
Alma Mater Studiorum Alma Mater Studiorum ––   Università di BolognaUniversità di Bologna   
 
 

 
DOTTORATO DI RICERCA IN 

 
Ingegneria elettronica 

 
Ciclo XXV 

 
Settore Concorsuale di afferenza: 09/E3 Elettronica 
 
Settore Scientifico disciplinare: ING-INF/01 Elettronica 

 
 

TITOLO TESI 
 

Ultra-low power WSNs: distributed signal processing and 
dynamic resource management 

 
 

 
Carlo Caione 

Presentata da: ___________________________________________ 
 
 
 
 
Coordinatore Dottorato     Relatore 
 
 
Prof. Alessandro Vanelli-Coralli    Prof. Luca Benini  
 
 
 

 
 
 
 
 
 

Esame finale anno 2013 



i



To my loving parents, my sister and Giulia



Contents

Contents ii

List of Figures v

List of Tables xi

1 Introduction 1

2 Wireless Sensor Networks 6
2.1 Applications of wireless sensor networks . . . . . . . . . . . . . . 6

2.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Events detection . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Location-tracking . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Hybrid networks . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The energy problem . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Battery and power supply . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Radio and communication network . . . . . . . . . . . . . . . . . 17

2.4.1 WSN architecture . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Energy consumption in radio subsystem . . . . . . . . . . 19
2.4.3 Energy saving in wireless communications . . . . . . . . . 21

2.4.3.1 Low-power MAC protocols for WSNs . . . . . . . 22
2.4.3.2 Duty cycling on top of MAC protocols . . . . . . 26
2.4.3.3 Case study: Conservative Power Scheduling . . . 28

2.5 The processing subsystem . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Hardware characteristics . . . . . . . . . . . . . . . . . . . 34

ii



CONTENTS CONTENTS

2.5.2 Sensor nodes for wireless sensor networks . . . . . . . . . . 37
2.5.3 High-performance 32-bit micro-controllers for wireless sen-

sor networks . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.4 Case study: ultra-low power device for aircraft structural

health monitoring . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.4.1 SHM design . . . . . . . . . . . . . . . . . . . . . 42
2.5.4.2 Experimental verification . . . . . . . . . . . . . 44

3 Data reduction in WSNs 47
3.1 Middlewares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Case study: SPINE2 . . . . . . . . . . . . . . . . . . . . . 50
3.1.1.1 SPINE2 on Ember EM250 platform . . . . . . . . 52
3.1.1.2 Application scenarios . . . . . . . . . . . . . . . . 56

3.2 In-network aggregation . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Compressive Sensing (CS) . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 CS: a mathematical background . . . . . . . . . . . . . . . 65
3.3.2 Incoherent projections . . . . . . . . . . . . . . . . . . . . 66
3.3.3 Signal recovery . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Random measurements . . . . . . . . . . . . . . . . . . . . 68

3.4 Data aggregation using CS in WSNs . . . . . . . . . . . . . . . . 69
3.4.1 Practical case study . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Data gathering and compression . . . . . . . . . . . . . . . 74

3.4.2.1 Pack and Forward (PF) . . . . . . . . . . . . . . 74
3.4.2.2 Compressed Sensing (CS) . . . . . . . . . . . . . 76
3.4.2.3 Mixed algorithm: between PF and CS . . . . . . 77

3.4.3 Mixed algorithm simulation results . . . . . . . . . . . . . 80
3.4.4 Energy consumption optimization . . . . . . . . . . . . . . 84

4 Compressive Sensing for signal ensembles 92
4.1 Techniques for signal ensemble compression and reconstruction . . 93

4.1.1 Distributed Compressed Sensing (DCS) . . . . . . . . . . . 93
4.1.1.1 JSM-1 . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.1.2 JSM-2 . . . . . . . . . . . . . . . . . . . . . . . . 96

iii



CONTENTS CONTENTS

4.1.1.3 JSM-3 . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.2 Kronecker Compressive Sensing (KCS) . . . . . . . . . . . 97

4.1.2.1 KCS for distributed sensing in WSN . . . . . . . 97
4.2 A comparison between KCS and DCS . . . . . . . . . . . . . . . . 99

4.2.1 Compressibility of signal ensembles . . . . . . . . . . . . . 99
4.2.2 JSM-2 model for real signal ensembles . . . . . . . . . . . 103
4.2.3 Efficient DCS implementation . . . . . . . . . . . . . . . . 106
4.2.4 DCS with sparse random matrices . . . . . . . . . . . . . . 110

4.3 CS with sub-Nyquist sampling rate . . . . . . . . . . . . . . . . . 113
4.4 CS in embedded systems . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Hardware and compression . . . . . . . . . . . . . . . . . . 114
4.4.2 Power consumption model . . . . . . . . . . . . . . . . . . 116
4.4.3 Low-Rate CS . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.4 WSN data reconstruction for Low-Rate CS . . . . . . . . . 121

4.4.4.1 Training data for GPSR . . . . . . . . . . . . . . 127
4.4.4.2 Energetically optimal reconstruction . . . . . . . 128

5 Sub-sampling frameworks comparison 131
5.1 Group sparsity with CS . . . . . . . . . . . . . . . . . . . . . . . 132

5.1.1 Joint sparsity and MMV problem . . . . . . . . . . . . . . 133
5.2 Latent variables and tensor factorization . . . . . . . . . . . . . . 133

5.2.1 Learning process . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.2 Exploiting correlations in LV . . . . . . . . . . . . . . . . . 135
5.2.3 Parameter learning . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Comparison between GC-CS and LV . . . . . . . . . . . . . . . . 137
5.3.1 Reconstruction quality / lifetime trade-off analysis . . . . . 138

6 Conclusions 146

References 149

iv



List of Figures

1.1 Possible deployment of ac-hoc wireless embedded network for smart-
building monitoring. Sensors detect temperature, humidity and
human presence at hundreds of points across the building and com-
municate their data over a multi-hop network for analysis . . . . . 2

2.1 Typical sensor network architecture . . . . . . . . . . . . . . . . . 10
2.2 Wireless sensor node power model. For each subsystem some of

the major techniques for power consumption reduction are listed . 11
2.3 Ragone plot power density / power energy plot for typical energy

storage technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Complete power supply architecture for wireless sensor nodes . . . 15
2.5 Different WSN architectures. (a) There is no sink and the nodes

communicate directly with the destination node after query. (b)
Sink collects data from the sensors via multi-hop communication
and forwards collected data to a remote destination . . . . . . . . 18

2.6 Different collisions in WSNs. (a) Two nodes are in the transmis-
sion range and send data at the same time colliding at node G.
(b) Two nodes are not in transmission range but they send data
approximately at the same time and again there is collision at node
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Comparison between S-MAC and T-MAC . . . . . . . . . . . . . 24
2.8 A data gathering tree using D-MAC protocol . . . . . . . . . . . . 24
2.9 Superframe structure for IEEE 802.15.4 protocol . . . . . . . . . . 27
2.10 Conservative Power Scheduling parameters and communication model 30

v



LIST OF FIGURES LIST OF FIGURES

2.11 Tree-based network with associated IDs, starting and ending time
slots for CPS protocol . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Scheduled network using CPS protocol . . . . . . . . . . . . . . . 34
2.13 Detailed view of a communication period for practical implemen-

tation of CPS protocol . . . . . . . . . . . . . . . . . . . . . . . . 35
2.14 32-bit faster micro-controllers achieve tasks with less energy in

comparison to old 8/16-bit micro-controllers . . . . . . . . . . . . 40
2.15 Structure of the embedded SHM device for impact detection . . . 42
2.16 Current consumption and localization error vs (a) the error itself

and (b) the sampling frequency . . . . . . . . . . . . . . . . . . . 45

3.1 SPINE2 stack. The spine core separates and connects hardware
and application level. The link between the core and the hardware
goes through general interfaces to adapt to the specific node . . . 50

3.2 Comparison of delay in reading sensor data between SPINE2 and
native Ember routines . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Delay for sending data in function of data size. Delays are mea-
sured considering the time elapsed between the call of the sending
routine and the callback function indicating the successful dispatch
of the data packet . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 SPINE2 in fall detection applications reduces energy consumption
of the node. The coordinator can choose and change the evaluation
function and value of thresholds . . . . . . . . . . . . . . . . . . . 58

3.5 MPC scheme using SPINE2 as underlying framework. Data elabo-
ration is not performed on-node but an external controller process
data coming from WSN to extract an optimal solution . . . . . . 61

3.6 Transmission delay vs number of hops in a multi-hop ZigBee net-
work when varying the traffic traversing each intermediate hops . 62

3.7 Temperature field reconstruction from LUCE deployment (March
28, 2007, 12.00AM) . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 (a) Sparsity rate S function of the time of the day averaged on 10
days (NMSE=10

�5) (b) NMSE for 10 reconstructed temperature
signals using CS averaged over 100 runs . . . . . . . . . . . . . . . 73

vi



LIST OF FIGURES LIST OF FIGURES

3.9 9⇥ 9 sensor network example adopting geographical routing . . . 74
3.10 PF and CS data aggregation techniques. Dashed rectangle is the

IEEE 802.15.4 packet . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.11 Comparison among PF, DCS, and mixed algorithm . . . . . . . . 81
3.12 For network with size N > Ncrit it is clearly visible the inner zone

performing CS (black circles) and the external one composed by
nodes performing PF (white circles) . . . . . . . . . . . . . . . . . 82

3.13 Network lifetime using Ember EM250 nodes (BID = 8 bytes Bdata =

1 byte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.14 (a) Lifetime of the network: comparison between PF and Mixed

Algorithm (MA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.15 Lifetime extension of the modified algorithm with respect to the

standard mixed algorithm vs. Boff using network size N as pa-
rameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.16 Ratio between the energy spent in compression Ecomp and energy
for data transmission and reception ETXRX for the first dead node
in the network vs. network size (Bdata = 1 byte) . . . . . . . . . . 88

4.1 Joint reconstruction quality comparison among DCS (JSM-1), KCS
and separate decoding. The considered J = 16 signals of length
N = 50 have common sparsity KC and innovation with sparsity K 100

4.2 Comparison of joint reconstruction for DCS (JSM-2), KCS and
separate decoding. All J = 16 signals of length N = 64 have the
same sparsity K = 10 . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Number of wavelet vectors required to include the K largest wavelet
coefficients for each signal . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Reconstruction quality for DCS and separate decoding varying the
span of the lowpass filter (N = 1024, M = 120) . . . . . . . . . . 105

4.5 Comparison between the energy spent in compression and trans-
mission for CS and the energy for transmission when no compres-
sion is performed. On the second axis is also reported the number
of cycles required to compress data using a random orthogonal
matrix generated on the node (N = 512) . . . . . . . . . . . . . . 107

vii



LIST OF FIGURES LIST OF FIGURES

4.6 Number of CPU cycles required to compress a sample using dif-
ferent random � matrices varying the compression factor. (T1)
Matrix with random 16bit fixed-point values. (T2) Gaussian ma-
trix generated using a Box-Muller transformation with mean zero
and variance 1/M . (T3) Matrix with random floating point values.
(T4) Same as T2 but the matrix is generated with the Ziggurat
method. (T5) Entries of the matrix are generated from the sym-
metric Bernoulli distribution with P (�jk = ±1

p
M) = 1/2. (T6)

Same as T5 with P (�jk = ±1) = 1/2. (T7) Binary sparse matrix
with d = 1. (T8) Binary sparse matrix with d = 10 . . . . . . . . 108

4.7 Average SNR varying the sparsity d of the binary sensing matrix.
Signals of length N = 1024 are compressed using a 8-level db8
wavelet matrix with a compressed vector length of M = 50, M =

100 and M = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.8 Comparison between reconstruction performance of Gaussian ma-

trix and binary sparse matrix (d = 1) for temperature, humidity
and light signals. DCS and independent reconstruction using CS
are compared. The original signals of length N = 1024 are sparsi-
fied using an 8-level db8 wavelet matrix . . . . . . . . . . . . . . . 111

4.9 Signals recovery using DCS and independent reconstruction when
a binary sparse matrix (d = 1) is used as measurement matrix.
The number J of the nodes involved in reconstruction is changed
for each signal considered and the reconstruction quality of the
reconstruction is evaluated . . . . . . . . . . . . . . . . . . . . . . 113

4.10 Energy consumption for data transmission when no compression
(NC) is applied and energy for compression and transmission when
Gaussian or sparse binary matrices are used in DCS versus the av-
erage reconstruction quality of the signals. (TG) Temperature
(Gaussian). (TB) Temperature (Binary sparse). (HG) Humidity
(Gaussian). (HB) Humidity (Binary sparse). (LG) Light (Gaus-
sian). (LB) Light (Binary sparse). The length of the signals is
N = 1024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

viii



LIST OF FIGURES LIST OF FIGURES

4.11 Energy spent in one sampling cycle when CS is used to compress
the sample compared to the energy consumed when the sample is
sent without compression. The first bar refers to CS when measure-
ment matrix is obtained from a Bernoulli distribution (T6) while
for the second bar the compression is performed using a Gaussian
matrix (T2). (Simulation parameters: Nacc = 512, M = 100,
Tsleep = 10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.12 Energy comparison between digital and low-rate CS. (Simulation
parameters: Nacc = 512, M = 100, Tsleep = 10s) . . . . . . . . . . 121

4.13 Energy comparison between digital and low-rate CS varying the
compressed vector size for digital CS and the number of samples
gathered for the low-rate CS . . . . . . . . . . . . . . . . . . . . . 122

4.14 Signals ensembles for (a) relative humidity (RH), (b) solar radi-
ation (SR) and (c) wind speed (WS) for seven different weather
stations near Monterey (CA). Each different line in each sensor
plot is referred to a different node: each kind of sensor presents a
different level of correlation among different nodes. . . . . . . . . 123

4.15 Quality of reconstruction vs the under sampling ratio for the three
kind of signals taken into consideration. Each signal is recon-
structed using all the algorithms investigated in the paper, varying
also the under-sampling pattern . . . . . . . . . . . . . . . . . . . 126

4.16 Quality of reconstruction varying the training data used in GPSR
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.17 With the same nomenclature previously introduced this plot high-
lights the different choices for measurement and reconstruction
phase that permit to achieve the better reconstruction with the
minimum energy expenditure. . . . . . . . . . . . . . . . . . . . . 129

4.18 Trade-off between reconstruction and energy consumption for com-
pression. (SR: Solar radiation. RH: Relative humidity. WS:
Wind speed. LR-CS: low rate CS. DCS: digital CS.) . . . . . . . 130

ix



LIST OF FIGURES LIST OF FIGURES

5.1 Recovery comparison between CS and latent variable (LV) method
when reconstructing the original signals from sub-sampled version
averaging the reconstruction quality over all the nodes (N = 512) 139

5.2 Recovery comparison between GC-CS and MAP. The recovery
is obtained exploiting the correlations among sensors and nodes.
(N = 512) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 Number of DCT coefficients necessary to include the K largest
coefficients for each signal. (N = 512) . . . . . . . . . . . . . . . . 142

5.4 From top to bottom: temperature, humidity, light. GS-CS and
LV reconstruction quality for the different signals varying the sub-
sampling factor ⇢ and using the signal length N as parameter.) . . 143

5.5 Reconstruction quality vs. averaged per cycle energy consump-
tion varying the parameter N for the signals of interest for the
considered techniques: (a) GS-CS and (b) LV . . . . . . . . . . . 144

5.6 Ratio between the recovery quality and energy spent in compres-
sion varying the sub-sampling factor ⇢ for the two approaches . . 145

x



List of Tables

2.1 Energy and power density for the most common battery technolo-
gies for WSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Power density for different energy harvesting sources . . . . . . . 16
2.3 Selection of sensor network nodes commercially available and their

hardware characteristics . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Selection of 32-bit sensor network nodes commercially available . . 40
2.5 Current consumption for different sampling frequencies in the SHM

device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Flash and RAM usage of SPINE2 framework . . . . . . . . . . . . 52

xi



Chapter 1

Introduction

The emerging field of wireless sensor networks (WSNs) combines sensing, com-
putation, and communication into a single tiny device and while the capabilities
of any single device are minimal, the composition of hundreds or thousands of
these devices offers radical new technological possibilities.

The real power behind wireless sensor networks is the possibility to deploy
large numbers of tiny nodes that assemble and configure themselves in such a way
that, usually through advanced mesh networking protocols, they can communi-
cate each other by hopping data from node to node in search of their destination.

These devices can be used for a lot of usage scenarios: from the monitor-
ing of environmental conditions to the monitoring of the health of structures or
equipment. Even though we usually refer to these networks as wireless sensor
networks, emphasizing the presence of the sensors, the nodes can also be used to
pilot actuators extending control from cyberspace into the physical world.

The most common and straightforward application for wireless sensor network
technology is to monitor a large and remote environment, sensing and reporting
low-frequency data towards a central collector. For example a large building could
be easily monitored for temperature, humidity or human presence by hundreds
of sensors interconnected by a wireless connection able to trigger in real time
the HVAC system for maximizing the comfort of the people inside the building.
Unlike traditional wired systems, the deployment costs would be minimal and
definitely less intrusive. Using WSNs for monitoring there is no need to wire
long cables through walls and conduits but nodes can be easily placed inside pre-

1



1. INTRODUCTION

Figure 1.1: Possible deployment of ac-hoc wireless embedded network for smart-
building monitoring. Sensors detect temperature, humidity and human presence
at hundreds of points across the building and communicate their data over a
multi-hop network for analysis

existing buildings without any structural modification. Moreover the network
could be incrementally extended by simply adding few more devices without
requiring the network reconfiguration.

Another clear advantage in using WSNs for data monitoring and reporting,
in addition to saving on installation costs, is the capability of the network to self
heal and self adapt to changing environmental conditions. In WSNs, mechanisms
do usually exist that can quickly respond to changes in network topology. For
example in case of failure of one or few nodes (or in case one node is moved
from its original position) the network can reconfigure itself continuing to ensure
connection and a reliable data reporting. This behavior is still not feasible with
wired networks where the network topology is fixed and not adaptable to changing
conditions.

Even though WSNs deal with wireless connection (such as cell phones, tablet,
notebooks, ...) they do not rely on expensive network infrastructures. WSNs use
small and low-cost embedded devices for a wide range of applications and do not
rely on pre-existing infrastructures for their installation and use. In fact, unlike

2



1. INTRODUCTION

traditional devices, wireless sensor nodes do not directly communicate with a
near high-power central control point but they only communicate with their local
close peers. A real fixed network infrastructure does not exist, but each node
becomes part of the network infrastructure itself. This peculiar network structure
requires new protocols to manage the communication among nodes, to shuttle
data between the thousands of tiny embedded devices in a multi-hop fashion and
eventually self-repair and self-reorganize in the eventuality of a network or point
failure.

Another difference with respect to the classical wireless networks is that the
real strength of WSNs is in the large number of potential nodes in the network.
While for centralized network structures (such as the cell phone network) the
number of devices connected to same cell could be a problem when too many
devices are active in a small area, at the opposite the interconnection of a WSN
just becomes stronger as nodes are added.

Nowadays there is an increasing interest in WSNs and a lot of ongoing research
on data aggregation [Nie and Li, 2011][Younis et al., 2006], ad hoc routing [Kassim
et al., 2011][Saleem and Farooq, 2007][Lambrou and Panayiotou, 2009][Gajurel
and Heiferling, 2010] and especially distributed signal processing within WSNs
[Banitalebi et al., 2011][Bal et al., 2009][Conti et al., 2004].

In all the papers in literature it is clear as the main challenge in wireless sensor
network deployment is to cope with the resource constraints of the devices. There
are several constraints that we have to deal with when working with WSNs and
wireless nodes: small memory availability and computational power in embedded
processors used for wireless nodes, constraints derived from the vision that these
devices have to be small and inexpensive, etc...

Nevertheless it is well known the most difficult resource constrain to meet is
the power consumption. This is a straightforward consequence of the reduction
of the nodes size: with decreasing in physical dimensions there is a proportional
decreasing in the energy capacity of the device. These problems related to energy
capacity have also a direct impact on the architectural choices, creating in turn
new computational and storage limitations.

While many devices try to reduce their power consumption through the use
of specialized communication hardware in ASICs providing low-power implemen-

3



1. INTRODUCTION

tation of the communication protocols, this is not feasible for WSNs that have to
be as general and flexible as possible.

Therefore, while traditional networks and devices aim to achieve high qual-
ity of service (QoS) provisions and low power consumption through specialized
hardware and always increasing the energy capacity, sensor network protocols
must focus primarily on power conservation maintaining small sizes and low-cost
design. They must have built-in trade-off mechanisms that give the end user the
option of prolonging network lifetime at the cost of lower throughput or higher
transmission delay.

In fact, power saving is generally achieved by reducing radio communication
through mainly three approaches: (1) using power-aware network protocols [Li
et al., 2011]; (2) duty cycling [Wang et al., 2009]; and (3) in-network/in-node
processing and compression [Fasolo et al., 2007];

Duty cycling schemes define coordinated sleep / wakeup schedules among
nodes in the network. On the other hand, in-network / in-node processing consists
in reducing the amount of data to be transmitted by means of compression and
/ or aggregation techniques. Due to limited processing and storage resources
of sensor nodes, data compression in sensor nodes requires the use of ad-hoc
algorithms and tools.

With the increasing in network size and number of nodes, direct consequence
of having small and low-cost devices, compression and aggregation have become
a need in WSNs. The traditional approach to sense and measure environmental
informations, e.g. temperature and humidity, through uniform sampling and then
reporting data to a fusion center is not energetically sustainable anymore due to
the enormous quantitative of data generated by sensor nodes. Fortunately not all
the information is really needed since a lot of redundant information is present in
data acquired from sensor nodes in a WSN, especially if we are able to transform
these signals to some suitable basis.

Among all the frameworks and techniques for data compression and aggrega-
tion, in this thesis we deal with Compressive sensing (CS), also called compressed
sensing and Sub-Nyquist sampling, that has a surprising property that one can
recover sparse signals from far fewer samples than it is predicted by the Nyquist-
Shannon sampling theorem [Donoho, 2006][Haupt et al., 2008].

4



1. INTRODUCTION

Samples obtained with CS contain a little redundancy in the information level,
and the sampling process can accomplish two functions, aggregation and compres-
sion, sometimes simultaneously. CS trades off an increase in the computational
complexity of post-processing against the convenience of a smaller quantity of
data acquisition and definitely a lower demands on the computational capabil-
ity of the sensor node. This is due to the fact that CS directly acquires the
compressed version at sampling time so that no explicit compression is really
required.

In this context the main contributions of this work are: (1) an investigation of
CS as data aggregation technique in WSNs; (2) the extension of CS to ensemble of
nodes in sensor networks; (3) an analysis of trade-offs between power consumption
and reconstruction quality for CS and Distributed CS (DCS) when COTS devices
are used as hardware for compression; (4) an exploration of the reconstruction
performance of CS for highly sub-sampled signals in WSNs; and (5) a comparison
between CS and another special technique used for data compression in sensor
networks.

This thesis is organized in 5 Chapters. In Chapter 2 is an introduction on
wireless sensor networks with particular focus on the energy problem related
to the usage of resource-constrained devices. An overview of different kind of
power supplies and batteries for wireless nodes is given and then the techniques
for reducing energy consumption, saving on radio and communications, are in-
troduced. Finally the processing subsystem is addressed and high-performance
32-bit micro-controllers are investigated when used for WSNs. Chapter 3 opens
with middlewares and their usage in WSNs. Afterwards in-network aggregation
and CS are introduced providing the mathematical background needed to under-
stand the remaining part of the thesis. In the final part of the chapter, a real
case of the usage of CS for data aggregation in WSNs is presented. In Chapter 4
CS is extended to signal ensembles and the two major techniques for CS exploit-
ing multi-dimensionality and multi-signals correlation are introduced, namely:
distributed CS (DCS) and Kronecker CS (KCS). These two techniques are then
compared against a common data-set. Finally the usage of CS is investigated
when signals are sampled at sub-Nyquist frequency and the reconstruction issues
are addressed. In Chapter 5 a comparison between CS and an other promising

5



1. INTRODUCTION

technique when dealing with sub-Nyquist sampling rate is given. In the chapter,
Chapter 6, are the conclusions.

6



Chapter 2

Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a computer network formed by a large
number of little and inexpensive wireless devices (the sensors or sensor nodes)
that cooperate to monitor the environment using transducers and, in special
cases, operate on the environment by means of actuators [Zhao, 2004][Al-Karaki
and Kamal, 2004][Goyal and Tripathy, 2012].

Recent technology advances have enabled the possibility to have highly inte-
grated devices with processors and radio systems that can be easily embedded
in little multi-purpose and easily programmable devices. In general these devices
have on-board also one or more sensing units and an embedded battery or special
harvesters to gather energy from the environment. The sensor nodes are usually
spread in harsh environments without any predetermined infrastructure with the
aim to create a cooperative network of sensors to achieve a common task, usually
sensing and reporting environmental data. As a result of the harsh conditions
which the nodes are exposed and since the nodes are subject to failures and bat-
tery exhaustion, sensor networks must be fault-tolerant and the network must be
able to self-heal and self-adjust to configuration changes.

2.1 Applications of wireless sensor networks

As seen in the literature on sensor network architectures, unlike general purpose
networks, sensor networks have to make efficient use of limited resources in ac-

7



2. WIRELESS SENSOR NETWORKS

complishing their single goal [Pereira et al., 2011]. Since each network aims at
a particular focused objective, it is expected that sensor networks with differ-
ent goals will be designed differently, with features designed specifically for one
application.

2.1.1 Data collection

In this scenario researchers want to collect data and sensor readings from a set
of sensors spread in the environment over a period of time in order to detect
trends and interdependencies, to control their status and position or to send
commands. Data is collected at regular intervals and the nodes have a fixed
position in the measurement field. Usually data collection is performed over a
long period (months or years) to look for long-term and seasonal trends.

For environmental data collection it is usually not important to sample data
at high frequency since the variables to be measured have slow variation in time
(the typical environment parameters being monitored, such as temperature, light
intensity and humidity, do not change quickly enough to require higher reporting
rates) thus these networks generally require very low data rates and extremely
long lifetimes [Tovar et al., 2010][Pendock et al., 2007].

The network is characterized by having a large number of nodes continually
sensing and transmitting back to a base station where data is permanently stored.
Environmental monitoring applications do not have strict latency requirements
since in general the data is collected for future analysis, not for real-time opera-
tions [Cheng et al., 2011].

In this context in which the topology and the nodes distribution is relatively
constant in the environment, it is not needed to develop complex or optimal
routing strategy, instead it is more convenient to calculate the optimal routing
topology outside the network and then communicate the necessary information to
the nodes as required. For this reason, environmental applications typically use
tree-based routing topologies where each routing tree is rooted at high-capability
nodes. Each node is responsible for forwarding data to its own parent node up
the tree-structure until it reaches the sink. In order to permit the flowing of the
data from each node toward the collector sink, each communication event must

8



2. WIRELESS SENSOR NETWORKS

be precisely scheduled. This could be a problem when network is subject to duty
cycling to save energy since the sensors remain dormant the majority of the time
and they have to wake to transmit or receive data synchronously with children
and parent nodes. If the precise schedule is not met, the communication events
will fail.

Thus the most important characteristics of the environmental monitoring re-
quirements are long lifetime, precise synchronization, low data rates and relatively
static topologies. In this work our focus in mainly on this type of applications.

2.1.2 Events detection

Detect an event is important for security monitoring (IDS) or military appli-
cations where network is composed by nodes, placed at fixed locations, that
continually monitor the environment to detect an anomaly or report a sporadic
event. Differently from sensor nodes used in data collection, for events detection
the nodes are not required to gather any data but each node has to frequently
check the status of its sensors for anomalies or specific patterns defining an event,
reporting back to the collector only in case something suspicious or the event of
interest is detected [Bahrepour et al., 2009][Shu and Liang, 2006].

Data collection and event detection are two classes of applications that are
very different. While for wireless multi-hop data collection an operational life-
times on the order of a year or more is required, for the wireless multi-hop event
detection sensor networks few days or weeks could be enough. This is because
whereas data collection may allow sensor nodes to sleep most of the time, event
detection requires that sensors are vigilant most of the time.

In networks for events detection reducing the latency of an alarm transmission
is significantly more important than reducing the energy cost of the transmissions.
Once detected, a security violation or an event must be communicated to the base
station immediately. The latency of the data communication across the network
to the base station has a critical impact on application performance and this
means that network nodes must be able to respond quickly to requests from their
neighbors to forward data. Obviously reducing the transmission latency leads to
higher energy consumption because routing nodes must monitor the radio channel

9



2. WIRELESS SENSOR NETWORKS

more frequently.

2.1.3 Location-tracking

The goal is to trace the roaming paths of moving objects in the network area.
Using wireless sensor networks, objects can be tracked by simply tagging them
with a small sensor node. The sensor node will be tracked as it moves through a
field of sensor nodes that are deployed in the environment at known locations.

Differently from the previous cases, the topology of the network is composed
by a stable network formed by nodes at fixed locations and the connectivity of
the mobile nodes continually changing. Being known the geographical locations
of the monitoring fixed nodes, it is straightforward to track the object moving
inside the network [Chen and Feng, 2009][Caceres et al., 2009].

Since the network has to be able to efficiently detect the presence of new
nodes that enter the network and to track the existing ones moving within, ener-
getically these sensor networks resemble more the networks for events detection
than the networks for data collection. Even in this network the latency and the
synchronization among nodes have a critical impact on the performance of the
application.

2.1.4 Hybrid networks

In general there are scenarios involving all the aspects of all three categories.
This is the case of a network that is able to switch from events detection to data
collection when a specific event is detected. In case of smart building monitoring
we can have a monitoring network that is able to gather information about the
comfort in a specific room only if the human presence is detected inside the
monitored environment.

2.2 The energy problem

Each sensor node is basically a tiny device composed of three basic units: a
processing unit with very limited memory and computational power, a sensing

10



2. WIRELESS SENSOR NETWORKS

unit for data acquisition from the surrounding environment and a communica-
tion unit, that is usually a radio transceiver to transmit data to the collecting
sink. Typically, nodes are powered by small batteries which cannot be generally
changed or recharged. Although there have been significant improvements in pro-
cessor design and computing, the battery technology still struggles to keep the
pace, making the energy the most critical resource in WSNs. As a consequence of
the energy constraint, a new performance metric, namely, the network lifetime,
has become a vitally important benchmark for wireless sensor networks [Dong,
2005][Wang and Xiao, 2005][Rhee et al., 2004].

INTERNET SINK

SENSOR FIELD
SENSOR NODEREMOTE

CONTROLLER

Figure 2.1: Typical sensor network architecture

For all the scenarios seen in Section 2.1 we ideally aim to have nodes active
and monitoring, unattended, for months or years. It is important to notice how
the nodes are all interconnected each other and, especially for tree-based routing
topologies, the correct delivery of data depends on all the nodes on the path
toward the sink. Thus in many deployment it is not really important the average
node lifetime but rather the minimum node lifetime, since the failure of a single
node can determine the failure of the whole network.

In the analysis for energy consumption we will refer to a well-defined network
model for a data collection network. The network consists of one sink and a
large number of deployed sensor nodes. Data are transferred from the nodes
to to the sink through a multi-hop transmission. As seen in Section 2.1.1 the
network is intended to be static with a tree-based routing protocols whose routes

11



2. WIRELESS SENSOR NETWORKS

are calculated off-line. On the other side we can think to the typical sensor node
as composed of four main components:

1. power supply subsystem to power the whole system

2. sensing subsystem including one or more sensor (with associated ADCs)
for data acquisition and digitalization

3. processing subsystem composed by a micro-controller with memory
for data storage

4. radio subsystem for wireless data communications

• Data reduction / compression
• In-network / in-node processing
• Low-rate / adaptive sampling

• High-density energy   
storage
• Energy harvesting

• Low-power 
architectures
• Sleep modes

WSN node

Sensing
subsystem

Power supply
subsystem

• Duty cycling
• Low-power MAC

Processing
subsystem

Radio
subsystem

Figure 2.2: Wireless sensor node power model. For each subsystem some of the
major techniques for power consumption reduction are listed

Depending on the specific applications, the sensor nodes may also include
additional components such as actuators or GPS. However, as these components

12



2. WIRELESS SENSOR NETWORKS

are optional, they are occasionally used and are not taken into consideration in
this thesis.

Several approaches have to be exploited, even simultaneously, to reduce power
consumption or increase lifetime in wireless sensor networks as better depicted in
Figure 2.2. Some techniques are just related to one specific subsystem like energy
harvesters for power supply or the low-power architectures for the processing
subsystem. The sensing subsystem and the radio subsystem are strictly inter-
related: the first one provides data to be sent using radio transmissions thus a
reduction in the data size reflects in a reduction of power spent in transmission.
Specific techniques, however, are specific for the radio subsystem such as duty
cycling or the usage of low-power MAC protocols.

In the next paragraphs and chapters we are going to focus on each subsystem
and on the major techniques related to that subsystem for energy consumption
reduction.

2.3 Battery and power supply

Overall battery capacity is measured in milli-Amp-hours (mAh) or Amp-hours
(Ah). In theory a rating of 3 Ah means the battery can supply 3 A for 1 hour or
1 A for 3 hours. In practice this in not always true. Due to battery chemistry,
voltage and current levels vary depending on how the energy is extracted from
a battery. Sometimes the battery is not quite empty, but there is insufficient
potential energy in the battery to get the remaining charge out, for this reason a
battery is said to be empty when the potential or voltage drops below a certain
level. Typically, for a 1.5 V cell such as a AA-sized cell, the battery is considered
empty when the voltage drops to around 0.9 V.

