule execution and so on.
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So

:LivingPerson a owl:Class ;
  rdfs:subClassOf :Person ,
  [ rdf:type owl:Restriction ;
    owl:onProperty :locatedIn ;
    owl:someValuesFrom :Place ] .
...

o

LivingPerson ⊑ Person 
  ⊓ ∃locatedIn.Place
...

f(so)

Figure 4.1: Resolution of an ontology source to an ontology - To the right, an

ontology o whose axiom set T says that all living persons are persons and are located in

some place. To the left, its source s
o

is an object that encodes one possible way to state

this in Turtle syntax for RDF. A resolution function f , which will involve parsing Turtle

syntax and interpreting its statements, can produce o from s
o

.

Note that the above definition does not rule out ontologies written in a native

ontology language or in DL syntax, as such native code will have to be stored in some

resource which will be the ontology source. To that end, an example is given in Figure

4.1.

Example 1. To the left of Figure 4.1 is an object s
o

, which encodes a list of state-

ments, namely triples of the RDF graph in the Turtle language. According to the

triples displayed, :LivingPerson1 is a class that is a subclass of :Person and also a

subclass of the anonymous class of all the things :locatedIn some :Place. This is

expressed with the aid of RDF resources using the OWL (Class, Restriction, etc.),

RDF (type) and RDFS (subClassOf) vocabularies for serializing ontologies as triple

collections. There is a function f that, when applied to s
o

, delivers an object o that

is an ontology. Its axioms state that every LivingPerson is a Person and something

that is locatedIn a Place (or, more formally, “so that a locatedIn-successor exists in

Place”). Therefore s
o

resolves to o via f and is a source for o. Note that s
o

is not the

only possible ontology source for o: aside from possibly being in other representation

languages, even the Turtle syntax can allow some degree of liberty. For example, if the

1In Turtle, the colon denotes a blank prefix for the entity that follows, i.e. its IRI belongs to a

default namespace, which is here unspecified for the sake of simplicity.
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specification of :LivingPerson as an owl:Class were missing, the result would still

be a valid source for o. Likewise, we used native DL syntax for o in order to make its

nature as an abstract syntax clear, since this syntax is not very likely to be consumed

by programs as it is. We could as well have used OWL directly and represented the

ontology using the OWL functional syntax, like this:

SubClassOf(:LivingPerson :Person)

SubClassOf(:LivingPerson ObjectSomeValuesFrom(:locatedIn :Place))

...

For clarity, we shall henceforth assume that a necessary condition for an object to

be an ontology source is that it be a collection of statements, no matter what language

they are represented in, whether RDF triples or even sentences in natural language.

These statements are then called the raw statements of the ontology source. This

distinction is important, as the heart of the problem at hand is how raw statements

become axioms in an ontology.

Example 2. Going back to our leading example introduced in Section 1.1.2.1, let

us assume CMS user Alice is the one who wants to have her research paper directory

classified according to the status of their authors in hheris social network. Suppose

the semantic data and models Alice has for representing the social network are spread

across three ontology sources s
o1 , so2 and s

o3 as follows (in Turtle syntax and with no

OWL import statements):

:inNetworkOf a owl:SymmetricProperty .

:inExtendedNetworkOf a owl:TransitiveProperty ;

rdfs:subPropertyOf :inNetworkOf .

:Alice a :Person ;

:inExtendedNetworkOf :Bob .

:Clara a :Person ;

:inExtendedNetworkOf :Bob .
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The occurrences of properties :inNetworkOf and :inExtendedNetworkOf, both

asserted and inferred, would be those used for populating the directories called friends

and friends-of-friends, assuming the exclusion of the former from the latter to avoid

repetitions.

If s
o0 is the source of an ontology that imports s

o1 , so2 and s
o3 , then a non-optimal

yet common f is a function that, once applied to s
o0 resolves the above into the following

o1, o2 and o3, respectively (in OWL functional syntax):

Declaration(ObjectProperty(:inNetworkOf))

SymmetricObjectProperty(:inNetworkOf)

Declaration(ObjectProperty(:inExtendedNetworkOf))

TransitiveObjectProperty(:inExtendedNetworkOf)

SubObjectPropertyOf(:inExtendedNetworkOf :inNetworkOf)

ClassAssertion(:Person :Alice)

ClassAssertion(:Person :Clara)

AnnotationAssertion(:inExtendedNetworkOf :Alice :Bob)

AnnotationAssertion(:inExtendedNetworkOf :Clara :Bob)

Note that the usage of :inExtendedNetworkOf in annotation assertions, rather

than object property assertions, is the anomaly that would prevent us from inferring

that Clara is also in Alice’s extended network, and therefore that Clara’s papers should

appear in Alice’s friends-of-friends directory. An optimal f would deliver the

following o3:

ClassAssertion(:Person :Alice)

ClassAssertion(:Person :Clara)

ObjectPropertyAssertion(:inExtendedNetworkOf :Alice :Bob)

ObjectPropertyAssertion(:inExtendedNetworkOf :Clara :Bob)

We have split the axioms for o1, o2 and o3 into three frames in order to preserve

their relationships with their corresponding sources. Note, however, that the axioms in

OWL functional syntax represent the final state of the applied resolution function, and

these axioms are carried over verbatim to any importing ontology. In the light of this
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consideration, we will sometimes show the interpreted ontology network as enclosed

within a single frame.

4.1.1.2 Context-dependent OWL axioms and expressions

A resolution function, if looked on a finer granularity scale than ontologies, delivers

a set of axioms (in the ontology) from an initial collection of raw statements (in the

ontology source). There are a number of considerations to be made at this point:

Bijectivity. In general, there is no guarantee of a one-to-one mapping holding be-

tween raw statements in an ontology source and axioms in its ontology. For example,

in the canonical RDF representation of OWL [PSMG+09] it can take up to four triples

in order to be able to express a class. One quite complex case is the one of qualified

cardinality class expressions, e.g. for the class of those having exactly two persons as

parents, we could have the following RDF triples (in Turtle syntax):

_:x rdf:type owl:Restriction ;

owl:qualifiedCardinality 2 ;

owl:onProperty :hasParent ;

owl:onClass :Person .

and obtain the following axiom from them (in OWL functional syntax):

ObjectExactCardinality( 2 :hasParent :Person )

Likewise, the presence of an axiom in an ontology could be drawn from context and

not match any particular raw statement. For example, the declaration of hasParent

as an object property:

Declaration( ObjectProperty :hasParent )

could be drawn from the same four RDF triples as above (where the property is

used in conjunction with the class Person, which makes it an object property), or by

an explicit triple declaring it, such as :

:hasParent rdf:type owl:ObjectProperty .
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The latter is actually the normative form for parsing object property declarations

[PSMG+09], however, several widespread OWL libraries and applications, such as the

OWL API and Protégé 4, generate entity declarations automatically when serializing

an ontology whose declarations were not made explicit in the source.

Ordering. We stated axioms in an ontology and raw statements in its source to be

collections, simply because the ordering of raw statements might or might not be influ-

ential to the axioms delivered by the resolution function. This is a general consequence

of the black box assumption made in Section 3.4.

Ambiguity. Unambiguous axioms in an ontology can result from interpreting am-

biguous raw statements in its source. For instance, property declarations in OWL 2

explicitly state what kind of property is the one being declared. If all that an ontology

source has to say about two properties hasFather and hasParent is in the triple:

:hasFather rdfs:subPropertyOf :hasParent .

then there is no explicit clue as to whether these properties are object, data or

annotation properties. Therefore, the interpretation of these properties is strategy-

dependent: a conservative strategy, such as the one we have observed in our preliminary

experiments (null hypothesis negation included), will materialize annotation property

declarations in the absence of further statements corroborating their nature.

The considerations made so far are an essential part of our research problem. Since

there is no guarantee that a certain triple will lead to a certain axiom being produced by

a certain resolution function, and having observed that it is indeed not the case for cer-

tain types of axioms, we surmise that the resolution of ontology sources into ontologies

is, in general, a context-dependent, process. As far as RDF, by far the most common

representation formalism for OWL, is concerned, phenomena of context-dependency

occur beyond the normative conditions established by the W3C recommendation for

RDF serialization [PSMG+09]. However, when an ontology is processed by applications

such as DL reasoners, there are resolutions of raw statements into axioms which are

more desirable than others. In principle, if a property can be interpreted as an object

property (OP) in a certain context, then it should. Otherwise, if it is interpreted as
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AP-order DP-order OP-order

Declaration( AnnotationProperty ) Declaration( DataProperty ) Declaration( ObjectProperty )

– DataMinCardinality ObjectMinCardinality

– DataMaxCardinality ObjectMaxCardinality

– DataExactCardinality ObjectExactCardinality

AnnotationAssertion DataPropertyAssertion ObjectPropertyAssertion

– NegativeDataPropertyAssertion NegativeObjectPropertyAssertion

Table 4.1: Context-dependent axioms and expressions with ambiguous RDF

representations - Declarations are considered ambiguous when there is no corresponding

RDF triple. All cardinality expressions are intended to be non-qualified, since qualified

cardinalities are unambiguously expressed in their RDF representation.

an annotation property (AP) or a data property (DP), certain characteristics of that

property and its usage are lost and reasoners will not consider them.

For convenience, we have therefore organized some OWL axiom and expression

types, or more simply, constructs, into three categories. This distinction is shown in

Table 4.1. All the OWL constructs considered share the following characteristics:

1. they comprehend exactly one property;

2. they are explicitly derived from an object property, or a data property, or an

annotation property;

3. their determination from a given set of raw statements is generally ambiguous.

The categories have been called AP-order, DP-order and OP-order, depending on

whether the one property they use is an annotation property, or a data property, or an

object property, respectively. If we consider an ontology as a family of three axiom sets

(N,T,A) as in our prior definition, then we have the following: any AP-order axioms

are included in N ; declarations and cardinality expressions, for both data and object

properties, are included in T ; data and object property assertions, both in DP-order

and in OP-order, are included in A.

Because annotations are generally ignored by DL reasoners, being non-logical ax-

ioms, the amount of raw statements interpreted as annotations should be only limited

to those intended to be so1. Similarly, OP-order constructs should not be mistaken for

1Recall from the OWL structural specification [MPSP+09], that annotations in OWL 2 allow IRIs

as their values, and yet they still do not participate in reasoning procedures.
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their DP-order equivalents, which is also possible if the object or the original raw state-

ment is interpreted as a value in a legal datatype (such as an xsd:anyURI) instead of an

OWL individual. For this reason, we state that DP-order OWL constructs are higher-

order constructs than AP-order ones, and that OP-order constructs are higher-order

constructs than DP-order and AP-order ones.

4.1.2 Ontology networks

In literature, an ontology network, or network of ontologies, is “a collection of ontologies

related together via a variety of relationships, such as alignment, modularization, ver-

sion and dependency” [SFGPMG12a]. Let us now attempt to give a formal equivalent

of this intuitive definition. For the following, the term signature of an axiom (resp.

ontology) will be used to identify the set of all the entities referenced by that axiom

(resp. all the axioms in the ontology), i.e. not including literals. This is an informal

yet commonly accepted notation [MPSP+09] derived from the definitions of signature

in ontologies [BCM99] and in description logics [BHS08].

Definition (direct dependency). Let O be the set of all ontologies, or universal

knowledge base. Then a direct dependency is a relation d : O ! O so that d(o
i

, o
j

) (to

be read as “o
i

directly depends on o
j

”) is true i↵, given o
i

= (N,T,A), 9a 2 N [T [A

so that the signature of a includes either o
j

or s
o

j

.

The above definition states that an ontology directly depends on another ontology

if it references that ontology in one of its axioms, even (and especially) non-logical

ones. The meaning of this definition is as simple as it is strong. Since the universe of

ontologies O is assumed to be known in the definition, we can always tell if the concept

referenced by an axiom is an ontology, an ontology source, or neither. In other words,

there is a global knowledge of which identifiers reference ontologies and which do not, but

that does not imply local knowledge within one ontology of O. The property expression

used as the axiom predicate alone does not necessarily imply its subjects or objects

being ontologies, although this may be true in some cases, such as for owl:imports.

Example. Suppose an ontology has the following axioms (in OWL functional syntax):
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ClassAssertion( owl:Thing :in1 )

AnnotationAssertion(

rdfs:isDefinedBy :in1 <http://example.com/resource/res1> )

These axioms state that :in1 is a named individual (which follows from it being an

owl:Thing), and that any further information that defines :in1 is somehow addressed

by <http://example.com/resource/res1>, which incidentally is an IRI. If that IRI is

the location of an ontology source or the identifier of an ontology, then we can say that a

direct dependency relation holds. Otherwise, if <http://example.com/resource/res1>

resolves to an image or a document in PDF that describes it, and we are not accepting

that resource as an ontology, then no direct dependency is implied.

Whereas, if the ontology has an import declaration (e.g. the result of interpreting

an owl:imports statement found in its source RDF graph) such as:

Ontology( <http://www.example.com/resource/ontology/1>

Import( <http://www.example.com/resource/ontology/2> )

)

then this ontology, whose name is <http://www.example.com/resource/ontology/1>,

depends on the ontology whose source is identified by the IRI in the Import declaration

<http://www.example.com/resource/ontology/2>. Recall [MPSP+09] that OWL 2

uses an import-by-location scheme, so the object of the Import declaration, i.e. the

import target, is expected to be a dereferenceable URL that resolves into a resource

that can be interpreted as an ontology, otherwise an anomaly occurs.

Other vocabularies can define (potential) direct dependency relationships if so we

choose: for example, page in FOAF or source in Dublin Core may or may not be

regarded as predicates for direct dependency relations whenever their objects are on-

tologies or ontology sources.

Direct dependency is not transitive. For completeness, a recursive definition of its

transitive extension is provided.

Definition (dependency). A dependency is a relation d⇤ : O ! O so that d⇤(o
i

, o
j

)

(to be read as “o
i

depends on o
j

”) i↵:
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1. either d(o
i

, o
j

) or

2. 9k, k 6= i, j : d(o
i

, o
k

) and d⇤(o
k

, o
j

).

We shall now define a weaker kind of dependency, called connectivity.

Definition (connectivity). A connectivity relation is a relation c : O ! O so that

c(o
i

, o
j

) (to be read as “o
i

is connected to o
j

”) i↵:

1. either d(o
i

, o
j

) or

2. o
i

= (N,T,A) 9a 2 N [ T [ A so that the signature of a includes an element of

o
j

, i.e. an entity contained in the signature of o
j

.

Connectivity is weaker than direct dependency, insofar as in O there are more

connected ontologies than there are ontologies that directly depend on one another,

since by condition 1 of the definition follows that the set of the former includes that

of the latter. Also note that connectivity is not an equivalence relation, since it is not

transitive and condition 1 denotes a non-symmetric (but not antisymmetric) relation.

On the contrary, the relation denoted by condition 2 is symmetric, because the usage

of one concept in two ontologies implies its presence in both of their signatures, and

there is no such notion as “using in ontology A a concept defined in ontology B”, since

the definition of a concept lies in its usage. We are not ruling out the possibility of an

equivalence relation for connectivity, but it is not necessary for the ontology network

definition that follows.

Definition (ontology network). Given a knowledge base O = {o
i

}, an ontology

network for O is any maximal subset ON of O where:

1. 8o
i

2 ON 9o
j

2 ON , i 6= j so that:

(a) either c(o
i

, o
j

) or c(o
j

, o
i

) is true;

(b) if both c(o
i

, o
j

) and c(o
j

, o
i

), then 9k, i 6= k 6= j so that {o
i

, o
k

, o
j

} is an

ontology network for itself.
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This definition states that mutual connectivity between two ontologies in an ontol-

ogy network is possible, so long as it is not the only existing connectivity relationship

involving those ontologies.

The maximality requirement in the above definition means that if any ontology in

O that is not connected (i.e. does not fulfill the connectivity conditions) is added to

ON , then ON is not an ontology network anymore. In other words, we are implying

that ontology networks cannot have islands. Also note that there is no minimality

requirement, implying that a so-defined ontology network tolerates broken links. This

is necessary in order to conform to the open world assumption (OWA) [RN10] made in

OWL [HPPSR09]. Suppose two ontologies o1 and o2 in O are strictly weakly connected,

i.e. o1 is connected to, but not dependent on, o2. Then it means these two ontologies

are using some entity e in common. If o1 belongs to an ontology network that does

not include o2, this simply means that the axioms in o2 concerning e will not be part

of the ontology network, but will not invalidate the ontology network either, otherwise

the OWA would be violated.

Detecting ontology networks in a set of ontologies means picking as many mutually

connected ontologies as possible from the set, without picking multiple connected com-

ponents. All this is performed by taking the ontologies as they are, with all the logical

and non-logical axioms they come with. In other words, they are “real” ontology net-

works, whose connectivity is established by the agents that created and published the

ontologies. We refer to these ontology networks as “real” in order to distinguish them

from those created by manipulating some axioms of these ontologies and not necessarily

re-publishing them in this form. We will call those “virtual” ontology networks.

Definition (virtual ontology network). Given a set of ontologies O = {o
i

}, a

virtual ontology network for O is a set of ontologies OVso that:

1. OV is an ontology network for its own ontologies;

2. 8o = (N,T,A) 2 O:

(a) 9oV = (N 0, T 0, A0) 2 OV

(b) for any axiom in N 0 that references an ontology, that ontology is in OV;

3. 9o 2 O : o /2 OV
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A way to read this definition informally could be that “a virtual ontology network

can be constructed by taking a set of ontologies and adding or replacing some axioms

that connect these ontologies”. Per (2), there is an ontology in the virtual network for

each ontology in the initial set O (a), and the virtual network references only ontologies

within itself (b). Per (3), if the original set of ontologies is already an ontology network,

a virtual ontology network cannot match it, since they have to di↵er by at least one

ontology. However, a virtual ontology network can add axioms to a real one and

preserve its nature as an ontology network.

By the above definition, one can surmise that a virtual ontology network can be

constructed on top of a set of ontologies by adding axioms (both logical and non-logical)

that reference ontologies in the set, or their entities. This is inexact, as one of our goals

is to demonstrate that ontologies in a virtual ontology network can contain higher-

order axioms that those in the ontologies the network is built upon. More lax forms

of ontology network, albeit admissible, imply modularization and other refactoring

operations beyond the scope of this work (cf. R5, section 3.6).

Corollary. For any virtual ontology network OV for O, |OV| � |O|.

Proof. Omitted. Follows from (2a) in the definition of virtual ontology network.

Having now provided a basic theoretical framework for ontologies and ontology

networks, we shall now proceed to illustrate how our contribution is built on top of

the described framework, and to synthesize a method for constructing virtual ontology

networks given an arbitrary set of ontologies.

4.1.3 Artifacts

This section introduces the novel classes of ontological artifacts that will be used as

nodes of the ontology network structures to be built using the method we are intro-

ducing. There is no question that the core, and probably most interesting, artifacts

introduced herein are those that allow ontologies to be part of a network. However,

there are additional supporting artifacts and notions employed in combination with

them, which can be interesting to note due to their connection with standards such as

features of OWL 2.
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4.1.3.1 Referencing ontologies

First and foremost, let us introduce the ontology referencing mechanism of our method,

which is the way a mnemonic identifier can be mapped to an actual ontology. To that

end, a definition shall be used, which is a light abstraction of the naming mechanism of

OWL 2 ontologies [MPSP+09], except that the uniqueness of the resulting references

can have a scope more restricted than the whole Web, if required.

Definition (ontology reference). A reference $
o

for an ontology o is a pair $
o

=

(i, v), where i and v are two objects respectively called ontology identifier and version

identifier. Each ontology reference is unique within a knowledge base, that is, given a

knowledge base O = {o
j

, j = 1..n}, then for any k, l 2 {1..n} $
o

k

= $
o

l

i↵ k = l.

The relationship between this definition and the IRI pair (ontologyIRI, versionIRI)

that identifies ontologies in OWL 2 [MPSP+09] is evident. At this stage, however, there

is no enforcement over ontology references matching their logical identifiers or even be-

ing Web resource identifiers such as URIs or IRIs. This is the reason why ontology and

version identifiers are willfully underspecified as being “objects”. These restrictions

will be introduced when discussing the relationship between ontology identifiers and

their references (cf. Section 4.3).

It can be deducted from the definition above, that ontology references and the

integers used earlier for indexing members of a knowledge base are interchangeable, i.e.

a bijective function f : O ! N exists for any O.

4.1.3.2 Ontology collectors

So far, we have sketched the theoretical framework behind the established domain of

Web ontologies, and adapted its notation to the scope of the present work. Let us

now proceed to lay out the definitions of the new components for an ontology network

architecture as described here. The following will provide a definition of the abstract

notion of ontology collector, which is not utilized in its primitive form for construct-

ing ontology networks, but has instead to be specialized further for di↵erent network

components.

An ontology collector is the primary artifact that keeps track of references to

those ontologies which were not originally created as part of an ontology network, or at
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least not a subnetwork of the (explicit) virtual network that is being assembled. The

name is to signify that this type of artifact is not a collection of, or a container for

ontologies, assuming that collecting or containing ontologies means referencing their

axioms, and not the ontologies as atomic objects.

Definition (ontology collector). An ontology collector C in a knowledge base O is

a pair C = (I, R), where:

1. for no o 2 O there is x so that I||x = $o, where ‘||’ is a concatenation operator

that applies to members of the domains of I and $
o

.

2. R = {$
o

} for some o 2 O.

I is called the identifier of the ontology collector, and per (1), it is never the prefix

of any reference $
o

for any ontology in O. R is called the reference set of the ontology

collector. If $
o

2 R, o 2 O, then o is said to be managed by C through $
o

, or simply

managed by C. Conversely, C manages o. Because I has to be comparable to ontology

references, as it must share their concatenation operator, it will sometimes be expanded

as (i
C

, ⇤) or (i
C

, nil), indicating that any version identifier is either disregarded or

explicitly null for ontology collectors.

4.1.3.3 Imaging

An ideal assumption concerning the existence of ontologies on the Web is that each

logical identifier, comprehensive of a version indicator, identifies a single ontology, in-

tended as a set of logical axioms. While the Web is far from realizing this desideratum,

the assumption becomes far more reasonable when the knowledge base at hand is a con-

trolled environment. As the present work is dealing with an ontology serving framework

backed by a controlled knowledge base, even supposing its contents are selectively im-

ported from the Web, we can shift the problem towards ensuring the uniqueness of

identifiers for the provided ontologies with respect to the outside world.

The above requirement hints at a possible distinction which can be summarized

as “global uniqueness versus local uniqueness”1; the former applying to the entire un-

bounded Web, the latter being restricted to the knowledge base directly accessed by the

1This terminology is lifted from di↵erential equation theory [Den95]
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4.1 The ontology network model

framework. In global uniqueness, any $
o

is a reference for o in the universal knowledge

base O, whereas local uniqueness holds within a knowledge base O but not necessarily

in O. The uniqueness problem can then be formulated as follows: given a knowledge

base where local uniqueness is guaranteed, expose its ontology to the Web so as not to

impair global uniqueness.

Guaranteeing local uniqueness withinO means ensuring that ontology references can

be used for unambiguously addressing its ontologies. If O is an ontology network, local

uniqueness comes for free, but if it is not, then local uniqueness should be guaranteed

at least for a virtual ontology network OV . A strategy for doing so is by manipulating

the sources of the ontologies in O, thereby obtaining other ontologies. This operation

is what we call imaging.

Definition (ontology image). Given an ontology o = (N,T,A) and an ontology

collector C = ((i
c

, ⇤), R) so that $
o

2 R, then the image of o with respect to C (or

C-image of o) is an ontology oC = (NC , TC , AC) so that:

1. N c always contains exactly one ontology naming axiom and one ontology version-

ing axiom;

2. $C
o

= (i0, v0), where i
C

is a prefix for either i0 or v0 (i.e. 9w.(i0 = i
C

||w _ v0 = i
C

||w)
where ‘||’ is a concatenation operator), is a valid reference for o;

3. if f is a resolution function so that f(s
o

) = o, then also f(s
o

C

) = oC .

From the standpoint of ontology collectors, the image of an ontology is the outcome

of the manipulation that an ontology collector performs on the ontology it manages.

The essential meaning of this definition, especially in (3), is that the raw statements

in the source of o can be manipulated so that the same resolution function, once ap-

plied to the modified source, still produces an ontology, and that ontology has at least

characteristics (1) and (2).

With the definition of ontology image in place, it is now possible to reformulate our

objective O2 (“to define a method for constructing ontology networks dynamically”,

cf. Section 3.3) in terms of the theoretical framework so far described.

In order to fulfill O2, given an arbitrary knowledge base O, we want to obtain a

virtual ontology network OV for O, so that 8oV 2 OV:
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• oV is the image of an ontology o 2 O with respect to some ontology collector, i.e.

there is C such that oV = oC ;

• if oV = (NV, TV, AV) and o = (N,T,A), then every axiom in TV and AV is of

order greater than, or equal to, every axiom in T and A (see Section 4.1.1.2 for

the definition of higher-order axioms).

Note that the above conditions do not imply that a single ontology collector should

be responsible for imaging the entire knowledge base into a virtual ontology network,

but only that every ontology in the virtual network must be managed by at least one

collector. Also, recall from the corollary to the definition of virtual ontology network,

that there can be more ontologies in a virtual ontology network than in its original set

of ontologies. Fixing these two considerations is a clé de vôute for understanding the

means to achieve the aforementioned objective, which the remainder of this chapter

will be devoted to.

Recall from Section 4.1.2 that an ontology directly depends on another if it has at

least one axiom of any type, which references the other ontology or its source. The

transitive extension of direct dependency is simply called dependency. We will call the

first ontology dependent, the other ontology [direct] dependency, and the axiom that

references the dependency a [direct] dependency axiom.

Prior to introducing specific ontology collectors, we need to assume the following

statements.

Hypothesis A. All ontology collectors are ontology sources.

This hypothesis states that for every ontology collector C there is a resolution func-

tion f that associates C with an ontology. Let that ontology be called the ontological

form of C (by f).

Hypothesis B. Under Hypothesis A, the following holds for any ontology collector

C: if C is managing an ontology o, then the ontological form of C has a dependency on o.

These hypotheses will not be verified at this stage, however, formulating them

was necessary in order to justify the definition that follows. When tackling ontology
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collectors from the OWL language standpoint, a resolution function for interpreting an

ontology collector itself as an ontology will be defined, thus the hypotheses verified.

4.1.3.4 Ontology space

Let us now specialize the definition of ontology collector into items for immediate use in

our strategy. Ontology spaces are the first class of ontology collectors so specialized.

