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1
Introduction

A ėeld theory (FT) is any physical theory based on the notion of ėelds, i.e. of a continuous
inėnity of degrees of freedom. ĉus, FT is naturally formulated in terms of functionals, de-
pending on some ėeld variables.

Classical ėeld theories aredynamical systemswhose conėguration spaceQ is inėnitedimen-
sional, being a set of histories, i.e. of maps from some set S to some targetM. In many cases
of interest one can assume these maps to be smooth and S andM to be differentiable. ĉen
one can simply interpret conėguration space as a set of sections q of the bundleM×S → S ,
in other words for each space point x ∈ S there is a corresponding point q(x) ∈ M. Also
the associated phase spaceP will be inėnite dimensional. Since in ordinary classical dynamics
it is useful to consider phase space as a contangent bundle, also in ėeld theory one can think
about the conjugate momentum p as a map fromS to the the cotangent space ofM, such that
p(x) ∈ T ∗q(x)M. In this sense we will consider phase space as the set of sections (p, q) of the
extended cotangent bundle T ∗M × S → S , where T ∗M denotes the cotangent bundle
ofM. In classical ėeld theory the equations of motion are functional differential equations,
that can oěen be obtained from a variational principle, and any sum over a subset of phase or
conėguration space is a functional integral. Such sums appear for example in statistical ėeld
theory (SFT), due to the need of averaging over microscopical ensambles.

Also in quantum mechanics (QM) and quantum ėeld theory (QFT) the equations of mo-
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tion are functional differential equations that can be obtained from a variational principle, but
these equations are either for operators or for expectation values, as requiredby the uncertainty
principle. QM and QFT also allow for a representation in which quantum expectation values
take the form of statistical averages, again functional integrals over a set of histories, provided
one replaces the probability density, encoded in the statistical distribution, with a probability
amplitude, as required by the superposition principle.

ĉereforeFT is a unifying theoretical framework for the descriptionof a great variety of phe-
nomena, classical andquantum, oěen also of systems that are known tobe far fromcontinuous,
or to show only a ėnite number of degrees of freedom, such as few ormany body quantum sys-
tems or discrete statistical systems. For the laĨer this is not surprising since approximating the
dynamics ofmany degrees of freedomby an inėnite continuumof them is a very old procedure
which is computationally advantageous and close to many experimental situations. However,
such an approximation always goes along with a challenging problem, that is at the base of the
so-called renormalization group (RG), and that can be described as follows. If one assumes a
system tobe continuous, there is practically noway to specify or tomeasure its properties other
than by puĨing a bound to the resolution with which one performs such operations. ĉis in-
troduces a scale in the theoretical framework, and almost every building piece of the theory
will acquire a dependence on such a scale. In other words, at every different scale one has a dif-
ferent theory for the description of the system at that resolution. ĉerefrom the rising of the
question: how to relate all these descriptions in a single framework? ĉe answer to this ques-
tion is of high priority both for phenomenological and for theoretical reasons: on the one hand
we would like to be able to predict the result of measurements without restricting ourselves to
a ėxed scale, on the other hand the consistency of the ėeld-theoretic-framework requires us
to be able to connect the properties that this continuum shows at different resolutions. ĉe
Ěow connecting two theories referring to two different scales is called RG Ěow, and its study is
therefore of central importance in both SFT and QFT. As a side remark, of course this idea of
limiting the resolution with which one looks at some system and then to link the correspond-
ing different pictures can be applied also to discrete systems and not only to FT. In fact it was
ėrst proposed by Kadanoff in the particular form of a blocking and scaling of spin systems [1],
and it is oěen referred to as a “coarse-graining” procedure.

In a functional representation, the ėeld variables themselves are deėned by the symmetry
requirements on the functionals (which groups and which representations). ĉe set of all the
possible functionals of these ėelds enjoying the corresponding symmetries can be interpreted
as an inėnite dimensional manifold called “theory space”. ĉe parameters let free by the sym-
metry requirements (the couplings) further specify the dynamics and can be considered as
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local coordinates on such a space. ĉe RG Ěow describes how these parameters change when
the scale at which they are “measured” changes, and it is generated by a vector ėeld on the the-
ory space. Nonperturbativemethods allow one to get an approximate knowledge of this vector
ėeld even in regionswhere the theory is strongly interacting. One of thesemethods, developed
by K. Wilson, F.J. Wegner and A. Houghton [2, 3, 4, 5], is based on a functional equation for
the quantum effective action of the system (in this case theory space is just the space of all the
possible effective actions). ĉis representation of QFT, known as functional RG (fRG), has
been intensively studied and improved in the last four decades, especially its reformulations
by J. Polchinski [6], for the generator of amputated connected Green’s functions, and by C.
WeĨerich [7, 8], for the generator of one particle irreducible (1PI) vertices. In this thesis we
will adopt the laĨer, that is most easily derived from the functional integral representation.
ĉe starting point of this construction is the introduction of an external parameter in the the-
ory. ĉis allows to reduce the task of computing the functional integral to the simpler task
of computing its inėnitesimal variation under changes of such a parameter. In quantum me-
chanics the external parameter can be dimensionless, since the number of degrees of freedom
is ėnite and no regularization is needed. Instead the generalization of the construction to FT’s
requires the introduction of a dimensionful parameter k, such that its variation corresponds to
a coarse graining operation (otherwise we meet inėnities in the computation of the inėnitesi-
mal variation). ĉis can be done by implementing Wilson’s idea of shell-by-shell integration,
i.e. interpreting k as a cutoff-scale for the Fourier modes of the ėelds. An alternative way is to
assume that the theory has already been regularized, as for example by the introduction of a
UV cutoff Λ, in which case it is possible to deal with a dimensionless parameter also in ėeld
theories (related to the ratio between the dimensionful k and Λ). Since by varying k we will
get a one parameter Ěow of theories, we will need initial conditions in order to integrate it. A
convenient way to deal with this issue is to choose the dependence on k in such a way that the
Ěow interpolates between full functional integration (conventionally at k = 0) and no inte-
gration at all (conventionally at k = Λ, even if Λ might in some cases be displaced at +∞).
ĉe no integration limit can also be realized considering k as a mathematical parameter unre-
lated to a physical coarse-graining procedure, and, in the presence of the physical UV cutoff
Λ, taking the limit k → ∞. From the k-dependent functional integral one can get, by means
of a k-dependent Legendre transform, a corresponding 1PI generator Γk, called average effec-
tive action (AEA). ĉis is in general a highly non local object which encodes all the quantum
properties of the system. In Euclidean space, the AEA satisėes the Ěow equation

∂tΓk[Φ] =
1
2
STr{[Γ(2)

k [Φ] + Rk]
−1(∂tRk)} . (1.1)
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that can now be completely disentangled from its derivation in terms of functional integrals,
and taken as the deėning property of Γk and consequently of the dynamics. Here Γ(2)

k is the
second functional derivative with respect to the ėeld Φ (the laĨer representing a collective
ėeld variable for all bosonic or fermionic degrees of freedom), and Rk denotes a momentum-
dependent regulator function that suppresses IRmodes below amomentum scale k. ĉe solu-
tion to this equation provides for an RG trajectory in theory space interpolating between the
bare action SΛ (Wilson’s effective action) Γk→Λ → SΛ and the full quantum effective action
Γ = Γk→0. ĉe integration of this equation starting from an initial condition SΛ at k = Λ is
equivalent to the computation of the functional integral based on this bare action.

Choosing some coordinate system in theory space, one can parameterize the AEA by a pos-
sibly inėnite set of generalized dimensionless couplings gi (that could be functions of t =

log(k/k0) only, or even of other variables built out of ėelds or coordinates ormomenta). ĉen,
the Ěow equation provides us with the corresponding beta functions ∂tgi = βgi(g1, g2, . . . ).
In order to compute and analyze the RG Ěow, truncations of the theory space are helpful, in
order to get from this inėnite set of partial or ordinary differential equations, a solvable sub-
set. In this thesis we are going to perform such truncations within the general scheme of the
derivative expansion. An alternative scheme would be the vertex expansion, which we are not
going to discuss. For general reviews about the fRG see [9, 10, 11, 12, 13, 14, 15].

Regardless the need for the introduction of a scale k, the application of this representa-
tion to gauge theories has also been successfully studied. Several frameworks for this applica-
tion have been developed, comprehending both manifestly gauge-covariant and noncovariant
methods [13, 14]. In this thesis we are going to take advantage of a formulation based on the
background ėeld method (BFM), adapted to the 1PI fRG in [16]. As in the usual BFM one
introduces the background ėeld Āa

μ and a background gauge-ėxing, such as for instance

D̄ij
μa

μ
j = (∂μδij + ḡfiljĀl

μ)a
μ
j = 0

which breaks the invariance under the full gauge transformation of the Ěuctuation ėeld aiμ but
preserves invariance under a split transformation in which the background transforms inho-
mogeneously while the Ěuctuation transforms homogeneously

δεĀi
μ =

1
ḡ
D̄ij

μεj , δεaiμ = filjalμεj .

As a result the corresponding effective action can be deėned and it is also invariant under this
split transformation, in such a way that by seĨing the average Ai

μ = Āi
μ + āiμ equal to Āi

μ one
recovers invariance under the full inhomogeneous transformation of A. ĉerefore at any ėxed
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k the AEA can be split in two parts

Γk[Φ,A, Ā] = Γ̄k[Φ, Ā] + Γgauge
k [Φ,A, Ā]

the ėrst one being gauge independent and the second one vanishing if one sets A = Ā. If one
keepsA 6= Ā the gauge invariance of the bare actionmust be imposed on the Ěow bymeans of
modiėed Ward-Takahashi or Slavnov-Taylor identities. In this framework the r.h.s. of the Ěow
equation is the same of (1.1) but with few caveats: ėrst, the set of ėelds comprehends, apart
for non-gauge ėelds, both the bosonic vector Ai

μ and the fermionic ghosts c̄i, cj; second, the
Ěuctuationmatrix Γ(2)

k is to be interpreted, in the gauge sector, as resulting fromdifferentiations
w.r.t. A at ėxed Ā.

Generalizations of the Ěow equation (1.1) allowing for a manifest invariance under repa-
rameterizations of the ėelds have also been succesfully developed [17], still relying on the
introduction of a background ėeld, within the general framework of the geometric effective
action [18, 19].

Bymeans of eq. (1.1) one can compute the RG Ěow of a theory and get a picture of how the
dynamics of a system changes when the scale of observation changes. Since the symmetries
exhibited by the system can change along the Ěow, because of spontaneous symmetry break-
ing or approximate emergence of new symmetries, even the parameterization of the effective
action in terms of the same set of ėelds in theUV and IRmight be inappropriate. Nevertheless,
in this work we use the same bosonic and fermionic degrees of freedom on all scales.

In the derivation of eq. (1.1) from a functional integral, no assumption is made about the
range of modes one is integrating on. ĉerefore this Ěow equation representation can be ap-
plied both to effective FT’s and to fundamental (oěen called renormalizable) ones. ĉe for-
mer are by construction limited to a bounded range of resolutions (i.e. of Fourier modes over
which we integrate), while the laĨer can be used at every observational scale. Indeed, under-
standing if a FT can be fundamental is one of the hardest questions to be answered, because the
global knowledge of theRG trajectories is required. ĉeĚow equation representation is partic-
ularly useful for addressing this task, because its truncations are not limited to weakly coupled
regimes. In this representation the issue of renormalizability can be restated as follows: a the-
ory is fundamental if no bound is imposed on the Fourier modes of the ėelds, and hence it
is possible to safely move the cutoff scale k within the whole range [0,+∞). By “safely” one
means that the ability to getmeaningful predictions for the observables is unaltered, and this is
usually associated to the fact that rescaled dimensionless couplings, propagators and vertices,
i.e. Γk itself, stay ėnite.

A sufficient condition for this is that a suitable ėxed point (FP) of the RG Ěow S∗ exists in
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theory space such that SΛ→∞ → S∗. A FP is a point g∗i in theory space such that

βi(g
∗
1, g
∗
2, ...) = 0 , ∀ i (1.2)

where gi are couplings rescaled with respect to (w.r.t.) the Ěoating scale in order to be pure
numbers. ĉis is non-Gaußian (NGFP) if at least one coupling is nonvanishing g∗j 6= 0, and
Gaußian (GFP) otherwise.

A well known scenario for the UV completion of a QFT, asymptotic safety (AS), requires
the existence of a NGFP of the RG Ěow, with a ėnite number of UV-aĨractive directions. ĉis
possibility was proposed as a generalization of asymptotic freedom [20]. An asymptotically
free theory lies on a particular subset of theory space (the so-called UV critical dimension of
the GFP) deėned by the requirement that in the extreme UV the RG Ěow drives it into the
GFP. ĉis simple request guarantees that the theory enjoy many good qualities: since at every
ėnite scale the theory does not sit on the GFP, it is interacting and nontrivial; since the UV
limit is free there is no upper bound on the energy range of applicability; since the points lying
off (but close to) the UV critical surface are brought towards it when Ěowing to the IR, it is
legitimate to give an approximate description of the system at any ėnite energy by means of a
theory assumed to lie exactly on this surface and to enjoy asymptotic freedom. It is clear that all
these properties are not speciėc of the GFP but descend from the only requirement that there
is a FP of the RGwith a nontrivial UV critical surface. ĉe further requirement speciėed in the
deėnition of AS, namely that this surface be ėnite dimensional, is intended to automatically
provide asymptotically safe theories with another necessary good property: predictivity. In
fact, in this case the only condition that the theory lie on the UV critical surface guarantees
that there is only a ėnite number of free parameters in it.

How does one compute the dimensionality of the UV critical surface? Assuming the regu-
larity of the Ěow, it is sufficient to study the linearized Ěow around the FP

∂tgi = Bi
j(gj − g∗j ) + . . . , Bi

j =
∂βgi
∂gj

∣∣∣
g=g∗

. (1.3)

ĉe critical exponents ΘI correspond to the negative of the eigenvalues of the stability matrix
Bi

j. ĉey allow for a classiėcation of physical parameters. All eigendirections with ΘI < 0
are IR aĨractive and UV repulsive, the eigendirections with ΘI > 0 are IR repulsive and UV
aĨractive. ĉe former are called irrelevant, because in the case of the GFP these couplings die
out towards the IR, while the laĨer are called relevant because in the case of theGFP they grow
towards the IR and thus determine the macroscopic physics. ĉe behavior of the marginal di-
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rections, with ΘI = 0, depends on the higher-order terms in the expansion about the ėxed
point. Hence the number of relevant and marginally-relevant directions is the number of cou-
plings parameterizing theUVcritical surface. ĉe theory is predictive if this number is ėnite. In
the case of the GFP, the present construction corresponds to the standard perturbative power-
counting analysis and the critical exponents are equal to the canonical dimensions of the cou-
plings.

In conclusion, aěer one has found a “fundamental”, or “microscopic”, action S∗ and has com-
puted the RG Ěow around it, one can decide which one-parameter-family of bare actions SΛ
can be quantized thus leading to a renormalizable theory. Examples of asymptotically safe the-
ories are provided by four-fermion models such as the Gross-Neveu model in 2 < d < 4
dimensions [21]. Even though these models are perturbatively nonrenormalizable and thus
seemingly trivial, they are nonperturbatively renormalizable at a NGFP and can be extended
to arbitrarily high scales. A similar result was found for nonlinear sigma models in d > 2
[17, 22]. Even the possibility that quantum Einstein gravity could be renormalizable within
the AS scenario has been supported bymany studies [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33];
these also include certain models with a nontrivial scalar and/or fermion sector [34, 35, 36].
AS scenarios have also been successfully developed for extra-dimensional gauge theories [37].

ĉe whole construction just discussed in QFT has a very important analog in SFT. In the
laĨer case SΛ can be interpreted as the action for a statistical theory deėned on a laĨice of
spacing a ∼ (1/Λ). Since it is known that phase transitions can occur only in the continuum
limit a→ 0, and that at the transition the theory becomes conformal and hence RG-invariant,
looking forFPof theRGthat are aĨractive in thek→ Λ →∞ limit corresponds to looking for
critical theories describing phase transitions. ĉe critical exponentsΘI of each FP are then the
usual critical exponents describing the approach to the corresponding phase transition. ĉe
dimensionality of the critical surface thus corresponds to the universality class of the critical
theory. Hence, in the unifying framework of FT, the search for FP’s of the RG has the double
interest of a research of possibly renormalizable QFT’s and of critical points and universality
classes in SFT.

In this thesis we are going to reconsider and extend the RG Ěow equation representation of
FT in Chapters 2 and 3, and we are going to discuss some speciėc examples of its application
in Chapters 3, 4, and 5.

7



ĉe authors would like to thank F. Bastianelli, R. Percacci,
M. Reuter, and O. Zanusso for stimulating discussions con-
cerning the content of this chapter.

2
1PI functional renormalization Ěow equation

SŉĵŇŉĽłĻ ĺŇŃŁ ŉļĹ ĶĵňĽķ ńĵŉļ ĽłŉĹĻŇĵŀ Ľł ńļĵňĹ ňńĵķĹ, we reconsider the functional
approach to the RGĚowof the one particle irreducible average effective action. On employing
a balanced coarse-graining procedure for the canonical variablesweobtain a functional integral
with a non trivial measure which leads to a Ěow equation for the Lagrangian average effective
action. We ėrst address quantum mechanics for boson and fermion degrees of freedom and
we then extend the construction to quantum ėeld theories. For this Ěow equation we discuss
the reconstruction of the bare action and the implications on the computation of the vacuum
energy density.

2.1 CŃĵŇňĹ-ĻŇĵĽłĽłĻ Ľł ńļĵňĹ ňńĵķĹ

In the introduction of this thesis we have reviewed how the Wilsonian idea of renormaliza-
tion [2, 3, 4], which started from the analysis of Kadanoff’s blocking and scaling of spin sys-
tems [1] (more generally coarse-graining), can be conveniently formulated analytically in a
functional formulation. ĉe idea of a step-by-step integration of the quantumĚuctuations typ-
ically belonging to a momentum shell, followed by rescaling, can be implemented in a smooth
way [5, 6, 7, 8] and leads to a differential equation for the effective action as a function of the

8



scale parameter.
ĉe starting point of all these formalisms is the functional quantization procedure based

on the path integral in phase space with a Liouville measure corresponding to the conėgura-
tion variables “Q” and their conjugate canonical momenta “P”. ĉe integrand depends on an
action which is built from an Hamiltonian and thus at this level the approach is not manifestly
Lorentz covariant. For Hamiltonians quadratically dependent on the conjugate momenta, the
integration in the “P” variables is trivially performed geĨing inėnite factors contributing to the
functionalmeasure, which usually in Ěat spacetime is constant and thus can be neglected in the
computation of correlation functions. ĉus one is leě with a covariant formulation with func-
tional integrals in conėguration space. At this point one usually implements a coarse-graining
on the conėguration variables “Q” only.

ĉe insertion of a smooth cutoffmust be performed in such a way tomodify the Lagrangian
action and the conėguration space functional measure [7]. In order to understand that this is
necessary to get a balanced regularizationof thedivergencesof thepath integral it is sufficient to
recall that the path integral of quantummechanics is ėnite, as can be seen performing a suitable
skeletonization, thanks to the fact that singular contributions coming from the conėguration
space functional measure, i.e. from the integration in the canonical momenta, are canceled by
others appearing in the integration of the Lagrangian action in conėguration space.

ĉe need for a consistent regularization of the conėguration space functional measure is
beĨer understood from themore fundamental point of viewof the phase space path integral, as
we will try to explain in the following sections. As already stated, the idea of coarse-graining as
“integrating out” quantumĚuctuations in theUV region is usually implemented in a functional
integral aěer the integration of the conjugate momenta is performed. In this way even if any
degreeof freedom is associated to apair of “P” and “Q” variables, the integrationof the “P”modes
inside one shell is performed well before the integration of the “Q” modes of the same shell.
ĉus the whole procedure seems unbalanced.

In this chapter we therefore propose to implement a balanced coarse-graining procedure in
phase space, by introducing a cutoff operator which affects both conėguration variables and
conjugate momenta, and we will show how this point of view singles out the proper way to
regularize the conėguration space path integral. In fact, aěer a regularization of the functional
integral in phase space, one can choose to integrate out the conjugatemomenta (for a quadratic
dependence) and obtain a path integral in conėguration spacewith a non trivial dependence of
themeasure on the cutoffoperator. According to this regularization, we investigate theRGĚow
equation for theAEA.ĉis Ěowequation, in contrastwith theoneneglecting the regularization
of the functional measure, leads to the same results obtained by other quantization methods

9



under the Weyl ordering prescription.
We ėrst analyze quantum mechanics of a system of bosonic degrees of freedom and then

consider also the fermionic case. Later we move to QFT, where the choice of the operator im-
plementing the coarse-graining procedure is guided by the requirement of Lorentz invariance.
Nevertheless we brieĚy discuss also some consequences of Lorentz breaking choices.

Finally we illustrate in some cases the relation between theAEA and the bare action, deėned
as the one appearing inside the path integral, with or without a UV cutoff in the theory. In the
UV region the approach of the AEA to the bare action is found to depend on the choice of the
coarse-graining operator, and in particular on its singularity properties.

During our discussion we also analyze the Ěow of the constant term in the potential of the
AEA, which is related to the vacuum energy. We anticipate that the Lorentz invariant coarse-
graining leads naturally to an interesting fact: in presence of anUVcutoff Λ the vacuumenergy,
which is computed integrating the Ěow from such a UV scale down to the IR, is quadratically
(and not quartically) divergent in Λ for a free massive theory, while it vanishes for a free mass-
less theory. ĉis property of the vacuum energy density was recently discussed [38, 39] on
different grounds in a standard perturbative QFT framework, by performing subtractions jus-
tiėed by symmetry and reality conditions.

2.2 FŀŃŌ ĹŅŊĵŉĽŃł Ľł ŅŊĵłŉŊŁŁĹķļĵłĽķň

2.2.1 BŃňŃłĽķ ĸĹĻŇĹĹň Ńĺ ĺŇĹĹĸŃŁ

Let’s consider a classical systemwith one bosonic degree of freedomgoverned by the following
Hamiltonian:

H(p, q) =
1
2
p2 + V(q) (2.1)

where q and p are canonically conjugate variables with Poisson bracket: [q, p] = 1 . ĉe quan-
tization of such a system is performed via the following Euclidean phase-space path integral
(~ = 1):

Z[J] =
∫

[dpdq] μ[p, q]e
∫
dt [ip(t)∂tq(t)−H(p(t),q(t))+J(t)q(t)] . (2.2)

Here we explicited the presence of an unspeciėed functional measure μ[p, q]. In a skeletonized
version of the path integral one usually considersN time-slices and at each instant of time inte-
grates over the corresponding phase space. Since the correct measure for each of these phase-
space integrations is the Liouville measure, that is the square root of the determinant of the
symplectic form, in a time-slicing deėnition of the path integral the functional measure is the
product ofN Liouville measures, which is clearly ill-deėned in the continuum limitN → ∞.

10



Of course this is not the only possible source of inėnities forZ: both the p and the subsequent q
integration bring ill-deėned factors. Since Z could be UV-ėnite, as e.g. in the free particle case,
wemust conclude that all these divergences canmutually cancel. ĉis leads to think that if one
regularizes one of the contributions, also the others should be regularized in a consistent way.
ĉis is not what is done in the manipulations of the functional integral leading to the many
exact RG Ěow equations present in the literature. In the following we are going to explain why
this is so, restricting ourselves to the one particle irreducible framework. ĉe translation of our
reasoning to the Ěow of Wilson’s effective action should be straightforward.

ĉe usual modiėed conėguration-space path integral lying behind WeĨerich equation [7]
reads:

Zk[J] = eWk[J] =

∫
[dq]μ[q]e−(S[q]+ΔSk[q])+

∫
dt Jq . (2.3)

where μ[q] is a k-independent Lagrangian measure, for our bosonic system S[q] is the time
integral of:

L(q(t), ∂tq(t)) =
1
2
(∂tq(t))

2 + V(q(t)) (2.4)

and in (2.3) one adds to it a cutoff term ΔSk(q) = 1
2

∫
q(t)Rk(−∂2

t )q(t) to allow for the inte-
gration of (−∂2

t )-modes only above some infrared cutoff k2. In other words, one introduces a
regulator in the kinetic term of the action, by means of the substitution:

1
2

∫
dt (∂tq(t))

2 → 1
2

∫
dt ∂tq(t)

(
1 + rk(−∂2

t )
)2
∂tq(t) (2.5)

where
Rk(−∂2

t ) =:
((

1 + rk(−∂2
t )
)2 − 1

)
(−∂2

t ) . (2.6)

In this way one affects the divergences arising from the integration of the exponential factor
e−S[q], but does notmodify the inėnite determinant implicit in the Lagrangian functional mea-
sure. Equivalently, the modiėed generating functional (2.3) can be obtained by the following
phase-space path integral:

Zk[J] =
∫

[dpdq] μ[p, q]e
∫
dt [p(t)(1+rk(−∂2

t ))i∂tq(t)−H(p(t),q(t))+J(t)q(t)] (2.7)

by completing the square in the exponential and then integrating in themomenta, thus geĨing
an inėnite factor changing theLiouvillemeasure μ[p, q] into theLagrangianmeasure μ[q]. Later
in this section we will write such a factor as:

μ[q]
μ[p, q]

=
(
Det(−∂2

t )
) 1

2 (2.8)
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because for the system under consideration we can express this ratio in terms of the functional
integral for a free particle¹. ĉerefore we see that the modiėcation (2.5) affects the deėnition
of the integral over q(t) but it does nothing for the integral over p(t) nor for the Hamiltonian
functional measure. ĉe last form (2.7) of the modiėed generating functional is suggestive
because it allows the interpretation of the coarse graining procedure as a modiėed Legendre
transform, i.e. a k-dependent deėnition of the bare Lagrangian corresponding to a ėxed bare
Hamiltonian.

