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Introduction

A field theory (FT) is any physical theory based on the notion of fields, i.e. of a continuous
infinity of degrees of freedom. Thus, FT is naturally formulated in terms of functionals, de-
pending on some field variables.

Classical field theories are dynamical systems whose configuration space Q isinfinite dimen-
sional, being a set of histories, i.e. of maps from some set S to some target M. In many cases
of interest one can assume these maps to be smooth and S and M to be differentiable. Then
one can simply interpret configuration space as a set of sections g of the bundle M x § — S,
in other words for each space point x € S there is a corresponding point g(x) € M. Also
the associated phase space P will be infinite dimensional. Since in ordinary classical dynamics
it is useful to consider phase space as a contangent bundle, also in field theory one can think
about the conjugate momentum p as a map from S to the the cotangent space of M, such that
p(x) € 7;’236)./\/1. In this sense we will consider phase space as the set of sections (p, q) of the
extended cotangent bundle 7*M x & — S, where 7*M denotes the cotangent bundle
of M. In classical field theory the equations of motion are functional differential equations,
that can often be obtained from a variational principle, and any sum over a subset of phase or
configuration space is a functional integral. Such sums appear for example in statistical field
theory (SFT), due to the need of averaging over microscopical ensambles.

Also in quantum mechanics (QM) and quantum field theory (QFT) the equations of mo-



tion are functional differential equations that can be obtained from a variational principle, but
these equations are either for operators or for expectation values, as required by the uncertainty
principle. QM and QFT also allow for a representation in which quantum expectation values
take the form of statistical averages, again functional integrals over a set of histories, provided
one replaces the probability density, encoded in the statistical distribution, with a probability
amplitude, as required by the superposition principle.

Therefore FT is a unifying theoretical framework for the description of a great variety of phe-
nomena, classical and quantum, often also of systems that are known to be far from continuous,
or to show only a finite number of degrees of freedom, such as few or many body quantum sys-
tems or discrete statistical systems. For the latter this is not surprising since approximating the
dynamics of many degrees of freedom by an infinite continuum of them is a very old procedure
which is computationally advantageous and close to many experimental situations. However,
such an approximation always goes along with a challenging problem, that is at the base of the
so-called renormalization group (RG), and that can be described as follows. If one assumes a
system to be continuous, there is practically no way to specify or to measure its properties other
than by putting a bound to the resolution with which one performs such operations. This in-
troduces a scale in the theoretical framework, and almost every building piece of the theory
will acquire a dependence on such a scale. In other words, at every different scale one has a dif-
ferent theory for the description of the system at that resolution. Therefrom the rising of the
question: how to relate all these descriptions in a single framework? The answer to this ques-
tion is of high priority both for phenomenological and for theoretical reasons: on the one hand
we would like to be able to predict the result of measurements without restricting ourselves to
a fixed scale, on the other hand the consistency of the field-theoretic-framework requires us
to be able to connect the properties that this continuum shows at different resolutions. The
flow connecting two theories referring to two different scales is called RG flow, and its study is
therefore of central importance in both SFT and QFT. As a side remark, of course this idea of
limiting the resolution with which one looks at some system and then to link the correspond-
ing different pictures can be applied also to discrete systems and not only to FT. In fact it was
first proposed by Kadanoff in the particular form of a blocking and scaling of spin systems [1],
and it is often referred to as a “coarse-graining” procedure.

In a functional representation, the field variables themselves are defined by the symmetry
requirements on the functionals (which groups and which representations). The set of all the
possible functionals of these fields enjoying the corresponding symmetries can be interpreted
as an infinite dimensional manifold called “theory space”. The parameters let free by the sym-

metry requirements (the couplings) further specify the dynamics and can be considered as



local coordinates on such a space. The RG flow describes how these parameters change when
the scale at which they are “measured” changes, and it is generated by a vector field on the the-
ory space. Nonperturbative methods allow one to get an approximate knowledge of this vector
field even in regions where the theory is strongly interacting. One of these methods, developed
by K. Wilson, F.J. Wegner and A. Houghton [2, 3, 4, 5], is based on a functional equation for
the quantum effective action of the system (in this case theory space is just the space of all the
possible effective actions). This representation of QFT, known as functional RG (fRG), has
been intensively studied and improved in the last four decades, especially its reformulations
by J. Polchinski [6], for the generator of amputated connected Green’s functions, and by C.
Wetterich [7, 8], for the generator of one particle irreducible (1PI) vertices. In this thesis we
will adopt the latter, that is most easily derived from the functional integral representation.
The starting point of this construction is the introduction of an external parameter in the the-
ory. This allows to reduce the task of computing the functional integral to the simpler task
of computing its infinitesimal variation under changes of such a parameter. In quantum me-
chanics the external parameter can be dimensionless, since the number of degrees of freedom
is finite and no regularization is needed. Instead the generalization of the construction to FT’s
requires the introduction of a dimensionful parameter k, such that its variation corresponds to
a coarse graining operation (otherwise we meet infinities in the computation of the infinitesi-
mal variation). This can be done by implementing Wilson’s idea of shell-by-shell integration,
i.e. interpreting k as a cutoff-scale for the Fourier modes of the fields. An alternative way is to
assume that the theory has already been regularized, as for example by the introduction of a
UV cutoft A, in which case it is possible to deal with a dimensionless parameter also in field
theories (related to the ratio between the dimensionful k and A). Since by varying k we will
get a one parameter flow of theories, we will need initial conditions in order to integrate it. A
convenient way to deal with this issue is to choose the dependence on k in such a way that the
flow interpolates between full functional integration (conventionally at k = 0) and no inte-
gration at all (conventionally at k = A, even if A might in some cases be displaced at +00).
The no integration limit can also be realized considering k as a mathematical parameter unre-
lated to a physical coarse-graining procedure, and, in the presence of the physical UV cutoff
A, taking the limit k — 00. From the k-dependent functional integral one can get, by means
of a k-dependent Legendre transform, a corresponding 1PI generator I'y, called average effec-
tive action (AEA). This is in general a highly non local object which encodes all the quantum
properties of the system. In Euclidean space, the AEA satisfies the flow equation

Ori(0) = SSTe[r[0] + R (OR)} (11)



that can now be completely disentangled from its derivation in terms of functional integrals,
and taken as the defining property of I'y and consequently of the dynamics. Here F,(Cz) is the
second functional derivative with respect to the field @ (the latter representing a collective
field variable for all bosonic or fermionic degrees of freedom), and Ry denotes a momentum-
dependent regulator function that suppresses IR modes below a momentum scale k. The solu-
tion to this equation provides for an RG trajectory in theory space interpolating between the
bare action S, (Wilson’s effective action) I't_,o — S, and the full quantum effective action
I' = I'y_0. The integration of this equation starting from an initial condition S, atk = Ais
equivalent to the computation of the functional integral based on this bare action.

Choosing some coordinate system in theory space, one can parameterize the AEA by a pos-
sibly infinite set of generalized dimensionless couplings g; (that could be functions of t =
log(k/ko) only, or even of other variables built out of fields or coordinates or momenta). Then,
the flow equation provides us with the corresponding beta functions 0,g, = ﬂgf (8:8 - )
In order to compute and analyze the RG flow, truncations of the theory space are helpful, in
order to get from this infinite set of partial or ordinary differential equations, a solvable sub-
set. In this thesis we are going to perform such truncations within the general scheme of the
derivative expansion. An alternative scheme would be the vertex expansion, which we are not
going to discuss. For general reviews about the fRG see [9, 10, 11, 12, 13, 14, 15].

Regardless the need for the introduction of a scale k, the application of this representa-
tion to gauge theories has also been successfully studied. Several frameworks for this applica-
tion have been developed, comprehending both manifestly gauge-covariant and noncovariant
methods [13, 14]. In this thesis we are going to take advantage of a formulation based on the

background field method (BFM), adapted to the 1PI fRG in [16]. As in the usual BFM one

introduces the background field AZ and a background gauge-fixing, such as for instance
_ G
Dja = (9,8" + gf"A,)af =0

which breaks the invariance under the full gauge transformation of the fluctuation field a:, but
preserves invariance under a split transformation in which the background transforms inho-

mogeneously while the fluctuation transforms homogeneously
2 _ lay i _ gl
SSAF = EDysj, SSal4 = flays; .

As aresult the corresponding effective action can be defined and it is also invariant under this
split transformation, in such a way that by setting the average A; = AL + &L equal to AL one

recovers invariance under the full inhomogeneous transformation of A. Therefore at any fixed



k the AEA can be split in two parts
[ [@, A, A] = T [®, A] + T¥"°[0, A, A]

the first one being gauge independent and the second one vanishing if one sets A = A. If one
keeps A # A the gauge invariance of the bare action must be imposed on the flow by means of
modified Ward-Takahashi or Slavnov-Taylor identities. In this framework the r.h.s. of the flow
equation is the same of (1.1) but with few caveats: first, the set of fields comprehends, apart
for non-gauge fields, both the bosonic vector AL and the fermionic ghosts ¢, ¢; second, the
fluctuation matrix F,(Cz) is to be interpreted, in the gauge sector, as resulting from differentiations
wirt. A at fixed A.

Generalizations of the flow equation (1.1) allowing for a manifest invariance under repa-
rameterizations of the fields have also been succesfully developed [17], still relying on the
introduction of a background field, within the general framework of the geometric effective
action [18, 19].

By means of eq. (1.1) one can compute the RG flow of a theory and get a picture of how the
dynamics of a system changes when the scale of observation changes. Since the symmetries
exhibited by the system can change along the flow, because of spontaneous symmetry break-
ing or approximate emergence of new symmetries, even the parameterization of the effective
action in terms of the same set of fields in the UV and IR might be inappropriate. Nevertheless,
in this work we use the same bosonic and fermionic degrees of freedom on all scales.

In the derivation of eq. (1.1) from a functional integral, no assumption is made about the
range of modes one is integrating on. Therefore this flow equation representation can be ap-
plied both to effective FT’s and to fundamental (often called renormalizable) ones. The for-
mer are by construction limited to a bounded range of resolutions (i.e. of Fourier modes over
which we integrate), while the latter can be used at every observational scale. Indeed, under-
standingifa FT can be fundamental is one of the hardest questions to be answered, because the
global knowledge of the RG trajectories is required. The flow equation representation is partic-
ularly useful for addressing this task, because its truncations are not limited to weakly coupled
regimes. In this representation the issue of renormalizability can be restated as follows: a the-
ory is fundamental if no bound is imposed on the Fourier modes of the fields, and hence it
is possible to safely move the cutoff scale k within the whole range [0, +00). By “safely” one
means that the ability to get meaningful predictions for the observables is unaltered, and this is
usually associated to the fact that rescaled dimensionless couplings, propagators and vertices,
i.e. Ty itself, stay finite.

A sufficient condition for this is that a suitable fixed point (FP) of the RG flow S* exists in



theory space such that Sy, — S*. AFP is a point g’ in theory space such that

Big): &, ) =0, Vi (12)

where g, are couplings rescaled with respect to (w.rt.) the floating scale in order to be pure
numbers. This is non-Gauflian (NGFP) if at least one coupling is nonvanishing g;k # 0,and
Gauflian (GFP) otherwise.

A well known scenario for the UV completion of a QFT, asymptotic safety (AS), requires
the existence of a NGFP of the RG flow, with a finite number of UV-attractive directions. This
possibility was proposed as a generalization of asymptotic freedom [20]. An asymptotically
free theory lies on a particular subset of theory space (the so-called UV critical dimension of
the GFP) defined by the requirement that in the extreme UV the RG flow drives it into the
GFP. This simple request guarantees that the theory enjoy many good qualities: since at every
finite scale the theory does not sit on the GFD, it is interacting and nontrivial; since the UV
limit is free there is no upper bound on the energy range of applicability; since the points lying
off (but close to) the UV critical surface are brought towards it when flowing to the IR, it is
legitimate to give an approximate description of the system at any finite energy by means of a
theory assumed to lie exactly on this surface and to enjoy asymptotic freedom. It is clear that all
these properties are not specific of the GFP but descend from the only requirement that there
is a FP of the RG with a nontrivial UV critical surface. The further requirement specified in the
definition of AS, namely that this surface be finite dimensional, is intended to automatically
provide asymptotically safe theories with another necessary good property: predictivity. In
fact, in this case the only condition that the theory lie on the UV critical surface guarantees
that there is only a finite number of free parameters in it.

How does one compute the dimensionality of the UV critical surface? Assuming the regu-

larity of the flow, it is sufhicient to study the linearized flow around the FP

O j j aﬁ j
. = Bi P * ey Bi = — .
‘g (g—g)+ 05, s

(1.3)
The critical exponents @' correspond to the negative of the eigenvalues of the stability matrix
B/. They allow for a classification of physical parameters. All eigendirections with ®' < 0
are IR attractive and UV repulsive, the eigendirections with @' > 0 are IR repulsive and UV
attractive. The former are called irrelevant, because in the case of the GFP these couplings die
out towards the IR, while the latter are called relevant because in the case of the GFP they grow

towards the IR and thus determine the macroscopic physics. The behavior of the marginal di-



rections, with @' = 0, depends on the higher-order terms in the expansion about the fixed
point. Hence the number of relevant and marginally-relevant directions is the number of cou-
plings parameterizing the UV critical surface. The theory is predictive if this number is finite. In
the case of the GFP, the present construction corresponds to the standard perturbative power-
counting analysis and the critical exponents are equal to the canonical dimensions of the cou-
plings.

In conclusion, after one has found a “fundamental’, or “microscopic”, action §* and has com-
puted the RG flow around it, one can decide which one-parameter-family of bare actions S,
can be quantized thus leading to a renormalizable theory. Examples of asymptotically safe the-
ories are provided by four-fermion models such as the Gross-Neveu modelin2 < d < 4
dimensions [21]. Even though these models are perturbatively nonrenormalizable and thus
seemingly trivial, they are nonperturbatively renormalizable at a NGFP and can be extended
to arbitrarily high scales. A similar result was found for nonlinear sigma models in d > 2
[17, 22]. Even the possibility that quantum Einstein gravity could be renormalizable within
the AS scenario has been supported by many studies [23, 24, 25, 26,27, 28, 29, 30, 31, 32, 33 ];
these also include certain models with a nontrivial scalar and/or fermion sector [34, 35, 36].
AS scenarios have also been successfully developed for extra-dimensional gauge theories [37].

The whole construction just discussed in QFT has a very important analog in SFT. In the
latter case Sp can be interpreted as the action for a statistical theory defined on a lattice of
spacing a ~ (1/A). Since it is known that phase transitions can occur only in the continuum
limit a — 0, and that at the transition the theory becomes conformal and hence RG-invariant,
looking for FP of the RG that are attractive inthe k — A — oo limit corresponds to looking for
critical theories describing phase transitions. The critical exponents @' of each FP are then the
usual critical exponents describing the approach to the corresponding phase transition. The
dimensionality of the critical surface thus corresponds to the universality class of the critical
theory. Hence, in the unifying framework of FT, the search for FP’s of the RG has the double
interest of a research of possibly renormalizable QFT’s and of critical points and universality
classes in SFT.

In this thesis we are going to reconsider and extend the RG flow equation representation of
FT in Chapters 2 and 3, and we are going to discuss some specific examples of its application

in Chapters 3, 4, and S.
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1PI functional renormalization flow equation

STARTING FROM THE BASIC PATH INTEGRAL IN PHASE SPACE, we reconsider the functional
approach to the RG flow of the one particle irreducible average effective action. On employing
abalanced coarse-graining procedure for the canonical variables we obtain a functional integral
with a non trivial measure which leads to a flow equation for the Lagrangian average effective
action. We first address quantum mechanics for boson and fermion degrees of freedom and
we then extend the construction to quantum field theories. For this flow equation we discuss
the reconstruction of the bare action and the implications on the computation of the vacuum

energy density.

2.1 COARSE-GRAINING IN PHASE SPACE

In the introduction of this thesis we have reviewed how the Wilsonian idea of renormaliza-
tion [2, 3, 4], which started from the analysis of Kadanoff’s blocking and scaling of spin sys-
tems [1] (more generally coarse-graining), can be conveniently formulated analytically in a
functional formulation. The idea of a step-by-step integration of the quantum fluctuations typ-
ically belonging to a momentum shell, followed by rescaling, can be implemented in a smooth

way [S, 6,7, 8] and leads to a differential equation for the effective action as a function of the



scale parameter.

The starting point of all these formalisms is the functional quantization procedure based
on the path integral in phase space with a Liouville measure corresponding to the configura-
tion variables “Q” and their conjugate canonical momenta ‘P”. The integrand depends on an
action which is built from an Hamiltonian and thus at this level the approach is not manifestly
Lorentz covariant. For Hamiltonians quadratically dependent on the conjugate momenta, the
integration in the “P” variables is trivially performed getting infinite factors contributing to the
functional measure, which usually in flat spacetime is constant and thus can be neglected in the
computation of correlation functions. Thus one is left with a covariant formulation with func-
tional integrals in configuration space. At this point one usually implements a coarse-graining
on the configuration variables “‘Q” only.

The insertion of a smooth cutoff must be performed in such a way to modify the Lagrangian
action and the configuration space functional measure [7]. In order to understand that this is
necessary to get a balanced regularization of the divergences of the path integral it is sufficient to
recall that the path integral of quantum mechanics is finite, as can be seen performing a suitable
skeletonization, thanks to the fact that singular contributions coming from the configuration
space functional measure, i.e. from the integration in the canonical momenta, are canceled by
others appearing in the integration of the Lagrangian action in configuration space.

The need for a consistent regularization of the configuration space functional measure is
better understood from the more fundamental point of view of the phase space path integral, as
we will try to explain in the following sections. As already stated, the idea of coarse-graining as
“Integrating out” quantum fluctuations in the UV region is usually implemented in a functional
integral after the integration of the conjugate momenta is performed. In this way even if any
degree of freedom is associated to a pair of ‘P” and “Q” variables, the integration of the ‘P” modes
inside one shell is performed well before the integration of the ‘Q” modes of the same shell.
Thus the whole procedure seems unbalanced.

In this chapter we therefore propose to implement a balanced coarse-graining procedure in
phase space, by introducing a cutoff operator which affects both configuration variables and
conjugate momenta, and we will show how this point of view singles out the proper way to
regularize the configuration space path integral. In fact, after a regularization of the functional
integral in phase space, one can choose to integrate out the conjugate momenta (for a quadratic
dependence) and obtain a path integral in configuration space with a non trivial dependence of
the measure on the cutoff operator. According to this regularization, we investigate the RG flow
equation for the AEA. This flow equation, in contrast with the one neglecting the regularization

of the functional measure, leads to the same results obtained by other quantization methods



under the Weyl ordering prescription.

We first analyze quantum mechanics of a system of bosonic degrees of freedom and then
consider also the fermionic case. Later we move to QFT, where the choice of the operator im-
plementing the coarse-graining procedure is guided by the requirement of Lorentz invariance.
Nevertheless we briefly discuss also some consequences of Lorentz breaking choices.

Finally we illustrate in some cases the relation between the AEA and the bare action, defined
as the one appearing inside the path integral, with or without a UV cutoff in the theory. In the
UV region the approach of the AEA to the bare action is found to depend on the choice of the
coarse-graining operator, and in particular on its singularity properties.

During our discussion we also analyze the flow of the constant term in the potential of the
AEA, which is related to the vacuum energy. We anticipate that the Lorentz invariant coarse-
graining leads naturally to an interesting fact: in presence of an UV cutoff A the vacuum energy,
which is computed integrating the flow from such a UV scale down to the IR, is quadratically
(and not quartically) divergent in A for a free massive theory, while it vanishes for a free mass-
less theory. This property of the vacuum energy density was recently discussed [38, 39] on
different grounds in a standard perturbative QFT framework, by performing subtractions jus-

tified by symmetry and reality conditions.

2.2  FLOW EQUATION IN QUANTUM MECHANICS

2.2.1 BOSONIC DEGREES OF FREEDOM

Let’s consider a classical system with one bosonic degree of freedom governed by the following

Hamiltonian:
1
H(p,q) = S p* + Vlg) (2.1)

where g and p are canonically conjugate variables with Poisson bracket: [gq, p] = 1. The quan-
tization of such a system is performed via the following Euclidean phase-space path integral
(h=1):

Z[]] = / [dpdq] ulp, q]efdt lin(6)9a()—H(p(1).4(£)) +J()a(8)] (2.2)

Here we explicited the presence of an unspecified functional measure y[p, g. In a skeletonized
version of the path integral one usually considers N time-slices and at each instant of time inte-
grates over the corresponding phase space. Since the correct measure for each of these phase-
space integrations is the Liouville measure, that is the square root of the determinant of the
symplectic form, in a time-slicing definition of the path integral the functional measure is the

product of N Liouville measures, which is clearly ill-defined in the continuum limit N — oo.

10



Of course this is not the only possible source of infinities for Z: both the p and the subsequent g
integration bring ill-defined factors. Since Z could be UV-finite, as e.g. in the free particle case,
we must conclude that all these divergences can mutually cancel. This leads to think that if one
regularizes one of the contributions, also the others should be regularized in a consistent way.
This is not what is done in the manipulations of the functional integral leading to the many
exact RG flow equations present in the literature. In the following we are going to explain why
this is so, restricting ourselves to the one particle irreducible framework. The translation of our
reasoning to the flow of Wilson’s effective action should be straightforward.

The usual modified configuration-space path integral lying behind Wetterich equation [7]

reads:

ZilJ] = Wil — /[dq]y[q]e—(S[qHASk[q])Hdt}q. (2.3)

where y[q] is a k-independent Lagrangian measure, for our bosonic system $[g| is the time

integral of:

1
L(q(t), Dg(t) = - (0q(1))* + V(q(t)) (2.4)
and in (2.3) one adds to it a cutoff term AS;(q) = % [ q(t) Re(—?2)q(t) to allow for the inte-

gration of (—d?)-modes only above some infrared cutoff k. In other words, one introduces a

regulator in the kinetic term of the action, by means of the substitution:

! /  (0q()" — | / dtDiq(t) (1 + re(—?))? Diq®) (2.5)

where
Ri(=02) = ((1+n(=07))" = 1) (~02). (26)

In this way one affects the divergences arising from the integration of the exponential factor
¢S4 but does not modify the infinite determinant implicit in the Lagrangian functional mea-
sure. Equivalently, the modified generating functional (2.3) can be obtained by the following
phase-space path integral:

ZlJ] = / [dpdq) ulp. q]efdt [p(6) (1+n(—02))idra(t) —H(p(),a()) +T(£)a(#)] (2.7)

by completing the square in the exponential and then integrating in the momenta, thus getting
an infinite factor changing the Liouville measure y[p, q| into the Lagrangian measure y[q|. Later

in this section we will write such a factor as:

NI

a2
ulp, q (Det(=97)

(2.8)

11



because for the system under consideration we can express this ratio in terms of the functional
integral for a free particle'. Therefore we see that the modification (2.5) affects the definition
of the integral over q(t) but it does nothing for the integral over p(t) nor for the Hamiltonian
functional measure. The last form (2.7) of the modified generating functional is suggestive
because it allows the interpretation of the coarse graining procedure as a modified Legendre
transform, i.e. a k-dependent definition of the bare Lagrangian corresponding to a fixed bare
Hamiltonian.

This also suggests us a way to implement the previously described principle of regularizing
on the same footing both the exponential factor and the measure: if we modify the Legendre
transform, we should also consistently modify the symplectic structure because the two are
strictly tied together. In fact, recall that the Legendre transform term p(£)J;q(t)dt is just the
pull back of the Liouville 1-form A = pdq by means of the trajectory-parameterizing map
(p(t), q(t)) and that the symplectic form is ¢ = dA. Thus if we substitute A — A, = (1+1,) 2
we should also substitute 0 — 0 = (1 + r;) 0 and correspondingly u = (Det 0)% — Yy =
(Det oy) :.Inthe following, to simplify the notation, we will take advantage of the fact that for
our system the Liouville measure is a constant, equal to one for canonical coordinates, and we
will write the previous functional measure as y, = (Det(1 + ry)).

To sum up, as aregularization we introduce a frequency-dependence in the symplectic struc-
ture, leaving unaltered the Hamiltonian and the phase space manifold. In the present case this

leads to the following generating functional:
Z])] = / [dpdgq] (Det(1 + r¢)) ¢J dtlp(1+r)idq—Hlp.q)+]a] (2.9)

To see that this modification of the path integral affects all possible sources of divergences, i.e.
the p-integration, the g-integration and the measure, it is sufficient to change the p-integration

variable:

P(t) = (1 +re(—02))7p(t) — i(1 + r(—02)) 2 Duq(1) (2.10)
andget:
7l = / (dPdg] (Det(1 -+ ry))} ¢~ Cla-+asla)+ e [-3 4P

_ / [dq] (Det(—02)Det(1 + r,)?)F ¢ Slalasiia+fatsa (2.11)

'Recall [40] that in a time-slicing definition of the path integral for a Green function such that T = f dt =
Ne we have y[p, q] = 1V, u[qg] = £ N/2. For a free particle (g, T|0,0) = u[q] (Det(—@f))fi e /2T —
(22T)"2¢=9/2T (inunits m = h = 1). On the rhs of eqn. (2.8) there is no factor (27T) "3 because we
consider a measure [dp, dq| for a partition function.
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where we evaluated the integral over P(t) as in eqn.(2.8) but this time with a k correction. In

terms of the usual effective average action (AEA), defined by:

rufg = min  faga - wipn) - sl (212)
eqn.(3.20) entails the following exact RG equation (ERGE)
. 1 (2) -1 1 5 1 -
I = ETr (rk +Rk> Ri| — ETr [(—at + Ry) Rk] (2.13)

where the dot stands for differentiation with respect to log k and must not be confused with a
time derivative, that in this chapter will always be denoted as J;. The derivation of this equation
in brief goes as follows: using egs.(2.12,3.20,2.6) and recalling that the connected two point

function is the inverse of the Hessian matrix for (I'y + AS}), we can write:

gl = —Wi {Sgqu} — kDA, (7]

S

=1/ (2 — @) (9R(~02) (a — 0) (1), — KDL log (Det(~2 + o)
= //dtdt F(Z) FR) (= +Rk)’1}(t, ) Re(—02)8(t — ')

Notice that the naked differential operator in the additional subtraction term in eq.(2.13)
seemingly breaks the invariance under constant field rescalings. This is not the case because the
general form of this new term is a (log k)-derivative of the logarithm of the regularized func-
tional measure. Under rescalings of the fields inside the path integral, the functional measure
correctly transforms and so does the subtraction term. For example, since in the present case
ulq) = (Det(—0} + Rk))%, ifq = \/Zc q theny,[q'] = (Det Zy(—0} + Rk))% such that the
subtraction term becomes — 3 Tr [(Zk(—f)t?‘ +R)) ! k@k(ZkRk)] .

Using eqn.(2.13) in the case of a single harmonic oscillator and integrating the flow from
k = oo down to k = 0, one obtains w/2 for the energy of the vacuum. This result was already
derived in [ 14] starting from the usual Wetterich equation and adding to it a subtraction term
interpreted as corresponding to an UV counter-term in the bare action, required to guarantee
that for zero potential and frequency the ground state energy of the oscillator be zero. Our point
of view is different in that we would like to have a flow equation representation of quantum
mechanics where the quantities are finite at all scales and counter-terms are unnecessary. We
find that this can be achieved with our construction by requiring that the k — A limit of I'y be

the classical action we are quantizing, free of any R, dependence. For a general discussion on
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this point we refer the reader to section 4. In the following we will briefly sketch how to derive
this result in the present context.

Let us consider a truncation for the effective action with Vi(q) = E; + %wzqz, so that
F,EZ) = (=024 w*)§(t—1'). We shall consider the UV “initial conditions” such that B, = 0
and look for Ei—o. We shall later comment on this choice when discussing the relation between
the AEA and the bare action. On employing the so called optimized [41, 42] cutoff function

Ri(z) = (K — z)0(K* — z) and switching to a Fourier representation of the operators, one

. 1 dE 1 1
tVie== [dt | =0(k* —E*)2k* | — — = 2.1
/d k 2/d/27r< ) [k2+V§<’ kz} (2.14)

which, after removing the “volume” factor ( f dt) on both sides of the equation, leads to

obtains

1 —w? w
OB = — 5 = Ejo = 3 (2.15)

Tk* + w
Let us finally interpret this result analyzing directly the integro-differential equation which is
satisfied by the AEA:

e MU= [dq] y, exp - —‘88 — 9—9)Re(q—7q)) - 2.16
il wow (st + [ -0 "5 - [@-aria-9). @10

2

Since for a free theory one has an AEA T [q] = S[q] + Ex, one finds, using a compact notation

where “-” stands for an integration,
- 1 B _ 1_ _
09— i) pop( 300 (=08 + Rt P)-(g-0) - 33 +)q)

Det (—0? + R, 1/2 1 A
(Det (—592 TRt )aﬂ)) P (—aq (=0 W) q) (2.17)
t

One then notes that the first factor in the last line of eqn. (2.17) becomes 1 in the k — oo limit
while for k — 0 gives the expected zero energy contribution ™ J 43 We remark that in order
to obtain these values in the UV and IR limit of k the cutoff operator R should probably satisty
some regularity conditions. These are fulfilled for the previously mentioned optimized cutoff

and for the so called Callan-Symanzik cutoff (R = k?), but not for discontinuous cutoffs such

as R(z) = K*0(k* — z).
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2.2.2 FERMIONIC DEGREES OF FREEDOM

In this section we will study a free system whose Lagrangian variables are n real Grassmann-

valued functions of time: {Gi(t) }l, _,»evolving according to the following Lagrangian:

L(6(t), 9,6(t)) = %Gi(t)iat(?j(t)&j. (2.18)

Just like in the previous section we consider as a starting point the quantization of this theory
by means of a Hamiltonian path integral. In building a phase space out of (3.44) we find n

second class primary constraints:
i .
x,() == ma(t) + ESajGJ(t) =0 (2.19)

which cause the canonical Hamiltonian to vanish. The relevant phase space is the surface S
defined by (3.45), a complete set of independent coordinates on it is given by 6’ and the func-
tional integral is to be taken over all paths 6'(t) lying on this surface. The appropriate measure
for functional integration over § is again the square root of the superdeterminant of the sym-
plectic form on S. In presence of second class constraints and assuming that the whole phase
space is endowed with a symplectic structure o, we can define a nondegenerate symplectic
form ¢ on the reduced phase space, simply by restricting o to S. As the inverse of ¢ is the Pois-
son bracket [, |, the inverse of ¢ is the Dirac bracket [, |, which in the reduced phase space
coordinates 6’ has components: [0, @] = —i§7 = Ve Xj] . (Everything we write about
constrained systems is explained for example in [43].) Thus the functional integral over the

reduced phase space reads:
Z= / [d6)u[6]e = [0 DA 0)id; (2.20)

Here the Lagrangian (3.44) emerges from the 9,0/; term in phase space after having solved
the second class constraints, or equivalently after having performed the following integration

over momenta:

Z= / [d0dx)u[6, =] (H 3[@) ¢ JAtlO®m—H] (221)

Following the same coarse graining scheme explained in the previous section we modify
the symplectic structure of the reduced phase space replacing & with oy = (1 + r¢)o, where the
definition of ry is still such that (1 + ri(—02))*(—0?) is an IR safe second order differential
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operator. However eqn. (2.6) does not apply to the fermionic case, because in this case one
usually chooses Ry in such a way that |i0; + Ry.(i0;)|? is a regularized kinetic operator for a
bosonic degree of freedom. Therefore in this case we can write Ry (i0;) = r¢(—0})i0;. Corre-
spondingly the functional measure becomes: y, = (SDet &k)% = u (SDet(1 + rk))g. Then
the modified path integral reads:

Zr = /[d@dﬂ]?‘[e, 7| (H 5[)@]) (SDet(1 + rk))% o= Jdt ()00

Such a k-dependence can be translated in the following equation for the usual effective average
action:

L1 @) -1 1 . ~17

[ = SSTr | (T + R ) Re| — STr [(i0: + Re) ™ Ry] (2.23)

where the traces as usual count also the number of Lagrangian variables. Note that the % factors
on the rhs are consistent with the traditional Wetterich equation for Fermi fields, since in our
case we are dealing with real Grassmann variables.