Definition (ontology space). Given a knowledge base O, an ontology space s =

(I, R) is an ontology collector such that every ontology o, where $
o

2 R, has an s-

image os, ss /2 O whose dependency axioms reference either ontologies in O or other

ontology spaces.

ontology spaces O

o1

o2

So1

sp2
ok

sp1

f(so1)

o3

on

on-1

spm Son
f(son)

Figure 4.2: Scenario with multiple referencing mechanisms in ontology spaces

- Ontology space sp1 manages o2 and o
k

directly, o1 indirectly via its source s
o1 , and o

n

via ontology space sp2. Ontology spaces and the ontologies they resolve to are collapsed

for convenience. Indirect references are shown as dashed and dotted arrows.
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Figure 4.2 provides an example that summarizes possible scenarios for an ontology

space to reference ontologies. sp1 is an ontology space that depends on o1 because

its ontological form (which is omitted in the figure for simplicity) has a dependency

on its source s
o1 . sp1 also manages two ontologies o2 and o

k

directly, which means its

reference set includes at least one reference for each ontology. It also means that sp1 can

create images of these ontologies, and these only. However, o
k

also has a dependency

on the ontological form of another space sp2, and since this second ontology space is

managing another ontology o
n

, then sp1 has a dependency on o
n

too. This dependency

is indirect, which means that if sp2 were to sever its link with o
n�1, the dependency

would no longer hold nor need to be satisfied through the existence of o
n�1. Finally, o3

and o
n�1 are unmanaged and they are not dependencies of any of the aforementioned

ontologies, so they belong to the common knowledge base O but are not part of any

ontology network.

The usage of dependency axioms in ontology spaces places a criterion on the selec-

tion of ontologies managed by these particular ontology collectors, which allows us to

state the following

Theorem 1. If an ontology space manages at least one ontology, then its ontological

form is part of an ontology network.

Proof. Under Hypothesis A, an ontology space sp is an ontology source, therefore it

has an ontological form, namely f(sp) for some f . By induction on the number of

ontologies managed by sp:

1 If only one ontology o is being managed by sp, then under Hypothesis B we

have a connectivity relation ⇢ = d⇤(f(sp), o). Then, by induction on the network

structure of o:

– If o is a singleton, i.e. it has no connectivity relations other than the depen-

dency of Hypothesis B, then {f(sp), o} is an ontology network.

– If o is already part of an ontology network O, then O[{f(sp)} is an ontology

network, since ⇢ connects f(sp) to an element of O.

n+1 The induction hypothesis is that n ontologies managed by sp form an ontology

network O
a

together with f(sp). Let o
n+1 be the n+1-th ontology managed

by sp, o
n+1 /2 O

a

. Per case 1, o
n+1 forms an ontology network with f(sp),
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let it be O
b

. From the definitions of connectivity and ontology network follows

that the union of two ontology networks is an ontology network i↵ there is one

connectivity relation holding between two ontologies one from each network. Let

us take f(sp) 2 O
a

, O
b

. By induction hypothesis, f(sp) is connected to some

ontology in O
a

, and since it is also connected to o
n+1 2 O

b

, the thesis follows.

4.1.3.5 Scope

Let us now define a way to group ontology spaces, as it will turn up to be convenient

when our method is described. Since the aim is to preserve the nature of ontology

networks, we cannot simply define this grouping in terms of standard set algebra, lest

we risk creating islands. We shall therefore use another specialized ontology collector.

Definition (scope). A scope for a knowledge base O, S = (I, R) is an ontology

collector such that:

1. 8$
o

2 R, there exists an ontology space s that references o;

2. there is one possible selection of ontology spaces as above (called the spaces of

S), so that all of the following hold:

(a) for any space s of S, s = (I
s

, R
s

), R
s

✓ R;

(b) for any two ontology spaces s
j

= (I
s

j

, R
s

j

), s
k

= (I
s

k

, R
s

k

) in the selection,

R
s

j

\R
s

k

= ;;

(c) there is a partial ordering of the spaces of S, be it s1, s2, . . . sn, so that if

any ontology managed by s
i

depends on some space, then that space is one

of {s
i�1, si�2, . . .}.

3. if oS is the S-image of o, o /2 O and os is its s-image, s being a space of S, then

oS di↵ers os by non-logical axioms only;

From the definition of scope as given above, it emerges that scopes are quite peculiar

forms of ontology collectors, in that all of their ontology references are inherited from

other ontology collectors, namely spaces. Per condition 1 of the definition, there are

no ontologies exclusively referenced by a scope. Condition 2 further consolidates the
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function of scopes as aggregators of other ontology collectors: a scope contains all

the references of each of its spaces, which in turn share no references with one another.

However, when space reference one another recursively, they follow an ordering in doing

so. Finally, per condition 3 are expected to behave so as to not influence the resolution

of the sources managed by their spaces.

O

S0

sp1

spm

sp2

..................

o1

o2

o3

on

on-3

on-2

on-1

Figure 4.3: Ontology referencing mechanism for scopes - Scope S0 references n

ontologies in the knowledge base O, but does so indirectly via the m ontology spaces that

belong to it. Indirect references are shown as dashed and dotted arrows from S0 to its

ontologies.

An example of the way ontologies are managed and/or referenced by scopes is

depicted in Figure 4.3. S0 is a scope that references a number of ontologies in a

knowledge base O, and does so entirely by inheriting the references of its m ontology

spaces sp1 . . . spm.
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Theorem 2. Let {(I, ;)} be the class of trivial ontology collectors. Then every non-

trivial scope is part of an ontology network that includes the ontological forms of all

its spaces.

Proof. Let S = (I
S

, R
S

) be a nontrivial scope, i.e. R
S

6= ;. Then, by definition of

scope, all references in R
S

are inherited from some ontology space. By induction on

the number of spaces of the scope:

• If S has only one space, then let sp1 be the one space owned by S. Because S is

nontrivial, and all its managed ontologies must be inherited from sp1, then sp1

is managing at least one ontology. Therefore, per Theorem 1 f(sp1) is part of an

ontology network O0 for some f . Per Hypothesis A, S has an ontological form

f(S). Then O0 [ f(S) is an ontology network, because f(S) depends on f(sp1),

which is an element of O.

• If S has n spaces and they all form an ontology network O00, then let sp
n+1 be the

n+1-th scope of S. if sp
n+1 is not managing any ontologies, then O00 [ f(sp

n+1)

is an ontology network, because f(S) still depends on f(sp
n+1) by construction.

Otherwise, if sp
n+1 is managing some ontology, then per Theorem 1 f(sp

n+1) is

part of an ontology network O000. Because S inherits the ontology references of

sp
n+1, there is a dependency between f(S) and f(sp

n+1), therefore O00 [ O000 is

an ontology network.

Scopes are mainly defined for practical purposes due to their convenience in group-

ing ontology spaces where simple sets do not su�ce, hence the requirement of not

influencing the logical axioms of ontology images. However, their definition can also be

regarded as a guideline for distributing ontology management across spaces, especially

according to the conditions in (2).

4.1.3.6 Session

The last specialization of ontology collector introduced here is the session, which is

an ontology collector that influences the images of its managed ontologies using an

aggressive policy on managing and referencing ontologies.
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Definition (session). A session is an ontology collector z = ((i
z

, nil), R
z

), where:

1. R
z

only contains references to ontologies or scopes;

2. ontologies managed by z are not managed by any other ontology collector;

3. for every o 2 O so that $
o

2 R
z

, where O is a knowledge base, there exists an

image oz with identifier (iz
o

, vz
o

), where i
z

is a prefix for vz
o

i↵ o is unversioned, i.e.

whose references are of type (i
o

, nil).

In other words, a session has exclusive management rights to its managed ontologies,

and tries to manipulate them so that their images publicly declare their binding to the

session, unless they were given a version identifier before being managed by the session.

Z1

S0 S1

O

o1 o2 o3 onon-3 on-2 on-1

Figure 4.4: Ontology referencing mechanism for sessions - Session z1 references

two scopes S0 and S1 and manages three ontologies in O, o
n�3, on�2 and o

n

.

Figure 4.4 depicts an example of a session z1 = (I
z1 , Rz1), which references two

scopes S0 and S1, meaning that R contains two references $
f(S0) and $

f(S1), where
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f(S0) and f(S1) are the ontological forms of S0 and S1 respectively. In addition, z1

directly references its three managed ontologies o
n�3, on�2 and o

n

.

Theorem 3. Every nontrivial session is part of an ontology network that includes

the ontological forms of all the scopes referenced by it.

Proof. For a session z to be nontrivial, it must contain at least one reference to a scope

or ontology. Per Theorem 2, every scope either is part of an ontology network or, if

trivial, is still the source of an ontology per Hypothesis A. Because a session is an

ontology collector, it is also an ontology source, and if z references a scope S, then

their ontological forms depend on one another (i.e. d(f(z), f(S)) is true). Therefore,

referenced scopes form an ontology network with z, hence the thesis.

4.2 Virtual ontology network assembly in OWL 2

With the fundamental artifacts of virtual ontology networks now in place, it is now

possible to describe how these can be combined into structures that can generate on-

tology networks. We will show how this is possible in OWL 2 using the features and

bindings expressed by its specification [GWPS09, MPSP+09].

The structural skeleton of virtual ontology networks is sketched in Figure 4.5. With

a venial notation abuse, since we are not modeling a software system in this chapter,

UML component notation was used for describing the relationships between network

artifacts. Aggregation and composition connectors are used in lieu of the “references”

relation described earlier in this chapter. Recall that in UML 2 a composition relation

holds when the lifetime of a component matches that of its composite, otherwise an

aggregation relation holds [Amb05]. The same principles holds for the lifetimes of

ontology collectors.

In the figure, a session is represented as an aggregate of both scopes and ontologies,

as it does not cease to exist if it is referencing neither scopes nor ontologies. On the

contrary, a scope is represented as a composite of one more ontology spaces exclusively,

as we recall from the definition of scope, that it does not have any ontology references

other than those inherited from its spaces, and there are no scopes without at least one

space. Each ontology space, in turn, aggregates zero or more ontologies. What is not

shown in the figure, but is known from the definition of scope in Section 4.1.3.5, is that
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Scope OntologyOntology 
Space

Session

0..*1..*

0..*

0..*

1 0..*

0..*

0..*

Figure 4.5: Virtual ontology network composition diagram - While sessions and

ontology spaces are aggregates of any number of ontologies, and can in fact exist without

referencing any, scopes are composites of ontology spaces, and a scope cannot exist without

at least one space belonging to it.

the sets of ontologies managed by the spaces belonging to one same scope must have

nothing in common with one another. Sessions, on the other hand, are not given this

constraints, nor are those scopes that form di↵erent ontology networks.

4.2.1 Multiplexing

Recall from Section 4.1.3.3, that when an ontology o, o 2 O is managed by an ontology

collector C, then a new ontology exists, called the C-image of o, which does not belong

to the original knowledge base O. In addition, o can be managed by multiple ontology

collectors at the same time, with the only exception of a single ontology space within

each scope. This means that, if m are such ontology collectors, then m ontology images

will be created for o or, to rephrase, o will have m images. In addition, these images

will all be di↵erent, if anything because of the axioms that give them their names, per

conditions (1) and (2) of the definition of ontology image.

This process of creating many di↵erent images from a single ontology is called

multiplexing. Therefore, in order for an ontology to be multiplexed, it must be managed

by at least one ontology collector, and there has to be a procedure that queries the

ontology collector for the corresponding image.

An example of how ontologies can be multiplexed by an ontology collector is shown

in Figure 4.6. In the figure, o1 and o2 are two ontologies in a knowledge base, i.e.
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Figure 4.6: Multiplexing in an ontology collector - Ontology collector create images

for ontologies stored in the knowledge base. Whenever the ontology reference has no version

identifier, the collector sets its own identifier as a prefix for the version identifier of the

image.

in their plain, unmanaged form. o1 ha a fully qualified reference (i
o1 , vo1), while o2

has a reference that lacks a version identifier, (i
o2 , nil). C is an abstract ontology

collector, whose specific type we need not know at this stage. We do, however, need to

know its identifier, which we have expanded as (i
C

, nil) for compatibility with ontology

references1. C manages both o1 and o2, therefore each ontology has a C-image, oC1

and oC2 , respectively. Because the reference of o1 was fully qualified, the collector does

not rewrite the version identifier of oC1 , which remains (i
o1 , vo1). However, a version

identifier can computed for oC2 as the concatenation of the collector identifier with the

ontology identifier, (i
C

||i
o2)

2. The reference of oC2 then becomes (i
o2 , iC ||io2).

The method described here uses specific ontology collector types in order to organize

ontology images across three layers of complexity, which are called tiers. Each tier

accommodates one single type of ontology collector only, and mainly communicates

with adjacent ones via connectivity and dependency relations.

A schematic representation of the rationale behind this method is given in Figure

4.7. The basic tier, which we have numbered as zero, is the original knowledge base that

1Recall that the identifiers of ontology collectors are not versioned.
2We have used the vector concatenation operator ‘||’ for generality; however, in cases such as RDF

and OWL 2, where the identifiers are represented by URIs or IRIs, the string concatenation operator

‘.’ can be assumed.
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constitutes the pool by which ontologies are taken from ontology collectors and thereby

imaged. Tiers 1 and 2 accommodate two di↵erent classes of ontology space, called core

spaces and custom spaces, respectively, while in tier 3 ontologies are distributed across

sessions. Two adjacent tiers in the figure, naming those of core and custom spaces, are

delimited by thicker strokes and grouped as the scopes layer, which hints at a grouping

of core and custom ontology space pairs into scopes.

tier 3
Sessions

tier 2
Custom spaces

tier 1
Core spaces

tier 0
Unmanaged 
ontologies

Scopes

Figure 4.7: Distribution of ontologies across tiers in virtual ontology networks

- Tier 0 contains the original knowledge base. In cases where an ontology with images

in tiers 1 or 2 is natively networked, its image can still reference ontologies in tier 0. If

an ontology is natively networked in tier 0, then its connectivity is preserved, thus still

allowing for paths longer than 3.

The circles with an ontology icon inside denote ontologies1; those in tier zero are

the original, unmanaged ontologies, while those in the upper tiers are ontology images

created by some collector. Dashed and dotted edges that connect ontologies indicate

some connectivity relation between them, therefore every connected graph resulting

from combining nodes edges, the latter being at least one, denote ontology networks.

Also note that, in the figure, some unmanaged ontologies in tier zero belong to ontology

networks. This happens whenever an ontology collector is set to manage an ontology

1The standard ontology icon was used in lieu of identifiers because the latter are not relevant in

the figure.
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that is natively networked, i.e. designed by its developers to already be part of an

ontology network, or in other words, that is part of a statically assembled ontology

network. For example, if the Agent-Role ontology design pattern [Prea] is set to be

managed by a core space [Preb], because this pattern inherits from other patterns such

as Object-Role [Prec] and Classification [Preb] and is therefore part of a static ontology

network, these other patterns will be in Tier 0 and will be indirectly referenced by the

ontology space that manages Agent-Role.

Each tier has its own way of setting its management status on submitted ontologies.

The following sections provide algorithmic support to each tier built upon the base one.

4.2.2 Tier 1: core spaces

This section illustrates how ontology collectors in tier 1, which are ontology spaces,

proceed in managing ontologies submitted to them. Algorithm 1 explains the proce-

dure. Ontologies are passed to collectors by reference, which is why they take $
o

as an

argument instead of o.

Data: $
o

: an ontology reference; s = ((i
s

, ⇤), R
s

) : a core space; O : a
knowledge base

Result: modified states of s, o and O
if o is already managed by the custom space of the same scope then

. do nothing
else

if o /2 O then
load o;
O := O [ {o}; . push o into tier zero

end
foreach o0 : d⇤(o, o0) do if o0 /2 O then

load o0; . store every dependency that is not present
O := O [ {o0};

end
R

s

:= R
s

[ {$
o

};
end

Algorithm 1: Algorithm for setting an ontology to be managed by a core space.

The algorithm reads as follows. When an ontology reference is submitted to a

core space, since all ontology spaces in tiers 1 and 2 belong to some scope, one has to
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check whether the custom space of the same scope is not already managing the same

ontology. This also implies that the ontology is already stored. If this is true, then the

core space cannot manage the same ontology. Otherwise it must be checked whether

the ontology is natively networked: is so, all its dependencies (both direct and indirect)

are brought into the knowledge base, i.e. pushed into tier zero. Finally, the reference

to the ontology is added to the reference set of the core space.

4.2.3 Tier 2: custom spaces

This section illustrates how ontology collectors in tier 2, which are ontology spaces as

well, proceed in managing ontologies submitted to them. Algorithm 2 explains the

procedure.

Data: $
o

: an ontology reference; s = ((i
s

, ⇤), R
s

) : a custom space; O : a
knowledge base

Result: modified states of s, o and O
if o is already managed by the core space of the same scope then

. do nothing
else

if o /2 O then
load o;
O := O [ {o}; . push o into tier zero

end
foreach o0 : d⇤(o, o0) do if o0 /2 O then

load o0; . store every dependency that is not present
O := O [ {o0};
if d(o, o0) then

. direct dependencies must always be hijacked
remove d(o, o0) from o;
add d(o, s

o

0) to o;

end

end
R

s

:= R
s

[ {$
o

};
end

Algorithm 2: Algorithm for setting an ontology to be managed by a custom space.

The algorithm is nearly the same as Algorithm 1, with one exception. When an

ontology reference is submitted to a custom space, since all ontology spaces in tiers
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1 and 2 belong to some scope, one has to check whether the core space of the same

scope is not already managing the same ontology. This also implies that the ontology is

already stored. If this is true, then the custom space cannot manage the same ontology.

Otherwise, the ontology can be managed, but first the algorithm must check whether

the ontology is natively networked: is so, all its dependencies (both direct and indirect)

are brought into the knowledge base, i.e. pushed into tier zero. Finally, the reference

to the ontology is added to the reference set of the custom space.

4.2.4 Tier 3: sessions

This section illustrates how ontology collectors in tier 3, which are all sessions, proceed

in managing ontologies submitted to them. Algorithm 3 explains the procedure.

Data: $
o

: an ontology reference; z = ((i
z

, ⇤), R
z

) : a session; O : a knowledge
base

Result: modified states of z, o and O
if o /2 O then

load o;
O := O [ {o}; . push o into tier zero
give z and exclusive write-lock on o;

end
foreach o0 : d⇤(o, o0) do if o0 /2 O then

load o0; . store every dependency that is not present
O := O [ {o0};
if d(o, o0) then

. direct dependencies must always be hijacked
remove d(o, o0) from o;
if exists space c = (i

c

, R
c

) that manages o0 then
R

c

:= R
c

[ {$
S

}, where S is the scope that owns c;
else

. no such space : set a dependency using the ontology source
add d(o, o0) (via s

o

0) to o;

end

end

end
R

z

:= R
z

[ {$
o

};
Algorithm 3: Algorithm for setting an ontology to be managed by a session.

The algorithm for managing ontologies in sessions is more complex than those for
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managing ontologies in spaces, due to the di↵erent nature of these ontology collectors

and the fact that they are designed to collect volatile ontological data, therefore their

policies are more aggressive.

As with core and session spaces, if an ontology that is not part of the knowledge

base is added to a session, the algorithm proceeds to store it, i.e. push it into tier zero.

In addition, however, it gives the session an exclusive write-lock on the ontology, which

means that the session will be the only object entitled to dispose the ontology once it

has run its course. This lock is not given if the ontology was already in the knowledge

base, because it is assumed that the ontology was stored by another procedure on the

assumption that other ontology networks, real or virtual, could require it.

Afterwards, every dependency of the submitted ontology is stored into the knowl-

edge base, as with tiers 1 and 2. However, a further check is performed here as well:

if the dependency relation at hand is a direct dependency relation, hence the use of

d(o, o0) instead of d⇤(o, o0), then the corresponding ontology is pushed into the lower

tiers. The rationale is that, if a static ontology network is added to a session, then

the other components of the network would not participate in the interpretation of the

other network components added to the same session in the form of scopes. If these

ontologies are moved to the lower tiers, it will be more likely that an interpretation pro-

cedure will visit them before it visits the content of the session, which is more likely to

be comprised of ABox axioms. Therefore, if the algorithm finds that the direct depen-

dency is already being managed by a scope attached to the sessions, i.e. belonging to

the same ontology network in tier 1 or 2, then the dependency is removed, as it will be

inherited from the scope itself, which in turn inherits it from its space. Otherwise, the

dependency is rewritten, so that the submitted ontology depends on the other ontology

via its source (which is now pointing to the knowledge base, because the ontology was

stored beforehand)1.

4.2.4.1 Example: multi-user content directories use case

We recall here the use case introduced in Section 1.1.2.1, where in a multi-user CMS,

di↵erent users – three in this simple example – need to classify their research paper

directories according to di↵erent criteria. Suppose there is an application plugged into

1Recall from Section 4.1.2, that a dependency between two ontologies can hold by referencing, in

one ontology, either the other ontology or its source.
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the system, that is responsible for creating and synchronizing virtual directories. We

now describe one possible way this application can exploit multiplexing techniques

and lay out the ontologies required for obtaining the desired virtual networks. These

ontologies are also shown in Figure 4.8. Once a virtual network is reasoned upon,

subdirectories will be created for each user.

Let us take three CMS users A, B and C, each with their own private flat directory,

and all sharing a common directory, also originally flat. For the metadata of all of

these directories, there is an RDF representation computed by the system itself. We

can assume Schema.org as the core vocabulary for representing these data, as it is a

widespread standalone vocabulary.

Figure 4.8: Virtual ontology networks for multi-user content directories - Core

vocabularies and standalone TBox ontologies such as FOAF, Dublin Core and the Event

ontology lie within core spaces of tier 1. Persistent ABox and dependent TBox ontologies

are placed in custom spaces (tier 2). Volatile ABox ontologies are placed in tier 3, one

session per user.

• User A wants to classify the papers she has access to according to the events they

were presented at, when conference or workshop papers. The representation of
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scientific events is provided by a Linked Data set that is aligned with the DBLP

biographical data [DBL] and represented using a particular event ontology [RA07].

Let us assume, however, that the application responsible for creating content

directories queries against the Schema.org event representation [Sch]. Therefore,

an ontology containing alignments between the Schema.org OWL representation

and the Event ontology is placed inside a custom space. This ontology space

will belong to a scope whose core space manages both the event ontology and

Schema.org. This way, the three ontologies will appear connected in the resulting

ontology network that is obtained from user A’s session (outer tier). This session,

in turn, will be managing the metadata ontology of user A’s private directory, as

well as the DBLP biographical data for it.

• User B wants to classify her private and shared papers by topic using two schemas,

i.e. the Wikipedia categories (available from DBPedia [DBP]) and the Dewey

classification system [Mit09]. To that end, the application can keep track of a topic

scope, whose core space contains standalone core vocabularies, e.g. Schema.org,

and whose custom space contains one of the other TBox ontologies that extend

or align with the former, such as the DBPedia ontology or the Dewey linked data.

To obtain the desired ontology network, this scope (or these scopes, if one is use

for each classification system) is appended to a dedicated session containing User

C’s private directory metadata in RDF, and so is the scope containing the RDF

description of the shared directory.

• User C wants her papers to be classified according to the roles of their authors

or reviewers in a social network she belongs to. Suppose for simplicity that

there are RDF data available, which represent user C’s profile and social graph,

either because the social network itself exports them as Linked Data, or because

a third-party application provides an RDF export for them. These data are

represented using common vocabularies such as FOAF, SIOC and Schema.org (cf.

Section 2.5). Reviews published on the Web are retrieved by querying the Revyu

dataset [HM08]. The resources containing the data in question are managed by a

dedicated session for C. Vocabularies for describing social network data, such as

FOAF and SIOC, are stored in the core space of a dedicated scope. Since C also
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wants to be able to retrieve papers by Dewey classification, the scope containing

the Dewey schema as Linked Data can be reused from user B.

4.2.5 Exporting to OWL

This section illustrates how components of an ontology network assembled using the

3-tier multiplexing method can be exported as ontological artifacts fully compliant with

OWL 2. All the constructs can be expressed as OWL 2 non-logical axioms, therefore

the specific OWL Functional Syntax [MPSP+09] will be used. In turn, this syntax can

be rendered in common OWL-compliant formats for consumption, including but not

limited to RDF/XML, N3, Turtle, JSON-LD, OWL/XML and the Manchester OWL

syntax (cf. Section 2.2.5).

Preliminaries

The OWL export strategy of our applied method will be described on a case-by-case

basis in terms of the artifacts to be exported, whether they are ontology collectors or

a specific type or their respective ontology images. The strategies are shown in Tables

4.2 through 4.9. For each artifact we will assume to be starting with a new, blank

ontology with no axioms, logical or nonlogical, not even one that names the ontology

itself.

In order to keep the tables concise and legible, we will make use of a few shortcuts.

These are motivated by the following considerations related to some parts of the model

that were defined earlier as abstract, and that can now be contextualized in OWL:

1. All objects defined as identifiers, such as i and v in an ontology reference (i, v),

are now typed as internationalized resource identifiers (IRIs) [DS05].

2. The concatenation operator ‘||’ is implemented for IRIs using the string concate-

nation operator ‘.’ as follows: i1||i2 = i1.i2 if i1 ends with a slash character ‘/’,

otherwise i1||i2 = i1.‘/’.i2 .

3. There is a function iri that applies to ontology references, so that I = iri($
o

) is

an IRI that is not part of any identifier of any other ontology in the knowledge

base. Such a function can be, e.g. iri((i
o

, v
o

)) = i
o

.‘:::’.v
o

.
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4. When an ontology o is loaded and pushed in tier 0, as in load(o), an ontology

source s
o

is created for o, and there is a mechanism for resolving $
o

to s
o

.

5. A global variable is set, which will be called connectivity policy. Its possible values

have been labelled as LOOSE and TIGHT. Their meanings will emerge from the

procedures in the tables, but their rough meaning, informally, specifies whether

the connection between two ontology collectors should be established directly

between them, or delegated to the ontologies managed by one collector.

Each table shows, in their respective columns: (i) the condition that must be verified

for a certain axiom to be added to the ontology; (ii) if an axiom is to be added as a

sub-node of some other node, the latter; (iii) the syntactic pattern for the axiom to

be added. The tables shown here are intended to provided minimal exports with as

few axioms as possible, but richer exports e.g. with more ontology annotations are

certainly possible.

Core spaces

Table 4.2 shows how a core space should be exported to an OWL ontology, thus obtain-

ing the ontological form of the space. The new ontology is named after the space itself

and not given a version IRI. For any ontology managed by the space, an import state-

ment is added. This import statement references the c-image of the managed ontology

using its newly created source s
o

.

Core space c = ((i
c

, ⇤), R)

Condition Node Axiom to add

Has ID (i
c

, ⇤) Ontology(i
c

)

$
o

= (i
o

, v
o

) 2 R, o 2 O Ontology() Import(iri($
o

c))

Table 4.2: OWL 2 export of core spaces.

Core space ontology images

Table 4.3 shows how an ontology, in its managed form by a core space, should be

exported to OWL, thus obtaining its ontology image with respect to the space. If

the ontology name is fully qualified (i.e. it has both an ontology IRI and a version
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IRI), then the ontology image has exactly the same name, otherwise a version IRI is

added, which results from the concatenation of the identifier of the scope that the core

space belongs to with the ontology IRI. Note that identifiers with a version IRI but no

ontology IRI are illegal in OWL 2 [GWPS09].

Additionally, whenever the ontology has a dependency on another ontology, the cor-

responding import statement will reference the dependency via its ontology reference.

