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Abstract

This work presents exact algorithms for the Resource Allocation and

Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise

in a number of application areas, such as in hoist scheduling, mass produc-

tion, compiler design (implementing scheduling loops on parallel architec-

tures), software pipelining, and in embedded system design. The RA&CS

problem concerns time and resource assignment to a set of activities, to be in-

definitely repeated, subject to precedence and resource capacity constraints.

In this work we present two constraint programming frameworks facing two

different types of cyclic problems.

In first instance, we consider the disjunctive RA&CSP, where the allo-

cation problem considers unary resources. The proposed method has broad

applicability, but it is mainly motivated by applications in the field of Em-

bedded System Design. Instances are described through the Synchronous

Data-flow (SDF) Model of Computation. Data-Flow models are attract-

ing renewed attention because they lend themselves to efficient mapping on

multi-core architectures. The key problem of finding a maximum-throughput

allocation and scheduling of Synchronous Data-Flow graphs onto a multi-

core architecture is NP-hard and has been traditionally solved by means of

heuristic (incomplete) algorithms with no guarantee of global optimality. We

propose an exact (complete) algorithm for the computation of a maximum-

throughput mapping of applications specified as SDFG onto multi-core ar-

chitectures. Results show that the approach can handle realistic instances in

terms of size and complexity. The basic idea of the approach we present is

to model the effects of allocation and scheduling choices by means of graph

modifications. During the search process, whenever allocation and schedul-

ing decision are taken, the graph is modified accordingly. The efficiency of

this approach hinges on an original global throughput constraint.



Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e.

CRCSP). We propose a Constraint Programming approach based on mod-

ular arithmetic: in particular, we introduce a modular precedence constraint

and a global cumulative constraint along with their filtering algorithms. We

discuss two possible formulations. The first one (referred to as CROSS )

models a pure cyclic scheduling problem and makes use of both our novel

constraints. The second formulation (referred to as CROSS ∗) introduces a

restrictive assumption to enable the use of classical resources constraints, but

may incur a loss of solution quality. Many traditional approaches to cyclic

scheduling operate by fixing the period value and then solving a linear prob-

lem in a generate-and-test fashion. Conversely, our technique is based on a

non-linear model and tackles the problem as a whole: the period value is in-

ferred from the scheduling decisions. The proposed framework has been used

in the MPOpt-Cell framework: a High-Performance Data-Flow Programming

Environment for the Cell BE Processor by IBM, Sony and Toshiba.

The proposed approaches have been tested on a number of non-trivial

synthetic instances and on a set of realistic industrial instances achieving

good results on practical size problem. Furthermore, the developed techni-

ques bring significant contributions to combinatorial optimization methods.
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Chapter 1

Introduction

This work presents exact algorithms for the Resource Allocation and Cyclic

Scheduling Problems (RA&CSPs). Cyclic Problems arise in a number of

application areas, such as in hoist scheduling [26], mass production [48, 35],

compiler design (implementing scheduling loops on parallel architectures)

[67, 48], software pipelining [86], and in embedded system design [61, 81, 97].

Optimal cyclic schedulers are lately in great demand, as streaming paradigms

are gaining momentum across a wide spectrum of computing platforms, rang-

ing from multi-media encoders and decoders in mobile and consumer devices,

to advanced packet processing in network appliances, to high-quality render-

ing in game consoles. In stream computing, an application can be abstracted

as a set of tasks that have to be performed on incoming items (called cod-

ing units, packets, pixels, depending on the context) of a data stream. A

typical example is video decoding, where a compressed video stream has to

be expanded and rendered. As video compression exploits temporal correla-

tion between successive frames, decoding is not pure process-and-forward and

computation on the current frame depends on the previously decoded frame.

These dependencies must be taken into account in the scheduling model.

In embedded computing contexts, resource constraints (computational units

and buffer storage) imposed by the underlying hardware platforms are of

great importance. In addition, the computational effort which can be spent

to compute an optimal schedule is often limited by cost and time-to-market
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considerations.

From a combinatorial optimization standpoint, cyclic resource allocation

and scheduling is the problem of assigning resources and starting times of

periodic activities such that the periodic repetition (period λ) of the overall

application is minimal and such that the precedence relations and the re-

source availabilities are respected. In other words, the schedule is repeated

every λ time units. All activities however should appear once in the period.

Note that a minimal period corresponds to the highest number of activi-

ties executed on average over a large time window. As a consequence, the

minimal period corresponds to the maximum application throughput1.

Traditional resource-constrained scheduling techniques have achieved a

good level of maturity in the last decade [6], but they cannot be trivially

applied to cyclic scheduling problems in an efficient way. Hence four different

approaches have been proposed to handle this type of cyclic problems:

• the so called blocked scheduling approach [14] that considers only one

iteration and repeats it in sequence for an infinite number of times.

Since the problem is periodic, but the optimal solution may require

mixing activities from different repetitions within a single period, the

blocked scheduling method can be highly sub-optimal.

• the unfolding approach [84] that schedules a number of consecutive

iterations of the application. Unfolding often leads to improved blocked

schedules, but it also implies an increased size of the instance. Moreover

it has been not clear how to find the number of unrollings that lead to

an optimal solution.

• the self-timed approach [65]; the method computes a static-order sched-

ule2, that is a set of ordering decisions between activities. The start

times are deduced from such decisions in a second phase (usually at

1Cyclic scheduling problems are usually constrained with a throughput feasibility
threshold.

2See Section 2.2 for details.
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run-time). A recent heuristic approach (see [97]) uses simulation tech-

niques to compute feasible static-order schedules.

• the modulo scheduling approach [48] that schedules the activities allow-

ing the overlapping between several repetitions. The obtained periodic

overlapping usually speeds-up the infinite execution.

1.1 Content

RA&CSPs often deal with two types of constraints: temporal dependencies

(i.e. precedencies) and resource sharing. In this work we tackle two types

of cyclic scheduling problems having the same precedence constraints, but

different resources constraints:

• Disjunctive Problem: the RA&CS problem we tackle arises in the

field of the embedded system design and it consists in scheduling and

allocating a periodic application (i.e. a set of activities) on a set of

Multi-Processor System-on-Chip (MPSoC) cores (i.e. unary resources).

The applications is modeled through a Synchronous Data-Flow Graph

SDFG3, which is a particular project graph widely adopted in embed-

ded system context. We propose a method that tackle the allocation

and scheduling problem as a whole, avoiding the sub-optimality due to

decomposition. The method is base on the self-timed techniques.

• Cumulative Problem: in this case, as all the activities share the same

cumulative resources. The resource allocation problem is not consid-

ered, therefore the problem tackled is the Cyclic Resource-Constrained

Scheduling Problem (CRCSP). Instances are described through a pro-

ject graph presented in Section 2.1. We develop a novel framework

based on modulo scheduling techniques. The solver developed is called

CROSS 4.

3See Section 3.2 for a formal and detailed description.
4Cyclic Resource-cOnstrained Scheduling Solver.
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1.2 Contribution

This thesis provides several contributions to the state-of-the-art solving tech-

niques for RA&CSPs.

• A novel approach for solving the Disjunctive RA&CSP. The basic

idea of this approach, described in Section 3, is to model the effects

of allocation and scheduling choices by means of graph modifications.

During the search process, whenever allocation and scheduling decision

are taken, the graph is modified accordingly. The efficiency of this

approach hinges on a global throughput constraint. This work was

published in [21].

– A new global constraint for throughput filtering algorithm main-

taining a tight bound on the maximum achievable throughput

based on the current state of the search. We propose two ver-

sions of the algorithm: the non-incremental and the incremental

version, the second reaching on order of magnitude speed-up with

respect to the former with very significant benefits on scalability.

This work was published in [18].

• The CROSS solver. The solver (described in Section 4) focuses on

the CRCSP and is used in the MPOpt-Cell framework (presented in

Section 5). The CROSS approach is based on modular algebra and its

model is enforced by two specific constraints used to model precedences

and cumulative resources.

– An original Modular Precedence Constraint (MPC) and its filter-

ing algorithm. This work was published in [19].

– A Global Cyclic Cumulative Constraint (GCCC) and its filtering

algorithms. This work was published in [20].

– A random restart based search strategy where we set the upper

bound of the period variable (i.e. the modulus) while the lower

bound is inferred from the other variables. This is in contrast
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with classical modular approaches that fix the period and solve

the corresponding scheduling sub-problem.

– A solution strategy with the underlying hypothesis that the end

times of all activities should be assigned within the modulus.

Thanks to this assumption, we can simplify the model reusing

traditional resource constraints and filtering algorithms.

The CROSS approach has several interesting characteristics: it deals

effectively with temporal and resource constraints, it computes very

high quality solutions in a short time, but it can also be pushed to run

complete search. An extensive experimental evaluation on a number

of non-trivial synthetic instances and on a set of realistic industrial

instances gave promising results compared with a state-of-the art ILP-

based (Integer Linear Programming) scheduler and the Swing Modulo

Scheduling (SMS) heuristic technique. SMS is a non-complete (heuris-

tic) modular approach adopted in the gcc compiler [45]. In addition,

the experiments show that our technique greatly outperforms both the

blocked and the unfolding approaches in terms of solution quality.

Our method are based on Constraint Programming (CP) [88], a declara-

tive programming paradigm based on constraint propagation and search (for

details see Appendix A)

1.3 Outline

The thesis is structured as follows: in Chapter 2 we formally define the

problems and we introduce the necessary background terminology. Chapter

3 presents the developed framework and the experimental results for the

disjunctive RA&CSP. In Chapter 4 we present the CROSS framework based

on modulo scheduling techniques.

Note that the state-of-the-art approaches related to the disjunctive

RA&CSPs (in Embedded System design context) are presented in Sec-

tion 3.3.2, while the approaches and the methods related to the CRCSP

are described in Section 4.1

5



Then in Chapter 5 we present the MPOpt-Cell framework [39], a High-

Performance Data-Flow Programming Environment for the Cell BE Proces-

sor5 based on CROSS solver. Finally Chapter 6 concludes this work with

some remarks and directions for possible further research.

5https://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_

Broadband_Engine
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Chapter 2

Problem Definition

In this chapter, we introduce terminology and definitions used in this thesis

and then we provide some intuitions about the allocation and scheduling

problems defining formally the concepts needed to address them.

2.1 Background

The problem can be described through a project graph.

Definition 1. A Project Graph G is a directed graph consisting of a pair

〈V,A〉, where

• elements in V (||V|| = n) are nodes that represent activities.

• elements in A (||A|| = m) are arcs. An arc (i, j) represents a temporal

dependency between activities i and j.

We assume that every activity i ∈ V in the graph G has a fixed duration di.

We refer to (i, ω) as the ω-th execution of activity i ∈ V, where ω ∈ Z is

called execution number. A set of executions (i, ω) of all the activities in V
with the same ω value is referred to as a repetition. A schedule is defined as

an assignment of start times to all executions (i, ω). We refer to start(i, ω) as

the starting time of activity i at execution ω. Without loss of generality, we

also assume that start(i, ω) ≥ start(i, ω′) if ω ≥ ω′ and that start(i, ω) ≥ 0.

7



The most important performance metric of a cyclic schedule is the average

inter-execution distance, which is strictly related to the concept of execution

frequency (i.e. the throughput).

Definition 2. The average inter-execution distance λ(i) of an activity i is

defined as the following limit:

λ(i) = lim
ω′→∞

∑ω′

ω=0 (start(i, ω + 1)− start(i, ω))

ω′
(2.1)

Note that, since the activities are repeated indefinitely, the sum can start

for ω = 0 without loss of generality, even if ω is in Z as from the problem

definition.

Definition 3. The average inter-execution distance λ of a set of activities

V is the worst case λ(i).

λ = max
i∈V

(λ(i)) (2.2)

The throughput of an activity i is defined as the average number of executions

of i per time unit, and corresponds to the inverse of the average distance:

Thp(i) =
1

λ(i)

Analogously, the throughput of a set of activities is the inverse of λ. Lower

period (i.e. higher throughput) values are to be preferred since they corre-

spond to more efficient schedules.

In practical cases, activities are subject to several restrictions. In par-

ticular, there may be temporal dependencies between activities and resource

constraints.

2.1.1 Resource Constraints

A resource allocation problem consists in assigning activities to resources.

The RA&CS problem considers a set R of limited capacity resources. For

each resource k ∈ R its maximum capacity is CAPk. Each activity i ∈ V has

8



a set of resource requirements ri,k for all resources k required by activity i.

A zero requirement denotes a non-required resource.

A schedule is feasible if and only if, for each resource k ∈ R, at any point in

time t, the sum of the activities requirements ri,k do not exceed the capacity

CAPk of the resource.

∑
i∈V, ω∈Z
start(i,ω)≤t

t<start(i,ω)+di

ri,k ≤ CAPk ∀t ∈]−∞,∞[, ∀k ∈ R (2.3)

As stated in Section 1, in this thesis we focus on two problems: the

disjunctive RA&CSP and the CRCSP (with cumulative resources). In the

disjunctive problem the resources have unary capacity (i.e. CAPk = 1 ∀k ∈
R), while in CRCSP we consider cumulative discrete resources.

Notice that in the CRCSP the resource allocation problem is not consid-

ered. However, a problem considering a set of p unary resources (as the Dis-

junctive RA&CSP) is analogous to a problem with a single shared resource

of capacity CAP = p (i.e. CRCSP). Therefore the CROSS framework,

developed for the CRCSP, can be used to tackle the disjunctive RA&CSP.

In fact, the use of a single shared resource of capacity CAP = p, implies

that, considering a feasible schedule, the maximum number of activities that

can execute concurrently are p. Hence, a set of p unary resources is enough

to implement the same feasible schedule.

2.1.2 Time constraints

Temporal dependencies between activities are represented through arcs of

the project graph.

Moreover, in a traditional scheduling problem a temporal dependency

links the only existing execution of activity i with the only existing execution

of activity j. On the other hand, in cyclic scheduling, since activities have

multiple executions, the temporal dependency should be augmented so as to

take into account the infinite executions.

9



Definition 4. Each directed edge (i, j) ∈ A in the project graph G is a tuple

〈i, j, θ(i,j), δ(i,j)〉, where

• i is the source activity

• j is the sink activity

• θ(i,j) ∈ R is called minimum time lag;

• δ(i,j) ∈ Z is called the repetition distance1;

the edge 〈i, j, θ(i,j), δ(i,j)〉 enforces the relation:

start(j, ω) ≥ start(i, ω − δ(i,j)) + di + θ(i,j) ∀ω ∈ Z (2.4)

Observe that, in a cyclic problem, a temporal dependency connects an infi-

nite number of distinct pairs of executions of i and j. The value δ(i,j) acts

as a repetition offset: it declares the distance in terms of repetitions be-

tween the executions of the connected activities. Moreover, if δ(i,j) = 0, the

edge 〈i, j, θ(i,j), 0〉 is called intra-repetition edge while if δ(i,j) 6= 0, we call

〈i, j, θ(i,j), δ(i,j)〉 inter-repetition edge. The time lag θ(i,j) specifies the mini-

mal temporal distance between the start of execution (j, ω) and the end of

execution (i, ω − δ(i,j)).

Note that, the presence of inter-repetition dependencies may create fea-

sible cycles in the project graph.

Consider the following simple example about building a skyscraper, de-

picted in Figure 2.1. The project graph contains the two activities floor and

pillars (having respectively duration 5 and 2) and two arcs:

〈floor, pillars, 2, 0〉 and 〈pillars, f loor, 1, 1〉.
Both arcs have a positive time lag. Activity floor represents the act of

building the floor frame and activity pillars represents the edification of the

pillars for the next floor. The first temporal dependency ensures that that

the pillars are built after the floor completion, while the second one conveys

1The repetition distance δ in embedded system design represents data packets that are
produced and consumed by the activities. Such packets are called tokens.
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that without the pillars of the previous floor a new floor frame cannot be

built. Note that 〈pillars, f loor, 1, 1〉 is an inter-repetition dependency.

δ = 1, θ = 1

pillarsfloor
δ = 0, θ = 2

d = 5 d = 2

Figure 2.1: Project Graph Example

Based on Equation (2.4), we can formally define both the dependencies:

〈floor, pillars, 2, 0〉 → start(pillars, ω) ≥ start(floor, ω) + 5 + 2 ∀ω ∈ Z (2.5)

〈pillars, floor, 1, 1〉 → start(floor, ω) ≥ start(pillars, ω − 1) + 2 + 1 ∀ω ∈ Z
(2.6)

We now proceed by providing a numeric example to clarify the mechanics of

the temporal dependencies. Since a cyclic schedule is infinite, we can choose

for convenience a reference repetition and start time. Fixing the start time

of one activity does not compromise completeness since ω ∈ Z. Specifically,

let us assume that start(floor, 0) = 0 (i.e. the workers immediately start

to build the ground floor ). The following equations and Figure 2.2 show

how the start times of different executions are (lower) bounded by temporal

dependencies:

Step 1, ω = 0 :

〈floor, pillars, 2, 0〉 → start(j, 0) ≥ start(floor, 0) + 7

start(pillars, 0) ≥ 7

11



Step 2, ω = 1 :

〈pillars, f loor, 1, 1〉 → start(floor, 1) ≥ start(pillars, 0) + 3

start(floor, 1) ≥ 7 + 3

〈floor, pillars, 2, 0〉 → start(pillars, 1) ≥ start(floor, 1) + 7

start(pillars, 1) ≥ 10 + 7

Step 3, ω = 2 :

〈pillars, f loor, 1, 1〉 → start(floor, 2) ≥ start(pillars, 1) + 3

start(i, 2) ≥ 17 + 3

〈floor, pillars, 2, 0〉 → start(pillars, 2) ≥ start(floor, 2) + 7

start(pillars, 2) ≥ 20 + 7

...

0 t5 10 15 20 25 30

(floor,0)
(pillars,0)

(floor,1)
(pillars,1)

(floor,2)

Figure 2.2: Precedence constraints in action in a modulo scheduling approach

2.1.3 Paths and Cycles

Let ~e = 〈i, j, θ(i,j), δ(i,j)〉 ∈ A be an arc of the project graph. The arc ~e

connects the activity i, called source src(~e), with the activity j, called sink

snk(~e).

Definition 5. A path pij in the project graph is a finite, nonempty sequence

(~e1, ~e2, ..., ~em), where each ~e is a member of A, src(~e1) = i, snk( ~em) = j, and

snk(~e1) = src(~e2), snk(~e2) = src(~e3), ..., snk( ~em−1) = src( ~em).

12



Moreover we say that pij is directed from i to j. A project graph G is

strongly connected (or strictly connected) if for each pair of distinct nodes

i, j, there is a path directed from i to j (i.e. pij) and there is a path directed

from j to i (i.e. pji ). We say that an activity i precedes j, i ≺ j, if it exists

a path directed from i to j. A path that is directed from a node to itself is

called a cycle.

2.1.3.1 Iteration Bound

Let C be the set of all cycles of a project graph G, c(V) and c(A) respectively

the set of activities and edges that belong to a cycle c ∈ C.

Definition 6. The cycle bound CB(c) of a cycle c is the minimum time re-

quired in a periodic schedule to execute all the activities in c. This is equal

to:

CB(c) =
Ex(c)

∆(c)

where:

• Ex(c) =
∑

i∈V(c) di is the sum of the durations of the activities in V(c)

• ∆(c) =
∑

(i,j)∈A(c)

δ(i,j) is the sum of the repetition distances of arcs in

A(c).

Note that the sum of the repetition distances must be strictly positive

∆(c) > 0, otherwise no feasible schedule exists. This can be intuitively

checked since CB(c) → ∞ as ∆(c) → 0: more details and formal proofs

can be found in [43]. As a consequence, at least an arc in the cycle must

have a positive δ. A graph with ∆(c) > 0 ∀c ∈ C is called deadlock-free.

Definition 7. The Iteration Bound IB is the maximum of the cycle bounds:

IB = max
c∈C

(CB(c))

The iteration bound is related to the concept of critical path in traditional

scheduling and to the concept of Maximum Cycle Mean (MCM) (and the rel-

ative Maximum Cycle Ratio, MCR) in performance analysis of synchronous
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and asynchronous digital systems (including rate analysis of embedded sys-

tems) and in graph theory. Dasdan and Gupta [32] provide a comprehensive

overview of algorithms for computing maximum cycle mean.

The iteration bound IB is the intrinsic lower bound on the iteration pe-

riod; we can never achieve an iteration period λ less than IB, even with

infinite resources.

Periodic schedules are said to be periodically optimal if the iteration pe-

riod λ is the same as the iteration bound IB. If there are no resource re-

strictions, then a periodically optimal schedule is guaranteed to exist. This

is not true once we add resource constraints to the problem. Further details

can be found in [31, 42].

2.2 Cyclic Scheduling Strategies

There exist many different cyclic scheduling techniques. An in-depth survey

of these techniques can be found in [14]. Three of the most widely used

classes of cyclic scheduling techniques are:

• Static Techniques

(1) static-time scheduling;

(2) static-order scheduling;

• Dynamic Techniques

(3) dynamic scheduling.

Static-time scheduling (called also fully static scheduling) techniques de-

termine at design-time the start time of each activity executing. Static-order

scheduling (called also ordered-transaction or self-timed scheduling) tech-

niques determine at design-time only the ordering in which activities are

executed. The actual start times are determined at run-time based on the

availability of resources. The two static techniques are closely related to each

other: (1) the ordering can be extracted from the start times of a static-time

14



schedule and (2) the start times can be deduces from the order of a static-

order schedule. The third class of scheduling techniques, dynamic schedulers,

do not take any decision at design-time. Both the order in which activities

are executed as well as their start times are determined at run-time. It is

therefore not practical for a dynamic schedule to make globally optimal sche-

duling decisions. A dynamic schedule will be forced to take locally optimal

decisions. Static schedules on the other hand can take more information

into account as these are constructed at design-time. Therefore, the perfor-

mance (i.e. throughput) of a static schedule will typically be better than the

performance of a dynamic schedule [14].

In this thesis we focus on static schedules. The disjunctive RA&CSP is

tackled with a static-order scheduling technique, while the CRCSP with a

static-time scheduling one.

Note that a schedule has infinite size in principle, because in a cyclic

problem each activity executes an infinite number of times. However, since

building an infinite schedule is impossible in practice, we should find a way

to compute a more compact problem solution. Typically, (1) one wants to

build a periodic static-time schedule (called also periodic schedule), i.e. a

schedule where activities are executed regularly with a fixed period. Such

an approach requires to specify only a start time for each activity, plus the

period value. Periodic static-time schedules will be formally defined in Sec-

tion 2.2.1. On the other side (2), a compact solution adopting a static-order

scheduling technique is to define an order between the activities (e.g. post-

ing precedences) such as an order between two activities constraints all their

infinite executions. Periodic static-order schedules will be formally defined

in Section 2.2.2.

2.2.1 Periodic Static-Time Schedule

A common way to compute a compact solution to the problem is to consider

a schedule where activities are executed regularly with a fixed period (i.e.

periodic schedule). Note that for a periodic schedule the fixed period (called
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iteration period) is the same as the the maximum average inter-execution

distance λ from Definition (3). Formally:

Definition 8. A periodic schedule is pair 〈L, λ〉 where λ is the iteration

period and L is a vector containing the start times for the execution 0 of all

the activities, i.e.:

L[i] = start(i, 0) ∀i ∈ V

A periodic schedule obeys the following restriction:

start(i, ω) = start(i, 0) + ω · λ ∀ω ∈ Z ∀i ∈ V (2.7)

The iteration period of the schedule is defined as the distance between the

start times of two consecutive executions of the same activity. We use the

notation λ, since for a periodic schedule the iteration period is the same

as the maximum average inter-execution distance. This can be checked by

combining Equations (2.1) and (2.2) from Section 2.1 with Equation (2.7).

Finally, the makespan for a periodic schedule is defined as the distance be-

tween the start of the first activity and the end of the last activity in every

repetition. For this reason, it will be referred in the following as schedule

length. To avoid confusion, we will use the same terminology also for other,

non strictly periodic, approaches.

Overlapped schedules

Cyclic schedules can be either non-overlapped or overlapped.

Definition 9. A schedule is said to be non-overlapped, if the execution of

any activity i of repetition ω + 1, start(i, ω + 1), starts after all activities of

repetition ω have been executed (i.e. once repetition ω is over);

start(i, ω + 1) ≥ start(j, ω) + dj ∀i, j ∈ V (2.8)

16



Definition 10. A schedule is overlapped if there exists at least one activity

whose (ω+ 1)− th repetition starts before the end of the ω− th repetition of

all activities.

∃ i, j ∈ V, i 6= j | start(i, ω + 1) < start(j, ω) + dj (2.9)

Periodic schedules are said to be periodically-optimal if the iteration pe-

riod λ is the same as the iteration bound IB.

Cyclic Static-Time Scheduling Techniques

Three main approaches have been proposed for the CRCSP. The first be-

longs to the non-overlapped class, while the other two exploit inter-repetition

overlaps:

• The so called blocked scheduling approach (see Section 2.2.1.1) builds a

schedule for a single repetition and assumes that the period is equal to

the schedule length. As a consequence, consecutive repetitions are not

allowed to overlap, with an obvious loss in terms of solution quality.

• The unfolding approach (see Section 2.2.1.2) schedules a number of

consecutive repetitions and then repeats the block similarly to the pre-

vious technique. Unfolding often leads to higher quality schedules, but

it also requires to solve problem instances with artificially increased

size.

• The modulo scheduling approach (see Section 2.2.1.3) schedules a single

repetition, which is however repeated every λ time units. The value

λ is called the modulus and it is the same as the iteration period. By

exploiting repetition overlaps, the modulus can be made much smaller

than the schedule length, obtaining considerable speed-ups.

Figure 2.3 depicts a simple example of a CRCSP. All minimum time lags

θi,j are assumed to be 0 and the repetition distance δi,j is 0 whenever not

17



B CA

D

E

δ = 1

Activity    Rq    Dur

A          1       6
B          1       4
C          1      12
D          1       3
E          1       5

Total Capacity R = 3

Figure 2.3: Annotated representation of a cyclic graph

explicitly mentioned. In the following subsections we use this instance to

show how the three approaches described above work.

2.2.1.1 Blocked Scheduling

Traditional static resource-constrained scheduling techniques for cyclic prob-

lems are non-overlapped [64],[18]. These methods optimize the performance

of a single repetition of the project graph and then repeat the schedule peri-

odically.

Figure 2.4 shows the optimal blocked schedule for the simple problem de-

scribed in Figure 2.3. The output of the solution approach is the schedule (or

block) identified by the black arrows, which is then repeated every iteration

period λ = 27. Hence, the throughput is one over the length of the schedule

Thp = 1
λ

= 0.037. The horizontal dotted line represents the resource capac-

ity: note that this schedule leaves most of the resource idle. With blocked

schedules, this may happen quite frequently.

Note that a periodic schedule (as from Definition 8) dominates a blocked

schedules.

0

R

27

A B C

E

D A' B' C'

E'

D' A'' ...

54

Figure 2.4: Blocked optimal schedule
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2.2.1.2 Unfolded Scheduling

Overlapped schedules exploit the repetitive nature of periodic schedules to

achieve higher throughput. On this purpose, they have to take into ac-

count inter-repetition dependencies in addition to intra-repetition ones. The

unfolding technique, presented in [83] and [84], consists in scheduling u con-

secutive repetitions of the graph, where u is referred to as unfolding factor

(or as blocking factor). Then, the resulting schedule (say with total length

L) is treated as a normal blocked schedule and repeated every L time units.

Note that the schedule length acts as a sort of period, but since u repetitions

are considered, the actual average inter-repetition distance is λ = L
u

. In fact,

u executions are completed in L time units.