The generalization of the previous discussion to the case of n complex Grassmann variables
{17"},-:17“.7,, and to interacting systems is straightforward. As long as the kinetic term of the
Lagrangian is of first order in time-derivatives and real, such as for example in: L = 7'i0,/§ i+
V(n',#/), we find 2n second class primary constraints: {x_, ¥, }a=1,....n-  relates the conjugate
momentum of # to #, whilst ¥ relates the conjugate momentum of 7 to 5. In order to find the
correct functional measure we can just compute the matrix of the Poisson brackets of these

constraints. Since:
[XmXp] = [Xa’Xﬂ] = 07 [Xa’ Xﬂ] = [Xa’Xﬂ] (2'24)

then ‘SDet &ij|% = |SDet ([, #/]')| therefore, if we do not count the complex conjugate
of a bracket as an independent bracket, the 3 exponent of the superdeterminants gets sim-
plified in all previous formulas. As a consequence, applying the same regularization scheme
of eqn. (3.47) we are led to an equation for the effective average action which is identical to
eqn. (2.23) but without the % factors on the rhs.

Such an equation can be used to compute the vacuum energy of a fermionic oscillator in

quantum mechanics. Pick a complex Grassmann variable 7, and investigate the following trun-
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cation (w > 0):
Tiln] = /dt (1%i0m + wn'n + Ey) . (2.25)
Proceeding along the same lines as for the bosonic oscillator, one finds that the quantum en-

ergy of the vacuum is E;, = —w/2, i.e. again what one would have computed by canonical

quantization based on Weyl ordering prescription.

2.3  FLOW EQUATION IN FIELD THEORY

In this section we want to generalize the previous discussion to the case of field theory. Let’s

start with the example of a scalar field theory with (Euclidean) Lagrangian density:
1 2, L 2
L= 2(0p)" + S [Vol" + Vip) (2:26)

or equivalently, defining the momentum conjugate variable = w.r.t. ¢, with Hamiltonian den-
sity:
1 1
H= 57:2 + E]ch|2 + V(9). (2.27)

Asinsection 2.1, our starting point is the quantization of such a system by the usual (Euclidean)

Hamiltonian path integral
Z-— / (drdo) ul, gl I 4 (-intoot#) (228)

Again, in a skeletonized version of the path integral one considers N time-slices and at each
instant of time integrates over a corresponding phase space; therefore also in this case the func-
tional measure is related to the Liouville measure. Hence let’s just perform the same modifica-

tion of the Liouville form we introduced before:

/7780<p — /ﬂ(l—i—rk)@(,(p

ulm ol = wlm o] = (Det(1+re)) plm ¢l (2.29)

where we still do not specify which differential operator r, depends on. Exactly the same ma-
nipulations we performed in equations (2.10,3.20) show that also in this case such a prescrip-

tion is sufficient to affect simultaneously the measure and the following two quadratic forms in
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the action:
1 1 )
E/(?()(P&()(P — E/(%(p (1 +1"k) 80<p

1 1
— |l - - |1a 1
2/ 2/ (1+r)

where ITis defined in analogy with eqn.(2.10). But the remaining quadratic form 0;p0' ¢ is left
unaffected by (2.29). Therefore we must supplement (2.29) with a second regularization:

1 . 1 )
3 /a,-cpanp — 5/8@ (1+ ?k)z J'p (2.30)

for some 7 a priori independent of 7. In conclusion the final modified path integral for a

generic theory of one scalar field reads:
Z = / [dndo] ulx, @] (Det(1 + ry)) ef 4 (=(-+r)dop—H)—AH
= / [do] u[g] (Det(1 + ry.)) e~ (Slol+aSkleD (231)

where we denoted:

1 .
AH, = E/a@ [(1+7)*—1] 0

1
AS, = S /@0¢ [(1+7n)>—1] 0% + AH. (2.32)

Regarding the freedom to independently choose r; and 7, we shall discuss in the next subsec-
tions several choices one can make.

There are also possible alternative approaches which are leading directly to covariant results.
One could be to adopt the so called covariant Hamiltonian formalism for classical field theory,
in which one introduces d conjugate momenta to ¢, one for each partial derivative. In this
formulation a regularization of the consequent polysymplectic structure would automatically
provide a7, = ri. Such an approach deserves further analysis to define the appropriate func-
tional measure which should be adopted in the corresponding Hamiltonian path integral.

Another could be to slightly modify our regularization prescription, starting not from the
phase space but from the configuration space path integral. In this framework the introduc-
tion of a covariant k-dependent operator in the Lagrangian must be accompanied by a similar
modification of the corresponding Lagrangian measure, which is the reciprocal of the square

root of the determinant of the advanced Green function (see for example [18]). We shall not
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discuss more on this here.

On the base of common sense we expect the case of fermionic fields to difter only by two
aspects: the fields will be Grassmann-valued and there will be constraints. The first point only
changes determinants in superdeterminants; the second one must be dealt with as in section
2.2, integrating over the reduced phase space and, since a Dirac fermion comprehends two
complex Grassmann variables, using as a measure (SDet([y, \7/]:1))2. Following these lines

one gets the following modified path integral:

Zr = / [dydy|u[v, ¥|SDet(1 + rk)e*“[‘ﬂﬂsk[wn (2.33)

where:
ASk == /@rkiyoﬁo\//—i-/\]/?kiyiai\//. (234)

Now it is time to comment on the definition of the operators r; and 7. Different choices of
them can be made, specifying their forms as functions of the modes and also the differential

operator whose modes they depend on. Let us analyze few examples.

2.3.1 LORENTZ INVARIANT CUTOFF

The most natural choice is to take a Lorentz invariant cutoff. For a pure scalar theory it is suf-
ficient to investigate the modes of the Lorentz scalar operator —[1 = —J,0¥, and in order
to preserve Lorentz symmetry we are compelled to choose 7,.(—[J) = ri(—0). As already
recalled in section 2.1 the usual notation is: (1 + ri(—0))*(—0) = —O + Re(—0J) with the
cutoff function Ry (z) enjoying all the properties required to suppress the functional integration

for z << k”. Thus in this case eqn. (2.32) reduces to the more traditional form:

ASilp) = 5 / dx oRe(~ g . (235)

Plugging this expression into (2.31), defining the effective average action as usual, and taking

the k-derivative one gets:
. . 1 (2) -1 . l -1 =
Do = STr | (T +Re)  Re| — T [(—O0+Re) "Ry - (2.36)

The requirement of Lorentz invariance also leads to a similar equation for Dirac Fermions:

I'c = STr {(rff) + Rk> - Rkl —STr [(id + R) 'Ry - (2.37)
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Let us analyze the flow equation for the scalar field case, using an optimized cutoff function
Ri(z) = (K — 2)0(k* — z). In the local potential approximation and neglecting anomalous
dimensions for d = 4 one finds

k* 1

V0) = Sy [T Vi (238)

This is valid without approximation for a free massive field with V}/(9) = m?. In this case the
only non trivially running parameter is the field independent term v of the potential which we
expect to contribute to the “vacuum energy”, while the dimensionful mass m is constant along
the flow.

One may consider the case in which A is the scale at which the bare action is defined. Then

integrating the flow from k = A down to k = 0 one obtains

2

Vieo — Vien = @ {mZAZ — m*log (l + %)} ) (2.39)
However this is not a quantitatively trustable estimate of the difference between the quan-
tum vacuum energy and the bare one at the cutoff A, for reasons that we shall discuss in de-
tail in section 4. Nevertheless it qualitatively agrees with the result we will compute in that
section, because it correctly shows that the contribution to v from the quantum fluctuations,
with the above Lorentz invariant prescription, is positive and diverges only quadratically as
A — 00. Moreover it vanishes in the case of a massless field. This possibility was indeed
discussed [38, 39] on different grounds in a standard QFT framework. We note that in the
present approach this fact is indeed related to Lorentz invariance, but it is also the consequence
of having treated carefully the measure in the path integral which is the starting point of the
quantization procedure. Indeed if one employs a flow equation in which the subtraction term
due to the regularization of the measure is dropped, then v,—¢ — vx—x has an extra contribu-
tion —A*/ (8 (47)*) that leads to a negative value for A > m, is quartic divergent with the
Lorentz invariant cutoff, and does not vanish in the massless case. As already discussed for the
harmonic oscillator, this extra contribution can be interpreted as due to a deformation of the
bare action at the scale k = A by the regulator AS,, and washed away by means of a controlled
subtraction in the flow equation, which is tantamount to adding counter-terms to I',—,. The
fact that in the present approach these counter-terms are not needed leads to the expectation
that something has changed in the relationship between the EAA and the bare action, as we

will discuss in section 4.
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2.3.2 LORENTZ BREAKING PSEUDO CUTOFFS

We consider here a special case where the cutoff is such that it organizes the integration in
the path integral according to the modes associated to the operator —0?. More precisely we
employ the same r,(—0?) of eqn. (2.6) and we take a vanishing 7. Therefore the quadratic
form in the spatial derivatives of the field is not affected at all and any integration in the (d — 1)-
dimensional space is divergent and should be regularized by other means. The flow equation

now reads
. 1 (2) -1 . 1 2 —1 -
I‘k = ETI' (Fk + Rk) Rk — ETI‘ [(—@ —|— Rk) Rk] . (240)

In the Fourier representation and employing the same optimized cutoff function Ry(z) as be-

fore, one can write

o KB dtp 1 1
i = | Gopts [ v ) (241

Again for a free massive field, assuming an implicit regularization for the p integration one can

perform the integration of the flow and, defining w; = /|p|* + m?, obtains

dd_lp a)p A dd_lp wf,
Vi—o — Vik=p = / — — arctan — — — — (2.42)
reg (27)47 1 w5 A0 [, (2m)41 2

which is the usual integrated vacuum energy of all the vacuum fluctuations, which is not a
Lorentz scalar. Note that the flow equation without the subtraction term due to the measure,
for such a cutoff, leads to an extra divergent negative contribution: —% f (j;%.

Other kinds of Lorentz-breaking coarse-graining procedure can be implemented using more
complicated cutoff operators. As a simple non trivial example consider Ry (—9?, —J) = (k*—
(=02))0[k* — (—0O)] for (1 4+ r)* = 1 + R(—0?, —0)/(—9?) , while 7, = 0. This cutoff
organizes the integration of the modes according to the eigenvalues of the Laplacian, which is
a Lorentz invariant operator, but modifies only the time derivative part in the action (and the
conjugate momenta) leaving the spatial derivative term untouched.

Let us note that sometimes it may be useful from a phenomenological point of view to allow

for a Lorentz-breaking coarse-graining procedure, depending on which observable one may be

interested in and on the experimental setup.
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24 RELATION BETWEEN THE AVERAGE EFFECTIVE ACTION AND THE BARE AC-

TION

An interesting point to be discussed, already addressed in [44], is the relation between the AEA
satisfying the flow equation and the bare action of the theory, appearing inside the functional
integral. Traditionally physicists have been interested in investigating this relationship only in
one direction, i.e. moving from the choice of a “classical” bare action to the computation of the
corresponding “quantum” effective action, i.e. in flowing the RG towards the IR. Why should
the other direction being interesting?

One answer could be that if we turn the previous point of view upside down, looking for the
action to be plugged inside a path integral in order to get a previously chosen quantum effective
action, we are just looking for a Wilson effective action, whose scale of reference depends on
the scale we use to regularize the path integral. Thus, in the limit in which this regularization is
removed, the bare action we are looking for becomes the UV limit of Wilson’s effective action.
This is why the RG flow of the AEA towards the UV has been used in many recent studies
devoted to investigate the possible UV completion of several QFTs, in the sense of Weinberg’s
asymptotic safety [20], as already discussed in the introducing chapter of this thesis.

Another possible answer, as already stressed in [44], is that finding which classical system,
once quantized, leads to the theory under investigation, is important to establish relationships
with other theories that should describe the same system but that follow from different quanti-
zation schemes. For example, in asymptotic safety scenarios for gravity, knowledge of the bare
action might lead to a better understanding of possible relations between the QFT defined
by renormalizable trajectories in the theory space of Einstein gravity and other approaches to
quantum gravity.

Thus we face the problem of computing the bare action from the AEA just by means of the
flow equation and its solutions, without resorting to the path integral formulation of QFT. In
this section for sake of simplicity we will address this problem only for a scalar theory, restrict-
ing ourselves to a Lorentz invariant cutoff Ri.(—J) (or Ri(—0?) in the QM case). We shall
see that in the present case of a modified Wetterich equation we can push the analysis of the
relation between the AEA and the bare action in a slightly different direction from the stan-
dard approach. We organize our discussion distinguishing between two qualitatively different
cases, the one in which a sharp UV cutoft is introduced, and the one without it. No need to

recall that the latter is allowed because of the ERGE being free of UV divergences.
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2.4.1 IN PRESENCE OF A UV CUTOFF

So, let’s assume that our theory has a Lagrangian bare action S* defined in the presence of a
configuration space measure y”, both dependent on a UV cutoff A. Of course one is free to
redefine the bare action adding the — log y* term to $* and removing y* from the measure.
The dependence on the UV cutoff A can also be seen as reflecting the fact that our bare action
might follow from a coarse-graining procedure started with some other bare action defined on
a larger space with a larger cutoff, in the Wilsonian sense. Therefore for different values of A
one has a set of different Wilsonian actions S* all referring to the same physical system. The
removal of the UV cutoft is associated to the limiting procedure A — 00, and is possible only

for fundamental, in contrast to effective, theories. Starting from a path integral of the kind

/ [dy]™ e (243)

for fundamental theories one should obtain finite meaningful matrix elements in the limit A —
0.

In presence of both the IR cutoff k and the UV cutoff A, the definition of the AEA T is
formally the same of the case without any A. As before, under the requirement that R; vanishes
in the limit k — 0, I'y* approaches the standard effective action I'* in the same limit. A less
simple problem is what happens to I';* as k grows. Regardless of the presence of any UV cutoff,
since as k becomes bigger and bigger less and less modes of the fields are being integrated, the
most reasonable requirement seems to be that when the functional integration is completely
suppressed, the AEA approaches the bare action. The best way to understand how this can
happen is to look at the integro-differential equation satisfied by the AEA, which in our case

depends on a regulated configuration space measure yj:

T = [t exp (~S2[] + [ (—9) =5 — [ (x—p)Re(x—9)) . (244)
R S R R )

If, as k grows and approaches some limiting value, the k-dependent part of the integrand on the
rhs of eq.(2.44) converges to a representation of a functional delta

oTyle] 1

ep ([ L ki) el (4s)
(/ S 2/ )

then at this limiting value of k the functional integral is completely suppressed and the AEA
equals the bare action. To ensure that the k-dependent terms define a rising delta functional

we need to make assumptions both on the UV asymptotics of the AEA and on the properties
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of the regulator Ry. In fact the lhs of eqn. (2.45) can be rewritten, in condensed notation and

by completing the quadratic form, as

A 18T [e] - 4 8Tl 1 STRle]l + 0\ 4 - ST gl
Z R — |y—o——C RY)VR (y—o—RT. L)Y
[’lk eXP{z S(P k S(P 2 X (P S(P k k X <P k
(2.46)

From this last equation we see that if the first term in the exponent of eqn. (2.46) and the

. sS—1 8} . Ty . .
shift term R ' - §—¢M both vanish when k reaches its limiting UV value, and if the remaining

functional .
yﬁexp{—g (—9) 'Rk~(x—<z>)} (2.47)

behaves as a normalized Gaussian functional with vanishing variance in the same limit, this
is enough to recover a delta functional. These conditions can on their turn be satisfied by as-
suming that physically allowed AEA are bounded in k and that the dimensionless version of Ry
diverges as k reaches its limiting UV value.

Of course the details about which limiting UV value of k one could approach and of which
properties the regulator Ry must enjoy in order to completely suppress the integration and fur-
nish the required rising delta strongly depend on the presence or absence of a UV cutoff. In
the following we shall comment on all these details and also on the assumption that the AEA
be bounded in k, but before starting analyzing all possible scenarios let us stress that in or-
der to have a chance to build a rising delta functional a crucial role is played by the regularized
functional measure (corresponding to a regularized Liouville measure in phase space), without
which we would lack the Gaussian normalization factor in (2.47). Later on we will explicitly
work out in a simple specific case the proof that our regularization of the functional measure
is exactly what is needed to normalize the Gaussian rising delta. Finally it could be useful to
recall that in studying the UV asymptotics, and in other computations too, one should choose
a unit of mass and work with dimensionless quantities, that is, one should perform a general
rescaling with respect to some M. In presence of a UV cutoft A, M = A is a possible choice
related to the domain of definition of our theory. If the UV cutoff A is absent M = ks also a
natural choice.

So far only general arguments, so let us start getting more specific. Let us first deal with the
case in which the presence of a UV cutoft A is explicitly assumed. In this case there seem to
exist two main choices for the limiting value that k must approach to suppress the integration:

a)k— A

b) k — oo

The former corresponds to the interpretation of k as the scale of an IR cutoff, that must

therefore be smaller or equal to the UV cutoff. The latter is allowed since the k-dependent
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operator is a smooth IR regulator and not a sharp cutoff, thus one might prefer to think about
k just as an external parameter that could take any value, in which case (b) corresponds to
having removed to infinity the arbitrary value of k at which the regulator is expected to kill the
integration. The next question is which properties must Ry enjoy in cases (a) and (b) in order
to realize the two following scenarios:

a) lim I'¢[p] = $*[g]

b) lim T¢[p] = $*[¢]

Since case (b) is more similar to the case most frequently addressed in the literature, i.e. the
one in which no UV cutoft is assumed, we prefer to start with this case. Here we want the
dimensionless regulator Ry to diverge as k — o0 and, because in this case the most natural
choice of the unitis M = kfork < Aand M = A for k > A, this singular behavior is enjoyed

by all regulators usually present in the literature, of the form

(x|Rily) = A(~0./K)8(x —y) , f(0) >0 (2.48)

(the optimized cutoff corresponds to f(z) = (1 — z)0(1 — z)). For such regulators and un-
der the assumption of UV boundedness of I';* one can easily check that for k > A, rescaling
all dimensionful quantities w..t. M = A, the first term in the exponent of eqn. (2.46) and
the shift term Rk_l . %J‘P] both vanish in the limit k — 00. Also, by the same token, the
remaining exponential has a vanishing variance. The last ingredient missing for a rising delta
is the correct normalization, therefore it is time to give explicit arguments showing that this
is provided by the regularized measure. To this end let us analyze briefly the QM case in the
skeletonized version of the path integral (see for example [40]) with a time slicing such that
T = Ne. We will not work out the exact discretized version of any cutoff differential operator,
but we will just consider its asymptotic IR and UV behaviors. In the k — 0 limit, correspond-
ing to the standard un-coarse-grained path integral, Ry and Ay disappear and for a standard
unit Liouville measure the momenta integration leads to the usual configuration space mea-
sure ulg) = N = (2me)™N/2, as already discussed in footnote 1. In the case of k — 00,
—0?/M? is negligible with respect to Ry /M? for all modes, because of the cutoff A. Also, hav-
ing in mind a path integral toy-modeling a vacuum persistence amplitude, we consider the case
in which we have to perform N integrals over phase space (p, q), so that the appropriate power

of the regularization of the Liouville measure is also N. Therefore:

Det(Ry/M?] )" G (R
i (oaornm) 0 o = () o)
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Here the Det[—0?] has been evaluated in terms of the finite difference operators V and V as
in [40]. This measure and the satisfied requirement that the k-dependent exponent on the rhs
of eqn. (2.44) approaches a Gaussian in the k — 00 limit, leads to the following discretized
version of the Lh.s. of eqn. (2.45), or equivalently of (2.47)

R\ rer ey -
(m) e — 1154, —4q,) (2.50)

n

showing the correct normalization. Recall that in the last expression the rescaling has con-
verted g, and g, into dimensionless quantities and that in this discretized approach ¢ is related
to the inverse of the UV cutoff.

In conclusion, for the class of operators (2.48) and for any fixed bare action S*[p] at a given
scale A, one has kl;ngo T2 [p] = S*[¢] . Thus, in order for the bare action in the limit A — 0o
to be the initial condition at k — 00 for the RG flow of the EEA, one must deal with the
following order in the limits: Ah_r}rCl)o kli)ngo '3 [p]. The only hypothesis we still have to comment
on, is the one regarding the boundedness in k of T'f*. With such an aim in mind let us analyze
the flow of the (modified) exact RG equation (ERGE) for truncations like the local potential
approximation. The computation of the trace in Fourier space requires to integrate in p, over
the domain |p| < A, afunction g(p, A, k, ¢) depending on all the scales. Rescaling everything
wrt. A (z = p*/A*and ¢ = ¢/A), and adopting again an optimized cutoff as an example, on
has for the ERGE:

, (2.51)

i 1 min{%,l} —!, (3)
kO vie/a (@) = / il WA
0

— dzz 3 —
(47)°T (£) e+

whose r.h.s. for a generic potential is expected to vanish when A is fixed and k — oo. For ex-
ample for a free massive theory v/ /A () = m*/A? which is actually k-independent. Therefore
in such a case the AEA really approaches the A dependent bare action. Integrating the flow
for the massive free theory from k = oo (instead of from k = A) to k = 0 one finds for the

dimensionful energy density:

m arctan (A) A10g<1+1"(—§>

d=1: m + — n
o T 27 A—oco 2

. mzlog<fm%+1) N A21og<1+x—j> B m*log(2) L (.52
- 8 8 A—oo 47 87 )

e m*A* — mﬂog(%—i—l) . Aﬂog(l%—%) . m2A2 milog(2) -
o 6472 6472 A—oo 3272 3272 12872
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From the last expression on can see that in a four dimensional spacetime the term in the Wilso-
nian action associated to the vacuum energy density induced by free massive bosonic fields
grows quadratically with the UV cutoft A and is zero for the massless case. A similar behavior
(but opposite sign) is shown by fermion fields. We note that for a generic dimension d one
can write an analytic form as the sum of two contributions: one comes from the flow in the
region A < k < o0 and is given by W'W log (l—l— X—;) while the other is obtained
from the region 0 < k < A and can in general be written in terms of a regularized hypergeo-
metric function. More general truncations with higher derivative terms or more complicated
operators have to be studied to understand if such a behavior can be spoiled.

Let us now turn to case (a), again in presence of a finite UV cutoff. Here we want the di-
mensionless regulator Ry to diverge as k — A from below. Since the flow always stays in the
region k < A the choice of unit M = k is allowed and is in fact to be preferred to M = A
because rescalings with respect to the running cutoft correspond to the Wilsonian procedure
of iterated shell integration and subsequent rescaling. The cutoft function in general may be
written as R, = k*f(z = i—i, x = %) Iff(z, x) is finite at x = 1 one does not obtain a Gaussian
representation of the delta and also both the first term and the shifts to y — ¢ in the exponent
of eqn. (2.46) do not vanish. In this case there is no simple relation between I'; 5 and S. On
the other hand if we ask that f(z,x) — 0o asx — 1, and still we assume the boundedness of
the AEA, then for any mode we recover a functional delta representation as in eqn. (2.45). In
such a case one may write lim;_, 5 T'2*[¢] = S*[¢] .

One can check that for a free theory, independently on the choice of the functional form
providing the singularity in the cutoff function one obtains the same results already illustrated
in eq. (2.52). This is a confirmation that one has realized a representation of the functional
delta inside the path integral. In particular we have considered the explicit cutoff Ri(p?) =
f( Ili—zz) (kK*—p?)0(K*—p?). In order to perform the analytic computation we used f(x) = (1—x)~*
for positive a and numerically checked that other suitable choices of flead to the same result.
In this case therefore it should be possible to find a change of variable in order to make this
property manifest for any f with the right singular behavior.

We stress again that the difference between the scenarios realized in cases (a) and (b) just
depends on our freedom to choose cutoft operators with a different singular behavior. The
AEA depends on them at all scales but in the UV and IR limit, provided such cutofts enjoy
regularity properties allowing to bring the k — 0 limit inside the path integral, and that their

singular behavior in the UV is what is needed to recover a functional delta.
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2.4.2 IN ABSENCE OF ANY UV CUTOFF

Finally we want to study the case in which no UV cutoftis present. As already said this last case
is the one which is usually considered in the AEA approach, with I'; assumed to be bounded

in k because of renormalizability. In this framework the most reasonable request is that

lim Ti[p] = S[e]

k—o0

and one should look for cutoff operators leading to a representation of the delta for k — oc.
Since the only natural choice of unit in this case is M = k, we see that the traditional regulators
like (2.48), after rescalings with respect to k, do not diverge as k — 0o unless f(0) is infinite.
Thus, an example of a suitable regulator could be R;.(p?) = g(z—z) (K* — p*)0(k* — p?) with
g(z) — ooforz — 0. Let us remark that with this kind of choice the singularity k — oo is
the same as the one for p — 0 since k is the only available scale in the cutoff. This means that
the zero mode is treated differently inside the path integral.

The simplest computation one can imagine is to check that this prescription leads to the
expected vacuum energy in d = 1 for a free theory with frequency m (which we know to be
finite starting from a bare action with no vacuum energy at k = 00). Choosing g(z) = z !
one can compute analytically the beta function from the trace (its expression is more involved
that for the simpler optimized cutoff) and numerically check that the flow leads to Ex—o = 7.
A full numerical analysis on a family of cutoff defined, for example, by g(z) = z™*fora > 0
gives correctly the same result.

Another suitable family of cutoff functions, far easier to deal with, is Ry(zk*) = k*(z™* —
2)0(1 — z) for a > 0. These regulators simply replace (p*/k*) with (p2 / kz)_a, whenever
p* < k*. The choice a = d/2 allows a straightforward computation of the traces thanks to

d/2

the advantageous change of variable 2’ = z%?. As an example, for a scalar field in the local

potential approximation one finds:

N N R AR
o) = iy e () Y- e

Again we see the independence of the result from the choice of the cutoff function with the
required singularity structure. Clearly without a regularizing UV cutoff the integrated vacuum
energy for d > 1 is a divergent quantity so one should only deal with the expressions for the
beta functions. Again further investigations are needed regarding more general truncations of
the AEA. Finallylet us remind that for the special case of a free theory we have shown in the end

of section 2.1 (for the QM oscillator) that it is sufficient to employ even a non singular cutoff
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operator to have klim T't[p] = S|g], because of the dimensionful mass being independent of k.
—00

2.5 REMARKS AND SUMMARY

We have presented a RG flow equation for the effective average action based on the regulariza-
tion of the functional integral in space space, wherein we perform a balanced coarse-graining
procedure by means of the introduction of a scale dependence in the symplectic form. This pro-
cedure corresponds to the standard Weyl ordering prescription for quantization. Under this
regularization both the action and the functional measure become dependent on a smooth cut-
off. Such a non trivial measure implies the presence of a subtraction term in the flow equation,
as given in eqns. (2.13) and (2.23) for boson and fermion d.o.f. in quantum mechanics. The
corresponding RG flow equations in QFT, for a Lorentz invariant regularization, are given in
eqns. (2.35) and (2.37). The subtraction between the two traces on the r.h.s. of these equa-
tions, induced by the non trivial measure, gives rise to a better convergence; that is, the r.h.s.
could be finite even if the convergence of the single integrals is not provided by the cutoft op-
erator.

In flat space, as long as one is not interested in the vacuum energy which is not observable,
and for cutofts that do not involve any coupling but the field strength, nor background fields,
the subtraction term due to the measure can be dropped. Ifhowever one adopts cutoff schemes
more complicated than the ones we discussed in this chapter, we cannot exclude some differ-
ences between the flow generated by the present equation, following from phase space coarse-
graining, and the one based on the standard Wetterich equation. This is indeed what we expect
in the case of the so called non-pure cutoff schemes that usually include more couplings than
just the field strength. For example, for a free massive scalar field one could choose a cutoft
scheme involving also the mass term, such as Ry(—J + m?). Then the flow equation would
have a vanishing rh.s. because of a complete cancellation between the two traces. Therefore
in our framework such cutoft schemes should be avoided. Let us remark that in applications
of the Wetterich equation to the study of matter fields interacting with gravity, scheme depen-
dences in the beta function of the cosmological constant were indeed noticed [32, 35] also in
the standard approach. Also, if the background field method is used, which is very commonly
adopted in gauge theories in order to preserve gauge invariance, the cutoff operator becomes
dependent on the background fields. Therefore the subtraction term induced by the non triv-
ial measure also depends on them and this leads to an AEA whose background dependence

differs from the usual one 2.

%A flow equation for scalar QED modified by a subtraction term dependent on the background gauge field
was already used in [45] with the motivation of minimizing some quantities [46].
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We have also discussed the relation which ties the modified AEA T’} to the Wilsonian (i.e.
bare) action S” in the presence of an UV cutoff A. The non trivial functional measure plays here
a fundamental role, providing the correct normalization for a rising functional delta inside the
path integral, which is realized when the IR cutoff scale of the AEA reaches its UV limit. We
have analyzed how such a UV limit is defined according to the properties of the cutoff operator
which implements the coarse-graining, and classified some possible ways in which the AEA
can approach the Wilsonian action. Finally we have addressed the same problem in the case in
which no UV cutoff is present.

In so doing we have computed the contribution to the vacuum energy density of free mas-
sive theories in arbitrary dimensions. In particular we have found that, under preservation of
Lorentz invariance, the contributions of quantum fluctuations to the vacuum energy density
grow only quadratically in the UV cutoft and vanish in the massless case. Such a scenario, i.e
the absence of the quartic divergences, was already invoked recently [38, 39] in a standard per-
turbative QFT approach (where infinite constant contributions from the functional measure
were neglected) by performing ad hoc regularizations and subtractions justified by symmetry
and reality conditions. We think that our computation gives a straightforward and neat deriva-
tion of such a behavior. Also, a paradoxical effect about the contribution of the low energy
modes to the cosmological constant was observed in [44] by using the flow equation without
the subtraction induced by the measure. By taking the subtraction into account such an ef-
fect disappears; e.g. for bosonic fields such a contribution grows monotonically for decreasing
k. The method of following the RG flow of the vacuum energy density, or of the cosmological
constant term in a curved spacetime, is also suitable for studying the case of interacting theories
and it would be interesting to address such a problem.

One of the possible areas in which a proper subtraction term in the ERGE could lead to
important effects is the study of gravity plus matter systems. It would be interesting to trace
the possible differences brought by this approach in the flow and fixed point structures of such
interacting theories. In the absence of an UV cutoff in the theory the effect of the choice of
cutoff operators with the right singularity structure to provide a convergence to the bare action,
as discussed in the section 4.2, is also an important point to be investigated. Simpler questions

related to QFT on curved background spacetimes can also be addressed in this framework.
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The effective Hamiltonian action

WE GENERALIZE THE PHASE-SPACE ANALYSIS of the previous chapter to a fully Hamiltonian
framework. We first review the definition and properties of the quantum effective Hamiltonian
action and we describe its renormalization flow by a functional RG equation. This equation
can be used for a non-perturbative quantization and study also of theories with bare Hamil-
tonians which are not quadratic in the momenta. As an example the vacuum energy and gap
of quantum mechanical models are computed. Extensions of this framework to quantum field
theories are discussed. In particular one possible Lorentz covariant approach for simple scalar
field theories is developed. Fermionic degrees of freedom, being naturally described by a first

order formulation, can be easily accommodated in this approach.

3.1 OUTLINE

The effective action most commonly discussed in the literature is of the Lagrangian type, since
it is derived from the second order Lagrangian formulation of the bare theory. There is a
very good reason to do that, namely that people usually consider bare Hamiltonians which
are quadratic in the momenta such that one can easily move to a Lagrangian description. The

rationale for this is obtaining a manifestly Lorentz-covariant formulation in d space-time di-
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mensions. Another advantage of passing to a second order formulation is that the number of
fields in configuration space is half the one in phase space, since in the functional formulation
the conjugated momenta have been integrated out.

On the other hand one may also consider the reasons to choose a first order Hamiltonian
description on the phase space of a theory. Clearly this is unavoidable when dealing with the
quantization of theories with bare Hamiltonians non quadratic in the momenta. In such a case
the full phase space variables are needed for a quantum description of the system. Tradition-
ally the main advantage attributed to the Hamiltonian formulation is that it makes unitarity
manifest [47]. This is due to the strict relationship established by canonical quantization be-
tween the classical symplectic structure on phase space and the inner product on the Hilbert
space. The Hamiltonian approach may be useful also when configuration space is not a vec-
tor space, since phase space can usually be interpreted as a cotangent bundle and it could be
easier to deal with. In the functional integral representation this is translated in the possibil-
ity that the measure in phase space be field independent while the one in configuration space
be not. This happens for instance in the case of non linear sigma models. Of course, even in
this case whenever the bare theory is quadratic in the momenta the Lagrangian and the Hamil-
tonian formulations lead to the same results (Matthews Theorem), as proved by perturbative
studies [48, 49]. In a functional integral representation, the Hamiltonian approach is based
on quantum generating functionals obtained introducing sources in the phase space path inte-
gral [50]. From them, one can define a quantum effective Hamiltonian action which generates
the proper vertices. This was recently studied in [S1], on the wake of a renewed interest in
Hamiltonian gauge theories such as QCD, in particular in the Coulomb gauge (see [52] and
references therein).

