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Abstract

The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem
since it generalizes two well known NP-hard problems: the Capacitated Facil-
ity Location Problem (CFLP) and the Capacitated Vehicle Routing Problem
(CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to
be a NP-hard since it is a generalization of the well known Vehicle Routing
Problem (VRP), arising with one depot. This thesis addresses heuristics al-
gorithms based on the well-know granular search idea introduced by Toth
and Vigo [60] to solve the CLRP and the MDVRP. Extensive computational
experiments on benchmark instances for both problems have been performed
to determine the e�ectiveness of the proposed algorithms.

This work is organized as follows:

� Chapter 1 describes a detailed overview and a methodological review of
the literature for the the Capacitated Location-Routing Problem (CLRP)
and the Multi-Depot Vehicle Routing Problem (MDVRP).

� Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the
CLRP.

� Chapter 3 shows a computational comparison of heuristic algorithms
for the CLRP.

� Chapter 4 presents a hybrid granular tabu search approach for solving
the MDVRP.
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Chapter 1

Introduction

The Location Routing Problem (LRP) includes two types of fundamental
problems of the supply chain management: the Facility Location Problem

(FLP) and the Vehicle Routing Problem (VRP). The di�erent aspects of
these problems such as location, assignment and routing have been generally
studied independently. This can be explained by considering that the loca-
tion is a strategic decision which is taken for a long time frame, while the
routing is an operational aspect which can be modi�ed dynamically many
times in a short time. However, it is well know that these decisions are in-
terrelated. Indeed, the decision of locating a depot is often in�uenced by the
transportation costs and vice versa (Rand [50]). As a consequence, the LRP
has become an interesting �eld of research.

This work considers two problems: i) the LRP with capacity constrains
for both the depots and the routes called the Capacitated Location-Routing

Problem (CLRP), ii) the Multi-Depot Vehicle Routing Problem (MDVRP),
which is a generalization of the well known Vehicle Routing Problem (VRP)
by considering several depots.

1.1 The Capacitated Location-Routing Prob-

lem (CLRP)

The Capacitated Location-Routing Problem (CLRP) can be de�ned as follows:
let G = (V,E) be an undirected graph, where V is a set of nodes which is
partitioned into a subset I = 1, . . . ,m of potential depots and a subset
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J = 1, . . . , n of customers. Each potential depot i ∈ I has a capacity wi and
an opening cost oi. Each customer j ∈ J has a nonnegative demand dj which
must be ful�lled by a depot. An unlimited set of identical vehicles, each with
capacity q and �xed cost f , is available at each depot i ∈ I. Each edge
(i, j) ∈ E has an associated traveling cost cij. The goal of the CLRP is to
determine the depots to be opened and the routes to be performed to ful�ll
the demand of the customers. Each route must start and �nish at the same
depot, the global demand of each route must not exceed the vehicle capacity
q, and the global demand of the routes assigned to a depot i ∈ I must not
exceed its capacity wi. The objective function of the CLRP is given by the
sum of the costs of the open depots, of the costs of the traveled edges, and
of the �xed costs associated with the used vehicles.

The Capacitated Location-Routing Problem (CLRP) is a strategic prob-
lem of the supply chain management. The basic hierarchical structure of
the CLRP is a supply chain involving two echelons: depots and customers.
The CLRP is an NP-hard problem, since it is a generalization of the two
well known NP-hard problems: the Capacitated Facility Location Problem

(CFLP) and the Capacitated Vehicle Routing Problem (CVRP). Indeed, the
CFLP can be described as a CLRP with unlimited vehicle capacity (i.e.
q =∞), vehicle �xed cost equal to zero (i.e. f = 0), and in�nite cost for the
edges connecting any pair of customers (i.e. cij =∞ for i = m+1, . . . ,m+n

and j = m+ 1, . . . ,m+n), and the CVRP can be described as a CLRP with
only one depot (i.e. m = 1).

1.1.1 Literature review for the CLRP

Few surveys on location-routing problems have been presented in the liter-
ature. Min et al. [37] proposed a classi�cation for the LRP based on the
solution methods, and the problem perspectives. The most recent classi�ca-
tion, proposed by Nagy and Salhi [40], is based on eight di�erent aspects.
This hierarchical taxonomy provides a more integrated view of the LRP liter-
ature. Di�erent mathematical formulations with two and three indices have
been proposed for the LRP and the CLRP. Three-index formulations for the
LRP were introduced by Perl and Daskin [42] and Hansen et al. [26], and
for the CLRP by Prins et al. [48]. Two-index formulations for the CLRP
have been proposed by Laporte et al. [32], Baldacci et al. [4], Contardo et al.
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[12], and Belenguer et al. [8]. These exact approaches can consistently solve
to proven optimally small-medium size instances. For this reason, several
heuristic algorithms have been proposed to solve large CLRP instances.

Nagy and Salhi [40] classi�ed these algorithms as sequential, iterative,
hierarchical, and clustering based methods. Sequential methods usually solve
the facility location problem, and then the corresponding routing problem
for each open depot (see, e.g. Daganzo [16]). According to Salhi and Rand
[54], this type of approach avoids an important feedback between the two
subproblems. On the other hand, iterative methods solve both subproblems
in an iterative way providing a feedback between the two subproblems. In
these methods, the CLRP is tackled either by solving the corresponding
routing problem without considering the location decisions and assigning
one depot for each cluster of customers, or by solving the facility location
problem and performing at least one route for each open depot. Tuzun and
Burke [61] proposed a two-phase tabu search approach that iterates between
the location and the routing phases in order to search better solutions for
large instances. In this work, results for instances with up to 200 customers
have been reported. Prins et al. [48] proposed a two-phase algorithm which
exchanges information between the location and routing phases. In the �rst
phase, the routes and their customers are aggregated into super customers,
and the corresponding CFLP is solved by using a Lagrangean relaxation
technique. In the second phase, a granular tabu search (GTS) procedure (see
Toth and Vigo [60]) with one neighborhood was used to solve the resulting
MDVRP. At the end of each iteration, information about the promising edges
is recorded to be used in the following phase.

Hierarchical methods solve the CLRP by using a hierarchical structure.
First, the FLP is solved as the main problem, and then, the subsequent
Routing Problem is solved as the subordinate problem. The location problem
is solved in an approximate way by applying at each step a subroutine that
solves the corresponding routing problem. Interested readers are referred to
Albareda-Sambola et al. [2] and Melechovsk�y et al. [36].

Cluster based methods for the CLRP have been proposed by Barreto
et al. [6]. In this work, in the �rst phase the customer set is split into clusters
according to the vehicle capacity. In the second phase, a Traveling Salesman
Problem (TSP) is solved for each cluster. Finally, in the �nal phase, the TSP
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circuits are grouped into super nodes for solving the corresponding CFLP.
Other heuristics for the CLRP have been proposed by Prins et al. [47]. In

this work, a greedy randomized adaptive search procedure (GRASP), with
a learning process and a path relinking strategy, has been proposed. A
randomized version of the Clarke and Wright algorithm (proposed by Clarke
and Wright [11] for the CVRP) is applied during the GRASP phase. In
addition, a learning process is implemented to choose the correct depots.
A path relinking strategy is then used as post optimization procedure to
generate new solutions. The same authors (Prins et al. [46]) proposed a
memetic algorithm with population management (MA|PM).

More recently, Duhamel et al. [18] developed a hybridized GRASP with
an evolutionary local search (ELS) procedure. Yu et al. [66] proposed a
Simulated Annealing (SA) heuristic based on three random neighborhoods.
Pirkwieser and Raidl [43] proposed a Variable Neighborhood Search (VNS)
coupled with ILP-based very large neighborhood searches to solve the (peri-
odic) location-routing problem. An adaptive large neighborhood algorithm
for the Two-Echelon Vehicle Routing Problem (2E-VRP), which is also able
to solve the CLRP, has been introduced by Hemmelmayr et al. [29]. A
GRASP with an ILP-based metaheuristic and a multiple ant colony opti-
mization method have been proposed by Contardo et al. [13] and by Ting
and Chen [59], respectively.

1.2 The Multi-Depot Vehicle Routing Problem

(MDVRP)

The MDVRP can be de�ned as follows: Let G = (V,E) be an undirected
complete graph, where V and E the edge set. The vertex set V is partitioned
into a subset I = 1, . . . ,m of depots and a subset J = 1, . . . , n of customers.
Each customer j ∈ J has a nonnegative demand dj and a nonnegative service
time δj. Each depot i ∈ I has a service time δi = 0. It is to note that in the
MDVRP not all the depots are necessarily used. A set of k identical vehicles,
each with capacity Q, is available at each depot i. Each edge (i, j) ∈ E

has an associated nonnegative traveling cost cij. The goal of the MDVRP
is to determine the routes to be performed to ful�ll the demand of all the
customers with the minimum traveling cost. The MDVRP is subject to the
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following constraints:

� Each route must start and �nish at the same depot;

� Each customer must be visited exactly once by a single route;

� The total demand of each route must not exceed the vehicle capacity
Q;

� The number of routes associated with each depot must not exceed the
value of k.

� The total duration of each route (given by the sum of the traveling costs
of the traversed edges and of the service times of the visited customers)
must not exceed a given value D.

1.2.1 Literature review for the MDVRP

The MDVRP is known to be a NP-hard, since it is a generalization of the
well known Vehicle Routing Problem (VRP), arising when m = 1. Exact
algorithms were proposed by Laporte et al. [31] and, recently, by Baldacci
et al. [4]. Laporte et al. [33] proposed an exact algorithm for the asymmetric
case of the MDVRP (arising when G is a directed graph). These exact
approaches can consistently solve to proven optimality instances with less
than 100 customers. For this reason, heuristic and metaheuristic algorithms
have been proposed to solve successfully large MDVRP instances.