Figures 2.5 and 2.6 show the optimal unfolded schedule for the simple

problem depicted in Figure 2.3 with unfolding factor u = 2 and u = 3 re-

spectively (with u = 1 we obtain the blocked schedule from Figure 2.4). The

schedule is restarted after L time units: for u = 2 the optimal L is 35 and

λ = 17.5, while for u = 3, L = 47 and λ = 15.6. The throughput Thp is

higher than in the blocked schedule, but the problem size (and consequently

the search space) is bigger because it consists of u different repetitions. Since

the problem NP-complete, multiplying the number of activities by the un-

folding factor leads to an exponential increase in the solution time.

Since the group of repetitions in the unfolded schedule is repeated in a

blocked fashion, the unfolding approach may be incapable to optimally ex-

ploit inter-repetition overlaps to make the best use of the available resources.

Moreover, despite increasing u from 2 to 3 led to a lower λ value in

our example, it is not true in general (as showed in [18]) that increasing

0

R

A B C

E

D

A' B' C'

E'

D'

A'' B'' C''

E''

D''

A''' B''' ...

17.5 35 70

Figure 2.5: Unfolding optimal schedule with unfold factor 2
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D''

A''' B''' …

A'''' …

15.6 31.2 47 62.6

Figure 2.6: Unfolding optimal schedule with unfold factor 3

the unfolding factor leads to better schedules (note that the best unfolding

factor u cannot be trivially computed). Therefore an unfolded schedule do

not dominate a periodic schedule.

On the other hand, it is known [48] that periodic schedules are domi-

nated by K-periodic schedules2 (i.e. periodic schedules for sequences of K

iterations) in the presence of finite capacity resources. Note also that, as the

unfolding technique takes into account u iterations, there exists cases where

the unfolded schedule is better than a (single-iteration) periodic schedule.

Hence, no strict dominance exists between periodic schedules and un-

folded schedules.

An in-depth survey of traditional and unfolding cyclic scheduling techni-

ques can be found in [14].

2.2.1.3 Modulo Scheduling

The modulo scheduling method consists in finding a schedule for a single

repetition, plus a modulus value λ (usually lower than the whole schedule

length). The schedule is repeated every λ time units and the activities of

consecutive repetitions, like in a pipelined system, overlap over time. This

technique is the best in exploiting the available resources. Figure 2.7 shows

the optimal modular schedule for the graph of Figure 2.3. The figure shows

that, after an initial transient phase, the execution reaches a periodic phase

where a repetition of the graph is completed every λ = 10 (corresponding to

2Note that an u-unfolded schedule is dominated too by a K-periodic schedule. In fact,
considering an unfolding factor u = K, the resulting periodic schedule dominates the
blocked (unfolded) one.
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Figure 2.7: Modulo scheduling method optimal schedule

Note that a time window of length λ (evidenced with the black arrows)

contains the start time of exactly one execution of each activity. The activ-

ities may however appear with different execution numbers (i.e. ω values),

following a well defined pattern. Such a collection of activity executions is

called an iteration and is a fundamental concept for our method.

Bω
Cω Dω Eω

ω·λ
t

R

Aω+2 Bω+2

Cω+1

Dω Eω

(ω+1)·λ 0
t

R

Aω

a
b

Figure 2.8: a) A single iteration. b) A single repetition.

Figure 2.8a depicts the schedule subpart corresponding to a specific it-

eration starting at a multiple of λ (in the periodic phase). In the picture,

with xω we refer to the ω-th execution of activity x, i.e. to (x, ω). Note

that an iteration contains a single execution of each activity and that not all

the activities appear with the same ω values. For example, (C, ω + 1) and

(A, ω + 2) are executing concurrently with (D,ω), i.e. the first execution

of activity D runs together with the second execution of C and the third

execution of A.

One of the key ideas of this method is to focus on scheduling a single

iteration (Figure 2.8a) instead of a single repetition with a large horizon

(Figure 2.8b). In this context, it is convenient to restrict to iterations starting

21



at a multiple of the period λ, so that we can refer as the ω-th iteration to

the iteration starting at ω · λ. Further details will be given in Section 4.3.

2.2.2 Periodic Static-Order Schedule

Another common static scheduling technique is the static-order approach.

This technique is often used in Embedded System Design [14], working with

Digital Signal Processing (DSP) applications3, and in problems where activ-

ities have variable duration times, see [69].

It consists in defining at design-time an order between the activities,

delegating to the run-time the decision of the start times. A conventional

policy is to consider an order involving executions (i, 0) and (j, 0) as an

ordering decision between any other execution of the activities i, j. Therefore

a static order schedule can be computed ordering the executions of a single

repetition, namely the first repetition (i.e. ω = 0).

Let ((i, ω)→ (j, ω)) be an ordering decision between the executions (i, ω)

and (j, ω). The ordering decision implies that the execution (j, ω) can start

after (i, ω).

Definition 11. A static-order schedule is a set O of ordering decision

((i, 0)→ (j, 0)) between pairs of executions of the first repetition.

Since a static-order schedule involves only execution of a single repeti-

tion, an ordering decision can be graphically expressed through a directed arc

〈i, j, 0, 0〉 on the graph. As a consequence, a static-order schedule can be rep-

resented posting temporal dependencies in the problem graph. This method-

ology is used in the framework we devised for the Disjunctive RA&CSP. The

proposed method models the effects of allocation and scheduling choices by

means of graph modifications (see Chapter 3 for details).

Consider, for instance, activities D and E of the problem de-

scribed in Figure 2.3 allocated on the same unary resource. Such

3DSP applications typically represent computations on an indefinitely long data se-
quence.
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activities depend only from C, hence they could theoretically ex-

ecute concurrently when C ends. However they are competing for

the same resource. Posting an ordering decision ((D, 0)→ (E, 0))

between the activities solves the conflict creating a feasible sched-

ule equivalent to the schedule represented in Figure 2.8b.

In this approach, the iteration period λ corresponds to the iteration bound

IB∗ of the modified graph (see [14]). Note that the iteration bound of the

modified graph is not smaller than the iteration bound IB of the original

graph (i.e. IB∗ ≥ IB). In fact, adding arcs may create longer cycles and the

iteration bound is the maximum of the cycle bounds.

Cyclic Static-Order Scheduling with Transient

As in cyclic problems activities execute an infinite number of times, any

implementable static-order schedule has a periodic phase that is repeated

indefinitely. Any practical static-order schedule should have a finite length.

Otherwise, the schedule cannot be implemented. This periodic phase could

be preceded by a transient phase (see the transient phase in the modulo

scheduling technique, Section 2.2.1.3).

Static-order schedules that have a transient phase are called periodic

static-order schedules with transient. This method usually computes better

schedules4, however, it needs the computation of two schedules: the transient

phase schedule, executing only once, and the periodic schedule, repeated in-

finitely. Moreover the transient phase could be very long. In [97] the authors

present an incomplete approach computing periodic static-order schedules

with transient (more details in Section 3.3.2.2).

2.3 Problem Definition

Now we have all the notions to formally define the problems considered in

this thesis.

4A schedule is better if it is able to achieve a higher throughput.
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2.3.1 Disjunctive RA&CS Problem

The problem is defined as follows. Given

• a project graph G = 〈V,A〉 with :

– a set of activities i ∈ V having

∗ fixed duration di

∗ resource requirements ri,k ∈ {0, 1} for all resources k ∈ R

– a set of temporal dependencies 〈i, j, θ(i,j), δ(i,j)〉 ∈ A with θ(i,j) = 0

• a set R of unary resources.

a disjunctive RA&CS problem consists of finding a resource assignment

for each activity and a static-order schedule such that all dependencies are

consistent, no resource capacity is exceeded and the iteration period λ is

minimized (the throughput is maximized).

2.3.2 CRCS Problem

Given:

• a Project Graph G = 〈V,A〉 with :

– a set of activities i ∈ V;

– a set of temporal dependencies 〈i, j, θ(i,j), δ(i,j)〉 ∈ A.

• A set R of limited capacity resources, where each resource k ∈ R has

capacity CAPk.

• A fixed duration di for each activity.

• A resource requirement ri,k ≥ 0 for each activity i and resource k.

The CRCSP consists in finding a periodic schedule: i.e. an iteration period

λ and a feasible assignment of start(i, 0) ∀i ∈ V such that all dependencies

are consistent, no resource capacity is exceeded and the iteration period λ is

minimized.
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Chapter 3

Solving the Disjunctive

RA&CS Problem

In this chapter we propose an algorithmic framework for allocation and sche-

duling of DSP1 applications on a target homogeneous multi-processor plat-

form; the approach is complete, namely if a throughput requirement is spec-

ified, a feasible solution is guaranteed to be found if it exists; in general,

the solver always finds the optimal solution if enough time is given. The

method tackles the mapping2 and scheduling problem as a whole, avoiding

any sub-optimality due to decomposition.

Instances are modeled through Synchronous Data-Flow Graphs (SDFG).

Section 3.2 presents a detailed description of Synchronous Data-Flow Graphs.

3.1 Embedded System Design

Smartphones, smartcameras, tablets, multimedia stations, the consumer elec-

tronic market is growing rapidly3. The universe of smart connected devices,

1Digital Signal Processing.
2In the Embedded System Design context the resource allocation problem is referred

to as a mapping problem. The mapping problem usually consists in binding tasks to
processors and memories.

3Always On, Always Connected at http://www.accenture.com/

SiteCollectionDocuments/PDF/Accenture_EHT_Research_2012_Consumer_

Technology_Report.pdf of Accenture (http://www.accenture.com)
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including PCs, media tablets, and smartphones, saw shipments4 of more than

916 mln units and revenues surpassing $489 bln dollars in 2011.

The transition in high-performance embedded computing from single CPU

platforms with custom application-specific accelerators to programmable

multi processor systems-on-chip (MPSoCs) is now a widely acknowledged

fact [74, 54]. All leading hardware platform providers in high-volume appli-

cations areas such as networking, multimedia, high-definition digital TV and

wireless base stations are now marketing MPSoC platforms with ten or more

cores and are rapidly moving towards the hundred-cores landmark [1, 82, 9].

Large-scale parallel programming has therefore become a pivotal challenge

well beyond the small-volume market of high-performance scientific comput-

ing. Virtually all key markets in data-intensive embedded computing are in

desperate need of expressive programming abstractions and tools enabling

programmers to take advantage of MPSoC architectures, while at the same

time boosting productivity.

Stream computing based on a data-flow model of computation [63, 72] is

viewed by many as one of the most promising programming paradigms for

embedded multi-core computing. It matches well the data-processing domi-

nated nature of many algorithms in the embedded computing domains of in-

terest. It also offers convenient abstractions (synchronous data-flow graphs)

that are at the same time understandable and manageable by programmers

and amenable to automatic translation into efficient parallel executions on

MPSoC target platforms. Our work addresses one of the key challenges in the

development of programming tool-flow for stream computing, namely, the ef-

ficient mapping of synchronous data-flow graphs onto multi-core platforms.

More in detail, our objective is to find allocations and schedules of SDFG

nodes (also called activities or tasks) onto processors that meet throughput

constraints or maximize throughput, which can be informally defined as the

number of executions of a SDFG in a time unit. Meeting a throughput con-

straint is often the key requirement in many embedded application domains,

such as digital television, multimedia streaming, etc.

4According to IDC (http://idg.com/www/home.nsf), Embedded systems market to
double by 2016 at http://www.idc.com/getdoc.jsp?containerId=prUS23398412
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The problem of SDFG mapping onto multiple processors has been stud-

ied extensively in the past. However, the complex execution semantic of

SDFGs on multiple processors has lead researchers to focus only on incom-

plete mapping algorithms based on decomposition [71, 97]. Allocation of

activities onto processors is first obtained, using approximate cost functions

such as workload balancing [71], and incomplete search algorithms. Then the

throughput-feasible or throughput-maximal scheduling of activities on single

processors is computed, using incomplete search search techniques such as

list scheduling [63].

3.2 Background

Synchronous Data-Flow Graphs

Synchronous Data-Flow Graphs (SDFGs) [65] are used to model periodic ap-

plications that must be bound to a Multi Processor System on Chip. They

allow modeling of both pipelined streaming and cyclic dependencies between

tasks. This model of computation represents data movements between ac-

tivities through tokens5 (i.e. dot on the arcs of the graph). To assess the

performances of an application on a platform, one important parameter is

the throughput. In the following we provide some preliminary notions on

synchronous data flow graphs used in this thesis.

Definition 12. An SDFG is a pair 〈V,A〉 consisting of a finite set V of

activities (also called, nodes, tasks or actors) and a finite set A of dependency

arcs. A dependency arc ~e = 〈i, j, p, q, δ〉 denotes a dependency of activity j

on i, with i, j ∈ V. When i executes, it produces p tokens on ~e and when

j executes, it consumes q tokens from ~e. Arcs6 may contain initial tokens

δ = tok(~e) = tok(i, j).

5The token in the SDF Model is equivalent to the repetition distances δ of the project
graph presented in 2.

6Note that a dependency arc of a SDF graph could be physically represented as a FIFO
Memory Buffer where data (i.e. tokens) are stored.
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Figure 3.1: Synchronous Data-Flow Graph

An activity execution is defined in terms of firings. An essential prop-

erty of SDFGs is that every time an activity fires it consumes a given and

fixed amount of tokens from its input edges and produces a known and fixed

amount of tokens on its output edges. These amounts are called rates. The

rates determine how often activities have to fire w.r.t. each other such that

the distribution of tokens over all edges is not changed. This property is cap-

tured by the repetition vector. Figure 3.1 represents a simple Synchronous

Data-Flow graph with 4 nodes; the execution times are:

A = 2,

B = 5,

C = 2,

D = 1.

Definition 13. A repetition vector of an SDFG = 〈V,A〉 is a function

γ : V → N such that for every edge ~e = (i, j, p, q, δ) ∈ A from i ∈ V to

j ∈ V, p · γ(i) = q · γ(j). A repetition vector q is called non-trivial if ∀i ∈ V,

γ(i) > 0.

The smallest non trivial repetition vector is usually referred to as the

repetition vector. We say the SDFG completes an sdf-iteration whenever

each activity i has executed exactly γ(i) times. We refer as sdf-repetition to

each activity executing within an sdf-iteration. For instance, the repetition

vector of the graph described in Figure 3.1 is [1, 2, 2, 3]
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3.2.1 Throughput

Throughput is an important design constraint for embedded multimedia sys-

tems. The throughput of an SDFG refers to how often an activity produces

tokens. To compute throughput, a notion of time must be associated with

the execution of each activity (i.e., each activity has a duration di also called

execution time) and an execution scheme must be defined. We consider as

execution scheme the self timed execution of activities: each activity ex-

ecutes as soon as all of its input data (i.e. tokens) are available (see [94]

for details). In a real platform the self timed execution is implemented by

assigning to each processor a sequence of activities to be fired in fixed order:

the exact firing times are determined by synchronizing with other processors

at run time.

Working with Synchronous Data-Flow models of computation, it becomes

natural to adopt a scheduling strategy which defines only the allocation and

let the run-time scheduler to decide the start times (i.e. the static-order

scheduling technique, see Section 2.2.2).

Figure 3.2: Single-iteration self-time execution

Considering the SDF graph in Figure 3.1, its single-iteration

self-timed execution can be expressed by the Gantt chart of Fig-

ure 3.2. First activity A is executed, it produces two tokens on

(A,B) since the out-rate of activity A on the edge is 2. The to-

kens position is depicted in Figure 3.3a. The in-rate of activity

B on the same edge is 1; therefore B can fire twice concurrently.

After both executions of B (see Figure 3.3b), the activity C can

start. Its execution consumes 1 token on (B,C) and 3 on (D,C)
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Figure 3.3: Synchronous Data-Flow Graph Execution Example

and produces 3 tokens on (C,D) (see Figure 3.3c). Then, only the

activity D could fire, because the activity C is constrained by the

presence of only 2 tokens on (D,C). Actor D produces 2 tokens

on (D,C) (see Figure 3.3d) and enables the firing of C whose

execution enables the concurrent execution of two instances of

D that terminate the single-iteration self-timed execution of the

graph.

3.2.2 Homogeneous Synchronous Data Flow Graphs

SDFGs in which all rates equal 1 are called Homogeneous Synchronous Data

Flow Graphs (HSDFGs, [65]). Every SDFG G = 〈V,A〉 can be converted

to an equivalent HSDFG GH = 〈V,A〉, by using the conversion algorithm

in [14]. The transformation procedure is based on the repetition vector and

produces an homogeneous graph that has a node for any sdf-repetition of

each activity of the original SDF graph (i.e. γ(i) nodes in V for each activity

i ∈ V); as a consequence the homogeneous graph is usually larger than the

related SDF.

In figure 3.4 we report the HSDFG corresponding to the SDFG in Fig-

ure 3.1. Note that, for example, activities B1 and B2 of the HSDFG corre-
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Figure 3.4: Homogeneous Synchronous Data-Flow Graph

spond to the activity B of the SDFG that has a repetition vector γ(B) = 2.

In the figure the (unary) rates are omitted.

Figure 3.5: Filtered Homogeneous Synchronous Data-Flow Graph

Note that turning an SDFG into the equivalent homogeneous graph may

produce multiple arcs between pairs of nodes (see edges from D2 to C1 in

Figure 3.4). Therefore the homogeneous graph should be simplified before

throughput computation removing multiple edges between two nodes. Fig-

ure 3.5 shows the filtered graph corresponding to the one in Figure 3.4.
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3.3 Related Works

In this section we give an overview of the trends in Embedded System Design

and presents the state-of-the-art of Data-Flow related approaches.

3.3.1 Application Domain

As the number of processors integrated on a single chip increases with the

fast pace dictated by Moore’s Law, multi-core systems-on-chip (MPSoCs)

are becoming truly distributed systems at the micro-scale. A typical MPSoC

[17, 56] features a number of computing tiles connected through a network-

on-chip (NoC). A tile hosts a processor and a local memory hierarchy, and

communicates with other tiles using communication services provided by

the NoC interface. Processors are often highly optimized for domain-specific

computation, with specialized instruction sets and support for vectorial data-

parallel execution. While intra-tile parallelism is typically expressed through

language intrinsics or automatically discovered by compilers, inter-tile com-

munication is relatively expensive in time and power and it should be made

explicit by the programmer. Thus, data-flow (streaming) models [14] , which

express computations as collection of processes communicating through ex-

plicit channels with precisely defined production and consumption rules,

match very well the nature of the underlying execution platforms [63].

From the application viewpoint, requirements for high performance and

low power have increased at a breakneck speed in many embedded computing

domains like wireless communication, imaging, audio and video processing,

graphics, pushed by the demand for higher communication bandwidth, mul-

timedia quality and realistic rendering. Applications in these areas are highly

parallelizable and feature significant functional parallelism, which can effec-

tively be expressed through a data-flow model of computation, where data is

processed in (pipelined) sequences of computing stages with forks and loops

to express alternatives and state.

As discussed above, technology and architectural evolution as well as ap-

plication trends are motivating the use of data-flow programming in embed-
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ded computing. For this reason increased research effort is being focused on

developing methods and tools for efficiently mapping data-flow applications

onto many-core MPSoC platforms [46]. The theoretical foundations of the

data-flow model of computation were studied in the seventies and eighties

[65], with the definition of several flavors of graph notations to formally and

precisely express various classes of data-flow computational models, spanning

the expressiveness vs. analyzability trade-off curve [14]. Synchronous data-

flow (SDF) is one of the most widely used models (for details see Section 3.2),

as it is sufficiently semantically rich to express practical computations, while

being still analyzable with reasonable efficiency [64]. As of today, several

commercial and academic programming environments are available for SDF

application specification, analysis and mapping [46][14].

As most of the data-flow applications are subject to real-time constraints,

a key problem that must be addressed by SDF mapping tools is throughput-

constrained mapping (and/or throughput maximization). An informal defini-

tion of SDF execution throughput (see Section 3.5.1 for a formal definition)

is the number of executions of an SDF graph in a unit of time. Applica-

tions usually come with throughput constraints, such as decoded frames per

second, or processed polygons per second, and the key objective of a map-

ping tool is to find an allocation and scheduling of SDF nodes on computing

tiles so that application throughput constraints are met. This is an NP-hard

problem, and it is usually solved by sequential decomposition and incomplete

search [71][97]. Additionally, even though SDF execution ultimately becomes

periodic, the execution sequence within one period and the aperiodic initial

transient can be very long. This greatly complicates throughput computa-

tion during the search of mapping and scheduling alternatives even for SDF

graphs with a low number of nodes. Hence, complete search approaches

were believed to be computationally intractable even for the simplest SDF

instances.
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3.3.2 Mapping and Scheduling Data-Flow Graphs

Data-Flow graphs are an extension of computational graphs, defined, for the

first time, in 1966 by Karp and Miller [59]. Their studies focused on deter-

minacy property and on termination conditions. The problem of mapping

and scheduling task graphs has been widely studied (see, for instance, [80],

[89] and [102]), but the limited descriptive power of task graphs as models

of computation has lead to the development of graph models with a richer

execution semantic.

The Synchronous Data-Flow Model of Computation (SDF MoC) has been

proposed by Lee and Messerschmitt [65] to represent digital signal processing

(DSP) applications. This Data-Flow MoC has been adopted in wide-ranging

areas such as networking, multimedia, high-definition digital TV and wireless

base stations; it can efficiently represent streaming applications such as mp3

playback [103], DAB channel decoding [15] and Software Defined Radio [73].

There exist many different scheduling techniques for SDFGs (see Sec-

tion 2.2 for scheduling techniques details). Three of the most widely used

classes of scheduling techniques for SDFGs are static-time scheduling, static-

order scheduling and dynamic scheduling. Static-time scheduling techniques

determine at design-time the start time of each actor firing on a processor. To

implement such a schedule, the MP-SoC should have a global notion of time.

This is hard to realize since MP-SoCs often contain multiple clock domains

(i.e., many MP-SoCs use the GALS concept). Static-order scheduling techni-

ques avoid this problem since they determine at design-time only the ordering

in which actors are fired. The actual start times are determined at run-time

based on the availability of tokens. The third class of scheduling techni-

ques, dynamic schedulers, do not take any decision at design-time. Both the

order in which actors are fired as well as their start times are determined

at run-time. It is therefore not practical for a dynamic schedule to make

globally optimal scheduling decisions. A dynamic schedule will be forced to

take locally optimal decisions. Static-order schedules on the other hand can

take more information into account as these are constructed at design-time.

Therefore, the throughput of a static-order schedule will typically be better
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than the throughput of a dynamic schedule [14]. A static-order schedule has

also a better worst-case throughput than a dynamic schedule. Static-order

schedules are therefore the most interesting class of schedules when mapping

an SDFG onto an MP-SoC.

Much work has been published on scheduling of data-flow graphs with

real-time requirements. Researchers have mostly focused on incomplete (also

called heuristic) mapping algorithms for SDF allocation and scheduling (see

[71, 97]). The motivation for the use of incomplete approaches is that both

computing an optimal allocation and an optimal schedule are NP-hard [40].

Here we briefly describe state-of-the-art approaches to mapping and sche-

duling synchronous data-flow graphs that are classifiable onto two separate

sets: complete and heuristic (incomplete) methods applied to Homogeneous

SDFG, and heuristic methods applied directly on SDF graphs.

3.3.2.1 HSDF Scheduling

The first class of approaches, pioneered by the group lead by E. Lee [94],

and extensively explored by other researchers [14], can be summarized as

follows. A SDFG specification is first checked for consistency, and its non-

null iteration vector is computed. The SDFG is then transformed, using

the algorithm, described in [14] into an Homogeneous SDF graph (HSDF7).

The HSDFG is then mapped onto the target platform in two phases. First,

an allocation of HSDFG nodes onto processors is computed, then a static-

order schedule is found for each processor. The overall goal is to maximize

throughput, given platform resource constraints. Unfortunately, throughput

depends on both allocation and scheduling. However, the combination of

possible mapping and scheduling decisions leads to an exponential blow-up

of the solution space.

With the widespread diffusion of multi-core processors, scheduling and

allocation of data-flow applications onto parallel computing platforms has

received renewed interest. Kudlur et al. described in [61] an ILP that un-

7We recall that the Homogeneous SDF graph model is equivalent to the project graph
model presented in Section 2.1. More details on the HSDF model in Section 3.2.
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folds and partitions a stream application onto MPSoC architecture. Their

approach consists in two steps: a fission and partitioning step, performed

through ILP, to ensure work balancing, and then a stage assignment step

wherein each activity is assigned to a pipeline stage for execution. An en-

hanced version of the same work was presented in [27] by Choi et al.

Chatha and co-authors have proposed two methods to support the compi-

lation of streaming application on multi-core processors. The first, described

in [24], uses fusion and fission operations to schedule streams onto (SPM

based) multi-core processors while the second one, in [25], adopts a classic

retiming technique. In both works the method is not complete, therefore the

optimality is not guaranteed. They adopted the StreamIt language from MIT

as the input specification (see [100] for details). StreamIt is an architecture-

independent language with a synchronous data-flow semantic, supplied with

an efficient compiler, described in [57] and in [93].

Ostler et al. devise, in [81], an ILP model for mapping streaming applica-

tions on multi-core platforms; the approach tackles acyclic applications, takes

into account limited local memory capacity and allows throughput improve-

ment via task fission. Communications are handled via double buffering,

assuming exactly one DMA channel is dedicated to each processor. Within

the specified assumptions the approach is optimal; it is important to observe

that, since only acyclic SDFGs are considered, computing a feasible schedule

is trivial once the mapping is specified.

Other approaches combine off-line/on-line scheduling techniques. For in-

stance FlexStream, presented in [51], is a runtime adaptation system that

dynamically re-maps an already partitioned stream graph according to the

number of processors available for heterogeneous multi-core systems.

3.3.2.2 SDF Scheduling

A different class of approaches [97] works directly upon SDF graphs using

simulation techniques, without an explicit HSDFG transformation. This ap-

proach has the advantage to avoid the potential blow-up in the number of
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nodes, with the disadvantage that if problem constraints are tight, incom-

plete approaches do not find any feasible solution. These approaches use a

heuristic function to generate a promising allocation, and then compute the

actual throughput by performing state-space exploration on the SDFG with

allocation and scheduling information until a fixed point is reached.

Researchers from ST-Ericsson designed a scheduling strategy that allows

a heterogeneous MPSoC to handle a dynamic mix of hard-real-time jobs

which can start or stop independently. To solve this problem, a combination

of Time Division-Multiplex (TDM) schedule and static-order of activities per

processor is applied [73].

The incomplete approaches summarized above cannot give any proof of

optimality, nor guarantee to find a feasible solution; actually, if the through-

put requirement of the problem is tight, an incomplete solver is likely to fail.

Our work aims at addressing this limitation, and proposes a complete search

strategy which can compute max-throughput mappings for realistic-size in-

stances. Our starting point is a HSDFG8, which can be obtained from a

SDFG by a pseudo-polynomial transformation [14]. We develop a CP-based

solver which, given an architecture and an application described through a

SDF graph, finds either the optimal or a feasible mapping and scheduling.

3.4 The Model

We devised a two-layer CP model: on one level the model features two sets of

decision variables, respectively representing allocation and scheduling/order-

ing decisions; on the second level we have a set of graph description variables

working directly on the graph by adding and removing arcs and tokens9 as a

consequence of the allocation and scheduling decisions. For this reason, the

two models are linked via channeling constraints.