The purpose of the present chapter is to present a non-perturbative framework which al-
lows to compute, within specific approximation schemes, the quantum effective Hamiltonian
action. This will be obtained by constructing a fRG equation from the functional integral rep-
resentation. In the previous chapter we proposed the use of cutoff operators affecting the sym-
plectic form of phase space and implementing a more balanced coarse-graining and regular-
ization, with respect to the cases where the coarse-graining is performed on the fluctuations
in configuration space only, but after this choice of regularization, we restricted our discus-
sion to bare Hamiltonians quadratic in the momenta and we fully integrated out the momenta,
obtaining a cutoff dependent functional measure in the Lagrangian path integral, which was
leading to a subtraction term in the RG flow equation. Here instead we are interested in retain-
ing the full dynamics in phase space, building a flow which realizes the idea of shell-by-shell

simultaneous integration on both phase space variables. As a disclaimer let us add that other
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non-perturbative RG flows called “Hamiltonian flows” already appeared in the literature, but
they largely differ from our formulation. Examples are the similarity RG [53], which is gen-
erated by iterated unitary transformations within the operatorial representation, and the flows
based on a variational solution of the Schrédinger equation [54].

In this chapter we start our discussion from quantum mechanical systems (0 + 1 dimen-
sional QFT’s) with scalar degrees of freedom, for which we review some of the properties of
the Hamiltonian effective action in the first part of Section 2, and we prove some formula
useful for the subsequent developments. Throughout this chapter we will adopt a real time
(Minkowskian) formulation, since the Hamiltonian formulation relies on a preferred role played
by time, but the Euclidean notations and a discussion of Wick rotation can be found in ap-
pendix A.4. In the second part of Section 2 we derive the main equations satisfied by the aver-
age effective Hamiltonian action (AEHA) of a quantum mechanical system. They depend on a
cutoff operator which suppresses part of the functional integration generating a one-parameter
flow from the UV to the IR. In particular we give the simpler equations associated to the so
called local Hamiltonian approximation (LHA), which is the lowest order term of the deriva-
tive expansion of the full functional, for some specific cutoff operators. These are then used
(Section 2.3) to study a family of exactly solvable Hamiltonians which are not quadratic in the
momenta and indeed we show that one can easily extract informations like the ground state
and the first energy gap of such systems. The same approach can be used to study general sys-
tems with arbitrary bare Hamiltonians. We conclude Section 2 discussing the extension of the
formalism to quantum mechanical theories with fermionic degrees of freedom.

In section 3 we start to address quantum field theories. The extension to the non covari-
ant version of QFT is straightforward and we first discuss it briefly for the case of scalar QFT.
Since in the traditional Hamiltonian formulation of QFT one pays explicit unitarity with the
disguising of Lorentz invariance, we discuss one possible way around this drawback, that is,
we spend the last part of the chapter in discussing a manifestly Lorentz symmetric (but maybe
not manifestly unitary) extension of the previous framework inside the realm of the covariant
Hamiltonian formalism.

This is a subject which has a long history in classical physics [5S, 56, 57, 58], but whose
applications to quantum dynamics are pretty rare to be found in the literature. Even if under
different names, the covariant Hamiltonian formulation of Yang Mills theory is one of the old-
est examples. M.B. Halpern in 1977 addressed such a formalism for QCD, generically naming
it “first order formalism” [S9] but he immediately abandoned the full phase space formulation
integrating out the gauge vector fields thus being left with a theory, containing only conjugate

momenta, that he called “field strenght formulation”, which was studied in the following years
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(see [60] and references in it). More recently a slight variant of the “first order formalism” (still
covariant) for Yang Mills theory has received fresh attentions from the perspective of topologi-
cal BF theories [61]. In particular the reader can find in [62] an explicit one loop computation
of what we call the effective covariant Hamiltonian action of pure Yang Mills, reproducing the
expected asymptotic freedom result. Despite these successful examples, the main open ques-
tion about covariant Hamiltonian QFT is still about its foundations, even if these have begun
to be studied recently by some author [63, 64, 65]. These investigations can shed light on the
issue of unitarity of this covariant formulation. Without a sound Lorentz covariant quantiza-
tion prescription, covariant Hamiltonian formalism seems but a game, legitimate only in the
special case of Hamiltonians quadratic in the momenta. On the other hand, only by studying
this approach in more general cases and by looking for its applications to real physical systems
one can hope to find a legitimation for the search of foundations.

In this chapter, for what concerns a covariant Hamiltonian formulation of QFT’s, we restrict
ourselves to defining the average effective covariant Hamiltonian action of a scalar field theory
in a particularly simple case. This consists in assuming that the non trivial dependence on the
covariant momenta is in the longitudinal (w.r.t. Fourier variable) subspace of the space of con-
jugate momenta. This definition is compatible with both QM in 0+ 1 dimensions and with
QFT’s whose bare Hamiltonians are quadratic in the momenta, and it provides a particular dy-
namical extension outside this domain. For this simple case we present a framework for study-
ing such a model by a non-perturbative RG flow equation. For completeness we also comment
on the corresponding covariant Hamiltonian formulation for theories with Dirac fermions.

In the last section the reader will find a discussion about the physical motivations for the
introduction of this formalism, as well as a proposal of some possible developments, extensions
and future applications of this method. Some technical issues are described in more details in

App. A.

3.2 'THE EFFECTIVE HAMILTONIAN ACTION IN QUANTUM MECHANICS

In this section we shall work within quantum mechanics (QM), i.e. a 0+1 dimensional quantum
field theory (QFT). As an example we will quantize a classical system with one bosonic degree

of freedom governed by the following Hamiltonian action:

Slp.a) = [at [p(00a(0) ~ H (p(0).a(6) (1)
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where the (bare) Hamiltonian can have an arbitrary dependence in the momenta, departing

therefore from the usual quadratic form

Hip.q) = 5 7 + Vlg). (32)

Here and in the following p and g denote canonically conjugate variables. The quantization of

such a system is performed via the following phase-space path integral:

eFM) = / (dpdq) ulp, gle t (St (33)

where the dots stand for ordinary integrations. The functional measure on the physical phase
space is usually assumed to be y[p, g] = Det;i:. Since we want to keep our discussion as
general as possible we will not specify the precise space of functions on which the functional
integral is defined.

It is possible to study the system by a functional which may be called the quantum effective
Hamiltonian action, which is a trivial generalization of the more widely known effective La-
grangian action. The latter I'" is defined by introducing in the configuration-space path integral
external sources ] coupled to the Lagrangian variables, and by taking the Legendre transform
of the generating functional of the connected green’s functions W/[J] with respect to (w.r.t.) J.
Similarly, in order to define the effective Hamiltonian action I'”), one starts from the phase-

space path integral (3.3) and performs a Legendre transform:
Mlp.q) = ext(WILJ] =1-p~J-9) , (34)

where

)1 W
P=7r » 47 8_] :
The introduction of such a functional is not a novelty, as we have discussed in the previous
section. There are several ways to convince ourselves that from this functional one can get
every information about the quantum system.
First, by taking functional derivatives w.r.t. () and p(f) one immediately gets
srH sTH
I=—— |, ]:_F' (3.5)
q
For zero sources one has the equations for the vacuum configuration (¢, p). They appear as the

classical equations of motion obtained from the quantum effective Hamiltonian action.
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Second, T™ satisfies the following integro-differential equation

This is a central identity and it could also be promoted to the definition of I'.
Third, from this equation one can get a different proof that the classical equations satisfied by
the effective Hamiltonian action encode the full quantum dynamics, because they are equiva-

lent to the Hamiltonian Dyson-Schwinger equations. In fact, the identities:

0 = /[dpdq] (u[p et (a6 )
= /[dpdq] (y[pq Hsal-aa) 45 -0 55})

lead to:

§S. STH s §S.  STH
(—i 8 ogulp, q] + 8p> 5 (—i 5 ogy[p,qHSq) 57

Forth, just like for the effective action, the effective Hamiltonian action has a similar interpre-
tation as the generator of the one-particle-irreducible (1PI) proper vertices. For more details
and a proof of this statement see Appendix A.1.

Fifth, by evaluating the effective Hamiltonian action on its stationarity p values one gets the

effective Lagrangian action. In fact, defining
I*[g] = extI™[p, g
p
and calling s the extremal point, it is straightforward to show that

e b i ST
[an‘ﬂ ; ]——g[ﬂ;ﬂﬂ __S_q[q]'

Therefore I'*[g] = W [ ; —%} +q- % , wherefrom we learn that I'" satisfies the integro-

differential equation:

er "l :/[deCI] ulp, Q]e%{s[p’q]_(q_@.%}

which is a generalization of the usual configuration space integro-differential equation satisfied

by the effective action, since it does not require S to be quadratic in the momenta. Due to this
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simple relation between the two effective actions, from here on and for the rest of this thesis
we will use the same letter I for both, dropping the superscripts, since the reader will be able to
distinguish them by their arguments (p,q for the Hamiltonian one and g only for the Lagrangian
one).

Sixth, the effective Hamiltonian action can be defined from the operatorial representation by
means of a time-dependent variational principle, in a way which is the direct generalization of
the usual construction in configuration space [66]. Let H be the Hamiltonian operator of the
quantum system, |0) be its time-independent ground state and let the boundary conditions of

the path integral in (3.3) be chosen such that

eH W) — (0] U (+50, —00)[0) = (0| Texp {—%/_ [ (0 —I(t>?]} 0)-
(3.7)

Then the effective Hamiltonian action defined in (3.4) is related in the following way

I'[p,q = ext (/_+Oodt {(v_, t]ihd, —H|1//+,t>> (3.8)

I‘l’j:vt> o0

to an extremum with respect to variations of the two states |y i t) preserving the constraints

<‘//_7t|‘//+7t> =1, <W_’t|;1|‘//+7t> = Q(t) ) <‘!/—7t|15"//+7t> :p(t) (3.9)

for any ¢, and the boundary conditions

lim |y,,t) =10). (3.10)

t—F oo

A sketch of the proof of this statement is given in Appendix A.2. A special role is played by
time-independent p and g, because the previous propositionreducesto I'[p, ] = —€(p, q) [dt

where £ is the usual energy density functional defined by the minimum
€ (p,3) = min (y/Hly) (3.11)

with respect to variations of the time-independent state |{) preserving the time-independent
version of the constraints in (3.9).

This clearly provides an energy interpretation for the effective Hamiltonian action. In par-
ticular if one evaluates this action on the constant (p,q)-values which make it stationary, the
resulting number is just minus the “time volume” times the ground state energy. In principle

it is possible to compute all the energy levels by means of I, but higher levels require more
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work. One possible way is through the two point functions. In a Hamiltonian framework the

propagator splits in the entries of the matrix:

8% 82 5p, b,

i (@ Pep—p)e (a—De(p— p>>> WOy (W ]W>_<— 7)
tt/ sw o &w |~ | %4, 5,

(p—p)e(@—q) (a—q)¢(q—9): S 56T S, 5,
(3.12)

(where T is the time ordering operator) so that one could try to think about p and g as dif-

terent “fields” but should also remember about the existence of an unusual mixed propagator
connecting p-legs to g-legs or vice versa. Thanks to (3.5) one can write this matrix in terms of

I as follows

D s a1\ ero osr\ .

2) s | _ (&% s N T — (@ =\

Mt’ L)l = s osa| — |\ 8 - §T 8T =-(%p.a),
51 5/ 5 81/ 5p53 3363/ w

(3.13)

In order to make the last expression for the two point function more explicit one needs to invert

a matrix whose elements are operators. In the particular case in which all block entries of the

original matrix are nonsingular, its inverse is given by
-1

A B _ ((A-BD7'C)™" (C—-DB7'A)™! (3.14)

C D (B—AC'D)"! (D—CA™'B)' ) '
In our case the operator chz) is symmetric and one can use the formula in eqn. (3.14) setting
C = BT. Let us stress that in order to put the off-diagonal blocks of this inverse in the form of
eqn. (3. 14) with C = B” itis only necessary to assume that B be nonsingular, condition which
ismet by 2L 5557 L unless T is extremely pathological. Once we know how to compute the two point

functions by means of I', we could have access to all the energy gaps AE, = E, — E, through

the Killen-Lehmann representation of the propagators
sw AB e 20E, [{0lp[n)[*
— —1 nT O
si(z)01(0) ; el Olplm) Z / —AE? +ie
Z/ 2AE [(0lgln)*
— AE2 +ic

SZW : —iAE,T
= = i)y e
8](7)8J(0) 2
Similar expressions hold for mixed derivatives of W. This tells us that, in principle, by studying

n#0

the pole structure of the Fourier transformed two point functions we could compute all the
AE,. As eq. (3.13) shows, this requires the knowledge of the exact I'?). In most cases this is

not available, and only approximations are possible. In certain contexts one popular approxi-
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mation scheme for the computation of the effective action is the derivative expansion. The ze-
roth order of such an expansion in the present Hamiltonian framework can be called the local
Hamiltonian approximation (LHA) and consists of the ansatz: I' = [dt (p9,q — Het(p. 7))
where the effective Hamiltonian H.g, which is an ultralocal function of its arguments (i.e. it
does not depend on their derivatives), can be computed by setting the fields p and g to con-
stant values. For this choice, since the second derivatives of I' on constant field configurations

commute with each other, the inversion rule (3.14) leads to a simple expression

_ _ —1 2

s*W §T 8T (szr) D] L /dE e
—_—m = — — — _— - — — — — p— _— —e
§1(r)81(0) | 9pSp  8q8p \8q8q)  opsq| 27 B2 — detHZ +ie

_ _ 4 -1 52

5w ST 8T (szr) YT | L /dE e
—_—m = — — _— — — — — — — p— _— —e
§](7)8](0) 8989 8pdq \8pdp) Sqdp| 21 B2 — detHZ +ie

(3.15)

and similar formulae hold for mixed derivatives of W. Here detH?) = 02.HO>H — (0H)?
is the determinant of the Hessian matrix of H. Therefore we see that in the LHA, whenever the
second derivatives of Hey commute (as in the case they are single numbers and not matrices),

2)
f

¢ )1/ 2. Since we are performing

only one pole appears in the propagators at the value (detHi
a derivative (low energy) expansion, in general this pole is the one closer to E = 0, that is to
say the first gap AE;, unless the matrix elements (0|p|1) and (0|g|1) vanish. Therefore we shall

use in the LHA the relations
EO = Heff‘min ) AEI = detHgf) ‘min . (316)

So far we have discussed how many properties of a quantum system can be deduced from
the effective Hamiltonian action, but how can we compute this action? One way is to use per-
turbation theory. First of all one needs to define propagators and vertex functions. We already
know that in a Hamiltonian framework the propagators of a theory with Hamiltonian action T

are given by eq. (3.13). The vertex functions generated by I" are simply given by:

8™ §'T
Sﬁm Sqn q=p=0

, m4n>2 (3.17)

and therefore generically comprehend m p-legs and n g-legs. Since perturbation theory in
phase space is built on tree level propagators and vertices, one can read off these ingredients

from (3.13) and (3.17) by substituting T with the bare action S. For instance, to get the one-
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loop result one changes variables of integration in (3.6) accordingtop = p + ha v,q =
q+ ha q', and Taylor-expands both S and I around / = 0 up to linear terms

Sp.9) = $(.3) + 20,4057 (.2 ) + o)
Tlp,q] = Tolp,q] + AT1[p, q] + o(A7).

The change of variable goes along with a change of measure, due to the Jacobian determinant
Deth, such that the new measure becomes yup’, ¢'] = Detzl—”. The Gaussian path integral over
p’ and g’ combined with such a measure gives I'; [p, g] = 2 log Det (—iS(z) b, tj]) , where § is
the bare Hamiltonian action (together with the obvious result I'y[p, g| = S|[p, q]). The block

determinant can be written in a more explicit form by means of the general formula
A B 1 1
det o) = detA det(D — CA™'B) = detD det(A — BD™'C) (3.18)

where the first expression is true if detA # 0 and the second if detD # 0. Therefore, if 88;—;}_) is

§2s [ 8% §%S [ §*s\ '8
S [ (e B (3.19)
5pép \ 8989  Spdq\pdp) 8qdp
i 0*H O0*H O*H
— ~logDet| [ —,2— detH? el log —— — =) )s
2 8 t[( O detH 4 <atapaq)+(8f 8 apaf») (@ 3155‘q> ) }

which reduces to the usual one-loop formula for the effective action in the case of a bare Hamil-

non-vanishing

Iy[p,q] = % log Det

tonian like the one in (3.2). In the formula above we have used the symbol § for §(t — ¢). If
instead % vanishes while g—ssq is non-vanishing, the result can be obtained from (3.19) by
replacing §; with 85 and vice versa.

In the rest of this chapter we will work on a non-perturbative setting for the computation of

the effective Hamiltonian action and we will choose A as our unit of action.

3.2.1 THE AVERAGE EFFECTIVE HAMILTONIAN ACTION

Sticking to the framework discussed in the previous sections, we regularize the phase space

path integral by means of a modification of the bare action and of the functional measure

L] / (dpdg] g [p, gle S+ apal 1470} (3.20)
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and ask for y, exp{iAS;} to become y as k — 0 and to provide a rising delta functional as
k — A. As traditional, to keep the framework as simple as possible, we choose AS; to be
quadratic in the fields

ASdp.q) = 5 (p.9)  Re (pr0)” (321)

such that we need Ry — Oand y, — ywhenk — 0,aswellas Ry — coand y, — (Det%) :
when k — A. These constraints can be satisfied by several choices for the symmetric matrix Ry
and for the measure y,. In this thesis we will consider only two simple cases in which the only
non-vanishing entries of Ry are either off-diagonal and built out of an odd differential operator

or diagonal and built out of even differential operators. These respectively read

N 0 rk(—&z)@tS(t — tl)

Riltt) = (—rk(—aﬁ)atsa — 1) 0 ) (322)
N Ri(—(?tz)S(t— t) 0

R(t,t) = ( 0 RI(—02)5(t — H)) (3.23)

The first choice again can be interpreted as a k-dependent deformation of the symplectic poten-
tial A = pdq, by means of an operator (1+r;). Aswe have already discussed, this interpretation
suggests the appropriate k-dependent deformation of the functional measure. Following this
line of thought we can guess a convenient choice for the regularized measure also in the sec-
ond case of a diagonal regulator. The straightforward adaptation of the previous argument is
insisting in adding to the fundamental symplectic matrix our regulator matrix, and then taking
its determinant. To summarize, the regularized functional measures we will use together with

the regulators (3.22) and (3.23) respectively are

o 0 (14 re(—82)) 98t — ) :
th=| Dety <_ (14 r(—2)) 5(t — 1) 0 )] (324)

1
2

u,= | Det (3.25)

1 (RU-0MS(—1)  OS(t—7)
20\ —as(t—¢)  RI(-0HS(t— 1)

The definition of the average effective Hamiltonian action (AEHA) T';[p, q] is
[y [patﬂ + ASk [ﬁaﬂ = el)it(Wk[L]] _I'p _]' Q) :

Note that the sources minimizing the r.h.s. will in general depend on k. Again it is easy to write
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an integro-differential equation for the AEHA:

8T

TPl _ / (dpda) u,[p. q]ei{s[p,qlﬂsk@—p,q—q]—(p—p)g—m—q)%} . (3.26)

When k — 0 eq. (3.26) trivially reduces to eq. (3.6) and the AEHA becomes the full effective
Hamiltonian action. It is not hard to check that when k — A the r.h.s. of eq. (3.26) reduces
to exp{iS[p, q|} and the AEHA coincides with the bare Hamiltonian action. A sketch of the
proof can be found in Appendix A.3.

The relation between the average effective Hamiltonian and Lagrangian actions is the same

as for the full effective actions:
I [q) = ext I'[p, q - (3.27)

We observe that this is evident in the simplest possible case, i.e. when the bare action is

. . . 0’H 0*H
quadratic in the momenta, as in (3.2), since W and pda

zero). Indeed the integration over p in (3.26) can be performed exactly and in such a case

are constant (the latter is actually

one discovers that also the AEHA must be quadratic in the momenta and that for any k the
canonical momentum that extremizesitisp = 0,q. Asaresult, plugging this field configuration

in (3.26), using the definition (3.27) and integrating out the momenta, one obtains

e;rk[q] _ / [dq] yk[q]ei{s[‘l]+Ask[‘1*ﬂ*(q*@%} (328)

where now g, [q] = [ [dp] u.[p, qle ~ and ASi[q] arises from the chosen AS[p, g]. For ex-
ample, if one adopts the scheme of egs. (3.22) and (3.24) then

wmlal = {Detzi (1+fk(—(9t2))2(—3t2)8 '

4

1
AS[q] = E@q - (rp +21.)0q -

As usual, the k — A limit of the average effective Lagrangian action coincides with the bare
Lagrangian action while the k — 0 limit gives the full quantum effective Lagrangian action.

We are now interested in the cases which depart from such a simple situation.
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3.2.2 RG FLOW EQUATION FOR THE AEHA

In this section we discuss the translation of the functional integro-differential equation (3.26)
in a functional differential equation describing a flow parameterized by k.

132

Denoting by “” the operation kJy, and acting with it on eq. (3.26) one obtains

it = * 4 i{ASdp —pg — e
"
Since ASy has been chosen quadratic in the fields, the expectation value can be rewritten by
means of the k-dependent version of formulae (3.12,3.13). Denoting T [p, q] = Tk [p, q] +
AS; [p, q), these read

i<7(@—p>y<p—p>t <q—q>t/<p—p>t>>k:Wénttm:<§£F§z ]W> _

(p—p)e(qa—9): (9—a)¢(q—q): fzfg}l gjjgi

3, dp, st s\ ! VL VAN .
(% g | _ [ % 37 _ _ | %pop sasp _ f(z)[ﬁ ql
%a,  %q, g 8 8T, 5L e pdl)
tt’ t

8y 8, 55 og 590G 0304

Therefore, for any quadratic regulator, the flow equation can be written as

L 1 1
i, = & ST {(r,@ + RkS) Rks] (3.29)
b

where Ri§ = AS,(CZ). Here one has still freedom for the choice of i, as a functional of Ri. By
using the inversion formula (3.14) one can find a more explicit form for the flow equation.
Adopting the regulator (3.22) affecting only the Legendre transform term of the bare action
(i.e. the symplectic potential) and the corresponding minimally deformed Liouville functional

measure (3.24), eq. 3.29 becomes

Ty = Tr [ (1+r)"" 8]
-1
82T, 82T, 821\ ! 821,
— T 108 08 — —r.08 .30
‘ [(rk ) ((’k N 8q8p> 5p5p ( Gl 8p8€1) s0q) |20

where we denote (08),,, = 0, 8(t; — ). Instead, the choice of a diagonal regulator (3.23)
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and of the corresponding measure (3.25) leads to the flow equation

T = Tr | (R}S) (Rié‘ — (88) (Ris)™ (—88)>_1]

+ e [(RfS) (Ris — (~08) (Ris) ™ <33>>_1]

_ —1q
1 : 8T 8T T\ ' 8T
— Tr |[(RES) | (RES+ =L ) - K (RiIs+ —£) £
2 Spép 5qép 5q0q 5pdq
_ —1q
1 . 82T, 82T, 821\ ' 82T,
— ~Tr [(RIS) | [ RIS — RYS 31
2! ’“)<( : +3é5é) 8?8?1( : +5P3?) sop) | %Y

Notice that, thanks to the regularization of the functional measure, these equations correctly

reproduces the non-renormalization of Hy in the trivial cases in which the bare Hamiltonian
either vanishes or depends on just one field out of p and g. As far as the reality properties of
this equation are concerned, there is no difference with the standard Lagrangian formalism in
real time, that is to say, the imaginary unit on the Lh.s. is needed in order to ensure reality of
I'y. This is because in real time the traces on the r.h.s. usually are integrals of functions with
poles on the real axis, which thus lead to imaginary values. An appropriate prescription should
be given in order to displace these poles off the real axis. As usual in QFT one adopts the pre-
scription which relates the Minkowskian theory to the Euclidean theory by a continuous Wick
rotation. The same can be done in QM. The reader can find more details about this translation
to imaginary time in appendix A.4.

The previous flow equations are still too general for a first approach to their meaning and ap-
plication, therefore let us give more specific and simple forms of the first one of them, eq. (3.30).
As a first example let’s consider the truncation I’y = [ dt (ﬁ@tq — 3P — Vk(E])). Introducing
the notation Pk(—af) =92 (1 + r¢)* one finds the RG flow equation

—i / dtVi(q) = %Tr (PP '] — %Tr [Pk (Pk - Vf)(q)) 1] (3.32)

which is what one gets by the effective average Lagrangian action approach in the local po-
tential approximation (LPA). A more general example is the local Hamiltonian approximation
(LHA),i.e. the case inwhich the flow equation for the truncation Ty = [dt (p0,q — Hi(p, q))
is evaluated on constant g and p configurations. For this choice, if the second derivatives of 'y

commute with each other as in the present case where they are 1-by-1 bosonic matrices, the
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operators in the trace can be simplified and one obtains

i . 2) /= =
—i/dtHk(I_%EI): — Tr < L 8> dethl (p.3) 2)
I Ltrn ) —02(1 + )28 — detH,” (p, q)
(:08) EHx (5, 7)
+ Tr %% o (3.33)
_—82(1 + )28 — detH,” (p, q)

where detH,(Cz) = 8%Hk agz-,Hk — (a;ﬁHk)z is the determinant of the Hessian matrix of Hy.
Notice that the second trace vanishes whenever it is possible to evaluate it in Fourier space and
when the domain in such space is symmetric around the origin. If this is the case we are left
with

Pe.  detH(p,q)

ks . (3.34)
Pe P — detH? (5, q)]

: 1
i/dtHk(p,q) = 5Tr

Here one could adopt any of the regulators R developed in the vast literature about the av-
erage effective Lagrangian action [10, 41, 42], and plug it in the last formula by Pk(—at?‘) =
—02 + Rk(—ﬁtz) . One of the simplest choices for the regulator is a constant r¢, that is to say
an operator which is multiplicative in both time and frequency representations; in other words
a function of k and A only. If no UV cutofl is present, this choice is possible only in quantum
mechanics, because it does not produce any coarse graining and therefore it does not regularize
the functional traces. Assuming 7, > 0, Vk € (0, A), one can trade k for the dimensionless
parameter r. Thus, in LHA and if the second derivatives of H, commute with each other, as-
suming that the traces can be written as [dt [ g—i (after Fourier transform), and that there is no

UV cutoff in the theory, then by Wick rotating the trace (E — iE) one gets

dH, B 1
dr 2(14r)?

(detH?))% : (3.35)

A different choice which makes the computation of the traces even simpler than for a constant
71 is the square root of the Litim regulator [41, 42]. Denoting by r(E*)E the Fourier transform
of rk(—atz)iat, and with 0 the Heaviside step function, after Wick rotation such a regulator
reads

n(E*)E = —(k+ E)0(k + E)0(—E) + (k — E)8(k — E)6(E) .

In the LHA and if the second derivatives of Hy commute with each other, this gives the same
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result as (3.34) for P (E?) = k*0(k* — E?) + E20(E* — k*), that is

k detH,iz)

fr, — K _detH
T + detH

(3.36)
Of course if one considers Hi(p,q) = Ti(p) + Vi(g) as an initial condition for the flow,
whenever both T and V; are polynomials of degree higher than two, the determinant becomes
a function of both g and p so that the flow generates also mixed p and q dependence in the
effective Hamiltonian. Therefore one should consider a larger truncation in order to track such
terms. Also a structure of a c-model kind, quadratic in the momenta, generates a dependence
in the momenta which is more than quadratic. We stress that in general the flow will generate
also a dependence on time derivatives of g and p variables. This goes beyond the LHA but it
is still compatible with the standard Hamiltonian approach as long as one starts the flow at the

UV with a derivatives-free bare Hamiltonian.

3.2.3 EXERCISE: THE GROUND STATE ENERGY AND GAP OF MODELS THAT ARE MORE THAN

QUADRATIC IN THE MOMENTA

As an example of the application of the framework discussed in the previous subsections to
specific problems, we will present the computation of the first two energy levels of some exactly
solvable systems for which no simple Lagrangian description is available, due to to the fact that
the functional integral over the conjugate momenta is not Gaussian. This will serve as a check of
the soundness of the formalism, but the reader is invited to remember that the very same simple
computations explained in the following would work also for much more complicated models.
Let us recall that the functional RG has already been successfully applied to the computation of
the spectrum of quantum mechanical models in the configuration space formulation [14, 67].

The systems we are going to address have the following classical Hamiltonian:

p2 + quZ)"

5 (3.37)

(e =
They are easy to solve due to the O(2) symmetry which forces the Hamiltonian to depend only
on the “action” and not on the “angle” coordinate in phase space. Even without performing
a canonical transformation to such coordinates, the energy spectrum can be built by ladder
operators. Rescaling the variables g = ¢'/\/w and p = \/wp’ as well as the Hamiltonian
H = w"H' we can reduce the problem to the one with w = 1, therefore in the following

we will restrict to such a case. The operator algebra of these quantum models is completely
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described by

it _a—ip
Vi Vi

The Hamiltonian operator is just the n-th power of (N + %) where N = 47 is the number

aal —ala=1. (3.38)

a—=

operator. This is enough to deduce the whole energy spectrum for any positive integer n.

In order to reproduce such a spectrum by means of the RG flow equation, the first step is to
specify the initial condition for the integration of the flow. From the discussion of the previous
subsections follows that the most suitable initial condition is I'y—, = S, where S is the bare
action to be inserted in a path integral, as the input specifying which system is being studied.
At this point it is necessary to recall that such a bare action is in one-to-one correspondence
with the Hamiltonian of the operator representation: the bare Hamiltonian is just the Weyl
symbol of the Hamiltonian operator. Let us remind that an operator O(ﬁ, q), can always be

written as a sum of symmetrized (in p and g) operators

which is what one calls the Weyl-ordered version of O. Also, its average on coordinate g eigen-

states with eigenvalues x and y is conveniently given by

A x+y
(101 = [ o ol 0w (5. 552 ) 1) (3:40)
The function Oyy in the right hand side of eq. (3.40) is called the Weyl symbol of 0, and it can
be considered as the classical counterpart of O. There are many ways to compute this function;
one is to Weyl-order O and then to replace the operators in Oy, with c-numbers. Another way

is through the relation

Oulp.q) = [dxe™ (g~ 310(ila+ ) (341)

R

where the bra’s and ket’s are again eigenstates of the g operator. For instance, considering the

models in Eq. (3.37), in the n = 2 and n = 3 cases such symbols read

Hyw(p,q) = (M)Z_l , Hiw(p,q) = (M)S—é (M) . (3.42)

2 4 2 4 2

Notice that both subtraction terms above, generated by Weyl ordering, are proportional to /2,

but in natural units such a dependence disappears.
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Inserting these initial conditions in the flow equation for the LHA one can compute the
full quantum effective Hamiltonian at k = 0. Such a task can be performed by numerically
integrating the flow equation. However, if one is interested in simple quantities as the first
two energy levels, this might be unnecessary: it could be enough to truncate the LHA to a
polynomialinz = (p®>+4¢*)/2 of finite order. Indeed if the bare Hamiltonian depends on p and
q only through z, in the LHA approximation also Hy can be shown to respect this symmetry,
for suitable cutoff operators.

We started by studying these polynomial truncated flows as generated by equations (3.35)
and (3.36) finding that singularities appear at nonvanishing values of k. This happens because
at some k the radius of convergence of the necessary expansion of the r.h.s. in powers of z goes
to zero, a fact related to the vanishing of the terms quadratic in the fields in the bare Hamiltonian
of the n = 2 model. If no expansion is performed, as in the numerical integration of the flow
equation for Hy, no singularity is met and the ground state and gap can be estimated by the
value of Hy and of (detH,(cz) )!/2 at the minimum. However these estimates do not reach a great
accuracy either because of spurious dependence on the boundary conditions (which can be
controlled by some nonlinear redefinitions of Hy) or because of numerical errors: typically we
reached no more than two digit accuracy in the region around the minimum. In order to get
stable predictions with a precision better than 1% we turned to a different choice of regulators,
curing the problem about the polynomial expansion of the flow equation. Such a choice is that
of a diagonal regulator, as in eq. (3.43). We chose this regulator to be constant, i.. Ri =
R} = R amultiplicative operator (recall that we are assuming w®> = 1 therefore even if RY
and R} have different dimensions we can set them equal if we assume their ratio to be some
power of w). We also introduced a UV cutoff A in order to control the convergence of the flow
for R — 00. As aresult we observed that, for such a constant regulator, A can be removed
only after the integration of the flow from R = oo to R = 0. The resulting flow equation in
the LHA is

OnH Dretan (2 3 2% F Opptlr + Db o (A (3.43)
= — — arctan ey arctan - .
RER - R 22D Dr

where we defined

Dy = \/ R + R (0%Hg + 0%Hz) + detHy .

