Alma Mater Studiorum – Università di Bologna

Dottorato di Ricerca in Automatica e Ricerca Operativa

Ciclo XXV Settore Concorsuale di afferenza: 01/A6Settore Scientifico disciplinare: MAT/09

Heuristic algorithms for the Capacitated Location-Routing Problem and the Multi-Depot Vehicle Routing Problem

Presentata da: John Willmer Escobar Velasquez

Coordinatore Dottorato Prof. Andrea Lodi **Relatore** Prof. Paolo Toth

Esame finale anno 2013

To my parents: Maria Isabel and Jaime and in loving memory of my grandparents

Acknowledgments

First and foremost, I have to thank God for all his love. I would love to express my sincere gratitude to my Advisor Prof. Paolo Toth for giving me the wonderful opportunity to work with him. Many thanks to him for his teachings, his helpful suggestions and remarks, his advice and his patience. Indeed, this work would not have been possible without him.

I want also to thank to Prof. Maria Gulnara Baldoquin and Rodrigo Linfati. I would like to thank to Prof. Gulnara who acted as co-advisor of this work. Many thanks to Rodrigo for his invaluable friendship and support. In addition, I wish also to thank to my friend "Mauro" with whom I shared great experiences in Bologna.

I also wish to express my gratitude with all the members of the Operations Research group of Bologna, for their professional help and their friendship.

I want to thank my parents, for supporting me always. Many thanks to them for their endless love, encouragement and motivation throughout my life. I also wish to express my gratitude to the love of my life and wife, Andrea. This dream would not have been possible without them.

Finally, this work has been partially supported by MIUR (Ministero Istruzione, Università e Ricerca), Italy, and Pontificia Universidad Javeriana Cali, Colombia. This support is gratefully acknowledged.

Bologna, March 15, 2013

John Willmer Escobar V.

Abstract

The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot. This thesis addresses heuristics algorithms based on the well-know granular search idea introduced by Toth and Vigo [60] to solve the CLRP and the MDVRP. Extensive computational experiments on benchmark instances for both problems have been performed to determine the effectiveness of the proposed algorithms.

This work is organized as follows:

- Chapter 1 describes a detailed overview and a methodological review of the literature for the the *Capacitated Location-Routing Problem* (CLRP) and the *Multi-Depot Vehicle Routing Problem* (MDVRP).
- Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the CLRP.
- Chapter 3 shows a computational comparison of heuristic algorithms for the CLRP.
- Chapter 4 presents a hybrid granular tabu search approach for solving the MDVRP.

Keywords

Capacitated Location-Routing Problem Multi-Depot Vehicle Routing Problem Granular Tabu Search Simulated Annealing Variable Neighborhood Search Heuristic Algorithms Computational Comparison

Contents

A	bstra	lct					iii
K	eywc	ords					iv
1	Inti	oduct	ion				1
	1.1	The C	Capacitated Location-Routing Problem (CLRP) .				1
		1.1.1	Literature review for the CLRP				2
	1.2	The N	Iulti-Depot Vehicle Routing Problem (MDVRP).				4
		1.2.1	Literature review for the MDVRP				5
2	Heı	iristic .	algorithm for the capacitated location-routing	g p	ora	b-	
	lem						7
	2.1	Descri	iption of the proposed algorithm				7
	2.2	Proce	dure VRPH				8
	2.3		ruction phase				9
		2.3.1	Initial hybrid procedure				9
		2.3.2	Splitting procedure				11
	2.4	Impro	vement phase				12
		2.4.1	Granular Neighborhoods				13
		2.4.2	Space search and diversification strategies				14
	2.5	Pertu	rbation procedure				16
	2.6		outational results				17
		2.6.1	Implementation details				17
		2.6.2	Global results				20
			2.6.2.1 Tuzun-Burke instances				21
			2.6.2.2 Prodhon instances				
			2.6.2.3 Barreto instances				

	2.7	Concl	uding remarks	22
3	A c	ompar	ison of heuristic algorithms for the CLRP	29
	3.1	Introd	luction	29
	3.2	Gener	al framework	30
		3.2.1	Granular search space	30
		3.2.2	Neighborhood structures	31
		3.2.3	Initial solution	31
	3.3	Descr	iption of the new proposed algorithms	31
		3.3.1	The Granular Variable Tabu Neighborhood Search heuris	-
			tic algorithm (GTVNS)	31
		3.3.2	The Granular Simulated Annealing heuristic algorithm	
			(GSA)	32
	3.4	Comp	outational experiments	33
		3.4.1	Implementation details	34
		3.4.2	Parameter settings	35
		3.4.3	Comparison of the three described algorithms	36
		3.4.4	Comparison of the effect of the initial solution \ldots .	37
		3.4.5	Comparison of the effect of the granularity	37
		3.4.6	Global comparison	38
		3.4.7	Comparison of the most efficient algorithms	38
	3.5	Concl	uding remarks	40
4	A h	eurist	ic algorithm for the MDVRP	50
	4.1	Hybri	d Granular Tabu Search Algorithm	50
	4.2	Initial	Solution	51
	4.3	Granu	ılar Tabu Search	54
		4.3.1	Neighborhood Structures	54
		4.3.2	Search, Intensification and Diversification strategies	56
		4.3.3	Swapping Procedure	58
	4.4	Comp	outational experiments	58
		4.4.1	Implementation details	58
		4.4.2	Global results	61
	4.5	Concl	uding remarks	62
Bi	ibliog	graphy		65

List of Figures

2.1	Example of the splitting procedure	12
2.2	Example of Two-opt move by exchanging edges incident to the	
	depots	14

List of Tables

2.1	Summarized results for each ingredient of 2-Phase HGTS on	
	GAP BKS, GAP BKC and CPU time for the complete data set	23
2.2	Summarized results on GAP BKS, GAP BKC and CPU time	
	for the complete data set	24
2.3	Summarized results on the number of BKS, BKC and new	
	BKS for the	
	$complete \ data \ set \ \ldots \ $	25
2.4	Detailed results for the first data subset DS1 (Tuzun-Burke	
	Instances) \ldots	26
2.5	Detailed results for the second data subset DS2 (Prodhon In-	
	stances) \ldots	27
2.6	Detailed results for the third data subset DS3 (Barreto In-	
	stances) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	28
3.1	Summarized results on Gap PBKS by comparing	
	the quality of the Initial Solutions (G0 and B0)	41
3.2	Summarized results on Gap PBKS	
	without the "granular" search approach	42
3.3	Best results for 2-Phase HGTS, GTVNS,	
	and GSA on Tuzun-Burke Instances	43
3.4	Best results for 2-Phase HGTS, GTVNS,	
	and GSA on Prodhon Instances	44
3.5	Results for 2-Phase HGTS, GTVNS,	
	and GSA on Barreto Instances	45
3.6	Summarized best results for all the algorithms on the complete	
	data set	46
3.7	Best results for all algorithms on Tuzun-Burke Instances	47

3.8	Best results for all algorithms on Prodhon Instances	48
3.9	Best results for all algorithms on Barreto Instances	49
4.1	Solutions obtained by each phase of the proposed algorithm .	63

List of Algorithms

2.1 Procedure: VRPH	2.1	Procedure:																									•		9
---------------------	-----	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	---

Chapter 1

Introduction

The Location Routing Problem (LRP) includes two types of fundamental problems of the supply chain management: the Facility Location Problem (FLP) and the Vehicle Routing Problem (VRP). The different aspects of these problems such as location, assignment and routing have been generally studied independently. This can be explained by considering that the location is a strategic decision which is taken for a long time frame, while the routing is an operational aspect which can be modified dynamically many times in a short time. However, it is well know that these decisions are interrelated. Indeed, the decision of locating a depot is often influenced by the transportation costs and vice versa (Rand [50]). As a consequence, the LRP has become an interesting field of research.

This work considers two problems: i) the LRP with capacity constrains for both the depots and the routes called the *Capacitated Location-Routing Problem* (CLRP), ii) the *Multi-Depot Vehicle Routing Problem* (MDVRP), which is a generalization of the well known *Vehicle Routing Problem* (VRP) by considering several depots.

1.1 The Capacitated Location-Routing Problem (CLRP)

The Capacitated Location-Routing Problem (CLRP) can be defined as follows: let G = (V, E) be an undirected graph, where V is a set of nodes which is partitioned into a subset I = 1, ..., m of potential depots and a subset $J = 1, \ldots, n$ of customers. Each potential depot $i \in I$ has a capacity w_i and an opening cost o_i . Each customer $j \in J$ has a nonnegative demand d_j which must be fulfilled by a depot. An unlimited set of identical vehicles, each with capacity q and fixed cost f, is available at each depot $i \in I$. Each edge $(i, j) \in E$ has an associated traveling cost c_{ij} . The goal of the CLRP is to determine the depots to be opened and the routes to be performed to fulfill the demand of the customers. Each route must start and finish at the same depot, the global demand of each route must not exceed the vehicle capacity q, and the global demand of the routes assigned to a depot $i \in I$ must not exceed its capacity w_i . The objective function of the CLRP is given by the sum of the costs of the open depots, of the costs of the traveled edges, and of the fixed costs associated with the used vehicles.

The Capacitated Location-Routing Problem (CLRP) is a strategic problem of the supply chain management. The basic hierarchical structure of the CLRP is a supply chain involving two echelons: depots and customers. The CLRP is an NP-hard problem, since it is a generalization of the two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). Indeed, the CFLP can be described as a CLRP with unlimited vehicle capacity (i.e. $q = \infty$), vehicle fixed cost equal to zero (i.e. f = 0), and infinite cost for the edges connecting any pair of customers (i.e. $c_{ij} = \infty$ for $i = m+1, \ldots, m+n$ and $j = m+1, \ldots, m+n$), and the CVRP can be described as a CLRP with only one depot (i.e. m = 1).

1.1.1 Literature review for the CLRP

Few surveys on location-routing problems have been presented in the literature. Min et al. [37] proposed a classification for the LRP based on the solution methods, and the problem perspectives. The most recent classification, proposed by Nagy and Salhi [40], is based on eight different aspects. This hierarchical taxonomy provides a more integrated view of the LRP literature. Different mathematical formulations with two and three indices have been proposed for the LRP and the CLRP. Three-index formulations for the LRP were introduced by Perl and Daskin [42] and Hansen et al. [26], and for the CLRP by Prins et al. [48]. Two-index formulations for the CLRP have been proposed by Laporte et al. [32], Baldacci et al. [4], Contardo et al. [12], and Belenguer et al. [8]. These exact approaches can consistently solve to proven optimally small-medium size instances. For this reason, several heuristic algorithms have been proposed to solve large CLRP instances.

Nagy and Salhi [40] classified these algorithms as sequential, iterative, hierarchical, and clustering based methods. Sequential methods usually solve the facility location problem, and then the corresponding routing problem for each open depot (see, e.g. Daganzo [16]). According to Salhi and Rand [54], this type of approach avoids an important feedback between the two subproblems. On the other hand, iterative methods solve both subproblems in an iterative way providing a feedback between the two subproblems. In these methods, the CLRP is tackled either by solving the corresponding routing problem without considering the location decisions and assigning one depot for each cluster of customers, or by solving the facility location problem and performing at least one route for each open depot. Tuzun and Burke [61] proposed a two-phase tabu search approach that iterates between the location and the routing phases in order to search better solutions for large instances. In this work, results for instances with up to 200 customers have been reported. Prins et al. [48] proposed a two-phase algorithm which exchanges information between the location and routing phases. In the first phase, the routes and their customers are aggregated into super customers, and the corresponding CFLP is solved by using a Lagrangean relaxation technique. In the second phase, a granular tabu search (GTS) procedure (see Toth and Vigo [60]) with one neighborhood was used to solve the resulting MDVRP. At the end of each iteration, information about the promising edges is recorded to be used in the following phase.

Hierarchical methods solve the CLRP by using a hierarchical structure. First, the FLP is solved as the main problem, and then, the subsequent Routing Problem is solved as the subordinate problem. The location problem is solved in an approximate way by applying at each step a subroutine that solves the corresponding routing problem. Interested readers are referred to Albareda-Sambola et al. [2] and Melechovskỳ et al. [36].

Cluster based methods for the CLRP have been proposed by Barreto et al. [6]. In this work, in the first phase the customer set is split into clusters according to the vehicle capacity. In the second phase, a *Traveling Salesman Problem* (TSP) is solved for each cluster. Finally, in the final phase, the TSP circuits are grouped into super nodes for solving the corresponding CFLP.

Other heuristics for the CLRP have been proposed by Prins et al. [47]. In this work, a greedy randomized adaptive search procedure (GRASP), with a learning process and a path relinking strategy, has been proposed. A randomized version of the Clarke and Wright algorithm (proposed by Clarke and Wright [11] for the CVRP) is applied during the GRASP phase. In addition, a learning process is implemented to choose the correct depots. A path relinking strategy is then used as post optimization procedure to generate new solutions. The same authors (Prins et al. [46]) proposed a memetic algorithm with population management (MA|PM).

More recently, Duhamel et al. [18] developed a hybridized GRASP with an evolutionary local search (ELS) procedure. Yu et al. [66] proposed a Simulated Annealing (SA) heuristic based on three random neighborhoods. Pirkwieser and Raidl [43] proposed a Variable Neighborhood Search (VNS) coupled with ILP-based very large neighborhood searches to solve the (periodic) location-routing problem. An adaptive large neighborhood algorithm for the Two-Echelon Vehicle Routing Problem (2E-VRP), which is also able to solve the CLRP, has been introduced by Hemmelmayr et al. [29]. A GRASP with an ILP-based metaheuristic and a multiple ant colony optimization method have been proposed by Contardo et al. [13] and by Ting and Chen [59], respectively.

1.2 The Multi-Depot Vehicle Routing Problem (MDVRP)

The MDVRP can be defined as follows: Let G = (V, E) be an undirected complete graph, where V and E the edge set. The vertex set V is partitioned into a subset $I = 1, \ldots, m$ of depots and a subset $J = 1, \ldots, n$ of customers. Each customer $j \in J$ has a nonnegative demand d_j and a nonnegative service time δ_j . Each depot $i \in I$ has a service time $\delta_i = 0$. It is to note that in the MDVRP not all the depots are necessarily used. A set of k identical vehicles, each with capacity Q, is available at each depot i. Each edge $(i, j) \in E$ has an associated nonnegative traveling cost c_{ij} . The goal of the MDVRP is to determine the routes to be performed to fulfill the demand of all the customers with the minimum traveling cost. The MDVRP is subject to the following constraints:

- Each route must start and finish at the same depot;
- Each customer must be visited exactly once by a single route;
- The total demand of each route must not exceed the vehicle capacity Q;
- The number of routes associated with each depot must not exceed the value of k.
- The total duration of each route (given by the sum of the traveling costs of the traversed edges and of the service times of the visited customers) must not exceed a given value D.

1.2.1 Literature review for the MDVRP

The MDVRP is known to be a NP-hard, since it is a generalization of the well known Vehicle Routing Problem (VRP), arising when m = 1. Exact algorithms were proposed by Laporte et al. [31] and, recently, by Baldacci et al. [4]. Laporte et al. [33] proposed an exact algorithm for the asymmetric case of the MDVRP (arising when G is a directed graph). These exact approaches can consistently solve to proven optimality instances with less than 100 customers. For this reason, heuristic and metaheuristic algorithms have been proposed to solve successfully large MDVRP instances.

Early heuristics for the MDVRP have been proposed by Wren and Holliday [64], Gillett and Johnson [22], Gillett and Miller [23], Golden et al. [24], and Raft [49]. All these methods use adaptations of VRP algorithms to solve the MDVRP. Chao et al. [9] proposed a multi-phase heuristic which is able to find good results with respect to the previously published approaches. In this work, customers are assigned to their closest depot. Then, a VRP is solved for each depot by using a modified savings algorithm proposed by Golden et al. [24]. Finally, the current solution is improved by using a method based on a record-to-record approach proposed in Dueck [17]. Renaud et al. [52] proposed a tabu search heuristic which is able to find good results within short computing times. The algorithm first constructs an initial solution by assigning each customer to its nearest depot and by solving the VRP corresponding to each depot by using an improved petal heuristic described in Renaud et al. [51]. Finally, the tabu search considers three phases: fast improvement, intensification, and diversification. Each of these phases uses several inter-route and intra-route moves. Cordeau et al. [15] proposed a general tabu search heuristic which is also Periodic Vehicle Routing Problem (PVRP) and the Periodic Traveling Salesman Problem (PTSP). The initial solution is constructed by assigning each customer to its nearest depot and by applying a procedure based on the GENI heuristic (for further details see Gendreau et al. [20]). Infeasible solutions are allowed during the tabu search. For each infeasible solution, a penalty term proportional to the total excess quantity and to the excess duration of the routes is added. Pisinger and Ropke [44] proposed a unified heuristic, which is able to solve different variants of the Vehicle Routing Problem. The MDVRP is solved by using an Adaptive Large Neighborhood Search (ALNS) algorithm. The ALNS is based on the large neighborhood search approach proposed by Shaw [56], and the Ruin and Recreate paradigm introduced by Schrimpf et al. [55].

Evolutionary approaches for the MDVRP have been proposed by Thangiah and Salhi [58], Ombuki-Berman and Hanshar [41], and Vidal et al. [62]. Vidal et al. [62] proposed a metaheuristic based on the exploitation of a new population-diversity management mechanism to allow a broader access to re- production, while preserving the memory of good solutions represented by the elite individuals of a population, and of an efficient offspring education scheme that integrates key features from efficient neighborhood search procedures such as memories and granular tabu search concepts. A recent parallel iterated tabu search heuristic has been developed by Cordeau and Maischberger [14]. This heuristic combines tabu search with a simple perturbation procedure to allow the algorithm to explore new parts of the solution space.

Chapter 2

Heuristic algorithm for the capacitated location-routing problem

Notes about the chapter

The contents of this chapter is based on the paper entitled "A two-phase hybrid heuristic algorithm for the capacitated location-routing problem", coauthored with Rodrigo Linfati and Professor Paolo Toth, which has been published in Computers & Operations Research (ISSN: 0305-0548). Partial results were presented in the XVI CLAIO/SBPO, in Rio de Janeiro, Brazil (2012) and 5th International Workshop on Freight Transportation and Logistics (ODYSSEUS 2012), Mykonos – Greece.

2.1 Description of the proposed algorithm

This chapter presents a two-phase hybrid heuristic algorithm (2-Phase HGTS) developed for solving the CLRP. The main body of the proposed algorithm consists of two major phases: Construction phase and Improvement phase. In the Construction phase, the goal is to build an initial feasible solution using an Initial hybrid procedure followed by a Splitting procedure to minimize the routing cost. In the Improvement phase, a modified GTS procedure, which considers several diversification steps, is applied to improve the quality of the current solution. Whenever no improvement is obtained within $N_{pert} \times n$ iter-

ations (where N_{pert} is a given parameter), the algorithm tries to escape from the current local optimum by applying a randomized *perturbation procedure*. In addition, a *procedure VRPH*, based on the library of local search heuristics for the VRP proposed by Groer et al. [25], is introduced as a general improvement routine.

The key-point for the success of the proposed algorithm is the location of the correct depots in the *Construction phase*. Since the most critical decisions of the *Improvement phase* are those concerning the opening and closing of the depots, a proper location of the depots is able to reduce the search space for the *Improvement phase* from a CLRP to a MDVRP. The previously mentioned procedures are described in more detail in the following subsections.

2.2 Procedure VRPH

Groer et al. [25] have recently proposed a software library containing fast local search heuristics for finding good feasible solutions for the CVRP. The standard library offers four different routines:

- *vrp_initial*: this routine uses a variant of the Clarke-Wright algorithm, proposed by Yellow [65], to generate initial solutions for the CVRP;
- vrp_rtr: this routine is an implementation of the record-to-record travel metaheuristic proposed by Li et al. [34];
- *vrp_sa*: this routine is an implementation of a Simulated Annealing (SA) metaheuristic;
- *vrp_ej*: this routine is an implementation of a neighborhood ejection/injection algorithm.

We developed a procedure, called VRPH, which applies routines $vrp_initial$ and then, iteratively, routine vrp_sa and vrp_rtr until no improvement is reached. Procedure VRPH is executed in several parts of the two-phase hybrid algorithm as a general improvement procedure for a given depot. We do not use the ejection/injection algorithm vrp_ej since, according to our computational experiments on the considered CLRP benchmark instances, it increases a lot the global computing time with a negligible improvement of the quality solution. The outline of procedure VRPH is described in Algorithm 2.1.

Algorithm 2.1 Procedure: VRPH

```
1: input: vrp instance, vrp solution (optional)
 2: output: vrp solution
 3:
 4: if no vrp solution exists then
      vrp_initial(vrp_solution)
 5:
 6: endif
 7: repeat
 8:
      repeat
        call vrp_sa(vrp_solution)
 9:
      until vrp solution is not improved
10:
11:
      repeat
        call vrp rtr(vrp solution)
12:
      until vrp solution is not improved
13:
14: until vrp solution is not improved
```

2.3 Construction phase

In this phase we propose a procedure to construct an initial feasible solution. The procedure is based on a hybrid methodology which combines exact and heuristic techniques. In addition, a cluster based method is considered as a starting point in an iterative framework. The *Construction phase* procedure calls in sequence the procedures *Initial hybrid* and *Splitting* described in the following subsections.