Even thought the technology is trying to scale down size and weight of the
batteries used in sensor networks, with the actual technology batteries still are
a significant fraction of the total size and weight of the nodes. Due to this
strict relation between size and energy storage capacity we can characterize the
batteries namely by energy density. The energy density is a term used for the
amount of energy stored in a given system or region of space per unit of volume.
On the other hand the power density is the amount of power per unit of volume.

13



2. WIRELESS SENSOR NETWORKS

Battery Type Wh/Kg J/Kg Wh/L
Lead-acid 41 146000 100
Alkaline long-life 110 400000 320
Carbon-zinc 36 130000 92
NiMH 95 340000 300
NiCad 39 140000 140
Lithium-ion 128 460000 230

Table 2.1: Energy and power density for the most common battery technologies
for WSNs

While an ideal energy reservoir should offer both a high energy and a high power
density, the typical battery usually features high energy density but a limited
power density.

The three main technologies traditionally used in WSNs are Alkaline Batteries,
Lithium Batteries and Nickel Metal Hydride (NiMH) Batteries [McDowall, 2000].
In Table 2.1 are reported the energy and power density for the most common
battery technologies.

The Alkaline batteries are far the most common type of household battery,
and they are very good for a variety of electronics applications. Alkaline batteries
are low cost, widely available, and are ideal for low current applications at room
temperature. However, they have two major shortcomings: the energy capacity
is highly dependent on temperature and they don’t tend to work as well under
high current draws.

For the Lithium batteries there are many varieties. Although it is difficult to
put them all in the same class or use the same model to describe their behavior,
there are some common characteristics. For the sake of this discussion, we will
focus on the iron-disulfide formula in particular because it is the most common
Lithium battery available in AA sizes. This type of battery is regularly used
as a replacement for alkaline batteries where longer life, higher current draw,
or improved temperature performance is needed. Even thought Lithium iron-
disulfide batteries are not rechargeable, the big benefit to Lithium disposable
batteries is that they do much better under low temperature and high current
rate conditions.

NiMH, unlike its cousin, the Nickel Cadmium (NiCAD) battery, tends to

14



2. WIRELESS SENSOR NETWORKS

maintain its characteristics through many recharges. Its biggest shortcomings are
that it is relatively heavy and that it has a lower energy density, meaning that
a typical AA-sized NiMH battery will start at 1.2 V instead of the conventional
1.5 V for an alkaline AA battery.

Recently new technologies have been proposed to try to further shrink down
size and at the same time to increase the energy density of the batteries commonly
used in very small size portable devices such as wearable and sensor nodes. These
new batteries are based on new technologies like thin-film Lithium-ion or Lithium-
polymer cells [Owen, 1996]. They are similar to lithium-ion batteries, but they
are consisting of thin materials, some only nanometers or micrometers thick,
which allows the finished battery to achieve millimeters thickness. The problem
with the thin-film batteries is that these batteries are too small for long lasting
operations in sensor networks.

1000

0.01

10 10000

En
er

gy
 D

en
si

ty
 (W

h/
Kg

)

Power Density (W/Kg)

Fuel Cell

Batteries

Capacitor

Super-
capacitor

100 1000

0.10

1

10

100

Thin film

Figure 2.3: Ragone plot power density / power energy plot for typical energy
storage technologies

One of the most promising alternatives is the fuel cell [Chraim and Karaki,
2010]. The fuel cell (FC) is an electrochemical device that uses fuel (i.e. Hydro-

15



2. WIRELESS SENSOR NETWORKS

gen) to generate electrical power. FC has a very high energy density if compared
to batteries, however the FC cannot respond to sudden changes in the load, thus
a system powered solely by the FC is not enough. For this reason a hybrid system
where the FC is used to recharge conventional batteries or a super-capacitor is
a better solution. The gravimetric energy density of fuel cells is expected to be
three to five times larger than Li-ion cells and more than ten times better than
Ni-Cd or Ni-MH batteries whereas the volumetric energy density is six to seven
times larger than Li-ion. Figure 2.3 shows the Ragone plot for the aforementioned
storage systems that helps in understanding the relationship between batteries
and capacitors.

In practice no single type of storage element can simultaneously fulfills all of
the desired characteristics of an ideal storage system, thus a hybrid solution could
overcome the limit of single reservoir and prove to be very much more efficient
[Porcarelli et al., 2012].

Nowadays another solution begins to take hold in WSNs to extend the life-
time of node and recharge the batteries: the usage of renewable energy to generate
electricity [Morais et al., 2008][Thomas et al., 2006]. The big variety of energy
sources in the environment potentially suitable for energy harvesting has driven
increased interest in research community. The main sources used for harvesting
include solar energy (as well as artificial lightning), vibrations (harvested using
piezoelectric, electro-magnetic and capacitive converters), kinetic energy (avail-
able in moving water in rivers, pipes and wind flow), magnetic fields (surrounding
AC power lines), pressure and heat differentials (harvested using thermoelectric
elements). However, due to practical constraints or challenges raised by the low
energy density, target power requirements and, in some cases, feasibility of the
energy harvesting method, many of these sources could not be considered for
energy harvesting [Zhang et al., 2011].

How we can infer from Table 2.2 solar energy is the most efficient natural
energy source available for sensor networks in outdoor applications [Brunelli et al.,
2009].

All the considerations on battery, harvesting and power supply brings to a
power supply unit architecture as depicted in Figure 2.4. This exemplified power
unit is composed by the following blocks:

16



2. WIRELESS SENSOR NETWORKS

Platform

Power 
Sources

C
onverters

Power
Management

Interface

Output
Buck-
Boost

Converter

Batteries
Supercaps

Recharger

MCU

Fuel Cell

Figure 2.4: Complete power supply architecture for wireless sensor nodes

• Energy storage: the output and storage stage implements a double func-
tion: it receives the energy from the conversions circuits and stores this
energy in specific storage elements (batteries, super-capacitors, etc...).

• Energy transduction: to adapt the system to different scenarios, envi-
ronments, energy sources and different sensor nodes.

• Fuel cell: this stage is used to recharge the storage elements when the
energy can not be harvester and the storage elements are almost empty.

• Power unit monitor: the interactions among the various stages are con-
trolled and managed by a micro-controller through the execution of tasks

17



2. WIRELESS SENSOR NETWORKS

Harvesting technology Power density
Solar cells (outdoors at noon) 15 mW/cm2

Piezoelectric (shoe inserts) 330 µW/cm3

Vibration (small microwave oven) 116 µW/cm3

Thermoelectric (10�C gradient) 40 µW/cm3

Wind 10W/m2 at 2.5 m/s

Table 2.2: Power density for different energy harvesting sources

such as measuring the charge status of the storage elements, measuring the
voltage levels given by the transducers and the conversion electronics.

• Interfaces: the goal of the interface is to provide adequate information for
power management and power policies implementation.

2.4 Radio and communication network

In general, wireless networks can be divided in two main categories: infrastruc-
tured and ad-hoc networks. Wireless sensor networks are a special case of ad-hoc
networks.

Infrastructured networks The principal characteristic of this type of net-
works is that they always have one or more central coordination points. The
most famous example for this type of networks is the cellular network where
each node, to communicate each other, needs to negotiate with the infrastructure
hardware of the cell it belongs to [Rahnema, 1993]. Once this communication
has taken place the infrastructure takes care of setting up a channel between
the peers. In cellular networks the communication between two peers must pass
throughout the network infrastructure also if the two devices could be able to
communicate to each other because they are in the transmission range of each
other.

Ad-hoc networks Differently from infrastructured networks, ad-hoc networks
are totally self-organizing and do not relay on a stable infrastructure to enable the
communication. Any activity promoted by peers inside the network is carried on

18



2. WIRELESS SENSOR NETWORKS

(a) WSN without sink (b) WSN with one sink

Figure 2.5: Different WSN architectures. (a) There is no sink and the nodes
communicate directly with the destination node after query. (b) Sink collects
data from the sensors via multi-hop communication and forwards collected data
to a remote destination

without a central point for coordination. All the peers of an ad-hoc network can
play two different roles: (1) the end-point of an active communication (sender or
receiver) and (2) the intermediate routing point along the path of an active com-
munication, performing the routing of data for the other peers’ communications.

In this type of network we can identify three types of communication pattern:
broadcast, convergecast and local gossiping. Broadcast is generally used by a base
station (sink) to transmit some information to all the sensor nodes of the net-
work (broadcasted information may include queries of sensor, program updates,
etc...). In some scenarios, as introduced in Section 2.1.2, the sensors that detect
an intruder communicate with each other locally. This type of communication
pattern is called local gossiping where a sensor sends a message to its neighboring
nodes within a range. Lastly convergecast is the communication pattern where a
group of sensors communicate to a specific sensor or sink.

19



2. WIRELESS SENSOR NETWORKS

2.4.1 WSN architecture

Besides the two kind of networks seen in Section 2.4, the WSNs can be considered
as a special kind of ad-hoc networks [Akyildiz et al., 2002]. In fact in WSNs each
sensor has too little available power to be useful if used alone. Actual WSNs are
made up of hundreds (or maybe thousands) of sensors. All sensors cooperate to
provide sensing, communication and reliability to all the system.

In WSNs for data collection each node is able to acquire data from the envi-
ronment, eventually perform some kind of transformation on the acquired data
and send out data toward the external world. This can happen in two ways:
either every node can communicate to the user or only few nodes can do that. In
Figure 2.5 a graphical explanation oh the two cases.

In the first case we can think that each node has enough power to directly
communicate the result to the destination point (i.e. using a satellite up-link or
GSM connection) or each node can wait to be directly in communication with
the destination peer before sending out the data (i.e. a mobile device can directly
query the nodes in the network). This case where the communication takes place
directly between the sender and the receiver is called single-hop communication
and it is fairly rare in WSNs.

Nevertheless the most common is the second case: in the network there are
one or more special nodes, namely the sink nodes, which aim is to collect and
communicate data to the end user. Usually these nodes are structurally different
from the nodes of the network having more computational power and battery.
They act like gateways between the user and the WSN and they have usually two
interfaces: one toward the WSN for data gathering and the second one used by
user to interrogate the network and to extract the needed information. Since the
data has to be delivered to the sink that could be physically away for the sensing
node, data is routed through all the intermediate nodes on the path toward the
sink, in a multi-hop communication.

2.4.2 Energy consumption in radio subsystem

The radio subsystem is the most important system in a wireless sensor node since
it is the primary energy consumer in all the application scenarios [Raghunathan

20



2. WIRELESS SENSOR NETWORKS

et al., 2002]. In general the communication subsystem has a much higher energy
consumption than the computation and sensing subsystems. Transmitting one
single bit of data consumes as much energy as executing thousands instructions
[Shih et al., 2001]. Moreover the radio energy consumption is of the same order in
the reception, transmission, and idle states, while the power consumption reduces
a lot when the node (and the transceiver) is put in sleep mode. It is clear that
the radio has to be managed wisely in order to extend the lifetime of the sensor
node and the whole network.

Not all the energy spent by the communication subsystem is wasted and it is
possible to identify at least five different cases in which the energy is wasted by
radio communications [Demirkol et al., 2006]:

• Idle listening. A node is said to be in idle listening when it listens on an
idle channel in order to receive possible traffic.

• Collisions. A collision occurs whenever a node receives more than one
packet at the same time. Each time there is a collision, the packet has to be
discarded and the packet retransmitted, increasing the energy consumption.
In general it is possible to identify two types of collisions: (1) direct collisions
and (2) indirect collisions.

Direct collisions occur when two or more nodes sending data are in the
transmission range of each other and send their data at approximately the
same time towards a common receiver as in Figure 2.6a.

Indirect collisions occur when two or more nodes cannot hear each other
but have overlapped transmission ranges and send data at approximately
the same time as depicted in Figure 2.6b. In this case there is the so called
hidden terminal problem where the nodes in both the transmission ranges
of the two sending nodes receive only junk transmission.

• Overhearing. A node receives packets that are destined to other nodes.
This problem usually arises when a large number of devices try to commu-
nicate in the same area. In this case the communications collide frequently
and a channel contention problem may rise when many nodes share the
same sub-area and all the nodes are able to communicate each-other.

21



2. WIRELESS SENSOR NETWORKS

R B

G

(a) Direct collision

R BG

(b) Indirect collision (hidden terminal problem)

Figure 2.6: Different collisions in WSNs. (a) Two nodes are in the transmission
range and send data at the same time colliding at node G. (b) Two nodes are not
in transmission range but they send data approximately at the same time and
again there is collision at node G

• Control-packet overhead. This is due to protocol implementations since
a minimum number of control packets are required to make the communi-
cation feasible.

• Over-emitting. It is caused by the transmission of a message when the
destination node is not ready. This problem arises when the network syn-
chronization is lost and the nodes are not able to exchange packets.

2.4.3 Energy saving in wireless communications

Duty cycling is the major technique for energy saving in wireless communications
[Sadler, 2005]. Normally, a sensor radio has 4 operating modes: transmission,
reception, idle listening and sleep. Measurements showed that the most power
consumption is due to transmission and in most cases, the power consumption
in the idle mode is approximately similar to receiving mode. On the contrary,
the energy consumption in sleep mode is much lower. That is the most energy-
conserving operation is putting the transceiver in this state whenever the com-
munication is not required. Ideally we could turn on the radio as soon as a new
data packet becomes available for sending and switch off it again when the data

22



2. WIRELESS SENSOR NETWORKS

is sent. This behavior is namely referred to as duty cycling and the duty cycle is
defined as the time that the radio spends in an active state as a fraction of the
total time under consideration.

The problem with this technique is that in collaborative networks such as
WSNs, a coordination among nodes is required to enable data exchanging and
forwarding. Thus a sleep / wakeup scheduling algorithm is required to permit
the correct functioning of the network. The scheduling can be implemented in
two different fashions: (1) on top of an existing MAC protocol (at network or
application layer) or (2) strictly integrated within the MAC protocol itself.

In the next section we want to investigate this second case.

2.4.3.1 Low-power MAC protocols for WSNs

The MAC protocol is extremely important in WSN since it creates the network
infrastructure by defining the communication channels and shares available com-
munication among nodes. As seen before the radio communications are the most
energy expensive actions so the MAC protocol should be properly designed to
offer energy saving opportunities by cutting down energy inefficient access to
medium.

Besides the energy efficiency other important attributes for MAC protocols are
scalability and adaptability to changes. This is because changes in network size
or topology are common in WSNs, especially considered the limited node lifetime
of the wireless nodes. Moreover the addition of new nodes to the network should
be handled rapidly and effectively for a successful adaptation [Wan et al., 2008].
A good MAC protocol should gracefully accommodate such network changes.
Other typical important attributes such as latency, throughput and bandwidth
utilization may be secondary in sensor networks. Contrary to other wireless
networks, fairness among sensor nodes is not usually a design goal, since all
sensor nodes share a common task.

The MAC protocols designed to integrate scheduling policies and power man-
agement techniques can be categorized in three different categories: (1) contention-
based, (2) TDMA-based and (3) hybrid.

Contention-base MAC protocols are based on the Carrier Sense Multiple Data

23



2. WIRELESS SENSOR NETWORKS

Access (CSMA) or better on Carrier Sense Multiple Access / Collision Avoidance
(CSMA/CA). Nodes using contention-based MAC do not require coordination
among nodes in accessing the communication channel. When a node needs to
send data, it verifies the absence of other traffic before transmitting. If the
channel is sensed busy before transmission then the transmission is deferred for
a random interval. This reduces the probability of collisions on the channel.
Colliding nodes will back off for a random duration of time before attempting to
access the channel again.

In TDMA-based (Time Division Multiple Access) protocols there is an ex-
plicit synchronization among the nodes in the network. The scheduling offers
a collision-free scheme by assigning each node a well defined time slot in which
communication is permitted. This synchronization avoids interferences between
adjacent nodes and, consequently, the energy waste coming from packet collision
[Arisha, 2002]. Moreover TDMA-based MAC protocol are immune to the hidden
terminal problem seen in Section 2.4.2 since the time slot of each node is unique
among its neighbors.

Hybrid MAC protocols have the advantages of both contention-based MAC
and TDMA-based MAC protocols. While control packet are transmitted in the
random access channel, data packets are transmitted in the scheduled access
channel, in this way hybrid protocols can obtain higher energy saving and offer
better scalability and flexibility.

In the following paragraphs are few of the most common low-power MAC
protocols opportunely designed for wireless sensor networks.

Sensor-MAC (S-MAC) To solve the energy wasting problem the S-MAC
[Song et al., 2008] alternates two different states: active state and sleep state,
that is periodically listening and sleeping. S-MAC actually reduces the listening
time by letting the node go to sleep into periodic sleep mode. Nodes exchange
sync packets to coordinate their sleep / wakeup periods and neighboring nodes
form virtual clusters to set up a common sleep schedule. If two neighboring
nodes reside in two different virtual clusters, they wake up at listen periods of
both clusters. The channel access time is split in two parts. In the listen period
nodes exchange sync packets and special control packets for collision avoidance

24



2. WIRELESS SENSOR NETWORKS

while in the remaining period the actual data transfer takes place. Considering
that the sender and the destination have to be awake and talk to each other,
this brings in a problem since periodic sleep may result in high latency especially
for multi-hop routing algorithms, since all immediate nodes have their own sleep
schedules. The latency caused by periodic sleeping is called sleep delay. To
avoid high latencies in multi-hop environments S-MAC uses an adaptive listening
scheme. A node overhearing its neighbor transmissions wakes up at the end of
the transmission for a short period of time. If the node is the next hop of the
transmitter, the neighbor can send the packet to it without waiting for the next
schedule.

TA TA TA

NORMAL

S-MAC

T-MAC

Active

Sleep

Figure 2.7: Comparison between S-MAC and T-MAC

Timeout-MAC (T-MAC) The problem of sleep delay resulting in high laten-
cies as seen for S-MAC is partially solved in the so called Timeout-MAC (TMAC)
[Farjaudon and Hascoet, 1988] that results particularly useful under variable traf-
fic load. In T-MAC listen periods end when no activation event has occurred for
a time threshold TA. A comparison between S-MAC and T-MAC is in Figure 2.7.

D-MAC Although duty-cycle based MAC protocols are energy efficient, they
suffer sleep latency, i.e., a node must wait until the receiver wakes up before it

25



2. WIRELESS SENSOR NETWORKS

RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

sleep

sleep

sleep

sleep

Figure 2.8: A data gathering tree using D-MAC protocol

can forward a packet. This latency increases with the number of hops. In ad-
dition, the data forwarding process from the nodes to the sink can experience
an interruption problem. This is why the data forwarding process in S-MAC
and T-MAC is limited to a few hops. When dealing with deep static tree-like
networks, these MAC protocols show their limitations. In this type of networks
convergecast is the mostly observed communication pattern within sensor net-
works. These unidirectional paths from possible sources to the sink could be
represented as data gathering trees. D-MAC [Kebkal et al., 2010] is an adaptive
duty cycle protocol that is optimized for data-gathering in tree-like networks. In
D-MAC based networks the nodes schedules are staggered according their posi-
tion in the data gathering tree. Each node has a slot which is long enough to
permit data transmission hence, during the receive period of a node, all of its
child nodes has transmit periods and contend for the medium. Low latency is
achieved by assigning subsequent slots to the nodes that are successive in the
data transmission path as in Figure 2.8.

Traffic-Adaptive MAC Protocol (TRAMA) One of the most important
energy-efficient TDMA protocol for wireless sensor networks is TRAMA [I and
Pollini, 1994]. TRAMA divides time in two portions, a random-access period and
a scheduled access period. The random access period is devoted to slot reservation

26



2. WIRELESS SENSOR NETWORKS

and is accessed with a contention-based protocol. On the contrary, the scheduled
access period is formed by a number of slots assigned to an individual node. The
slot reservation algorithm is composed by a series of subsequent steps. First the
nodes derive the two-hop neighborhood information. This information is used to
create a collision free scheduler. Afterwards the nodes start an election procedure
to associate each slot with a single node. A node becomes the owner of the slot
only if its priority, calculated as a hash function of the node identifier and the
slot number, is the highest priority among all the nodes. Finally nodes send out
a synch packet containing a list of intended neighbor destinations for subsequent
transmissions. Consequently nodes can agree on the slots which they must be
awake in.

Other low-power MAC protocols Among the TDMA-based MAC proto-
cols it is possible to find: FLAMA (FLow-Aware Medium Access) [Rajendran
et al., 2005], LMAC (Lightweight MAC) [Lee et al., 2008], AI-LMAC (Adaptive
Information-centric LMAC) [Chatterjea et al., 2004], SPARE-MAC (Slot Peri-
odic Assignment for Reception MAC) [Turati et al., 2009], DEE-MAC (Dynamic
Energy Efficient MAC) [Cho et al., 2005]. For contention-based MAC protocols
we have: B-MAC (Berkeley MAC) [Fakih et al., 2006], U-MAC (Utilization-based
MAC) [Yang et al., 2005]. Hybrid MAC protocols: Z-MAC [Rhee et al., 2008],
Wise-MAC [El-Hoiydi and Decotignie, 2004], PTDMA (Probabilistic TDMA)
[Oikonomou and Stavrakakis, 2004].

2.4.3.2 Duty cycling on top of MAC protocols

As seen in Section 2.4.3 sleep / wakeup schemes can be defined also as independent
protocols (network or application layer) on top of existing MAC protocols. This
protocols are usually divided into three main categories: on-demand, scheduled
rendezvous and asynchronous schemes.

The basic idea of on-demand protocols it that a node should wakeup only when
another node wants to communicate with it. The real problem with this approach
is how to inform the sleeping node that a child node is willing to communicate.
Sometimes the best solution is to implement a wake-on-radio mechanism where
a second low-rate and low-power radio or analog circuit is used for signaling and

27



2. WIRELESS SENSOR NETWORKS

wakeup while a more powerful and more energy hungry radio is used for data
transmission.

An alternative solution consist in using a scheduled rendezvous approach. The
idea is that each node should wake-up at the same time as its neighbors. The
wakeup time is scheduled and the node remain active just for the short time
interval needed to communicate with their neighbors before going back to sleep
and waiting until the next rendezvous time.

Finally an asynchronous sleep / wakeup protocol can be used. In this case
a generic node can wake up when it wants and it is still able to communicate
with its neighbors. This is possible by guaranteeing that neighbors always have
overlapped active periods within a specified number of cycles.

These technique for power management are usually implemented on top of an
existing MAC protocol. For low-power WSNs the most common protocol is the
IEEE 802.15.4.

IEEE 802.15.4 The IEEE 802.15.4 protocol is a standard for low-rate low-
power Personal Area Network (PAN). A PAN is composed by a coordinator which
manages the whole network (sometimes it is possible to have several coordinators
managing subsets of the nodes in the network). Each node in the network must
associate with the PAN coordinator in order to communicate. In the original
standard the only supported network topologies are: star (single-hop), cluster-
tree and mesh.

The IEEE 802.15.4 protocol [Zheng and Lee, 2003] supports two operational
modes that may be selected by the PAN coordinator: (1) the non beacon-enabled
mode in which the MAC is simply ruled by non-slotted CSMA/CS and (2) the
beacon-enabled mode in which beacons are periodically sent by the coordinator to
synchronize nodes that are associated with it. These beacons provide an energy
management mechanism based on a duty cycle.

In beacon-enabled mode the coordinator defines a superframe structure as
in Figure 2.9 which is constructed defining: (1) the Beacon Interval (BI) which
defines the time between two consecutive beacon frames, (2) the Superframe Du-
ration (SD) which defines the active portion in the BI, and is divided into 16
equally-sized time slots during which frame transmissions are allowed.

28



2. WIRELESS SENSOR NETWORKS

0 1 2 3 4 15145 6 7 8 9 10111213

CAP CFP Inactive Period

beacon beacon

G
TS

1

G
TS

2
SD (active)

Beacon Interval (BI)

Figure 2.9: Superframe structure for IEEE 802.15.4 protocol

Optionally, an inactive period is defined if BI > SD. During the inactive period
all nodes may enter in sleep mode.

BI and SD are determined by two parameters, the Beacon Order (BO) and
the Superframe Order (SO), respectively, as

BI = aBaseSuperframeDuration · 2BO

SD = aBaseSuperframeDuration · 2SO

)
for 0  SO  BO  14 (2.1)

aBaseSuperframeDuration = 15.36 ms denotes the minimum duration of
the superframe, corresponding SO = 0.

During the SD, nodes compete for medium access using slotted CSMA/CA
in the Contention Access Period (CAP). For time-sensitive applications, IEEE
802.15.4 enables the definition of Contention-free period within the SD, by allo-
cation of Guaranteed Time Slots (GTS). It can be easily observed that low duty-
cycles can be configured by setting small values of the superframe order (SO)
as compared to beacon order (BO), resulting in greater sleep (inactive) periods.

29



2. WIRELESS SENSOR NETWORKS

The advantage of this synchronization with periodic beacon frame transmissions
from the PAN coordinator is that all nodes wake up and enter in sleep mode at
the same time. However using this synchronization scheme in a cluster-tree net-
work with multiple coordinators sending beacon frames, each with its own beacon
interval, is a challenging problem due to beacon frame collisions.

2.4.3.3 Case study: Conservative Power Scheduling

The most common scheduled rendezvous scheme for tree-based networks is the
staggered wakeup pattern [Keshavarzian et al., 2006] where nodes located at dif-
ferent levels of the data-gathering tree, wake up at different times. This approach
is much more flexible than the classical fully synchronized pattern in which all the
nodes of the network wake up at the same time according to a periodic pattern
as seen in Section 2.4.3.1 for S-MAC and T-MAC. On the contrary the staggered
wakeup pattern takes advantage of the internal organization of the network by
sizing the active times of different nodes according to their position in the data
gathering tree.

The staggered scheme has the advantage that at different times, only a subset
of the nodes are active thus the probability of collisions is potentially lower than
for the fully synchronized pattern, since only few nodes contend for the channel
access at the same time. As seen in Section 2.4.2 this permits a reduction in
the power consumption since the active period of each node can be significantly
shorter. This scheme enables also mechanisms of data aggregation since the
parent nodes can wait to receive data from all their children before forwarding to
the next node in the path.

The major problem with the staggered scheme is that nodes located at the
same level in the gathering tree wake up at the same time so collisions still are
a problem. Moreover the scheme has limited flexibility due to the fixed duration
of the active and sleep periods that are usually the same for all nodes in the
network.

Ideally a low-power protocol should be able to allow different active and sleep
times for different nodes in the gathering tree according to the different amount
of data managed by the single node.

30



2. WIRELESS SENSOR NETWORKS

Following this principle in this paragraph a new power management protocol
derived for the staggered wakeup pattern is presented. This protocol, namely
Conservative Power Scheduling (CPS) protocol, is built on top of IEEE 802.15.4
MAC protocol and tries to adapt a slotted approach derived from TDMA schemes
to the staggered pattern already presented.

In the following description we will refer to a data collection paradigm where
data typically flows from source nodes to a sink node. Nodes are organized in
the network to form a static tree rooted at the sink. The routes in the tree are
static and each parent node has to be physical neighbor of all its children. Even
though it is possible to assume that the routes are static for a long period, the
paths can re-computed periodically to take into account variation in the network
topology.

Time is assumed to be divided in time slots of duration Ts. Slots are arranged
to form period cycles, namely the communication periods, where each cycle is
made up of m slots and has a duration of Tc = mTs. Each communication period
is divided into two parts: an Active Interval (AI) during which the node must
keep its radio on to receive / transmit from / to other nodes, and the Sleep
Interval (SI) during which nodes are sleeping, both periods are multiple of the
time slot Ts. To permit data exchange, the talk interval between a node and its
parent / child must overlap in at least a time slot Ts as clarified in Figure 2.10.

Consider for example a generic node j having node i as parent and node k

as child. If Tc is the communication period, AIij the overlapping active interval
between nodes i and j, AIjk the overlapping active interval between j and k, then
to ensure the protocol correctness we have to assure that:

AIij + AIjk  Tc (2.2)

The cycle of duration Tc is the same for all the nodes in the network thus
a synchronization is required for the entire network. The most simple method
to guarantee synchronization among all the nodes in a tree-based network is to
use a synchronization packet sent in broadcast by the tree coordinator. Each
synchronization broadcast packet delimits the cycle period Tc

31



2. WIRELESS SENSOR NETWORKS

i

j

k

i

j

k

TcTs

AIij AIjk

AISI

Sync pkt

Figure 2.10: Conservative Power Scheduling parameters and communication
model

When the CPS protocol is used, to reduce the probability of collisions in the
network each time slot Ts is uniquely assigned to a specific node in the whole net-
work. This restriction practically reduces to zero the probability of collision but,
on the other hand, it increases the latency experienced by packets to reach the
root node. In data-gathering networks for data collection this is not a real issue
since the inter-sampling period (in the order on tenth of minutes) is usually ex-
tremely larger than the gathering time, thus in this scenario it is more important
to preserve the integrity of data avoiding collisions than low data latency.

The real challenge in CPS protocol is to correctly assign the time slots to each
node such as to minimize the power consumption. To achieve this goal each node
has to be in the active interval for the shortest time possible, waking up just in
time for sending sampled data to the parent node and going back to sleep as soon
as it has forwarded all the data coming from its child nodes. Differently from
other approaches found in literature [Hohlt et al., 2004][Lu et al., 2004], CPS
does not calculate adaptively or run-time the slots scheduling but it uses a static
scheduler computed off-line. The algorithm for slots assignment takes in input
the tree-structure (parent-children relationships for all the nodes) of the network

32



2. WIRELESS SENSOR NETWORKS

and gives in output the slot times assigned to each node. In practice if k is a
generic node, the algorithm is able to calculate the initial slot time DS

k and the
final slot time DE

k such that DE
k �DS

k = AIk/Ts.
The algorithm is articulated in two different steps: (1) ordering and (2) schedul-

ing.
In the ordering phase each node in the network is assigned with an unique ID

that defines the priority of the node. Smaller the ID, greater the node priority
(the coordinator has always ID = 0). The IDs assignment follows the Depth-first
(DFS) algorithm. DFS is an uninformed search that progresses by expanding the
first child node of the search tree that appears and thus going deeper and deeper
until a goal node is found, or until it hits a node that has no children. Then the
search backtracks, returning to the most recent node it hasn’t finished exploring.

After each node is opportunely tagged with an ID (from 0 to IDMAX), the
scheduling step of the algorithm is in charge to calculate the starting time slot
for each node. Thus mathematically we calculate DS

ID8ID 2 {1, 2, . . . , IDMAX}
with:

DS
ID = DS

ID�1 + LID�1 (2.3)

where LID�1 is the hop distance of the node with ID=ID � 1 from the sink
(having L0 = 0).

After the starting time slot, we can derive the ending time slot DE
ID8ID 2

{1, 2, . . . , IDMAX} with:

DE
ID =

8
<

:
max

⇣
DS

chld_ID + 2

⌘
, if chld_ID 6= ?

DS
ID + 1, if chld_ID = ?

(2.4)

where DS
chld_ID define the set of starting time slots of the child nodes and

chld_ID the set of their IDs.
The rationale behind Equation 2.3 is straightforward: each node waits that

data sent by its own parent has reached the sink before sending out its own data,

33



2. WIRELESS SENSOR NETWORKS

0

5 1

4 2

3

D2
S= 1 D2

E= 5

D1
S= 0 D1

E= 8

D3
S= 3 D3

E= 4

D5
S= 8 D5

E= 9

D4
S= 6 D4

E= 7

Figure 2.11: Tree-based network with associated IDs, starting and ending time
slots for CPS protocol

avoiding collisions in the network. The same for Equation 2.4 that indicates how
the node can switch in sleep mode only after having forwarded data coming the
child nodes. In Figure 2.11 the resulting tree with IDs after the ordering step
is reported, in the boxes next each node the values of DS

ID and DE
ID are also

indicated.
In Figure 2.12 the temporal scheduling of the network seen in Figure 2.11 is

clearly defined. Is is possible to see in the plot how each node sends data as soon
as it wakes up and returns in low-power mode after all the child nodes have sent
its own data. In every time slice Ts only one node is active at time, thus there is
no energy wasting for data collision management.

In practical implementation of CPS, the synchronization using broadcast pack-
ets from the tree coordinator can be problematic due to delay in packet relay. For
this reason the margins for synchronization are relaxed accounting for clock drift

34



2. WIRELESS SENSOR NETWORKS

0

5 1

4 2

3

0 1 2 3 4 5 6 7 8 9

Time

Figure 2.12: Scheduled network using CPS protocol

and delay in transmission of synchronization packets. Practically within a com-
munication period Tc synchronization among nodes becomes sensible in mainly
three temporal instant: (1) when the node has to wake up to receive the synchro-
nization packet, (2) at DS

ID since it has to send sampled data to parent node and
(3) at DE

ID when it needs to forward data to the next hop toward the sink.
For these temporal markers when implementing the protocol on real hard-

ware it is always needed to consider a margin of error for synchronization, as
clearly showed in Figure 2.13. In the plot is reported the detailed time-line for a
communication period of a generic node implementing the CPS protocol.

First it is possible to see how, accounting for a non-perfect synchronization, the
node wakes up 100 ms before the scheduled appointment for the reception of the
synchronization packet. In this way the synchronization packet can be received
also in presence of temporal drifts. After the reception of the synchronization
packet the node turns off the radio to save power and starts the sampling of

35



2. WIRELESS SENSOR NETWORKS

sensors, at the end of which the node, if with DS
ID 6= 0, goes to sleep, entering in

the Sleep Interval.
Usually using a wake up timer, the node wakes up slightly in advance of the

set DS
ID and, after sending and forwarding data, returns in sleep mode again at

DE
ID, until the next communication period.

t = 0 :: sync pkt

t0= -100ms
turn on radio

t1 = 100ms
turn off radio

end sampling
sleep mode

sampling

t = Tc :: sync pkt

DID
S-100ms

sending AISI

DID
E+100ms

data
forwarding

t0= Tc-100ms
turn on radio

SI

Figure 2.13: Detailed view of a communication period for practical implementa-
tion of CPS protocol

2.5 The processing subsystem

In WSNs a balance must be maintained between capability and power consump-
tion to best address the application needs. This is particularly important for
the processing subsystem in sensor nodes that is in charge to elaborate data and
managing the connection status of the node.