In this scheme good estimates for the ground state energy E, and the energy gap AE; = E;—E,
can be obtained by simple polynomial truncations. For a bare Hamiltonian which is a polyno-

mial of order n we consider two cases: a truncation with a polynomial of the same order n
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and another of order n + 1. In the latter case we add a suffix ™! to the corresponding quanti-
ties E; " and AE;". We give the results obtained by choosing as an initial condition both the

Weyl-ordered H,,;y and the Weyl-uncorrected Hamiltonian H,,:

Bare Hamiltonian | E&** | E, ES! AES*t | AE, AE!
Hywy 1/4 | 024936 | 024936 |2 1.99871 | 1.99871
H, 1/2 | 049989 | 0.49994 |2 1.99867 | 1.99985
Hiw 1/8 | 0.12492 | 0.124886 | 13/4 | 3.24736 | 3.24905
H, 3/4 | 0.749849 | 0.74856 | 9/2 4.4991 | 4.4939

Tab.l The ground state energy E, and the first energy gap AE; for the bare Hamiltonians
of egs. (3.37) and (3.42), as computed from the flow eq. (3.43) by means of two polyno-
mial truncations: up to the same order or the bare Hamiltonian and up to the next order (**

superscript).

We note that the quantities Eg and AE; depend on the local properties of the effective Hamil-
tonian at the minimum (p = g = 0) and therefore can be extracted with a good approximation
adopting simple polynomial truncations. From the table we see that there is no clear pattern
on the change of the precision of the results when increasing the order of the truncation. In the
worst case we find a relative error of order 10>, In order to achieve a better accuracy, going to
next-to-leading order in the derivative expansion would probably do the job.

We remark that for the first time in the functional RG approach one faces the ordering prob-
lem in the choice of the bare Hamiltonian function which corresponds to the initial condition
for the flow. This feature generally extends to QFT, therefore one needs to keep it in mind be-
fore interpreting the results obtained by choosing an initial condition which is non-separable

inpandg.

3.2.4 THEAVERAGE EFFECTIVE HAMILTONIAN ACTION IN FERMIONIC QUANTUM MECHAN-

ICS

Since fermions usually have a first order dynamics, the Hamiltonian formulation of it is iden-
tical to the Lagrangian one. Therefore the AEHA formalism in this case is identical to the tra-
ditional Lagrangian approach, that was discussed in section 2.2.2 For completeness we will
briefly give the real time version of the formulas presented there.

For a system whose Lagrangian variables are n real Grassmann-valued functions of time:

-----

L(6(t), 0,0(¢)) — %Gi(t)ic?tej(t)Sij _v(6(r)) . (3.44)
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Defining the momenta 7; as the right partial derivatives of L with respect to 9,0 we find n

second class primary constraints:
(6 = m(t) — %s,-,.ef(t) =0 (3.45)

which cause the canonical Hamiltonian H = 7;0,08' — L = V(') to be independent of ;.

Therefore the functional integral over the reduced phase space reads

Z= / [d6]u[0]e1® | S[6] = /dt Be"iatefs,-j—v(ei) : (3.46)

Following the same coarse-graining scheme explained in the previous subsections we add the
term ASi[0] = [dt [16'r.(—0;*)i0,0/8;] to the bare action and we deform the functional
measure: y, = (SDet %)1/2 = u (SDet(1 + rk)S)l/z, where § stands for a product of Dirac
and Kronecker deltas. Then the modified path integral reads

Zi U;] _ /[d@] i [e]ei{s[e}-i-ASk[e]-i-]i.ei} . (347)
Starting from it, one defines the AEHA

ASi[0] + T [0] = ext (ka —J.- é") (3.48)

i

which satisfy the following integro-differential equation
. ‘ I P
T / 6] o] 150+ 450 Tig (00} (3.49)

and therefore the k — A limit of I' is just the bare action. The flow equation for I'; reads

| 1 35\
il = —Tr [7(1+ ) 718] + ST (7% 10,8) (rk i0,8 + _Fk_> ] . (3.50)

56 " 86

where the trace is over {i, j} indices as well and, as in the bosonic case, in the matrix ri08 the

derivatives act on the first index.

3.3 'THE EFFECTIVE HAMILTONIAN ACTION IN QUANTUM FIELD THEORY

There are at least two possible generalizations of the previous formalism to quantum field the-
ory (QFT).
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The simplest can be obtained by embracing the traditional Hamiltonian formulation of field
theory, where one associates a canonically conjugate field (momentum) to the time deriva-
tive of each Lagrangian coordinate. This choice leads to a non covariant formulation. The
translation of all previous formulas to this framework can be obtained by replacing the bare
Hamiltonian with the spatial integral of a Hamiltonian density, and promoting the integrals
and functional traces to sums over spatial positions as well as time instants. In this way one can
obtain a formal definition of the non covariant effective Hamiltonian action and extend all the
previous discussions developed in section 2.1.

However, in so doing, willing to construct the corresponding coarse-graining procedure for
the flow of the average effective Hamiltonian action, one faces the necessity to regularize the
spatial part of these summations, which are otherwise ill-defined. In other words the regulator
matrix Ry, appearing in AS and y,, must now contain operators depending on spatial deriva-

tives too. For instance, choosing an off diagonal Ry one could consider

Re(x.2) — 0 (=) 068 (x — &)
e —re(—0) 868 (x — &) 0
~ |pel 0 (1 (=) udl =)\ |
t 27\ = (14 re(—=0)) BoS(x — &) 0

but this choice would explicitely break Lorentz symmetry. Instead it would be easy to write
more general regulators preserving such a symmetry, even if in an implicit form. In both cases

one may study the AEHA defined by the integro-differential equation
JTeEE] / (drdo) [ e i{Simel+asda—mo—pl—(x-7) T~ (-0 Tk}

This road could be useful if one is interested in non-relativistic field theories, but for relativistic
systems, since Lorentz invariance is not manifest, in this framework it is hard to distinguish
truncations for I'; that are Lorentz symmetric from those that are not (one would have to deal
with Ward-Takahashi-Slavnov-Taylor identities).

Another possibility is to choose a covariant Hamiltonian formalism, in which one intro-
duces a momentum field for each first order partial derivative of the Lagrangian coordinates,
thus preserving manifest Lorentz covariance. In the following we will give the two simplest
examples of how this could work: spin zero and spin one half field theories. There are several
choices one can do. In this thesis we shall attempt to use a reduced approach, which has the
advantage of being the minimal extension, which on one side preserves the general results in

0+ 1 dimensions (QM) and on the other side leads to the usual QFT results in the case of
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quadratic bare Hamiltonians. More general formulations as well as specific applications will

be considered elsewhere.

3.3.1 COVARIANT HAMILTONIAN SCALAR FIELD THEORY

Let us build the covariant Hamiltonian formulation of a classical unconstrained single scalar

field in d spacetime dimensions with the standard Lagrangian density

L(9,000) = — (09) (9"9) — Vi)

(in a Minkowski mostly-plus signature). The covariant Hamiltonian density is defined as the

extremum
w7’
H(x', ) = ext(~a"0ip — L(p, Ohg)) = ==~ + Vo) (3.51)
and by demanding the stationarity of the Hamiltonian action
S = / d*x [—7"0,0 — H)| (3.52)

one finds the De Donder-Weyl equations

i.e. a first order system equivalent to (o — V'(¢) = 0. Here the dynamics of ¥ and ¢ seem
to be completely coupled, however this is not the case. In fact the Lorentz vector z” can be
decomposed into a transverse and a gradient part 7" = #" + 7|, by means of the standard
projectors Hﬂv = 0*9"/0and ITY" = ## — Hﬁv. Rewriting the Hamiltonian action density
in terms of these reduced degrees of freedom (and assuming that the boundary terms coming
from integration by parts do not contribute) one finds —7) 0,9 — H with

AT

S T, T Vi)

H(n', 7T1|/|7 9) =
and the corresponding Hamiltonian equations
=09 , Oa=V(p) , 7 =0.

Hence the transverse momenta are classically irrelevant if the Hamiltonian is quadratically de-
pending on them. This translates into the following quantum property: if the bare Hamiltonian

is separable in 77 and ¢ and quadratically depending on 7, the functional integration over trans-
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verse momenta factorizes from those on the other two fields.

Now let us address the possibility to extend this formalism to covariant Hamiltonian den-
sities that are more than quadratic in the momenta. The classical decoupling of the transverse
momenta, i.e. their factorization in the functional integral, can happen also for non-quadratic
Hamiltonians, such as for instance H = T(z*n,) + V(@). Insisting in the validity of the clas-

sical variational principle for the action (3.52) the classical equations read

§ § §
Ol = — [d«H , —O,0= /ddxH : / diaH = 0.
Yo R Y4

The interesting question now is whether the third equation is a constraint or it gives a dynamics
to the transverse momenta. If { does not contain derivatives of #* , and if one can perform
some sort of Fourier transform such that #*, canbe considered orthogonal to 0" with respect to
the metric in Minkowski spacetime, then the third equation cannot contain derivatives of 7*| .
Therefore, under these assumptions, one can always solve the third equation by writing 7| as
alocal (if H is local) function of 7|, ¢ and their derivatives. By substituting this solution in the
first two equations one gets a coupled dynamics for the unconstrained variables df and ¢ only.
That is, under these assumptions the transverse momenta do not have their own independent
dynamics and behave only as redundant variables which can be eliminated without loosing the
locality of the action. However even in this case the quantization of the theory containing the
7" fields is not equivalent to the quantization of the theory in which one got rid of them by
means of the classical equations, since in the first case one has a full functional integral over
7", , whose stationary phase approximation gives the second quantum theory. Nevertheless,
considering an Hamiltonian action depending on paralle] momenta only, although it is not
the most general case, is already a consistent and covariant generalization of the standard non-
covariant Hamiltonian approach, reproducing the known results for quadratic Hamiltonians.
Therefore in this thesis we will restrict ourselves to such a case.

The aim of the rest of this section is to give meaning to the quantization of the classical theory
with the bare action (3.52) under the assumption that H depends on 7| only. Since in this
case the bare action S does not depend on 7', we are in presence of a gauge symmetry: by
introducing projectors where needed, S can be rewritten in a form which is manifestly invariant
under the infinitesimal transformation: §7”(x) = IT"/¢,(x), for any infinitesimal vector field
e. In this chapter we will discuss the functional integral quantization of the theory by means

of the introduction of the constraint IT] 7, = 0 in the functional measure (something like a
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sharp gauge fixing'). Thus, the generating functional of the theory will be
z[L,,J) = M = / [dn*de] S[ITm, | e!SF ot 4T 0}, (3.53)

Notice that, depending on which regularization and precise definition of the functional integral
is chosen, the functional integration over [dﬂﬁ] and the constrained integration [dn”|8 [H’fﬂp}
could differ by a field-independent Jacobian determinant. A skeletonized definition in Fourier
space, i.e. the use of a discretization of Fourier space, would make this Jacobian to be equal to
one. Whenever such a Jacobian is unity, since the constraint kills all but one of the integrals
over the 7’s, the usual functional measure y = Detﬁ provides the normalization needed in
order to reproduce the known results for bare Hamiltonian actions quadratic in the momenta.
Otherwise y needs to be different (but still field-independent) in order to balance the Jacobian

determinant. Starting from eq. (3.53) the definition of the effective Hamiltonian action is again
I'[7", 9] = ext (WIL,J]—L -7 —]-9) (3.54)

which is equivalent to state that I' is the solution of the following integro-differential equation

with suitable boundary conditions
eiI‘[ﬁ"@] _ / [dﬂvd(P] S[HYT[P} yei{S[n"’?]*(ﬂfﬁ)V%*(‘P*‘?)%} . (355)

In the following we shall try to give a definition of the integrals (3.53) and (3.55) based
on an RG flow equation for the average version of the effective action. First of all, one has to
introduce k-dependent operators that disappear in the k — 0 limit and that provide a rising

delta functional in the k — A limit. As before let us denote this regularization as follows
21, J) = [ [d"dg)S[IT7 3] gy e S 050 b1 1)

We will choose aregularization corresponding to a k-dependent deformation of the term whose

one-dimensional version is the Legendre transform term, i.e. —x#J,¢. In other words, we will

!Dirac’s classification of constraints and the consequent quantization schemes for gauge theories are based
on the non-covariant Hamiltonian formalism and therefore are not straightforwardly applicable to the present
case. However classical constrained dynamics has been extensively discussed in the literature about the co-
variant Hamiltonian formalism(s) [57] and some proposals have been provided about the corresponding path
integral quantization of gauge theories [65].
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restrict to an off-diagonal Ry, or more explicitly

AS 7", 9] = /ddx [—7"r.(—0)0,9] (3.56)
0 —(1+n(-0)8,8x-«)\|"
g, = @ |Det
(14 r(-0))0,8(x — x) 0

The definition of the AEHA is the same as in quantum mechanics
T [7", 0] + ASc [7", 9] = ext (Will,,J] =L - 7" —] - 9) (3.57)
wherefrom the usual integro-differential equation
S / [dn"dg] 8 [T, ] e I PHHASm0-dl--D"RE 0D} (355
By taking the k0y derivative of eq. (3.58) one finds

ity = / dx((x — 7)hdy (o — 9)) (3.59)
i
For the second term, we need to write the two point function in terms of derivatives of I';. Since
this theory contains one Lagrangian coordinate and one momentum, I'® is a two-dimensional
square matrix, as in quantum mechanics. However, our momentum is a vector field bringing
a Lorentz index, and even if it lies in a one-dimensional subspace, such a subspace varies from
point to point in spacetime. Thus, unless we want to choose a frame in the tangent bundle
such that at every spacetime point x the vector #”(x) has only one and the same non-vanishing
component, we are forced to deal with it as a generic Lorentz vector. Since we prefer to write
formulas in a generic frame, we will treat T() as a generic (d + 1)-dimensional square matrix,
whose entries can be written as four blocks: a (1, 1) tensor (d-by-d square matrix), one con-
travariant (column) vector, one covariant (row) vector, and one Lorentz scalar. Because the
momenta enter the theory naturally with high indices (to be contracted with derivatives), we
will treat them as column vectors. Therefore the source I will become a row vector. We will de-
note by ()* the transposition of these objects, that is the canonical isomorphism defined by the
spacetime metric. Thus 7 and I' will denote row and column vectors respectively. Of course

derivatives with respect to contravariant (covariant) vectors will be considered covariant (con-
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travariant). Going back to the task of computing the two point functions, since

—

i<’r<(”‘ﬁ)ﬁ“®(”i’?;’ (”__)”“(@_?)x’)n:W,f”xx,u,n :<W 7 JZ)
(9=9)e(m=7)t  (p—9)alp—9)x (os) s

Al

S2W,

one needs an explicit expression for the vector 51 i terms of I'y. This can be found by using

oT oT
I, = 10, — 8_7‘71; , J=-—nd7 — 8_¢k
thus getting
— o (5Nt s 5 si\t\ !
W o (PG F) _ (Few (&)
k xx’[ ?]] - 8¢\t 59 - 5] 5]
(%) 5/ 57 55 /o
) e T -

where (r;,08) 2, = rk(—ﬁil)ﬁxIS (x; — x,) is a Lorentz covariant (row) vector. This matrix
is manifestly symmetric with respect to full transposition T of both Lorentz and spacetime-
position indeces. Since the building blocks B and BT are not square matrices, we cannot use

formula (3.14). Anyway, if A and (D — BTA™!B) are non singular this becomes

WL = — A™'+ A7'B(D— BTA7'B)'BTA™' —A"'B(D—BTA!B)!
£ —(D — BTA™'B)"'BTA™! (D — BTA™'B)!
(3.60)

ifinstead D and (A — BD'BT) are non singular, then we can write

WL = ( (A — BD™'BT)"! —(A— BD'BT)"'BD"!
—D'BT(A—BD'BT)"! D'+ D 'BT(A—BD 'BT)"'BD™!
(3.61)
The off-diagonal entries of these matrices can be finally plugged into eq. (3.59). Thus, if for
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instance A and (D — BYA™!B) are non singular the final flow equation is

. 82T 82\
. . -1 k k .
iy = Trli(l4+n) 8] — Tr[ <rk88 + 87‘:8@) (87’:87‘:) (#:08)

-1
82T, 821\ /821 821, \ "

— | n08 — 08 . (3.62
lsgosq) (r" * 87189)) (&r&r) (r" * Sar&p) (3.62)

Here for sake of notational simplicity we dropped the symbols for tensor products and Lorentz

transpositions. By means of eq. (3.61) the reader can write down a similar flow equation for
the case in which D and (A — BD™*B”) are non singular.
As an example let’s discuss the LHA for a scalar theory enjoying Z,-symmetry under si-

multaneous reflections: #¥ — —x", ¢ — —¢. In other words, we are going to insert the

=2 =2
ro- [ |-rop-m(Z.2)] (363

where 7> = 7'7,, in the previous flow equation. In order to project the rh.s. of the flow

approximation

equation inside such an ansatz for I'y, one usually evaluates it on constant field configurations.
This can be done also in the present case, without contradicting the assumption that the mo-
menta 7” be longitudinal, by choosing the Fourier transform of 7” pointing in the same di-
rection of the Fourier variable and being proportional to a delta function. We will denote by
'H,(:’j ) the result of differentiating Hy, i-times w.r.t. %2 and j-times w.r.t. %2. Let us recall the
notation already used in quantum mechanics (see eq. (3.34)) for the regulator in the LHA, i.e.

P(—0) = (1 + n(—0))*(—0O). Let us also introduce for convenience the function

202

o4(a) =,F; (1, 1; ii; a) (3.64)

and the following threshold functional

d - lv—l —d ddp Pk@2> oi(alp?
lo[a,ﬂ] - 4 d k /(Zﬁ)dpk(pz)‘szﬁ(PZ) d( (p )) (3-65)

where v;1 = 24+17%/ Zf(g). Then the flow equation for the dimensionful average effective

Hamiltonian density can be written

i,}‘.[k = 2ded (lg[a';.[, ﬁ’H] — lg[aH, O]) (366)
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where we further defined the dimensionless quantities

ay(p*) = Pe(p’) #H (367
Py(p?) + KBy 1O 4 729420
(1,0)
_ 1|, , (1,1) 2 Hk (1,0) 0.1) | —2,,002)
ﬂH B ? [ﬂ 14 (7-[" ) H](cl,o) + 7?ZHI(Cz,o) - M (%k + o H, ) (3.68)

the second of which is not a function of p*. First of all let us notice that if we make the ansatz
that the theory be quadratic in the momenta at every scale, then the vanishing of 'H,(cz’o) en-
tails the vanishing of a7, and we recover the Lagrangian flow in the LPA. If instead a4, is non-
vanishing, the presence of a p-dependent denominator in the argument of the function o in
general makes the analytic computation of I£ quite hard. For this reason it is wise to choose the
regulator in such a way to kill the p-dependence of all the denominators. In the LHA this can
be accomplished by means of the optimized regulator r,(p*) = (k / \/;7 — 1) 0(k* — p?), ie.
Pi(p?) = (K* — p?)0(k* — p*). For such a choice

1 2 H
ay(p*) = (3.69)
Lt By #7210

is p-independent and the threshold function for constant argument becomes

1
1+8

o, Bl = 5 ela).

To sum up, for the optimized regulator the flow equation of the LHA reads (after Wick rotation)

H = — vk g,(ay) (3.70)

with B, and ay given by (3.68) and (3.69). The function o takes simpler forms for integer d.

For instance,ind = 2,d = 3 and d = 4 it respectively reads

R

arctanh(+/a) 2 1 ]
Va ’ a '

o@)=(1-a)2 , oa) =
(3.71)

Equation (3.66) can be taken as a first step towards the nonperturbative study of scalar QFT in
the covariant Hamiltonian formalism. In particular, one of the first questions to be addressed
is whether such an equation admits non-Gaussian fixed points. In case a positive answer exists,
these could provide a possible solution to the triviality problem of scalar QFT in four dimen-

sions (see section S.1 for a detailed discussion of this problem). In fact, choosing the engi-
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neering dimensions of the fields in such a way that the coefficients of the 7> and Legendre
terms be dimensionless, dimensional analysis tells us that the coupling multiplying the oper-
ator (7)(¢*)’ has dimensionality d;; = (1 — i — j)d + 2j. Therefore in d = 4 the only
momentum dependent non IR-irrelevant term is 72, all other terms with positive integers (i, j)
being IR-irrelevant. In other words, scalar theories more than quadratic in the momenta are
expected to be highly favored in the UV and to be well approximated by quadratic theories in
the IR. From this point of view it seems reasonable to look for the UV completion of four di-
mensional scalar QFT in a general Hamiltonian framework. For instance this could be done
according to the paradigm of asymptotic safety described in the introducing chapter of this
thesis. On the other hand this very same argument in the case of a simpler scalar QFT in con-
figuration space is often used for a qualitative understanding of the absence of Z,-symmetric
non-Gaussian fixed points in d = 4: in this case the only IR-relevant monomial-like operatoris
the mass term, all other monomials being either marginal or IR-irrelevant. Nevertheless, since
in the present formulation the theory contains not only a scalar field but also a longitudinal
vector field, we believe that the understanding of this issue requires explicit computations in
order to reveal the details of the underlying dynamics.

Another interesting question regarding eq. (3.66) is whether it can teach us to what extent
the covariant Hamiltonian framework adopted in this chapter is sound and useful. In particular,
it would be interesting to compare, within a fixed approximation such as the LHA, the RG
flow of the traditional non-covariant Hamiltonian formulation with that of the covariant one
allowing for longitudinal momenta only (the present case) and with the one allowing also for

transverse momenta. These and other questions will be left open by the present work.

3.3.2 SPINOR FIELD THEORY

Let us build the covariant Hamiltonian formulation of a classical Lagrangian field theory for
a single Dirac field in a number d (allowing Dirac spinors) of spacetime dimensions with the

standard Lagrangian density

‘C(V/v av‘//) = _V_/i@‘// - V(‘_Pv V’)

(in a Minkowski mostly-plus signature) where ¢ = iy'y° . Defining the momenta 7" as the

right partial derivatives of — £ with respect to 0,y we find d second class primary constraints:

K%)= a"(x) = y(x)y" =0 (3.72)
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whose solution is y = 2x"y,. These constraints boil down the momenta to functions of just
one field, hence there is no room here for the other d — 1 conjugate fields that in the bosonic
case could be identified with the transverse momenta. The relevant phase space is the surface
S defined by (3.72), the only independent coordinate on it is ¥ and the functional integral is

to be taken over all histories y/(x). The covariant Hamiltonian density is defined as

H(x",¥) = ex

1
BV\IE (_ﬂvavv’ - E(‘/’v 81/‘//)) = V(_Eﬂ'v%n \k)

and on S it is just V(V, ¥). Thus the covariant AEHA formalism in this case is equivalent to
the usual Lagrangian approach, exactly as was previously described for fermionic QM, one has

just to replace time derivatives with i) operators.

3.4 OuTLOOK

In this chapter we have focused on the description of quantum dynamics by means of the quan-
tum effective Hamiltonian action (EHA). We have first reviewed its properties by a discussion
in quantum mechanics, taking advantage of the fact that QM and non covariant QFT’s are very
similar in this respect. We have then discussed how to compute the effective action. For in-
stance we have derived a general one loop formula, which can be useful to compare the results
obtained by other approaches, and we have generalized the variational definition provided a
long time ago by Jackiw and Kerman [66] for its Lagrangian counterpart. But the main goal of
this chapter is to provide an alternative non-perturbative tool to compute the EHA. This is an
Hamiltonian generalization of the so-called functional renormalization group, in particular of
the formulation by Wetterich based on the average effective (Lagrangian) action [8].

Such a generalization, which is one of the main results of this chapter, is straightforward in
QM, even if the one-parameter-dependent family of cutoff operators is wider and in general the
formulae are more cumbersome. Starting from the most general flow equation we have derived
simpler equations like the one associated to the so called local Hamiltonian approximation
(LHA), i.e. the leading order in the derivative expansion. In order to show that the approach is
trustworthy, we have studied, as an example, a family of quantum mechanical systems with bare
Hamiltonians non quadratic in the momenta, we have computed for two cases the ground state
energy and the first energy gap, and we have successfully compared them to the exact results,
employing different kind of schemes and approximations. We stress that for the models under
consideration we needed to take into account, as expected, the issue of Weyl ordering, which
turns out to be at the base of the present flow equation quantization as it is well known to be

for the functional integral quantization. This fact calls for some care in defining the concept of
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a bare non separable Hamiltonian action.

The application of the formalism developed for QM to the QFT case is straightforward and
quickly discussed but, as in all Hamiltonian approaches to QFT, one must pay full generality
and manifest unitarity with non-manifest Lorentz covariance. This is unpleasant and compli-
cates the job of performing approximations without breaking such a symmetry. For this rea-
son, in the second part of the chapter, we have discussed the possibility to generalize the EHA
formalism to include also covariant Hamiltonian QFT. Functional integral quantizations of
such theories have already been addressed in the literature, especially for gauge theories. In
the present chapter we have addressed the simplest cases of scalar and spinor degrees of free-
dom. Actually, for scalar QFT we further restricted our work to the presence of one conjugate
momentum only, namely a longitudinal vector field. In this specific case we have provided
an RG flow equation representation of the corresponding QFT, and we have worked out its
explicit form in the LHA.

Let us close this chapter addressing the issue of the physical motivations for the formalism
built in it and of its usefulness. Clearly, the use of this framework is related to Hamiltonian
systems non quadratic in momenta, therefore we should comment on the question: where are
them or why should we look for them?

Quantum mechanical systems more than quadratic in the momenta may be interesting on
the base of first principles (think about the action of the free relativistic particle) or arise as ef-
tective descriptions of physical systems. Also, they could appear as intermediate technical tools
for the description of more complicated systems. For instance, within the worldline formalism,
one-loop computations are reduced to quantum mechanical path integrals with Hamiltonians
which sometimes are non-quadratic in the momenta [68]. In these cases one can hope to use
this approach as an alternative or a complementary tool to perturbation theory.

Theories more than quadratic in the momenta, when reduced to the Lagrangian formula-
tion, show a nonlinear dependence on the derivatives of the fields. This dependence, if ex-
panded in powers and truncated, typically generates violations of unitarity. Nevertheless be-
fore truncation nothing prevents such theories from being unitary. That is, there might be some
interesting non trivial extensions of quantum models which are non-quadratic in the momenta
and that make perfectly sense from a quantum mechanical point of view.

Why should we look for them? As already commented at the end of the section on scalar
QFT, the study of the RG flow on the Hamiltonian theory space might show new possibilities
for the UV or IR behavior of systems that at some intermediate scale are well approximated
by simple Lagrangian theories. Stated in different words, keeping both phase space variables

could make easier the task of parameterizing the quantum dynamics far from that intermediate
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simple Lagrangian scale. One reason for such an expectation is the following: we know that
the effective actions are in general non-local, and that integrating out non-Gaussian degrees of
freedom is responsible for such non-localities, therefore avoiding to integrate out the momenta
should be of help in the hard task of reducing as far as possible the importance of non-local in-
teractions. Restated one more time: even by studying the running of approximate local actions
on the Hamiltonian theory space one can, just by putting the momenta on-shell, have access
to at least part of the running of non-local actions in the Lagrangian theory space. For these
reasons also the study of theories whose bare actions are quadratic but that flow to AEHA’s
more than quadratic in the momenta could benefit from this first order formulation. Examples
are the covariant Hamiltonian formulation of Yang-Mills theory and generic nonlinear sigma
models, which in our opinion deserve future investigations within the present framework.
The analysis of Hamiltonian flows might open the intriguing possibility of finding systems
belonging to new universality classes, by looking for fixed points of the flow in the Hamilto-
nian formulation. We have started to consider this challenging problem within the “reduced”
covariant formulation of scalar QFT presented in this chapter, and we hope to report on this
soon. The results of all these studies will in general depend on the kind of Hamiltonian for-
mulation we choose, a fact that enables one to quantitatively compare different quantization
prescriptions as well as to look for physical systems described by each of them. Thus, in our

opinion, a vast playground lies open, waiting for future investigations.
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Scalar O(N) models

AN HAMILTONIAN REPRESENTATION OF BOTH LINEAR AND NONLINEAR O(N) MODELS is
discussed, generalizing the treatment of a single scalar field theory presented in the previous
chapter within the Lorentz covariant approach. This representation preserves the manifest co-
variance under all the linear symmetries of the models, Lorentz included, while invariance un-
der infinitesimal nonlinear transformations is ensured for all the truncations satisfying a set of
modified Ward-Takahashi identities. The problem of allowing for global effects in target space
is reviewed and then discussed within this representation. The guiding lines of this ongoing

research as well as the motivations and the expectations are briefly described.

4.1 THELINEAR AND THE NONLINEAR MODEL

O(N) models are field theories possessing the following symmetries: the Lorentz group SO(1,d—
1) in spacetime, or the rotation group SO(d) in space, translations in spacetime, and a global
inner O(N) symmetry in the target manifold. The scalar version of these models is obtained
allowing only trivial representations of the Lorentz group on configuration space, i.e. assum-
ing that configuration space is coordinatized by scalar fields. Different scalar O(N) models

can be obtained by choosing different representations of the O(N) symmetry. Two choices
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are the most studied in the literature. The name “linear O(N) model”, or O(N) vector model,
is usually reserved to a linear irreducible representation of the full O(N) group. In this case
the target manifold can be imagined as a Euclidean vector space. Given a set of global coor-
dinates {7}, n on M we define N scalar fields ¢?(x) = 7*(g(x)), which we collect for
convenience in a vector ¢. The elements of the symmetry group are represented by N x N or-
thogonal matrices and the action of the group on configuration space is represented by matrix
multiplication between these matrices and the vector @. The name “nonlinear O(N) model’,
usually refers to a representation that is linear and irreducible for the subgroup O(N—1) and
nonlinear for the coset O(N)/O(N—1).

What is known about such representations? Given a compact, connected, semisimple Lie
group G of dimension d; and a continuous subgroup H of dimension d, the classification of
the nonlinear representations of G that become linear when restricted to H was shown in [69]
to be equivalent to the classification of the representations of G on a d,-dimensional manifold
J such that H is the stabilizer group of some reference point f, on . Calling p the action of
G on F, since p(H) is the stabilizer of f,, it is possible to choose local coordinates for F in
a neighborhood of f, such that p restricted to H is linear. Furthermore, one can restrict p to
a specific submanifold of F and still have a well defined representation. This submanifold is
the orbit of f, under p(G), it has dimension d, — d; and we will call it M. One can provide
local coordinates for M in a neighborhood off, introducing a Cartan decomposition of the Lie
algebrainto {t;},_; . 4, generators of H and {ta}a:thrl,.”’dg generators of the right coset G/H,
the two sets being orthogonal with respect to the Cartan inner product, and taking advantage of
the exponential map. Thelocal coordinates of m € M are called ¢?(m) and are defined by m =
p (ei‘?’a("‘)t“) f.. These coordinates transform nonlinearly under G according to: ¢ — ¢’(9, g)
where p(g)m = ¢?" (£ . In conclusion, the problem of building a nonlinear representation
of G that becomes linear when restricted to H leads one to choose a target manifold M that
locally can be built as the orbit of some reference point f, under the action of G/H.

If we restrict ourselves to the special groups, in the present case G =SO(N), H =SO(N—1)
and G/H =~ SN~! = M. Therefore one could be lead to take as an equivalent definition of
scalar nonlinear SO(N) model: a scalar field theory whose target manifold is the N—1 sphere.
In this case, nonlinear O(N) models would fall in the wider category of the nonlinear sigma
models [70, 71], i.e. field theories whose target is a smooth Riemannian manifold. One rea-
son to question the equivalence of the two definitions is related to the possibility to extend the
arguments of [69] beyond the need for a reference point in target manifold and the confine-
ment inside its neighborhood. It often happens in field theory that local expansions in powers

of field fluctuations are equivalent to small coupling expansions, therefore the extension be-

64



yond a local analysis is often considered nonperturbative. In the literature many such analyses
have been performed, revealing important global effects, such as instantons, in field theories
defined on topologically nontrivial manifolds. Therefore, regarless the possible inequivalence
of the two definitions, it is very interesting to allow for global effects in such models.