Recall that ontology references in OWL can be exported to IRIs; that they resolved

to ontology sources created after loading the ontology; and that every dependency was

loaded into the knowledge base prior to exporting (cf. Section 4.2.2).

Finally, we do not give an indication as to how the set of raw statements W in

the ontology source should be interpreted. This is an aspect we intend to evaluate in

Chapter 7. For now, we simply state that any raw statement that maps to an ontology

naming axiom or an import declaration (i.e. one that could conflict with the ones we

are adding here) must be ignored.

Image of ontology o wrt. Core space c = ((i
c

, ⇤), R)

Condition Node Axiom to add

$
o

= (i
o

, v
o

) Ontology(i
o

v
o

)

$
o

= (i
o

, nil) Ontology(i
o

i
S

||i
o

)

c belongs to S with ID (i
S

, ⇤)
9d(o, o0), o0 2 O Ontology() Import(iri($

o

0))

s
o

has raw statement set W interpretation of W

Table 4.3: OWL 2 export of core space ontology images.

Custom spaces

Table 4.4 shows how a custom space should be exported to an OWL ontology, thus

obtaining the ontological form of the space. The new ontology is named after the

space itself and not given a version IRI. For any ontology managed by the space, an

import statement is added. This import statement references the managed ontology

image using its newly created source s
o

. In addition, if the global connectivity policy

is set to LOOSE, an additional import statement will connect the custom space with its

corresponding core space.
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Custom space c = ((i
c

, ⇤), R)

Condition Node Axiom to add

Has ID (i
c

, ⇤) Ontology(i
c

)

$
o

= (i
o

, v
o

) 2 R, o 2 O Ontology() Import(iri($
o

c))

Owning scope is S with ID (i
S

, ⇤). Ontology() Import(i
S

||i
g

)

Core space of S is g with ID

(i
g

, ⇤).
Connectivity policy is LOOSE.

Table 4.4: OWL 2 export of custom spaces.

Custom space ontology images

Table 4.5 shows how an ontology, in its managed form by a custom space, should be

exported to OWL, thus obtaining its ontology image with respect to the space. If the

ontology name is fully qualified (i.e. it has both an ontology IRI and a version IRI),

then the ontology image has exactly the same name, otherwise a version IRI is added,

which results from the concatenation of the identifier of the scope that the space belongs

to with the ontology IRI.

If the global connectivity policy is set as TIGHT, then an additional import statement

is added in order to set a dependency on the core space that shares the same scope as

the custom space at hand. The core space is referenced by the concatenation of the

scope identifier and the core space identifier. Note that approach is dual with respect

to the export of custom spaces themselves: if the connectivity policy is not TIGHT, then

it is LOOSE and the import statement is added to the custom space itself instead of its

ontologies.

Additionally, whenever the ontology has a dependency on another ontology, the cor-

responding import statement will reference the dependency via its ontology reference.

Recall that every dependency was loaded into the knowledge base prior to exporting

(cf. Section 4.2.3).

Scopes

Table 4.6 shows how a scope should be exported to an OWL ontology, thus obtaining

the ontological form of the scope. The export of scopes is fairly simple. The new
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Image of ontology o wrt. Custom space c = ((i
c

, ⇤), R)

Condition Node Axiom to add

$
o

= (i
o

, v
o

) Ontology(i
o

v
o

)

$
o

= (i
o

, nil) Ontology(i
o

i
S

||i
o

)

c belongs to S with ID (i
S

, ⇤)
9d(o, o0), o0 2 O Ontology() Import(iri($

o

0))

Owning scope is S with ID (i
S

, ⇤). Ontology() Import(i
S

||i
g

)

Core space of S is g with ID

(i
g

, ⇤).
Connectivity policy is TIGHT.

s
o

has raw statement set W . interpretation of W

Table 4.5: OWL 2 export of custom space ontology images.

ontology is named after the scope itself and not given a version IRI. Exactly two import

statements are added, one for the core space of the scope, and one for its custom space.

All the ontologies managed by the scope are so by inheritance from these two spaces,

therefore no import statements are added for referencing those ontologies, as they will

be inherited from the ontological forms of the two spaces.

Scope S = ((i
S

, ⇤), R)

Condition Node Axiom to add

S has ID (i
S

, ⇤) Ontology(i
S

)

Has core space with ID (i
c

, ⇤) Ontology() Import(i
S

||i
c

)

Has custom space with ID (i
g

, ⇤) Ontology() Import(i
S

||i
g

)

$
o

= (i
o

, v
o

) 2 R, o 2 O nothing

Table 4.6: OWL 2 export of scopes.

Scope ontology images

Table 4.7 shows how an ontology, in its managed form by a custom scope, should be

exported to OWL, thus obtaining its ontology image with respect to the scope. As a

scope inherits ontology references from its spaces, so its ontology images are inherited

from those with respect to those spaces. Recall from the definition of scope, that two

spaces of the same scope cannot share any ontologies, therefore whether an ontology is
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being managed via one space of another is deterministic. Also recall from Tables 4.3

and 4.5, that the version IRIs assigned to the ontology images generated by scopes are

prefixed by the scope identifier since, because of this property of scopes, it would be a

useless addition for referencing an ontology.

Image of ontology o wrt. Scope S = ((i
S

, ⇤), R)

Condition Node Axiom to add

o is managed by core space of S See core space image table

o is managed by custom space of S See custom space image table

Table 4.7: OWL 2 export of scope ontology images.

Session

Table 4.8 shows how a session should be exported to an OWL ontology, thus obtaining

the ontological form of the session. The new ontology is named after the session itself

and not given a version IRI. For any ontology managed by the session, an import

statement is added. This import statement references the managed ontology using

its newly created source s
o

. In addition, recall that sessions can reference scopes as

well (assuming their ontological forms). Then, if the global connectivity policy is set

to LOOSE, for every referenced scope an additional import statement will connect the

session with that scope.

Session z = ((i
z

, ⇤), R)

Condition Node Axiom to add

z has ID (i
z

, ⇤) Ontology(i
z

)

$
o

= (i
o

, v
o

) 2 R, o 2 O Ontology() Import(iri($
o

z))

$
S

= (i
S

, ⇤) 2 R, S is a scope. Ontology() Import(i
S

)

Connectivity policy is LOOSE.

Table 4.8: OWL 2 export of sessions.

Session ontology images

Table 4.9 shows how an ontology, in its managed form by a session, should be exported

to OWL, thus obtaining its ontology image with respect to the session. In this respect, a
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session behaves exactly like a custom scope, mutatis mutandis, when exporting ontology

images. The version IRI of the ontology is set to one prefixed by the session identifier

whenever possible, and import statements are added for all dependencies. If the global

connectivity policy is TIGHT, then the ontology image will also reference the ontological

form of each scope attached to the session.

Image of ontology o wrt. Session z = ((i
z

, ⇤), R)

Condition Node Axiom to add

$
o

= (i
o

, v
o

) Ontology(i
o

v
o

)

$
o

= (i
o

, nil) Ontology(i
o

i
z

||i
o

)

9d(o, o0), o0 2 O Ontology() Import(iri($
o

0))

$
S

= (i
S

, ⇤) 2 R, S is a scope. Ontology() Import(i
S

)

Connectivity policy is TIGHT.

s
o

has raw statement set W . interpretation of W

Table 4.9: OWL 2 export of session ontology images.

Unmanaged ontologies

Finally, some manipulation of ontologies in their original, unmanaged form is required.

If an ontology imported from the Web is added to a core space, and this ontology itself

was part of an ontology network, then there will be import statements that reference

other ontologies on the Web. This would prevent our method from assembling self-

contained ontology networks, as at some point they branch outside of the controlled

environment where the method is applied.

However, we note from Algorithms 4.2.2, 4.2.3 and 4.2.4, that every time a depen-

dency is encountered, it is resolved into an ontology, and that ontology is loaded into

our shared knowledge base. Therefore, all the dependencies could be resolved inter-

nally using their new ontology sources: it is only a matter of “hijacking” the import

statements in order to reference the same ontologies via their new sources. This is

essentially the meaning of the second row in Table 4.10.

Concluding this elucidation, we recollect having made two hypotheses before defin-

ing ontology spaces (cf. Section 4.1.3.3), namely that ontology collectors are valid

ontology sources (Hypothesis A), and that an ontology management relation implies a
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Unmanaged ontology o

Condition Node Axiom to add/remove

Import(i) exists in o. Ontology() replace with Import(iri($
o

0))

i resolves to o0. ($0
o

references o0 via the new s
o

0).

s
o

has raw statement set W . interpretation of W

Table 4.10: OWL 2 export of unmanaged ontologies.

dependency (Hypothesis B). Given the export rules defined earlier, we can now verify

both hypotheses in the context of the OWL language and three tiers.

Hypothesis A is verified by example, having presented a way to export each type

of ontology collector allowed into an artifact compliant with the OWL 2 specification

[MPSP+09].

To verify Hypothesis B, we note that in Tables 4.2, 4.4 and 4.8 we had defined a

way to add OWL import for every image of an ontology that is a dependency of a core

space, custom space or session, respectively. Moreover, Table 4.6 shows that scopes add

no import statements pointing to managed ontologies, but they inherit imports from

the ontological forms of their spaces. Therefore, in the case of scopes the dependencies

hold and are all indirect. Since we also provided a way to export ontology images with

respect to all these ontology collector types in Tables 4.3, 4.5, 4.7 and 4.9, Hypothesis

B is verified as well.

4.3 Ontology referencing vs. naming

When assembling ontology networks, be they real or virtual, users and applications need

to be able to always locate the content of an ontology with some reference object, so that

it is possible to specify a connectivity mechanism between two or more ontologies. Even

when references are available for any ontology involved in the assembly process, the

questions whether that reference will uniquely identify a single resource, and whether

that resource is able to confirm that it is what it is expected to be, remain both

unanswered.

However, according to the ontologies present on the Web, no uniform attention

seems to be paid to naming issues and conventions. Homonymy and anonymity are

not infrequent for Web ontologies, Linked Data sets and the like. One of the main

102



4.3 Ontology referencing vs. naming

causes of the former is that, as an ontology is improved and modified over time, each

revision often generates a new OWL file, and di↵erent revisions are simultaneously

present on the Web and share the same identifier. The latter is often due to the lack of

both naming conventions and collective consciousness on the importance of rendering

a resource uniquely identifiable1.

Throughout its history, the OWL ontology language has always provided simple

and relatively lax methods for specifying the identifiers and references of an ontology.

The OWL 2 specification requires that ontology identifiers be absolute international-

ized resource identifiers (IRIs) [DS05]; encourages the use of an IRI pair for identifying

and versioning ontologies; and uses an import-by-location scheme for referencing im-

ported ontologies, regardless of the actual resource found when that location is resolved

[MPSP+09]. These methods, however, have proven to be a double-edged sword, due

to the scarce backwards compatibility with RDFS and other prior ontology languages

and representation formalisms. That granted, since our framework is intended to serve

ontologies gathered from multiple sources, we still need a way to make sure that each

served ontology has a unique identifier, or at least a set of references, because import-

by-location schemes require a resolvable one, and that these identifiers and references

do not generate redundancy with other occurrences of that ontology on the Web. When

the logical IRIs declared in the ontologies di↵er from the IRIs that were dereferenced

to obtain their content (the physical IRI), it would still be preferable to keep track of

these discrepancies. Doing so can be useful, for example, in order to avoid reloading

an anonymous ontology from the same URL over and over again, simply because it has

no logical identifier to memorize.

Native OWL representation formats, such as Manchester syntax, OWL functional

syntax and OWL/XML include a specification of these identifiers in the header itself.

For instance, in Manchester syntax an ontology header specifies identifiers as follows:

Ontology: <[ontologyIRI]><[versionIRI]>

In OWL/XML, ontology headers are expressed as XML attributes in this form:

1The problem of managing the identities of Web resources has been tackled from multiple angles,

yet an extensively ontological approach exists too and has led to a formal model called Identity of

Resources on the Web (IRW) [HP11].
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<Ontology

ontologyIRI="[ontologyIRI]"

versionIRI="[versionIRI]"

[...] >

[...]

</Ontology>

Non-native representation formats, such as RDF/XML, Turtle and Notation-3 in

general, resort to RDF-compliant workarounds to serialize ontology headers. These are

represented using RDF triples under restrictions such as the following:

1. A single, named resource of type owl:Ontology must be declared in the graph.

The name of that resource is the ontology IRI of the ontology represented by the

graph.

2. A single triple may exist in the graph, where the aforementioned resource is the

subject of an owl:versionIRI predicate. The object of that predicate is the

version IRI of the ontology represented by the graph.

4.3.1 Public keys

The {ontologyIRI, versionIRI} pair is sometimes non-conventionally called Ontol-

ogy ID. Although this [OWLc] Our proposal is to generalize this notion as follows.

Definition (public key). A public key k
o

is a reference $
o

such that o is not the

ontological form of an ontology collector.

No assumption is made as to whether the IRIs of a public key are absolute or relative

and whether they di↵er of match. In fact, any combination of these characteristics is

possible and has its own interpretation, as it will be shown. In addition, the association

function from public keys to ontologies is not a bijection, as explained by the following

Definition (primary key and alias). Let K
o

be the set of public keys of an on-

tology o. If |K
o

| > 1 then 9!k
io

2 K
o

where k
io

is the primary key of O. Every other

public key for o is an alias for k
io

.
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The choice of which public key to elect as the primary key is arbitrary and depends

on the implementation. It can either be the actual OWL ontology ID or some other

object.

Definition (traceable origin). An ontology has a traceable origin if the resource

where its content can be fetched from has a public locator. Being able to represent this

public locator as an IRI is a necessary condition for an origin to be traceable.

The above definition is informal, but useful in its simplicity. Intuitively, it means

that an ontology fetched from a URL with schemes such as http, https or ftp has a

traceable origin. Conversely, an ontology fetched from a URL with a scheme for local

usage, such as file or dav, does not have a traceable origin. Likewise, an ontology

whose content was provided through a bitstream does not have a traceable origin.

The criteria adopted herein for generating public keys, and for selecting primary

keys and aliases, are as follows:

1. If the ontology is non-anonymous (i.e. either named or versioned), its Ontology

ID is a public key for that ontology.

2. if the ontology is anonymous and its origin is not traceable, then its primary

key will be of type (generatedIRI, generatedIRI), where generatedIRI is an

arbitrarily computed IRI that can be absolute or relative.

3. if the ontology has a traceable origin, whose IRI form originIRI di↵ers from

either the ontology IRI or the version IRI if present, then the pair (originIRI,

originIRI) is a public key for that ontology. This pair will be the primary key

of the ontology if it is anonymous, otherwise it will be an alias for its primary

key.

The key generation algorithm for case 2, i.e. anonymous ontologies without a trace-

able origin, is left to arbitration and depends on what information the repository system

intends to encode within the public key itself. Multiple metadata can be concatenated

together to form a single IRI. Examples include:

• the timestamp denoting when the ontology loading process was started or com-

pleted.
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• the size of the ontology, calculated either in triples, axioms of any type, or logical

axioms only.

• a hash code calculated either on the data stream of the graph, or on the collection

of triples present in the graph itself. This computation can be costly, but can be

performed alongside the ontology loading process and is of utmost significance

for either indexing the ontology or content-based conflict detection.

• the canonical name of the object that was created for storing the ontology, e.g. a

Java object or its class.

4.4 Relation to other work

Given the great availability of applications for processing OWL ontologies, and the

increasing distribution of terminologies from the OWL vocabulary injected in Linked

Data and other RDF graphs in the Semantic Web, we opted for assuming OWL as

the family of reference languages that every ontology network should be interpreted as.

Consequently, we agreed to deal with the procedural limitations of OWL, one being

the assumption of centralized resolution, meaning that a single system is responsible for

performing inferencing on the entire terminology of an ontology network. In the light of

this limitation, our approach opted for manipulating the network layout and accommo-

dating ontologies to the single system in question. If the assumption of using OWL is

relaxed, then some limitations can be overcome, as demonstrated in Schlicht and Stuck-

enschmidt [SS09] theorizing a distributed resolution approach applied at reasoning time

on an established ontology network. We have detected no counter-indication as to ap-

plying distributed approach to a virtual ontology network assembled by a multiplexing

method, provided that the assumption of OWL is relaxed, without undermining the

expressivity of the resulting ontology network. Within the domain of OWL, distributed

approaches have also been defined, such as the "-connection language solution proposal

devised by Grau et al. [GPS06]. Although this approach makes provision for an ex-

tension of OWL that implements "-connections using link properties, whereas ours has

a greater concern for preserving standards, that does not make the two approaches

incompatible. The proposal by Grau et al. dated as of OWL 1, namely OWL-DL,

and as such made claims, such as owl:imports failing to deliver logical modularity
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and contextualized axioms, which the introduction of punning in OWL 2 is bringing

into question once again. This was further corroborated by observing the behavior of

OWL 2 applications and libraries such as those we dealt with. We are therefore rea-

sonably confident that an implementation of "-connections in our multiplexing method

would be not only possible, e.g. by manipulating OWL import statements applied to

modularized ontology images, but also beneficial for the acceptance of their theoretical

underpinnings in the context of industrial adoption.

As stated earlier, multiplexing can be implemented within, or sometimes in contrast

to, the solutions adopted in existing ontology repository software as per Section 2.4. We

will later show, when evaluating this method qualitatively, that our approach behaves,

in the worst case scenario, in the same way as repositories that do not compile or

interpret their ontologies server-side, such as TONES and ODP.org, yet in many cases it

is able to readily provide contextualized OWL interpretation of dynamically networked

ontology sources. In addition, multiplexing could be integrated in Cupboard as a

method for users to only need to upload the ontologies that are private to each user,

and which could be stored in sessions that are restored every time the user logs onto

Cupboard. Instead, shareable ontologies as those belonging in the inner tiers of the

virtual infrastructure, could be stored as singletons and mirrored to each Cupboard

user space in their interpreted form once appended to each user’s session. As for

versioning, what emerges from this chapter is that our usage of version indicators has a

broader scope than on ontology versioning as in the OMV vocabulary and Cupboard.

In multiplexing, not only is the version indicator a component of ontology references,

which is compatible with the Oyster approach (cf. Section 4.1.3.1), but also it is used

for uniquely identifying ontology images with respect to collectors (cf. Section 4.1.3.3).

This latter aspect transcends the totally-ordered approach of Oyster, as ontology image

version indicators typically have no ordering, however, they never override version

indicators that are already assigned, therefore our method approaches other versioning

policies conservatively. Other ongoing e↵orts, such as the OOR and its notions of

ontology mirroring and multiple instancing, are contemporary to our proposed solution,

and the directions taken by them will have to be investigated as they proceed [Opeb].
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Architectural binding

So far we have sketched a theoretical and logical framework for dynamically assem-

bling virtual ontology networks out of a shared knowledge base. In order to build

a software platform, or enhance an existing one, for implementing or conforming to

such a framework, a few additional steps are necessary. This chapter illustrates not

only an architectural paradigm which maps to 3-tier multiplexing and existing software

paradigms e↵ectively, but also some support features needed for completing these steps.

Because the exposure of Web ontologies is highly relying upon Web protocols, we will

outline how software components should conform to a common REST architecture,

which can be seen as an abstraction over Web protocols such as HTTP.

5.1 Conventions

This section provides a summary of the technological paradigms, naming conventions,

and the like, which will be assumed as the starting grid for outlining the software

binding with the ontology network model described in Chapter 4.

5.1.1 Service and component nomenclature

As a reference for service-based software paradigms, we will adopt the latest OASIS

specification for service oriented architectures (SOA) [BEL+11]. The specification

states a service to be a mechanism for providing access to a number of functionalities,

where the access is provided using a prescribed interface and is exercised consistent

with constraints and policies as specified by the service description. We are therefore
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restricting to considering as services only those conforming to an interface defined

statically, even in cases where the service in question is the only one to comply to its

own interface.

Loosely bound to the service specification is the software component specification.

We refer to the definitions provided by the OSGi Alliance as a base framework for

defining software components, their grouping as bundles and activity lifecycle. The

version of the OSGi specification we refer to is number 4.2 released in 2009 [All09b], as it

was the latest complete specification at the time this research work started covering the

software architecture aspect. In addition, the enterprise specification that compounded

this release was the first one to introduce a particular interface-based service binding

for components, called declarative services [All10], which reconnects us to the service

paradigm adopted.

Although the OSGi specification provides a complete framework that can be imple-

mented in the Java language, much of its core vocabulary and architecture also hold

in platform-independent contexts. Therefore, we will not assume the Java bindings

to hold as far as this architectural specification is concerned. These will be brought

into context when the actual reference implementation, which was indeed developed in

Java, is described in Chapter 6.

In addition, any mentions of services are not to be interpreted as Web Services

unless otherwise specified (either explicitly or as RESTful services). Specifically, Web

Services will mostly be addressed to when the exposure of ontology networks in standard

language is treated, or when the output of services, be they singleton or composite

[BC06], that are external to the platform, is deemed a valid ontology source.

5.1.2 The CRUD paradigm

Originally introduced by database engineers in the early 1980’s [Mar83], CRUD is a

popular acronym for Create, Read, Update and Delete, the four basic operations

in persistent storage. One criterion for feature completeness in storage systems is

to provide a full implementation of CRUD operations. With the introduction of the

REST architectural paradigm [Fie00], it is a generally accepted notion that RESTful

Web Services should implement CRUD operations in the HTTP protocol for all of their

resources, modulo specific constraints for granting access to them.
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In literature, the CRUD paradigm is sometimes extended as CRUDL, with the

additional Listing operation with features such as pagination support, and BREAD,

which reformulates create and update operations into add and edit, and splits read

operations into browsing and reading. However, we shall maintain the standard CRUD

paradigm due to its tight binding with REST architectures and RESTful interfaces

which we are interested in respecting.

5.2 Artifacts

As previously done in Chapter 4 for the logical model of ontology networks, let us

now proceed to outline the main actors of a software architecture compatible with this

logical model. The artifacts described in this section are standalone items and are not

direct implementations of those described in the previous chapter. Nevertheless, they

are useful for expressing bindings with the latter, to be described later in this chapter

(cf. Section 5.3).

5.2.1 Components and factory components

A component is a class of pieces of software that runs on a host application. The

actual running piece of software that belongs to that class is a component instance.

The lifecycle of a component instance is managed within the running time of the host

platform. Each component instance is characterized by a manifest, or configuration,

containing properties established by the developer and values set by either the developer

or the host. Within the lifecycle of a component instance, its configuration can be

activated or deactivated, in which cases it creates or disposes of its objects, respectively,

depending on their activation and deactivation functions and the availability of their

dependencies [All09a].

The host or a component can have the need to instantiate a component multiple

times using multiple configurations. If it does so by implementing a factory pattern

[Gam95] and creating a component factory (i.e. a service able to create, activate and

deactivate multiple component instances), then the component whose configurations

are managed in this way is called a factory component [All10].
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5.2.2 Knowledge base

In the previous chapter (cf. Section 4.1.1), we simply defined a knowledge base (KB) to

be any set of ontologies, not worrying about the form in which these ontologies actually

exist. Whether they were files in a file system, tables in a relational database, graphs

in a triple/quad store or dynamic objects built as the result of a SPARQL query, we

simply introduced the definition of ontology source.

In the architectural specification, it is still possible to retain a degree of abstraction,

as the knowledge base is here defined to be a single artifact that implements a storage

mechanism for any set of ontologies, i.e. one that from time to time is storing a given set

of ontologies O, where O 2 }(O). By notation, }(O) is the power set of all ontologies.

The assumption here is that the knowledge base is able to, and solely responsible

for, maintaining its own integrity. To that end, it has the following features:

• It MUST handle concurrency and serialization of simultaneous Update and Delete

operations, or between said operations and Read operations.

• It SHOULD handle transaction control and commit points for operations on

stored ontologies (optional).

• It MUST prevent Create operations on an existing named resource.

Whether a knowledge base is physically implemented as:

• a file system, or directory therein;

• one or more databases in a DBMS;

• a triple store or quad store;

• a live query broker for linked data and other Web ontologies;

• an in-memory heap, i.e. a portion of the memory pool.

it can be assumed to guarantee the features it MUST have and, on occasion, the

features it SHOULD have (as is the case of feature-rich DBMSs).
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5.2.3 Bundle

Components are not delivered as a single piece of software each. They are grouped into

aggregate objects called bundles. A bundle is also responsible for selectively stating

the dependencies of the components included, as well as what artifacts are exported

for public access and which are kept private.

Uniform Interface

<<infrastructure>>

Persistence

persistence

Deployment

<<bundle>>

b1

c1.1 c1.2

<<bundle>>

b2

c2.1 c2.2

<<bundle>>

bN

cN.1

Figure 5.1: Component architecture overview -

5.2.4 Service

Within the context of this architectural framework, the concept of service is bound to

the one of component. A service is a component whose functionalities are exposed

by implementing some interface whose prescription is public. Service interfaces can be

published by the component itself, or by another component, or by part of a software

module that is not a component (possibly any interface code in a bundle). That same

paradigm applies to RESTful Web Services, if the component is the factory that creates

the RESTful resource and the interface is the specification of allowed HTTP methods.
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5.3 Ontology network model bindings

The purpose of this section is twofold: (i) to provide an object model for a reference im-

plementation of the ontology network model; and (ii) to instruct application developers

on a possible way to tune their ontology-driven applications so that they can exploit

such an object model. While the former was implemented as described in Chapter 6,

the latter was simulated for some of the experiments described in Chapter 7 and is

instantiated in some applications that adopt the reference implementation.

5.3.1 Object model

In Section 4.1.3, formal definitions of the concepts and constituents of the 3-tier mul-

tiplexing model for virtual ontology networks were given. Here, we shall now propose

a model that maps those constituents to members of a model of object-oriented pro-

gramming.

The UML class diagram [Amb05] in Figure 5.2 displays how artifacts of the ontology

network model are bound to classes in an object-oriented software model. All the nodes

in this UML schema are interfaces, because (i) in this API specification we do not need

to keep track of specific class attributes, which can all be encapsulated into methods;

and (ii) the actual implementation, which will be discussed in the next chapter, can

have strong dependencies on the backend used for storing and retrieving ontologies,

therefore multiple concrete implementations could be necessary (as they did indeed

prove to be), which would drive away from an abstract interface specification.

The bindings of ontology network components to this object model are as follows:

• All ontology collectors in general are mapped to the Ontology Collector type in

the object model. The Ontology Collector is in turn a Named Resource, which

allows it to manipulate its own identifier, i.e. i
C

in the expanded ontology collec-

tor definition C = ((i
C

, nil), R), through encapsulation via getId() and setId()

methods. The manageOntology(inputSource), unmanageOntology(key) and

listManagedOntologois(key) methods are the operations for managing the on-

tology references in R. Ontology export procedures, such as those illustrated

in Section 4.2.5 for OWL, are bound to the getOntology(key,merged) method

for the images of managed ontologies, and the toOntologicalForm() method of
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tier 2tiers 0-1

generic

getConnectivityPolicy()
getOntology(key, merged)
listManagedOntologies()
manageOntology(inputSource)
setConnectivityPolicy(policy)
unmanageOntology(key)

<<interface>>
Ontology Collector

<<interface>>
Ontology Space

getCoreSpace()
getCustomSpace()

<<interface>>
Scope

attachScope(id)
detachScope(id)
listAttachedScopes()

<<interface>>
Session

fireOntologyManaged(id,key)
fireOntologyUnmanaged(id,key)
registerListener()
unregisterListener()

<<interface>>
Ontology Collector Listenable

getId()
setId(id)

<<interface>>
Named Resource

toOntologicalForm()

<<interface>>
Ontology Exportable

Figure 5.2: Class diagram of artifacts from the ontology network model - Inter-

faces that directly map to artifacts described in Section 4.1.3 are shown as having a thicker

outline.
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the Ontology Exportable supertype for the ontological forms of the collectors

themselves.