Early heuristics for the MDVRP have been proposed by Wren and Holli-
day [64], Gillett and Johnson [22], Gillett and Miller [23], Golden et al. [24],
and Raft [49]. All these methods use adaptations of VRP algorithms to solve
the MDVRP. Chao et al. [9] proposed a multi-phase heuristic which is able to
�nd good results with respect to the previously published approaches. In this
work, customers are assigned to their closest depot. Then, a VRP is solved
for each depot by using a modi�ed savings algorithm proposed by Golden
et al. [24]. Finally, the current solution is improved by using a method based
on a record-to-record approach proposed in Dueck [17]. Renaud et al. [52]
proposed a tabu search heuristic which is able to �nd good results within
short computing times. The algorithm �rst constructs an initial solution
by assigning each customer to its nearest depot and by solving the VRP
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corresponding to each depot by using an improved petal heuristic described
in Renaud et al. [51]. Finally, the tabu search considers three phases: fast
improvement, intensi�cation, and diversi�cation. Each of these phases uses
several inter-route and intra-route moves. Cordeau et al. [15] proposed a
general tabu search heuristic which is also Periodic Vehicle Routing Problem
(PVRP) and the Periodic Traveling Salesman Problem (PTSP). The initial
solution is constructed by assigning each customer to its nearest depot and
by applying a procedure based on the GENI heuristic (for further details
see Gendreau et al. [20]). Infeasible solutions are allowed during the tabu
search. For each infeasible solution, a penalty term proportional to the total
excess quantity and to the excess duration of the routes is added. Pisinger
and Ropke [44] proposed a uni�ed heuristic, which is able to solve di�erent
variants of the Vehicle Routing Problem. The MDVRP is solved by using
an Adaptive Large Neighborhood Search (ALNS) algorithm. The ALNS is
based on the large neighborhood search approach proposed by Shaw [56], and
the Ruin and Recreate paradigm introduced by Schrimpf et al. [55].

Evolutionary approaches for the MDVRP have been proposed by Thangiah
and Salhi [58], Ombuki-Berman and Hanshar [41], and Vidal et al. [62]. Vi-
dal et al. [62] proposed a metaheuristic based on the exploitation of a new
population-diversity management mechanism to allow a broader access to
re- production, while preserving the memory of good solutions represented
by the elite individuals of a population, and of an e�cient o�spring educa-
tion scheme that integrates key features from e�cient neighborhood search
procedures such as memories and granular tabu search concepts. A recent
parallel iterated tabu search heuristic has been developed by Cordeau and
Maischberger [14]. This heuristic combines tabu search with a simple pertur-
bation procedure to allow the algorithm to explore new parts of the solution
space.
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Chapter 2

Heuristic algorithm for the

capacitated location-routing

problem

Notes about the chapter

The contents of this chapter is based on the paper entitled �A two-phase

hybrid heuristic algorithm for the capacitated location-routing problem�, co-
authored with Rodrigo Linfati and Professor Paolo Toth, which has been
published in Computers & Operations Research (ISSN: 0305-0548). Partial
results were presented in the XVI CLAIO/SBPO, in Rio de Janeiro, Brazil
(2012) and 5th International Workshop on Freight Transportation and Lo-
gistics (ODYSSEUS 2012), Mykonos � Greece.

2.1 Description of the proposed algorithm

This chapter presents a two-phase hybrid heuristic algorithm (2-Phase HGTS)
developed for solving the CLRP. The main body of the proposed algorithm
consists of two major phases: Construction phase and Improvement phase. In
the Construction phase, the goal is to build an initial feasible solution using
an Initial hybrid procedure followed by a Splitting procedure to minimize the
routing cost. In the Improvement phase, a modi�ed GTS procedure, which
considers several diversi�cation steps, is applied to improve the quality of the
current solution. Whenever no improvement is obtained within Npert×n iter-
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ations (where Npert is a given parameter), the algorithm tries to escape from
the current local optimum by applying a randomized perturbation procedure.
In addition, a procedure VRPH, based on the library of local search heuris-
tics for the VRP proposed by Groer et al. [25], is introduced as a general
improvement routine.

The key-point for the success of the proposed algorithm is the location
of the correct depots in the Construction phase. Since the most critical
decisions of the Improvement phase are those concerning the opening and
closing of the depots, a proper location of the depots is able to reduce the
search space for the Improvement phase from a CLRP to a MDVRP. The
previously mentioned procedures are described in more detail in the following
subsections.

2.2 Procedure VRPH

Groer et al. [25] have recently proposed a software library containing fast
local search heuristics for �nding good feasible solutions for the CVRP. The
standard library o�ers four di�erent routines:

� vrp_initial : this routine uses a variant of the Clarke-Wright algorithm,
proposed by Yellow [65], to generate initial solutions for the CVRP;

� vrp_rtr : this routine is an implementation of the record-to-record travel
metaheuristic proposed by Li et al. [34];

� vrp_sa: this routine is an implementation of a Simulated Annealing
(SA) metaheuristic;

� vrp_ej : this routine is an implementation of a neighborhood ejec-
tion/injection algorithm.

We developed a procedure, called VRPH, which applies routines vrp_initial
and then, iteratively, routine vrp_sa and vrp_rtr until no improvement is
reached. Procedure VRPH is executed in several parts of the two-phase
hybrid algorithm as a general improvement procedure for a given depot. We
do not use the ejection/injection algorithm vrp_ej since, according to our
computational experiments on the considered CLRP benchmark instances, it
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increases a lot the global computing time with a negligible improvement of the
quality solution. The outline of procedure VRPH is described in Algorithm
2.1.

Algorithm 2.1 Procedure: VRPH
1: input: vrp_instance, vrp_solution (optional)
2: output: vrp_solution
3:

4: if no vrp_solution exists then
5: vrp_initial(vrp_solution)
6: endif

7: repeat

8: repeat

9: call vrp_sa(vrp_solution)
10: until vrp_solution is not improved
11: repeat

12: call vrp_rtr(vrp_solution)
13: until vrp_solution is not improved
14: until vrp_solution is not improved

2.3 Construction phase

In this phase we propose a procedure to construct an initial feasible solution.
The procedure is based on a hybrid methodology which combines exact and
heuristic techniques. In addition, a cluster based method is considered as a
starting point in an iterative framework. The Construction phase procedure
calls in sequence the procedures Initial hybrid and Splitting described in the
following subsections.

2.3.1 Initial hybrid procedure

The initial CLRP solution S0 is obtained by applying a hybrid procedure
which is generally able to �nd good feasible solutions within short computing
times. This hybrid approach combines exact algorithms with the well-known
Lin-Kernighan heuristic procedure (LKH) (see Lin and Kernighan [35] and
Helsgaun [28]), used to �nd good solutions for the TSPs corresponding to
the routes de�ned by a depot and a subset of customers.
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A good initial CLRP solution can be obtained by recognizing clusters of
customers which can be visited in the same route. To this end, we have
developed a procedure that considers all the customers and constructs the
corresponding giant TSP tour by using procedure LKH. The giant tour is
then split into several clusters so as to satisfy for each cluster the vehicle
capacity. Then, for each depot i and for each cluster j, procedure LKH is
applied to �nd the corresponding TSP tour, and to get the route cost lij
for assigning depot i to cluster j. The best assignment of the depots to the
clusters is obtained by introducing two sets of binary variables x and y, where
xij = 1 i� depot i is assigned to cluster j, and yi = 1 i� depot i is opened,
and by solving the following integer linear programming (ILP) model:

min z =
∑
i∈D

Oiyi +
∑
i∈D

∑
j∈G

lijxij (2.1)

subject to∑
i∈D

xij = 1 ∀j ∈ G (2.2)

∑
j∈G

dcjxij 6 Wiyi ∀i ∈ D (2.3)

yi ∈ {0, 1} ∀i ∈ D (2.4)

xij ∈ {0, 1} ∀i ∈ D, j ∈ G (2.5)

where:
D set of depots
G set of clusters
dcj global demand of cluster j

The objective function (2.1) sums the opening costs for of the used de-
pots and the traveling costs associated with the edges traversed by the routes.
Constraints (2.2) guarantee that each cluster is assigned to exactly one de-
pot. Constraints (2.3) impose the capacity for the open depots. Finally,
constraints (2.4) and (2.5) impose the integrality of the variables used in
the model. It has to be noted that ILP model (2.1)-(2.5) corresponds to
the formulation of the well known Single Source Capacitated Plant Location

10



Problem (see, e.g. Barcelo and Casanovas [5], and Klincewicz and Luss [30]).
It is worth to that there are n possibilities to split the giant tour, by

considering each customer as possible initial vertex. For this reason, the
hybrid procedure is repeated n times keeping the best feasible solution found.
The proposed algorithm tries to improve the current solution by applying the
Splitting procedure described in the following subsection.

2.3.2 Splitting procedure

The Splitting procedure is based on the idea that the total traveling cost can
be decreased by adding new routes, and assigning them to di�erent depots.
Note that the splitting procedure can be e�ective only when the cost F for
using a vehicle is small. The procedure starts by considering the route which
contains the longest (largest cost) edge and by selecting its three longest
edges. Then, for the three combinations of two of these edges, say edges
(r, s) and (t, u), the following steps are performed (see Fig. 2.1):

� edges (r, s) and (t, u) are removed from the considered route;

� the considered route is shortcut by inserting edge (r, u);

� the subset of customers belonging to the chain connecting vertex s to
vertex t in the considered route is selected as the cluster to form a new
route;

� for each open depot for which the assignment of the cluster satis�es the
depot capacity constraint, procedure LKH is applied to �nd the TSP
tour corresponding to the assignment of the cluster to the depot;

� the cluster is assigned to the depot, say d, for which the cost of the
corresponding TSP tour is minimum;

� procedure VRPH is applied to the customers currently assigned to de-
pot d, and to those currently assigned to the depot associated with
the considered route (for both depots, the associated current CVRP
solutions are given on input to procedure VRPH).

Whenever the global cost of the new solution is smaller than that of
the best solution found so far, the latter solution is updated. We repeat
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Figure 2.1: Example of the splitting procedure

the Splitting procedure Nsplit times (where Nsplit is a given parameter), by
considering at each iteration a di�erent route. Finally, procedure VRPH is
executed for all the depots for which the solution obtained by the Initial

hybrid procedure has not been changed.

2.4 Improvement phase

In this stage, the algorithm tries to improve the initial solution S0 obtained
by the Construction phase applying a modi�ed granular tabu search (GTS)
procedure. The goal of the Improvement phase is to optimize the routes
without considering moves between close and open depots, hence the search
space is related to a MDVRP. In this phase, we allow infeasible solutions
with respect to the depot and vehicle capacities (see subsection 3.3.2).