2.5.1 Hardware characteristics

Modern micro-controllers integrate flash storage, RAM, analog-to-digital convert-
ers and digital I/O one a single integrated circuit therefore their tight integration
makes them ideal for use in deeply embedded systems like wireless sensor net-

36



2. WIRELESS SENSOR NETWORKS

works. The key points to take into account when selecting a micro-controller
family are mainly energy consumption and support for external peripherals but
also wake-up time and speed.

Power consumption The power consumption is strictly dependent on the
micro-controller family and architecture. Usually the trade-off between power
consumption and computational power is expressed in mA per MHz. Standard
micro-controllers consume between 0.250 to 2.5 mA per MHz. This parameter
is usually referred to peak power consumption or power consumption when the
MCU is active and loaded. For WSNs the most important parameter to evaluate
the energy saving is the stand-by or sleep power consumption, that is the con-
sumption of the MCU needed by the MCU to only maintain its memory and the
synchronization mechanisms (wake-up timers) to properly wake up when neces-
sary.

Sleep current consumption varies between 1 uA and 50 uA across controller
families. This parameter is extremely important since in usual applications for
WSNs the CPU is expected to be idle (thus in stand-by or sleep mode) 99.9% of
the time.

Wake-up time Other important parameter for MCU is the wake-up time. The
wake-up timer is the delay of a certain micro-controller to start after a sleep period
and stabilize the system clocks. The faster a controller can enter and leave the
low-power state, the more often the sleep state can be used. If the wake-up time
is short it is possible to put the MCU to sleep even between each bit of the
transmission to save energy.

Speed In the past the main duties of the micro-controller were just to manage
the communication protocols, control the radio and interact with sensors. Most
of these operations did not require very fast CPU, for this reason the CPU used
in sensor nodes were relatively slow CPU (usually between 1 and 8 MHz). Nowa-
days the availability of very powerful and fast processors with a relatively small
power consumption is moving the research toward complex data processing and
compression techniques able to greatly reduce the amount of data to send. Since

37



2. WIRELESS SENSOR NETWORKS

the power consumption of the radio is usually higher than the power spent on
calculations by CPU, it is more energy efficient trying to compress data as much
as possible before sending them out, saving on communication costs.

Another important feature of several controller families is the ability to dy-
namically change the operating frequency to reduce the power consumption. How-
ever the execution time is inversely proportional to frequency, therefore the choice
between lowering the working frequency or increasing the execution time is de-
pendent on the architecture and application.

Memory In general sensor nodes only require small amounts of storage and
program memory since data is only stored long enough for it to be analyzed
and then transmitted. In general, modern flash-based micro-controllers contain
between 16 and 512 KB of on-chip program storage that can be used as both pro-
gram memory and as temporary data storage. Additionally they contain between
8 and 64KB of data ram that can be used for program execution. while SRAM
requires more energy to retain data over time and does not require as much en-
ergy for the initial storage operation, Flash, on the other hand, is a persistent
storage technology that requires no energy to maintain data.

Operating systems support Programming wireless sensor nodes is generally
not an easy task because of the constrained memory and processing power, the
requirement to manage the radio communication and the need to conserve as
much energy as possible. Fortunately a number of operating systems are now
available for wireless sensor networks to help in the development process. The OS
manages the node’s hardware and provides a high level interface to this hardware
for the programmer.

The most common operating systems for WSN are: TinyOS [Levis et al.,
2005], Contiki [Dunkels et al., 2004], MANTIS [Bhatti et al., 2005], Nano-RK
[Eswaran et al., 2005] and Lite-OS [Cao et al., 2008].

38



2. WIRELESS SENSOR NETWORKS

Platform CPU Clock
(MHZ)

RAM/Flash Radio transceiver OS

Rene 1 Atmel AT90LS8535 4 512/8K RFM TR1000 TinyOS
Rene 2 Atmel Atmega 163 8 1K/16K RFM TR1000 TinyOS
Mica Atmel Atmega 128L 4 4K/128K RFM TR1000 TinyOS
BT Node Atmel Atmega 128L 8 4K/128K Chipcon CC1000 TinyOS
Mica2 Atmel Atmega 128L 8 4K/128K Chipcon CC1000 TinyOS
iMote Zeevo ZV4002 (ARM) 12-48 64K/128K Zeevo BT TinyOS
Nymph Atmel Atmega 128L 4 4K/128K Chipcon CC1000 TinyOS
MicaZ Atmel Atmega 128L 8 4K/128K Chipcon CC2420 TinyOS
iMote2 Intel PXA 271 13-104 256K/32M Chipcon CC2420 TinyOS
TelosB TI MSP430F1611 8 10K/48K Chipcon CC2420 TinyOS
EM250 Atmel Atmega 128L 8 4K/128K Ember 250 EmberNet
Sun Spot Atmel AT91FR40162S 75 256K/2M Chipcon CC2420 Squawk VM
SHIMMER TI MSP430F1611 4/8 10K/2G Chipcon CC2420 TinyOS
IRIS Atmel ATmega 1281 8 8K/640K Atmel ATRF230 TinyOS

Table 2.3: Selection of sensor network nodes commercially available and their
hardware characteristics

2.5.2 Sensor nodes for wireless sensor networks

Considering the stringent hardware requirements for sensor nodes several plat-
forms have been developed trying to address every point highlighted in the pre-
vious section. In the following paragraph are presented just few of the most
important platform nodes publicly available on the market. Table 2.3 shows a
longer list of the most common node platforms commercially available with hard-
ware characteristics.

MicaZ [Hill and Culler, 2002] The MicaZ platform, designed at UC Berkeley,
combines communication, computation, power management, and sensing into a
small experimental platform (the size is comparable to a pair of AA batteries).
The main micro-controller is an Atmel Atmega103L or Atmega128 running at
8 MHz, 128KB flash program memory, 4KB static RAM and the radio module
consists of a Chipcon CC2420. The standby current for Mica’s components is a
few microamps and the platform includes an expansion bus that connects to a
wide array of sensor boards.

iMote2 [Nachman et al., 2008] The iMote2 is the natural evolution of the orig-
inal IMOTE platform. Built around a low power XScale PXA271 processor, it
integrates an 802.15.4 radio (ChipCon CC2420) along with an embedded 2.4GHz
chip antenna. In addition to the traditional TinyOS, the iMote2 also supports

39



2. WIRELESS SENSOR NETWORKS

Linux and the Microsoft .net micro framework.

TelosB TelosB platform is built around an 8 MHz TI MSP430 micro-controller
with 10kB RAM, 1MB external flash for data logging and an IEEE 802.15.4/Zig-
Bee compliant RF transceiver with integrated on-board antenna. Even it his case
TinyOS is the default OS.

2.5.3 High-performance 32-bit micro-controllers for wire-

less sensor networks

Even though, as seen in Table 2.3, the majority of the nodes nowadays used in
the WSN field are small 8/16-bit micro-controllers, the gap in power consumption
(but also size and price) between the 8/16-bit and the more powerful 32-bit
micro-controllers is shrinking. In Table 2.4 a short list of 32-bit sensor nodes
available is presented. We can identify 4 different areas in which the usage of
32-bit architectures is becoming more convenient with respect to the old 8 and
16-bit architectures: (1) price, (2) performance, (3) code size and (4) energy
consumption.

Price Even though the price of the 32-bit micro-controller is still higher than
the price for 8/16-bit MCUs, the gap is going to be reduced in the next years.
This reduction is mainly consequence of the large increasing in production for
32-bit MCUs that are gradually replacing the old architectures in almost every
application.

Performance It is straightforward to have more performance per MHz deliv-
ered by the 32-bit micro-controllers. This increased performance is not only due
to the increase in clock speed but also to hardware accelerators and new tech-
nologies (i.e. Thumb technology) to improve code density and execution speed.

Code size 32-bit processors usually offer superior code density to 8-bit and
16-bit architectures. This has significant advantages in terms of reduced memory
requirements and maximizing the usage of precious on-chip Flash memory. For

40



2. WIRELESS SENSOR NETWORKS

example with Thumb-2 technology, the ARM processors support a fundamen-
tal base of 16-bit Thumb instructions, extended to include more powerful 32-bit
instructions. In many cases a C compiler will use the 16-bit version of the in-
struction unless the operation can be carried out more efficiently using a 32-bit
version.

Power consumption The energy saving derived from the usage of 32-bit MCU
is due to several factors. First, when considering ARM micro-controllers with
support for Thumb and Thumb-2 instructions, the instruction efficiency of these
MCUs is definitely higher. There are many circumstances where a single Thumb
instruction equates to several 8/16-bit micro-controller instructions; this means
that the 32-bit micro-controllers can achieve the same task at lower bus speed.

The possibility to run at lower MHz with a higher efficiency means that a
task can be achieved with shorter activity periods, saving energy as depicted in
Figure 2.14.

Time

Po
w
er

32-bit

Time

Po
w
er

8/16-bit

Energy
cost

Figure 2.14: 32-bit faster micro-controllers achieve tasks with less energy in com-
parison to old 8/16-bit micro-controllers

Another way to save energy is the possibility to put the MCU in sleep modes.
32-bit architectures usually support more sleep modes that the older architec-
tures. The increasing in the granularity of these sleep modes allows the developer
to always choose the better mode to achieve the minimum power consumption
compatibly with the application requirements.

41



2. WIRELESS SENSOR NETWORKS

Platform CPU Clock (MHZ) RAM/Flash Radio transceiver
STM32W108 ARM Cortex-M3 6/12/24 8-16KB/64-256K Embedded
Ember EM35x ARM Cortex-M3 6/12/24 12K/128-192K Embedded
iMote2 Intel PXA 271 13-104 256K/32M Chipcon CC2420
Jennic JN5148 RISC 4-32 128K/128KB Embedded

Table 2.4: Selection of 32-bit sensor network nodes commercially available

Finally the increasing demand for connectivity and sophisticated analog sen-
sors has resulted in the need to more tightly integrated analog devices with digital
functionality to pre-process and communicate data and most 8/16-bit devices usu-
ally do not offer performance to sustain these tasks without significant increase
in MHz and power consumption.

2.5.4 Case study: ultra-low power device for aircraft struc-

tural health monitoring

Damages to spacecraft and high-speed vehicle caused by the impact of debris
and particles is a critical concern for automotive and avionic systems especially
because this type of damage cannot be easily detected. The acronym BVID
(Barely Visible Impact Damage) is usually employed to indicate this type of
damage. There exist a number of different inspection techniques to localize impact
damages and to determine their severity (X-ray, C-scan, thermography, etc...)
[Roemer et al., 2005].

Among the number of structural health monitoring (SHM) technologies, the
one based on guided waves (GW) is considered as the most promising and ver-
satile. When the impact occurs at high speed this produces detectable acoustic
and ultrasonic waves on the structural materials that can be used to compute
the location of the impact and eventually to assess the damage [Bovio and Lecce,
2005]. The passive approach based on ultrasonic Lamb waves and conventional
piezoelectric transducers (PZT discs) is capable of achieving high localization
performance using a dispersion compensation algorithm with low computational
cost.

A lot of literature has been produced on the use of these sensor-array-based
methods for high-speed acquisition and processing of data from a large number
of individual sensors that usually are bulky, heavy and require wiring back to a

42



2. WIRELESS SENSOR NETWORKS

central location. Moreover when large-scale deployments are implied, the power
consumption of the system is hardly sustainable by the ordinary generation sys-
tem present on board.

For all these reasons, in contrast to these traditional transducers, wireless
sensors technologies integrating small sensors and wireless communication are
becoming vital in SHM, guaranteeing: (1) less wiring among sensors and be-
tween sensors and central unit; (2) lower weight; (3) reduced power consumption;
(4) real-time monitoring even in harsh environmental conditions and (5) a more
scalable solution.

Exploiting the advantages and the opportunities given by modern 32-bit pro-
cessors it is possible to think and design a new PZT-based wireless embedded
ultrasonic structural monitoring system for impact localization with advantages
of compactness, light weight, low-power consumption, high efficiency and preci-
sion.

The passive approach based on ultrasonic Lamb waves and conventional piezo-
electric transducers (PZT discs) is capable of achieving high localization perfor-
mance using a dispersion compensation algorithm with low computational cost.
The device samples the signals in passive mode using 4 different piezoelectric
transducers and the signals are elaborated on a Cortex-M4 based micro-controller.
By cross-correlating the dispersion-compensated signals, the impact point can be
determined via hyperbolic positioning. When the impact occurs, the monitoring
position result is recorded only in a small amount of data and sent to the central
system through wireless transmission.

2.5.4.1 SHM design

The structure of the new SHM system is illustrated in Figure 2.15. In the new
SHM system, the signal conditioning, amplification and A/D converting circuits
present in conventional SHM systems are replaced by a simple comparator circuit,
in which the response signal from a PZT sensor is directly changed into a digital
queue by comparing it with a preset trigger value.

The system is composed by 4 different elements: (1) piezoelectric sensors,
(2) processing electronic unit, (3) acquisition chain and (4) wireless transmission

43



2. WIRELESS SENSOR NETWORKS

PZT sensors

A/D threshold

A/D threshold
MCU

STM32F4
Wireless
Module

A/D threshold

A/D threshold

STM32F4 Board

Figure 2.15: Structure of the embedded SHM device for impact detection

module.

Piezoelectric sensors When an impact occurs on an elastic structure, a stress
wave is created and it propagates across the surface of the structure, radially
from the point of impact. The stress wave can be caught by PZT sensors in a
passive way. The proposed system implies at least 4 conventional piezoelectric
transducers arranged in a geometrical fashion. The sensor array of piezoelectric
elements needs to contain at least four sensor elements in order to provide reliable
triangularization capabilities.

Processing electronic unit At the center of the system is the processing
core which contains function modules for data collection, processing and com-
munication control. A Cortex-M4 based board is selected as main chip in the
processing core. The MCU is specifically a STM32F4 evaluation board featuring
a STM32F407VGT6 micro-controller with 1 MB Flash and 192 KB RAM.

The strength point of the core is the CPU with FPU, adaptive real-time
accelerator allowing 0-wait state execution from Flash memory and frequency up
to 168 MHz.

Acquisition chain The proposed signal elaboration technique is based on an
innovative time-frequency analysis techniques: by cross-correlating the dispersion-
compensated signals the impact point can be determined via hyperbolic position-

44



2. WIRELESS SENSOR NETWORKS

ing.
This solution allows a noticeable reduction in cabling and circuitry, improving

at the same time the energy efficiency due to implicit data compression and for the
reduced number of transducers to be used during the actuation and sensing phase.
PZT transducers are connected directly with the ADC ports of the STM32F4
board and each ADC channel is configured in dual mode with 250 kHz maximum
sapling frequency since that spectral components of the Lamb waves lower rapidly
above 60-100 kHz. The acquired values are stored in a DMA circular buffer; when
the maximum value of the buffer exceeds the threshold value the trigger is sent
and the MCU performs the localization algorithm.

Wireless transmission module When the device is used to monitor the struc-
tural health of large structures, it is possible to think to the network of devices as
distributed intelligence. Each node in the network monitors a specific portion of
the structure surface, eventually reporting to a central location in case of detected
damage.

The wireless communication technology allows long distance data transmission
without wiring, simplifying the difficulties in multi-device network monitoring.

To be compliant with the low-power requirements the device presents a RF
wireless module ZigBee/IEEE802.15.4 compliant, connected to the main board
using an SPI interface. The network topology suitable for this type of applications
is mesh or star network, where each node in the network is able to communicate
with the central gateway.

2.5.4.2 Experimental verification

The proposed system has been exploited to locate impacts in an aluminum 1050A
square plate 1 m ⇥ 1 m and 3 mm thick. Four PZT discs (PIC181, diameter 10
mm, thickness 1 mm) were placed asymmetrically at the corners of a square.

Guided waves were excited by hitting the plate with a pencil orthogonally
to the surface. The ADC channels of the STM32F4 discovery board are set in
dual mode and continuously acquire signals with a maximum sampling frequency
of 250 kHz. Data are recorded in a circular DMA buffer and acquisitions are
triggered when the signal received from one of the PZT discs reaches a threshold

45



2. WIRELESS SENSOR NETWORKS

0 2 4 6 8 10 12 14
Error (mm)

0

2

4

6

8

10

12

14

16

C
ur

re
nt

/E
rro

r (
m

A/
m

m
)

MCU processing
ADC sampling

(a)

100 150 200 250 300
Sampling Frequency (KHz)

0

2

4

6

8

10

12

14

16

C
ur

re
nt

/E
rro

r (
m

A/
m

m
)

MCU processing
ADC sampling

(b)

Figure 2.16: Current consumption and localization error vs (a) the error itself
and (b) the sampling frequency

level of 50 mV. The sampling frequency was sufficiently high to avoid aliasing
effects, as the frequency content of the acquired signal vanishes above 60 kHz. In
order to analyze the dependency of the power consumption and the localization
performances with the sampling frequency, experiments were carried changing

46



2. WIRELESS SENSOR NETWORKS

the sampling frequency in the range [150-250] kHz.
Results in Table 2.5 show how lowering the sampling frequency, the current

consumption decreases but not in a linear way; furthermore the MCU elaboration
step is very sensible to the sampling frequency since the algorithm complexity is
proportional to the sample buffer length which is reduced if the sampling fre-
quency is lower.

Mean Current Consumption
ADC sampling Signal Processing

fs = 250 kHz 32 mA 63 mA
fs = 200 kHz 27 mA 53 mA
fs = 150 kHz 24 mA 50 mA

Table 2.5: Current consumption for different sampling frequencies in the SHM
device

On the other hand lowering the sampling frequency the positioning error rises;
in contexts such as wing monitoring, the high localization resolution is an impor-
tant constrain because facilitates the decision to be taken in critical phases such
as aircraft takeoff and optimizes the number of sensors to be used to monitor
large areas. A good parameter able to take into account both the current con-
sumption and the spatial resolution is the radio among the current consumption
and the error as seen in Figure 2.16a while Figure 2.16b shows this ratio when
the sampling frequency is changed.

Finally the frequency sampling choice depends on the localization and current
constraints, knowing that if the location is inaccurate it is necessary to scan in a
larger area since that the defect induced from the impact can be below the surface
and therefore not immediately visible and then the control times get longer.

47



Chapter 3

Data reduction in WSNs

In the previous chapter the energy consumption for wireless sensor nodes has
been analyzed with particular focus on radio and processing unit. As seen in
Section 2.2, depending on the specific application, the sensing subsystem might
be another significant source of energy consumption, thus its power consumption
has to be reduced as well.

The techniques used in the reduction of the energy consumption derived from
the sensing subsystem are usually referred to as data-driven approaches. The
reduction in power consumption given by these techniques affects both the sensing
subsystem and the radio subsystem since these techniques aim to reduce the
number of bytes to be sent by the radio transceiver.

Data reduction through data-driven approaches has usually two different forms:
(1) data aggregation and (2) encoding and compression.

In general these two techniques are supported in modern WSNs by middle-
wares. Middleware should provide data aggregation and data compression algo-
rithms, giving the applications above the ability to choose the algorithm that
best suits them. In addition, it may be useful to let the application injects its
own in-network processing functions in the network.

Data aggregation Data aggregation, also called data fusion, is one of the most
used techniques of in-network processing. The benefit of this technique (power
saving) comes from the fact that transmitting data is considerably more expensive
than even complex computations. This particular form of data management is

48



3. DATA REDUCTION IN WSNS

called aggregation since data collected from different nodes is aggregated into a
condensed form along the path from the node to the sink.

Encoding and compression While data aggregation does not transmit all the
bits of measured data from sensors, with data encoding is still possible to reduce
the number of transmitted bits but still obtain the full information about all
sensor readings at the sink.This is feasible using special compression and encoding
techniques. Moreover since sensor nodes are deployed close to each other in the
physical environments, usually the readings of adjacent nodes are correlated.
The compression and encoding techniques exploit such correlation, which can
be a spatial one (in adjacent nodes) or a temporal one (readings at the same
moment).

3.1 Middlewares

The trend in WSN of the usage of powerful 32-bit micro-controllers as seen in
Section 2.5.3 is gradually shifting the problem to manage the complexity from
the collecting sink to the nodes. The nodes are becoming powerful enough to be
used actively for data elaboration and transformation but also for more complex
operating systems and distributed applications. Even though this prospective
introduces new possibilities in terms of data management and power consumption
reduction, all this complexity has to be managed carefully.

To cope with this complexity one possible solution is to introduce abstraction
layers and middlewares. Middleware refers to software and tools that can help
hide the complexity and heterogeneity of the underlying hardware and network
platforms, ease the management of system resources, and increase the predictabil-
ity of application executions. WSN middleware is a particular kind of middleware
providing the desired services for pervasive computing application using sensors
and distributed networking.

The motivation behind the research on middlewares for WSNs derives from
the gap between the high-level application requirements and the complexity of the
underlying structure of WSNs. The requirement includes flexibility, re-usability
and reliability while the complexity is due constrained resources, dynamic network

49



3. DATA REDUCTION IN WSNS

topology and variety in hardware configuration.
In the early time of the research on WSNs there was no need for middlewares

since the simplicity of the applications, due also to the poor performance of the
8/16-bit micro-controllers, did not require an intermediate layer of abstraction
on top of the hardware. Along with the rapid evolution in this area, the usage of
middlewares has become a requirement.

Practically a WSN middleware: (1) provides system abstraction so the ap-
plication programmer can focus on the application logic without caring about
low-level or algorithmic implementation, (2) provides hardware abstraction, de-
coupling the application layer from low-level details about hardware, (3) helps
the programmer in network infrastructure management and power management.

While operating systems provide a useful environment for resource manage-
ment and task scheduling, they are too general and usually do not facilitate the
development of high level applications because of the wide variety of potential
applications for WSN and the resource constraints of a limited platform.

For this reason nowadays middlewares are emerging as a valid alternative and
in particular frameworks are becoming a valid tool to provide abstraction toward
hardware, ensuring at same time a layer that improves interoperability and allows
the reduction of development time.

The architecture of a framework is generally composed by three main com-
ponents: (1) an application core to be included in each node of the WSN which
provides a stub interposed between hardware and high level application hiding
low level details, (2) a gateway forwarding sensor data from WSN to a backend
server and (3) the server application which is responsible for data analysis and
processing.

The opportunity to easily program and monitor a large number of nodes over
a large area poses new challenges in terms of design, information processing and
aggregation techniques given by these new frameworks.

A framework provides the programmer an intermediate abstract layer between
hardware and software that avoids the additional work of reimplementing the
same algorithm in different way according to the underlying specific hardware.
Moreover the overhead involved in design protocols for data aggregation and
dissemination can be prevented by delegating the problem to the framework. Such

50



3. DATA REDUCTION IN WSNS

a middleware permits to implement applications, algorithms and policy in WSN
hiding low-level details about hardware and effective communication protocols to
the application developers.

In literature there are several middlewares or frameworks that at a certain
extent share the same structure: DexterNet [Kuryloski et al., 2009], MobiCare
[Chakravorty, 2006], Senceive [Chakravorty, 2006], CodeBlue [Kambourakis et al.,
2007], SPINE1.3 [Iyengar et al., 2008] and others.

3.1.1 Case study: SPINE2

SPINE2 is a programming framework designed to speed up the prototyping
and implementation of collaborative WSN applications. It provides a platform-
independent layer making easier the porting process from one platform to another
one [Fortino et al., 2009b]. It is composed by libraries of protocols, utilities and
processing functions besides a set of java APIs used on java server interfaced with
local gateway providing a set of routines to manage and control informations and
data to and from nodes [Fortino et al., 2009a].

More in detail SPINE2 uses a task-driven model to program the sensor nodes,
where each task corresponds to a different function and can be discovered, created,
activated, scheduled and controlled independently on each node by the gateway
using apposite java routines. Moreover a sensing and elaboration task can be
performed entirely on node itself, aiming at a significant reduction of transmitted
data and then increasing the battery life and lifetime of the system. Since the
central coordinator has a general view of the state of WSN and it is responsible for
tasks allocation, a dynamic approach can be used about distribution of the work,
mapping different tasks according to changes in context, goals and state of the
single node. This can be done using proper messages exchange permitting load
balancing, exploiting parallelism in computation and granting QoS and faults
tolerance as well.

SPINE2 is composed by a core written in C which adapts the hardware to
different platform through specific interfaces as in Figure 3.1. The choice of using
C is due to the large scale deployment of this language in the world of sensor
platforms.

51



3. DATA REDUCTION IN WSNS

SPINE2 Application (C language)

SPINE2 core

Adaptation modules

Hardware (EM250)

boot
component scheduler sensors

interface
radio

controller

Figure 3.1: SPINE2 stack. The spine core separates and connects hardware and
application level. The link between the core and the hardware goes through
general interfaces to adapt to the specific node

With the software layering approach and the creation of the framework, the
development of high level software and the framework itself can be decoupled,
keeping the process of maintaining the code efficient and structurally separated.

In our cases SPINE2 framework has been ported on a Ember EM250 with
EmberZNet ZigBee stack, a ZigBee System-on-Chip that combines a 2.4GHz
IEEE 802.15.4 compliant radio transceiver with a 12MHz 16-bit microprocessor
equipped with 128Kb of flash memory and 5Kb of RAM.

To port the framework on this hardware some software interfaces have been
implemented and adapted to the node: (1) the spine boot component containing
the initialization code, (2) the scheduler to manage tasks execution, (3) the sensor
drivers through which real sensors data can be accessed and (4) the radio compo-
nent which passes and forwards packet between SPINE2 core and the underlying
radio controller.

52



3. DATA REDUCTION IN WSNS

3.1.1.1 SPINE2 on Ember EM250 platform

The chosen platform is a XAP2 core which is very versatile and has low power
components. Albeit SPINE2 has a small foot print, during the porting several
decisions about implementation of hardware dependent routines have been taken
trying to overcome the limitations due to the lack of RAM memory and com-
putational power. In Table 3.1 the summary of the memory occupation for the
ported version of the SPINE2 is reported.

RAM Usage
Used by globals, static, and call stack 3844 bytes
APPLICATION_CONFIGURATION_HEADER usage 1174 bytes
Available for future use 102 bytes

Flash Usage
CODE segment 89180 bytes
Available for future CODE 15140 bytes
CONST segment 3442 bytes
Available for future CONST/INITC 4562 bytes

Table 3.1: Flash and RAM usage of SPINE2 framework

The table shows how the most critical point in the architecture is the RAM.
Because of the lack of RAM we do not allow dynamic memory allocation, working
only with statically allocated buffers. These two aspects rise the big problem to
write code with preallocated buffers saving as much RAM as possible. Therefore
each array in the code is accurately weighted paying attention to not allocate
unnecessary space.

This is actually a limitation not directly related to SPINE2 but it has to be
taken into account during the development of specific application functions (e.g.
feature extraction). In fact heavy RAM-hungry functions should be carefully
optimized to be integrated into SPINE2 and fit into the limited RAM free space.

Another point to take into account is the additional delay in operations
brought by the presence of the interposed middleware. It increases also the en-
ergy consumption on the node which is largely compensated by the power saving
in communication activity.

In the following paragraphs each interface of the frametwork is presented em-

53



3. DATA REDUCTION IN WSNS

phasizing how the abstraction is implemented against a limited resource hardware.

Boot component It is composed by preliminary code used to call the init
functions for sensors and buffer pools.

Scheduler SPINE2 adopts a timer-driven task oriented model where each task
(sensing, feature extraction, aggregation, data transmission) can be dynamically
created, started and deallocated by specific packets from the coordinator. Each
single operation performed by node is then represented by a periodic task linked
to a handler.

Since using the Ember APIs it is not possible to create from scratch a periodic
task, it is necessary to create a small set of generic periodic tasks which will
be differently specialized according to the incoming configuration packets. The
drawback of this approach is that the maximum number of tasks allowed is fixed
and simultaneously the tasks cannot be too many since each additional task takes
34 bytes of RAM.

typedef struct {

EmberEventControl control;

taskDescription td;

unsigned char set;

} td_ember;

...

td_ember task[MAX_EVENTS];

EmberEventData events[MAX_EVENTS+1] =

{

{ &(task[0].control), schedulerHandler },

{ &(task[1].control), schedulerHandler },

{ &(task[2].control), schedulerHandler },

{ NULL, NULL }

};

Generally three tasks are required: one to retrieve a sample from sensors, the
second one to extract a feature every n samples and the last one to send out the

54



3. DATA REDUCTION IN WSNS

data packet containing the result of the operation of feature extraction.
The schedulerHandler() routine is the generic function responsible for han-

dling and periodic rescheduling of the task. Even if the restrict number of allo-
cable tasks limits the set of possible operations of the node, these are enough to
permit the use of SPINE2 and Ember motes in a real environment. Considering
the limited resources available on the node, performing more than 3 or 4 tasks in
parallel is not advisable, this is why the prefixed number of allocable tasks is not
a major limitation in SPINE2.

Sensor interface The sensor interface deals with sensors access and data ac-
quisition. It is a very critical part since each additional delay introduced by the
middleware limits the maximum sampling frequency of the sensors. In our test
a synchronous reading process is implemented: during the access to ADC or SPI
interfaces the normal program execution is paused until the reading is completed.

SPINE2 (ADC) Native (ADC) SPINE2 (SPI) Native (SPI)

0.5

1

1.5

2

D
el

ay
 [m

s]

Figure 3.2: Comparison of delay in reading sensor data between SPINE2 and
native Ember routines

55



3. DATA REDUCTION IN WSNS

In Figure 3.2 delays in performing a sensor reading (both ADC and SPI)
are presented. It is clear, especially using a SPI channel, that the presence of
intermediate code and functions between application and low level routines for
accessing sensors involves a high delay, actually bounding the sampling frequency
for these sensors.

Although SPINE2 cannot be employed in tasks with strict real-time con-
straints and applications requiring a very high sampling frequency, the delay
introduced is small enough to permit the use in generic applications.

Radio controller The radio controller is responsible for sending data over the
air. SPINE2 defines the payload content and the lower interfaces assemble a real
packet and send it to coordinator using hardware specific APIs.

0 100 200 300 400
Payload content [bytes]

10

20

30

40

50

60

70

D
el

ay
 [m

s]

Native
SPINE2

Figure 3.3: Delay for sending data in function of data size. Delays are measured
considering the time elapsed between the call of the sending routine and the
callback function indicating the successful dispatch of the data packet

As seen in Figure 3.3 the presence of SPINE2 brings in more delay in sending
data. This is due to two different reasons: (i) a computational overhead to

56



3. DATA REDUCTION IN WSNS

assemble the packet constituted by the payload and an additional SPINE2 specific
header, and (ii) the specific header itself that increases the number of packets to
send keeping unchanged the bytes of data to incapsulate (in normal circumstances
the maximum payload allowed by Ember APIs in each packet is around 100 bytes).

This increases the delay in communication between nodes and power consump-
tion due to the additional number of packets sent over the network. Therefore
the choice of using SPINE2 should be narrowed to applications in which the delay
is not a major problem and the additional power consumption given by few more
packets is compensated by a better overall energy saving policy.

3.1.1.2 Application scenarios

The limitations of hardware and implementation stressed in the previous para-
graph regarding the delays in sensor reading and data sending do not prevent the
usage of SPINE2 in practical cases where the use conditions are not extreme or
atypical.

We show two interesting real applications in which, despite limitations, SPINE2
achieves a general behavior of the system that is not achievable without using a
framework as intermediate abstraction layer.

These case studies point out different aspects in which SPINE2 can be suc-
cessfully exploited: (1) energy and power savings: the possibility to operate in-
network processing and in-node computation avoiding useless and power hungry
communications, (2) load balancing and redistribution: the WSN coordinator
can map different tasks to each node according to the application context, local
computational load and amount of energy available, (3) data aggregation and
dissemination: data can easily spread inside the network without caring about
lower network protocols and hardware, focusing only on application and algorithm
implementation.

Fall detection

The major contributions to power consumption in sensor nodes are: (1) the power
consumed by the digital part for acquisition and elaboration of sensor data and
(2) power for inbound and outbound transmissions.

57



3. DATA REDUCTION IN WSNS

Therefore to apply power-aware techniques we can operate in two different
domains: (1) communication protocols and (2) communication-aware software.

Consider a network where a node has to gather data from sensors on which it
is necessary to perform some kind of operation. Data analysis can be performed
on another node in the same network or on the node itself. This two choices have
a very different impact on energy consumption, involving a different amount of
packets sent within the WSN. If digital signal processing is performed by the
acquiring node, the output transmission is avoided, saving the energy spent in
communication.

According to this new vision the node is not only a passive device that senses
and sends data to a coordinator but it becomes a true computational unit. Shift-
ing the analysis from a centralized point to a distributed elaboration creates new
problems in coordination and control that cannot be faced without resorting to
a new approach. The energy saving obtained with a local computation is com-
pensate by an increasing difficulty in configuration and control over the network,
opening a new trade-off between power saving and configuration.

The simpler case is that one in which a specific algorithm has to be imple-
mented over a set of data acquired by a remote sensor node. In this case the
node is used simply as a data forwarder towards central coordinator that can be
configured by the user with specific parameters. Since each sample coming from
environment is sent toward the gateway a lot of energy is wasted in communica-
tion, proportionally to sampling period and acquisition time.