2.3.1 Initial hybrid procedure

The initial CLRP solution S_0 is obtained by applying a hybrid procedure which is generally able to find good feasible solutions within short computing times. This hybrid approach combines exact algorithms with the well-known Lin-Kernighan heuristic procedure (LKH) (see Lin and Kernighan [35] and Helsgaun [28]), used to find good solutions for the TSPs corresponding to the routes defined by a depot and a subset of customers. A good initial CLRP solution can be obtained by recognizing clusters of customers which can be visited in the same route. To this end, we have developed a procedure that considers all the customers and constructs the corresponding giant TSP tour by using procedure LKH. The giant tour is then split into several clusters so as to satisfy for each cluster the vehicle capacity. Then, for each depot i and for each cluster j, procedure LKH is applied to find the corresponding TSP tour, and to get the route cost l_{ij} for assigning depot i to cluster j. The best assignment of the depots to the clusters is obtained by introducing two sets of binary variables x and y, where $x_{ij} = 1$ iff depot i is assigned to cluster j, and $y_i = 1$ iff depot i is opened, and by solving the following integer linear programming (ILP) model:

$$\min z = \sum_{i \in D} O_i y_i + \sum_{i \in D} \sum_{j \in G} l_{ij} x_{ij}$$
(2.1)

subject to

$$\sum_{i \in D} x_{ij} = 1 \qquad \forall j \in G \tag{2.2}$$

$$\sum_{j \in G} dc_j x_{ij} \leqslant W_i y_i \qquad \forall i \in D$$
(2.3)

$$y_i \in \{0, 1\} \qquad \forall i \in D \tag{2.4}$$

$$x_{ij} \in \{0,1\} \qquad \forall i \in D, j \in G \tag{2.5}$$

where:

The objective function (2.1) sums the opening costs for of the used depots and the traveling costs associated with the edges traversed by the routes. Constraints (2.2) guarantee that each cluster is assigned to exactly one depot. Constraints (2.3) impose the capacity for the open depots. Finally, constraints (2.4) and (2.5) impose the integrality of the variables used in the model. It has to be noted that ILP model (2.1)-(2.5) corresponds to the formulation of the well known *Single Source Capacitated Plant Location*

Problem (see, e.g. Barcelo and Casanovas [5], and Klincewicz and Luss [30]).

It is worth to that there are n possibilities to split the giant tour, by considering each customer as possible initial vertex. For this reason, the hybrid procedure is repeated n times keeping the best feasible solution found. The proposed algorithm tries to improve the current solution by applying the *Splitting procedure* described in the following subsection.

2.3.2 Splitting procedure

The Splitting procedure is based on the idea that the total traveling cost can be decreased by adding new routes, and assigning them to different depots. Note that the splitting procedure can be effective only when the cost F for using a vehicle is small. The procedure starts by considering the route which contains the longest (largest cost) edge and by selecting its three longest edges. Then, for the three combinations of two of these edges, say edges (r, s) and (t, u), the following steps are performed (see Fig. 2.1):

- edges (r, s) and (t, u) are removed from the considered route;
- the considered route is shortcut by inserting edge (r, u);
- the subset of customers belonging to the chain connecting vertex s to vertex t in the considered route is selected as the cluster to form a new route;
- for each open depot for which the assignment of the cluster satisfies the depot capacity constraint, procedure LKH is applied to find the TSP tour corresponding to the assignment of the cluster to the depot;
- the cluster is assigned to the depot, say d, for which the cost of the corresponding TSP tour is minimum;
- procedure VRPH is applied to the customers currently assigned to depot d, and to those currently assigned to the depot associated with the considered route (for both depots, the associated current CVRP solutions are given on input to procedure VRPH).

Whenever the global cost of the new solution is smaller than that of the best solution found so far, the latter solution is updated. We repeat

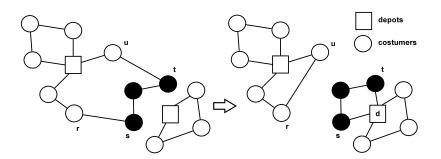


Figure 2.1: Example of the splitting procedure

the Splitting procedure N_{split} times (where N_{split} is a given parameter), by considering at each iteration a different route. Finally, procedure VRPH is executed for all the depots for which the solution obtained by the Initial hybrid procedure has not been changed.

2.4 Improvement phase

In this stage, the algorithm tries to improve the initial solution S_0 obtained by the *Construction phase* applying a modified granular tabu search (GTS) procedure. The goal of the Improvement phase is to optimize the routes without considering moves between close and open depots, hence the search space is related to a MDVRP. In this phase, we allow infeasible solutions with respect to the depot and vehicle capacities (see subsection 3.3.2).

To reduce the computing time required by each iteration of a local search procedure, which can steeply grow with the instance size, Toth and Vigo [60] proposed the so called *granular tabu search* (GTS) approach. The method is based on the use of a candidate list strategy, which drastically reduces the time required by a tabu search algorithm. The main objective of the GTS approach is to have good solutions by using a neighborhood structure that can be evaluated in a short time. Three main differences with respect to the idea of "granularity" introduced by Toth and Vigo [60] for the CVRP are considered here. Basically, the proposed algorithm considers five neighborhoods, three different diversification strategies, and a random perturbation procedure to avoid that the algorithm remains in a local optimum for a given number of iterations.

If the number of routes of the current solution is greater than the min-

imum number of routes, N_{min} , required to visit all the customers, where $N_{min} = \left\lceil \frac{\sum_{j=m+1}^{m+n} d_j}{Q} \right\rceil$, an attempt is performed to reduce the number of routes. In particular, the algorithm starts by removing the least loaded routes (routes containing one or two customers), and inserting each of the associated customers into the best position, with respect to the objective function $F_2(S)$ described in subsection 3.3.2, of one of the remaining routes. A new solution S is then determined by applying procedure VRPH for all the depots involved in the move for which the depot capacity constraint is satisfied. For each depot, the corresponding CVRP solutions are given on input to procedure VRPH. The proposed granular neighborhoods, diversification strategies and perturbation procedure are described in the following subsections.

2.4.1 Granular Neighborhoods

The proposed algorithm executes the following five types of moves for *Max_Iter* iterations (where *Max_Iter* is a given parameter):

- Shift: One customer is transferred from its current position to another position either in the same or in a different route (assigned to the same or to a different depot).
- Swap: Two customers are exchanged, either in the same route or between different routes (assigned to the same or to different depots).
- Two opt: This is a modified version of the well-known 2-opt move, in which two non consecutive edges are removed and the routes are reconnected in a different way. Note that if the two selected edges are in the same route, the two opt move is equivalent to that described by Lin and Kernighan [35]. If the two edges are in different routes assigned to the same depot, the move is similar to the traditional 2opt inter route move for the VRP. Otherwise, if the edges belong to different depots, there are several ways to rearrange the routes. In this case, it is necessary to perform an additional move concerning the edges connecting the depots with the last customers of the selected routes to ensure that each route starts and finishes at the same depot.

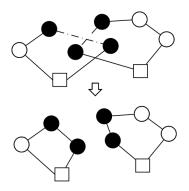


Figure 2.2: Example of Two-opt move by exchanging edges incident to the depots

- Exchange: Two consecutive customers are transferred from their current positions to different positions by keeping the edge connecting them. The two customers can be inserted in their current route or in a different route (assigned to the same or to a different depot).
- Inter-tour exchange: This is an extension of the Swap move and considers two pairs of consecutive customers. The edge connecting each pair of customers is kept. The exchange is performed between two different routes (assigned to the same or to different depots).

2.4.2 Space search and diversification strategies

The proposed GTS procedure uses the same space search introduced by Toth and Vigo [60]. The original complete graph G is replaced by a sparse graph which includes all the edges whose cost is smaller than the granularity threshold ϑ , the edges incident to the depot, and those belonging to the best solution found so far. The value of ϑ is defined by means of an increasing function of the sparsification factor β : $\vartheta = \beta \bar{z^*}$, where $\bar{z^*}$ is the average cost of the edges in the current best solution found so far. Only the moves for which all the involved edges are contained in the sparse graph are considered.

Three diversification strategies have been considered. The first strategy is related to the granularity diversification proposed by Toth and Vigo [60]. Initially, the sparsification factor β is set to its initial value β_0 . If no improvement of the best feasible solution found so far is reached after $N_{movbeta}$ iterations, the sparsification factor β is increased to β_d . A new sparse graph is then calculated, and $N_{moviter}$ iterations are executed starting from the best solution found so far. Finally, the sparsification factor β is reset to its initial value β_0 and the search continues. β_0 , β_d , $N_{movbeta}$ and $N_{moviter}$ are given parameters.

The second diversification strategy is based on a *penalty approach*. Since infeasible solutions can be considered during the search process, we have implemented the following penalty scheme based on the techniques proposed by Gendreau et al. [21] and Taillard [57] for the VRP. Let us consider a CLRP solution S composed by a set of k routes R_1, \ldots, R_k . Each route $R_r, r \in \{1, \ldots, k\}$, is denoted by $(v_{r0}, v_{r1}, v_{r2}, \ldots, v_{r0})$, where v_{r0} represents the open depot assigned to the route, and v_{r1}, v_{r2}, \ldots represent the visited customers. Note that S can be feasible or infeasible with respect to the vehicle capacity and the depot capacity. Let T be the subset of the open depots. In addition, the following notation is used: $v \in R_r$ if a customer v belongs to route R_r , $(u, v) \in R_r$ if u and v are two consecutive vertices of route R_r , and D_i is the set of customers assigned to the open depot i. The following objective function $F_1(S)$ is associated with any feasible solution S:

$$F_1(S) = \sum_{i \in T} O_i + \sum_{r=1}^k \sum_{(u,v) \in R_r} c_{uv} + Fk$$

The following objective function $F_2(S)$ is associated with any solution S (feasible or infeasible):

$$F_2(S) = F_1(S) + P_d \sum_{i \in T} \left[\sum_{v \in D_i} d_v - W_i \right]^+ + P_r \sum_{r=1}^k \left[\sum_{v \in R_r} d_v - Q \right]^+$$

where $[x]^+ = max(0, x)$, and P_d and P_r are two positive weights used to increase the cost of the solution S by adding the sum of the excess loads of the overloaded open depots, and the sum of the excess demands of the overloaded routes, respectively. The two weights are calculated as follow: $P_d = \alpha_d \times F_1(S_0)$ and $P_r = \alpha_r \times F_1(S_0)$, where $F_1(S_0)$ is the value of the objective function of the solution S_0 obtained by the *Construction phase*, and α_d and α_r are two parameters which are adjusted during the search within the range $[\alpha_{min}, \alpha_{max}]$. In particular, if no infeasible solutions with respect to the depot capacity have been found over N_{movpen} iterations, then the value of α_d is set to $max\{\alpha_{min}, \alpha_d \times r_{pen}\}$, where $r_{pen} < 1$. On the other hand, if no feasible solutions have been found during N_{movpen} iterations, then the value of α_d is set to $min\{\alpha_{max}, \alpha_d \times i_{pen}\}$, where $i_{pen} > 1$. A similar rule is applied to modify the value of α_r . α_d , α_r , α_{min} , α_{max} , N_{movpen} , r_{pen} , i_{pen} are given parameters.

In the selection of the best move to be performed we consider the following criterion for the evaluation of a move leading to an infeasible solution S. If the value of $F_2(S)$ is less than the cost of the best solution found so far, we assign S a value $F(S) = F_2(S)$. Otherwise, as diversification strategy, we introduce an extra penalty by adding to $F_2(S)$ a constant term equal to the product of the absolute difference value Δ_{max} between two successive values of the objective function, the square root of the number of routes k, and a scaling factor g (for further details see Taillard [57]). Therefore, we define $F(S) = F_2(S) + \Delta_{max}\sqrt{kg}$ (where g is a given parameter). Note that if the new solution S is feasible, we define $F(S) = F_1(S)$. The move corresponding to the minimum value of F(S) is performed.

In the third diversification strategy, every $N_{fact} \times n$ iterations (where N_{fact} is a given parameter), we consider the best solution found so far which is feasible with respect to the depot capacity and apply procedure VRPH for each open depot. Note that procedure VRPH is able to transform a solution which is infeasible with respect to the route capacity into a feasible solution. This diversification strategy may help the algorithm to explore new parts of the solution space.

2.5 Perturbation procedure

Since the modified GTS procedure can fail in finding a move improving the current solution, the algorithm tries to escape from a local optimum by perturbing the current solution. In particular, if no improving move has been performed after $N_{pert} \times n$ iterations, the algorithm applies a perturbation approach similar to the "3-route procedure" proposed by Renaud et al. [52].

Differently from what is proposed by Renaud et al. [52], we consider a randomized procedure for selecting the routes to be perturbed. In particular, we use an exchange scheme involving three routes. The algorithm selects the first route k1 in a random way. The second route k2 is the closest neighbor

of k1, and the third route k3 is the closest neighbor of k2, with $k1 \neq k3$. The evaluation of the "distance" between the routes depends on the characteristics of the considered instance. In particular, as it is the case for the benchmark instances considered in our computational experiments (see Section 4), if each vertex of the input graph G is associated with a point in the plane, and the cost c_{ij} of edge (i, j) in proportion to the Euclidean distance between the points associated with vertices i and j, then the distance between the routes is calculated by considering their "center of gravity".

For each customer i1 of route k1, each customer i2 of route k2, each edge (h2, j2) of route k2 (with $h2 \neq i2$ and $j2 \neq i2$), and each edge (h3, j3) of route k3, we obtain a new solution S by considering the following move, in which we do not impose the depot and vehicle capacity constraints:

- remove customer i1 from route k1 and insert it between vertices h2 and j2 in route k2;
- remove customer *i*2 from route *k*2 and insert it between vertices *h*3 and *j*3 in route *k*3.

The move associated with the solution S corresponding to the minimum value of $F_2(S)$ is performed, even if S is worse than the current solution.

2.6 Computational results

2.6.1 Implementation details

The overall algorithm (2-Phase HGTS) has been implemented in C++, and the computational experiments have been performed on an Intel Core Duo CPU (2.00 GHz) under Linux Ubuntu 11.04 with 2 GB of memory. The ILP model (2.1) - (2.5) has been optimally solved by using the ILP solver CPLEX 12.1. The performance of the proposed algorithm has been evaluated by considering 79 benchmark instances taken from the literature. The complete set of instances considers three data subsets. The first data subset (DS1) was proposed by Tuzun and Burke [61] and considers 36 instances with capacity constraints only on the routes. It considers instances with n = 100, 150 and 200 customers. The number m of potential depots is either 10 or 20. The customers and the depots correspond to random points in the plane. The traveling cost of an arc is calculated as the Euclidean distance between the points corresponding to the extreme vertices of the arc. The vehicle capacity Q is set to 150, and the demands of the customers are uniformly random distributed in the interval [1, 20].

The second data subset (DS2) was proposed by Prins et al. [45], and contains 30 instances with capacity constraints on both the routes and the depots. The number m of potential depots is either 5 or 10, and the number of customers is n = 20, 50, 100 and 200. The customers and the depots correspond to random points in the plane. For this data subset, the traveling costs are calculated as the corresponding Euclidean distances, multiplied by 100 and rounded up to the next integer. The vehicle capacity Q is either 70 or 150, and the demands of the customers are uniformly random distributed in the interval[11, 20].

The instances of the third data subset (DS3), introduced by Barreto [7], were obtained from some classical CVRP instances by adding new depots with the corresponding capacities and fixed costs. This data subset considers 13 instances. The routes are capacitated and, with the exception of few instances, the depots are also capacitated. The number of customers ranges from 21 to 150, and the number of potential depots from 5 to 10.

For each instance, only one run of the proposed algorithm is executed. The total number of iterations of the main loop on the Improvement Phase, Max_Iter , is set to $10 \times n$. The tabu tenure for each move performed is calculated (as in Gendreau et al. [21]) as an integer uniformly distributed random number in the interval [5,10]. As for other heuristics, extensive computational tests have been made to find a suitable set of parameters. On average, the best performance of 2-Phase HGTS has been obtained by considering the following values of the parameters: $N_{pert} = 0.20$, $N_{split} = 7$, $\beta_0 = 1.50$, $\beta_d = 2.40$, $N_{movbeta} = 2$, $N_{moviter} = 1$, $\alpha_d = 0.01$, $\alpha_r = 0.0075$, $\alpha_{min} = \frac{1}{F_1(S_0)}$, $\alpha_{max} = 0.04$, $N_{movpen} = 10$, $i_{pen} = 2.00$, $r_{pen} = 0.30$, g = 0.02, and $N_{fact} = 1.50$. These values have been utilized for the solution of all the considered instances.

The proposed algorithm has been compared (see Tables 2.2 to 2.6) with the five most effective published heuristics proposed for the CLRP: GRASP of Prins et al. [47], the memetic algorithm with population management (MA|PM) of Prins et al. [46], the Langrangean relaxation and granular tabu search method (LRGTS) of Prins et al. [48], GRASP+ELS of Duhamel et al. [18], and the simulated annealing algorithm (SALRP) of Yu et al. [66]. The results reported for GRASP (Prins et al. [47]), MA|PM (Prins et al. [46]), LGRTS (Prins et al. [48]) and SALRP (Yu et al. [66]) correspond to a single run of the associated algorithm. GRASP+ELS (Duhamel et al. [18]) has been run five times by considering five different random generator seeds, and the reported cost is the best found over the five runs; the reported computing time is the time required to reach the best solution within the corresponding run. In the paper by Yu et al. [66], the authors report also the cost of the best solution found by SALRP during the parameter analysis phase. In Tables 2.1 to 2.6, the following notation is used:

Instance	instance name;
n	number of customers;
m	number of potential depots;
Cost	solution cost obtained by each algorithm (either one single
	run or the best run);
BKC	cost of the best-known result among GRASP, MA PM,
	LRGTS, GRASP+ELS, SALRP and 2-Phase HGTS;
BKS	cost of the best-known result obtained either by the six
	considered algorithms (BKC) or during the parameter
	analysis phase of SALRP;
CPU	CPU used by each method;
CPU index	Passmark performance Test for each CPU;
CPU time	running time in seconds on the CPU used by each
	algorithm;
$\operatorname{Gap}\operatorname{BKC}$	percentage gap of the solution cost found by each algorithm
	with respect to BKC;
Gap BKS	percentage gap of the solution cost found by each algorithm
	with respect to BKS.

In addition, for each instance, the costs which are equal to the corresponding BKC, are reported in bold. Whenever algorithm 2-Phase HGTS improves the BKS value, its result is underlined. Finally, the CPU index is given by the Passmark performance test¹. This is a well known bench-

¹PassMark® Software Pty Ltd, http://www.passmark.com

mark test focused on CPU and memory performance. Higher values of the Passmark test indicate that the corresponding CPU is faster.

2.6.2 Global results

Table 2.1 provides the contribution of each of the ingredients of the proposed heuristic to the quality of the final solution. The table shows the results (average values of Gap BKS, Gap BKC and the cumulative CPU time) corresponding to each of the following solutions:

- Initial hybrid: solutions obtained after the application of the Initial hybrid procedure;

- Splitting: solutions obtained after the application of the Splitting procedure (i.e. at the end of the First Phase);

- Global: solutions obtained by the proposed 2-Phase HGTS heuristic (i.e. at the end of the Second Phase).

In addition, the results corresponding to the solutions obtained at the end of the Second Phase "without" a specific ingredient, but with all the other ingredients active have been reported. The following solutions have been considered:

- Wsecond: solutions obtained without considering the second diversification strategy;

- Wthird: solutions obtained without considering the third diversification strategy;

- Wperturbation: solutions obtained without considering the perturbation procedure.

The Splitting procedure is rather time consuming, but it produces substantial improvements on all the instances. The table shows that each of the ingredients used in the proposed algorithm is effective.

A summary about the results obtained by the considered six algorithms for the complete instance dataset is given in Tables 2.2 and 2.3. Table 2.2 provides the average values of Gap BKS, Gap BKC and CPU time, and the CPU index of the corresponding CPU. Table 2.3 reports the number of BKC, BKS and new best known (new BKS) solutions obtained by each algorithm. Table 2.2 shows that the proposed algorithm provides the lowest global averages for Gap BKS and Gap BKC. As for the global CPU time, the proposed algorithm is faster than GRASP+ELS and SALRP, which were able to find the previous best results in terms of average gaps and number of best solutions. It is to note that the CPU time reported for algorithm GRASP+ELS does not represent the global time required to find the best solution (obtained by executing five runs), since it corresponds to the CPU time spent, for each instance, in a single run. On the other hand, the CPU time of 2-Phase HGTS is larger than that of GRASP, MA|PM and LGRTS. This can be explained by the fact that we use several improvement procedures in the second phase. Although the CPU time of the proposed algorithm is larger than that of these approaches, it remains within an acceptable range for a strategic problem like CLRP. In addition, algorithm 2-Phase HGTS is able to find the largest number of best solutions.

2.6.2.1 Tuzun-Burke instances

The results for the first data subset (DS1) are shown in Table 2.4. The results show that the proposed algorithm outperforms all the other heuristics for what concerns the global average values of Gap BKS and Gap BKC, and the global number of the best solutions found. It is to note that the performance of the proposed algorithm improves, with respect to that of the other methods, for the largest instances (150 and 200 customers).

2.6.2.2 Prodhon instances

The detailed results for the second data subset (DS2) are given in Table 2.5. On average, the proposed approach has values of Gap BKS and Gap BKC smaller than those of GRASP, MA|PM, LRGTS, and GRASP+ELS. Only SALRP provides, although with longer CPU times, slightly better values of Gap BKS and Gap BKC. It is worth to note that the proposed algorithm clearly outperforms all the other methods for large-scaled instances with 200 customers.

2.6.2.3 Barreto instances

The results obtained by the proposed algorithm and by the other approaches for the third data subset (DS3) are given in Table 2.6. The table shows that the proposed algorithm is competitive with the other algorithms in terms of solution quality.

2.7 Concluding remarks

We propose an effective two-phase hybrid heuristic algorithm for the capacitated location routing problem (CLRP). In the proposed heuristic, after the construction of an initial feasible solution in the *Construction phase*, we apply an *Improvement phase* based on a modified Granular Tabu Search which considers five granular neighborhoods, three different diversification strategies and a perturbation procedure. The perturbation procedure is applied whenever the algorithm remains in a local optimum for a given number of iterations.