To reduce the computing time required by each iteration of a local search
procedure, which can steeply grow with the instance size, Toth and Vigo [60]
proposed the so called granular tabu search (GTS) approach. The method is
based on the use of a candidate list strategy, which drastically reduces the
time required by a tabu search algorithm. The main objective of the GTS
approach is to have good solutions by using a neighborhood structure that
can be evaluated in a short time. Three main di�erences with respect to
the idea of �granularity� introduced by Toth and Vigo [60] for the CVRP are
considered here. Basically, the proposed algorithm considers �ve neighbor-
hoods, three di�erent diversi�cation strategies, and a random perturbation
procedure to avoid that the algorithm remains in a local optimum for a given
number of iterations.

If the number of routes of the current solution is greater than the min-
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imum number of routes, Nmin, required to visit all the customers, where

Nmin =
⌈∑m+n

j=m+1 dj

Q

⌉
, an attempt is performed to reduce the number of routes.

In particular, the algorithm starts by removing the least loaded routes (routes
containing one or two customers), and inserting each of the associated cus-
tomers into the best position, with respect to the objective function F2(S)

described in subsection 3.3.2, of one of the remaining routes. A new solu-
tion S is then determined by applying procedure VRPH for all the depots
involved in the move for which the depot capacity constraint is satis�ed. For
each depot, the corresponding CVRP solutions are given on input to proce-
dure VRPH. The proposed granular neighborhoods, diversi�cation strategies
and perturbation procedure are described in the following subsections.

2.4.1 Granular Neighborhoods

The proposed algorithm executes the following �ve types of moves forMax_Iter

iterations (where Max_Iter is a given parameter):

� Shift: One customer is transferred from its current position to another
position either in the same or in a di�erent route (assigned to the same
or to a di�erent depot).

� Swap: Two customers are exchanged, either in the same route or be-
tween di�erent routes (assigned to the same or to di�erent depots).

� Two opt: This is a modi�ed version of the well-known 2-opt move,
in which two non consecutive edges are removed and the routes are
reconnected in a di�erent way. Note that if the two selected edges are
in the same route, the two opt move is equivalent to that described
by Lin and Kernighan [35]. If the two edges are in di�erent routes
assigned to the same depot, the move is similar to the traditional 2-
opt inter route move for the VRP. Otherwise, if the edges belong to
di�erent depots, there are several ways to rearrange the routes. In this
case, it is necessary to perform an additional move concerning the edges
connecting the depots with the last customers of the selected routes to
ensure that each route starts and �nishes at the same depot.
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Figure 2.2: Example of Two-opt move by exchanging edges incident to the
depots

� Exchange: Two consecutive customers are transferred from their cur-
rent positions to di�erent positions by keeping the edge connecting
them. The two customers can be inserted in their current route or in
a di�erent route (assigned to the same or to a di�erent depot).

� Inter-tour exchange: This is an extension of the Swap move and consid-
ers two pairs of consecutive customers. The edge connecting each pair
of customers is kept. The exchange is performed between two di�erent
routes (assigned to the same or to di�erent depots).

2.4.2 Space search and diversi�cation strategies

The proposed GTS procedure uses the same space search introduced by Toth
and Vigo [60]. The original complete graph G is replaced by a sparse graph
which includes all the edges whose cost is smaller than the granularity thresh-
old ϑ, the edges incident to the depot, and those belonging to the best solu-
tion found so far. The value of ϑ is de�ned by means of an increasing function
of the sparsi�cation factor β: ϑ = βz̄∗, where z̄∗ is the average cost of the
edges in the current best solution found so far. Only the moves for which all
the involved edges are contained in the sparse graph are considered.

Three diversi�cation strategies have been considered. The �rst strategy
is related to the granularity diversi�cation proposed by Toth and Vigo [60].
Initially, the sparsi�cation factor β is set to its initial value β0. If no im-
provement of the best feasible solution found so far is reached after Nmovbeta

iterations, the sparsi�cation factor β is increased to βd. A new sparse graph
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is then calculated, and Nmoviter iterations are executed starting from the best
solution found so far. Finally, the sparsi�cation factor β is reset to its initial
value β0 and the search continues. β0, βd, Nmovbeta and Nmoviter are given
parameters.

The second diversi�cation strategy is based on a penalty approach. Since
infeasible solutions can be considered during the search process, we have
implemented the following penalty scheme based on the techniques proposed
by Gendreau et al. [21] and Taillard [57] for the VRP. Let us consider a
CLRP solution S composed by a set of k routes R1, . . . , Rk. Each route
Rr, r ∈ {1, . . . , k}, is denoted by (vr0, vr1,vr2, . . . , vr0), where vr0 represents
the open depot assigned to the route, and vr1, vr2, . . . represent the visited
customers. Note that S can be feasible or infeasible with respect to the
vehicle capacity and the depot capacity. Let T be the subset of the open
depots. In addition, the following notation is used: v ∈ Rr if a customer v
belongs to route Rr, (u, v) ∈ Rr if u and v are two consecutive vertices of
route Rr, and Di is the set of customers assigned to the open depot i. The
following objective function F1(S) is associated with any feasible solution S:

F1(S) =
∑
i∈T

Oi +
k∑
r=1

∑
(u,v)∈Rr

cuv + Fk

The following objective function F2(S) is associated with any solution S
(feasible or infeasible):

F2(S) = F1(S) + Pd
∑
i∈T

[∑
v∈Di

dv −Wi

]+
+ Pr

k∑
r=1

[∑
v∈Rr

dv −Q

]+

where [x]+ = max(0, x), and Pd and Pr are two positive weights used to
increase the cost of the solution S by adding the sum of the excess loads
of the overloaded open depots, and the sum of the excess demands of the
overloaded routes, respectively. The two weights are calculated as follow:
Pd = αd × F1(S0) and Pr = αr × F1(S0), where F1(S0) is the value of the
objective function of the solution S0 obtained by the Construction phase, and
αd and αr are two parameters which are adjusted during the search within
the range [αmin, αmax]. In particular, if no infeasible solutions with respect to
the depot capacity have been found over Nmovpen iterations, then the value
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of αd is set to max{αmin, αd × rpen}, where rpen < 1. On the other hand,
if no feasible solutions have been found during Nmovpen iterations, then the
value of αd is set to min{αmax, αd × ipen}, where ipen > 1. A similar rule is
applied to modify the value of αr. αd, αr, αmin, αmax, Nmovpen, rpen, ipen are
given parameters.

In the selection of the best move to be performed we consider the following
criterion for the evaluation of a move leading to an infeasible solution S. If
the value of F2(S) is less than the cost of the best solution found so far, we
assign S a value F (S) = F2(S). Otherwise, as diversi�cation strategy, we
introduce an extra penalty by adding to F2(S) a constant term equal to the
product of the absolute di�erence value 4max between two successive values
of the objective function, the square root of the number of routes k, and a
scaling factor g (for further details see Taillard [57]). Therefore, we de�ne
F (S) = F2(S) +4max

√
kg (where g is a given parameter). Note that if the

new solution S is feasible, we de�ne F (S) = F1(S). The move corresponding
to the minimum value of F (S) is performed.

In the third diversi�cation strategy, every Nfact × n iterations (where
Nfact is a given parameter), we consider the best solution found so far which
is feasible with respect to the depot capacity and apply procedure VRPH for
each open depot. Note that procedure VRPH is able to transform a solution
which is infeasible with respect to the route capacity into a feasible solution.
This diversi�cation strategy may help the algorithm to explore new parts of
the solution space.

2.5 Perturbation procedure

Since the modi�ed GTS procedure can fail in �nding a move improving the
current solution, the algorithm tries to escape from a local optimum by per-
turbing the current solution. In particular, if no improving move has been
performed after Npert × n iterations, the algorithm applies a perturbation
approach similar to the �3-route procedure� proposed by Renaud et al. [52].

Di�erently from what is proposed by Renaud et al. [52], we consider a
randomized procedure for selecting the routes to be perturbed. In particular,
we use an exchange scheme involving three routes. The algorithm selects the
�rst route k1 in a random way. The second route k2 is the closest neighbor
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of k1, and the third route k3 is the closest neighbor of k2, with k1 6= k3. The
evaluation of the �distance� between the routes depends on the characteristics
of the considered instance. In particular, as it is the case for the benchmark
instances considered in our computational experiments (see Section 4), if
each vertex of the input graph G is associated with a point in the plane, and
the cost cij of edge (i, j) in proportion to the Euclidean distance between the
points associated with vertices i and j, then the distance between the routes
is calculated by considering their �center of gravity�.

For each customer i1 of route k1, each customer i2 of route k2, each edge
(h2, j2) of route k2 (with h2 6= i2 and j2 6= i2), and each edge (h3, j3) of
route k3, we obtain a new solution S by considering the following move, in
which we do not impose the depot and vehicle capacity constraints:

� remove customer i1 from route k1 and insert it between vertices h2 and
j2 in route k2;

� remove customer i2 from route k2 and insert it between vertices h3 and
j3 in route k3.

The move associated with the solution S corresponding to the minimum value
of F2(S) is performed, even if S is worse than the current solution.

2.6 Computational results

2.6.1 Implementation details

The overall algorithm (2-Phase HGTS) has been implemented in C++, and
the computational experiments have been performed on an Intel Core Duo
CPU (2.00 GHz) under Linux Ubuntu 11.04 with 2 GB of memory. The ILP
model (2.1) - (2.5) has been optimally solved by using the ILP solver CPLEX
12.1. The performance of the proposed algorithm has been evaluated by
considering 79 benchmark instances taken from the literature. The complete
set of instances considers three data subsets. The �rst data subset (DS1) was
proposed by Tuzun and Burke [61] and considers 36 instances with capacity
constraints only on the routes. It considers instances with n = 100, 150 and
200 customers. The number m of potential depots is either 10 or 20. The
customers and the depots correspond to random points in the plane. The
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traveling cost of an arc is calculated as the Euclidean distance between the
points corresponding to the extreme vertices of the arc. The vehicle capacity
Q is set to 150, and the demands of the customers are uniformly random
distributed in the interval [1, 20].

The second data subset (DS2) was proposed by Prins et al. [45], and
contains 30 instances with capacity constraints on both the routes and the
depots. The number m of potential depots is either 5 or 10, and the number
of customers is n = 20, 50, 100 and 200. The customers and the depots
correspond to random points in the plane. For this data subset, the traveling
costs are calculated as the corresponding Euclidean distances, multiplied by
100 and rounded up to the next integer. The vehicle capacity Q is either 70
or 150, and the demands of the customers are uniformly random distributed
in the interval[11, 20].