Moreover with this configuration the coordinator should have enough compu-
tational power to serve each request and elaborate each data stream, hence the
system is not scalable at all.

Through the usage of a specific framework for signal processing in node en-
vironment (SPINE2) the allocation of specific tasks on sensor nodes and the
acquisition of the result is a very simple procedure. SPINE2 permits to dynam-
ically allocate and start (but also to stop and to deallocate) tasks on a specific
node, configuring it over-the-air. The data effectively sent to the coordinator is
only the result of the on-node elaboration.

A very successful clinical application of this framework is the fall detection
in which the acceleration is taken as parameter to monitor for detecting the fall.

58



3. DATA REDUCTION IN WSNS

A series of nodes equipped with accelerometers are posed on several parts of the
body with the aim to capture accelerations along the three axis: according to the
value of a special parametric function a movement is classified as a fall or not.
The classification is done by comparing the value of the estimation function with
an opportune threshold [Chen et al., 2005]; if the value of acceleration is above
the threshold then the movement is classified as a fall.

A very common scenario proposed in literature is that one in which the sys-
tem is composed by several sensor nodes connected over a WSN to a central
coordinator, that generally is a portable device able to run Java and log events.
If the framework is not available the developer has to implement fixed estimation
functions with immutable threshold, proceeding to write a new firmware for each
change in parameters.

SV

SVxy

Z2

SPINE2
SPINE2

thresholds / functions

alarm

collector

Acc thresholds / 
functions

Figure 3.4: SPINE2 in fall detection applications reduces energy consumption of
the node. The coordinator can choose and change the evaluation function and
value of thresholds

In this context SPINE2 provides an abstract and configurable layer making
available the entire set of functions for fall detection, as represented in Figure 3.4.
Coordinator can choose and exchange at run-time the function used to evaluate
the fall using few configuration packets. Moreover using Java APIs it is possible

59



3. DATA REDUCTION IN WSNS

to modify value and typology of thresholds used to identify the fall.
Since this type of characterization is node oriented, different kind of functions

and thresholds can be used for different sensors. This highly dynamic configura-
tion mechanism is extremely power-aware: a single packet of alarm is sent back
to coordinator when a fall is detected. Every other data processing is performed
on the node using parameters received by coordinator.

During our tests we have evaluated through an oscilloscope the power con-
sumption involved in sending data. The trace extracted shows the voltage across
a precision resistor used to evaluate the absorbed current by the device. The
visible spike is related to a peak in power consumption up to 120mW in corre-
spondence to the packet sent to coordinator. The power consumption is always
at minimum level since the radio is always off except when a packet has to be
sent and when the node polls the coordinator asking for configuration packets.

This is the case in which the problem of the increased number of packets
circulating within the network because of SPINE2 is largely compensated by the
number of those ones not sent over-the-air (using dynamic on-node processing
permitted by middleware). Even though SPINE2 brings additional extra packets
and then energy consumption, the global energy balance is positive and favorable
to adoption of the middleware that permits to exploit better packet management
policy and save the number of payload byte sent.

Concluding the use of a framework infrastructure like SPINE2 makes the
system globally energy-aware with the advantage of a system highly configurable
on-the-fly.

Model Predictive Control

The second case study is Model Predictive Control (MPC). It is a very interesting
feedback strategy in which linear models are used to predict the system dynamics
even though the dynamics of the closed-loop system is nonlinear. The main idea
of MPC is to select a control action solving on-line an optimal control problem.
The aim is to minimize a specific cost function over a future horizon considering
the constraints on the manipulated input and output, where the future behavior
is extracted according to a model of the plant [Nikolaou, 2001].

60



3. DATA REDUCTION IN WSNS

Practically at a certain time t the current state plant is sampled and the
state is used as parameter in a cost function to minimize on-the-fly, obtaining a
cost-minimizing control strategy for a short time horizon in the future [t, t+ T ].
After the implementation of the control strategy, the horizon is shifted one step
ahead and the algorithm computes the new strategy. An application using MPC
involves the deployment of sensor nodes to gather data about the system state
and solving an optimization problem requires a lot of computational effort. The
limited resources of nodes in a WSN are not enough to face such a complexity.
For this reason in most cases data containing the state of the controlled system
are sent to a device with more computational power able to solve the optimization
problem. Once the new vector containing the control policy is computed, this is
sent back to the nodes that can perform the control.

A typical situation is that one in which the two sensor nodes represented are
working on the same system or the inputs are correlated in some way (for example
they are in the same environment and performing some kind of measurements on
it). This means that the actions performed are not independent one each other
and the information about the state of a node is correlated to the state of the
other one.

For instance we can have two nodes that receive their energy from solar cells
as in [Moser et al., 2007]. In this case during the computation of the best state
trajectory it is necessary not only dealing with the minimization of power con-
sumption but also considering the time-varying amount of energy available.

The system model is presented in Figure 3.5 in which two SPINE2 running
nodes are powered by energy harvesting devices that at each time t supply energy
ES1(t) and ES2(t) to the energy storages. At the same interval t part of the
energy, ED1(t) and ED2(t), is consumed by the node, leaving an amount of
energy EC1(t) and EC2(t) for further use.

On the device there are two main tasks running: the application (depending
on the goal of the WSN) and the estimator that predicts future energy production
of the harvester, based on past history.

The controller is left outside the nodes, for two main reasons: (1) it is compu-
tationally the most intensive part and nodes are not able to perform such a heavy
calculations on a resource-constrained hardware as an embedded system and (2) a

61



3. DATA REDUCTION IN WSNS

SPINE2

estimation

application System state

Energy 
source

Energy 
storage

Es1(t)

ED1(t)

ON-LINE
CONTROLLER

SPINE2

E1(t,k)

Rk1(t)

EC1(t)

SPINE2

estimation

application System state

Energy 
source

Energy 
storage

Es2(t)

ED2(t)

E2(t,k)

Rk2(t)

EC2(t)

Figure 3.5: MPC scheme using SPINE2 as underlying framework. Data elabo-
ration is not performed on-node but an external controller process data coming
from WSN to extract an optimal solution

centralized controller can consider the performance and state of both the sensor
nodes (and in general of the whole network), to develop a better control strategy.

The controller adapts properties of the applications, RK1(t) and RK2(t),
based on the estimation of future available energy, the energy currently stored
and the information about the system state, to optimize the overall objective
respecting the system constraints.

The solution of the LP problem involves not only a non-negligible computa-
tional power but also the knowledge of the parameters of two systems. For this

62



3. DATA REDUCTION IN WSNS

reason the on-line controller cannot be inside the nodes, but it has to be an extern
system in charge of computing the optimal solution.

Even in this case the framework infrastructure of SPINE2 allows to build up
the entire system without caring useless details not related to MPC problem.
The SPINE2 core on the nodes takes care of communication between node and
controller while the gateway is a proxy toward an implementation of resolution
algorithm for the LP problem that can reside on the gateway itself.

SPINE2 makes easy the process of aggregation and dissemination of packets
inside the network but the performance of the network itself is very important
to ensure the correct application of the control command. Since the framework
hides the protocols details about network communication it is always necessary
to be sure that delays does not affect the packet relay.

1 2 3 4 5 6
# intermediate hops

0.02

0.04

0.06

0.08

0.1

0.12

de
la

y 
[s

]

50 pkt/s
0 pkt/s
25 pkt/s

Figure 3.6: Transmission delay vs number of hops in a multi-hop ZigBee network
when varying the traffic traversing each intermediate hops

This is true especially in multi-hop networks where the path of packets is
not fixed but it is function of a series of parameters that cannot be monitored

63



3. DATA REDUCTION IN WSNS

run-time. In Figure 3.6 a plot is presented representing the delay inside a ZigBee
network in function of the number of hops traversed by a packet, using as parame-
ter the outbound traffic (in packet/s) affecting each hop. The experimental setup
is composed by ZigBee Ember EM250 nodes configured as routers. The path to
follow within the network is hard coded inside the payload of the packet itself
while the nodes are subject to a high rate of packets sent towards the coordinator.

For a big network, a long path of 8 hops and with high traffic the delay is not
above 130ms. This value is not able to affect significantly the control considering
that the resolution process of the LP problem is longer and therefore determines
the throughput of the entire system.

As seen before SPINE2 introduces also a slightly delay in sending routines
and data acquisition. If the sampling period of sensors is not too short the delay
in reading sensors is negligible. In particular, the MPC can add some constraints
on sampling rate to avoid a too frequent access to sensors. The delay in sending
routines can be neglected because the additional average delay of 10ms does not
compromise the resolution of the linear programming problem which is more
intense and time demanding.

3.2 In-network aggregation

In the typical scenario for WSN data is gathered by the several sensor nodes of
the network and data is made available at same central sink node, where it is
processes, analyzed and used by application. In many cases the data gathered
and sent by sensors can be jointly processed while being forwarded to the data
sink. In-network processing techniques deal with this distributed processing of
data within the network.

Data aggregation techniques are tightly coupled with data representation at
sensor nodes and how packer are route through the network. Both these aspects
have a significant impact on energy consumption and network efficiency.

Briefly in-network aggregation is the process of gathering and routing informa-
tion through a multi-hop network processing the routed data at the intermediate
nodes such as to reduce the energy consumption and then to increase the network
lifetime.

64



3. DATA REDUCTION IN WSNS

In general it is possible to distinguish between two general approaches: (1) in-
network aggregation without size reduction and (2) in-network aggregation with
size reduction.

In in-network aggregation without size reduction data are not elaborated by
intermediate nodes but different data can still be packed in less packets exploiting
remaining free space.

In in-network aggregation with size reduction the aim is to reduce the amount
of data that has to be sent by each node in the network. This is usually done
combining and compressing data coming from different sources. This approach is
better than the previous one in terms of energy saving but usually it reduces the
accuracy of the reconstruction at the sink since it is not possible to perfectly re-
construct all the original data while with the first approach preserves the original
information.

Moreover the in-network aggregation with size reduction can adopt two dif-
ferent approaches: lossy and lossless. In the first case the original values cannot
be recovered exactly after having merged data during aggregation. In addition
we may lose precision with respect to transmit all recordings uncompressed. The
lossless approach allows us to compress the data by preserving the original infor-
mation.

Among the most recent and famous approach for data compression through
in-network aggregation is the so called Compressive Sampling (CS).

3.3 Compressive Sensing (CS)

CS theory [Candes et al., 2006][Donoho, 2006] shows that if a signal has a sparse
representation in one basis then the signal can be recovered from a small number
of projections onto a second basis that is incoherent with the first.

CS relies on tractable recovery procedures that can provide exact recovery of
a signal of length N and sparsity K, i.e., a signal that can be written as a sum of
K basis functions from some known basis, where K can be orders of magnitude
less than N .

The implications of CS are promising for many applications, especially sensing
signals that have a sparse representation in some basis. Instead of sampling a

65



3. DATA REDUCTION IN WSNS

K-sparse signal N times, only cK incoherent measurements suffice, where K can
be orders of magnitude less than N . Therefore, a sensor can transmit far fewer
measurements to a receiver, which can reconstruct the signal and then process it
in any manner. This is particularly important for sensor nodes in WSN where to
prolong the node lifetime is necessary to reduce as much as possible the number
of bytes sent toward the coordinator.

Moreover, the cK measurements need not be manipulated in any way before
being transmitted, except possibly for some quantization.

Independent and identically distributed (i.i.d.) Gaussian or Bernoulli (random
±1) vectors provide a useful universal basis that is incoherent with all the others.
Hence, when using a random basis, CS is universal in the sense that the sensor
node can apply the same measurement mechanism no matter what basis the signal
is sparse in (and thus the coding algorithm is independent of the sparsity-inducing
basis).

3.3.1 CS: a mathematical background

Consider a generic signal x of length N indexed as x(n), n 2 {1, 2, . . . , N}. Sup-
pose that the bases  = [ 1, . . . , N ] provides a K-sparse representation of x,
that is:

x =

NX

n=1

✓(n) n =

KX

`=1

✓(n`) n`
(3.1)

where x is a linear combination of K vectors chosen from the basis  , {n`}
are the indices of those vectors and {✓(n)} are the coefficients. The same formula
can be written in matrix notation:

x =  ✓ (3.2)

where x is an N ⇥ 1 column vector, the sparse basis matrix  is N ⇥N with
the basis vectors  n as columns and ✓ is an N ⇥ 1 column vector with K nonzero

66



3. DATA REDUCTION IN WSNS

elements.
The K-nonzero elements define the sparsity of the signal that can be indicated

using the k · kp notation where the `p norm is defined as:

kxkp =
 

N�1X

i=0

|xi|p
!1/p

(3.3)

therefore we can write that k✓k0 = K.
The CS applies not only to exactly K-sparse signals but also for signals which

coefficients decay rapidly but not to zero.
The standard procedure to compress signals, known as transform coding, is

(1) to acquire all the N samples of the signal x, (2) to compute the complete set
of transform coefficients {✓(n)}, (3) to locate the largest K coefficient and discard
the remaining, (4) to encode values and locations of these largest coefficients.

This procedure is highly inefficient since we must sample the all signal gath-
ering all the N samples and we must encode all the transformation coefficients
to be able to retain just the most significant. Finally the encoder has the encode
value and location for each coefficient.

CS just find solution to these problems directly esimating the set of the largest
coefficients without going through the sampling of the whole signal.

3.3.2 Incoherent projections

To be more precisely with CS we are not able to directly acquire the largest
coefficients. Instead we measure and encode M < N projections y(m) = hx,�T

mi
of the signal onto a second set of basis functions {�m} with m = 1, 2, . . . ,M ,
where �T

m denotes the transpose and h·, ·i is the inner product.
So we have:

y = �x (3.4)

where y is an M ⇥ 1 column vector and � is the M ⇥ N measurement basis

67



3. DATA REDUCTION IN WSNS

with each row is a basis vector �m.
Is is clear that being M < N the problem in Equation (3.4) is ill-posed.
Actually CS states that under certain conditions it is possible to recover the

original signal. In particular when the basis {�m} cannot sparsely represent the
element of the basis { n} (incoherence) and the number of measurements M is
large enough then it is possible to find solution to Equation (3.4).

Fortunately, random matrices are largely incoherent with any fixed basis  .
We can construct the random measurement basis � in several ways:

• Gaussian measurements. In this case we assume that the entries of the
matrix � are independently sampled from the normal distribution with
zero mean and variance 1/K if matrix is K ⇥N .

• Binary measurements. The entries of the K ⇥ N matrix � are indepen-
dently sampled from the symmetric Bernoulli distribution with P (�ki =

±1/
p
K) = 1/2

• Fourier measurements. We suppose that the matrix � is a partial Fourier
matrix obtained by selecting K rows uniformly at random as before and
normalizing the columns.

3.3.3 Signal recovery

To recover the original signal from its compressed version we can resort to different
algorithms.

Signal recovery via `0 optimization

The recovery of the coefficients {✓(n} can be achieved solving optimization prob-
lems by searching for the signal with `0-sparsest coefficients that agree with the
M observed measurements y.

The problem with this approach is that solving the `0 optimization problem
is extremely complex and known to be NP-complete.

68



3. DATA REDUCTION IN WSNS

Signal recovery via `1 optimization

A much easier problem with an equivalent solution is the `1 minimization. We
need only to solve for the `1-sparsest coefficient ✓ that have the measurements y,
such that:

ˆ✓ = argmin k✓k1 s.t. y = � ✓ (3.5)

this problem is known as Basis Pursuit [Chen et al., 1998] and it can be solved
with traditional linear programming techniques polynomial in N .

To recover the original signal we require M > cK measurements where c > 1

is an oversampling factor.
Usually we can assume that the sparsity scales linearly with N ; that is K =

SN with S is the sparsity rate. CS theory states that if we have 0 < S ⌧ 1

then there exist an oversampling factor c(S) = O(log (1/S)) > 1 such that, for
a K-sparse signal x in basis  , the probability of recovering x via Basis Pursuit
from (c(S)± ✏)K random projections, ✏ > 0, converges to one as N ! 0. Clearly
the probability increases with the number of measurements M = cK.

A rule of thumb for defining c(S) is:

c(S) ⇡ log2 (1 + S�1
) (3.6)

3.3.4 Random measurements

In addition to offering substantially reduced measurement rates, CS has many
attractive and interesting properties, particularly when we employ random pro-
jections at the sensors. Random measurements are universal in the sense that
any sparse basis can be used, allowing the same encoding strategy to be applied
in different sensing environments. Random measurements are also future-proof:
if a better sparsity-inducing basis is found for the signals, then the same measure-
ments can be used to recover a more accurate view of the environment. Random
coding is also robust: the measurements coming from each sensor have equal

69



3. DATA REDUCTION IN WSNS

priority, unlike Fourier or wavelet coefficients in current coders. Finally, ran-
dom measurements allow a progressively better recovery of the data as more
measurements are obtained; one or more measurements can also be lost without
corrupting the entire recovery.

3.4 Data aggregation using CS in WSNs

As seen in the previous sections CS does not require any priori information about
original data but sparsity rate and it could be used to performs in-network ag-
gregation without a central coordination. When considering CS in WSNs we can
think to the original signal to compress as generated in the sensor network itself.
In particular a generic signal originated in a WSN with N nodes can be seen as a
data vector created by sensor readings. This vector can be referred to as x 2 RN

and indexed as x(n), n 2 {1, 2, . . . , N}.
Compression can be performed jointly with routing while decoding affects

only the collector that is usually a power grid connected gateway capable of
complex calculations. The problem with this approach is that even though CS
is a promising approach for in-network distributed data compression, it presents
several challenges mainly related to packet size constraints imposed by standard
media access control (MAC) protocols.

3.4.1 Practical case study

As we have seen before, the performance of CS is strictly related to the charac-
teristics of the original signal and, in particular, to its sparsity or compressibility.
Even though natural signals are not exactly sparse, fortunately CS does not apply
only to sparse signals but also to compressible signals. We can say that a generic
signal x is S-compressible in  if considering the coefficients vector ✓ =  

Tx

sorted by absolute value, namely ˆ✓, it has entries with magnitude decaying with
|ˆ✓(n)|  C · n�S�1/2 for all n = 1, . . . , N and C < 1. In this case the compres-
sion is able to keep only the greatest coefficients carrying the most informative
content.

Since the difference in terms of compressibility between natural and artificial

70



3. DATA REDUCTION IN WSNS

signals is well demonstrated in literature [Quer et al., 2009] it is always important
to deal with real signals obtained by real deployments. As practical example we
can consider the sets of measurements gathered by LUCE deployment of EPFL
SensorScope WSN, reporting ambient temperature recorded by 100 weather sta-
tion deployed on the EPFL campus. Since for each node the GPS location is
provided, it is possible to reconstruct the temperature field by interpolating and
extrapolating data on the square area considered, as shown in Figure 3.7.

Figure 3.7: Temperature field reconstruction from LUCE deployment (March 28,
2007, 12.00AM)

As discussed in Section 3.3.3, the quality of the reconstruction and the number
of measurements needed to achieve a perfect reconstruction with high probability
is a function of the sparseness or compressibility of the original signal. In par-
ticular the solution of the problem in Equation (3.5) requires M > cK random
projections where c(S) = O(log (1/S)) where S is the sparsity rate of the signal.
If the sparsity rate is function of the signal dimension we can define S = K/N

and give a more practical formulation for c(S) that is c(S) ⇡ log2(1 + S�1
).

Using these relations the number of required measurements is:

71



3. DATA REDUCTION IN WSNS

M(N) > log2 (1 + S�1
) · S ·N (3.7)

where the number of measurements is mainly function of: (1) the sparsity rate
S and (2) the length N of the original signal.

Regarding N , the bigger the network (and the size of the signal), the greater
the number of random projections we need. On the contrary, S is considered
constant and depending only on the signal to encode.

Since our aim is to monitor ambient temperature, S has to be obtained by such
a kind of spatial monitoring. To evaluate the sparsity rate S we can randomly
choose at least 10 days equally distributed during the solar year (to take into
account the variation of temperature during the year) and for each hour of the
day we can reconstruct the temperature field. To each reconstructed temperature
field a DCT (Discrete Cosine Transform) can be applied to obtain the transform
coefficients. The choice of DCT is due to the consideration that temperature
signal appears to be smooth and therefore suitable for a transform coding like
DCT.

The goal is to evaluate the coefficients percentage that we require to recon-
struct the original signal with a good reconstruction quality to have an indication
about the value of sparsity rate S. The reconstruction quality is evaluated using
the Normalized Mean Square Error (NMSE) defined as:

NMSE =

PN
n=1 (x(n)� x̂(n))2
PN

n=1 x(n)
2

(3.8)

where x(n) is the original signal and x̂(n) is its reconstruction.
If we indicate with x̂(S,N) the reconstruction of the signal x(n) when only

a fraction S of its greatest DCT coefficients are left different from 0 (meaning
that the fraction (1 � S) of its smallest coefficients are set to 0) then NMSE(S)
provides and indication about the real sparsity of the signal. In fact, if NMSE(S)
is sufficiently close to zero, then the S percentage of the DCT coefficients are
enough to represent the whole original signal with a good approximation. In this

72



3. DATA REDUCTION IN WSNS

case, the temperature, as the natural signals in general, is compressible in the
sense that the sorted magnitudes of the DCT coefficients decay quickly; then x(n)

is well approximated by x̂(n) and therefore the reconstruction error is small.
In performed tests, we set a NMSE threshold to 10

�5 and then we evaluate
the sparsity rate as S = {S|NMSE(S) ' 10

�5}. This value for NMSE is small
enough to achieve almost a perfect reconstruction of the original signal through
an inverse DCT transformation.

In Figure 3.9 the trend for the sparsity rate S is presented averaged on 10
days. In the simulations, S = 0.05 seems to be a good compromise and it is used
as reference sparsity for the temperature signal considered.

With regard to the network, we consider N nodes to be deployed in a square
area with nodes placed in a uniform fashion. If the sensors are placed in a random
position in a regular grid, the location of each node can be seen as a sampling
location greatly simplifying calculations [Haupt et al., 2008]. The assumption is
that the scalar value of the temperature to be recorded by the node is constant
within each cell.

The sink is placed at the center and in the network a geographical routing
is adopted [Al-Karaki and Kamal, 2004]. Each node can communicate with just
one other node in the network that is the closest one to the sink within the
communication range Rc. In the tests, Rc is chosen to guarantee communication
among all nodes.

In Figure 3.9 an example network is represented where geographical routing
is adopted.

Temperature is not a signal subject to fast changes; thus, data collection is
performed every 1 minute, spending the rest of time in sleep mode to preserve bat-
tery power. For the sake of simplicity, the coordination among nodes is neglected
and a perfect synchronization among nodes can be assumed.

To evaluate whether the chosen value for S is good enough to permit a reliable
reconstruction of the signal, CS is used to reconstruct several random tempera-
ture signals averaging the NMSE of the reconstruction over 100 simulations using
the proposed network model and a measurement vector of length calculated us-
ing Equation (3.7). The results are presented in Figure 3.8b. It is possible to
infer that the value chosen for S permits a reliable reconstruction of the original

73



3. DATA REDUCTION IN WSNS

0 5 10 15 20
Time of the day

0.01

0.02

0.03

0.04

0.05

0.06
Sp

ar
si

ty
 ra

te
 (S

)

(a)

200 400 600 800 1000
Number of nodes

0.002

0.003

0.004

0.005

0.006

N
M

SE

(b)

Figure 3.8: (a) Sparsity rate S function of the time of the day averaged on 10
days (NMSE=10

�5) (b) NMSE for 10 reconstructed temperature signals using
CS averaged over 100 runs

temperature field, especially for big-sized networks. To increase the reconstruc-
tion quality if we need high accuracy, it is possible to increase the size M of the
measurement vector.

74



3. DATA REDUCTION IN WSNS

Figure 3.9: 9⇥ 9 sensor network example adopting geographical routing

3.4.2 Data gathering and compression

Given the dataset and scenario introduced in the previous sections, we want to in-
vestigate the performance of CS as in-network aggregation technique to be used in
WSN. Therefore we consider a real-life scenario where a ZigBee / IEEE 802.15.4
network is used for temperature monitoring and we investigate the performance
of both CS and a classical data gathering technique performing in-network ag-
gregation without size reduction.

3.4.2.1 Pack and Forward (PF)

PF is an energy-safe strategy in which each node tries to encapsulate data in the
most efficient way, minimizing the number of outgoing packets. This is a slightly
modified version of the classical relay scheme usually adopted in WSNs in which
each node on the path toward the sink forwards the incoming packets to the next
hop according to its own routing table [Fasolo et al., 2007]. If the network has
just one aggregation point and the number of nodes is large, this technique turns

75



3. DATA REDUCTION IN WSNS

out to be very energy unaware, wasting communication power proportionally to
the number of packets to relay.

PF takes advantage of the fact that nodes in the network are fixed in space
and, assuming that the routing tables are built during the network bootstrap,
each node knows the number of children nodes [Cuomo et al., 2007]. In this way,
the node, before sending its own data to the next hop, waits for the complete
transmission by its child nodes, computing an aggregated payload before sending
out the final aggregated data. Since, in general, the size of transmitted data
is smaller than the IEEE 802.15.4 payload, which is 127 bytes in size, the PF
mechanism allows to pack several payloads within a single packet.

The information the decoder requires to know for signal reconstruction is
constituted by two field: (1) the scalar sensor reading and (2) an identification
ID of the node used during the reconstruction phase to identify the source and
to associate a scalar reading to a cell in the grid.

If we indicate with Bdata the number of bytes needed to encode the scalar
reading and with BID the size in bytes of the identification field, the number of
packets sent by the k-th node without fragmentation is:

P PF
k = d((Ntch + 1) · (BID +Bdata))/Bpayloade (3.9)

where in case of IEEE 802.15.4 Bpayload = 127 bytes. Ntch is the number of
nodes performing relay on the node. Considering that the path is always directed
toward the sink, the value of Ntch is greater for nodes closer to the sink. Moreover
on equal hop distance from the central sink, the value increases with increasing in
network size and number of nodes. Thus being P PF

k function of Ntch, in general
the number of total packets circulating in the network increases when the number
of nodes increases.

Since the node is not aware of the value Ntch but it only knows the number
of its children nodes, this relation can be rewritten as:

P PF
k =

& 
HX

j=1

Bj + (BID +Bdata)

!
/Bpayload

'
(3.10)

76



3. DATA REDUCTION IN WSNS

where H is the number of child nodes for node k and the term Bj is the number
of bytes received by the j-th child node.

3.4.2.2 Compressed Sensing (CS)

CS is a powerful approach to network data compression because it does not require
any information about signal to compress (except the sparsity rate of the signal)
and data encoding is performed jointly with routing in a distributed fashion.

As we have seen in Section 3.3.2 we can write the process of data acquisition
and compressing as:

y = �x (3.11)

where � = [�1,�2, . . . ,�N ] is the measurement matrix of size M ⇥ N with
M < N , y is the M ⇥ 1 compressed version of x.

Each element yi of the compressed version is obtained by the whole vector x

weighted with a row taken from �. The equation Equation (3.11) can be written
also as:

yi =
NX

j=1

�ijxj i 2 {1, 2, . . . ,M} (3.12)

where �ij is the (i, j)-th element of the measurement matrix, xj is the scalar
data sensed by the j-th node and yi is the i-th element of the compressed output
vector. It is clear that each node can add its own contribution {�ij}Mi=1xj = �jxj

to the global sum independently one each other. The only information required
by the node, apart from the scalar reading, is the random column vector �j.
Therefore CS compression is performed by each node in two steps.

1. Each of the N sensors locally computes the M elements of the random
vector �j = {�ij}Mi=1 using its own address (or any other unique number
known also by decoder) as seed for the pseudo-random sequence.

77



3. DATA REDUCTION IN WSNS

2. The j-th sensor multiplies its sensor reading for the vector �j just computed
obtaining a new M ⇥ 1 vector. Then the sensor waits until it receives by
each of its children nodes the compressed vector. Once received, it simply
sums all the vectors together and sends the newly computed vector to its
own parent.

The generation of the random vector using the node ID is a requirement since
during the reconstruction phase the decoder must know the whole � matrix for
the resolution of the optimization problem in Equation (3.5). In this way the
decoder is able to reconstruct the matrix for the reconstruction process from
node ID (or address).

An easy visual explanation of the two approaches is in Figure 2.16.
According to Equation (3.12) the number of packets sent by a node performing

CS is:

PCS
k = d(M · Bdata)/Bpayloade (3.13)

Differently from PF the number of outbound packets is not function of a
geographic parameter as Ntch in Equation (3.9). In this case each node in the
network sends the same number of packets, independently from the position in
the directed routing path from the node to the sink.

Nevertheless PCS
k is function of M , which is depending on the network size N

as in Equation (3.7). Therefore even though each node sends the same number of
packets, this number is function, for the whole network, of the number of deployed
nodes. The major drawback of this technique is that a slightly increasing in the
value of M determines a large increment in data circulating within network.

3.4.2.3 Mixed algorithm: between PF and CS

Event though as seen in previous sections both the techniques present some criti-
cal limitations, it is possible to overcome these limitations with a mixed algorithm
to achieve a better result in terms of lifetime and energy saving.

While the performance of PF scheme, in terms of P PF
k , is strictly related to

parameter Ntch, that is bigger for nodes proximal to the sink, on the contrary,

78



3. DATA REDUCTION IN WSNS

d1

d2

d3d1 d2

(a) PF: data incoming in each node are packed using data aggrega-
tion

d1�1

d2�2

d1�1 + d2�2 + d3�3

(b) CS: the outgoing data size is independent from the number of
child nodes

Figure 3.10: PF and CS data aggregation techniques. Dashed rectangle is the
IEEE 802.15.4 packet

performance for CS is only connected with parameter M that is proportional to
network size. Therefore, neither PF nor CS are suitable schemes to adopt in every
condition and network topology.

79



3. DATA REDUCTION IN WSNS

One can assume that each node has enough information to take a proper
decision with the goal of reducing the outgoing packets. Thus a generic node can
autonomously choose to adopt PF or CS to save battery power.

In formula we have that the number of packets sent by a generic k node is:

Pk =

8
<

:
PCS
k , if PCS

k  P PF
k

P PF
k , if PCS

k > P PF
k

(3.14)

Where Pk is the number of packets actually sent by the node. Each node can
independently take a decision about what kind of gathering scheme, between the
two illustrated, to adopt aiming to reduce the number of transmitted packets.

Thus the general algorithm is composed by three steps:

1. If the node receives from one children node a packet compressed with CS,
it must compress data using the same scheme, converting data received by
the other children nodes and aggregate data as described in Section 3.4.2.2

2. If all data received is aggregated using PF, the node chooses to adopt PF
or DCS aiming to send the lowest number of packets evaluating Equation
(3.14).

3. If it is not possible to take a decision since the number of outgoing packets
is the same, CS is performed.

See the pseudo-code of the Algorithm (1) for further details.
It is important to stress that when a node in the networks decides to compress

data using CS (step 2), the node has to compress incoming data coming from all
the other nodes. This means that the node has to compress each scalar reading xj,
not yet compressed, coming from the j-th node. As seen before the compression
goes through a vector multiplication as expressed in Equation (3.12). This implies
that the node has to know the measurement vector �j for each node j and perform
Ntch ⇥M multiplications to compress data. This is quite expensive for the node
if the vector M is large, for this reason the energy spent in compression is not
always negligible

80



3. DATA REDUCTION IN WSNS

Algorithm 1 Selection of data gathering scheme
for i = 1 to number_children_nodes() do

pkt(i) = receive_pkt_from_child_node()

end for

for i = 1 to number_children_nodes() do

if is_compressed_CS( pkt(i) ) then

compress_data_CS_and_send(pkt)

return

end if

end for

if pkt_CS(pkt)  pkt_PF(pkt) then

compress_data_CS_and_send(pkt)

else

compress_data_PF_and_send(pkt)

end if

3.4.3 Mixed algorithm simulation results

To evaluate the behavior of the network and the performance of the solution, a
framework in MATLAB has been developed. In the preliminary tests, parameters
are set to BID = 8 bytes and Bdata = 1 byte. The former is used because it is
possible to use the EUI64 address, composed by 64 bits, to identify the node and
because EUI64 is unambiguous for each node in the network.

In Figure 3.11a, the simulation result is shown when network dimension varies
from 9 to 961 nodes. For the PF technique the plot shows a slightly increasing
trend with the network size. This behavior is due to the parameter Ntch as seen
in Equation (3.9).

More interesting is the behavior for CS. For a particular network size the
number of sent packets explodes, presenting a large increment. For this specific
network size, indicated from now on with Ncrit, the value for PCS

k increases from
1 to 2, since M(N) · Bdata > Bpayload. This increment regards each single node
within the network that has to send out two packets instead of one. This is
reported clearly in Figure 3.11b where the average number of transmissions is
plotted: for N = Ncrit the number of transmissions doubles, whereas for PF the
increasing is much more moderated.

The mixed algorithm performs better than the two previous schemes, pre-
senting a number of sent packets that is always smaller than both PF and CS.