ĉis also suggests us a way to implement the previously described principle of regularizing
on the same footing both the exponential factor and the measure: if we modify the Legendre
transform, we should also consistently modify the symplectic structure because the two are
strictly tied together. In fact, recall that the Legendre transform term p(t)∂tq(t)dt is just the
pull back of the Liouville 1-form λ = pdq by means of the trajectory-parameterizing map
(p(t), q(t)) and that the symplectic form is σ = dλ. ĉus if we substitute λ → λk = (1+ rk) λ
we should also substitute σ → σk = (1 + rk) σ and correspondingly μ = (Det σ)

1
2 → μk =

(Det σk)
1
2 . In the following, to simplify the notation, we will take advantage of the fact that for

our system the Liouville measure is a constant, equal to one for canonical coordinates, and we
will write the previous functional measure as μk = (Det(1 + rk)).

To sumup, as a regularizationwe introduce a frequency-dependence in the symplectic struc-
ture, leaving unaltered the Hamiltonian and the phase space manifold. In the present case this
leads to the following generating functional:

Zk[J] =
∫

[dpdq] (Det(1 + rk)) e
∫
dt [ p(1+rk)i∂tq−H(p,q)+Jq] . (2.9)

To see that this modiėcation of the path integral affects all possible sources of divergences, i.e.
the p-integration, the q-integration and the measure, it is sufficient to change the p-integration
variable:

P(t) = (1 + rk(−∂2
t ))

1
2 p(t)− i(1 + rk(−∂2

t ))
3
2∂tq(t) (2.10)

and get:

Zk[J] =

∫
[dPdq] (Det(1 + rk))

1
2 e−(S[q]+ΔSk[q])+

∫
dt [− 1

2 (1+rk)−1P2+Jq]

=

∫
[dq]

(
Det(−∂2

t )Det(1 + rk)2
) 1

2 e−(S[q]+ΔSk[q])+
∫
dt Jq . (2.11)

¹Recall [40] that in a time-slicing deėnition of the path integral for a Green function such thatT =
∫
dt =

Nε we have μ[p, q] = 1N, μ[q] = ε−N/2. For a free particle 〈q,T|0, 0〉 = μ[q] (Det(−∂2
t ))

− 1
2 e−q2/2T =

(2πT)−
1
2 e−q2/2T (in units m = ~ = 1). On the rhs of eqn. (2.8) there is no factor (2πT)−

1
2 because we

consider a measure [dp, dq] for a partition function.
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where we evaluated the integral over P(t) as in eqn.(2.8) but this time with a k correction. In
terms of the usual effective average action (AEA), deėned by:

Γk[q̄] = min
J

(∫
dt Jq̄−Wk[J]

)
− ΔSk[q̄] (2.12)

eqn.(3.20) entails the following exact RG equation (ERGE)

Γ̇k =
1
2
Tr
[(

Γ(2)
k + Rk

)−1
Ṙk

]
− 1

2
Tr
[(
−∂2

t + Rk
)−1 Ṙk

]
(2.13)

where the dot stands for differentiation with respect to log k and must not be confused with a
timederivative, that in this chapterwill always be denoted as∂t. ĉederivation of this equation
in brief goes as follows: using eqs.(2.12,3.20,2.6) and recalling that the connected two point
function is the inverse of the Hessian matrix for (Γk + ΔSk), we can write:

Γ̇k[q̄] = −Ẇk

[
δΓk

δq̄

]
− k∂kΔSk [q̄]

=
1
2

∫
dt 〈(q− q̄) (t)Ṙk(−∂2

t ) (q− q̄) (t)〉 δΓk
δq̄
− k∂k log

(
Det(−∂2

t + Rk)
) 1

2

=
1
2

∫∫
dtdt′

[(
Γ(2)
k + Rk

)−1− (− ∂2
t + Rk

)−1]
(t, t′) Ṙk(−∂2

t )δ(t− t′)

Notice that the naked differential operator in the additional subtraction term in eq.(2.13)
seemingly breaks the invariance under constant ėeld rescalings. ĉis is not the case because the
general form of this new term is a (log k)-derivative of the logarithm of the regularized func-
tional measure. Under rescalings of the ėelds inside the path integral, the functional measure
correctly transforms and so does the subtraction term. For example, since in the present case
μk[q] = (Det(−∂2

t + Rk))
1
2 , if q =

√
Zk q′ then μk[q

′] = (DetZk(−∂2
t + Rk))

1
2 such that the

subtraction term becomes−1
2Tr
[
(Zk(−∂2

t + Rk))
−1 k∂k(ZkRk)

]
.

Using eqn.(2.13) in the case of a single harmonic oscillator and integrating the Ěow from
k =∞ down to k = 0, one obtains ω/2 for the energy of the vacuum. ĉis result was already
derived in [14] starting from the usual WeĨerich equation and adding to it a subtraction term
interpreted as corresponding to an UV counter-term in the bare action, required to guarantee
that for zeropotential and frequency theground state energyof theoscillatorbe zero. Ourpoint
of view is different in that we would like to have a Ěow equation representation of quantum
mechanics where the quantities are ėnite at all scales and counter-terms are unnecessary. We
ėnd that this can be achieved with our construction by requiring that the k→ Λ limit of Γk be
the classical action we are quantizing, free of any Rk dependence. For a general discussion on
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this point we refer the reader to section 4. In the following we will brieĚy sketch how to derive
this result in the present context.

Let us consider a truncation for the effective action with Vk(q) = Ek +
1
2ω

2q2, so that
Γ(2)
k = (−∂2

t +ω2)δ(t− t′). We shall consider theUV “initial conditions” such thatEk=∞ = 0
and look forEk=0. We shall later comment on this choicewhen discussing the relation between
the AEA and the bare action. On employing the so called optimized [41, 42] cutoff function
Rk(z) = (k2 − z)θ(k2 − z) and switching to a Fourier representation of the operators, one
obtains ∫

dt V̇k =
1
2

∫
dt
∫

dE
2π

θ(k2 − E2)2k2
[

1
k2 + V′′k

− 1
k2

]
(2.14)

which, aěer removing the “volume” factor (
∫
dt) on both sides of the equation, leads to

∂kEk =
1
π
−ω2

k2 + ω2
=⇒ Ek=0 =

ω
2
. (2.15)

Let us ėnally interpret this result analyzing directly the integro-differential equation which is
satisėed by the AEA:

e−Γk[q̄]=
∫

[dq] μk exp
(
−S[q] +

∫
(q−q̄)δΓk[q̄]

δq̄
− 1

2

∫
(q−q̄)Rk(q−q̄)

)
. (2.16)

Since for a free theory one has an AEA Γk[q̄] = S[q̄] + Ek, one ėnds, using a compact notation
where “·” stands for an integration,

e−Γk[q̄] =
∫

[dq] μk exp
(
−1

2
(q−q̄)·(−∂2

t + Rk + ω2)·(q−q̄)− 1
2
q̄·(−∂2

t + ω2)·q̄
)

=

(
Det (−∂2

t + Rk)

Det (−∂2
t + Rk + ω2)

)1/2

exp
(
−1

2
q̄ · (−∂2

t + ω2) · q̄
)

(2.17)

One then notes that the ėrst factor in the last line of eqn. (2.17) becomes 1 in the k→∞ limit
while for k→ 0 gives the expected zero energy contribution e−

∫
dt ω2 . We remark that in order

to obtain these values in theUV and IR limit of k the cutoff operatorRk should probably satisfy
some regularity conditions. ĉese are fulėlled for the previously mentioned optimized cutoff
and for the so calledCallan-Symanzik cutoff (Rk = k2), but not for discontinuous cutoffs such
as Rk(z) = k2θ(k2 − z).
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2.2.2 FĹŇŁĽŃłĽķ ĸĹĻŇĹĹň Ńĺ ĺŇĹĹĸŃŁ

In this section we will study a free system whose Lagrangian variables are n real Grassmann-
valued functions of time:

{
θi(t)

}
i=1,...,n , evolving according to the following Lagrangian:

L(θ(t), ∂tθ(t)) =
1
2
θi(t)i∂tθj(t)δij. (2.18)

Just like in the previous section we consider as a starting point the quantization of this theory
by means of a Hamiltonian path integral. In building a phase space out of (3.44) we ėnd n
second class primary constraints:

χα(t) := πα(t) +
i
2
δαjθj(t) = 0 (2.19)

which cause the canonical Hamiltonian to vanish. ĉe relevant phase space is the surface S
deėned by (3.45), a complete set of independent coordinates on it is given by θi and the func-
tional integral is to be taken over all paths θi(t) lying on this surface. ĉe appropriate measure
for functional integration over S is again the square root of the superdeterminant of the sym-
plectic form on S . In presence of second class constraints and assuming that the whole phase
space is endowed with a symplectic structure σ, we can deėne a nondegenerate symplectic
form σ̃ on the reduced phase space, simply by restricting σ toS . As the inverse of σ is the Pois-
son bracket [ , ], the inverse of σ̃ is the Dirac bracket [ , ]∼, which in the reduced phase space
coordinates θi has components: [θi, θj]∼ = −iδij = [χ i, χ j] . (Everything we write about
constrained systems is explained for example in [43].) ĉus the functional integral over the
reduced phase space reads:

Z =

∫
[dθ]μ[θ]e−

1
2

∫
dt θi(t)∂tθj(t)iδij . (2.20)

Here the Lagrangian (3.44) emerges from the ∂tθjπj term in phase space aěer having solved
the second class constraints, or equivalently aěer having performed the following integration
over momenta:

Z =

∫
[dθdπ]μ[θ, π]

(∏
α

δ[χα]

)
e−

∫
dt [∂tθjπj−H] . (2.21)

Following the same coarse graining scheme explained in the previous section we modify
the symplectic structure of the reduced phase space replacing σ̃ with σ̃k = (1+ rk)σ̃, where the
deėnition of rk is still such that (1 + rk(−∂2

t ))
2(−∂2

t ) is an IR safe second order differential
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operator. However eqn. (2.6) does not apply to the fermionic case, because in this case one
usually chooses Rk in such a way that |i∂t + Rk(i∂t)|2 is a regularized kinetic operator for a
bosonic degree of freedom. ĉerefore in this case we can write Rk(i∂t) = rk(−∂2

t )i∂t. Corre-
spondingly the functional measure becomes: μk = (SDet σ̃k)

1
2 = μ (SDet(1 + rk))

n
2 . ĉen

the modiėed path integral reads:

Zk =

∫
[dθdπ]μ[θ, π]

(∏
α

δ[χα]

)
(SDet(1 + rk))

n
2 e−

∫
dt (1+rk)∂tθjπj .

=

∫
[dθ]μ[θ] (SDet(1 + rk))

n
2 e−

1
2

∫
dt θi(t)(1+rk)∂tθj(t)iδij . (2.22)

Such a k-dependence can be translated in the following equation for the usual effective average
action:

Γ̇k =
1
2
STr

[(
Γ(2)
k + Rk

)−1
Ṙk

]
− 1

2
STr

[
(i∂t + Rk)

−1 Ṙk
]

(2.23)

where the traces as usual count also the number of Lagrangian variables. Note that the 1
2 factors

on the rhs are consistent with the traditional WeĨerich equation for Fermi ėelds, since in our
case we are dealing with realGrassmann variables.

ĉe generalization of the previous discussion to the case of n complex Grassmann variables
{ηi}i=1,...,n and to interacting systems is straightforward. As long as the kinetic term of the
Lagrangian is of ėrst order in time-derivatives and real, such as for example in: L = η̄ii∂tηjδij+
V(ηi, η̄j), we ėnd 2n second class primary constraints: {χα, χ̄α}α=1,...,n. χ relates the conjugate
momentum of η to η̄, whilst χ̄ relates the conjugate momentum of η̄ to η. In order to ėnd the
correct functional measure we can just compute the matrix of the Poisson brackets of these
constraints. Since:

[χα, χβ] = [χ̄α, χ̄β] = 0 , [χα, χ̄β] = [χ̄α, χβ] (2.24)

then
∣∣SDet σ̃ ij

∣∣ 12 = |SDet ([ηi, η̄j]−1∼ )| therefore, if we do not count the complex conjugate
of a bracket as an independent bracket, the 1

2 exponent of the superdeterminants gets sim-
pliėed in all previous formulas. As a consequence, applying the same regularization scheme
of eqn. (3.47) we are led to an equation for the effective average action which is identical to
eqn. (2.23) but without the 1

2 factors on the rhs.
Such an equation can be used to compute the vacuum energy of a fermionic oscillator in

quantummechanics. Pick a complexGrassmann variable η, and investigate the following trun-
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cation (ω > 0):

Γk[η] =
∫

dt (η∗i∂tη + ωη∗η + Ek) . (2.25)

Proceeding along the same lines as for the bosonic oscillator, one ėnds that the quantum en-
ergy of the vacuum is E0 = −ω/2, i.e. again what one would have computed by canonical
quantization based on Weyl ordering prescription.

2.3 FŀŃŌ ĹŅŊĵŉĽŃł Ľł ĺĽĹŀĸ ŉļĹŃŇŏ

In this section we want to generalize the previous discussion to the case of ėeld theory. Let’s
start with the example of a scalar ėeld theory with (Euclidean) Lagrangian density:

L =
1
2
(∂0φ)2 +

1
2
|∇φ|2 + V(φ) (2.26)

or equivalently, deėning the momentum conjugate variable π w.r.t. φ, with Hamiltonian den-
sity:

H =
1
2
π2 +

1
2
|∇φ|2 + V(φ) . (2.27)

As in section2.1, our startingpoint is thequantizationof sucha systemby theusual (Euclidean)
Hamiltonian path integral

Z =

∫
[dπdφ] μ[π, φ]e−

∫
ddx (−iπ∂0φ+H) . (2.28)

Again, in a skeletonized version of the path integral one considers N time-slices and at each
instant of time integrates over a corresponding phase space; therefore also in this case the func-
tional measure is related to the Liouville measure. Hence let’s just perform the samemodiėca-
tion of the Liouville form we introduced before:∫

π∂0φ →
∫

π (1 + rk) ∂0φ

μ[π, φ] → μk[π, φ] = (Det (1 + rk)) μ[π, φ] (2.29)

where we still do not specify which differential operator rk depends on. Exactly the same ma-
nipulations we performed in equations (2.10,3.20) show that also in this case such a prescrip-
tion is sufficient to affect simultaneously themeasure and the following two quadratic forms in
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the action:

1
2

∫
∂0φ∂0φ →

1
2

∫
∂0φ (1 + rk)

2 ∂0φ

1
2

∫
Π2 → 1

2

∫
Π (1 + rk)

−1 Π

whereΠ is deėned in analogywith eqn.(2.10). But the remaining quadratic form ∂iφ∂ iφ is leě
unaffected by (2.29). ĉerefore we must supplement (2.29) with a second regularization:

1
2

∫
∂iφ∂ iφ→ 1

2

∫
∂iφ (1 + r̃k)

2 ∂ iφ (2.30)

for some r̃k a priori independent of rk. In conclusion the ėnal modiėed path integral for a
generic theory of one scalar ėeld reads:

Zk =

∫
[dπdφ] μ[π, φ] (Det(1 + rk)) e

∫
ddx (iπ(1+rk)∂0φ−H)−ΔHk

=

∫
[dφ] μ[φ] (Det(1 + rk)) e−(S[φ]+ΔSk[φ]) (2.31)

where we denoted:

ΔHk =
1
2

∫
∂iφ
[
(1 + r̃k)2 − 1

]
∂ iφ

ΔSk =
1
2

∫
∂0φ
[
(1 + rk)2 − 1

]
∂0φ + ΔHk . (2.32)

Regarding the freedom to independently choose rk and r̃k we shall discuss in the next subsec-
tions several choices one can make.

ĉere are also possible alternative approacheswhich are leading directly to covariant results.
One could be to adopt the so called covariant Hamiltonian formalism for classical ėeld theory,
in which one introduces d conjugate momenta to φ, one for each partial derivative. In this
formulation a regularization of the consequent polysymplectic structure would automatically
provide a r̃k = rk. Such an approach deserves further analysis to deėne the appropriate func-
tional measure which should be adopted in the corresponding Hamiltonian path integral.

Another could be to slightly modify our regularization prescription, starting not from the
phase space but from the conėguration space path integral. In this framework the introduc-
tion of a covariant k-dependent operator in the Lagrangian must be accompanied by a similar
modiėcation of the corresponding Lagrangian measure, which is the reciprocal of the square
root of the determinant of the advanced Green function (see for example [18]). We shall not
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discuss more on this here.
On the base of common sense we expect the case of fermionic ėelds to differ only by two

aspects: the ėelds will be Grassmann-valued and there will be constraints. ĉe ėrst point only
changes determinants in superdeterminants; the second one must be dealt with as in section
2.2, integrating over the reduced phase space and, since a Dirac fermion comprehends two
complex Grassmann variables, using as a measure (SDet([ψ, ψ̄]−1∼ ))

2. Following these lines
one gets the following modiėed path integral:

Zk =

∫
[dψ̄dψ]μ[ψ̄, ψ]SDet(1 + rk)e−(S[ψ]+ΔSk[ψ]) (2.33)

where:
ΔSk =

∫
ψ̄rkiγ0∂0ψ +

∫
ψ̄r̃kiγi∂iψ . (2.34)

Now it is time to comment on the deėnition of the operators rk and r̃k. Different choices of
them can be made, specifying their forms as functions of the modes and also the differential
operator whose modes they depend on. Let us analyze few examples.

2.3.1 LŃŇĹłŉŐ ĽłŋĵŇĽĵłŉ ķŊŉŃĺĺ

ĉe most natural choice is to take a Lorentz invariant cutoff. For a pure scalar theory it is suf-
ėcient to investigate the modes of the Lorentz scalar operator −� ≡ −∂μ∂μ, and in order
to preserve Lorentz symmetry we are compelled to choose r̃k(−�) = rk(−�). As already
recalled in section 2.1 the usual notation is: (1+ rk(−�))2(−�) = −�+Rk(−�)with the
cutoff functionRk(z) enjoying all the properties required to suppress the functional integration
for z << k2. ĉus in this case eqn. (2.32) reduces to the more traditional form:

ΔSk[φ] =
1
2

∫
ddx φRk(−�)φ . (2.35)

Plugging this expression into (2.31), deėning the effective average action as usual, and taking
the k-derivative one gets:

Γ̇k =
1
2
Tr
[(

Γ(2)
k + Rk

)−1
Ṙk

]
− 1

2
Tr
[
(−�+ Rk)

−1 Ṙk
]
. (2.36)

ĉe requirement of Lorentz invariance also leads to a similar equation for Dirac Fermions:

Γ̇k = STr
[(

Γ(2)
k + Rk

)−1
Ṙk

]
− STr

[
(i∂/+ Rk)

−1 Ṙk
]
. (2.37)

19



Let us analyze the Ěow equation for the scalar ėeld case, using an optimized cutoff function
Rk(z) = (k2 − z)θ(k2 − z). In the local potential approximation and neglecting anomalous
dimensions for d = 4 one ėnds

V̇k(φ) =
k4

2(4π)2

[
1

1 + V′′k (φ)/k
2 − 1

]
(2.38)

ĉis is valid without approximation for a free massive ėeld with V′′k (φ) = m2. In this case the
only non trivially running parameter is the ėeld independent term v of the potential which we
expect to contribute to the “vacuum energy”, while the dimensionful massm is constant along
the Ěow.

One may consider the case in which Λ is the scale at which the bare action is deėned. ĉen
integrating the Ěow from k = Λ down to k = 0 one obtains

vk=0 − vk=Λ =
1

4(4π)2

[
m2Λ2 − m4 log

(
1 +

Λ2

m2

)]
. (2.39)

However this is not a quantitatively trustable estimate of the difference between the quan-
tum vacuum energy and the bare one at the cutoff Λ, for reasons that we shall discuss in de-
tail in section 4. Nevertheless it qualitatively agrees with the result we will compute in that
section, because it correctly shows that the contribution to v from the quantum Ěuctuations,
with the above Lorentz invariant prescription, is positive and diverges only quadratically as
Λ → ∞. Moreover it vanishes in the case of a massless ėeld. ĉis possibility was indeed
discussed [38, 39] on different grounds in a standard QFT framework. We note that in the
present approach this fact is indeed related to Lorentz invariance, but it is also the consequence
of having treated carefully the measure in the path integral which is the starting point of the
quantization procedure. Indeed if one employs a Ěow equation in which the subtraction term
due to the regularization of the measure is dropped, then vk=0 − vk=Λ has an extra contribu-
tion −Λ4/ (8 (4π)2) that leads to a negative value for Λ � m, is quartic divergent with the
Lorentz invariant cutoff, and does not vanish in the massless case. As already discussed for the
harmonic oscillator, this extra contribution can be interpreted as due to a deformation of the
bare action at the scale k = Λ by the regulator ΔSΛ , andwashed away bymeans of a controlled
subtraction in the Ěow equation, which is tantamount to adding counter-terms to Γk=Λ . ĉe
fact that in the present approach these counter-terms are not needed leads to the expectation
that something has changed in the relationship between the EAA and the bare action, as we
will discuss in section 4.
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2.3.2 LŃŇĹłŉŐ ĶŇĹĵĿĽłĻ ńňĹŊĸŃ ķŊŉŃĺĺň

We consider here a special case where the cutoff is such that it organizes the integration in
the path integral according to the modes associated to the operator −∂2

t . More precisely we
employ the same rk(−∂2

t ) of eqn. (2.6) and we take a vanishing r̃k. ĉerefore the quadratic
form in the spatial derivatives of the ėeld is not affected at all and any integration in the (d−1)-
dimensional space is divergent and should be regularized by other means. ĉe Ěow equation
now reads

Γ̇k =
1
2
Tr
[(

Γ(2)
k + Rk

)−1
Ṙk

]
− 1

2
Tr
[(
−∂2

t + Rk
)−1 Ṙk

]
. (2.40)

In the Fourier representation and employing the same optimized cutoff function Rk(z) as be-
fore, one can write

V̇k(φ) =
k3

π

∫
dd−1p̄
(2π)d−1

[
1

k2 + |p̄|2 + V′′k (φ)
− 1

k2

]
(2.41)

Again for a free massive ėeld, assuming an implicit regularization for the p̄ integration one can
perform the integration of the Ěow and, deėning ωp̄ =

√
|p̄|2 + m2, obtains

vk=0 − vk=Λ =

∫
reg

dd−1p̄
(2π)d−1

ωp̄

π
arctan

Λ
ωp̄
−→
Λ→∞

∫
reg

dd−1p̄
(2π)d−1

ωp̄

2
(2.42)

which is the usual integrated vacuum energy of all the vacuum Ěuctuations, which is not a
Lorentz scalar. Note that the Ěow equation without the subtraction term due to the measure,
for such a cutoff, leads to an extra divergent negative contribution: −Λ

π

∫ dd−1p̄
(2π)d−1 .

Other kinds ofLorentz-breaking coarse-grainingprocedure canbe implementedusingmore
complicated cutoffoperators. As a simple non trivial example considerRk(−∂2

t ,−�) = (k2−
(−∂2

t ))θ[k
2 − (−�)] for (1 + rk)2 = 1 + Rk(−∂2

t ,−�)/(−∂2
t ) , while r̃k = 0 . ĉis cutoff

organizes the integration of the modes according to the eigenvalues of the Laplacian, which is
a Lorentz invariant operator, but modiėes only the time derivative part in the action (and the
conjugate momenta) leaving the spatial derivative term untouched.

Let us note that sometimes it may be useful from a phenomenological point of view to allow
for a Lorentz-breaking coarse-graining procedure, depending onwhich observable onemay be
interested in and on the experimental setup.
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2.4 RĹŀĵŉĽŃł ĶĹŉŌĹĹł ŉļĹ ĵŋĹŇĵĻĹ ĹĺĺĹķŉĽŋĹ ĵķŉĽŃł ĵłĸ ŉļĹ ĶĵŇĹ ĵķ-

ŉĽŃł

An interesting point to be discussed, already addressed in [44], is the relation between theAEA
satisfying the Ěow equation and the bare action of the theory, appearing inside the functional
integral. Traditionally physicists have been interested in investigating this relationship only in
one direction, i.e. moving from the choice of a “classical” bare action to the computation of the
corresponding “quantum” effective action, i.e. in Ěowing the RG towards the IR. Why should
the other direction being interesting?

One answer could be that if we turn the previous point of view upside down, looking for the
action to be plugged inside a path integral in order to get a previously chosen quantumeffective
action, we are just looking for a Wilson effective action, whose scale of reference depends on
the scale we use to regularize the path integral. ĉus, in the limit in which this regularization is
removed, the bare action we are looking for becomes the UV limit of Wilson’s effective action.
ĉis is why the RG Ěow of the AEA towards the UV has been used in many recent studies
devoted to investigate the possible UV completion of several QFTs, in the sense ofWeinberg’s
asymptotic safety [20], as already discussed in the introducing chapter of this thesis.