The instances of the third data subset (DS3), introduced by Barreto [7],
were obtained from some classical CVRP instances by adding new depots
with the corresponding capacities and �xed costs. This data subset considers
13 instances. The routes are capacitated and, with the exception of few
instances, the depots are also capacitated. The number of customers ranges
from 21 to 150, and the number of potential depots from 5 to 10.

For each instance, only one run of the proposed algorithm is executed.
The total number of iterations of the main loop on the Improvement Phase,
Max_Iter, is set to 10 × n. The tabu tenure for each move performed is
calculated (as in Gendreau et al. [21]) as an integer uniformly distributed
random number in the interval [5, 10]. As for other heuristics, extensive
computational tests have been made to �nd a suitable set of parameters.
On average, the best performance of 2-Phase HGTS has been obtained by
considering the following values of the parameters: Npert = 0.20, Nsplit = 7,
β0 = 1.50, βd = 2.40, Nmovbeta = 2, Nmoviter = 1, αd = 0.01, αr = 0.0075,
αmin = 1

F1(S0)
, αmax = 0.04, Nmovpen = 10, ipen = 2.00, rpen = 0.30, g = 0.02,

and Nfact = 1.50. These values have been utilized for the solution of all the
considered instances.

The proposed algorithm has been compared (see Tables 2.2 to 2.6) with
the �ve most e�ective published heuristics proposed for the CLRP: GRASP
of Prins et al. [47], the memetic algorithm with population management
(MA|PM) of Prins et al. [46], the Langrangean relaxation and granular tabu
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search method (LRGTS) of Prins et al. [48], GRASP+ELS of Duhamel et al.
[18], and the simulated annealing algorithm (SALRP) of Yu et al. [66]. The
results reported for GRASP (Prins et al. [47]), MA|PM (Prins et al. [46]),
LGRTS (Prins et al. [48]) and SALRP (Yu et al. [66]) correspond to a single
run of the associated algorithm. GRASP+ELS (Duhamel et al. [18]) has
been run �ve times by considering �ve di�erent random generator seeds, and
the reported cost is the best found over the �ve runs; the reported computing
time is the time required to reach the best solution within the corresponding
run. In the paper by Yu et al. [66], the authors report also the cost of the best
solution found by SALRP during the parameter analysis phase. In Tables
2.1 to 2.6, the following notation is used:

Instance instance name;
n number of customers;
m number of potential depots;
Cost solution cost obtained by each algorithm (either one single

run or the best run);
BKC cost of the best-known result among GRASP, MA|PM,

LRGTS, GRASP+ELS, SALRP and 2-Phase HGTS;
BKS cost of the best-known result obtained either by the six

considered algorithms (BKC) or during the parameter
analysis phase of SALRP;

CPU CPU used by each method;
CPU index Passmark performance Test for each CPU;
CPU time running time in seconds on the CPU used by each

algorithm;
Gap BKC percentage gap of the solution cost found by each algorithm

with respect to BKC;
Gap BKS percentage gap of the solution cost found by each algorithm

with respect to BKS.

In addition, for each instance, the costs which are equal to the corre-
sponding BKC, are reported in bold. Whenever algorithm 2-Phase HGTS
improves the BKS value, its result is underlined. Finally, the CPU index
is given by the Passmark performance test1. This is a well known bench-

1PassMark® Software Pty Ltd, http://www.passmark.com
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mark test focused on CPU and memory performance. Higher values of the
Passmark test indicate that the corresponding CPU is faster.

2.6.2 Global results

Table 2.1 provides the contribution of each of the ingredients of the proposed
heuristic to the quality of the �nal solution. The table shows the results
(average values of Gap BKS, Gap BKC and the cumulative CPU time) cor-
responding to each of the following solutions:

- Initial hybrid: solutions obtained after the application of the Initial
hybrid procedure;

- Splitting: solutions obtained after the application of the Splitting pro-
cedure (i.e. at the end of the First Phase);

- Global: solutions obtained by the proposed 2-Phase HGTS heuristic
(i.e. at the end of the Second Phase).

In addition, the results corresponding to the solutions obtained at the
end of the Second Phase "without" a speci�c ingredient, but with all the
other ingredients active have been reported. The following solutions have
been considered:

- Wsecond: solutions obtained without considering the second diversi�-
cation strategy;

- Wthird: solutions obtained without considering the third diversi�cation
strategy;

- Wperturbation: solutions obtained without considering the perturbation
procedure.

The Splitting procedure is rather time consuming, but it produces sub-
stantial improvements on all the instances. The table shows that each of the
ingredients used in the proposed algorithm is e�ective.

A summary about the results obtained by the considered six algorithms
for the complete instance dataset is given in Tables 2.2 and 2.3. Table 2.2
provides the average values of Gap BKS, Gap BKC and CPU time, and
the CPU index of the corresponding CPU. Table 2.3 reports the number
of BKC, BKS and new best known (new BKS) solutions obtained by each
algorithm. Table 2.2 shows that the proposed algorithm provides the lowest
global averages for Gap BKS and Gap BKC. As for the global CPU time,
the proposed algorithm is faster than GRASP+ELS and SALRP, which were
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able to �nd the previous best results in terms of average gaps and number
of best solutions. It is to note that the CPU time reported for algorithm
GRASP+ELS does not represent the global time required to �nd the best
solution (obtained by executing �ve runs), since it corresponds to the CPU
time spent, for each instance, in a single run. On the other hand, the CPU
time of 2-Phase HGTS is larger than that of GRASP, MA|PM and LGRTS.
This can be explained by the fact that we use several improvement procedures
in the second phase. Although the CPU time of the proposed algorithm is
larger than that of these approaches, it remains within an acceptable range
for a strategic problem like CLRP. In addition, algorithm 2-Phase HGTS is
able to �nd the largest number of best solutions.

2.6.2.1 Tuzun-Burke instances

The results for the �rst data subset (DS1) are shown in Table 2.4. The
results show that the proposed algorithm outperforms all the other heuristics
for what concerns the global average values of Gap BKS and Gap BKC,
and the global number of the best solutions found. It is to note that the
performance of the proposed algorithm improves, with respect to that of the
other methods, for the largest instances (150 and 200 customers).

2.6.2.2 Prodhon instances

The detailed results for the second data subset (DS2) are given in Table 2.5.
On average, the proposed approach has values of Gap BKS and Gap BKC
smaller than those of GRASP, MA|PM, LRGTS, and GRASP+ELS. Only
SALRP provides, although with longer CPU times, slightly better values of
Gap BKS and Gap BKC. It is worth to note that the proposed algorithm
clearly outperforms all the other methods for large-scaled instances with 200
customers.

2.6.2.3 Barreto instances

The results obtained by the proposed algorithm and by the other approaches
for the third data subset (DS3) are given in Table 2.6. The table shows that
the proposed algorithm is competitive with the other algorithms in terms of
solution quality.
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2.7 Concluding remarks

We propose an e�ective two-phase hybrid heuristic algorithm for the capaci-
tated location routing problem (CLRP). In the proposed heuristic, after the
construction of an initial feasible solution in the Construction phase, we ap-
ply an Improvement phase based on a modi�ed Granular Tabu Search which
considers �ve granular neighborhoods, three di�erent diversi�cation strate-
gies and a perturbation procedure. The perturbation procedure is applied
whenever the algorithm remains in a local optimum for a given number of
iterations.

We compared the proposed algorithm with the �ve most e�ective pub-
lished heuristics for the CLRP on a set of benchmark instances from the
literature. The results show the e�ectiveness of the proposed algorithm,
and several best known solutions are improved within reasonable computing
times. The results obtained suggest that the proposed framework could be
applied to other problems as the periodic location-routing problem (PLRP),
the multi depot vehicle routing problem (MDVRP) and several extensions of
the CLRP obtained by adding constraints as time windows, heterogeneous
�eet, etc.
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Chapter 3

A comparison of heuristic

algorithms for the CLRP

Notes about the chapter

The contents of this chapter is based on the paper entitled �A computa-

tional comparison of heuristic algorithms for the capacitated location-routing

problem�, co-authored with Rodrigo Linfati, Professor Maria Gulnara Bal-
doquin and Professor Paolo Toth, which has been submitted for publication.
Partial results have been presented in the 5th International Workshop on
Freight Transportation and Logistics (ODYSSEUS 2012), Mykonos�Greece,
in the �rst meeting of the EURO Working Group on Vehicle Routing and
Logistics Optimization (VEROLOG 2012), Bologna� Italy, and in the IN-
FORMS Annual Meeting 2012, Phoenix � USA.

3.1 Introduction

In this work, we propose two new heuristics, and present a computational
comparative study of the most e�ective heuristics proposed for the CLRP.
The new algorithms use the initialization procedure and the neighborhood
structures introduced for algorithm 2-Phase HGTS in Escobar et al. [19]. We
compare the results of the proposed algorithms with the algorithm explained
in Chapter 2 (Algorithm 2-Phase HGTS) to obtain the best performing algo-
rithm. The �rst new algorithm, called Granular Variable Tabu Neighborhood

Search (GTVNS), considers a Variable Neighborhood Search (VNS) proce-
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dure, that includes a Granular Tabu Search approach, to enhance the quality
of solution S0. The second new algorithm, called Granular Simulated Anneal-
ing (GSA), considers a Simulated Annealing (SA) method, with a granular
search space, to improve solution S0.

The main contribution of the chapter is the development of an e�ective
heuristic algorithm, called GTVNS, for the solution of the CLRP. The al-
gorithm exploits the systematic changes of the neighborhood structures and
the neighborhood topologies considered in the Variable Neighborhood Search

(VNS) scheme to guide a trajectory local search procedure according to the
Granular Tabu Search (GTS) approach. The proposed algorithm is a novel
metaheuristic approach which combines VNS with GTS techniques for get-
ting good results within short computing times. While a combination be-
tween VNS and Tabu Search (TS) has been proposed in the literature (see
e.g. Moreno Pérez et al. [39] and Repoussis et al. [53]), no attempt has been
proposed for combining a GTS technique within a VNS scheme. The basic
VNS scheme some times meets di�culties to escape from local optima, while
the GTS approach has no such di�culties, since infeasible solutions are al-
lowed, and the memory technique prevents cycling, allowing the algorithm
to escape from local optima.