81



3. DATA REDUCTION IN WSNS

200 400 600 800
0

500

1000

1500

2000

Number of nodes

N
u

m
b

e
r 

o
f 

tr
a

n
sm

is
si

o
n

s 
in

 t
h

e
 n

e
tw

o
rk

 

 

DCS

PF

Mixed Algorithm

(a) Total number of packets circulating within the network

0 200 400 600 800
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of nodes

A
ve

ra
g

e
 n

u
m

b
e

r 
o

f 
tr

a
n

sm
itt

e
d

 p
a

ck
e

ts
 p

e
r 

n
o

d
e

 

 

DCS

PF

Mixed Algorithm

(b) Average number of transmissions per node

Figure 3.11: Comparison among PF, DCS, and mixed algorithm

For small-sized networks the proposed solution approaches CS. This is why the
number of packets sent with PF or CS is the same. Therefore according to the
algorithm proposed, the node compresses data using CS. The interesting part of
the plot is for values of N > Ncrit where a mixed behavior arises. Since P PF

k

depends on Ntch for big networks this value becomes considerably large especially
for nodes proximal to the central sink, whereas it is smaller for distal nodes. For

82



3. DATA REDUCTION IN WSNS

those nodes with high Ntch it becomes PCS
k  P PF

k and the algorithm switches
to using CS. This creates an inner zone in the network where CS is performed,
leaving the outside nodes gathering data through classical PF, as represented in
Figure 3.12. The nodes with the higher workload in this case are those ones on
the frontier since they are responsible for data compression using CS.

Figure 3.12: For network with size N > Ncrit it is clearly visible the inner zone
performing CS (black circles) and the external one composed by nodes performing
PF (white circles)

The main interesting parameters in WSNs are lifetime and power consump-
tion. Lifetime, in this context, is intended as the time until the death of the first
node in the network when a 500mAh battery is used. To evaluate the power con-
sumption the hardware taken as reference for current and timing measurements
is an Ember EM250 node. It is a ZigBee System-on-chip combining a 2.4GHz
IEEE 802.15.4 radio transceiver with a 12MHz 16-bit processor having 128Kb of
flash memory and 5Kb of RAM.

The parameters for simulations regarding power consumption are measured
on the wireless node. In particular we have a current consumption of 36mA for

83



3. DATA REDUCTION IN WSNS

transmitting and receiving data at 3.3V , while the time needed to send or receive
a single packet is measured to be around 5ms. Apart from the time spent in
packets transmission and reception, nodes are in sleep mode: a low power state
in which they consume just 1.5µA. The node wakes up, eventually compresses
and transmits data just for the time needed. Then it turns into sleep mode as
soon as it finishes to forward data to the parent.

The power consumption for compression has been measured using a precision
resistor and evaluating the current absorption during CS. Moreover we have con-
nected an oscilloscope to an unused pin on the micro-controller pin for measuring
the time spent in compression. We drive a pin immediately before calling the
compression algorithm, and release the pin immediately upon returning from the
algorithm. During the tests the absorbed current has been of 9.3mA whereas
the elaboration time is almost proportional to node providing data to compress
(Ntch).

200 400 600 800
200

400

600

800

1000

1200

Number of nodes

L
ife

tim
e
 [
d
a
ys

]

 

 

DCS

PF

Mixed Algorithm

Figure 3.13: Network lifetime using Ember EM250 nodes (BID = 8 bytes Bdata =

1 byte)

In Figure 3.13 the simulation result is reported. The lifetime with PF as

84



3. DATA REDUCTION IN WSNS

expected is always decreasing. When in the network CS is used, a decrement
in lifetime is visible for N = Ncrit due to the doubling of PCS

k . The interesting
trend in the graph is that one related to the mixed algorithm. It is possible to
identify two different parts in the plot: (1) for small networks with N < Ncrit

the algorithm is coincident with CS as also seen in Section 3.4.2.3 while (2) for
N ⇠ Ncrit we have an abrupt decrement in lifetime.

For this network size every node in the network, except few nodes proximal
to the sink, changes its own compression scheme from CS to PF. This mixed
behavior implies a greater lifetime for the whole network, gaining a 35% increase
in lifetime compared to classical CS scheme.

As seen in Section 3.4.2 simulations depend on two parameters: BID and
Bdata.

Bdata results are the most critical. Both PF and CS depend on this parameter,
but doubling the value has a deep impact mainly on CS since each nodes within
the network doubles the number of sent packets, whereas PF is only slightly
affected since Bdata is an additional contribution to the sum in Equation (3.9).
The result of simulations when Bdata is doubled is reported in Figure 3.14a.

Even if the influence of the parameter Bdata mainly affects the performance of
the mixed algorithm, the lifetime is always better for our algorithm than classical
PF scheme.

In Figure 3.14b the simulation when BID is varied from 2 bytes to 8 bytes
is reported. On the contrary in this case the increasing in the dimension of the
ID field of the ZigBee packet affects much more PF than the mixed algorithm.
The increase in the number of bytes used for ID has the main effect to enlarge
the central region for DCS since PF performs poorly when it has to manage too
many bytes per node that is what happens within the network near the sink.

3.4.4 Energy consumption optimization

Although simulations performed in the previous section take into account the
energy spent in compression, the real contribution of the power consumption for
elaboration is strictly related to the radius of the central region of the network
performing compression, as seen in Figure 3.12. Closer the inner zone is to

85



3. DATA REDUCTION IN WSNS

200 400 600 800
200

400

600

800

1000

1200

1400

Number of nodes

L
ife

tim
e

 [
d

a
ys

]

 

 
PF: B

data
=1byte

MA: B
data

=1byte

PF: B
data

=2bytes

MA: B
data

=2bytes

PF: B
data

=3bytes

MA: B
data

=3bytes

(a) Varying B

ID

200 400 600 800
200

400

600

800

1000

1200

1400

Number of nodes

L
ife

tim
e
 [
d
a
ys

]

 

 
PF: B

ID
=4bytes

MA: B
ID

=4bytes

PF: B
ID

=6bytes

MA: B
ID

=6bytes

PF: B
ID

=8bytes

MA: B
ID

=8bytes

(b) Varying B

data

Figure 3.14: (a) Lifetime of the network: comparison between PF and Mixed
Algorithm (MA)

the sink, more the nodes on the boundary have data to compress coming from
external nodes that forward data using PF. Using the notation in Equation (3.9),
this means that bigger is Ntch for a boundary node, higher will be the energy
consumption for data compression. We can then write Ecomp(Ntch) where Ecomp

is the energy spent in compression.

86



3. DATA REDUCTION IN WSNS

Moreover according to Equation (3.14) a boundary node is the node in which
the equality:

PCS
k = P PF

k = Pk (3.15)

is first realized in the network when N > Ncrit.
To evaluate Ecomp for boundary nodes, in equation (3.15) we can consider M

and Bdata as constants: the former is related to the network size and the latter
is function of the sensor data encoding. Then neglecting the ceiling operator the
equality becomes:

Ntch =

M · Bdata

BID +Bdata
� 1 (3.16)

that is Ntch is inversely proportional to BID. A relation between Ecomp and
BID does exist in the network. Fewer bytes are used to represent the location field
in the payload, higher will be the power consumption and the energy involved in
data compression for boundary nodes.

Since the problem of the compression regards only nodes on the boundary of
the central region, the optimization problem of the algorithm focuses on network
sizes greater than Ncrit. For a number of nodes N < Ncrit there is no central
region performing CS since each node compress each own data using CS.

In Figure 3.15 the contribution of the compression energy is presented versus
the number of nodes N , using BID as parameter. The plot is related to the first
dying boundary node in the network.

The figure shows how the compression energy becomes predominant when
reducing BID and the corresponding increasing in compression work.

The plot presents decreasing values for BID. In particular BID = log2(N)

bytes is the case in which the minimum number of bytes is used to represent
the nodes in the network. For BID = 0 bytes the mapping between data and
node position is obtained through data ordering within the packet payload. Both
nodes and sink have to know the network configuration and the routing path
supposed static. Since there is a shared knowledge between sink and nodes, the

87



3. DATA REDUCTION IN WSNS

20 40 60 80 100 120 140
−300

−200

−100

0

100

200

300

400

B
off

∆
L
ife

tim
e
 [
d
a
ys

]

 

 

N=625

N=729

N=841

N=961

(a) B

ID

= 0 bytes

20 40 60 80 100 120 140
0

50

100

150

200

250

300

B
off

∆
L
ife

tim
e
 [
d
a
ys

]

 

 

N=625

N=729

N=841

N=961

(b) B

ID

= log2(N) bytes

20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

B
off

∆
L

ife
tim

e
 [

d
a

ys
]

 

 

N=625

N=729

N=841

N=961

(c) B

ID

= 2 bytes

20 40 60 80 100 120 140
−80

−60

−40

−20

0

20

40

60

B
off

∆
L
ife

tim
e
 [
d
a
ys

]

 

 

N=625

N=729

N=841

N=961

(d) B

ID

= 4 bytes

Figure 3.15: Lifetime extension of the modified algorithm with respect to the
standard mixed algorithm vs. Boff using network size N as parameter

use of BID becomes redundant. This mechanism is based on the assumption that
each node assigns a different priority value to its own children nodes where this
priority defines the position inside the forwarded packet. When a node receives
data coming from its children, it orders data according to the priority value of
the source node. The knowledge of the priority values and the static routing
path, is enough to associate sensor value and node based on data offset inside the
payload.

In the trend reported in Figure 3.16a it is possible to see how with decreas-
ing in the size of BID the power consumption for compression greatly increases,
becoming the major contribution in energy consumption. The slightly increasing
trend for the BID = 0 curve is due to the collapse of the central region in very

88



3. DATA REDUCTION IN WSNS

650 700 750 800 850 900 950
0

0.5

1

1.5

2

2.5

3

Number of nodes (N)

E
ca

lc
/E

T
X

R
X

 

 
B

ID
=0 bytes

B
ID

=log
2
(N) bytes

B
ID

=2 bytes

B
ID

=4 bytes

(a) Mixed Algorithm

650 700 750 800 850 900 950
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of nodes (N)

E
co

m
p
/E

T
X

R
X

 

 
B

ID
=0 bytes

B
ID

=log
2
(N) bytes

B
ID

=2 bytes

B
ID

=4 bytes

(b) Modified algorithm with B

off

= 90 bytes

Figure 3.16: Ratio between the energy spent in compression Ecomp and energy for
data transmission and reception ETXRX for the first dead node in the network
vs. network size (Bdata = 1 byte)

few nodes around the sink that becomes part of the boundary.
The mixed algorithm aims to the minimization of the number of packets trans-

mitted by each node to save energy. If the compression scheme is not energy-aware
it could represent the main source of energy consumption. To take into account
the energy expenditure for compression we introduce a modification to the orig-

89



3. DATA REDUCTION IN WSNS

inal algorithm. The idea behind the modification is to reduce the contribution
of Ecomp with respect to ETXRX . As we have seen before Ecomp is function of
the value Ntch, that is the number of nodes doing relay on the boundary node
responsible for data compression. Since in general Ntch increases the closer we get
to the sink, the main idea is to shift the boundary toward the leaf nodes, making
bigger the inner zone of the network performing CS and reducing the value of
Ntch.

As we said before the boundary is characterized by those nodes for which is
verified the equality (3.15), therefore if we want to reduce the value of Ntch to
reduce the power consumption, we have to modify Equation (3.9) so that the
equality continues to be verified.

Therefore in our new algorithm Equation (3.14) is modified in:

Pk =

8
<

:
PCS
k , if PCS

k  ˆP PF
k

P PF
k , if PCS

k > ˆP PF
k

(3.17)

where:

ˆP PF
k = d((Ntch + 1) · (BID +Bdata) + Boff )/Bpayloade (3.18)

That is a slightly modified version of the equation (3.9) in which a term Boff

has been added. This is a dummy contribution used in the comparison to take a
decision about the mechanism to adopt. Accordingly the new boundary condition
becomes:

PCS
k =

ˆP PF
k = Pk (3.19)

that is verified for smaller values of Ntch shifting the boundary toward more
external nodes.

The practical implementation of the solution on the nodes is done using algo-
rithm 2 reported using pseudo-code.

Differently from the implementation of the mixed algorithm seen in Section

90



3. DATA REDUCTION IN WSNS

Algorithm 2 Selection of gathering scheme with modified mixed algorithm
Require: offset � 0

for i = 1 to number_children_nodes() do

pkt(i) = receive_pkt_from_child_node()

end for

for i = 1 to number_children_nodes() do

if is_compressed_CS( pkt(i) ) then

compress_data_CS_and_send(pkt)

return

end if

end for

if pkt_CS_plus_offset(pkt,offset)  pkt_PF(pkt) then

compress_data_CS_and_send(pkt)

else

compress_data_PF_and_send(pkt)

end if

3.4.2.3 that minimizes the number of packet transmissions, the modified version
increases the number of transmissions in the network trying to obtain a better
overall lifetime of the system reducing the energy used in compression by bound-
ary nodes.

In Figure 3.15 the simulation results are reported showing the increasing in
lifetime of the modified algorithm with respect to the classical implementation
of the mixed algorithm when different values for Boff are used in the simulation
using the network size N as parameter in the plots.

In each plot it is possible to identify a general behavior for the network with
increasing value of Boff . (1) For small increasing values of Boff the lifetime
increases since the contribution of the energy spent in compression decreases
although in the network expands the inner portion of nodes performing DCS,
reducing the contribution of Ecomp for each boundary node. (2) For a certain value
of Boff ranging from 80 to 100 bytes, the lifetime is maximized. For this value
a perfect trade-off between power consumed for transmission and for elaboration
is achieved. (3) After the peak in lifetime the power for packet sending and
receiving increases much more than the power saving for compression, resulting
in a decreasing lifetime. (4) When Boff � Bpayload = 127 bytes the relation
PCS
k  ˆP PF

k in Equation (3.17) is never verified since the value for ˆP PF
k in Eq

91



3. DATA REDUCTION IN WSNS

(3.18) is always greater than PCS
k because of the ceiling operator, resulting in the

whole network performing CS. For small network sizes and BID = 0 bytes we
can see again the atypical behavior already highlighted in Figure 3.16 where the
collapsing of the inner zone on the sink, creates a critical situation in which the
modified algorithm poorly performs.

In general an optimal value for the dummy Boff does exist and it minimizes the
power spent in compression at the expenses of number of transmissions. Moreover
the lifetime increasing strictly depends on the value of BID. In Figure 3.16b we
report the results of simulations when an optimal value of 90 bytes is used for
Boff evaluating the ratio between the energy spent in compression and energy
used for data transmission. Differently from Figure. 3.16a the ratio is almost
under 1 for every network size, meaning that the contribution of compression in
energy consumption is much more well-balanced than before.

92



Chapter 4

Compressive Sensing for signal

ensembles

The theory developed for data aggregation in the previous chapter has been de-
veloped with the goal to capture the spatial information spread in WSN. Never-
theless many applications involve multiple signals varying also in time, for which
the classical CS cannot be applied without modifications.

More specifically we can consider a generic WSN in which a large number
of distributed sensor nodes observe the same phenomena. The ensemble of sig-
nals they acquire can be expected to posses some joint structure, or inter-signal
correlation, in addition to intra-signal correlation in each individual sensor’s mea-
surements.

For example, we can imagine a WSN composed by sensor nodes sensing tem-
perature or humidity at several points in space. The time-series acquired at
a given sensor might have considerable intra-signal (temporal) correlation and
might be sparsely represented in a local Fourier basis. In addition, the ensemble
of time-series acquired at all sensors might have considerable inter-signal (spatial)
correlation, since all sensors gather data from to the same environment. In such
settings, distributed source coding that exploits both intra- and inter-signal cor-
relations might allow the network to save on the communication costs involved in
exporting the ensemble of signals to the collection point [Slepian and Wolf, 1973].

A number of distributed coding algorithms have been developed that involve

93



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

collaboration amongst the sensors, including several based on predictive coding
[Cristescu et al., 2004], a distributed KLT [Gastpar et al., 2002], and distributed
wavelet transforms [Wagner et al., 2006]. Three-dimensional wavelets have been
proposed to exploit both inter- and intra-signal correlations [Ganesan et al., 2003].
Note, however, that any collaboration involves some amount of inter-sensor com-
munication overhead.

4.1 Techniques for signal ensemble compression

and reconstruction

The two most prominent frameworks dealing with sparsity and compressibility
of multidimensional signals and signal ensembles are Distributed Compressive
Sensing (DCS) [Chen et al., 2011] and Kronecker Compressive Sensing (KCS)
[Duarte and Baraniuk, 2012].

4.1.1 Distributed Compressed Sensing (DCS)

DCS is a distributed algorithm that exploit both intra- and inter-signal correlation
structures to improve objects reconstruction.

In a typical DCS scenario a certain number of sensors measure signals that
are each individually sparse in some basis but also with correlation from sensor to
sensor. While each sensor independently encodes its own signal with classical CS
theory and transmits just a few of the resulting coefficients to a single collection
point, the reconstruction is performed at the sink that can reconstruct each of
the signals precisely.

Differently from the usual compression performed using CS, DCS theory rests
on the concept of joint sparsity of a signal ensemble. The joint sparsity is often
smaller than the aggregate over individual signal sparsities. Therefore, DCS offers
a reduction in the number of measurements.

Unlike the single-signal definition of sparsity, however, there are numerous
plausible ways in which joint sparsity could be defined.

In total we can consider three different joint sparsity models (JSMs) each
suitable for a different situation. If we call them JSM-1, JSM-2 and JSM-3 we

94



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

can say that in the first two models each signal is itself sparse and we use DCS
to exploit a joint representation for the ensemble to use few measurements and
a better recovery. In JSM-3, on the contrary, no signal is itself sparse but the
existing joint sparsity among signals allows recovery using DCS.

If the considered network is composed by J nodes, each sensing a different
signal, we can denote each signal as xj with j 2 {1, 2, . . . , J} and, if each signal is
composed by N samples, xj 2 RN . With xj(n) we indicate the n sample in time
of the node (signal) j. We also assume that there exist a sparse basis  2 RN⇥N

in which the xj can be sparsely represented.
We define with �j the measurement matrix for the node (signal) j, �j 2

RMj⇥N and it is different for each node.
According to these definition we can rewrite Equation (3.4) as yj = �jxj

where yj is the Mj ⇥N vector of the incoherent measurements of xj.
As seen in Section 3.3.2 �j is special random matrix (Gaussian, Bernoulli,

etc...).

4.1.1.1 JSM-1

In this model each signal xj is composed by a common sparse component shared
by all the signals and a sparse innovation component specific for each node. In
formula:

xj = zC + zj, j 2 {1, 2, . . . , J} (4.1)

where:

zC =  ✓C , k✓Ck0 = KC and zj =  ✓j, k✓jk0 = Kj (4.2)

In the formulas the signal zC is common to all of the signal xj with sparsity
KC while the innovation part zj is different for each node that has a different Kj

sparsity.
Signals characterized by a sparse common component and innovation com-

95



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

ponents (JSM-1) are considered to be typical of large-scale WSNs, when global
phenomena (sun, wind, temperature, etc...) affect all sensors while local phenom-
ena (shade, water, human presence, etc...) affect individual sensors.

As in the general case the resolution of JSM-1 based problems goes through the
resolution of the minimization problem in Equation (3.5) with small variations.

For simplicity we can consider the case of J = 2 and sparsity basis  = IN .
We can formulate the recovery problem using matrices and vectors as:

z =

2

64
zC

z1

z2

3

75 , x =

"
x1

x2

#
, y =

"
y1

y2

#

� =

"
�1 0

0 �2

#
, ˜

 =

"
  0

 0  

#

Using the frame ˜

 we can represent the data vector x sparsely using the
coefficient vector z which contains KC +K1 +K2 nonzero coefficients, to obtain
x =

˜

 z. The measurement vectory is computed from separate measurements of
the signal xj using the measurement basis �.

We can then recover a vector ẑ which is a viable representation for x by
solving:

ẑ = argmin kzk1 s.t. y = �

˜

 z (4.3)

The vector z enables the reconstruction of the original signal x1 an x2.
Alternatively we can use a �-weighted `1 formulation where we try to minimize

the modified `1 metric:

�CkzCk1 + �1kz1k1 + �2kz2k1 (4.4)

where �C , �1, �2 � 0.

96



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

4.1.1.2 JSM-2

In this modes all signals are constructed from the same sparse set of basis vector
but with different coefficients. In formula:

xj =  ✓j, j 2 {1, 2, . . . , J} (4.5)

where each ✓j is nonzero only on the common coefficient set ⌦ ⇢ {1, 2, . . . , N}
with |⌦| = K.

The JSM-2 sparsity model is directly applicable when all the sensors acquire
a replica of the same sparse signal but with phase shifts and attenuations caused
by signal propagation. This is the case when sensors are deployed in the same
environment and they acquire the same signal but with slight differences due to
positioning.

Differently from JSM-1 the sparse approximation can be recovered via greedy
algorithms such as the Simultaneous Orthogonal Matching Pursuit (SOMP) [Ar-
avind et al., 2011] or the DCS-SOMP algorithm [Baron et al., 2005].

It is possible to demonstrate that DCS-SOMP succeeds in optimal reconstruc-
tion with ĉ < c(S).

4.1.1.3 JSM-3

This model extends JSM-1 but the common component is no longer sparse in any
basis. That is:

xj = zC + zj, j 2 {1, 2, . . . , J} (4.6)

with:

zC =  ✓C and zj =  ✓j, k✓jk0 = Kj (4.7)

but ZC is not necessarily sparse in the basis  .

97



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

A practical situation well-modeled by JSM-3 is where several sources are
recorded by different sensors together with a background signal that is not sparse
in any basis.

The algorithm used for signal recovering in JSM-3 is the ACIE algorithm
based on Orthogonal Matching Pursuit (OMP) [Aravind et al., 2011].

4.1.2 Kronecker Compressive Sensing (KCS)

Data sensed in a WSN by several nodes spread in the environment can be seen
as a multi-dimensional signal with at least two dimensions: temporal and spatial
dimension.

Kronecker product matrices are a natural way to generate sparsifying and
measurement matrices for CS of multidimensional signals. Kronecker product
sparsity bases combine the structures encoded by the sparsity bases for each
signal dimension into a single matrix. Kronecker product measurement matrices
for multidimensional signals can be implemented by performing a sequence of
separate multiplexing operations on each dimension.

We can use Kronecker product matrices as sparsifying bases for multidimen-
sional signals to jointly model the signal structure along each one of its dimen-
sions.

Mathematically the Kronecker product of two matrices A and B of sizes P⇥Q

and R⇥ S respectively is defined as:

A⌦ B :=

2

66664

A(1, 1)B A(1, 2)B . . . A(1, Q)B

A(2, 1)B A(2, 2)B . . . A(2, Q)B
...

... . . . ...
A(P, 1)B A(P, 2)B . . . A(P,Q)B

3

77775
(4.8)

Thus A⌦ B is a matrix of size PR⇥QS.

4.1.2.1 KCS for distributed sensing in WSN

In distributed sensing problem we aim to acquire an ensemble of signals x1, . . . , xj 2
RN that vary in time, space, etc... As also seen for DCS we assume that each

98



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

signal’s structure can be encoded using sparsity with an appropriate basis  .
This ensemble can be expressed and an N ⇥ J matrix X = [x1x2 . . . xJ ] =

[x1Tx2T . . . xNT
]

T where the individual signals x1, . . . , xJ corresponding to columns
of the matrix and where the rows x1, . . . , xN of the matrix correspond to different
snapshots of the signal ensembles at different values of time, space, etc... The
structure of each signal is observable on each of the columns of the matrix, while
the structure of each snapshot (spanning all the signals) is present on each of the
rows of the matrix X.

If the multidimensional signal presents different sparsity properties along each
of its dimension it is possible to obtain a single sparsity and measurement basis
for the entire multidimensional signal to jointly compress and recover the original
components (dimensions) of the signal.

More formally we can denote the individual signal as xj 2 RN , 1  j  J and
the individual snapshots as xn 2 RJ , 1  n  N . The multidimensional signal X
is then in RN ⌦RJ ⇠

=

RNJ where the columns are the signal gathered by the j-th
node and the rows correspond to a snapshot in time shared among all the nodes.

We assume that the snapshots xn are sparse or compressible in a basis  and
that the signals xj are sparse or compressible in  0. We then can obtain a sparsity
basis for X obtained from Kronecker products as ¯

 =  ⌦  0
= { ⌦  0, 2

 , 0 2  

0}, and obtain a coefficient vector ⇥ for the signal ensemble so that
˜X =

¯

 ⇥ where ˜X = [xT
1 x

T
2 . . . xT

J ]
T is a vector-reshaped representation of X.

The same matrix construction method is feasible for measurement matrices
that are formulated as Kronecker products. Such matrices correspond to measure-
ment process that operate first on each individual signals / snapshots, followed
by operations on the measurements obtained for the different signals / snapshots
respectively. The resulting measurement matrix can be expressed as ˜

� = �⌦ �0

with � 2 RM1⇥N , �0 2 RM2⇥J and ˜

� 2 RM1M2⇥NJ . This results in a matrix that
provides M = M1M2 measurements of the multidimensional signal X.

In case of a WSN each node obtains independent measurements yi = �jxj

with an individual measurement matrix being applied to each signal. In practice
the measurement ensemble can be written as:

99



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

Y =

2

66664

y1

y2
...
yJ

3

77775
and ˜

� =

2

66664

�1 0 . . . 0

0 �2 . . . 0

...
... . . . ...

0 0 . . . �J

3

77775
(4.9)

where 0 is a matrix of appropriate size with all entries equal to 0. We then
have Y =

˜

�

˜X. If a matrix �J = �

0 is used at each sensor to obtain its individual
measurements, then we can express the joint measurement matrix the matrix
˜

� = IJ ⌦ �0 where IJ denotes the J ⇥ J identity matrix

4.2 A comparison between KCS and DCS

In this section we first compare the two frameworks and further investigate how,
in a real deployment, the compressed sensing techniques for signal ensembles can
be used to reduce the power consumption and prolong lifetime.

4.2.1 Compressibility of signal ensembles

We discuss and compare the different techniques proposed in previous sections
against a common set of artificial signals properly built to embody the main
characteristics of natural signals.

Signals characterized by a sparse common component and different innovation
components (JSM-1) are considered to be typical of large-scale WSNs, when
global phenomena (sun, wind, temperature, etc...) affect all sensors while local
phenomena (shade, water, human presence, etc...) affect individual sensors.

To recreate this situation in our first simulation setup we consider J = 16

nodes sampling a fictitious signal and gathering N = 50 samples. In our first
simulation each signal presents a common component that is sparse in a DCT
basis with sparsity KC = 10 representing the common temperature field and
an innovation component supposed sparse in a identity basis IN with sparsity
K = 2 representing abnormal sporadic sensor readings. We let the number of
measurements Mj varying from 0 to N and for each value of Mj we perform

100



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

100 iterations by generating the sparse signals and using measurement matrices
with i.i.d. Gaussian entries to compress the readings. Then we measure the
probability of successful recovery for each value of Mj where a success is declared
if the reconstructed signal x̂ obeys ✏ = kx� x̂k2/kxk2  10

�2.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of measurements M
j
 per node

P
ro

b
a
b
ili

ty
 o

f 
su

cc
e
ss

fu
l r

e
co

n
st

ru
ct

io
n
 (

ε
 ≤

 1
0

−
2
)

 

 

Independent [K
c
=10 K=2]

DCS (JSM−1) [K
c
=10 K=2]

KCS [K
C

=10 K=2]

Independent [K
c
=6 K=6]

DCS (JSM−1) [K
c
=6 K=6]

KCS [K
C

=6 K=6]

Independent [K
c
=2 K=10]

DCS (JSM−1) [K
c
=2 K=10]

KCS [K
C

=2 K=10]

Figure 4.1: Joint reconstruction quality comparison among DCS (JSM-1), KCS
and separate decoding. The considered J = 16 signals of length N = 50 have
common sparsity KC and innovation with sparsity K

In Figure 4.1 the simulation results are shown. JSM-1 reconstruction is per-
formed using YALL1 Matlab R� package, jointly solving the basis pursuit problem.
In the independent reconstruction we try to reconstruct the data, recovering
each signal independently and exploiting an over-complete representation basis
[Donoho et al., 2006] ⇤ = [ I] as sparsifying basis where  is the DCT ma-
trix and I is the identity matrix. KCS problem is solved using the SparseLab
Matlab R� package with a sparsifying matrix � = ⇧ ⌦ ⇤ where ⇧ is the matrix
of the Horz-diff transformation as proposed in [Quer et al., 2009] to exploit the
spatial correlation of the signals.

The results show how the JSM-1 guarantees a perfect reconstruction with
only 20 measurements per node with respect to KCS and independent recovery.

101



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

The independent recovery in particular is inefficient since it does not take advan-
tage of the signals correlation during recovery. In this case we need almost 50
measurements for every node to be able to reconstruct the signal ensembles. For
the KCS we have an intermediate result because the sparsifying matrix is good
enough to take advantage of the signals correlation in the reconstruction phase.

To evaluate also how DCS, KCS and independent reconstruction perform when
the signals present more innovation with respect to common sparsity components,
in the simulations we have tried to change the parameters KC and K and conduct
again the reconstruction tests. Results are summarized in Figure 4.1 and confirm
that DCS performs better with respect to KCS and independent reconstruction
even when the signals present more innovation components. The figure shows also
how the general performance of DCS and KCS decreases, this is because when
reducing the prevalence of common components among signals both frameworks
are not able to exploit the inter-signals correlation to improve reconstruction
quality. Independent reconstruction, on the other hand, is not affected by sig-
nal ensembles characteristics and maintains the same reconstruction performance
regardless of the ratio between KC and K.

The JSM-2 sparsity model is directly applicable when all the sensors acquire
a replica of the same sparse signal but with phase shifts and attenuations caused
by signal propagation. This is the case when sensors are deployed in the same
environment and they acquire the same signal but with slight differences due to
positioning.

To compare DCS and KCS against this type of signals in the second simulation
we use J = 16 nodes with a signal of length N = 64 that is K = 10 sparse
in a 4-level db4 wavelet transform basis  (results are the same using a DCT
matrix as sparsifying matrix). As in the previous simulation, 100 simulation
trials are performed for each value of Mj. JSM-2 recovery is performed using
the DCS-SOMP algorithm as in [Baron et al., 2005] whereas KCS reconstruction
is obtained using a sparsifying matrix � = I ⌦ where the symbols are to be
intended as usual.

The result in Figure 4.2 shows how the DCS-SOMP algorithm outperforms
both KCS and independent reconstruction. More specifically KCS performs worse
than before because the spatial dimension in this case is hardly sparse and KCS

102



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of measurements M
j
 per node

P
ro

b
a
b
ili

ty
 o

f 
su

cc
e
ss

fu
l r

e
co

n
st

ru
ct

io
n
 (

ε
 <

=
 1

0
−

2
)

 

 

DCS (JSM−2)
Indepedent
KCS

Figure 4.2: Comparison of joint reconstruction for DCS (JSM-2), KCS and sep-
arate decoding. All J = 16 signals of length N = 64 have the same sparsity
K = 10

is not able to take advantage of the sparsity on this dimension.
The different reconstruction performance for KCS and DCS is mainly due to

the different requirements about the original signal to compress. KCS requires
that the signals are sparse along all the considered dimensions and this is some-
times a hard requirement to fulfill, especially for sensors in WSNs where signals
are more correlated in time than in space. The requirements for DCS are less
stringent since the algorithm just needs that the signals share the same support
in one single basis along one single dimension.

The synthetic signals used in the simulations resemble realistic data that ex-
hibit little spatial correlation: this is due to two common issues in real WSNs
that is (a) irregular distribution of the node locations and (b) readings corrupted
by noise and sporadic events. Then since the multidimensional signal (generated
by the signal ensembles) usually is not really sparse along the spatial dimension,
this prevents KCS to perform as well as DCS that can reconstruct the signal with
more accuracy since it requires sparsity only along the temporal dimension.

103



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

The irregular distribution issue can be in general faced with special sparsifying
transformation techniques like graph wavelets [Crovella and Kolaczyk, 2003] or
diffusion wavelets that, however, require a strict and fixed tree network topology.
The second issue of readings corrupted by noise can be addressed using data
reordering schemes as proposed in [Luo et al., 2010] which unfortunately are not
feasible when dealing with multidimensional signals.

From these considerations and from the simulation results it follows that in
general DCS performs better than KCS when we want to exploit the inter- and
intra-correlation among signals to achieve a better compression factor preserving
a high reconstruction quality. Moreover even though JSM-1 and JSM-2 are both
suitable models for the kind of natural signals we usually deal with in WSNs, JSM-
2 reconstruction algorithm has a lower complexity as the reconstruction problem
goes through a fast greedy algorithm. The resolution of the basis pursuit problem
(3.5) for JSM-1 is too heavy when tens or hundreds of nodes are considered.
Moreover the optimization problem (3.5) is often rewritten as an �-weighted `1-
norm problem in which the optimal choice of the parameters cannot be determined
analytically and whose calculation is computational intensive.

In this section we have not dealt with JSM-3 since it does not match well
the natural signals we are interested in, being this model well suited for video
reconstruction problems.

4.2.2 JSM-2 model for real signal ensembles

To study the usage and the performance of DCS with JSM-2 signal ensembles in
this section we consider data coming from the LUCE deployment that is a mea-
surement campaign which took place on the EPFL campus since July 2006. This
deployment is suitable for our research because it is characterized by temporal
and spatial high density measurements covering heterogeneous areas. In evalu-
ating DCS, we use three different sets of data: temperature, humidity and light.
The set considered in our simulations spans the course of approximately 4 days
with sampling periods in the order of 5 minutes. Due to the high fragmentation
and incompleteness of the data in the sensor recordings, we consider the sensor
readings of Jth = 57 nodes for temperature and humidity and Jl = 14 nodes for

104



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

light recordings with a resampled signal length of N = 1024.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Number of coefficients per sensor (K)

S
iz

e
 o

f 
g
lo

b
a
l s

u
p
p
o
rt

 

 

Temperature
Humidity
Light

Figure 4.3: Number of wavelet vectors required to include the K largest wavelet
coefficients for each signal

To see whether these natural signals can be recovered by DCS-SOMP algo-
rithm we investigate the size of the global support |⌦| for each type of signal as
illustrated in Section 4.1.1.2. In Figure 4.3 the number of transform coefficients
required to include the K largest coefficients for each signal is reported when a
8-level db8 wavelet transform is used. Is well-known in literature that the wavelet
basis are suitable sparsifying basis (together with DCT also used in Section 4.2.1)
for environmental signals and it is also known that with 6- or 8-layer wavelet rep-
resentation it is possible to achieve a good sparsity for natural signals [Luo et al.,
2010].