Another possible answer, as already stressed in [44], is that ėnding which classical system,
once quantized, leads to the theory under investigation, is important to establish relationships
with other theories that should describe the same system but that follow fromdifferent quanti-
zation schemes. For example, in asymptotic safety scenarios for gravity, knowledge of the bare
action might lead to a beĨer understanding of possible relations between the QFT deėned
by renormalizable trajectories in the theory space of Einstein gravity and other approaches to
quantum gravity.

ĉus we face the problem of computing the bare action from the AEA just by means of the
Ěow equation and its solutions, without resorting to the path integral formulation of QFT. In
this section for sake of simplicity we will address this problem only for a scalar theory, restrict-
ing ourselves to a Lorentz invariant cutoff Rk(−�) (or Rk(−∂2

t ) in the QM case). We shall
see that in the present case of a modiėed WeĨerich equation we can push the analysis of the
relation between the AEA and the bare action in a slightly different direction from the stan-
dard approach. We organize our discussion distinguishing between two qualitatively different
cases, the one in which a sharp UV cutoff is introduced, and the one without it. No need to
recall that the laĨer is allowed because of the ERGE being free of UV divergences.
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2.4.1 Ił ńŇĹňĹłķĹ Ńĺ ĵ UV ķŊŉŃĺĺ

So, let’s assume that our theory has a Lagrangian bare action SΛ deėned in the presence of a
conėguration space measure μΛ , both dependent on a UV cutoff Λ. Of course one is free to
redeėne the bare action adding the− log μΛ term to SΛ and removing μΛ from the measure.
ĉe dependence on the UV cutoff Λ can also be seen as reĚecting the fact that our bare action
might follow from a coarse-graining procedure started with some other bare action deėned on
a larger space with a larger cutoff, in the Wilsonian sense. ĉerefore for different values of Λ
one has a set of different Wilsonian actions SΛ all referring to the same physical system. ĉe
removal of the UV cutoff is associated to the limiting procedure Λ →∞, and is possible only
for fundamental, in contrast to effective, theories. Starting from a path integral of the kind∫

[dχ]Λ μΛe−S
Λ [χ] (2.43)

for fundamental theories one shouldobtain ėnitemeaningfulmatrix elements in the limit Λ →
∞.

In presence of both the IR cutoff k and the UV cutoff Λ, the deėnition of the AEA ΓΛ
k is

formally the sameof the casewithout any Λ. As before, under the requirement thatRk vanishes
in the limit k → 0, ΓΛ

k approaches the standard effective action ΓΛ in the same limit. A less
simple problem is what happens to ΓΛ

k as k grows. Regardless of the presence of anyUV cutoff,
since as k becomes bigger and bigger less and less modes of the ėelds are being integrated, the
most reasonable requirement seems to be that when the functional integration is completely
suppressed, the AEA approaches the bare action. ĉe best way to understand how this can
happen is to look at the integro-differential equation satisėed by the AEA, which in our case
depends on a regulated conėguration space measure μΛk :

e−Γ
Λ
k [φ]=

∫
[dχ]Λ μΛk exp

(
−SΛ[χ] +

∫ Λ

(χ−φ)δΓ
Λ
k [φ]
δφ

− 1
2

∫ Λ

(χ−φ)R̂k(χ−φ)
)
. (2.44)

If, as k grows and approaches some limiting value, the k-dependent part of the integrand on the
rhs of eq.(2.44) converges to a representation of a functional delta

μΛk exp
(∫ Λ

(χ−φ)δΓ
Λ
k [φ]
δφ

− 1
2

∫ Λ

(χ−φ)R̂k(χ−φ)
)
−→ δΛ[χ − φ] . (2.45)

then at this limiting value of k the functional integral is completely suppressed and the AEA
equals the bare action. To ensure that the k-dependent terms deėne a rising delta functional
we need to make assumptions both on the UV asymptotics of the AEA and on the properties
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of the regulator Rk. In fact the lhs of eqn. (2.45) can be rewriĨen, in condensed notation and
by completing the quadratic form, as

μΛk exp
{

1
2
δΓΛ

k [φ]
δφ
·R̂−1k ·

δΓΛ
k [φ]
δφ
− 1

2

(
χ−φ− δΓΛ

k [φ]
δφ
·R̂−1k

)
·R̂k ·

(
χ−φ−R̂−1k ·

δΓΛ
k [φ]
δφ

)}
.

(2.46)
From this last equation we see that if the ėrst term in the exponent of eqn. (2.46) and the
shiě term R̂−1k ·

δΓΛ
k [φ]
δφ both vanish when k reaches its limiting UV value, and if the remaining

functional
μΛk exp

{
−1

2
(χ−φ) · R̂k · (χ−φ)

}
(2.47)

behaves as a normalized Gaussian functional with vanishing variance in the same limit, this
is enough to recover a delta functional. ĉese conditions can on their turn be satisėed by as-
suming that physically allowed AEA are bounded in k and that the dimensionless version ofRk

diverges as k reaches its limiting UV value.
Of course the details about which limiting UV value of k one could approach and of which

properties the regulatorRk must enjoy in order to completely suppress the integration and fur-
nish the required rising delta strongly depend on the presence or absence of a UV cutoff. In
the following we shall comment on all these details and also on the assumption that the AEA
be bounded in k, but before starting analyzing all possible scenarios let us stress that in or-
der to have a chance to build a rising delta functional a crucial role is played by the regularized
functionalmeasure (corresponding to a regularizedLiouvillemeasure in phase space), without
which we would lack the Gaussian normalization factor in (2.47). Later on we will explicitly
work out in a simple speciėc case the proof that our regularization of the functional measure
is exactly what is needed to normalize the Gaussian rising delta. Finally it could be useful to
recall that in studying the UV asymptotics, and in other computations too, one should choose
a unit of mass and work with dimensionless quantities, that is, one should perform a general
rescaling with respect to some M. In presence of a UV cutoff Λ, M = Λ is a possible choice
related to the domain of deėnition of our theory. If the UV cutoff Λ is absentM = k is also a
natural choice.

So far only general arguments, so let us start geĨing more speciėc. Let us ėrst deal with the
case in which the presence of a UV cutoff Λ is explicitly assumed. In this case there seem to
exist two main choices for the limiting value that kmust approach to suppress the integration:

a) k→ Λ
b) k→∞
ĉe former corresponds to the interpretation of k as the scale of an IR cutoff, that must

therefore be smaller or equal to the UV cutoff. ĉe laĨer is allowed since the k-dependent
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operator is a smooth IR regulator and not a sharp cutoff, thus one might prefer to think about
k just as an external parameter that could take any value, in which case (b) corresponds to
having removed to inėnity the arbitrary value of k at which the regulator is expected to kill the
integration. ĉe next question is which properties must Rk enjoy in cases (a) and (b) in order
to realize the two following scenarios:

a) lim
k→Λ

ΓΛ
k [φ] = SΛ[φ]

b) lim
k→∞

ΓΛ
k [φ] = SΛ[φ]

Since case (b) is more similar to the case most frequently addressed in the literature, i.e. the
one in which no UV cutoff is assumed, we prefer to start with this case. Here we want the
dimensionless regulator Rk to diverge as k → ∞ and, because in this case the most natural
choice of the unit isM = k for k ≤ Λ andM = Λ for k > Λ, this singular behavior is enjoyed
by all regulators usually present in the literature, of the form

〈x|R̂k|y〉 = k2f(−�x/k2)δ(x− y) , f(0) > 0 (2.48)

(the optimized cutoff corresponds to f(z) = (1 − z)θ(1 − z)). For such regulators and un-
der the assumption of UV boundedness of ΓΛ

k one can easily check that for k > Λ, rescaling
all dimensionful quantities w.r.t. M = Λ, the ėrst term in the exponent of eqn. (2.46) and
the shiě term R̂−1k ·

δΓΛ
k [φ]
δφ both vanish in the limit k → ∞. Also, by the same token, the

remaining exponential has a vanishing variance. ĉe last ingredient missing for a rising delta
is the correct normalization, therefore it is time to give explicit arguments showing that this
is provided by the regularized measure. To this end let us analyze brieĚy the QM case in the
skeletonized version of the path integral (see for example [40]) with a time slicing such that
T = Nε. We will not work out the exact discretized version of any cutoff differential operator,
but we will just consider its asymptotic IR and UV behaviors. In the k→ 0 limit, correspond-
ing to the standard un-coarse-grained path integral, Rk and Δk disappear and for a standard
unit Liouville measure the momenta integration leads to the usual conėguration space mea-
sure μ[q] = N = (2πε)−N/2, as already discussed in footnote 1. In the case of k → ∞,
−∂2

t /M2 is negligible with respect to Rk/M2 for all modes, because of the cutoff Λ. Also, hav-
ing inmind a path integral toy-modeling a vacuumpersistence amplitude, we consider the case
in which we have to performN integrals over phase space (p, q), so that the appropriate power
of the regularization of the Liouville measure is alsoN. ĉerefore:

μk[q] ∼k→∞N
(

Det[Rk/M2]

Det[−∂2
t /M2]

)1/2

∼ (2πεM)−N/2
( Rk
M2

)N/2
(εM)−N

=

(
εRk

2πM

)N/2

. (2.49)
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Here the Det[−∂2
t ] has been evaluated in terms of the ėnite difference operators∇ and ∇̄ as

in [40]. ĉis measure and the satisėed requirement that the k-dependent exponent on the rhs
of eqn. (2.44) approaches a Gaussian in the k → ∞ limit, leads to the following discretized
version of the l.h.s. of eqn. (2.45), or equivalently of (2.47)(

εRk

2πM

)N/2

e−
1
2M ε

∑
n Rk(qn−q̄n)2 −→

k→∞

∏
n

δ(qn − q̄n) (2.50)

showing the correct normalization. Recall that in the last expression the rescaling has con-
verted qn and q̄n into dimensionless quantities and that in this discretized approach ε is related
to the inverse of the UV cutoff.

In conclusion, for the class of operators (2.48) and for any ėxed bare action SΛ[φ] at a given
scale Λ, one has lim

k→∞
ΓΛ
k [φ] = SΛ[φ] . ĉus, in order for the bare action in the limit Λ → ∞

to be the initial condition at k → ∞ for the RG Ěow of the EEA, one must deal with the
following order in the limits: lim

Λ→∞
lim
k→∞

ΓΛ
k [φ]. ĉe only hypothesis we still have to comment

on, is the one regarding the boundedness in k of ΓΛ
k . With such an aim in mind let us analyze

the Ěow of the (modiėed) exact RG equation (ERGE) for truncations like the local potential
approximation. ĉe computation of the trace in Fourier space requires to integrate in p, over
the domain |p| < Λ, a function g(p, Λ, k, φ) depending on all the scales. Rescaling everything
w.r.t. Λ (z = p2/Λ2 and φ̃ = φ/Λ), and adopting again an optimized cutoff as an example, on
has for the ERGE:

k∂k vk/Λ(φ̃) =
1

(4π)
d
2 Γ
(d
2

) ∫ min{ k2

Λ2
,1}

0
dz z

d
2−1

−v′′k/Λ(φ̃)
k2
Λ2 + v′′k/Λ(φ̃)

, (2.51)

whose r.h.s. for a generic potential is expected to vanish when Λ is ėxed and k → ∞. For ex-
ample for a freemassive theory v′′k/Λ(φ̃) = m2/Λ2, which is actually k-independent. ĉerefore
in such a case the AEA really approaches the Λ dependent bare action. Integrating the Ěow
for the massive free theory from k = ∞ (instead of from k = Λ) to k = 0 one ėnds for the
dimensionful energy density:

d=1 :
m arctan

(Λ
m

)
π

+
Λ log

(
1+ m2

Λ2

)
2π

−→
Λ→∞

m
2

d=2 :
m2 log

(
Λ2

m2 +1
)

8π
+

Λ2 log
(
1+ m2

Λ2

)
8π

−→
Λ→∞

m2 log
(Λ
m

)
4π

+
m2

8π
(2.52)

d=4 :
m2Λ2 − m4 log

(
Λ2

m2 +1
)

64π2
+

Λ4 log
(
1+ m2

Λ2

)
64π2

−→
Λ→∞

m2Λ2

32π2
−

m4 log
(Λ
m

)
32π2

− m4

128π2
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From the last expression on can see that in a four dimensional spacetime the term in theWilso-
nian action associated to the vacuum energy density induced by free massive bosonic ėelds
grows quadratically with the UV cutoff Λ and is zero for the massless case. A similar behavior
(but opposite sign) is shown by fermion ėelds. We note that for a generic dimension d one
can write an analytic form as the sum of two contributions: one comes from the Ěow in the
region Λ < k < ∞ and is given by Λd

d Γ(d/2)(4π)d/2 log
(
1+ m2

Λ2

)
while the other is obtained

from the region 0 < k < Λ and can in general be wriĨen in terms of a regularized hypergeo-
metric function. More general truncations with higher derivative terms or more complicated
operators have to be studied to understand if such a behavior can be spoiled.

Let us now turn to case (a), again in presence of a ėnite UV cutoff. Here we want the di-
mensionless regulator Rk to diverge as k → Λ from below. Since the Ěow always stays in the
region k < Λ the choice of unit M = k is allowed and is in fact to be preferred to M = Λ
because rescalings with respect to the running cutoff correspond to the Wilsonian procedure
of iterated shell integration and subsequent rescaling. ĉe cutoff function in general may be
wriĨen asRk = k2f(z = p2

k2 , x =
k2
Λ2 ). If f(z, x) is ėnite at x = 1 one does not obtain aGaussian

representation of the delta and also both the ėrst term and the shiěs to χ − φ in the exponent
of eqn. (2.46) do not vanish. In this case there is no simple relation between Γk→Λ and S. On
the other hand if we ask that f(z, x) → ∞ as x → 1, and still we assume the boundedness of
the AEA, then for any mode we recover a functional delta representation as in eqn. (2.45). In
such a case one may write limk→Λ ΓΛ

k [φ] = SΛ[φ] .
One can check that for a free theory, independently on the choice of the functional form

providing the singularity in the cutoff function one obtains the same results already illustrated
in eq. (2.52). ĉis is a conėrmation that one has realized a representation of the functional
delta inside the path integral. In particular we have considered the explicit cutoff Rk(p2) =

f( k2
Λ2 )(k2−p2)θ(k2−p2). In order to perform the analytic computationweused f(x) = (1−x)−α

for positive α and numerically checked that other suitable choices of f lead to the same result.
In this case therefore it should be possible to ėnd a change of variable in order to make this
property manifest for any fwith the right singular behavior.

We stress again that the difference between the scenarios realized in cases (a) and (b) just
depends on our freedom to choose cutoff operators with a different singular behavior. ĉe
AEA depends on them at all scales but in the UV and IR limit, provided such cutoffs enjoy
regularity properties allowing to bring the k → 0 limit inside the path integral, and that their
singular behavior in the UV is what is needed to recover a functional delta.
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2.4.2 Ił ĵĶňĹłķĹ Ńĺ ĵłŏ UV ķŊŉŃĺĺ

Finally wewant to study the case in which noUV cutoff is present. As already said this last case
is the one which is usually considered in the AEA approach, with Γk assumed to be bounded
in k because of renormalizability. In this framework the most reasonable request is that

lim
k→∞

Γk[φ] = S[φ]

and one should look for cutoff operators leading to a representation of the delta for k → ∞.
Since the only natural choice of unit in this case isM = k, we see that the traditional regulators
like (2.48), aěer rescalings with respect to k, do not diverge as k → ∞ unless f(0) is inėnite.
ĉus, an example of a suitable regulator could be Rk(p2) = g( p

2

k2 )(k
2 − p2)θ(k2 − p2) with

g(z) → ∞ for z → 0. Let us remark that with this kind of choice the singularity k → ∞ is
the same as the one for p → 0 since k is the only available scale in the cutoff. ĉis means that
the zero mode is treated differently inside the path integral.

ĉe simplest computation one can imagine is to check that this prescription leads to the
expected vacuum energy in d = 1 for a free theory with frequency m (which we know to be
ėnite starting from a bare action with no vacuum energy at k = ∞). Choosing g(z) = z−1

one can compute analytically the beta function from the trace (its expression is more involved
that for the simpler optimized cutoff) and numerically check that the Ěow leads to Ek=0 =

m
2 .

A full numerical analysis on a family of cutoff deėned, for example, by g(z) = z−α for α > 0
gives correctly the same result.

Another suitable family of cutoff functions, far easier to deal with, is Rk(zk2) = k2(z−α −
z)θ(1 − z) for α > 0. ĉese regulators simply replace (p2/k2) with

(
p2/k2

)−α, whenever
p2 < k2. ĉe choice α = d/2 allows a straightforward computation of the traces thanks to
the advantageous change of variable z′ = zd/2. As an example, for a scalar ėeld in the local
potential approximation one ėnds:

V̇k(φ) =
kd

(4π)
d
2

(d
2 + 1

)
Γ
(d
2 + 1

) [ k2

V′′k (φ)
log
(

1 +
V′′k (φ)
k2

)
− 1
]
. (2.53)

Again we see the independence of the result from the choice of the cutoff function with the
required singularity structure. Clearly without a regularizing UV cutoff the integrated vacuum
energy for d > 1 is a divergent quantity so one should only deal with the expressions for the
beta functions. Again further investigations are needed regarding more general truncations of
theAEA. Finally let us remind that for the special case of a free theorywehave shown in the end
of section 2.1 (for the QM oscillator) that it is sufficient to employ even a non singular cutoff
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operator to have lim
k→∞

Γk[φ] = S[φ], because of the dimensionful mass being independent of k.

2.5 RĹŁĵŇĿň ĵłĸ ňŊŁŁĵŇŏ

We have presented a RG Ěow equation for the effective average action based on the regulariza-
tion of the functional integral in space space, wherein we perform a balanced coarse-graining
procedurebymeansof the introductionof a scale dependence in the symplectic form. ĉispro-
cedure corresponds to the standard Weyl ordering prescription for quantization. Under this
regularization both the action and the functionalmeasure becomedependent on a smooth cut-
off. Such a non trivial measure implies the presence of a subtraction term in the Ěow equation,
as given in eqns. (2.13) and (2.23) for boson and fermion d.o.f. in quantum mechanics. ĉe
corresponding RG Ěow equations in QFT, for a Lorentz invariant regularization, are given in
eqns. (2.35) and (2.37). ĉe subtraction between the two traces on the r.h.s. of these equa-
tions, induced by the non trivial measure, gives rise to a beĨer convergence; that is, the r.h.s.
could be ėnite even if the convergence of the single integrals is not provided by the cutoff op-
erator.

In Ěat space, as long as one is not interested in the vacuum energy which is not observable,
and for cutoffs that do not involve any coupling but the ėeld strength, nor background ėelds,
the subtraction termdue to themeasure can be dropped. If however one adopts cutoff schemes
more complicated than the ones we discussed in this chapter, we cannot exclude some differ-
ences between the Ěow generated by the present equation, following from phase space coarse-
graining, and the one based on the standardWeĨerich equation. ĉis is indeedwhat we expect
in the case of the so called non-pure cutoff schemes that usually include more couplings than
just the ėeld strength. For example, for a free massive scalar ėeld one could choose a cutoff
scheme involving also the mass term, such as Rk(−� + m2). ĉen the Ěow equation would
have a vanishing r.h.s. because of a complete cancellation between the two traces. ĉerefore
in our framework such cutoff schemes should be avoided. Let us remark that in applications
of the WeĨerich equation to the study of maĨer ėelds interacting with gravity, scheme depen-
dences in the beta function of the cosmological constant were indeed noticed [32, 35] also in
the standard approach. Also, if the background ėeld method is used, which is very commonly
adopted in gauge theories in order to preserve gauge invariance, the cutoff operator becomes
dependent on the background ėelds. ĉerefore the subtraction term induced by the non triv-
ial measure also depends on them and this leads to an AEA whose background dependence
differs from the usual one ².

²A Ěow equation for scalar QEDmodiėed by a subtraction term dependent on the background gauge ėeld
was already used in [45] with the motivation of minimizing some quantities [46].
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We have also discussed the relation which ties the modiėed AEA ΓΛ
k to the Wilsonian (i.e.

bare) actionSΛ in the presenceof anUVcutoff Λ. ĉenon trivial functionalmeasure plays here
a fundamental role, providing the correct normalization for a rising functional delta inside the
path integral, which is realized when the IR cutoff scale of the AEA reaches its UV limit. We
have analyzed how such aUV limit is deėned according to the properties of the cutoff operator
which implements the coarse-graining, and classiėed some possible ways in which the AEA
can approach theWilsonian action. Finally we have addressed the same problem in the case in
which no UV cutoff is present.

In so doing we have computed the contribution to the vacuum energy density of free mas-
sive theories in arbitrary dimensions. In particular we have found that, under preservation of
Lorentz invariance, the contributions of quantum Ěuctuations to the vacuum energy density
grow only quadratically in the UV cutoff and vanish in the massless case. Such a scenario, i.e
the absence of the quartic divergences, was already invoked recently [38, 39] in a standard per-
turbative QFT approach (where inėnite constant contributions from the functional measure
were neglected) by performing ad hoc regularizations and subtractions justiėed by symmetry
and reality conditions. We think that our computation gives a straightforward and neat deriva-
tion of such a behavior. Also, a paradoxical effect about the contribution of the low energy
modes to the cosmological constant was observed in [44] by using the Ěow equation without
the subtraction induced by the measure. By taking the subtraction into account such an ef-
fect disappears; e.g. for bosonic ėelds such a contribution growsmonotonically for decreasing
k. ĉe method of following the RG Ěow of the vacuum energy density, or of the cosmological
constant term in a curved spacetime, is also suitable for studying the case of interacting theories
and it would be interesting to address such a problem.

One of the possible areas in which a proper subtraction term in the ERGE could lead to
important effects is the study of gravity plus maĨer systems. It would be interesting to trace
the possible differences brought by this approach in the Ěow and ėxed point structures of such
interacting theories. In the absence of an UV cutoff in the theory the effect of the choice of
cutoffoperatorswith the right singularity structure to provide a convergence to the bare action,
as discussed in the section 4.2, is also an important point to be investigated. Simpler questions
related to QFT on curved background spacetimes can also be addressed in this framework.
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3
ĉeeffectiveHamiltonian action

WĹ ĻĹłĹŇĵŀĽŐĹ ŉļĹ ńļĵňĹ-ňńĵķĹ ĵłĵŀŏňĽň of the previous chapter to a fully Hamiltonian
framework. Weėrst review the deėnition andproperties of the quantumeffectiveHamiltonian
action and we describe its renormalization Ěow by a functional RG equation. ĉis equation
can be used for a non-perturbative quantization and study also of theories with bare Hamil-
tonians which are not quadratic in the momenta. As an example the vacuum energy and gap
of quantummechanical models are computed. Extensions of this framework to quantum ėeld
theories are discussed. In particular one possible Lorentz covariant approach for simple scalar
ėeld theories is developed. Fermionic degrees of freedom, being naturally described by a ėrst
order formulation, can be easily accommodated in this approach.

3.1 OŊŉŀĽłĹ

ĉeeffective actionmost commonly discussed in the literature is of the Lagrangian type, since
it is derived from the second order Lagrangian formulation of the bare theory. ĉere is a
very good reason to do that, namely that people usually consider bare Hamiltonians which
are quadratic in the momenta such that one can easily move to a Lagrangian description. ĉe
rationale for this is obtaining a manifestly Lorentz-covariant formulation in d space-time di-
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mensions. Another advantage of passing to a second order formulation is that the number of
ėelds in conėguration space is half the one in phase space, since in the functional formulation
the conjugated momenta have been integrated out.

On the other hand one may also consider the reasons to choose a ėrst order Hamiltonian
description on the phase space of a theory. Clearly this is unavoidable when dealing with the
quantization of theories with bareHamiltonians non quadratic in themomenta. In such a case
the full phase space variables are needed for a quantum description of the system. Tradition-
ally the main advantage aĨributed to the Hamiltonian formulation is that it makes unitarity
manifest [47]. ĉis is due to the strict relationship established by canonical quantization be-
tween the classical symplectic structure on phase space and the inner product on the Hilbert
space. ĉe Hamiltonian approach may be useful also when conėguration space is not a vec-
tor space, since phase space can usually be interpreted as a cotangent bundle and it could be
easier to deal with. In the functional integral representation this is translated in the possibil-
ity that the measure in phase space be ėeld independent while the one in conėguration space
be not. ĉis happens for instance in the case of non linear sigma models. Of course, even in
this case whenever the bare theory is quadratic in themomenta the Lagrangian and theHamil-
tonian formulations lead to the same results (MaĨhews ĉeorem), as proved by perturbative
studies [48, 49]. In a functional integral representation, the Hamiltonian approach is based
on quantum generating functionals obtained introducing sources in the phase space path inte-
gral [50]. From them, one can deėne a quantum effectiveHamiltonian action which generates
the proper vertices. ĉis was recently studied in [51], on the wake of a renewed interest in
Hamiltonian gauge theories such as QCD, in particular in the Coulomb gauge (see [52] and
references therein).