3.2 General framework

3.2.1 Granular search space

The granular search approach, proposed in Toth and Vigo [60], is based on the
utilization of a sparse graph containing the edges incident to the depots, the
edges belonging to the best solutions found so far, and the edges whose cost is
smaller than a granularity threshold ϑ = βz̄, where z̄ is the average cost of the
edges in the best solution found so far, and β is a sparsi�cation factor which
is dynamically updated during the search. The main idea of the granularity
approach is to obtain high quality solutions within short computing times. To
evaluate this signi�cant e�ect, a computational comparison of the considered
algorithms is performed, by executing them with and without the granular
search approach.
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3.2.2 Neighborhood structures

The considered heuristics use intra-route moves (performed in the same
route) and inter-route moves (performed between two routes assigned to
the same depot or to di�erent depots) corresponding to �ve neighborhood
structures Nk(k = 1, ..., 5): described in Chapter 2. A move is performed
only if all the new edges inserted in the solution are in the �granular� search
space. Finally, the shaking procedure described in Chapter 2 is not used in
algorithms GTVNS and GSA.

3.2.3 Initial solution

The initial solution S0 is constructed by using a hybrid heuristic, proposed
in Escobar et al. [19]and based on a cluster approach, which is able to �nd
good initial feasible solutions within short computing times. In order to
make a comparative study, a �good� and a �bad� initial solutions are chosen
to initialize the three algorithms. The �good� and the �bad� initial solutions
are obtained by executing the splitting procedure �many� and �few� times,
respectively.

3.3 Description of the new proposed algorithms

3.3.1 The Granular Variable Tabu Neighborhood Search

heuristic algorithm (GTVNS)

The GTVNS algorithm combines the potentiality of the systematic changes
of neighborhood structures proposed by Mladenovi¢ and Hansen [38] and the
e�cient Granular Tabu Search (GTS) approach introduced by Toth and Vigo
[60]. The Variable Neighborhood Search (VNS) is a metaheuristic approach
which applies a search strategy based on the systematic change of the neigh-
borhood structures to escape from local optima. Three main elements are
considered during the systematic change of the neighborhoods: (1) A local
minimum with respect to a given neighborhood is not necessarily the same
for the other neighborhoods; (2) A global minimum is a local minimum for
all the possible neighborhood structures; (3) Local minima with respect to
the neighborhood structures should be relatively close each other. In the
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proposed algorithm, the VNS technique controls the neighborhood changes,
while the GTS technique guides the search process by using the neighbor-
hood structures and the e�cient search space detailed in the previous sub
chapters. After constructing the initial solution S0, the VNS procedure iter-
ates through di�erent neighborhood structures to improve the best feasible
solution (S∗) found so far. The algorithm starts by setting S? = S = Ŝ = S0,
where S is the current (feasible or infeasible) solution, and Ŝ is the current
feasible solution. The following steps are then repeated until a stopping
criterion (number of iterations or computing time) is reached:

1. Select a neighborhood from the neighborhoods structuresNk(k = 1, ..., 5);

2. Local search: apply a Granular Tabu Search (GTS) procedure in the
selected neighborhood Nk

(
S
)
until a local minimum S ′ is found;

3. If S ′ is infeasible and F2 (S ′) ≤ F2

(
S
)
, set S:= S ′;

4. If S ′ is feasible and F1 (S ′) ≤ F1

(
Ŝ
)
, set Ŝ := S ′ and S:= S ′;

5. Every Ng×n iterations apply the third diversi�cation strategy used by
algorithm 2-Phase HGTS.

Finally, the best feasible solution found so far S? is kept. The GTS procedure
explores the solution space by moving, at each iteration, from a solution S
to the best solution S in the neighborhood N

(
S
)
. The best possible move is

selected as the move in N
(
S
)
producing the smallest value of the objective

function F2 (S) and of the following tabu aspiration criterion: if the value of
the objective function F1 (S) of the new solution S is not greater than the
cost of the best solution found so far, the move producing S is performed
even if it corresponds to tabu move.

3.3.2 The Granular Simulated Annealing heuristic al-

gorithm (GSA)

The GSA algorithm considers a standard implementation of the Simulated
Annealing metaheuristic (SA) with a reduced local search space. Let S?

be the best feasible solution found so far, S the current solution (feasible
or infeasible), Ŝ the current feasible solution, α the cooling factor, and T
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the current temperature. Initially, we set S?:= S0, S:= S0, and Ŝ := S0.
In addition, we determine the initial temperature T0 (where T0 is a given
parameter), and set i:=0. The proposed algorithm performs the following
steps until a stopping criterion (number of iterations or computing time) is
met:

1. Every Ncool iterations (where Ncool is a given parameter) set i:=i + 1,
and decrease the current temperature T according to the function T =

Ti = θTi−1, where 0 < θ < 1 (with θ given parameter);

2. Generate a random solution S ′ in the union of the neighborhoods of
the current solution S obtained by considering all the neighborhood
structures Nk(k = 1, ..., 5);

3. Compute σ = F2 (S ′)− F2

(
S
)
;

4. Generate a random number r in the range [0, 1];

5. If σ ≤ 0 do:

(a) If S ′ is feasible, set S:= S ′, Ŝ:= S ′;

(b) If S ′ is infeasible, set S:= S ′;

6. If σ > 0 do:

(a) If r < exp(−σ/T) and S ′ is feasible, set S:= S ′ and Ŝ:=S ′;

(b) If r < exp(−σ/T) and S ′ is infeasible, set S:=S ′;

Finally, the best feasible solution found so far S? is kept.

3.4 Computational experiments

The comparison of the e�ects of the initial solution and of the granularity
approach on the performance of algorithms 2-Phase HGTS, GTVNS and
GSA has been performed by �xing, for each instance, the same maximum
CPU time as stopping criterion. In particular, the CPU time for each instance
has been de�ned as the maximum among the CPU times spent by the three
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considered algorithms, each using its �best� initial solution and the parameter
values detailed in Subsection 3.4.2, to solve the given instance.

After having de�ned, for each of the three considered algorithms, the
corresponding best con�guration with respect to the initial solution and the
utilization of the granularity approach, the best performance of each algo-
rithm has been evaluated by executing Nstop × n iterations (where Nstop is a
given parameter) for each instance. After extensive computational tests, we
have determined that the best values of Nstop are 10, 7 and 6000 for algo-
rithms 2-Phase HGTS, GTVNS and GSA, respectively. For each considered
instance, algorithm GSA has been run �ve times with di�erent random gen-
erator seeds. The results reported in Tables 3.1 to 3.4 for algorithm GSA
correspond, for each instance, to the best solution value obtained over the �ve
runs with the corresponding total running time of the algorithm. Algorithm
GTVNS is a �deterministic� algorithm, and, for each instance, a single run
has been executed. The implementation details and the results are discussed
in the following subsections.

3.4.1 Implementation details

The three described algorithms have been implemented in C++, and the
computational experiments have been performed on an Intel Core Duo (only
one core is used) CPU (2.00 GHz) under Linux Ubuntu 11.04 with 2 GB
of memory. The algorithms have been evaluated by considering 79 bench-
mark instances from the literature. The complete set of instances considers
three data subsets proposed by Tuzun and Burke [61], Prins et al. [45] (called
�Prodhon Instances� in the following), and Barreto [7]. In all the subsets,
the customers and the depots are represented by points in the plane. Con-
sequently, the traveling cost of an edge is the Euclidean distance, multiplied
by 100 and rounded up to the next integer (Prins et al. [45]), or calculated
as a double-precision real number (Tuzun and Burke [61]and Barreto [7]).

The �rst data subset was proposed by Tuzun and Burke [61], and contains
36 instances with uncapacitated depots. The number of customers is n =

100, 150 and 200. The number of potential depots is either 10 or 20. The
vehicle capacity is set to 150. The second data subset was introduced by Prins
et al. [45], and considers 30 instances with capacity constraints on routes and
depots. The number of customers is n = 20, 50, 100 and 200. The number of
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potential depots is either 5 or 10. The vehicle capacity is either 70 or 150.
Finally, the third data subset is proposed by Barreto [7], and considers 13
instances obtained by modifying some classical CVRP instances by adding
new depots with capacities and �xed costs. The number of customers ranges
from 21 to 150, and the number of potential depots from 5 to 10.

3.4.2 Parameter settings

A suitable set of parameters, whose values are based on extensive computa-
tional tests on the benchmark instances, was selected for each algorithm and
is reported in the following:

2-Phase

HGTS

GTVNS GSA

βo 1.50 1.80 1.50
βn 2.40 2.40 2.50
Ns 2.00 2.00 2000
Nr 1.00 1.00 1000
Nfact 10 10 10
γd 0.0075 0.0075 -
γr 0.0100 0.0050 -
γmin 1/F1(S0) 1/F1(S0) -
γmax 0.0400 0.0400 -
δred 0.30 0.30 -
δinc 2.00 2.00 -
h 0.02 0.01 -

Nshake 0.20 - -
Ng 1.50 1.50 -
tmin 5 3 -
tmax 10 8 -
Ncool - - 1200
θ - - 0.90
T0 - - 1000

These values have been utilized for the comparison of the solutions ob-
tained by the three described algorithms.
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3.4.3 Comparison of the three described algorithms

We �rst compare the performance of the algorithms described in Sub chapter
3.3 with the algorithm proposed in Chapter 2 (2-Phase HGTS), by consid-
ering the di�erent con�gurations obtained by starting with a �good� or a
�bad� solutions, and by applying or not the granularity approach. Then, for
the three algorithms, we consider the corresponding best con�gurations, and
compare them in order to determine the best performing algorithm. The best
algorithm is �nally compared with the most e�ective heuristic algorithms
proposed in the literature for the solution of the CLRP: GRASP+ELS of
Duhamel et al. [18], SALRP of Yu et al. [66], ALNS of Hemmelmayr et al.
[29], GRASP+ILP of Contardo et al. [13], and MACO of Ting and Chen [59].