8As stated in Section 3.2, the Homogeneous SDFG is equivalent to the project graph
presented in Chapter 2

9Note that the number of tokens corresponds to the δ value of the arcs, formally
described in Section 2.1.2. In this section in order to simplify the formulation, an arc from
i to j is formalized to as (i, j) and δi,j its number of tokens.
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As far as the first level is concerned, let n be the number of activities in

the input graph and let p be the number of resources (i.e. processors in the

platform), then the decision variables are:

∀i = 0 . . . n− 1 : Pi ∈ [0..p− 1] (3.1)

∀i = 0 . . . n− 1 : Nxi ∈ [−1..n− 1] (3.2)

where Pi represents the resource allocated to activity i and Nxi represents the

activity following activity i if allocated on the same resource (the -1 value

means that no activity follows).

Pi and Nxi variables are subject to a set of constraints. First dependencies

in the input graph cannot be violated: thus i ≺ j ⇒ Nxj 6= i. Less intuitively,

assuming that i and j (allocated on the same unary resource) cannot execute

concurrently, the presence of an arc (j, i) with δj,i = 1 in the input graph

implies i to fire always before j, and therefore, Nxj 6= i.

Moreover, two nodes on the same resource, cannot have the same succes-

sor: Pi = Pj ⇒ Nxi 6= Nxj. Then, a node i can be next of j only if they are

on the same resource: Pi 6= Pj ⇒ Nxi 6= j and Nxj 6= i. The -1 value is given

to the last node of each (non empty) resource:

∀ res :
n−1∑
i=0

(Pi = res) > 0⇒
n−1∑
i=0

[(Pi = res)× (Nxi = −1)] = 1 (3.3)

Finally, the transitive closure on the activities running on a single resource

is kept by posting an ad hoc constraint (based on the nocycle constraint [85])

on the related Nx variables.

Note that we consider the mapping platform as an ideal architecture

without any communication cost or buffer requirement.

The second model, instead, considers the (dynamically changing) graph

structure and defined decision variables on it. We define a matrix of binary

variables ARCi,j ∈ [0, 1] such that ARCi,j = 1 if and only if an arc from i to j
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exists. Existing arcs in the input graph result in some pre-filling of the ARC

matrix, such that ARCi,j = 1 for each arc (i, j) in the original graph.

Figure 3.6: Concurrent task mapped on the same resource

Channeling constraints link the two models, i.e., allocation and scheduling

decisions and graph description variables; first observe that token positioning

is implicitly defined by the Nxi variables and is built on-line only at through-

put computation time. As far as the Pi variables are concerned, the relation

with ARC variables depends on whether a path with no tokens exists in the

original graph between two nodes i, j. As stated in Section 2.1.3 we write

i ≺ j if such path exists; then, if i 6= j and neither i ≺ j nor j ≺ i hold:

Pi = Pj ⇒ ARCi,j + ARCji = 2 (3.4)

Constraint (3.4) forces two arcs to be added, if two independent activities

are allocated to the same resource (e.g. nodes B1 and B2 in Figure3.6).

If instead there is a path from i to j (i ≺ j), then the following constraint

is posted:

[
(Pi = Pj) ∧

∑
k≺i

(Pk = Pi) = 0 ∧
∑
j≺k

(Pk = Pj) = 0

]
⇒ ARCji = 1 (3.5)

The above constraint completes dependency cycles: considering only activi-

ties on the same resource (first element in the constraint condition), if there

is no activity before i in the original graph (second element) and there is no
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activity after j in the original graph (third element), then close the loop, by

adding an arc from j to i. Figure 3.6 shows that, assuming an allocation of

A,B1 ,C1 on the same resource, an arc with δ(C1,A) = 1 is added from C1 to

A.

Finally, auto-cycles can be added to each node in a pre-processing step

and are not considered here. Since we are dealing with a throughput bounded

Figure 3.7: Pipelined task mapped on the same resource

application, we need a constraint computing the throughput depending on

decisions taken during search. For this purpose we have defined a novel

Throughput Constraint (see sec: 3.5.1) which is satisfied if and only if an

allocation of P and Nx exists that defines an augmented graph with a through-

put value higher than the current bound. The constraint is global and has

the following signature:

thcst(TPUT, [P0..n−1], [Nx0..n−1], [ARC(0,0)..(n−1,n−1)], d0..n−1)

where TPUT is a real valued variable representing the throughput, [P0..n−1],

[Nx0..n−1] and [ARC(0,0)..(n−1,n−1)] are defined as above, d0..n−1 is a vector such

that di is the computation time of activity i.

Note that with this constraint, we can easily find also throughput maximal

solutions (objective function z = max (TPUT)), by iteratively solving a set

of throughput bounded problems with increasing values of throughput.
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3.4.1 Constraint Model

The complete constraint model is formalized as follows:

z = max (TPUT) (3.6)

n−1∑
i=0

(Pi = res) > 0⇒
n−1∑
i=0

[(Pi = res)× (Nxi = −1)] = 1 ∀i , ∀ res : 0..p− 1 (3.7)

[¬(i ≺ j) ∧ ¬(i ≺ j) ∧ Pi = Pj ]⇒ ARCi,j + ARCj,i = 2 ∀ i, j , i 6= j (3.8)(i ≺ j) ∧ (Pi = Pj) ∧
∑
k≺i

(Pk = Pi) = 0 ∧
∑
j≺k

(Pk = Pj) = 0

⇒ ARCj,i = 1 ∀ i, j (3.9)

i ≺ j ⇒ Nxj 6= i ∀ i, j (3.10)

[(Pi = Pj) ∧ (j, i) = 1 ∧ δj,i > 1]⇒ Nxj 6= i ∀ i, j (3.11)

Pi = Pj ⇒ Nxi 6= Nxj ∀ i, j (3.12)

Pi 6= Pj ⇒ Nxi 6= j ∧ Nxj 6= i ∀ i, j (3.13)

thcst(TPUT, [P0..n−1], [Nx0..n−1], [ARC(0,0)..(n−1,n−1)],W0..n−1) (3.14)

V ariables

TPUT ∈ [0,∞]

Pi ∈ {0..p− 1} ∀i = 0 . . . n− 1

Nxi ∈ {−1..n− 1} ∀i = 0 . . . n− 1

ARCi,j ∈ {0, 1}

{
ARCi,j = 1 iff exists (i, j)

0 otherwise

3.4.1.1 Communication Buffers and Latency

For the sake of simplicity, the model presented in this chapter is based on

an ideal MPSoC architecture, where communication is considered as ideal

(zero cost). However communication buffers and latencies can be modeled

in different ways, depending on the target architecture. In this section we

describe two approaches to model buffers and latencies for two widely adopted

MPSoC architectural templates.

• Tightly-Coupled Shared-Memory Cluster Architecture (e.g. Platform
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P2012 [12]): in this architecture all the processing units within a clus-

ter share a fast multi-banked on-chip L1 data memory. The memory

stores the buffers and the access and transfer cost (i.e. communication

latency) is the same for each resource. In this case latencies time lags

can be merged within the task execution times.

Let now ω be the bandwidth of the communication channel, L̂ be the

latency of a single token communication. The latency L of a commu-

nication depends on the bandwidth ω and the size of the transmission:

i.e. the number of tokens δ the task produces.

L = L̂ · δ
ω

(3.15)

where ω has been normalized considering the size of a single token (e.g.

when ω = 2 the channel transmits two tokens concurrently). Hence

the final execution time d̂i of a node i should be d̂i = di + Lin + Lout

where Lin and Lout are the sum of the latencies of the in-going and

out-going communications, respectively. Furthermore, the memory ca-

pacity (L1 size) and the buffer requirements can be modeled10 through

a global cumulative constraint [7]. The constraint is satisfied iff, for

each time instant, the sum of the buffer allocated does not exceed the

total capacity of the memory.

• Non-Uniform Memory Access (NUMA) Architecture: the template

in this scenario is based on a tile-based multiprocessor architecture

(widely described in [33]) in which multiple tiles are connected by an

interconnection network. Each tile contains a processor and a mem-

ory containing the communication buffers. The system has a Global

Address Space, therefore the tasks and their communication buffers

should be allocated as near as possible. Hence the model presented

had to be drastically modified. In fact it should consider the buffer

10One of the advantages that the use of constraint programming (see Appendix A) has
is that the definition of the model is loosely coupled with the search strategy adopted.
Hence adding further constraints to existing models, not only is easily feasible but it could
even help making, with the constraint propagation, search for a solution more efficient and
more effective.
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allocation problem and the impact of the allocation choices on the com-

munication latencies. In this case latencies should be modeled through

additional nodes with variable durations depending on the allocation

of the buffers (e.g. see the approach in [90]) and each local memory ca-

pacity should be modeled though a cumulative constraint [7] (avoiding

resource over-usage).

A trivial solution, in this scenarios could be to force the allocation of all

the HSDFG nodes corresponding to repetitions of the original SDFG nodes

on the same processor (thus in NUMA architectures buffers could be allo-

cated locally). However the experiments show that, without this constrained

hypothesis forcing the allocation, the search found much better solutions (see

Section 3.7).

3.5 The Propagation

This section presents the filtering algorithm of the throughput constraint (see

Section 3.5.1), its incremental improvement (see Section 3.5.2) and concludes

describing several algorithmic optimizations (see Section 3.5.4)

3.5.1 Throughput Constraint

The relation between decision variables and the throughput value is captured

in the proposed model by means of a novel global throughput constraint,

whose signature is:

thcst(TPUT, [P0..n−1], [Nx0..n−1], [ARC(0,0)..(n−1,n−1)], d0..n−1)

where TPUT is a real valued variable representing the throughput, [P0..n−1],

[Nx0..n−1] and [ARC(0,0)..(n−1,n−1)] are stated in Section 3.4, W is a vector such

that di is the computation time of activity i.

We devised an algorithm consistently updating an upper bound on TPUT

(this is sufficient for a throughput maximization problem).
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Each time the graph is modified, by fixing an ARC variable or taking an

ordering decision, the constraint receives a new description of the graph, and

computes the throughput value over it.

During search the throughput variable is constrained to be within a lower

and an upper bound. Initially the upper bound is set to the intrinsic iteration

bound IB of the starting graph. This value always decreases during search. In

fact, the application throughput depends on the inverse of the longest cycle

whose value increases as search decisions are taken. On the other hand,

the lower bound is set to the throughput requirement of the application, if

any; in case we want to maximize the throughput value, the lower bound is

updated with the best solution found so far. Since the optimal solution is

found by iteratively improving feasible solutions, the lower bound increases

during search.

At any time during the solution process, if the upper bound becomes

lower than the lower bound, the search fails and backtracking is forced. In

fact during the search the throughput bound values describe a monotonic

decreasing function. Whenever allocation and ordering decisions are taken

the graph is modified, adding arcs. Since the throughput depends on the

longest cycle, its value can only decrease during the search.

As stated in Appendix A, global constraints comprise efficient filtering

algorithms.

The filtering algorithm we propose extends the Maximum Cycle Mean

(MCM) algorithm [53] and [32], which in turn is based on Karp’s algorithm

([58]). The MCM algorithm is based on a recursive formula which computes,

starting from a source node, the weight of each path (execution times of

the considered nodes) of the graph. As soon as a cycle c ∈ C is found, the

throughput Thc is computed. The final throughput value is the lowest found,

corresponding to the weightiest cycle.

Th = min
c∈C

Thc (3.16)

The algorithm is based on two three-dimensional matrices:

• D(k,i,~δ) that stores the weight of the path. In particular each element
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(k, i, ~δ) is the maximum weight of a path of length k from a node

source s to i; the number of tokens in the path is described with ~δ. If

D(3,2,1) = 1.7 means that at level k = 3 (i.e., three nodes far from the

source s) there exists a path that connects s to j = 2 with one token

over its arcs, ~δ = 1; if no such path exists, then D(k,i,~δ) = −∞.

• Π(k,i,~δ) that saves the location of the predecessor of task i at level k. In

particular, such location consists of two coordinates: the index of the

task and its token number; note that the predecessor level is k−1. For

instance Π(k,i,~δ) = (3, 2) means that the activity i at level k has node

3 as predecessor (referred to as idx(Π(k,i,~δ))); the number of tokens on

the path from the source (referred to as tok(Π(k,i,~δ))) is 2.

If n is the number of the activities and Tot∆ =
∑
∀(i,j)∈A δi,j the number of

tokens of the original graph, both D and Π are (n + 1) × n × (Tot∆ + n)

matrices.

The algorithm is divided in three phases:

3.5.1.1 Step 1: building the input graph

The input for the throughput algorithm is a “minimal” graph built by adding

arcs to the original project based on the current state of the model. More

precisely, an arc is assumed to exist between activities i and j iff ARCi,j = 1;

unbound ARC variables are therefore treated as if they were set to 0. In the

following we will often write ARCi,j = 1 to mean an arc (i, j) exists. Note

that the computation of a lower bound for the throughput would require to

fix values for unbound ARC variables as well.

Let Vi,j[0, 1] (Vertex matrix) be a matrix which defines for each couple of

activities i, j the presence of an arc (Vi,j = 1 if ARCi,j = 1 exists, 0 otherwise).

3.5.1.2 Step 2: Token positioning

Next we construct a dependency graph DG with the same activities as the

original project graph G, and such that an arc (i, j) exists in DG iff either an

arc (i, j) without tokens exists in G (detected since ARCi,j = 1 and δi,j = 0) or
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Nxi = j. Note that a DG graph is a Direct Acyclic Graph (DAG) augmented

with the scheduling information of the partial solution.

A token matrix ∆ is then built, according to the following rules:

ARCi,j = 0 ⇒ ∆i,j = 0 (3.17)

ARCi,j = 1 ⇒

{
∆i,j = 0 if i ≺DG j
∆i,j = δi,j otherwise

(3.18)

where we write i ≺DG j if there is path from i to j in DG. The rules

above ensure the number of tokens is over-estimated, until all Nx and P are

fixed. In the actual implementation, the dependency check is performed

without building any graph, while the token matrix is actually stored in the

constraint.

By considering the graph described in Figure 3.8 and an hypothetical

allocation of activities B1, B2 on the same resource (see 3.9), the modified

graph is showed in Figure 3.10. Assuming that in the DG graph both nodes

are independent the resulting associated values of the token matrix11 are

∆B1,B2 = ∆B2,B1 = 1. This is clearly an over-estimation of the number of

tokens. Whenever an ordering decision is taken, for example B1 ≺ B2, the

token matrix is changed with the following values: ∆B1,B2 = 0, ∆B2,B1 = 1.

11Note that ∆i,j represents the number of tokens of the arc of the modified graph, while
δi,j represents the original value. ∆i,j value is changed during search.

Figure 3.8: Filtered Homogeneous Synchronous Data-Flow Graph
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Figure 3.9: Single-iteration self-time execution

Figure 3.10: Concurrent task mapped on the same resource

3.5.1.3 Step 3: Throughput computation

As stated in Section 2.1.3, for a project graph, its ideal12 throughput equals

the inverse of a quantity known as the iteration bound of the graph and

denoted as IB

In [53] it is shown how to compute the iteration bound as the maximum

cycle mean of an opportunely derived delay graph; Karp’s algorithm [58] is

used for the computation. In general cycle mean algorithms cannot be used

to compute the throughput directly on a project graph. In fact, it is necessary

to transform the graph into a weighted directed graph. Unfortunately it has

been experimentally proven that this transformation is very time-consuming

[44]. Here, we show that the transformation can be avoided by using proper

data structure; this enables a maximum cycle mean algorithm to be used to

compute the iteration bound directly on a graph. This is done by exploiting

the third dimension (token dimension) of the matrices D and Π of the data

structure, in the sense that they can store paths with different number of

12Without resource constraints.
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tokens. Karp’s algorithm works on a set of two-dimensional matrices; in fact,

the MCM algorithm considers a single token on each arc. We introduce a

third matrix dimension to keep track of the number of tokens on the paths.

The basic idea is that, according to Karp’s theorem, the critical loop

constraining the iteration bound can be found by analysing cycles on the

worst case k-length paths (e.g. the longest ones) starting from an arbitrary

source. Since no cycle can involve more than n nodes, considering k-length

paths with k up to n is sufficient. Starting from a source node, we traverse

the graph, storing for each node the critical path in the Matrices D and Π.

The critical path is the path with maximum cycle ratio; namely, assuming

the same number of tokens, the path with greater execution time. Each time

a cycle is detected, the throughput bound is updated. In order to simplify

the notation in the algorithms the throughput variable TPUT is substituted

with the period bound λ′ = 1
TPUT

.

The pseudo code for the throughput computation is reported in Algo-

rithm 1, where A+(i) denotes the set of direct successors of i. Q− is the set

of nodes visited while Q+
k store, for each level k the set of nodes to visit and

their token level. Once the table is initialized, a source node s is chosen.

The experiments show that choosing a proper source node is non-trivial. We

face the problem by reordering the activities with a heuristic function. The

function is based on scores computed using the following expression:

scorei =
∑

0≤j≤task
Depj,i (3.19)

where Depj,i is 1 if there exists a path without tokens that connects i to

j, 0 otherwise. This structure can be easily computed from matrices V and

∆. Note that the choice has no influence on the correctness of the method,

but a strong impact on its performance, hence choosing an arbitrary node is

not recommended.

Next, the procedure is initialized by setting D(0,s,0) to 0 (line 4,5) and

adding s to the list of nodes to visit Q+
0 (line 2). For each node i in Q each
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Algorithm 1: Throughput computation - build D table
Data: Let s be the source node
Data: Let all D

(k,i,~δ)
= −∞, Π

(k,i,~δ)
= NIL

1 begin
2 Q+

0 = {(s, 0)}
3 Q− = ∅
4 D(0,s,0) = 0

5 Π(0,s,0) = −1

6 for path level k ∈ n do

7 forall the (i, ~δ) ∈ Q+ do
8 forall the j ∈ A+(i) do
9 cycle = false

10 δnx = ~δ + ∆i,j

11 currPos = (k, i, ~δ)
12 nextPos = (k + 1, j, δnx)
13 Exj = DnextPos

14 Exi = DcurrPos + dj
15 if Exi > Exj then
16 Q− = Q− ∪ {i}
17 DnextPos = Exi

18 ΠnextPos = (i, ~δ)
19 if Exi > λ′ then
20 Find loops on level k

21 if not cycle then
22 Q+

k+1 = Q+
k+1 ∪ {(j, δ

nx)}

successor j is considered (lines 7,8), and, if necessary, the corresponding cells

in D and Π are updated to store the k-length path from s to j (lines 15

to 18). Once a cell is updated, if the weight of the path is higher than the

current bound λ′, loops are detected as described in Algorithm 2. If the node

j does not close a cycle (line 21), it is added to the Q+
k+1 queue and then

we move to the next k value. A single iteration of the algorithm is sufficient

to compute the throughput of a strictly connected graph; otherwise, the

process is repeated starting from the first never touched node, until no such

node exists.

The loop finding procedure (Algorithm 2) is started when a cell in D at
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a specific level (let this be k) is updated. The algorithm moves backward

along the predecessor chain (Π(k + 1, j, δnx) is the predecessor of current

node) until a second occurrence of the starting node j is detected (a′ = j

in line 5) and a cycle is found. If this loop constrains the iteration period

more than the last one found so far (line 11), this is set as critical cycle. The

algorithm also stops when the start of D is reached (in line 4).

Algorithm 2: Throughput computation - finding loops

Data: Let i the node considered and ~δ its tokens lvl
Data: Let j the successor and δnx = ~δ + ∆i,j its tokens lvl
Data: Let DnextPos the cell updated, nextPos = (k + 1, j, δnx)

1 begin
2 define a′ = i
3 define δ′ = δnx;
4 for path level z = k to 1 do
5 if j == Πz,a′,δ′ then
6 define Π′ = Πz,a′,δ′

7 define backPos = (z − 1, idx(Π′), tok(Π′))
8 define ExThp = DnextPos −DbackPos

9 define ∆Thp = δnx − tok(Π′)
10 cycle = true

11 if
ExThp

∆Thp
> λ′ then

12 λ′ =
ExThp

∆Thp

13 return;

14 define temp = a′

15 a′ = idx(Πz,temp,δ′)
16 δ′ = tok(Πz,temp,δ′)

3.5.1.4 Example

Figures 3.12, 3.13, 3.14 and 3.15 represent matrices D and Π with regard

to the sub-graph composed by activities C and D (5 nodes) of Figure3.5

with execution time respectively 2 and 1. The sub-graph is reported in

Figure 3.11A. Assuming the source node is C1, Figures 3.12 and 3.13 report

respectively the sub-matrices Di,j,0 and Πi,j,0 (0 tokens), while 3.14 and 3.15
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refer to the sub-matrices Di,j,1 and Πi,j,1 (with one token). Node C1 has two

out-going arcs: (C1, D1) and (C1, D2) stored in the matrix (Figure 3.12 and

consequently in Figure 3.13) in cell D1,2,0 and D1,3,0. Let us now consider

level k = 1: the only non-negative entries are the ones for D1 and D2. D1

has an out-going arc that enters in C1, that is stored in the cell D2,0,1 (see

Figure 3.14 and 3.15); at run-time when C1 entry is processed, the “find loop”

procedure detects the cycle C1 → D1 → C1. The path is deduced by using

the information stored in matrix Π: the cell Π2,0,1 = 2, 0 (activity C1) refers

to cell D1,2,0 = 0, 0 (activity D1) that points to cell D0,0,0 (activity C1 again).

By finding a loop, the algorithm infers a new bound over the throughput,

namely one over the sum of the execution times: 1
2+1

= 0, 333; the value is

computed based on the starting and ending cell: tok(D2,0,1)−tok(D0,0,0)

D2,0,1−D0,0,0
.

Then the algorithm can proceed by considering arcs (D1, C2) and (D2, C1):

the former updates the cell D2,2,0 = 3 while the latter updates the cell D2,0,1

with value 3. However, since the current value of the same cell is 3, no

change is performed. This means that there exist two different paths (namely

C1 → D1 → C1 and C1 → D2 → C1) with the same length (2 steps) that

connect the source activity with the same end node; since they have the same

weight (computation time), they are equivalent, and only one is stored. The

algorithm, then, computes all the remaining paths of the sub-graph consid-

ered and finds, as expected, the iteration bound; this corresponds to the cycle

(C1 → D1 → C2 → D2 → C1) that refers to the throughput of the graph,

that is 1
6

( tok(D4,0,1)−tok(D0,0,0)

D4,0,1−D0,0,0
).

Note that by finding new longer loops, the upper bound always decreases;

Figure 3.11: Sub-graphs related to Figure3.4
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C1 C2 D1 D2 D3

Di,j,0 0 1 2 3 4

0 0 -∞ -∞ -∞ -∞
1 -∞ -∞ 2 2 -∞
2 -∞ 3 -∞ -∞ -∞
3 -∞ -∞ -∞ 5 5
4 -∞ -∞ -∞ -∞ -∞
5 -∞ -∞ -∞ -∞ -∞

Figure 3.12: Matrix Di,j,0

C1 C2 D1 D2 D3

Π 0 1 2 3 4

0 -1 -∞ -∞ -∞ -∞
1 -∞ -∞ 0,0 0,0 -∞
2 -∞ 2,0 -∞ -∞ -∞
3 -∞ -∞ -∞ 1,0 1,0
4 -∞ -∞ -∞ -∞ -∞
5 -∞ -∞ -∞ -∞ -∞

Figure 3.13: Matrix Πi,j,0

C1 C2 D1 D2 D3

Di,j,1 0 1 2 3 4

0 -∞ -∞ -∞ -∞ -∞
1 -∞ -∞ -∞ -∞ -∞
2 3 -∞ -∞ -∞ -∞
3 -∞ -∞ -∞ -∞ -∞
4 6 6 -∞ -∞ -∞
5 -∞ -∞ -∞ -∞ -∞

Figure 3.14: Matrix Di,j,1

C1 C2 D1 D2 D3

Π 0 1 2 3 4

0 -∞ -∞ -∞ -∞ -∞
1 -∞ -∞ -∞ -∞ -∞
2 2,0 -∞ -∞ -∞ -∞
3 -∞ -∞ -∞ -∞ -∞
4 3,0 4,0 -∞ -∞ -∞
5 -∞ -∞ -∞ -∞ -∞

Figure 3.15: Matrix Πi,j,1

hence, if at any step a cycle is found such that the resulting throughput is

lower than the minimum value of the TPUT variable, then the constraint

fails. Moreover, it is easy to prove that no more than 1 token can be col-

lected by traversing a sequence of nodes on a single resource: the filtering

algorithm exploits this property to improve the computed bound at early

stages of the search, where the number of tokens is strongly overestimated

(see Section 3.5.4).

Although the throughput computation is rather efficient, experimental

tests show that its computational time takes more than the 70% of the total

search time. In fact, every time the constraint is considered, it has to recom-

pute the throughput on the entire modified graph. Therefore, we propose an

incremental version of the constraint that avoids the recomputation of the

throughput starting from scratch.
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3.5.2 Incremental Algorithm

In this section we describe an incremental algorithm that enables to achieve

over one order of magnitude speed up w.r.t. the non incremental version

(described in Section 3.5.1), therefore increasing scalability and enabling the

solution of harder and larger problems.

Note that the state of the constraint, referred to as Υ, is defined by the

data structures Υ ≡< D,Π, V,∆ >. During search such data structures are

modified at each search node and restored on backtracking. In detail, the

data structure contains:

• Matrix Dk,i,~δ: it stores the maximum weight of the k-arc path with ~δ

tokens from a source node s to activity i.

• Matrix Πk,i,~δ: it stores the predecessor of the corresponding element of

D.

• Matrix Vi,j[0, 1] (Vertex matrix) which defines for each couple of activ-

ities the presence of an arc (Vi,j = 1 if the arc (i, j) exists, 0 otherwise)

• Matrix ∆i,j[0, inf](Token matrix) which defines the number of tokens

on the arc of the path that connects i to j.

Clearly, ∆i,j > 0 only if Vi,j = 1, that is one or more tokens can exist

between two nodes if and only if there is a corresponding arc.

• Period value of the longest cycle.

At the root node, the data structures are initialized from the original graph,

getting state Υ0. The iteration bound of the graph is computed and used to

shrink the throughput variable domain. At every search node, the state Υ

and the throughput value are updated on the basis of graph modifications.

In particular, during search the graph is modified either by

• Adding arcs (arc append operation)

• Adding tokens (token append operation)

• Removing tokens (token remove operation)
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Edges are removed only in backtracking. Therefore they are not considered

as possible graph modification. Edges and tokens are added (tokens are also

removed) in the graph for ordering the execution between activities allocated

on the same processing element, as explained in Section 3.4.

At each invocation of the constraint, a new state Υnew is computed start-

ing from the previous one Υold; the procedure requires one to know the current

(modified) graph G, described by its Vertex and Token matrices. The update

procedure consists of two main phases:

• Gathering changes: in this phase the current graph structure is com-

pared to the previous one. Differences are stored in a proper data

structure called UPDATES consisting of a set of dynamic queues

UPDATES(k) (one for each level in the D matrix but the last one).

Each queue stores triples (i, j, ~δ), where i and j are respectively the

source and the destination nodes of the arc (i, j) to be recomputed and
~δ is the number of tokens collected along the path to i. Note that,

joining triples (i, j, ~δ) and the index k of the structure UPDATES, we

compute the coordinates, in D and Π, of the source and destination

cells: in fact, (k, i, ~δ) refers to the starting node while (k+1, j, ~δ+∆i,j)

is the destination node.

• Updating the values: in this phase, arcs in the UPDATES(k)

queues are processed and the corresponding elements of matrices D

and Π are re-computed, possibly identifying new cycles.

In the following, we describe in detail the algorithmic steps performed in

each phase for the three possible types of graph modifications (arc append,

token append, token remove) and the update phase.