The slope of the curves show that, even if the signals could not exactly share
the same support, the supports of the compressible signals overlap thus the en-
semble is well represented by the JSM-2 model.

To further check whether the DCS-SOMP algorithm is able to reconstruct
the original signals taking advantage of the inter-signals correlation and to inves-
tigate its performance, in Figure 4.4 we recover the original signals comparing

105



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

Span of the moving average

S
N

R
 (

d
B

)

 

 

Temperature
Temperature (DCS)
Humidity
Humidity (DCS)
Light
Light (DCS)

Figure 4.4: Reconstruction quality for DCS and separate decoding varying the
span of the lowpass filter (N = 1024, M = 120)

the DCS approach with a separate recovery of the signals using CS when only
M = 120 random projections are taken thus achieving almost a 1 : 10 compres-
sion ratio. The reconstruction quality is measured in terms of SNR intended as
SNR(db) = 20 · log10 (kxk/kx� x̂k). To investigate the influence of the noise
on the reconstruction, we apply a lowpass moving average filter with filter coeffi-
cients equal to the reciprocal of the span and evaluate the decoding performance
for each filter window size. This is done because the signal is naturally affected
by noise and in literature it is not well investigated how much the noise impacts
on the joint reconstruction.

The results in the plot show how the DCS outperforms almost always the
separate independent CS reconstructions and that averaging 20-25 samples is an
optimal trade-off point between complexity in filtering, delays and reconstruction
quality. It is important to notice also how the independent reconstruction is
barely affected by the smoothing process, showing just a small improvement in
the reconstruction quality with the increasing in the span of the moving filter.

The real advantage in using DCS considering JSM-2 signal ensemble is actu-

106



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

ally that we can send fewer bits over the air due to a shorter vector of random
projections, saving in transmission costs guaranteeing at the same time on opti-
mal reconstruction quality at collection point.

In general we can say that the interval of feasible number of random pro-
jections is delimited by the different values: (1) Mq considered function of the
minimum reconstruction quality of the signal we can tolerate and (2) Me depend-
ing on the energy consumption required for compression. That is Mq  M  Me.

Classical CS theory Liu et al. [2010] claims that, for independent recon-
struction, Mq depends on the signal sparsity according to the relation Mq =

log(N) [✏/ (Cp · S)]1/(0.5�1/p) where N is the length of the original signal, p and
Cp are constants, S is the sparsity and ✏ is the MSE between the original and
the reconstructed signal. When DCS is used, the value of Mq is lowered since we
can achieve a better reconstruction with less measurements. On the contrary Me

is determined by the maximum energy consumption for compression allowed by
the node.

When the compression level has to be defined in a network, these two values
have to be taken into account. If a better reconstruction is required by applica-
tion, the value of M is chosen closer to (but not above) Me, while a consistent
energy saving is achievable for values of M closer to Mq at expenses of signal
recovered quality. This is why DCS is a powerful tool for reducing the energy
expenditure: we can choose value of M closer to Mq if we are interested in energy
saving or, for the same value of M we can achieve a better reconstruction with
the same energy consumption.

The following section investigates the energy threshold Me and the method-
ologies to reduce the energy required by DCS.

4.2.3 Efficient DCS implementation

One of the major problems, often underestimated in literature, is the energy
spent in compression. CS data compression goes through a matrix-vector multi-
plication, as seen in Section 3.3.2, that is not performed at zero cost. The energy
expenditure for compression, not always negligible, that determines also the value
Me defined in Section 4.2.2, is mainly function of two different parameters: (1)

107



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0

5

10

15

20

25

E
n
e
rg

y 
[m

J]

20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18
x 10

6

#
 C

P
U

 c
yc

le
s

Compressed vector length (M)

 

 

CS
no compression

Figure 4.5: Comparison between the energy spent in compression and transmis-
sion for CS and the energy for transmission when no compression is performed.
On the second axis is also reported the number of cycles required to compress
data using a random orthogonal matrix generated on the node (N = 512)

the hardware used to implement DCS and (2) how the compression is performed.

Hardware The hardware used as reference in our tests is a wireless node by
ST microelectronics, the STM32W108 that is a fully integrated System-on-Chip
having a 2.4 GHz, IEEE 802.15.4-compliant transceiver, 32-bit 24MHz ARM
Cortex-M3 microprocessor, 128K-byte Flash and 8K-byte RAM memory and pe-
ripherals of use to designers of 802.15.4-based systems. In our tests we assume
that the microprocessor is in deep sleep mode when it is not busy in perform-
ing compression, with a quiescent current of 1.3µA @ 3.6V . The processor and
peripheral (considering CPU, RAM and flash memory) consume around 7.5mA

@ 3.6V whereas the most important contribution to power consumption comes
from radio, with a total current consumption in reception of 26.5mA @ 3.6V and
in transmission 43.5mA @ 3.6V . The processor does not have a floating point
unit in hardware, but it can manage floating point calculations through software
emulation. The compiler used in all the simulations and tests is CodeSourcery

108



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

G++ Lite 2010q1-188 and the code is compiled with -O3 optimization. More-
over to measure the time involved in compression and sending, we use the debug
registers in the ARM core that are able to measure the number of cycles used
in performing a certain operation; hence, knowing the working frequency, it is
straightforward to obtain the elapsed time and the energy spent.

0 50 100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

10
5

10
6

10
7

 

 

X: 501
Y: 2.069e+006

Compressed vector length (M)

#
 C

P
U

 C
yc

le
s

T1
T2
T3
T4
T5
T6
T7
T8

Figure 4.6: Number of CPU cycles required to compress a sample using different
random � matrices varying the compression factor. (T1) Matrix with random
16bit fixed-point values. (T2) Gaussian matrix generated using a Box-Muller
transformation with mean zero and variance 1/M . (T3) Matrix with random
floating point values. (T4) Same as T2 but the matrix is generated with the
Ziggurat method. (T5) Entries of the matrix are generated from the symmetric
Bernoulli distribution with P (�jk = ±1

p
M) = 1/2. (T6) Same as T5 with

P (�jk = ±1) = 1/2. (T7) Binary sparse matrix with d = 1. (T8) Binary sparse
matrix with d = 10

In Figure 4.5 the compression and transmission energy versus compressed
vector length M is plotted when CS and no compression is used for a random
signal of length N = 512. The length of compressed vector at the intersection
point defines the value Me at which it is no more convenient to compress data
since the energy for compression is higher than the energy for transmission of

109



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

uncompressed data. While the energy spent when data is not compressed is
constant and only function of the size of the outgoing packet, the energy spent
in compression using CS increases with the increasing in the length M of the
compressed vector.

From the plot follows that the energy spent for CS strictly depends on the
compression energy that turns out to be function of how the compression itself is
performed.

Compression CS theory claims that for CS it is possible to use several kind of
random compression matrices � derived from random matrix ensembles: uniform
spherical ensemble, random signs ensemble, partial Fourier ensemble, etc... Each
matrix has different characteristics and hence its usage implies a different power
consumption. In particular, the power consumption is due to the contribution
of three different factors: (1) energy spent in matrix generation, (2) energy for
matrix-vector multiplication and (3) energy spent for transmitting the resultant
compressed vector. In Figure 4.6 the number of CPU cycles required to compress
a sample using different random � matrices varying the compression factor is
reported. It is possible to notice how substantial differences in the computational
workload do exist among the different kind of random matrices. It is known in
literature [Mamaghanian et al., 2011] that this difference is mainly due to the
generation of the random columns of the matrix. In certain cases the matrix
generation implies the use of complex functions such as log or sqrt that require a
lot of CPU cycles to be performed.

For each random matrix in the plot, we have in general a different power
consumption for data compression and a different reconstruction quality of the
original signal. The smaller the power consumption for compression the greater
the value of Me; that is DCS becomes more convenient for a greater range of
measurement vectors and in general more energy-aware for each value of M .

From the measurements it turns out that the more energy-aware random ma-
trix is the binary sparse random matrix which allows a very fast and efficient
implementation of the large matrix multiplication required by CS. This is a pe-
culiar matrix having only a fixed small number d of "ones" in each column and
all the other entries are equal to zero. The generation of the columns of this type

110



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

5 10 15 20 25 30 35
−20

−10

0

10

20

30

40

nonzero entries in binary sparse matrix (d)

S
N

R
 (

d
B

)

 

 

Temperature (K=50)
Temperature (K=100)
Temperature (K=150)
Humidity (K=50)
Humidity (K=100)
Humidity (K=150)
Light (K=50)
Light (K=100)
Light (K=150)

Figure 4.7: Average SNR varying the sparsity d of the binary sensing matrix.
Signals of length N = 1024 are compressed using a 8-level db8 wavelet matrix
with a compressed vector length of M = 50, M = 100 and M = 150

of measurement matrix can be obtained with a computational cost that does not
depend on the dimension M of the compressed vector.

It has been shown [Gilbert and Indyk, 2010][Mamaghanian et al., 2011] that
this type of matrix satisfies a weaker form of the RIP property and that, in
practice, these binary sparse matrices are as good as random Gaussian or Fourier
matrices.

Although these matrices have been used in literature, to the best of our knowl-
edge this is the first work addressing this type of measurement matrices in con-
junction with DCS and JSM-2 signals.

4.2.4 DCS with sparse random matrices

As first step we are interested in identifying the minimum value of d nonzero
entries in each column of � that guarantees the optimal trade-off between execu-
tion time, signal reconstruction error and power consumption. To get the most
suitable value, sparse binary sensing matrices are applied to the deployment data

111



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

80 100 120 140 160 180 200 220 240
5

10

15

20

25

30

35

40

45

Temperature

Compressed vector length (M)

S
N

R
 (

d
B

)

 

 

Gaussian
Gaussian (DCS)
Binary sparse
Binary sparse (DCS)

(a) Temperature

80 100 120 140 160 180 200 220 240
5

10

15

20

25

30

35

40

45

Compressed vector length (M)

S
N

R
 (

d
B

)

Humidity

 

 

Gaussian
Gaussian (DCS)
Binary sparse
Binary sparse (DCS)

(b) Humidity

80 100 120 140 160 180 200 220 240
0

5

10

15

20

25

30

35

40
Light

Compressed vector length (M)

S
N

R
 (

d
B

)

 

 

Gaussian
Gaussian (DCS)
Binary sparse
Binary sparse (DCS)

(c) Light

Figure 4.8: Comparison between reconstruction performance of Gaussian matrix
and binary sparse matrix (d = 1) for temperature, humidity and light signals.
DCS and independent reconstruction using CS are compared. The original signals
of length N = 1024 are sparsified using an 8-level db8 wavelet matrix

and the output SNR of the reconstructed signals is measured for DCS.
Figure 4.7 reports the resulting average output SNR versus the number of

nonzero elements d in the sparse binary sensing matrix � when a 8-level db8
sparsifying matrix is used for reconstructing each signal, varying the length of
the compressed vector from M = 50 to M = 150. The general trend reported
in the plot is that for small values of d the quality of the reconstruction using
DCS-SOMP is higher than for greater values of d. That is the performance of
DCS-SOMP with sparse binary matrices decreases with increasing in the value

112



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

of d. This is due to information aliasing when the DCS-SOMP algorithm is used.
Thus from the simulation results it turns out that the best binary sparse

matrix to be used with DCS is a sparse binary matrix with d = 1, that is a
matrix having just a single one in each column in a random position.

We have also performed several simulations to compare the reconstruction
performance of sparse matrices with respect to the classical Gaussian matrices
for DCS and independent reconstruction using CS. From the results in Figure
4.8 we can infer that the binary sparse matrix is optimal for DCS reconstruc-
tion, since it is able to guarantee a reconstruction quality similar to that one
obtained from Gaussian matrices. In particular increasing the length of the com-
pressed vector causes the increasing in the reconstruction quality for both DCS
and independently reconstructed signals.

Since the DCS performance are strictly related to the number of nodes in-
volved in reconstruction, in Figure 4.9 we have performed the same reconstruc-
tion for DCS as in Figure 4.8 but varying the number of sensor nodes used for
recovery. The trend in the figure clearly shows how reducing the number of nodes
of the ensemble, the reconstruction quality obtained by DCS decreases whereas
the independent reconstruction is not affected at all by this parameter. This is
an expected behavior for DCS since its performance are directly related to the
number of signals considered.

Once determined how DCS can be effectively used to achieve a better re-
construction quality, in the last set of trials we have calculated the energy con-
sumption of the DCS when Gaussian matrices and sparse binary matrices are
used. Results are in Figure 4.10. The plot shows how using DCS with sparse bi-
nary matrices permits a near-optimal reconstruction quality with less energy than
that one required by both Gaussian matrices and transmission of data without
compression. According the plot in Figure 4.6 all the other matrices are placed
between these two cases. The plot clearly shows three different groups: (1) when
no compression is performed the energy spent is always the same and it is only
due to data transmission, (2) when Gaussian matrix is used form compression we
need higher energy to compress data, mainly due to the work of generating the
measurement matrix on the node, (3) very small energy is required for compres-
sion using the sparse binary matrix and this permits to save energy prolonging

113



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

75 100 125 150 175 200 225 250
10

15

20

25

30

35

40

45

Compressed vector length (M)

S
N

R
 (

d
B

)

Temperature

 

 

J=57 (Ind)
J=57 (DCS)
J=30 (Ind)
J=30 (DCS)
J=10 (DCS)
J=10 (Ind)
J=5 (Ind)
J=5 (DCS)
J=2 (DCS)
J=2 (Ind)

(a) Temperature

75 100 125 150 175 200 225 250
10

15

20

25

30

35

40

45
Humidity

Compressed vector length (M)

S
N

R
 (

d
B

)

 

 

J=57 (Ind)
J=57 (DCS)
J=30 (DCS)
J=30 (Ind)
J=10 (Ind)
J=10 (DCS)
J=5 (DCS)
J=5 (Ind)
J=2 (DCS)
J=2 (Ind)

(b) Humidity

75 100 125 150 175 200 225 250
0

5

10

15

20

25

30

35

40
Light

Compressed vector length (M)

S
N

R
 (

d
B

)

 

 

J=14 (DCS)
J=14 (Ind)
J=10 (Ind)
J=10 (DCS)
J=5 (DCS)
J=5 (Ind)
J=2 (Ind)
J=2 (DCS)

(c) Light

Figure 4.9: Signals recovery using DCS and independent reconstruction when a
binary sparse matrix (d = 1) is used as measurement matrix. The number J of
the nodes involved in reconstruction is changed for each signal considered and
the reconstruction quality of the reconstruction is evaluated

the nodes lifetime.

4.3 CS with sub-Nyquist sampling rate

The great majority of the papers addressing CS and DCS deals with a purely
digital implementation of CS where the signal is sampled at a given frequency
(e.g. Nyquist or above) and then compressed using CS. Nevertheless when natural
signals have a relatively low information content as measured by the sparsity of

114



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

20 25 30 35 40 45
10

0

10
1

10
2

10
3

SNR (dB)

E
n
e
rg

y 
[m

J]

 

 

TG
TB
HG
HB
LG
LB
NC

Figure 4.10: Energy consumption for data transmission when no compression
(NC) is applied and energy for compression and transmission when Gaussian or
sparse binary matrices are used in DCS versus the average reconstruction qual-
ity of the signals. (TG) Temperature (Gaussian). (TB) Temperature (Binary
sparse). (HG) Humidity (Gaussian). (HB) Humidity (Binary sparse). (LG)
Light (Gaussian). (LB) Light (Binary sparse). The length of the signals is
N = 1024

their spectrum, the theory of CS suggests that randomized low-rate sampling may
provide an efficient alternative to high-rate uniform sampling. This technique is
usually referred to as analog CS and it is a novel strategy to sample and process
sparse signals at sub-Nyquist rate [Ranieri et al., 2010].

4.4 CS in embedded systems

4.4.1 Hardware and compression

In this section we want to analyze the real potential of CS aiming at low-
complexity energy-efficient data compression on resource constrained WSN plat-
forms.

115



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

CS is usually considered a suitable approach for data acquisition and com-
pression in WSNs. It is claimed [Caione et al., 2012] to be particularly attractive
for energy-constrained devices for at least two reasons: (1) the compression is
agnostic to the specific properties of the signal and it is performed through a
small number of linear independent measurements and (2) the small number of
measurements can be transmitted to a remote gathering center where they can
be accurately reconstructed using complex, nonlinear and energy expensive de-
coders.

Nevertheless the energy spent in compression is often underestimated in lit-
erature. When implemented in software, data compression goes through several
matrix-vector multiplications as seen in Section 3.3.2 that are not negligible, es-
pecially when resource-constrained nodes are used for compression and for the
generation of the measurement matrix.

The hardware used as reference in our tests is a wireless node by ST mi-
croelectronics, the STM32W108 that is a fully integrated SoC with a 2.4GHz
IEEE802.15.4-compliant transceiver, 32bit 24MHz ARM Cortex-M3 micropro-
cessor, 128KByte Flash and 8KByte of RAM memory. Two additional sensors
Sensirion SHT21 are considered on the board. The micro-controller has no float-
ing point unit and it uses software emulation to overcome this limitation. The
compiler used for compiling benchmarks is Sourcery CodeBench Lite Edition and
the code is compiled with -O3 optimization. The time measurement is performed
using the debug registers in the ARM core capable to accurately measure the
number of cycles spent in performing a certain operation.

Data for power consumption of the various subsystems are not here reported
for lack of space. For reference the reader can refer to the data-sheets of micro-
controller and sensors. Our tests and simulations track the reported data-sheet
values with high fidelity.

Compression using CS can be performed using different kind of compression
matrices �. In literature it is possible to find a plethora of papers arguing on
different kind of sensing matrices [Gilbert and Indyk, 2010]. As seen in Section
3.3.2 the only requirement is that the sensing matrix is highly incoherent with
the sparsifying basis  . Such property is practically verified for random matrices
such as random matrices with independent identically distributed (i.i.d.) entries.

116



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

Interestingly, many efficient sensing matrices can be generated having different
characteristics and hence different memory and power footprint, moreover they
require a different number of bytes for encoding and then storing.

In Figure 4.6 the number of cycles required by micro-controller to generate the
compression matrix and perform the compression of a single sample for different
kind of measurement matrices is shown. The differences are mainly due to (1)
the computational workload required for generating the random vectors for the
compression since in some cases the generation implies the use of complex and
computationally intensive functions such as sqrt or log and (2) the time spent
in multiplication of the vector against the sample that, especially in the case of
floating point numbers, is not negligible.

4.4.2 Power consumption model

When CS is used to perform compression in a WSN, the type of compression
matrix strongly affects also the power consumption of other subsystems: (1) the
longer the time necessary to compress the data is, the longer the node has to
be awake before switching back to sleep mode to save energy; (2) the number
of bytes required to encode the compression matrix is not the same for all the
matrices �; (3) following from the previous point, the time and space required
by the micro-controller to store data in non volatile memory is different and (4)
the energy spent in transmission is different for measurement matrices.

To evaluate the influence of the choice of measurement matrix and other com-
pression parameters, in this subsection we introduce an architecture level power
consumption model to evaluate the power consumption of the nodes when com-
pression is performed using different parameters for compression and we compare
the results against the power spent to transmit data without any kind of compres-
sion. Using this power model and feeding it with data coming from real hardware
we can easily evaluate how changing the parameters influences the energy con-
sumption of the system enabling design space exploration.

The hardware taken as reference (already described in this section) is a STM32W108
node acquiring data from the two on-board sensors. The network is organized
as a star, a very common topology for practical WSN deployments [Rajagopalan

117



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

and Varshney, 2006].
During the simulation involving no compression the node wakes up, samples

data from the two sensors and sends them out to a collector center. Afterwards
it goes back in sleep mode waiting for next cycle. The energy spent in each cycle
can be written as:

E = Esleep + Esetup + Esample + Etrans (4.10)

where Esleep is the energy spent in sleep mode, Esetup is the energy used for
waking up and setting up the device, Esample is the energy for sampling each
sensors and Esend is the energy used to send the acquired data. Expanding each
term we have:

E = Tsleep · (Psleep + Psoff + Ptoff)+ (4.11)

Tsetup · (Pmcu + Psoff + Ptoff)+

Tsample · (Psample + Psactive + Ptoff)+

Ttrans · (Pcomm + Psoff + Ptrans)

where Tsleep, Tsetup,Tsample, Ttrans are the duration of each respective phase.
Psleep is the power consumed in sleep mode, Psoff is the power absorbed from
sensors when sleeping, Ptoff is the power consumption of the transceiver when the
node is in sleep mode. Pmcu is the power consumed by the MCU, Psample is the
power spent for data acquisition, Psactive is the power consumed by sensors, Pcomm

is the power consumption for filling the transceiver output buffer and finally Ptrans

is the power for sending data. All the values for the power consumption or timing
are taken from the datasheets or actually measured on the hardware.

When CS is used to compress data, the compression is performed after the
node has acquired Nacc samples. Thus the energy consumption in each cycle is:

118



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

ECS = (Nacc · (Esleep + Esetup + Esample + Estore)+ (4.12)

Env + Ecomp + Etrans)/Nacc

Where Estore is the energy to store the acquired sample in non volatile memory,
Env is the energy spent during the recovery of the data from non volatile memory
and Ecomp is the energy for compression. In detail:

ECS = (Nacc · (Tsleep · (Psleep + Psoff + Ptoff)+ (4.13)

Tsetup · (Pmcu + Psoff + Ptoff)+

Tsample · (Psample + Psactive + Ptoff)+

Tnv · (Pstore + Psoff + Ptoff))+

Tstore · (Psoff + Ptoff + Pstore)+

Tcomp · (Psoff + Ptoff + Pcomp)+

Ttrans · (Pcomm + Psoff + Ptrans))/Nacc

with obvious meaning of the symbols.
In Figure 4.11 the result of simulations is reported when Nacc = 512, M =

100, Tsleep = 10s with an overhead of 10 bytes for each packet sent. The other
parameters in Equation (4.11) and (4.13) are derived from these values and the
hardware specification data in datasheets. The two compression matrices used
in the simulation when CS is performed are: (T2) Gaussian matrix generated
using a Box-Muller transformation with mean zero and variance 1/M and (T6)
matrix generated from the symmetric Bernoulli distribution P (�jk = ±1) =

1/2. According to Figure 4.6 these two matrices define the energy consumption
boundary for CS.

The result of the simulation clearly shows how not always compressing data
with CS determines an actual saving in power consumption. For all the cases the
energy spent in sleep mode, the energy for sampling and the energy for setting
up the node after the sleep is obviously the same. The differences are related to

119



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

the energy for compression and for sending the data.

0,00001

0,0001

0,001
using CS (T6) using CS (T2) not using CS

[J
]

Esleep Esetup Esample Esend Ecomp Env

Figure 4.11: Energy spent in one sampling cycle when CS is used to compress
the sample compared to the energy consumed when the sample is sent without
compression. The first bar refers to CS when measurement matrix is obtained
from a Bernoulli distribution (T6) while for the second bar the compression is
performed using a Gaussian matrix (T2). (Simulation parameters: Nacc = 512,
M = 100, Tsleep = 10s)

Using a complex compression matrix (T2) is really expensive in terms of
energy consumption thus the overall power consumption is higher with CS than
without any compression. Differently, when a simpler matrix is used (T6) the
energy for compression becomes negligible, and the power consumption abruptly
decreases. A large difference between using CS and not using compression is also
in the power for sending data due to two different factors: (1) the number of bytes
sent and (2) a better packetization since the compressed vector is sent at the end
of the Nacc cycles permitting to maximize the number of compressed samples that
fit in the packet payload.

120



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

4.4.3 Low-Rate CS

In this section we want to investigate how it is possible to further reduce the
energy consumption by means of simpler sparse measurement matrices and acting
on the number of samples gathered by the node.

In classical acquisition systems (as in the digital CS seen before), samples are
taken regularly on the time axis at a given rate (usually not less than the Nyquist
one). A particular form of CS, called analog CS, relies on random sampling to
avoid this regularity and aims to produce a number of measurements that, on the
average, are less than those produced by Nyquist sampling, while still allowing
the reconstruction of the whole signal resorting to sparsity and other priors.

While usually analog CS is performed by means of specialized hardware en-
coders, we want to study whether analog CS is a suitable technique to be per-
formed on WSNs nodes and whether this peculiar form of compression, that we
call from now on Low-Rate CS (LR-CS), is still able to reconstruct the original
signals of interest with satisfying quality.

From a mathematical point of view the problem is still the same as seen in
Equation (3.4), what is different is the form of the measurement matrix �. Let B
denote an M -dimensional vector each element of which contains a unique entry
chosen randomly between 1 and N . In analog CS the measurement matrix � is
a sparse M ⇥N matrix where the ith row of the matrix is an all-zero vector with
1 at the location given by the ith element of B. This is very simple measurement
matrix, energetically cheap to generate, store and permits also to save on the
number of samples to gather.

Practically using this type of measurement matrix means that the node is
required only to randomly gather M samples with an under-sampling ratio of
order ⇢ = M/N . As done before the energy consumption on average after Nacc

sampling period is:

Esub =(M · (Esetup + Esampl + Estore)+ (4.14)

Nacc · Esleep + Env + Esend)/Nacc

In Figure 4.12 the comparison between digital and low-rate CS is reported.

121



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0

0,00001

0,00002

0,00003

0,00004

0,00005

0,00006

0,00007

0,00008

0,00009

0,0001
CS (T6) CS (sub-sampling)

[J
]

Esleep Esetup Esample Esend Ecomp Env

Figure 4.12: Energy comparison between digital and low-rate CS. (Simulation
parameters: Nacc = 512, M = 100, Tsleep = 10s)

As inferred from Equation (4.12) and (4.14) the energy saving is mainly due to
three to factors: (1) there is no energy spent in compression for the analog version
of CS, (2) the contribution of Esetup, Esampl and Estore is reduced by a factor ⇢
and (3) Env is decreased since the number of bytes to store in flash is reduced.

In Figure 4.13 the comparison between the energy spent for low-rate and
digital CS is reported, normalizing the energy with respect to the energy spent
when no compression is applied. The low-rate CS is always more convenient with
respect to the digital CS. In the plot is also visible the influence of the packet
overhead on the power consumption that creates small abrupt increases in energy
consumption when an additional packet has to be sent.

Having verified that using Low-Rate CS and a sparse measurement matrix
the node can save energy the problem shifts to verify whether low-rate CS can
be used in practice to reconstruct signals gathered by WSNs nodes deployed in a
real environment.

122



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

Compressed vector length / Number of samples gathered (M)

E
/E

n
o
C

S

 

 

Digital CS
Low−rate CS

Figure 4.13: Energy comparison between digital and low-rate CS varying the
compressed vector size for digital CS and the number of samples gathered for the
low-rate CS

4.4.4 WSN data reconstruction for Low-Rate CS

In this section we want to investigate the performance of several reconstruction
algorithms to check if there is an algorithm that better than others is able to
cope with low-rate CS and that can guarantee a good signal recovery. Moreover
we want to address the problem of choosing a suitable sampling pattern for the
low-rate CS since the sampling pattern chosen is strictly related to the quality of
the recovered signal during the reconstruction phase.

In our experiments we consider data coming from the CIMIS dataset that
manages a network of over 120 automated weather stations in the state of Cali-
fornia. We take as reference the data collected during the 23rd week of the 2012
by seven different weather stations near Monterey (CA). For our simulations we

123



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0 50 100 150

40

60

80

100

R
H

  
[%

]

0 50 100 150
0

1000

2000

S
R

 [
L

y/
d

a
y]

0 50 100 150
0

10

20

Time [h]

W
S

 [
M

P
H

]

Figure 4.14: Signals ensembles for (a) relative humidity (RH), (b) solar radiation
(SR) and (c) wind speed (WS) for seven different weather stations near Monterey
(CA). Each different line in each sensor plot is referred to a different node: each
kind of sensor presents a different level of correlation among different nodes.

refer to three different kind of sensors: temperature, relative humidity and wind
speed, as reported in Figure 4.14. The ensemble of signals is chosen such that it
includes periodic and highly correlated signals (temperature and relative humid-
ity) with less-correlated signals (wind speed).

In our model the seven nodes are deployed in a IEEE 802.15.4 star network.
The power consumption for each node adheres to the same model as described
in Section 4.4. In each simulation cycle, each node samples the signal for a
certain period, called acquisition period, collecting a certain number of samples
before compressing these samples and sending out the compressed vector toward
a central collector. The acquisition period is supposed be the same for each

124



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

node and each node uses the low-rate CS for compressing data. The sparse
compression matrix � used for compression is locally generated by each node
using its own id and the time-stamp as seed for generation. The compressed
vectors are gathered by the central coordinator and here the original signals are
recovered using different algorithms.

Two different sampling patterns for the generation of the measurement matrix
� are considered in this section: (1) uniform sampling (US) pattern and (2)
non-uniform sampling (NUS) pattern. In the uniform sampling pattern the inter-
measurements intervals are constant �kj = kj+1 � kj = �k = ��kmin where
�kmin is the minimum sampling period of the ADC and � = dN/Me whereas
in the non-uniform sampling pattern the inter-sample period is randomly chosen
between [�kmin,1].

We carry the reconstruction using several algorithms, distributed and non-
distributed, and evaluate the quality of reconstruction using the SNR expressed
in dB:

SNRdB = 20 · log10
kxk2

kx� ˆxk2
(4.15)

where x is the original signal and ˆx is its recovered version.
In particular we try the reconstruction using: (1) Basis Pursuit on single nodes

averaging the quality of reconstruction over all the seven different signals. (2)
DCS-SOMP algorithm considering a JSM-2 model for the signals ensemble. (3)
Joint-sparse basis pursuit model (JS-BP) solved with YALL1 MATLAB package.
(4) Gradient Projection base Sparse Reconstruction (GPSR).

While the BP does not exploit any correlation or priori information and DCS-
SOMP and JS-BP try to exploit inter-correlations existing among the different
nodes, the GPSR algorithm is well-suited both for periodic and correlated signals
since it presents a weighting factor that can be used to give to the reconstruction
algorithms some hints about reconstruction.

With the same nomenclature as in the previous section, the problem of signal
reconstruction for GPSR can be expressed as:

125



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

minimize
⇥
k �↵� yk22 + ⌧kW↵k1

⇤
(4.16)

where ⌧ is a non-negative parameter providing relative weight of the `1-norm
and `2-norm in the cost function while W is a diagonal matrix with !1, . . . ,!n

on the diagonal and:

!i =
1

|⌘i|+ ✏
(4.17)

where ✏ > 0 is in order to provide stability and in general the weights ⌘i are
free parameters in the convex relaxation whose values could improve the signal
reconstruction. The matrix W can be in fact used to incorporate a priori infor-
mation about sparsity and can be estimated on-line from inter o intra-correlation
data between sensors and nodes.

In this section we use the data from the same sensor the day before those ones
involved in the reconstruction as training information for each sensor to obtain
the W matrix, exploiting the temporal intra-correlation of each node.

In the simulations the acquisition period before sending out the compressed
data toward the base station is 2 days (more precisely 42 hours). During this
period each sensor of each node is sampled and M samples are gathered by the
node according to the generated � matrix. The minimum wake-up time (the
minimum inter-sample period) is 5 min, so a maximum number of Nacc = 512

samples can be gathered by each node for each sensor in one acquisition period.
The sparsifying matrix  is a DCT matrix that is already demonstrated be a
good basis for compressible natural signals [Caione et al., 2012]. Each simulation
cycle is performed for 100 trials and for each run both the measurement matrix
and the sampling pattern for the non-uniform random sampling are randomly
generated.

In Figure 4.15 the reconstruction quality for each kind of signal averaged over
all the seven nodes is reported. The plot is done against the under-sampling
ratio ⇢ = M/N defined as the fraction of the samples actually taken respect to

126



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0.2 0.4 0.6 0.8
−20

0

20

40

60

80

100

Undersampling ratio (ρ)

S
N

R
 [
d
B

]

 

 

BP [US]
BP [NUS]
GPSR [US]
GPSR [NUS]
JS−BP [NUS]
DCSSOMP [NUS]

(a) Humidity

0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70

Undersampling ratio (ρ)

S
N

R
 [

d
B

]

 

 

BP [US]
BP [NUS]
GPSR [US]
GPSR [NUS]
JS−BP [NUS]
DCSSOMP [NUS]

(b) Solar

0.2 0.4 0.6 0.8
−10

0

10

20

30

40

50

60

70

Undersampling ratio (ρ)

S
N

R
 [

d
B

]

 

 

BP [US]
BP [NUS]
GPSR [US]
GPSR [NUS]
JS−BP [NUS]
DCSSOMP [NUS]

(c) Wind

Figure 4.15: Quality of reconstruction vs the under sampling ratio for the three
kind of signals taken into consideration. Each signal is reconstructed using all the
algorithms investigated in the paper, varying also the under-sampling pattern

the number of total samples.
The results clearly show how BP does not perform well for all the three sig-

nals when low under-sampling ratios are considered achieving a SNR that is lower
than that one obtained with all the other algorithms. Algorithms involving the ex-
ploitation of spatial inter-correlation between nodes or temporal intra-correlation
achieve a much better reconstruction quality for all the signals considered. In
general results show that the better reconstruction quality is obtained using the

127



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

GPSR algorithm. This much higher SNR for reconstruction using GPSR is ob-
tained by giving the reconstruction algorithm useful hints about the signal to
reconstruct as seen in Equation (4.16). For the wind speed the reconstruction
quality guaranteed by GPSR is comparable to that on achieved by DCSSOMP,
this is due to the fact that the wind speed, among all the signals, presents a lower
temporal correlation.