• Ontology spaces are mapped to the Ontology Space type in the object model.

This type extends Ontology Collector. No specialized objects are specified for

core and custom spaces, as it is simply up to specific implementations of this

interface to realize the behavior of core and custom spaces by overriding methods

such as toOntologicalForm() and getOntology(key,merged).

• Scopes are bound to the Scope type in the object model. In this model, the Scope

acts as a façade for its two ontology spaces, because in the ontology network model

a scope inherits all the ontology references of its spaces. Handles to ontology

spaces can be obtained via the getCoreSpace() and getCustomSpace()methods.

Also recall that a Scope is a composite of Ontology Space objects, as its lifetime

is tightly bound to the lifetimes of its spaces.

• Sessions are bound to the Session type in the object model type in the ob-

ject model. Besides being an ontology collector by its own right, a Session

also aggregates Scope objects, which correspond to items of type S so that

$
f(S) = (i

S

, ⇤) 2 R, where R is the reference set of the session. These scope

references are encapsulated using the attachScope(id), detachScope(id) and

listAttachedScopes() methods.

As shown by this overview, in some cases there is a direct binding between tiers

in the multiplexing method and objects in the software model, while in others, such

as core and custom spaces, the binding is implicit. Other artifacts are unbound, as

discussed in the next section.

5.3.1.1 Unbound artifacts

Identifier types in general are not bound and it is left up to concrete implementations to

specify them. That holds for both ontology collector identifiers (which are encapsulated

in the Named Resource type for convenience) and public keys of ontologies in the KB

implementation (both primary keys and aliases). The only restriction is applied to

public keys, which obviously must be of a type that implements ontology references of

the type $
o

= (i, v) (cf. Section 4.1.3.1. In a software engineering approach applied
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to OWL 2, this restriction can be fulfilled by encapsulating the two IRIs used for

identifying ontologies, via methods such as getOntologyIRI() and getVersionIRI().

Likewise, ontologies and their images and networks, be they real or virtual, are

not bound to specific types. This is mainly due to the fact that, per the assumptions

made and restrictions considered for the scope of this work (A8, existence of software

tools for interpreting OWL; R2, import graph pre-order visit, cf. Sections 3.4 and 3.6),

the task of interpreting resource sets as ontology networks is left to client applications

and service consumers. Therefore, from the software perspective, their object model of

ontologies and ontology network applies.

5.3.2 Operations

Some of the methods illustrated in Figure 5.2 are not entirely straightforward with

respect to how they represent virtual ontology network construction operations. These

will be further explained in this section. As for ontology export methods, it is assumed

that they realize an operative schema akin to the one illustrated in Section 4.2.5.

5.3.2.1 Manage/unmanage ontology

Recall from 4.1.3.2 that an ontology collector is a pair (I, R), where I is an identifier

and R a set of references. Then from the architectural perspective on an ontology

collector, to manage an ontology o is to add some $i
o

to R, where $i
o

is a reference for

o. Vice versa, to unmanage o is to remove from R every $i
o

so that $i
o

2 R and $i
o

is a

reference for o.

...
getOntology(key, merged)
listManagedOntologies()
manageOntology(inputSource)
unmanageOntology(key)
...

<<interface>>
OntologyCollector

Figure 5.3: Management methods of the ontology collector interface - Parameter

key can be of any type deemed suitable for encapsulating an ontology name. Parameter

merge indicates whether, or up to which level, the dependencies of an ontology should be

merged with it.
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In Figure 5.3, the operations of managing and unmanaging an ontology map to the

manageOntology(inputSource) and unmanageOntology(key), respectively.

The following options apply to parameter key:

1. it can be of any type that can encapsulate the public key of an ontology, as in the

definition of public key in Section 4.3.1;

2. it can be the primary key or any alias of the ontology referenced by it, even it

that key was not used for managing the ontology by this collector in the first

place.

Parameter inputSource is a wrapper for the following types:

1. an ontology;

2. a public key, in which case restriction 1 on parameter key applies;

3. an ontology source.

Managing an ontology may or may not imply a prior storage operation. Depending

which type is being wrapped by inputSource, di↵erent conditions apply in order to de-

termine whether the ontology should be stored at all. These conditions are summarized

in Table 5.1. The general rationale is that, if the wrapped object is of the same type as

public keys, then that key must match an entry in the knowledge base, otherwise the

contrary must occur: any public keys automatically extracted from the ontology (i.e.

that would be assigned to that ontology if it were to be stored) must not already exist

as entries in the knowledge base.

Refinements to the policies expressed in Table 5.1 can apply. For instance, the

policy for public keys can be either strict, i.e. the ontology collector is not set to

manage the ontology with that public key if it matches an orphan entry (the key is

registered but there is no associated ontology in the KB), or loose, i.e. the collector

is set to manage the ontology by reference anyhow, assuming the actual ontology is

provided in a second step.
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Wrapped type Conditions

Ontology (if named) Ontology name must not match any entry in the KB,

unless the ontology itself is already stored.

Public Key Public key must match an entry (either primary key or alias) in

the KB.

(optional) Matching entry must not be orphan or uncharted.

Ontology source Source must resolve to an ontology.

Ontology source locator or name (if applicable) must not match

any entry in the KB.

Table 5.1: Conditions for storing an ontology in the knowledge base given its

input source type.

5.3.2.2 Attach/detach scope

A session z = (I
z

, R
z

), where I
z

= (i
z

, ⇤), has the ability to include scope identifiers in

its reference set. From the object model perspective, scope identifiers in R are handled

by the attachScope(id), detachScope(id) and listAttachedScopes() methods, as

shown in Figure 5.4.

attachScope(id)
detachScope(id)
listAttachedScopes()

<<interface>>
Session

Figure 5.4: Scope referencing methods of the session interface - Parameter id

can be of any type deemed suitable for encapsulating a collector identifier.

If R
z

is the reference set for session z, then the bindings of these operations with

the ontology network model are as follows:

• attachScope(id): adds a scope reference to R
z

, i.e. R
z

:= R
z

[ $id, where $id

is the reference represented by object id.

• detachScope(id): removes a scope reference from R
z

, if present, i.e. R
z

:=

R
z

\ $id, where $id is the reference represented by object id.
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• listAttachedScopes(): returns (a representation of) a set of references R0
z

such

that R0
z

✓ R
z

and $
S

2 R0
z

i↵ $
S

2 R
z

and S is a scope.

Note that parameter id does not have to be as the same type as the one that

represents ontology references in the object model (the parameter key in ontology

management operations). The only requirement is that both scope identifiers id and

ontology public keys key are both accepted by the object that represents R
z

. It is even

acceptable that two separate objects store ontology public keys and scope identifiers

separately. This choice is arbitrary and implementation-dependent, and as such it is

not treated in this specification.

Attaching or detaching a scope does not imply any ontology storage operation, in

general.
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5.4 RESTful service interface

Design of the reference service platform that we used as a host began in 2009. Its

requirement specification phase was thorough and articulated across multiple aspects

of content management as well as general features. Among these, it emerged from

the horizontal requirement specification [CES+10], that the industry was looking for-

ward to integrating functionalities on a loose-coupling scheme that would not require

drastic alteration of the architectures of existing software platforms. A solution was

found in the then-emerging application of the REpresentational State Transfer (REST)

paradigm [Fie00] to Web Services, which are therefore deemed RESTful [RR07].

Among other features, RESTful Web Services associate standards verbs of the

HTTP protocol paradigm to expected functionalities that read or a↵ect the state of

resources directly responsible for providing Web Services. The OWL ontology language

also normatively supports resolution of resources via the HTTP protocol and content

negotiation for specific representation formats [SHK+09]. So do other Semantic Web

specifications favor the adoption of the REST paradigm. Namely, the uniform interface

constraint of the REST specification and the guiding principles of having identifiable

resources sharing a base identifier are valuable allies of Linked Data [BB08]. These

principles also proved to be compatible with a possible representation of our virtual

ontology network structure as a set of resources, as well as convenient for designing

their representation scheme. It was therefore desirable for us to develop a RESTful

Web Service specification that allows client applications to interact with an ontology

network provider and request ontology networks to be manipulated.

5.4.1 Service endpoints

This section provides an overview of the service endpoints for accessing ontology net-

work components, managers and meta-level information that is not explicit in the

networked ontologies themselves. Some of these RESTful resources are not fixed and

their construction follows a certain naming pattern. This occurs whenever an item

with an identifier is involved in locating a RESTful resource, as is the case of unman-

aged ontologies, ontology collectors and images. In other cases, there are no variables

involved, but this only occurs for accessing ontology network managers.
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The fixed service endpoints and the naming schemes for variable ones are listed in

Table 5.2. They are grouped as: (1) resources associated to objects that can be used for

listing ontology network components, and manipulating them to a limited extent; (2)

resources that represent specific ontology network components, each in turn an ontology

source (cf. Section 4.1.1); (3) resources that enable access to meta-level features of on-

tologies, other than those declared in the annotations within the ontologies themselves.

Each row represents a RESTful resource, its naming template being the way the URL

of the resource is constructed and its type being the class of resource represented by

that name. Each naming template begins with a slash (‘/’) character, and is intended

to be concatenated to a common base URL (e.g. http://localhost:8080/ontology

or http://www.example.org/stanbol/ontology-network-manager), which is omit-

ted for simplicity, in order to obtain the full, unambiguous resource URL.

Resource naming template Resource type

M
an

ag
er / Ontology manager

/scope Scope manager

/session Session manager

O
nt
ol
og

ie
s

/{publicKey } Ontology entry

/scope/{scopeID } Scope

/scope/{scopeID }/core Core space

/scope/{scopeID }/custom Custom space

/scope/{scopeID }/{publicKey } {scopeID }-image

/session/{sessionID } Session

/session/{sessionID }/{publicKey } {sessionID }-image

M
et
a /{publicKey }/aliases Public key aliases

/{publicKey }/handles Handles on ontology

Table 5.2: Overview of REST endpoints for ontology network management

- These are the public resources that represent the components of ontology networks,

both real and virtual, plus additional endpoints for management and meta-level access.

Placeholders for variables are enclosed in curly braces. Note that core and custom are

reserved and cannot be used as public keys.

These naming templates allow a client application to access the following resources:

• The ontology manager is a horizontal component that is aware of all the ontolo-

gies stored in the knowledge base of the host. It is able to list stored ontologies,
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store new ones from heterogeneous sources and perform mass deletions. It does

not serve virtual networks, but knows how many virtual network components

are managing an ontology. These are also called handles on the ontology. Ad-

ditionally, if an ontology belongs to a real (i.e. statically assembled at design

time) ontology network, the ontology manager will also be able to list the other

ontologies in the same network.

Ontology manager

Verb Operation Parameters

GET get meta-level ontology

POST load and store ontology file : ontology content

format : MIME type of content (re-

quires file)

url : URL of the ontology source

POST load and store ontology ontology content (as HTTP URL-

encoded form)

Table 5.3: HTTP methods supported by the ontology manager REST resource.

Ontology manager

Verb Response code Notes

GET 200 OK meta-level ontology

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

POST 201 CREATED primary key of stored ontology

400 BAD REQUEST malformed url

409 CONFLICT extracted public key matches existing entry

415 UNSUPPORTED

MEDIA TYPE invalid format

500 INTERNAL

SERVER ERROR failure to load ontology

Table 5.4: Response table of the ontology manager REST resource.

• The scope manager is responsible for listing scopes (cf. Section 4.1.3.5), as well

as their sizes in terms of the amount of ontologies managed by their spaces. It
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is the only component to be aware of the activation status of registered scopes,

which scopes themselves ignore.

Scope manager

Verb Operation Parameters

GET get meta-level scope ontology

DELETE clear all scopes

Table 5.5: HTTP methods supported by the scope manager REST resource.

Scope manager

Verb Response code Notes

GET 200 OK meta-level ontology

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

DELETE 200 OK

Table 5.6: Response table of the scope manager REST resource.

• The session manager is responsible for listing sessions (cf. Section 4.1.3.6), as

well as their sizes in terms of the amount of ontologies managed by them. It is

also the component responsible for managing the lifetimes of registered sessions.

Session manager

Verb Operation Parameters

GET get meta-level session ontology

POST create session with automatically

selected ID

DELETE clear all sessions

Table 5.7: HTTP methods supported by the session manager REST resource.

• An ontology entry is the native, unmanaged form of an ontology with the given

public key. If an ontology with that public key is stored, its content can be

returned by this endpoint. That is to say, that it is not mandatory for an entry to

match a stored ontology. An entry can exist even if it is not mapped yet to any

ontology source (in that case the entry is called uncharted), or if it is mapped to
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Session manager

Verb Response code Notes

GET 200 OK meta-level ontology

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

POST 201 CREATED response entity is the endpoint URL of the new

session

403 FORBIDDEN maximum session quota reached

DELETE 200 OK

Table 5.8: Response table of the session manager REST resource.

an invalid source, such as an RDF graph that does not exist or a URL that does

not resolve to an ontology (in that case the entry is called orphan).

• A scope is a representation of an artifact of the type described in Section 4.1.3.5,

accessible by its identifier (as I in its formal definition (I, R)). Through this

resource, a scope can be created (and automatically registered) or deleted (and

therefore unregistered). A scope can be created and have its core space populated

in a single operation, after which the core space is write-locked. A scope can

be instructed to manage an ontology, which implies setting its custom space to

manage it. However, the reverse operation is delegated to the resulting ontology

image, as advised by the RESTful service guidelines1. As a scope is a valid

ontology source in OWL, this resource supports content negotiation in multiple

knowledge representation formats. If an RDF or OWL format is negotiated the

ontological form of a scope imports those of its core and custom space. As with

the other RESTful resources that represent ontological artifacts, a scope can be

merged with all of its dependencies upon export.

• The core space of a scope lists the ontologies set to be managed by the scope at

creation time, or while the scope is inactive. It does not support create, update

or delete operations directly, as they have to be orchestrated by the scope owning

this space. Being an ontology collector, the core space can be exported to RDF

1According to best practices in RESTful Web Services, any operation that deletes a resource should

be invoked via an HTTP DELETE call on the resource itself [RR07]
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Ontology entry

Verb Operation Parameters

GET get ontology merged : if true, recursively merge

dependencies

POST load ontology content into entry file : ontology content

format : MIME type of content

(requires file)

url : URL of the ontology source

POST load ontology content into entry ontology content (as HTTP URL-

encoded form)

POST add alias for entry alias : new public key

PUT create uncharted ontology entry

DELETE - remove public key from aliases

- if there are no public keys left for

the entry, delete the ontology

Table 5.9: HTTP methods supported by the ontology entry REST resource.

Ontology entry

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

POST 200 OK new public keys not included in response

400 BAD REQUEST malformed url

409 CONFLICT extracted public key matches existing entry

415 UNSUPPORTED

MEDIA TYPE invalid format

500 INTERNAL

SERVER ERROR failure to load ontology

PUT 201 CREATED

404 NOT FOUND entry is orphan (no stored ontology found)

409 CONFLICT there are 1+ handles on corresponding entry

DELETE 200 OK

403 FORBIDDEN there are 1+ handles on corresponding entry

Table 5.10: Response table of the ontology entry REST resource.
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Scope

Verb Operation Parameters

GET export to ontological form merged : if true, recursively merge

dependencies

POST load ontology content and manage

the corresponding ontology

file : ontology content

format : MIME type of content

(requires file)

stored : public key of stored on-

tology entry (excludes file, url)

url : URL of the ontology source

POST load ontology content and manage

the corresponding ontology

ontology content (as HTTP URL-

encoded form)

PUT create and register scope, then

populate its core space

ontology (0..*) : URLs of ontolo-

gies to manage in core space

stored (0..*) : public keys of

stored ontologies to manage in core

space

activate : if true, activate the

scope immediately

DELETE unregister and delete scope

Table 5.11: HTTP methods supported by a scope REST resource.
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Scope

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

POST 200 CREATED ontology image URL included in response

400 BAD REQUEST malformed url

404 NOT FOUND stored value is orphan or uncharted

409 CONFLICT extracted public key matches an existing entry

415 UNSUPPORTED

MEDIA TYPE invalid format

500 INTERNAL

SERVER ERROR failure to load ontology

PUT 201 CREATED original request URL is returned

400 BAD REQUEST failed to load at least one ontology into the

core space

409 CONFLICT a collector with that ID already exists

500 INTERNAL

SERVER ERROR other failure to create scope

DELETE 200 OK

Table 5.12: Response table of a scope REST resource.
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or native OWL, but since it belongs to the lowest tier of virtual networks, the

ontological form of a core space will only import the ontologies managed by it.

Core space

Verb Operation Parameters

GET export to ontological form merged : if true, recursively merge

dependencies

Table 5.13: HTTP methods supported by a core space REST resource.

Core space

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

Table 5.14: Response table of a core space REST resource.

• The custom space of a scope contains the set of ontologies set to be managed by

the scope during its active state. As with the core space, this resource delegates

create, update and delete operations to its owner scope. Custom space resources

support the same content negotiation as core space resources, and their ontological

forms import managed ontologies, plus an import statement that references the

core space resource if the connectivity policy is set to LOOSE.

Custom space

Verb Operation Parameters

GET export to ontological form merged : if true, recursively merge

dependencies

Table 5.15: HTTP methods supported by a custom space REST resource.

• An ontology image with respect to a scope is referenced by concatenating

its encoded public key (either a primary key or an alias) to the resource name of

the scope. The scope itself is responsible for preventing redundancies between its

core and custom spaces, therefore this public key will be an unambiguous ontology

reference. An ontology image can be exported either in standalone form, in which
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Custom space

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

Table 5.16: Response table of a custom space REST resource.

case any dependencies are preserved and imports are simply rewritten to their

corresponding images, or in merged form with all its dependencies. If the original

ontology is managed by the custom space of the scope and the connectivity policy

is set to TIGHT, the core space will also be set as a dependency and the appropriate

import statement will be added. If the negotiated content type is a native OWL

form, the virtual ontology network having this ontology image as its entry node

will be interpreted prior to exporting. An OWL version IRI will be set for the

ontology image, so as to match the URL of this resource. Clearly, core and

custom are reserved terms and cannot be used as public keys of ontology entries.

Ontology image wrt. Scope

Verb Operation Parameters

GET export to ontological form merged : if true, recursively merge

dependencies

DELETE instruct scope to stop managing

the ontology

Table 5.17: HTTP methods supported by an ontology image wrt. a scope

REST resource.

• A session lists its own managed ontologies and any scopes attached to it. If

a session is removed via an HTTP DELETE request, it will attempt to remove

the sources of all the ontologies it owns, i.e. those whose images it can set an

OWL version IRI for. This occurs in accordance with its severance policies.

When exported to a KR format and not set to be merged, its ontological form

will import the endpoint URLs of all its managed ontologies. If the connectivity

policy is set to LOOSE it will also import a any attached scopes.
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Ontology image wrt. Scope

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

DELETE 200 OK

403 FORBIDDEN ontology is managed within the core space, and

the scope is active

Table 5.18: Response table of an ontology image wrt. a scope REST resource.

Session

Verb Operation Parameters

GET export to ontological form merged : if true, recursively merge

dependencies

POST load ontology content and manage

the corresponding ontology

file : ontology content

format : MIME type of content

(requires file)

stored : public key of stored on-

tology entry (excludes file, url)

url : URL of the ontology source

POST load ontology content and manage

the corresponding ontology

ontology content (as HTTP URL-

encoded form)

POST select and attach scopes, detach

any other scope

scope (0..*) : the IDs of the scopes

to attach

POST detach all scopes

PUT create and register session

DELETE unregister and delete session

Table 5.19: HTTP methods supported by a session REST resource.
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Session

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

POST 200 CREATED ontology image URL included in response

400 BAD REQUEST malformed url

404 NOT FOUND stored value is orphan or uncharted

409 CONFLICT extracted public key matches an existing entry

415 UNSUPPORTED

MEDIA TYPE invalid format

500 INTERNAL

SERVER ERROR other failure to load ontology

PUT 201 CREATED original request URL is returned

403 FORBIDDEN maximum session quota reached

409 CONFLICT a collector with that ID already exists

500 INTERNAL

SERVER ERROR other failure to create session

DELETE 200 OK

Table 5.20: Response table of a session REST resource.
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• An ontology image with respect to a session is referenced by concatenating

its encoded public key to the resource name of the session. Its ontological form

follows the same rationale as images with respect to scopes, except that the TIGHT

connectivity policy implies that, if the managing session has any scopes attached,

the corresponding endpoint URLs will be imported, or included in the merge

computation if the merge option is set.

Ontology image wrt. Session

Verb Operation Parameters

GET export to ontological form merged : if true, recursively merge

dependencies

DELETE instruct session to stop managing

the ontology

Table 5.21: HTTP methods supported by an ontology image wrt. a session

REST resource.

Ontology image wrt. Session

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

DELETE 200 OK

Table 5.22: Response table of an ontology image wrt. a session REST resource.

• The aliases endpoint of an ontology entry is a meta-level resource that only sup-

ports read operations for listing all the public keys associated with the ontology

entry. It can be used to aid client applications in reconciling multiple names of an

ontology, especially in case of a mismatch between its source location and logical

name, or when a mnemonic name is used in lieu of the public key (e.g. ‘foaf’

instead of “http://xmlns.com/foaf/0.1/”).

• The handles endpoint of an ontology entry is a meta-level resource that only

supports read operations for listing the identifiers of scopes and sessions managing

that ontology, either by that public key or by any other associated public key.

These identifiers form the set of handles of the ontology.
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Aliases

Verb Operation Parameters

GET get aliases listing

Table 5.23: HTTP methods supported by an aliases REST resource.

Aliases

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

Table 5.24: Response table of an aliases REST resource.

Handles

Verb Operation Parameters

GET get handles listing

Table 5.25: HTTP methods supported by a handles REST resource.

Handles

Verb Response code Notes

GET 200 OK

415 UNSUPPORTED

MEDIA TYPE invalid MIME type in Accept header

Table 5.26: Response table of a handles REST resource.
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For the most part, the assembly of virtual ontology networks occurs by directly

operating on the resources that represent ontology network components, or component

candidates. There are, however, a limited number of exceptions. For example, the

scope and session managers can be used to submit a new ontology for both storage and

management in a single operation. In addition, the session manager can be used for

creating new sessions when the client does not intend to specify their IDs.

There is no explicit way to address an entire ontology network as a single resource: to

obtain a reference to an ontology network, through a single node that allows applications

to visit the entire network, a GET call on an ontology collector in the highest

tier must be performed. Therefore, if the ontology network includes a session, the

GET call should be performed on the session resource; otherwise, if it includes a scope

but no sessions, the call should be performed on the scope resource, and so on.

Note that a virtual ontology network can include more than one session, in principle.

However, since with only 3 tiers there is no way to reference a session automatically

from another ontology, it is not possible to visit more than one session in the virtual

network, and this occurs only if the session represents the entry node for the virtual

network visit.
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6

Implementing the model: the

Stanbol ONM

To assess the feasibility of our proposed contribution, a reference implementation of

our proposed solution was produced. We describe its features in this chapter.

Our logical model for virtual ontology networks, as well as one possible configura-

tion of the corresponding architectural framework, was implemented as the Apache

Stanbol Ontology Network Manager, which we shall refer to as simply ONM at

times. Apache Stanbol [Apag] is a modular software framework that supports content

management systems with Semantic-Web-based knowledge processing capabilities. It

uses the component model and Java Virtual Machine management features of OSGi

[All09b], stores ontologies using the uniform interface of sister project Apache Clerezza

[Apaa], and exposes its content and knowledge through a full-fledged RESTful API

[RR07, Bur09]. We implemented ontology network management and serving as REST-

ful Web Services that mimic ontology publishing via traditional Web servers, using the

specification of Section 5.4. Stanbol is now fully endorsed as a top-level project of the

Apache Software Foundation, and the ONM has been part of its codebase since its

initial incubation period.

Although not digressing in depth into the coding details of the implementation,

this chapter will provide su�cient grounds for the reader to understand whether and

how development choices influenced the evaluation results, i.e. which potential bias

is introduced or preserved, and which is eliminated. However, the presence of this

chapter is imprescindible, as it documents the development path along which further
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issues were discovered, which broadened the range of our research problem, in the

meantime specializing it further.

6.1 Apache Stanbol overview

Apache Stanbol [Apag] is a Java 6 software project that provides a set of reusable com-

ponents for semantic content management. An instance of Stanbol is intended for usage

alongside a deployed content management system (CMS), possibly even in multiple in-

stances. The Stanbol software project underwent incubation at The Apache Software

Foundation (ASF) [Apae] in early 2011, after one year of design and active prototype

development. In September 2012, less than two years since incubation, Stanbol was

promoted to top-level project and fully endorsed by the ASF.

Figure 6.1: Apache Stanbol component architecture - Retrieved from Apache Stan-

bol Components.

A high-level abstraction of the Stanbol architecture is shown in Figure 6.1. Func-

tionalities are grouped under the three major categories of persistence management

(bottom layer), knowledge management (middle layer) and content enhancement pipelines

(top layer). All these components run on top of an OSGi modular backend [All09b]

using the OSGi implementation provided by the Apache Felix project [Apac]. A triple
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store interface and binding is provided by sister project Apache Clerezza [Apaa], and

all component functionalities are backed by a RESTful Web Service API.

Since its initial design phase, this framework already incorporated an early, stateless

version of our proposed solution. During that phase, this module, along with additional

modules for DL reasoning, non-ontological reengineering, rule management and execu-

tion, went by the collective name of Knowledge Representation and Reasoning System

(KReS).

6.1.1 Relation to the software model

In Section 3.2.1 we had established the setting of our work from the standpoint of the

software framework where our proposed method should be able to manage multiple

ontology networks dynamically. The model of this software framework, called the host,

had some features which we assumed to be dealing with. Let us now briefly review how

these features are realized in Apache Stanbol.

• shared knowledge base: it is implemented in Stanbol as an Apache Clerezza

backend. Clerezza is a software framework that can interoperate with a triple

store of many possible types and present a uniform programming interface for

performing CRUD operation on this triple store. The interface includes a single

object, called triple collection manager, which allows multiple triple stores to

register, each with its own triple collection provider. An Apache Derby database

[Apab] is also present for storing content not mapped to RDF graphs.