ĉe purpose of the present chapter is to present a non-perturbative framework which al-
lows to compute, within speciėc approximation schemes, the quantum effective Hamiltonian
action. ĉis will be obtained by constructing a fRG equation from the functional integral rep-
resentation. In the previous chapter we proposed the use of cutoff operators affecting the sym-
plectic form of phase space and implementing a more balanced coarse-graining and regular-
ization, with respect to the cases where the coarse-graining is performed on the Ěuctuations
in conėguration space only, but aěer this choice of regularization, we restricted our discus-
sion to bareHamiltonians quadratic in themomenta andwe fully integrated out themomenta,
obtaining a cutoff dependent functional measure in the Lagrangian path integral, which was
leading to a subtraction term in the RG Ěow equation. Here instead we are interested in retain-
ing the full dynamics in phase space, building a Ěow which realizes the idea of shell-by-shell
simultaneous integration on both phase space variables. As a disclaimer let us add that other
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non-perturbative RG Ěows called “Hamiltonian Ěows” already appeared in the literature, but
they largely differ from our formulation. Examples are the similarity RG [53], which is gen-
erated by iterated unitary transformations within the operatorial representation, and the Ěows
based on a variational solution of the Schrödinger equation [54].

In this chapter we start our discussion from quantum mechanical systems (0+ 1 dimen-
sional QFT’s) with scalar degrees of freedom, for which we review some of the properties of
the Hamiltonian effective action in the ėrst part of Section 2, and we prove some formula
useful for the subsequent developments. ĉroughout this chapter we will adopt a real time
(Minkowskian) formulation, since theHamiltonian formulation relies onapreferred roleplayed
by time, but the Euclidean notations and a discussion of Wick rotation can be found in ap-
pendix A.4. In the second part of Section 2 we derive the main equations satisėed by the aver-
age effectiveHamiltonian action (AEHA) of a quantummechanical system. ĉey depend on a
cutoff operator which suppresses part of the functional integration generating a one-parameter
Ěow from the UV to the IR. In particular we give the simpler equations associated to the so
called local Hamiltonian approximation (LHA), which is the lowest order term of the deriva-
tive expansion of the full functional, for some speciėc cutoff operators. ĉese are then used
(Section 2.3) to study a family of exactly solvable Hamiltonians which are not quadratic in the
momenta and indeed we show that one can easily extract informations like the ground state
and the ėrst energy gap of such systems. ĉe same approach can be used to study general sys-
tems with arbitrary bare Hamiltonians. We conclude Section 2 discussing the extension of the
formalism to quantum mechanical theories with fermionic degrees of freedom.

In section 3 we start to address quantum ėeld theories. ĉe extension to the non covari-
ant version of QFT is straightforward and we ėrst discuss it brieĚy for the case of scalar QFT.
Since in the traditional Hamiltonian formulation of QFT one pays explicit unitarity with the
disguising of Lorentz invariance, we discuss one possible way around this drawback, that is,
we spend the last part of the chapter in discussing amanifestly Lorentz symmetric (but maybe
not manifestly unitary) extension of the previous framework inside the realm of the covariant
Hamiltonian formalism.

ĉis is a subject which has a long history in classical physics [55, 56, 57, 58], but whose
applications to quantum dynamics are preĨy rare to be found in the literature. Even if under
different names, the covariant Hamiltonian formulation of YangMills theory is one of the old-
est examples. M.B. Halpern in 1977 addressed such a formalism for QCD, generically naming
it “ėrst order formalism” [59] but he immediately abandoned the full phase space formulation
integrating out the gauge vector ėelds thus being leě with a theory, containing only conjugate
momenta, that he called “ėeld strenght formulation”, which was studied in the following years
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(see [60] and references in it). More recently a slight variant of the “ėrst order formalism” (still
covariant) for YangMills theory has received fresh aĨentions from the perspective of topologi-
cal BF theories [61]. In particular the reader can ėnd in [62] an explicit one loop computation
of what we call the effective covariant Hamiltonian action of pure Yang Mills, reproducing the
expected asymptotic freedom result. Despite these successful examples, the main open ques-
tion about covariant Hamiltonian QFT is still about its foundations, even if these have begun
to be studied recently by some author [63, 64, 65]. ĉese investigations can shed light on the
issue of unitarity of this covariant formulation. Without a sound Lorentz covariant quantiza-
tion prescription, covariant Hamiltonian formalism seems but a game, legitimate only in the
special case of Hamiltonians quadratic in the momenta. On the other hand, only by studying
this approach in more general cases and by looking for its applications to real physical systems
one can hope to ėnd a legitimation for the search of foundations.

In this chapter, for what concerns a covariantHamiltonian formulation ofQFT’s, we restrict
ourselves to deėning the average effective covariant Hamiltonian action of a scalar ėeld theory
in a particularly simple case. ĉis consists in assuming that the non trivial dependence on the
covariant momenta is in the longitudinal (w.r.t. Fourier variable) subspace of the space of con-
jugate momenta. ĉis deėnition is compatible with both QM in 0+1 dimensions and with
QFT’s whose bareHamiltonians are quadratic in themomenta, and it provides a particular dy-
namical extension outside this domain. For this simple case we present a framework for study-
ing such amodel by a non-perturbative RGĚow equation. For completeness we also comment
on the corresponding covariant Hamiltonian formulation for theories with Dirac fermions.

In the last section the reader will ėnd a discussion about the physical motivations for the
introductionof this formalism, aswell as a proposal of somepossible developments, extensions
and future applications of this method. Some technical issues are described in more details in
App. A.

3.2 TļĹ ĹĺĺĹķŉĽŋĹHĵŁĽŀŉŃłĽĵł ĵķŉĽŃł Ľł ŅŊĵłŉŊŁŁĹķļĵłĽķň

In this sectionwe shallworkwithinquantummechanics (QM), i.e. a 0+1dimensional quantum
ėeld theory (QFT). As an example wewill quantize a classical systemwith one bosonic degree
of freedom governed by the following Hamiltonian action:

S[p, q] =
∫
dt
[
p(t)∂tq(t)− H (p(t), q(t))

]
(3.1)
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where the (bare) Hamiltonian can have an arbitrary dependence in the momenta, departing
therefore from the usual quadratic form

H(p, q) =
1
2
p2 + V(q) . (3.2)

Here and in the following p and q denote canonically conjugate variables. ĉe quantization of
such a system is performed via the following phase-space path integral:

e
i
~W[I,J] =

∫
[dpdq] μ[p, q]e

i
~{S[p,q]+I·p+J·q} (3.3)

where the dots stand for ordinary integrations. ĉe functional measure on the physical phase
space is usually assumed to be μ[p, q] = Det 1

2π~ . Since we want to keep our discussion as
general as possible we will not specify the precise space of functions on which the functional
integral is deėned.

It is possible to study the system by a functional which may be called the quantum effective
Hamiltonian action, which is a trivial generalization of the more widely known effective La-
grangian action. ĉe laĨer ΓL is deėned by introducing in the conėguration-space path integral
external sources J coupled to the Lagrangian variables, and by taking the Legendre transform
of the generating functional of the connected green’s functionsW[J] with respect to (w.r.t.) J.
Similarly, in order to deėne the effective Hamiltonian action ΓH, one starts from the phase-
space path integral (3.3) and performs a Legendre transform:

ΓH [p̄, q̄] = ext
I,J

(W[I, J]− I · p̄− J · q̄) , (3.4)

where
p̄ =

δW
δI

, q̄ =
δW
δJ

.

ĉe introduction of such a functional is not a novelty, as we have discussed in the previous
section. ĉere are several ways to convince ourselves that from this functional one can get
every information about the quantum system.
First, by taking functional derivatives w.r.t. q̄(t) and p̄(t) one immediately gets

I = −δΓH

δp̄
, J = −δΓH

δq̄
. (3.5)

For zero sources one has the equations for the vacuum conėguration (q̄, p̄). ĉey appear as the
classical equations of motion obtained from the quantum effective Hamiltonian action.
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Second, ΓH satisėes the following integro-differential equation

e
i
~Γ

H[p̄,q̄] =

∫
[dpdq] μ[p, q]e

i
~

{
S[p,q]−(q−q̄)· δΓ

H
δq̄ −(p−p̄)·

δΓH
δp̄

}
. (3.6)

ĉis is a central identity and it could also be promoted to the deėnition of ΓH.
ĉird, from this equation one can get a different proof that the classical equations satisėed by
the effective Hamiltonian action encode the full quantum dynamics, because they are equiva-
lent to the Hamiltonian Dyson-Schwinger equations. In fact, the identities:

0 =

∫
[dpdq]

δ
δp

(
μ[p, q]e

i
~

{
S[p,q]−(q−q̄)· δΓ

H
δq̄ −(p−p̄)·

δΓH
δp̄

})
=

∫
[dpdq]

δ
δq

(
μ[p, q]e

i
~

{
S[p,q]−(q−q̄)· δΓ

H
δq̄ −(p−p̄)·

δΓH
δp̄

})
lead to:

〈−i~ δ
δp

log μ[p, q] +
δS
δp
〉 = δΓH

δp̄
, 〈−i~ δ

δq
log μ[p, q] +

δS
δq
〉 = δΓH

δq̄
.

Forth, just like for the effective action, the effective Hamiltonian action has a similar interpre-
tation as the generator of the one-particle-irreducible (1PI) proper vertices. For more details
and a proof of this statement see Appendix A.1.
FiĜh, by evaluating the effective Hamiltonian action on its stationarity p̄ values one gets the
effective Lagrangian action. In fact, deėning

ΓL[q̄] = ext
p̄

ΓH[p̄, q̄]

and calling p̄q̄ the extremal point, it is straightforward to show that

I = −δΓH

δp̄
[p̄q̄, q̄] = 0 , J = −δΓH

δq̄
[p̄q̄, q̄] = −

δΓL

δq̄
[q̄] .

ĉerefore ΓL[q̄] = W
[
0,− δΓL

δq̄

]
+ q̄ · δΓLδq̄ , wherefrom we learn that ΓL satisėes the integro-

differential equation:

e
i
~Γ

L[q̄] =

∫
[dpdq] μ[p, q]e

i
~

{
S[p,q]−(q−q̄)· δΓ

L
δq̄

}

which is a generalization of the usual conėguration space integro-differential equation satisėed
by the effective action, since it does not require S to be quadratic in the momenta. Due to this
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simple relation between the two effective actions, from here on and for the rest of this thesis
wewill use the same leĨer Γ for both, dropping the superscripts, since the reader will be able to
distinguish themby their arguments (p̄,q̄ for theHamiltonianone and q̄only for theLagrangian
one).
Sixth, the effective Hamiltonian action can be deėned from the operatorial representation by
means of a time-dependent variational principle, in a way which is the direct generalization of
the usual construction in conėguration space [66]. Let Ĥ be the Hamiltonian operator of the
quantum system, |0〉 be its time-independent ground state and let the boundary conditions of
the path integral in (3.3) be chosen such that

e
i
~W[I,J] = 〈0|ÛI,J(+∞,−∞)|0〉 = 〈0|T exp

{
− i
~

∫ +∞

−∞
dt
[
Ĥ− J(t)q̂− I(t)p̂

]}
|0〉 .

(3.7)
ĉen the effective Hamiltonian action deėned in (3.4) is related in the following way

Γ [p̄, q̄] = ext
|ψ±,t〉

(∫ +∞

−∞
dt 〈ψ−, t|i~∂t − Ĥ|ψ+, t〉

)
(3.8)

to an extremum with respect to variations of the two states |ψ±, t〉 preserving the constraints

〈ψ−, t|ψ+, t〉 = 1 , 〈ψ−, t|q̂|ψ+, t〉 = q̄(t) , 〈ψ−, t|p̂|ψ+, t〉 = p̄(t) (3.9)

for any t, and the boundary conditions

lim
t→∓∞

|ψ±, t〉 = |0〉 . (3.10)

A sketch of the proof of this statement is given in Appendix A.2. A special role is played by
time-independent p̄ and q̄, because thepreviousproposition reduces toΓ[p̄, q̄] = −E(p̄, q̄)

∫
dt

where E is the usual energy density functional deėned by the minimum

E (p̄, q̄) = min
|ψ〉
〈ψ|Ĥ|ψ〉 (3.11)

with respect to variations of the time-independent state |ψ〉 preserving the time-independent
version of the constraints in (3.9).

ĉis clearly provides an energy interpretation for the effective Hamiltonian action. In par-
ticular if one evaluates this action on the constant (p̄,q̄)-values which make it stationary, the
resulting number is just minus the “time volume” times the ground state energy. In principle
it is possible to compute all the energy levels by means of Γ, but higher levels require more
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work. One possible way is through the two point functions. In a Hamiltonian framework the
propagator splits in the entries of the matrix:

i〈T

(
(p−p̄)t′(p−p̄)t (q−q̄)t′(p−p̄)t
(p−p̄)t′(q−q̄)t (q−q̄)t′(q−q̄)t

)
〉 = W(2)

tt′ [I, J] =

(
δ2W
δIt′δIt

δ2W
δJt′δIt

δ2W
δIt′δJt

δ2W
δJt′δJt

)
=

( δp̄t
δIt′

δp̄t
δJt′

δq̄t
δIt′

δq̄t
δJt′

)
(3.12)

(where T is the time ordering operator) so that one could try to think about p and q as dif-
ferent “ėelds” but should also remember about the existence of an unusual mixed propagator
connecting p-legs to q-legs or vice versa. ĉanks to (3.5) one can write this matrix in terms of
Γ as follows

W(2)
tt′ [I, J] =

(
δp̄
δI

δp̄
δJ

δq̄
δI

δq̄
δJ

)
tt′

=

(
δI
δp̄

δI
δq̄

δJ
δp̄

δJ
δq̄

)−1
tt′

= −

(
δ2Γ
δp̄δp̄

δ2Γ
δq̄δp̄

δ2Γ
δp̄δq̄

δ2Γ
δq̄δq̄

)−1
tt′

= −
(
Γ(2)[p̄, q̄]

)−1
tt′ .

(3.13)
Inorder tomake the last expression for the twopoint functionmore explicit oneneeds to invert
a matrix whose elements are operators. In the particular case in which all block entries of the
original matrix are nonsingular, its inverse is given by(

A B
C D

)−1
=

(
(A−BD−1C)−1 (C− DB−1A)−1

(B− AC−1D)−1 (D−CA−1B)−1

)
. (3.14)

In our case the operatorW(2)
k is symmetric and one can use the formula in eqn. (3.14) seĨing

C = BT. Let us stress that in order to put the off-diagonal blocks of this inverse in the form of
eqn. (3.14) withC = BT it is only necessary to assume thatB be nonsingular, condition which
ismet by δ2Γ

δp̄δq̄ unless Γ is extremely pathological. Oncewe knowhow to compute the two point
functions by means of Γ, we could have access to all the energy gaps ΔEn = En − E0 through
the Källen-Lehmann representation of the propagators

δ2W
δI(τ)δI(0)

= i
∑
n6=0

e−iΔEnτ|〈0|p̂|n〉|2 = −
∑
n6=0

∫
dE
2π

e−iEτ
2ΔEn|〈0|p̂|n〉|2

E2 − ΔE2
n + iε

δ2W
δJ(τ)δJ(0)

= i
∑
n6=0

e−iΔEnτ|〈0|q̂|n〉|2 = −
∑
n6=0

∫
dE
2π

e−iEτ
2ΔEn|〈0|q̂|n〉|2

E2 − ΔE2
n + iε

.

Similar expressions hold for mixed derivatives ofW. ĉis tells us that, in principle, by studying
the pole structure of the Fourier transformed two point functions we could compute all the
ΔEn. As eq. (3.13) shows, this requires the knowledge of the exact Γ(2). In most cases this is
not available, and only approximations are possible. In certain contexts one popular approxi-
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mation scheme for the computation of the effective action is the derivative expansion. ĉe ze-
roth order of such an expansion in the present Hamiltonian framework can be called the local
Hamiltonian approximation (LHA) and consists of the ansatz: Γ =

∫
dt (p̄∂tq̄− Heff(p̄, q̄))

where the effective Hamiltonian Heff, which is an ultralocal function of its arguments (i.e. it
does not depend on their derivatives), can be computed by seĨing the ėelds p̄ and q̄ to con-
stant values. For this choice, since the second derivatives of Γ on constant ėeld conėgurations
commute with each other, the inversion rule (3.14) leads to a simple expression

δ2W
δI(τ)δI(0)

= −

[
δ2Γ
δp̄δp̄

− δ2Γ
δq̄δp̄

(
δ2Γ
δq̄δq̄

)−1 δ2Γ
δp̄δq̄

]−1
0τ

LHA
= −

∫
dE
2π

e−iEτ
∂2Heff
∂q̄∂q̄

E2 − detH(2)
eff + iε

δ2W
δJ(τ)δJ(0)

= −

[
δ2Γ
δq̄δq̄

− δ2Γ
δp̄δq̄

(
δ2Γ
δp̄δp̄

)−1 δ2Γ
δq̄δp̄

]−1
0τ

LHA
= −

∫
dE
2π

e−iEτ
∂2Heff
∂p̄∂p̄

E2 − detH(2)
eff + iε
(3.15)

and similar formulae hold for mixed derivatives ofW. Here detH(2) = ∂2
q̄q̄H ∂2

p̄p̄H− (∂2
q̄p̄H)2

is the determinant of theHessianmatrix ofH. ĉerefore we see that in the LHA, whenever the
second derivatives ofHeff commute (as in the case they are single numbers and not matrices),
only one pole appears in the propagators at the value (detH(2)

eff )
1/2. Since we are performing

a derivative (low energy) expansion, in general this pole is the one closer to E = 0, that is to
say the ėrst gap ΔE1, unless thematrix elements 〈0|p̂|1〉 and 〈0|q̂|1〉 vanish. ĉerefore we shall
use in the LHA the relations

E0 = Heff|min , ΔE1 =

√
detH(2)

eff |min . (3.16)

So far we have discussed how many properties of a quantum system can be deduced from
the effective Hamiltonian action, but how can we compute this action? One way is to use per-
turbation theory. First of all one needs to deėne propagators and vertex functions. We already
know that in a Hamiltonian framework the propagators of a theory with Hamiltonian action Γ
are given by eq. (3.13). ĉe vertex functions generated by Γ are simply given by:

δm

δp̄m
δnΓ
δq̄n

∣∣∣∣
q̄=p̄=0

, m+ n > 2 (3.17)

and therefore generically comprehend m p-legs and n q-legs. Since perturbation theory in
phase space is built on tree level propagators and vertices, one can read off these ingredients
from (3.13) and (3.17) by substituting Γ with the bare action S. For instance, to get the one-
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loop result one changes variables of integration in (3.6) according to p = p̄ + ~ 1
2 p′, q =

q̄+ ~ 1
2 q′, and Taylor-expands both S and Γ around ~ = 0 up to linear terms

S(p, q) = S(p̄, q̄) +
~
2
(p′, q′)S(2)(p̄, q̄)(p′, q′)T + o(~2)

Γ[p̄, q̄] = Γ0[p̄, q̄] + ~Γ1[p̄, q̄] + o(~2) .

ĉe change of variable goes along with a change of measure, due to the Jacobian determinant
Det~, such that the new measure becomes μ[p′, q′] = Det 1

2π . ĉe Gaussian path integral over
p′ and q′ combined with such a measure gives Γ1[p̄, q̄] = i

2 logDet
(
−iS(2)[p̄, q̄]

)
, where S is

the bare Hamiltonian action (together with the obvious result Γ0[p̄, q̄] = S[p̄, q̄]). ĉe block
determinant can be wriĨen in a more explicit form by means of the general formula

det

(
A B
C D

)
= detA det(D− CA−1B) = detD det(A− BD−1C) (3.18)

where the ėrst expression is true if detA 6= 0 and the second if detD 6= 0. ĉerefore, if δ2S
δp̄δp̄ is

non-vanishing

Γ1[p̄, q̄] =
i
2

logDet

[
− δ2S
δp̄δp̄

(
δ2S
δq̄δq̄

− δ2S
δp̄δq̄

(
δ2S
δp̄δp̄

)−1δ2S
δq̄δp̄

)]
(3.19)

=
i
2

logDet
[(
−∂t2− detH(2) +

(
∂t

∂2H
∂p̄∂q̄

)
+

(
∂t log

∂2H
∂p̄∂p̄

)(
∂t −

∂2H
∂p̄∂q̄

))
δ
]

which reduces to the usual one-loop formula for the effective action in the case of a bareHamil-
tonian like the one in (3.2). In the formula above we have used the symbol δ for δ(t − t′). If
instead δ2S

δp̄δp̄ vanishes while δ2S
δq̄δq̄ is non-vanishing, the result can be obtained from (3.19) by

replacing δp̄ with δq̄ and vice versa.
In the rest of this chapter we will work on a non-perturbative seĨing for the computation of

the effective Hamiltonian action and we will choose ~ as our unit of action.

3.2.1 TļĹ ĵŋĹŇĵĻĹ ĹĺĺĹķŉĽŋĹ HĵŁĽŀŉŃłĽĵł ĵķŉĽŃł

Sticking to the framework discussed in the previous sections, we regularize the phase space
path integral by means of a modiėcation of the bare action and of the functional measure

eiWk[I,J] =

∫
[dpdq] μk[p, q]e

i{S[p,q]+ΔSk[p,q]+I·p+J·q} (3.20)
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and ask for μk exp{iΔSk} to become μ as k → 0 and to provide a rising delta functional as
k → Λ. As traditional, to keep the framework as simple as possible, we choose ΔSk to be
quadratic in the ėelds

ΔSk[p, q] =
1
2
(p, q) · Rk · (p, q)T (3.21)

such that we need Rk → 0 and μk → μ when k→ 0, as well as Rk →∞ and μk →
(
DetRk

2π

) 1
2

when k→ Λ. ĉese constraints can be satisėed by several choices for the symmetricmatrixRk

and for the measure μk. In this thesis we will consider only two simple cases in which the only
non-vanishing entries of Rk are either off-diagonal and built out of an odd differential operator
or diagonal and built out of even differential operators. ĉese respectively read

Rk(t, t′) =

(
0 rk(−∂t2)∂tδ(t− t′)

−rk(−∂t2)∂tδ(t− t′) 0

)
(3.22)

Rk(t, t′) =

(
Rp

k(−∂t
2)δ(t− t′) 0
0 Rq

k(−∂t
2)δ(t− t′)

)
(3.23)

ĉeėrst choice again canbe interpreted as a k-dependent deformationof the symplectic poten-
tial λ = pdq, bymeans of an operator (1+rk). Aswehave already discussed, this interpretation
suggests the appropriate k-dependent deformation of the functional measure. Following this
line of thought we can guess a convenient choice for the regularized measure also in the sec-
ond case of a diagonal regulator. ĉe straightforward adaptation of the previous argument is
insisting in adding to the fundamental symplectic matrix our regulator matrix, and then taking
its determinant. To summarize, the regularized functional measures we will use together with
the regulators (3.22) and (3.23) respectively are

μk=

[
Det

1
2π

(
0

(
1 + rk(−∂t2)

)
∂tδ(t− t′)

−
(
1 + rk(−∂t2)

)
∂tδ(t− t′) 0

)] 1
2

(3.24)

μk=

[
Det

1
2π

(
Rp

k(−∂t
2)δ(t− t′) ∂tδ(t− t′)

−∂tδ(t− t′) Rq
k(−∂t

2)δ(t− t′)

)] 1
2

. (3.25)

ĉe deėnition of the average effective Hamiltonian action (AEHA) Γk[p̄, q̄] is

Γk [p̄, q̄] + ΔSk [p̄, q̄] = ext
I,J

(Wk[I, J]− I · p̄− J · q̄) .

Note that the sourcesminimizing the r.h.s. will in general depend on k. Again it is easy to write
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an integro-differential equation for the AEHA:

eiΓk[p̄,q̄] =
∫

[dpdq] μk[p, q]e
i
{
S[p,q]+ΔSk[p−p̄,q−q̄]−(p−p̄)

δΓk
δp̄ −(q−q̄)

δΓk
δq̄

}
. (3.26)

When k→ 0 eq. (3.26) trivially reduces to eq. (3.6) and the AEHA becomes the full effective
Hamiltonian action. It is not hard to check that when k → Λ the r.h.s. of eq. (3.26) reduces
to exp{iS[p̄, q̄]} and the AEHA coincides with the bare Hamiltonian action. A sketch of the
proof can be found in Appendix A.3.

ĉe relation between the average effective Hamiltonian and Lagrangian actions is the same
as for the full effective actions:

Γk[q̄] = ext
p̄

Γk[p̄, q̄] . (3.27)

We observe that this is evident in the simplest possible case, i.e. when the bare action is
quadratic in the momenta, as in (3.2), since ∂2H

∂p2 and ∂2H
∂p∂q are constant (the laĨer is actually

zero). Indeed the integration over p in (3.26) can be performed exactly and in such a case
one discovers that also the AEHA must be quadratic in the momenta and that for any k the
canonicalmomentumthat extremizes it is p̄ = ∂tq̄. As a result, plugging this ėeld conėguration
in (3.26), using the deėnition (3.27) and integrating out the momenta, one obtains

eiΓk[q̄] =
∫

[dq] μk[q]e
i
{
S[q]+ΔSk[q−q̄]−(q−q̄)

δΓk
δq̄

}
(3.28)

where now μk[q] ≡
∫
[dp] μk[p, q]e

−i p
2

2 and ΔSk[q] arises from the chosen ΔSk[p, q]. For ex-
ample, if one adopts the scheme of eqs. (3.22) and (3.24) then

μk[q] =

[
Det

1
2π
(
1 + rk(−∂t2)

)2
(−∂t2)δ

] 1
2

ΔSk[q] =
1
2
∂tq · (r2k + 2rk)∂tq .