We compared the proposed algorithm with the five most effective published heuristics for the CLRP on a set of benchmark instances from the literature. The results show the effectiveness of the proposed algorithm, and several best known solutions are improved within reasonable computing times. The results obtained suggest that the proposed framework could be applied to other problems as the periodic location-routing problem (PLRP), the multi depot vehicle routing problem (MDVRP) and several extensions of the CLRP obtained by adding constraints as time windows, heterogeneous fleet, etc.

the co	mple	he complete data set	set																
		Initial hybrid	Ŧ		Splitting			Global			Wsecond			Wthird			Wperturbation	tion	
Set	Size	Gap BKS Gap BKC time	ap BKC	CPU time	Gap BKS G	Gap BKC	CPU time	Gap BKS Gap BKC		CPU time	Gap BKS Gap BKC		CPU time	Gap BKS Gap BKC	Ip BKC	CPU time	Gap BKS Gap BKC	Gap BKC	CPU time
DS1	36	7.05	6.87	91	1.23	1.05	298	0.68	0.51	392	0.80	0.62	376	0.90	0.73	367	0.79	0.62	376
DS2	30	3.41	3.29	46	1.28	1.17	117	0.49	0.38	176	0.82	0.70	166	0.99	0.87	150	0.85	0.74	166
DS3	13	6.86	6.80	12	1.74	1.69	87	0.78	0.74	105	0.97	0.92	100	0.97	0.92	98	0.78	0.74	101
Global Avg.	Avg.	5.64	5.50	61	1.33	1.20	195	0.63	0.50	263	0.84	0.70	251	0.95	0.81	240	0.81	0.69	251

3AP BKC and CPU time for	
on GAP BKS, GAP BKC	
2-Phase HGTS	
ch ingredient of	
d results for ea	
ole 2.1: Summarized resul	the complete data set
Table 2.1: S	the co

		GRASP			MAIPM			LRGTS			GRASP + ELS	:LS		SALRP			2-Phase HGTS	IGTS	
Set	Size	Gap BKS Gap BKC time	ap BKC	CPU time	Gap BKS Gap BKC		CPU time	Gap BKS Gap BKC		CPU time	Gap BKS Gap BKC	3ap BKC	CPU time	Gap BKS	Gap BKS Gap BKC	CPU time	Gap BKS	Gap BKS Gap BKC	CPU time
DS1	36	3.03	2.85	163	1.40	1.23	207	1.38	1.20	22	0.83	0.66	607	1.03	0.85	826	0.68	0.51	392
DS2	30	3.57	3.45	97	1.35	1.23	96	0.71	0.59	18	1.04	0.92	258	0.38	0.27	422	0.49	0.38	176
DS3	13	1.63	1.58	20	2.06	2.01	36	1.66	1.61	18	0.08	0.03	188	0.29	0.25	161	0.78	0.74	105
Globa	Global Avg.	3.00	3.00 2.87 114	114	1.49	1.36 137	137	1.17	1.04	20	0.79	0.65	405	0.66	0.53	564	0.63	0.50	263
СРU	Ď	Intel Pentium 4 (2.40 Ghz)	m 4 (2.40	(ZHQ)	Intel Pentium 4 (2.40 Ghz)	m 4 (2.40	Ghz)	Intel Pentium 4 (2.40 Ghz)	m 4 (2.40		Intel Core2 Quad (2.83 Ghz) Intel Core2 Quad (2.66 Ghz)	Quad (2.85	3 Ghz)	Intel Coreź	2 Quad (2.1	66 Ghz)	Intel Core	Intel Core2 Duo (2.00 Ghz)) Ghz
CPU	CPU index	.,	314			314			314		-	4373			4046			1398	

÷
<u> </u>
0
g
G
Ē
H
Л
0
0
e
Ę.
+
Ľ
ч
le
π
÷E
CPU timefor the complete dat
P
д
Ċ
Ξ.
p
UN I
g
ຽ
$\stackrel{\sim}{\sim}$
Ě
р
\sim
щ
\triangleleft
75
$\overline{}$
S, GAP BKC and CPU
KS, (
3KS, (
BKS, (
P BKS, (
AP BKS, (
AP BKS, (
GAP BKS, (
n GAP BKS, (
on GAP BKS, GAP BKC and CPU tin
s on GAP BKS, (
ts on GAP BKS, (
ults on GAP BKS, (
sults on GAP BKS, (
esults on GAP BKS, (
results on GAP BKS, (
d results on GAP BKS, (
red results on GAP BKS, (
ized results on GAP BKS, (
arized results on GAP BKS, (
narized results on GAP BKS, (
marized results on GAP BKS, (
mmarized results on GAP BKS, G
ummarized results on GAP BKS, (
Summarized results on GAP BKS, (
Summarized results on GAP BKS, (
2: Summarized results on GAP BKS, (
2.2: Summarized results on GAP BKS, (
2.2: Summarized results on GAP BKS, (
le 2.2: Summarized results on GAP BKS, (
ble 2.2: Summarized results on GAP BKS, (
able 2.2: Summarized results on GAP BKS, (
Table 2.2: Summarized results on GAP BKS, 0

					121	
	GRASP	MAIPM	LRGTS	GRASP+ELS	SALRP	2-Phase HGTS
DS1 (36 Instances)						
Total BKC	0	S	0	4	7	18
Total BKS	0	0	0	9	5	14
New BKS	0	0	0	2		7
DS2 (30 Instances)						
Total BKC	4	11	9	13	15	14
Total BKS	4	10	ъ	12	11	თ
New BKS	0	0	0	7	7	°
DS2 (13 Instances)						
Total BKC	4	S	7	1	11	ω
Total BKS	4	5	0	10	10	7
New BKS	0	0	0	-	-	0
BKC overall	ω	21	8	38	33	40
BKS overall	ω	15	7	28	26	30
New BKS overall	0	0	0	5	4	10

Table 2.3: Summarized results on the number of BKS, BKC and new BKS for the complete data set

Unit Cast Next Cast Next Next <th< th=""><th>L</th><th>Table 2.4: Detailed r GRASP</th><th>2.4: grasp</th><th>)eta</th><th>uled</th><th>Ψ I -</th><th>Sults for MAIPM</th><th>t T</th><th>= .</th><th>t data </th><th></th><th>Set</th><th></th><th>(Tuzi grasp</th><th>nn-] •+els</th><th>ฑี </th><th></th><th>Instances sale</th><th>(SS)</th><th>50</th><th></th><th>2-Phase HGT</th><th>s o</th><th></th><th>ā</th></th<>	L	Table 2.4: Detailed r GRASP	2.4: grasp)eta	uled	Ψ I -	Sults for MAIPM	t T	= .	t data 		Set		(Tuzi grasp	nn-] •+els	ฑี		Instances sale	(SS)	50		2-Phase HGT	s o		ā
33 1473 15 1473 15 1473 15 1473 15 147 15 15 147 15 15 147 15 15 147 15 15 147 15 15 147 15 15 1443 15 15 1443 15 143 15 143 15 15 1443 15 15 1443 15 15 1443 15 15 1443 15 15 1443 15 1443 15 1443 15 1443 15 1443 15 14 15 14 15 15 15 16 15 16 <td>BKC Cost BKS BKC</td> <td>Gap BKS</td> <td></td> <td>8 2</td> <td></td> <td>PU me</td> <td>-</td> <td>Gap G BKS B</td> <td></td> <td></td> <td>-</td> <td>o Gap S BKC</td> <td></td> <td>Cos</td> <td></td> <td>o Gap S BKC</td> <td></td> <td>Cost</td> <td>Gap BKS</td> <td>Gap BKC</td> <td>CPU time</td> <td>Cost</td> <td>Gap BKS I</td> <td>Gap BKC</td> <td>CPU time</td>	BKC Cost BKS BKC	Gap BKS		8 2		PU me	-	Gap G BKS B			-	o Gap S BKC		Cos		o Gap S BKC		Cost	Gap BKS	Gap BKC	CPU time	Cost	Gap BKS I	Gap BKC	CPU time
29 418.8 17.7 13 413.06 77 14 732.05 000 000 731 447.07 001 000 000 231 447.07 001 000 000 231 447.07 001 000 000 231 447.07 001 000	1473.36 1525.25 3.92 3 1449.20 1526.90 5.36 5	3.92 5.36		രഗ	3.52 5.36	33 41	1493.92 1471.36		1.40 1.53									1477.24 1470.96		0.26 1.50	369 274	1479.21 1486.27	0.79 2.56	0.40	152 239
36 142.2 42.0 36 143.76 37 142.4 30 30 147.410 201	1423.54 2.06	2.06			ŝ	28	1418.83		1.59									1408.65		0.86	231	1407.26	0.89	0.76	120
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1482.29 3.49	3.49		З.4	o,	36	1492.46		4.20									1432.29		0.00	420	1474.01	2.91	2.91	146
	1200.24 2.83	2.83		2.8	ო	28	1173.22		0.52									1177.14		0.86	348	1167.16	0.00	0.00	232
23 73051 0.03 38 713.33 27.303 0.05 0.03 <t< td=""><td>1123.64 1.94</td><td>1.94</td><td></td><td>1.94</td><td></td><td>34</td><td>1115.37</td><td></td><td>1.19</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>1110.36</td><td></td><td>0.74</td><td>342</td><td>1102.24</td><td>0.00</td><td>0.00</td><td>224</td></t<>	1123.64 1.94	1.94		1.94		34	1115.37		1.19					-				1110.36		0.74	342	1102.24	0.00	0.00	224
	814.00 2.82	2.82		2.82		23	793.97		0.29									791.66		0.00	360	791.66	0.00	0.00	201
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	747.84 2.68	2.68		2.68		38	730.51		0.30				1 6	728.		-		731.95		0.50	418	728.30	0.00	0.00	254
1551.23 0.43 0.43 1265.12 0.71 0.72 0.55 0.45 316 0.025 0.00 <	1273.10 2.79	2.79		2.79		23	1262.32		1.92				4	1240.		-		1238.49		0.00	300	1238.49	0.00	0.00	160
903.88 017 017 35 913.36 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.00 <th< td=""><td>1272.94 2.22</td><td>2.22</td><td></td><td>2.16</td><td></td><td>36</td><td>1251.32</td><td></td><td>0.43</td><td>`</td><td></td><td></td><td>1 6</td><td>1246.</td><td></td><td>-</td><td></td><td>1247.28</td><td></td><td>0.10</td><td>428</td><td>1251.22</td><td>0.47</td><td>0.42</td><td>237</td></th<>	1272.94 2.22	2.22		2.16		36	1251.32		0.43	`			1 6	1246.		-		1247.28		0.10	428	1251.22	0.47	0.42	237
102233 0.46 0.3 102234 0.46 0.3 102 1.5 102.10 0.16 0.3 0.16 0.00 </td <td>912.19 1.10</td> <td>1.10</td> <td></td> <td>1.10</td> <td></td> <td>20</td> <td>903.82</td> <td></td> <td>0.17</td> <td></td> <td></td> <td></td> <td>0</td> <td>902</td> <td></td> <td>-</td> <td></td> <td>902.26</td> <td></td> <td>0.00</td> <td>291</td> <td>902.26</td> <td>0.00</td> <td>0.00</td> <td>135</td>	912.19 1.10	1.10		1.10		20	903.82		0.17				0	902		-		902.26		0.00	291	902.26	0.00	0.00	135
1.22 1.17 1 1.50 1.55 1.5 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.51 1.50 1.55 1.50 0.45 3.51 2.23 8.85 1.51 1.23 0.01 0.01 0.06 0.35 1.55 0.44 0.45 0.46 0.45 0.		0.41		0.41		38	1022.93		0.46	-	0		1	1018.		-		1024.02		0.56	316	1018.29	0.00	0.00	157
	2.64 2.59	2.59	2.59			32			1.17	41	1.5		9		0.0	-			0.50	0.45	341		0.64	0.59	188
1881.67 2.60 1.38 141 1875.79 2.28 1.04 1984.26 1.23 1.03 1.33 1.46 2.705 1.03 1.33 1.46 2.701 1.23 1.030 1.00 1.33 1.46 1.33 1.13 1.323 1.33 1.14 1.355 1.46 1.33 1.33 1.46 1.33 1.34 1.41 1.35 1.46 1.33 1.33 1.46 1.33 1.33 1.46 1.33 1.33 1.46 1.33 1.34 1.44 1.35 1.36 1.46 1.33 1.46 1.33 1.46 1.34 1.46 1.33 1.46 1.34 1.36 1.33 1.46 1.34 1.33 1.46 1.33 1.46 1.33 1.46 1.34 1.33 1.41 1.33 1.41 1.33 1.46 1.34 1.33 1.46 1.33 1.46 1.33 1.44 1.17 1.33 1.46 1.44 1.43 1.46 1.44 <td>2006.70 4.37 3.20</td> <td>4.37 3.20</td> <td>3.20</td> <td></td> <td></td> <td>113</td> <td>1959.39</td> <td></td> <td></td> <td>`</td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td>-</td> <td></td> <td>1953.85</td> <td></td> <td>0.48</td> <td>743</td> <td>1961.75</td> <td>2.04</td> <td>0.88</td> <td>485</td>	2006.70 4.37 3.20	4.37 3.20	3.20			113	1959.39			`				·		-		1953.85		0.48	743	1961.75	2.04	0.88	485
1964.25 0.30 0.00 111 2010.53 132 11 1992.41 0.71 0.41 207.53 4.01 3.69 455 2017.53 4.01 3.69 455 0.00	1888.90 3.00 1.74	3.00 1.74	1.74		-	61	1881.67							-				1899.05		2.29	835	1856.51	1.23	0.00	298
	2033.93 2.81 2.50	2.81 2.50	2.50		÷	g	1984.25							-				2057.53		3.69	456	2012.69	1.74	1.43	406
	1856.07 3.04 3.04	3.04 3.04	3.04		÷	33	1855.25							-			-	1801.39		0.00	833	1803.01	0.09	0.09	302
1455.83 124 108 155 142.82 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.00 0.05 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.00 0.05 0.01 1.45 1.45 1.40 1.89 1.50 1.24 0.11 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01	4.36 4.36	4.36 4.36	4.36		÷	8	1448.27				-			-				1453.30		0.56	750	1445.25	0.00	0.00	449
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1456.82 1.03 0.88	1.03 0.88	0.88		÷	90	1459.83							·			-	1455.50		0.78	828	1452.07	0.70	0.55	493
93.4.79 0.41 0.35 196 93.6.8 10.4 172.0.3 0.36 0.36 0.37 145 140 147 140 147 146 147 146 146 146 146 146 146 146 146 146 146 146 146 146 146 147 150 153 130 233 1416.3 110 233 146 147 150 153 130 233 146 147 150 153 130 233 1416.3 130 233 146 147 130 233 146 140 36 130 141 156 130 141 140 303 146 130 141 140 140 30 316 333 336 <td>1240.40 2.99 2.99</td> <td>2.99 2.99</td> <td>2.99</td> <td></td> <td>0</td> <td>4</td> <td>1207.41</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>`</td> <td></td> <td></td> <td>-</td> <td>1206.24</td> <td></td> <td>0.15</td> <td>752</td> <td>1204.42</td> <td>0.00</td> <td>0.00</td> <td>270</td>	1240.40 2.99 2.99	2.99 2.99	2.99		0	4	1207.41				-			`			-	1206.24		0.15	752	1204.42	0.00	0.00	270
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	940.80 1.05 1.00	1.05 1.00	1.00		4	Ω	934.79				-							934.62		0.34	842	931.49	0.05	0.00	335
1423.34 209 188 156 1424.59 1.56 1.54 19 1402.94 0.21 0.00 524 1415.85 1.13 0.32 833 1416.74 1.19 0.38 1203.44 0.18 0.25 1.24 13 1.05 17 1.3 0.35 1.11 756 123433 2.80 2.61 118.54 0.55 0.23 1.00 5.71 1.16 757 0.36 0.34 0.11 118.54 0.53 1.60 1.7 1.37 1.06 17 1.13 0.35 0.34 0.11 756 0.34 0.11 0.35 0.34 0.11 0.35 0.35 0.34 0.00 0.00 0.34 0.35 0.34	1.90 1.85	1.90 1.85	1.85			93	1720.30							-				1720.81		0.91	742	1705.36	0.05	0.00	444
	1.84 1.63	1.84 1.63	1.63		-	28	1429.34			`								1415.85		0.92	833	1416.74	1.19	0.98	342
1186.54 0.55 0.22 233 1166.16 0.87 155.16 0.33 0.00 375 1159.12 0.60 0.27 837 1156.05 0.34 0.01 1.14 0.28 160 1.37 1.06 17 0.33 0.62 435 1.27 0.96 757 0.85 0.55	1.87 1.68	1.87 1.68	1.68			89	1203.44			-				`				1216.84		1.11	756	1234.83	2.80	2.61	526
1.14 0.83 160 1.37 1.06 17 0.93 0.52 4.36 1.27 0.36 767 0.36 767 0.36 767 0.36 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.56	1231.33 6.87 6.52	6.87 6.52	6.52			135	1158.54			`	-			·				1159.12		0.27	837	1156.05	0.34	0.01	380
Z29339 1.25 1.28 2.28 1.37 1.37 1.3 1.34 6.55 2.23,1.0 2.58 1.38 2.265.59 0.00	2.93 2.62	2.93 2.62	2.62		-	26				60	,				0.0		-			96.0	767		0.85	0.55	394
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.23 5.23	5.23 5.23	5.23			385	2293.99						-			`		2324.10		2.58	1328	2265.59	0.00	0.00	522
2274,57 1.30 1.25 378 2260.87 0.64 33 2246.39 0.05 0.05 0.67 0.62 1319 2249.40 0.18 0.13 2375.25 61.9 6.19 436 2259.55 0.97 0.97 0.97 0.67 0.62 1319 2249.40 0.18 0.10 2375.25 61.9 1.36 2120.76 1.48 0.69 48 2265.53 1.24 1292 2121.378 1237 154 0.74 17716.35 0.05 0.07 0.51 2172.95 1.43 325 618 1722.95 130 1201 1.69 1.54 0.74 1467.34 0.06 0.00 331 1473.25 0.22 0.46 51 1473.37 0.45 0.36 159 1.79 0.74 0.39 159 0.74 0.74 0.74 0.39 0.36 159 1.79 0.74 0.74 0.39 159 0.74 0.74	2288.09 5.62 5.62	5.62 5.62	5.62			410	2277.39									`		2258.16		4.23	1455	2166.43	0.00	0.00	603
2376.25 6.19 6.19 4.36 2256.53 1.24 1.24 2192 2356.53 3.96 3.96 1428 2237.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 15.4 0.17 0.11 0.29 17.40 0.01 15.4 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 <td>2273.19 1.24 1.19</td> <td>1.24 1.19</td> <td>1.19</td> <td></td> <td></td> <td>311</td> <td>2274.57</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>`</td> <td>2260.30</td> <td></td> <td>0.62</td> <td>1319</td> <td>2249.40</td> <td>0.18</td> <td>0.13</td> <td>527</td>	2273.19 1.24 1.19	1.24 1.19	1.19			311	2274.57				-						`	2260.30		0.62	1319	2249.40	0.18	0.13	527
2106.26 0.79 0.00 351 2120.76 1.48 0.69 48 2106.47 0.80 0.01 1521 2112.65 1.09 0.30 1320 2121.93 1.54 0.74 1477.153 3.00 2.82 378 1737.81 1.04 0.86 59 177905 3.44 3.25 618 1722 .99 0.18 0.07 400 1749.10 1749.10 159 1.52 1467.15 0.00 400 0.00 323 1488.55 1.50 1.43 38 1474.25 0.29 0.24 514 1469.10 0.17 0.11 129 1473.72 0.45 0.39 1988.00 0.00 100 100 0.00 100 100 100 100 10	2345.10 4.79 4.79	4.79 4.79	4.79			419	2376.25											2326.53		3.96	1428	2237.81	0.00	0.00	558
1771.53 3.00 2.82 378 1737.81 1.04 0.86 59 1779.05 3.44 3.25 6.18 1722.99 0.18 0.00 1400 1749.10 1.69 1.52 1467.54 0.06 0.00 323 1488.55 1.50 1.43 38 1474.25 0.52 0.46 514 1469.10 0.11 1299 1473.27 0.45 0.39 0.38 0.473.75 0.45 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.36 0.35 0.35 0.32 1273.75 0.45 0.33 172 1.57 1451 1994.16 1.20 1082.47 0.73 0.56 0.30 0.30 0.30 0.30 0.35 0.55 0.33 0.55 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 1594.16 1.20 1032.77 <t< td=""><td>2137.08 2.26 1.46</td><td>2.26 1.46</td><td>1.46</td><td></td><td></td><td>338</td><td>2106.26</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>2112.65</td><td></td><td>0.30</td><td>1320</td><td>2121.93</td><td>1.54</td><td>0.74</td><td>522</td></t<>	2137.08 2.26 1.46	2.26 1.46	1.46			338	2106.26						-					2112.65		0.30	1320	2121.93	1.54	0.74	522
1467.54 0.06 0.00 323 1488.55 1.50 1.43 38 1474.25 0.52 0.46 514 1469.10 0.11 1299 1473.27 0.45 0.35 1087.54 0.06 0.00 323 1488.65 1.50 1.43 38 1474.25 0.52 0.29 129 1461 1299 1473.27 0.45 0.30 0.00 0.00 1973.28 0.14 0.06 1.69 0.55 43 2004.33 1.72 1.57 1451 1994.16 1.20 1082.59 0.00 0.00 0.00 1.03 1.53 1.53 1.57 <t< td=""><td>1807.29 5.08 4.89</td><td>5.08 4.89</td><td>4.89</td><td></td><td>• • •</td><td>370</td><td>1771.53</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1722.99</td><td></td><td>0.00</td><td>1400</td><td>1749.10</td><td>1.69</td><td>1.52</td><td>691</td></t<>	1807.29 5.08 4.89	5.08 4.89	4.89		• • •	370	1771.53											1722.99		0.00	1400	1749.10	1.69	1.52	691
1088.00 0.50 0.50 505 1090.55 0.74 0.74 39 1085.69 0.29 124 1088.64 0.56 135 1429 1082.59 0.00 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01	1496.75 2.05 1.99	2.05 1.99	1.99			243	1467.54											1469.10		0.11	1299	1473.27	0.45	0.39	724
1973.28 0.14 0.00 413 1984.06 0.65 43 2004.33 1.72 1.57 1451 1994.16 1.20 1.06 1318 1984.77 0.73 0.58 1973.28 0.14 0.00 413 1984.66 0.69 0.55 43 2004.33 1.72 1.67 1.29 0.66 1.39 1.39 1972.20 3.12 2.13 1327 1323 1323 1324 1295.89 2.09 1.39 1782.20 3.33 0.21 3.63 1367.19 0.14 0.04 1.41 1.454.4 0.10 0.03 1782.20 0.39 0.39 0.39 1.30 1.457.82 4.33 4.353.42.3 2.02 1396.42 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td <td>1095.92 1.23</td> <td>1.23</td> <td></td> <td>1.23</td> <td></td> <td>309</td> <td>1088.00</td> <td></td> <td>1088.64</td> <td></td> <td>0.56</td> <td>1429</td> <td>1082.59</td> <td>0.00</td> <td>0.00</td> <td>616</td>	1095.92 1.23	1.23		1.23		309	1088.00											1088.64		0.56	1429	1082.59	0.00	0.00	616
1979.05 3.13 2.43 406 1986.49 3.52 2.82 53 1964.40 2.37 1.67 1273 1932.05 0.68 0.00 1412 1958.38 2.09 1.39 1.39 1782.23 0.32 0.21 353 1786.79 0.58 0.47 34 1778.80 0.13 0.02 1398 1779.10 0.14 0.04 1314 1778.41 0.10 0.00 1.396.24 0.39 0.39 0.39 530 1401.16 0.74 43 1453.82 4.53 4.53 2.502 1396.42 0.40 1427 1390.87 0.00 0.00	2044.66 3.77	3.77		3.62		283	1973.28											1994.16		1.06	1318	1984.77	0.73	0.58	542
1782.23 0.32 0.21 353 1786.79 0.58 0.47 34 1778.80 0.13 0.02 1398 1779.10 0.14 0.04 1314 1778.41 0.10 0.00 1396.24 0.39 0.39 0.39 0.39 530 1401.16 0.74 43 1453.82 4.53 4.53 2.50 1396.42 0.40 1427 <u>1390.87</u> 0.00 0.00	2090.95 8.96	8.96		8.22		399	1979.05		-									1932.05		0.00	1412	1958.98	2.09	1.39	617
1396.24 0.39 0.39 530 1401.16 0.74 0.74 43 1453.82 4.53 4.53 2202 1396.42 0.40 1427 1390.87 0.00 0.00	1788.70 0.68	0.68		0.58		199	1782.23			-				`				1779.10		0.04	1314	1778.41	0.10	0.00	697
	1408.63 1.28	1.28		1.2	~	296	1396.24			-			-	-				1396.42	-	0.40	1427	1390.87	0.00	0.00	518
	3.03 2.85			2.85		163		1.40	1.23 2	07	۰. ۲				0		607		1.03	0.85	826		0.68	0.51	392
163 140 123 207 138 120 22 0.83 0.66 607 103 0.85 826 0.68 0.51				i	3	>>				5	:			_	į					2	242		222		2