• Web Services: these are implemented using Jersey, the reference implementa-

tion of RESTful Web Services in Java [Jer]. Stanbol implements a basic set of

RESTful resource types in Jersey, which all the components can then special-

ize in order to wrap their APIs. In addition, Jersey endpoints are also used for

providing these services as Web pages for human clients to use.

• concurrency support: it is guaranteed in Stanbol by the asynchronous imple-

mentation of RESTful services and multithreading support. Every component,

including the underlying triple store, is responsible for maintaining transaction

control where required.
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• locality: it is natively implemented for some stateless components that perform

in-memory processing without writing down their payload into Clerezza. A re-

cent addition introduced user management and authentication support, but this

feature still is not mapped to privileged user spaces.

6.1.2 Services

At the time of writing, Apache Stanbol provides a host of features that include the

following:

• The Enhancer is a service register and executor that consumes generic content

items and generates RDF triples for them. The nature of the RDF triples depends

on which Enhancement Engines are registered with the enhancer, which pipeline

has been chosen for enhancement and in which priority order the pipeline runs its

engines. Enhancement engines exist for natural language processing, geographical

Linked Data, sentiment analysis, language detection, RDF vocabulary translation

and more. All the RDF triples are stored in a named graph maintained by the

Apache Clerezza backend.

• The Contenthub is the content persistence component of documents submitted

for Stanbol, which it is able to store, index using the Apache Solr search library

[Apaf] and provide faceted search capabilities.

• A SPARQL endpoint for querying the graphs that selectively register themselves

for querying, including the graph with all enhancement results managed by the

Stanbol Enhancer and the Contenthub.

• The Entityhub is an optimized local cache for Linked Data as well as custom

data, such as specialized topic thesauri, provided either in their entirety or as

Apache Solr indices.

• The Ontology Manager is the facility entirely contributed by us. Besides the

capabilities of the network manager (ONM) illustrated in this thesis, the Stanbol

Ontology Manager also provides an ontology library management interface that

extends the registry mechanism of the ontologydesignpatterns.org repository (cf.

Section 2.4.3). It also has the ability to obtain ontologies by querying the Stanbol

Entityhub or SPARQL endpoint.
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• The Rules component is an environment for the definition, management and

execution of inference rules. It has a custom language that can be adapted to

SPARQL or SWRL depending on the required expressivity. In addition, its rule

execution environment allows ontologies to be refactored in a stateless manner.

• The Reasoner module is a shared service interface for registering and invoking

multiple DL reasoners. Reasoners with support for di↵erent logical fragments

and OWL profiles can be registered, and each reasoner can declare its support

for reasoning primitives such as consistency checking and classification.

• The CMS Adapter acts as a bridge between Stanbol content management sys-

tems and Stanbol. It can be used to map existing node structures from content

repositories to RDF models or vice versa.

All the components listed above provide their services both through the OSGi

declarative service model, and a RESTful API for Web Service clients.

6.2 Stanbol ONM

Although placed in specific layers from the architectural standpoint and with set de-

pendencies on one another, the components of Apache Stanbol are established on a flat

scheme service-wise. This means that there is no set service hierarchy, and any service

exposed by one component does not require additional calls to sub-services exposed

by other components. We can therefore discuss the component(s) of interest for this

dissertation independently on others.

Technical documentation concerning the Stanbol ONM is available online [Apah]

and in related technical reports [CSS+11, ABC+11, ABB+10].

6.2.1 Modules

Even from the perspective of the OSGi modular framework, the ONM is still a mod-

ular architecture and its modules, called bundles, are a subset of the bundles of the

Stanbol Ontology Manager. A list of the Stanbol bundles of interest follows. For

clarity, the bundle names have been shortened by removing the org.apache.stanbol

prefix, therefore if a bundle name reads bundlename, it should actually be read as

org.apache.stanbol.bundlename.
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Figure 6.2: Screenshot of the Apache Stanbol Ontology Network Manager -

Stanbol provides a Rich Internet Application for invoking its RESTful services from a Web

browser. The ONM start page has features for loading ontologies from files, Web resources

and ontology libraries. For each ontology entry, it shows the primary key and number of

aliases and handles, and provides access to HTML managers for scopes and sessions.
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• commons.owl: a set of utilities and primitives for managing OWL ontologies in

general, and includes transformation primitives between the OWL API [OWLa]

and Clerezza [Apaa] data models. This allows the ontological export of virtual

ontology network components to occur as OWL API or Clerezza objects, no

matter what specific implementation is used for the actual ONM.

• ontologymanager.servicesapi: the Java service interface of the virtual ontol-

ogy network manager.

• ontologymanager.core: implements those interfaces of the servicesapi bundle

that do not depend on a specific semantic backend.

• ontologymanager.sources.clerezza: implements Clerezza-based ontology in-

put sources, i.e. classes that can be used by other OSGi components in order to

feed native Clerezza objects to virtual ontology networks.

• ontologymanager.sources.owlapi: implements OWL API -based ontology in-

put sources, i.e. classes that can be used by other OSGi components in order to

feed native OWL API objects to virtual ontology networks.

• ontologymanager.multiplexer.clerezza this is the API binding bundle that

implements the actual ONM in all the parts that depend on a specific storage

backend. For our purpose, only the Clerezza binding is currently supported1.

• ontologymanager.registry: contains both the API and the implementation of

an ontology registry manager, which is able to maintain ontology libraries ob-

tained by reading registry files. It extends the pattern registry model of ontolo-

gydesignpatterns.org repository (cf. Section 2.4.3).

• ontologymanager.web: the RESTful service wrapper for all the service interfaces

of the servicesapi and registry bundles.

The actual ONM, i.e. the software responsible for assembling ontologies into virtual

networks, is embedded in the following subset of Stanbol Ontology Manager bundles:

1The initial release of the Stanbol ONM was entirely based on an OWL API binding. However,

this forced all virtual ontology networks to be persistent in memory, and further code was required in

order to maintain some degree of synchrony with the underlying Clerezza persistence store.
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ontologymanager.web

ontologymanager.core

ontologymanager.multiplexer.clerezza

ontologymanager.sources.clerezza

ontologymanager.sources.owlapi

commons.owlontologymanager.registry

ontologym
anager.servicesapi

Figure 6.3: Stanbol Ontology Manager bundle dependencies - Since each bundle

name matches the root package of all its classes, the UML package notation is used.
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{ontologymanager.servicesapi, ontologymanager.multiplexer.clerezza,
ontologymanager.core, ontologymanager.web}.

To represent dependency diagram across Stanbol Ontology Manager bundles, we

have used a UML package diagram. This was possible with a slight abuse of notation,

because the name of each bundle matches the name of the root package that contains

all the classes in that bundle. The following remarks should be made on this structure:

1. ontologymanager.web depends on the two bundles that provide an API, but

not on implementations, because the latter are resolved by the OSGi declarative

service model at runtime.

2. The ontologymanager.sources.clerezza and ontologymanager.sources.owlapi

bundles also register their service components and make their classes available at

runtime, which is why no bundles depend on them (though if neither nor any

other implementation were present in the OSGi environment, it would not be

possible to activate components that require an ontology input source, including

several Web Services).

6.2.2 Technology

From an engineering perspective, virtual ontology network management is comprised of

several ontology, application and knowledge management functionalities, and is there-

fore subject to the availability of software tools and libraries that implement them and

can perform their tasks. The technological stack of the Stanbol ONM is shown in

Figure 6.4. We summarize these functionalities as follows, grouped by major areas:

• User access, i.e. the provision of an interactive (desktop, Web-based etc.)

toolkit that allows human agents to manage ontology networks through a user

interface.

• Exposure of ontology networks using standard formats and mechanisms, so that

external client agents can consume them with no additional requirements on top

of standard ontology language support.

• Marshalling, i.e. the combined functionalities of parsers and serializers able to

read and write ontologies in canonical and non-canonical formats.
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• Retrieval of ontologies distributed across multiple resources and types thereof,

including Web and non-Web Internet protocols, local or distributed file systems,

reengineered non-ontological resources, databases and triple/quad stores. Re-

trieval from heterogeneous sources should be seamless interface-wise.

• Security for privileged access to ontology networks and their components. Also

cryptographic support for data exchange etc.

• Multitenancy for sharing ontologies across, and associating virtual ontology

networks to, client accounts belonging to either users or applications.

• Multiplexing of shared ontologies across multiple virtual networks, i.e. the

implementation of the logical model described in Chapter 4.

• Deployment of ontology-aware applications in the shared host platform; what

ontology-related information and requirements should be published or removed

upon activation or deactivation.

• Persistence, i.e. storage management. Functionalities in this group are required

not only for performing CRUD operations on stored ontologies, but also for imple-

menting statefulness and allowing ontology network configurations to be backed

up and restored upon migrating or rebooting the host platform. Concurrency

and transaction control functionalities also belong to this area.

Per Restriction R4 as described in Section 3.6, multitenancy and security tran-

scended the scope of our work and were therefore not included in its reference imple-

mentation. Some persistence-related functionalities such as concurrency and transac-

tion control are also delegated to the underlying storage implementation.

6.2.3 API implementations

Every application in the reference framework Apache Stanbol, i.e. every component

providing an API for resource management, as opposed to simple software libraries,

exposes its functionalities both via Java programming interfaces, and via Web Services

[BHM+04].

The Stanbol ONM is no exception, and therefore provides two APIs:
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Storage: Jena TDB

Storage interface: Apache Clerezza

Deployment: Apache Felix (OSGi+DS)

Serialization: OWL API, Apache Clerezza, 
Stanbol JSON-LD Commons

Web interface: Jersey

Program
m

atic interface: 
A

pache Stanbol O
ntology 

M
anager Services A

PI

Ontology retrieval + parsing: OWL API, 
eXtreme Design Registry API (extended)

User interface: Freemarker+ JQuery

Figure 6.4: Stanbol ONM technology stack (final iteration) - Logical component

names are indicated in italics, while the software libraries used to implement it are in

boldface next to the component name. The programmatic interface allows an abstraction

over all the internal component interfaces it encompasses.
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• The Java object-oriented API implements the object model as defined in Section

5.3. The Java API can be accessed by including the Stanbol ONM packages and

their dependencies in the Java classpath of the client application that needs to

use the API, either manually by importing the corresponding set of bundle, or

manually via the OSGi service component framework, by wrapping the client

application as an OSGi component itself.

• The RESTful API was implemented in Java using the reference implementation

of the JAX-RS specification for enabling RESTful Web Services in Java [Bur09].

The reference implementation of the JAX-RS specification is Jersey [Jer]. The

RESTful API can be accessed by any client that handles requests and responses

in the HTTP protocol. An HTML client application is also deployed by default,

which allows users to interact with the service stack directly and manipulate

virtual ontology network by using a Web browser (cf. Figure 6.2).

As far as ontology serialization formats are concerned, the RESTful API is able to

consume and return ontologies (including images and ontological forms of collectors)

in any of the nine formats listed in Section 2.2.5, i.e. RDF/XML, RDF/JSON, JSON-

LD, N3, Turtle, N-Triples, OWL/XML, the OWL functional syntax and the Manchester

OWL syntax.

6.3 Availability

As an integrating component of Apache Stanbol, the Ontology Manager source code

and binary distributions are freely available and so are all the assets required to build

from source. So are the ontology networking components going by the name of Stanbol

ONM in the present work. All the Stanbol Ontology Manager components are available

in source code form under the Apache License 2.0 [Apad].

The Apache Stanbol project page [Apag] provides documentation, source code links

and some binary releases of the whole Stanbol technology stack as well. Documentation

on how to build the project from source is available on the same website.

Another source of the binary Stanbol Ontology Manager is the Interactive Knowl-

edge Stack project page. The Interactive Knowledge Stack provides an alternative

deployment of a semantic CMS support platform, which includes an Apache Stanbol

148

http://code.google.com/p/iks-project/
http://code.google.com/p/iks-project/


6.3 Availability

binary release. At the time of writing, the most recent release of this technology in-

cludes a version of the Stanbol Ontology Manager dating six months ahead of the most

stable and feature-complete revision.
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Evaluation

We evaluated our combined logical and software approach by running a selection of

tests and experiments on its reference implementation, i.e. the Stanbol ONM. As

multiple aspects, both qualitative and quantitative, had to be evaluated, so was the

evaluation method multifaceted. To assess which ontology network layouts generated by

3-tier multiplexing could guarantee highly expressive OWL interpretations, we devised

a light theoretical framework based on graph theory. We then singled out the cases

where very sparse axiom distributions could not be e↵ectively laid out by the method.

It was also necessary to give an assessment of the memory footprint of the ontology

networks generated by this method. The resulting figures were used to verify not

only whether the overhead introduced was negligible, but also whether less resource

consumption could be guaranteed, compared to holding multiple in-memory ontology

networks which share some ontologies.

7.1 OWL axiom interpretation

Unless a language-specific programming interface is used for supplying them to a client

application, ontology networks need to be serialized to a consumable, presumably stan-

dard format and thereby exported as documents or, more precisely, Web resources.

Some of these formats, described in Section 2.2.5, are not natively ontological, as is

the case of RDF-based ones (RDF/XML, Turtle, JSON-LD, etc.). In such cases, the

burden of parsing these documents and extracting knowledge from them naturally falls

on client applications such as ontology editors, DL reasoners and indexing software.
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Having already discussed and forewarned about the caveats and side e↵ects of network

structures on ontology interpretation in Chapter 3, we shall now proceed to evaluate

how accommodating the network structures resulting from our solution proposal are,

in this respect.

7.1.1 Method

Our validation work for this qualitative aspect of 3-tier multiplexing proceeded by the

following steps:

1. Define a family of sets of ontology sources in a non-OWL format, whose raw

statements are distributed according to certain criteria. These will be grouped

into distribution patterns.

2. For every occurrence of such distribution patterns:

(a) Determine what its optimal (i.e. most expressive, or whose axioms are of

the highest possible order, cf. Section 4.1.1.2) OWL interpretation is.

(b) Determine the way ontologies in the distribution pattern occurrence should

be laid out in order to guarantee the optimal interpretation. These layout

methods are grouped into connectivity patterns.

(c) Verify whether an ontology network constructed through a näıve approach,

i.e. a trivial connectivity pattern, can deliver the interpretation in (a) when

fed to an OWL interpretation engine.

(d) If not:

i. Try to realize a layout according to the connectivity pattern in (b) us-

ing the Stanbol ONM, in order to guarantee (a) using the same OWL

interpretation engine as in (c).

ii. If (b) cannot be obtained, verify whether Stanbol ONM can realize a

layout that is still more expressive than the näıve approach in (c).

3. Group distribution patterns in each (b) according to the possibility of obtain-

ing them using the Stanbol ONM, so as to isolate satisfiable and unsatisfiable

distribution patterns.
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Distribution patterns reflect the ways axioms of di↵erent types can be distributed

across multiple ontologies. Each resulting set of ontologies will be an occurrence of a

distribution pattern. At least one example for each distribution pattern will be listed

here, however, the test were performed on multiple occurrences, roughly ten to twenty-

five sets each, which varied by the number of vertices (ontology sources) and entities

used within each vertex. The core aspect to be tested for all distribution patterns,

however, is whether every usage in the ABox of a property that we expect

to be an OWL object property, is interpreted as an OWL object property

assertion, instead of an annotation of data property assertion. Every other test is

built upon this rationale.

The goal of step 2 is then to determine if it is possible to lay ontologies in a distri-

bution pattern out by using 3-tier multiplexing, so that reading out these ontologies we

can attain the highest expressivity possible (intuitively, the same level of expressivity

reached by having all the statements in a single ontology). The possible, or rather, plau-

sible ways to lay ontologies out in a network can themselves be conveniently grouped

into classes, which we labeled connectivity patterns. Connectivity patterns will be enu-

merated and discussed in a dedicated section in this chapter. We can then summarily

reformulate the goal of step 2 as: “for each distribution pattern, find at least one con-

nectivity pattern that allows the resulting ontology network to be interpreted with the

same expressivity as if it were a single ontology”. We then determine whether any of

the connectivity patterns found can be realized as a 3-tier multiplexing configuration

in the Stanbol ONM. This proof is conducted by example. If none is found for at least

one pattern occurrence, then the distribution pattern at hand is unsatisfiable.

As for the OWL interpretation engine mentioned in (2c-d), the reference engine was

the OWL API 3 [OWLa], taken both as a standalone library for writing test programs,

and as a core component of the Protégé 4[Pro] and NeOn Toolkit [NeOb] ontology

editors. We chose this library because (i) it is a widespread and complete Java library

with full support for the OWL 2 language features; (ii) it can parse RDF/XML, Turtle

and Notation 3 ontology sources and interpret them in OWL; (iii) it has a visiting policy

for ontology networks, that delivers di↵erent interpretations of the same ontologies if

laid out di↵erently1.

1Per Assumption A9, we assumed not to know about this characteristic of the OWL API 3 prior

to employing it, hence we verified it empirically.
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We have set no limits on the expressivity to be attained by interpreting ontologies,

other than assuming to stay within the normative profiles of OWL 2 listed in Section

2.2.4 [MGH+09]. Per Hypothesis H2 (cf. Section 3.5), our goal is to simply determine

whether our method allows a natural way to lay out some ontology networks in order

to obtain better results that the näıve approach. We use the näıve approach as a

reference in accordance with Assumption A10 (cf. Section 3.4), which states that

ontology consumers do not necessarily know how ontology networks should be built,

let alone that their layout is logically relevant. Therefore, they will expectedly try the

näıve approach in absence of a dedicated framework. Also, due to Assumption A3, they

are typically not allowed to modify the original ontology sources, so network assembly

occurs in an environment they can control, and that environment is the Stanbol ONM.

7.1.1.1 Materials

We quickly review the technological setting in which we performed our experiments:

• Hardware: 2.3 GHz Intel Core i5, 8 GB DDR3 1,333 MHz

• Operating System: Mac OS 10.6.8, Ubuntu 12.04 on Linux kernel 3.2 (virtu-

alized on Oracle VM VirtualBox), both systems for x86 64 architectures.

• Runtime environment: Java 1.6.0 (JDK), Hotspot Virtual Machine on both

operating systems, 4GB heap space.

• Testing platform version: Apache Stanbol 0.10, built from source snapshot as

of September 30, 2012.

• OWL interpretation engine: OWL API versions 3.2.x (both in Protégé 4.2

and standalone as used in plain Java testing mini-applications) and 3.1.0 (NeOn

Toolkit 2.5).

7.1.2 Connectivity patterns

A connectivity pattern is a scheme for constructing connected graphs1. These graphs

are built from the connectivity pattern by replication of vertices and arcs. Resulting

1The term “connectivity pattern” is of novel usage in this context, being lifted from an unrelated

concept in the neuroscience domain [KKMM11]
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graphs, in turn, may or may not be trees, that is, they may contain at least one cycle

or none, respectively. In the context of this work, connectivity patterns are ways to

connect networked ontologies with one another in order to assemble real or virtual

ontology networks.

In general, graph patterns can be regarded as classes of graphs conveniently grouped

by a given property, or a specific way to construct other graphs in the class starting from

a base one, e.g. by replication of certain vertices and arcs. The following theoretical

discussion refers to the fundamentals of graph theory [CZ04].

Definition (connectivity pattern and entry node). A connectivity pattern is a

class of vertex-wise traversable digraphs. The starting vertex of one walk that traverses

vertex-wise a digraph in each class is called the entry node for the connectivity pattern.

A digraph is a directed graph. “Vertex-wise traversable” means that there is at least

one path, or circuit, that visits every vertex in the digraph, though not necessarily by

passing though every arc. The relations and criteria by which digraphs are grouped into

classes will be cleared in the remainder of this section for each connectivity pattern. For

the general literature on graph classes we refer to Brandstädt et al. [BLS99]. A digraph

that is a member of a class defined as a connectivity pattern is said to instantiate that

pattern.

The above definition has a number of implications to be taken into account. To

begin with, since all digraphs in a connectivity pattern are traversable vertex-wise,

then they are necessarily connected. Recall from our definition of ontology network

(cf. Section 4.1.2), that ontology networks are mappable to connected graphs via the

chosen connectivity relation. As the requirements for a digraph to be traversable are

out of the scope of this work, we refer to the literature on digraph traversibility [BL98]

for details.

In addition, connectivity patterns do not necessarily construct trees, since cycles

are generally allowed. Note, however, that for the sake of simplicity we shall make the

reasonable assumption that loops, i.e. cycles from a vertex into itself (or, in OWL par-

lance, an ontology importing itself), have no impact on the interpretation of ontologies

and can therefore be disregarded.
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Finally, note that di↵erent selections of entry nodes imply, in general, di↵erent

connectivity patterns. However, there can be cases, as are those of ring patterns, where

they can reduced to a single pattern by isomorphism.

In the following, we will make use of some fundamental notions of graph theory, such

as Hamiltonian and Eulerian graphs [CZ04]. To that end, we introduce the following

corollary to the definition given earlier.

Corollary 1. Hamiltonian or Eulerian digraphs instantiate connectivity patterns.

Proof. Both Hamiltonian and Eulerian digraphs are traversable by their very defini-

tions. Specifically, if a digraph G is Hamiltonian, then it has at least one cycle that

contains every vertex in G. Let the entry node of G be any vertex of such a cycle.

Likewise, if G is Eulerian, then it contains at least one circuit that passes through

every vertex in G exactly once. Let the entry node of G be the first vertex of such a

circuit.

7.1.2.1 Trivial connectivity pattern: flat with auxiliary root

The trivial connectivity pattern will be the reference scheme for ontology networks in

this evaluation, i.e. for every class of ontology network that can be realized with 3-tier

multiplexing, we will check whether it performs better than a network realized with

the same ontologies using a flat connectivity pattern. In other words, it represents the

näıve approach to the construction of ontology networks.

o0

o1 o2 on. . . . .

Figure 7.1: Flat connectivity pattern for n ontologies. - Root ontology o0 is

introduced for importing the other two without modifying them permanently.

The flat connectivity pattern is illustrated in Figure 7.1. Vertices {o1, o2, . . . on}
denote networked ontologies, while o0 is an ontology devoid of logical axioms, such

that a dependency between o0 and each of {o1, o2, . . . on} holds.
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The auxiliary root vertex o0 is required in order to have an entry node. It is labelled

auxiliary, in that it does not correspond to any ontology from the knowledge base of in-

terest {o1, o2, . . . on}, but its role is simply to connect them. In sheer topological terms,

the root could also be chosen from that knowledge base. However, if the selected vertex

denoted an ontology containing logical axioms, this would introduce a bias influenced

by which ontology is selected: the connectivity pattern could no longer be trivial nor

serve as the basis for the required näıve approach.

7.1.2.2 Ring

A ring connectivity pattern is a class of the simplest Hamiltonian digraphs.

Given n vertices, n � 2, any Hamiltonian digraph with no loops1, such that:

• for each vertex o
i

, i = 1..n indeg(o
i

)  2 and indeg(o
i

)  2, and

• for each i and j if there is an arc (o
i

, o
j

) and outdeg(j) = 2, then (o
j

, o
i

) also

exists.

belongs to the ring connectivity pattern. In addition, the ring connectivity pattern

(see Figure 7.2) comprises all and only the digraphs in the ring pattern, such that

for each o
i

, i = 1..n, indeg(o
i

) = outdeg(o
i

) = 1. Recall that indeg(v) and outdeg(v)

are the number of inbound and outbound arcs of v, respectively. In other words, the

one-way ring pattern is the class of all the Eulerian digraphs in the tout-court ring

pattern.

If the connectivity relation is an OWL import relation, then ontology networks

constructed on a ring pattern are generally an overkill, since in our experimental setting

the axioms in an ontology are only interpreted on its first visit and not re-interpreted

further. For this reason, we can disregard non-Hamiltonian cycles and consider one-way

rings exclusively.

7.1.2.3 Broken ring

A broken ring connectivity pattern is a non-Hamiltonian variant of the ring pattern.

Given n vertices, n � 2, any digraph with no loops, such that:

• for each vertex o
i

, i = 1..n indeg(o
i

)  2 and indeg(o
i

)  2, and

1Recall that a loop is a cycle from one vertex into itself.
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O
2

O
3

On

O
1

Figure 7.2: (One-way) ring connectivity pattern - All digraphs in this pattern

contain a cycle that encompasses every vertex and every vertex has exactly one inbound

arc and one outbound arc. The dashed arrow indicates the connection of the remaining

vertices o4..on�1.

• for exactly two pairs of vertices i and j, there are only arcs of type (o
i

, o
j

) or

(o
j

, o
i

), and at least one of either type exists.

In general, not all digraphs belonging to this pattern are traversable. A traversable

variant of the broken ring is the one-way broken ring pattern, which is illustrated in

Figure 7.3. In the one-way variant, indeg(o
i

) = outdeg(o
i

) = 1 for all the vertices,

except for one where outdeg(o) = 1, indeg(o) = 0 and another one where outdeg(o0) =

0, indeg(o0) = 1, and o 6= o0.

O
2

O
3

On

O
1

Figure 7.3: (One-way) broken ring connectivity pattern - The dashed arrow indi-

cates the connection of the remaining vertices o4..on�1.
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7.1.2.4 Multipartite

Themultipartite connectivity pattern is one of the ways several static ontology networks

are assembled by design. It is found, for example, in many ontology design patterns

submitted to the ODP.org repository (cf. Section 2.4.3)1.

Any acyclic digraph for whose vertices a partition exists, so that:

• if there is an outbound arc from any vertex in partition i, then that arc goes

necessarily into a vertex of partition j where i 6= j;

• there is a single vertex o0 with no inbound arcs, and that vertex is the only

member of partition 0;

• one of the following holds:

– every arc belongs to some path of length k, where k + 1 is the number of

partitions2 (fixed path length);

– every arc belongs to some path of length l, 1  l  k, where k + 1 is the

number of partitions (variable path length);

belongs to the multipartite connectivity pattern. If the digraph has p partitions,

then it is called p-partite, and so is the connectivity pattern it is built upon.

Figure 7.4 shows an example of a k + 1-partite connectivity pattern with fixed

path length. Clearly, o0 is the entry point of this connectivity pattern. Note that all

partitions can be ordered so that all arcs are from vertices in one partition to vertices

in the partition “below”. There are no arcs upwards, otherwise the digraph would have

cycles. Also note that, as with multipartite graphs (non-directed), there are never arcs

between two vertices in the same partition, as such a type of connection cannot be

realized with the multiplexing technique described in this thesis.

Figure 7.5 shows an example of a k + 1-partite connectivity pattern with variable

path length. In the figure, vertices o1,n and o2,2 have no outbound arcs, so paths of

length 1 and 2 are shown.

1This holds if we rule out the content pattern annotation schema [Con], which is an ontology

imported by every content pattern, but comprised of annotation property definitions only, therefore it

can be disregarded from the DL point of view
2Recall that the length of a path is the number of arcs it has, counting repeated arcs as many times

as they appear.
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o0

o1,1 o1,n. . . . .

o2,1 o2,2 o2,m. . . . .

ok,1 . . . . . ok,l�1 ok,l

Figure 7.4: Multipartite connectivity pattern with fixed path length. - The figure

depicts a k+1-partite connectivity pattern. Arcs only exist from vertices in a partition to

vertices in a single other partition. All paths are of length k.

o0

o1,1 o1,n. . . . .

o2,1 o2,2 o2,m. . . . .

ok,1 . . . . . ok,l�1 ok,l

Figure 7.5: Multipartite connectivity pattern with variable path length. - The

figure depicts a k + 1-partite connectivity pattern. All paths are of length up to k.
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7.1.2.5 Tight replication with root cycling

The following connectivity pattern is a peculiar class of connected digraphs, in that it

defines one of the structures that can be implemented by the Stanbol ONM.