3.5.2.1 Gathering changes for an Arc Append Operation

Let ~e = (i, j) be an arc added from node i to j (see Algorithm 3) . Intuitively,

adding an arc creates new paths containing node i; such paths may possibly

cover (in terms of weight) existing ones and thus update the D matrix cells
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Algorithm 3: Arc Append Operation

Data: Let ~e = (i, j) be an arc appended from node i to j
Data: Let n be the number of the graph nodes
Data: Let Γ be the sum of the original graph tokens

1 begin

2 for path level k in [1..n] and token level ~δ in [1..Γ + n] do
3 if Dk,i,~δ ≥ 0 then

4 UPDATES(k)→ push(i, j, ~δ);

referring to i. In this step we want to collect all matrix cells that need to be

modified.

We remind that a path crossing node i at level (k, i, ~δ), necessarily has

D(k,i,~δ) ≥ 0, since D(k,i,~δ) is the maximum weight of a path of length k from a

source node s to i. Therefore, we should identify in the matrix D all the ele-

ments with Dk,i,~δ ≥ 0 (line 3) and insert the triple (i, j, ~δ) into UPDATES(k)

(line 4); this will trigger a re-computation of cells D(k+1),j,~δ+∆i,j
in the update

phase.

3.5.2.2 Gathering changes for a Token Append Operation

Let ~e = (i, j) be the arc where we add a token. If the modification involves

the insertion of both one arc and one token, the token modification is not

considered and the only procedure run is that for the arc append. Otherwise,

if the arc already exists (see Algorithm 4), the added token results in the

modification of an existent path; the modified path may (a) cover other

paths in D and (b) uncover previously covered ones.

Detecting situation (a) requires to process the arc ~e in exactly the same

fashion as Section 3.5.2.1. The only difference is that, for each cell Dk,i,~δ ≥ 0

(line 3) the triple (i, j, ~δ) (line 4) will trigger a re-computation of D(k+1),j,(~δ+1)

in the update phase.

Detecting whether the modified path uncovers existing ones (situation

(b)) deserves a more detailed explanation. In particular, each cell in Dk,i,~δ ≥
0 corresponds to a path with ~δ accumulated tokens and including node i.
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Algorithm 4: Token Append Operation

Data: Let ~e = (i, j) be an arc appended from node i to j
Data: Let n be the number of the graph nodes
Data: Let Γ be the sum of the original graph tokens

1 begin

2 for level k in 1..n and level ~δ in 1..Γ + n do
3 if Dk,i,~δ ≥ 0 then

4 UPDATES(k)→ push(i, j, ~δ);
5 if idx(Πk+1,j,~δ) = i then

6 for activity i′ in n do
7 if (i′ 6= i) && (i′ 6= j) && (Vi′,j = 1) then

8 for token level δ′ ≤ ~δ do

9 if (Dk,i′,δ′ ≥ 0) && (δ′ + ∆i′,j = ~δ) then
10 UPDATES(k)→ push(i′, j, δ′);

The addition of the new token uncovers other paths in D if, at the next level

k + 1:

1. there is a node j having i as predecessor

2. the node i is the predecessor of j on a path with ~δ accumulated tokens,

as the arc ~e = (i, j) previously had no token.

Formally, a re-computation of the cell D(k+1),j,~δ (referring to the j node) is

required if Π(k+1),j,~δ = i (line 5).

Since node j has lost its former predecessor i, performing the update

requires to consider all paths ending in j at level k + 1. In practice this is

done by re-considering all arcs from nodes i′ to j (lines 6-8), such that at level

k it holds Dk,i′,δ′ ≥ 0 (i.e. they are part of a path at level k). Hence, we have

to append into UPDATES(k) all triples (i′, j, δ′) such that Dk,i′,δ′ > 0 (for

every δ′ ≤ ~δ) (lines 9,10); this will trigger the re-computation of D(k+1),j,~δ in

the update phase.
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Algorithm 5: Token Remove Operation

Data: Let n be the number of the nodes
Data: Let Γ be the sum of the original tokens
Data: Let ~e = (i, j) be an arc appended from node i to j

1 begin
2 for level k in 1..n do
3 if Dk,i,~δ ≥ 0 then

4 UPDATES(k)→ push(i, j, ~δ);
5 if Π(k+1),j,(~δ+1) = i then

6 for activity i′ in n do
7 if (i′ 6= i) && (i′ 6= j) && (Vi′,j = 1) then

8 for token level δ′ ≤ ~δ do

9 if (Dk,i′,δ′ ≥ 0) && (δ′ + ∆i′,j = ~δ) then
10 UPDATES(k)→ push(i′, j, δ′);

3.5.2.3 Gathering changes for a Token Remove Operation

This is the dual of the previous case (see Algorithm 5). Simply at point

(a) one has to recompute cell D(k+1),j,~δ instead of D(k+1),j,(~δ+1). At point

(b), if Π(k+1),j,(~δ+1) = i (note the ~δ + 1 index), then cell D(k+1),j,(~δ+1) needs

to be recomputed (line 9); this requires to reconsider arcs (u′, j) for each

Dk,u′,δ′ ≥ 0 (with δ′ ≤ ~δ) (lines 10-14).

3.5.3 Updating the Values of Dk,i,~δ

In this phase the algorithm processes the D matrix, by increasing values of

the k index. At each level k, all triples in UPDATES(k) are extracted;

based on the (i, j, ~δ) values in the triple, the proper cell of the D matrix is

reconsidered (namely D(k+1),j,(~δ+δi,j)). If the computed value is higher that

the current value of the cell, the D and Π matrices are updated if

D
(k+1),j,(~δ+δi,j)

< D
k,i,~δ

+ dj (3.20)
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Algorithm 6: Updating Dk,i,~δ Phase

Data: Let n be the number of the nodes
Data: Let di be the execution time of activities i.
Data: Let λ′ be the best bound on the period

1 begin
2 forall the path level k in n do

3 forall the triple (i, j, ~δ) in UPDATES(k) do
4 if D(k+1,j,~δ+∆i,j) < D(k,i,~δ) + dj then

5 Q− = Q− ∪ {i}
6 D(k+1,j,~δ+∆i,j) = D(k,i,~δ) + dj

7 Π(k+1,j,~δ+∆i,j) = (i, ~δ)

8 if D(k,i,~δ) + dj > λ′ then

9 Find loops on level k

10 if k < n− 1 then
11 forall the j′ ∈ A+(j) do

12 UPDATES(k)→ push(i, j, ~δ);

where dj is the execution time of activities j and ∆i,j is the number of tokens

of the arc (i, j).

Next, the performed update has to be propagated recursively: this is done

by inserting into UPDATES(k+ 1) a triple (j, j′, ~δ+ δi,j) for each outgoing

arc having j as source (successors). During this phase, new and weightier

cycles can be found. The weightiest one is the critical path that impacts the

throughput value of the graph.

For instance consider the sub-graph shown in Figure 3.11A.

The current state of the matrices D and Π is described in Fig-

ures 3.12, 3.13, 3.14 and 3.15. Assume now that the solver modi-

fies the graph adding the arc (D3,D2) as reported in Figure 3.11B.

When gathering changes, the incremental algorithm detects that

the activities D3 (the source of the modification) has been con-

sidered only in the cell D(3,4,0): as consequence the triple (4, 3, 0),
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that stands for (D3, D2, 0), is pushed in UPDATES(3) .

Next, the triple is extracted and evaluated in the updating phase:

note that the arc (D3,D2) now “points” to the cell D(4,3,0) = −∞.

Then, inequality 3.20 is checked (−∞ < D(3,4,0) + dD3 = 5 + 1 =

6, with dD3 execution time of D3) and the cells D(4,3,0), and

Π(4,3,0) are updated with values D(4,3,0) = 6 and Π(4,3,0) = (4, 0).

Since some cell has been updated, the algorithm has to propa-

gate the changes. This is done by pushing into UPDATES(4)

the triple that refers to the successor C1 of the node D2: the

triple is (3, 0, 0). When this triple is pulled from the vector

UPDATES(4), inequality (3.20) is evaluated and the cellsD(5,0,1) =

7, and Π(5,0,1) = (3, 0) are updated.

Moreover, the “loop find” procedure finds a new critical cy-

cle that impacts on the throughput upper bound. The new cy-

cle is C1 → D1 → C2 → D3 → D2 → C1) that refers to the

throughput of the graph that corresponds to throughput value
1
7

( tok(D5,0,1)−tok(D0,0,0)

D5,0,1−D0,0,0
). The modified matrices D and Π are re-

ported in Figures 3.16, 3.17, 3.18 and 3.19.

The theoretical worst-case complexity of the incremental algorithm is

O(n4), the same as the non-incremental version. However, in practice the

number of performed operations is much lower, as pointed out by the ex-

perimental results (see Section 3.6). In fact, the average complexity of the

incremental algorithm depends on the number of graph modification, and

this value is rarely high.

3.5.4 Further Optimizations

In this section we describe several improvements to the global throughput

constraint described in Section 3.5.1 that speed up the throughput computa-

tion. Optimization concerns three aspects: first, the non-strictly connected

components are removed as they do not contribute to the throughput com-

putation, the cycles are partitioned into multi-resource and single resource
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C1 C2 D1 D2 D3

Di,j,0 0 1 2 3 4

0 0 -∞ -∞ -∞ -∞
1 -∞ -∞ 2 2 -∞
2 -∞ 3 -∞ -∞ -∞
3 -∞ -∞ -∞ 5 5
4 -∞ -∞ 6 -∞ -∞
5 -∞ -∞ -∞ -∞ -∞

Figure 3.16: Matrix Di,j,0

C1 C2 D1 D2 D3

Π 0 1 2 3 4

0 -1 -∞ -∞ -∞ -∞
1 -∞ -∞ 0,0 0,0 -∞
2 -∞ 2,0 -∞ -∞ -∞
3 -∞ -∞ -∞ 1,0 1,0
4 -∞ -∞ 4,0 -∞ -∞
5 -∞ -∞ -∞ -∞ -∞

Figure 3.17: Matrix Πi,j,0

C1 C2 D1 D2 D3

Di,j,1 0 1 2 3 4

0 -∞ -∞ -∞ -∞ -∞
1 -∞ -∞ -∞ -∞ -∞
2 3 -∞ -∞ -∞ -∞
3 -∞ -∞ -∞ -∞ -∞
4 6 6 -∞ -∞ -∞
5 7 -∞ -∞ -∞ -∞

Figure 3.18: Matrix Di,j,1

C1 C2 D1 D2 D3

Π 0 1 2 3 4

0 -∞ -∞ -∞ -∞ -∞
1 -∞ -∞ -∞ -∞ -∞
2 2,0 -∞ -∞ -∞ -∞
3 -∞ -∞ -∞ -∞ -∞
4 3,0 4,0 -∞ -∞ -∞
5 3,0 -∞ -∞ -∞ -∞

Figure 3.19: Matrix Πi,j,1

cycles and considered separately. In the following we detail the optimizations

performed.

3.5.4.1 Removing the non-strictly connected components

Since the throughput value is cycle dependent, nodes not belonging to any

cycle are useless. A filtering algorithm has been implemented to recursively

remove (temporally) the non-strictly connected components from the graph.

The result is a graph composed by a set of strictly connected sub-parts.

3.5.4.2 Single-Resource Execution Time Bound

A first very trivial bound on the throughput value can be computed by

considering cycles on each resource. During search, as activities are allocated,

arcs and tokens are added to the graph to guarantee the non overlapping

execution of the nodes over the resources (i.e. processors). This is done by

setting a cyclic path that orders the activities execution over each resource.
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Let us call Exk the sum of the execution times of all activities allocated

on resource k. Exk is the inverse of the maximal throughput (Thpk) that

the resource k can achieve:

Exk =
1

Thpk
=
∑
i∈Vk

di (3.21)

where Vk is the set of activities allocated on k and di is the execution time

of the activities i.

Thpmin =
1

maxk∈R (Exk)
(3.22)

is a throughput upper bound that must be higher than the current lower

bound otherwise the search is stopped and the solver backtracks.

3.5.4.3 Single-Resource Cycle Pruning

The key idea is that a resource k can be part of a multi-resource cycle if and

only if its activities have at least one input and one output arc that connect

them to activities onto other resources. We can now remove every remaining

single-resource cycle, since its impact over the throughput has been consid-

ered by computing Thpmin. The result is a reduced graph which consists of

activities allocated on resources that communicate with each other.

Figure 3.20: A graph allocation example
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These optimizations filter the graph by removing nodes that do not con-

tribute to the throughput computation.

Consider for example the graph reported in Figure3.20; it has eight ac-

tivities allocated onto four different resources (I...IV). It is composed only

by strictly connected components, so the first optimization (Section 3.5.4.1)

is not employed. Then, assuming that the computation of Exmaxk does not

force a backtrack on the search process (see Section 3.5.4.2), the latter opti-

mization is executed (see Section 3.5.4.3).

Figure 3.21: A graph allocated and optimized

Since the activity A, allocated on resource I, has only out-going arcs,

it cannot be part of a multi-resource cycle. Thus it is removed from the

graph. As a consequence, activities allocated on II (B1 and B2) “loose”

their in-going arcs. For this reason they are recursively removed.

The algorithm, in this example, computes the bound over the sub-graph

composed by activities C1, C2, D1, D2, D3 reducing the overall computation

time of the throughput constraint (see Figure 3.21).

3.6 The Search

CP problems are generally solved via tree search. Constraint propagation is

used to narrow the search space, but many branching choices still have to be

explored during search. Hence, the efficiency of CP solvers heavily depends

on good heuristics to prioritize branching decisions.
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Figure 3.22: Transition Phase peak complexity during the search process

A pictorial intuition of this fact is given in Figure 3.22: the solid line

represents the time spent by the search process (vertical axis with logarithmic

scale) to find a feasible solution given a specific throughput requirement

(horizontal axis).

When solving an optimization problem, whenever a feasible solution is

found, the throughput value (higher than the current threshold) is set as new

threshold and the solver keeps on searching until no other feasible solutions

are present in the search space. The last solution found is the optimal one.

Note that the curve presents a sharp complexity peak in the transition

phase between a loosely and a tightly constrained problem (between c and d

dotted lines). This means that searching a feasible solution with threshold c

is harder w.r.t. a tighter one like e or a lesser one like b. A loose threshold

(dotted line a) leaves a lot of feasible solutions in the search space, hence

finding a feasible solution is a relatively easy. If the threshold is tight (dotted

line e) the propagation process becomes very effective, boosting the solution

process. The main purpose of a search heuristic is to quickly find a solution

that ensures a tight bound to drastically reduce the search space.

3.6.1 Variable Selection Heuristics

Experimental tests evidenced that branching over resource allocation vari-

ables have far-reaching implications over the throughput values, therefore
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our heuristic function evaluates these variables first. Focusing on the more

“decisive variables” first is more likely to lead to good solutions.

The heuristic function we propose is divided into two components:

• the variable selection heuristic intuitively gives priority to actors whose

execution has more impact on the throughput value. This is achieved by

giving higher rank (low value) to tasks with longer execution time and

also giving priority to actors whose execution enables the execution of

other nodes. The node i chosen by the heuristic is the one with minimal

value of the following expression:

α · dmax

di
+
β · depi
depmax

(3.23)

where dmax corresponds to the maximal node execution time, di is the

execution time of the node i. depi corresponds to the number of nodes

which precede actor i, and depmax the maximum over these values (A

node with a low depi
depmax means that it’s execution depends on few other

nodes, therefore it could execute earlier than a node with an higher
depi

depmax , i.e. whose execution depends on more nodes).

The heuristic function combines two distinct components, with rela-

tive weight set by two coefficients. The coefficients α and β have been

defined experimentally, and their values are respectively 0.68 and 0.32

(α = 1− β).

• The value (resource) selection heuristic beside balancing the load, tends

to allocate on the same resource actors that are tightly linked by prece-

dence constraints. This function tries to reduce the number of depen-

dencies between tasks on different resources.

This is achieved by selecting first the resource k that minimizes the

following expression:
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ρ ·Exk
Exmax

+
σ · conk
conmax

(3.24)

where Exk corresponds to the actual resource workload, i.e., the total

execution time of the actors allocated on it. Exmax is the highest

workload over all resources. The value conk is the total execution times

of the nodes that are non-dependent on k, and conmax is the highest of

these numbers. The coefficients ρ and σ are 0.79 and 0.21 respectively

(ρ = 1− ς).

Note that the coefficients of the heuristic functions have been experi-

mentally tuned: 1000 heterogeneous instances were solved with 20 different

combination of coefficient values. The values of the best average solution

quality were chosen.

The experimental results show (see Section 3.7) that the described heuris-

tics obtain one order of magnitude speed up w.r.t. search using lexicographic

ordering. Finally, symmetry due to homogeneous processors are broken at

search time; namely, whenever an allocation decision has to be taken, if there

is more than one free processor, the one with the lowest index is chosen.

3.7 Experimental Results

We have extensively evaluated the approach presented in this chapter for

assessing three aspects:

1. the performance of the incremental throughput algorithm in compari-

son with the non-incremental version;

2. the scalability of the allocation and scheduling framework;

3. the quality of the solutions found.

The synthetic instances were built by means of the sdf3 (see [98]) task-

graph generator, designed to produce graphs with realistic structure and
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parameters13. The instances were solved using a workstation with a 3.3GHz

Core 2 Duo processor and 8GB of RAM. The system described so far was

implemented on top of ILOG Solver 6.3.

3.7.1 Incremental Algorithm Evaluation

The following section proves the effectiveness of the proposed incremental

algorithm (see Section 3.5.1) by comparing its computational time with re-

spect to its non-incremental version on a set of 4500 instances. We have

generated three sets of realistic task graph instances featuring 10, 12 and 15

nodes. Each set includes cyclic, acyclic and strictly connected graphs. For

this experiments we assume that two homogeneous resources are available.

Type Node SrcNInc SrcInc SrcSpUP CstNInc CstInc CstSpUP

Cyclic
10 2.022 0.64 2.174 1.443 0.11 11.88
12 35.86 2.72 12.18 27.86 0.88 30.66
15 3504.43 37.64 92.11 2980.28 9.43 315.04

Strictly Connected
10 3.063 0.89 2.421 2.264 0.15 14.12
12 58.29 4.32 12.49 46.99 1.3 35.15
15 4231.02 52.64 79.18 3546.98 10.92 323.81

Acyclic
10 3.88 1.213 2.19 2.77 0.16 16.31
12 105.48 14.23 6.41 82.87 1.94 41.72
15 5968.58 143.58 40.57 5106.05 18.89 269.31

Table 3.1: Search and Constraint execution times and speed-up

In Table 3.1 the first two columns (SrcNInc,SrcInc) refer to the Total Search

Time for finding the solution with maximum throughput with the non-

incremental and incremental algorithm version. We can see that the solver

with the incremental algorithm runs up to 90 times faster (see the speed-up

column, SrcSpUP).

The values in Table 3.1 represent the average over 500 instances. The

remaining three columns (CstNInc, CstInc, CstSpUP) report respectively

the computational times of the throughput filtering algorithm and the cor-

13The generator tends to produce tasks with high execution time variance (therefore rep-
resenting the difference between the loading/storing task w.r.t. the faster executing ones)
and with an average number of out-going arcs that ranges from 1.1 to 1.3. These coeffi-
cients produce SDF graphs that, transformed into HSDFG, will resemble to applications
with high data-parallelism.
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Figure 3.23: Graphical representation of the Speed-UP

responding speed-up. The speed-up column shows that the incremental fil-

tering algorithm gains over one order of magnitude speed-up w.r.t. its non

incremental version. Moreover the speed-up tends to increase with the di-

mension of the problem instance. The acyclic graphs are the most though to

solve, as they feature relatively fewer arcs compared to the cyclic and to the

strictly connected ones; this results in a higher number of possible scheduling

choices and a larger search tree.

The problem faced is NP-hard and clearly the computational time grows

up exponentially in the instance dimension. However, the reduced time for

constraint computations in the incremental solver increases scalability and

enables the solution of harder and larger problems.

Node % Non-Incr % Incr
10 72.24 15.35
12 79.01 15.99
15 82.91 19.32

Table 3.2: Relative algorithms computation time

This is clear in Figure 3.23, where the two reported lines represent the

total time for the throughput constraint; the x axis has an entry for each
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instance. The dotted line refers to the non-incremental solver, the solid line

to the incremental one. Instances are sorted according to the number of

nodes. We can notice that the throughput computation time for the new

incremental algorithm grows much more slowly.

The table in Figure 3.2 shows the relative amount of time that the al-

gorithm computation absorbs during the search. It is evident that the new

algorithm is definitely faster and lighter. Its impact on the search time is

lower than 20% of the total time while the non-incremental version time

exceeds 70%.

3.7.2 Overall Solver Experimental Evaluation

We have evaluated the scalability of our approach on various sets of synthetic

instances, designed to match structure and features of realistic applications.

We considered both cyclic and acyclic graphs. In particular the approach

proposed tends to be more effective on cyclic graphs14; in fact, if a graph

contains cycles, it has an implicit throughput upper bound defined by the

longest loop in the graph. In contrast, acyclic graphs have no implicit bound

and expose the highest parallelism: this makes them the most challenging

instances.

For these experiments we assume that four resources are available. The

generated graphs have been divided according to the number of nodes (from

10 to 18).

Table 3.3 presents the median and maximum computing time for cyclic

(2nd and 3rd column) and acyclic (4th and 5th) instances. A time limit

of 1200 seconds was set on all the experiments. As expected, the average

running time grows exponentially with the size of the instances. However,

the solution time is reasonable for graphs up to 20 nodes which is a realistic

size for many real world applications.

This work was published in [21] and [18]. To the best of the authors

knowledge, this was the first complete approach that handles cyclic/acyclic

14Working only with acyclic data-flow, the described approach looses in efficiency, and
the CROSS approach, presented in Chapter 4 should be considered.
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Node CMedian CMax AMedian AMax
10 0.12 11.84 0.53 13.44
12 0.96 36.84 1.98 47.77
14 12.67 146.75 27.15 275.56
16 63.33 446.24 96.08 659.32
18 187.64 837.32 269.43 1134.37

Table 3.3: Search execution times

synchronous data-flow graphs; this made harder any comparison with exist-

ing methods, as they were all incomplete. Incomplete approaches feature

higher scalability, but provide sub-optimal solutions. We also performed a

comparison with the simulation based procedure described in [97], on graphs

with manageable size for our approach. Despite the incomplete approach

is much faster then our tree search procedure, the solution provided by the

incomplete method was found to be on average 20% worse than the optimal

one.

Note that when the number of nodes becomes larger, the search could be

stopped after a certain time limit (or a given number of feasible solutions),

thus obtaining an incomplete approach. Differently from other incomplete

approaches, our use of tree search and constraint propagation enables to find

feasible solutions of tightly-constrained problems. We can compute a feasible

solution of thousand-node graphs in terms of seconds.

Therefore we compare our method on five real benchmark with a state-of-

the-art incomplete approach: the heuristic Swing Modulo Scheduling (SMS)

approach, used by the GCC compiler [45]. The focus of these experiments

is to assess the effectiveness on practically significant embedded multimedia

benchmarks. Instances are derived from real application15 such as: Sobel,

JPEG2000, Motion JPEG, MPEG and MPEG-2.

Results are presented in Table 3.4. The first three columns report the

name of the application, the number of tasks and the number of arcs, respec-

15These instances were developed as benchmarking work for the Mapping Applica-
tions to MPSoCs 2009 workshop (http://www.artist-embedded.org/artist/program,
1755.html). Source codes can be found at http://www.artist-embedded.org/artist/
benchmarks.html.
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tively. The following two columns (4 and 5) refer to the optimal solution com-

putation time (solver runs until the optimality was proved) and optimality

gap16 of the solution found by the SMS approach. Note that the SMS method

found all the solutions within 5 seconds. Each following column (from 4 to

8) refers to a different search time limit (5,10,30,60,300 seconds respectively)

and presents the optimal gap. Note that all the instances were optimally

solved within 106 seconds. The easiest instances, Sobel and JPEG2000 were

solved within a second. Motion JPEG solution computed within the first five

seconds is the optimal solution (it is proved after 105.56 seconds) while SMS

solution features a 8.12% gap. For both MPEG and MPEG-2 applications,

the SMS approach initially found a better solution; however note that our

approach compute the optimal within 75.91 and 53.31 seconds respectively.

Name Nodes Arcs OPT SMS 5s 10s 30s 60s 300s

Sobel 5 15 0.001 0% 0% - - - -
JPEG2000 8 10 0.07 0% 0% - - - -
Motion JPEG 12 15 105.56 8.12% 0% 0% 0% 0% 0%
MPEG 12 14 75.91 6.45% 10.84% 10.84% 10.84% 10.84% 0%
MPEG-2 12 14 53.31 9.46% 10.34% 10.34% 0% 0% -

Table 3.4: SMS comparison on real benchmarks

This experimentation shows that in real contexts the solver can compute

good quality solutions in terms of seconds (and the optimal solution within

few minutes).

3.7.3 Solution quality evaluation

We finally designed a third set of experiments, to evaluate the search heuris-

tics; tests were performed on a new large (1000 graphs) set of synthetic

instances (see also [18]). Given an initial SDF graph, we perform mapping

under two different assumptions: one allocates and schedules the derived HS-

DFG actors independently, while the second forces the allocation of all the

16The optimality gap represents the distance of the solution from the optimal one and
it is computed in the following mode: Gap(%) = 100 ∗ Opt−SolOpt
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HSDFG nodes corresponding to repetitions of the original SDFG nodes on

the same processor. We refer to the first type of allocation as unconstrained

and to the second type as constrained; the latter is typically obtained by

approaches working directly on the SDFG, without a preliminary transfor-

mation into HSDFG [71, 97, 98]. In Table 3.5 we provide comparisons among

Istance Size Const. sol. First sol. First Const. sol.
10 Nodes 82,66% 78,48% 75,86%
12-15 Nodes 77,44% 78,18% 66,72%

Table 3.5: Optimality gaps of incomplete searches.

the throughput achievable by complete search with the unconstrained and

constrained approaches. This allows to assess the solution quality loss due

to the use of a more restrictive assumption. We give the optimality gap of the

the constrained solution (Const. sol.), the first feasible unconstrained solu-

tion (First sol.) and the first feasible constrained solution (First Const. sol.).

The optimality gap widens as the number of nodes increases: on medium-size

instances the optimal unconstrained throughput is about 20% higher than

the constrained solution. This clearly demonstrates that the additional de-

grees of freedom enabled by mapping multiple actor iterations on different

processors help in finding higher throughput solutions.

The third and fourth columns in the table refer to incomplete versions

of the search procedure, which could be used to find fast, but sub-optimal

solutions. In the third column we report the optimality gap obtained by

stopping the search after the first solution found by tree search driven by our

heuristic functions described in Section 3.6. The optimality gap is around

22%, which is significant but not enormous. This implies that the solver finds

a reasonably good solution in a very short time, regardless of the exponential

search effort required to reach the actual optimum. Thus, our strategy is

quite effective even when used as a fast, incomplete search.

The first feasible constrained solution provides an estimate of the quality

one could expect from the solution provided by an incomplete algorithm

which map directly the SDFG. As expected, it has the largest optimality
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gap, with a 30% loss in throughput. This result gives a clear indication

that our algorithm provides a significant quality improvement with respect

to previously presented incomplete algorithms.
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Chapter 4

Solving the CRCS Problem

Cyclic scheduling problems1 consist in ordering a set of activities executed in-

definitely over time in a periodic fashion, subject to precedence and resource

constraints. This class of problems has many applications in manufacturing,

embedded systems and compiler design, production and chemical systems.

In this chapter we present a Constraint Programming framework for cyclic

resource constrained scheduling problems, based on modular arithmetic: in

particular, we introduce a modular precedence constraint and a global cu-

mulative constraint along with their filtering algorithms.