The plot also shows that, while for GPSR the uniform sampling (US) outper-
forms the non-uniform sampling pattern (NUS), for BP is the opposite.

4.4.4.1 Training data for GPSR

From the results collected follows that the best algorithm able to provide a good
reconstruction of the signals is GPSR. In this section we want to investigate how
the training data (the parameters under the form of the W matrix in Equation
(4.16)) can influence the reconstruction. This is particularly significant in WSNs
where spatial and temporal correlations do exist between different nodes and
within the node itself.

In our simulations we investigate four different scenarios, each aimed to ex-
ploit spatial correlation among nodes or temporal correlation within the sensor
of interest to create a suitable data training for the GPSR reconstruction.

As seen in Figure 4.16 our training data is obtained: (1) exploiting temporal
correlation by using data of the same sensor on the same node reconstructed in
the previous acquisition cycle; (2) by averaging a maximum of 10 signals recon-
structed in the previous acquisition cycles; (3) by using a pseudo-signal obtained
combining the raw data gathered by neighbor nodes; (4) by using a line-powered
node taken as reference providing uncompressed data placed near the compress-
ing node. This last point is a fictitious case taken as reference since it is not
always possible to have a line-powered node providing continuous stream of data,
but it is useful to evaluate the recovery when spatial-correlated data is used for
reconstruction.

The first result inferred from the simulations output is that, exploiting the
spatial correlation using as training for the algorithm the pseudo-signal, is not
convenient since the quality of the reconstruction is lower than that one obtained

128



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

Undersampling ratio (ρ)

S
N

R
 [

d
B

]

 

 

Training for previous acquisition
Training from averaged data
Training from signals ensemble
Training from reference node

(a) Humidity

0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

Undersampling ratio (ρ)

S
N

R
 [

d
B

]

 

 

Training for previous acquisition
Training from averaged data
Training from signals ensemble
Training from reference node

(b) Solar

0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

Undersampling ratio (ρ)

S
N

R
 [

d
B

]

 

 

Training for previous acquisition
Training from averaged data
Training from signals ensemble
Training from reference node

(c) Wind

Figure 4.16: Quality of reconstruction varying the training data used in GPSR
algorithm

using the other methods.
In general a better recovery is achieved when data temporally correlated with

the signal that we want to recover is used as training data. This is particularly
true for periodic signals such the environmental signals of interests. The best
results in the compression range of interest are obtained by using as training for
the GPSR algorithm data coming from the same sensor and node but gathered
in a previous acquisition cycle. This can guarantee the maximum temporal (and
obviously spatial) correlation giving helpful hints to the reconstruction algorithm

129



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

to correctly recover the signal.

Figure 4.17: With the same nomenclature previously introduced this plot high-
lights the different choices for measurement and reconstruction phase that permit
to achieve the better reconstruction with the minimum energy expenditure.

4.4.4.2 Energetically optimal reconstruction

In Sections 4.4 and 4.4.3 we have investigated the compression phase, coming to
the conclusion that a sparse measurement matrix is the best compression matrix
to save energy in compression. Afterwards in Section 4.4.4 we have obtained that,
among several reconstruction algorithms and using this sparse measurement ma-
trix, GPSR is the best algorithm capable to guarantee the higher reconstruction
quality. In Figure 4.17 a graphical review of the best choices in measurement and
reconstruction phase is reported.

Since we have investigated both the power consumption in compression and
the reconstruction quality using GPSR it is possible to address the problem to
find the optimal compression parameters able to guarantee good reconstruction

130



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

quality with the minimum energy expenditure.

100 200 300 400 500
2

3

4

5

6

7

8

9

10
x 10

5

Compressed vector length / Number of samples gathered (M)

[d
B

/J
]

 

 
SR [LR−CS]
SR [DCS]
RH [LR−CS]
RH [DCS]
WS [LR−CS]
WS [DCS]

Figure 4.18: Trade-off between reconstruction and energy consumption for com-
pression. (SR: Solar radiation. RH: Relative humidity. WS: Wind speed.
LR-CS: low rate CS. DCS: digital CS.)

In Figure 4.18 the trade-off between quality of signal recovery and power
consumption is reported plotting the ratio between quality of reconstruction and
the energy spent in compression varying the under-sampling ratio ⇢ for low-rate
CS and the compression vector size M for digital CS.

Looking at the plot we can see how the curves for LR-CS are always above the
curves for the digital CS, meaning that for LR-CS the compression is energetically
cheaper. More precisely this means that each dB in reconstruction is obtained
using less Joules of energy during the compression phase.

Moreover within the same class of curves we have a range of compression values
M and ⇢ (between M = 100 and M = 200 for digital CS and ⇢ = 0.2 and ⇢ = 0.4

for the low-rate CS) for which the curves present a maximum, identifying the best

131



4. COMPRESSIVE SENSING FOR SIGNAL ENSEMBLES

trade-off between reconstruction quality and power consumption for compression.
Comparing these values with the plots in Figure 4.15 we can see how in this

range the quality of reconstruction is always > 30dB that is a very good recon-
struction quality for our goals.

Thus the low-rate CS with an under-sampling ratio 0.2  ⇢  0.4 when recon-
struction is performed using GPSR with temporally correlated data as training
data is able to guarantee an optimal reconstruction > 30dB with minimum energy
used for compression.

132



Chapter 5

Sub-sampling frameworks

comparison

As seen in the previous chapter when the considered signals present spatial-
temporal correlations, they can be used to reconstruct the desired data from
only a limited portion of collected samples. The ability to reconstruct missing
data enables the adoption of aggressive duty cycling policies on individual sensor
nodes, sampling only the most informative parts of the data, thereby reducing
the overall energy consumption.

Besides DCS another promising technique capable to recover the signal from
an highly incomplete sub-sampled version is a special data-driven statistical
model based on latent variables (LV). This approach extends the standard latent
variable factorization model, which typically considers only dyadic interactions
in data, to multivariate spatial-temporal data, by applying tensor decomposition
techniques [Yang et al., 2008]. The key advantage of using a latent variable model
is that it provides a compact representation of the gathered data that can be used
to recover the missing samples. To perform well under extreme sub-sampling con-
ditions, the standard technique is extended to explicitly incorporate the spatial,
temporal, and inter-sensor correlations present in the considered data.

133



5. SUB-SAMPLING FRAMEWORKS COMPARISON

5.1 Group sparsity with CS

Beside the distributed techniques already explored in Section 4.1 and following
subsection, there are several other techniques able to deal with groups of signals
that are sparse. In practice, a wide class of solutions are known to have certain
group sparsity structure. Namely, the solution has a natural grouping of its
components, and the components within a group are likely to be either all zeros
or all non-zeros. Encoding the group sparsity structure can reduce the degrees of
freedom in the solution, thereby leading to better recovery performance.

The group sparse reconstruction problem has been well studied recently. A
favorable approach in the literature is to use the mixed `2,1-regularization. Sup-
pose x 2 Rn is an unknown group sparse solution. Let {xgi 2 Rni

: i = 1, . . . , s}
be the grouping of x, where gi ✓ {1, 2, . . . , n} is an index set corresponding to
the i-th group and xg denotes the sub-vector of x indexed by gi. Generally, gi’s
can be any index sets, and they are predefined based on prior knowledge. The
`2,1-norm is defined as follows:

kxk2,1 :=
sX

i=1

kxgik2 (5.1)

just like the use of `1-regularization for sparse recovery, the `2,1-regularization
is known to facilitate group sparsity and result in a convex problem.

In general, instead of using the `2,1-norm (5.1), it is convenient to consider
the weighted `w,2,1-norm defined by:

kxkw,2,1 :=

sX

i=1

wikxgik2 (5.2)

where wi � 0 are weights associated with each group.

134



5. SUB-SAMPLING FRAMEWORKS COMPARISON

5.1.1 Joint sparsity and MMV problem

An interesting special case of the group sparsity structure is called joint sparsity
[van den Berg and Friedlander, 2008]. Jointly sparse solutions, namely, a set
of sparse solutions that share a common nonzero support, have been already
introduced in Section 4.1.1. Differently, in this case, the reconstruction of jointly
sparse solutions, is known as the multiple measurement vector (MMV) problem.

This problem can be formulated as:

min

X
kXkw,2,1 :=

nX

i=1

wikxik2 s.t. AX = B (5.3)

where X = [x1, . . . , xl] 2 Rn⇥l denotes a collection of l jointly sparse solutions,
A 2 Rm⇥n with m < n, B 2 Rm⇥l, wi � 0 for i = 1, . . . , n and xi and xj denote
the i-th row and j-th column of X respectively.

When dealing with WSN, we can consider an ensemble of J signals we can
denote each signal with xj 2 RN with j 2 {1, 2, . . . , J}. For each signal xj in
the ensemble we have a sparsifying basis  2 RN⇥N and a measurement matrix
�j 2 RM⇥N such that as before yj = �jxj with Mj ⌧ N and xj =  ↵j.

In this case the problem (5.3) can be rewritten as:

min

↵̃
k↵̃kw,2,1 :=

nX

i=1

wik↵̃ik2 s.t. ⇥̃↵̃ = Ỹ (5.4)

where Ỹ =

⇥
yT
1 y

T
2 . . .yT

J

⇤
, ↵̃ =

⇥
↵T

1↵
T
2 . . .↵T

J

⇤
, wi is the weight and ⇥̃ 2

RJM⇥JN is a matrix having on the diagonal matrices⇥j = �j for j 2 {1, 2, . . . , J}.
We can refer to this technique with the name Group-Sparsity CS (GS-CS).

5.2 Latent variables and tensor factorization

This technique is based on the well-known variable based factorization already
used in several application domains [Koren et al., 2009]. The main idea behind
this framework is to model the large number of observed variables (the observed

135



5. SUB-SAMPLING FRAMEWORKS COMPARISON

data) in terms of a much smaller number of unobserved variables (the latent
variables). The latent variables are learned from the observed data and are used
to estimate the missing samples, modeling complex interactions between the ob-
served variables through simple interactions between the latent variables.

Let say we are able to collect some multivariate data by a heterogeneous
WSN, we can organized this data in a 3-dimensional matrix. Each of the three
dimensions corresponds to a different variate of a particular measurement. In our
case the three dimensions are: time, spatial data evolution and kind of sensor
sampled. Once the data is organized in this fashion we can associate a low-
dimensional latent variable with each unique location, time slice and sensor type.
It turns out that a particular observation can be seen as a noisy combination of
the associated latent variables. The aim is to obtain a good set of latent variables
that can represent the observed data.

Mathematically we can define with n 2 {1, 2, . . . , N} the time instance, with
s 2 {1, 2, . . . , S} the sensor type and with j 2 {1, 2, . . . , J} the node location. In
vectors we have an, bs and cj respectively. We have not direct access to these
vectors, called the latent factors, but these are assumed to control the location,
time and sensor-specific interactions present in the observed data.

Given S different sensor types collected by J nodes at N different time in-
stances, we can think of this data as a single [N ⇥ S ⇥ J ] tensor X. X can also
contain missing entries due to problem in transmission or to save on sampling
power.

We assume that each reading xnsj is a noisy realization of the underlying true
reading that is obtained by the interaction of the time specific latent variable an,
with the sensor specific latent variable bs and with the location specific variable
cj. That is,

xnsj =

KX

k=1

ankbskcjk + ", (5.5)

where " is modeled as independent zero-mean Gaussian noise (" ⇠ N(0, �2
)).

Once one has xnsj the goal is to find the most predictive set of vectors an, bs and
cj for all n = 1, . . . , N , s = 1, . . . , S, j = 1, . . . , J .

Using the formulation in Equation (5.5) the entire model is represented by

136



5. SUB-SAMPLING FRAMEWORKS COMPARISON

just [K · (N +S + J)] modeling parameters. The K parameter defines the trade-
off between quality of the reconstruction and computational power. Moreover
while a large K increases the number of modeling parameters and thus can help
model the observed data exactly, on the other hand this lacks the capability on
predicting unobserved / missing data due to over-fitting. On the contrary a small
K escapes the over-fitting problem, but the corresponding model lacks sufficient
richness to capture salient data trends.

5.2.1 Learning process

By [Kolda and Bader, 2009] we know that it is possible to find the optimal set of
K-dimensional latent variables by factorizing the given tensor into three matrices
of rank at most K. This can be done, assuming that all the data is known,
by employing the CanDecomp / ParaFac (CP) tensor factorization. Using this
technique it is possible to decompose a generic third order tensor in three matrix
factors A, B and C.

The resolution of the problem to find the suitable A, B and C matrices is
solved by alternating least square approach (ALS) [Acar and Yener, 2009] which
iteratively optimizes for one matrix factor at time while keeping the other two
fixed.

If this technique is suitable and already explored when working with dense
matrices, in the case of WSNs sensor nodes can periodically go off-line due to
duty-cycling or run out of energy, creating holes in the matrices filled with zeros.
Therefore it is needed to extend the basic model to deal with data missing from
multiple sensors or nodes. This could be done explicitly exploiting spatial, tem-
poral and sensor specific information from neighboring observations by learning
and enforcing the corresponding correlations.

5.2.2 Exploiting correlations in LV

We explicitly model spatial, temporal and sensor-specific trends within each of
our latent variables an, bs and cj. Such trends ensure that the latent variables an

and an0 (respectively bs and bs0 , and cj and cj0) take similar values when times

137



5. SUB-SAMPLING FRAMEWORKS COMPARISON

n and n0 are “similar" (respectively sensors types s and s0, and locations j and
j0).

The similarity constraints are modeled in the same way for all the three sets
of latent variables, and here we illustrate the case for the an’s.

Since each an is a K-dimensional variable, let akn denote its kth coordinate.
We model akn (independently for each coordinate k) as

ak: = µk
a + ↵k

: (5.6)

↵k
: ⇠ N(0,⌃a).

Here ak: represents the collection of all an’s (across n = 1, . . . , N) in the kth

coordinate and µa represents their mean value. The distributional constraint
over ↵k

: (as N(0,⌃a)) enforces the similarity constraints via the N⇥N covariance
matrix ⌃a. By changing the n, n0 entry of ⌃a we can encourage / discourage the
corresponding an and an0 to take similar values.

To get the right similarity constraints ⌃a, ⌃b and ⌃c (for latent variables an, bs

and cj), it is possible to compute the empirical correlations from the data. That
is, for spatial similarity constraints the averaged pairwise Pearson correlation
coefficient between data from different pairs of locations (across sensors and times)
is used. The same is done to approximate inter-sensor and temporal similarities.

5.2.3 Parameter learning

The underlying latent variables are estimated in a probabilistic framework using
a maximum a posteriori (MAP) estimate.

In particular, let ✓ denote all the model parameters (i.e. ✓ = {{an}, {bs}, {cj}, �}),
then the optimum choice of parameters ✓MAP given the data X is obtained by:

138



5. SUB-SAMPLING FRAMEWORKS COMPARISON

✓MAP (X) := argmax

✓
p(X | ✓)| {z }
likelihood

p(✓)|{z}
prior

=

argmax

✓

X

n,s,j2observed

log p(xnsj | an,bs, cj, �) +

KX

k=1

log p(ak: ) +
KX

k=1

log p(bk: ) +
KX

k=1

log p(ck: ).

The first term (the likelihood) takes the form of Equation (5.5), and the other
terms represent the priors for each latent variable and each one of them takes the
form of Equation (5.6). We take a uniform prior over �, the standard deviation
of the residuals in Equation 5.5 so it is not explicitly shown in the equation.

This optimization does not have a closed form thus an alternating hill-climb
approach is used by optimizing the value of one variable while keeping all others
fixed to get a good solution.

5.3 Comparison between GC-CS and LV

Before directly comparing the two frameworks it is needed to define the models
for hardware, network and power consumption used in the simulations.

Hardware As already seen in the previous chapters, the hardware taken as
reference for simulations and tests is the wireless node by ST Microelectronics
STM32W108. The sensors considered in this case are: a Sensirion SHT21 for
sensing of temperature and humidity and a BH1715 light sensor. Timing in
performing the operations used in the power model are obtained either using the
values reported in the data-sheet or measured using a GPIO trigger connected to
an oscilloscope.

Data for power consumption of the various subsystems are not reported for
lack of space but the reader can refer to the data-sheets of the components for
further reference.

139



5. SUB-SAMPLING FRAMEWORKS COMPARISON

Network model Data used for the simulations is taken from the 3ENCULT
[3ENCULT, 2012] that is a structural health monitoring deployment composed by
23 low-power sensor nodes spread across the three floors of the historic building
Palazzina della Viola at the University of Bologna, Italy. The topology considered
is a star network in which data is relayed toward a central sink that is in charge
to collect and elaborate data.

In a star network we can consider that each node samples the signals for a
period of time T , called acquisition period, ideally gathering N = T/fs number of
samples at a fs sampling frequency, before sending the data towards the collecting
point. If each node adopts a sub-sampling policy with an under-sampling ratio ⇢
then the number of samples actually gathered by the node is M = ⇢N .

The under-sampling pattern is locally generated by each node using its own
id and the timestamp as seed for randomization. In the random sampling pattern
the inter-measurements intervals are always multiple of the minimum sampling
period Tk = T/N .

Power model The architecture power model is derived from the power model
introduced in Section 4.4.2. Considering the characteristics of the network model
and the power consumption model already introduced we can define the average
energy consumption in each period of duration Tk, when a sub-sampling factor
⇢, is:

Ek =⇢ (Esetup + Esampl + Estore) + Esleep +N�1
(Env + Esend) (5.7)

where Esleep is the energy spent in sleep mode, Esetup is the energy used for
waking up and setting up the device, Esample is the energy for sampling each
sensors, Esend is the energy used to send the acquired data, Estore is the energy
to store the acquired sample in non volatile memory and Env is the energy spent
during the recovery of the data from non volatile memory.

140



5. SUB-SAMPLING FRAMEWORKS COMPARISON

5.3.1 Reconstruction quality / lifetime trade-off analysis

The data considered to investigate the performance of GC-CS and LV is composed
by data gathered by temperature, humidity and light sensors.

The compression phase is the same for both frameworks: each node samples
the signals of interest gathering a sub-set M of the needed samples (M = ⇢N),
with 0 < ⇢ < 1. After the acquisition period T = NTk the gathered data is sent to
the collecting sink through the network. The sampling time Tk in the following
simulations is set to 600s and the results are averaged over 100 trials. Each
trial is characterized by a different sampling pattern and a different considered
portion of the signal. The reconstruction phase is fairly different and determines
the recovery quality of the original signal. For CS the DCT matrix is used as
sparsifying matrix that is already been demonstrated being a good sparsifying
matrix for natural signals [Caione et al., 2012].

In the first simulation we evaluate the reconstruction quality without exploit-
ing any correlations among signals or sensors but just averaging the reconstruction
quality over all the reconstructed signals using a signal length of N = 512. For the
latent variables approach here we used the standard CP tensor factorization tech-
nique, without the contribution of any correlations in the data. The comparison
is carried evaluating the signal to noise ratio (SNR) defined as:

SNRdB = 20 · log10
kxk2

kx� ˆxk2
(5.8)

where x is the original signal and ˆx is its recovered version. We show the
average SNR across all the network nodes.

From the plot, shown in Figure 5.1, we can infer how different the perfor-
mance is for the two techniques: while the reconstruction performance for LV is
pretty stable varying the sub-sampling factor ⇢, CS is much more affected by the
compression factor. Recovery with CS achieves a better reconstruction almost
for every sub-sampling factor with respect to the latent variable based technique.

Moreover from the plot we can infer how the recovery of light signals is much
more difficult then the two other signals. This is due to the nature of the light
signal that is recorded inside the building. While for temperature and humidity

141



5. SUB-SAMPLING FRAMEWORKS COMPARISON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

90

ρ[%]

S
N

R
[d

B
]

 

 

Temperature CP

Humidity CP

Light CP

Temperature CS

Humidity CS

Light CS

Figure 5.1: Recovery comparison between CS and latent variable (LV) method
when reconstructing the original signals from sub-sampled version averaging the
reconstruction quality over all the nodes (N = 512)

the gathered signals are continuous signals and smoothly affected by the human
presence, the light signal is highly irregular and highly influenced by the artificial
lighting in the single rooms. Moreover, some of the nodes are placed in the
basement where the light level is under the noise threshold of the light sensors,
providing extremely noisy data.

Once investigated the reconstruction of the single signals, it is possible to
evaluate the reconstruction when correlations among sensors and nodes is ex-
ploited. We performed the recovery against the same dataset using for CS the
group sparse optimization (GS-CS) exploiting the joint sparsity of the signals and
for LV the maximum a posteriori optimization (LV-MAP).

Results are reported in Figure 5.2. While the performance for CS remains
almost the same, the LV-MAP method guarantees a significant improvement in
reconstruction resulting better than CS for small values of ⇢, especially in relation
to humidity and temperature signals.

142



5. SUB-SAMPLING FRAMEWORKS COMPARISON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

ρ[%]

S
N

R
[d

B
]

 

 

Temperature MAP

Humidity MAP

Light MAP

Temperature GS−CS

Humidity GS−CS

Light GS−CS

Figure 5.2: Recovery comparison between GC-CS and MAP. The recovery is
obtained exploiting the correlations among sensors and nodes. (N = 512)

The behavior of CS could be explained looking at Figure 5.3. Here it’s shown
how the union over all signals of the K best DCT basis vectors per signal has a size
definitely greater than K. Practically this means that GS-CS is able to exploit
the inter-nodes correlation only at a small extent since the shared information
among different nodes is limited and the recovery algorithm is not able to exploit
this information to improve the recovery quality.

According to the model the simulations are performed with a sampling fre-
quency fs = 1/600[Hz], and since the length of the data is N = 512 this brings
in a delay in the data delivery towards the data collector of 3.5 days. Thus the
size of the recovered signal spawns across 3.5 days. In practice having high values
of N means that we have to wait a longer time to proceed with data recovery.
Therefore we want now to investigate how the length of the block of data gath-
ered by sensors affects the two frameworks and whether a correlation between
recovery performance and the N parameter does exist for GS-CS and LV-MAP.

In Figure 5.4a the results for GS-CS when N is changed are presented. From

143



5. SUB-SAMPLING FRAMEWORKS COMPARISON

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Number of coerfficients per sensor (K)

S
iz

e
 o

f 
th

e
 g

lo
b

a
l 

s
u

p
p

o
rt

 

 

Temperature

Humidity

Light

Ideal

Figure 5.3: Number of DCT coefficients necessary to include the K largest coef-
ficients for each signal. (N = 512)

the plot we can infer how the length of the signal N does not greatly affect
the reconstruction quality for all the signals taken into consideration. Rather
we can see how the influence of the parameter N (and then of the delay in
the data collection) is only visible for small values of the sub-sampling factor ⇢.
Differently from temperature and humidity, the light signal presents a peculiar
behavior showing an increased reconstruction quality with the increasing in the
number of acquired samples.

The same results for the LV-MAP approach are presented in Figure 5.4b. The
difference in the reconstruction error for the various values of N is more evident
than in the GS-CS case. With small values of N we registered difficulties to
reconstruct the desired signals. The best recovery performance is achieved when
considering 256-512 samples at a time, identifying the optimal trade-off between
delay and reconstruction accuracy, since larger blocks of data present again a loss
of accuracy.

For a delay smaller than N = 128 the reconstruction of the light signal is not

144



5. SUB-SAMPLING FRAMEWORKS COMPARISON

0

20

40

60

80

S
N

R
[d

B
]

 

 

0

20

40

60

80

S
N

R
[d

B
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

ρ[%]

S
N

R
[d

B
]

N=16

N=32

N=128

N=1024

(a) GS-CS

10

20

30

40

50

S
N

R
 [

d
B

]

 

 

10

20

30

40

50

S
N

R
 [

d
B

]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

ρ [%]

S
N

R
 [

d
B

]

 

 

N = 16

N = 32

N = 128

N = 256

N = 512

N = 1024

(b) LV

Figure 5.4: From top to bottom: temperature, humidity, light. GS-CS and LV
reconstruction quality for the different signals varying the sub-sampling factor ⇢
and using the signal length N as parameter.)

feasible in both cases, since the majority of the samples gathered are zeros due
to the lack of light at night.

Having evaluated the recovery performance and the influence of the gathering
delay on reconstruction, it is interesting to investigate the power consumption
involved with compression according to the power model. In Figure 5.5 we report
the reconstruction quality against the energy consumption for one acquisition
cycle. The plot clearly shows how a trade-off between energy consumption and
transmission delay does exist in GS-CS case (Figure5.5a). Higher values of N ,

145



5. SUB-SAMPLING FRAMEWORKS COMPARISON

5 6 7 8 9 10 11 12 13 14

x 10
−5

−10

0

10

20

30

40

50

60

70

80

[J]

S
N

R
[d

B
]

 

 

Temperature N=16

Temperature N=1024

Humidity N=16

Humidity N=1024

Light N=128

Light N=1024

(a) GS-CS

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x 10
−4

−10

0

10

20

30

40

50

60

70

80

[J]

S
N

R
 [
d
B

]

 

 

Temperature N = 16

Temperature N = 512

Humidity N = 16

Humidity N = 512

Light N = 16

Light N = 512

(b) LV

Figure 5.5: Reconstruction quality vs. averaged per cycle energy consumption
varying the parameter N for the signals of interest for the considered techniques:
(a) GS-CS and (b) LV

thus higher delays in transmission, are able to guarantee a better reconstruction
quality with definitely less energy than the N = 16 case (all the other cases are
not considered in the plot since they are between these two boundaries). The light
signal is a special case but we can draw the same conclusions as before. The LV-
MAP case (Figure5.5b) presents a similar behavior, but with a less accentuated
increase in energy efficiency corresponding to the increase in data size N . When
comparing the two graphs, we can observe how the GS-CS case exhibits a slightly
higher energy efficiency, allowing a higher reconstruction when considering the

146



5. SUB-SAMPLING FRAMEWORKS COMPARISON

same energy consumptions as the LV-MAP case. Only for extremely sub-sampled
signals the LV-MAP approach results better, having a major benefit from the
explicit correlation models incorporated in the data reconstruction. In both cases,
we are able to obtain a better accuracy (or the same reconstruction quality with
less energy) if we are willing to wait for an higher number of gathered samples
before proceeding with the reconstruction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

7

8

9
x 10

5

ρ[%]

[d
B

]/
[J

]

 

 

Temperature CS

Temperature LV

Humidity CS

Humidity LV

Light CS

Light LV

Figure 5.6: Ratio between the recovery quality and energy spent in compression
varying the sub-sampling factor ⇢ for the two approaches

The same conclusions are explicated in Figure 5.6 where the ratio between
the reconstruction quality and the consumed energy is plotted against the sub-
sampling factor ⇢. Here we can see a direct comparison of the two techniques
for the case with the best reconstruction performance (N = 512). Again we can
see how the GS-CS case has a higher ratio when compared to the LV-MAP case,
for almost all the sub-sampling policies. Only when dealing with a really small
amount of sampled data (20%), the LV-MAP case shows a better performance.
This result can be a guide for WSN developers, suggesting the adoption of the
LV method only when a really aggressive power saving technique is needed.

147



Chapter 6

Conclusions

This thesis has presented several data processing and compression techniques
capable of addressing the strict requirements of wireless sensor networks.

In the introduction we have given a general overview of the several kind of
sensor networks it is possible to deal with, stressing for each one issues and
strength points. From here the energy problem has been introduced, dividing the
different approaches according to the different subsystem they try to optimize.
After having introduced the major technologies for batteries and energy supplies,
the focus of the research has been shifted toward the radio subsystem. Since it is
well-known that the energy expenditure for communications is usually the largest
contribution in the power consumption, several low-power MAC protocols have
been addressed and one particular case study, the Conservative Power Schedul-
ing, has been described in detail. Finally the processing subsystem issues have
been introduced. We are strongly convinced that a future trend in the WSNs
field will be moving from the 8 and 16-bit architectures toward the more pow-
erful 32-bit architectures thus an in-depth analysis of the usage of this type of
micro-controllers has been done. A special case-study is also given at the end
of the chapter describing an ultra-low power device for aircraft structural health
monitoring.

In Chapter 3, data reduction techniques for data managing in WSNs have
been introduced. To manage the complexity brought by these techniques, a quick
overview of the most common middlewares for WSNs is given, describing also in
detail SPINE2, a framework for data processing in the node environment. The

148



6. CONCLUSIONS

remaining part of the chapter has been focused on the in-network aggregation
techniques, used to reduce data sent by the network nodes trying to prolong
the network lifetime as long as possible. Among the several techniques, the
approach that seems the most promising is the Compressive Sensing (CS). The
theory behind this framework has been given in the same chapter and a practical
implementation of the algorithm is compared with a simpler aggregation scheme,
deriving a mixed algorithm able to successfully reduce the power consumption.

Still focusing on CS, the step in Chapter 4 has been to move from compression
implemented on single nodes to CS for signal ensembles. The rationale behind
this is to try to exploit the correlations among sensors and nodes to improve
compression and reconstruction quality. The two main techniques for signal en-
sembles, Distributed CS (DCS) and Kronecker CS (KCS), have been introduced
and compared against a common set of data gathered by a real deployment. The
best trade-off between reconstruction quality and power consumption has been
obtained by DCS and the JSM-2 sparsity model has resulted to be the most
suitable to describe the sparsity that characterizes the natural signals of interest
for WSNs applications. Finally the usage of CS has been investigated when the
signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction
performance.

In the last chapter of the thesis the group sparsity CS (GS-CS) has been
compared to another well-known technique for the reconstruction of signal from
an highly sub-sampled version derived from the latent variables and tensor fac-
torization technique. These two frameworks are compared again against a real
data-set and an insightful analysis of the trade-off between reconstruction quality
and lifetime is given.

Briefly:

• Compressive Sensing is a powerful tool for energy reduction in WSNs

• Temporal and spatial correlations among sensors and nodes can be exploited
to improve reconstruction (DCS and KCS)

• CS is powerful to compress data and to reduce the amount of data to
transmit but the energy consumption for compression cannot be considered
negligible especially when considering resource-constrained nodes

149



6. CONCLUSIONS

• Several kind of compression matrices have been investigated in relation to
recovery performance and energy spent for compression

• Several techniques and their recovery performance have been investigated
always trying to achieve the better trade-off between reconstruction quality
and energy consumption

• Further energy reduction can be achieved using a peculiar form of CS, low-
rate CS, opportunely sampling the signal of interest at sub-Nyquist rate

• CS is able to obtain very good results also when compared to other tech-
niques for data recovery from highly incomplete version of the original signal

150



References

3ENCULT. http://www.3encult.eu/en/casestudies/default.html, 2012.

E. Acar and B. Yener. Unsupervised multiway data analysis: A literature survey.
Knowledge and Data Engineering, IEEE Transactions on, 21(1):6 –20, jan.
2009. ISSN 1041-4347. doi: 10.1109/TKDE.2008.112.

I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on
sensor networks. Communications Magazine, IEEE, 40(8):102 – 114, aug 2002.
ISSN 0163-6804. doi: 10.1109/MCOM.2002.1024422.

J.N. Al-Karaki and A.E. Kamal. Routing techniques in wireless sensor networks:
a survey. Wireless Communications, IEEE, 11(6):6 – 28, dec. 2004. ISSN
1536-1284. doi: 10.1109/MWC.2004.1368893.

N.V. Aravind, K. Abhinandan, V.V. Acharya, and D.S. Sumam. Comparison of
omp and somp in the reconstruction of compressively sensed hyperspectral im-
ages. In Communications and Signal Processing (ICCSP), 2011 International
Conference on, pages 188 –192, feb. 2011. doi: 10.1109/ICCSP.2011.5739298.

Khaled A. Arisha. Energy-aware tdma-based mac for sensor networks. In IEEE
Workshop on Integrated Management of Power Aware Communications, Com-
puting and Networking (IMPACCT 2002, 2002.

M. Bahrepour, N. Meratnia, and P.J.M. Havinga. Sensor fusion-based event
detection in wireless sensor networks. In Mobile and Ubiquitous Systems: Net-
working Services, MobiQuitous, 2009. MobiQuitous ’09. 6th Annual Interna-
tional, pages 1 –8, july 2009. doi: 10.4108/ICST.MOBIQUITOUS2009.7056.

151

http://www.3encult.eu/en/casestudies/default.html


REFERENCES REFERENCES

M. Bal, Weiming Shen, and H. Ghenniwa. Collaborative signal and information
processing in wireless sensor networks: A review. In Systems, Man and Cyber-
netics, 2009. SMC 2009. IEEE International Conference on, pages 3151 –3156,
oct. 2009. doi: 10.1109/ICSMC.2009.5346152.

B. Banitalebi, D. Gordon, S. Sigg, T. Miyaki, and M. Beigl. Collaborative channel
equalization: Analysis and performance evaluation of distributed aggregation
algorithms in wsns. In Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE
8th International Conference on, pages 450 –459, oct. 2011. doi: 10.1109/
MASS.2011.51.

Dror Baron, Michael B. Wakin, Marco F. Duarte, Shriram Sarvotham, and
Richard G. Baraniuk. Distributed compressed sensing. Technical report, 2005.

Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian
Shucker, Charles Gruenwald, Adam Torgerson, and Richard Han. Mantis os: an
embedded multithreaded operating system for wireless micro sensor platforms.
Mob. Netw. Appl., 10(4):563–579, August 2005. ISSN 1383-469X. URL http:

//dl.acm.org/citation.cfm?id=1160162.1160178.