On the other hand, the emphasis on the presence of a reference point is understood on
the basis of the development of such models for the description of the dynamics of Nambu-
Goldstone bosons. In fact, spontaneous symmetry breaking is often described as the formation
of a nonvanishing vacuum expectation value (vev) for the fields, that is not invariant under the
full global symmetry G but only over a subgroup H. Then, such a vev provides a reference
point in the target manifold F of the theory describing the symmetric regime, and applying
the construction cited above one can formulate a new field theory for the broken regime, in a
new target manifold M on which new fields, the Nambu-Goldstone bosons, take values. The
presence of such a reference point does not clash with the nonperturbative request of a global
and geometric definition for the model: since the real configuration space of the theory is a
set of histories taking values on the sphere, the fact that the average history be sitting at some
pointf, forany x € S does not break the freedom to change coordinates on the sphere.

Therefore one good phenomenological motivation for addressing the study of linear and
nonlinear O(N) models altogether is: the same physical system in two different regimes can be
described by these two different models. Another very good reason is related to the hypotesis
that these two systems belong to the same universality class. This is just a particular case of the
general hypothesis that two short-range theories in the same spacetime dimension and with the
same symmetries belong to the same universality class. For the case of the O(N) models, many
studies performed with many different methods suggest that this is indeed the case [72, 73].
This is why in this chapter we will formulate the two theories in the most similar way, and try

to study both of them within the same framework, by means of the fRG.

4.2 FRG AND THE GLOBAL DEFINITION OF THE NONLINEAR MODEL

Our analysis will take into account the different kind of representations of the O(N) symmetry
in the two cases, but it will not address the peculiar nontrivial topological properties of the
nonlinear model. In fact in the fRG approach it is far from obvious how to properly take into
account global effects. The problem about kinks in QM [74, 75, 76] is just a soft version of
the challenge provided by topologically nontrivial sectors of quantum field theory excitations.
Traditionally, nonlinear sigma models such as the O(N) or the CPY model have been reference
models for the study of these aspects, and were considered toy models for the understanding

of Yang-Mills theory [77]. Therefore it would be very important to be able to reproduce the
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known global effects by fRG computations.

4.2.1 THE GEOMETRIC BACKGROUND FIELD METHOD

All the studies of nonlinear sigma models performed so far within the renormalization flow rep-
resentation [17, 22,78, 79, 80, 81, 82] were based on the traditional background field method
(BFM) for the construction of the geometric effective action [ 18, 19, 83], that from here on we
will call geometric BEM (gBFM). In this framework, one starts with a reference point f, on M
and couples external sources to the derivative w.r.t. f, of the geodesic displacement from this
point. Since the geodesic displacement is well defined only locally, because of the existence of
caustics, the resulting theory will also be restricted to alocal chart, regardless of the representa-
tion chosen for the quantum dynamics (functional integrals, Schwinger-Dyson equations, RG
flow equations or anything else), unless one adds further information as we will explain soon.
On the other hand, the main advantage of this method is the fact that any variable appearing
in it has a well defined geometrical, though local, meaning, independent of the choice oflocal
coordinates. One negative aspect of this method is the appearance of two external sources, the
one coupled to the gradient of the geodesic displacement and the reference point itself. This
property translates in the doubling of the theory space in a fRG framework, with a consequent
doubling of complexity in the choice of approximation schemes and in the computations. To
understand how variations in the choice of the reference point can be undone by variations in
the choice of the other source, or equivalently by variations in the field vev, one needs to work
out the so called Nielsen identities [ 19] which, if solved together with the dinamical equations,
again reduce the dimension of theory space by a factor 2. Another way to prevent this doubling
proposed by B. DeWitt is the identification of the reference point with the vev of the quantum
field, but this leads to a definition of the quantum effective action again by means of two en-
tangled equations, thus conserving the double-complexity spell. Apart for these limitations,
the gBFM has been fruitfully applied in the fRG framework to nonlinear sigma models, gauge
theories [84] and gravity [85]. Let us also mention that attempts to get global information
from the geometric gBFM has been started for nonlinear sigma models in [82]

Motivated by the monopolizing success of this method, and by some apparentlack of success
in the computation of the critical exponents for the O(N) nonlinear model [81], we would like
to develop here and alternative approach for the fRG study of the latter. The goal we put ahead
of us is to compare the results with the ones obtained by the gBFM, by ordinary perturbation
theory, lattice simulations, the conformal field theory operatorial approach, thermodinamic
Bethe ansatz, spin wave theory and all other available methods. This approach is based on the

phase space formulation discussed in the previous chapter and so far shares all the negative

66



qualities and lacks the main advantage of the gBFM. It lacks manifest invariance under coordi-
nate transformations on the target M, since the sources are coupled to the coordinates of the
points in M and of the covectors in 7 * M. It doubles the theory space because it adds sources
also for the momenta. In order to ensure the invariance under the nonlinear global symmetry
one also needs to deal with further constraints called Ward-Takahashi identities (WTT), which
are to be solved together with the dinamical equations. Nevertheless, it could have some other
qualities, a possibility which will be discussed in the following sections.

For example, the breaking of general coordinate transformations by means of the sources in
principle does not forbid to give a geometrical interpretation to the formulation and to ensure
general coordinate transformation invariance in a non-manifest way, by means of some WTL
All one needs to this end is that the theory admits a geometrical interpretation in absence of
sources. For instance, in a functional integral representation this requires that both the bare
action and the functional measure be invariant under local coordinate transformations. Also,
in case the theory is globally well defined in absence of sources, one should be able to repro-
duce global effects even if the source terms are local. This is again what happens for example in
the ordinary (i.e. not gBFM-based) functional integral formulation of nonlinear sigma mod-
els, where the functional measure is postulated to contain the appropriate dependence on the
metric in target space, while it does not happen in the standard gBFM formulation, where one
either integrates over the tangent space at f, or on a local patch of M bounded by the diver-
gence of the van Vleck-Morette determinant. One the other hand, one could try to build a dif-
terent gBFM by postulating that the van Vleck-Morette determinant should not appear in the
functional measure, i.e. by starting from a globally defined functional integral representation
and then introducing in it the source and the reference point, instead of following the original
formulation that starts from the introduction of the source and ends in a functional integral.’
We will try to provide arguments for both these qualities, general coordinate transformation
invariance and global definition on M, to be possibly enjoyed by some phase space formula-
tions. We will also propose a phase space functional integral formulation for nonlinear sigma
models with a functional measure that, though field independent, enjoys manifest Lorentz in-
variance, and we will deduce from it a corresponding RG flow equation. Even if the previous
qualities turned out not to be present in this approach, yet at least we could say that the Hamil-
tonian formulation allows for applications to Hamiltonians that are more than quadratic in the
momenta.

As a final note about the comparison between the background field and the phase space

'In other words, it seems to us that the traditional arguments in favor of the equivalence between the
Schwinger variational principle and the Feynman integral formulation, such as for example a functional Fourier
transform representation of the solution of the Schwinger-Dyson equations, apply only locally.
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methods, let us stress a trivial fact: the two ideas do not exclude each other. In other words,
one could apply the gBFM to a phase space formulation, introducing three different external
fields: a reference point f,, a source for the derivative of the geodesic displacement w.r.t. f,
and an extra source coupling to a new composite field, depending on f, and the phase space
variables. The requirements on this new composite field are clear: whenever the target metric
is trivial (locally or globally) it must reduce to the conjugate momenta, it must be a scalar at
the point M corresponding to the position of the fluctuating Lagrangian variable, it must be a
vector at f,, just as the corresponding source I. Since by construction the conjugate momenta
are vectors at the point set by the Lagrangian variable, in order to buid vectors at f, out of them
we need to transport them there in a covariant way. Therefore the new composite field can be
chosen as the contraction of the momenta with the geodesic parallel displacement bivector at
the two points mentioned above. Such a construction will not be explored in these pages, being

many steps further in complexity and because we don’t see strong motivations to develop it.

4.2.2 A GEOMETRIC DEFINITION FOR PHASE-SPACE FLOWS?

We intend now to give a general definition of the setting we are going to investigate. For this it
is useful to start with simple and widely accepted notions and see how they relate to the new
formulation. Let’s then go back to QM. Since we would like to lay down a single framework
for both linear and nonlinear models, we will assume the target M to be a generic Riemannian
manifold of dimension D. In drawing the general strategy we will try to preserve a geometrical
definition for the model, the main reason being that, as we will see when we will explicitely
build the nonlinear representation of the O(N) symmetry, invariance under reparameteriza-
tions of the target manifold automatically ensure invariance under this global symmetry, be-
cause of the arguments recalled above.

Given a coordinate system {7/“},1:17._713 in M we have a corresponding frame {au}a:h_wp
in 7M and the dual frame {d"},—; _p in 7*M. We will denote with g, the correspond-

ing metric components. Under changes of coordinates y* — 7’* = (7 0 )% where 7 is the

b la
transition function, the frames change according to 0., = g;/,a Opand d* = égr" d®, and corre-
c d
% % g4 Letusrecall that the Lagrangian variable
q is a map from spacetime S (just time in QM) to M and that the conjugate momentum p is

a map from S to 7*M, such that p(x) € Ty() M. Then we define D scalar fields for g by
¢%(x) = 7°(q(x)) and D scalar fields for p by p(x) = 7a(x)d*|(). Under changes of coor-

spondingly the metric components g/, =

dinates these fields transform to ¢"%(x) = 7*(q(x)) = 1%(¢(x)) and 7/ (x) = 7p(x) 377,2 q(=)-
Therefore, if the functional integral is an integral over p and g, a geometrical well defined co-

ordinate representation of it does not require any nontrivial measure, because the Jacobian de-
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terminant linking [dr,d¢?] to [dn d¢'?] is bound to be field independent in any regularization
scheme preserving the geometrical interpretation. This is one main advantage of the phase
space path integral in QM: the functional measure does not explicitely depend on the target
manifold, it does only implicitely through the topological properties and possibly the bound-
ary conditions.

Such a property is enjoyed also by the phase space path integral in the traditional Hamilto-
nian formulation of QFT. On the other hand such an advantage is overcome by the negative
aspect that Lorentz symmetry is not manifest. Therefore in the literature it is much more com-
mon to find studies of nonlinear sigma models based on the Lagrangian functional integral,
which has a nontrivial functional measure given by the formal expression (Detgab (p(x) )) : .In
those regularization schemes for which such an expression is nonvanishing, one has to add the
logarithm of it as an extra dynamical sector in the bare action, or to introduce auxiliary fields to
translate this sector into a local ghost sector. Our philosophy in dealing with this issue will be
trying to have both manifest Lorentz invariance and a trivial functional measure by embedding
the Lorentz-non-covariant Hamiltonian formulation into a Lorentz covariant one.

Has we have seen in the previous chapter, in the covariant Hamiltonian formalism one needs
many conjugate momenta, for the contraction with a gradient in spacetime. In other words, the
covariant Legendre transform term will be 7" (x) 0,9 (x). Thus, for a D dimensional target our
momenta will contain a total of D X d real d.o.f,, the geometrical interpretation of which is sim-
ple. The push forward of the vectors J, in 7S by q gives the vector q,(09,) = 0,0%(x)0alq(x),
such that we have the transformation rule: 9,¢"(x) = 9,¢"(x) %l: |4(x)- Then we could think
about the conjugate momentum as a map from S to d copies of the cotangent space, in other
words as d maps, labelled by an index v, associating to each pointx € S a corresponding covec-

torp”(x) = 7}, (x)d®|4(x). Asaconsequence of this interpretation, for each v the transformation

b
rule under changes of coordinates will be: 7/’ (x) = 7}(x) % q(x)- The covariant Legendre

transform term can be intepreted in two equivalent ways as the contraction between a vector
and a covector: either p”(x) € T*M |y and q,(0,) € TM|y@) orq*(p’(x)) € T*S|, and
0, € TS|, This reduces to the one explained above for QM if d — 1. So far we have not con-
strained the conjugate momenta, therefore we have alarger number of p’s than g’s. This could be
expected to create unpleasant features and in fact it does: if we had to build a functional integral
for these variables, the corresponding functional measure either would not make any geomet-

rical, i.e. coordinate independent, sense or it would be field dependent. This is because under a

d 1
2 3 a a b
s0) " while [do?] > [dg'] (Det3:

2
q(x)> .

There are at least two ways to solve this problem: the first is reducing the number of mo-

change of coordinates [dr?] — [dn”’] (Det%:z

menta and the other is adding more variables transforming in the right way to balance the mo-
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menta in excess. Since we want to preserve both Lorentz and general coordinate invariance, the
first choice requires a projector preserving both symmetries. Of course the projection studied
in the first chapter, on momenta longitudinal with respect to the operator d,, cannot be con-
sistently required to hold in every coordinates system. A possible solution would be to replace
0, with the covariant derivative operator V, depending on the metric g, and on the deriva-
tives 0,¢°. This would entail a differential constraint on #, depending on the field ¢%, and we
are not eager to deal with such a problem, though it could be that this projection turned out
to be safe and the computations possible. On the other hand, such a projection would not be
justified by the same argument that led us to the one based on 0, in the previous chapter: the
covariant Legendre transform term couples both V-longitudinal and V-transverse momenta
to ¢*. Anyway one could consider the possibility to ask the momenta to be 0-longitudinal
only in one coordinate system, everywhere on M, i.e. for any ¢?(x) in this frame. This pro-
jection would not be covariant w.r.t. reparameterizations of M, but it would not break such a
symmetry. Also, in a generic coordinate system the momenta, though not longitudinal, would
comprehend only D d.o.f. and therefore the functional measure would be field-independent.
Now let us turn to the second possibility. This choice is inspired by the example of the
quantum mechanical case: having two dual set of vectors, transforming in opposite ways under
changes of coordinates, should give us a chance to build invariant actions and measures. Thus,
let us consider a theory with 2(D x d) d.o.f.: half of them grouped in a momentum field ="
transforming as a contravariant vector under Lorentz transformations and as a covariant vec-
tor under changes of coordinates in M, the other half of them belonging to a vector field v$ that
is covariant under Lorentz and contravariant under changes of coordinates. What happened to
the old field ¢%, taking values on M and not on 7 M? Is there a way to extract it from v%? The
usual procedure to extract a scalar from a vector field is to look at the longitudinal component
of the vector: vjf, = 0,¢". In any coordinate system, we are free to split any a-th component of
v into longitudinal and transverse parts w.r.t. 0,, but these parts have no well defined geomet-
rical meaning. Therefore, for the definition of vﬁ we have again two choices: either we define it
by the operator 0 in one specific and preferred frame or we replace 0 with V. In the first case

we ask it is possible to find a coordinate system such that for any a-th component
vy(x) = Dup’(x) +v,(x) , O], (x) =0 (4.1)
with ¢ having the same old meaning. In this particular coordinate system we can write:

vy = TaOve’ + A0, (4.2)
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such that the extra D X (d — 1) d.o.f. couple to a part of the momentum vector that does not
contribute to the covariant Legendre transform term. Notice that, because of the contraction
of latin indices, inside ﬂﬁa there are still D — 1 d.o.f. not contributing to such term, but this is
already true in QM, hence we don’t worry about it. In a different coordinate system v, # 0,9°
and the reasoning does not apply any more, but still v¢ — 0,¢* must have only D x (d —
1) independent components. In case we choose a definition of the longitudinal component
based on the covariant derivative, the fact that transverse components do not contribute to
the covariant Legendre transform term holds only locally. Thus, our options are essentially the
same we met in trying to project on one momentum only. In fact, if the bare action is chosen
to be linear in the extra variables v , i.e. if the bare Hamiltonian does not dependent on them,
they can be integrated out thus constraining the conjugate momenta to be longitudinal.

In this chapter we will restrict our analysis of nonlinear models to a piece of the manifold
M, therefore we will ignore the issue of a global definition of the longitudinal fields. Thus, the
general framework we are going to address is essentially the same that we already developed in
the previous chapter, in which phase space is parametrized by D scalar fields ¢* and a vector

field 7!, longitudinal w.r.t. 0,.

4.2.3 DETAILED CONSTRUCTION OF THE NONLINEAR MODEL

A unitary linear representation of the global O(D) symmetry with generators (), acts on the
ic t¢

fields through multiplication by the generic matrix U = e
pUx) = Ut (x) = () +iec(t) 0" (x) + O(%)
7ax) = U m(x) = my(x) —iee(t)’ 7y (x) + O(e)

in such a way that the covariant Legendre transform term is invariant. Let us stress that since
this transformation is global, we are free to interpret it in two different ways: active and passive.
By active transformation we mean here a rotation of the histories g(x) and p(x) leaving the
coordinate system unaltered, while by passive we mean a rotation of the coordinates leaving the
histores unchanged. This double possibility remains true also for nonlinear representations, as
long as the symmetry is global. If no other global symmetry is present (apart for Poincaré), we
can think about M as a D-dimensional vector space and by setting D = N we get the linear
O(N) model. A regularization AS; preserving such a symmetry can be easily built and thus the
invariance of the theory under the previous two simultaneous transformations holds for any k.

In the case of the O(N) nonlinear model, the manifold /M must be a sphere of dimension

D = N — 1, the previous symmetry is imposed and preserved by suitable regulators for any
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k, regardless of the choice of coordinates on the sphere, but must be augmented by a nonlin-
ear realization of O(N)/O(N—1). Following the general arguments recalled in the previous
section, this realization can be built by choosing a reference point f, on M, by considering the
action of O(N) onto a larger manifold and projecting it on M in such a way that the corre-
sponding linear representation of O(N—1) be the stabilizer of f,. The standard way to do this
for O(N) models is to consider a linear representation in N-dimensional Euclidean space, pa-
rameterized by Cartesian coordinates {X'},—_; . Without loss of generality one can assume
f, to be the “south pole” with coordinates XN = —R < 0, {X* = 0},
the stabilizer group is given by rotations of O(N—1) leaving the N-th direction unaltered. The

77777 N—1, such that
submanifold M is chosen as the D = (N — 1)-dimensional sphere of radius R such that on it
(XN)2 =R* — Zf;ll (X*)*. The {X*},—1,.. p can be considered independent coordinates on
the sphere, confined to a neighborhood of f,. From the simple law §X* = ig(#)’ ij one sees
that if the indices i,j < N (i.e. if we restrict it to the stabilizer off, ) the transformation of the
independent coordinates {X“},_;  pislinear. On the other hand, if we set firsti < N,j = N
and theni = N, j < N (i.e. if we restrict it to O(N)/O(N—1)) we have nonlinear transforma-
tions

§X* = ig ()" XN = XN, XN =ig({)N X = —£X°

a

where ¢ is real and XV is a function of { X} ,— 1,....0- Such transformations preserve the identity
(XN)? = R2— 3" 1(X*)2. Choosing any other coordinate system {7*},—. _p ina neighbor-
hood off,, the representation for it can be obtained from the one for the Cartesian coordinates
{X?}4=1....p by writing X* on the sphere as functions of 7. For example, in stereographic co-

ordinates from the point opposite to f, (the “north pole”)

one gets

R Scbc b
Sy = —&— (l— byy)—y“%.

and an identical transformation holds for the fields ¢%(x) = 7“(q(x)), and for rotations of
q at y? fixed. Since we can look at rotations of histories as rotations of coordinates, the geo-
metrical interpretation of the conjugate momenta fixes their nonlinear transformation under

O(N)/O(N—1). Its representation acts as a change of frame by a matrix

8" &Y\ €T e
=5, (1~ - 72,
Syt b ( R)T TR
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Therefore in conclusion the fields in phase space transform under O(N)/O(N—1) according

to

So°(x) = —s“lg (1 - ‘Pz(x)) o) (%)

R? R
) = (@) w (W) w0 — pxe # (W) (43)
where bold symbols denote vectors collecting the D components of the fields labeled by latin
indices, and the dot denotes contraction of these indices by means of the trivial metric &,, As
it should, the Legendre transform term is invariant under these transformations.

As we anticipated in the previous sections, we are going to formulate the dynamics of both
the linear and the nonlinear model by means of the same functional integral which looks just
like the one in (3.53) with the important corrections that now the fields ¢ and #” bring also
a-indices, and that for the nonlinear model one needs to give a careful definition of transverse
and longitudinal momenta. Let us try to understand what the two general choices for this
definition that we described in the previous subsection actually entail in the present context,
and from the particular point of view of an observer sitting on the south pole f,, associating to
each point of the sphere (apart for the north pole, that is out of her scope) the above mentioned
stereographic coordinates. The south pole itself is the only point with vanishing coordinates.

At every point with coordinates y* the metric tensors read

) = ﬁs Cem=i (D) e e

such that the curvature of the manifold can be neglected as long as Va, (y*)> < R%. If the
observer arbitrarily decides to neglect all quantum fluctuations (i.e. histories) violating this
bound then the issue of a careful definition of longitudinal momenta losts of interest, since
there is practically no difference between covariant and standard derivatives. If she allows the
histories to explore a larger neighborhood of the south pole then the two projections become
very different and they entail different dynamics, that coincide only locally. In fact, let us as-
sume for simplicity that the bare Hamiltonian be quadratic in the longitudinal momenta, re-
gardless of their definition. If the observer sticks to the first choice of requiring the momenta
to be longitudinal w.r.t. O everywhere (apart for the north pole), then she can safely integrate
out such momenta and get the traditional Lagrangian formulation in terms of her particular
coordinates. If instead she asks the momenta to be covariantly longitudinal, by integrating

them out she will find a different and unusual Lagrangian formulation that looks as the usual
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one only for histories close to her. This tells us that if she wants to reproduce the traditional
Lagrangian dynamics in the present Hamiltonian formulation she has to stick to the first def-
inition of longitudinal momenta and forget about reparameterization invariance. She will be
forced to drop the passive interpretation of (4.3) but she will be able to require this nonlinear
symmetry regardless of having fixed a preferred reference frame, at least as long as the rotation
of the histories doesn’t push them through the north pole. This is also what we are going to do,

neglecting for the moment global effects on the dynamics of the model.

4.3 FLOW OF THE LINEAR MODEL

In this section we are going to describe how to compute the flow equation of the AEHA of a
linear O(N) model by means of the general formulas derived in the previous chapter. We still
assume a d-dimensional Minkowskian spacetime with a trivial metric having a mostly-pluses
signature, and we are still interested in the leading order of the derivative expansion, i.e. to the

LHA, that is encoded in the following projection

Ii[7, 0] = /ddx [—1‘1” 0,0 —H (

Recall that bold symbols denote vectors collecting the N components of the fields labeled by

al

(4.5)

2 6;2 (i.é)'&_iZ@Z
T2 2 '

e |

latin indices, and that the dot denotes contraction of these indices by means of the trivial metric
§ .- Here we extended this convention by denoting: #* = "%, and (7-9)> = (7”-9) (%, ¢).
With respect to the N = 1 case discussed in the previous chapter, here we have a new invariant
under Lorentz, O(N) and simultaneous reflections 7/ — —7”and ¢* — —¢“, namely (7-9)?.
Thus, H has as third argument a new degree of freedom that automatically vanishes in the
N = 1 case. Remember that we still limit our discussion to the case in which the momenta
are longitudinal. In the present case this means that every a-th component specifies a radial
vector field in Fourier space. Then, obviously it is not possible to ask that this vector field be
homogeneous over spacetime, but it is possible to make this request for its magnitude. The
more the magnitude is homogeneous in spacetime, the more localized around the origin is
the vector field in Fourier space, still remaining radial. The limiting case of this process is of
course mathematically ill-defined, but physically we just require the Fourier transform of the
momenta to be longitudinal and strongly peaked at the origin (almost a delta function), such
that we can neglect the remaining support. Furthermore, if Va the momenta are longitudinal,
the direction in Fourier space is independent of a. Therefore in the present framework the
LHA can be studied by assuming a factorization 7% (q) = §(q)w"7,, with w'w, = 1, as well as

the usual ?(q) = §(q)@*. Thus from here on bold symbols will once more denote only O(N)
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vectors that are Lorentz scalars. For this choice of field configuration the subset of theory space
defined in (4.5) is closed under the RG flow.

We restrict our discussion to an off-diagonal regulator as in eq. (3.56). If we denote the
fields in Fourier space by ®(q) = (7%(q), #(q)), in the LHA the fluctuation matrix T ](cz) =

I’,(cz) + Rid is computed as follows

— —
~(2)_ 8 ~ 8 A B<p1) .
T 5ol 00, <BT<p1> D )5@1 )

where

Azi - Syv [Sab (7_[(100 _ZH 001)) + ¢a¢bH(001)]
—w,w, [ﬂaﬂb (H(zoo 2™ (101) | @47'[(002))
+ (75 + 5% ¢ (H(IOI) _ @27{(002)) 45t (x - ‘T’)ZH(OOZ)]

B%(p,) = (1+re(p2))ip,, 82 — w, [82(z - @)H®Y + 77w - ¢ (HIOY — ¢*H ()

+ 75, ('H (110) _ 5g/(001) _ @27{(011) _ grqon) 72‘7)27_[(002))
+ 5, (7—[(001) +(z- 7)2%(002)) +5°,(% - 9) (7‘[ (011) _ z29/(002) )]

Dab — _ [Sab (7_[(010 —27_[(001 ) + 7T (H (001) ( )27_[(002 )
+ <7—Ta¢)b + (7)“7_1' )i . @ (H(Oll) . iZH (002) )
+ 5.5, (H(ozo) _ a2 4 547_[(002))}

and the entries of BT can be obtained from the ones of B by exchanging the latin indices and

changing sign to the Fourier variable. Then, using eq. (3.60) we can write
1 (2) s 1 Tp—1p\—13 T -1
STr (rk —i—RkS) R| = STr [(D — BTA™'B)"'§,(D — BTA"'B)

where 0, is a differentiation w.rt. t = log(k/ko) acting on r only. The matrix inversions
and products can be easily performed due to the fact that the fluctuation matrix has a simple
structure involving only diagonal tensors or tensor products of vectors. However the algebraic
combination of the coefficients of these tensors is complicated and can be dealt with only by
some software for symbolic algebraic manipulation. So far we have not managed to get a com-
pact expression for these coeflicients therefore in the following we will avoid to attempt any
explicit definition of them. However, the implicit definition descends from the fluctuation ma-
trix given above. In order to get a useful expression for the running of the Hamiltonian density

of the linear O(N) model, another nontrivial step is needed apart for the algebra mentioned
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above: the integration over Fourier space. As was already the case for the simple scalar model
discussed in the previous chapter, there are two nontrivial integrations to be performed, one
over the angle between the loop Fourier variable p  and the direction of the momenta w”, and
one over the radial variable p*. The latter can be made trivial by adopting suitable regulators
such as the optimized one r;.(p?) = (k / \/F — 1) 0(k* — p*). The former instead considerably
increases the degree of mathematical complexity of the r.h.s., that for a genericd € R develops
a dependence on hypergeometric functions as in the N = 1 case discussed in the previous
chapter. To sum up, by working out all the above mentioned computational steps, we obtain a

flow equation equation for the linear O(N) model which we depict as

) =2 2 (= 2\2 _ =232 =2 =2 (—  Z\2 _ 222
7 (ﬂ_,?;, (=-9)° — ¢ ) :F<ﬂ_,&, (=-9)" — ¢ ,Hamn),d,N) (46)
272 2 22 2

forl, m, n € {0,1,2} with the constraint 0 < (I + m + n) < 3. As it should, this new
expression for the running of 7{ reduces to eq. (3.66) if one sets N = 1 and (7 - ¢)* = ®*¢>.

4.4 MODIFIED WARD-TAKAHASHI IDENTITIES

Since the representation of the O(N)/O(N—1) symmetry is nonlinear, any AS; quadratic in
the field in not invariant under it. Therefore, the RG flow generated by eq. (4.6) cannot man-
ifestly respect this symmetry. This means that if we start at k = A with a traditional bare
Hamiltonian such as
Halw) = — 3¢ (9()) 72(x) ()

that is manifestly invariant under the transformations (4.3), at k # A the flow equation will
produce an average effective Hamiltonian that does not enjoy this symmetry. On the other
hand, the flow must contain information about such a symmetry of H  in a nonmanifest way.
In other words, if we choose a bare action, i.e. an initial condition for the integration of the flow
equation, enjoying this nonlinear symmetry, the corresponding RG flow is constrained by a set
of equations encoding this symmetric choice at k = A. We will call these equations modified
Ward-Takahashi identities (mWTT). As the standard WTT they can be obtained from the func-
tional integral representation, this time eq. (3.58), by changing integration variables according

to an infinitesimal symmetry transformation, in our case give by eq. (4.3), thus getting
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We call them modified indentities because of the new contributions coming from the regulator,
that make them differ from the standard identities for any 0 < k < A. In the case of the
transformations (4.3) these identities bring D = N — 1 constraints on Iy, that are needed
to define the theory space of the nonlinear O(N) model. The role of these constraints on the
functional RG flow has already been discussed for gauge theories in many works, see [13, 14]
and references therein. Before any truncation is performed, the flow equation and the mWTI
are compatible, i.e. it is sufficient to solve the mWTT only once at some scale ko, i.e. to pick an
initial point on the restricted theory space, and the integration of the flow equation will map
this into solutions of the mWTT at different scales k; i.e. the flow will stay on the restricted
theory space. Because of truncations, it is necessary to constrain by hand the flow to lie on
such space. This can be achieved by an appropriate choice of the truncation itself, that is, by
taking a truncation for the linear model, or even larger, and again projecting this subset of the
linear theory space into a subset of the nonlinear one, by asking that the mWTTI be satisfied
at every scale. This is tantamount to dividing the parameters of the truncation in the larger
space into two classes, the dependent and the independent ones, the former being determined
as functions of the latter upon solution of the mWTI. Unfortunately, these functions are not
unique, because of the nonlinearity of the mWTI, therefore physical arguments are needed
in order to identify the meaningful solutions and to drop the spurious ones, generated by the
truncation.

Notice that for the transformations (4.3) the mWTT, unlike the flow equation, involves not
only two point but also three point functions, appearing on the r.h.s. of eq. (4.7). This fact,
together with momentum conservation at the vertices in the LHA, entails that the r.h.s. be a

). This makes the translation of eq. (4.7)

two-loop contribution, involving also the vertex T
into explicit constraints for some specific truncation a bit lenghtier than for the flow equation
itself. In fact, in this thesis we are not presenting the final form of the mWTI in the LHA,
because its computation is still incomplete. In order to illustrate how this constraint can be
treated and how the symmetry requirement is encoded in it, we are going to discuss the ex-
tremely simple case of QM on a circle, thatis d = 1 and N = 2. But, before moving on
to this little exercise, let us stress another important difference in structure between the flow
equation and the mWT1I: while the flow equation requires one loop integration regulated by
the (log k)-derivative of AS,(cz) , the mWTT entails two loop integrations in which no derivative
of the regulator appears. Therefore, a choice of AS; as an IR regulator does not allow to regu-
larize the mWTT. To get a Wilsonian setup, completely free of divergences, in general one has
to assume that AS 5 provides both an IR and a UV regularization.

This issue is of course absent in QM, where we are free to choose any regulator providing a
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rising delta function. Furtheremore, by restrictingtod = 1 and D = N — 1 = 1 we do not
have to take care of Lorentz or O(N—1) indices, that make the general computation long and

tedious. Thus, let’s work out this explicit example. In this case the transformations (4.3) read:
¢ R 9’
S = en— Sop=—e=— 1+ L 4.8
T = €T , (0] £ 5 ( + 2) (4.8)

such that
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where fp =/ j—i. Translating the two- and three-points functions in terms of derivatives of
T';, setting the average fields in Fourier space proportional to a delta function, and performing

a Wick rotation inside the loop integrals one gets

[ [1omten TR oo TR e8<o>;§{n2H,9°> - Sue (148

. 1
N [”ZH;EIO) HOY 4 1 (Hfj") i+ nZH,(fO))] / o (49)
3 b Pe(p?) + detH!

where we slightly modified the notations of the previous chapter as follows: H is now a func-

tion of 7%/2 and $*/2, and as a consequence
detH,(cz) _ <H1(<10) 1 ﬁ2H£20)> <H1(<01) 4 ¢2H,(<02)> _ ﬁ2¢2H£11)2-
As far as the regulator contribution is concerned, we can write it as
(SAS [x — 7, @ — ¢]) = 1%8(0) (Cily + Gl + Cs13)

where the C; are polynomial functions of the derivatives of Hy whose precise formis not needed

78



for the present qualitative discussion, and

I — / (1 ”"’k(P%))iPl 1 1
. =
Py

Pl oi(p2) + detH?Y Pulpd) + detH Pul(p, + 1) + et

L — / / e ()ip 1 (1+ re(p3))ip, 1

Pk(p%) + detH” Pi(p2) + detH) P((p, + p,)?) + detH”
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p /p, Pi(p?) + detH,” Pi(p?) + detH,”  Pi((p, + p,)?) + detH;

are the two loop integrals. Obviously when k — 0 theses integrals vanish and so does the
rh.s of eq. (4.7), that reduces to the standard WTI. Also, when k — A (or equivalently +00)
the presence of a delta function requires rp, — 00, therefore also in this limit all the loop
integrals, both the ones above and the one in eq. (4.9), must vanish. Thus, in the UV the only
nonvanishing contribution to the mW Tl is the one on the r.h.s. of the first line of eq. (4.9), that
strongly differs from the standard WTI because it does not involve any quantum correction. In
fact, this limit of the mWTT just states the invariance of any bare action on the restricted theory

space under the present nonlinear O(2) symmetry, since

7t 9 _ __ ? | _a2,,(10) R (o1 ¢’
SH (? ?> — 87 zH1O 4 5 pH®Y = e #H' — 7H,E "1+ IR
Therefore the mWTI completely defines the non-manifest symmetry of the RG flow, without

the need to refer to any other representation such as the functional integral.