/ н . ŕ 4 DC1 (T. --ģ 5 د 2 Ĺ Ÿ c T₂L1₂

	D e	ю	4	с	4	4	77	17	23	3 2	33	29	99	38	32	167	200	136	145	193	163	168	160	277	152	92	66	125	44	148	571	476	483	530	624	389	529	
	CPU time	00	00	08	00	0.02	30	40.40	1.31 1 1 8	74	00	51	00	00	0.63	ç	0.00		0.26	1	0.42	0.78	26				0.13				00.0					0.00		
s	Gap BKC														-			-	-	-											-	-	-					
2-Phase HGTS	Gap BKS					0.02		70.0 2			5 0.00			0.00				-	-		6 0.50		0.46	-		-	2 0.13		-		8 0.00	-	1 0.02	-		2 0.12	-	
2-Phas	Cost	54793	3910	4894	37542		00100		64073 89342	68479	84055	52087	86203	61830		01320	001017	214892	19462	157319	201086	153663		289755	238002	245768	204252	25471	205837		476778	378289	44995	374961	47232	363252		
	CPU time	20	15	19	15	17	75		8 8	69	75	99	74	58	20	070		505	349	212	250	197	271	270	203	261	199	338	240	252	1428	1336	1796	1245	1776	1326	1484	
	Gap BKC 1	0.00	0.00	0.00	00.0	0.00	000	8.0	0.0	0.05	0.00	0.00	0.29	1.41	0.22	600		79.0	0.00	0.00	0.00	0.00	0.14	0.44	0.00	0.83	0.65	0.00	0.09	0.34	0.89	1.40	0.20	0.46	0.33	0.12	0.57	
	Gap (BKS E	0.00	0.00	0.00	0.00	0.00	000		0.00	0.05	0.00	0.00	0.29	1.41	0.22	010	0.00	2 L L L	0.23	0.00	0.08	0.02	0.34	1.06	1.06	0.91	0.65	0.00	0.34	0.67	0.89	1.40	0.22	0.63	0.33	0.24	0.62	
SALRP	Cost ^G	54793	39104	48908	37542		00111	11100	03242 88298	67340	84055	51822	86456	62700		30022	00000	16002	194124	157150	200242	152467		291043	234210	245813	205312	250882	205009		481002	383586	450848	376674	473875	363701		
/S		0	0	0	0	0	¢	0 0	⊃ £	16	0	11	0	0	5	04			212 1			221 1	153	48 2					203 2	167	-	359 3	112 4		1596 4		965	
	p CPU C time	00.0	00.0	00.0	00.0	0.00	0		0.00	00.0	00.0	00.0	00.0	00.0	0.05							0.04		4.03			0.00		0.13		-					0.53 (
S	o Gap S BKC					0.00										930		-				0.06 0	-		-				0.38		2.03		0.54 0			0.65 (-	
GRASP + ELS	st Gap BKS	54793 0			37542 0		0111		03242 U									215854 1				152528 0	0		-				205087 0	e		382329 1		-		-	-	
GRA	Cost	54	39	48	37	_	8	88	3 8	67	84	51	86	61	_	320		GLZ 6				3 152								-					-		_	
	CPU time	¢	0	-	0					~		~	0	-	-												2 10									5 74		
	Gap BKC					0.15			20.UZ							ů C	50	-		-	-	1.47	-	-	-		0.22		-							0.55		
	Gap BKS					0.15			0.02				-		0.20			-		-	-	1.49	0.97				0.22		0.77	1.39		0.61	0.78			0.67	0.80	
LRGTS	Cost	55131	39104	48908	37542		00160		90220 88715	67.698	84181	51992	86203	61830		300220		214885	196545	157792	201952	154709		291887	235532	246708	204435	258656	205883		481676	380613	453353	377351	476684	365250		
	CPU time	0	0	-	0	0	~	t u	n u	ы v.	o o	9	5	8	2	ç	3 :	4 :	45	45	36	43	41	31	45	31	39	36	45	88	431	579	351	401	266	341	395	
	Gap (BKC t	0.00	0.00	0.00	0.00	0.00	0.05	8.0	0.0	0.87	0.00	0.00	0.00	0.00	0.12	00 0	00.7	0.82	0.74	0.11	0.75	0.56	0.85	9.26	15.39	0.55	0.52	1.11	0.00	4.47	1.41	0.46	0.42	0.02	1.23	0.44	0.66	
	Gap G BKS E	00.0	00.00	0.00	0.00	00.0	0.05	8.0	0.0	0.87	0.00	0.00	0.00	0.00	0.12	200	10.7	1.42	0.98	0.11	0.83	0.58	1.05	9.93	16.61	0.63	0.52	1.11	0.24	4.84	1.41	0.46	0.44	0.18	1.23	0.56	0.71	
MAIPM	Cost B	54793	39104	48908	37542		00160		03242 88298	67893	84055	51822	86203	61830		1010	10010	16656	195568	57325	201749	153322		16575	270251	45123	205052	253669	204815		83497	380044	451840	375019	78132	364834		
ž		0	0	0	0	0	ç	v c	2 0	, c,	0 0	e	e	ю	e	ç		7 7	ŝ	23 1	-	20 1	22	38	30 2	39 2	30 2	35 2	40 2	35	518 4		554 4		10	290 3	~	
	p CPU C time	J.42	0.00	0.00	0.00	0.10	87 (00.0	2.40 0.55	1.09	00.0).46	1.37	0.10	0.82	0	0 1	9.59	2.78	1.53	1.88	1.40	1.56	11.53	15.91	4.23	1.26	7.95	5.55	7.74		10.17 :					6.77	
	p Gap S BKC).42				0.10			0.40						0.82 (3.02				1.76	12.22 1	-		1.26				2.95		-			7.22 7		
SP	Cost Gap BKS	55021 C					00637 0					52059 C		61890 C	5							154596 1	-	323171 12	271477 17			270826 7		~	490820 2	-	512679 13				9	
GRASP	ů	55																																				
	вкс	54793	39104	48908	37542		a0111	11108	03242 88298	67308	84055	51822	86203	61830		201220	201012	C14885	194124	157150	200242	152467		289755	234210	243778	203988	250882	204815		476778	378289	449951	374961	472321	363252		
	BKS	54793	39104	48908	37542		a0111	11106	88298	67308	84055	51822	86203	61830		076440	11001	GL0512	193671			152441		287983			203988	250882	204317		476778	378289	449849	374330	472321	362817		
	ε		2	5	5		Ľ	5 4	n r	ы с	о с	5	5	2		u	n ı	n م	Ω	2	ŝ	2		10	10	10	10	10	9		10	10	10	10	10	10		
	<u>د</u>	20	20	20	20		50		00.02	50				50					100						b 100		b 100				a 200		a 200			b 200		
	Instance	20-5-1a	20-5-1b	20-5-2a	20-5-2b	Avg.	E0 E 10	-0-1-1-0	50-5-1D	50-5-2h	50-5-2bis	50-5-2bbis	50-5-3a	50-5-3b	Avg.	00 E 1 0	20-0-10	ar-e-001	100-5-2a	100-5-2b	100-5-3a	100-5-3b	Avg.	100-10-1a	100-10-1b	100-10-2a	100-10-2b	100-10-3a	100-10-3b	Avg.	200-10-1a	200-10-1b	200-10-2a	200-10-2b	200-10-3a	200-10-3b	Avg.	

				GRASP				MAIPM			-	LRGTS			5	GRASP + ELS	ELS		s	SALRP			2-1	2-Phase HGTS	зтs		
Instance	Е с	BKS	BKC	Cost	Gap BKS	Gap BKC	CPU time	Cost	Gap BKS	Gap BKC	CPU time	Cost	Gap BKS	Gap BKC 1	CPU time	Cost	Gap BKS	Gap C BKC ti	CPU time	Cost 6	Gap (BKS I	Gap C BKC ti	CPU time	Cost	Gap (BKS E	Gap C BKC ti	CPU time
Christofides 69-50x5	50 5	5 565.6	565.6	599.1	5.92	5.92	з	565.6		0.00	4	586.4	3.68	3.68	е	565.6	0.00	0.00	8	565.6	0.00	0.00		580.4		2.62	45
Christofides69-75x10	75 1(0 844.4	848.9	861.6	2.04	1.50	10	866.1	2.57	2.03	6	863.5	2.26	1.72	10	850.8	0.76	0.22	86	848.9	0.53	0.00		848.9	0.53	0.00	94
Christofides69-100x10	100 10	333.4	833.4	861.6	3.38	3.38	26	850.1		2.00	45	842.9	1.14	1.14	28	833.4	0.00	0.00	127	838.3	0.59	0.59	331	838.6	0.62	0.62	234
Daskin95-88x8	88	355.8	355.8	356.9	0.31	0.31	18	355.8		0.00	34	368.7	3.63	3.63	18	355.8	0.00	0.00	130	355.8	0.00	0.00		362.0	1.74	1.74	148
Daskin95-150x10	150 1(0 43919.9	43963.6	44625.2	1.61	1.50	156	44011.7		0.11	255	44386.3	1.06	0.96	119	43963.6	0.10	0.00	1697	45109.4	2.71	2.61	~	4578.9	1.50	1.40	456
Gaskell67-21x5	21 5	5 424.9	_	429.6	1.11	1.11	0	424.9		0.00	0	424.9	0.00	0.00	0	424.9	0.00	0.00	0	424.9	0.00	0.00		424.9	0.00	0.00	9
Gaskell67-22x5	22 £	5 585.1	585.1	585.1	0.00	0.00	0	611.8		4.56	0	587.4	0.39	0.39	0	585.1	0.00	0.00	15	585.1	0.00	0.00		585.1	0.00	0.00	6
Gaskell67-29x5	29 5	5 512.1		515.1	0.59	0.59	0	512.1		0.00	-	512.1	0.00	0.00	0	512.1	0.00	0.00	6	512.1	0.00	0.00		512.1	0.00	0.00	1
Gaskell67-32x5	32 £	5 562.2		571.9	1.73	1.73	-	571.9		1.73	-	584.6	3.98	3.98	-	562.2	0.00	0.00	18	562.2	0.00	0.00		562.2	0.00	0.00	40
Gaskell67-32x5	32 £	5 504.3		504.3	0.00	0.00	-	534.7	6.03	6.03	-	504.8	0.10	0.10	-	504.3	0.00	0.00	34	504.3	0.00	0.00		504.3	0.00	0.00	22
Gaskell67-36x5	36 5	5 460.4		460.4	0.00	0.00	-	485.4		5.43	-	476.5	3.50	3.50	-	460.4	0.00	0.00	0	460.4	0.00	0.00		460.4	0.00	0.00	39
Min92-27×5	27 5	5 3062.0		3062.0	0.00	0.00	0	3062.0	0.00	0.00	-	3065.2	0.10	0.10	0	3062.0	0.00	0.00	35	3062.0	0.00	0.00		3062.0	0.00	0.00	1
Min92-134x8	134 8	8 5709.0		5965.1	4.49	4.49	50	5950.0		4.22	111	5809.0	1.75	1.75	48	5719.3	0.18	0.18	280	5709.0	0.00	0.00		5890.6	3.18	3.18	252
Global Avg.					1.63	1.58	20		2.06	2.01	36		1.66	1.61	18		0.08	0.03	188		0.29	0.25	161		0.78	0.74	105
,																											1

Table 2.6: Detailed results for the third data subset DS3 (Barreto Instances)

Chapter 3

A comparison of heuristic algorithms for the CLRP

Notes about the chapter

The contents of this chapter is based on the paper entitled "A computational comparison of heuristic algorithms for the capacitated location-routing problem", co-authored with Rodrigo Linfati, Professor Maria Gulnara Baldoquin and Professor Paolo Toth, which has been submitted for publication. Partial results have been presented in the 5th International Workshop on Freight Transportation and Logistics (ODYSSEUS 2012), Mykonos-Greece, in the first meeting of the EURO Working Group on Vehicle Routing and Logistics Optimization (VEROLOG 2012), Bologna- Italy, and in the IN-FORMS Annual Meeting 2012, Phoenix – USA.

3.1 Introduction

In this work, we propose two new heuristics, and present a computational comparative study of the most effective heuristics proposed for the CLRP. The new algorithms use the initialization procedure and the neighborhood structures introduced for algorithm 2-Phase HGTS in Escobar et al. [19]. We compare the results of the proposed algorithms with the algorithm explained in Chapter 2 (Algorithm 2-Phase HGTS) to obtain the best performing algorithm. The first new algorithm, called Granular Variable Tabu Neighborhood Search (GTVNS), considers a Variable Neighborhood Search (VNS) proce-

dure, that includes a Granular Tabu Search approach, to enhance the quality of solution S_0 . The second new algorithm, called Granular Simulated Annealing (GSA), considers a Simulated Annealing (SA) method, with a granular search space, to improve solution S_0 .

The main contribution of the chapter is the development of an effective heuristic algorithm, called GTVNS, for the solution of the CLRP. The algorithm exploits the systematic changes of the neighborhood structures and the neighborhood topologies considered in the Variable Neighborhood Search (VNS) scheme to guide a trajectory local search procedure according to the Granular Tabu Search (GTS) approach. The proposed algorithm is a novel metaheuristic approach which combines VNS with GTS techniques for getting good results within short computing times. While a combination between VNS and Tabu Search (TS) has been proposed in the literature (see e.g. Moreno Pérez et al. [39] and Repoussis et al. [53]), no attempt has been proposed for combining a GTS technique within a VNS scheme. The basic VNS scheme some times meets difficulties to escape from local optima, while the GTS approach has no such difficulties, since infeasible solutions are allowed, and the memory technique prevents cycling, allowing the algorithm to escape from local optima.

3.2 General framework

3.2.1 Granular search space

The granular search approach, proposed in Toth and Vigo [60], is based on the utilization of a sparse graph containing the edges incident to the depots, the edges belonging to the best solutions found so far, and the edges whose cost is smaller than a granularity threshold $\vartheta = \beta \bar{z}$, where \bar{z} is the average cost of the edges in the best solution found so far, and β is a sparsification factor which is dynamically updated during the search. The main idea of the granularity approach is to obtain high quality solutions within short computing times. To evaluate this significant effect, a computational comparison of the considered algorithms is performed, by executing them with and without the granular search approach.

3.2.2 Neighborhood structures

The considered heuristics use *intra-route moves* (performed in the same route) and *inter-route moves* (performed between two routes assigned to the same depot or to different depots) corresponding to five neighborhood structures $N_k(k = 1, ..., 5)$: described in Chapter 2. A move is performed only if all the new edges inserted in the solution are in the "granular" search space. Finally, the shaking procedure described in Chapter 2 is not used in algorithms GTVNS and GSA.

3.2.3 Initial solution

The initial solution S_0 is constructed by using a hybrid heuristic, proposed in Escobar et al. [19]and based on a cluster approach, which is able to find good initial feasible solutions within short computing times. In order to make a comparative study, a "good" and a "bad" initial solutions are chosen to initialize the three algorithms. The "good" and the "bad" initial solutions are obtained by executing the splitting procedure "many" and "few" times, respectively.

3.3 Description of the new proposed algorithms

3.3.1 The Granular Variable Tabu Neighborhood Search heuristic algorithm (GTVNS)

The GTVNS algorithm combines the potentiality of the systematic changes of neighborhood structures proposed by Mladenović and Hansen [38] and the efficient Granular Tabu Search (GTS) approach introduced by Toth and Vigo [60]. The Variable Neighborhood Search (VNS) is a metaheuristic approach which applies a search strategy based on the systematic change of the neighborhood structures to escape from local optima. Three main elements are considered during the systematic change of the neighborhoods: (1) A local minimum with respect to a given neighborhood is not necessarily the same for the other neighborhoods; (2) A global minimum is a local minimum for all the possible neighborhood structures; (3) Local minima with respect to the neighborhood structures should be relatively close each other. In the proposed algorithm, the VNS technique controls the neighborhood changes, while the GTS technique guides the search process by using the neighborhood structures and the efficient search space detailed in the previous sub chapters. After constructing the initial solution S_0 , the VNS procedure iterates through different neighborhood structures to improve the best feasible solution (S^*) found so far. The algorithm starts by setting $S^* = \overline{S} = \widehat{S} = S_0$, where \overline{S} is the current (feasible or infeasible) solution, and \widehat{S} is the current feasible solution. The following steps are then repeated until a stopping criterion (number of iterations or computing time) is reached:

- 1. Select a neighborhood from the neighborhoods structures $N_k(k = 1, ..., 5)$;
- 2. Local search: apply a Granular Tabu Search (GTS) procedure in the selected neighborhood $N_k(\overline{S})$ until a local minimum S' is found;
- 3. If S' is infeasible and $F_2(S') \leq F_2(\overline{S})$, set $\overline{S} := S'$;
- 4. If S' is feasible and $F_1(S') \leq F_1(\widehat{S})$, set $\widehat{S} := S'$ and $\overline{S} := S'$;
- 5. Every $N_g \times n$ iterations apply the third diversification strategy used by algorithm 2-Phase HGTS.

Finally, the best feasible solution found so far S^* is kept. The GTS procedure explores the solution space by moving, at each iteration, from a solution \overline{S} to the best solution S in the neighborhood $N(\overline{S})$. The best possible move is selected as the move in $N(\overline{S})$ producing the smallest value of the objective function $F_2(S)$ and of the following tabu aspiration criterion: if the value of the objective function $F_1(S)$ of the new solution S is not greater than the cost of the best solution found so far, the move producing S is performed even if it corresponds to *tabu move*.

3.3.2 The Granular Simulated Annealing heuristic algorithm (GSA)

The GSA algorithm considers a standard implementation of the Simulated Annealing metaheuristic (SA) with a reduced local search space. Let S^* be the best feasible solution found so far, \overline{S} the current solution (feasible or infeasible), \widehat{S} the current feasible solution, α the cooling factor, and T the current *temperature*. Initially, we set $S^* := S_0$, $\overline{S} := S_0$, and $\widehat{S} := S_0$. In addition, we determine the initial temperature T_0 (where T_0 is a given parameter), and set i:=0. The proposed algorithm performs the following steps until a stopping criterion (number of iterations or computing time) is met:

- 1. Every N_{cool} iterations (where N_{cool} is a given parameter) set i:=i+1, and decrease the current temperature T according to the function $T = T_i = \theta T_{i-1}$, where $0 < \theta < 1$ (with θ given parameter);
- 2. Generate a random solution S' in the union of the neighborhoods of the current solution \overline{S} obtained by considering all the neighborhood structures $N_k (k = 1, ..., 5)$;
- 3. Compute $\sigma = F_2(S') F_2(\overline{S});$
- 4. Generate a random number r in the range [0, 1];
- 5. If $\sigma \leq 0$ do:
 - (a) If S' is feasible, set $\overline{S} := S'$, $\widehat{S} := S'$;
 - (b) If S' is infeasible, set $\overline{S} := S'$;
- 6. If $\sigma > 0$ do:
 - (a) If $r < \exp(-\sigma/T)$ and S' is feasible, set $\overline{S} := S'$ and $\widehat{S} := S'$;
 - (b) If $r < \exp(-\sigma/T)$ and S' is infeasible, set $\overline{S} := S'$;

Finally, the best feasible solution found so far S^{\star} is kept.

3.4 Computational experiments

The comparison of the effects of the initial solution and of the granularity approach on the performance of algorithms 2-Phase HGTS, GTVNS and GSA has been performed by fixing, for each instance, the same maximum CPU time as stopping criterion. In particular, the CPU time for each instance has been defined as the maximum among the CPU times spent by the three considered algorithms, each using its "best" initial solution and the parameter values detailed in Subsection 3.4.2, to solve the given instance.

After having defined, for each of the three considered algorithms, the corresponding best configuration with respect to the initial solution and the utilization of the granularity approach, the best performance of each algorithm has been evaluated by executing $N_{stop} \times n$ iterations (where N_{stop} is a given parameter) for each instance. After extensive computational tests, we have determined that the best values of N_{stop} are 10, 7 and 6000 for algorithms 2-Phase HGTS, GTVNS and GSA, respectively. For each considered instance, algorithm GSA has been run five times with different random generator seeds. The results reported in Tables 3.1 to 3.4 for algorithm GSA correspond, for each instance, to the best solution value obtained over the five runs with the corresponding total running time of the algorithm. Algorithm GTVNS is a "deterministic" algorithm, and, for each instance, a single run has been executed. The implementation details and the results are discussed in the following subsections.