In Tables 3.1 to 3.9, the following notation is used:

Instance instance name;
Cost solution cost obtained by the corresponding algorithm in one single

run;
Best Cost best solution cost found by the corresponding algorithm over the

executed runs;
Avg. Cost average solution cost found by the corresponding algorithm over

the executed runs;
PBKS cost of the previous best-known solution given by the minimum cost

among those found by algorithms GRASP+ELS, SALRP,
ALNS-500K, ALNS-5000K, GRASP+ILP, and MACO;

BKS cost of the best known solution = min {PBKS, solution
cost found by the proposed algorithms};

NBKS number of best results (BKS) obtained by the corresponding
algorithm;

NIBS number of instances for which the corresponding algorithm is the
only one which found BKS;

CPU CPU used by the corresponding algorithm;
CPU index Passmark performance test for the corresponding CPU;
CPU time running time in seconds on the CPU used by the corresponding

algorithm;
Gap PBKS percentage gap of the solution cost found by the corresponding

algorithm in one single run with respect to PBKS;
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Gap Best
PBKS

percentage gap of the best solution cost found by the

corresponding algorithm over the executed runs with respect
to PBKS;

Gap Avg.
PBKS

percentage gap of the average solution cost found by the

corresponding algorithm over the executed runs with respect
to PBKS.

In addition, for each instance, the costs which are equal to the corre-
sponding BKS are reported in bold. Whenever the considered algorithm is
the only one which found the corresponding BKS value, the reported cost
is underlined. Finally, the CPU index of a CPU is given by the Passmark
performance test (for further details see [1]). This is a well known benchmark
test focused on CPU and memory performance. A higher value of the CPU
index indicates that the corresponding CPU is faster.

3.4.4 Comparison of the e�ect of the initial solution

The performance of the three algorithms is �rst compared by considering two
di�erent initial solutions. Let G0 denote a �good� initial solution and B0 a
�bad� initial solution. Solutions G0 and B0 are determined by executing the
splitting procedure for 7 and 3 iterations respectively.

Table 3.1 shows the summarized results corresponding to the average
values of Gap PBKS and of the CPU times by starting from solutions G0

and B0. The results show that GSA is not highly sensitive to the quality
of the initial solution, while 2-Phase HGTS provides the best global average
results by using the initial solution G0. Finally, GTVNS obtains the best
average results by using the initial solution B0. In the following, we will
consider, as initial solution, G0 for algorithms 2-Phase HGTS and GSA, and
B0 for algorithm GTVNS.

3.4.5 Comparison of the e�ect of the granularity

We consider now the impact of the granularity approach on the performance
of the three algorithms. These results are summarized in Table 3.2. It
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is to note that GTVNS and 2-Phase HGTS provide an equivalent global
performance when executed without the �granular� search approach. The
results show that the granular search approach signi�cantly improves the
performance of the three algorithms, hence, in the following we will consider
this con�guration for all the algorithms.

3.4.6 Global comparison

Tables 3.3, 3.4 and 3.5 provide the detailed results of the three algorithms
on the three data sets Tuzun-Burke, Prodhon and Barreto, respectively. The
results clearly show that algorithm GTVNS outperforms the other two algo-
rithms for what concerns both the CPU time and the quality of the solutions
found. Indeed, for all the data sets, the average value of Gap PBKS, and
the values of NBKS and NIBS of algorithm GTVNS are better than the cor-
responding values of algorithms 2-Phase HGTS and GSA. In addition, by
considering all the 79 instances of the three data sets, algorithms GTVNS
�nds, with respect to algorithm 2-Phase HGTS, 45 better solutions and 7
worse solutions, and with respect to algorithm GSA, 58 better solutions and
only 1 worse solution. Therefore algorithm GTVNS is the best performing
of the three described algorithms, and, in the following section, it will be
compared with the most e�ective heuristics from the literature.

3.4.7 Comparison of the most e�cient algorithms

In Tables 3.6 to 3.9, we compare algorithm GTVNS with the most e�ective
heuristics proposed for the solution of the CLRP, i.e., as previously men-
tioned, algorithms GRASP+ELS of Duhamel et al. [18], SALRP of Yu et al.
[66], ALNS of Hemmelmayr et al. [29], GRASP+ILP of Contardo et al. [13],
and MACO of Ting and Chen [59]. In the tables, we report the results as
presented in the corresponding papers.

Algorithm GRASP+ELS has been executed �ve times and only the best
solutions found over the �ve runs are reported. In addition, it is to note
that the CPU time reported for each instance represents the time required
to �nd the best solution within the corresponding run. The results reported
for algorithm SALRP correspond to a single run of the algorithm. For algo-
rithm ALNS, the best and the average costs over �ve runs for 500K iterations
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(ALNS - 500K), as well as the best costs over �ve runs for 5000K iterations
(ALNS - 5000K), are reported. The CPU time reported for each instance
corresponds to the total running time of the corresponding algorithm. Al-
gorithms GRASP+ILP and MACO have been executed for ten runs. The
results reported for algorithm GRASP+ILP correspond, for each instance,
to the best and to the average costs found, and to the average CPU time
over the ten runs. The results reported for algorithm MACO correspond to
the best cost found and to the average CPU time over the ten runs. Finally,
the results reported for algorithm GTVNS correspond to a single run of the
algorithm.

Table 3.6 shows a summary of the results found by the algorithms on
the complete data set, while Tables 3.7 to 3.9 show the detailed results for
the three considered data sets. For what concerns a comparison among
the reported CPU times, it is necessary to take into account the di�erent
speeds of the CPUs used in the computational experiments. In addition, for
the algorithms reporting average values of the CPU times, i.e. algorithms
GRASP+ILP and MACO which execute ten runs for each instance, the CPU
times corresponding to the best found costs should be multiplied times the
number of executed runs.

As shown in Table 3.6, for what concerns the global average value of Gap
PBKS, algorithm GTVNS obtains better results than those obtained by al-
gorithms GRASP+ELS, SALRP and MACO. In addition, by considering the
global average value of the gaps corresponding to the average costs computed
over several runs (Gap Avg. PBKS), Table 3.6 shows that algorithm GTVNS
obtains results better than those obtained (in comparable CPU times) by al-
gorithm ALNS-500K, and slightly worse than those obtained (in much larger
CPU times) by algorithm GRASP+ILP. The best results on the global av-
erage value of Gap Best PBKS are obtained, with very large CPU times,
by algorithms GRASP+ILP and ALNS-5000K. By taking into account the
big di�erence of the corresponding CPU times, it is di�cult to make a di-
rect comparison of the quality of the solutions found by algorithm GTNVS
with respect to the best results reported for algorithms GRASP+ILP and
ALNS-5000K.

For what concerns the number NBKS of the best known solutions found
and the number NIBS of instances for which the corresponding algorithm is
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the only one which �nds the best known solution, algorithms ALNS-5000K
and GRASP+ILP are again the best ones, while algorithms ALNS-500K
(Best solution) and GTVNS have comparable behaviors (although the for-
mer algorithm has larger CPU times). Finally, it is to note that algorithm
GTVNS is able to �nd, within short CPU times, 28 best known solutions
and to improve the previous best known solution for 5 instances.

As for the global CPU time, algorithm GTVNS is faster than the pre-
vious published algorithms which are able to �nd the best results in terms
of average gaps and number of best known solutions. Algorithm MACO
seems to require smaller CPU times than algorithm GTVNS, but since only
the average computing times over ten runs are reported for the former algo-
rithm, instead of the complete running times for executing the ten runs, a
comparison between the two algorithms may be biased.

3.5 Concluding remarks

The computational experiments show that algorithm GTVNS generally ob-
tains better results, in terms of average Gap BKS, NBKS and NIBS, than
those obtained by algorithms 2-Phase HGTS and GSA. The results empha-
size the importance of the granular search approach for the three considered
algorithms, by showing that it signi�cantly improves the performance of algo-
rithms GTVNS and 2-Phase HGTS. We have also compared the performance
of algorithm GTVNS with that of the most recent e�ective published heuris-
tics for the CLRP on a set of benchmarking instances from the literature.
The results show the e�ectiveness of algorithm GTVNS, which is able to
improve some best known results within short computing times.
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Chapter 4

A heuristic algorithm for the

MDVRP

Notes about the chapter

The contents of this chapter is based on the paper entitled �A Hybrid

Granular Tabu Search algorithm for the Multi-Depot Vehicle Routing Prob-

lem�, co-authored with Rodrigo Linfati, Professor Maria Gulnara Baldoquin
and Professor Paolo Toth, which has been submitted for publication. Par-
tial results will be presented in the conference TRISTAN VII, San Pedro
Atacama-Chile (2013).

4.1 Hybrid Granular Tabu Search Algorithm

The proposed algorithm is based on the Granular Tabu Search (GTS) idea
for the VRP introduced by Toth and Vigo [60]. The GTS approach uses re-
stricted neighborhoods, called granular neighborhoods, obtained from a sparse
graph which includes all the edges with a cost not greater than a granularity
threshold value ϑ = βz̄ (where β is a sparsi�cation factor and z̄ is the average
cost of the edges), the edges belonging to the best feasible solution, and the
edges (i, j) incident to the depots for which the distance factor ϕij = 2cij+δj
(∀ i ∈ I, j ∈ J) is not greater than the maximum duration D.

Algorithm ELTG applies three diversi�cation strategies implemented to
allow the exploration of new parts of the solution space. The �rst diversi�-
cation strategy is based on the granularity diversi�cation proposed in Toth
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and Vigo [60]. The second strategy is based on a penalty approach proposed
by Gendreau et al. [21] and Taillard [57]. The third diversi�cation strategy
determines every Ndiv×n iterations (where Ndiv is a given parameter) a feasi-
ble solution by using, for each depot, a local search procedure, called VRPH,
which applies iteratively the VRP routines vrp_sa, vrp_rtr and vrp_ej pro-
posed in Groer et al. [25], until no improvement is reached. Procedure VRPH
is executed in several parts of algorithm ELTG. In addition, a random pertur-

bation procedure is considered to avoid that the algorithm remains in a local
minimum for a given number of iterations. Finally, algorithm ELTG calls
in sequence procedures Splitting and Swapping described in the following
subsections.

The main body of algorithm ELTG considers two parts: (1) the construc-
tion of an initial solution by using a Hybrid procedure, and (2) the Granular
Tabu Search procedure. Algorithm ELTG is based on the heuristic frame-
work proposed by Escobar et al. [19] for the Capacitated Location Routing

Problem (CLRP). The main di�erences of algorithm ELTG with respect to
the algorithm presented in Escobar et al. [19] are: i) the hybrid procedure
used for the construction of the initial solution, ii) the penalty diversi�cation
strategy, and iii) the new local search procedures proposed within the main
loop of the Granular Tabu Search phase.