I. Bovio and L. Lecce. Health monitoring: new techniques based on vibrations
measurements and identification algorithms. In Aerospace Conference, 2005
IEEE, pages 3601 –3609, march 2005. doi: 10.1109/AERO.2005.1559665.

D. Brunelli, D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, and L. Benini.
Photovoltaic scavenging systems: Modeling and optimization. Microelectron-
ics Journal, 40(9):1337 – 1344, 2009. ISSN 0026-2692. doi: 10.1016/j.mejo.
2008.08.013. URL http://www.sciencedirect.com/science/article/pii/

S0026269208004631.

M.A. Caceres, F. Sottile, and M.A. Spirito. Adaptive location tracking by kalman
filter in wireless sensor networks. In Wireless and Mobile Computing, Network-
ing and Communications, 2009. WIMOB 2009. IEEE International Conference
on, pages 123 –128, oct. 2009. doi: 10.1109/WiMob.2009.30.

C. Caione, D. Brunelli, and L. Benini. Distributed compressive sampling for
lifetime optimization in dense wireless sensor networks. Industrial Informatics,

152

http://dl.acm.org/citation.cfm?id=1160162.1160178
http://dl.acm.org/citation.cfm?id=1160162.1160178
http://www.sciencedirect.com/science/article/pii/S0026269208004631
http://www.sciencedirect.com/science/article/pii/S0026269208004631


REFERENCES REFERENCES

IEEE Transactions on, 8(1):30 –40, feb. 2012. ISSN 1551-3203. doi: 10.1109/
TII.2011.2173500.

E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact sig-
nal reconstruction from highly incomplete frequency information. Information
Theory, IEEE Transactions on, 52(2):489 – 509, feb. 2006. ISSN 0018-9448.
doi: 10.1109/TIT.2005.862083.

Qing Cao, T. Abdelzaher, J. Stankovic, and Tian He. The liteos operating system:
Towards unix-like abstractions for wireless sensor networks. In Information
Processing in Sensor Networks, 2008. IPSN ’08. International Conference on,
pages 233 –244, april 2008. doi: 10.1109/IPSN.2008.54.

R. Chakravorty. A programmable service architecture for mobile medical care. In
Pervasive Computing and Communications Workshops, 2006. PerCom Work-
shops 2006. Fourth Annual IEEE International Conference on, pages 5 pp.
–536, march 2006. doi: 10.1109/PERCOMW.2006.11.

S. Chatterjea, L.F.W. van Hoesel, and P.J.M. Havinga. Ai-lmac: an adap-
tive, information-centric and lightweight mac protocol for wireless sensor net-
works. In Intelligent Sensors, Sensor Networks and Information Processing
Conference, 2004. Proceedings of the 2004, pages 381 – 388, dec. 2004. doi:
10.1109/ISSNIP.2004.1417492.

Chien-Hua Chen and Kai-Ten Feng. Asynchronous location tracking algorithms
for distributed power-saving wireless sensor networks. In Wireless Communica-
tions and Networking Conference, 2009. WCNC 2009. IEEE, pages 1 –6, april
2009. doi: 10.1109/WCNC.2009.4917605.

J. Chen, Karric Kwong, D. Chang, J. Luk, and R. Bajcsy. Wearable sensors for
reliable fall detection. In Engineering in Medicine and Biology Society, 2005.
IEEE-EMBS 2005. 27th Annual International Conference of the, pages 3551
–3554, jan. 2005. doi: 10.1109/IEMBS.2005.1617246.

Scott Shaobing Chen, David L. Donoho, Michael, and A. Saunders. Atomic
decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:
33–61, 1998.

153



REFERENCES REFERENCES

Wei Chen, M.R.D. Rodrigues, and I.J. Wassell. Distributed compressive sensing
reconstruction via common support discovery. In Communications (ICC), 2011
IEEE International Conference on, pages 1 –5, june 2011. doi: 10.1109/icc.
2011.5962798.

Chi-Tsun Cheng, C.K. Tse, and F.C.M. Lau. A delay-aware data collection net-
work structure for wireless sensor networks. Sensors Journal, IEEE, 11(3):699
–710, march 2011. ISSN 1530-437X. doi: 10.1109/JSEN.2010.2063020.

S. Cho, K. Kanuri, Jin-Woong Cho, Jang-Yeon Lee, and Sun-Do June. Dy-
namic energy efficient tdma-based mac protocol forwireless sensor networks.
In Autonomic and Autonomous Systems and International Conference on Net-
working and Services, 2005. ICAS-ICNS 2005. Joint International Conference
on, page 48, oct. 2005. doi: 10.1109/ICAS-ICNS.2005.43.

F. Chraim and S. Karaki. Fuel cell applications in wireless sensor networks.
In Instrumentation and Measurement Technology Conference (I2MTC), 2010
IEEE, pages 1320 –1325, may 2010. doi: 10.1109/IMTC.2010.5488214.

A. Conti, D. Dardari, and R. Verdone. Collaborative signal processing for energy-
efficient self-organizing wireless sensor network. In Wireless Ad-Hoc Networks,
2004 International Workshop on, pages 99 – 104, may-3 june 2004. doi: 10.
1109/IWWAN.2004.1525550.

R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated data
gathering. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, volume 4, pages 2571 – 2582
vol.4, march 2004. doi: 10.1109/INFCOM.2004.1354677.

M. Crovella and E. Kolaczyk. Graph wavelets for spatial traffic analysis. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications. IEEE Societies, volume 3, pages 1848 – 1857 vol.3,
march-3 april 2003. doi: 10.1109/INFCOM.2003.1209207.

F. Cuomo, S. Della Luna, U. Monaco, and F. Melodia. Routing in zigbee: Benefits
from exploiting the ieee 802.15.4 association tree. In Communications, 2007.

154



REFERENCES REFERENCES

ICC ’07. IEEE International Conference on, pages 3271 –3276, june 2007. doi:
10.1109/ICC.2007.542.

I. Demirkol, C. Ersoy, and F. Alagoz. Mac protocols for wireless sensor networks:
a survey. Communications Magazine, IEEE, 44(4):115 – 121, april 2006. ISSN
0163-6804. doi: 10.1109/MCOM.2006.1632658.

Q. Dong. Maximizing system lifetime in wireless sensor networks. In Informa-
tion Processing in Sensor Networks, 2005. IPSN 2005. Fourth International
Symposium on, pages 13 – 19, april 2005. doi: 10.1109/IPSN.2005.1440886.

D.L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on,
52(4):1289 –1306, april 2006. ISSN 0018-9448. doi: 10.1109/TIT.2006.871582.

D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse over-
complete representations in the presence of noise. Information Theory, IEEE
Transactions on, 52(1):6 – 18, jan. 2006. ISSN 0018-9448. doi: 10.1109/TIT.
2005.860430.

M.F. Duarte and R.G. Baraniuk. Kronecker compressive sensing. Image Process-
ing, IEEE Transactions on, 21(2):494 –504, feb. 2012. ISSN 1057-7149. doi:
10.1109/TIP.2011.2165289.

A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible op-
erating system for tiny networked sensors. In Local Computer Networks, 2004.
29th Annual IEEE International Conference on, pages 455 – 462, nov. 2004.
doi: 10.1109/LCN.2004.38.

A. El-Hoiydi and J.-D. Decotignie. Wisemac: an ultra low power mac pro-
tocol for the downlink of infrastructure wireless sensor networks. In Com-
puters and Communications, 2004. Proceedings. ISCC 2004. Ninth Interna-
tional Symposium on, volume 1, pages 244 – 251 Vol.1, june-1 july 2004. doi:
10.1109/ISCC.2004.1358412.

A. Eswaran, A. Rowe, and R. Rajkumar. Nano-rk: an energy-aware resource-
centric rtos for sensor networks. In Real-Time Systems Symposium, 2005. RTSS

155



REFERENCES REFERENCES

2005. 26th IEEE International, pages 10 pp. –265, dec. 2005. doi: 10.1109/
RTSS.2005.30.

K. Fakih, J.F. Diouris, and G. Andrieux. Bmac: Beamformed mac protocol with
channel tracker in manet using smart antennas. In Wireless Technology, 2006.
The 9th European Conference on, pages 185 –188, sept. 2006. doi: 10.1109/
ECWT.2006.280466.

T. Farjaudon and J. Hascoet. T-mac. a new member of the mac family for eng
links. In Broadcasting Convention, 1988. IBC 1988., International, pages 98
–100, sep 1988.

E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network aggregation techniques
for wireless sensor networks: a survey. Wireless Communications, IEEE, 14(2):
70 –87, april 2007. ISSN 1536-1284. doi: 10.1109/MWC.2007.358967.

G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio. Platform-
independent development of collaborative wireless body sensor network ap-
plications: Spine2. In Systems, Man and Cybernetics, 2009. SMC 2009.
IEEE International Conference on, pages 3144 –3150, oct. 2009a. doi:
10.1109/ICSMC.2009.5346155.

G. Fortino, A. Guerrieri, F.L. Bellifemine, and R. Giannantonio. Spine2: devel-
oping bsn applications on heterogeneous sensor nodes. In Industrial Embedded
Systems, 2009. SIES ’09. IEEE International Symposium on, pages 128 –131,
july 2009b. doi: 10.1109/SIES.2009.5196205.

S. Gajurel and M. Heiferling. Swarm intelligent routing solution for wireless sensor
networks. In Local Computer Networks (LCN), 2010 IEEE 35th Conference on,
pages 707 –714, oct. 2010. doi: 10.1109/LCN.2010.5735797.

Deepak Ganesan, Ben Greenstein, Denis Perelyubskiy, Deborah Estrin, and John
Heidemann. An evaluation of multi-resolution storage for sensor networks. In
Proceedings of the 1st international conference on Embedded networked sensor
systems, SenSys ’03, pages 89–102, New York, NY, USA, 2003. ACM. ISBN
1-58113-707-9. doi: 10.1145/958491.958502. URL http://doi.acm.org/10.

1145/958491.958502.

156

http://doi.acm.org/10.1145/958491.958502
http://doi.acm.org/10.1145/958491.958502


REFERENCES REFERENCES

M. Gastpar, P.L. Dragotti, and M. Vetterli. The distributed karhunen-loeve
transform. In Multimedia Signal Processing, 2002 IEEE Workshop on, pages
57 – 60, dec. 2002. doi: 10.1109/MMSP.2002.1203247.

A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of
the IEEE, 98(6):937 –947, june 2010. ISSN 0018-9219. doi: 10.1109/JPROC.
2010.2045092.

D. Goyal and M.R. Tripathy. Routing protocols in wireless sensor networks: A
survey. In Advanced Computing Communication Technologies (ACCT), 2012
Second International Conference on, pages 474 –480, jan. 2012. doi: 10.1109/
ACCT.2012.98.

J. Haupt, W.U. Bajwa, M. Rabbat, and R. Nowak. Compressed sensing for
networked data. Signal Processing Magazine, IEEE, 25(2):92 –101, march 2008.
ISSN 1053-5888. doi: 10.1109/MSP.2007.914732.

S. Hayat, N. Javaid, Z.A. Khan, A. Shareef, A. Mahmood, and S.H. Bouk. Energy
efficient mac protocols. In High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference on, pages 1185 –
1192, june 2012. doi: 10.1109/HPCC.2012.174.

J.L. Hill and D.E. Culler. Mica: a wireless platform for deeply embedded net-
works. Micro, IEEE, 22(6):12 – 24, nov/dec 2002. ISSN 0272-1732. doi:
10.1109/MM.2002.1134340.

B. Hohlt, L. Doherty, and E. Brewer. Flexible power scheduling for sen-
sor networks. In Information Processing in Sensor Networks, 2004. IPSN
2004. Third International Symposium on, pages 205 – 214, april 2004. doi:
10.1109/IPSN.2004.1307340.

Chih-Lin I and G.P. Pollini. The tree-search resource auction multiple access
(trama) protocol for wireless personal communications. In Vehicular Technology
Conference, 1994 IEEE 44th, pages 1170 –1174 vol.2, jun 1994. doi: 10.1109/
VETEC.1994.345276.

157



REFERENCES REFERENCES

Sameer Iyengar, Filippo Tempia Bonda, Raffaele Gravina, Antonio Guerrieri,
Giancarlo Fortino, and Alberto Sangiovanni-Vincentelli. A framework for cre-
ating healthcare monitoring applications using wireless body sensor networks.
In Proceedings of the ICST 3rd international conference on Body area networks,
BodyNets ’08, pages 8:1–8:2, ICST, Brussels, Belgium, Belgium, 2008. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). ISBN 978-963-9799-17-2. URL http://dl.acm.org/citation.

cfm?id=1460257.1460268.

Georgios Kambourakis, Eleni Klaoudatou, and Stefanos Gritzalis. Securing med-
ical sensor environments: The codeblue framework case. In Availability, Reli-
ability and Security, 2007. ARES 2007. The Second International Conference
on, pages 637 –643, april 2007. doi: 10.1109/ARES.2007.135.

M. Kassim, R. Ab Rahman, and R. Mustapha. Mobile ad hoc network (manet)
routing protocols comparison for wireless sensor network. In System Engineer-
ing and Technology (ICSET), 2011 IEEE International Conference on, pages
148 –152, june 2011. doi: 10.1109/ICSEngT.2011.5993439.

O. Kebkal, M. Komar, and K. Kebkal. D-mac: Hybrid media access control for
underwater acoustic sensor networks. In Communications Workshops (ICC),
2010 IEEE International Conference on, pages 1 –5, may 2010. doi: 10.1109/
ICCW.2010.5503951.

Abtin Keshavarzian, Huang Lee, and Lakshmi Venkatraman. Wakeup schedul-
ing in wireless sensor networks. In Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing, MobiHoc ’06, pages
322–333, New York, NY, USA, 2006. ACM. ISBN 1-59593-368-9. doi: 10.1145/
1132905.1132941. URL http://doi.acm.org/10.1145/1132905.1132941.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and appli-
cations. SIAM Rev., 51(3):455–500, August 2009. ISSN 0036-1445. doi:
10.1137/07070111X. URL http://dx.doi.org/10.1137/07070111X.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

158

http://dl.acm.org/citation.cfm?id=1460257.1460268
http://dl.acm.org/citation.cfm?id=1460257.1460268
http://doi.acm.org/10.1145/1132905.1132941
http://dx.doi.org/10.1137/07070111X


REFERENCES REFERENCES

mender systems. Computer, 42(8):30 –37, aug. 2009. ISSN 0018-9162. doi:
10.1109/MC.2009.263.

P. Kuryloski, A. Giani, R. Giannantonio, K. Gilani, R. Gravina, V.-P. Seppa,
E. Seto, V. Shia, C. Wang, P. Yan, A.Y. Yang, J. Hyttinen, S. Sastry, S. Wicker,
and R. Bajcsy. Dexternet: An open platform for heterogeneous body sensor
networks and its applications. In Wearable and Implantable Body Sensor Net-
works, 2009. BSN 2009. Sixth International Workshop on, pages 92 –97, june
2009. doi: 10.1109/BSN.2009.31.

T.P. Lambrou and C.G. Panayiotou. A survey on routing techniques supporting
mobility in sensor networks. In Mobile Ad-hoc and Sensor Networks, 2009.
MSN ’09. 5th International Conference on, pages 78 –85, dec. 2009. doi: 10.
1109/MSN.2009.37.

Ang-Hsi Lee, Ming-Hui Jing, and Cheng-Yan Kao. Lmac: An energy-latency
trade-off mac protocol for wireless sensor networks. In Computer Science and
its Applications, 2008. CSA ’08. International Symposium on, pages 233 –238,
oct. 2008. doi: 10.1109/CSA.2008.47.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. In Werner Weber, JanM. Rabaey, and Emile Aarts, editors,
Ambient Intelligence, pages 115–148. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-23867-6. doi: 10.1007/3-540-27139-2_7. URL http://dx.doi.org/

10.1007/3-540-27139-2_7.

Rongxin Li, Chaomei Zheng, and Yunru Zhang. Study of power-aware routing
protocal in wireless sensor networks. In Electrical and Control Engineering
(ICECE), 2011 International Conference on, pages 3173 –3176, sept. 2011.
doi: 10.1109/ICECENG.2011.6057824.

Zhaorui Liu, H.V. Zhao, and A.Y. Elezzabi. Block-based adaptive compressed
sensing for video. In Image Processing (ICIP), 2010 17th IEEE International
Conference on, pages 1649 –1652, sept. 2010. doi: 10.1109/ICIP.2010.5654000.

159

http://dx.doi.org/10.1007/3-540-27139-2_7
http://dx.doi.org/10.1007/3-540-27139-2_7


REFERENCES REFERENCES

G. Lu, B. Krishnamachari, and C.S. Raghavendra. An adaptive energy-efficient
and low-latency mac for data gathering in wireless sensor networks. In Parallel
and Distributed Processing Symposium, 2004. Proceedings. 18th International,
page 224, april 2004. doi: 10.1109/IPDPS.2004.1303264.

Chong Luo, Feng Wu, Jun Sun, and Chang Wen Chen. Efficient measurement
generation and pervasive sparsity for compressive data gathering. Wireless
Communications, IEEE Transactions on, 9(12):3728 –3738, december 2010.
ISSN 1536-1276. doi: 10.1109/TWC.2010.092810.100063.

H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst. Compressed
sensing for real-time energy-efficient ecg compression on wireless body sensor
nodes. Biomedical Engineering, IEEE Transactions on, 58(9):2456 –2466, sept.
2011. ISSN 0018-9294. doi: 10.1109/TBME.2011.2156795.

J. McDowall. Conventional battery technologies-present and future. In Power
Engineering Society Summer Meeting, 2000. IEEE, volume 3, pages 1538 –1540
vol. 3, 2000. doi: 10.1109/PESS.2000.868757.

Raul Morais, Samuel G. Matos, Miguel A. Fernandes, AntÃşnio L.G. Valente,
Salviano F.S.P. Soares, P.J.S.G. Ferreira, and M.J.C.S. Reis. Sun, wind and
water flow as energy supply for small stationary data acquisition platforms.
Computers and Electronics in Agriculture, 64(2):120 – 132, 2008. ISSN 0168-
1699. doi: 10.1016/j.compag.2008.04.005. URL http://www.sciencedirect.

com/science/article/pii/S0168169908001257.

C. Moser, L. Thiele, D. Brunelli, and L. Benini. Adaptive power management in
energy harvesting systems. In Design, Automation Test in Europe Conference
Exhibition, 2007. DATE ’07, pages 1 –6, april 2007. doi: 10.1109/DATE.2007.
364689.

L. Nachman, J. Huang, J. Shahabdeen, R. Adler, and R. Kling. Imote2: Serious
computation at the edge. In Wireless Communications and Mobile Computing
Conference, 2008. IWCMC ’08. International, pages 1118 –1123, aug. 2008.
doi: 10.1109/IWCMC.2008.194.

160

http://www.sciencedirect.com/science/article/pii/S0168169908001257
http://www.sciencedirect.com/science/article/pii/S0168169908001257


REFERENCES REFERENCES

Pin Nie and Bo Li. A cluster-based data aggregation architecture in wsn for struc-
tural health monitoring. In Wireless Communications and Mobile Computing
Conference (IWCMC), 2011 7th International, pages 546 –552, july 2011. doi:
10.1109/IWCMC.2011.5982592.

Michael Nikolaou. Model predictive controllers: A critical synthesis of theory and
industrial needs. volume 26 of Advances in Chemical Engineering, pages 131 –
204. Academic Press, 2001. doi: 10.1016/S0065-2377(01)26003-7. URL http:

//www.sciencedirect.com/science/article/pii/S0065237701260037.

K. Oikonomou and I. Stavrakakis. Analysis of a probabilistic topology-unaware
tdma mac policy for ad hoc networks. Selected Areas in Communications,
IEEE Journal on, 22(7):1286 – 1300, sept. 2004. ISSN 0733-8716. doi: 10.
1109/JSAC.2004.829345.

J.R. Owen. Prospects for thin film lithium batteries. In Compact Power Sources
(Digest No. 96/107), IEE Colloquium on, pages 2/1 –2/3, may 1996. doi:
10.1049/ic:19960677.

G.J. Pendock, L. Evans, and G. Coulson. Wireless sensor module for habitat
monitoring. In Intelligent Sensors, Sensor Networks and Information, 2007.
ISSNIP 2007. 3rd International Conference on, pages 699 –702, dec. 2007. doi:
10.1109/ISSNIP.2007.4496928.

V. Pereira, J.S. Silva, J. Granjal, R. Silva, E. Monteiro, and Qiang Pan. A
taxonomy of wireless sensor networks with qos. In New Technologies, Mobility
and Security (NTMS), 2011 4th IFIP International Conference on, pages 1 –4,
feb. 2011. doi: 10.1109/NTMS.2011.5720617.

D. Porcarelli, D. Brunelli, M. Magno, and L. Benini. A multi-harvester ar-
chitecture with hybrid storage devices and smart capabilities for low power
systems. In Power Electronics, Electrical Drives, Automation and Motion
(SPEEDAM), 2012 International Symposium on, pages 946 –951, june 2012.
doi: 10.1109/SPEEDAM.2012.6264533.

G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi. On the
interplay between routing and signal representation for compressive sensing in

161

http://www.sciencedirect.com/science/article/pii/S0065237701260037
http://www.sciencedirect.com/science/article/pii/S0065237701260037


REFERENCES REFERENCES

wireless sensor networks. In Information Theory and Applications Workshop,
2009, pages 206 –215, feb. 2009. doi: 10.1109/ITA.2009.5044947.

V. Raghunathan, C. Schurgers, Sung Park, and M.B. Srivastava. Energy-aware
wireless microsensor networks. Signal Processing Magazine, IEEE, 19(2):40
–50, mar 2002. ISSN 1053-5888. doi: 10.1109/79.985679.

M. Rahnema. Overview of the gsm system and protocol architecture. Commu-
nications Magazine, IEEE, 31(4):92 –100, april 1993. ISSN 0163-6804. doi:
10.1109/35.210402.

Ramesh Rajagopalan and Pramod K. Varshney. Data aggregation techniques in
sensor networks: A survey. Comm. Surveys & Tutorials, IEEE, 8:48–63, 2006.

V. Rajendran, J.J. Garcia-Luna-Aveces, and K. Obraczka. Energy-efficient,
application-aware medium access for sensor networks. In Mobile Adhoc and
Sensor Systems Conference, 2005. IEEE International Conference on, pages 8
pp. –630, nov. 2005. doi: 10.1109/MAHSS.2005.1542852.

J. Ranieri, R. Rovatti, and G. Setti. Compressive sensing of localized signals:
Application to analog-to-information conversion. In Circuits and Systems (IS-
CAS), Proceedings of 2010 IEEE International Symposium on, pages 3513 –
3516, 30 2010-june 2 2010. doi: 10.1109/ISCAS.2010.5537820.

Injong Rhee, A. Warrier, M. Aia, Jeongki Min, and M.L. Sichitiu. Z-mac: A
hybrid mac for wireless sensor networks. Networking, IEEE/ACM Transactions
on, 16(3):511 –524, june 2008. ISSN 1063-6692. doi: 10.1109/TNET.2007.
900704.

S. Rhee, D. Seetharam, and S. Liu. Techniques for minimizing power consumption
in low data-rate wireless sensor networks. In Wireless Communications and
Networking Conference, 2004. WCNC. 2004 IEEE, volume 3, pages 1727 –
1731 Vol.3, march 2004. doi: 10.1109/WCNC.2004.1311813.

M.J. Roemer, Jianhua Ge, A. Liberson, G.P. Tandon, and R.Y. Kim. Autonomous
impact damage detection and isolation prediction for aerospace structures. In

162



REFERENCES REFERENCES

Aerospace Conference, 2005 IEEE, pages 3592 –3600, march 2005. doi: 10.
1109/AERO.2005.1559664.

B.M. Sadler. Fundamentals of energy-constrained sensor network systems.
Aerospace and Electronic Systems Magazine, IEEE, 20(8):17 –35, aug. 2005.
ISSN 0885-8985. doi: 10.1109/MAES.2005.1499273.

M. Saleem and M. Farooq. A framework for empirical evaluation of nature in-
spired routing protocols for wireless sensor networks. In Evolutionary Compu-
tation, 2007. CEC 2007. IEEE Congress on, pages 751 –758, sept. 2007. doi:
10.1109/CEC.2007.4424546.

E. Shih, B.H. Calhoun, Seong Hwan Cho, and A.P. Chandrakasan. Energy-
efficient link layer for wireless microsensor networks. In VLSI, 2001. Proceed-
ings. IEEE Computer Society Workshop on, pages 16 –21, may 2001. doi:
10.1109/IWV.2001.923134.

Feng Shu and T. Sakurai. Analysis of an energy conserving csma-ca. In Global
Telecommunications Conference, 2007. GLOBECOM ’07. IEEE, pages 2536
–2540, nov. 2007. doi: 10.1109/GLOCOM.2007.482.

Haining Shu and Qilian Liang. Fundamental performance analysis of event detec-
tion in wireless sensor networks. In Wireless Communications and Networking
Conference, 2006. WCNC 2006. IEEE, volume 4, pages 2187 –2192, april 2006.
doi: 10.1109/WCNC.2006.1696635.

D. Slepian and J. Wolf. Noiseless coding of correlated information sources. In-
formation Theory, IEEE Transactions on, 19(4):471 – 480, jul 1973. ISSN
0018-9448. doi: 10.1109/TIT.1973.1055037.

Wen-Miao Song, Yan-Ming Liu, and S.-E. Zhang. Research on smac protocol for
wsn. In Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM ’08. 4th International Conference on, pages 1 –4, oct. 2008. doi:
10.1109/WiCom.2008.921.

James P. Thomas, Muhammad A. Qidwai, and James C. Kellogg. Energy scaveng-
ing for small-scale unmanned systems. Journal of Power Sources, 159(2):1494 –

163



REFERENCES REFERENCES

1509, 2006. ISSN 0378-7753. doi: 10.1016/j.jpowsour.2005.12.084. URL http:

//www.sciencedirect.com/science/article/pii/S0378775306001121.

A. Tovar, T. Friesen, K. Ferens, and B. McLeod. A dtn wireless sensor network for
wildlife habitat monitoring. In Electrical and Computer Engineering (CCECE),
2010 23rd Canadian Conference on, pages 1 –5, may 2010. doi: 10.1109/
CCECE.2010.5575142.

F. Turati, M. Cesana, and L. Campelli. Spare mac enhanced: A dynamic tdma
protocol for wireless sensor networks. In Global Telecommunications Confer-
ence, 2009. GLOBECOM 2009. IEEE, pages 1 –6, 30 2009-dec. 4 2009. doi:
10.1109/GLOCOM.2009.5425974.

B.E. Usevitch. A tutorial on modern lossy wavelet image compression: founda-
tions of jpeg 2000. Signal Processing Magazine, IEEE, 18(5):22 –35, sep 2001.
ISSN 1053-5888. doi: 10.1109/79.952803.

E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis
pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008.
doi: 10.1137/080714488. URL http://link.aip.org/link/?SCE/31/890.

R.S. Wagner, R.G. Baraniuk, S. Du, D.B. Johnson, and A. Cohen. An archi-
tecture for distributed wavelet analysis and processing in sensor networks. In
Information Processing in Sensor Networks, 2006. IPSN 2006. The Fifth In-
ternational Conference on, pages 243 –250, 0-0 2006. doi: 10.1109/IPSN.2006.
243753.

Zhiwen Wan, Jinsong Zhang, Hao Zhu, K. Makki, and N. Pissinou. On energy-
efficient and low-latency medium access control in wireless sensor networks.
In Wireless Communications and Networking Conference, 2008. WCNC 2008.
IEEE, pages 1905 –1910, 31 2008-april 3 2008. doi: 10.1109/WCNC.2008.339.

Jie Wang, Qinghua Gao, Hongyu Wang, and Wenzhu Sun. A method to prolong
the lifetime of wireless sensor network. In Wireless Communications, Network-
ing and Mobile Computing, 2009. WiCom ’09. 5th International Conference
on, pages 1 –4, sept. 2009. doi: 10.1109/WICOM.2009.5300990.

164

http://www.sciencedirect.com/science/article/pii/S0378775306001121
http://www.sciencedirect.com/science/article/pii/S0378775306001121
http://link.aip.org/link/?SCE/31/890


REFERENCES REFERENCES

L. Wang and Y. Xiao. Energy saving mechanisms in sensor networks. In Broad-
band Networks, 2005. BroadNets 2005. 2nd International Conference on, pages
724 – 732 Vol. 1, oct. 2005. doi: 10.1109/ICBN.2005.1589678.

Hongli Yang, Guoping He, and Yulin Dong. Nonnegative tensor decomposition
and it’s applications in image processing. In Computer Science and Information
Technology, 2008. ICCSIT ’08. International Conference on, pages 212 –217,
29 2008-sept. 2 2008. doi: 10.1109/ICCSIT.2008.99.

Shih-Hsien Yang, Hung-Wei Tseng, E.H.-K. Wu, and Gen-Huey Chen. Utiliza-
tion based duty cycle tuning mac protocol for wireless sensor networks. In
Global Telecommunications Conference, 2005. GLOBECOM ’05. IEEE, vol-
ume 6, pages 5 pp. –3262, dec. 2005. doi: 10.1109/GLOCOM.2005.1578377.

O. Younis, M. Krunz, and S. Ramasubramanian. Node clustering in wireless
sensor networks: recent developments and deployment challenges. Network,
IEEE, 20(3):20 – 25, may-june 2006. ISSN 0890-8044. doi: 10.1109/MNET.
2006.1637928.

Pengfei Zhang, Gaoxi Xiao, and Hwee-Pink Tan. A preliminary study on life-
time maximization in clustered wireless sensor networks with energy harvesting
nodes. In Information, Communications and Signal Processing (ICICS) 2011
8th International Conference on, pages 1 –5, dec. 2011. doi: 10.1109/ICICS.
2011.6174242.

Feng Zhao. Wireless sensor networks: a new computing platform for tomor-
row’s internet. In Emerging Technologies: Frontiers of Mobile and Wire-
less Communication, 2004. Proceedings of the IEEE 6th Circuits and Sys-
tems Symposium on, volume 1, pages I – 27 Vol.1, may-2 june 2004. doi:
10.1109/CASSET.2004.1322900.

Jianliang Zheng and Myung J. Lee. A comprehensive performance study of IEEE
802.15.4. page 14, 2003.

165


	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Wireless Sensor Networks
	2.1 Applications of wireless sensor networks
	2.1.1 Data collection
	2.1.2 Events detection
	2.1.3 Location-tracking
	2.1.4 Hybrid networks

	2.2 The energy problem
	2.3 Battery and power supply
	2.4 Radio and communication network
	2.4.1 WSN architecture
	2.4.2 Energy consumption in radio subsystem
	2.4.3 Energy saving in wireless communications
	2.4.3.1 Low-power MAC protocols for WSNs
	2.4.3.2 Duty cycling on top of MAC protocols
	2.4.3.3 Case study: Conservative Power Scheduling


	2.5 The processing subsystem
	2.5.1 Hardware characteristics
	2.5.2 Sensor nodes for wireless sensor networks
	2.5.3 High-performance 32-bit micro-controllers for wireless sensor networks
	2.5.4 Case study: ultra-low power device for aircraft structural health monitoring
	2.5.4.1 SHM design
	2.5.4.2 Experimental verification



	3 Data reduction in WSNs
	3.1 Middlewares
	3.1.1 Case study: SPINE2
	3.1.1.1 SPINE2 on Ember EM250 platform
	3.1.1.2 Application scenarios


	3.2 In-network aggregation
	3.3 Compressive Sensing (CS)
	3.3.1 CS: a mathematical background
	3.3.2 Incoherent projections
	3.3.3 Signal recovery
	3.3.4 Random measurements

	3.4 Data aggregation using CS in WSNs
	3.4.1 Practical case study
	3.4.2 Data gathering and compression
	3.4.2.1 Pack and Forward (PF)
	3.4.2.2 Compressed Sensing (CS)
	3.4.2.3 Mixed algorithm: between PF and CS

	3.4.3 Mixed algorithm simulation results
	3.4.4 Energy consumption optimization


	4 Compressive Sensing for signal ensembles
	4.1 Techniques for signal ensemble compression and reconstruction
	4.1.1 Distributed Compressed Sensing (DCS)
	4.1.1.1 JSM-1
	4.1.1.2 JSM-2
	4.1.1.3 JSM-3

	4.1.2 Kronecker Compressive Sensing (KCS)
	4.1.2.1 KCS for distributed sensing in WSN


	4.2 A comparison between KCS and DCS
	4.2.1 Compressibility of signal ensembles
	4.2.2 JSM-2 model for real signal ensembles
	4.2.3 Efficient DCS implementation
	4.2.4 DCS with sparse random matrices

	4.3 CS with sub-Nyquist sampling rate
	4.4 CS in embedded systems
	4.4.1 Hardware and compression
	4.4.2 Power consumption model
	4.4.3 Low-Rate CS
	4.4.4 WSN data reconstruction for Low-Rate CS
	4.4.4.1 Training data for GPSR
	4.4.4.2 Energetically optimal reconstruction



	5 Sub-sampling frameworks comparison
	5.1 Group sparsity with CS
	5.1.1 Joint sparsity and MMV problem

	5.2 Latent variables and tensor factorization
	5.2.1 Learning process
	5.2.2 Exploiting correlations in LV
	5.2.3 Parameter learning

	5.3 Comparison between GC-CS and LV
	5.3.1 Reconstruction quality / lifetime trade-off analysis


	6 Conclusions
	References