We discuss two possible formulations. The first one (referred to as CROSS )

faithfully models a cyclic scheduling problem and makes use of both our novel

constraints. The second formulation (referred to as CROSS ∗) introduces a

restrictive assumption to enable the use of classical resources constraints, but

may incur a loss of solution quality. Many traditional approaches to cyclic

scheduling operate by fixing the period value and then solving a linear prob-

lem in a generate-and-test fashion. Conversely, our technique is based on

a non-linear model and tackles the problem as a whole: the period value is

inferred from the scheduling decisions. The approaches have been tested on

a number of non-trivial synthetic instances and on a set of realistic indus-

trial instances. The methods proved to be effective in finding high quality

1As stated in Section 1 in this chapter we tackle the cyclic resource-constrained sche-
duling problems.
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solutions in a very short amount of time.

The following section, Section 4.1, describes all related works highlight-

ing the differences w.r.t. our approaches. Section 4.2 formally describes the

modular algebra adopted in the approach. In section 4.3 and 4.4 we describe

respectively the model with the constraints and their filtering algorithms.

Section 4.5 proposes two search strategies, a specialized version of the solver

and formally defines a dominance rule used to narrow the search space. Ex-

perimental results conclude the chapter.

4.1 Modulo Cyclic Scheduling in Research

The cyclic scheduling literature mainly arises in industrial and computing

contexts. While there is a considerable body of work on cyclic scheduling in

the OR literature [2], the problem has not received much attention from the

AI community ([35] is one of the few related papers).

4.1.1 OR Approaches

An advanced ILP formulation for the modulo scheduling approach has been

proposed in [36] by Dupont de Dinechin and is based on a time-indexed

model. This kind of approach has some difficulties with periodic problems,

since the schedule length (which determines the number of problem variables)

may be fairly big compared to the period. In an attempt to circumvent

this issue, a second formulation was proposed in [37] by Eichenberger and

Davidson (by exploiting a decomposition of start times) at the cost of a

reduction in the quality of the LP bound. An excellent overview of state-

of-the-art formulations is given in [3], where the authors present also a new

model based on the Danzig-Wolfe Decomposition. In [4] the authors propose
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an hybrid approach using a retiming2 techniques to build an ILP formulation

of reduced size.

Good overviews of complete methods can be found in [48] and in [49].

All the mentioned approaches are based on iteratively solving resource con-

strained subproblems obtained by fixing the period value. To the best of our

knowledge, this is a common trait of all the state-of-the-art approaches in

the OR field. The main reason is that fixing λ allows to solve the Resource

Constrained Cyclic Scheduling Problem via an integer linear program, while

modeling λ as an explicit decision variable yields non-linear models.

4.1.2 A Constraint Programming Approach

In [35] the authors present a formulation for solving cyclic job shop sche-

duling as a Constraint Satisfaction Problem. They also describe how their

formulation could be generalized to face problems with cumulative resources.

The approach they propose is again based on fixing the period and solving the

derived subproblems. The obvious drawback is that a resource constrained

scheduling problem needs to be repeatedly solved for different λ values to

obtain the feasible/optimal solution.

Our method is also based on Constraint Programming, but it does not

require to fix a λ value, thanks to the use of a global constraint to model

resource restrictions.

4.1.3 Incomplete Approaches

Several heuristic approaches have been proposed to find the smallest possible

λ. These usually are instruction scheduling techniques that are used by many

2The retiming approach considered was the Decomposed Software Pipelining method
presented by Darte and Huard in [30], based on the ideas of Gasperoni and Schwiegelshohn
described in [41]. In this method, a cyclic scheduling problem ignoring resource constraints
is first considered and a so-called legal retiming of the activities is issued. Second, a
standard acyclic problem, taking this retiming as input, is solved through list scheduling
techniques.
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current compilers3.

The Iterative Modulo Scheduling algorithm is presented in [86]: the main

feature of the algorithm is its iterative nature in the sense that each activity

can be scheduled and unscheduled (therefore considering backtrack opera-

tions) several times before a suitable slot is found.

Another interesting heuristic approach (called SCAN) is presented in [16].

SCAN is built on some of the main ideas behind Iterative Modulo Scheduling,

but it is based on an ILP model.

In [52] Huff presented the slack modulo scheduling algorithm. Key of

this method is the use of a bidirectional scheduling approach4 (top-down and

bottom-up) and the use of slacks. The slack of an unbound activity is a

measure of the freedom that the activity would have if it was scheduled in

the partial solution.

The state of the art for incomplete methods is probably Swing Modulo

Scheduling, described in [66, 67]. The approach is implemented in the op-

timization chain of the gcc compiler [45]. The method produces effective

schedules with a low computational cost (see [28] for a well structured com-

parison between most of these incomplete modulo scheduling approaches).

Key for the efficiency is a valid variable selection function considering both

the period bound imposed by the current iteration and the criticality of the

path to which the activity to be scheduled belongs to.

Another state of the art incomplete method is presented by Benabid and

Hanen in [11]. The approach is based on the ideas of retiming described

in [23, 30, 41] extending them to propose a guaranteed heuristic for unitary

resource-constrained modulo scheduling problems (i.e. instruction scheduling

problems).

3Heuristic-based Modulo Scheduling is a family of Software Pipelining techniques that
produce effective schedules with a relatively small compilation time. These Modulo Sche-
duling techniques take as input the application to be scheduled represented by its data
dependence graph and a description of the architecture and produce a schedule for the
application.

4The method can take advantage of the use of bidirectional scheduling method as the
period λ is fixed.
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Those heuristic approaches compute a schedule for a single repetition

of the application. The schedule is characterized by its length and by an

initiation interval, which is the same as the iteration bound and determines

the throughput. However, the schedule length can be extremely large, with

implications on the size of the model in case of ILP based approaches (e.g.

SCAN). Our model is considerably more compact, since we schedule a single

iteration as opposed to a repetition, so that we restrict to a time window

with length λ.

4.2 Modular Representation for Cyclic Sched-

ules

In this section, we recall some modular arithmetic notions that are the foun-

dations of the cyclic scheduling solver we propose.

Transient phase Periodic phase

0

R

A B C ED

A' B' C' E'D'

A'' B'' C'' E''D''

A''' B''' C''' E'''D'''

A'''' B'''' C'''' ...D''''

A''''' B''''' ...

A'''''' ...

10 20 30 40 50 60

Figure 4.1: Modulo scheduling method optimal schedule

The main underlying idea is to focus on a λ-width time window in the

periodic phase (see Figure 4.1). First, we present a start/end time decompo-

sition similar to that in [37]. The start time of execution 0 of activity i (i.e.

start(i, 0)) can be expressed as:

start(i, 0) = si + βi · λ (4.1)

where si is a value in the half-open interval [0, λ[ and βi is an integer number.

In practice, βi identifies the iteration when activity i is first scheduled (see

Section 2.2.1.3) and si is its relative start time within the corresponding
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λ-width time window, i.e. its modular start time. Analogously, the end time

end(i, 0) can be decomposed into a modular end time ei and an iteration

number ηi.

end(i, 0) = ei + ηi · λ (4.2)

0
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A B C ED
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A'''' B'''' C'''' ...D''''
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A'''''' ...

1 2 3 4 5 ...λ

Figure 4.2: Modulo scheduling method optimal schedule

Figure 4.2 shows the optimal modulo scheduling related to the graph from

Figure 2.3 described in Section 2.2.1. Note that activity C is longer than the

period λ, hence the activity begins in a period and ends in the following one.

For instance, the third execution of C (i.e. C ′′) starts at instant start(i, 3) =

30 and terminates at 42. Using the modular representation the activity has

si = 0, βi = 3 and ei = 2, ηi = 4. Hence it starts at start(i, 3) = 0 + 3 ·λ and

ends at 2 + 4 · λ. Since λ = 10 we have si + βi · λ = 30 and ei + ηi · λ = 42.

Note that there is a strong correlation between iteration numbers and

schedule length. In particular, a larger difference between the highest and

smallest βi in an iteration corresponds to a larger schedule length. Moreover,

start and end times are constrained by the relation end(i, 0) = start(i, 0)+di,

hence we have ei + ηi · λ = si + βi · λ+ di and hence:

di = ei − si + (ηi − βi) · λ

Moreover, since ei−si is stricly less than λ, we have ηi−βi =
⌊
di
λ

⌋
, which

means that ηi is unambiguously determined once βi and λ are known. We

can also rewrite the temporal dependencies using the modular formulation.

In particular, the relation:

start(j, ω) ≥ start(i, ω − δ(i,j)) + di + θ(i,j)

is rewritten as:
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start(j, 0) + ω · λ ≥ start(i, 0) + (ω − δ(i,j)) · λ+ di + θ(i,j)

sj + βj · λ+ ω · λ ≥ si + βi · λ+ (ω − δ(i,j)) · λ+ di + θ(i,j)

performing the usual eliminations we have the following inequality that no

longer depends on ω:

sj + βj · λ ≥ si + (βi − δ(i,j)) · λ+ di + θ(i,j) (4.3)

This is a very important result and it is equivalent to say that in a periodic

schedule, if the (modular) precedence constraints are satisfied for iteration

0, then they are satisfied for every other iteration.

4.2.1 Resource Modeling

Before introducing our constraint model it is necessary to get a better insight

into the resource usage profile of a periodic schedule. A resource conflict

arises when the cumulative usage of overlapping tasks exceeds the capacity; in

cyclic scheduling, computing the resource usage requires to take into account

overlapping iterations. The most unusual peculiarity of this case is that the

value of λ may modify the resource usage over time, as depicted in Figure 4.3.

The picture presents the profiles corresponding to schedules with the same

start times, but with 4 different period values:

• case a) represents a classic non-overlapped schedule.

• In b) the modular start time s is equal to the modular end time e,

since the period is equal to the length of the activity.

• In case c) the period is shorter than the activity, hence the schedule

is overlapped and the resource profile exhibits a “pulse” (called also

resource peak) in the middle.

• In d) the period is slightly larger than the half of the activity duration.
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In this profile the modular end time e precedes the modular start time

s, which is a bit counterintuitive.

Note that changes in the modulus affect not only the resource usage but also

the the modular end time ei.

The number of concurrent executions of each activity within a period can

be characterized by relying on modular start/end values ; in particular, in the

interval [0, λ[, at least bdi/λc iterations of activity i are always executing.

An extra iteration should be added if the time instant under analysis falls

between the modular start and the modular end (i.e. the resource peak

window).

In general, the amount of resource k required by activity i in a time

window having width λ is given by the following expression:

rqi,k(si, di, t, λ) =


ri,k ·

(⌊
di
λ

⌋
+ 1

)
if si ≤ t < ei or ei < si ≤ t or t < ei < si

ri,k ·
⌊
di
λ

⌋
otherwise

(4.4)

In other words, the resource usage is given by a constant factor ri,k ·
⌊
di
λ

⌋
,

plus an additional ri,k in case the considered time point lies “between” the

modular start and the modular end (the quotes are used since we may have

ei < si).

In Figure 4.3, the constant usage factor is always 1 except for a), where

it is 0. As a particular case, if βi = ηi the constant usage factor is zero and

rqi,k(si, di, t, λ) becomes a classical resource usage function. This suggests

that forcing the end times to be within the modulus allows the use of classical

resource constraints (see Section 4.3). A wider discussion on cyclic resource

profile can be found in [68].
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4.3 The Model

In this section we propose a complete constraint-based approach for the cyclic

scheduling problem, based on modular arithmetic. Our CP model features

three classes of variables, representing the (modular) start times, the corre-

sponding iteration numbers and the modulus. The modular start time vari-

ables have domain [0, MAX TIME[, the iteration numbers are in {−‖V‖..+‖V‖}
and the modulus is in ]IB, MAX TIME]5. We recall that ‖V‖ is the number of

nodes in the graph. The value MAX TIME instead is given by the sum of the

durations of the activities and the sum of the time lags of the edges.

For sake of brevity, in the rest of the chapter we will use the notation si,

ei, βi, ηi and λ to refer to variables rather than values. Moreover, we will

speak of “start/end times”, implicitly meaning their modular counterparts:

non modular start/end times are never used in the model. In the rest of the

chapter we also assume that:

• ESTi is the earliest start time of i: the minimum in the domain of si

• LSTi is the latest start time of i: the maximum in the domain of si

• EETi is the earliest end time of i: the minimum in the domain of ei

• LETi is the latest end time of i: the maximum in the domain of ei

Hence the domain of a start time variable si is actually [ESTi..LSTi], with

LSTi < λ. Similarly, the domain of ei is [EETi..LETi]). Furthermore, we

use the notation x and x to refer to the highest and the lowest values (i.e. the

upper and the lower bounds) of the domain of a generic variable x. Obviously

the lower/upper bound of a time variable is the same as its earliest/latest

time, e.g. si = ESTi and si = LSTi. Finally, as stated in Section 4.2, the

ei and ηi values are equal to si + (di mod λ) and βi +
⌊
di
λ

⌋
respectively.

Therefore the model is actually based only on the si and βi variables.

5As stated in Section 2.1.3.1 the iteration bound IB is a valid lower bound for the
modulus.

82



These variables are subject to temporal and resource constraints. In

order to model a temporal dependency 〈i, j, θ(i,j), δ(i,j)〉 we have implemented

a modular precedence constraint (ModPC), with the following signature:

ModPC(ei, sj, ηi, βj, λ, θi,j, δi,j) (4.5)

where ei, sj, ηi, βj, λ are the variables representing the end time of activity

i, the start time of activity j, their respective iteration numbers and the

modulus. The parameters θi,j and δi,j are assumed to be fixed values. The

filtering algorithm for the constraint is described in Section 4.4.1.

In the CRCSP all activities are subject to resource constraints. Unlike

in traditional scheduling, the resource profile depends on the period value

(see Section 4.2.1). For this reason we devised a global cumulative constraint

based on a modular time table, that ensures a consistent resource usage (the

GCCC, discussed in Section 4.4.3). The signature is as follows:

GCCC([si], [di], [ri],cap, λ) (4.6)

where [si] is a vector of start time variables, [di] is the vector of corresponding

durations and [ri] are the requirements for the modeled resource. The cap

value is the resource capacity and λ is the period variable.

As an alternative, it possible to use traditional resource constraints by

making the assumption that βi = ηi, i.e. that the end and the start time of

an execution (i, ω) must be within to the same period. Formally:

si ≤ ei ≤ λ ∀i ∈ V

Since no activity is scheduled across different periods, the classical cu-

mulative constraint can be used. As a main drawback, we may incur a

quality loss due to the presence of an unnecessary restriction, which can

be substantial for large resource capacities and large activity durations. In

such situations, if we make no special assumption and we allow ηi ≥ βi and
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ei < si, we may obtain much better schedules. We refer as CROSS to the

solution approach making use of both the modular precedence constraint

and the GCCC, with no restricting assumption. Conversely, in the CROSS ∗

approach we force the end times to be within the modulus and replace the

GCCC with traditional cumulative constraints. The two approaches differ

also for the adopted search strategy, discussed in Section 4.5.

4.3.1 Buffer Constraints

In a real world context, a precedence constraint often implies an exchange of

intermediate products between activities that should be stored in buffers. For

example, in the context of an embedded system (as described in Chapter 3)

two activities may exchange data packets that should be stored in memory.

Every time the activity i ends, its product is accumulated in a buffer and

whenever the activity j starts, a product in the buffer is consumed. It is

common to have on each buffer a size limit, which can be modeled through

the following constraint:

βj − βi + (ei ≤ sj) ≤ B(i,j) − δ(i,j) (4.7)

where B(i,j) is the size limit and the reified constraint (ei ≤ sj) evaluates

to one if the condition is satisfied. Inequality (4.7) limits the number of

executions of activity i (the producer) before the first execution of j (the con-

sumer): this ensures that the buffer capacity is always respected. Obviously

B(i,j) ≥ δ(i,j), otherwise the problem is infeasible. In fact, the value δ(i,j)

can be thought as the number of products already accumulated in the buffer

〈i, j, θ(i,j), δ(i,j)〉 when the project starts for the first time (e.g. the initial

tokens number in Synchronous Data-Flow models).

84



4.3.2 Constraint Model

The complete constraint model is formalized as follows:

z = min (λ) (4.8)

ModPC(si, sj, βi, βj, λ, θi,j, δi,j) ∀ arc 〈i, j, θ(i,j), δ(i,j)〉 ∈ A (4.9)

GCCC([si], [di], [ri,k],capk, λ) ∀ resource k ∈ R (4.10)

βj − βi + (ei ≤ sj) ≤ B(i,j) − δ(i,j) ∀ arc 〈i, j, θ(i,j), δ(i,j)〉 ∈ A (4.11)

βj ≤ max
i∈Precj

(
βi − δ(i,j) +

⌈
si + di − sj + θ(i,j)

λ

⌉)
∀ activity j ∈ V (4.12)

βi ≥ min
j∈Nexti

(
βj + δ(i,j) −

⌊
si + di − sj + θ(i,j)

λ

⌋)
∀ activity i ∈ V (4.13)

V ariables

si ∈ [0, MAX TIME[ ∀ i ∈ V

βi ∈ {−‖V‖..+ ‖V‖} ∀ i ∈ V

λ ∈]IB, MAX TIME]

Note that the constraints (4.12) and (4.13) are used as dominance rules,

and are explained in Section 4.5.3.

4.4 The Propagation

This section presents the filtering algorithms of the Modular Precedence Con-

straint, the Buffer Constraint and the Global Cyclic Cumulative Constraint,

used respectively to model temporal dependencies, buffer and resource con-

straints.
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4.4.1 Modular Precedence Constraint ModPC

The Modular Precedence Constraint (ModPC) constraint has the following

signature:

ModPC(ei, sj, ηi, βj, λ, θ(i,j), δ(i,j))

where ei, sj, ηi, βj, λ are variables representing respectively the end time of

activity i, the start time of activity j, their respective iteration numbers and

the modulus, and θ(i,j), δ(i,j) are constant values representing the minimum

time lag and the iteration distance associated to the arc. For sake of sim-

plicity, in the following we will omit the subscript when referring to θ6 and

δ.

The filtering algorithm of the Modular Precedence Constraint has three

fundamental components:

• The filtering rules for the iteration variables, which updates the bounds

of the ηi and βj variables so that a proper distance (in terms of number

of iterations) exists between activity i and j.

• The filtering rules for the start time variables, which modify the start

times of the involved activities to avoid infeasible overlaps.

• The filtering rules for the modulus variable, which compute a lower

bound on the modulus.

The algorithm is executed whenever the domain bounds of any involve vari-

able change. Filtering a single precedence relation achieves bound consis-

tency and takes constant time.

6 We recall that the value θ(i,j) must be non-negative, i.e. θ ≥ 0.
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4.4.1.1 Filtering the Iteration Variables

With reference to the temporal model proposed in Section 4.3 we can rewrite

the Inequality (4.3) as:

sj + βj · λ ≥ ei + θ + (ηi − δ) · λ (4.14)

Starting from the equation above, we have

ηi − βj − δ ≤
sj − ei − θ

λ
(4.15)

with −λ < sj − ei ≤ λ and θ ≥ 0. Equation (4.15) can be used to obtain

bounds over the βj (and ηi) variables, in particular:

ηi ≤ βj + δ +

⌊
sj − ei − θ

λ

⌋
(4.16)

βj ≥ ηi − δ −
⌊
sj − ei − θ

λ

⌋
(4.17)

As an example, suppose that during search two activities i and j connected

by a temporal dependency 〈i, j, 0, 0〉 are overlapping and have sj = 0, ei = 3:

then the Inequality (4.17) appears as follows:

βj ≥ ηi −
⌊
−3

λ

⌋
(4.18)

which implies that βj > ηi. In fact, two connected activities can overlap iff

they have different iteration values: in particular βsinkNode > ηsourceNode.

4.4.1.2 Filtering the Start Time Variables

Let δ̇ω be ηi− βj − δ and hence δ̇ω be ηi− βj − δ. The Constraint (4.14) can

now be written as:

sj − ei − θ ≥ δ̇ω · λ (4.19)
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Note that we must have δ̇ω ≤ 0: in fact δ̇ω > 0 would imply that βj < ηi − δ
which is, by definition, impossible. From δ̇ω ≤ 0, we can deduce the two

inequalities, that lead to bounds on the start/end variables:

sj ≥ ei + θ + δ̇ω · λ ≥ ei + θ + δ̇ω · λ (4.20)

ei ≤ sj − θ − δ̇ω · λ ≤ sj − θ − δ̇ω · λ (4.21)

Note that if δ̇ω = 0 the modular constraint boils down to a classical prece-

dence constraint, i.e. sj ≥ ei + θ. In fact, two connected activities with the

same iteration value cannot overlap and the Inequality (4.20) “pushes” the

destination activity j after the end time of i plus the time lag θ.

4.4.1.3 Filtering the Modulus Variable

The domain of the modulus variable can be pruned only when δ̇ω is strictly

negative, i.e. δ̇ω < 0. In this situation, we can derive from Equation (4.19)

the following inequality, resulting in a lower bound on the modulus variable:

λ ≥
ei − sj + θ

−δ̇ω
=

⌈
ei − sj + θ

βj − ηi + δ

⌉
(4.22)

4.4.2 Filtering for the Buffer Constraints

In the following we report Inequality (4.7) from Section 4.3.1.

βj − βi + (ei ≤ sj) ≤ B(i,j) − δ(i,j) (4.23)

From this formulation we can derive two expressions to compute bounds

over the β variables:

βj ≤ βi − (ei ≤ sj) + (B(i,j) − δ(i,j)) (4.24)

βi ≥ − βj + (ei ≤ sj)− (B(i,j) − δ(i,j)) (4.25)
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where B(i,j) is the size limit of the buffer and the reified constraint (ei ≤ sj)

equals one if the condition is satisfied. In other words Inequality (4.7) limits

the iteration distance between the activities involved.

4.4.3 The Global Cyclic Cumulative Constraint GCCC

The Global Cyclic Cumulative Constraint for resource k ensures consistency

in the use of the resource:∑
i∈V

rqi,k(si, di, t, λ) ≤ CAPk ∀t ∈ [0, ..λ[

Since the GCCC refers to a single resource, for the sake of readability we

remove the k index from the requirement functions. Hence ri,k becomes ri and

CAPk becomes CAP. The constraint is inspired by the timetable filtering

for the cumulative constraint [6]. The function rqi(si, di, t, λ) (see Section

4.2.1) can be used to compute the resource consumption of the activity i

at time t. Similarly to timetable filtering, our algorithm works with the

compulsory parts of activities.

Activity i has a compulsory part if and only if there exist a time span

where the activity is necessarily executing. This happens if ESTi + di >

LSTi. To take into account the resource usage corresponding to compulsory

parts, we introduce a generalized version of the rqi(si, di, t, λ) function from

Section 4.2.1:

r̂qi,k(si, di, t, λ) =


ri,k ·

(⌊
di
λ

⌋
+ 1

)
if


LSTi ≤ t < EETi or

EETi < LSTi ≤ t or

t < EETi < LSTi

ri,k ·
⌊
di
λ

⌋
otherwise

(4.26)

Where si is a start time variable, rather than a value as in the non generalized

for of the function. Basically, the generalized r̂qi(si, di, t, λ) represents the

resource usage of an unbound activity, corresponding in practice to that of
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its compulsory part. If the si variable is bound, then r̂qi,k(si, di, t, λ) =

rqi,k(si, di, t, λ) The shape of the function is the same as before, namely a

constant factor plus a “pulse”. Note that if the activity duration is longer

than the period (i.e. di ≥ λ), then there exists a compulsory part at least as

wide as the period itself.

The GCCC constraint guarantees that:

1. the start time of each activity is not lower than the minimum instant

where enough resources are available.

2. The modulus is not lower than the minimum value such that the cumu-

lative usage due to the compulsory parts does not exceed the resource

capacity.

The filtering algorithm exploits incremental computation and consists of

three procedures:

• Trigger: this procedure is executed whenever any variable bound

changes. The aim of this algorithm is to update the time tabling data

structure.

• Core: this algorithm is executed at the end of all trigger procedures

and it is structured in two independent phases:

1. Start Time Propagation, that propagates the lower bound of the

start time variables.

2. Modulus Propagation, that computes the minimum λ needed to

guarantee feasibility.

• Coherence: the procedure is executed whenever the modulus upper

bound changes. The procedure modifies the data structure to guarantee

the coherence with the new λ bound.

In the rest of this section we focus on the two phases of the Core procedure.
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4.4.3.1 Core Phase 1: Start Time Filtering Algorithm

The filtering algorithm guarantees that the start time of each activity is not

lower than the minimum instant where enough resources are available, i.e.:

si ≥ min
t∈[0,λ[

:
∑

j∈V \{i}

rqj(sj, dj, t
′, λ) ≤ CAP− rqi(si, di, t′, λ) ∀t′ ∈ [t, t+ d∗i ]

where d∗i = di mod λ is the length of the pulse and is referred to as modular

duration7. Similarly to the timetable approach, we adopt a data structure

to store the minimum resource usage, given the current scheduling decisions.

For every t ∈ [0, λ), this is given by the following expression:∑
i∈V

r̂qi(si, di, t, λ)

Note that changes in the expression value occur at the LSTi and EETi

of all the activities: this is a direct consequence of the r̂qi definition in

Equation (4.26).

Intuitively the algorithm proceeds as follows: for each unbound activity i

the algorithm scans the resource profile, starting from ESTi, to search for a

schedulability window. A schedulability window is a time slice large enough

and with enough resources to allow the activity execution. The process stops

when a window is found or the search goes beyond the Latest Start Time

(LSTi). Since the solver is based on modular arithmetic, the procedure

follows a modular time wheel and the LSTi and EETi values (i.e. the time

points when a profile change may occur) are stored in a circular queue. Recall

that, since LSTi and EETi are modular values, they are guaranteed to be

lower than λ. The filtering algorithm has an asymptotic complexity of O(n2).

Data Structure As stated in Section 4.3, each activity i ∈ V has four

relevant time points: two of them are related to the start time, namely ESTi

(or si) and LSTi (or si), and two related to the end time, i.e. EETi, LETi.

7In case di is not integer, then d∗i = di − λ ·
⌊
di
λ

⌋
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The constraint relies on an a circular queue Ω[0, (‖V‖ ∗ 2)] where each

activity i ∈ V is represented via two queue items, respectively corresponding

to the LSTi and its EETi. Each item Ω[idx] stores three values:

• Ω[idx].activity: the activity corresponding to item Ω[idx].

• Ω[idx].time: the time value, either the LSTi or the EETi.

• Ω[idx].res: the total resource usage at instant Ω[idx].time; formally

Ω[idx].res =
∑
i∈V

r̂qi(si, di,Ω[idx].time, λ)

The items are sorted by increasing Ω[idx].time.

The Algorithm The pseudo-code is reported in Algorithm 7 where S is the

set of unscheduled activities. Lines 3-7 contain the algorithm initialization:

the variable canStart represents the candidate start time of the schedula-

bility window and initially it assumes the value of the Earliest Start Time

of the selected activity i. The feasible flag is used to remember if enough

resource is available at the current canStart value. The t0 and idx0 values

are respectively the time instant and the Ω index currently being processed.

Initially, they are respectively equal to ESTi and to the largest index in

Ω corresponding to an item with Ω[idx].time ≤ t0. Note that since profile

changes always correspond to queue items, the resource usage at t0 is the

same as at Ω[idx0].time. The startidx variable stores the first index in Ω

examined by the algorithm, i.e. the first idx0. The stop flag is used for loop

termination.