4.2 Initial Solution

The initial MDVRP solution S0 is constructed by using a hybrid heuristic
based on a cluster approach, which is able to �nd good initial solutions within
short computing times. The following steps are executed:

� Step 1. Construct a giant Traveling Salesman Problem (TSP) tour
containing all the customers by using the well known Lin-Kernighan

Heuristic (LKH) (for further details see Lin and Kernighan [35] and
Helsgaun [28]).

� Step 2. Starting from a given vertex, split the giant TSP tour into
several clusters (groups of consecutive customers) such that:

� The number of clusters is not greater than the maximum number
of possible routes M = km;
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� The total demand of each cluster does not exceed the vehicle ca-
pacity Q;

� The total �duration� durg of each cluster g (given by the sum of the
service times of the customers and of the costs of the edges con-
necting consecutive customers) is not greater than D − θl̄ (where
θ is a given parameter, and l̄ is the minimum cost of the edges
incident to the depots).

� Step 3. For each depot i and each cluster g, a TSP tour is determined,
by using procedure LKH, to obtain the traveling cost (lig) between
depot i and the customers belonging to cluster g.

� Step 4. Assign the depots to the clusters by solving the following Integer
Linear Programming (ILP) model, where the binary variable xig is
equal to 1 i� depot i is assigned to cluster g :

min z =
∑
i∈I

∑
g∈G

ligxig + σ
∑
i∈I

∑
g∈G

max(0, d̄ig −D)xig (4.1)

subject to∑
i∈I

xig = 1 ∀g ∈ G (4.2)

∑
j∈G

xig ≤ k ∀i ∈ I (4.3)

xig ∈ {0, 1} ∀i ∈ I, g ∈ G (4.4)

where:
I set of depots
G set of clusters
σ penalty factor

d̄ig = lig +
∑

j∈G δj where d̄ig is duration of cluster g ∈
G when g is assigned to the depot i ∈ I

The objective function (4.1) sums the traveling costs associated with the
edges traversed by the routes and the penalization costs incurred when the
maximum duration D is violated. Constraints (4.2) guarantee that each
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cluster is assigned to exactly one depot. Constraints (4.3) guarantee that
the number of clusters assigned to each depot must not exceed the number
k of vehicles available at each depot.

Constraints (4.4) can be replaced by xig ≥ 0,∀i ∈ I,∀g ∈ G, and model
(4.1) - (4.4) can be rewritten as an equivalent Linear Programming (LP)
model Min

{
c>x | Ax ≤ b ∧ x ≥ 0

}
. The optimal solutions of both models

are equal because matrix A is totally unimodular and b is an integral vector.
Indeed, the total unimodularity of matrix A can be proved (see, e.g. Heller
and Tompkins [27]) by considering that:

� every entry in A has value 0 or 1;

� every column of A contains at most two non-zero entries;

� the rows of matrix A can be partitioned into two subsets T1 and T2
such that if two non-zero entries in a column of A have the same sign,
the row of one of them is in T1 and the other row is in T2.

Steps 2 to 4 are repeated n times, by considering in Step 2 each customer
as the possible initial vertex, and keeping the best solution found so far.

As the solution obtained so far can be infeasible with respect to the dura-
tion of the routes, the algorithm tries to �nd a feasible solution by applying
a repair procedure. This procedure iteratively selects a customer j belonging
to an infeasible route and such that the distance factor ϕij (where i is the
depot to which customer j is currently assigned) is greater than D. Then,
customer j is removed from its current route and inserted into a di�erent
route (belonging to the same depot or to a di�erent depot) for which the
traveling cost cjz (∀ z ∈ I ∪ J) is minimum.

The proposed algorithm tries to improve the current initial solution by
applying a Splitting procedure based on the procedure proposed by Escobar
et al. [19] for the CLRP. This procedure considers that the total traveling
cost can be decreased by adding new routes until the number of routes for
each depot is not greater than k, and by assigning them to di�erent depots.

In this procedure, the route which contains the longest edge is selected.
Then, its two longest edges, say (r, s) and (t, u), are removed from the route,
and the route is shortcut by inserting edge (r, u). The subset of customers
belonging to the chain connecting vertex s to vertex t in the considered route
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is selected as the cluster to form a new route. For each depot i, procedure
LKH is applied to �nd the TSP tour corresponding to the assignment of the
cluster to depot i. Each cluster is assigned to the depot for which the cost of
the TSP tour is minimum. Then, procedure VRPH is applied to the depots
a�ected by the performed move. The Splitting procedure is applied Ns times
(where Ns is a given parameter), by considering at each iteration a di�erent
route. Finally, procedure VRPH is executed for all the depots for which the
solution obtained by the Splitting procedure has not been changed.

4.3 Granular Tabu Search

Algorithm ELTG allows solutions which are infeasible with respect to the
vehicle capacities and the duration of the routes (see Subsection 4.3.2). The
Granular Tabu Search procedure starts by removing the least loaded routes
(routes containing one or two customers), and inserting each of the associated
customers into the best position, with respect to the objective function f(S)

described in Subsection 4.3.2, of one of the remaining routes. In addition,
the procedure calls iteratively, during the search, the Splitting and Swapping

procedures.
The proposed neighborhood structures, the diversi�cation strategies, the

intensi�cation strategy, and the Swapping procedure are described in the
following subsections.

4.3.1 Neighborhood Structures

The proposed algorithm uses intra-route and inter-route moves correspond-
ing to the following neighborhood structures:

� Insertion. A customer is removed from its current position and rein-
serted in a di�erent position in the same route or in another route
(assigned to the same depot or to a di�erent depot).

� Swap. Two customers, belonging to the same route or to di�erent routes
(assigned to the same depot or to di�erent depots), are exchanged.

� Two-opt. This move is a modi�ed version of the well known two opt
move used in solving vehicle routing problems. If the two considered
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edges are in the same route, the two opt move is equivalent to the intra-
route move proposed by Lin and Kernighan [35] for the TSP. If the two
edges are in di�erent routes assigned to the same depot, the move is
similar to the traditional inter-route two opt move. The e�ect of this
move becomes more complicated when the edges belong to di�erent
depots. In this case, there are several ways to rearrange the routes
by performing an additional move concerning the edges connecting the
depots with the last customer of the routes to ensure that each route
starts and �nishes at the same depot.

� Exchange. Two consecutive customers are transferred from their cur-
rent positions to other positions by keeping the edge connecting them.
The customers can be inserted in the same route or in a di�erent route
(assigned to the same depot or to a di�erent depot).

� Inter-Swap. This move is an extension of the Swap move, obtained by
considering two pairs of consecutive customers. The edge connecting
each pair of customers is kept. The Inter-Swap move is performed
between two di�erent routes (assigned to the same depot or to di�erent
depots).

A move is performed if at least one of the new edges inserted in the solution
belongs to the sparse graph. Finally, whenever the algorithm remains in a
local minimum for Np × n iterations (where Np is a given parameter), we
apply a random perturbation procedure which extends the idea of Insertion
move by considering three random routes (say r1, r2, r3) at the same time
(for further details see Wassan [63]). In particular, for each customer c1 of
route r1, each customer c2 of route r2, each edge (i2, j2) of route r2 (with
i2 6= c2 and j2 6= c2), and each edge (i3, j3) of route r3, we obtain a new
solution S from the best solution found so far by performing the following
moves:

� remove customer c1 from route r1 and insert it between i2 and j2 in
route r2;

� remove customer c2 from route r2 and insert it between i3 and j3 in
route r3.
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� The move associated with the solution S corresponding to the minimum
value of c(S)+q(S) (see the details in Section 4.3.2) is performed, even
if solution S is worse than the current solution.

4.3.2 Search, Intensi�cation and Diversi�cation strate-

gies

The proposed algorithm, as in that presented in Gendreau et al. [21], allows
infeasible solutions with respect to both the vehicle capacity and the duration
of the routes. Let us consider a solution S composed by a set of z routes
r1, . . . , rz. Each route rl where l ∈ {1, . . . , z} is denoted by (v0, v1, v2, . . . , v0).
v0 represents the depot assigned to the route, and v1, v2, . . . represent the
visited customers. Let us denote with v ∈ rl a customer v belonging to
route rl, and with (u, v) ∈ rl an edge such that u and v are two consecutive
vertices of route rl. The following objective function f(S) = c(S) + αm ×
m(S) + αq × q(S) is associated with solution S, where:

c(S) =
z∑
l=1

∑
(u,v)∈rl

cuv

m(S) =
z∑
l=1

[∑
v∈rl

dv −Q

]+

q(S) =
z∑
l=1

∑
v∈rl

δv +
∑

(u,v)∈rl

cuv

−D
+

where [x]+ = max(0, x), and αm and αq are two nonnegative weights used
to increase the cost of solution S by adding two penalty terms proportional,
respectively, to the excess load of the overloaded routes, and to the excess
duration of the routes. The values of αm and αq are calculated as follows:
αm = γm× f(S0) and αq = γq× f(S0), where f(S0) is the value of the objec-
tive function of the initial solution S0, and γm and γq are two dynamically
changing positive parameters adjusted during the search within the range
[γmin, γmax]. In particular, if no feasible solutions with respect to the vehicle
capacity have been found over Nmov iterations, then the value of γm is set
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to max{γmin, γm × rpen}, where rpen < 1. On the other hand, if feasible so-
lutions with respect to the vehicle capacity have been found during the last
Nmov iterations, then the value of γm is set to min{γmax, γm × dpen}, where
dpen > 1. A similar rule is applied to modify the value of γq. The initial
values of γm and γq, and the values γmin, γmax, Nmov, rpen, dpen are given
parameters.

The proposed algorithm considers three diversi�cation strategies. The
�rst strategy is related to the dynamic modi�cation of the sparse graph
proposed by Toth and Vigo [60]. Initially, the sparsi�cation factor β is set to
a value β0. If no improvement of the best solution found so far is obtained
during Nβ iterations , the subset of edges currently included in the sparse
graph is enlarged by increasing the value of β to a value βn. Then, Nint

iterations are executed starting from the best solution found so far. Finally,
the sparsi�cation factor β is reset to its original value β0 and the search
continues. The values β0, Nβ, βn and Nint are given parameters. It is to note
that algorithm ELTG alternates between long intensi�cation phases (small
values of β) and short diversi�cation phases (large values of β) allowing the
exploration of new parts of the search space.