As usual, the k → Λ limit of the average effective Lagrangian action coincides with the bare
Lagrangian action while the k→ 0 limit gives the full quantum effective Lagrangian action.

We are now interested in the cases which depart from such a simple situation.
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3.2.2 RG ĺŀŃŌ ĹŅŊĵŉĽŃł ĺŃŇ ŉļĹ AEHA

In this section we discuss the translation of the functional integro-differential equation (3.26)
in a functional differential equation describing a Ěow parameterized by k.

Denoting by “.” the operation k∂k, and acting with it on eq. (3.26) one obtains

iΓ̇k =
μ̇k
μk

+ i〈Δ̇Sk[p− p̄, q− q̄]〉k .

Since ΔSk has been chosen quadratic in the ėelds, the expectation value can be rewriĨen by
means of the k-dependent version of formulae (3.12,3.13). Denoting Γ̃k [p̄, q̄] ≡ Γk [p̄, q̄] +
ΔSk [p̄, q̄], these read

i〈T

(
(p−p̄)t′(p−p̄)t (q−q̄)t′(p−p̄)t
(p−p̄)t′(q−q̄)t (q−q̄)t′(q−q̄)t

)
〉k = W(2)

k tt′ [I, J] =

(
δ2Wk
δIt′δIt

δ2Wk
δJt′δIt

δ2Wk
δIt′δJt

δ2Wk
δJt′δJt

)
=

=

( δp̄t
δIt′

δp̄t
δJt′

δq̄t
δIt′

δq̄t
δJt′

)
=

(
δI
δp̄

δI
δq̄

δJ
δp̄

δJ
δq̄

)−1
tt′

= −

(
δ2Γ̃k
δp̄δp̄

δ2Γ̃k
δq̄δp̄

δ2Γ̃k
δp̄δq̄

δ2Γ̃k
δq̄δq̄

)−1
tt′

= −
(
Γ̃(2)
k [p̄, q̄]

)−1
tt′

.

ĉerefore, for any quadratic regulator, the Ěow equation can be wriĨen as

iΓ̇k =
μ̇k
μk
− 1

2
Tr
[(

Γ(2)
k + Rkδ

)−1
Ṙkδ
]

(3.29)

where Rkδ = ΔS(2)k . Here one has still freedom for the choice of μk as a functional of Rk. By
using the inversion formula (3.14) one can ėnd a more explicit form for the Ěow equation.
Adopting the regulator (3.22) affecting only the Legendre transform term of the bare action
(i.e. the symplectic potential) and the correspondingminimally deformedLiouville functional
measure (3.24), eq. 3.29 becomes

iΓ̇k = Tr
[
ṙk (1 + rk)

−1 δ
]

− Tr

[
(ṙk∂δ)

((
rk∂δ +

δ2Γk

δq̄δp̄

)
− δ2Γk

δp̄δp̄

(
−rk∂δ +

δ2Γk

δp̄δq̄

)−1 δ2Γk

δq̄δq̄

)−1]
.(3.30)

where we denote (∂δ)t1t2 = ∂t1δ(t1 − t2). Instead, the choice of a diagonal regulator (3.23)
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and of the corresponding measure (3.25) leads to the Ěow equation

iΓ̇k =
1
2
Tr
[
(Ṙp

kδ)
(
Rp

kδ − (∂δ) (Rq
kδ)
−1

(−∂δ)
)−1]

+
1
2
Tr
[
(Ṙq

kδ)
(
Rq

kδ − (−∂δ)
(
Rp

kδ
)−1

(∂δ)
)−1]

− 1
2
Tr

[
(Ṙp

kδ)

((
Rp

kδ +
δ2Γk

δp̄δp̄

)
− δ2Γk

δq̄δp̄

(
Rq

kδ +
δ2Γk

δq̄δq̄

)−1 δ2Γk

δp̄δq̄

)−1]

− 1
2
Tr

[
(Ṙq

kδ)

((
Rq

kδ +
δ2Γk

δq̄δq̄

)
− δ2Γk

δp̄δq̄

(
Rp

kδ +
δ2Γk

δp̄δp̄

)−1 δ2Γk

δq̄δp̄

)−1]
.(3.31)

Notice that, thanks to the regularization of the functional measure, these equations correctly
reproduces the non-renormalization of Hk in the trivial cases in which the bare Hamiltonian
either vanishes or depends on just one ėeld out of p and q. As far as the reality properties of
this equation are concerned, there is no difference with the standard Lagrangian formalism in
real time, that is to say, the imaginary unit on the l.h.s. is needed in order to ensure reality of
Γk. ĉis is because in real time the traces on the r.h.s. usually are integrals of functions with
poles on the real axis, which thus lead to imaginary values. An appropriate prescription should
be given in order to displace these poles off the real axis. As usual in QFT one adopts the pre-
scription which relates theMinkowskian theory to the Euclidean theory by a continuousWick
rotation. ĉe same can be done inQM.ĉe reader can ėndmore details about this translation
to imaginary time in appendix A.4.

ĉe previous Ěow equations are still too general for a ėrst approach to theirmeaning and ap-
plication, therefore let us givemore speciėc and simple formsof theėrst oneof them, eq. (3.30).
As a ėrst example let’s consider the truncation Γk =

∫
dt
(
p̄∂tq̄− 1

2 p̄
2 − Vk(q̄)

)
. Introducing

the notation Pk(−∂t2) = −∂t2(1 + rk)2 one ėnds the RG Ěow equation

−i
∫
dt V̇k(q̄) =

1
2
Tr
[
ṖkP−1k

]
− 1

2
Tr
[
Ṗk
(
Pk − V(2)

k (q̄)
)−1]

(3.32)

which is what one gets by the effective average Lagrangian action approach in the local po-
tential approximation (LPA). Amore general example is the local Hamiltonian approximation
(LHA), i.e. the case inwhich theĚowequation for the truncation Γk =

∫
dt (p̄∂tq̄− Hk(p̄, q̄))

is evaluated on constant q̄ and p̄ conėgurations. For this choice, if the second derivatives of Γk

commute with each other as in the present case where they are 1-by-1 bosonic matrices, the
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operators in the trace can be simpliėed and one obtains

− i
∫
dt Ḣk(p̄, q̄) = − Tr

[(
ṙk

1 + rk
δ
)

detH(2)
k (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

]

+ Tr

[
(ṙk∂δ) δ2Hk

δp̄δq̄ (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

]
(3.33)

where detH(2)
k = ∂2

q̄q̄Hk ∂
2
p̄p̄Hk − (∂2

q̄p̄Hk)
2 is the determinant of the Hessian matrix of Hk.

Notice that the second trace vanishes whenever it is possible to evaluate it in Fourier space and
when the domain in such space is symmetric around the origin. If this is the case we are leě
with

i
∫
dt Ḣk(p̄, q̄) =

1
2
Tr

[
Ṗk
Pk
δ

detH(2)
k (p̄, q̄)

Pkδ − detH(2)
k (p̄, q̄)

]
. (3.34)

Here one could adopt any of the regulatorsRk developed in the vast literature about the av-
erage effective Lagrangian action [10, 41, 42], and plug it in the last formula by Pk(−∂t2) =

−∂t2 +Rk(−∂t2) . One of the simplest choices for the regulator is a constant rk, that is to say
an operator which ismultiplicative in both time and frequency representations; in other words
a function of k and Λ only. If no UV cutoff is present, this choice is possible only in quantum
mechanics, because it does not produce any coarse graining and therefore it does not regularize
the functional traces. Assuming ṙk > 0, ∀k ∈ (0, Λ), one can trade k for the dimensionless
parameter rk. ĉus, in LHA and if the second derivatives ofHk commute with each other, as-
suming that the traces can be wriĨen as

∫
dt
∫ dE
2π (aěer Fourier transform), and that there is no

UV cutoff in the theory, then by Wick rotating the trace (E→ iE) one gets

dHr

dr
= − 1

2(1 + r)2
(
detH(2)

r
) 1

2 . (3.35)

A different choice whichmakes the computation of the traces even simpler than for a constant
rk is the square root of the Litim regulator [41, 42]. Denoting by rk(E2)E the Fourier transform
of rk(−∂t2)i∂t, and with θ the Heaviside step function, aěer Wick rotation such a regulator
reads

rk(E2)E = −(k+ E)θ(k+ E)θ(−E) + (k− E)θ(k− E)θ(E) .

In the LHA and if the second derivatives ofHk commute with each other, this gives the same

45



result as (3.34) for Pk(E2) = k2θ(k2 − E2) + E2θ(E2 − k2) , that is

Ḣk = −
k
π

detH(2)
k

k2 + detH(2)
k

. (3.36)

Of course if one considers Hk(p̄, q̄) = Tk(p̄) + Vk(q̄) as an initial condition for the Ěow,
whenever bothTk andVk are polynomials of degree higher than two, the determinant becomes
a function of both q̄ and p̄ so that the Ěow generates also mixed p̄ and q̄ dependence in the
effectiveHamiltonian. ĉerefore one should consider a larger truncation in order to track such
terms. Also a structure of a σ-model kind, quadratic in the momenta, generates a dependence
in the momenta which is more than quadratic. We stress that in general the Ěow will generate
also a dependence on time derivatives of q and p variables. ĉis goes beyond the LHA but it
is still compatible with the standardHamiltonian approach as long as one starts the Ěow at the
UV with a derivatives-free bare Hamiltonian.

3.2.3 EŎĹŇķĽňĹ: ŉļĹ ĻŇŃŊłĸ ňŉĵŉĹ ĹłĹŇĻŏ ĵłĸ Ļĵń Ńĺ ŁŃĸĹŀň ŉļĵŉ ĵŇĹ ŁŃŇĹ ŉļĵł
ŅŊĵĸŇĵŉĽķ Ľł ŉļĹ ŁŃŁĹłŉĵ

As an example of the application of the framework discussed in the previous subsections to
speciėc problems, wewill present the computationof the ėrst two energy levels of someexactly
solvable systems for which no simple Lagrangian description is available, due to to the fact that
the functional integral over the conjugatemomenta is notGaussian. ĉiswill serve as a checkof
the soundness of the formalism, but the reader is invited to remember that the very same simple
computations explained in the followingwouldwork also formuchmore complicatedmodels.
Let us recall that the functional RGhas already been successfully applied to the computation of
the spectrum of quantummechanical models in the conėguration space formulation [14, 67].

ĉe systems we are going to address have the following classical Hamiltonian:

Hn(p, q) =
(
p2 + ω2q2

2

)n

. (3.37)

ĉey are easy to solve due to theO(2) symmetry which forces theHamiltonian to depend only
on the “action” and not on the “angle” coordinate in phase space. Even without performing
a canonical transformation to such coordinates, the energy spectrum can be built by ladder
operators. Rescaling the variables q = q′/

√
ω and p =

√
ωp′ as well as the Hamiltonian

H = ωnH′ we can reduce the problem to the one with ω = 1, therefore in the following
we will restrict to such a case. ĉe operator algebra of these quantum models is completely
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described by

â =
q̂+ ip̂√

2
, â† =

q̂− ip̂√
2

, ââ† − â†â = 1 . (3.38)

ĉe Hamiltonian operator is just the n-th power of
(
N̂+ 1

2

)
where N̂ = â†â is the number

operator. ĉis is enough to deduce the whole energy spectrum for any positive integer n.
In order to reproduce such a spectrum bymeans of the RG Ěow equation, the ėrst step is to

specify the initial condition for the integration of the Ěow. From the discussion of the previous
subsections follows that the most suitable initial condition is Γk=Λ = S, where S is the bare
action to be inserted in a path integral, as the input specifying which system is being studied.
At this point it is necessary to recall that such a bare action is in one-to-one correspondence
with the Hamiltonian of the operator representation: the bare Hamiltonian is just the Weyl
symbol of the Hamiltonian operator. Let us remind that an operator Ô(p̂, q̂), can always be
wriĨen as a sum of symmetrized (in p̂ and q̂) operators

Ô = ÔS +
∑
i

ÔiS = ÔW (3.39)

which is what one calls theWeyl-ordered version of Ô. Also, its average on coordinate q̂ eigen-
states with eigenvalues x and y is conveniently given by

〈x|Ô|y〉 =
∫

dp 〈x|p〉OW

(
p,
x+ y

2

)
〈p|y〉 . (3.40)

ĉe functionOW in the right hand side of eq. (3.40) is called the Weyl symbol of Ô, and it can
be considered as the classical counterpart of Ô. ĉere aremanyways to compute this function;
one is to Weyl-order Ô and then to replace the operators in ÔW with c-numbers. Another way
is through the relation

OW(p, q) =
∫
dx eipx〈q− x

2
|Ô(p̂, q̂)|q+ x

2
〉 (3.41)

where the bra’s and ket’s are again eigenstates of the q̂ operator. For instance, considering the
models in Eq. (3.37), in the n = 2 and n = 3 cases such symbols read

H2W(p, q) =
(
p2 + q2

2

)2

− 1
4

, H3W(p, q) =
(
p2 + q2

2

)3

− 5
4

(
p2 + q2

2

)
. (3.42)

Notice that both subtraction terms above, generated byWeyl ordering, are proportional to ~2,
but in natural units such a dependence disappears.
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Inserting these initial conditions in the Ěow equation for the LHA one can compute the
full quantum effective Hamiltonian at k = 0. Such a task can be performed by numerically
integrating the Ěow equation. However, if one is interested in simple quantities as the ėrst
two energy levels, this might be unnecessary: it could be enough to truncate the LHA to a
polynomial in z ≡ (p2+q2)/2of ėnite order. Indeed if the bareHamiltoniandepends on p and
q only through z, in the LHA approximation also Hk can be shown to respect this symmetry,
for suitable cutoff operators.

We started by studying these polynomial truncated Ěows as generated by equations (3.35)
and (3.36) ėnding that singularities appear at nonvanishing values of k. ĉis happens because
at some k the radius of convergence of the necessary expansion of the r.h.s. in powers of z goes
to zero, a fact related to the vanishingof the termsquadratic in theėelds in thebareHamiltonian
of the n = 2 model. If no expansion is performed, as in the numerical integration of the Ěow
equation for Hk, no singularity is met and the ground state and gap can be estimated by the
value ofHk and of (detH(2)

k )1/2 at theminimum. However these estimates do not reach a great
accuracy either because of spurious dependence on the boundary conditions (which can be
controlled by some nonlinear redeėnitions ofHk) or because of numerical errors: typically we
reached no more than two digit accuracy in the region around the minimum. In order to get
stable predictions with a precision beĨer than 1%we turned to a different choice of regulators,
curing the problem about the polynomial expansion of the Ěow equation. Such a choice is that
of a diagonal regulator, as in eq. (3.43). We chose this regulator to be constant, i.e. Rp

k =

Rq
k = R a multiplicative operator (recall that we are assuming ω2 = 1 therefore even ifRp

k

andRq
k have different dimensions we can set them equal if we assume their ratio to be some

power of ω). We also introduced a UV cutoff Λ in order to control the convergence of the Ěow
forR → ∞. As a result we observed that, for such a constant regulator, Λ can be removed
only aěer the integration of the Ěow fromR = ∞ toR = 0. ĉe resulting Ěow equation in
the LHA is

∂RHR = −1
π

arctan
(

Λ
R

)
+

2R+ ∂2
p̄p̄HR + ∂2

q̄q̄HR
2πDR

arctan
(

Λ
DR

)
(3.43)

where we deėned

DR =

√
R2 +R

(
∂2
p̄p̄HR + ∂2

q̄q̄HR
)
+ detH(2)

R .

In this scheme good estimates for the ground state energyE0 and the energy gapΔE1 = E1−E0

can be obtained by simple polynomial truncations. For a bare Hamiltonian which is a polyno-
mial of order n we consider two cases: a truncation with a polynomial of the same order n
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and another of order n + 1. In the laĨer case we add a suffix +1 to the corresponding quanti-
ties E+1

0 and ΔE+1
1 . We give the results obtained by choosing as an initial condition both the

Weyl-orderedHnW and the Weyl-uncorrected HamiltonianHn:

Bare Hamiltonian Eexact
0 E0 E+1

0 ΔEexact
1 ΔE1 ΔE+1

1

H2W 1/4 0.24936 0.24936 2 1.99871 1.99871
H2 1/2 0.49989 0.49994 2 1.99867 1.99985
H3W 1/8 0.12492 0.124886 13/4 3.24736 3.24905
H3 3/4 0.749849 0.74856 9/2 4.4991 4.4939

Tab.1 ĉe ground state energy E0 and the ėrst energy gap ΔE1 for the bare Hamiltonians
of eqs. (3.37) and (3.42), as computed from the Ěow eq. (3.43) by means of two polyno-
mial truncations: up to the same order or the bare Hamiltonian and up to the next order (+1

superscript).

Wenote that thequantitiesE0 andΔE1 dependon the local properties of the effectiveHamil-
tonian at theminimum(p̄ = q̄ = 0) and therefore canbe extractedwith a good approximation
adopting simple polynomial truncations. From the table we see that there is no clear paĨern
on the change of the precision of the results when increasing the order of the truncation. In the
worst case we ėnd a relative error of order 10−3. In order to achieve a beĨer accuracy, going to
next-to-leading order in the derivative expansion would probably do the job.

We remark that for the ėrst time in the functional RG approach one faces the ordering prob-
lem in the choice of the bare Hamiltonian function which corresponds to the initial condition
for the Ěow. ĉis feature generally extends to QFT, therefore one needs to keep it in mind be-
fore interpreting the results obtained by choosing an initial condition which is non-separable
in p and q.

3.2.4 TļĹĵŋĹŇĵĻĹĹĺĺĹķŉĽŋĹHĵŁĽŀŉŃłĽĵłĵķŉĽŃłĽłĺĹŇŁĽŃłĽķŅŊĵłŉŊŁŁĹķļĵł-
Ľķň

Since fermions usually have a ėrst order dynamics, the Hamiltonian formulation of it is iden-
tical to the Lagrangian one. ĉerefore the AEHA formalism in this case is identical to the tra-
ditional Lagrangian approach, that was discussed in section 2.2.2 For completeness we will
brieĚy give the real time version of the formulas presented there.

For a system whose Lagrangian variables are n real Grassmann-valued functions of time:{
θi(t)

}
i=1,...,n , evolving according to the following Lagrangian:

L(θ(t), ∂tθ(t)) =
1
2
θi(t)i∂tθj(t)δij − V(θi(t)) . (3.44)
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Deėning the momenta πi as the right partial derivatives of L with respect to ∂tθi we ėnd n
second class primary constraints:

χ i(t) = πi(t)−
i
2
δijθj(t) = 0 (3.45)

which cause the canonical Hamiltonian H = πi∂tθi − L = V(θi) to be independent of πi.
ĉerefore the functional integral over the reduced phase space reads

Z =

∫
[dθ]μ[θ]e iS[θ] , S[θ] =

∫
dt
[
1
2
θi i∂tθjδij − V(θi)

]
. (3.46)

Following the same coarse-graining scheme explained in the previous subsections we add the
term ΔSk[θ] =

∫
dt
[ 1
2θ

irk(−∂t2) i∂tθjδij
]
to the bare action and we deform the functional

measure: μk = (SDet σ̃k
2π )

1/2 = μ (SDet(1 + rk)δ)
1/2, where δ stands for a product of Dirac

and Kronecker deltas. ĉen the modiėed path integral reads

Zk[Ji] =
∫
[dθ]μk[θ]e

i{S[θ]+ΔSk[θ]+Ji·θi}. (3.47)

Starting from it, one deėnes the AEHA

ΔSk[θ̄] + Γk[θ̄
i
] = ext

Ji

(
Wk[Ji]− Ji · θ̄

i
)

(3.48)

which satisfy the following integro-differential equation

e iΓk[θ̄
i
] =

∫
[dθ]μk[θ]e

i
{
S[θ]+ΔSk[θ−θ̄]−Γk

←−
δ
δθ̄i
·(θ−θ̄)i

}
. (3.49)

and therefore the k→ Λ limit of Γk is just the bare action. ĉe Ěow equation for Γk reads

iΓ̇k = −
1
2
Tr
[
ṙk(1 + rk)−1δ

]
+

1
2
Tr

[
(ṙk i∂tδ)

(
rk i∂tδ +

−→
δ
δθ̄

Γk

←−
δ
δθ̄

)−1]
. (3.50)

where the trace is over {i, j} indices as well and, as in the bosonic case, in the matrix rki∂δ the
derivatives act on the ėrst index.

3.3 TļĹ ĹĺĺĹķŉĽŋĹHĵŁĽŀŉŃłĽĵł ĵķŉĽŃł Ľł ŅŊĵłŉŊŁ ĺĽĹŀĸ ŉļĹŃŇŏ

ĉere are at least two possible generalizations of the previous formalism to quantum ėeld the-
ory (QFT).
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ĉe simplest can be obtained by embracing the traditional Hamiltonian formulation of ėeld
theory, where one associates a canonically conjugate ėeld (momentum) to the time deriva-
tive of each Lagrangian coordinate. ĉis choice leads to a non covariant formulation. ĉe
translation of all previous formulas to this framework can be obtained by replacing the bare
Hamiltonian with the spatial integral of a Hamiltonian density, and promoting the integrals
and functional traces to sums over spatial positions as well as time instants. In this way one can
obtain a formal deėnition of the non covariant effective Hamiltonian action and extend all the
previous discussions developed in section 2.1.

However, in so doing, willing to construct the corresponding coarse-graining procedure for
the Ěow of the average effective Hamiltonian action, one faces the necessity to regularize the
spatial part of these summations, which are otherwise ill-deėned. In other words the regulator
matrix Rk, appearing in ΔSk and μk, must now contain operators depending on spatial deriva-
tives too. For instance, choosing an off diagonal Rk one could consider

Rk(x, x′) =

(
0 rk(−�)∂0δ(x− x′)

−rk(−�)∂0δ(x− x′) 0

)

μk =

[
Det

1
2π

(
0 (1 + rk(−�)) ∂0δ(x− x′)

− (1 + rk(−�)) ∂0δ(x− x′) 0

)] 1
2

but this choice would explicitely break Lorentz symmetry. Instead it would be easy to write
more general regulators preserving such a symmetry, even if in an implicit form. In both cases
one may study the AEHA deėned by the integro-differential equation

eiΓk[π̄,φ̄] =
∫

[dπdφ] μk[π, φ]e
i
{
S[π,φ]+ΔSk[π−π̄,φ−φ̄]−(π−π̄)

δΓk
δπ̄ −(φ−φ̄)

δΓk
δφ̄

}
.

ĉis road could be useful if one is interested in non-relativistic ėeld theories, but for relativistic
systems, since Lorentz invariance is not manifest, in this framework it is hard to distinguish
truncations for Γk that are Lorentz symmetric from those that are not (one would have to deal
with Ward-Takahashi-Slavnov-Taylor identities).

Another possibility is to choose a covariant Hamiltonian formalism, in which one intro-
duces a momentum ėeld for each ėrst order partial derivative of the Lagrangian coordinates,
thus preserving manifest Lorentz covariance. In the following we will give the two simplest
examples of how this could work: spin zero and spin one half ėeld theories. ĉere are several
choices one can do. In this thesis we shall aĨempt to use a reduced approach, which has the
advantage of being the minimal extension, which on one side preserves the general results in
0+1 dimensions (QM) and on the other side leads to the usual QFT results in the case of
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quadratic bare Hamiltonians. More general formulations as well as speciėc applications will
be considered elsewhere.

3.3.1 CŃŋĵŇĽĵłŉ HĵŁĽŀŉŃłĽĵł ňķĵŀĵŇ ĺĽĹŀĸ ŉļĹŃŇŏ

Let us build the covariant Hamiltonian formulation of a classical unconstrained single scalar
ėeld in d spacetime dimensions with the standard Lagrangian density

L(φ, ∂νφ) = −
1
2
(∂νφ) (∂νφ)− V(φ)

(in a Minkowski mostly-plus signature). ĉe covariant Hamiltonian density is deėned as the
extremum

H(πν, φ) = ext
∂νφ

(−πν∂νφ− L(φ, ∂νφ)) = −
πνπν

2
+ V(φ) (3.51)

and by demanding the stationarity of the Hamiltonian action

S =
∫
ddx [−πν∂νφ−H] (3.52)

one ėnds the De Donder-Weyl equations

πν = ∂νφ , ∂νπν = V′(φ)

i.e. a ėrst order system equivalent to�φ − V′(φ) = 0 . Here the dynamics of πν and φ seem
to be completely coupled, however this is not the case. In fact the Lorentz vector πν can be
decomposed into a transverse and a gradient part πν = πν⊥ + πν‖, by means of the standard
projectors Πμν

‖ = ∂μ∂ν/� and Πμν
⊥ = ημν − Πμν

‖ . Rewriting the Hamiltonian action density
in terms of these reduced degrees of freedom (and assuming that the boundary terms coming
from integration by parts do not contribute) one ėnds−πν‖∂νφ−H with

H(πν⊥, πν‖, φ) = −
π⊥νπν⊥

2
−

πν‖π‖ν
2

+ V(φ)

and the corresponding Hamiltonian equations

πν‖ = ∂νφ , ∂νπν‖ = V′(φ) , πν⊥ = 0 .