3.4.1 Implementation details

The three described algorithms have been implemented in C++, and the computational experiments have been performed on an Intel Core Duo (only one core is used) CPU (2.00 GHz) under Linux Ubuntu 11.04 with 2 GB of memory. The algorithms have been evaluated by considering 79 benchmark instances from the literature. The complete set of instances considers three data subsets proposed by Tuzun and Burke [61], Prins et al. [45] (called "Prodhon Instances" in the following), and Barreto [7]. In all the subsets, the customers and the depots are represented by points in the plane. Consequently, the traveling cost of an edge is the Euclidean distance, multiplied by 100 and rounded up to the next integer (Prins et al. [45]), or calculated as a double-precision real number (Tuzun and Burke [61]and Barreto [7]).

The first data subset was proposed by Tuzun and Burke [61], and contains 36 instances with uncapacitated depots. The number of customers is n = 100, 150 and 200. The number of potential depots is either 10 or 20. The vehicle capacity is set to 150. The second data subset was introduced by Prins et al. [45], and considers 30 instances with capacity constraints on routes and depots. The number of customers is n = 20, 50, 100 and 200. The number of

potential depots is either 5 or 10. The vehicle capacity is either 70 or 150. Finally, the third data subset is proposed by Barreto [7], and considers 13 instances obtained by modifying some classical CVRP instances by adding new depots with capacities and fixed costs. The number of customers ranges from 21 to 150, and the number of potential depots from 5 to 10.

3.4.2 Parameter settings

A suitable set of parameters, whose values are based on extensive computational tests on the benchmark instances, was selected for each algorithm and is reported in the following:

	2-Phase HGTS	GTVNS	\mathbf{GSA}
β_o	1.50	1.80	1.50
β_n	2.40	2.40	2.50
N_s	2.00	2.00	2000
N_r	1.00	1.00	1000
N_{fact}	10	10	10
γ_d	0.0075	0.0075	-
γ_r	0.0100	0.0050	-
γ_{min}	$1/F_1(S_0)$	$1/F_1(S_0)$	-
γ_{max}	0.0400	0.0400	-
δ_{red}	0.30	0.30	-
δ_{inc}	2.00	2.00	-
h	0.02	0.01	-
N_{shake}	0.20	-	-
N_g	1.50	1.50	-
t_{min}	5	3	-
t_{max}	10	8	-
N_{cool}	-	-	1200
θ	-	-	0.90
T_0	-	-	1000

These values have been utilized for the comparison of the solutions obtained by the three described algorithms.

3.4.3 Comparison of the three described algorithms

We first compare the performance of the algorithms described in Sub chapter 3.3 with the algorithm proposed in Chapter 2 (2-Phase HGTS), by considering the different configurations obtained by starting with a "good" or a "bad" solutions, and by applying or not the granularity approach. Then, for the three algorithms, we consider the corresponding best configurations, and compare them in order to determine the best performing algorithm. The best algorithm is finally compared with the most effective heuristic algorithms proposed in the literature for the solution of the CLRP: GRASP+ELS of Duhamel et al. [18], SALRP of Yu et al. [66], ALNS of Hemmelmayr et al. [29], GRASP+ILP of Contardo et al. [13], and MACO of Ting and Chen [59].

In Tables 3.1 to 3.9, the following notation is used:

Instance	instance name;
Cost	solution cost obtained by the corresponding algorithm in one single
	run;
Best Cost	best solution cost found by the corresponding algorithm over the
	executed runs;
Avg. Cost	average solution cost found by the corresponding algorithm over
	the executed runs;
PBKS	cost of the previous best-known solution given by the minimum cost
	among those found by algorithms GRASP+ELS, SALRP,
	ALNS-500K, ALNS-5000K, GRASP+ILP, and MACO;
BKS	cost of the best known solution $= \min \{ \text{PBKS}, \text{ solution} \}$
	cost found by the proposed algorithms};
NBKS	number of best results (BKS) obtained by the corresponding
	algorithm;
NIBS	number of instances for which the corresponding algorithm is the
	only one which found BKS;
CPU	CPU used by the corresponding algorithm;
CPU index	Passmark performance test for the corresponding CPU;
CPU time	running time in seconds on the CPU used by the corresponding
	algorithm;
Gap PBKS	percentage gap of the solution cost found by the corresponding
	algorithm in one single run with respect to PBKS;

Gap Best PBKS	percentage gap of the best solution cost found by the
	corresponding algorithm over the executed runs with respect
	to PBKS;
Gap Avg. PBKS	percentage gap of the average solution cost found by the
	corresponding algorithm over the executed runs with respect to PBKS.

In addition, for each instance, the costs which are equal to the corresponding BKS are reported in bold. Whenever the considered algorithm is the only one which found the corresponding BKS value, the reported cost is underlined. Finally, the CPU index of a CPU is given by the Passmark performance test (for further details see [1]). This is a well known benchmark test focused on CPU and memory performance. A higher value of the CPU index indicates that the corresponding CPU is faster.

3.4.4 Comparison of the effect of the initial solution

The performance of the three algorithms is first compared by considering two different initial solutions. Let G_0 denote a "good" initial solution and B_0 a "bad" initial solution. Solutions G_0 and B_0 are determined by executing the splitting procedure for 7 and 3 iterations respectively.

Table 3.1 shows the summarized results corresponding to the average values of Gap PBKS and of the CPU times by starting from solutions G_0 and B_0 . The results show that GSA is not highly sensitive to the quality of the initial solution, while 2-Phase HGTS provides the best global average results by using the initial solution G_0 . Finally, GTVNS obtains the best average results by using the initial solution B_0 . In the following, we will consider, as initial solution, G_0 for algorithms 2-Phase HGTS and GSA, and B_0 for algorithm GTVNS.

3.4.5 Comparison of the effect of the granularity

We consider now the impact of the granularity approach on the performance of the three algorithms. These results are summarized in Table 3.2. It is to note that GTVNS and 2-Phase HGTS provide an equivalent global performance when executed without the "granular" search approach. The results show that the granular search approach significantly improves the performance of the three algorithms, hence, in the following we will consider this configuration for all the algorithms.

3.4.6 Global comparison

Tables 3.3, 3.4 and 3.5 provide the detailed results of the three algorithms on the three data sets Tuzun-Burke, Prodhon and Barreto, respectively. The results clearly show that algorithm GTVNS outperforms the other two algorithms for what concerns both the CPU time and the quality of the solutions found. Indeed, for all the data sets, the average value of Gap PBKS, and the values of NBKS and NIBS of algorithm GTVNS are better than the corresponding values of algorithms 2-Phase HGTS and GSA. In addition, by considering all the 79 instances of the three data sets, algorithms GTVNS finds, with respect to algorithm 2-Phase HGTS, 45 better solutions and 7 worse solutions, and with respect to algorithm GTVNS is the best performing of the three described algorithms, and, in the following section, it will be compared with the most effective heuristics from the literature.

3.4.7 Comparison of the most efficient algorithms

In Tables 3.6 to 3.9, we compare algorithm GTVNS with the most effective heuristics proposed for the solution of the CLRP, i.e., as previously mentioned, algorithms GRASP+ELS of Duhamel et al. [18], SALRP of Yu et al. [66], ALNS of Hemmelmayr et al. [29], GRASP+ILP of Contardo et al. [13], and MACO of Ting and Chen [59]. In the tables, we report the results as presented in the corresponding papers.

Algorithm GRASP+ELS has been executed five times and only the best solutions found over the five runs are reported. In addition, it is to note that the CPU time reported for each instance represents the time required to find the best solution within the corresponding run. The results reported for algorithm SALRP correspond to a single run of the algorithm. For algorithm ALNS, the best and the average costs over five runs for 500K iterations (ALNS - 500K), as well as the best costs over five runs for 5000K iterations (ALNS - 5000K), are reported. The CPU time reported for each instance corresponds to the total running time of the corresponding algorithm. Algorithms GRASP+ILP and MACO have been executed for ten runs. The results reported for algorithm GRASP+ILP correspond, for each instance, to the best and to the average costs found, and to the average CPU time over the ten runs. The results reported for algorithm GRASP correspond to the best cost found and to the average CPU time over the ten runs. Finally, the results reported for algorithm GTVNS correspond to a single run of the algorithm.

Table 3.6 shows a summary of the results found by the algorithms on the complete data set, while Tables 3.7 to 3.9 show the detailed results for the three considered data sets. For what concerns a comparison among the reported CPU times, it is necessary to take into account the different speeds of the CPUs used in the computational experiments. In addition, for the algorithms reporting average values of the CPU times, i.e. algorithms GRASP+ILP and MACO which execute ten runs for each instance, the CPU times corresponding to the best found costs should be multiplied times the number of executed runs.

As shown in Table 3.6, for what concerns the global average value of Gap PBKS, algorithm GTVNS obtains better results than those obtained by algorithms GRASP+ELS, SALRP and MACO. In addition, by considering the global average value of the gaps corresponding to the average costs computed over several runs (Gap Avg. PBKS), Table 3.6 shows that algorithm GTVNS obtains results better than those obtained (in comparable CPU times) by algorithm ALNS-500K, and slightly worse than those obtained (in much larger CPU times) by algorithm GRASP+ILP. The best results on the global average value of Gap Best PBKS are obtained, with very large CPU times, by algorithms GRASP+ILP and ALNS-5000K. By taking into account the big difference of the corresponding CPU times, it is difficult to make a direct comparison of the quality of the solutions found by algorithm GTNVS with respect to the best results reported for algorithms GRASP+ILP and ALNS-5000K.

For what concerns the number NBKS of the best known solutions found and the number NIBS of instances for which the corresponding algorithm is the only one which finds the best known solution, algorithms ALNS-5000K and GRASP+ILP are again the best ones, while algorithms ALNS-500K (Best solution) and GTVNS have comparable behaviors (although the former algorithm has larger CPU times). Finally, it is to note that algorithm GTVNS is able to find, within short CPU times, 28 best known solutions and to improve the previous best known solution for 5 instances.

As for the global CPU time, algorithm GTVNS is faster than the previous published algorithms which are able to find the best results in terms of average gaps and number of best known solutions. Algorithm MACO seems to require smaller CPU times than algorithm GTVNS, but since only the average computing times over ten runs are reported for the former algorithm, instead of the complete running times for executing the ten runs, a comparison between the two algorithms may be biased.

3.5 Concluding remarks

The computational experiments show that algorithm GTVNS generally obtains better results, in terms of average Gap BKS, NBKS and NIBS, than those obtained by algorithms 2-Phase HGTS and GSA. The results emphasize the importance of the granular search approach for the three considered algorithms, by showing that it significantly improves the performance of algorithms GTVNS and 2-Phase HGTS. We have also compared the performance of algorithm GTVNS with that of the most recent effective published heuristics for the CLRP on a set of benchmarking instances from the literature. The results show the effectiveness of algorithm GTVNS, which is able to improve some best known results within short computing times.

GSA (B ₀) Average	Average Gap CPU Time PBKS	1.25 592	1.24 265	1.33 160		1.26 397
GTVNS (B ₀)	Average GapAverage GapAverage GapPBKSPBKSPBKS	0.62	0.34	0.66		0.52
2-Phase HGTS (B ₀)	Average Gap PBKS	1.28	0.79	0.96		1.04
Initial Solution (B ₀)	Average Gap PBKS	1.81	1.48	2.04		1.72
Average	CPU Time	592	265	160		397
GSA (G ₀)	Average Gap PBKS	1.13	1.21	1.33		1.20
GTVNS (G ₀)	Average GapAverage GapAverage GapPBKSPBKSPBKS	1.32	1.15	0.97		1.20
2-Phase HGTS (G ₀)	Average Gap PBKS	1.00	0.54	0.78		0.79
Initial Solution (G ₀)	Average Gap PBKS	1.55	1.33	1.74		1.49
Size		36	30	13	62	
Set	2	Tuzun-Burke	Prodhon	Barreto	Total	Global Avg.

	ಹ	
¢	\supset	
ζ	5	
1	-	
	Ś	
	E	
•	IODS	
1	Ħ	
-	Ξ	
τ	2	
0		
	Itlal	
•	E	
•	Π	
н	Ц	
	പ	
-	Ē	
1	÷	
د	Ħ	
	В	
÷	alit	
	ಹ	
	Ξ	
	\circ	
	the	
5	H	
	δ	
	arın	
	Ч	
	00	
	D	
	om	
	5	
	5	
	b	
	0	
- 22	D N	
	D D D D D D D D D D D D D D D D D D D	
	JEKS D	
	D D D D D D D D D D D D D D D D D D D	
	JEKS D	
	JEKS D	
	JEKS D	
	Gap PBKS b	
	Gap PBKS b	
	on Gap PBKS b	
	Gap PBKS b	
	ults on Gap PBKS b	
	ults on Gap PBKS b	
	ults on Gap PBKS b	
	I results on Gap PBKS b	
	I results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
	I results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
۲ ۲ ۲	: Summarized results on Gap PBKS b	
۲ ۲ ۲	I results on Gap PBKS b	
۲ ۲ ۲	: Summarized results on Gap PBKS b	
۲ ۲ ۲	: Summarized results on Gap PBKS b	
	: Summarized results on Gap PBKS b	
	ole 3.1: Summarized results on Gap FBKS b	
	ole 3.1: Summarized results on Gap FBKS b	

750		2-Phase HGTS (G ₀)	GTVNS (B ₀)	GSA (G ₀)	Average
190	azic	Average Gap PBKS	Average Gap PBKS	Average Gap PBKS	CPU Time
Tuzun-Burke	36	0.96	0.93	1.33	592
Prodhon	30	0.88	0.78	1.26	265
Barreto	13	0.87	1.11	1.68	160
Total	79				
Global Avg.		0.91	0.00	1.36	397

Table 3.2: Summarized results on Gap PBKSwithout the "granular" search approach

on Tuzun-Burke Instances	
and GSA	
Ś	
HGTS, GTVN	
or 2-Phase	
results for	
3: Best	
Table 3.	

	•	2-Ph:	2-Phase HGTS	S	9	GTVNS			GSA	
Instance	PBKS	Cost	Gap PBKS	CPU time	Cost	Gap PBKS	CPU time	Cost	Gap Best PBKS	CPU time
111112	1467.68	1479.21	0.79	152	1479.21	0.79	84	1490.82	1.58	151
111122	1449.20	1486.27	2.56	239	1485.28	2.49	126	1486.27	2.56	244
111212	1394.80	1407.26	0.89	120	1402.59	0.56	74	1407.26	0.89	123
111222	1432.29	1474.01	2.91	146	1463.23	2.16	66	1474.01	2.91	159
112112	1167.16	1167.16	0.00	232	1167.16	0.00	83	1167.16	0.00	246
112122	1102.24	1102.24	0.00	224	1102.24	0.00	105	1102.24	0.00	220
112212	791.66	791.66	0.00	201	791.66	0.00	96	791.66	0.00	181
112222	728.30	728.30	0.00	254	728.30	0.00	126	728.30	0.00	254
113112	1238.49	1238.49	0.00	160	1238.49	0.00	82	1238.49	0.00	157
113122	1245.31	1251.22	0.47	237	1247.27	0.16	127	1251.22	0.47	242
113212	902.26	902.26	0.00	135	902.26	0.00	71	902.26	0.00	137
113222	1018.29	1018.29	0.00	157	1018.29	0.00	85	1018.29	0.00	159
131112	1914.41	1961.75	2.47	485	1933.67	1.01	179	1944.57	1.58	353
131122	1823.20	1856.51	1.83	298	1852.14	1.59	173	1871.13	2.63	273
131212	1969.80	2012.69	2.18	406	1983.09	0.67	184	2012.69	2.18	411
131222	1792.80	1803.01	0.57	302	1803.01	0.57	175	1803.01	0.57	263
132112	1444.73	1445.25	0.04	449	1443.32	-0.10	186	1453.78	0.63	446
132122	1434.63	1452.07	1.22	493	1441.43	0.47	210	1452.07	1.22	491
132212	1204.42	1204.42	0.00	270	1204.42	0.00	128	1204.42	0.00	269
132222	931.28	931.49	0.02	335	931.28	0.00	177	931.44	0.02	320
133112	1694.18	1705.36	0.66	444	1701.34	0.42	182	1745.23	3.01	425
133122	1392.01	1416.74	1.78	342	1416.74	1.78	175	1416.74	1.78	333
133212	1198.20	1234.83	3.06	526	1213.87	1.31	207	1234.83	3.06	497
133222	1151.80	1156.05	0.37	380	1151.80	0.00	208	1156.27	0.39	371
121112	2249.00	2265.59	0.74	522	2258.02	0.40	315	2265.59	0.74	503
121122	2153.80	2166.43	0.59	603	2166.20	0.58	300	2187.86	1.58	526
121212	2212.40	2249.40	1.67	527	2239.65	1.23	287	2256.32	1.99	486
121222	2230.94	2237.81	0.31	558	2236.73	0.26	351	2253.32	1.00	506
122112	2073.73	2121.93	2.32	522	2103.82	1.45	278	2121.93	2.32	474
122122	1692.17	1749.10	3.36	691	1717.92	1.52	433	1718.65	1.56	605
122212	1453.18	1473.27	1.38	724	1469.45	1.12	318	1473.27	1.38	747
12222	1082.74	1082.59	-0.01	616	1082.46	-0.03	349	1082.99	0.02	578
123112	1960.30	1984.77	1.25	542	1969.38	0.46	261	1990.87	1.56	475
123122	1926.64	1958.98	1.68	617	1935.74	0.47	344	1970.91	2.30	586
123212	1762.03	1778.41	0.93	697	1776.90	0.84	349	1779.10	0.97	533
123222	1391.68	1390.87	-0.06	518	1391.50	-0.01	317	1390.74	-0.07	489
Average		1519.05	1.00	392	1512.50	0.62	201	1521.55	1.13	368
NRKS		×			12			6		
NIRS								· -		
		>			1			•		

		2-Pha	2-Phase HGTS	s	9	GTVNS		•	GSA	
Instance	PBKS	Cost	Gap PBKS	CPU time	Cost	Gap PBKS	CPU time	Cost	Gap Best PBKS	CPU time
20-5-1a	54793	54793	0.00	3	54793	0.00	2	54793	0.00	4
20-5-1b	39104	39104	0.00	4	39104	0.00		39253	0.38	4
20-5-2a	48908	48945	0.08	3	48945	0.08	7	50570	3.40	4
20-5-2b	37542	37542	0.00	4	37542	0.00	3	37611	0.18	4
50-5-1a	90111	90402	0.32	27	90111	0.00	13	92413	2.55	30
50-5-1b	63242	64073	1.31	27	63242	0.00	6	65002	2.78	25
50-5-2a	88298	89342	1.18	23	89342	1.18	12	89342	1.18	22
50-5-2b	67308	68479	1.74	21	67951	0.96	10	68771	2.17	22
50-5-2bis	84055	84055	0.00	23	84126	0.08	8	84911	1.02	22
50-5-2bbis	51822	52087	0.51	29	52213	0.75	6	52270	0.86	17
50-5-3a	86203	86203	0.00	99	86203	0.00	18	86957	0.87	37
50-5-3b	61830	61830	0.00	38	61885	0.09	20	62902	1.73	39
100-5-1a	275406	276186	0.28	157	276137	0.27	75	278991	1.30	131
100-5-1b	213704	214892	0.56	136	216154	1.15	59	216668	1.39	116
100-5-2a	193671	194625	0.49	145	193896	0.12	76	194941	0.66	149
100-5-2b	157095	157319	0.14	193	157180	0.05	82	157319	0.14	178
100-5-3a	200242	201086	0.42	163	200777	0.27	69	204392	2.07	137
100-5-3b	152441	153663	0.80	168	153435	0.65	68	153663	0.80	141
100-10-1a	288415	289755	0.46	277	287864	-0.19	203	289755	0.46	280
100-10-1b	230989	238002	3.04	152	232599	0.70	117	238903	3.43	147
100-10-2a	243695	245768	0.85	92	245484	0.73	52	245768	0.85	81
100-10-2b	203988	204252	0.13	66	204252	0.13	42	204979	0.49	84
100-10-3a	250882	254716	1.53	125	254558	1.47	82	256267	2.15	121
100-10-3b	204601	205837	0.60	144	205824	0.60	78	208993	2.15	110
200-10-1a	475344	476778	0.30	671	477009	0.35	320	477619	0.48	552
200-10-1b	377043	378289	0.33	476	377716	0.18	239	378289	0.33	450
200-10-2a	449152	449951	0.18	483	449006	-0.03	231	450578	0.32	480
200-10-2b	374469	374961	0.13	530	374717	0.07	290	378456	1.06	411
200-10-3a	469706	472321	0.56	624	471978	0.48	330	472380	0.57	530
200-10-3b	362743	363252	0.14	389	362827	0.02	214	364931	0.60	318
Average		197617	0.54	176	197229	0.34	91	198590	1.21	155
NBKS		9			8			-		

HCTS GTVNS.and GSA on Prodhon Instances чd с ţ 1 Table 3.4: Best

TOUCH ON THAT THE TAME IN TALE IN ALL AND WITH ADI AN DUILDAN THAT AND				TD (A					on mino	2
		2-Pha	2-Phase HGTS	S	5	GTVNS			GSA	
Instance	PBKS	Cost	Gap PBKS	CPU time	Cost	Gap PBKS	CPU time	Cost	Gap Best PBKS	CPU time
Christofides69-50x5	565.6	580.4	2.62	45	580.4	2.62	22	588.3	4.01	46
Christofides69-75x10	844.4	848.9	0.53	94	853.8	1.11	45	868.9	2.90	91
Christofides69-100x10	833.4	838.6	0.62	234	837.1	0.44	111	841.7	1.00	220
Daskin95-88x8	355.8	362.0	1.74	148	361.6	1.63	76	368.4	3.54	152
Daskin95-150x10	43963.6	44578.9	1.40	456	44578.9	1.40	199	44881.8	2.09	399
Gaskell67-21x5	424.9	424.9	0.00	9	424.9	0.00	4	424.9	0.00	٢
Gaskell67-22x5	585.1	585.1	0.00	6	585.1	0.00	9	585.1	0.00	11
Gaskell67-29x5	512.1	512.1	0.00	11	512.1	0.00	7	512.1	0.00	13
Gaskell67-32x5	562.2	562.2	0.00	40	562.2	0.00	20	562.2	0.00	43
Gaskell67-32x5	504.3	504.3	0.00	22	504.3	0.00	15	504.3	0.00	24
Gaskell67-36x5	460.4	460.4	0.00	39	460.4	0.00	22	460.4	0.00	42
Min92-27x5	3062.0	3062.0	0.00	11	3062.0	0.00	7	3062.0	0.00	13
Min92-134x8	5709.0	5890.6	3.18	252	5789.0	1.40	134	5920.8	3.71	226
Average		4554.6	0.78	105	4547.1	0.66	53	4583.1	1.33	66
NBKS		7			7			7		
NIBS		0			0			0		