4.5 SUMMARY AND EXPECTATIONS

In this chapter we discussed the foundations and the line of development of an ongoing re-
search project, whose aim is to build and use a single flow equation representation suitable for
the study of both the linear and the nonlinear O(N) scalar model. To this end the usual con-
figuration space formulation is ill-suited because of the field dependent functional measure,
and our approach is a particular way to exponentiate this measure by means of extra degrees of
freedom, going back to the phase-space functional formula that is the same for both models.
This is tantamount to representing the dynamics by a single Hamiltonian flow equation. Such a
unified treatment as far as we know has not been studied in a functional RG framework, and we
hope that it will provide a new tool for the description of the nonperturbative RG flow of these
models, helping in understanding the difficulties met so far in the computation of the critical

exponents of the nonlinear model by means of the fRG of the geometric effective action.
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We stress that, although the representation relies on the definition of the AEHA, it is ap-
plicable also to the cases in which the bare action is quadratic in the momenta. However in
this case, while the flow of the linear model reduces to the usual Lagrangian one, the flow of
the nonlinear model is described in a radically non-Lagrangian way, because the sector of the
momenta becomes nonquadratic after an infinitesimal RG step. From this point of view, for
nonlinear models it seems natural to allow for bare actions quadratic in the momenta and to
look for the UV completion of these theories in a general Hamiltonian framework.

On the other hand, also the case of linear models could become interesting if one drops
the requirement that the Hamiltonian of the theory be exactly quadratic at some scale. For
example, while Lagrangian O(N) models are a simple and popular benchmark for the study of
the spontaneous symmetry breaking (SSB) mechanism, we do not known if this mechanism
could take place in other ways involving a nontrivial dynamics of the momenta. After all, our
formulation has a built-in longitudinal vector field whose interactions with the scalar could
open new paths towards the generation of a mass. We hope that this possibility will be easy to
address by studying truncations of the effective Hamiltonian just as in the Lagrangian case one
studies truncations of the effective potential.

The task of computing the flow of the nonlinear model will certainly be more complicated,
because of the need to deal with mWTTI. Let us stress that in principle the mWTT are not dy-
namical equations drawing a difference between the representations used for the linear and for
the nonlinear model. In the exact formulation, both kinds of dynamics are given only by the
flow equation, and the mWT1 is just an identity that could or could not be satisfied by the ini-
tial condition we choose. Thus, before any truncation, the only thing that makes the difference
between linear or nonlinear realizations is which bare action we choose. Therefore the mWTI
could be interpreted as a way to distinguish between fair and poor truncations of the exact flow.
Of course, simply choosing truncations that are manifestly symmetric under the same symme-
try of the bare action is a poor truncation, because of the presence of the regulator, that has
the double role of letting the flow equation generate non-symmetric actions and of forcing the
mWTT to interpolate between the classical symmetry at k = A and the standard WTTatk = 0.

The first nontrivial test of the reliability of this theoretical framework we plan to perform,
is the computation of the ground state energy and gap of a free particle on a D-dimensional
sphere in QM. This computation should also teach us if neglecting global effects on target space
is a legitimate approximation. In fact, one important fundamental problem still open is how to
describe these effects by means of the present construction. But this is an issue that will be left

open by the work outlined in this chapter.
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Gauged chiral Yukawa systems

THE UV DYNAMICS OF A GAUGED CHIRAL YUKAWA SYSTEM, serving as a toy model of the
electroweak theory or of grand unification theories, is analyzed by means of a functional RG
equation, in order to address the triviality and the hierarchy problems beyond the range of
applicability of perturbative expansions. Within the chosen truncation of the effective average
action, a UV-attractive non-Gauflian fixed point is discovered in the spontaneous symmetry
breaking regime, which could provide a UV completion of the theory within the paradigm of
asymptotic safety.

5.1 TRIVIALITY AND HIERARCHY PROBLEMS

In the construction of QFT models for high energy physics, great emphasis is traditionally
given to the requirement of renormalizability. In the past decades such a requirement enabled
physicists to strongly constrain and restrict the set of sensible and interesting models, and
served as a guide for the extension of known theories and for the prediction of new physics.
The two outstanding examples of the success of this attitude towards QFT are provided by
the electroweak model and by QCD. Such models were conceived on the basis of perturbative

expansions, i.e. weak coupling expansions, and by construction they were satisfying a pertur-
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bative renormalizability requirement in the sense of Weinberg’s theorem: they contained only
dimensionless and positive-dimension interactions.

However, already before the design of these cornerstones of theoretical physics, it was known
that such a requirement is in general not enough to build a self-consistent model, with an a pri-
ori indefinite range of applicability. This lesson was learnt directly from QED itself: in order
to make predictions we need to regularize the theory and to deal with its renormalization flow,
and in so doing, sooner or later we have to stop trusting weak coupling expansions. This is the
case for QED because of the appearence of a Landau pole [86, 87]. Computing the one loop
beta-function of the fine structure constant one finds 8, = 2/(3x)a® and this entails that the
physical coupling a(y) at some scale y is related to the renormalized coupling ar (defined by
the value of some measurable quantity at some convenient renormalization point, for example
by the potential between heavy charges in the Gell-Mann-Low scheme [87]) by the following

relationship

a(u) o (5.1)

1 %aRlog(mie) '

This shows that, for a fixed renormalized coupling and electron mass, the physical coupling
increases with increasing y, and that at some finite scale we leave the domain of applicability
of perturbative expansions (naively at y_ < 00, defined by 1 = %ﬂaR log(%’) , the coupling
diverges and predictions are no longer possible). Going to higher orders of the perturbative
expansion does not change this qualitative picture. Within a Wilsonian interpretation of the
renormalization group, this can be restated in a slightly different way. If we regularize the theory
with an ultraviolet (UV) cutoff A, and assume a corresponding bare coupling a, at this scale,
this is related to the physical coupling at the scale y by

- a(e) . (5.2)

1— Za(u)log(y)

aa

Demanding that physics be independent of the regularization, i.e. that a(y) be independent
of A, we see how we have to adjust a, as a function of A. But this independence cannot be
provided inside the domain of validity of the last relationship, because at some finite A, the
bare a,_ would need to be infinite. The only value of a, allowing for the removal of the UV
cutoffis ay = 0,leading to a free theory. That’s why this is also called a “triviality” problem [4].
This issue historically even shook the trust in the usefulness of QFT, and led to the search for
other frameworks such as current algebra or Regge theory.

One possible way out of this problem is just to change theory, embedding it in a larger model

that does not show Landau poles and that is applicable at every energy. This point of view
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is often accompanied by the so-called perturbativity requirement [88, 89], i.e. the condition
that acceptable quantum field theories should be consistent and fully predictive without ever
needing to go beyond weak coupling expansions. Another possible solution is to consider the
theory affected by this problem as an effective theory which is indeed valid only in a restricted
range of scales, because at strong coupling new physics shows up or the set of effective degrees
of freedom radically changes. The latter case is in fact realized in QED, since at strong coupling
the screening of electric charge triggers chiral symmetry breaking (ySB) in a way very similar
to what is known to take place in QCD [90, 91, 92]. In other words, it would be impossible to
experimentally measure the value of the fine structure constant at scales close to the Landau
pole. Yet, this very example shows how nonperturbative phenomena such as ySB might be
crucial for the understanding of the Landau poles. One more possible solution is just that the
Landau pole be an artifact of weak coupling expansions and that it might be possible to make
sense of the theory at any scale without changing the set of fundamental symmetries and of
degrees of freedom. In general, in order to explore such a possibility, one needs a framework
for describing the dynamics of the system even in strongly coupled regimes.

The triviality problem is a big fundamental issue left open by the standard model (SM), even
more so after the discovery of a boson that could be extremely similar to the Higgs scalar of this
model. This is because, apart for the U(1) sector, also the Higgs sector is plagued by Landau
poles [4, 93, 94, 95, 96, 97, 98], and in this sector the position of these singularities, i.e. the
order of magnitude in energy that one could reach without being forced to change the theory
(within the big desert hypotesis), is much lower than in the gauge sector [92]. In fact, it could
be smaller than the grand unification scale [88,99, 100, 101, 102]. Since this issue is at the base
of several proposals of new physics, we believe it is interesting to understand if nonperturbative
effects in the SM can change the picture that one gets from perturbation theory.

Another closely related topic, one of the few unpleasent features of the SM, the understand-
ing of which could receive benefits from nonperturbative investigations, is the hierarchy prob-
lem, namely: how does it come that the masses of the particles are scattered over several orders
of magnitude, instead of being closer to each other? As other similar questions that have to
deal with the concept of “magnitude in diversity”, also this one can be reformulated in terms
of the choice of some initial condition, in this case the UV starting point for the renormaliza-
tion flow of the theory. If these initial conditions were chosen in the vicinity of the GFP, we
would expect positive-dimension couplings to grow towards the IR and negative-dimension
interactions to become negligible. The masses, being of the first kind, would be expected to
grow at approximately the same rate and as a consequence only by choosing big differences in

their initial conditions one could get big differences in their low energy values. Hence, in order
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for this fine-tuning not to be required, one needs a dynamical mechanism able to explain how
different rates of change could arise for parameters with the same canonical dimension. Again,
one could try to achieve this by staying close to the GFP, i.e. within perturbation theory, and
introducing new physics. But another possibility is to allow for the initial conditions of the RG
tlow to lie well outside the neighborhood of the GFP and to look for other important dynamical
regimes, different from the weak coupling one, determining such a hierarchy.

In this chapter we will try to address both the triviality and the hierarchy problems from
this nonperturbative point of view, studying the dynamics of a gauged chiral Yukawa system,
serving as a toy model of the electroweak model and of grand unification theories (GUT). The
method by which we will get such nonperturbative information is still the Euclidean functional
RG equation for the Lagrangian AEA, truncated within the general scheme of the derivative
expansion at next-to-leading order. We will provide first hints that in this kind of models both
the triviality and the hierarchy problems might indeed find a solution without invoking new
physics, the reason being encoded in an asymptotic safety (AS) scenario.

How does AS relate to the triviality and hierarchy problems? Of course, if a theory is asymp-
totically safe no Landau pole can show up in the coupling constants and the theory is consis-
tent and predictive up to arbitrarily high energies. More subtle is the link with the generation
of hierarchies. For this, one has to recall that a possible dynamical definition of the canoni-
cal dimension of some coupling can be given as the critical exponent associated with the RG
flow along the corresponding direction of theory space at the GFP. The critical exponents at
some FP are defined by the linearized RG flow close to the FP (see eq. (1.3) and the discus-
sion after it). Therefore they encode the rate of change of the couplings along such flow in a
neighborhood of the FP. In case a NGFP exists, couplings that correspond to eigendirections
with the same eigenvalue at the GFP (same canonical dimension), could show a very different
linearized flow around the NGFP. Hence, similar initial conditions chosen in the vicinity of
the NGFP would correspond to different values of these parameters getting out of the NGFP
regime. Also, the presence of the NGFP singles out and justifies a preferred set of initial con-
ditions: those close to the FP. Yet again we see that for this mechanism to work some kind of
fine-tuning is still necessary, the strength of it being related to the question: how close to the
NGFP must we choose the initial condition? Since the rate of change of the couplings is de-
termined by the combination of the distance from the FP and by the magnitude of the critical
exponents, the smaller the critical exponents, the smaller the differences in the output at the
end of the FP regime for different initial conditions, and hence the weaker the required fine-
tuning. In conclusion, for AS to provide an answer to the hierarchy problem, one needs small

critical exponents and the “right” FP values of the couplings.
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As a final motivation for being interested in AS scenarios in high energy physics, let us recall
that the existence of a finite dimensional UV critical surface, providing a finite dimensional pa-
rameterization of the theory in terms of the so-called relevant couplings, allows one to write all
the remaining couplings as functions of this finite set. This opens the intriguing possibility that
the number of independent couplings be smaller than the one currently used within perturba-
tion theory, in which case one would be able to predict relationships among some parameters
of the SM. Let us mention that SM-alternatives without a fundamental Higgs field have been
based on AS scenarios for fermionic theories [ 103 ], which, however, are generically plagued by
a strong hierarchy problem; see also [104] for an asymptotically free fermionic model where
nonlocal interactions lead to an improved hierarchy. The possible relevance of AS scenarios
in the SM has also been investigated from the point of view of gauged unitary nonlinear sigma
models in [22, 79, 80].

The study of AS scenarios in Yukawa systems was started in [105, 106]. The strategy fol-
lowed in these works to trigger AS is not based on strong coupling peculiarities but on a con-
formal threshold behavior of the scalar vacaum expectation value (vev). In the spontaneous
symmetry breaking (SSB) regime a whole new sector of the theory develops containing inter-
actions mediated by the condensate. The running of the modes interacting with such a con-
densate gets frozen since these modes acquire a mass and decouple from the flow. The running
of the vev itself can be qualitatively described as follows. If one looks at the dimensionless
squared vev k = v?/(2k?) its beta-function has the structure

v . . d

O = (()t% = —2x + interaction terms, 0, = kﬁc' (5.3)
If the interaction terms are absent, the Gaufiian fixed point ¥ = 0 is the only conformal point,
corresponding to a free massless theory. If the interaction terms are nonvanishing, as is the
case if they approach a NGFP by themselves, the sign of these terms decides about a possible
conformal behavior. A positive contribution from the interaction terms givesrise toa FP atx >
0 which can control the conformal running over many scales. If they are negative, no conformal
vev is possible. Since fermions and bosons contribute with opposite signs to the interaction
terms, the existence of a fixed point x, > 0 crucially depends on the relative strength between
bosonic and fermionic fluctuations. More specifically, the bosons have to win out over the
fermions.

A first analysis for simple Yukawa systems [105] containing one scalar field and N Dirac
fermions revealed that the necessary bosonic dominance actually produces a NGFP, but it oc-
curs only for Ny S 0.3. This result motivated the study of chiral Yukawa systems [ 106] with

Ny, left-handed fermion species and one right-handed fermion as well as Ny, complex scalars.

85



On the one hand such a structure was inteded to mimic the coupling between the SM Higgs
scalar and the left- and right-handed components of the top quark, also involving Yukawa cou-
plings to the left-handed bottom (for Ny, = 2) and further bottom-like quarks (for Ny, > 2)
in the same family. (When the scalar field develops a vev upon symmetry breaking, the top
quark acquires a Dirac mass, whereas the bottom-type quarks remain massless in a way similar
to neutrinos.) On the other hand this setting was offering a control parameter for boson dom-
inance and for the potential existence of a NGFP: the number Ny.. Indeed, to leading-order
of the derivative expansion (local-potential approximation), this left-right asymmetric model
was exhibiting the desired NGFP for 1 < Ny < 57. Moreover, one of the admissible fixed
points had only one UV-attractive direction, thus implying that only one physical parameter
had to be fixed, e.g., the vev v = 246GeV, whereas all other IR quantities such as the Higgs or
the top mass would have been a pure prediction of the theory.

Unfortunately, the NGFP was destabilized at higher order in the derivative expansion. In
fact, a systematic derivative expansion of the AEA for computing the RG flow of the model
is reliable if the momentum dependence of full effective vertices takes only little influence on
the flow. A direct means for measuring this influence is the size of the anomalous dimensions
1 of the fields, since next-to-leading order contributions couple to the leading-order deriva-
tive expansion only via terms ~ 7. Monitoring the size of 7 thus gives us a direct estimate of
the reliability of the results. In the aforementioned computation the anomalous dimension of
the right-handed fermions was taking unacceptably large values at the NGFP, thus signaling
the dramatic unreliability of the results. One reason for the size of 7, lies in the fact that the
massless Nambu-Goldstone bosons (NGB'’s) and massless bottom-type fermions contribute
strongly. This is because they are not damped by massive threshold effects induced by cou-
plings to the condensate, and they contribute with a large multiplicity ~ Ny. However, as the
massless NGB’s are not present in the SM due to the gauging of the SU(Ny,) symmetry, one
could expect that this instability of the NGFP could be much weaker or completely absent in a
gauged version of this chiral Yukawa model. This expectation is a fundamental motivation for
the present work, in which the gauging is taken into account and its effect on the RG flow of
the system is analyzed.

This chapter is organized as follows. In section 5.2, we give a detailed definition of the model
under consideration and of the nonperturbative approximations considered in this work. In
section 5.3, we give the generic set of equations defining the RG flow of the model. In sec-
tion 5.4, 5.5 and 5.6 we analyze the flow. Conclusions are presented in Sect. 5.7. Appendix B
describe the notations, the analytic manipulations and the approximations leading to the flow

equations studied in the present work.
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5.2 CHIRAL YUKAWA SYSTEMS COUPLED TO GAUGE DEGREES OF FREEDOM

The field content of the model we are going to investigate in the present work is the follow-
ing: one right-handed fermion Y, Ny, left-handed fermions 7, Ny, complex scalars ¢* and a
SU(NL) Yang-Mills vector potential W%. The matter fields belong to the fundamental represen-
tation (indices from the beginning of the latin alphabet) while the gauge potential belong to
the adjoint representation (indices from the middle of the latin alphabet) of SU(Ny, ). Apart for
this continuous local symmetry we require also invariance of the theory under global U(Ny,)y,
transformations of the left-handed fermion and the scalar as well as under global U(1)g trans-
formations of the right-handed fermion and the scalar. The projections on the left-/right-

handed fermion contributions are carried out via the projection operators

1
Pyr = 5(1i75>- (5.4)
The bosons can also be expressed in terms of a real field basis by defining

a l a - a a 1 a . . a
P = E(‘Pl +ip}), ¢ = E(‘Pl —i93) (5.5)
where o7, 95 € R. The above-mentioned symmetries require the scalar self-interactions to be

written in terms of the invariant p := ¢°T?. We denote by
D = 0,8% — ig' (T')*® (5.6)

the covariant derivatives for the matter fields in the fundamental representation, by f the struc-
ture constants of the su(Ny ) algebra [T?, T] = if' T' and by F,, = 0,W, =0, W, —i—gfﬂl/\/"ﬂ/\/i
the nonabelian field strength (here and in the following a sum over repeated indices is under-
stood, unless differently stated, regardless of the position of indices, since every metric is as-
sumed to be positive definite).

In the spirit of perturbative (power-counting) renormalizabiliy the classical action subject

to perturbative quantization would read
Sa= [d[LF P 1 (Dre) (D i 4 Aot
cd — nyv +< (P)< H¢)+mP+EP
.(7apab 7 1.7, a, a 174 _a
+i(yi P \”i + ‘/’Ra‘//IJ + h‘PR‘PJr Vi — hvype \”R] (8.7)

where the classical parameter space would be spanned by the boson mass m, the scalar self-

interaction A, the Yukawa coupling 4 and the gauge coupling g. In order to quantize this action
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one would need some kind of gauge-fixing. As in this system the Higgs mechanism is known
to take place, a particularly useful gauge-fixing choice would be the so-called renormalizable
R, gauge, that is defined in such a way to cancel the derivative interactions between the gauge
vector and the NGB’s. Separating the scalar field into the vev v/1/2 and the fluctuations A
around the vev

a v ~a a a l a . a
= —=n"+Ap", A¢" = —(Ap] +iAg) (5.8)

Y V2

where 7 is a unit vector (1/#® = 1) defining the direction for the vev, one could fix the gauge
by the condition
G'(W) = 0,W,, + V2iavgT},,Ap" = 0 (5.9)

where a is a gauge-fixing parameter interpolating between the unitarity gauge at a — oo and
the Landau gauge at a — 0. From here on the label # in place of a fundamental color index
denotes the contraction of that index with the unit vector 7 (or 7', depending on the position
of the index). In order to affect the NGB’s and not the massive scalar, one usually excludes in
the gauge-fixing the terms depending on Ag?. To implement such a gauge-fixing, one could

introduce the following term in the microscopic action

1 . .
S = — [dxG(W)G(W).
2a

Accordingly, one would need to include ghost fields ¢’ and ¢, with a bare action
Segh = — /ddx cMid

where

M = — 287 — gfV0,W¥ + V2@ T, T, A" (5.10)

na~ ab

again excluding @ = 7 in the sum involving Ag”.

In conclusion, perturbative quantization of the action (5.7) would go through a bare ac-
tion of the form Sy = Sy + Sgr + Sgn. As already explained, in AS scenarios power-counting
renormalizability is in general not respected by the microscopic action, therefore we do not
want to restrict ourselves to such bare actions. However we assume that SU(NL) gauge sym-
metry be a fundamental symmetry, as opposed to an emergent one. That is, even if we do not
know the precise form of the bare action, we expect that it will be separable into two parts,
SA[®, W, W] = S,[®, W] + S5 5[, W, W], the first one enjoying gauge symmetry and the
second one being some kind of generalized gauge-fixing, vanishing if one sets W = W. The

fundamental gauge symmetry then ties these two parts together by means of the BRST invari-
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ance of the bare action. The same considerations of course apply to the possible FP microscopic
action. Since we cannot analyze the infinite possible forms for these actions, we need to make
some ansatz for them. For this task, the requirement of perturbative renormalizability can be
of some help, since we know that at “low” energies some IR-relevant parameters must be non-
vanishing for phenomenological reasons. Thus, we can consider a truncation of theory space
containing these power-counting renormalizable terms, plus some other perturbatively non-
renormalizable interactions parameterizing our ignorance about the high-energy dynamics.
In this work the choice of the truncation is very simple: we RG-improve the perturbatively
renormalizable bare action, allowing for a scale dependence of the coupling constants already
appearing in it, furthermore we admit a generic potential for the scalar field, and we also intro-

duce wave function renormalizations for the matter fields. Explicitly

' = /ddx [Uk(P) + Zq,,k(D”go)T(DygD) + i(ZL7k\7pleabxpi + ZR,k‘]’R(?’/’R)
_ — Z o Z o S
+ P9 VL — V9"V + %"CF;VF‘” + ZLJG‘G‘ — ?M%f] . (5.11)

As far as the gauge-fixing G' and the corresponding operator M are concerned, we would
like them to enjoy the good properties of both background-gauge and R,-gauge. Therefore we
choose them as in (5.9,5.10), but in these expressions we replace the ordinary differentiation
with covariant derivatives D w.r.t. the background field W. However, due to the extreme simpli-
fication of the present truncation, and since we are interested only in an approximate one-loop
beta function for the gauge coupling, this choice is practically indistinguishable from a non-
background-covariant R,-gauge. Let us stress that we neglect all local non-derivative terms in
the spinor and in the ghost sectors different from the ones in (5.11) and that we keep a naive
pattern of gauge-breaking BRST-preserving interactions. Furthermore in our study we neglect
the difference between the interactions involving the background gauge field and those involv-
ing its quantum expectation value. In the particular case N}, = 2 a different family of chiral
Yukawa couplings exists, involving the Levi-Civita tensor ¢4, In the present work we are not
going to take the possibly important effect of these operators into account.

To sum up, the subset of theory space we are considering is parameterized by Z, 1, Zy s,
ZR oy Zw oy 4, hi, vand all the parameters contained in Uy different from v itself. It is also useful
to introduce a simplifying notation for the masses in the SSB regime, which however are not
independent from the parameters listed above. The mass matrix for the gauge bosons is given

by
" 1 . .
I’T’l%‘,l} = EZq)gZVZ{TI, p};l,c, (512)
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and since it is diagonalizable, we can (and we will) choose a basis in adjoint color space where

r?z%,vij = ﬁa%,v,igij (no sum overi) . (5.13)

The scalar mass matrix X
_ v g A
m2® = Uy (—> n*all .
? 2

2ab _
¢

one nonvanishing eigenvalue for the radial mode. Furthermore the “top mass’ i.e. the mass of

In a diagonalizing basis becomes m m? 8% (no sum over a), and of course there is onl
¢,a ) y

the ¥" mode, is given by
(5.14)

ﬁ’lv,:

SIE
E
[NSAIIRS

5.3 RENORMALIZATION FLOW

All the parameters inside the truncation are expected to have a nontrivial dependence on the
scale k, as indicated by the subscripts we introduced. A large part of this dependence can be
trivially predicted, at least in a neighborhood of the GFP, on the basis of the canonical dimen-
sionality of these parameters, therefore it is useful to redefine the couplings in such a way to
wash out this dimensional scaling. In so-doing, we are taking a free theory as a reference, by as-
signing to it a vanishing RG flow. Since this redefinition corresponds to a rescaling of the fields,
we can include in it also the wave function renormalizations, so that in the new Lagrangian the
fields will be canonically normalized at every scale. One calls the corresponding parameters

“dimensionless” and they are given by

o @
$ T Z,207x &z

5 _ Cidea- Zr
uk(P) =k dUk(Z(PIkd 2P>7 Kk = 2;:1—2 = Pmin

where the last equation is for the value of p that minimizes the effective potential at every scale

k. Accordingly, the dimensionless masses are defined as

2

- My i - m%a ", — r711,,
Wzl ez Y 7 ek

The remaining parameter a, that is already dimensionless, will be required to vanish at every
scale, thus fixing Landau gauge at every RG step. At a FP also the beta functions of the previ-

ous dimensionless couplings must vanish. The contribution of the non-canonical field renor-
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malizations to these beta functions is encoded in the following scale-dependent anomalous

dimensions

N, = —0O;log Z,, , Ny = —Oclog Zy
n, = —OlogZ, Ng = —O:rlog Zg .

Setting the anomalous dimensions to zero defines the leading-order derivative expansion. At
next-to-leading order, it is important to distinguish between Z, ; and Zg  as they acquire dif-
ferent loop contributions, see below. Let us stress that, since we are going to compute the
running of only one coupling in the pure gauge sector, by projecting the flow on the squared
field-strength, g can be considered as k-independent and the nontrivial renormalization of g is
completely encoded in 7,,,. For our purposes, we use a linear regulator function Ry that is opti-
mized for the present truncation [41, 42]. The definitions of this regulator and of the threshold

functions which appear in the beta functions of the matter sector are given in App. B.1.

5.3.1 FLOW EQUATIONS FOR THE MATTER COUPLINGS

Detailed information about the derivation of the flow equations for the matter sector of this
truncation, in arbitrary Euclidean space dimensions d and for any Ny, is given in App. B.2. In-
troducing the abbreviation vy = 1/(24"12%2T(d/2)), and calling d, the dimension of the
representation of the Clifford algebra (i.e. our y’s are d, X d, matrices), without perform-
ing further approximations apart for the ones already discussed, we find the set of equations

showed in the following. The flow of the potential is described by

Oy, = —dup +(d—2+ qu)fmi + zvd{ _ Z(Ni _ 1)1(()G)d (0)
Ni—1

+ ) [(d — DI (2, ) + 155 (0)} + 2Ny — DB () + 1 (' + 2pu")

i=1

— dy [Ny = DI (0) + 07 (p2) + 17 () } (5.15)

For the symmetric phase, one usually expands the effective potential around zero field,

NP
)‘n,k ~n ~ A2,,k ~ l3,k ~
”k:Zn!P:mip+ TIAREETEAR (5.16)
n=1
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while for the SSB phase, where the minimum of the effective potential u; acquires a nonzero

value ki := p,i, > 0, it is more efficient to use a different expansion

Np
An,k ~ n A 7k o 7L ,k -
uk:z 4l (P_Kk> :%(P_Kk)z"i_%(P—ka—i—--- . (5.17)
n=2

Given the flow of u; (5.15), the flows of m? or Ank in both phases can be read off from an
expansion of the flow equation and a comparison of coefficients. For the flow of ky, we use the

fact that the first derivative of uj, vanishes at the minimum, u} (x;) = 0. This implies

0= dui () = &u;c(f?ﬂp:xk + (Derer) ! (i)
1

= Okr = —W@tui(ﬁ)\ﬁ:m. (5.18)
Note that the expansion coefficients A,, ; in Eqs. (5.16) and (5.17) are not identical. Since there
is little risk that the notation of the different regimes interferes with each other, we refrain from
introducing different symbols.

In the SSB regime, the flow of the Yukawa coupling and the scalar anomalous dimension for
the NGB can, in principle, be different from that of the radial mode. As the NGB’s as such are
not present in the standard model, we compute the Yukawa coupling and the scalar anomalous
dimension by projecting the flow onto the radial scalar operators in the SSB regime. Note that
this strategy is different from that used for critical phenomena in other Yukawa or bosonic sys-
tems, where the Nambu-Goldstone modes can dominate criticality. Accordingly, the flow of
the Yukawa coupling /i can be derived and we find the same result already presented in [ 106],
that is

O = (d =4+, g+ bt + dvaht{ — 1D hE, ) + K B2, o+ 2pu)
+ PR (phy, u) — (6puy + 45" )5 (phi, ol + 2puy) (5.19)
T+ PRET (phE u) — (2K (B2 ol + 2pu) |

The vanishing of the gauge contributions to the running of this coupling is a special feature of
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Landau gauge, and it is shortly explained in App. B.2. Finally the anomalous dimensions

8vg
To = d <P<3uk + 2puy, ) my, z(”k + 2puy) + (2N, — 1)P”k2mgz(“k>

N2—-1
. - N 8vy(d—1) «
+ dyhim{* (phy) — dyph‘,imé“‘%phi)) - % > { (5.20)

i=1

No 4
2g2 Z TnaTanlBGB)d ( L, m2 ) + % [2611 (m%d,l) + m(GB) (m%vl)} }

4Vd hz [

d
TR = 7 (Phka uy + 2puy) + ml 2 (Phk> u,) + 2(Ny l)mgl,:zB) (0, ”L)]

(5.21)
4 8va(d — 1) , v
v vald —
ML = ddhz [ FB)d(Phka u + 2puy) + m12 " (ph, k)] dng Z {
GB)d 2 d 2
Z na an [ (07 mW,i) - aS (07 mW,i):| (522)

+ (Tilﬁ)z [m(FGB)d ( hkv mwl) - mg,FzGB)d (Oa m%/v;) - (Phka sz) + a3 (O mwl) } }

If, in the chosen basis in fundamental color algebra, the direction of the vev # has a single non-
vanishing component, i.e. if n% o §%4 the anomalous dimension of the left-handed fermion

takes a simpler form

4y
T ddh2 [ (FB) (phk,uk +2puy) + mgz) (phz, k)} (5.23)
8vy( - a
d Z Z ’TlAa’TIaA [mlFfB) (SaAPhk7 mW:) - (8 Aphk7 th)] .

a=1 i=1

In all the egs. (5.19-5.23) the whole r.h.s. is to be evaluated at the value p = ; that minimizes
the potential u;. The explicit form of these equations for the linear regulator can be found in
App.B.2.