Before introducing this pattern, it is useful to recollect the notion of polytree from

graph theory [RP88]. A polytree is a digraph graph with exactly one undirected path

between any two vertices. Note that a so-defined digraph is also acyclic, therefore it

is also called a directed acyclic graph (DAG) whose underlying undirected graph is

connected. Note that every graph built using the multipartite connectivity pattern is

a polytree, but not every polytree can be built that way, as polytrees in general can

have multiple roots.

Any connected digraph G with no loops so that:

1. for every vertex o
i,j

but one (called root, o0), indeg(oi,j) = 1;

2. indeg(o0) > 1;

3. the union of the shortest paths from o0 to every other vertex forms a polytree T ;

4. with the exception of the descendants of one child of o0, for any leaf o of T there

is an arc (o, o0) in G;

5. no other arcs than those in T and those defined in (4) exist in G;

belongs to the tight replication connectivity pattern with root cycling, with o0 as the

entry node to the pattern.

A less formal definition can be given by construction as follows. Let T be a polytree

with only one source, and let that source be o0. For every leaf but the descendants of

one single child of o0, add an arc from the leaf to the root. The digraph G so obtained

belongs to the connectivity pattern.

Figure 7.6 shows a construction scheme for members of this connectivity pattern.

Root o0 has n children {o1,1...on,1} Each child has a (possibly empty) subtree, indicated

by the dashed arrows and the dotted lines between their arcs. For each leaf in every

subtree but one, there is an arc from that leaf to o0. No other arcs exist.

Note that, because of the designated vertex in (4), which we shall call o
n,1, none

of the graphs in this pattern is Hamiltonian, because there should be at least one
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O
0
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2,1

O
1,j

On,1

.............

O
1,k........

On�1,l . . .On�1,m

Figure 7.6: Tight replication connectivity pattern with cycling on root vertex

- All arcs from a designated root O0,1 recursively form a descending tree. However, for

every leaf that is not a descendant of the last child of the root O
n,1, an arc from that leaf

to O0,1 is added.

Hamiltonian cycle passing through o
n,1 and its children. However, no such cycle exists

as it is not possible to return to the root o0 once o
n,1 is encountered. Also note that

there is a Hamiltonian path (non-cycle) i↵ o
n,1 is a leaf.

7.1.2.6 Tight replication with intermediate layer cycling

This is a variant of the tight replication connectivity pattern with root cycling. It is

still used to realize cyclic graphs, but unlike the root cycling variant, all the cycles in

these graphs no longer involve a single vertex necessarily. Once again, this connectivity

pattern can be implemented using 3-tier multiplexing, and by extension the Stanbol

ONM. Let us now formulate the definition of this connectivity pattern by means of the

previous one.

Any connected digraph G with no loops so that:

1. for every vertex o
i,j

but one (called root, o0), indeg(oi,j) = 1;

2. indeg(o0) = 0;

3. the union of the shortest paths from o0 to every other vertex forms a polytree T ;
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4. with the exception of the descendants of one child of o0, for some leaf o
n,m

of T

there is an arc (o
n,m

, o
k,m+1) in G, with 0 < k < n ;

5. no other arcs than those in T and those defined in (4) exist in G;

belongs to the tight replication connectivity pattern with intermediate layer cycling.

O
0

O
1,1 O

2,1

O
1,j

On,1

.............

O
1,k........

On�1,l . . .On�1,m

Figure 7.7: Tight replication connectivity pattern with intermediate layer cy-

cling - Exactly one root o0 has no inbound arcs. The shortest paths from o0 form a

polytree. However, for every leaf that is not a descendant of the last child of the root o
n,1,

there is an arc from that leaf to an intermediate vertex.

7.1.2.7 Rooted polytree, or loose replication

The rooted polytree connectivity pattern can be regarded as an acyclic variant of the

tight replication pattern, i.e. one where there are no outbound arcs in correspondence

of the leaves of the spanning tree. For this reason, we shall also call it loose replication

connectivity pattern.

Recall that a polytree is a directed graph with exactly one undirected path between

any two vertices. Thus, every polytree with exactly one source (the root) belongs to

the rooted polytree connectivity pattern. This connectivity pattern is also distinguished

from the multipartite pattern, since the former allows vertices whose inbound degree is

greater than 1, whereas this one requires all of them to have inbound degree 1 except

for the root, which has zero.
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O
0

O
1,1 O

2,1 On,1

.............

Figure 7.8: Rooted polytree connectivity pattern - For each leaf there is a (directed)

path from a designated root vertex o0 to that leaf. No arcs exists that are not part of one

such path.

The construction scheme of digraphs in the rooted polytree pattern is shown in

Figure 7.8. o0 is the single source of the polytree. Its children, {o1,1, ..., on,1} in this

scenario, can have any arbitrary subtrees, and no cycles are added on top of them.

Ontology networks using this connectivity pattern can be implemented with the Stanbol

ONM. Due to their desirable properties such as the lack of cycles, if an ontology network

built using this scheme can be interpreted in order to deliver highly expressible axioms,

then the original set of ontologies is informally said to be network-friendly.

7.1.3 Distribution patterns

Having described the essential connectivity patterns that shall be used in our demon-

strations, let us not proceed to describe distribution patterns. Distribution patterns

encode the possible ways axioms are distributed across multiple ontologies. If the on-

tologies are not represented natively in an ontology language, then distribution patterns

are ways to distribute raw statements across multiple ontology sources. We have sin-

gled out some distribution patterns, and the goal is to determine whether for these

distribution patterns there is an optimal ontology network layout that can be realized

using 3-tier multiplexing, and by extension the Stanbol ONM.

In Section 4.1.2 we enunciated the di↵erence between connectivity and dependency

relations between ontologies in an ontology network. Typically, the example ontology
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sets we used for representing distribution patterns are connected, but not dependent

on one another. The rationale is to use dependency relations that are able to reflect the

existing connectivity relations, as the latter we cannot modify due to having restricted

ourselves to not using ontology modularization (cf. Restriction R5 in Section 3.6). As

a matter of fact, to realize a connectivity pattern means to implement dependencies

between ontologies, by using the same structure as the one that emerges from their

intrinsic connectivity.

In the following, these prefixes, expressed in Turtle syntax, will be assumed to hold:

owl: <http://www.w3.org/2002/07/owl#> .

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

: <http://www.cs.unibo.it/~adamou/ontologies/patterns/entities#> .

We shall now describe, with some examples, the distribution patterns that have

been singled out for analysis.

7.1.3.1 TA-simple

This is the simple TBox-ABox (TA) distribution pattern. In it, the ontology set

consists of two ontologies {oT1 , oA1 }, where oT1 and oA1 contain exclusively TBox and

ABox axioms, respectively. This is a recurrent, albeit stringent, distribution pattern

that is often instantiated in Linked Data. An example is to be found in the DBPedia

{ontology, dataset} pair [DBP], but the pattern actually appears in any Linked Data

set that does not export any terminological axioms associated with its data.

Example occurrence - Set 1

oT1 contains a single object property declaration:

:op1 a owl:ObjectProperty .

oA1 contains a single statement using the object property asserted oT1 as a predicate.

Note that we are not in the position to call it an object property assertion at this stage.

:in1 :op :in2
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The desired interpretation on OWL, i.e. the one that would be obtained of all the

statements were in the same ontology, would be (in OWL functional syntax):

Declaration(ObjectProperty(:op1))

ObjectPropertyAssertion(:op1 :in1 :in2)

However, the näıve approach delivered the following:

Declaration(ObjectProperty(:op1))

AnnotationAssertion(:op1 :in1 :in2)

where in2 is treated as an IRI but not as an OWL named individual, as IRIs that

do not represent entities are still legal OWL annotation values [MPSP+09].

Example occurrence - Set 2

In this second example, the object property declaration is not explicit, but it should

be inferred from property usage in a restriction applied to a class (which is never defined

as such, but used in another ontology as a type). oT1 declares a universal restriction on

property op2 and entity c1, and applies it to a class c2.

:c2

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :op2 ;

owl:allValuesFrom :c1

] .

oA1 applies property op2 between an instance inc2 of class c2 and another entity

inc1.

:inc2 a :c2 ;

:op1 :inc1 .

Again, the optimal interpretation would be:
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ClassAssertion(:c2 :inc2)

SubClassOf(:c2 ObjectAllValuesFrom(:op2 :c1))

ObjectPropertyAssertion(:op1 :inc2 :inc1)

However, the näıve interpretation was instead:

ClassAssertion(:c2 :inc2)

SubClassOf(:c2 ObjectAllValuesFrom(:op2 :c1))

AnnotationAssertion(:op1 :inc2 :inc1)

Note that the universal restriction was correctly detected as an application of an

object property, but its usage in the subsequent assertion did not respect the binding

on the property type for op1.

7.1.3.2 T-split

In a T-split distribution pattern, only the statements that are expected to be interpreted

as TBox axioms are considered. A set of two or more ontologies whose aforementioned

statements (i) are distributed across them; and (ii) are not repeated in any ontology

in the set, are said to follow a T-split pattern.

Example occurrence

o
T1 contains n object property declaration property declaration:

:op1 a owl:ObjectProperty .

o
T2 declares a subproperty of the property declared in o

T1 .

:op2 rdfs:subPropertyOf :op1 .

o
T3 uses the property declared in o

T2 in a universal restriction.

:c2 rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :op2 ;

owl:allValuesFrom :c1

] .
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The optimal interpretation of the above would be:

Declaration(ObjectProperty(:op1))

SubObjectPropertyOf(:op2 :op1)

SubClassOf(:c2 ObjectAllValuesFrom(:op2 :c1))

However, the näıve interpretation was instead:

Declaration(ObjectProperty(:op1))

SubAnnotationPropertyOf(:op2 :op1)

SubClassOf(:c2 ObjectAllValuesFrom(:op2 :c1))

According to the result of the näıve approach, op1 is an object property because it is

declared to be, and op2 is also used as an object property in the anonymous superclass

defined for c2. However, subsumption between the two properties is detected at the

annotation property level, whereas op1 and op2 remain as sibling properties at the

object property level. This means that, if we were to add the following statement

somewhere:

:in1 :op2 :in2 .

there is a chance a DL reasoner might not be able to produce the following expected

inference for the super property (which the HermiT reasoner [Her], for one, did not when

we conducted out experiment):

ObjectPropertyAssertion(:op1 :in1 :in2)

7.1.3.3 TA-retroactive

A set of two or more ontologies follows the TA-retroactive distribution pattern if some

ontology contains TBox axioms and at least one ontology applies ABox axioms, whose

corresponding individuals should influence the interpretation of the ontologies that

contain TBox axioms.
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Example occurrence

o1 contains a single RDFS subsumption statement between two undeclared proper-

ties.

:op1 rdfs:subPropertyOf :op0 .

o2 declares two named individuals :in1 and :in2, and establishes all possible predi-

cates using subproperty :op1. In addition, it assigns a property range to super-property

:op0 over a nominal class made up by enumerating the newly declared individuals.

:op0 rdfs:range [ rdf:type owl:Class ; owl:oneOf ( :in1 :in2 ) ] .

:in1 a owl:Thing ;

:op1 :in2 .

:in2 a owl:Thing ;

:op1 :in1 .

Since property range axioms over OWL classes are only allowed for object proper-

ties, and due to the punning restriction on property types in OWL 2 [GWPS09], it is

expected that both :op0 and :op1 be interpreted as object properties, and their uses

in ABox axioms as object property assertions. Thus the optimal interpretation would

be:

SubObjectPropertyOf(:op1 :op0)

ObjectPropertyRange(:op0 ObjectOneOf(:in2 :in1))

ClassAssertion(owl:Thing :in1)

ObjectPropertyAssertion(:op1 :in1 :in2)

ClassAssertion(owl:Thing :in2)

ObjectPropertyAssertion(:op1 :in2 :in1)

However, the näıve interpretation was instead:

SubAnnotationPropertyOf(:op1 :op0)

ObjectPropertyRange(:op0 ObjectOneOf(:in2 :in1))

ClassAssertion(owl:Thing :in1)
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AnnotationAssertion(:op1 :in1 :in2)

ClassAssertion(owl:Thing :in2)

AnnotationAssertion(:op1 :in2 :in1)

which means that the object property range axiom in the interpreted o2 did not

propagate the type of op1 to the one axiom in in o1, and then back to the usage of the

subproperty in o2 itself.

7.1.3.4 A-split

In the A-split distribution pattern, the TBox and ABox axioms are distributed across

two or more ontologies, so that at least two ontologies contain some ABox axiom.

Occurrences of this distribution pattern can be expected whenever there is a need to

generate an ontology network that combines multiple portions of linked data, especially

if they come from di↵erent datasets that are nevertheless built on top of the same

vocabulary. An example are the various BBC media datasets which make use of the

DBTune vocabulary [DBT].

Note that a set of ontologies can follow both the T-split and the A-split distribution

patterns at the same time.

Example occurrence 1

Let o1 be an ontology1 that declares an OWL object property and uses it across

two entities in1 and in2. Clearly, we expect both in1 and in2 to be interpreted as

OWL individuals, ultimately.

:op1 a owl:ObjectProperty .

:in1 :op1 :in2 .

Let now o2 be an ontology that declares a further named individual :in3, this time

explicitly. o2 also relates :in3 with another entity, incidentally the object of an object

property assertion in o1. The property used is a new subproperty :op2 of property

:op1 explicitly declared in o1.

1The notation using integers as subscripts instead of A and T indicates that the ontologies at hand

are no longer exclusively comprised of ABox axioms or TBox axioms.
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:op2 rdfs:subPropertyOf :op1 .

:in3 a owl:Thing ;

:op2 :in2 .

The optimal interpretation would be:

Declaration(ObjectProperty(:op1))

SubObjectPropertyOf(:op2 :op1)

ClassAssertion(owl:Thing :in3)

ObjectPropertyAssertion(:op1 :in1 :in2)

ObjectPropertyAssertion(:op2 :in3 :in2)

The näıve interpretation was instead:

Declaration(ObjectProperty(:op1))

SubAnnotationPropertyOf(:op2 :op1)

ClassAssertion(owl:Thing :in3)

ObjectPropertyAssertion(:op1 :in1 :in2)

AnnotationAssertion(:op2 :in3 :in2)

Example occurrence 2

In this second example, two individuals are declared in separate ABox ontologies,

and a property assertion uses them in a third ontology.

Ontology o
A1 declares named individual in1.

:in1 a owl:Thing .

Ontology o
A2 declares named individual in2.

:in2 a owl:Thing .

Finally, ontology o
A3 applies an undeclared property op1 to both individuals.

:in1 :op1 :in2 .
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This particular occurrence does not pose a problem that our solution addresses,

because the interpretation results proved to be unrelated to the layout of ontology net-

works. More precisely, when we merged all the three statements into a single ontology

in order to derive the optimal interpretation, the result was as follows:

ClassAssertion(owl:Thing :in1)

ClassAssertion(owl:Thing :in2)

AnnotationAssertion(:op1 :in1 :in2)

where the property assertion for op1 was interpreted as an annotation assertion,

rather than an object property assertion as we expected, due to holding between two

individuals. This was probably a conservative strategy adopted by the OWL API,

whether a resource is treated as an IRI whenever it is not explicitly stated to be treated

as an entity. We have not found documentation on whether the dual interpretation

as an IRI and an OWL individual would violate OWL 2 punning or not [GWPS09,

MPSP+09].

7.1.3.5 mn-scatter

The mn-scatter distribution pattern is the generalization of split patterns where ABox

and TBox axioms are distributed as sparsely as it makes sense for them to be, i.e. so

that each entity appears at most once in every ontology i.e. they are scattered, hence

the name. Variables m and n denote the number of ontologies across which the TBox

and ABox are distributed, respectively.

Example occurrence.

The following is an example of a 22-scatter pattern occurrence, i.e. there are 2

ontologies that only contain TBox axioms and 2 ontologies that only contain ABox

axioms.

o1
T

declares a simple OWL object property.

:op1 a owl:ObjectProperty op1.

o2
T

states a subproperty TBox axiom involving property op1 which was typed in o1
T

.
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:op2 rdfs:subPropertyOf :op1 .

o1
A

contains a single statement that involves op1, and that should therefore be

interpreted as an ABox axiom.

:in1 :op1 :in2 .

o2
A

explicitly declares a new individual in3 and adds a property axiom for it. If the

other ontologies were to be interpreted first, that property axiom should be interpreted

as an object property assertion, and therefore an ABox axiom.

:in3 a owl:Thing ;

:op2 :in2 .

As with previous examples, none of the above ontologies depend on one another.

However, they are connected, as the following connectivity pairs are formed due to the

usage of properties and individuals: c(o1
A

, o2
A

), c(o1
A

, o2
T

), c(o1
A

, o1
T

), c(o2
A

, o2
T

), c(o2
A

, o1
A

),

along with their inverses.

The expected optimal interpretation is as follows:

Declaration(ObjectProperty(:op1))

SubObjectPropertyOf(:op2 :op1)

ClassAssertion(owl:Thing :in3)

ObjectPropertyAssertion(:op1 :in1 :in2)

ObjectPropertyAssertion(:op2 :in3 :in2)

However, the näıve interpretation produced the following:

Declaration(ObjectProperty(:op1))

SubAnnotationPropertyOf(:op2 :op1)

ClassAssertion(owl:Thing :in3)

AnnotationAssertion(:op1 :in1 :in2)

AnnotationAssertion(:op2 :in3 :in2)
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The OWL functional code above shows that, despite the explicit object property

declaration for op1, every usage of op1 and its subproperty op2 was interpreted as an

annotation assertion, thereby violating global punning.

7.1.4 Results

We shall now proceeds to discuss the results obtained for the distribution patterns

under consideration. For every distribution pattern, we indicated which connectivity

patterns realizable via 3-tier multiplexing can accommodate its ontologies, and whether

the resulting ontology network is interpreted in the most expressive possible way.

7.1.4.1 TA-simple

Ontologies laid out using the TA-simple distribution pattern can be assembled into an

ontology network using the tight replication with intermediate layer cycling connectivity

pattern. To that end, a single scope S can be used. The way to do so is depicted in

Figure 7.9.

S

Scust Score

OScust
A OScore

T

S

S
(m)

cust S(m)

core

(a) (b)

Figure 7.9: Realization of an occurrence of the TA-simple distribution pattern

- In (a), the virtual ontology network is built using a tight replication scheme with scope

S serving as the auxiliary root. In (b), the vertices representing ontology images are

collapsed by merging the images with their ontology collectors. The dash-dotted arcs

denote references generated at OWL export time by the connectivity policy applied at

runtime.
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The layout in (a) can be realized in the Stanbol ONM and relies solely on a single

instance of the two lower tiers of the model. These are represented by a single scope S.

In (a), the TBox ontology o
T

is referenced by the core space of S S
core

, thus generating

its S
core

-image oScore

T

, while its custom space S
cust

references the ABox ontology o
A

, thus

generating its S
cust

-image oScust

A

. As setting a TIGHT connectivity policy makes every

custom ontology reference the core space, so does oScust

A

reference S
core

. References

so generated are indicated as dash-dotted arcs in the figure. Layout (b), which dos

not follow the tight replication pattern, can be realized by following a similar process,

except that the core and custom spaces of S are merged with their children, thus leading

to the merged spaces S(m)
core

and S
(m)
cust

. The subsequent application of the TIGHT policy

makes S(m)
cust

reference S
(m)
core

and depend on it.

Let us show how the first example occurrence is treated. Generated ontology net-

works were interpreted in the most expressive way possible, yet the global interpretation

was ambiguous. The typing statement for :op1 was interpreted unambiguously in o
T

as expected.

Declaration(ObjectProperty(:op1))

The statement that applies :op1 in o
A

was interpreted as an object property as-

sertion. We noted, however, a spurious declaration of :op1 as an annotation property.

This means that the punning restriction on properties in OWL 2, by which an IRI can

be used for one kind of property only [GWPS09], is only globally valid, but locally

violated.

Declaration(AnnotationProperty(:op1))

ObjectPropertyAssertion(:op1 :in1 :in2)

The annotation property declaration was not part of the original ontology, but was

added by the rendering policy of the OWL API inherited by Apache Stanbol, which re-

quires that all entities in an ontology signature be locally typed by an OWL declaration.

Since the serialization of a stored graph into an RDF format is performed locally, :op1

was exported as an annotation property and its application as an annotation (though

implicitly, as required by RDF serialization). Only when visiting the whole ontol-

ogy network could the :op1 application be interpreted as an object property assertion.
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This behavior was noted as a non-fatal flaw of the Stanbol ONM implementation, which

could be improved by loading the entire imports closure in-memory before exporting an

ontology, though at an increased computational cost. Such an upgrade would benefit

from optimizations that were not in our research plan to implement. However, because

the observed behavior did not disrupt processing by OWL API-based tools such as

Protégé, the result was deemed satisfactory.

We also noted that no declarations were recorded for :in1 and :in2, as there were

no matching statements in the original source code. However, they appeared in the

corresponding Manchester Syntax rendering, as the following excerpt shows:

Individual: :in1

Individual: :in2

The LOOSE variant of the replication pattern, which does not cycle back to an in-

termediate layer (thus being a rooted polytree), failed to deliver an equally expressive

OWL interpretation. The application of :op1 was interpreted as an annotation asser-

tion, as shown by the resulting OWL functional code below:

Declaration(ObjectProperty(:op1))

Declaration(AnnotationProperty(:op1))

AnnotationAssertion(:op1 :in1 :in2)

Consequently, no implicit individuals were detected either. Overall, this occurrence

of the TA-simple pattern was recorded as one case that requires a relatively dense

network layout.

7.1.4.2 T-split

Ontologies distributed by the T-split distribution pattern can be accommodated, under

certain conditions, by also using the tight replication connectivity pattern with inter-

mediate cycling. In Figure 7.10, we show how to guarantee an optimal interpretation

of the example occurrence described in Section 7.1.3. For this specific case, opening a

single scope S is still su�cient. o
T1 needs to be managed by its core space S

core

, while

o
T2 and o

T3 need to be managed by the custom space S
cust

, so that the object property

declaration in o
T1 is inherited by the S

cust

-images of o
T2 and o

T3 .
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S

Scust Score

oScustT2
oScoreT1

oScustT3

Figure 7.10: Realization of an occurrence of the T-split distribution pattern -

A single scope S is used, with the ontology o
T1 containing the object property declaration

managed by the core space S
core

and the other two ontologies managed by the custom

space S
cust

.

In cases where there a multiple TBox ontologies that need to inherit from n ontolo-

gies where an object property is declared for each, it is possible to load the declaring

ontologies into a core space and the remaining TBox ontologies in the corresponding

custom space. If, for some reason (such as access rights restrictions, race conditions

etc.) it is not possible to modify the core space further, additional scopes can be cre-

ated, the declaring ontologies can be loaded in their core spaces, and any further TBox

ontologies can be loaded in the corresponding custom spaces. Then a single session can

be used to join all the scopes together. However, for more complex occurrences of the

T-split pattern, this layout may no longer su�ce. If the OWL inheritance chain were to

be any longer, such as an object property declaration, followed by a subproperty axiom,

followed in turn by a declaration of inverse properties, then a session would have to

be involved for storing TBox ontologies as well, which is sub-optimal due to intended

use of sessions as ABox ontology collectors. We have not yet found T-split pattern

occurrences where more than the 3 tiers used by our method would be necessary in

order to guarantee optimal OWL interpretation.
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7.1.4.3 TA-retroactive

This test proved inconclusive prior to attempting an ontology network assembly using

the Stanbol ONM. When setting a direct import between o
T

and o
A

, the subsumption

relationship from :op1 to :op0 was interpreted as a sub-annotation property axiom,

and their applications were interpreted as annotations despite the object property range

axiom on super-property :op0 and the explicit typing of individuals :in1 and :in2.

SubAnnotationPropertyOf(:op1 :op0)

ObjectPropertyRange(:op0 ObjectOneOf(:in2 :in1))

ClassAssertion(owl:Thing :in1)

AnnotationAssertion(:op1 :in1 :in2)

AnnotationAssertion(:op1 :in1 :in1)

ClassAssertion(owl:Thing :in2)

AnnotationAssertion(:op1 :in2 :in1)

AnnotationAssertion(:op1 :in2 :in2)

Attempting to interpret a single, merged ontology with all the above statements

together yielded the same clauses. The result of this experiment was therefore deemed

positive by hypothesis negation.

7.1.4.4 A-split

Ontology network layouts for the A-split distribution pattern can be created by in-

stantiating the multipartite connectivity pattern. The maximum-length multipartite

pattern that can be realized with 3-tier multiplexing is the 6-partite, spanning from

the ontological form of a session to the ontology images with respect to core spaces.

This is also the implementation that was used for the example occurrence 1 of this

distribution pattern, as shown in Figure 7.11. By having a scope S manage o
A1 in its

custom space, and a session z connected to S and managing the other ABox ontology

o
A2 , we were able to obtain the desired interpretation of the resulting ontology network.

Note that it is possible to obtain a bipartite digraph out of the 5-partite one in

the figure. To do so, one should simply collapse all the vertices representing ontology
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S

Scust Score

oScustA1

z

ozA2

Figure 7.11: Realization of an occurrence of the A-split distribution pattern -

The distribution pattern can be accommodated using a multipartite connectivity pattern

with variable path length. In this example it can reduced to a bipartite graph if all the

vertices representing ontology collectors are collapsed.

collectors by requesting merged versions for the o
A1 and o

A2 images. Note that a

bipartite digraph also realizes a one-way broken ring connectivity pattern.

We have not found any other occurrence of the A-split distribution pattern alone,

where it was not possible to obtain an optimal OWL interpretation of the resulting

virtual network, unless those occurrences were combined with an unsatisfiable T-split

distribution pattern occurrence. All other cases could be accommodated by distributing

ABox ontologies between the custom space of S and the session z, which is also the

intended usage of the Stanbol ONM from an engineering perspective.

7.1.4.5 nm-scatter

A set of ontologies distributed using the nm-scatter pattern can be combined with

3-tier multiplexing only under certain conditions concerning n, m and the amount of

connectivity relations between ABox and TBox ontologies, and between ontologies in

the ABox and TBox. In particular, for n > 2 there are cases where the optimal ontology

network layout cannot be realized using this method.