The algorithm searches for a schedulability window by scanning the queue

Ω, item by item. The window is assumed to start at the current canStart

value and to end at t0. Note that, with the exception of the first while-loop

iteration (where Ω[idx0].time may be strictly less than t0), the current time

point under examination (i.e. t0) always matches the time value of the queue

index under examination (i.e. Ω[idx0].time).
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Algorithm 7: Core 1: Start Times Filtering Algorithm

Data: Let S be the set of activities not already scheduled
1 begin
2 forall the unbound activities i ∈ S do
3 feasible = false
4 canStart = ESTi
5 t0 = ESTi, idx0 = largest idx such that Ω[idx].time ≤ ESTi
6 startidx = idx0

7 stop = false
8 while ¬stop do

// Resource availability check

9 avRes = Ω[idx0].res− r̂qi(si, di, t0, λ)

10 if avRes+ rqi(canStart, di, t0, λ) ≤ CAP then
11 if ¬feasible then
12 feasible = true
13 canStart = t0

14 else feasible = false
// Offset determination

15 if idx0 < startidx then offset = λ
16 else offset = 0

// Pruning

17 if feasible ∧ canStart+ di ≤ offset + t0 then
18 ESTi ← canStart
19 stop = true

20 else if ¬feasible ∧ offset + t0 > LSTi then
21 fail()

// Move forward

22 idx0 = idx0 + 1, t0 = Ω[idx0].time

From line 9 to 14 the algorithms checks the resource availability at t0.

The value avRes computed at line 9 is the resource usage, adjusted by sub-

tracting the contribution of the compulsory part of activity i. Line 10 checks

if scheduling i at time canStart would cause an over-usage at time t0. Note

that rqi(canStart, di, t0, λ) corresponds to the resource consumption of ac-

tivity i at time t0, assuming it is scheduled at time canStart. Depending on
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the result of the check, the feasible flag is updated. A transition between

feasible = false to feasible = true means that a new candidate start time

for the schedulability window has been found and that the canStart value

must be updated.

Since Ω is circular, at some point the process may reach the end of the

queue and re-start from the first element: the filtering algorithm makes use

of an offset value to distinguish between items encountered before and after

crossing the end of the queue. In particular, for the latter ones it holds

idx0 < startidx and the offset is set to λ (lines 10-11). We recall that λ (i.e.

the maximum value in the domain of λ) is the modulus value corresponding

to the minimum resource usage profile.

At lines 17-19 the algorithm checks if the current schedulability window,

from canStart to t0: 1) has enough available resource and 2) it is long enough

to contain activity i. The time window length is adjusted by adding the value

offset . If both the conditions hold, then a valid schedulability window has

been found and the start time is filtered (line 18). If this is not the case,

then the algorithm checks if the current t0 (adjusted with the offset value)

has become larger than LSTi (line 20-21): in this case there is no way to

schedule activity i and the algorithm fails. If neither of the two situations

occurs, at line 22 the process moves to the next item in Ω by updating t0

and idx0.

Time Complexity The filtering algorithm has two nested cycles, respec-

tively over the set of non-scheduled activities S and over the items of the

circular queue Ω. The corresponding maximum numbers of iterations are n

and 2 · n. Hence the asymptotic complexity is O(n2).

4.4.3.2 Core 2: Modulus Filtering Algorithm

In cyclic scheduling, it is possible to reduce the cumulative usage at time t

by increasing the modulus. As a consequence, unlike in classical scheduling,

the compulsory parts in the current schedule may enforce a non-trivial lower

bound on the feasible λ. The goal of lambda filtering is to find the mini-
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Figure 4.4: Resource Profile of a partial allocation with minimum and max-
imum modulus.

mum instant where sufficient resources are available for the current schedule.

Formally:

λ ≥ min
λ′∈[0,λ[

:
∑
i∈V

r̂qi(si, di, t, λ
′) ≤ cap ∀t ∈ [0, λ′[

The algorithm makes again use of a circular queue Ω. However, the value

Ω[idx].time of the items corresponding to the Earliest End Time is computed

assuming that λ = λ. In other words, they are the Earliest End Time for

the scenario where the period takes its minimum value, corresponding to the

most constrained resource profile.

Figure 4.4 shows two different resource usage profiles for the same ac-

tivity start times, but with different period value. The former corresponds

to the maximum λ value (i.e. λ) and the latter corresponds to the mini-

mum value (i.e. λ). Note that with λ the activities A and B now cross the

modulus, increasing the resource consumption at time 0. This causes a re-

source over-usage, represented by the shaded area. The effect of period λ on

the usage profile is a direct consequence of how the resource usage function
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rq(si, di, t, λ) is defined (see Section 4.2.1). The goal of the modulus filtering

algorithm is to get rid of the over-usage by increasing the lower bound λ.

This is done in an iterative fashion, by repeatedly computing the over-usage

integral and pushing the λ lower bound.

Algorithm 8: Core 2: Modulus Filtering Algorithm

Data: Let En be the cumulative over-usage amount
1 begin
2 repeat

// Initialize iteration

3 En = 0
4 Update and reorder the modular end times in Ω, given the new

λ
5 lastres = 0, lasttime = 0
6 for idx = 0; idx < ‖Ω‖; idx = idx+ 1 do

// Update resource usage

7 let j be the activity corresponding to Ω[idx]
8 if Ω[idx] corresponds to LSTi then
9 Ω[idx].res = lastres+ rj

10 else
11 Ω[idx].res = lasttime− rj

// Update cumulative resource overusage

12 if lastres > cap then
13 En = En+ (lastres−R) · (Ω[idx].time− lasttime)

// Update last resource availability and time

point

14 lastres = Ω[idx].res, lasttime = Ω[idx].time

// Prune the period lower bound

15 λ← λ+ En
cap

16 until En = 0

The Filtering Algorithm The pseudo-code for the filtering procedure is

reported in Algorithm 8. It is an iterative process, repeated until the resource

over-usage becomes 0.

The cumulative resource overusage at each iteration is referred to as En.

At the beginning of each iteration (lines 3-5), the algorithm updates and
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reorders the data structure Ω: this is necessary since λ is changed at each

iteration, causing a modification of all the modular end times. Moreover,

the procedure resets the values lastres and lasttime, respectively referring

to the last processed resource consumption and to the corresponding time

point.

Then the items in the queue are processed one by one. At lines 8-11 the

resource consumption is increased or decreased depending on whether the

item corresponds to a start or an end time. At line 12, the procedure checks

if the resource consumption of the last processed time point (i.e. lastres)

exceeds the resource. In this case, the cumulative resource over-usage on the

time window [lasttime,Ω(idx).time[ is summed to the current En quantity.

At line 14 the algorithm updates the lastres and lasttime values, before

starting to process the next item. The period lower bound is updated at the

end of each iteration (line 15), by dividing the cumulative overusage by the

capacity of the resource and summing the quantity to the current λ.

Time Complexity The algorithm inner loop has two main steps:

• Updating and sorting the modular end time for items in Ω, with asymp-

totic complexity O(n · logn).

• Computing the cumulative overusage. This takes up to 2 ·n steps, and

thus has asymptotic complexity O(n)

It is difficult to obtain a tight bound on the number of iterations of the main

loop (line 2-16). If λ is an integer, then λ − λ provides a trivial bound and

the overall asymptotic complexity is O((λ−λ)·n·logn). In practice, however,

the number of iterations of the main loop is very small.

4.5 The Search

In this section, we introduce two search strategies tailored for two models of

the problem. The first (called Path-based method) works for the restricted

case where the end time are assumed to be within the modulus, βi = ηi ∀i ∈
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V. The second (called random restart method) is used in the generic version

and it is based on restarts, although in this case they are employed to ensure

correctness rather than to speed up search. As discussed in Section 4.2,

by constraining the end times to be within the modulus, we can model the

resource constraints with a traditional cumulative constraints.

In this section we present both the search strategies, together with their

variable and value selection heuristics. Finally we also present a dominance

rule on β variables used to narrow the search space.

4.5.1 Path-based method

This is the search strategy employed in CROSS ∗. Since our approach is de-

signed to build periodic schedules, the start time value of each activity can be

decided with respect to another, arbitrarily chosen, reference activity. The si

and βi variables of this reference activity (called The reference node) can be

fixed to zero. Such a restriction does not compromise the method complete-

ness, as long as the βi variable domains are large enough. We always choose

as a reference activity a node with no in-going arc having δ(i,j) = 0. Formally,

for a node src to be a candidate, it must hold @ 〈i, src, θ(i,src), δ(i,src)〉 ∈ A
such that δ(i,src) = 0. Note that there always exists at least one node with this

property, otherwise the graph is in deadlock and the problem is infeasible. A

formal proof can be found in [14].

The reference activity (let its index be src) is always immediately sched-

uled, by posting ssrc = 0, βsrc = 0, with no backtrack possible. Then, at any

search node the next activity j to be used for branching is chosen among

those connected by an arc (i, j) to one of the activities i already scheduled.

Those candidates are ranked according to the number of outgoing arc (the

more, the better). This selection criterion seems to lead to better filtering

of the Modular Precedence Constraint and for the dominance rule described

in Section 4.5.3. In case of ties, the algorithm prefers activities with longer

duration, and finally with smaller index.

Then we assign a value to the start time and to the iteration number of

the selected activity, i.e. to variables sj and βj. This is done in two successive
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search steps, rather than by posting the conjunction of the two assignments

as a single constraint.

In particular, the algorithm attempts to schedule the activity at its ear-

liest start time, i.e. it assigns sj to its minimum value. On backtrack, the

activity is postponed, i.e. marked as non selectable until its earliest start

time is modified by propagation. This is analogous to what it done in the

classical schedule-or-postpone strategy for the RCPSP [62] and can be done

since in CROSS ∗ we enforce resource restrictions by means of traditional

cumulative constraints.

The βj variables are assigned via labeling, with value order given by in-

creasing |v| (where v is the value to be assigned). In case of ties, the positive

v is chosen. This criterion is based on the existing correlation between it-

eration numbers and schedule length (see Section 4.2) and is designed to

produce schedules as short as possible. A deeper discussion on the values

that the iteration variables could assume can be found in Section 4.5.3). On

backtrack, the previously assigned value is simply removed from the domain

of βj.

Unlike other modulo scheduling approaches, our solution method does

not require to a-priori fix the period. When all the activities have been

scheduled, we simply assign to the λ variable the minimum in its domain.

This value is guaranteed to be feasible by the propagation of precedence and

resource constraints. Optimization is performed in a traditional CP fashion

by posting a permanent upper bound on λ whenever a feasible solution is

found.

4.5.2 Random Restart method

If the activities are allowed to cross different iterations, like in our generic

CROSS approach, the resource usage becomes dependent on λ. As a major

consequence, by scheduling activities at their earliest (modular) start time,

updated by resource constraint propagation, we may miss an optimal solu-

tion. Therefore, we had to devise a different search strategy for the non

restricted CROSS approach.
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The structure of the search strategy is the same as before: an activity j is

selected, then a value is assigned to its start time and iteration variables (i.e.

sj and βj) in two successive search nodes. Once all the activities have been

scheduled, the λ variable is fixed to u. The iteration numbers are assigned as

in CROSS ∗, giving priority to values v in the domain having the minimum

absolute value |v| and posting βj 6= v on backtrack.

As a first difference, we do not fix a reference activity. At every search

node, the activity j to be scheduled is chosen at random among those con-

nected to at least one already scheduled activity i. At the root node (where

no scheduling decision has been taken) the choice is simply made at random.

Second, the selected activity is not scheduled at ESTi. Instead, the al-

gorithm keeps a list of candidate start times, corresponding to the values

si + (di mod λ) for all the already scheduled activities. The value 0 is al-

ways added to the list in case it is not present. Then the selected activity

j is scheduled at the smallest candidate start time t falling in the interval

[ESTi, LSTi]. If there is no such t, the algorithm backtracks without even

opening a choice point. Otherwise, the activity j is scheduled at time t and

on backtrack the constraint si > t is posted.

The modifications described so far are not yet sufficient to guarantee

the method completeness, because the assigned start times (equal to si +

(di mod λ) for some activity i) depend on the λ value, which is updated

by the bounding constraint whenever an improving solution is found. To

address this issue, we simply restart8 the search process every time we find

an new solution: this ensures that consistent start times are computed and

the optimal solution is not missed.

4.5.3 Dominance Rules

One important observation is that assigning different iteration values to ac-

tivities connected by an arc (i, j) allows to place activity j before activity

i in the λ-long window, apparently violating the precedence constraint. In

8Note that in this case restarts are needed to ensure the method completeness, rather
than to speed up the search as it is usually the case in CP.
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particular, this requires to βj to be greater than βi by a minimum amount: in

further increase obtains the same effect. This observation serves as the basis

to devise a dominance rule that filters redundant values for the β domains.

Suppose we want to schedule two activities i and j, connected by a tem-

poral dependency 〈i, j, θ(i,j), δ(i,j)〉. From (4.3)9 we derive:

βj ≥ βi − δ(i,j) +

⌈
si + di − sj + θ(i,j)

λ

⌉
(4.27)

and let δ̂β =
si+di−sj+θ(i,j)

λ
. Let’s focus on the successor j. We analyze the

dependency in Equation (4.27) in two different cases:

1. activity j follows activity i: in this case sj ≥ si + di + θ(i,j). Since

sj < λ, δ̂β is in the interval ]− 1, 0]. Hence, dδ̂βe = 0 and then

βj ≥ βi − δ(i,j) (4.28)

2. the two activities overlap in the λ-long window, or activity j precedes

activity i: in this case sj < si + di + θ(i,j) and δ̂β is strictly positive.

Therefore, the lowest possible value that dδ̂βe can assume is 1, which

implies

βj > βi − δ(i,j) (4.29)

Note that βj must be at least equal to βi−δ(i,j), and must be strictly greater if

we want activity j to overlap with or precede activity i in the time window.

In particular, the smallest value that allows the apparent violation of the

precedence constraint is βi−δ(i,j)+d∆βe: any higher value provides no benefit

from a schedule building perspective. This information can be used to devise

a dominance constraint that removes dominated (but feasible) values from

the domain of β variables. In detail, we can post:

βj ≤ max
i∈Precj

(
βi − δ(i,j) +

⌈
si + di − sj + θ(i,j)

λ

⌉)
(4.30)

9sj + βj · λ ≥ si + (βi − δ(i,j)) · λ+ di + θ(i,j)
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where Precj = {i ∈ V | 〈i, j, θ(i,j), δ(i,j)〉 ∈ A} is the set of the predeces-

sors of j. Note that, as a combined consequence of the modular precedence

constraints (i.e. Equation (4.27)) and of the dominance rule, βj is strongly

constrained by the βi of the predecessor activities: this is the reason why sche-

duling activities according to their topological order may result in a much

better propagation (see Section 4.5.1).

We can obtain a second dominance rule by reasoning in a similar fashion for

the successors of an activity i:

βi ≥ min
j∈Nexti

(
βj + δ(i,j) −

⌊
si + di − sj + θ(i,j)

λ

⌋)
(4.31)

where Nexti = {j ∈ V | 〈i, j, θ(i,j), δ(i,j)〉 ∈ A} is the set of the successors of

i.

To make the rules clearer, we make a simple example. Assume

we have a graph with three activities A,B,C connected with two

arcs: 〈A,B, 0, 0〉 and 〈B,C, 0, 0〉. Assume that each variable is

initially unbound, with si ∈ [0, λ[ and βi ∈ {−3.. + 3} for every

activity. If we schedule activity A by posting sA = 0 and βA = 0,

then the βi domain for all other activities becomes {0.. + 3}.
The application of the dominance rule (4.30) results in a further

reduction of the domains, in particular βB ∈ {0,+1} and βC ∈
{0.. + 2}. Note that the values βB = 2 and βB = 3 are feasible

but redundant. At this point, if the activity B is scheduled so

that it overlaps with A (i.e. sB < sA + dA), its iteration variable

is forced to be βB = 1.

From an implementation perspective, the direct formulation of the rules

may be difficult to model and heavy to propagate. It is therefore convenient

to modify the right hand expression in Inequality 4.30 with an upper bound,
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obtaining the following, updated rule:

βj ≤ max
i∈Precj

(
βi − δ(i,j) +

⌈
λ+ di + θ(i,j)

λ

⌉)
(4.32)

i.e. βj ≤ max
i∈Precj

(
βi − δ(i,j) + 1 +

⌈
di + θ(i,j)

λ

⌉)
(4.33)

For a fixed λ value, the expression
⌈
di+θ(i,j)

λ

⌉
can be replaced with a fixed value

to obtain a (much simpler to compute) upper bound on βj. This technique

is employed in the context of the CROSS search strategy, which works by

restarting the search whenever the λ upper bound is modified.

4.6 Experimental Results

We have evaluated the effectiveness and scalability of both the approaches

discussed in Section 4.3 (CROSS and CROSS ∗) on various sets of instances.

Moreover, we have compared them against a state-of-the-art ILP method

and a state-of-the-art heuristic.

In the first part of this section we will focus on the CROSS ∗ approach:

we show that the solver is able to compute good quality solutions in terms

of seconds in the context of a real world problem. In the second part of

the section we present a comparison between CROSS and CROSS ∗, plus a

blocked and an unfolded approach. More in detail, this section contains:

1. An experimentation on industrial instances: the main purpose of this

experimental evaluation is to show the our CROSS ∗ approach to cyclic

scheduling is viable in a practical setting. In particular, the experi-

mentation will focus on instruction scheduling benchmarks, namely an

industrial set of 36 instances for the ST200 processor by STmicroelec-

tronics (also employed in [3]). We compare CROSS ∗ with two state-

of-the-art approaches: the complete ILP method presented in [3] and

Swing Modulo Scheduling (SMS), a heuristic used by the GCC compiler

[45].
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2. An evaluation of the solution quality obtained by the CROSS ∗ ap-

proach: the second group of tests is performed on a set of synthetic

instances and compares the best solution obtained by CROSS ∗ (within

300 seconds) with a lower bound on the instance period (namely, the

iteration bound from Section 2.1.3.1).

3. A comparison between CROSS/CROSS ∗ and blocked/unfolded sche-

duling: this experimentation is performed on a set of synthetic in-

stances, for which we compare the solution quality of both the ap-

proaches with respect to classic blocked and unfolded scheduling.

4. A comparison between CROSS and CROSS ∗, w.r.t. the Throughput

/ Resource trade-off: the fourth group of results compares our two

approaches in terms of Throughput / Resource-usage trade-off.

All our solvers have been implemented in IBM ILOG Solver and Scheduler

6.7. All the experiments are performed on an Intel Core 2 Duo 3.3GHz

with 8GB of RAM. A 300 seconds time limit was set on each run. The

synthetic instances were built by means of an internally developed task-

graph generator, designed to produce graphs with realistic structure and

parameters.

4.6.1 Evaluation of CROSS ∗ on Industrial Instances

The first set of 36 instances is obtained from a compiler for a VLIW (Very-

Long Instruction Word) architecture. In this setting, cyclic scheduling prob-

lems arise when optimizing inner loops at instruction level: in this context

the activities represent instructions, the precedence constraints model data

and control dependencies and the resources are the hardware units required

to execute the instructions. In the considered instances, all the resources

have unary capacity and all the instructions have unary duration. With the

objective to evaluate the approaches on a more diversified setting, in [3] the

authors have obtained an additional set of modified instances, by replacing

the original resource capacities and consumptions with randomly generated

integer values.
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The smallest instance features 10 nodes and 42 arcs, while the largest one

has 214 nodes and 1063 arcs. In [3] the authors present two ILP formulations

for the resource-constrained modulo scheduling problem (RCMSP), which is

equivalent to the CRCSP discussed in this chapter, with the (easy to enforce)

exception that the period must be integer. As described in [3], both the

ILP approaches adopt a dual process by iteratively increasing an infeasible

lower bound; as a consequence, the method does not provide any feasible

solution before the optimum is reached. Given a large time limit (604800

seconds) their solvers found the optimal solution for almost all the instances:

our experiments compare the optimal value with the solution found by our

method within a 300 sec time limit10. We also compare our approach with an

incomplete method, namely a state of the art heuristic approach called Swing

Modulo Scheduling (SMS), presented in [66] and used by the gcc compiler [45].

As we mentioned, our benchmarks consists of two subsets of instances:

the original problems extracted by the compiler and the modified ones (which

tend to be more challenging). The results of the experiments performed with

both the sets are reported respectively in Table 4.1 and Table 4.2. In the

tables the first three columns describe the instance (name, number of nodes

and arcs), the third shows the run-time of the ILP approach in [3], the fourth

and the fifth respectively report the solution time and the quality of our

solutions, evaluated by means of the gap w.r.t. the optimal solution11. The

last two columns present the solution time and the quality gap for the SMS

heuristic approach. For some instances (see the missing time information)

the ILP approach was not able to find a solution: in such cases we report the

best solution found by CROSS ∗, which is used as a reference for computing

the SMS gap.

On the industrial set, CROSS ∗ is able to find the optimal solution within

one second for all but one instance (adpcm-st231.2, whose optimality gap

is 2.44%). We also found a solution for the gsm-st231.18 instance that

10In a preliminary experimentation the solver was found to typically provide the best
solution in less than a second. Hence a 300 seconds time limit should be widely sufficient
for the method to converge to best solution it can find.

11For both CROSS∗ and SMS, the quality gap is computed with the following formula-
tion: 100 ∗ (Sol − ILP Opt)/ILP Opt, where ILP Opt ≤ Sol.
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CROSS SMS
Instances nodes arcs ILP time(sec) time(sec) Gap(%) time(sec) Gap(%)

adpcm-st231.1 86 405 14400.00 0.03 0% 0.41 19.23%
adpcm-st231.2 142 722 582362.00 0.18 2.44% 1.74 0%
gsm-st231.1 30 190 0.05 0.02 0% 0.02 0%
gsm-st231.2 101 462 79362.00 0.03 0% 0.61 0%
gsm-st231.5 44 192 0.05 0.01 0% 0.06 13.33%
gsm-st231.6 30 130 17.00 0.01 0% 0.02 31.25%
gsm-st231.7 44 192 0.05 0.01 0% 0.07 41.66%
gsm-st231.8 14 66 0.05 0.01 0% 0.01 31.25%
gsm-st231.9 34 154 0.05 0.01 0% 0.02 0%
gsm-st231.10 10 42 0.05 0.01 0% 0.01 0%
gsm-st231.11 26 137 0.05 0.01 0% 0.01 0%
gsm-st231.12 15 70 0.05 0.01 0% 0.01 0%
gsm-st231.13 46 210 1856.00 0.01 0% 0.09 0%
gsm-st231.14 39 176 301.25 0.98 0% 0.05 17.39%
gsm-st231.15 15 70 0.05 0.01 0% 0.01 28.57%
gsm-st231.16 65 323 7520.00 0.01 0% 0.2 0%
gsm-st231.17 38 173 0.05 0.01 0% 0.17 23.81%
gsm-st231.18 214 1063 - 0.05 - 58.36 3.80%*
gsm-st231.19 19 86 0.05 0.01 0% 0.01 0%
gsm-st231.20 23 102 0.05 0.01 0% 0.02 0%
gsm-st231.21 33 154 0.05 0.01 0% 0.02 45.45%
gsm-st231.22 31 146 0.05 0.01 0% 0.03 0%
gsm-st231.25 60 273 3652.00 0.01 0% 0.15 0%
gsm-st231.29 44 192 12.60 0.01 0% 0.06 23.81%
gsm-st231.30 30 130 12.00 0.01 0% 0.02 0%
gsm-st231.31 44 192 47.00 0.01 0% 0.05 41.67%
gsm-st231.32 32 138 0.05 0.01 0% 0.02 31.25%
gsm-st231.33 59 266 2365 0.06 0% 0.13 11.76%
gsm-st231.34 10 42 0.05 0.01 0% 0.01 6.25%
gsm-st231.35 18 80 0.05 0.01 0% 0.01 0%
gsm-st231.36 31 143 27.00 0.01 0% 0.03 14.29%
gsm-st231.39 26 118 0.05 0.01 0% 0.02 0%
gsm-st231.40 21 103 0.05 0.01 0% 0.02 0%
gsm-st231.41 60 315 2356.00 0.01 0% 1.37 0%
gsm-st231.42 23 102 0.05 0.01 0% 0.01 0%
gsm-st231.43 26 115 0.05 0.76 0% 0.01 21.73%

Table 4.1: Run-Times/Gaps of Industrial instances

was previously unsolved. The SMS heuristic method obtains an average

optimality gap of 14.58%. Its average run time is less than few seconds, with

a maximum of 58.36 seconds, corresponding to instance gsm-st231.18 . For

the previously unsolved instance (i.e. gsm-st231.18), the gap between SMS

and CROSS ∗ is 3.8%.
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CROSS SMS
Instances nodes arcs ILP time(sec) time(sec) Gap(%) time(sec) Gap(%)

adpcm-st231.1M 86 405 - 0.04 - 6.61 40.8%*
adpcm-st231.2M 142 722 - 0.09 - 68.55 55%*
gsm-st231.1M 30 190 250.00 0.02 10.70% 0.04 10.7%
gsm-st231.2M 101 462 - 0.04 1.50%* 8.36 -
gsm-st231.5M 44 192 280 .00 0.01 0% 0.06 5.26%
gsm-st231.6M 30 130 152.00 0.01 0% 0.08 0%
gsm-st231.7M 44 192 92.00 0.01 0% 0.24 2.38%
gsm-st231.8M 14 66 0.27 0.01 0% 0.01 0%
gsm-st231.9M 34 154 0.56 201.56 0% 0.03 8.57%
gsm-st231.10M 10 42 0.1 0.01 0% 0.01 0%
gsm-st231.11M 26 137 0.37 0.01 0% 0.01 0%
gsm-st231.12M 15 70 12.65 0.01 0% 0.01 0%
gsm-st231.13M 46 210 985.03 0.02 0% 0.22 0%
gsm-st231.14M 39 176 220.00 0.01 2.94% 0.13 0%
gsm-st231.15M 15 70 12.36 0.01 0% 0.01 8.33%
gsm-st231.16M 65 323 - 0.03 2.24%* 2.77 -
gsm-st231.17M 38 173 90.00 0.01 0% 0.17 0%
gsm-st231.18M 214 1063 - 0.2 3.49%* 429.36 -
gsm-st231.19M 19 86 38.23 0.01 0% 0.02 6.25%
gsm-st231.20M 23 102 123.00 0.01 3.23% 0.03 4.76%
gsm-st231.21M 33 154 42.06 0.01 0% 0.07 3.24%
gsm-st231.22M 31 146 80.36 0.03 0% 0.06 0%
gsm-st231.25M 60 273 (604800) 0.01 - 1.27 1.75%
gsm-st231.29M 44 192 210.00 0.01 0% 0.3 0%
gsm-st231.30M 30 130 58.00 0.01 0% 0.06 3.84%
gsm-st231.31M 44 192 142.00 0.01 0% 0.25 2.5%
gsm-st231.32M 32 138 0.25 0.01 0 0.03 0%
gsm-st231.33M 59 266 (604800) 56.00 - 1.14 0%
gsm-st231.34M 10 42 5.05 0.01 0% 0.01 0%
gsm-st231.35M 18 80 52.00 0.01 0% 0.01 0%
gsm-st231.36M 31 143 230.00 0.01 0% 0.06 7.69%
gsm-st231.39M 26 118 95.00 0.01 0% 0.04 4.55%
gsm-st231.40M 21 103 15.00 0.01 0% 0.03 5.56%
gsm-st231.41M 60 315 - 0.02 - 0.61 6.15%*
gsm-st231.42M 23 102 12.00 0.01 0% 0.02 14.29%
gsm-st231.43M 26 115 15.00 0.1 0% 0.03 9.1%

Table 4.2: Run-Times/Gaps of Modified instances

Table 4.2 report the experimental results on the modified set of instances.