F ۴ ζ (4 2 É

		GRASP+ELS		SALRP	Ρ	Ai	ALNS - 500K		ALNS - 5000K	00K	IJ	GRASP+ILP		MACO	00	GTVNS	NS
Set	Size	Gap Best CPU time PBKS		Gap PBKS C	CPU time	Gap Best Gap Avg. CPU time PBKS PBKS	Gap Avg. PBKS	CPU time	Gap Best PBKS CPU time	PU time	Gap BestGap Avg.CPUPBKSPBKStime*	Gap Avg. PBKS	CPU time*	Gap Best CPU PBKS time*	CPU time*	Gap PBKS	CPU time
Tuzun-Burke	36	1.15 (507	1.35	826	0.29	0.75	830	0.04	8103	0.21	0.53	2255	1.09	202	0.62	201
Prodhon	30	1.08	258	0.43	422	0.41	0.69	451	0.23	4221	0.02	0.23	1130	0.36	191	0.34	91
Barreto	13	0.07	188	0.29	161	0.15	0.24	177	0.05	1772	0.13	0.62	241	0.06	49	0.66	53
10141	5																
Global Avg. Total NRKS		0.95 4	405	0.82 25	564	0.31 30	0.64	579	0.11 55	5587	0.12 41	0.43 15	1496	0.65 26	173	0.52	135
Total NIBS		, T		; -		8 4	0		18 18		16	0		0		g vo	
CPU		Core 2 Quad (2.83 Ghz)	J	Core 2 Quad (2.66 Ghz)	bud 1z)) IMP	AMD Opteron 275 (2.20 Ghz)	275	AMD Opteron 275 (2.20 Ghz)	.on 275 12)	Intel (3	Intel Xeon E5462 (3.00 Ghz)	7	Athlon XP 2500+ (1.83 Ghz)	P 2500+ Ghz)	Core 2 Duo (2.00 Ghz)	Duo Az)
CPU index		4373		4046			1234		1234			9586		374	, ,	1398	×

		, E	с у срчетет с		Table 3.7:	3.7: 54100	Dest	results		10F all	<u>ang</u>	Iguriu			-unz	uzun-burke		UISUALICES	ses			MACO.		č	JN/AL-	
Instance	PBKS	Best Cost	Gap Best PBKS	CPU	Cost	Gap PBKS	CPU time	Best Cost	Gap Best / PBKS	. Cost	Gap Avg. PBKS	CPU time	Best Cost	Gap Best BKS	CPU time	Best Cost	Gap Best PBKS	Avg. Cost	Gap t Avg. PBKS	CPU time*	Best Cost	Gap Best PBKS	CPU time*	Cost	Gap PBKS	CPU time
111112	1467.68	1473.36	0.39	233	1477.24			1467.68	0.00	1475.67	0.54	275	1467.68	0.00		1468.20	0.04	1475.40			1489.68		11	1479.21	0.79	84
111122	1449.20	1449.20	0.00	6	1470.96	1.50		1452.14	0.20	1464.72	1.07	321	1449.20	0.00	•	1449.20	0.00	1454.20	0.35		1453.89	0.32	46	1485.28	2.49	126
111212	1394.80	1396.59	0.13		1408.65	-		1394.93	0.01	1400.49	0.41	244	1394.80	0.00		1396.60	0.13	1405.00			1407.78	-	61	1402.59	0.56	74
111222	1432.29	1432.29	0.00	114	1432.29	-		1433.42	0.08	1441.21	0.62	376	1432.29	0.00		1432.90	0.04	1445.40			1433.42	-	54	1463.23	2.16	66
112112	1167.16	1167.16	0.00	27	1177.14	-	348	1167.53	0.03	1173.04	0.50	489	1167.16	0.00	,	1176.30	0.78	1178.30			1208.04		80	1167.16	0.00	83
112122	1102.24	1102.24	0.00	259	1110.36	-	342	1102.24	0.00	1102.34	0.01	373	1102.24	0.00		1102.80	0.05	1106.00	-		1102.24	-	65	1102.24	0.00	105
112212	791.66	792.03	0.05	5	791.66	-	360	791.66	0.00	791.83	0.02	739	791.66	0.00	,	791.90	0.03	796.90	0.66		792.90	0.16	95	791.66	0.00	96
112222	728.30	728.30	0.00	48	731.95	-		728.30	0.00	728.32	0.00	384	728.30	0.00	,	728.30	0.00	728.40	-		728.30	-	65	728.30	0.00	126
113112	1238.49	1240.39	0.15	55	1238.49	-		1238.70	0.02	1240.31	0.15	357	1238.49	0.00	•	1239.40	-	1241.9(-		1265.27		LL	1238.49	0.00	82
113122	1245.31	1246.00	0.06		1247.28	-	428	1246.52	0.10	1248.17	0.23	445	1245.31	0.00	,	1245.50	-	1246.40	0.09		1256.95	-	50	1247.27	0.16	127
113212	902.26	902.30	0.00		902.26	-		902.26	0.00	902.27	0.00	321	902.26	0.00	•	902.30	-	902.5(-		902.26	-	61	902.26	0.00	71
113222	1018.29	1018.29	0.00	196	1024.02	-	316	1018.29	0.00	1018.56	0.03	386	1018.29	0.00		1018.29	-	1019.60	-		1018.29	-	69	1018.29	0.00	85
131112	1914.41	1944.57	1.58	518	1953.85			1922.70	0.43	1939.52	1.31	504	1914.41	0.00	•	1928.00	-	1934.70	0 1.06		1945.43		227	1933.67	1.01	179
131122	1823.20	1864.24	2.25	705	1899.05			1847.93	1.36	1857.29	1.87	635	1823.53	0.02		1823.20	-	1834.2(-		1853.22		101	1852.14	1.59	173
131212	1969.80	1992.41	1.15	727	2057.53		456	1975.83	0.31	2009.44	2.01	664	1975.83	0.31	•	1969.80	-	1978.20	-		1991.44		201	1983.09	0.67	184
131222	1792.80	1835.25	2.37	415	1801.39			1806.31	0.75	1838.51	2.55	485	1796.45	0.20		1792.80	-	1800.2(-		1812.34		141	1803.01	0.57	175
132112	1444.73	1453.78	0.63	103	1453.30	-	750	1447.43	0.19	1449.15	0.31	1049	1444.73	0.00	'	1447.50	-	1452.5(-		1499.05		206	1443.32	-0.10	186
132122	1434.63	1444.17	0.66	662	1455.50			1445.32	0.75	1446.91	0.86	805	1434.63	0.00	•	1443.80	-	1448.1(-		1446.63	-	163	1441.43	0.47	210
132212	1204.42	1219.86	1.28	459	1206.24	-	752	1204.98	0.05	1205.83	0.12	2197	1204.42	0.00	'	1204.90	-	1206.1(-		1204.76	-	218	1204.42	0.00	128
132222	931.28	945.81	1.56	224	934.62	-	842	931.49	0.02	933.14	0.20	982	931.28	0.00	,	931.70	-	932.3(-		931.73	-	150	931.28	0.00	177
133112	1694.18	1712.11	1.06	271	1720.81		742	1694.64	0.03	1700.39	0.37	1046	1694.18	0.00	,	1700.30	-	1711.70			1724.02		226	1701.34	0.42	182
133122	1392.01	1402.94	0.79	524	1415.85			1400.50	0.61	1403.50	0.83	925	1392.01	0.00	•	1400.10	-	1401.70	-		1401.05	-	123	1416.74	1.78	175
133212	1198.20	1214.82	1.39		1216.84			1198.67	0.04	1199.27	0.09	1375	1198.28	0.01		1198.20	-	1200.5(-		1217.29		241	1213.87	1.31	207
133222	1151.80	1155.96	0.36		1159.12	-	837	1152.01	0.02	1154.36	0.22	911	1151.80	0.00	•	1157.70	-	1159.00	0.63		1158.03	-	130	1151.80	0.00	208
121112	2249.00	2295.90	2.09		2324.10		1328	2265.15	0.72	2278.27	1.30	944	2251.93	0.13		2249.00	0.00	2258.80	-	2094	2304.67	2.48	461	2258.02	0.40	315
771171	2153.80	2203.57	2.31		2258.16			2183.02	1.36	2192.61	1.80	- 1	2159.93	0.28	•	07 01 01 00	-	2161.4	-		C0./812		152	2166.20	0.58	005
121212	2212.40	2246.39	4C.1	1566	2260.30	1.17		22555.55	0.96	27.147.20	1.60	106	2220.01	0.34		047772	0.00	2223.94	0.52		2231.46		428	2259.65	1.23	187
C11CC1	46'0C77	710647	1.58		2112 65			16.0622	0.0	97.0022	0.07	000	2073.73	0.00		00.2622		0.0022			01.0122		+C7	CI-00272	1 45	100
122122	1692.17	1779.05	5.13		1722.99			1710.67	601	1732.00	2.35	941	1692.17	0.00		1703.80	690	1709.00	001 U		1711.25		272	1717.92	1.52	433
122212	1453.18	1474.25	1.45		1469.10			1458.55	0.37	1462.15	0.62	1861	1453.18	0.00		1465.90		1469.20			1472.93		544	1469.45	1.12	318
122222	1082.74	1085.69	0.27	-	1088.64	Ŭ	1429	1085.29	0.24	1086.08	0.31	812	1082.74	0.00		1083.90	-	1087.20	-		1087.57	0	317	1082.46	-0.03	349
123112	1960.30	2004.33	2.25		1994.16		1318	1964.75	0.23	1971.01	0.55	968	1960.30	0.00		1966.70	-	1971.70	-		1978.74	Ŭ	387	1969.38	0.46	261
123122	1926.64	1964.40	1.96		1932.05	-	1412	1926.64	0.00	1952.31	1.33	740	1926.64	0.00		1932.70	-	1941.60	0.78		1959.71		230	1935.74	0.47	344
123212	1762.03	1778.80	0.95	1398	1779.10	-	1314	1762.09	0.00	1764.16	0.12	2055	1762.03	0.00	•	1765.80	0.21	1769.80	Ŭ	3814	1782.94	1.19	406	1776.90	0.84	349
123222	1391.68	1453.82	4.47	2202	1396.42	0.34	1427	1393.06	0.10	1395.38	0.27	1038	1391.68	0.00	,	1392.40	0.05	1393.9(0.16	5422	1392.70	-	269	1391.50	-0.01	317
Average		1522.01	1.15	607	1526.41	1.35	826	1507.44	0.29	1515.64	0.75	830	1502.90	0.04	8103	1505.38	0.21	1510.52	2 0.53	2255	1520.22	1.09	202	1512.50	0.62	201
NBKS		9						8		0			26			10		0			4			13		
NIBS		0			0			3		0			14			7		0			0			33		
									1																	

Table 3.7: Best results for all algorithms on Tuzun-Burke Instances

* For each instance: average CPU time over 10 runs

					Tau	TAULE 0.0.	ר ס.	TOT CALLED A LOT	htnep		αΠ	augo	alguttututug				ILIISI	IIISUALICES	ņ								
		GRA	GRASP+ELS		S	SALRP			IV	ALNS - 500K	2		AL	ALNS - 5000K	λK		G	GRASP+ILP				MACO			GTVNS		1
Instance	PBKS	Best Cost	Gap Best PBKS	CPU time	Cost	Gap PBKS	CPU time	Best Cost	Gap Best PBKS	Avg. Cost	Gap it Avg. PBKS	CPU time	Best Cost	Gap t Best PBKS	CPU time	Best Cost	Gap Best PBKS	Avg. Cost	Gap t Avg. PBKS	CPU time*	Best Cost	Gap Best PBKS	CPU time*	Cost	Gap PBKS	CPU time	
20-5-1a	54793	54793	0.00	0	54793	0.00	20	54793	-		-				'	54793	0.00	5479	-	1	54793	90.00	(5479	~) 2	0
20-5-1b	39104	39104	0.00	0	39104	00.00	15	39104	_		_				'	39104	0.00	39104	4 0.00	5	3910	_	5	3910-	_		~
20-5-2a	48908	48908	0.00	0	48908	_	19	48908	~	48908	_				'	48908	0.00	48908	_	-	4890		4	48945	-	~	0
20-5-2b	37542	37542	0.00	0	37542		15	37542			12 0.00			2 0.00	'	37542	0.00	37542	-		37542	-	5	37540	2 0.00		~
50-5-1a	90111	90111	0.00	3	90111	0.00	75	11106	0.00	-	-				'	11106	0.00	11106	1 0.00			-		9011	-	13	~
50-5-1b	63242	63242	0.00	0	63242		58	63242							'	63242	0.00		_			_		63242	_	5	~
50-5-2a	88298	88643	0.39	Ξ	88298		95	88443							'	88298	0.00							8934		8 12	~
50-5-2b	67308	67308	0.00	16	67340	_	59	67340	_			1 200	67308	8 0.00	'	67373	-			19		-	20	67951	-	5 10	_
50-5-2bis	84055	84055	0.00	0	84055	-	75	84055			-				'	84055			-					84126		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
50-5-2bbis	51822	51822	0.00	Ξ	51822	-	99	51822			0.03				'	51883	0.12		8 0.15			0.00		52213	3 0.75		~
50-5-3a	86203	86203	0.00	0	86456	-	74	86203			-				'	86203			-					8620			~
50-5-3b	61830	61830	0.00	0	62700		58	61830	_						'	61830			-					6188			_
100-5-1a	275406	276960	0.56	148	277035		349	275636							'	275406								276137			6
100-5-1b	213704	215854	1.01	68	216002		269	214735				-			'	214308			-					21615			~
100-5-2a	193671	194267	0.31	212	194124		349	193752	-		3 0.12		19367		'	193769	0.05		-					193896			
100-5-2b	157095	157375	0.18	125	157150		212	157095	0.00				15709.		'	157157			-			0.08		15718			~
100-5-3a	200242	200345	0.05	141	200242		250	200305	-	200496			20024			200277			-					20077			~
100-5-3b	152441	152528	0.06	221	152467		197	152441					15244		'	152441			-					15343			~
100-10-1a	288415	301418	4.51	48	291043	-	270	296877					29286		'	288415								28786	·		~
100-10-1b	230989	269594	16.71	186	234210		203	235845	9 2.10				23314		'	230989					235348	8 1.89		23259	9 0.70		~
100-10-2a	243695	243778	0.03	260	245813	0.87	261	24474(_	245548			24382		'	243695			-		24526			24548			0
100-10-2b	203988	203988	0.00	139	205312		199	204016					20398			203988			-		205524			20425			0
100-10-3a	250882	253511	1.05	164	250882		338	253801	1.16		2 1.59	9 202	25372		'	250882		252371	-	2576	254302	2 1.36	5 113	254558		7 82	0
100-10-3b	204601	205087	0.24	203	205009	-	240	205609	~				20460		'	204602	-		-		204780			20582	-		~
200-10-1a	475344	486467	2.34	1521	481002		1428	480883	~				47895			475344	-	476674			478843	_		47700	-		_
200-10-1b	377043	382329	1.40	359	383586		1336	378961	_				37806	-	'	377043	0.00	37878	-		37835			37771			~
200-10-2a	449152	452276	0.70	112	450848		1796	450451	_	451750	0 0.58	8 1201	45037	7 0.27	'	449152	0.00	449469	-	5216	451457		704	44900	<u>6</u> -0.03		_
200-10-2b	374469	376027	0.42	1610	376674		1245	374751	_		-		37475	-	'	374469	0.00		-		374972			37471	~		_
200-10-3a	469706	478380	1.85	1596	473875	0.89	1776	475373	3 1.21	479366		6 1251	47408	-	'	469706	0.00	4	-		47515	5 1.16		47197	8 0.48		_
200-10-3b	362743	365166	0.67	591	363701	0.26	1326	366902	_	366902		-	366416	6 1.01	'	362743	0.00		5 0.28	4937	36540	-		36282	~		-+
Average		199630	1.08	258	197778	0.43	422	197852	2 0.41	198648	8 0.69	9 451	197357	7 0.23	4221	196591	0.02		0 0.23	1130	197657	0.36	191	197229	9 0.34	10 1	_
NBKS		12			Ξ			12					18			21		80			12			~			
VIBS		0			-			1		J	_		4			8		J	~		0				- 1		
																											I

Table 3.8: Best results for all algorithms on Prodhon Instances

48

* For each instance: average CPU time over 10 runs

		GRA	GRASP+ELS		SA	SALRP			ALN	ALNS - 500K			ALNS	ALNS - 5000K			GR	GRASP+ILP			V	MACO		G	GTVNS	
Instance	PBKS	Best Cost	Gap Best PBKS	CPU time	Cost P	Gap PBKS	CPU time	Best Cost P	Gap Best Avg. Cost PBKS		Gap Avg. PBKS	CPU time	Best Cost	Gap Best PBKS	CPU time	Best Cost	Gap Best PBKS	Gap Best Avg. Cost PBKS	Gap Avg. PBKS	CPU time*	Best Cost	Gap Best PBKS	CPU time*	Cost	Gap PBKS	CPU time
Christofides69-50x5	565.6	565.6	0.00	80	565.6	0.00	53	565.6	0.00	565.6	0.00	73	565.6	0.00	•	565.6	0.00	581.0	2.72	15	565.6	0.00	29	580.4	2.62	
Christofides69-75x10	844.4	850.8	0.76	86	848.9	0.53	127	853.5	1.08	854.9	1.24	207	848.9	0.53	,	844.4	0.00	848.3	0.46	74	844.9	0.06	59	853.8	1.11	
Christofides69-100x10	833.4	833.4	0.00	127	838.3	0.59	331	833.4	0.00	835.4	0.24	403	833.4	0.00	,	841.7	1.00	851.0	2.11	351	836.8	0.40		837.1	0.44	111
Daskin95-88x8	355.8	355.8	0.00	130	355.8	0.00	577	355.8	0.00	355.8	0.00	250	355.8	0.00	,	355.8	0.00	356.1	0.08	164	355.8	0.00	100	361.6	1.63	
Daskin95-150x10	43963.6	43963.6	0.00	1697	45109.4	2.61	323	44309.0	0.79	44497.2	1.21	613	44004.9	0.09	,	44179.0	0.49	44321.3	0.81	1311	44131.0	0.38	167	44578.9	1.40	199
Jaskell67-21x5	424.9	424.9	0.00	0	424.9	0.00	18	424.9	0.00	424.9	0.00	25	424.9	0.00	,	424.9	0.00	424.9	0.00	-	424.9	0.00	9	424.9	0.00	
Jaskell67-22x5	585.1	585.1	0.00	15	585.1	0.00	17	585.1	0.00	585.1	0.00	21	585.1	0.00	,	585.1	0.00	585.1	0.00	ŝ	585.1	0.00	5	585.1	0.00	
Gaskell67-29x5	512.1	512.1	0.00	6	512.1	0.00	24	512.1	0.00	512.1	0.00	40	512.1	0.00	,	512.1	0.00	512.1	0.00	5	512.1	0.00	6	512.1	0.00	
Jaskell67-32x5	562.2	562.2	0.00	18	562.2	0.00	27	562.2	0.00	562.2	0.00	58	562.2	0.00	•	562.2	0.00	562.2	0.00	5	562.2	0.00	13	562.2	0.00	20
Jaskell67-32x5	504.3	504.3	0.00	34	504.3	0.00	25	504.3	0.00	504.3	0.00	55	504.3	0.00	,	504.3	0.00	504.3	0.00	9	504.3	0.00	10	504.3	0.00	
Jaskell67-36x5	460.4	460.4	0.00	0	460.4	0.00	32	460.4	0.00	460.4	0.00	61	460.4	0.00	•	460.4	0.00	460.4	0.00	7	460.4	0.00	13	460.4	0.00	
Min92-27x5	3062.0	3062.0	0.00	35	3062.0	0.00	23	3062.0	0.00	3062.0	0.00	38	3062.0	0.00	,	3062.0	0.00	3062.0	0.00	3	3062.0	0.00	6	3062.0	0.00	
Min92-134x8	5709.0	5719.3	0.18	280	5709.0	0.00	522	5713.0	0.07	5732.6	0.41	460	5709.0	0.00		5719.3	0.18	5816.7	1.89	1189	5709.0	0.00	137	5789.0	1.40	
Average		4492.27	0.07	188	4579.85	0.29	161	4518.56	0.15	4534.81	0.24	177	4494.51	0.05	1772	4508.98	0.13	4529.64	0.62	241	4504.16	0.06	49	4547.06	0.66	
VBKS		Ξ			10			10		6			Ξ			10		7			10			7		
VIBS		-			0			0		0			0			1		0			0			0		

Chapter 4

A heuristic algorithm for the MDVRP

Notes about the chapter

The contents of this chapter is based on the paper entitled "A Hybrid Granular Tabu Search algorithm for the Multi-Depot Vehicle Routing Problem", co-authored with Rodrigo Linfati, Professor Maria Gulnara Baldoquin and Professor Paolo Toth, which has been submitted for publication. Partial results will be presented in the conference TRISTAN VII, San Pedro Atacama-Chile (2013).

4.1 Hybrid Granular Tabu Search Algorithm

The proposed algorithm is based on the Granular Tabu Search (GTS) idea for the VRP introduced by Toth and Vigo [60]. The GTS approach uses restricted neighborhoods, called granular neighborhoods, obtained from a sparse graph which includes all the edges with a cost not greater than a granularity threshold value $\vartheta = \beta \bar{z}$ (where β is a sparsification factor and \bar{z} is the average cost of the edges), the edges belonging to the best feasible solution, and the edges (i, j) incident to the depots for which the distance factor $\varphi_{ij} = 2c_{ij} + \delta_j$ ($\forall i \in I, j \in J$) is not greater than the maximum duration D.