Figure 7.12 shows how the example occurrence in the nm-scatter pattern section
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can be realized. The connectivity pattern used is the 3-partite. In (a), a 3-partite

connectivity pattern that can implement the network is displayed. In (b), a realization of

that connectivity pattern using one session z and two scopes S1 and S2. The two scopes

share the TBox ontology o
T1 in their custom spaces. However, S1 manages the other

TBox ontology o
T2 , while S2 manages one ABox ontology o

A2 . Session z is connected to

both scopes and manages ABox ontology o
A1 . If all the vertices representing ontology

collectors in (b) are collapsed, then we obtain (a).

oT
1

oT
2

oA
2

oA
1

z

ozA
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(a) (b)

Figure 7.12: Realization of an occurrence of the 22-scatter distribution pattern

- (a) the 3-partite connectivity pattern. (b) its realization in 3-tier multiplexing. The

vertices representing ontology collectors in (b) can be collapsed to obtain (a).

Using this strategy, the resulting interpreted ontology network is as follows:

Declaration(ObjectProperty(:op1))

SubObjectPropertyOf(:op2 :op1)

ObjectPropertyAssertion(:op1 :in1 :in2)

ClassAssertion(owl:Thing :in3)

ObjectPropertyAssertion(:op2 :in3 :in2)
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We note, however, that it was possible to obtain this interpretation because of a

favorable condition that proved fundamental. In fact, it can be observed in Figure

7.12 (a), that in the multipartite connectivity pattern occurrence there are no paths

longer than 2 that involve more than 2 TBox ontologies, the longest one s being from

o
A1 to o

T1 and from o
A2 to o

T1 . If the optimal layout has some path of length 3 or

greater, then we are no longer guaranteed that it can be realized using our method, as

it was proven by more complex experiments. In cases such as 22-scatter and 13-scatter,

this can never happen. However, starting with distributions such as 31-scatter, the

possibility of sub-optimal interpretation of the ontology network. This does not mean

that the method automatically fails on ontology sets larger than 4, because repeated

axioms or the reuse of the same entities across all ontologies, provided that each entity

appears at most once per ontology, can require optimal layouts with path lengths that

involve at most 2 TBox ontologies.

7.1.4.6 Summary

Table 7.1 summarizes our findings with respect to the matches found between connec-

tivity patterns and distribution patterns. What emerges from this table is that, for

all distribution patterns where the optimal interpretation can be obtained, there were

always cases where 3-tier multiplexing fared better than the näıve approach. Some of

the initially hypothesized connectivity patterns, such as the ring and rooted polytree,

despite being realizable with our method, did not prove to be particularly useful for

accommodating ontology sets distributed under specific pattern.

The sets of connectivity patterns, and especially distribution patterns, are by no

means intended to be complete, as they were merely identified by plausibility (with

examples given as the patterns were illustrated) and the possible challenges brought

along from the perspectives of OWL interpretation and ontology network management.

More of these patterns could be identified through a dedicated study, at which point it

can be of interest to locate their matches, real or potential, in the whole Linked Data

cloud. This is far beyond the ambitions of this work, whose future evolution strategies

we shall discuss in Section 8.3. However, with the present study we reasonably believe

to have laid the basis of a general-purpose evaluation framework for ontology networks,

concerning aspects that are normally not encompassed by existing evaluation strategies

or normative documentation.
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Distribution

pattern

Satisfiable Connectivity

pattern(s)

Restriction

TA-simple yes tight replication

w/ intermediate

cycling

T-split yes (conditional) tight replication

w/ intermediate

cycling

Works for axiom

inheritance chains

up to 3.

TA-retroactive not applicable none test cases failed to

interpret properly

A-split yes multipartite w/

variable path

length, broken

ring

nm-scatter yes (conditional) multipartite Guaranteed for

n + m = 4 ex-

cept for n = 3.

Can work for

some cases with

n + m > 4. Con-

nectivity pattern

is obtained by col-

lapsing ontology

collectors.

Table 7.1: Summary of qualitative evaluation.
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7.2 Quantitative evaluation

Having claimed that knowledge management methods alone are not su�cient for tack-

ling ontology network management unless they are backed by an equally solid software

approach, further aspects need to be taken into account when software enters the con-

text. Measurements derived from ontology lifecycle management can help us establish

the soundness of our model logics-wise, in e↵ect validating it. However, there are fac-

tors related to computational e�ciency that need at least to be singled out and kept

under control.

As this work did not focus on heavy optimization of RDF graph management oper-

ations, we had Stanbol ONM rely on existing graph storage backends. This guarantees

implementations to be versatile with respect to the ontology storage backend, but makes

the computational cost greatly dependent on that of the one chosen. Yet, as our imple-

mented approach constructs additional artifacts on top of the flat graph management

middleware, the computational impact of these artifacts and their management had to

be measured.

7.2.1 Setting

In Section 3.6 we stated the restriction under which our research work operated. Among

these, R1 stated that we would not be considering time-e�ciency as a parameter for

evaluation, under the provision of a reasonable real-time responsiveness of the software

platform in rendering ontology network components for Web Services. This is partly

due to the fact that Apache Stanbol and Clerezza rely on third-party storage backends,

which introduce variables that a high-level programming language like Java does not

have full control of. Also, time optimization strategies would require dedicated software

engineering work beyond the intended scope of our research goals. More specifically,

the time e�ciency of create, read, update and delete (CRUD) operations on ontologies

loaded into Stanbol ONM was not considered due to the following reasons:

1. It greatly depends on the time e�ciency of the underlying triple store performing

these operations.

2. It depends on the performance of the hosting hardware, but even if it were to

be normalized, it would still be greatly influenced by other factors, such as con-
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current processes, operating system swapping/thrashing phenomena, and disk

fragmentation.

The technological setting of our experiments was similar to that for the qualitative

evaluation, with a few additional details:

• Hardware: 2.3 GHz Intel Core i5, 8 GB DDR3 1,333 MHz

• Operating System: Mac OS 10.6.8, Ubuntu 12.04 on Linux kernel 3.2 (virtu-

alized on Oracle VM VirtualBox), both systems for x86 64 architectures.

• Testing platform version: Apache Stanbol 0.10, built from source snapshot

as of September 30, 2012. Dedicated launcher containing only the Stanbol ONM

and its dependencies.

• Runtime environment: Java 1.6.0 37; Java HotSpot(TM) 64-Bit Server VM

• File systems: HFS+ with journalling (Mac OS environment); ext4 (Linux en-

vironment)

• Benchmark: VisualVM 1.3.5

• Virtual Machine arguments (vmargs): -Xmx4g -XX:MaxPermSize=128m

The maximum size of the memory pool for storing objects, or heap, was set to

4 GiB, which only slightly exceeds the address space of 32-bit architectures without

having to swap memory. The maximum permanent generation size (cf. Section 7.2.2)

is set to a maximum of 128 MiB instead of the 256 MiB that would normally be

required by a full Stanbol launcher, because we used for a minimal launcher with all

the dependencies of the ontology manager. Since only one further bundle is added

for performing the tests, the permanent generation does not grow further once all the

bundles have been loaded and activated.

7.2.2 Definitions

Before proceeding with the quantitative evaluation results, a few preliminary definitions

concerning the principles of memory management and garbage collection are necessary.

For further details, we refer to the existing literature [JL96].
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[Java] Virtual Machine ([J]VM). A simulation of a real machine that runs byte-

code [in the Java programming language].

Garbage collection. A memory management feature that reclaims the memory

space occupied by objects that are no longer in use in the virtual machine. Can run

periodically or upon explicit calls.

Heap. The memory area used by the VM for storing objects created by running

programs.

Retained size (of an object) . The amount of memory that a VM object preserves

from garbage collection. It includes the size of the object itself (shallow size), plus

the retained sizes of all the objects referenced only by it. Note that this definition is

recursive.

Young, tenured and permanent generation. Most Java VMs (including the

HotSpot, which we chose for our measures due to its high circulation) manage mul-

tiple memory pools for storing objects and other data. Some of these pools are called

generations. The initial allocation of most objects occurs in the young generation, in

turn divided into an eden space and one or more survivor spaces, the latter being des-

tined to store objects that survive a garbage collection run. The tenured generation

holds objects that have reached a certain age in a survivor space. Finally, the perma-

nent generation holds all the reflective data of the VM itself, such as the objects that

represent the classes and methods themselves [Jav].

All sizes related to virtual machine (VM) objects are assumed to be specified in bytes

unless otherwise noted.

7.2.3 Calibration

The computational impact of our proposed software architecture can only be evaluated

by comparing the resource usage of its reference implementation against a set of refer-

ence measures. These measures will be taken as the “zeroes” of our evaluation process,

i.e. the basic figures that equally bottleneck näıve systems and more elaborate systems.
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In other words they are the limits, to improve upon which intervention on the low-level

layers of ontology storage would be required. The process of determining zeroes for our

quantitative evaluation is what we call calibration.

To calibrate on the memory usage of ontologies, we automatically generated very

simple but potentially large RDF graphs, each containing entities whose size is almost

fixed for nearly every triple in the graph. In order to create a graph of N triples, where

N is an even integer >= 4, we proceeded as follows:

For n = 0..(N2 � 2), the following pair of typing triples (i.e. raw statements that

express the assignment of a type to a resource) were created, namely an individual

declaration and a class assertion axiom in RDFS and OWL, plus the class definition of

foaf:Person [GCB07] and a simple, non-versioned OWL ontology ID.

<http://www.cs.unibo.it/~adamou/ontologies/[time]> a owl:Ontology .

foaf:Person a owl:Class .

<http://www.cs.unibo.it/~adamou/data/person-[n]>

a owl:NamedIndividual, foaf:Person .

thus totaling exactly N triples. The DL expressivity of these ontologies is AL

(Attributive Concept Language, without complements), i.e. very basic. This only has a

computational impact if DL-aware processing applications are involved.

These were steps performed for calibrating the memory footprint of ontologies:

1. Generate one ontology as described above for each order of magnitude, in terms

of size in triples, from 10 to 100,000.

2. Load each ontology once into Stanbol ONM.

3. For each number of concurrent requests to simulate:

(a) Simulate the desired number of ontology requests, keeping the JVM from

garbage-collecting the corresponding ontology objects.

(b) Dump the JVM heap and compute the retained size of all objects therein.

(c) Query the heap dump for every instance of the class representing ontology

objects.

186



7.2 Quantitative evaluation

Graph size

(triples)

Concurrent

requests

In-memory

occurrences

Cumulative

retained size (B)

10 10 10 27,530

10 100 100 275,300

10 200 200 550,600

10 500 500 1,376,500

100 10 10 187,130

100 100 100 1,871,300

100 200 200 3,742,600

100 500 500 9,356,500

1,000 10 10 1,734,490

1,000 100 100 17,344,900

1,000 200 200 34,689,800

1,000 500 500 86,724,500

10,000 10 10 16,921,370

10,000 100 100 169,213,700

10,000 200 200 338,427,400

10,000 500 500 846,068,500

100,000 10 10 176,982,170

100,000 100 100 1,769,821,700

100,000 200 200 3,539,643,400

100,000 500 N/A OOM

Table 7.2: Memory footprint of multiple simulated requests for an ontology -

Clerezza in-memory (class org.apache.clerezza.rdf.core.impl.SimpleMGraph).

Each ontology was loaded from its data stream onto the Stanbol ONM. This means

that, once loaded, each ontology only had one public key of type (ontologyIRI).

Table 7.2 shows the calibration results for the Apache Clerezza [Apaa] storage back-

end when requested for in-memory images of its stored RDF graphs. In the JVM heap

dump, they are objects of type org.apache.clerezza.rdf.core.impl.SimpleMGraph.

We observed that the cumulative retained size of all the ontology objects is totally

linear with respect to the number of concurrent requests for the same ontology. This

means that, when Clerezza creates multiple memory images of the same RDF graphs,

it replicates their triples completely. Even though this implies a potentially large res-
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Graph size

(triples)

Concurrent

requests

In-memory

occurrences

Cumulative

retained size (B)

10 10 10 15,113

10 100 100 151,130

10 200 200 302,260

10 500 500 755,650

100 10 10 627,930

100 100 100 6,279,300

100 200 200 12,558,600

100 500 500 31,396,500

1,000 10 10 5,306,330

1,000 100 100 53,063,300

1,000 100 100 106,126,600

1,000 500 500 265,316,500

10,000 10 10 51,373,530

10,000 100 100 513,735,300

10,000 200 200 1,027,470,600

10,000 500 500 2,568,676,500

100,000 10 10 532,525,530

100,000 100 N/A OOM

100,000 200 N/A OOM

100,000 500 N/A OOM

Table 7.3: Memory footprint of multiple simulated requests for an ontology -

OWL API (class org.semanticweb.owlapi.model.OWLOntologyImpl).

ident memory occupation, it also gives us the liberty to treat the images of the same

ontology with respect to multiple ontology collectors as separate objects, and therefore

to manipulate their contents independently, in accordance to the rules described in

Section 4.2.5. We also observed that, by using the Clerezza implementation, we could

store over 200 occurrences of a graph with 100,000 triples, amounting to 20 ⇤ 106 total

resident triples. Larger numbers of simulated requests led to out-of-memory (OOM)

errors.

Table 7.3 shows the calibration results for the OWL API [OWLa] when requested

for in-memory images of ontologies converted from Clerezza in-store RDF graphs. In the
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JVM heap, they are objects of type org.semanticweb.owlapi.model.OWLOntologyImpl.

We observed that concurrent requests are not cached by the OWL API either, however

the memory footprint of OWL API objects is much larger than the Clerezza equivalent,

starting with graphs of 100 triples or above, leading to a resident memory occupation

of less than 8⇤106 triples, with out-of-memory errors occurring thereafter. This is to be

expected, since the OWL API encodes the entire OWL semantics of its objects. How-

ever, these expressed semantics would be partly list when the ontology is serialized to

a non-native OWL format. These were the considerations that led us to implement the

RESTful interface of Stanbol ONM using Clerezza in-memory graphs as middleware.

Multiple concurrent requests for the same ontology were then simulated. To do so,

a simple application was plugged into the Stanbol framework as an OSGi bundle. This

application constructs an array of ontology objects, whose size is specified by the value

of the concurrent requests column in Tables 7.2 and 7.3.

7.2.4 Framework caching

When the Stanbol ONM receives a request for the image of a multiplexed ontology

via the Java API, it returns an object which conforms to the type requested by the

call, by means of a feature of the Java language called generics [NW08]. When the

RESTful API is used for obtaining the ontology image instead, the intermediate type is

no longer relevant since it has to be serialized into text content for the HTTP response.

The only exception is content negotiation: while certain formats, such as RDF/XML

and Turtle, are supported by both implementations, others are supported exclusively

by the OWL API (e.g. OWL/XML, Manchester and functional syntax) or Clerezza

(e.g. RDF/JSON and JSON-LD).

In Figure 7.13 we plotted the results from Table 7.2, which represented the result-

ing figures of our JVM calibration on the selected Clerezza-based implementation. A

linear fit was performed [DS66] with respect to the amount of concurrent requests for

an ontology, and computed on the size of the corresponding ontology sources in RDF

triples, what parameter t is in the figure. As the result was a perfect fit, with determi-

nation coe�cient R2 = 1 for all values of t, it was verified that no caching phenomena

occurred.

The results of the calibration process described earlier brought unfavorable evidence

on the possibility of expecting that the combined Apache Stanbol+Clerezza framework
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Figure 7.13: Linear fit on the volatile size of multiple ontology occurrences

generated by multiple concurrent requests - Fit is calculated on the number of

triples t per ontology source. Regression is plotted on a lin-log scale.

would cache ontology images in order to maintain a single copy. In Clerezza, two

identical RDF triples are separate Java objects, unless CRUD operations are being

performed on the original stored graph. This is not desirable for our purpose, as we

needed to manipulate each ontology image with its own import statements, ontology

IDs, and even TBox and ABox axioms (when a native OWL format is requested). Early

experiments using this technique showed that any modification on cached ontology

images, although not a↵ecting the unmanaged form of the ontology, was a↵ecting all

the other images created by other ontology collectors, thus violating Hypothesis H1 (cf.

Section 3.5).

We therefore opted for relaxing Hypothesis H4 instead, which concerned the ex-

pected reduction of the memory footprint of n combined ontology images by at least

one third of n times the footprint of the unmanaged ontology. As a matter of fact,

in the Stanbol ONM this occurs only under specific conditions, which depend almost

exclusively on the density of raw statements that can be unequivocally interpreted as

annotations in OWL.

The only caching mechanism detected was the one we implemented ourselves, which
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encompasses a restricted amount of raw statement types. Roughly, the caching mech-

anism operated as follows: when the image oC of an ontology o with respect to a

collector C is requested, the Stanbol ONM checks whether o is being managed by

other collectors. If so, it loads the source of o, s
o

, from the Clerezza store, but fil-

tering out all the triples that unequivocally denote annotations, such as those using

rdfs:label or rdfs:comment predicates. These triples are kept in a separate in-

memory SimpleMGraph. They are added back to the ontology image only at the time

it has to be serialized into a RESTful response object. This only happens after the

ontology image has been exported using the method as per Section 4.2.5. This way,

should there be any need for managing multiple memory images of the same multiplexed

ontology, at least the memory occupation of common annotations could be saved.

To verify that this was the only relevant caching phenomenon, we proceeded by

creating multiple ontology sources di↵ering in size by various orders of magnitude, as

those 7.2.3. However, depending on the required annotation density (being e.g. 25%

one every four ABox axioms), se added RDFS annotation of the form:

<http://www.cs.unibo.it/~adamou/data/person-[n]>

rdfs:label "fixed length annotation"@en .

to selected entities of the n declared in the ontology source.

As expected, the memory space saved showed to be linear on the desired annotation

density, therefore H4 could only be verified starting with densely annotated ontologies.

The advantage of this large memory footprint, though, is that it is not resident: when

a HTTP request for an ontology is received on a REST endpoint, the corresponding

RESTful resource object is created on-the-fly, the ontology object created and returned,

and then the resource disposed. This way, the in-memory ontology object is also dis-

posed on the next garbage collection occurrence. Once the RESTful requests have been

served and a JVM garbage collection has occurred, the only resident objects remaining

are those that represent ontology collectors, which constitute the memory overhead of

the framework discussed in the next section.

7.2.5 Framework overhead

According to the measurements performed during the calibration process, the size of

an ontology in terms of the triples in its source graph, i.e. the atomic units of its origin,
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is related to its memory footprint by a linear law. This is true whether the ontology

is interpreted (i.e. loaded as an OWL API object) or encapsulated in raw form (i.e.

loaded as a Clerezza object). Even though this is not desirable if all the ontologies

managed by the Stanbol ONM had to be resident, it stops being a problem in a Web

Service environment. In such contexts an ontology, once serialized and returned to

the client, is marked for garbage-collection, and therefore its occupied space is freed

up every few seconds, depending on the garbage collector settings. Obviously, this

gain goes at the expense of computational time-e�ciency, but in our Web Service

environment this would only be a problem if the ontology had to be returned to the

client in an interpreted form, e.g. in Manchester syntax of functional OWL syntax,

which is generally not required by Semantic Web applications that consume RDF.

While the hurdle mentioned above can be overcome, it is also necessary to keep

the memory footprint of virtual ontology network artifacts low and under control.

This holds for both the ontology collectors themselves, which are resident along the

whole service lifetime, and the possible increase in size of ontologies managed by these

collectors. This is called the (space) overhead of the framework for virtual ontology

networks.

The overhead was once more measured by comparing JVM heap dumps of a running

Apache Stanbol launcher versus snapshots taken on live samples. Upon realization that,

once the ontologies were loaded, the memory footprints of the artifacts of interest no

longer changed over time, we replaced sample snapshot with heap dumps taken on

simulated service calls.

In order to measure the resident size of scopes, we sampled memory measurements

on a finite range of configurations that match and exceed the expected workload of

the framework. Scopes were measured atomically, because in the standard Stanbol

ONM setting every scope has exactly two ontology spaces, and there are no ontology

spaces that do not depend on any active scope. Given that (n,m) is the configuration

of a scope with n ontologies in its core space and m ontologies in its custom space,

the strategy was to set either n or m to zero and vary along two exponential scales

without exceeding three orders of magnitude. Therefore, the following configurations

were considered:

• the zero-configuration (0, 0)

192



7.2 Quantitative evaluation

• configurations of type (n, 0), with n = 2k, k = 0..10

• configurations of type (n, 0), with n = 10k, k = 0..3

• configurations of type (0,m), with m = 2k, k = 0..10

• configurations of type (0,m), with m = 10k, k = 0..3

Given this setting, the measurements proceeded as follows. For every configuration

(n,m):

1. Create a new scope whose ID is of a fixed length (16 UTF-8 characters were

chosen in our experiments).

2. Populate the scope with ontologies of the same size (i.e. same amount of triples

with URIs of fixed length), according to the configuration. If the configuration is

of type (n, 0), populating will occur alongside creation (1).

3. Dump the JVM heap.

4. Compute the retained size of the corresponding object that is an instance of

ScopeImpl1. The resulting value in bytes is the resident scope size M(n,m).

Recall that, due to the fact that a scope preserves its two spaces from garbage

collection, the resulting value will be greater than the sum of their two retained

sizes.

5. Compute the average weight in bytes w(n,m) of the ontologies in the scope using

the following formula: w(n,m) = M(n,m)�M(0,0)
n+m

.

As shown by the results in Table 7.4, we measured that the resident scope size is

essentially the same whether all the ontologies are managed by its core space or its

custom space, with a slight bias of 8 bytes in favor of scopes whose custom space is

populated. We also noted that the average impact each managed ontology has on the

resident size of the scope (measured as the ontology weight) decreases significantly once

10 or more ontologies are being managed. In addition, with up to 10 ontologies loaded

in a scope, its resident size stays within the 4 kiB mark, while for the less realistic

1Canonical name: org.apache.stanbol.ontologymanager.multiplexer.clerezza.impl.ScopeImpl.
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Core

ontologies

(#)

Custom

ontologies

(#)

Resident

scope size

(B)

Ontology

weight

(B)

0 0 2,550 N/A

0 1 2,727 177

0 2 2,851 151

0 10 3,847 130

0 100 16,931 144

0 1,000 142,871 140

1 0 2,735 185

2 0 2,859 155

10 0 3,855 131

100 0 16,939 144

1,000 0 142,879 140

Table 7.4: Memory overhead of scopes by ontology population - Values are com-

puted for populations whose fixed graph size varies from 10 to 100,000 triples. The only

free variable of each test is either the size of the core space, or the size of the custom space.

value of 1000 managed ontologies the resident memory footprint tops at 142, 875± 4 B

(less that 140 kiB). By comparison, this number is of the same order as an in-memory

Clerezza graph of 500 triples.

To measure the resident size of sessions, we proceeded in a similar fashion as

for scopes, except that, since sessions are not divided into further ontology collectors,

session configurations have only one parameter. Given that (n) is the configuration of

a session with n ontologies, the strategy was to vary n along two exponential scales

without exceeding three orders of magnitude. Therefore, the following configurations

were considered:

• the zero-configuration (0)

• configurations of type (n), with n = 2k, k = 0..10

• configurations of type (n), with n = 10k, k = 0..3

The measurements proceeded as follows. For every configuration (n):
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Figure 7.14: Linear fit on the resident size of a custom ontology space with

respect to its number of ontologies - Regression is plotted on a lin-lin scale.

1. Create a new session whose ID is of a fixed length (16 UTF-8 characters were

chosen in our experiments).

2. Populate the session with ontologies of the same size (i.e. same amount of triples

with URIs of fixed length), according to the configuration.

3. Dump the JVM heap.

4. Compute the retained size of the corresponding object that is an instance of

SessionImpl1. The resulting value in bytes is the resident scope size M(n).

5. Compute the average weight in bytes w(n) of the ontologies in the scope using

the following formula: w(n) = M(n)�M(0)
n

.

As shown by the results in Table 7.5, we measured that the resident session size is

comparable to the resident scope size when many ontologies are being managed. In this

context, the results for the average impact of each ontology (measured as the ontology

weight) is fluctuating, but still within the range of the most positive i.e. lowest values

1Canonical name: org.apache.stanbol.ontologymanager.multiplexer.clerezza.impl.SessionImpl.
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Ontologies

(#)

Resident

session size (B)

Ontology

weight (B)

0 1,717 N/A

1 1,865 148

2 1,989 136

10 2,981 126

100 16,061 143

1,000 141,997 130

Table 7.5: Memory overhead of sessions by ontology population - Values are

computed for populations whose fixed graph size varies from 10 to 100,000 triples.

for the ontology weight measured on scopes. With up to 10 ontologies loaded in a

session, its resident size stays within the 3 kiB mark, while for the less realistic value

of 1000 managed ontologies the resident memory footprint tops at 141, 997 B, which is

comparable to the resident size of a scope managing the same ontologies.

The linear growth trend of the resident size of ontology collectors was once again

proven by performing a linear fit, part of which is displayed in Figure 7.14. For sim-

plicity, only the results for scope configurations of type (0,m) are shown, with m on

the X-axis. Figures for (n, 0) configurations, as well as for the resident size of sessions,

are greatly similar and not shown. As the determination coe�cient was computed as

R2 ⇡ 1, namely 0.99982 for (0,m) configurations, we were able to obtain a nearly-

perfect fit, with a zero-overhead (i.e. for no ontologies managed) below 3 kilobytes.

Another overhead factor we need to measure is how larger or smaller ontology

images are than their unmanaged forms. To that end, we measured the retained size

of the same Clerezza objects of type SimpleMGraph (short) as in the calibration phase,

first taken standalone and then as managed by the core space of a scope. The overhead

was measured for graphs of sizes within all the orders of magnitude considered.

The results of this last overhead measurement are shown in Table 7.6. We observed

that ontology images, whose size is shown in the Size in tier 1 column, added a fixed

amount of memory overhead to their unmanaged counterparts, whose size is shown

in the Plain size column. This value is shown in the Delta column, and its impact

remains significant, of 1% or above, only for small ontologies whose sources have up to

100 triples. The impact is measured as a percentage in the Normalized delta column.
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7.2 Quantitative evaluation

Graph size

(triples)

Plain size

(B)

Size in

tier 1 (B)

Delta

(B)

Normalized

delta (%)

10 2,753 3,477 724 26.29858

100 18,713 19,437 724 3.86896

1,000 173,449 174,173 724 0.41741

10,000 1,692,137 1,692,861 724 0.04278

100,000 17,698,217 17,698,941 724 0.00409

Table 7.6: Memory overhead of ontologies obtained from a scope versus their

plain forms - Delta value indicates the overhead. The normalized delta is calculated with

respect to the plain size of the source graph.

If we set as tolerance a cuto↵ value of 0.5 percent of the byte-size of the original

ontology, it is safe to state that the overhead of scoping the ontology becomes negligible

for ontologies whose graph source is one thousand triples large, and orders above.
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Conclusions

We have treated the problem of dynamic ontology network management from a dual

perspective, i.e. a logical one and a software-engineering one. The choice of tackling

this problem was the result of an in-depth analysis of the scientific and technological

background in ontology lifecycle management and, to an extent, in the discipline of

ontology networking which is still developing. This analysis has a deep technological

foundation, as it also results from our experience in the usage of ontology-based appli-

cations and the development of new ones with the existing software development tools

[AP12, APG10, Ada09, Ada08]. A number of limitations emerged from the aforemen-

tioned study, which we list as follows.