Our approach finds the optimal solution within a second for all of the in-

stances but two (for which the average gap is 0.61%). SMS achieves an

average gap of 3.03%: again, the highest computation time corresponds to

instance gsm-st231.18, but it is considerably larger compared to that of the
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industrial set (i.e. 429.36 seconds).

Finally, note that for the instances gsm-st231.25 and gsm-st231.33 no

optimal solution is available, since in [3] the authors were only able to find

a suboptimal schedule within the time limit of 604800 seconds (no details

are given on how the dual process they propose converges to sub-optimal

solutions). On the instance gsm-st231.25 both the modular and the SMS

approaches find the same solution as [3]. On gsm-st231.33 the best period

value found in [3] has value 52 and the SMS solver finds the same solution;

our method however finds in one second a solution with value 47 and within

56 seconds a solution of value 46.

The results of our experimentation show that CROSS ∗ is able to find very

good solutions in a very short time (a few seconds). The method appears

however much less effective in proving optimality: despite the optimal solu-

tion was found on most instances, an optimality proof was achieved only for

12.5% of them. We are currently investigating how to improve the efficiency

of the proof of optimality. Note however that the optimality gap is so small

that the method is very appealing even if used a heuristic.

4.6.2 Evaluating CROSS ∗ solution quality on synthetic

benchmarks

The second set of experiments targets a task scheduling problem over a multi-

processor platform. The benchmark in this case contains 1200 synthetic

instances with 20 to 100 activities, cycles in the graph and high concurrency

(i.e. the precedence constraints allow many activities to run in parallel.).

In a preliminary experimentation, this kind of graph structure appears to

be the toughest to solve for our approach. The set of processor on the

platform is represented in the generated instances as a cumulative resource

with capacity 6 (representing the number of parallel threads). All activities

have unary resource consumption.

Table 4.3 shows the average, best and worst gap over time between the
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time(s) avg(%) best(%) worst(%)

1 3.706% 2.28% 5.18%
2 3.68% 2.105% 5.04%
5 3.51% 1.81% 5.015%
10 3.37% 1.538% 4.98%
60 3.14% 1.102% 4.83%
300 2.9% 0.518% 4.73%

Table 4.3: Solution quality

CROSS ∗ solution and an a lower bound, computed as:

lb =

⌈
max

(
IB,

∑
i∈V di

cap

)⌉
that is the maximum between the iteration bound IB (see Section 2.1.3.1)

and the ratio between the sum of the execution times and the total capacity.

Figure 4.5: Graphical representation of the optimality gap improvement over
time

As one can see in the table, CROSS ∗ finds a solution which is about 3.7%

distant from the lower bound value within one second. After 300 seconds the

gap has decreased to 2.9%. Hence, even on this new instance set the solver
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is able to find a high quality solution very quickly. After that, improvements

are obtained much more slowly. Figure 4.5 provides a more detailed view

of the progress of the gap value. Once again, we can conclude that our

approach converges very quickly to period values close to the lower bound.

The actual optimum lies somewhere in-between the two values and therefore

is even closer.

4.6.3 CROSS and CROSS ∗ vs Blocked and Unfolding

Scheduling

Our third experimentation contains in first place a comparison between our

approach, producing overlapped schedules, and the blocked approach that

takes into account a single iteration. Since the problem is periodic and the

schedule is iterated indefinitely over time, the latter method pays a penalty in

the quality of the schedule obtained. A technique often employed to address

this limitation and allow some inter-iteration parallelism is unfolding (see

Section 4.1). Unfolding often leads to improved blocked schedules, at the

cost of an increase of the instance size. In detail, we report the results for

two separate sets of experiments, respectively evaluating the CROSS ∗ and

CROSS method.

First Set of Experiments: The first experimentation is performed on a

set of 220 instances, divided into three classes: small instances, with (14 to

24 activities), medium-size instances (25 to 44 activities) and big instances

(45 to 65 activities). We compared our approach with the blocked one and

with unfolded scheduling, using seven different unfolding factors (referred to

as UnfoldX, where X is the number of unrolled iterations).

Table 4.4 shows the average gap between the above mentioned configu-

rations and CROSS ∗. The last column presents the average optimality gap

over the whole experimental set. As expected, the worst gap is relative to

the blocked schedule. Less obviously, the UnfoldX configurations tend to

have an oscillatory behavior. Figure 4.6 depicts the relation between the

gap (Y axis) and the blocking factor (X axis) for a selected instance with 30
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activities. With an unfolding factor u = 11 the solver finds a solution with

the same period as the overlapped one. Increasing the unfolded factor to

12 deteriorates, rather than improving, the solution quality. In general, it

is false that increasing u necessarily results in better solutions, making the

determination of the optimal unfolding factor a non-trivial problem.

Blocking Factor

G
a
p
(%

)

Figure 4.6: Optimality gap over blocking factor

Furthermore, there are cases where finding a schedule with the same qual-

ity of a periodic approach is not possible at all: such an example is provided

in [84]. On the other hand, we recall that periodic schedules are dominated

by K-periodic schedules, i.e. periodic schedules for a sequence of consecutive

iterations. K-periodic schedules are known to dominate 1-periodic schedule

in the presence of finite capacity resources [48]. Therefore, since the unfold-

ing technique produces a restricted class of K-periodic schedules, there may

be cases where and unfolded schedule is strictly better than any possible 1-

periodic schedule. In summary: no strict dominance exists between the two

approaches. Our experimentation shows however that, on the considered

benchmarks, periodic schedules tend to be much better in practice.

Second Set of Experiments: The second experimentation is performed

on a group of 200 synthetically generated project graphs with 5 to 25 activi-
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CROSS ∗ Solution Gap (%)

Solver [14-20] [25-40] [45-65] AVG

Blocked 108.16% 65.45% 38.83% 55.32%
Unfold2 55.92% 26.06% 19.89% 26.23%
Unfold3 33.31% 16.15% 9.99% 18.6%
Unfold4 29.41% 14.27% 6.278 14.13%
Unfold5 21.35% 5.33% 8.76% 5.67%
Unfold6 39.06% 8.67% 4.39% 8.67%
Unfold8 78.31% 10.71% 7.65% 12.44%
Unfold10 16.95% 10.21% 10.03% 8.65%

Table 4.4: CROSS ∗ Unfolding set results

ties. The resource capacity is fixed to 5 times the average consumption. The

durations are randomly generated so that around 10% of the activities in each

graph are much longer than the remaining 90%. We compare the CROSS

approach with blocked and the unfolded scheduling, for unfolding factors up

to 5 (this value is sufficient to see the overall trend). We use the classical

(and very effective) schedule or postpone search strategy for the blocked and

the unfolded approach. For the CROSS one, we couple the Random Restart

method from Section 4.5.2 with a binary search on λ (using a time limit of

2 seconds on each iteration).

Table 4.5 shows the result of the comparison, grouped by the number of

activities in the graph. In particular, the whole set of 200 instances has been

partitioned into two subsets, respectively with 5-14 and 15-25 activities. The

Time column shows the average time taken by the CROSS approach to reach

the best solution found within 300 seconds. The table then reports, for all the

considered approaches, the (average) quality gap w.r.t. the CROSS solution

(i.e. λ−λCROSS

λCROSS
) and an (average) ∆time value, representing the difference

between the time taken by the considered approach and by CROSS to reach

the best solution found within 300 second.

The results show the existence of a relevant trade-off between solution

time and quality. The blocked scheduling approach represents one of the

extremes, providing its best solution in a fraction of second, but with a

quality gap as large as 216%. Increasing the unfolding factor leads to better

λ values, at the cost of increased solution time. The Unfold5 configuration
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eventually manages to produce better solutions compared to CROSS (1.3%

improvement), but the process is up to 6 times longer. Our approach seems

to provide a very good compromise, providing high quality solutions in a

short amount of time.

N Time Blocked Unfold2 Unfold3 Unfold4 Unfold5

5-14 2.75
gap w.r.t CROSS 216.37% 98.75% 51.71% 24.52% 10.99%
∆time for best sol -2.74 1.4 2.7 4.47 4.9

15-25 9.19
gap w.r.t CROSS 68.37% 20.49% 7.10% 0.88% -1.3%
∆time for best sol -9.18 5.6 47.7 58.92 63.45

Table 4.5: CROSS Unfolding set results

4.6.4 Throughput/Resource Trade-off investigation

Cyclic scheduling allows to improve the resource efficiency by partially over-

lapping different schedule iterations. In particular, it is possible to exploit

the available resources to reduce the period, even when the makespan cannot

be further minimized (e.g. due to precedence constraints). Loops in the pro-

ject graph limit the degree of such an improvement (see Section 2.1.3.1): if

the graph is acyclic, however, the throughput can be arbitrarily increased by

augmenting the resource capacity. A large number of practical problems (e.g.

in VLIW compilation or stream computing) are described by project graphs

with a few cycles or no cycle at all. In such a case, identifying the optimal

throughput/resource-usage trade-off is the primary optimization problem.

We performed an experimentation on two groups of 20 synthetically gen-

erated instances, respectively consisting of cyclic and acyclic graphs. Dura-

tions are again unevenly distributed, as described in Section 4.6.3. In order

to investigate the throughput/resource trade-off, we solved a set of period

minimization problems with different resource availability levels. In detail,

we considered a single resource and activities in each graph were labeled with

random resource requirements, following a normal distribution. The resource

capacity (referred to as CAP ) ranges between 4 times and 14 times the aver-

age consumption level: the minimum value is chosen so as to guarantee the
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problem feasibility, while the maximum one is chosen to assess the solution

quality in case of abundant resources.
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Figure 4.7: Makespan over resource capacity for cyclic (left) and acylic (right)
graphs.

Figure 4.7 shows the average period after 300 seconds (the time limit

was hit in all cases) obtained for different resource capacity values. The

vertical bars report the corresponding standard deviation. The solid line

corresponds to the CROSS approach and the dashed one to CROSS ∗. Note

that CROSS obtains considerably better results for higher capacity values,

i.e. the scenario when we expected the highest benefit from allowing activities

to cross iterations. The gap is larger for acyclic graphs, where the lack of

loops enables to fully exploit the available resources.

The iteration period difference corresponds to a much larger gap in terms

of “wasted” resource capacity, which can be assessed by measuring the value

of the expression:

slack = CAP · λ−
∑
i∈V

ri · di

The average slack values for this experimentation are reported in Figure 4.8,

where the overall resource waste is shown to grow according to a roughly

quadratic law for the CROSS ∗ approach. The growth is much slower for

CROSS (in fact, it is approximately constant for acyclic graphs). The

amount of wasted resource capacity is an important measure of how effi-

ciently the resources are used and in a practical setting directly translates to
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Figure 4.8: Average slack over resource capacity for cyclic (left) and acylic
(right) graphs.
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Figure 4.9: Instance distribution w.r.t. the time to get 1% from the best
solution, for the CROSS approach (left) and CROSS ∗.

Interestingly, the two approaches have comparable performance for small

capacity values. This suggest that the time limit is not severely limiting the

search effectiveness. This is a relevant remark, since we expected CROSS to

be considerably slower in finding good solutions. More details are reported

in the histograms from Figure 4.9, that show the instance count, grouped by

the time (in seconds) employed by each method to get 1% close to the final

best solution. As one can see, CROSS ∗ is indeed faster on average, but both

methods manage to provide high quality schedules in seconds.
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Chapter 5

Putting CROSS into practice:

the MPOpt-Cell Use Case

A High-Performance Data-Flow Programming

Environment for the Cell BE Processor

Multicore processors have been embraced by the whole computer industry,

since hardware manufacturers finally realized that the effort required for fur-

ther improvements of single core chips trying to increase instruction-level

parallelism is no longer worth the benefits eventually achieved. Thread-level

parallelism (TLP) is currently under the focus of microprocessor vendors by

designing chips with multiple internal parallel cores (such as, for instance

the NVIDIA CUDA Programming Guide 1 and the Intel Single-chip Cloud

Computer 2). However, this process does not automatically translate into

greater system performance. The multicore solution exhibits for sure a su-

perior peak performance, which can however only be achieved at the cost of

significant software development effort [99] [60].

In the last two decades, the international scientific community has aimed

1http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_

Programming_Guide_1.0.pdf
2http://www.intel.com/content/www/us/en/research/

intel-labs-single-chip-cloud-computer.html

116

http://developer.download.nvidia.com/compute/cuda/1_0/ NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/ NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html


at designing computer languages and tools to support application design/-

port and performance tuning for such parallel architectures [55]. Modern

multicore processors are more and more limited by communication rather

than computation [91]. However, communication or dependency information

can often be difficult to determine at compile time. To effectively exploit this

parallelism it is often necessary that the programmer manually re-structures

the application in such a way that communication and task dependencies are

explicit [78]. This is the case of streaming programming models, which have

demonstrated significant performance advantages over standard (automatic)

parallelization techniques in domains such as signal processing, multimedia

and graphics [101, 22].

Synchronous Data-Flow (see Appendix 3.2) is a representative example

of such model of computation. Stream programs provide a vast amount of

parallelism, which makes them well-suited to run efficiently on multi-core

architectures, in particular on distributed memory architectures where com-

munication is overlapped with computation (i.e. stream processors) [96].

The stream processing abstraction comes with some drawbacks: algo-

rithms that cannot be naturally mapped to the paradigm must often be

completely rewritten [70, 47]. Moreover, current programming practices and

performance demands dictate that the programmer chooses a low-level lan-

guage in which he can explicitly control the degree of parallelism and ardu-

ously tune his code for performance [89]. A good stream processing abstrac-

tion should reflect the underlying hardware model to properly map desired

computation to the target hardware architecture [92]. Programming frame-

works and middleware support for streaming applications (i.e. compilers,

libraries, tools, runtime, etc.) need to be strongly specialized for the target

architecture. The bottom layers of the framework stack (i.e. the compiler

backend and runtime system) have to be highly tuned for the target hardware

resources.

At the topmost levels of the software development stack, on the contrary,

the programming abstractions should be as generic and architecture-agnostic

as possible to increase ease of use and productivity. Still, knowledgeable

programmers should be allowed to specialize the compilation flow for the
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target architecture by providing “hints” to the compiler. Simple language

features should thus be designed to achieve both goals.

MPOpt-Cell (presented in [39]) is a highly optimized framework for ef-

ficient development and execution of stream applications on the CELL BE

Processor3. Cell is a heterogeneous multicore architecture composed by a

standard general purpose microprocessor (called PPE), with eight copro-

cessing units (called SPEs) integrated on the same chip [50]. Cell has al-

ready demonstrated impressive performance ratings in computationally in-

tensive applications and kernels. It has been exploited by several application

domains, ranging from gaming to high performance computing [79, 104].

Thanks to its innovative architectural features, this architecture has been

also adopted in the embedded system domain: e.g. in a work of Daniel

Stasiak et al. [95] and in the Toshiba Spurs Engine4.

The real-time requirements frequently found at the heart of many stream-

ing applications promote predictability as a first-class design goal. To achieve

this goal MPOpt-Cell approach relies on strong off-line optimization and

static scheduling. This allows to provide both robustness and high perfor-

mance, different from several other related techniques based on dynamic

scheduling and simple heuristics. One of the limitations of static approaches

is that they often trade robustness for performance due to the introduction of

schedule over-constraining. We address this issue by introducing additional

precedence relations in the form of low-overhead fake data communications.

This allows the schedule to stretch depending on the actual execution time

of tasks at runtime.

The MPOpt-Cell framework5 is a software chain structured in three sep-

arated components:

1. A runtime system (RTS) which enables efficient execution of SDF ap-

3https://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_

Broadband_Engine
4http://www.semicon.toshiba.co.jp/eng/shared/\pdf/SpursEngine_leaf_e_

2008-11.pdf
5The framework is described at http://mpopt.ing.unibo.it
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plications on the Cell processor. The RTS manages all the aspects

related to efficient hardware resource management, like task dispatch-

ing, data movement and task synchronization. Resource management

adopts a centralized approach, being all decisions (e.g. task activations

and DMA commands) issued by the PPE. This allows to effectively

exploit advanced architectural features like double buffering, task mi-

gration and memory management, thus leading to a more efficient and

flexible management of the overall system.

2. A compiler backend which leverages on CROSS solver (see Chapter 4)

to generate accurate scheduling and mapping decisions for the target

SDF application, optimized for maximal throughput.

3. A simple and intuitive programming interface based on standard C

augmented with annotations. A set of compiler directives have been

identified, that capture the key abstractions of SDF. The programmer

can easily describe SDF Graphs (SDFG) by enclosing code portions

within our custom directives and specifying the flow of data among

tasks. The compiler automatically extracts the tasks and the data-

flow.

The three components, integrated in an unique application development

framework, achieve the two-fold goal of easing application development and

obtaining high performance from Cell-based processors.

In the following sections we report the state-of-the-art framework support-

ing streaming computation and then we describe in details the MPOpt-Cell

framework chain.

5.1 Related Work

In the past few years several programming models and tools aimed at eas-

ing the task of efficiently mapping parallel applications on top of the Cell

processors have seen the light.
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Sequoia [38] is a programming language that abstractly exposes hierarchi-

cal memory in the programming model and provides language mechanisms

to describe communication vertically through the machine and to localize

computation to particular memory locations within it. This execution model

is particularly well suited to data parallel computations. It enforces strict

locality of computation, since tasks run in isolation on a processor and can

only access data from within local memories. On the other hand, inter-node

communication is much more complicated and much less performance effi-

cient, since it has to take place through dedicated sub-tasks. This, in turn,

makes it very difficult to model different kind of parallelism (such as those

targeted by this work) with Sequoia constructs.

Offload [29] is a programming model from Codeplay for offloading parts

of a C++ application to run on the SPEs of the Cell BE. Offload provides

an efficient mechanism to automatically generate code for different ISAs in

a heterogeneous MPSoC, and to orchestrate data transfers in a transparent

manner to the programmer. However, Offload constructs are not specific for

data-flow applications, which can only be modeled at the price of significant

coding effort. Moreover, no support for efficient scheduling of streaming tasks

is natively provided by Offload.

Cell-Space [76] is a framework for developing streaming applications for

the Cell BE. Developers construct applications by means of data flow com-

ponents that are then scheduled to PPE/SPEs by a runtime system acting

as a streaming communication interface. Different from our user-friendly

annotation-based programming interface, with Cell-Space developers are re-

quired to construct data flow applications from a library of components which

presents an application as an XML description of a data flow graph. In

our framework a front-end compiler abstracts away these details of the in-

ternal representation of a data-flow application, thus requiring much less

programmer involvement. Furthermore Cell-Space runtime system ensures

load balancing through dynamic scheduling techniques, which however can-

not guarantee robust and predictable execution times such as ours essential

for real-time streaming applications.

120



StreamIt [101] is probably one of the most representative examples of

a streaming language based on SDF available for the Cell processor. The

StreamIt project provides a source language, a publicly available compiler,

and a benchmark suite. Writing a StreamIt program, however, requires sig-

nificant effort. Outlining all the tasks and communication channels that

describe a streaming computation is left to the programmer. Moreover, the

stream structures supported by StreamIt are limited to three representa-

tive patterns, namely pipelines (i.e., sequential composition), split-joins (i.e.,

parallel composition), and feedback loops (i.e., cyclic composition). MPOpt-

Cell coding style based on annotations provides a much easier and expressive

interface to data-flow programming than StreamIt constructs.

The most wide-spread programming model based on code annotations

is undoubtedly OpenMP6. While an OpenMP implementation for the Cell

BE has been provided by authors of [77], the standard OpenMP model of

computation is mainly focused on data parallelism at the loop level, and

thus is not suitable to describing streaming parallelism. Still, the appealing

easy-to-use coding style of OpenMP has led several researchers to extend the

basic interface with custom constructs to describe data-flow parallelism.

Streaming extensions for OpenMP have been proposed within the

ACOTES project [75]. Similar to what we propose here, the ACOTES pro-

gramming model is based on a small set of key compiler directives that allow

a programmer to identify streaming tasks, streams and ports. The focus of

the optimization engine in ACOTES, however, is on loop transformations

based on the polyhedral model for efficient loop parallelization and vector-

ization. We do not target data parallelism in our work, and our optimization

framework is rather aimed at guaranteeing a task schedule which maximizes

throughput.

Cell SuperScalar [10] is another project which uses compiler directives as

code annotations to model data-flow computation. The user has to identify

the parallel parts of the application, which are then automatically offloaded.

CellSS focuses on high-level parallelism and maintains a data flow graph of

6see OpenMP C and C++ API v.3.0. at www.openmp.org

121

www.openmp.org


pending tasks. Among all the cited approaches, CellSS is probably the most

closely related to the MPOpt-Cell one, and for this reason we chose it as a

direct term of comparison for our experiments.

5.1.1 Target Architecture

Figure 5.1 shows a pictorial overview of the STI Cell Broadband Engine Hard-

ware Architecture. The Cell BE is a non-homogeneous multi-core processor

which includes a 64-bit PowerPC processor element (PPE) and eight syner-

gistic processor elements (SPEs), connected by an internal high bandwidth

Element Interconnect Bus (EIB).
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Figure 5.1: Block diagram of the Cell BE

The PPE is dedicated to the operating system and acts as the mas-

ter of the system, while the eight synergistic processors are optimized for

computation-intensive applications. The PPE is a multithreaded core fea-

turing two levels of on-chip cache. The SPE is a computation-intensive co-

processor designed to accelerate media and streaming workloads. Each SPE

consists of a synergistic processor unit (SPU) and a memory flow controller

(MFC). The MFC includes a DMA controller, a memory management unit

(MMU), a bus interface unit, and an atomic unit for synchronization with
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other SPUs and the PPE.

Efficient SPE software should heavily consider memory usage, since the

SPEs operate on a limited on-chip memory (only 256 KB local store) that

stores both instructions and data required by the program. The local memory

of the SPEs is not coherent with the PPE main memory, and data transfers

to and from the SPE local memories must be explicitly managed by using

asynchronous coherent DMA commands.

5.2 Framework Overview

In this section we describe our approach7 to mapping a data-flow application

on the Cell processor. The overall flow of our framework is depicted in

Figure 5.2.

The interaction between framework components is based on three hardware-

software models:

1. a Architecture Description Language (ADL), providing an abstract view

of the target hardware platform

2. a Graph Description Language (GDL), providing a unified notation for

distinct graph-based software design methodologies. GDL is used as

an input format for the CROSS Solver, which produces as output an

enhanced version of the same to which we refer to as GDL+. GDL+

contains information about the affinity between tasks and SPEs as well

as scheduling decisions.

3. a Mapping Description Language (MDL), handling features that affect

both hardware and software domains.

We consider a layered bottom-up approach, where three main building

blocks incrementally abstract away architectural details from the developer’s

view.

7More details can be found at http://mpopt.ing.unibo.it
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Figure 5.2: Compilation flow

5.2.1 Runtime System

The bottom layer consists of a target-specific Backend Compiler, made

up of static and dynamic components. At the heart of our execution engine

there is a efficient runtime system (RTS) which encapsulates hardware speci-

ficities and is in charge of ensuring efficient task management, data transfer

and synchronization. The RTS effectively maps computation (tasks) and

communication (data-flow) on top of hardware resources, but requires that

a schedule for task execution is provided as an input.

The runtime system introduces an abstraction layer which hides the dif-

ficulties of the parallel architecture, such as load balancing, synchronization,

and communication between the main components of the streaming appli-

cation. It orchestrates the execution of all the components in the data flow
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graph application and provides both streaming and event communication

primitives to the components. Moreover, using centralized resource manage-

ment, the runtime can dynamically balance the load over the available SPE

processors. The runtime system (RTS) leverages different structures for its

execution, namely SDFG tasks, queues, executors and a resource manager

(More details on this structures in Appendix B.1).

5.2.2 CROSS Solver

To ensure the most efficient task schedule for the considered application we

developed a solver block operating on top of the RTS. The solver used in

this approach is CROSS (see Sec. 4). The computed solution is guaranteed

to satisfy user defined constraint which may be specified (e.g. a minimum

throughput requirement).

The solver block requires an input description of hardware, software and

cross-domain data in the form of ADL, GDL and MDL documents. A pre-

processing step transforms the input SDFG into the corresponding Homo-

geneous SDF Graph (HSDFG) (see [14]), with unary rates over each arc.

Eventually, the homogeneous graph is transformed into a perfect-rate HSDF

graph (see [84]). Both transformations involve polynomial-time algorithms.

The CP model is based on modular algebra and is described in Chapter 4.

Beside the application model, the Constraint Programming model takes into

account the architectural components by describing resource constraints and

architectural features. In this framework, we describe the Cell model as a

single cumulative resource of capacity equal to the number of SPU.

As stated in Section 4.2.1 the restrictions on the resources are modeled

through a cumulative constraint; the constraint prevents the solver from

finding a number of concurrent executions higher than the capacity of the

resource.

The basic idea of the solving process is to model the effects of mapping

and scheduling choices by means of graph modifications. The solver block
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assumes a self-timed scheduling policy8 and the execution order is determined

on the modified graph. In details, we modify the graph adding edges that

force precedence relations between scheduled tasks so as to prevent tasks

from competing for the SPEs. The runtime scheduler processes these edges

as fake data communications between actors. Note that differently from the

disjunctive approach presented in Chapter 3, where the graph is modified

during search, in the MPOpt-Cell solver the augmented graph is constructed

when the search stops with a feasible solution.

The self-timed execution of a periodic application modeled with a syn-

chronous data-flow graph consists of two different phases (see [44]): the tran-

sition phase and the periodic phase. The former appears only once at the

beginning of the execution while the latter is periodically repeated ad in-

finitum. In this context, a static scheduling strategy [14] should include a

different schedule for each execution phase. Conversely, thanks to the use

of modular algebra, our solver produces a single static schedule that repre-

sents both phases. The transient and the periodic phase schedules are easily

inferred by considering the iteration values of each task in the solution. In

fact, the solution includes the modulus value λ and the set of start times

si and iteration numbers βi. Before the application enters the periodic be-

haviour, some of the tasks (namely those for which βi > ω, with ω as current

execution iteration) simply do not start.

The type of solution provided by the CROSS solver9 naturally suggests

the use of a time-triggered schedule; on the opposite the MPOpt-Cell runtime

system is based on a self-timed policy. The motivation for this choice is that

modeling the precedence relations with arcs on the graph allows the solver to

obtain flexible solutions. Moreover, if the actual execution times are shorter

than the expected times it allows the runtime to deliver higher throughput.

At the end of the search, a novel algorithm translates an assignment of

start and iteration variables to graph modifications and constructs the new

8Where each activity executes as soon as all of its input data are available; see also
Appendix 3.2.1

9We recall that CROSS solver computes static-time schedules. The ordering decision
are extracted after the search.
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GDL+ document. Therefore the output of the MPOpt-Cell solver consists

of one “enhanced” GDL document (referred to as GDL+), which is essen-

tially the input GDL with additional allocation and scheduling information.

Namely, we specify the node affinity that references a resource unit chosen

for task allocation or we add dummy arcs (precedence arcs) used to force task

ordering on a specific resource. The algorithm operates into two steps:

• Allocation: the algorithm extracts from the solution the mapping asso-

ciation for each node (even if the allocation problem is not considered

in CROSS). In fact, the use a single shared resource of capacity equal

to the number of SPU guarantees that the maximum number of concur-

rent tasks is equal to the number of SPU (see Section 2.1.1 for details).

• Scheduling: the algorithm inserts into the original graph new prece-

dence arcs (called ârcs) that guarantee the predicted execution. These

ârcs guarantee the correctness of both the transient and the periodic

execution phases.