Algorithm ELTG applies three diversification strategies implemented to allow the exploration of new parts of the solution space. The first diversification strategy is based on the granularity diversification proposed in Toth and Vigo [60]. The second strategy is based on a penalty approach proposed by Gendreau et al. [21] and Taillard [57]. The third diversification strategy determines every $N_{div} \times n$ iterations (where N_{div} is a given parameter) a feasible solution by using, for each depot, a local search procedure, called VRPH, which applies iteratively the VRP routines vrp_sa , vrp_rtr and vrp_ej proposed in Groer et al. [25], until no improvement is reached. Procedure VRPH is executed in several parts of algorithm ELTG. In addition, a random perturbation procedure is considered to avoid that the algorithm remains in a local minimum for a given number of iterations. Finally, algorithm ELTG calls in sequence procedures *Splitting* and *Swapping* described in the following subsections.

The main body of algorithm ELTG considers two parts: (1) the construction of an initial solution by using a Hybrid procedure, and (2) the Granular Tabu Search procedure. Algorithm ELTG is based on the heuristic framework proposed by Escobar et al. [19] for the *Capacitated Location Routing Problem* (CLRP). The main differences of algorithm ELTG with respect to the algorithm presented in Escobar et al. [19] are: i) the hybrid procedure used for the construction of the initial solution, ii) the penalty diversification strategy, and iii) the new local search procedures proposed within the main loop of the Granular Tabu Search phase.

4.2 Initial Solution

The initial MDVRP solution S_0 is constructed by using a hybrid heuristic based on a cluster approach, which is able to find good initial solutions within short computing times. The following steps are executed:

- Step 1. Construct a giant Traveling Salesman Problem (TSP) tour containing all the customers by using the well known Lin-Kernighan Heuristic (LKH) (for further details see Lin and Kernighan [35] and Helsgaun [28]).
- Step 2. Starting from a given vertex, split the giant TSP tour into several *clusters* (groups of consecutive customers) such that:
 - The number of clusters is not greater than the maximum number of possible routes M = km;

- The total demand of each cluster does not exceed the vehicle capacity Q;
- The total "duration" dur_g of each cluster g (given by the sum of the service times of the customers and of the costs of the edges connecting consecutive customers) is not greater than $D \theta \bar{l}$ (where θ is a given parameter, and \bar{l} is the minimum cost of the edges incident to the depots).
- Step 3. For each depot i and each cluster g, a TSP tour is determined, by using procedure LKH, to obtain the traveling cost (l_{ig}) between depot i and the customers belonging to cluster g.
- Step 4. Assign the depots to the clusters by solving the following Integer Linear Programming (ILP) model, where the binary variable x_{ig} is equal to 1 iff depot *i* is assigned to cluster *g*:

$$\min z = \sum_{i \in I} \sum_{g \in G} l_{ig} x_{ig} + \sigma \sum_{i \in I} \sum_{g \in G} \max(0, \bar{d_{ig}} - D) x_{ig}$$
(4.1)

subject to

$$\sum_{i \in I} x_{ig} = 1 \qquad \forall g \in G \tag{4.2}$$

$$\sum_{i \in G} x_{ig} \le k \qquad \forall i \in I \tag{4.3}$$

$$x_{ig} \in \{0,1\} \qquad \forall i \in I, g \in G \tag{4.4}$$

where:

The objective function (4.1) sums the traveling costs associated with the edges traversed by the routes and the penalization costs incurred when the maximum duration D is violated. Constraints (4.2) guarantee that each

cluster is assigned to exactly one depot. Constraints (4.3) guarantee that the number of clusters assigned to each depot must not exceed the number k of vehicles available at each depot.

Constraints (4.4) can be replaced by $x_{ig} \ge 0, \forall i \in I, \forall g \in G$, and model (4.1) - (4.4) can be rewritten as an equivalent *Linear Programming* (LP) model $Min \{c^{\top}x \mid Ax \le b \land x \ge 0\}$. The optimal solutions of both models are equal because matrix A is totally unimodular and b is an integral vector. Indeed, the total unimodularity of matrix A can be proved (see, e.g. Heller and Tompkins [27]) by considering that:

- every entry in A has value 0 or 1;
- every column of A contains at most two non-zero entries;
- the rows of matrix A can be partitioned into two subsets T_1 and T_2 such that if two non-zero entries in a column of A have the same sign, the row of one of them is in T_1 and the other row is in T_2 .

Steps 2 to 4 are repeated n times, by considering in Step 2 each customer as the possible initial vertex, and keeping the best solution found so far.

As the solution obtained so far can be infeasible with respect to the duration of the routes, the algorithm tries to find a feasible solution by applying a *repair procedure*. This procedure iteratively selects a customer j belonging to an infeasible route and such that the *distance factor* φ_{ij} (where i is the depot to which customer j is currently assigned) is greater than D. Then, customer j is removed from its current route and inserted into a different route (belonging to the same depot or to a different depot) for which the traveling cost c_{jz} ($\forall z \in I \cup J$) is minimum.

The proposed algorithm tries to improve the current initial solution by applying a *Splitting procedure* based on the procedure proposed by Escobar et al. [19] for the CLRP. This procedure considers that the total traveling cost can be decreased by adding new routes until the number of routes for each depot is not greater than k, and by assigning them to different depots.

In this procedure, the route which contains the longest edge is selected. Then, its two longest edges, say (r, s) and (t, u), are removed from the route, and the route is shortcut by inserting edge (r, u). The subset of customers belonging to the chain connecting vertex s to vertex t in the considered route is selected as the cluster to form a new route. For each depot i, procedure LKH is applied to find the TSP tour corresponding to the assignment of the cluster to depot i. Each cluster is assigned to the depot for which the cost of the TSP tour is minimum. Then, procedure VRPH is applied to the depots affected by the performed move. The *Splitting procedure* is applied N_s times (where N_s is a given parameter), by considering at each iteration a different route. Finally, procedure VRPH is executed for all the depots for which the solution obtained by the *Splitting procedure* has not been changed.

4.3 Granular Tabu Search

Algorithm ELTG allows solutions which are infeasible with respect to the vehicle capacities and the duration of the routes (see Subsection 4.3.2). The Granular Tabu Search procedure starts by removing the least loaded routes (routes containing one or two customers), and inserting each of the associated customers into the best position, with respect to the objective function f(S) described in Subsection 4.3.2, of one of the remaining routes. In addition, the procedure calls iteratively, during the search, the *Splitting* and *Swapping* procedures.

The proposed neighborhood structures, the diversification strategies, the intensification strategy, and the *Swapping procedure* are described in the following subsections.

4.3.1 Neighborhood Structures

The proposed algorithm uses *intra-route* and *inter-route* moves corresponding to the following neighborhood structures:

- Insertion. A customer is removed from its current position and reinserted in a different position in the same route or in another route (assigned to the same depot or to a different depot).
- Swap. Two customers, belonging to the same route or to different routes (assigned to the same depot or to different depots), are exchanged.
- *Two-opt.* This move is a modified version of the well known two opt move used in solving vehicle routing problems. If the two considered

edges are in the same route, the two opt move is equivalent to the intraroute move proposed by Lin and Kernighan [35] for the TSP. If the two edges are in different routes assigned to the same depot, the move is similar to the traditional inter-route two opt move. The effect of this move becomes more complicated when the edges belong to different depots. In this case, there are several ways to rearrange the routes by performing an additional move concerning the edges connecting the depots with the last customer of the routes to ensure that each route starts and finishes at the same depot.

- *Exchange*. Two consecutive customers are transferred from their current positions to other positions by keeping the edge connecting them. The customers can be inserted in the same route or in a different route (assigned to the same depot or to a different depot).
- Inter-Swap. This move is an extension of the Swap move, obtained by considering two pairs of consecutive customers. The edge connecting each pair of customers is kept. The Inter-Swap move is performed between two different routes (assigned to the same depot or to different depots).

A move is performed if at least one of the new edges inserted in the solution belongs to the sparse graph. Finally, whenever the algorithm remains in a local minimum for $N_p \times n$ iterations (where N_p is a given parameter), we apply a random perturbation procedure which extends the idea of Insertion move by considering three random routes (say r_1 , r_2 , r_3) at the same time (for further details see Wassan [63]). In particular, for each customer c_1 of route r_1 , each customer c_2 of route r_2 , each edge (i_2, j_2) of route r_2 (with $i_2 \neq c_2$ and $j_2 \neq c_2$), and each edge (i_3, j_3) of route r_3 , we obtain a new solution S from the best solution found so far by performing the following moves:

- remove customer c_1 from route r_1 and insert it between i_2 and j_2 in route r_2 ;
- remove customer c_2 from route r_2 and insert it between i_3 and j_3 in route r_3 .

• The move associated with the solution S corresponding to the minimum value of c(S) + q(S) (see the details in Section 4.3.2) is performed, even if solution S is worse than the current solution.

4.3.2 Search, Intensification and Diversification strategies

The proposed algorithm, as in that presented in Gendreau et al. [21], allows infeasible solutions with respect to both the vehicle capacity and the duration of the routes. Let us consider a solution S composed by a set of z routes r_1, \ldots, r_z . Each route r_l where $l \in \{1, \ldots, z\}$ is denoted by $(v_0, v_1, v_2, \ldots, v_0)$. v_0 represents the depot assigned to the route, and v_1, v_2, \ldots represent the visited customers. Let us denote with $v \in r_l$ a customer v belonging to route r_l , and with $(u, v) \in r_l$ an edge such that u and v are two consecutive vertices of route r_l . The following objective function $f(S) = c(S) + \alpha_m \times$ $m(S) + \alpha_q \times q(S)$ is associated with solution S, where:

$$c(S) = \sum_{l=1}^{z} \sum_{(u,v)\in r_l} c_{uv}$$
$$m(S) = \sum_{l=1}^{z} \left[\sum_{v\in r_l} d_v - Q \right]^+$$
$$q(S) = \sum_{l=1}^{z} \left[\left(\sum_{v\in r_l} \delta_v + \sum_{(u,v)\in r_l} c_{uv} \right) - D \right]^+$$

where $[x]^+ = max(0, x)$, and α_m and α_q are two nonnegative weights used to increase the cost of solution S by adding two penalty terms proportional, respectively, to the excess load of the overloaded routes, and to the excess duration of the routes. The values of α_m and α_q are calculated as follows: $\alpha_m = \gamma_m \times f(S_0)$ and $\alpha_q = \gamma_q \times f(S_0)$, where $f(S_0)$ is the value of the objective function of the initial solution S_0 , and γ_m and γ_q are two dynamically changing positive parameters adjusted during the search within the range $[\gamma_{min}, \gamma_{max}]$. In particular, if no feasible solutions with respect to the vehicle capacity have been found over N_{mov} iterations, then the value of γ_m is set to $max\{\gamma_{min}, \gamma_m \times r_{pen}\}$, where $r_{pen} < 1$. On the other hand, if feasible solutions with respect to the vehicle capacity have been found during the last N_{mov} iterations, then the value of γ_m is set to $min\{\gamma_{max}, \gamma_m \times d_{pen}\}$, where $d_{pen} > 1$. A similar rule is applied to modify the value of γ_q . The initial values of γ_m and γ_q , and the values γ_{min} , γ_{max} , N_{mov} , r_{pen} , d_{pen} are given parameters.

The proposed algorithm considers three diversification strategies. The first strategy is related to the dynamic modification of the sparse graph proposed by Toth and Vigo [60]. Initially, the sparsification factor β is set to a value β_0 . If no improvement of the best solution found so far is obtained during N_{β} iterations, the subset of edges currently included in the sparse graph is enlarged by increasing the value of β to a value β_n . Then, N_{int} iterations are executed starting from the best solution found so far. Finally, the sparsification factor β is reset to its original value β_0 and the search continues. The values β_0 , N_{β} , β_n and N_{int} are given parameters. It is to note that algorithm ELTG alternates between long intensification phases (small values of β) and short diversification phases (large values of β) allowing the exploration of new parts of the search space.

The second strategy is based on a penalty approach proposed by Taillard [57]. If the considered solution S is feasible, we assign it an objective function value t(S) = c(S). If the solution S is infeasible and the value of the objective function f(S) is less than the cost of the best solution found so far, we assign S a value t(S) = f(S). Otherwise, we add to f(S) an extra penalty term equal to the product of the absolute difference value Δ_{obj} between two successive values of the objective function, the square root of the number of routes z, and a scaling factor h (where h is a given parameter). Therefore, we define $t(S) = f(S) + \Delta_{obj}h\sqrt{z}$. The move corresponding to the minimum value of t(S) is performed. The tabu tenure, as in Gendreau et al. [21], is randomly selected in the interval $[t_{min}, t_{max}]$ (where t_{min} and t_{max} are given parameters). The following aspiration criterion is used: If the objective function value f(S) of the current solution S is less or equal to the cost of the best solution found so far, solution S is a calculated to the cost of the absolute of t(s) and t_{max} are given parameters).

The third diversification strategy considers every $N_{div} \times n$ iterations, the best infeasible solution (i.e. the solution with the smallest value of c(S)) and,

for each depot, apply procedure VRPH. This strategy helps the algorithm to explore new parts of the solution space. Finally the *Splitting procedure* is applied every $N_{split} \times n$ iterations during the Granular Tabu Search phase (where N_{split} is a given parameter).

4.3.3 Swapping Procedure

If the traveling costs c_{ij} correspond to euclidean distances, as it is the case for the benchmark MDVRP instances from the literature, the following *Swapping procedure* is applied. The procedure starts by selecting the solution S with the smallest value of c(S), and considers the exchange between two depots for a given route r_k . Since each vertex of the input graph G is associated with a point in the plane, route r_k can be represented by its center of gravity (cgr_k) . Route r_k is assigned to the depot, say i, different from that currently assigned to route r_k and having the number of routes assigned to it smaller than k, for which the euclidean distance from cgr_k to i is minimum. Procedure VRPH is applied for the two depots involved in the move. If the new solution is feasible and also better than the best solution found so far, the current solution and the best solution found so far are updated; otherwise only the current solution is updated, even if the new solution is worse than the previous one. The swapping procedure is applied every $N_{sw} \times n$ iterations (where N_{sw} is a given parameter).

4.4 Computational experiments

4.4.1 Implementation details

Algorithm ELTG has been implemented in C++, and the computational experiments have been performed on an Intel Core Duo (only one core is used) CPU (2.00 GHz) under Linux Ubuntu 11.04 with 2 GB of memory. The LP model equivalent to the ILP model (4.1) - (4.4) has been optimally solved by using the LP solver CPLEX 12.1. The performance of algorithm ELTG has been evaluated by considering 33 benchmark instances proposed for the MDVRP. Instances 1-7 were introduced by Christofides and Eilon [10]. Instances 8-11 have been described in Gillett and Johnson [22]. Instances 12-23 were proposed by Chao et al. [9]. Finally, instances 24-33 were introduced by \Cordeau et al. [15]. In all the instances, the customers and the depots correspond to random points in the plane. The traveling cost of an edge is calculated as the Euclidean distance between the points corresponding to the extreme vertices of the edge.

Algorithm ELTG has been compared (see Table 3.2) with the most effective published heuristic algorithms proposed for the MDVRP: Tabu Search (CGL97) of Cordeau et al. [15], the general heuristic (PR07) of Pisinger and Ropke [44], the hybrid genetic algorithm (VCGLR12) of Vidal et al. [62], and the sequential tabu search algorithm (CM12) of Cordeau and Maischberger [14].

For each instance, only one run of algorithm ELTG is executed. The total number of iterations of the main loop of the Granular Tabu Search phase is set to $10 \times n$. The tabu tenure for each move performed is set (as in Gendreau et al. [21]) to a uniformly distributed random integer number in the interval [5, 10]. As for other metaheuristics, extensive computational tests have been performed to find a suitable set of parameters. On average, the best performance of algorithm ELTG has been obtained by considering the following values of the parameters: $N_{div} = 0.60$, $\theta = 7.0$, $N_s = 3$, $N_p = 0.55$, $\gamma_m = 0.0025$, $\gamma_q = 0.001875$, $\gamma_{min} = \frac{1}{f(S_0)}$, $\gamma_{max} = 0.04$, $N_{mov} = 10$, $r_{pen} = 0.50$, $d_{pen} = 2.00$, $\beta_0 = 1.20$, $N_{\beta} = 2.50$, $\beta_n = 2.40$, $N_{int} = 1.00$, h = 0.02, $N_{split} = 0.70$, and $N_{sw} = 0.90$. These values have been utilized for the solution of all the considered instances.

In Tables 3.1 and 3.2, for each instance, the following notation is used:

Instance	instance number;
n	number of customers;
m	number of depots;
k	maximum number of available vehicles at each depot;
D	maximum duration of each route;
Q	capacity of each vehicle;
Cost	solution cost obtained by the corresponding algorithm;
BKS	cost of the best-known solution found by the previous
	algorithms proposed for the MDVRP;
Ref. BKS	reference to the algorithm which obtained for the first time
	the value BKS;
Gap BKS	percentage gap of the solution cost found by the

	corresponding algorithm with respect to the value of BKS;
Status	status of solutions obtained by the initial hybrid procedure
	(feasible or infeasible);
Time	running time in seconds on the CPU used by the
	corresponding algorithm;
CPU	CPU used by the corresponding algorithm;
CPU index	Passmark performance test for each CPU.

In addition, for each algorithm, the following global values are reported:

Avg.	average percentage gap of the solution cost found by the
	corresponding algorithm on a subset of instances;
G.Avg	average percentage gap of the solution cost found by the
	corresponding algorithm on the complete set of instances;
NBKS	number of best solutions (by considering the previous algorithms
	and algorithm ELTG) found by the corresponding algorithm;
NIBS	number of instances for which the corresponding algorithm is the
	only one which found the best solution.

For the values of BKS and Ref. BKS, we have considered all the previously published methods proposed for the MDVRP. Therefore, also the results obtained by the exact algorithms and by the heuristic algorithms proposed by Chao et al. [9] (CGW93) and by Renaud et al. [52] (RLB96), have been taken into account. The optimality of the value of BKS has been proved for instances 1, 2, 6, 7 and 12 by Baldacci and Mingozzi [3]. For each instance, the costs which are equal to the corresponding value of BKS are reported in bold. Whenever algorithm ELTG improves the BKS value, the reported cost is underlined. The CPU index is given by the Passmark performance test (for further details see [1]). This is a well known benchmark test focused on CPU and memory performance. Higher values of the Passmark test indicate that the corresponding CPU is faster. Note that for the CPU used for algorithm CGL97, the value of the CPU index is not available (this CPU is however much slower than those used for the other algorithms).

4.4.2 Global results

Table 1 provides the results obtained by the Initial Hybrid procedure and by the Granular Tabu Search procedure of algorithm ELTG. The table shows, for each instance, the results (cost, value of Gap BKS and cumulative running time) corresponding to the following solutions:

- Initial Solution: solution obtained after the application of the Initial Hybrid procedure;
- Granular Tabu Search: solution obtained by the proposed heuristic ELTG (i.e. at the end of the Granular Tabu Search procedure).

Whenever a solution obtained by the initial hybrid procedure is infeasible with respect to the number of routes for each depot, its status is set to *infeasible*. Otherwise, its status is set to *feasible*. It is to note that the Granular Tabu Search procedure produces substantial improvements, within short additional running times, on all the instances.

A summary on the results obtained by the five considered algorithms (CGL97, PR07, VCGLR12, CM12, and ELTG) for the complete set of instances is given in Table 3.2. In this table we report the results as presented in the corresponding papers.

Algorithms PR07 and VCGLR12 have been executed for ten runs. The results reported for both algorithms correspond, for each instance, to the average cost found and to the average CPU time over the ten runs. For algorithm CM12, the results reported correspond, for each instance, to the average cost found and to the average CPU time obtained over 10 runs, with 10⁶ iterations for each run. Finally, the results reported for algorithms CGL97 and ELTG correspond, for each instance, to a single run of the corresponding algorithm.

Table 3.2 shows that algorithm ELTG provides the lowest global average value of Gap BKS on the first 23 instances. For instances 24 - 33, algorithm ELTG has a global average value of Gap BKS smaller than that of algorithms CGL97, PR07, and CM12; only algorithm VCGLR12 provides, although with longer CPU times, a better global average value of Gap BKS. For what concerns the number (NBKS) of best known solutions found and the number (NIBS) of instances for which the corresponding algorithm is

the only one which finds the best known solution, algorithm ELTG obtains the best results. Indeed, the proposed algorithm is able to find, within short CPU times, 20 best known solutions, and to improve the previous best known solution for 3 instances.

As for the average CPU time, algorithm ELTG is faster than algorithms VCGLR12 and CM12, which were able to find the previous best results in terms of the average value of Gap BKS and of the values of NBKS and NIBS. On the other hand, the average running time of algorithm ELTG is larger than that of algorithms CGL97 and PR07. This can be explained by considering that algorithm ELTG uses several improvement procedures in the main loop of the Granular Tabu Search phase. Although the average running time of algorithm ELTG is larger than that of these two approaches, it remains within acceptable values for an operational problem like the MDVRP.

4.5 Concluding remarks

We propose an effective Hybrid Granular Tabu Search algorithm for the Multi Depot Vehicle Routing Problem (MDVRP). In the proposed approach, after the construction of an initial solution by using a hybrid heuristic, we apply a modified Granular Tabu Search procedure which considers five granular neighborhoods, three different diversification strategies and different local search procedures. A perturbation procedure is applied whenever the algorithm remains in a local optimum for a given number of iterations.

We compare the proposed algorithm with the most effective published heuristics for the MDVRP on a set of benchmark instances from the literature. The results show the effectiveness of the proposed algorithm, and some best known solutions are improved within reasonable computing times. The results obtained suggest that the proposed framework could be applied to other extensions of the MDVRP such as the Multi Depot Periodic Vehicle Routing Problem (MDPVRP), the Multi Depot Vehicle Routing Problem with Heterogeneous Fleet (HMDVRP), and other problems obtained by adding constraints as time windows, pickups and deliveries, etc.