5.3.2 FLOW EQUATION FOR THE GAUGE COUPLING

While for the matter couplings we performed the computation for generic d, d,, Ny, and with-

out further approximations apart for the chosen truncation and gauge, for the gauge coupling
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we limit ourselves to an approximate one-loop beta functionind = 4,d, = 2and N, = 2, 3.
The further approximation applies to the massive threshold behavior of the radial left-handed
spinor, and the details of it and of the derivation of the flow equation can be found in App. B.3.
This approximation is expected not to affect our qualitative investigations because we are in-
terested only in the regime of weak gauge coupling. To summarize, we can write the gauge

one-loop B-function as

0F =& Ny (5.24)
—g* 22Ny, 5 2N, .. NL ,
= 1oz (T3 L) — 5Ly (m3) = SFLy(m2,)
and for SU(2) we have, in the regime of SSB
1 21 K
Lw(ms,) = — [ 21 2 ==
wlmy) 4( i, ) w5
1 1 s s
Ly(my) = 4 <1 * 1+mi> ’ My = Miki
L(Z)—l I =21 (5.29)
? m(P - 4 1+ mé ) m‘P - Z,kKk .

where the threshold function Lw(mi) is not exact but accurate enough for our purposes. If we
specify a constant pseudo-abelian magnetic background field
. " o N
F’W =mF, , mm=1 , F,= Be,,
where the constant antisymmetric tensor ¢ characterizes the space directions which are affected
by the constant magnetic field upon the Lorentz force, the definition of the threshold functions
for general N, can be given in terms of v,, the eigenvalues of (m;T)" for the fundamental rep-

resentation, and in terms of v;, the eigenvalues of (7iy7')7 = isiyf" for the adjoint representa-

tion, as follows (using the linear regulator)

Ni-1

3 |21 |vi|* N
L 2 - - |z o, o
wim) 2N, |3 ZO: Ttmby, 3
NL
2 1
L 2y _} :— 2
‘/’(mvf) NL — 1+h2K8aA|vﬂ|
Np
2 1
L,i(m2) = —§ — |y, *.
‘Pl(m‘P) NL — 1+m$,a‘v ‘
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Recall that for all the gauge groups only one particular component of m; , is nonvanishing and
equal to 24, k. Since we are interested in the search for FP’s with a vanishing gauge coupling,

the exact threshold behaviour is unnecessary and for N, > 2 we can roughly approximate the

gauge beta function by
5 g 22N 2 1 (/N2—1 1
08 =~ | S (5.26)
7 \3(1+3%5) 3 6 \ N; N (1+2x2)

5.3.3 PARAMETER CONSTRAINTS

Let us finally discuss several constraints on the couplings as, e.g., dictated by physical require-
ments as well as by our truncation. As our truncation is based on a derivative expansion, sat-
isfactory convergence is expected if the higher derivative operators take little influence on the
flow of the leading-order terms. In the present case, the leading-order effective potential re-
ceives higher-order contributions only through the anomalous dimensions. Therefore, con-

vergence of the derivative expansion requires

M Mg My S O(1).

This condition will serve as an important quality criterion for our truncation. The symmetric
regime is characterized by a minimum of u; at vanishing field. A simple consequence is that
the mass term needs to be positive. Also, the potential should be bounded from below, which

in the polynomial expansion translates into a positive highest nonvanishing coefficient,

m%,l > 0.

Nmax;

In the SSB regime, the minimum must be positive, k, > 0, the potential should be bounded,

and in addition the potential at the minimum must have positive curvature,
Kiey Appa ks A2k > 0.
Osterwalder-Schrader positivity requires
hi > 0.
Finally, if one accepts Dyson’s suggestion it might be necessary to ask
g2 >0
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in order to avoid unitarity violations. Beyond that, there are no constraints on the size of the

couplings as in perturbation theory.

5.3.4 MASS PARAMETERIZATION

In the next sections we will present an analysis of the flow equations introduced in the previous
subsections, and the results of the search for NGFP’s. There, as a first step towards a complete
understanding of the RG within our truncation, we will consider a simple polynomial expan-
sion of the effective potential and we will set A3 x and higher terms to zero. The anomalous
dimensions of the matter fields can then be expressed exclusively in terms of the couplings
K, Ay, W2, ¢*. In this case, substituting the 7’s by these expressions, we obtain the following flow

equations in the matter sector

O = ﬁK(K, Ay, h27g2)
8tAZ - ﬁl(Ka AZ? hzagz)
Oh* = B, (x, 1z, W, ).

It is useful to reparameterize the system in terms of the particle masses that occur in the argu-
ments of the threshold functions, therefore, dropping numerical factors, we introduce the mass

parameters
2

Uy = Khy,  pg = khY, pg = kg

The actual squared masses, mi ) mi and m},, are then proportional to these parameters. The

flow equations for the y’s can then be computed from the original set of flow equations for

&%, &, A, and K2, yielding

atyH == (atK))Lz + K(atlz),
@yF = (aﬂc>h2 + K(@tl’lz),
atHG = (atK>g2 + K(atg2>.

Aside these three equations, we need to take into account the flow of gas defined by eqs. (5.24,5.25).

54 LIMIT OF ASYMPTOTICALLY FREE GAUGE COUPLING

Because of the mechanism based on the conformal threshold behavior of the vev explained in
the first section of this chapter, we focus our attention on the SSB regime. This is also supported

by the fact that at a first numerical analysis no NGFP has been found in the symmetric regime.
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Thus, within the simple mass parameterization of theory space described above, we observe

that changing the gauge coupling by hand leads us to the FP depicted in Fig.5.1

K uF

0.12
0.10

0.7

/
0.08 0.6
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0.04 0.4
0.02
92
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2
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Figure 5.1: Fixed points in the mass parameterization for N = 2 depending on the
gauge coupling.

Thus we suspect the following behavior of the mass terms as gz — 0:

by — 0 (& —0), (5.27)
{;—? — const. (gz —0), (5.28)
yp — const. (& — 0), (5.29)
ug — const. (g —0). (5.30)

We now want to discuss the limit g — 0 in the flow equations for the mass parameters. As
the ratio y,; /g* converges to a constant we set y,; = yg” in the flow equations and perform the

limit ¢ — 0 afterwards, yielding

08 = 0, Ouy =0, Ow,= ﬁ(E)tyG), (5.31)

bg
As the flow equations for g* and y,; vanish identically in this limit they are suitable for a fixed-
point solution, however, not to determine the position of this fixed point for the other parame-
ters (¢, Ug), as they don’t provide nontrivial algebraic equations. Further, the flow equations
for y and yy, are proportional in this limit and therefore we are left with only one equation for
the three remaining parameters, given by the flow of i, which is discussed in the next sections

for different values of Ny..
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S5.4.1 FIXED POINT FOR Ny, = 2

The case Ni, = 2 is the simplest one, concerning the algebra. Recall that here we miss a possibly
important invariant in the truncation, the Yukawa coupling involving the Levi-Civita tensor ¢.
However, the qualitative features of the algebra concerning its fixed-point structure remain the

same as we go to higher Ny, see next section. Here, we find

g — 8Bup + (10 + g — ZP‘G)HGP‘F

5.32
161 + 5?2 1 ug)? (5:32)

atHG = —24g +

To determine a line of fixed points of the mass parametrization in the asymptotically free limit

we set up the flow equation for the ratio y = p,/¢*:

Oy = &(Z—?), (5.33)

which is supposed to vanish at the fixed point. This yields

* _ 1 <2HF(1 + 3("13) 902 + 3P‘G))'

T 32 B

(L+up)lue  (2+ug)? (5:34)

X
We can plug this result into the flow equation for y to solve for the fixed point giving three
solutions for y as a function of y_. The flows of u and y are proportional and their ratio

remains undetermined for the moment.
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Figure 5.2: Fixed points in the mass parameterization for N. = 2. Left panel: Real part
(red solid) and imaginary part (blue dashed).

If we want to single out the FP of Fig.5.1 we have to ask for vanishing beta function of the
Yukawa coupling. This beta function is exactly zero in the limit g — 0. Using finite values for
¢* instead and tuning the gauge coupling towards zero we find that yj, = 0.413552 which fits
to the plot of Fig.5.1. Thus the FP is given by

(u1p 5> i) = (0,0.38,0.41) . (5.35)
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5.4.2 FIXED POINT FORNp = 3

The case Ny, = 3 (and even higher ones) follows from a straightforward generalization of the

previous section.

1
+
G 16m2 (1 + pp)2 (2 4 pg)*(3 + 2u)?

X < 24 (6+ HF(S + 6P‘F>)P‘G +2(90 + HF(107 + 90#1:))?‘2}

Owg = —2u

+ (57 + up(58 + S7up) ), — el — 7%)- (5.36)
and
. 1 /2u.(1+3 48
A — < a 3["1:) . (5.37)
3272\ (1 +pp)Pug (24 4g)
3% s )
(2 + P‘G)Z (3 + 2[“‘(;)3 (3 + ZHG)Z ‘

uc” uc'

Figure 5.3: Fixed points in the mass parameterization for N| = 3. Left panel: Real part
(red solid) and imaginary part (blue dashed).

5.5 CriTicAL EXPONENTS

We define the stability matrix

. 0B,
B/ = a_gl " (5.38)
j

in terms of the couplings g; from the mass parameterization {&, 5, us, x*}- The negative
eigenvalues of the stability matrix are the critical exponents and determine the stability prop-
erties of our system. In the following we perform a stability analysis of our system in mass

parameterization for N;, = 2 and N, = 3.
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For N, = 2 the critical exponents depending on U, are depicted in Fig. 5.4. Two of the
four critical exponents vanish and thus are hardly visible. The other two are distinguishable
for u, < 0.38. For y, > 0.38 they are a complex pair which can be seen on the right plot in

Fig. 5.4. Note that the critical exponents corresponding to the fixed point (g2, uj, by ) =

20 2
——"”‘“x\\\ // e ..,\
15 1 -
1.0 — 1S 0
z E
05 a0 s
0602 04 06 08 10 00 02 04 06 08 10

MG Ha

Figure 5.4: Critical exponents for N = 2.

(0,0.38,0.41,0.0018) are
01, =1+£0.36i,0; =60,=0. (5.39)

The first two critical exponents are building a complex pair and thus cause a spiraling approach
towards the fixed point on the corresponding hypersurface. The normal direction to this spiral
is the vector v, = (0,0.00044, —0.00040, 0). The last two are marginal directions and we
have to investigate them in more details.

For Ny, = 3 the critical exponents are shown in Fig. S.5.
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Figure 5.5: Critical exponents for N| = 3.
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Figure 5.6: Flow of the dimensionless couplings from the UV to IR for N. = 2, with
starting values tyy = 25, g&y = 1/(27), ud’ = y;, uV =i, %V =y
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Figure 5.7: Flow of the dimensional masses from the UV to IR for N = 2 with starting
values tyy = 10, gy = 1/(27), 4" = 5, ug" = g e = 1.05(x"gty)-

5.6 FLOW FROM THE ULTRAVIOLET TO THE ELECTROWEAK SCALE

We observe that the flow to the infrared is divided into three regimes. The first is a fixed point
regime: atalarge scale (sayk ~ A), the system is near the NGFP and would approach to it even
further when moving A towards the UV. In this regime the flow is fairly described by the critical
exponents of the NGFP. The second is a transition regime, where the system in dimensionless
couplings runs rapidly away from the FP. This is shown in the plots of Fig. 5.6 at around ¢t ~ 12.
In the standard model, that would correspond to scales up to a few orders of magnitude larger
than the electroweak scale. The third is a freeze-out regime, where the dimensional masses
almost stop running, a behavior that can be immediately spotted in Fig. 5.7 ataround t >~ 7. In
terms of the dimensionless quantities of Fig. 5.6 this corresponds to an exponential behavior
~ ¢ % = 1/k* and it occurs approximately for t < 12. Roughly speaking, this is the analog of
the electroweak scale in the standard model.

Apart for the ones just mentioned, following the flow towards the IR we meet more relevant
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scales, that however are unphysical and due to the truncation and therefor we do not show
them. For example, after the “electroweak freeze-out” near t >~ 7 of Fig. 5.7, there seems to be
another rapid transition in the dimensional masses near t ~ —10 in the scalar Higgs mass and
also a small response in the fermion mass. We suspect that this is an artifact generated by the
impossibility, within our truncation, to distinguish the radial mode self-interactions from those
of the “quasi” NG modes. This is an old problem in the deep IR of these types of truncations
based on a Cartesian scalar basis, where the NG modes can contribute to the flow of the radial
quantities “forever” towards the deep IR, even though in a non-linear basis it is immediately
clear that these modes decouple. Even more in the IR, our flow eventually hits the Landau
pole of the gauge coupling and gets destabilized. In summary and in practice, we should just
stop the flow after the electroweak freeze out in order to stay away from both: the Nambu-
Goldstone artifacts at and the gauge coupling blow up.

Interestingly, if we read off the IR masses in the freeze-out regime we observe that for all
starting values that lead to reasonable IR flows the ratio of the top quark mass to the Higgs
mass and the gauge boson mass to the Higgs mass are limited to a range between 30 and 70.
Furthermore the ratio of the top quark mass and the gauge boson mass is equal for all reason-

able flows.

S.7 SUMMARY

In this chapter we have presented a computation of the RG flow of a gauged chiral Yukawa
system, including Ny, left- and one right-handend spinors, as well as Ni, complex scalars, plus a
SU(INy ) vector gauge boson, coupled via a chiral Yukawa and minimal gauge terms, plus a scalar
self-interaction. At next-to-leading order in the derivative expansion of the AEA we have de-
rived the complete beta functions and anomalous dimensions of this matter sector, for generic
dimension d and rank Ni,. We have supplemented them with a one loop beta function of the
gauge coupling including approximate massive threshold effects in the regime of spontaneous
symmetry breaking. With this set of flow equations we have started analyzing the latter regime
founding evidence for the presence of a non-Gaufian fixed point (NGFP) in d = 4 for both
N = 2and N, = 3, and we believe that this FP should survive also for bigger values of N..
We have also computed the critical exponents finding values of order one, while the anoma-
lous dimensions remain small and thus support the reliability of the derivative expansion. The
analysis of the flow for larger truncations of the potential and for general d and Ny, is still to be
completed and unfortunately we are not able to comment further on it in this thesis.

One motivation for this computation was the opportunity to check that a mechanism for

triggering the formation of NGFP’s in the RG flow of a theory is provided by the conformal
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threshold behavior of the scalar vev. While previous investigations were leading to partial re-
sults, spoiled by the dominance of unphysical Nambu-Goldstone boson contributions, in the
present approach these contributions are killed by the Higgs mechanism and the regime of
spontaneous symmetry breaking indeed exhibits at least a NGFP.

The physical consequences of the presence of such a FP could be many and profound, and
they provided further motivations for embarking in these computations. If its existence were
confirmed by further studies, this NGFP could provide the solution to one fundamental and
long-standing problem of the standard model: the triviality of the scalar sector. This would be
the case if the NGFP had the right properties to render the theory asymptotically safe. Fur-
thermore, if the corresponding critical exponents were small enough, this FP could allow also
for a partial or total smoothing of the hierarchy problem. Of course, a big difference between
the present system and the electroweak sector of the standard model is the presence ofa U(1)
sector in the latter, that also brings its own triviality problem. However this is absent in grand
unification theories, that could also present the same basic dynamical mechanisms underlying
the apparent asymptotic safety of our gauged chiral Yukawa system. Also in these theories, the
knowledge of the RG flow outside the perturbative regime is of primary importance for estab-
lishing the soundness and the physical predictions of the model. For these reasons we plan to
properly analyze the flow of our model also for Ny, > 2.

In order to confirm the asymptotic safety scenario, future studies will have to consider more
general truncations of theory space, in order to rule out the possibility that this NGFP be an
artifact of the approximations adopted in the present analysis, and in order to confirm that the
number of relevant and marginally-relevant directions for this NGFP is finite and sufficiently
small to be useful for phenomenology. This would be an abstract or computational approach to
the consolidation and validation of the present theoretical picture, while another possibility for
future investigations could be taking a more physical point of view and trying to deduce testable
phenomenological consequences of asymptotic safety scenarios in the standard model and in
grand unification pictures.

In the present fRG approach and by truncations similar to the ones studied in this chapter,
one could also address the important problem of the stability of the quantuum vacuum of the

Higgs sector, that is likely to require a nonperturbative approach for its proper understanding.
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Conclusions

In this thesis we have discussed a representation of quantum mechanics and quantum and sta-
tistical field theory based on a functional renormalization flow equation for the one-particle-
irreducible average effective action, and we have employed it to get information on some spe-
cific systems.

In chapter 2 we have derived this representation from a functional integral representation,
stressing one necessary condition for these two frameworks to be equivalent: the presence of
a rising delta functional in the regularized path integral. To this end we have derived a proper
normalization of this flow equation from a regularization in phase space and we have discussed
the consequences of this natural normalization on the contribution of free fields to the constant
term of the effective potential, finding an automatic disappearance of the need for quartically
divergent counter-terms.

In chapter 3 we have extended this representation to get a description of the full dynamics
in phase-space in terms of average effective Hamiltonian actions. Such an extension provides
a tool for the nonperturbative quantization also of theories whose bare Hamiltonians are not
quadratic in the momenta. We have checked its reliability and its power for computing ob-
servables such as the ground state energy and gap of these theories, by a simple exercise in
quantum mechanics. We have also considered the possibility to apply this phase-space repre-

sentation to field theory, either in a Lorentz non-covariant Hamiltonian setup or in a particular
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Lorentz covariant formulation. For the latter we have derived a first truncated flow that could
deserve future numerical studies in order to look for new universality classes and to test this
unusual Lorentz covariant quantization. Then we have discussed more possible applications
of this Hamiltonian representation.

One of these applications has been started in chapter 4, were we have addressed the study
of linear and nonlinear O(N) models by means of this new tool. Regarding the linear model,
it could be interesting to investigate if spontaneous symmetry breaking can occur in a new
way, intrinsically involving a nontrivial momentum sector. As far as the nonlinear model is
concerned, this representation allows to study these systems in a fully Hamiltonian framework
even for bare actions that are quadratic in the momenta. Our starting point in this case has
been a critical comparison between this representation and the geometric background field
method that is usually adopted for the nonlinear systems. We have outlined how modified
Ward-Takahashi identities can be used to take into account the nonlinear symmetry along the
RG flow. The final goal of this research project is to study the fixed point structure and the uni-
versality classes of both systems and to compare the results with all the other available methods.
Unfortunately this work is unfinished because the research is still ongoing.

In chapter S we have employed the traditional RG flow equation representation in configu-
ration space for the study of a toy model of the electroweak sector of the standard model or of
grand unification theories, in order to see if this tool can give new insights in the understanding
of the triviality and of the hierarchy problems. To this end we have derived nonperturbative
approximate beta functions for the couplings of this gauged chiral Yukawa system. Specifically,
we computed the running of the matter sector at next to leading order in the derivative expan-
sion for generic spacetime and unitary gauge group dimensions, while we improved the one-
loop running of the gauge coupling by approximate massive threshold effects. The preliminary
analysis of the RG flow shows the presence of an interacting fixed point in the spontaneous
symmetry breaking regime, for both SU(2) and SU(3) gauge groups, thus confirming that a
conformal threshold behaviour of the scalar vacuum expectation value can lead to such fixed
points. We also started the analysis of the linearized RG flow around such a FP as well as of
the subsequent flow towards the IR. These result provide a first positive hint for the possible
asymptotic safety of the model, that would solve the triviality problem and could lead to a par-
tial or total smoothening of the hierarchy problem.

More detailed discussions about the results of the corresponding investigations can be found

in the final sections of each chapter.
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Appendices to chapter 3

A.1 THEEFFECTIVE HAMILTONIAN ACTION AS THE GENERATING FUNCTIONAL
OF 1PI VERTEX FUNCTIONS

In this appendix we are going to prove that the effective Hamiltonian action is the generating
functional of the one particle irreducible (1PI) proper vertices, in the sense that the tree level
amplitudes computed with vertex functions and propagators extracted from it are equal to the
full perturbative series generated by the bare Hamiltonian action. For the ease of the explana-
tion we limit this discussion to the QM case, choosing i = 1 as a unit of action. The proof
works just as for the usual Lagrangian effective action [107, 108].

1. Write down a path integral based on a Hamiltonian bare action which is (1/g)-times the
Hamiltonian effective action, with g an external parameter. This rescaling of the action entails
a corresponding rescaling of the Liouville form A, = é?u = é pdq. Thus, in order to define the

new path integral we must adopt a functional measure y, = /Deto, corresponding to the
symplectic structure 0, = d:

= / (dpda) g [p. gles " P AL (A1)

2. Recognize that the parameter g allows one to distinguish different loop orders in the per-
turbative evaluation of this path integral. In fact eqs.(3.17,3.13) show that in the perturbation
theory generated by I', = 1T the vertex functions are proportional to 1/g while propagators
are proportional to g. Thus any graph with i internal lines and v vertices gives a contribution
proportional to g¢~*. Since the number of loopsis ! = i — v + 1, any loop expansion is an
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expansion in powers of g of the kind

Z dW, | (A2)

3. Evaluate the same path integral by a stationary phase method, an approximation that can
be made arbitrarily good by tuning g arbitrarily close to zero. Since by definition the exponent
at the stationarity point gives the W[I, ]| of eqn. (3.4), one gets

1
2

M~y fp, ] (Det—F 2 q]m) s (A3)

g—0

4. Expand the logarithm of the last result in powers of g. Because

logulp.q] = —Trlogg+logulp,q]

1
2

1 1
log [ Det—T [p. 3@ — Trl log ( Det —T'[5.3]®
Og( g [p, 4] ) rlogg + 08< et — b, 4]

D=

the combination of egs. (A.2) and (A.3) gives

D=

Zgl sl ] ~ §W[I - llog{[,{[p d (Det ir 7, q]@))

}

A.2 'THE EFFECTIVE HAMILTONIAN ACTION FROM A VARIATIONAL FORMULA

that is: WyolL, J] = WIL J).

ON THE HILBERT SPACE

This appendix is to prove the proposition of section 2 about the possibility to define the effec-
tive Hamiltonian action in the operator representation by means of a variational principle. The
following arguments are not original, but just the obvious extension of those presented in [66].
In order to compute the extremum (3.8) with the constraints (3.9) one introduces three La-
grange multipliers w(t), I(), J(t) and looks for the extremum of (v _, t|i0,— H+J(t)g-+I1(t)p—
w(t)| ¥, , t) with respect to the two states |y, t). Setting the two functional derivatives to zero
gives

(10, — H+J(t)g +1(t)p) [y, t) = w(t)|y_, 1) (A4)
(10, —H+Jt)g+1(t)p) lv_,t) = w'()ly_.1). (A.8)
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It is possible to define the states

ot =ep i [ awe v g —en =i [ atw @by

which solve the following Schrédinger equation (Ao

(0 = H+ ()3 + 1(0)p) [+, 1) = 0 (A7)

and satisfy the boundary conditions: lim; = |+, ) = |0) . Inotherwords, |+, £) = Uy;(t, -
and (—, t| = (0|Up;(+00, t), such that

VI = (0] (+00, —00)[0) = (—, |+, £) = /"= () (A8)

thatis: W[LI,J] = [* "% w(t') . On the other hand, by contracting eq. (A.4) with (¥_, t| and
using the previous equation, along with the constraints (3.9), one finds that for the stationarity
states the following relation holds

+00 +o00
/ dt (y_, tlihd, — Hly ., t) = WILJ] - / deJ()q(e) +1(0)p(e)] . (A9)
To prove that the values of I and ] on the rh.s. are the extremal ones it is necessary to take
derivatives of this equation with respect to the sources, and remember that on the Lh.s. the
extremal value cannot depend on the Lagrange multipliers, nor can the constraint points p and
g on the rhus.

A.3 THE REALIZATION OF THE RISING DELTA FUNCTIONAL WHEN k — A

In order to analyze the k — A limit of eq. (3.26) we first perform a change of variables in the
path integral:

6T 5T
p=p—p+(nd)" Sf . 4 =q—7— (nd)7 Sﬁk

and then define the complex variable: z = (p’ — ig')/v/2. The result of these manipulations
is:

TPl — / dz] u, exp z{l /dt (2" i0iz — 21 i0i2™) — S—Iik . (rkat)flg—rik
59 8p

SI' §H,
+S { (redp) 1o —I— V2R(z),q + (rkat)lg—}_?k — ﬂ%(z)} } .

Under the assumption that I'; stays finite for any k € [0, A|, when k — A every I';-dependent
term on the right hand side (rh.s.) getskilled by the divergence of 1. On the other hand, since
u, = Det (%8 ) (excluding the possible zero eigenvalues), the first term in the exponent to-
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gether with the regularized functional measure provides a rising delta functional, constraining
z,ie. (p — p) and (q — q), to vanish." Thus in this limit the r.h.s. reduces to exp{iS[p, q] } and
the AEHA coincides with the bare Hamiltonian action. To show that a rising delta functional
is indeed realized we need to prove that the quadratic form (z*r, i0;z — zry. i0,2") is positive
definite. This is not obvious since i0; is a real operator on the spaces of functions one is usually
interested in, but whose sign is not fixed. However, if the domain of the functional integral is
such that all contributions coming from the time boundaries are vanishing, and if the Fourier
transform is allowed, then one can write (the reader should interpret the integrals as generic
sums over unspecified domains)

i

—/(z(t)*rk i0iz(t) — z(t)r i0,z(1)*) = /p'(t)rk i0:q' (t)

) :

-2 / (BYE (¢ (~E)q (E) —  (~E)p'(B))

[ 0EnEIE W (~E)d (B) - ¢ (-E) ()

- / e(E)E (s (E)x_(E) — x; () (B))
) and

where we assumed q(t p(t) real, such that for their Fourier transforms satisfy p(—E) =
p(E)* and g(—E) = q(E)*, we defined x+ (E) = (p'(E) & iq’(E)) /v/2, and we denoted by 8
the Heaviside step function. The last equation shows that the diagonalization of the quadratic
form gives two complex Gaussians which can be independently rotated to real Gaussians with
positive definite inverse variances. In reality they might be not positive definite and allow for
zero modes, but we will not discuss this possibility in the present work.

A.4 THE AVERAGE EFFECTIVE HAMILTONIAN ACTION IN EUCLIDEAN SPACE
AND WICK ROTATION

Of course the Hamiltonian formalism without time makeslittle sense. However it could be nice
to forget about the evaluation of integrals with poles once and for all by working in Euclidean
space from the very beginning. In this appendix the reader will find the translation, of some
of the main formulas of the present work to Euclidean space and a discussion on the possible
equivalence of the theories in Minkowski and Euclidean space, i.e. on the feasibility of a Wick
rotation to imaginary time.

Let’s start with scalar QM. In this case Wick rotation (t — —ir) of eq. (3.3) with ac-
tion (3.1) is safe and leads to a convergent path integral

MWL / ldpda] ulp, qle—SIpalJa—1p}

!Although the quadratic form (r; i0;§) in the exponent and the operator in the measure (1 + r)§ asymp-
totically differ for a factor i0;, the path integral is properly normalized [? ] in such a way to be finite for a free
system (Vk € [0, A]) and to show a k-independent divergence in the H = 0 case.
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with action
Slp.a) = [ ds[~p(2)0.a(2) + Hip(s). ()] (.10)

The regularization goes as usual
WilL)] _ / (dpdg e~ (Slpal +aSip.al—Ja-19)

with ASy and y, which can still be chosen according to formulas (3.21) to (3.25) if we replace
O with —i0, (the minus sign here is due to the global minus factorized in front of the action).
The definition of the AEHA is

Clp,) + A5 [pa) = ext (1 p-+7 7 — Wl J)
which is equivalent to

el — / (dpdq] i p, gle~ (SParraspa-i-6-nH-a-D 5} (A1D)

From it the flow equation follows

1 -1, '
= Tr {(r,(f) + Rk8> Rk81 — & (A.12)
be

where Ri.§ = AS ](Cz) . We see that this equation formally differs from the Minkowskian one (3.29)
by the absence of the imaginary factor i on the Lh.s, by a global minus factor on the r.h.s. and by
the fact that inside Ry we find the operator i0; instead of ;. Thus, for instance, in the particular
case of an off-diagonal regulator the explicit form of the flow equation becomes

: 82T, 82T, 82r,.\ 8, \
I'n = Tr|(—ri0§ —ri08 — i08
¢ r[( ' )<( " +8q8p) 5pop (”“ +Spé‘q) 5259

— Trl[i(1+n)"8] . (A.13)

Next let’s consider scalar covariant Hamiltonian QFT. Since 7" is a vector, Wick rotation in-
volves also its zero component, regardless of whether or not we allow for transverse momenta:
x® — —ix*and 7° — —iz*. However, performing such a replacement in the action (3.52)
with Hamiltonian (3.51) one finds that

s [ { (x— 09)° — 1 (9)" — V(p)

therefore the integral over « diverges. In other words such a Wick rotation cannot be per-
formed. The main difference from the case of QM, or the reason for such a failure, is the fact
that the momenta are assumed to rotate along with time. Despite this problem, one possible
reason for studying a Euclidean covariant Hamiltonian formulation is that we know that the
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Euclidean non-covariant Hamiltonian theory makes perfectly sense because it is related by a
continuos Wick rotation to the corresponding Minkowskian theory. Therefore the Euclidean
covariant formulation can be derived from the non-covariant Hamiltonian formulation and
studied as a generalization of it. By definition the bare action of such a covariant Hamiltonian
Euclidean theory reads

S[n”, 9] = /ddx [—7"i0,0 + H(z", 9)] . (A.14)

Its Hamiltonian quantization in a scheme where only longitudinal momenta are present is
based on the functional integral

21, ) = [ wdg)S[10tr,] et

Again, to get a functional RG flow equation representation of this integral on introduces a k-
dependence in the bare action and in the measure. In the following we choose an off diagonal
quadratic regularization, i.e. of the kind (3.56), but with 0, replaced by i0,. The definition of
the AEHA is the same as in Euclidean quantum mechanics

Le[#, 9]+ A8 7,9 = ext (L, - & +] - 9 = Will,, ) (A.15)

wherefrom the usual integro-differential equation

SR,

e—I‘k[i’”@] — / [dﬂvd(P] S[Hfﬂp} yke*{S[”Vv‘P}JFASk[(”*ﬁ)V:‘P*‘?’]*(77*7_7) ] (‘P*‘?’)T@k} ' (Alé)

Again, the Euclidean flow equation can be obtained from the Minkowskian one by stripping
the imaginary i on the Lh.s., by changing the global sign on the r.h.s. and by replacing .08 with
¥ kiE)S .

As far as fermions are concerned, no new behavior under Wick rotation shows up, because
of the identification of configuration space with the reduced phase space.
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Appendices to chapter 5

B.1 THRESHOLD FUNCTIONS

In general one can choose different regulators for the scalar bosons (B), for the gauge bosons
(GB), for the ghosts (G) and for the spinor fermions (F). Then the regularized kinetic (or
squared kinetic) terms are given by

Py = p*(1+ns), Pr = p*(1 + rz)?,
PGB = p2(1 + rkGB) y PG = p2<1 + rkG) .