The second strategy is based on a penalty approach proposed by Taillard
[57]. If the considered solution S is feasible, we assign it an objective function
value t(S) = c(S). If the solution S is infeasible and the value of the objective
function f(S) is less than the cost of the best solution found so far, we
assign S a value t(S) = f(S). Otherwise, we add to f(S) an extra penalty
term equal to the product of the absolute di�erence value ∆obj between two
successive values of the objective function, the square root of the number of
routes z, and a scaling factor h (where h is a given parameter). Therefore,
we de�ne t(S) = f(S) + ∆objh

√
z. The move corresponding to the minimum

value of t(S) is performed. The tabu tenure, as in Gendreau et al. [21], is
randomly selected in the interval [tmin, tmax] (where tmin and tmax are given
parameters). The following aspiration criterion is used: If the objective
function value f(S) of the current solution S is less or equal to the cost of
the best solution found so far, solution S is accepted even if it corresponds
to a tabu move.

The third diversi�cation strategy considers every Ndiv × n iterations, the
best infeasible solution (i.e. the solution with the smallest value of c(S)) and,
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for each depot, apply procedure VRPH. This strategy helps the algorithm
to explore new parts of the solution space. Finally the Splitting procedure is
applied every Nsplit × n iterations during the Granular Tabu Search phase
(where Nsplit is a given parameter).

4.3.3 Swapping Procedure

If the traveling costs cij correspond to euclidean distances, as it is the case for
the benchmark MDVRP instances from the literature, the following Swapping
procedure is applied. The procedure starts by selecting the solution S with
the smallest value of c(S), and considers the exchange between two depots for
a given route rk. Since each vertex of the input graph G is associated with a
point in the plane, route rk can be represented by its center of gravity (cgrk).
Route rk is assigned to the depot, say i, di�erent from that currently assigned
to route rk and having the number of routes assigned to it smaller than k, for
which the euclidean distance from cgrk to i is minimum. Procedure VRPH is
applied for the two depots involved in the move. If the new solution is feasible
and also better than the best solution found so far, the current solution
and the best solution found so far are updated; otherwise only the current
solution is updated, even if the new solution is worse than the previous one.
The swapping procedure is applied every Nsw × n iterations (where Nsw is a
given parameter).

4.4 Computational experiments

4.4.1 Implementation details

Algorithm ELTG has been implemented in C++, and the computational
experiments have been performed on an Intel Core Duo (only one core is
used) CPU (2.00 GHz) under Linux Ubuntu 11.04 with 2 GB of memory.
The LP model equivalent to the ILP model (4.1) - (4.4) has been optimally
solved by using the LP solver CPLEX 12.1. The performance of algorithm
ELTG has been evaluated by considering 33 benchmark instances proposed
for the MDVRP. Instances 1-7 were introduced by Christo�des and Eilon [10].
Instances 8-11 have been described in Gillett and Johnson [22]. Instances 12-
23 were proposed by Chao et al. [9]. Finally, instances 24-33 were introduced
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by \Cordeau et al. [15]. In all the instances, the customers and the depots
correspond to random points in the plane. The traveling cost of an edge is
calculated as the Euclidean distance between the points corresponding to the
extreme vertices of the edge.

Algorithm ELTG has been compared (see Table 3.2) with the most e�ec-
tive published heuristic algorithms proposed for the MDVRP: Tabu Search
(CGL97) of Cordeau et al. [15], the general heuristic (PR07) of Pisinger and
Ropke [44], the hybrid genetic algorithm (VCGLR12) of Vidal et al. [62], and
the sequential tabu search algorithm (CM12) of Cordeau and Maischberger
[14].

For each instance, only one run of algorithm ELTG is executed. The
total number of iterations of the main loop of the Granular Tabu Search
phase is set to 10 × n. The tabu tenure for each move performed is set (as
in Gendreau et al. [21]) to a uniformly distributed random integer number
in the interval [5, 10]. As for other metaheuristics, extensive computational
tests have been performed to �nd a suitable set of parameters. On average,
the best performance of algorithm ELTG has been obtained by considering
the following values of the parameters: Ndiv = 0.60, θ = 7.0, Ns = 3, Np =

0.55, γm = 0.0025, γq = 0.001875, γmin = 1
f(S0)

, γmax = 0.04, Nmov = 10,
rpen = 0.50, dpen = 2.00, β0 = 1.20, Nβ = 2.50, βn = 2.40, Nint = 1.00,
h = 0.02, Nsplit = 0.70, and Nsw = 0.90. These values have been utilized for
the solution of all the considered instances.

In Tables 3.1 and 3.2, for each instance, the following notation is used:

Instance instance number;
n number of customers;
m number of depots;
k maximum number of available vehicles at each depot;
D maximum duration of each route;
Q capacity of each vehicle;
Cost solution cost obtained by the corresponding algorithm;
BKS cost of the best-known solution found by the previous

algorithms proposed for the MDVRP;
Ref. BKS reference to the algorithm which obtained for the �rst time

the value BKS;
Gap BKS percentage gap of the solution cost found by the
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corresponding algorithm with respect to the value of BKS;
Status status of solutions obtained by the initial hybrid procedure

(feasible or infeasible);
Time running time in seconds on the CPU used by the

corresponding algorithm;
CPU CPU used by the corresponding algorithm;
CPU index Passmark performance test for each CPU.

In addition, for each algorithm, the following global values are reported:

Avg. average percentage gap of the solution cost found by the
corresponding algorithm on a subset of instances;

G.Avg average percentage gap of the solution cost found by the
corresponding algorithm on the complete set of instances;

NBKS number of best solutions (by considering the previous algorithms
and algorithm ELTG) found by the corresponding algorithm;

NIBS number of instances for which the corresponding algorithm is the
only one which found the best solution.

For the values of BKS and Ref. BKS, we have considered all the previously
published methods proposed for the MDVRP. Therefore, also the results
obtained by the exact algorithms and by the heuristic algorithms proposed
by Chao et al. [9] (CGW93) and by Renaud et al. [52] (RLB96), have been
taken into account. The optimality of the value of BKS has been proved for
instances 1, 2, 6, 7 and 12 by Baldacci and Mingozzi [3]. For each instance,
the costs which are equal to the corresponding value of BKS are reported in
bold. Whenever algorithm ELTG improves the BKS value, the reported cost
is underlined. The CPU index is given by the Passmark performance test (for
further details see [1]). This is a well known benchmark test focused on CPU
and memory performance. Higher values of the Passmark test indicate that
the corresponding CPU is faster. Note that for the CPU used for algorithm
CGL97, the value of the CPU index is not available (this CPU is however
much slower than those used for the other algorithms).
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4.4.2 Global results

Table 1 provides the results obtained by the Initial Hybrid procedure and by
the Granular Tabu Search procedure of algorithm ELTG. The table shows,
for each instance, the results (cost, value of Gap BKS and cumulative running
time) corresponding to the following solutions:

� Initial Solution: solution obtained after the application of the Initial
Hybrid procedure;

� Granular Tabu Search: solution obtained by the proposed heuristic
ELTG (i.e. at the end of the Granular Tabu Search procedure).

Whenever a solution obtained by the initial hybrid procedure is infeasible
with respect to the number of routes for each depot, its status is set to
infeasible. Otherwise, its status is set to feasible. It is to note that the
Granular Tabu Search procedure produces substantial improvements, within
short additional running times, on all the instances.

A summary on the results obtained by the �ve considered algorithms
(CGL97, PR07, VCGLR12, CM12, and ELTG) for the complete set of in-
stances is given in Table 3.2. In this table we report the results as presented
in the corresponding papers.

Algorithms PR07 and VCGLR12 have been executed for ten runs. The
results reported for both algorithms correspond, for each instance, to the
average cost found and to the average CPU time over the ten runs. For
algorithm CM12, the results reported correspond, for each instance, to the
average cost found and to the average CPU time obtained over 10 runs, with
106 iterations for each run. Finally, the results reported for algorithms CGL97
and ELTG correspond, for each instance, to a single run of the corresponding
algorithm.

Table 3.2 shows that algorithm ELTG provides the lowest global average
value of Gap BKS on the �rst 23 instances. For instances 24 - 33, algo-
rithm ELTG has a global average value of Gap BKS smaller than that of
algorithms CGL97, PR07, and CM12; only algorithm VCGLR12 provides,
although with longer CPU times, a better global average value of Gap BKS.
For what concerns the number (NBKS) of best known solutions found and
the number (NIBS) of instances for which the corresponding algorithm is
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the only one which �nds the best known solution, algorithm ELTG obtains
the best results. Indeed, the proposed algorithm is able to �nd, within short
CPU times, 20 best known solutions, and to improve the previous best known
solution for 3 instances.

As for the average CPU time, algorithm ELTG is faster than algorithms
VCGLR12 and CM12, which were able to �nd the previous best results in
terms of the average value of Gap BKS and of the values of NBKS and NIBS.
On the other hand, the average running time of algorithm ELTG is larger
than that of algorithms CGL97 and PR07. This can be explained by consid-
ering that algorithm ELTG uses several improvement procedures in the main
loop of the Granular Tabu Search phase. Although the average running time
of algorithm ELTG is larger than that of these two approaches, it remains
within acceptable values for an operational problem like the MDVRP.

4.5 Concluding remarks

We propose an e�ective Hybrid Granular Tabu Search algorithm for the Multi
Depot Vehicle Routing Problem (MDVRP). In the proposed approach, after
the construction of an initial solution by using a hybrid heuristic, we apply
a modi�ed Granular Tabu Search procedure which considers �ve granular
neighborhoods, three di�erent diversi�cation strategies and di�erent local
search procedures. A perturbation procedure is applied whenever the algo-
rithm remains in a local optimum for a given number of iterations.

We compare the proposed algorithm with the most e�ective published
heuristics for the MDVRP on a set of benchmark instances from the liter-
ature. The results show the e�ectiveness of the proposed algorithm, and
some best known solutions are improved within reasonable computing times.
The results obtained suggest that the proposed framework could be applied
to other extensions of the MDVRP such as the Multi Depot Periodic Vehi-
cle Routing Problem (MDPVRP), the Multi Depot Vehicle Routing Prob-
lem with Heterogeneous Fleet (HMDVRP), and other problems obtained by
adding constraints as time windows, pickups and deliveries, etc.
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