Hence the transverse momenta are classically irrelevant if the Hamiltonian is quadratically de-
pendingon them. ĉis translates into the followingquantumproperty: if the bareHamiltonian
is separable in π and φ and quadratically depending on π, the functional integration over trans-
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verse momenta factorizes from those on the other two ėelds.
Now let us address the possibility to extend this formalism to covariant Hamiltonian den-

sities that are more than quadratic in the momenta. ĉe classical decoupling of the transverse
momenta, i.e. their factorization in the functional integral, can happen also for non-quadratic
Hamiltonians, such as for instanceH = T(πμπμ) + V(φ). Insisting in the validity of the clas-
sical variational principle for the action (3.52) the classical equations read

∂νπν‖ =
δ
δφ

∫
ddxH , −∂νφ =

δ
δπν‖

∫
ddxH ,

δ
δπν⊥

∫
ddxH = 0 .

ĉe interesting question now iswhether the third equation is a constraint or it gives a dynamics
to the transverse momenta. IfH does not contain derivatives of πν⊥, and if one can perform
some sort of Fourier transform such that πν⊥ canbe considered orthogonal to∂ν with respect to
the metric in Minkowski spacetime, then the third equation cannot contain derivatives of πν⊥.
ĉerefore, under these assumptions, one can always solve the third equation by writing πν⊥ as
a local (ifH is local) function of πν‖, φ and their derivatives. By substituting this solution in the
ėrst two equations one gets a coupled dynamics for the unconstrained variables πν‖ and φ only.
ĉat is, under these assumptions the transverse momenta do not have their own independent
dynamics and behave only as redundant variables which can be eliminatedwithout loosing the
locality of the action. However even in this case the quantization of the theory containing the
πν⊥ ėelds is not equivalent to the quantization of the theory in which one got rid of them by
means of the classical equations, since in the ėrst case one has a full functional integral over
πν⊥, whose stationary phase approximation gives the second quantum theory. Nevertheless,
considering an Hamiltonian action depending on parallel momenta only, although it is not
the most general case, is already a consistent and covariant generalization of the standard non-
covariant Hamiltonian approach, reproducing the known results for quadratic Hamiltonians.
ĉerefore in this thesis we will restrict ourselves to such a case.

ĉeaimof the rest of this section is to givemeaning to thequantizationof the classical theory
with the bare action (3.52) under the assumption thatH depends on πν‖ only. Since in this
case the bare action S does not depend on πν⊥, we are in presence of a gauge symmetry: by
introducing projectorswhere needed, S can be rewriĨen in a formwhich ismanifestly invariant
under the inėnitesimal transformation: δπν(x) = Πνρ

⊥ ερ(x), for any inėnitesimal vector ėeld
ε. In this chapter we will discuss the functional integral quantization of the theory by means
of the introduction of the constraint Πνρ

⊥ πρ = 0 in the functional measure (something like a
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sharp gauge ėxing¹). ĉus, the generating functional of the theory will be

Z[Iν, J] = eiW[Iν,J] =

∫
[dπνdφ] δ

[
Πνρ
⊥ πρ

]
μ e i{S[π

ν,φ]+Iν·πν+J·φ} . (3.53)

Notice that, dependingonwhich regularization andprecise deėnitionof the functional integral
is chosen, the functional integration over [dπν‖] and the constrained integration [dπν]δ

[
Πνρ
⊥ πρ

]
could differ by a ėeld-independent Jacobian determinant. A skeletonized deėnition in Fourier
space, i.e. the use of a discretization of Fourier space, would make this Jacobian to be equal to
one. Whenever such a Jacobian is unity, since the constraint kills all but one of the integrals
over the π’s, the usual functional measure μ = Det 1

2π provides the normalization needed in
order to reproduce the known results for bare Hamiltonian actions quadratic in the momenta.
Otherwise μ needs to be different (but still ėeld-independent) in order to balance the Jacobian
determinant. Starting fromeq. (3.53) thedeėnitionof the effectiveHamiltonian action is again

Γ [π̄ν, φ̄] = ext
Iν,J

(W[Iν, J]− Iν · π̄ν − J · φ̄) (3.54)

which is equivalent to state that Γ is the solution of the following integro-differential equation
with suitable boundary conditions

eiΓ[π̄
ν,φ̄] =

∫
[dπνdφ] δ

[
Πνρ
⊥ πρ

]
μ e i{S[π

ν,φ]−(π−π̄)ν δΓ
δπ̄ν−(φ−φ̄)

δΓ
δφ̄} . (3.55)

In the following we shall try to give a deėnition of the integrals (3.53) and (3.55) based
on an RG Ěow equation for the average version of the effective action. First of all, one has to
introduce k-dependent operators that disappear in the k → 0 limit and that provide a rising
delta functional in the k→ Λ limit. As before let us denote this regularization as follows

Zk[Iν, J] =
∫

[dπνdφ] δ
[
Πνρ
⊥ πρ

]
μk e

i{S[πν,φ]+ΔSk[πν,φ]+Iν·πν+J·φ} .

Wewill choose a regularizationcorresponding to ak-dependentdeformationof the termwhose
one-dimensional version is the Legendre transform term, i.e. −πμ∂μφ. In other words, we will

¹Dirac’s classiėcation of constraints and the consequent quantization schemes for gauge theories are based
on the non-covariant Hamiltonian formalism and therefore are not straightforwardly applicable to the present
case. However classical constrained dynamics has been extensively discussed in the literature about the co-
variant Hamiltonian formalism(s) [57] and some proposals have been provided about the corresponding path
integral quantization of gauge theories [65].
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restrict to an off-diagonal Rk, or more explicitly

ΔSk[πν, φ] =

∫
ddx [−πνrk(−�)∂νφ] (3.56)

μk = μ

[
Det

(
0 − (1 + rk(−�)) ∂νδ(x− x′)

(1 + rk(−�)) ∂νδ(x− x′) 0

)] 1
2

.

ĉe deėnition of the AEHA is the same as in quantum mechanics

Γk [π̄ν, φ̄] + ΔSk [π̄ν, φ̄] = ext
Iν,J

(Wk[Iν, J]− Iν · π̄ν − J · φ̄) (3.57)

wherefrom the usual integro-differential equation

eiΓk[π̄
ν,φ̄] =

∫
[dπνdφ] δ

[
Πνρ
⊥ πρ

]
μk e

i
{
S[πν,φ]+ΔSk[(π−π̄)ν,φ−φ̄]−(π−π̄)ν

δΓk
δπ̄ν−(φ−φ̄)

δΓk
δφ̄

}
. (3.58)

By taking the k∂k derivative of eq. (3.58) one ėnds

iΓ̇k =
μ̇k
μk
− i
∫
ddx〈(π − π̄)ν ṙk∂ν(φ− φ̄)〉 . (3.59)

For the second term,weneed towrite the twopoint function in termsof derivatives of Γk. Since
this theory contains oneLagrangian coordinate andonemomentum, Γ(2) is a two-dimensional
square matrix, as in quantum mechanics. However, our momentum is a vector ėeld bringing
a Lorentz index, and even if it lies in a one-dimensional subspace, such a subspace varies from
point to point in spacetime. ĉus, unless we want to choose a frame in the tangent bundle
such that at every spacetime point x the vector πν(x) has only one and the same non-vanishing
component, we are forced to deal with it as a generic Lorentz vector. Since we prefer to write
formulas in a generic frame, we will treat Γ(2) as a generic (d+ 1)-dimensional square matrix,
whose entries can be wriĨen as four blocks: a (1, 1) tensor (d-by-d square matrix), one con-
travariant (column) vector, one covariant (row) vector, and one Lorentz scalar. Because the
momenta enter the theory naturally with high indices (to be contracted with derivatives), we
will treat them as column vectors. ĉerefore the source Iwill become a row vector. Wewill de-
note by ()t the transposition of these objects, that is the canonical isomorphism deėned by the
spacetime metric. ĉus πt and It will denote row and column vectors respectively. Of course
derivatives with respect to contravariant (covariant) vectors will be considered covariant (con-
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travariant). Going back to the task of computing the two point functions, since

i〈T

(
(π− π̄)x ⊗ (π− π̄)tx′ (π− π̄)x(φ−φ̄)x′
(φ−φ̄)x(π− π̄)tx′ (φ−φ̄)x(φ−φ̄)x′

)
〉k = W(2)

k xx′ [I, J] =

(
δWk
δIx
⊗
(←−δ
δIx′

)t δ2Wk
δJx′δIx( δ2Wk

δIx′δJx

)t δ2Wk
δJx′δJx

)

one needs an explicit expression for the vector δ2Wk
δJδI in terms of Γk. ĉis can be found by using

Iμ = rk∂μφ̄−
δΓk

δπ̄μ
, J = −rk∂ν π̄ν −

δΓk

δφ̄

thus geĨing

W(2)
k xx′ [I, J] =

(
π̄ ⊗

(←−δ
δI

)t δπ̄
δJ( δφ̄

δI

)t δφ̄
δJ

)
xx′

=

(
It ⊗

←−
δ
δπ̄

( δI
δφ̄

)t
δJ
δπ̄

δJ
δφ̄

)−1
xx′

= −

(( δΓk
δπ̄

)t ⊗ ←−δδπ̄ (
−rk∂δ + δ2Γk

δφ̄δπ̄

)t
rk∂δ + δ2Γk

δπ̄δφ̄
δ2Γk
δφ̄δφ̄

)−1
xx′

≡ −

(
A B
BT D

)−1
xx′

where (rk∂δ)x1x2 = rk(−∂2
x1)∂x1δ(x1 − x2) is a Lorentz covariant (row) vector. ĉis matrix

is manifestly symmetric with respect to full transposition T of both Lorentz and spacetime-
position indeces. Since the building blocks B and BT are not square matrices, we cannot use
formula (3.14). Anyway, if A and (D− BTA−1B) are non singular this becomes

W(2)
k [I, J] = −

(
A−1 + A−1B(D− BTA−1B)−1BTA−1 −A−1B(D− BTA−1B)−1

−(D− BTA−1B)−1BTA−1 (D− BTA−1B)−1

)
(3.60)

if insteadD and (A− BD−1BT) are non singular, then we can write

W(2)
k [I, J] = −

(
(A− BD−1BT)−1 −(A− BD−1BT)−1BD−1

−D−1BT(A− BD−1BT)−1 D−1 + D−1BT(A− BD−1BT)−1BD−1

)
.

(3.61)
ĉe off-diagonal entries of these matrices can be ėnally plugged into eq. (3.59). ĉus, if for
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instance A and (D− BTA−1B) are non singular the ėnal Ěow equation is

iΓ̇k = Tr
[
ṙk (1 + rk)

−1 δ
]
− Tr

[(
rk∂δ +

δ2Γk

δπ̄δφ̄

)(
δ2Γk

δπ̄δπ̄

)−1
(ṙk∂δ)[

δ2Γk

δφ̄δφ̄
−
(
rk∂δ +

δ2Γk

δπ̄δφ̄

)(
δ2Γk

δπ̄δπ̄

)−1(
rk∂δ +

δ2Γk

δπ̄δφ̄

)T
]−1 ]

. (3.62)

Here for sake of notational simplicity we dropped the symbols for tensor products andLorentz
transpositions. By means of eq. (3.61) the reader can write down a similar Ěow equation for
the case in whichD and (A− BD−1BT) are non singular.

As an example let’s discuss the LHA for a scalar theory enjoying Z2-symmetry under si-
multaneous reĚections: πν → −πν, φ → −φ. In other words, we are going to insert the
approximation

Γk =

∫
ddx
[
−π̄ν∂νφ̄−Hk

(
π̄2

2
,
φ̄2

2

)]
(3.63)

where π̄2 ≡ π̄ν π̄ν, in the previous Ěow equation. In order to project the r.h.s. of the Ěow
equation inside such an ansatz for Γk, one usually evaluates it on constant ėeld conėgurations.
ĉis can be done also in the present case, without contradicting the assumption that the mo-
menta π̄ν be longitudinal, by choosing the Fourier transform of π̄ν pointing in the same di-
rection of the Fourier variable and being proportional to a delta function. We will denote by
H(i,j)

k the result of differentiating Hk i-times w.r.t. π̄2
2 and j-times w.r.t. φ2

2 . Let us recall the
notation already used in quantummechanics (see eq. (3.34)) for the regulator in the LHA, i.e.
Pk(−�) = (1 + rk(−�))2(−�). Let us also introduce for convenience the function

σd(α) = 2F1
(

1
2
, 1;

d
2
; α
)

(3.64)

and the following threshold functional

ld0[α, β] =
1
4
v−1d k−d

∫
ddp
(2π)d

Ṗk(p2)
Pk(p2) + k2β(p2)

σd(α(p2)) (3.65)

where v−1d = 2d+1πd/2Γ(d2). ĉen the Ěow equation for the dimensionful average effective
Hamiltonian density can be wriĨen

iḢk = 2vdkd
(
ld0[αH, βH]− ld0[αH, 0]

)
(3.66)
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where we further deėned the dimensionless quantities

αH(p2)=
Pk(p2)

Pk(p2) + k2βH

π̄2H(2,0)
k

H(1,0)
k + π̄2H(2,0)

k

(3.67)

βH=
1
k2

[
π̄2φ̄2

(
H(1,1)

k

)2 H(1,0)
k

H(1,0)
k + π̄2H(2,0)

k

−H(1,0)
k

(
H(0,1)

k + φ̄2H(0,2)
k

)]
(3.68)

the second of which is not a function of p2. First of all let us notice that if we make the ansatz
that the theory be quadratic in the momenta at every scale, then the vanishing ofH(2,0)

k en-
tails the vanishing of αH and we recover the Lagrangian Ěow in the LPA. If instead αH is non-
vanishing, the presence of a p-dependent denominator in the argument of the function σd in
general makes the analytic computation of ld0 quite hard. For this reason it is wise to choose the
regulator in such a way to kill the p-dependence of all the denominators. In the LHA this can
be accomplished by means of the optimized regulator rk(p2) =

(
k/
√

p2 − 1
)
θ(k2 − p2), i.e.

Pk(p2) = (k2 − p2)θ(k2 − p2). For such a choice

αH(p2) =
1

1 + βH

π̄2H(2,0)
k

H(1,0)
k + π̄2H(2,0)

k

(3.69)

is p-independent and the threshold function for constant argument becomes

ld0[α, β] =
2
d

1
1 + β

σd(α) .

Tosumup, for theoptimized regulator theĚowequationof theLHAreads (aěerWick rotation)

Ḣ = −4
d
vdkd

βH
1 + βH

σd(αH) (3.70)

with βH and αH given by (3.68) and (3.69). ĉe function σd takes simpler forms for integer d.
For instance, in d = 2, d = 3 and d = 4 it respectively reads

σ2(α) = (1− α)−
1
2 , σ3(α) =

arctanh(
√
α)√

α
, σ4(α) =

2
α

[
1− (1− α)−

1
2

]
.

(3.71)
Equation (3.66) can be taken as a ėrst step towards the nonperturbative study of scalarQFT in
the covariant Hamiltonian formalism. In particular, one of the ėrst questions to be addressed
is whether such an equation admits non-Gaussian ėxed points. In case a positive answer exists,
these could provide a possible solution to the triviality problem of scalar QFT in four dimen-
sions (see section 5.1 for a detailed discussion of this problem). In fact, choosing the engi-
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neering dimensions of the ėelds in such a way that the coefficients of the π̄2 and Legendre
terms be dimensionless, dimensional analysis tells us that the coupling multiplying the oper-
ator (π̄2)i(φ̄2)j has dimensionality dij = (1 − i − j)d + 2j. ĉerefore in d = 4 the only
momentum dependent non IR-irrelevant term is π̄2, all other terms with positive integers (i, j)
being IR-irrelevant. In other words, scalar theories more than quadratic in the momenta are
expected to be highly favored in the UV and to be well approximated by quadratic theories in
the IR. From this point of view it seems reasonable to look for the UV completion of four di-
mensional scalar QFT in a general Hamiltonian framework. For instance this could be done
according to the paradigm of asymptotic safety described in the introducing chapter of this
thesis. On the other hand this very same argument in the case of a simpler scalar QFT in con-
ėguration space is oěen used for a qualitative understanding of the absence of Z2-symmetric
non-Gaussian ėxed points in d = 4: in this case the only IR-relevantmonomial-like operator is
the mass term, all other monomials being either marginal or IR-irrelevant. Nevertheless, since
in the present formulation the theory contains not only a scalar ėeld but also a longitudinal
vector ėeld, we believe that the understanding of this issue requires explicit computations in
order to reveal the details of the underlying dynamics.

Another interesting question regarding eq. (3.66) is whether it can teach us to what extent
the covariantHamiltonian framework adopted in this chapter is soundanduseful. Inparticular,
it would be interesting to compare, within a ėxed approximation such as the LHA, the RG
Ěow of the traditional non-covariant Hamiltonian formulation with that of the covariant one
allowing for longitudinal momenta only (the present case) and with the one allowing also for
transverse momenta. ĉese and other questions will be leě open by the present work.

3.3.2 SńĽłŃŇ ĺĽĹŀĸ ŉļĹŃŇŏ

Let us build the covariant Hamiltonian formulation of a classical Lagrangian ėeld theory for
a single Dirac ėeld in a number d (allowing Dirac spinors) of spacetime dimensions with the
standard Lagrangian density

L(ψ, ∂νψ) = −ψ̄i∂/ψ − V(ψ̄, ψ)

(in a Minkowski mostly-plus signature) where ψ̄ = iψ†γ0 . Deėning the momenta πν as the
right partial derivatives of−Lwith respect to ∂νψ we ėnd d second class primary constraints:

χν(x) = πν(x)− ψ̄(x)γν = 0 (3.72)
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whose solution is ψ̄ = 1
dπ

νγν. ĉese constraints boil down the momenta to functions of just
one ėeld, hence there is no room here for the other d − 1 conjugate ėelds that in the bosonic
case could be identiėed with the transverse momenta. ĉe relevant phase space is the surface
S deėned by (3.72), the only independent coordinate on it is ψ and the functional integral is
to be taken over all histories ψ(x). ĉe covariant Hamiltonian density is deėned as

H(πν, ψ) = ext
∂νψ

(−πν∂νψ − L(ψ, ∂νψ)) = V(−1
d
πνγν, ψ)

and on S it is just V(ψ̄, ψ). ĉus the covariant AEHA formalism in this case is equivalent to
the usual Lagrangian approach, exactly as was previously described for fermionicQM, one has
just to replace time derivatives with i∂/ operators.

3.4 OŊŉŀŃŃĿ

In this chapterwe have focused on the description of quantumdynamics bymeans of the quan-
tum effective Hamiltonian action (EHA).We have ėrst reviewed its properties by a discussion
in quantummechanics, taking advantage of the fact thatQMand non covariantQFT’s are very
similar in this respect. We have then discussed how to compute the effective action. For in-
stance we have derived a general one loop formula, which can be useful to compare the results
obtained by other approaches, and we have generalized the variational deėnition provided a
long time ago by Jackiw and Kerman [66] for its Lagrangian counterpart. But the main goal of
this chapter is to provide an alternative non-perturbative tool to compute the EHA. ĉis is an
Hamiltonian generalization of the so-called functional renormalization group, in particular of
the formulation by WeĨerich based on the average effective (Lagrangian) action [8].

Such a generalization, which is one of the main results of this chapter, is straightforward in
QM, even if the one-parameter-dependent family of cutoffoperators iswider and in general the
formulae aremore cumbersome. Starting from themost general Ěow equationwehave derived
simpler equations like the one associated to the so called local Hamiltonian approximation
(LHA), i.e. the leading order in the derivative expansion. In order to show that the approach is
trustworthy, wehave studied, as an example, a family of quantummechanical systemswith bare
Hamiltonians non quadratic in themomenta, we have computed for two cases the ground state
energy and the ėrst energy gap, and we have successfully compared them to the exact results,
employing different kind of schemes and approximations. We stress that for the models under
consideration we needed to take into account, as expected, the issue of Weyl ordering, which
turns out to be at the base of the present Ěow equation quantization as it is well known to be
for the functional integral quantization. ĉis fact calls for some care in deėning the concept of
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a bare non separable Hamiltonian action.
ĉe application of the formalism developed for QM to theQFT case is straightforward and

quickly discussed but, as in all Hamiltonian approaches to QFT, one must pay full generality
and manifest unitarity with non-manifest Lorentz covariance. ĉis is unpleasant and compli-
cates the job of performing approximations without breaking such a symmetry. For this rea-
son, in the second part of the chapter, we have discussed the possibility to generalize the EHA
formalism to include also covariant Hamiltonian QFT. Functional integral quantizations of
such theories have already been addressed in the literature, especially for gauge theories. In
the present chapter we have addressed the simplest cases of scalar and spinor degrees of free-
dom. Actually, for scalar QFT we further restricted our work to the presence of one conjugate
momentum only, namely a longitudinal vector ėeld. In this speciėc case we have provided
an RG Ěow equation representation of the corresponding QFT, and we have worked out its
explicit form in the LHA.

Let us close this chapter addressing the issue of the physical motivations for the formalism
built in it and of its usefulness. Clearly, the use of this framework is related to Hamiltonian
systems non quadratic in momenta, therefore we should comment on the question: where are
them or why should we look for them?

Quantum mechanical systems more than quadratic in the momenta may be interesting on
the base of ėrst principles (think about the action of the free relativistic particle) or arise as ef-
fective descriptions of physical systems. Also, they could appear as intermediate technical tools
for the description ofmore complicated systems. For instance, within theworldline formalism,
one-loop computations are reduced to quantum mechanical path integrals with Hamiltonians
which sometimes are non-quadratic in the momenta [68]. In these cases one can hope to use
this approach as an alternative or a complementary tool to perturbation theory.

ĉeories more than quadratic in the momenta, when reduced to the Lagrangian formula-
tion, show a nonlinear dependence on the derivatives of the ėelds. ĉis dependence, if ex-
panded in powers and truncated, typically generates violations of unitarity. Nevertheless be-
fore truncationnothingprevents such theories frombeingunitary. ĉat is, theremight be some
interesting non trivial extensions of quantummodels which are non-quadratic in themomenta
and that make perfectly sense from a quantum mechanical point of view.

Why should we look for them? As already commented at the end of the section on scalar
QFT, the study of the RG Ěow on the Hamiltonian theory space might show new possibilities
for the UV or IR behavior of systems that at some intermediate scale are well approximated
by simple Lagrangian theories. Stated in different words, keeping both phase space variables
couldmake easier the task of parameterizing the quantumdynamics far from that intermediate
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simple Lagrangian scale. One reason for such an expectation is the following: we know that
the effective actions are in general non-local, and that integrating out non-Gaussian degrees of
freedom is responsible for such non-localities, therefore avoiding to integrate out themomenta
should be of help in the hard task of reducing as far as possible the importance of non-local in-
teractions. Restated onemore time: even by studying the running of approximate local actions
on the Hamiltonian theory space one can, just by puĨing the momenta on-shell, have access
to at least part of the running of non-local actions in the Lagrangian theory space. For these
reasons also the study of theories whose bare actions are quadratic but that Ěow to AEHA’s
more than quadratic in themomenta could beneėt from this ėrst order formulation. Examples
are the covariant Hamiltonian formulation of Yang-Mills theory and generic nonlinear sigma
models, which in our opinion deserve future investigations within the present framework.

ĉe analysis of Hamiltonian Ěows might open the intriguing possibility of ėnding systems
belonging to new universality classes, by looking for ėxed points of the Ěow in the Hamilto-
nian formulation. We have started to consider this challenging problem within the “reduced”
covariant formulation of scalar QFT presented in this chapter, and we hope to report on this
soon. ĉe results of all these studies will in general depend on the kind of Hamiltonian for-
mulation we choose, a fact that enables one to quantitatively compare different quantization
prescriptions as well as to look for physical systems described by each of them. ĉus, in our
opinion, a vast playground lies open, waiting for future investigations.
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4
Scalar O(N)models

Ał HĵŁĽŀŉŃłĽĵł ŇĹńŇĹňĹłŉĵŉĽŃł Ńĺ ĶŃŉļ ŀĽłĹĵŇ ĵłĸ łŃłŀĽłĹĵŇ O(N) ŁŃĸĹŀň is
discussed, generalizing the treatment of a single scalar ėeld theory presented in the previous
chapter within the Lorentz covariant approach. ĉis representation preserves themanifest co-
variance under all the linear symmetries of themodels, Lorentz included, while invariance un-
der inėnitesimal nonlinear transformations is ensured for all the truncations satisfying a set of
modiėed Ward-Takahashi identities. ĉe problem of allowing for global effects in target space
is reviewed and then discussed within this representation. ĉe guiding lines of this ongoing
research as well as the motivations and the expectations are brieĚy described.

4.1 TļĹ ŀĽłĹĵŇ ĵłĸ ŉļĹ łŃłŀĽłĹĵŇ ŁŃĸĹŀ

O(N)models areėeld theoriespossessing the following symmetries: theLorentz groupSO(1,d−
1) in spacetime, or the rotation group SO(d) in space, translations in spacetime, and a global
inner O(N) symmetry in the target manifold. ĉe scalar version of these models is obtained
allowing only trivial representations of the Lorentz group on conėguration space, i.e. assum-
ing that conėguration space is coordinatized by scalar ėelds. Different scalar O(N) models
can be obtained by choosing different representations of the O(N) symmetry. Two choices
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are the most studied in the literature. ĉe name “linear O(N) model”, or O(N) vector model,
is usually reserved to a linear irreducible representation of the full O(N) group. In this case
the target manifold can be imagined as a Euclidean vector space. Given a set of global coor-
dinates {γa}a=1,...,N onM we deėne N scalar ėelds φa(x) = γa(q(x)), which we collect for
convenience in a vector φ. ĉe elements of the symmetry group are represented byN×N or-
thogonal matrices and the action of the group on conėguration space is represented by matrix
multiplication between these matrices and the vector φ. ĉe name “nonlinear O(N) model”,
usually refers to a representation that is linear and irreducible for the subgroup O(N−1) and
nonlinear for the coset O(N)/O(N−1).