Accordingly, the loop momentum integrals appearing on the r.h.s. of the flow equation can

be classified and corresponding threshold functions defined. If one denotes with 9, differ-

entiation wrt. t = log(k/ky) acting on the regulators only, with j; =/ % and with
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vg = 1/(2412421'(d/2)), these functions read

an*d aP
li(w) (1’1 + Sn,0> " / (P _|t— BkZ)n+1 )
d Jp “o\I'B w
an*d Z +
(o) = (5,0 [Omr )
2Vd p ZL/R<PF + (Uk )
2n—d 2
o0 (Z
lng)d( ) (n—i—&,,o) / t( wh ”ICGZBZH
4vq J, Zw(Pgp + wk”)
an*d a Z 21»'
ZEIEB)d( ) (n+8,0) 40 /Z (;( qf kaZB)ZJrl
k2nfd a 2
194 ) (n48u0) / :p rzG)
’ 411,1 P (PG + wk )"+1
kz(m—i-nz —d - 1
l(FB)d /
ni,nz <w17 wz) ? ‘ PF + w1k ™ (PB + wsz)nz
l(BGB)d(w1 wy) kZ(ernZ) - / 4 .
01,12 ) ", PB + wlk ny (PGB + w2k2)n2
6—d 2
(F)d _k
my (@) s pp ( Op? Pr +wk )
m(p)d(a)) k4 : L
4 o, pp ap2p Pr + wk?
(GB)d k6 ’
2 (w) P >
dvy 8p Pgs —|—wk
pity— a 0
md (wl wz) k2( + 1)— /p at PB 8p2PB
ni,n ) my ", (PB _|_ wlk )ﬂl (PB + wzkz)nz

ity —1)— 9
(FB)d kZ( 1+m—1)—d 25 1 + [8:] 8p2PB
mnl,nz (CU], wz) - p t 2 n 2 1y
41),1 ) (PF + (J.)lk ) (PB + ka )
ni+n—1)— i
m(FGB) (w ) u / 25 1+ apszB
1,n2 1, W POt \n 2\n
(PF —|—w1k ) 1 (PGB +a)2k ) 2
K= 1 - g
W) = i /7&( )
V4 p )4 PGB + CUZC
d k4 d I~ 1+ e 1
03<w17 wz) t
41/d p PF + wlk PGB + O.)zk

We choose the same optimized regulator for the scalar bosons, for the gauge bosons and for

the ghosts

yre/ae/c(y) = (1 —)0(1 —y), (B.1)
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where y = g2/k*. Instead, for the spinor fermions the function rg(y) is chosen such that

y(1 + rg) = y(1 + rg)?. Using this regulator in the Wetterich equation, we can perform
all momentum integrations analytically, obtaining

13(w)
1B ()

nL/R

Z(GB)d(w>

nT

l,(f’}i)zd (wl ) w2>

Z;S]iif)d(wb w2>

ms ()

m (@)

ms ()
m;iu,nz (w1, w2)

Mo (w1, 2)

mis oD (w1, w,)

a; ()

a5(w1, )

1
2(1’1 + Sn,O) - E‘pz
d (1+w)tl’
2n+8,0) 1— 32
d (1 + w)rtt’
2(71 + Sn,O) - %

d (14 w)rtt’
2n+8,0) 1— 25

d  (1+ae)t’
2(n+ 8,0) 1

d (1 + w)”“ ’

A PR |
— | +1’l2 +2 5
dl " (1+w) (1 + wy)m (14 wy)™(1 4 wy)ttm
- ) -
2 ~ s L
— | +n2 )
dl (14 w) (14 wy)m (1+ w)™ (1 4 wy)ltm
1
(1+w)*
1 l_%(ﬂL+’7R)_ 1_%(’1L+nR>+l 1
(1+w?* (d—2)(1+ w)? 2d —4 4) (1+w)?’
1
(1+w)*’
1
(1+ @) (14 wy)m
q?
_d+1
(1+ @) (14 wy)™’
1 — Je
d+1
(14 w)™ (14 wy)™’
Uil
11
d—2 (14 w)?’
2 1=y (1=%) —e(1=%)

d—1(1+w)(1+w)? d—1
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B.2 DERIVATION OF THE FLOW EQUATIONS FOR THE MATI'ER SECTOR

)

We have to evaluate the r.h.s of eq. (1.1), for which we need the T ,(CZ matrix. Let us consider the
fields @, ¥, ¥, W, ¢, ¢ as column vectors, with a number of components respectively given
by Ny, d,Ny, d,, d(Nf — 1), (Nf — 1), (N} — 1). Accordingly let us consider ¥, and v
as row vectors. Taking care of the partly Grassmann-valued field components and the Fourier
conventions, let us denote by ®"(q) the row vector with components ¢ (q), 91 (q), ¥~ (q),
V.(—q), ¥a(9), Vx(—q), W (q), ¢"(q), c"(q), and by ®(p) the column vector given by its
transposition. Then T ,(CZ) is computed as follows
- =
e -9 I, L
¢ 50T(—p) "50(q)

For a proper IR regularization, a regulator which is diagonal in field space is sufficient and con-

venient,
Rg O 0 0

v o Re 0o 0
Ri(a:p)=8=a| o ¢ R o0 |

0 0 0 R

with a 2N, X 2N, matrix for the scalar bosonic sector

Z kS abpzi’kB 0
R — ?
kB < 0 Z(p,ksabpzrkB )

an 2d,(Ny + 1) x 2d,(Ny, + 1) matrix for the spinor sector

0 Zus™yt 0 0

R Zp 8™y 0 0 0
kF = 0 0 0 Zex ?T TkF

0 0 Znip O

a diagonal d(N7? — 1) x d(N} — 1) matrix for the gauge vector boson

Z 3
Rigp = Zw (HT + aZ:VHW) 8"p*reas »

where the ITs are the usual longitudinal and transverse projectors with respect to p , and a
2(N? — 1) X 2(N? — 1) matrix for the ghosts

Riv — 0 Sijpzrk(;
kG — _SijpzrkG 0 .

See. App. B.1 for the definition of the shape functions ry.
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B.2.1 FLOW EQUATION FOR THE POTENTIAL

The flow of the potential can be computed by setting the field ¢“ to a constant value and by
killing all the other average fields on the rh.s. of the flow equation. Then, in Landau gauge
the matrix I',(cz) + Ry can be easily inverted. Multiplying with the derivative of the regulator,
and taking the supertrace yields the result. This can be interpreted as an improved one-loop
computation for a 0-point function, i.e. a sum over all the one-loop graphs with no external
legs. The gauge contribution takes the form of a closed gauge boson propagator, and since it

does not involve any vertex, it should not explicitly depend on g. Indeed we get

2Np — 1 1
atUk - = atPB 7 + n ”
2 J, ZoPy + U, Z,Py + U, + 2pUy

. dy /{ |:(NL . 1) + 21,2y Py _2] at[ZerF] 4 Zy,ZgPr _ at[ZRrkF] }
p Z1ZgPr + phi | ZL(1+1iw)  ZpZpPg + phi Zr(1 + 115)

+ %Z [ _ at(ZWPZrkGB) + at(z«pPszGB)} _ / (NT — Dp*Oing
=1 P

ZWPGB + Mgy ; ZoPgs Pg
that is, in terms of threshold functions
U/ U/ +2 U//
U, = 2vdkd{(2NL — 1)l (Z kz) +15 ( e )

F)d F)d h2 F)d h?
— d, [(NL — DI 0) + 1) (ZL”Z;kz> + I (ZL”Z;kzﬂ

N?—1

— 2(N2 — 1)I9% (0) + Z [ <;”Wk) + 154 (0 )} }

where Uy is a function of p. Switching over to dimensionless quantities this becomes eq. (S5.15),

and for our choice of the optimized regulator we eventually get

- 4
Oy, = —duk—l—(d—z—irn?)pu;c—i—ﬁ{

d
INp — 1 . '1
1+ u d+2 1+uk—|—2[m§c’ d+

_dYK d+1)( ph2> ( d+1>1+lﬁhi1

d+2 T _ 2
+Z +m%w+(1 d+2) 2 (N2 1)}.
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B.2.2 FLOW EQUATION FOR THE YUKAWA COUPLING

For the derivation of the flow of the Yukawa coupling, we first separate the bosonic field into the
vev and a purely radial deviation from the vey, i.e. according to (5.8) where we set Ap, = 0,
since we are mainly interested in the Yukawa coupling between the fermions and the radial
mode. The projection of the flow equation on such an operator reads

157 B
Oy = ——=— —_0,I; . (B.2)
t V2591 (p) SA01(E) " 8v(a)|,
The vertical line indicates that the equation is evaluated at vanishing momenta p’ = p =

g = 0 and at vanishing fluctuation fields. Next, we can decompose the matrix (T ,(CZ) + Ry)
@

into two parts. One part, which we call (th + Ry), contains only v and is independent of

the fluctuations. The remaining part, Al",(f) , contains all fluctuating fields. Recalling that the

r.h.s. of the flow equation can be written in terms of the operator J; acting on the logarithm of
(I’,(cz) + Ry), inserting in it this decomposition of (F,Ez) + Ry) and expanding by means of the

Mercator series one can write

1~ 1 o0 _\s+1 Ar(z) s
O = 0STr log(T'y + Ry) + S > (=) O,STr [(2)—" . (B.3)

Plugging this expression into equation (B.2), only the term to third powerin AT ](cz) survives the

projection. Since we took three derivatives of the Wetterich equation, the diagrammatic inter-
pretation of the result is in terms of one-loop graphs with three external legs: two fermions of
opposite chirality and one scalar. The gauge contribution comes from triangular loops with
three different propagators: one scalar, one spinor and one gauge vector. It always involves the
two-scalars-one-vector vertex. This vertex is proportional to the difference of incoming scalar
momenta, while the gauge boson propagator in Landau gauge is transverse. These two facts
plus conservation of momentum entail that the direct gauge contribution to the momentum-
independent Yukawa coupling under consideration vanishes at one loop. In agreement, per-
forming the matrix calculations and taking the supertrace, we get from the flow equation

no[d ~[ 1 ( 20U 6pUl +4p°UY )

Oy = ——= .
o 2 (25)8 7 | ZuZaPr + ph \(ZPs + Uy (ZoPy + Uj +2pUf 2

N 2ph7 ( 1 1 )
(ZLZgPr + ph)? \ ZoPp + U, Z,Py + U} + 2pUY

1 1 1
 ZuZxPy + ph? (Z,PPB +U, Z,Pp+ U, + 2pU§c’>}
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where the whole r.h.s. is to be evaluated at the value p = 3v? that minimizes the potential U.
In terms of the threshold functions as defined in App. B.1 this reads

Oh? = 4vahi 20U wmya (o2 w 6pU" + 4pU” jEB) (_phi  U'42pU”
thte — ZLZRZ(Pk47d Z‘pkz 12 ZLZRk27 m - Z(sz 12 ZLZRIC27 Zwkz

72 _ 72 -
2phy wmya (o u\ _ 2Phe e (o uraapu
[Eae ZLZRK? ) Zok? 2 ZLZRKR ) Zok?

_l(FB)d ph? U +l(FB)d ph? U +42pU”
11 ZLZrk* 7 Zok? n ZLZRK*  Zok? :

Switching over to dimensionless quantities, we end up with the representation (5.19) given in
the main text. In the case of a optimized cutoff it reads

+

oh = (d—4+ My + 1y, + ne)hy — 4vdh‘,i{

1 Apyuy 1 1 — %(ﬂR + 1) 4 2 1— To
d(1+phe)(1+u)? [ 14 phy d+1 1+u, d+2

1 12p,u} + 8pyuy!

d (1+ ki) (1 + uy + 2puy)?

1 %(ﬂR+qL> 2 Mo
X — (1 + / ~ 1—
1+ p by d+1 1+ wy + 2p,uy d+2

o arramnr e U ) g ()]
d(1+phe)(1+uy) |1+ phi d+1 1+ u, d+2
2
d

1
(14 pph) (1 + uf + 2p)

1 1(n, + 1
bl 5580 e ()
1+ p.hy d+1 1+ w + 2p, 0y d+2

1 4pyl 2 (bt L
d(1+ph)*(1+uy) [ 14 phy d+1 1+u, d+2

! 45,07

d (1+ phi)2(1 + uy + 2pasf)

2 %(UR“"”L) 1 Mo
x| ——— (1- —(1- .
1+ p by d+1 1+ w + 2p,uy d+2

125



B.2.3 FLOW OF THE SCALAR ANOMALOUS DIMENSION

For the derivation of the flow of Z; ;, we decompose the bosonic field as in App. B.2.2. The
projection of the Wetterich equation onto the massive scalar kinetic term leads us to

0 5 5
A(p") 5Agi(p') A9 (q')

atz%k at].—‘k

0

As before the vertical line indicates that the equation is evaluated at vanishing momenta p’ =
g = 0 and at vanishing fluctuation fields. Expanding again the rh.s. of the flow equation
according to eq. (B.3), this time only the second order term (s = 2) contributes. Since we took
two derivatives of the flow equation, the diagrammatic interpretation of the result is in terms
of one-loop graphs with two external scalar legs. From a one-loop analysis we expect the direct
gauge contributions to be of two kinds. One is due to the two-scalars-one-vector vertex and
produces a loop containing one scalar and one gauge boson propagator. This is present in both
the symmetric and in the spontaneously broken regimes. Another is due to the two-scalars-
two-vectors vertex and, if one identifies two external scalar legs with the vev, it produces a loop
containing two gauge boson propagators. Therefore this contribution will be present only in
the SSB regime. Indeed, performing the matrix calculations and taking the supertrace we find

o 2
) 2 py
A, | (3/20U" + 2:/203U" 22 22 O
L t{[( P k+ P k)p ? (Z¢PB+UL+2PUZ)2

9 p 2
+Ny — 120U | —2
(ZoPs + Uy)

atZ‘P -

SWE

+d,

_ 0  1+r . 0 1 g
22427 — ) — 20| ————
e (3pz Z1Zg Py +Ph2) P <3pz Z1Zg Py +Phi) ]

T T .
ZZZZ Z na " an
ZPB+Uk (ZWPGB+mW1)

a=1 i=1

NZ—1 2
(d—1) 4 1 ( 0 1 )
+ E :m i - + _
p - w, p2 (ZWPGB + m%,) p 8p2 ZWPGB + le

i=1
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and again the whole r.hs. is to be evaluated at the value p = 2v* that minimizes the potential
Uk. Translating this result in terms of threshold functions

. U +2PU” U +2PU”
Zy = 2k6 Z22k5 44 [(3\/_U,,+2\/_Uﬁ> ( qu,kZ “ kZ¢k2 k)
U, o4
+(NL = DU, (3 72 )|
C4vady [ 2k P () 2ph  wa (ot
d ZLZRk4 d ZLZsz ZiZ%R’ké_d 2 ZLZRk2

N1
16v4(d — < (BGB)d (U, iy,
+ d k4 dZ Z Z TlnaTlanl (Z@,IIZZ’ va:;c2>

a=1 i=1
N:—1
8vg(d — 1) ¢ ﬁﬁv,i g ", (GB)d [ ™y,
SN 2 (S ) + ™ (2|
i=1 “W

and then in terms of dimensionless quantities we end up with eq. (5.20). For the optimized
cutoff the explicit form is

4ug 18u?p + 24uul'p* + 8u?p®  (2Np — 1)8vy  pu? 8vad,  phy

e = 74 (1+uk+2pu;g) d (+u)t  d (1+ph)
4 Bvadyys L —alntn) (Loalte) 1 1
d (1+ph2) —2)(1 +ph2 2d — 4 4) (1+ phy)?
— @gz(l_l) d+2 + _%
a ‘ ul 11 ool <1+u (Lt mi) (L )L+ miy )2

1_'7F)

+ 8vy(1 — Ell) Z ;’l (‘zlz — 33 +( —|—W1W,,-)4> )

i=1

B.2.4 FLOW OF THE SPINOR ANOMALOUS DIMENSIONS

For the anomalous dimensions of the spinors, the procedure is very similar to the one explained
for the scalar. Since one of the left spinors becomes massive in the broken regime, we compute
the anomalous dimension of that component (the 1 — th) only. We start with the projection

o <
1 ‘ 0 § )

try — Ol ——
2vady " Op 8y} (p) VL) |

8tZL/R,k = -

where again the vertical line denotes that the equation is evaluated at vanishing momenta p’ =
g = 0 and at vanishing fluctuation fields. Expanding again the r.h.s. of the flow equation
according to eq. (B.3) only the second order term (s = 2) contributes. Obviously the right
handed fermion does not receive direct corrections from the gauge boson while the left handed
fermion does, since its interactions allow for a gauge propagator to appear in the relevant Feyn-
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man graphs already at one loop. The gauge-independent contributions differ from the results
of [106] for a factor 2, which was due to a harmless mistake.
For the right-handed spinor the result is

- o) o)
h [ dp zgt[ Zr(1 + 1v) ( Zogp s Zopp P )
d

0 Zg = — —
T d ) () ZuZyPy + phi \ (ZoPs + Uy +2pUF)*  (Z,Pp + U)?

o]
ZR(l +TF) Z(pa_pZPB
Z1ZrPr  (Z,Py + U})?

+2(N, — 1)

Introducing threshold functions

1.2 _ _
0 Zg = dvghy [ (FB)d( pht UL+2pU1’C’)+ (FB)d( ph? UL)

- dZ, 7,k 12 \ZiZgl2) ~ Z k2 12 \Z Zpk? ) Z,k2
¢
(FB)d U,
(N — D) (o,?;;z)} .

In terms of dimensionless quantities we recover eq. (5.21), which for the optimized cutoff be-

comes
4 _ e _ T _ T
di2 d+1 d+1 d+1
_ + +2(Ny — 1
L I e W WY e (A

For the left-handed fermion the result is

- ) )
8.7 — d’p 5 he Zup*(1 + rx) Zo5p2 B Zogp s
tLL — a vt g 72 7 p ! 11\2 + 7 P 7\2
(27) ZyZyPg 4 phi; \ (ZoPs + Ui + 2pUY)*  (Z,Ps + Up)
NZ—-1

_ (d; l)gzzi Z

i=1

. 1
Tl (oot 2P e
(Tia) (ZWPGB + Mgy P Op? ZwPgp + iy,

X( Zn(1 + re) _ZR(l+rF))

ZLZRPF + P;_li ZLZRPF

NL
P o 0 1 Zr(1+r
+ Z TﬁaTaﬁ - 1 -2 + 2p2— — R( F)
a=1 ZWPGB + mW7i apz ZWPGB + mW’,‘ ZLZRPF

}

128



in terms of threshold functions

2
0.2, — — 4vghy |:m(FB)d( ph U;+zpug> +m(FB)d< oz U, )}
¢ dz, ZRk4—d 12 ZLZRKE)  Z kP 12 ZLZRkE ) Zgk?

NZ—1
_ 8Vd( ) &7 Z EBE (PR ) (sGe) ()
k4 d ZLZRK? O Zwk? 12  Zwk?

2 2

and translated in dimensionless quantities this results in eq. (5.22). Explicitely, for the opti-
mized cutoff this reads

n n
= vy T + ~ @
L d * (1+ﬁh2)(1+u;+2pu;’) (1+ ph) (1 + ul)?
+ SVdgz Z nn 3)(1 dﬂjl) ( 1~ 2 1)
+mW1)2 1+Phk
o ( _)+ Bt (1 %)
(1+ miy) \(1+ phy)? (1 + miy ) (1 + ph)?
d+1) 1

B’ o N (d—3)(1 -
+ ;gzzz mz an -

d
—1 i=1 (1 + miy;)? (1 +m%v,i)_

L

If, in the chosen basis in fundamental color algebra, the direction of the vev 7 has a single non-
vanishing component, i.e. if n% o< 8% this anomalous dimension takes a simpler form, given
in eq. (5.23), and for the optimized cutoff that becomes

n n
o= va, , ~a n ~ T
- d F\ (U+pI) (1 +u +2pu))> (1 + phi)(1 + )2

N gvdgzzi T (d—3)(1 ) _

d+1 .
a=1 i=1

m%/lf,i)z( SaAPhZ) ( +mW1 (
SaA h2 ]

(1 +mi,)( S“A he)?

7L
+ 8 ph)?

B.3 FLOW EQUATION FOR THE GAUGE COUPLING

In this appendix we will set d = 4, d, = 2. Since we want to compute the one loop beta
function we set all the wave function renormalizations to one (O(0,Z) terms on the rh.s. of
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the flow equation lead to higher loop corrections of the ,Bgz function).

B.3.1 CONTRIBUTION FROM THE GAUGE MODES

For the gauge contribution, the relevant part of the effective Lagrangian is

Li 3 L (Fy) + W W0 Ty Tyo9" + Ligs + Lign

e it S

(F )Hgim“f T, AW W+ ...
ab 2 ab " be [ ’

This defines the mass matrix for the gauge bosons, as given in eq. (5.12). As the generators are
real, the mass matrix has real eigenvalues. In order to compute the running coupling, we use

the BEM and project on the operator F? /4. For the flowwe need T ’(cz) , the part of the action that
is invariant under gauge transformations of the background field, because to the present order
of the calculation the terms arising from I’y © can be ignored. The Hessian for the fluctuating
W-boson reads

)i

) 1 o 3
o= Dy}, + (1 — —) DiDY + 1y, "8,

a

w

the contributions from ghost fluctuations are

i

— _pinj 2
o D,D, + O(a*)
and as we will later consider Landau gauge (¢ — 0), we ignore from now on the ghost-Higgs
contributions. For a covariantly-constant background field, projectors onto the longitudinal
and transverse subspaces (w.r.t. the background field) exist

M, +y=1 , IP, =M, , HOI=0
such that

oy ,- o

F:(CZ)FZ o o a |:,DT Wt miv”&w}

i 1 lj _2 ij
+10) |:;DTAJV + m%v]&v}
see [16, 109] for the definition of Dr, IT, ITj. We choose a similar decomposition for the

regulator
Dr 1 Dt
Rk‘w == HJ_DTrk (?) + H”;DTI‘k <?)

hence also the functional trace on the r.h.s. of the flow equation decomposes into these two
sectors. Using the important property that

Te [I(Dr)] = T [f(~D?)
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we get

(—Dz)atrk(’k—?z>

(—=D?) (1 +r(32)) + amy

D10yt (—zT)

By (L () +

and writing IT; = 1 — IT}| in the first term we obtain two unconstrained traces for different
differential operators. The ghost contribution gives
2
(~D) 0 ()

(—D?) (1+r(=%))

OR
ek — Tr|II

Tr| ———
F,(CZ) + Ry W

+Tr

OiRy
)+ Ref,

Tr = —2Tr

such that the total contribution reads (a — 0)

(—DZ)atrk(*k—?ﬁ

sr| 2R | _ oy Drie ("_ZT)
P ir, B )+ 0 (1 () +
o (—Dz)atrk(k—ﬁ’z)
) (1 B))

For the ease of the calculation we choose a basis in adjoint color space where the gauge boson
mass matrix is diagonal, as in (5.13), and we also specify a constant pseudo-abelian magnetic
background field

i i N _ pol
F,=mF, , mm =1 , F, =Bg,

where m is the above-mentioned basis in the Cartan of the color algebra, and the constant
antisymmetric tensor ¢ characterizes the space directions which are affected by the constant
magnetic field upon the Lorentz force. Then, recalling that the adjoint generators are (7'); =
if¥ we can call v; the eigenvalues of if /7' such that the covariant derivative

D} = (0, —iv)8”  (non sum over i)

is also diagonal and so are D* and Dr. Hence Dr and m3,, as well as D* and m}, commute.
Then equation (B.4) can be brought to the propertime form:

ORy I /Ooodsfz(s, 0)Tr [e_s_ng} _|_/OoodSTr [f,(s m?y) <e—s% _ e—s—TQZﬂ

STr| ——
i + R,

where / is the Laplace transform of the following function

yOimi(y)
y(1+re(y)) + miy

h(y, myy,) =
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that is -
h(y, m%,v) = / dsfl(s, m%,v) e Y
0
2

and as before m2, = m2,/k*. The heat kernel traces are known, see [ 109]

§ N
el i) = Db i)
X{sm}}izsk_@) e Smh@%) j
e[ (s, ) ]=?k2<”1w> h<—>
Te [,;(57 O)Cfs;—ﬁz] :%%—fﬁ(s’ 0)$ (B4)

where b; = g|v;|B and Q is the spacetime volume. The first trace above is over spacetime and
Lorentz and color indeces, the other two only over spacetime and color indeces. For the run-
ning gauge coupling we just need the terms of order b. Since on the Lh.s. of the flow equation
we have 0;T; = QB?0;Zy /2, in terms of the renormalized coupling g* and the anomalous

dimension (such that 0;g* = ﬁgl = n,,&") we obtain

qW’W: 3_2i22 > [21k(0, ;) + h(0,0)] % (B.S)
Using
o o), yrD)
hG, %) y(1+r(y) +x 2y(1+r(y))—|—x
we find that

hy0) = —a— 20

(1+r(y)) + =«

In the BEM the y — 0 limit is constrained; the only regulators permitted must satisfy h(y —
0,0) = 2. In the massless limit we thus obtain

NZ—1

1 22 1 22
oy = o 2 3 Il = s e
i=0

w1672 3 1672 3

which agrees with standard perturbation theory. Let us work out the massive case using the
linear regulator (B.1). In this case h(y,x) = 2(1 4+ x)~'0(1 — y), the gauge contribution to
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the gauge ﬁgz function thus reeds

g4 21 i) |v-]2 Ny,
2 i

= = — - § =
w T ‘Wg 167% | 3 1+ m%/v,i 3

i=0

e

The first term now depends on the choice of #* the direction of the vev in fundamental color
space. Thisis expected, as for higher gauge groups different breaking patterns and gauge masses
can arise. This term also depends in general on |v;|?, i.e. on ', This is also plausible, as the di-
rections of the vev implicitly also allows for the definition of different couplings: depending
on the relative direction of the gauge fluctuation w.r.t. the vev, the fluctuations can couple dif-
ferently to matter.

For SU(2) things become simpler

I 2 . . 2 I s
ity = g%"m“a;bofbcﬁc = g%” (87+ ie" (alo'n)) (B.6)

such that tr r?l%vij = 3¢%1%/4. Let us denote ¢ = (n'¢o'n). This is a vector in adjoint color
space which is an eigenvector of the mass matrix, with eigenvalue g*v* /4. One can choose a
diagonalizing orthonormal basis {e;, e, = ¢/|c|, e3} in adjoint color space such that the mass
matrix takes the form

2
. g
My = 7

S O N
S = O
o © O

Now recall that the |v;| are the eigenvalues of (—if'i!), that for SU(2) simply is (—ie/!).
Therefore in SU(2) the eigenvalues are (1, —1, 0) for any choice of m. However, depending on
the direction of 7 w.r.t. the basis defined above, the v; couldbe {v; = 1,v, = —1,v; = 0} or
any permutation thereof. The two extreme cases for SU(2) are maximal or minimal decoupling.

Maximal decoupling happens if |v;| = |v,| = 1and v3 = 0, and in this case
g |2 1 1 2 (B7)
while minimal decoupling happens if v; = 0 and |v,| = |v3] = 1, and correspondingly
B, __ £ [2<1+%)+%1. (B.8)
&lw 167> | 3 1+ &5 3

For SU(2) the ambiguity of the B-function arises solely from the ambiguity of defining a cou-
pling in the presence of a vev. In fact, there are more quadratic invariants than the only F?,

such as for example ﬁT“F:'w T, TL cFLv’A’C- For higher groups, even the mass matrix depends on
the choice of n”.
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B.3.2 CONTRIBUTION FROM SCALAR MODES

The contribution from scalar fluctuations to the gauge f function arises from the scalar kinetic
term. The calculation is very similar to that of the longitudinal modes with two differences:
the field is complex and lives in the fundamental representation. Moreover the dimensionless
scalar mass matrix in the broken regime reads mi b — (A,v*/2k*) 77T, Let us not attempt to
solve the problem in full generality as for the gauge modes, but confine ourselves to a simple
choice of backgrounds. Most importantly, we choose the color direction of the pseudo abelian

background to satisfy
W, =m'W,, mm=1, [(mT)7®a]=0. (B.9)

It is important to note that this does not constrain the choice of the vev-direction #°. This
is because we can always choose a basis in fundamental color space such that the projector
P; = 1 ® fil is diagonal. Then the commutation relation (B.9) can be satisfied by choosing
(7;T")%" to be in the Cartan, i.e. by choosing it to be diagonal in that basis.

Let’s consider as an example SU(2). Letn = (0, 1). Then we choose m = (0,0, 1) such

that
) 1 1/1 0
A- ab:— 3:—
(m; T") d 2(0 —l)'

Before we continue with the scalar fluctuations, let us work out the consequences of this choice
for the gauge modes of the preceding section. The vector ¢ for this choice becomesc = (0,0, —1)
and the mass matrix for the gauge modes, given by (B.6), is

) _ 2 _ 2 1 _i
2 g%(sij i) = gv (B.10)

2= i1
* \o o

— o O

The definition of v;, right above (B.4), combined with the choice m = (0, 0, 1) requires us to
compute the eigenvalues of

0 1
—ig® = —i| -1 0
0 0

o O O

The simultaneous eigenvectors of this matrix and of 3, are given by

0 1 1
vy = 0 s Vy = i y V3 = —i
1 0 0

. . . T T _ _o Pt _
with the corresponding set of eigenvalues: {7}, , = -, v; = 0}, {m3,, = 5-,v, = 1},
{m},; = 0,v; = —1}. This choice of 71 corresponds to the minimal decoupling case of
eq. (B.8). These considerations tell us that the maximal decoupling solution of eq. (B.7) might

not be permitted, as it would not correspond to a legitimate choice of 711 such that 71, T" be in the
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Cartan (which we had also assumed in the gluonic case in eq. (B.4)). It seems that this choice
of m satisfying (B.9) corresponds to defining the coupling with respect to the unbroken part
of the gauge group.

Let us now return to the scalar fluctuations; eq. (B.9) ensures that the covariant derivative
in the fundamental representation satisfies

D, a®a] =0

for our choice of the background field. Then also [—D?, # ® '] = 0 and thus [—D?, m2] = 0

9
follow, such that —D? and m2 can be simultaneously diagonalized. Therefore

?
T[ OR, } . ‘—?Z&rk(——lf)
r|—————| =Tr
IR, | F (n(F)) +m

Because of the above considerations, we can rewrite the previous expression in the propertime

atRk /Oo bl _ =D?
S R
I{F(2)+Rk]¢ 0o (s.mg)e ™
12
= 167r2 ds E hsm (—gba)

where we extracted from the third equation of (B.4) the term of order b7, and we denoted with

form

m; , the eigenvalues of the mass matrix (there is only one nonvanishing eigenvalue for the radial

mode), and b, = g|v,|B, with v, being now the eigenvalues of (m,.T")“", now related to the
fundamental representation. In particular, using the standard normalization for the generators
of the fundamental representation

N, 1 1
E ) L ;
— ’Va’2 = {r [(m,Tl) :| = mimjigl — E )

Another difference from the gauge case is that the scalar field is complex and thus there is no
factor 1/2 in front of the trace on the rh.s. of the flow equation. Hence, analogous to (B.S),
the contribution of the scalar to the flow of Zy; reads

= i Snomt @11

in agreement with perturbation theory.

In the massless case, since 1(0,0) = 2,7,,|, = 15:2 3
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In the general massive case and using the linear regulator, we get

@ 2. 1
m|, = s D Tl
[ 7% 3 —1 l—i-m%a

For all the gauge groups only one particular component of m2 is nonvanishing and equal to

22,x. For SU(2) the v, are unique and equal to {—2 T —} Therefore in this case

‘ g 11 L1 1
Wl = T6x23 |2 21+ 20k |
B.3.3 CONTRIBUTION FROM FERMION MODES

The relevant part of the effective Lagrangian is
.7 ahab 7 1. (7, ~aT,,4 T4 _a
Ly 2 i(yp ‘Pi + ¥ PVe) + (Yo T‘PL — V19 V)

in which again we set any wave function renormalization to one. For (5.8) we can choose a
gauge background field such that Dzb and P; = 1 ® n' as well as P_i) = 1 — P; commute,
such that the above parts of £y can be written as

Lo 3 i@ B™PE_ i) (B.12)
TR R T v o i
VDL + Tad) + 5 dt — Vi)

where the second ) is projected along 71. The first line corresponds to the massless bottom-type
fermions. Their contribution is the standard perturbative contribution weighted by eigenval-
ues v, in the orthogonal complement. Let 7 point into the A-direction: 7° = §*. Then the
contribution of the massless fermions to the running coupling is

Np

2 g4 4 Z 2
atg = — |Vu| .
Vo_s 16723 A

If the sum ran over all a’s we would get ZQL [va|* = 1/2 leading to the correct perturbative

result. Combining \hi and v into a Dirac spinor ¥ = (:I;L) , the second line of (B.12) can
R
be written

L3 i¥YDy Y +my¥Yy¥
where D, = 7,(0" — gvaW¥Py), with the usual definition of the left-projector P, = 21—
75), and we introduced the “top-mass” 17, as defined in eq. (5.14). Since the regularized fluc-

tuation operator for ¥ satisfies (I',(C + Ry)? =15 (1 +r)*+ r?li and since tr[y P, | = 0
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one gets

{ 20k, ] P (en(B)
Y

r
r® 4+ R,
(B.13)

Here we need to know the spectrum of

By = 7,(0 — guaW¥PL)y, (0" — graW'PL) = 7,7,(0% — guaW¥Pr) (9" — gvaW'PL)
= 7,7, (D& + 3)(D}, + 0%) = By +7,7,(0LDf, + D4oy) (B.14)

where we denoted 0 /r = 0¥Py/r and took advantage of: B = 7yvaf{D}i and 0¥y = 0.
Let us take a shortcut at this point. We already know that the contribution of (B.13) to the

B-function in the massless limit must be of the form

atgz

B; B
This fixes the O(s°)-termin Tr {es;‘%} tobe the same as the O(s°)-termin Tr {esk%} . These

heat-kernel traces could differ to higher orders in s, due to the two extra terms in (B.14). These
higher-order terms could (unlike as for Ei) in principle contain terms of order B> and thus
contribute to the beta function via functions of the form

sy = [ashtsmie = (=5 ) b

where mi is the dimensionless top mass squared: mi = hikr. Because of what just said about
the massless limit we musthave f, (0) = 0. Furthermore J, hasalso to show threshold behavior,

y=0

that is: fp(m‘zl, — 00) — 0. As the precise dependence of h(0, mﬁ,) is anyway regulator-
dependent, we can ignore the potentially nonvanishing fp(mi,) for all qualitative discussions.
Therefore, without any further explicit calculation, we approximate the threshold behavior of
the massive fermion mode by the same form as for the other modes

NL

o 2| o g4 42 1 | |2
T 16223 — 1+ hsalel
for SU(2) this implies
21 1 1
Oy = 2-S (42— ).
&l 167:23(2+21+h21<)
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To summarize, we can write the gauge one-loop -function approximately as given in the
main text in egs. (5.24,5.25).
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