• Semantic Web applications and ontology-driven application are often regarded as

two things not only distinct, but also mutually exclusive, as shown by the the

reluctancy to regard linked data as ontologies.

• Although the concept of ontology network was mainly discussed in the engineering

department [SFGPMG12b], no formal specification or theoretical framework of

ontology networks was found at the time this thesis was written.

• Due to their knowledge engineering background, ontology networks are seen as

artifacts which only need to be assembled as the networked ontologies are de-

veloped. There is no formal doctrine for the practice of assembling ontology

networks at runtime even beyond the scope envisioned by the ontology authors.

However, these practices become more necessary from time to time, as use cases
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and applications surface, where there is a need to combine heterogeneous Linked

Data and ontologies in general.

• In some scenarios, the layout of ontology networks can a↵ect the result of interpre-

tation procedures even when the actual content of ontologies remains unchanged.

This was verified for the OWL API and its applications, when the connectivity

mechanism is the usage of owl:imports in OWL ontologies rendered in RDF.

• Application developers that need to consume ontologies are generally not as

knowledgeable in the subject matter as ontology engineers are. Therefore, they

cannot be presented with the problem of assembling ontology networks from the

same perspective as if they belonged to the latter category.

• The problem of interpreting ontology network is often underestimated, especially

on the side of ontology repositories which provide ontologies only in their native

forms.

• The introduction of new features in the OWL 2 language, such as punning, has

a potential for side e↵ects which could even violate the restrictions placed on

the features themselves, unless unrealistically resource-intensive computations are

undertaken.

• Tool support that is aware of ontology networks as knowledge items by their own

right is scarce.

• Plugin-based software frameworks, being as modularized as ontology networks

are, have an intrinsic potential for being practically involved with ontology net-

work management. However, to date this potential goes underexpressed for the

most part.

Each detected limitation configures a problem per se, in either scientific terms or

technological. While solving them altogether would be overly ambitious for the scope

of a doctoral thesis, we have tackled every single one of them with di↵erent degrees

of detail, and proposed a general framework which we expect to serve as the basis

for full-fledged solution proposals to each problem. To that end, we consolidated our

overall aim into the following sub-objectives: (1) a theoretical framework for expressing
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connectivity relations in ontology networks; (2) a method for defining and constructing

ontology networks dynamically, with an attention to problems in ontology interpreta-

tion; (3) a software-engineering approach that describes how applications that either

provide ontology networks or consume them should accommodate such a method; (4)

a Web service interface specification for manipulating ontology networks dynamically;

(5) the development of an ontology network management application that implements

this method and service interface.

The remainder of this chapter recaps the contributions to the state of the art de-

scribed in this thesis, then reviews them from the standpoint of the objectives and

hypotheses formulated in Chapter 3. The potential for future evolution strategies of

this work is then discussed and concludes this dissertation.

8.1 Summary

The contributions delivered by this research work are as follows.

• We provided an overview of the state of the art in ontology management, in-

cluding repository software, related representation languages, methodologies and

notable exemplary instances. Whenever these aspects specifically tackled ontol-

ogy networks, be they given that name or not, it was made explicit in the course

of our treatise. The relationship between ontology management and Linked Data

was also cleared, in order to resolve the frequent terminological ambiguity around

these notions and single out the binding between Linked Data combinations and

ontology network management.

• Having acknowledged that a formal, i.e. not grounded on engineering, specifica-

tion of ontology network was missing at the time this work began, we proceeded

to establish a theoretical framework that defines ontologies, connections and on-

tology networks, using essential algebraic constructs. On top of that framework,

we added a novel set of definitions, such as virtual ontology network, ontology

source and image. These were introduced specifically for a better understanding

of our dynamic assembly method, but also make sense out of this context, since

they reflect practices which already belong to ontology lifecycle management,

especially to the extent where repository software is concerned.
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• A method was described, called 3-tier multiplexing, which places the combined

bulk of all the ontologies required by all virtual ontology networks along three tiers

of an abstract infrastructure. These are the tiers of core spaces, custom spaces

and sessions, so named after the types of artifacts that are used for collecting

ontologies. For practical convenience, since the two lower tiers are strongly linked,

we also unified them using a further class of artifacts, which are called scopes. We

provided proof that the constructs generated by applying this method are still

ontology networks compliant with the theoretical framework established earlier.

• A software architecture was introduced, in order to specify a possible binding

between elements of a virtual ontology network and software components that are

responsible for either providing the ontology networks, or ordering their assembly

and consuming them. We resorted to classical software engineering practices such

as activity specifications and design and communication patterns such as façades

and publish/subscribe.

• Ontology languages such as OWL assume a protocol binding with HTTP URIs,

as well as a correspondence between the physical locations of ontologies and their

names and versions. In order to preserve this assumed binding, we devised a

Web Service interface specification that maps to a set of methods for reading,

creating, updating and deleting ontologies, both in their unmanaged form and

as images created by artifacts of our multiplexing method. Due to the existing

relationship with the HTTP method, the Web Service interface conforms to the

current standard of REST.

• The 3-tier multiplexing method and its RESTful interface were implemented in

an ontology network provider application. This software is the Ontology Network

Manager (ONM) of Apache Stanbol, a stack of semantic services for supporting

content management systems. Since it is an OSGi application, it is inherently

modular and can run on a single service platform where client applications respon-

sible for ordering ontology network setups can also be registered. Alternatively,

these applications can be simple Web clients and take advantage of the RESTful

Web Services of the Stanbol ONM. The ONM has been a part of Apache Stan-

bol since its incubation in late 2010, and still constitutes the core framework for
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managing ontologies, as well as a dependency of reasoning services and rule-based

content enhancers, even now that Apache Stanbol has been promoted to top-level

project status.

• The implementation itself was evaluated from two di↵erent angles. On the qual-

itative side, we had to verify for which distributions of axioms across multiple

ontologies the Stanbol ONM was able to put these ontologies together in a net-

work whose layout guaranteed the most expressive interpretation possible. To

that end, we had to identify scenarios where, given a set of axioms distributed

in a certain fashion across multiple ontologies, an optimal layout exists at all, re-

gardless of whether it can be realized by the Stanbol ONM or not. This prompted

us to establish our own evaluation framework, which comprises distribution pat-

terns and connectivity patterns. The evaluation framework itself is grounded on

the fundamentals of graph theory. This is an intuitive yet relatively novel type of

approach as applied to ontology networks, since we had so far only acknowledged

its application to single ontologies treated as graphs [GCCL05]. Results showed

that, although certain optimal layouts would require a more articulated multiplex-

ing strategy, which however would be hard to justify on the side of software and

services, many distribution patterns had a corresponding layout realizable with

the Stanbol ONM. These combined distribution patterns and layouts, in turn,

guaranteed more expressive interpretations than common or brute-force layouts,

when submitted to the OWL API and its applications.

• On the quantitative side of the evaluation, the approach was more traditional. Af-

ter calibrating the memory footprints of sample ontology networks, we measured

the resident occupation of multiplexed ontologies by computing their retained

sizes in dumps of the Java Virtual Machine heap. We figured out that, of the

two extreme strategies that could be adopted, the safest one was to perform no

caching and save the computational cost of maintaining memory images in sync

with changes in the ontologies. This implies that multiple concurrent request

on a networked ontology mean a proportional growth of its memory footprint.

However, this could only be a problem in the interval between two JVM garbage

collections, as the memory images of networked ontologies never persist. In addi-

tion, we measured the resident sizes of the ontological artifacts introduced by our
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method, and which remain resident during the lifetime of the ontology networks

that use them. Results on this front were far more promising: not only do these

new artifacts have a negligible memory overhead, but also that overhead is not

increasing linearly as more ontology networks use them.

8.2 Relation to stated goals

In Sections 3.5 and 3.3 our research hypotheses were formulated, which drove our overall

line of work. How the hypotheses were verified and the objectives achieved is quickly

recapped in this section.

8.2.1 Objectives

O1 was a prerequisite for most of the objectives that followed, which is why it was

the first to be achieved and described in Section 4.1. Many concepts revolving around

ontology network management were formalized in this phase, while others were re-

formulated, like “ontology interpretation” becoming the resolution function from on-

tology sources to ontologies.

O2 was fulfilled in the final part of Section 4.1, which introduced novel concepts such

as virtual ontology networks, ontology collectors and images, and in Section 4.2, which

described a method to combine established and novel concepts for generating ontology

networks in OWL 2.

O3 was achieved in Chapter 5, where both a reference software architecture for on-

tology network providers and a specification of how software components can relate to

them are described.

O4 concerned the specification of an e↵ective yet conservative RESTful interface for

manipulating ontology networks. This specification is outlined in Section 5.4 and adds

full CRUD operation support to ontology networks. The fulfillment of the conserva-

tiveness requirement was corroborated by the fact that the specification respects OWL

2 conventions, save a few borderline cases, and does not propose any extension of the

language in order to comply with the RESTful interface.
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O5 was the technological objective that focused on a reference implementation. This

was developed in Java as the Ontology Network Manager component suite for Apache

Stanbol (Stanbol ONM), a top-level Apache project, which included the ONM since

its very first implementation. This framework was described in Chapter 6 (sans the

RESTful API specification). Development of the Stanbol ONM had two iterations due

to the need to find a trade-o↵ between the persistence of ontology network structures,

the versatility for managing RDF and native OWL formats, and the resource usage of

these features. The memory e�ciency of this solution was discussed in Section 7.2 and

is reprised in the discussion over hypothesis H3 in the next section. The objective can

be considered to be fulfilled, modulo the memory footprint considerations discussed.

8.2.2 Hypotheses

H0, the null hypothesis, was empirically disproven in the preliminary phase of our

work. There, we verified that in common real-world OWL 2 applications, the way on-

tologies are organized in an ontology network has an impact on how the whole network

is interpreted as an ontology, with potential disruptive side-e↵ects (cf. Section 3.5.1).

This aspect is underspecified in the normative documentation of OWL 2, and the po-

tential consequences can even violate the restrictions applied to OWL 2 features such

as the application of punning. It was because of this result that we decided to tackle

this research problem and formulate the other hypotheses.

H1 concerned the possibility to create standalone ontology networks artificially. The

first part of Chapter 4 covers this aspect theoretically, by providing definitions of ar-

tifacts from which there is a way to obtain OWL 2 ontologies. Proof was then given,

that the resulting ontologies formed ontology networks compliant with the theoretical

background we gave early in the chapter, and that we claim to be plausible as it reflects

the notions of ontology network given in practical studies on ontology engineering. The

independent, or standalone, nature of these ontology network was verified partially. On

the one hand, multiplexing allows us to deploy multiple images of an ontology, each

belonging to its own ontology network without even referencing the original ontology.

On the other hand, if an ontology is removed from the persistent knowledge base, its

images in each ontology network are also lost, leading to unsatisfied dependencies. This
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trade-o↵ was a necessary evil, as it was opted for in order to avoid an uncontrollable

expansion and clutter of the persistent knowledge base.

H2 stated that the method described in Section 4.2 can achieve better results, in

terms of interpreting a set of ontology sources as a single ontology, than by simply

having all the ontologies imported by a root. This proved to be true for most cases

where the method can be applied at all. First, in Chapter 4 we gave an intuitive

notion of what a “better result” would be. Then, in the qualitative evaluation phase

described in Section 7.1, we analyzed which connectivity patterns would be optimal

for ontology networks with a certain distribution of their statements. Although not all

such connectivity patterns can be implemented using our method, those that can have

shown promising results once applied to “critical” distribution patterns.

H3 is the space-e�ciency hypothesis, which gradually came under question as our

solution strategies evolved. In cases where ontologies can be provided in a native

OWL format (e.g. in Manchester syntax or OWL functional syntax), it was possible to

maintain ontology networks in memory and save space, but the computational cost of

synchronizing memory images with changes in the ontology networks turned out to be

high. By switching to a pure RDF API for implementing multiplexers, we could guaran-

tee that the majority of the resident memory footprint was limited to a small overhead

given by ontology collectors, as their ontology images were no longer maintained. This

means that the memory required to serve multiple request is proportional to the size

in triples of the requested ontologies, but this only concerns the interval between two

garbage collections by the Java Virtual Machine. The quantitative evaluation described

in Section 7.2 was conducted in order to verify this hypothesis.

As part of the experiments on space-e�ciency, we also observed that, in some rea-

sonably likely scenarios, the storage of ontologies in Apache Stanbol had a tremendous

impact on their nonvolatile fingerprint, namely the on-disk occupation. Every cre-

ated ontology was mapped to a standalone file system directory, which stored triple

contents, indices and meta-level information. In the Mac OS X environment used for

experiments, each directory was at least 200 MiB large upon creation, no matter how

large the ontology that was stored. As a result, 5 ontologies with 10 axioms each

could occupy almost 1 GiB of disk storage, which was not an acceptable result even
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on production server systems. The reason was the Mac OS HFS+ file system, which

has a policy of immediately allocating the maximum size allowed for files when they

are created. Other filesystems, such as ext4 for GNU/Linux, or NTFS for Windows,

allocate bytes dynamically as the file size actually needs to be increased. This was

not a shortcoming of the Stanbol ONM, which could only have worked around it by

storing all ontologies in a single graph, but a limitation of the underlying Clerezza

implementation. This issue was ultimately solved after Clerezza implemented named

graph support in its storage backend.

8.3 Future work

This dissertation concludes with a discussion on possible lines of future work, some of

which are underway at the time of this writing.

On the strictly technological side, it should be noted that my role in the Apache

Software Foundation [Apae] represents, as anyone else’s, a personal commitment to

fostering the evolution of the Stanbol project. Therefore, this committership is an in-

dependent yet strong driver for the technological advancement of the ontology network

management platform, of which I am the key contributor, as well as dedicated support

for specific use cases.

Automatic assembly. An obvious direction where the evolution of this work could

be heading is clearly automation. This dissertation has laid out the principles and ra-

tionale behind using multi-tiered multiplexing for constructing ontology networks given

a set of originally non-networked ontologies. However, the selection of which ontolo-

gies should be loaded in a certain tier, and how they should be spread across ontology

collectors within the same tier, is assumed to be performed either manually under the

guidance of common sense, or procedurally by the client application. The next step

would be to automate this process: given an arbitrary set of ontology resources, a

lookahead method could be devised for calculating the optimal layout that accommo-

dates all of them and guarantees the highest possible level of interpretation of their

raw statements as axioms. As a matter of fact, the studies on connectivity patterns

used for qualitatively evaluating the method (cf. Section 7.1) constitute preliminary

work towards this direction we intend to pursue. The connectivity patterns studied
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here can help construct classes of virtual ontology network layouts. What is currently

under investigation is the possibility to combine the existing connectivity pattern work

with a logic theory that models how a set of non-OWL-native statements should be

interpreted depending on how the graph is visited and what output the visit has pro-

duced until those statements are encountered. As far as this dissertation is concerned,

this theory was replaced empirically with the observation of how OWL libraries of wide

adoption operated.

Exploiting ontology modularization. Another aspect that was not considered, as

for the initial restrictions we placed (cf. Section 3.6), is ontology modularization. The

techniques used to explore this field are numerous [TDL+11, dSSS09, OY12, SCG12],

however those techniques and studies concerning the binding of ontologies with dis-

tributed systems [DTPP09] and TBox/ABox scalability [WM12, MW09] are especially

interesting for the context of this work. Decomposition techniques would allow mixed

ontologies, which could have an unnecessarily negative impact on the performance of

ontological computations, to be replaced with more scalable equivalents. On the other

hand, heavily modularized ontology networks, which imply very sparse distribution

patterns 7.1.3, could require a network layout that cannot be realized with our method

in order to be interpreted optimally. One line of research would be to analyze how on-

tology multiplexing techniques can be combined with tailored modularization schemes.

Increasing multiplexing tiers. We decided to implement a method that spreads

networked ontologies across three logical tiers. The choice of three tiers was a trade-o↵

between the impact of each tier on the probability of obtaining higher-order ontology

interpretations, and practical justifications for the usage of each tier from an ontology

engineering perspective. It would have been di�cult to provide an intuitive guideline

as to how a greater number of tiers could be used by practitioners. However, this is

still to be verified through at least a user study. In addition, we would have to assess

up to what point the addition of further multiplexing tiers brings a tangible benefit to

ontology networks on the side of logical interpretation. If these issues are overcome, we

can then easily extend the method presented here.
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Improved virtualization. Some of the limits encountered while implementing and

testing our solution proposal are technological. An apparent ground for ample improve-

ment is the introduction of cutting-edge caching capabilities, which would enable us to

keep time-e�ciency in consideration as well. One limitation we encountered is that,

if there is a need for manipulating ontologies as simultaneous images, as described in

Section 4.2, some degree of in-memory replication of the ontology contents is necessary.

We eventually chose to partially surrender caching and adopt quasi-total replication

for short bursts of time, but alternative approaches are being explored. Replacing the

underlying triple store with a native OWL axiom store would bring some benefits, such

as the possibility to maintain in-memory ontology images and virtual networks in their

OWL-interpreted state, thereby easing the burden of client applications. Some work

concerning native OWL storage exists [Red10, HKG09], but it would be necessary to

verify (i) what computational impact there would be concerning the synchrony between

stored ontologies and cached images; and (ii) whether this strategy would not impair

interoperability with RDF and Linked Data applications.

Integration with ontology repository systems. There are multiple possible in-

tegration points with the existing world of ontology repositories described in Section

2.4. Some include: proposing the Stanbol ONM as an OWL-safe backend for managing

user spaces in Cupboard; exporting virtual ontology network metadata using the OMV

vocabulary, to achieve interoperability with Oyster registries; implementing our theo-

retical framework as part of the Open Ontology Repository. In addition, having the

Stanbol ONM as a support infrastructure for the ODP.org repository is a task already

underway, since we extended and implemented the eXtreme Design library management

features, used within ODP.org, as the default mechanism for Stanbol to fetch multiple

distributed ontologies selectively.

Extension to other ontology networking paradigms. Our method was applied

specifically to OWL. More precisely, it created ontology networks based on one explicit

networking feature of OWL which is the import-by-location scheme, and a change man-

agement feature of OWL 2, i.e. the version IRI, which we manipulate in order to reflect

management policies within the virtual ontology network. Imports are just one way

of representing connectivity and dependency relations in ontology networks, and since
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they are non-selective, they represent a sub-optimal method. It is however part of the

OWL recommendation and used by many applications. One interesting course of evolu-

tion for our work would be to explore other possibilities for connecting ontology images

into virtual networks, both explicit, as those based on ontology alignment [RVNLE09],

and implicit, as the extension of OWL with "-connections [GPS06].
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computation. In Philippe Cudré-Mauroux, Je↵ Heflin, Evren Sirin, Tania Tu-
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[SFGPMG12b] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and

Aldo Gangemi, editors. Ontology Engineering in a Networked World. Springer

Berlin Heidelberg, 2012.

[SHL10] Heru Agus Santoso, Su-Cheng Haw, and Chien-Sing Lee. Change detection in

ontology versioning: A bottom-up approach by incorporating ontology meta-

data vocabulary. In Yanchun Zhang, Alfredo Cuzzocrea, Jianhua Ma, Kyo-Il

Chung, Tughrul Arslan, and Xiaofeng Song, editors, FGIT-DTA/BSBT, vol-

ume 118 of Communications in Computer and Information Science, pages 37–

46. Springer, 2010.

[SLL+04] Dagobert Soergel, Boris Lauser, Anita C. Liang, Frehiwot Fisseha, Johannes

Keizer, and Stephen Katz. Reengineering thesauri for new applications: The

agrovoc example. J. Digit. Inf., 4(4), 2004.
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Matthew Horridge, Bijan Parsia, and Michael Schneider. OWL 2 Web Ontology

Language: Conformance. W3C Recommendation, World Wide Web Consortium

(W3C), October 2009.

[SL12] Manu Sporny and Dave Longley. RDF Graph Normalization. Draft commu-

nity group specification, World Wide Web Consortium (W3C) Community Group,

September 2012.

[vAGS06] Mark van Assem, Aldo Gangemi, and Guus Schreiber. RDF/OWL representation

of WordNet. W3C Working Draft, World Wide Web Consortium (W3C), June

2006.

[Yil06] Burcu Yildiz. Ontology evolution and versioning, the state of the art. Technical

report, Vienna University of Technology, October 2006.

234



Web references

[Ali] Alignment API and Alignment Server. http://alignapi.gforge.inria.fr.

[Apaa] Apache Clerezza (incubating). http://incubator.apache.org/clerezza/.

[Apab] Apache Derby. http://db.apache.org/derby/.

[Apac] Apache Felix. http://felix.apache.org.

[Apad] The Apache License, version 2.0. http://www.apache.org/licenses/LICENSE-2.0.

html.

[Apae] The Apache Software Foundation. http://apache.org.

[Apaf] Apache Solr. http://solr.apache.org.

[Apag] Apache Stanbol. http://stanbol.apache.org.

[Apah] Apache Stanbol Ontology Manager. http://stanbol.apache.org/docs/trunk/

components/ontologymanager/.

[Apai] Apache Stanbol Rule Language. http://stanbol.apache.org/docs/trunk/

components/rules/language.html.

[Bro] Meta S. Brown. The Big Data blasphemy: why sample? http://

smartdatacollective.com/metabrown/47591/big-data-blasphemy-why-sample.

[COL] COLORE. http://code.google.com/p/colore/.

[Con] Content pattern annotation schema (ontology). http://ontologydesignpatterns.

org/schemas/cpannotationschema.owl.

[CVS] Concurrent Versions System. http://cvs.nongnu.org/.

[DBL] DBLP Bibliography Database. http://dblp.l3s.de/d2r.

[DBP] DBPedia home. http://dbpedia.org.

[DBT] DBTune home. http://dbtune.org.

235

http://alignapi.gforge.inria.fr
http://incubator.apache.org/clerezza/
http://db.apache.org/derby/
http://felix.apache.org
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://apache.org
http://solr.apache.org
http://stanbol.apache.org
http://stanbol.apache.org/docs/trunk/components/ontologymanager/
http://stanbol.apache.org/docs/trunk/components/ontologymanager/
http://stanbol.apache.org/docs/trunk/components/rules/language.html
http://stanbol.apache.org/docs/trunk/components/rules/language.html
http://smartdatacollective.com/metabrown/47591/big-data-blasphemy-why-sample
http://smartdatacollective.com/metabrown/47591/big-data-blasphemy-why-sample
http://code.google.com/p/colore/
http://ontologydesignpatterns.org/schemas/cpannotationschema.owl
http://ontologydesignpatterns.org/schemas/cpannotationschema.owl
http://cvs.nongnu.org/
http://dblp.l3s.de/d2r
http://dbpedia.org
http://dbtune.org


WEB REFERENCES

[Des] Descriptive Ontology for Linguistic and Cognitive Engineering. http://www.

loa-cnr.it/DOLCE.html.

[Dew] Dewey Decimal Classification / Linked Data. http://dewey.info.

[Dol] Peter Dolog. The Ontology for State Machines. http://people.cs.aau.dk/~dolog/

fsm/.

[FaC] FaCT++. http://owl.man.ac.uk/factplusplus/.

[Fra] FrameNet project home. https://framenet.icsi.berkeley.edu.

[Fre] Free and open-source software. http://en.wikipedia.org/wiki/Free_and_

open-source_software.

[Gana] Aldo Gangemi. DOLCE UltraLite. http://www.ontologydesignpatterns.org/ont/

dul/DUL.owl.

[Ganb] Aldo Gangemi. Plan Ontology. http://www.loa-cnr.it/ontologies/Plans.owl.

[Ganc] Aldo Gangemi. Plan Ontology (lite version). http://www.loa-cnr.it/ontologies/

PlansLite.owl.

[Gand] Aldo Gangemi. The Time-Indexed Participation ontology design pattern (submis-

sion overview). http://ontologydesignpatterns.org/wiki/Submissions:Time_

indexed_participation.

[Goo] Google Knowledge Graph. http://www.google.com/insidesearch/features/

search/knowledge.html.

[Her] HermiT OWL reasoner. http://www.hermit-reasoner.com.

[Int] The international classification of diseases (ICD). http://www.who.int/

classifications/icd/en/.

[Isa] IsaViz: a visual authoring tool for RDF. http://www.w3.org/2001/11/IsaViz/.

[Jav] Java SE 6 HotSpotTM Virtual Machine garbage collection tuning. http://www.

oracle.com/technetwork/java/javase/gc-tuning-6-140523.html.

[Jer] Jersey. http://jersey.java.net.

[JSO] JSON for Linking Data. http://json-ld.org.

[Lin] Linked Data. http://linkeddata.org.

[Lon] Longwell. http://simile.mit.edu/wiki/Longwell.

[NeOa] NeOn (Networked Ontologies). http://www.neon-project.org.

236

http://www.loa-cnr.it/DOLCE.html
http://www.loa-cnr.it/DOLCE.html
http://dewey.info
http://people.cs.aau.dk/~dolog/fsm/
http://people.cs.aau.dk/~dolog/fsm/
http://owl.man.ac.uk/factplusplus/
https://framenet.icsi.berkeley.edu
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.loa-cnr.it/ontologies/Plans.owl
http://www.loa-cnr.it/ontologies/PlansLite.owl
http://www.loa-cnr.it/ontologies/PlansLite.owl
http://ontologydesignpatterns.org/wiki/Submissions:Time_indexed_participation
http://ontologydesignpatterns.org/wiki/Submissions:Time_indexed_participation
http://www.google.com/insidesearch/features/search/knowledge.html
http://www.google.com/insidesearch/features/search/knowledge.html
http://www.hermit-reasoner.com
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/
http://www.w3.org/2001/11/IsaViz/
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://jersey.java.net
http://json-ld.org
http://linkeddata.org
http://simile.mit.edu/wiki/Longwell
http://www.neon-project.org


WEB REFERENCES

[NeOb] NeOn Toolkit. http://neon-toolkit.org.

[ont] ontologydesignpatterns.org. http://ontologydesignpatterns.org.

[Opea] The open ontology repository initiative. http://openontologyrepository.org.

[Opeb] The open ontology repository q&a. https://wiki.nci.nih.gov/pages/viewpage.

action?pageId=56799816.

[Opec] Openrefine. https://github.com/OpenRefine.

[OWLa] The OWL API. http://owlapi.sourceforge.net.

[OWLb] The OWLlink API. http://owllink-owlapi.sourceforge.net.

[OWLc] The OWLOntologyID class specification in OWL API 3.x. http://owlapi.

sourceforge.net/javadoc/org/semanticweb/owlapi/model/OWLOntologyID.

html.

[Pig] Piggy Bank. http://simile.mit.edu/wiki/Piggy_Bank.

[Prea] Valentina Presutti. The Agent Role ontology design pattern (submission overview).

http://ontologydesignpatterns.org/wiki/Submissions:AgentRole.

[Preb] Valentina Presutti. The Classification ontology design pattern (submission overview).

http://ontologydesignpatterns.org/wiki/Submissions:Classification.

[Prec] Valentina Presutti. The Object Role ontology design pattern (submission overview).

http://ontologydesignpatterns.org/wiki/Submissions:Objectrole.
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