What is known about such representations? Given a compact, connected, semisimple Lie
group G of dimension dg and a continuous subgroup H of dimension dh, the classiėcation of
the nonlinear representations ofG that become linear when restricted toHwas shown in [69]
to be equivalent to the classiėcation of the representations ofG on a dg-dimensional manifold
F such thatH is the stabilizer group of some reference point f? onF . Calling ρ the action of
G on F , since ρ(H) is the stabilizer of f?, it is possible to choose local coordinates for F in
a neighborhood of f? such that ρ restricted to H is linear. Furthermore, one can restrict ρ to
a speciėc submanifold of F and still have a well deėned representation. ĉis submanifold is
the orbit of f? under ρ(G), it has dimension dg − dh and we will call itM. One can provide
local coordinates forM in a neighborhoodof f? introducing aCartandecompositionof theLie
algebra into {ti}i=1,...,dh generators ofH and {ta}a=dh+1,...,dg generators of the right cosetG/H,
the two sets beingorthogonalwith respect to theCartan inner product, and taking advantageof
the exponentialmap. ĉe local coordinates ofm ∈M are calledφa(m) andaredeėnedbym =

ρ
(
eiφa(m)ta

)
f?. ĉese coordinates transform nonlinearly under G according to: φ → φ′(φ, g)

where ρ(g)m = eφ′a(m)ta f?. In conclusion, the problem of building a nonlinear representation
of G that becomes linear when restricted to H leads one to choose a target manifoldM that
locally can be built as the orbit of some reference point f? under the action ofG/H.

If we restrict ourselves to the special groups, in the present caseG =SO(N),H =SO(N−1)
and G/H ≈ SN−1 = M. ĉerefore one could be lead to take as an equivalent deėnition of
scalar nonlinear SO(N)model: a scalar ėeld theory whose target manifold is the N−1 sphere.
In this case, nonlinear O(N) models would fall in the wider category of the nonlinear sigma
models [70, 71], i.e. ėeld theories whose target is a smooth Riemannian manifold. One rea-
son to question the equivalence of the two deėnitions is related to the possibility to extend the
arguments of [69] beyond the need for a reference point in target manifold and the conėne-
ment inside its neighborhood. It oěen happens in ėeld theory that local expansions in powers
of ėeld Ěuctuations are equivalent to small coupling expansions, therefore the extension be-
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yond a local analysis is oěen considered nonperturbative. In the literature many such analyses
have been performed, revealing important global effects, such as instantons, in ėeld theories
deėned on topologically nontrivial manifolds. ĉerefore, regarless the possible inequivalence
of the two deėnitions, it is very interesting to allow for global effects in such models.

On the other hand, the emphasis on the presence of a reference point is understood on
the basis of the development of such models for the description of the dynamics of Nambu-
Goldstonebosons. In fact, spontaneous symmetry breaking is oěendescribed as the formation
of a nonvanishing vacuum expectation value (vev) for the ėelds, that is not invariant under the
full global symmetry G but only over a subgroup H. ĉen, such a vev provides a reference
point in the target manifold F of the theory describing the symmetric regime, and applying
the construction cited above one can formulate a new ėeld theory for the broken regime, in a
new target manifoldM on which new ėelds, the Nambu-Goldstone bosons, take values. ĉe
presence of such a reference point does not clash with the nonperturbative request of a global
and geometric deėnition for the model: since the real conėguration space of the theory is a
set of histories taking values on the sphere, the fact that the average history be siĨing at some
point f? for any x ∈ S does not break the freedom to change coordinates on the sphere.

ĉerefore one good phenomenological motivation for addressing the study of linear and
nonlinearO(N)models altogether is: the same physical system in twodifferent regimes can be
described by these two different models. Another very good reason is related to the hypotesis
that these two systems belong to the same universality class. ĉis is just a particular case of the
general hypothesis that two short-range theories in the same spacetimedimension andwith the
same symmetries belong to the sameuniversality class. For the case of theO(N)models, many
studies performed with many different methods suggest that this is indeed the case [72, 73].
ĉis is why in this chapter we will formulate the two theories in the most similar way, and try
to study both of them within the same framework, by means of the fRG.

4.2 ĺRG ĵłĸ ŉļĹ ĻŀŃĶĵŀ ĸĹĺĽłĽŉĽŃł Ńĺ ŉļĹ łŃłŀĽłĹĵŇ ŁŃĸĹŀ

Our analysis will take into account the different kind of representations of theO(N) symmetry
in the two cases, but it will not address the peculiar nontrivial topological properties of the
nonlinear model. In fact in the fRG approach it is far from obvious how to properly take into
account global effects. ĉe problem about kinks in QM [74, 75, 76] is just a soě version of
the challenge provided by topologically nontrivial sectors of quantum ėeld theory excitations.
Traditionally, nonlinear sigmamodels such as theO(N)or theCPN model have been reference
models for the study of these aspects, and were considered toy models for the understanding
of Yang-Mills theory [77]. ĉerefore it would be very important to be able to reproduce the
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known global effects by fRG computations.

4.2.1 TļĹ ĻĹŃŁĹŉŇĽķ ĶĵķĿĻŇŃŊłĸ ĺĽĹŀĸ ŁĹŉļŃĸ

All the studies of nonlinear sigmamodels performed so farwithin the renormalizationĚow rep-
resentation [17, 22, 78, 79, 80, 81, 82] were based on the traditional background ėeld method
(BFM) for the construction of the geometric effective action [18, 19, 83], that fromhere onwe
will call geometric BFM(gBFM). In this framework, one starts with a reference point f? onM
and couples external sources to the derivative w.r.t. f? of the geodesic displacement from this
point. Since the geodesic displacement is well deėned only locally, because of the existence of
caustics, the resulting theorywill also be restricted to a local chart, regardless of the representa-
tion chosen for the quantum dynamics (functional integrals, Schwinger-Dyson equations, RG
Ěow equations or anything else), unless one adds further information as we will explain soon.
On the other hand, the main advantage of this method is the fact that any variable appearing
in it has a well deėned geometrical, though local, meaning, independent of the choice of local
coordinates. One negative aspect of this method is the appearance of two external sources, the
one coupled to the gradient of the geodesic displacement and the reference point itself. ĉis
property translates in the doubling of the theory space in a fRG framework, with a consequent
doubling of complexity in the choice of approximation schemes and in the computations. To
understand how variations in the choice of the reference point can be undone by variations in
the choice of the other source, or equivalently by variations in the ėeld vev, one needs to work
out the so calledNielsen identities [19]which, if solved togetherwith the dinamical equations,
again reduce the dimension of theory space by a factor 2. Another way to prevent this doubling
proposed by B. DeWiĨ is the identiėcation of the reference point with the vev of the quantum
ėeld, but this leads to a deėnition of the quantum effective action again by means of two en-
tangled equations, thus conserving the double-complexity spell. Apart for these limitations,
the gBFM has been fruitfully applied in the fRG framework to nonlinear sigmamodels, gauge
theories [84] and gravity [85]. Let us also mention that aĨempts to get global information
from the geometric gBFM has been started for nonlinear sigma models in [82]

Motivatedby themonopolizing successof thismethod, andby someapparent lackof success
in the computation of the critical exponents for theO(N)nonlinearmodel [81], wewould like
to develop here and alternative approach for the fRG study of the laĨer. ĉe goal we put ahead
of us is to compare the results with the ones obtained by the gBFM, by ordinary perturbation
theory, laĨice simulations, the conformal ėeld theory operatorial approach, thermodinamic
Bethe ansatz, spin wave theory and all other available methods. ĉis approach is based on the
phase space formulation discussed in the previous chapter and so far shares all the negative
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qualities and lacks themain advantage of the gBFM. It lacks manifest invariance under coordi-
nate transformations on the targetM, since the sources are coupled to the coordinates of the
points inM and of the covectors inT ∗M. It doubles the theory space because it adds sources
also for the momenta. In order to ensure the invariance under the nonlinear global symmetry
one also needs to deal with further constraints calledWard-Takahashi identities (WTI), which
are to be solved together with the dinamical equations. Nevertheless, it could have some other
qualities, a possibility which will be discussed in the following sections.

For example, the breaking of general coordinate transformations bymeans of the sources in
principle does not forbid to give a geometrical interpretation to the formulation and to ensure
general coordinate transformation invariance in a non-manifest way, by means of some WTI.
All one needs to this end is that the theory admits a geometrical interpretation in absence of
sources. For instance, in a functional integral representation this requires that both the bare
action and the functional measure be invariant under local coordinate transformations. Also,
in case the theory is globally well deėned in absence of sources, one should be able to repro-
duce global effects even if the source terms are local. ĉis is again what happens for example in
the ordinary (i.e. not gBFM-based) functional integral formulation of nonlinear sigma mod-
els, where the functional measure is postulated to contain the appropriate dependence on the
metric in target space, while it does not happen in the standard gBFM formulation, where one
either integrates over the tangent space at f? or on a local patch ofM bounded by the diver-
gence of the van Vleck-MoreĨe determinant. One the other hand, one could try to build a dif-
ferent gBFM by postulating that the van Vleck-MoreĨe determinant should not appear in the
functional measure, i.e. by starting from a globally deėned functional integral representation
and then introducing in it the source and the reference point, instead of following the original
formulation that starts from the introduction of the source and ends in a functional integral.¹
We will try to provide arguments for both these qualities, general coordinate transformation
invariance and global deėnition onM, to be possibly enjoyed by some phase space formula-
tions. We will also propose a phase space functional integral formulation for nonlinear sigma
models with a functional measure that, though ėeld independent, enjoys manifest Lorentz in-
variance, and we will deduce from it a corresponding RG Ěow equation. Even if the previous
qualities turned out not to be present in this approach, yet at least we could say that theHamil-
tonian formulation allows for applications toHamiltonians that aremore than quadratic in the
momenta.

As a ėnal note about the comparison between the background ėeld and the phase space

¹In other words, it seems to us that the traditional arguments in favor of the equivalence between the
Schwinger variational principle and the Feynman integral formulation, such as for example a functional Fourier
transform representation of the solution of the Schwinger-Dyson equations, apply only locally.
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methods, let us stress a trivial fact: the two ideas do not exclude each other. In other words,
one could apply the gBFM to a phase space formulation, introducing three different external
ėelds: a reference point f?, a source for the derivative of the geodesic displacement w.r.t. f?
and an extra source coupling to a new composite ėeld, depending on f? and the phase space
variables. ĉe requirements on this new composite ėeld are clear: whenever the target metric
is trivial (locally or globally) it must reduce to the conjugate momenta, it must be a scalar at
the pointM corresponding to the position of the Ěuctuating Lagrangian variable, it must be a
vector at f?, just as the corresponding source I. Since by construction the conjugate momenta
are vectors at the point set by the Lagrangian variable, in order to buid vectors at f? out of them
we need to transport them there in a covariant way. ĉerefore the new composite ėeld can be
chosen as the contraction of the momenta with the geodesic parallel displacement bivector at
the twopointsmentioned above. Such a constructionwill not be explored in these pages, being
many steps further in complexity and because we don’t see strong motivations to develop it.

4.2.2 A ĻĹŃŁĹŉŇĽķ ĸĹĺĽłĽŉĽŃł ĺŃŇ ńļĵňĹ-ňńĵķĹ ĺŀŃŌň?

We intend now to give a general deėnition of the seĨing we are going to investigate. For this it
is useful to start with simple and widely accepted notions and see how they relate to the new
formulation. Let’s then go back to QM. Since we would like to lay down a single framework
for both linear and nonlinearmodels, we will assume the targetM to be a generic Riemannian
manifold of dimensionD. In drawing the general strategy we will try to preserve a geometrical
deėnition for the model, the main reason being that, as we will see when we will explicitely
build the nonlinear representation of the O(N) symmetry, invariance under reparameteriza-
tions of the target manifold automatically ensure invariance under this global symmetry, be-
cause of the arguments recalled above.

Given a coordinate system {γa}a=1,...,D inM we have a corresponding frame {∂a}a=1,...,D

in TM and the dual frame {da}a=1,...,D in T ∗M. We will denote with gab the correspond-
ing metric components. Under changes of coordinates γa → γ′a = (τ ◦ γ)a, where τ is the
transition function, the frames change according to ∂′a =

∂γb
∂γ′a∂b and d′a = ∂γ′a

∂γb d
b, and corre-

spondingly themetric components g′ab =
∂γc
∂γ′a

∂γd
∂γ′b gcd. Let us recall that the Lagrangian variable

q is a map from spacetime S (just time in QM) toM and that the conjugate momentum p is
a map from S to T ∗M, such that p(x) ∈ Tq(x)M. ĉen we deėne D scalar ėelds for q by
φa(x) = γa(q(x)) and D scalar ėelds for p by p(x) = πa(x)da|q(x). Under changes of coor-
dinates these ėelds transform to φ′a(x) = γ′a(q(x)) = τa(φ(x)) and π′a(x) = πb(x) ∂γb

∂γ′a |q(x).
ĉerefore, if the functional integral is an integral over p and q, a geometrical well deėned co-
ordinate representation of it does not require any nontrivial measure, because the Jacobian de-
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terminant linking [dπadφa] to [dπ′adφ′a] is bound to be ėeld independent in any regularization
scheme preserving the geometrical interpretation. ĉis is one main advantage of the phase
space path integral in QM: the functional measure does not explicitely depend on the target
manifold, it does only implicitely through the topological properties and possibly the bound-
ary conditions.

Such a property is enjoyed also by the phase space path integral in the traditional Hamilto-
nian formulation of QFT. On the other hand such an advantage is overcome by the negative
aspect that Lorentz symmetry is notmanifest. ĉerefore in the literature it is muchmore com-
mon to ėnd studies of nonlinear sigma models based on the Lagrangian functional integral,
which has a nontrivial functional measure given by the formal expression

(
Detgab(φ(x))

) 1
2 . In

those regularization schemes for which such an expression is nonvanishing, one has to add the
logarithm of it as an extra dynamical sector in the bare action, or to introduce auxiliary ėelds to
translate this sector into a local ghost sector. Our philosophy in dealing with this issue will be
trying to have bothmanifest Lorentz invariance and a trivial functionalmeasure by embedding
the Lorentz-non-covariant Hamiltonian formulation into a Lorentz covariant one.

Haswehave seen in the previous chapter, in the covariantHamiltonian formalismoneneeds
many conjugatemomenta, for the contractionwith a gradient in spacetime. In otherwords, the
covariant Legendre transform termwill be πνa(x)∂νφa(x). ĉus, for aD dimensional target our
momenta will contain a total ofD×d real d.o.f., the geometrical interpretation of which is sim-
ple. ĉe push forward of the vectors ∂μ in T S by q gives the vector q∗(∂μ) = ∂μφa(x)∂a|q(x),
such that we have the transformation rule: ∂μφ′a(x) = ∂μφb(x)∂γ

′a

∂γb |q(x). ĉen we could think
about the conjugate momentum as a map from S to d copies of the cotangent space, in other
words as dmaps, labelled by an index ν, associating to each point x ∈ S a corresponding covec-
torpν(x) = πνa(x)d

a|q(x). As a consequenceof this interpretation, for each ν the transformation
rule under changes of coordinates will be: π′νa (x) = πνb(x)

∂γb
∂γ′a |q(x). ĉe covariant Legendre

transform term can be intepreted in two equivalent ways as the contraction between a vector
and a covector: either pν(x) ∈ T ∗M|q(x) and q∗(∂ν) ∈ TM|q(x) or q∗(pν(x)) ∈ T ∗S|x and
∂ν ∈ T S|x. ĉis reduces to the one explained above forQM if d→ 1. So far we have not con-
strained the conjugatemomenta, thereforewehave a largernumberofp’s thanq’s. ĉis couldbe
expected to create unpleasant features and in fact it does: if we had to build a functional integral
for these variables, the corresponding functional measure either would not make any geomet-
rical, i.e. coordinate independent, sense or it would be ėeld dependent. ĉis is because under a

change of coordinates [dπνa]→ [dπ′νa ]
(
Det∂γ

′a

∂γb |q(x)
) d

2
while [dφa]→ [dφ′a]

(
Det ∂γ

b

∂γ′a |q(x)
) 1

2
.

ĉere are at least two ways to solve this problem: the ėrst is reducing the number of mo-
menta and the other is addingmore variables transforming in the right way to balance the mo-
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menta in excess. Sincewewant to preserve bothLorentz and general coordinate invariance, the
ėrst choice requires a projector preserving both symmetries. Of course the projection studied
in the ėrst chapter, on momenta longitudinal with respect to the operator ∂μ, cannot be con-
sistently required to hold in every coordinates system. A possible solution would be to replace
∂μ with the covariant derivative operator∇μ depending on the metric gab and on the deriva-
tives ∂νφa. ĉis would entail a differential constraint on πνa depending on the ėeld φa, and we
are not eager to deal with such a problem, though it could be that this projection turned out
to be safe and the computations possible. On the other hand, such a projection would not be
justiėed by the same argument that led us to the one based on ∂ν in the previous chapter: the
covariant Legendre transform term couples both∇-longitudinal and∇-transverse momenta
to φa. Anyway one could consider the possibility to ask the momenta to be ∂-longitudinal
only in one coordinate system, everywhere onM, i.e. for any φa(x) in this frame. ĉis pro-
jection would not be covariant w.r.t. reparameterizations ofM, but it would not break such a
symmetry. Also, in a generic coordinate system the momenta, though not longitudinal, would
comprehend onlyD d.o.f. and therefore the functional measure would be ėeld-independent.

Now let us turn to the second possibility. ĉis choice is inspired by the example of the
quantummechanical case: having two dual set of vectors, transforming in oppositeways under
changes of coordinates, should give us a chance to build invariant actions andmeasures. ĉus,
let us consider a theory with 2(D × d) d.o.f.: half of them grouped in a momentum ėeld πνa
transforming as a contravariant vector under Lorentz transformations and as a covariant vec-
tor under changes of coordinates inM, the other half of thembelonging to a vector ėeld υaν that
is covariant under Lorentz and contravariant under changes of coordinates. What happened to
the old ėeld φa, taking values onM and not on TM? Is there a way to extract it from υaν? ĉe
usual procedure to extract a scalar from a vector ėeld is to look at the longitudinal component
of the vector: υa‖ν = ∂νφa. In any coordinate system, we are free to split any a-th component of
υ into longitudinal and transverse parts w.r.t. ∂ν, but these parts have no well deėned geomet-
rical meaning. ĉerefore, for the deėnition of υa‖ we have again two choices: either we deėne it
by the operator ∂ in one speciėc and preferred frame or we replace ∂ with∇. In the ėrst case
we ask it is possible to ėnd a coordinate system such that for any a-th component

υaν(x) = ∂νφa(x) + υa⊥ν(x) , ∂νυa⊥ν(x) = 0 (4.1)

with φa having the same old meaning. In this particular coordinate system we can write:

πνaυ
a
ν = πν‖a∂νφ

a + πν⊥aυ
a
⊥ν (4.2)
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such that the extraD× (d− 1) d.o.f. couple to a part of the momentum vector that does not
contribute to the covariant Legendre transform term. Notice that, because of the contraction
of latin indices, inside πν‖a there are stillD − 1 d.o.f. not contributing to such term, but this is
already true inQM, hencewe don’t worry about it. In a different coordinate system υa‖ν 6= ∂νφa

and the reasoning does not apply any more, but still υaν − ∂νφa must have only D × (d −
1) independent components. In case we choose a deėnition of the longitudinal component
based on the covariant derivative, the fact that transverse components do not contribute to
the covariant Legendre transform term holds only locally. ĉus, our options are essentially the
same we met in trying to project on one momentum only. In fact, if the bare action is chosen
to be linear in the extra variables υa⊥ν, i.e. if the bareHamiltonian does not dependent on them,
they can be integrated out thus constraining the conjugate momenta to be longitudinal.

In this chapter we will restrict our analysis of nonlinear models to a piece of the manifold
M, therefore we will ignore the issue of a global deėnition of the longitudinal ėelds. ĉus, the
general framework we are going to address is essentially the same that we already developed in
the previous chapter, in which phase space is parametrized by D scalar ėelds φa and a vector
ėeld πνa longitudinal w.r.t. ∂ν.

4.2.3 DĹŉĵĽŀĹĸ ķŃłňŉŇŊķŉĽŃł Ńĺ ŉļĹ łŃłŀĽłĹĵŇ ŁŃĸĹŀ

A unitary linear representation of the globalO(D) symmetry with generators (tc)ab acts on the
ėelds through multiplication by the generic matrixU = eiεctc

φ′a(x) = Ua
bφ

a(x) = φa(x) + iεc(tc)abφ
b(x) + O(ε2)

π′νa(x) = U†baπ
ν
b(x) = πνa(x)− iεc(tc)baπ

ν
b(x) + O(ε2)

in such a way that the covariant Legendre transform term is invariant. Let us stress that since
this transformation is global, we are free to interpret it in two different ways: active and passive.
By active transformation we mean here a rotation of the histories q(x) and p(x) leaving the
coordinate systemunaltered, while by passivewemean a rotation of the coordinates leaving the
histores unchanged. ĉis double possibility remains true also for nonlinear representations, as
long as the symmetry is global. If no other global symmetry is present (apart for Poincaré), we
can think aboutM as a D-dimensional vector space and by seĨing D = N we get the linear
O(N)model. A regularization ΔSk preserving such a symmetry can be easily built and thus the
invariance of the theory under the previous two simultaneous transformations holds for any k.

In the case of the O(N) nonlinear model, the manifoldMmust be a sphere of dimension
D = N − 1, the previous symmetry is imposed and preserved by suitable regulators for any
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k, regardless of the choice of coordinates on the sphere, but must be augmented by a nonlin-
ear realization of O(N)/O(N−1). Following the general arguments recalled in the previous
section, this realization can be built by choosing a reference point f? onM, by considering the
action of O(N) onto a larger manifold and projecting it onM in such a way that the corre-
sponding linear representation of O(N−1) be the stabilizer of f?. ĉe standard way to do this
for O(N) models is to consider a linear representation inN-dimensional Euclidean space, pa-
rameterized by Cartesian coordinates {Xi}i=1,...,N. Without loss of generality one can assume
f? to be the “south pole” with coordinates XN = −R < 0, {Xa = 0}a=1,...,N−1, such that
the stabilizer group is given by rotations of O(N−1) leaving theN-th direction unaltered. ĉe
submanifoldM is chosen as theD = (N− 1)-dimensional sphere of radius R such that on it
(XN)2 = R2 −

∑N−1
a=1 (X

a)2. ĉe {Xa}a=1,...,D can be considered independent coordinates on
the sphere, conėned to a neighborhood of f?. From the simple law δXi = iεl(tl)i jXj one sees
that if the indices i, j < N (i.e. if we restrict it to the stabilizer of f?) the transformation of the
independent coordinates {Xa}a=1,...,D is linear. On the other hand, if we set ėrst i < N, j = N
and then i = N, j < N (i.e. if we restrict it toO(N)/O(N−1)) we have nonlinear transforma-
tions

δXa = iεl(tl)aNX
N ≡ ε′aXN , δXN = iεl(tl)NaX

a ≡ −ε′aXa

where ε′ is real andXN is a function of{Xa}a=1,...,D. Such transformations preserve the identity
(XN)2 = R2−

∑N−1
a=1 (X

a)2. Choosing any other coordinate system{γa}a=1,...,D in a neighbor-
hood of f?, the representation for it can be obtained from the one for theCartesian coordinates
{Xa}a=1,...,D by writing Xa on the sphere as functions of γa. For example, in stereographic co-
ordinates from the point opposite to f? (the “north pole”)

γa = Xa R
R− XN

one gets

δγa = −εaR
2

(
1− δbcγbγc

R2

)
− γa

εbγb

R
.

and an identical transformation holds for the ėelds φa(x) = γa(q(x)), and for rotations of
q at γa ėxed. Since we can look at rotations of histories as rotations of coordinates, the geo-
metrical interpretation of the conjugate momenta ėxes their nonlinear transformation under
O(N)/O(N−1). Its representation acts as a change of frame by a matrix

δγ′a

δγb
= δab

(
1− εcγc

R

)
+

εaγb − γaεb
R

.
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ĉerefore in conclusion the ėelds in phase space transform under O(N)/O(N−1) according
to

δφa(x) = −εaR
2

(
1− φ2(x)

R2

)
− φa(x)

ε · φ(x)
R

δπνa(x) =
1
R
(
εaφ(x) · πν(x) + πνa(x)ε · φ(x)− φa(x)ε · π

ν(x)
)

(4.3)

where bold symbols denote vectors collecting the D components of the ėelds labeled by latin
indices, and the dot denotes contraction of these indices by means of the trivial metric δab As
it should, the Legendre transform term is invariant under these transformations.