Note that counter-intuitively an ârc (i, j) can have a negative number δ̇

of tokens (i.e. δi,j = δ̇ < 0). This means that the source activity i has to

execute at least δ̇ times before the first execution of sink activity j.

5.2.3 Backend Compiler

This section describes MPOpt-Cell Programming Model, namely the language

constructs we provide to express data flow semantics at code level and the

front-end compiler.

MPOpt-Cell adopts a novel programming model based on the familiar C

language, augmented with some compiler directives that allow the program-

mer to easily describe data-flow computation. The front-end compiler auto-

matically outlines a parallel C program – describing tasks and data streams

of the SDFG – which is sent to the backend Compiler.

Our approach borrows from the coding style of the well-known shared

memory programming model OpenMP. OpenMP provides a set of compiler
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directives that allow to outline parallelism and work sharing within a stan-

dard (sequential) C10 program.

A compiler is in charge of transforming the annotations into code which

spawns parallel threads at runtime and manages data sharing among them.

Therefore we define a set of directives which provide the needed abstrac-

tions to model a SDFG (i.e. actors, incoming/outgoing arcs, etc.). The role

of our front-end compiler is twofold. First, the directives inserted by the pro-

grammer are processed so as to generate C code which will be compiled for

the SPEs. Second, the structure of the SDFG described through the custom

directives is extracted into a GDL representation for the solver to process.

The compiler automatically extracts the SDFG representation required by

the Solver.

The main benefits of this approach reside in an increased ease of use

and productivity, since a programmer does not have to learn new language

constructs or a brand-new programming language. More details on the pro-

gramming model are presented in Appendix B.2.

5.3 Experimental Results

The framework has been tested using three representative algorithms from

the multimedia domain, namely a FFT kernel, a block matrix multiplication

and a FM radio demodulator.

We compared our approach to Cell Superscalar (CellSs), a framework

based on code annotation that provides a compiler and a runtime library

for Cell BE platform programming; since the approach is quite similar to

MPOpt-Cell, CellSs is a good candidate for comparative benchmarks.

All experiments were executed on a PlayStation 3 (3.2 GHz Cell) running

Yellow Dog Linux 6.0. Reference implementations for the benchmark algo-

rithms are available on StreamIt website: the serial code has been annotated

using both Cell Superscalar and MPOpt-Cell annotations, and it has been

compiled activating maximum optimization level (O3) for both compilation

10or C++, or Fortran
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chains.

Experimental results were calculated considering a set of 50 program exe-

cutions: each execution runs the algorithm and collects statistics for a stream

of 200 input data. Consequently, the calculated throughput on each run is

equal to the ratio 200/execution time.

The evaluation of framework performance follows two fundamental met-

rics: predictability and performance.

Predictability is essential in the presence of hard real-time constraints: in

this case, local throughput variations may result in violation of the deadlines,

making the computation useless or even harmful.

On the other hand, a predictable schedule takes the risk to be extremely

conservative, with an outcome of poor performance. For this reason we also

decided to evaluate the overall performance of our approach, in terms of

average throughput, making a comparison with Cell Superscalar results.

5.3.1 Predictability evaluation

Predictability has two main facets: the capability to produce a regular

throughput with minor local variations and the ability to predict whether

throughput constraints may be satisfied or not before deployment stage.

In the case of real-time applications it is essential to ensure the respect of

definite deadlines and consequently a wide variability range is unacceptable.

Figure 5.3 depicts the results of a first experimental set: it graphically

represents the variability of the measured execution times on both CellSs

(left side) and MPOpt-Cell (right side).

A numerical scale was not reported in the chart because absolute values

are not significant to understand the variability dynamics.

The distance between a point and the chart center shows the execution

time of a single experiment. Hence, all points equidistant from the center

represent different experimental values with the same execution time. Each

application is depicted by a line whose points map the values measured at

subsequent application launches. The circularity factor of each line directly

traces the regularity of the throughput for the correspondent application:
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the closer the line to a perfect circle, the more regular execution times.

Figure 5.3: Variability of experimental results

The experimental values related to MPOpt-Cell have a good circular fac-

tor, namely a limited variability. This aspect can be attributed to the high

determinism derived by the use of a static scheduler.

Conversely, Cell Superscalar provides a dynamic scheduler which is based

on a task dependency graph which sometimes allows locally better results,

but exhibits an unpredictable runtime overhead. Therefore, the bad circular

factor of corresponding lines highlights this behaviour.

Figure 5.4 shows the result for a second experimental setup: this was

conducted by feeding the solver with task worst case/best case execution

times, instead of average ones.

The off-line predicted throughput values are compared with the measured

one at runtime, which is based on a schedule obtained by average execution

times. In detail, each column in the figure refers to a different schedule,

computed by taking into account worst case/average case/best case execution

times; for each benchmark, the left- and right-most columns present off-line

predicted throughput values of the considered schedule, while the middle

column reports an experimentally measured value.
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Figure 5.4: Solver and runtime throughput comparison

One can see that the worst case execution times (WCET) and the best

case execution times (BCET) schedules establish strong bounds for the eli-

gibility range of runtime throughput values (depicted in Figure 5.4 by over-

lying vertical lines). In particular, the solution provided when all tasks are

assumed to execute with the BCET provides a conservative upper bound on

the throughput. More interestingly, the WCET solution provides an estimate

of the best safe throughput value, i.e. the tightest throughput requirement

the system can met.

Moreover, by providing the solver with WCETs, the predicted value is

very close to the actual one, assessing the high accuracy of the adopted

model. This allows to check in the early steps of the design process if the

performance requirements can be met or an upstream optimization stage is

required. Overall, this can potentially reduce the development time.
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5.3.2 Performance evaluation

Figure 5.5 shows the results of a bare performance comparison (in terms of

throughput) with Cell Superscalar. The figure bars represent the throughput

values calculated as a mean of 200 program iterations: overlying vertical

lines outline the interval of samples variability, i.e. the range of measured

throughput values. The endpoints of these lines represent the maximum and

minimum values originated by experimental results.

Figure 5.5: Performance evaluation: Cell Superscalar and MPOpt-Cell

The throughput mean value is an assessment of the performance one

can expect with a high number of iterations: it is particularly significant in a

scenario characterized by continuous data streaming and in this context it can

be naturally used as a performance indicator. Our approach is comparable

to Cell Superscalar on FFT, it has better performance on FM radio and even

132



better performance on matrix multiplication.

The runtime performance of MPOpt-Cell framework is due to a set of

concurrent factors: (1) the effective use of the SDF model, that fully ex-

ploits the data parallelism of streaming applications and avoids unnecessary

synchronization barriers; (2) the static scheduling technique, which provides

low-overhead resolution of possible resource conflicts by compile time allo-

cation and scheduling; (3) the double buffering technique, that reduces the

overhead of data transfers; (4) the use of an optimized schedule, which is

based on appended precedence relations and allows the framework to stretch

to accommodate actual execution times.

The low performance measured on the matrix multiplication benchmark

using CellSS (40:1) motivated a deeper analysis. The performance gap ap-

pears to be attributable to framework design issues. Since CellSS does not

natively support a streaming model, it is necessary to insert a synchroniza-

tion barrier after the computation of the submatrices multiplication at each

iteration step: in this way we can obtain the correct result without using

ad-hoc implementation tricks. To investigate the impact of such limitation,

we ran some experiments on MPOpt-Cell by introducing an unnecessary bar-

rier. We observed that the barrier represent an important limitation to the

application throughput, indeed with this barrier the throughput achieved on

MPOpt-Cell is halved. Still, the barrier alone does not explain the remaining

performance gap (20:1). A further conjecture involves optimization issues re-

lated to data transfers, which are treated by CellSS using a locality-aware

heuristic.
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Chapter 6

Conclusions

We have proposed a number of CP approaches for Resource Allocation and

Cyclic Scheduling problems, enforced by original filtering algorithms.

In particular, in Chapter 3 we presented a CP-based method for allocat-

ing and scheduling HSDFGs on multiprocessor platforms; to the best of our

knowledge this has been the first CP-Based complete approach for the target

problem. The core of the system is a global throughput constraint embed-

ding an incremental extension of the computation procedure which proved

to be crucial for the performance. The method obtained promising results

on realistic size graphs.

Then, in Chapter 4 we have proposed a constraint approach (CROSS )

to solve cyclic scheduling problems, based on modular arithmetic. In par-

ticular, we have devised global constraints to model temporal dependencies

(the Modular Precedence Constraint, ModPC ) and resource restrictions (The

Global Cyclic Cumulative Constraint, GCCC ). For both of them, we devised

original filtering algorithms. We have also described a restricted version of

our solver (CROSS ∗) where we rely on a specific assumption to model the

resource restrictions via traditional cumulative constraints, rather than via

the GCCC.

The approaches have been tested extensively on industrial as well as syn-

thetically generated instances. The methods were able to return solutions

very close to the known optimum or to a lower bound in a matter of seconds
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(or a fraction of second), on problems of practical size. Depending on the con-

sidered benchmarks, the approaches either outperformed existing heuristic or

unfolding-based techniques, or provided a very good compromise between so-

lution quality and time. All this makes our methods one of the best available

solvers for cyclic scheduling problems with cumulative resources.

Future research directions include improving the effectiveness of the proof

of optimality, which is currently a weak point of the method. A second,

very interesting, research topic concerns the design of a more effective search

strategy for the unrestricted CROSS approach. Since the start times assigned

by our Random Restart strategy depend on the period upper bound λ, they

tend to lead to solutions with period quite close to λ itself, thus making

the optimization process slower. This could be addressed by exploiting ideas

from the Precedence Constrain Posting technique, developed for non cyclic

scheduling problems.

Finally, in Chapter 5 we presented MPOpt-Cell, a complete environment

for enabling efficient development and execution of streaming programs on

the Cell Broadband Engine processor. Its infrastructure leverages an in-

tuitive programming model based on compiler directives which allows de-

signers to easily describe streaming applications. Compile-time and run-

time optimizations ensure an efficient execution of the application through a

finely tuned mapping of tasks and data-flow on top of available hardware re-

sources. Furthermore, the compile-time optimizations are computed through

the CROSS ∗ solver, described in Chapter 4. Experimental results demon-

strate the efficiency of the framework.

Part of the developed work has been published on international confer-

ences [21, 18, 68, 19, 20, 39]
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Appendix A

Constraint Programming

Constraint Programming (CP) [34, 88] is a programming paradigm used to

solve hard combinatorial problems. It is currently applied with success to

many domains such as planning, vehicle routing, configuration, scheduling

and bioinformatics [5, 7, 8, 13].

The key concept of constraint programming is the clear separation be-

tween constraint modeling and constraint solving.

A constraint model is defined in terms of variables and constraints. Each

variable Xi has an associated domain Di containing values that the variable

can assume (the notation for linking variables and domains is Xi :: Di).

Constraints define combinations of consistent assignments (i.e., a subset of

the Cartesian product of the variable domains). The model might have an

objective function defining a (possibly partial) order in the solution space.

Once the constraint model is stated, constraint solving is started by inter-

leaving propagation and search. The search process enumerates all possible

variable-value assignments (possibly guided by a proper variable and value

selection heuristics), until we find a solution or we prove that none exists.

To reduce the exponential number of variable-value pairs in the search tree,

domain filtering and constraint propagation are applied at each node of the

search tree. Domain filtering operates on individual constraints and removes

provably inconsistent domain values. Since variables are involved in several

constraints, domain updates are propagated to the other constraints whose
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filtering algorithms are triggered and possibly remove other domain values.

As domain filtering is local to each constraint, it is a common practice

in Constraint Programming to define the so called global constraints, that

compactly represent combination of elementary constraints, but embed more

powerful filtering algorithms exploiting a global view.

As an example consider the AllDiff ([X1..Xn]) constraint [87]. Declara-

tively it is equivalent to a set of pairwise inequalities (Xi 6= Xj,∀i 6= j).

However, by reasoning globally, it infers more deletions in general.

As a simple example, consider the following variables and their domain:

X :: [1,2,3]

Y :: [1,2]

Z :: [1,2]

and the following constraint: AllDiff (X, Y, Z).

By considering the set of elementary constraints (X 6= Y, Z 6= Y,X 6= Z)

the propagation1 cannot remove any value, while the AllDiff global constraint

removes values [1, 2] from X as they should be assigned (no matter how) to Y

and Z. The AllDiff constraint leverages network flow algorithms to perform

the described filtering in polynomial time [87].

Constraint propagation is not complete. This means that if a value is

removed by a filtering algorithm it is proved to be infeasible. Instead, if a

value is left in the domain of a variable, it can happen that it does not belong

to any consistent solution. For this reason, tree search is employed to explore

the values left in the domain. At each node of the search tree, constraint

propagation is triggered thus interleaving propagation and search. As far as

search is concerned two main factors affect the solution process: the early

evaluation of a partial solution and the variable-value selection strategy. The

former is usually performed via an (upper/lower) bound computation, the

latter is an heuristic function that guides the search.

In this thesis we use Constraint Programming as underlying programming

paradigm.

1In this example we assume that arc consistency is enforced; note that there exist
stronger consistency techniques that are, however, rarely used in constraint solvers.
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Appendix B

MPOpt Framework

Implementations

B.1 Runtime System Structure

Several application developing aspects make streaming application program-

ming challenging on the Cell processor. Moreover, heterogeneity of this plat-

form makes more complex the overall scenario adding another difficulty layer.

When developing a Cell application, the developer has to find efficient solu-

tions to several questions raised by the following issues:

1. Resource utilization, scheduling and workload load-balancing

2. Communication and synchronization.

3. Memory management with distributed memory and inter-core data

transfers;

The default programming environment for the Cell processor provides all

the means to effectively set the low level knobs of the architecture, but it

lacks high-level programming support. The Cell development libraries give

indeed the capability to use a range of different options for a given purpose,

but it is not so straightforward to choose the most suitable for the target

application case. Programmers are forced to consider among many design
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alternatives to achieve good performance. For instance, programmers must

carefully consider the advantages and drawbacks of interrupts versus DMA,

the optimal size of code for execution on SPEs, how to partition applications

in components, how to schedule jobs on SPEs, etc. In addition to mentioned

issues multi-buffering schemes should also be devised, which efficiently over-

lap computation and data transfers. If a programmer had to explicitly handle

all of the above mentioned development issues he would really be involved

in low-level and architecture-specific details. This could easily lead to wrong

or non-optimal implementation decisions, which in turn result in poor per-

formance, as all of the mentioned issues are crucial for efficiency. Moreover,

finely tuning an application to a given target architecture compromises its

portability.

As stated in Section 5.2.1, our runtime system introduces an abstraction

layer which hides the difficulties of the parallel architecture, such as load

balancing, synchronization, and communication between the main compo-

nents of the streaming application. It orchestrates the execution of all the

components in the data flow graph application and provides both streaming

and event communication primitives to the components. The runtime system

(RTS) leverages different structures for its execution, namely SDFG tasks,

queues, executors and a resource manager.

B.1.0.1 SDFG Tasks

The tasks represent the functional core of SDFG nodes. A task is a self-

contained application part that executes on a SPE, performs some compu-

tation on input data and produces output data. In streaming applications

these computations are commonly indicated as kernels or filters. Our run-

time provides local addresses for input and output data to the SPE executing

the target kernel. Tasks are described by an unique identifier, the number

of input and output queues they are linked to, the number of tokens re-

quired on each input queue to initiate execution, the number of tokens that

each execution produces in the output queues, the ordering in which queues

are consumed/filled, and the number of iterations they have to do at each
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execution. Tasks have also a status, which can be:

• Ready: the task is ready to be scheduled, i.e. input local buffers contain

data for computation, output local buffers are ready to receive data.

• Running: the task has been scheduled and its execution is taking place.

• Waiting: the task cannot be scheduled because either input queues do

not contain data, or output queues are not ready to receive data.

B.1.0.2 SDFG Queues

Tasks communicate via queues. Queues are circular data buffers stored in

main memory. A queue is composed by several slots. The slot size is 16

Byte, which is the minimum DMA transfer size. Moreover, slots are properly

aligned to memory boundaries to allow for efficient DMA transfers. During

application execution, SDFG tasks store and read tokens from the queues.

In the queues, tokens are made by several slots. The RTS handles tokens as

atomic data elements, without information about the type of the transferred

data or the layout of the token content. Only tasks are aware of the actual

data structure of tokens (i.e. type, size and number of program variables).

Queues have also a status, which can be:

• Empty: the queue has enough free space for producer tokens.

• Full: the queue has not enough free space for producer tokens.

• Buffering: a DMA memory transfer is taking place.

B.1.0.3 Executors

Our runtime facilitates Cell programming by providing a simple interface to

using SPEs. The executors are wrappers around the executing units of the

architecture, i.e. SPEs. They are responsible for managing the efficient ex-

ecution of a task, abstracting all the complexity due to hardware low level

programming. For example, executors handle data transfers and synchro-

nization. When an executor is available for execution, it queries the resource
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manager to receive a new task to be executed. If any task is available and

ready, the allocation process begins and the task is executed to the target

executing unit.

The implementation of the executor is decomposed in two elements: the

real executing part, which is a thread running on the wrapped SPE (SPE-

side), and the PPE part (PPE-side) which is responsible for orchestrating

the communication with the SPEs. The SPE thread and the PPE-side of

the executor communicate via mailbox. The two components of the executor

exchange a small packet that describes a command and a parameter.

When a task is going to be activated on an executor, the PPE-side pro-

grams the DMA of the given SPE to transfer the input data required by the

task from queues (which are stored in main memory) to the LS. The transfers

of adjacent blocks are collapsed in atomic DMA transfer (if applicable based

on token alignment) to take advantage of the high bus width available. When

the DMA transfer is completed, a message with the execution command and

the identifier of the task to be executed is sent to the SPE-side. The iden-

tifier is related to the functional code of the task. To implement a single

infrastructure for the execution of different functional codes, we require that

each task function has a common signature which can be referenced by a

function pointer:

unsigned int * task_function_ptr (void *buffer ).

The task functions have an integer return value (the exit code) and a

pointer to the buffer of the local data of the task (both input and output).

When the SPE-side thread completes the execution of a task, it sends

back to the PPE-side a complete message with the exit code of the function.

Then it waits for the next command on the mailbox. The RTS is responsible

for locating the input and output area by means of the information given

on the task input/output layout. Thanks to the multiple-buffering technique

and the ability of mailboxes to queue multiple messages, the SPE should

theoretically execute tasks non-stop. In fact, while a SPE-side is executing

a task, the PPE-side can transfer via DMA the input data of the next task
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and then send the corresponding execution message, so when the current

task ends the SPE-side can immediately run the next one. In the future, the

executor can be extended with the introduction of other commands to obtain

different behaviors.

B.1.0.4 Resource Manager

The resource manager is in charge of deciding when a task should be exe-

cuted and of monitoring the execution of the tasks in the executors. Upon

a firing event the resource manager offloads tasks to target executors, i.e.

SPEs. From a functional point of view, the resource manager relieves the

programmer from the burden of coping with the following difficult tasks:

• Executors management. It performs all executors management tasks,

including initialization, memory management, scheduling, and excep-

tion handling.

• Load balancing. It dynamically assigns jobs to the executors, based

on their availability. When all executors are busy, it internally queues

new tasks. When an executor completes a job, the runtime sends a

task from this queue to the executor.

Tasks, queues and executors contain all the logic to execute the correct

operation according to the current internal status. In this way, the resource

manager is only responsible for maintaining the collection of executors and

the list of the tasks to run on each executor (according to the given scheduling

graph). The PPE handles the resource manager, and the status of tasks and

queues. At program startup, a given number of executors are spawned, each

on a different SPE. All the control logic is handled by the PPE, minimizing

the duties of the SPEs, only responsible to executing the task functions. This

strategy allows for a very small code footprint on the SPE, so the main part

of the tiny Local Store can be reserved to the task functions and the data.

The runtime implements several enhancements targeted to the main spe-

cific architectural features of the Cell processor, like multi-buffering and effi-
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cient communication. The resource manager follows indeed some guidelines

in order to efficiently handle tasks:

• A task can be scheduled if its predecessor tasks in the graph have

finished their execution

• To reduce the overhead of the DMA, resource managers pre-load in-

put buffers before scheduling a new task (i.e. double buffering and

computation/communication overlapping).

• Locality of data is exploited by keeping task outputs in the SPU local

memory and scheduling tasks that reuse this data to the same SPU.

The runtime tracks dependencies and schedules tasks when all required

inputs are available and output buffers have free space. The runtime DMAs

input data to SPEs local memory and sends results back to the compo-

nents running on the PPE. Efficiently implementing these communication

and synchronization mechanisms requires in-depth knowledge of the Cell BE

architecture.

The local storage (LS) of SPEs is statically divided according to the

buffering parallelism rank and each portion is used consecutively. The two

parts of an executor always work together so they are synchronized about

which portion needs to be used by a given task, without the need to explicitly

exchange such information. If a task is fired on a SPE, it will find its input

data and will produce its output data in temporary buffers hosted in the

Local Store of the SPE. The RTS will automatically pre/off-load data in/from

temporary buffers from/to the right queues.

B.1.1 The gdl2c translator

The gdl2c translator is a tool which analyzes the GDL+ produced by the

solver and generates the code which orchestrates the execution of the target

SDFG. The tool parses the graph and analyzes the task function as well as

the configuration of the input and output arcs of each node to determine

the different task types, that is the various node topologies. It emits the C
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code responsible for the initialization of the data queues, the tasks (with the

determined task type and the references to the input and output queues)

and the resource manager, assigning the tasks to the task list of the specific

executing resource they are assigned to. It also emits the executor code

responsible for mapping each task type to a different configuration of number

of inputs/outputs and number of tokens from each one. This code is required

by the PPE-side of the executor to transfer the appropriate data and in the

correct order. For the SPE side it is just required a small piece of code that

maps each task-type with the pointer of corresponding task functions.

B.2 Programming Model

This section describes our Programming Model, namely the language con-

structs we provide to express data flow semantics at code level and the front-

end compiler. Our approach borrows from the coding style of the well-known

shared memory programming model OpenMP. OpenMP provides a set of

compiler directives that allow to outline parallelism and work sharing within

a standard (sequential) C1 program. A compiler is in charge of transforming

the annotations into code which spawns parallel threads at runtime and man-

ages data sharing among them. The main benefits of this approach reside in

an increased ease of use and productivity, since a programmer does not have

to learn new language constructs or a brand-new programming language. We

believe that our approach can be very beneficial for the purpose of modeling

dataflow computation without the need for explicit (i.e. manual) outlining of

tasks and data exchange management. The only burden is that of annotating

an application – written in a familiar programming style – with directives

that instruct the compiler on how to transform the program.

To achieve this goal, we define a set of directives which provide the needed

abstractions to model a SDFG (i.e. actors, incoming/outgoing arcs, etc.).

The role of our front-end compiler is twofold. First, the directives inserted

by the programmer are processed so as to generate C code which will be

1or C++, or Fortran
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compiled for the SPEs. Second, the structure of the SDFG described through

the custom directives is extracted into a GDL representation for the solver

to process.

B.2.1 Programming Interface

Let us consider the example SDF shown in Figure B.1. It consists of four

actors, known as kernels in our programming model. Arcs are labeled with

the name of the variable holding data exchanged and production/consump-

tion rates are specified at both ends of an edge. The example SDF can be

modeled through custom directives as shown in the following listing.

145



void foo()

{

/* Shared variables */

double A[N], B[N], C[N], D[N];

int i;

/* N0 - input*/

#pragma sdf kernel arcout(A, 16) arcout(B,16) input

for (i=0; i<N; i++)

{

A[i] = i*2;

B[i] = sqrt(i);

}

/* N1 */

#pragma sdf kernel arcin(B, 32) arcout(C, 16)

{

for (i=0; i<N-1; i++)

C[i] = B[i] + B[i+1];

}

/* N2 */

#pragma sdf kernel arcin(A, 16) arcin(C, 16) arcout(D,16)

{

for (i=0; i<N; i+=2)

{

D[i] = A[i] * C[i];

D[i+1] = A[i] / C[i];

}

}

/* N3 - output */

#pragma sdf kernel arcin(D, 1) output

{

for (i=0; i<N; i++)

printf("D[%d] has value %f\n",i, D[i]);

}}
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Figure B.1: Example SDF

An actor is easily identified by enclosing a portion of code within the

#pragma sdf kernel directive. Data flow is modeled through specific clauses

associated to a kernel directive. Focusing for instance on N1 (the second

kernel, highlighted in Fig. B.1) we see that it has an incoming arc, associated

to array B, and one outgoing arc, associated to C. N1 consumes 32 tokens

and produces 16 tokens at every firing. We can capture this information by

attaching a numerical parameter to the arcin and arcout clauses. Kernel

N1 also has an autoarc. Autoarcs are modeled with a couple of matching (as-

sociated to the same variable) arcin/arcout clauses. Input (N0) and output

(N3) nodes of a SDFG do not consume (or produce, respectively) any tokens,

and often represent I/O tasks whose execution may be better suited for a

computational unit other than the SPE. Thus, the solver (or the program-

mer) can decide to pin these tasks onto the PPE. To specify this behavior

such nodes in the graph can be annotated with the input and output clauses.
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B.2.2 C Code Generation

Here we show how the source code is modified to be compiled for the hard-

ware platform. The code enclosed within a kernel directive is outlined into

a separate function with an unique name. This is necessary since PPE and

SPEs have different views of the application being executed. More specifi-

cally, the PPE acts as a controller. It is in charge of loading on the local

storage (LS) of the designated SPE the code of the task as well as the content

of the data buffers. The PPE loads information about what pieces of code

and data to transfer from the GDL+, but it simply initiates bulk transfers of

known size and start address. Using function outlining with an unique name

for the generated C code and GDL allows the runtime library executing on

the PPE to correctly reference the desired ELF segment.

Looking back at the example code and still focusing on N1, we see how

that kernel shares arrays B and C with other kernels. The outlined function

– which will run on some SPEs – contains memory references (to variables B

and C) that are no longer referred to a typed object in the program. Thus,

a mean of correctly accessing these data must be provided.

We adopt a sort of marshalling technique, where referenced variables are

grouped into a compiler-generated aggregate data type (i.e. a C-like struct).

Each access to these variables is the outlined code is then replaced with an

inspection of the corresponding field within the struct (see listing below).
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/* Data marshalling */

typedef struct

{

double B[N];

double C[N];

} kernel_data_1;

/* Outlined kernel function */

unsigned int * kernel_fn_1 (void * input)

{

struct kernel_data_1 *mdata =

(struct kernel_data_1 *) input;

/* Kernel code */

for (i=0; i<N-1; i++)

(mdata ->C)[i] = (mdata ->B)[i] + (mdata ->B)[i+1];

}

The runtime library is in charge of efficiently and transparently moving

data through the system and making it available in the LS of the target SPE

before execution. A cast operation to the aggregate data type is automat-

ically inserted to correctly handle data. Program variable marshalling only

works correctly if we ensure that the data transfer preserves the order in

which data items appear in the struct. To achieve this goal we augment

the arc description in the GDL with a property which establishes the correct

order for data transfers.

B.2.3 GDL Generation

Within a GDL file (which is based on XML) a tag node is created for each

kernel directive and starting from the arcin/arcout clauses we build the arcs

section. Each node descriptor/tag has an associated property representing

the pointer to the kernel code as the outlined function name. Each arc de-

scriptor keeps trace of its startpoint and endpoint (as an index referencing
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the nodes section) as well as input and output rates. Here we start collecting

some “low-level” informations which will be directly passed to the backend

support. For instance, we assign an order to the incoming/outgoing arcs to

a node so to correctly and efficiently handle the data marshalling/unmar-

shalling into tokens.
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