Chara	Characteristics of Instances	ics of	Insta	nces		DIZC		Initial Solution	lution		Granuls	Granular Tabu Search	сh
Instance	u	8	k	D	ð	CALL	Cost	Gap BKS	Time	Status	Cost	Gap BKS	Time
1	50	4	4	8	80	576.87	594.52	3.06	S	Feasible	576.87	0.00	7
2	50	4	0	8	160	473.53	492.18	3.94	4	Feasible	473.53	0.00	9
ю	75	S	С	8	140	641.19	695.37	8.45	19	Feasible	641.19	0.00	29
4	100	7	80	8	100	1001.04	1018.47	1.74	62	Feasible	1001.04	0.00	06
ъ	100	7	S	8	200	750.03	751.26	0.16	17	Feasible	750.03	0.00	26
9	100	ю	9	8	100	876.50	918.29	4.77	65	Feasible	876.50	0.00	103
7	100	4	4	8	100	881.97	945.00	7.15	76	Feasible	884.66	0.31	106
8	249	0	14	310	500	4372.78	4584.97	4.85	185	Feasible	4371.66	-0.03	285
6	249	ю	12	310	500	3858.66	4009.69	3.91	156	Feasible	3880.85	0.58	256
10	249	4	80	310	500	3631.11	3854.68	6.16	166	Feasible	3629.60	-0.04	267
11	249	ß	9	310	500	3546.06	3738.33	5.42	125	Feasible	3545.18	-0.02	192
12	80	0	ß	8	60	1318.95	1369.47	3.83	4	Feasible	1318.95	0.00	9
13	80	0	ŝ	200	60	1318.95	1349.07	2.28	ß	Feasible	1318.95	0.00	7
14	80	0	ŝ	180	60	1360.12	1360.12	00.0	4	Feasible	1360.12	0.00	9
15	160	4	S	8	60	2505.42	2590.87	3.41	69	Feasible	2505.42	0.00	114
16	160	4	S	200	60	2572.23	2761.25	7.35	87	Feasible	2572.23	0.00	118
17	160	4	ŝ	180	60	2709.09	2895.76	6.89	79	Feasible	2709.09	0.00	108
18	240	9	ŝ	8	60	3702.85	4111.78	11.04	178	Feasible	3702.85	0.00	278
19	240	9	S	200	60	3827.06	4292.11	12.15	176	Feasible	3827.06	0.00	256
20	240	9	S	180	60	4058.07	4441.59	9.45	190	Infeasible	4058.07	0.00	267
21	360	6	S	8	60	5474.84	6106.37	11.54	166	Feasible	5474.84	0.00	268
22	360	6	S	200	60	5702.16	6613.80	15.99	170	Infeasible	5702.16	0.00	262
23	360	6	ŝ	180	60	6078.75	6677.53	9.85	199	Infeasible	6095.46	0.27	285
Avg.								6.23	96			0.05	145
24	48	4	Ч	500	200	861.32	894.26	3.82	2	Feasible	861.32	0.00	4
25	96	4	ы	480	195	1307.34	1449.20	10.85	8	Infeasible	1311.11	0.29	11
26	144	4	с	460	190	1803.80	1883.80	4.44	72	Feasible	1803.80	0.00	118
27	192	4	4	440	185	2058.31	2103.46	2.19	89	Feasible	2064.11	0.28	124
28	240	4	Ŋ	420	180	2331.20	2466.38	5.80	147	Feasible	2349.63	0.79	213
29	288	4	9	400	175	2676.30	2769.73	3.49	145	Feasible	2710.30	1.27	234
30	72	9	1	500	200	1089.56	1255.87	15.26	80	Feasible	1089.56	0.00	11
31	144	9	0	475	190	1664.85	1883.39	13.13	47	Feasible	1665.50	0.04	99
32	216	9	С	450	180	2133.20	2258.09	5.85	94	Feasible	2151.45	0.86	156
33	288	9	4	425	170	2868.26	3046.00	6.20	199	Feasible	2910.78	1.48	302
Avg.								7.10	81			0.50	124

Characteris	tics of	Characteristics of the Instances	Previous Solutions	Solutions	CGL9	CGL97 (1 run)		PR07 (A	PR07 (Avg. 10 runs)	s)	VCGLR12	VCGLR12 (Avg. 10 runs)	runs)	CM12 (.	CM12 (Avg. 10 runs)	ls)	ELT	ELTG (1 run)	
Instance n	H	k D Q	BKS	Ref. BKS	Cost G	Gap BKS	Time	Cost (Gap BKS Time	Time	Cost (Gap BKS Time	Time	Cost	Gap BKS Time	Time	Cost (Gap BKS	Time
1	50 4	4 80	0 576.87	CGW93	576.87	0.00	194	576.87	0.00	29	576.87	0.00	14	576.87	0.00	,	576.87	00.0	7
7	50 4	$2 \propto 160$	0 473.53	RLB96	473.87	0.07	208	473.53	0.00	28	473.53	0.00	13	473.53	0.00	,	473.53	0.00	9
	75 5	$3 \infty 140$	0 641.19	CGW93	645.15	0.62	340	641.19	0.00	64	641.19	0.00	26	641.19	0.00	'	641.19	0.00	29
4 10	100 2	$8 \propto 100$	0 1001.04	PR07	1006.66	0.56	467	1006.09	0.50	88	1001.23	0.02	116	1002.64	0.16	'	1001.04	0.00	06
5 10	100 2	$5 \approx 200$	0 750.03	CGL97	753.34	0.44	493	752.34	0.31	120	750.03	0.00	64	750.41	0.05		750.03	0.00	26
6 1(100 3	$6 \propto 100$	0 876.50	RLB96	877.84	0.15	459	883.01	0.74	93	876.50	0.00	68	877.03	0.06		876.50	00.0	103
	100 4	$4 \approx 100$	0 881.97	PR07	891.95	1.13	463	889.36	0.84	88	884.43	0.28	93	884.18	0.25	,	884.66	0.31	106
8	249 2	14 310 500	0 4372.78	VCGLR12	4482.44	2.51	1526	4421.03	1.10	333	4397.42	0.56	600	4438.47	1.50	,	4371.66	-0.03	285
9 2	249 3	12 310 500	0 3858.66	VCGLR12	3920.85	1.61	1604	3892.50	0.88	361	3868.59	0.26	570	3894.10	0.92		3880.85	0.58	256
10 24	249 4	8 310 500	0 3631.11	VCGLR12	3714.65	2.30	1530	3666.85	0.98	363	3636.08	0.14	589	3660.39	0.81		3629.60	-0.04	267
11 24	249 5	6 310 500	0 3546.06	PR07	3580.84	0.98	1555	3573.23	0.77	357	3548.25	0.06	428	3553.88	0.22	,	3545.18	-0.02	192
12	80 2	5 8 60	0 1318.95	RLB96	1318.95	0.00	334	1319.13	0.01	75	1318.95	0.00	31	1318.95	0.00	,	1318.95	0.00	9
13	80 2	5 200 60	0 1318.95	RLB96	1318.95	0.00	335	1318.95	0.00	60	1318.95	0.00	34	1318.95	00.00	,	1318.95	0.00	7
14	80 2	5 180 60	0 1360.12	CGL97	1360.12	0.00	326	1360.12	0.00	58	1360.12	0.00	33	1360.12	0.00		1360.12	0.00	9
15 10	160 4	5 ~ 60	0 2505.42	CGL97	2534.13	1.15	844	2519.64	0.57	253	2505.42	0.00	115	2505.42	0.00		2505.42	0.00	114
16 16	160 4	5 200 60	0 2572.23	RLB96	2572.23	0.00	843	2573.95	0.07	188	2572.23	0.00	118	2572.23	0.00	,	2572.23	0.00	118
17 16	160 4	5 180 60	0 2709.09	CGL97	2720.23	0.41	822	2709.09	0.00	179	2709.09	00.00	128	2709.09	0.00	,	2709.09	0.00	108
18 24	240 6	5 8 60	0 3702.85	CGL97	3710.49	0.21	1491	3736.53	0.91	419	3702.85	0.00	271	3703.96	0.03	,	3702.85	0.00	278
19 24	240 6	5 200 60	0 3827.06	RLB96	3827.06	00.0	1512	3838.76	0.31	315	3827.06	0.00	252	3827.06	0.00	'	3827.06	0.00	256
20 24	240 6	5 180 60	0 4058.07	CGL97	4058.07	00.0	1483	4064.76	0.16	300	4058.07	00.00	262	4058.07	0.00		4058.07	0.00	267
	360 9	5 ∞ 60	0 5474.84	CGL97	5535.99	1.12	2890	5501.58	0.49	582	5476.41	0.03	600	5486.91	0.22	,	5474.84	00.0	268
	360 9	5 200 60	0 5702.16	CGL97	5716.01	0.24	2934	5722.19	0.35	462	5702.16	0.00	600	5708.44	0.11	,	5702.16	00.0	262
23 36	360 9	5 180 60	0 6078.75	PR07	6139.73	1.00	2872	6092.66	0.23	443	6078.75	0.00	600	6086.05	0.12	'	6095.46	0.27	285
Avg.						0.63	1110		0.40	229		0.06	245		0.19	•		0.05	145
24	18 4	1 500 200	0 861.32	CGL97	861.32	00.0	242	861.32	00.0	30	861.32	0.00	10	861.32	0.00		861.32	00.0	4
25	96 4	2 480 195	5 1307.34	PR07	1314.99	0.59	505	1308.17	0.06	103	1307.34	0.00	46	1307.73	0.03		1311.11	0.29	11
26 1	144 4	3 460 190	0 1803.80	VCGLR12	1815.62	0.66	854	1810.66	0.38	214	1803.80	0.00	115	1805.24	0.08	,	1803.80	00.0	118
27 19	192 4	4 440 185	5 2058.31	VCGLR12	2094.24	1.75	1158	2073.16	0.72	296	2059.36	0.05	313	2071.48	0.64	,	2064.11	0.28	124
	240 4	5 420 180	0 2331.20	VCGLR12	2408.10	3.30	1529	2350.31	0.82	372	2340.29	0.39	574	2355.44	1.04	,	2349.63	0.79	213
	288 4	6 400 175	5 2676.30	VCGLR12	2768.13	3.43	2007	2695.74	0.73	465	2681.93	0.21	600	2699.58	0.87		2710.30	1.27	234
	72 6	1 500 200	0 1089.56	CGL97	1092.12	0.24	412	1089.56	0.00	58	1089.56	0.00	20	1089.56	0.00	·	1089.56	00.0	11
	144 6	2 475			1676.26	0.69	906	1675.74	0.65	207	1665.05	0.01	123	1666.85	0.12		1665.50	0.04	99
	216 6	3 450	0 2133.20	VCGLR12	2176.79	2.04	1462	2144.84	0.55	350	2134.17	0.05	366	2150.48	0.81	,	2151.45	0.86	156
33 28	288 6	4 425 170	0 2868.26	VCGLR12	3089.62	7.72	2105	2905.43	1.30	455	2886.59	0.64	600	2911.86	1.52	'	2910.78	1.48	302
Avg.						2.04	1118		0.52	255		0.13	277		0.51	•		0.50	124
G. Avg						1.06	1112		0.44	237		0.08	254		0.29	1101		0.18	139
NBKS					8			8			20			13			23		
NIBS					0			0			6			0			Ŋ		
CPU					Sun Spar	Sun Sparcstation 10	10	Pentiun	Pentium 4 (3.0 GHz)		AMD Opteron 250 (2.4 GHz)	on 250 (2.	4 GHz)	Xeon X7.	Xeon X7350 (2.93 Ghz)	(zuł	Core Di	Core Duo (2.0 GHz)	(z
CPU index						1			489			1411			16715			1398	

Bibliography

- PassMark Performance Test. http://www.passmark.com, 2012. [Online; accessed 28-Jun-2012].
- [2] M. Albareda-Sambola, J.A. Díaz, and E. Fernández. A compact model and tight bounds for a combined location-routing problem. *Computers* and Operations Research, 32(3):407–428, 2005.
- [3] R. Baldacci and A. Mingozzi. A unified exact method for solving different classes of vehicle routing problems. *Mathematical Programming*, 120(2):347–380, 2009.
- [4] R. Baldacci, A. Mingozzi, and R.W. Calvo. An exact method for the capacitated location-routing problem. Operations research, 59(5):1284– 1296, 2011.
- [5] J. Barcelo and J. Casanovas. A heuristic lagrangean algorithm for the capacitated plant location problem. *European Journal of Operational Research*, 15(2):212–226, 1984.
- [6] S. Barreto, C. Ferreira, J. Paixao, and B.S. Santos. Using clustering analysis in a capacitated location-routing problem. *European Journal of Operational Research*, 179(3):968–977, 2007.
- [7] SS Barreto. Análise e modelização de problemas de localizaçãodistribuição (analysis and modelling of location-routing problems). *PhD* thesis, University of Aveiro, pages 3810–4193, 2004.
- [8] J.M. Belenguer, E. Benavent, C. Prins, C. Prodhon, and R. Wolfler-Calvo. A branch-and-cut method for the capacitated location-routing problem. *Computers and Operations Research*, 38(6):931–941, 2011.

- [9] I.M. Chao, B.L. Golden, and E. Wasil. A new heuristic for the multidepot vehicle routing problem that improves upon best-known solutions. *American Journal of Mathematical and Management Sciences*, 13(3-4): 371-406, 1993.
- [10] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Operational Research Quarterly, 20(3):309-318, 1969.
- [11] G. Clarke and JW Wright. Scheduling of vehicles form a central depot to a number of delivery points. *Operations Research*, 12(4):568–581, 1964.
- [12] C. Contardo, J.F. Cordeau, and B. Gendron. A branch-and-cut-andprice algorithm for the capacitated location-routing problem. Technical report, Université de Montréal, 2011.
- [13] C. Contardo, J.F. Cordeau, and B. Gendron. A grasp+ ilp-based metaheuristic for the capacitated location-routing problem. Technical report, Université de Montréal, 2011.
- [14] J.F. Cordeau and M. Maischberger. A parallel iterated tabu search heuristic for vehicle routing problems. *Computers and Operations Research*, 39(9):2033-2050, 2012.
- [15] J.F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and multi-depot vehicle routing problems. *Networks*, 30(2): 105–19, 1997.
- [16] C. Daganzo. Logistics systems analysis. Springer, 2005.
- [17] G. Dueck. New optimization heuristics. Journal of Computational Physics, 104(1):86–92, 1993.
- [18] C. Duhamel, P. Lacomme, C. Prins, and C. Prodhon. A graspxels approach for the capacitated location-routing problem. *Computers and Operations Research*, 37(11):1912–1923, 2010.
- [19] J.W. Escobar, R. Linfati, and P. Toth. A two-phase hybrid metaheuristic algorithm for the capacitated location-routing problem. *Computers and Operations Research*, 2012. doi: 10.1016/j.cor.2012.05.008. URL http: //dx.doi.org/10.1016/j.cor.2012.05.008.

- [20] M. Gendreau, A. Hertz, and G. Laporte. New insertion and postoptimization procedures for the traveling salesman problem. *Operations Research*, 40(6):1086–1094, 1992.
- [21] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle routing problem. *Management Science*, 40(10):1276–1290, 1994.
- [22] B.E. Gillett and J.G. Johnson. Multi-terminal vehicle-dispatch algorithm. Omega, 4(6):711-718, 1976.
- [23] B.E. Gillett and L.R. Miller. A heuristic algorithm for the vehicledispatch problem. Operations Research, 22(2):340-349, 1974.
- [24] B.L. Golden, T.L. Magnanti, and H.Q. Nguyen. Implementing vehicle routing algorithms. *Networks*, 7(2):113–148, 1977.
- [25] C. Groer, B. Golden, and E. Wasil. A library of local search heuristics for the vehicle routing problem. *Mathematical Programming Computation*, 2(2):79–101, 2010.
- [26] P.H. Hansen, B. Hegedahl, S. Hjortkjaer, and B. Obel. A heuristic solution to the warehouse location-routing problem. *European Journal* of Operational Research, 76(1):111–127, 1994.
- [27] I. Heller and CB Tompkins. An extension of a theorem of dantzig. Annals of Mathematics Studies, 38:247–254, 1956.
- [28] K. Helsgaun. An effective implementation of the lin-kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1): 106–130, 2000.
- [29] V.C. Hemmelmayr, J.F. Cordeau, and T.G. Crainic. An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Technical report, Université de Montréal, 2011.
- [30] J.G. Klincewicz and H. Luss. A lagrangian relaxation heuristic for capacitated facility location with single-source constraints. *Journal of the Operational Research Society*, 37(5):495–500, 1986.

- [31] G. Laporte, Y. Nobert, and D. Arpin. Optimal solutions to capacitated multi-depot vehicle routing problems. *Congressus Numerantium*, 44: 283–292, 1984.
- [32] G. Laporte, Y. Nobert, and D. Arpin. An exact algorithm for solving a capacitated location-routing problem. Annals of Operations Research, 6 (9):291-310, 1986.
- [33] G. Laporte, Y. Nobert, and S. Taillefer. Solving a family of multi-depot vehicle routing and location-routing problems. *Transportation Science*, 22(3):161–72, 1988.
- [34] F. Li, B. Golden, and E. Wasil. Very large-scale vehicle routing: new test problems, algorithms, and results. *Computers and Operations Research*, 32(5):1165–1179, 2005.
- [35] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. *Operations Research*, 21(2):498–516, 1973.
- [36] J. Melechovský, C. Prins, and R. Wolfler-Calvo. A metaheuristic to solve a location-routing problem with non-linear costs. *Journal of Heuristics*, 11(5):375–391, 2005.
- [37] H. Min, V. Jayaraman, and R. Srivastava. Combined location-routing problems: A synthesis and future research directions. *European Journal* of Operational Research, 108(1):1–15, 1998.
- [38] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations Research, 24(11):1097–1100, 1997.
- [39] J.A. Moreno Pérez, J. Marcos Moreno-Vega, and I. Rodríguez Martín. Variable neighborhood tabu search and its application to the median cycle problem. *European Journal of Operational Research*, 151(2):365– 378, 2003.
- [40] G. Nagy and S. Salhi. Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2):649–672, 2007.

- [41] B. Ombuki-Berman and F. Hanshar. Using genetic algorithms for multidepot vehicle routing. *Studies in Computational Intelligence*, 161:77–99, 2009.
- [42] J. Perl and M.S. Daskin. A warehouse location-routing problem. Transportation Research Part B: Methodological, 19(5):381–396, 1985.
- [43] S. Pirkwieser and G. Raidl. Variable neighborhood search coupled with ilp-based very large neighborhood searches for the (periodic) locationrouting problem. *Hybrid Metaheuristics*, pages 174–189, 2010.
- [44] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations Research, 34(8):2403-2435, 2007.
- [45] C. Prins, C. Prodhon, and R. Wolfler-Calvo. Nouveaux algorithmes pour le problème de localisation et routage sous contraintes de capacité. In MOSIM (4éme Conférence Francophone de Modélisation et Simluation, Nantes, France, volume 4, pages 1115–1122, 2004.
- [46] C. Prins, C. Prodhon, and R. Wolfler-Calvo. A memetic algorithm with population management (ma| pm) for the capacitated location-routing problem. Lecture Notes in Computer Science, 3906:183–194, 2006.
- [47] C. Prins, C. Prodhon, and R. Wolfler-Calvo. Solving the capacitated location-routing problem by a grasp complemented by a learning process and a path relinking. 4OR: A Quarterly Journal of Operations Research, 4(3):221-238, 2006.
- [48] C. Prins, C. Prodhon, A. Ruiz, P. Soriano, and R. Wolfler-Calvo. Solving the capacitated location-routing problem by a cooperative lagrangean relaxation-granular tabu search heuristic. *Transportation Science*, 41 (4):470–483, 2007.
- [49] O.M. Raft. A modular algorithm for an extended vehicle scheduling problem. *European Journal of Operational Research*, 11(1):67–76, 1982.
- [50] G.K. Rand. Methodological choices in depot location studies. Operational Research Quarterly, 27(1):241-249, 1976.

- [51] J. Renaud, F.F. Boctor, and G. Laporte. An improved petal heuristic for the vehicle routing problem. *Journal of the Operational Research Society*, 47(2):329–336, 1996.
- [52] J. Renaud, G. Laporte, and F.F. Boctor. A tabu search heuristic for the multi-depot vehicle routing problem. *Computers and Operations Research*, 23(3):229-235, 1996.
- [53] P. Repoussis, D. Paraskevopoulos, C. Tarantilis, and G. Ioannou. A reactive greedy randomized variable neighborhood tabu search for the vehicle routing problem with time windows. *Hybrid Metaheuristics*, 4030: 124–138, 2006.
- [54] S. Salhi and G.K. Rand. The effect of ignoring routes when locating depots. *European Journal of Operational Research*, 39(2):150–156, 1989.
- [55] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking optimization results using the ruin and recreate principle. *Jour*nal of Computational Physics, 159(2):139–171, 2000.
- [56] P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. *Principles and Practice of Constraint Programming*, 1520:417–431, 1998.
- [57] E. Taillard. Parallel iterative search methods for vehicle routing problems. Networks, 23(8):661-673, 1993.
- [58] S.R. Thangiah and S. Salhi. Genetic clustering: An adaptive heuristic for the multidepot vehicle routing problem. Applied Artificial Intelligence, 15(4):361-83, 2001.
- [59] C.J. Ting and C.H. Chen. A multiple ant colony optimization algorithm for the capacitated location routing problem. *International Journal* of Production Economics, 2012. doi: 10.1016/j.ijpe.2012.06.011. URL http://dx.doi.org/10.1016/j.ijpe.2012.06.011.
- [60] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-routing problem. *INFORMS Journal on Computing*, 15(4): 333-346, 2003.

- [61] D. Tuzun and L.I. Burke. A two-phase tabu search approach to the location routing problem. European Journal of Operational Research, 116(1):87–99, 1999.
- [62] T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm for multi-depot and periodic vehicle routing problems. *Operations Research*, 60(3):611–624, 2012.
- [63] NA Wassan. A reactive tabu search for the vehicle routing problem. Journal of the Operational Research Society, 57(1):111-116, 2005.
- [64] A. Wren and A. Holliday. Computer scheduling of vehicles from one or more depots to a number of delivery points. Operational Research Quarterly, 23(3):333-344, 1972.
- [65] PC Yellow. A computational modification to the savings method of vehicle scheduling. Operational Research Quarterly, 21(2):281–283, 1970.
- [66] V.F. Yu, S.W. Lin, W. Lee, and C.J. Ting. A simulated annealing heuristic for the capacitated location routing problem. *Computers and Industrial Engineering*, 58(2):288–299, 2010.