As we anticipated in the previous sections, we are going to formulate the dynamics of both
the linear and the nonlinear model by means of the same functional integral which looks just
like the one in (3.53) with the important corrections that now the ėelds φ and πν bring also
a-indices, and that for the nonlinear model one needs to give a careful deėnition of transverse
and longitudinal momenta. Let us try to understand what the two general choices for this
deėnition that we described in the previous subsection actually entail in the present context,
and from the particular point of view of an observer siĨing on the south pole f?, associating to
each point of the sphere (apart for the north pole, that is out of her scope) the abovementioned
stereographic coordinates. ĉe south pole itself is the only point with vanishing coordinates.
At every point with coordinates γa the metric tensors read

gab(γ) =
4(

1 + γ2

R2

)2 δab , gab(γ) =
1
4

(
1 +

γ2

R2

)2

δab . (4.4)

such that the curvature of the manifold can be neglected as long as ∀a, (γa)2 � R2. If the
observer arbitrarily decides to neglect all quantum Ěuctuations (i.e. histories) violating this
bound then the issue of a careful deėnition of longitudinal momenta losts of interest, since
there is practically no difference between covariant and standard derivatives. If she allows the
histories to explore a larger neighborhood of the south pole then the two projections become
very different and they entail different dynamics, that coincide only locally. In fact, let us as-
sume for simplicity that the bare Hamiltonian be quadratic in the longitudinal momenta, re-
gardless of their deėnition. If the observer sticks to the ėrst choice of requiring the momenta
to be longitudinal w.r.t. ∂ everywhere (apart for the north pole), then she can safely integrate
out such momenta and get the traditional Lagrangian formulation in terms of her particular
coordinates. If instead she asks the momenta to be covariantly longitudinal, by integrating
them out she will ėnd a different and unusual Lagrangian formulation that looks as the usual
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one only for histories close to her. ĉis tells us that if she wants to reproduce the traditional
Lagrangian dynamics in the present Hamiltonian formulation she has to stick to the ėrst def-
inition of longitudinal momenta and forget about reparameterization invariance. She will be
forced to drop the passive interpretation of (4.3) but she will be able to require this nonlinear
symmetry regardless of having ėxed a preferred reference frame, at least as long as the rotation
of the histories doesn’t push them through the north pole. ĉis is also what we are going to do,
neglecting for the moment global effects on the dynamics of the model.

4.3 FŀŃŌŃĺ ŉļĹ ŀĽłĹĵŇ ŁŃĸĹŀ

In this section we are going to describe how to compute the Ěow equation of the AEHA of a
linear O(N) model by means of the general formulas derived in the previous chapter. We still
assume a d-dimensional Minkowskian spacetime with a trivial metric having a mostly-pluses
signature, and we are still interested in the leading order of the derivative expansion, i.e. to the
LHA, that is encoded in the following projection

Γk[π̄, φ̄] =
∫

ddx
[
−π̄ν · ∂νφ̄−H

(
π̄2

2
,
φ̄2

2
,
(π̄ · φ̄)2 − π̄2φ̄2

2

)]
. (4.5)

Recall that bold symbols denote vectors collecting the N components of the ėelds labeled by
latin indices, and that the dot denotes contractionof these indices bymeans of the trivialmetric
δab. Herewe extended this convention by denoting: π̄2 ≡ π̄ν π̄ν and (π̄ ·φ̄)2 ≡ (π̄ν ·φ̄)(π̄ν ·φ̄).
With respect to theN = 1 case discussed in the previous chapter, here we have a new invariant
underLorentz,O(N)and simultaneous reĚections π̄νa → −π̄νa and φ̄a → −φ̄a, namely (π̄·φ̄)2.
ĉus, H has as third argument a new degree of freedom that automatically vanishes in the
N = 1 case. Remember that we still limit our discussion to the case in which the momenta
are longitudinal. In the present case this means that every a-th component speciėes a radial
vector ėeld in Fourier space. ĉen, obviously it is not possible to ask that this vector ėeld be
homogeneous over spacetime, but it is possible to make this request for its magnitude. ĉe
more the magnitude is homogeneous in spacetime, the more localized around the origin is
the vector ėeld in Fourier space, still remaining radial. ĉe limiting case of this process is of
course mathematically ill-deėned, but physically we just require the Fourier transform of the
momenta to be longitudinal and strongly peaked at the origin (almost a delta function), such
that we can neglect the remaining support. Furthermore, if ∀a the momenta are longitudinal,
the direction in Fourier space is independent of a. ĉerefore in the present framework the
LHA can be studied by assuming a factorization π̄νa(q) = δ(q)wν π̄a, with wνwν = 1, as well as
the usual φ̄a(q) = δ(q)φ̄a. ĉus from here on bold symbols will oncemore denote only O(N)
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vectors that are Lorentz scalars. For this choice of ėeld conėguration the subset of theory space
deėned in (4.5) is closed under the RG Ěow.

We restrict our discussion to an off-diagonal regulator as in eq. (3.56). If we denote the
ėelds in Fourier space by Φ(q) ≡ (π̄νa(q), φ̄a(q)), in the LHA the Ěuctuation matrix Γ̃(2)

k ≡
Γ(2)
k + Rkδ is computed as follows

Γ̃(2)
k =

−→
δ

δΦ(−p2)
Γ̃k

←−
δ

δΦ(p1)
≡

(
A B(p1)

BT(p1) D

)
δ(p1 − p2)

where

Aab
μν =− δμν

[
δab
(
H(100) − φ̄2H(001))+ φ̄aφ̄bH(001)]

−wμwν
[
π̄aπ̄b

(
H(200) − 2φ̄2H(101) + φ̄4H(002))

+ (π̄aφ̄b + φ̄aπ̄b)π̄ · φ̄
(
H(101) − φ̄2H(002))+ φ̄aφ̄b(π̄ · φ̄)2H(002)]

Ba
νb(p1) = (1 + rk(p21))ip1νδ

a
b − wν

[
δab(π̄ · φ̄)H(001) + π̄aπ̄bπ̄ · φ̄

(
H(101) − φ̄2H(002))

+ π̄aφ̄b
(
H(110) − 2H(001) − φ̄2H(011) − π̄2H(101) + π̄2φ̄2H(002))

+ φ̄aπ̄b
(
H(001) + (π̄ · φ̄)2H(002))+ φ̄aφ̄b(π̄ · φ̄)

(
H(011) − π̄2H(002))]

Dab =−
[
δab
(
H(010) − π̄2H(001))+ π̄aπ̄b

(
H(001) + (π̄ · φ̄)2H(002))

+ (π̄aφ̄b + φ̄aπ̄b)π̄ · φ̄
(
H(011) − π̄2H(002))

+ φ̄aφ̄b
(
H(020) − 2π̄2H(011) + π̄4H(002))]

and the entries of BT can be obtained from the ones of B by exchanging the latin indices and
changing sign to the Fourier variable. ĉen, using eq. (3.60) we can write

1
2
Tr
[(

Γ(2)
k + Rkδ

)−1
Ṙkδ
]
=

1
2
Tr
[
(D− BTA−1B)−1∂̃t(D− BTA−1B)

]
where ∂̃t is a differentiation w.r.t. t ≡ log(k/k0) acting on rk only. ĉe matrix inversions
and products can be easily performed due to the fact that the Ěuctuation matrix has a simple
structure involving only diagonal tensors or tensor products of vectors. However the algebraic
combination of the coefficients of these tensors is complicated and can be dealt with only by
some soěware for symbolic algebraic manipulation. So far we have not managed to get a com-
pact expression for these coefficients therefore in the following we will avoid to aĨempt any
explicit deėnition of them. However, the implicit deėnition descends from the Ěuctuationma-
trix given above. In order to get a useful expression for the running of theHamiltonian density
of the linear O(N) model, another nontrivial step is needed apart for the algebra mentioned
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above: the integration over Fourier space. As was already the case for the simple scalar model
discussed in the previous chapter, there are two nontrivial integrations to be performed, one
over the angle between the loop Fourier variable pν and the direction of the momenta wν, and
one over the radial variable p2. ĉe laĨer can be made trivial by adopting suitable regulators
such as the optimized one rk(p2) =

(
k/
√
p2−1

)
θ(k2−p2). ĉe former instead considerably

increases the degree ofmathematical complexity of the r.h.s., that for a generic d ∈ R develops
a dependence on hypergeometric functions as in the N = 1 case discussed in the previous
chapter. To sum up, by working out all the above mentioned computational steps, we obtain a
Ěow equation equation for the linear O(N) model which we depict as

Ḣk

(
π̄2

2
,
φ̄2

2
,
(π̄ · φ̄)2 − π̄2φ̄2

2

)
= F

(
π̄2

2
,
φ̄2

2
,
(π̄ · φ̄)2 − π̄2φ̄2

2
,H(l m n), d,N

)
(4.6)

for l, m, n ∈ {0, 1, 2} with the constraint 0 < (l + m + n) < 3. As it should, this new
expression for the running ofH reduces to eq. (3.66) if one setsN = 1 and (π̄ · φ̄)2 = π̄2φ̄2.

4.4 MŃĸĽĺĽĹĸWĵŇĸ-TĵĿĵļĵňļĽ ĽĸĹłŉĽŉĽĹň

Since the representation of the O(N)/O(N−1) symmetry is nonlinear, any ΔSk quadratic in
the ėeld in not invariant under it. ĉerefore, the RG Ěow generated by eq. (4.6) cannot man-
ifestly respect this symmetry. ĉis means that if we start at k = Λ with a traditional bare
Hamiltonian such as

HΛ(x) = −
1
2
gab (φ(x)) π̄νa(x)π̄νb(x)

that is manifestly invariant under the transformations (4.3), at k 6= Λ the Ěow equation will
produce an average effective Hamiltonian that does not enjoy this symmetry. On the other
hand, the Ěow must contain information about such a symmetry ofHΛ in a nonmanifest way.
In other words, if we choose a bare action, i.e. an initial condition for the integration of the Ěow
equation, enjoying this nonlinear symmetry, the correspondingRGĚow is constrained by a set
of equations encoding this symmetric choice at k = Λ. We will call these equations modiėed
Ward-Takahashi identities (mWTI). As the standardWTI they can be obtained from the func-
tional integral representation, this time eq. (3.58), by changing integration variables according
to an inėnitesimal symmetry transformation, in our case give by eq. (4.3), thus geĨing∫

ddx
[
〈δπνa(x)〉

δΓk[π̄, φ̄]
δπ̄νa(x)

+ 〈δφa(x)〉δΓk[π̄, φ̄]
δφ̄a(x)

]
= 〈δΔSk[π − π̄, φ− φ̄]〉 (4.7)

76



Wecall themmodiėed indentities because of the newcontributions coming from the regulator,
that make them differ from the standard identities for any 0 < k < Λ. In the case of the
transformations (4.3) these identities bring D = N − 1 constraints on Γk, that are needed
to deėne the theory space of the nonlinear O(N) model. ĉe role of these constraints on the
functional RG Ěow has already been discussed for gauge theories in many works, see [13, 14]
and references therein. Before any truncation is performed, the Ěow equation and the mWTI
are compatible, i.e. it is sufficient to solve the mWTI only once at some scale k0, i.e. to pick an
initial point on the restricted theory space, and the integration of the Ěow equation will map
this into solutions of the mWTI at different scales k, i.e. the Ěow will stay on the restricted
theory space. Because of truncations, it is necessary to constrain by hand the Ěow to lie on
such space. ĉis can be achieved by an appropriate choice of the truncation itself, that is, by
taking a truncation for the linear model, or even larger, and again projecting this subset of the
linear theory space into a subset of the nonlinear one, by asking that the mWTI be satisėed
at every scale. ĉis is tantamount to dividing the parameters of the truncation in the larger
space into two classes, the dependent and the independent ones, the former being determined
as functions of the laĨer upon solution of the mWTI. Unfortunately, these functions are not
unique, because of the nonlinearity of the mWTI, therefore physical arguments are needed
in order to identify the meaningful solutions and to drop the spurious ones, generated by the
truncation.

Notice that for the transformations (4.3) the mWTI, unlike the Ěow equation, involves not
only two point but also three point functions, appearing on the r.h.s. of eq. (4.7). ĉis fact,
together with momentum conservation at the vertices in the LHA, entails that the r.h.s. be a
two-loop contribution, involving also the vertex Γ̃(3). ĉis makes the translation of eq. (4.7)
into explicit constraints for some speciėc truncation a bit lenghtier than for the Ěow equation
itself. In fact, in this thesis we are not presenting the ėnal form of the mWTI in the LHA,
because its computation is still incomplete. In order to illustrate how this constraint can be
treated and how the symmetry requirement is encoded in it, we are going to discuss the ex-
tremely simple case of QM on a circle, that is d = 1 and N = 2. But, before moving on
to this liĨle exercise, let us stress another important difference in structure between the Ěow
equation and the mWTI: while the Ěow equation requires one loop integration regulated by
the (log k)-derivative of ΔS(2)k , the mWTI entails two loop integrations in which no derivative
of the regulator appears. ĉerefore, a choice of ΔSk as an IR regulator does not allow to regu-
larize the mWTI. To get a Wilsonian setup, completely free of divergences, in general one has
to assume that ΔSk,Λ provides both an IR and a UV regularization.

ĉis issue is of course absent in QM, where we are free to choose any regulator providing a
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rising delta function. Furtheremore, by restricting to d = 1 and D = N − 1 = 1 we do not
have to take care of Lorentz or O(N−1) indices, that make the general computation long and
tedious. ĉus, let’s work out this explicit example. In this case the transformations (4.3) read:

δπ = επ
φ
R

, δφ = −εR
2

(
1 +

φ2

R2

)
(4.8)

such that

〈δπ(p)〉 =
ε
R

∫
q
〈π(p− q)φ(q)〉

〈δφ(p)〉 = −εR
2

(
δ(p) +

1
R2

∫
q
〈φ(p− q)φ(q)〉

)
〈δΔSk[π − π̄, φ− φ̄]〉 = − ε

R

∫
p1,p2

rk(p21)ip1
[
φ̄(−p1)〈π(p2)φ(p1 − p2)〉

+
1
2
π̄(−p1)〈φ(p2)φ(p1 − p2)〉

]
+
ε
R

∫
p1,p2

[
rk(p22)ip2 +

1
2
rk(p21)ip1

]
〈π(p1)φ(p2)φ(−p1 − p2)〉

where
∫
p ≡

∫ dp
2π . Translating the two- and three-points functions in terms of derivatives of

Γ̃k, seĨing the average ėelds in Fourier space proportional to a delta function, and performing
a Wick rotation inside the loop integrals one gets

∫
x

[
〈δπνa(x)〉

δΓk[π̄, φ̄]
δπ̄νa(x)

+ 〈δφa(x)〉δΓk[π̄, φ̄]
δφ̄a(x)

]
= εδ(0)

φ̄
R

{
π̄2H(10)

k − R2

2
H(01)

k

(
1 +

φ̄2

R2

)

+

[
π̄2H(10)

k H(11)
k +

1
2

(
H(10)

k + π̄2H(20)
k

)]∫
p

1

Pk(p2) + detH(2)
k

}
(4.9)

where we slightly modiėed the notations of the previous chapter as follows: Hk is now a func-
tion of π̄2/2 and φ̄2/2, and as a consequence

detH(2)
k =

(
H(10)

k + π̄2H(20)
k

)(
H(01)

k + φ̄2H(02)
k

)
− π̄2φ̄2H(11)2

k .

As far as the regulator contribution is concerned, we can write it as

〈δΔSk[π − π̄, φ− φ̄]〉 = ε
R
δ(0) (C1I1 + C2I2 + C3I3)

where theCi arepolynomial functionsof thederivativesofHkwhoseprecise form isnotneeded
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for the present qualitative discussion, and

I1 =

∫
p1

∫
p2

rk(p21)ip1
(1 + rk(p21))ip1
Pk(p21) + detH(2)

k

1

Pk(p22) + detH(2)
k

1

Pk((p1 + p2)2) + detH(2)
k

I2 =

∫
p1

∫
p2

rk(p21)ip1
1

Pk(p21) + detH(2)
k

(1 + rk(p22))ip2
Pk(p22) + detH(2)

k

1

Pk((p1 + p2)2) + detH(2)
k

I3 =

∫
p1

∫
p2

rk(p21)ip1
(1 + rk(p21))ip1
Pk(p21) + detH(2)

k

(1 + rk(p22))ip2
Pk(p22) + detH(2)

k

(1 + rk((p1 + p2)
2))i(p1 + p2)

Pk((p1 + p2)2) + detH(2)
k

are the two loop integrals. Obviously when k → 0 theses integrals vanish and so does the
r.h.s of eq. (4.7), that reduces to the standard WTI. Also, when k→ Λ (or equivalently+∞)
the presence of a delta function requires rk → +∞, therefore also in this limit all the loop
integrals, both the ones above and the one in eq. (4.9), must vanish. ĉus, in the UV the only
nonvanishing contribution to themWTI is the one on the r.h.s. of the ėrst line of eq. (4.9), that
strongly differs from the standardWTI because it does not involve any quantum correction. In
fact, this limit of themWTI just states the invariance of any bare action on the restricted theory
space under the present nonlinear O(2) symmetry, since

δH
(
π̄2

2
,
φ̄2

2

)
= δπ̄ π̄H(10) + δφ̄ φ̄H(01) = ε

φ̄
R

[
π̄2H(10)

k − R2

2
H(01)

k

(
1 +

φ̄2

R2

)]
.

ĉerefore the mWTI completely deėnes the non-manifest symmetry of the RG Ěow, without
the need to refer to any other representation such as the functional integral.

4.5 SŊŁŁĵŇŏ ĵłĸ ĹŎńĹķŉĵŉĽŃłň

In this chapter we discussed the foundations and the line of development of an ongoing re-
search project, whose aim is to build and use a single Ěow equation representation suitable for
the study of both the linear and the nonlinear O(N) scalar model. To this end the usual con-
ėguration space formulation is ill-suited because of the ėeld dependent functional measure,
and our approach is a particular way to exponentiate this measure bymeans of extra degrees of
freedom, going back to the phase-space functional formula that is the same for both models.
ĉis is tantamount to representing the dynamics by a singleHamiltonian Ěow equation. Such a
uniėed treatment as far as we knowhas not been studied in a functional RG framework, andwe
hope that it will provide a new tool for the description of the nonperturbative RGĚow of these
models, helping in understanding the difficulties met so far in the computation of the critical
exponents of the nonlinear model by means of the fRG of the geometric effective action.
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We stress that, although the representation relies on the deėnition of the AEHA, it is ap-
plicable also to the cases in which the bare action is quadratic in the momenta. However in
this case, while the Ěow of the linear model reduces to the usual Lagrangian one, the Ěow of
the nonlinear model is described in a radically non-Lagrangian way, because the sector of the
momenta becomes nonquadratic aěer an inėnitesimal RG step. From this point of view, for
nonlinear models it seems natural to allow for bare actions quadratic in the momenta and to
look for the UV completion of these theories in a general Hamiltonian framework.

On the other hand, also the case of linear models could become interesting if one drops
the requirement that the Hamiltonian of the theory be exactly quadratic at some scale. For
example, while LagrangianO(N)models are a simple and popular benchmark for the study of
the spontaneous symmetry breaking (SSB) mechanism, we do not known if this mechanism
could take place in other ways involving a nontrivial dynamics of the momenta. Aěer all, our
formulation has a built-in longitudinal vector ėeld whose interactions with the scalar could
open new paths towards the generation of a mass. We hope that this possibility will be easy to
address by studying truncations of the effectiveHamiltonian just as in the Lagrangian case one
studies truncations of the effective potential.

ĉe task of computing the Ěow of the nonlinear model will certainly be more complicated,
because of the need to deal with mWTI. Let us stress that in principle the mWTI are not dy-
namical equations drawing a difference between the representations used for the linear and for
the nonlinear model. In the exact formulation, both kinds of dynamics are given only by the
Ěow equation, and the mWTI is just an identity that could or could not be satisėed by the ini-
tial condition we choose. ĉus, before any truncation, the only thing that makes the difference
between linear or nonlinear realizations is which bare action we choose. ĉerefore the mWTI
could be interpreted as away to distinguish between fair and poor truncations of the exact Ěow.
Of course, simply choosing truncations that aremanifestly symmetric under the same symme-
try of the bare action is a poor truncation, because of the presence of the regulator, that has
the double role of leĨing the Ěow equation generate non-symmetric actions and of forcing the
mWTI to interpolate between the classical symmetry at k = Λ and the standardWTI at k = 0.

ĉe ėrst nontrivial test of the reliability of this theoretical framework we plan to perform,
is the computation of the ground state energy and gap of a free particle on a D-dimensional
sphere inQM.ĉis computation should also teachus if neglecting global effects on target space
is a legitimate approximation. In fact, one important fundamental problem still open is how to
describe these effects bymeans of the present construction. But this is an issue that will be leě
open by the work outlined in this chapter.
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5
Gauged chiral Yukawa systems

TļĹ UV ĸŏłĵŁĽķň Ńĺ ĵ ĻĵŊĻĹĸ ķļĽŇĵŀ YŊĿĵŌĵ ňŏňŉĹŁ, serving as a toy model of the
electroweak theory or of grand uniėcation theories, is analyzed by means of a functional RG
equation, in order to address the triviality and the hierarchy problems beyond the range of
applicability of perturbative expansions. Within the chosen truncation of the effective average
action, a UV-aĨractive non-Gaußian ėxed point is discovered in the spontaneous symmetry
breaking regime, which could provide a UV completion of the theory within the paradigm of
asymptotic safety.

5.1 TŇĽŋĽĵŀĽŉŏ ĵłĸ ļĽĹŇĵŇķļŏ ńŇŃĶŀĹŁň

In the construction of QFT models for high energy physics, great emphasis is traditionally
given to the requirement of renormalizability. In the past decades such a requirement enabled
physicists to strongly constrain and restrict the set of sensible and interesting models, and
served as a guide for the extension of known theories and for the prediction of new physics.
ĉe two outstanding examples of the success of this aĨitude towards QFT are provided by
the electroweakmodel and byQCD. Suchmodels were conceived on the basis of perturbative
expansions, i.e. weak coupling expansions, and by construction they were satisfying a pertur-
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bative renormalizability requirement in the sense ofWeinberg’s theorem: they contained only
dimensionless and positive-dimension interactions.

However, alreadybefore thedesignof these cornerstonesof theoretical physics, itwas known
that such a requirement is in general not enough to build a self-consistentmodel, with an a pri-
ori indeėnite range of applicability. ĉis lesson was learnt directly from QED itself: in order
tomake predictions we need to regularize the theory and to deal with its renormalization Ěow,
and in so doing, sooner or later we have to stop trusting weak coupling expansions. ĉis is the
case for QED because of the appearence of a Landau pole [86, 87]. Computing the one loop
beta-function of the ėne structure constant one ėnds βα = 2/(3π)α2 and this entails that the
physical coupling α(μ) at some scale μ is related to the renormalized coupling αR (deėned by
the value of somemeasurable quantity at some convenient renormalization point, for example
by the potential between heavy charges in the Gell-Mann-Low scheme [87]) by the following
relationship

α(μ) =
αR

1− 2
3π αR log( μ

me
)
. (5.1)

ĉis shows that, for a ėxed renormalized coupling and electron mass, the physical coupling
increases with increasing μ, and that at some ėnite scale we leave the domain of applicability
of perturbative expansions (naively at μ∞ < ∞, deėned by 1 = 2

3π αR log( μ∞me
), the coupling

diverges and predictions are no longer possible). Going to higher orders of the perturbative
expansion does not change this qualitative picture. Within a Wilsonian interpretation of the
renormalization group, this canbe restated in a slightly differentway. Ifwe regularize the theory
with an ultraviolet (UV) cutoff Λ, and assume a corresponding bare coupling αΛ at this scale,
this is related to the physical coupling at the scale μ by

αΛ =
α(μ)

1− 2
3π α(μ) log(

Λ
μ )

. (5.2)

Demanding that physics be independent of the regularization, i.e. that α(μ) be independent
of Λ, we see how we have to adjust αΛ as a function of Λ. But this independence cannot be
provided inside the domain of validity of the last relationship, because at some ėnite Λ∞ the
bare αΛ∞ would need to be inėnite. ĉe only value of αΛ allowing for the removal of the UV
cutoff is αΛ = 0, leading to a free theory. ĉat’s why this is also called a “triviality” problem [4].
ĉis issue historically even shook the trust in the usefulness of QFT, and led to the search for
other frameworks such as current algebra or Regge theory.

One possibleway out of this problem is just to change theory, embedding it in a largermodel
that does not show Landau poles and that is applicable at every energy. ĉis point of view
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is oěen accompanied by the so-called perturbativity requirement [88, 89], i.e. the condition
that acceptable quantum ėeld theories should be consistent and fully predictive without ever
needing to go beyond weak coupling expansions. Another possible solution is to consider the
theory affected by this problem as an effective theory which is indeed valid only in a restricted
range of scales, because at strong coupling new physics shows up or the set of effective degrees
of freedom radically changes. ĉe laĨer case is in fact realized inQED, since at strong coupling
the screening of electric charge triggers chiral symmetry breaking (χSB) in a way very similar
to what is known to take place in QCD [90, 91, 92]. In other words, it would be impossible to
experimentally measure the value of the ėne structure constant at scales close to the Landau
pole. Yet, this very example shows how nonperturbative phenomena such as χSB might be
crucial for the understanding of the Landau poles. One more possible solution is just that the
Landau pole be an artifact of weak coupling expansions and that it might be possible to make
sense of the theory at any scale without changing the set of fundamental symmetries and of
degrees of freedom. In general, in order to explore such a possibility, one needs a framework
for describing the dynamics of the system even in strongly coupled regimes.

ĉe triviality problem is a big fundamental issue leě open by the standardmodel (SM), even
more so aěer the discovery of a boson that could be extremely similar to theHiggs scalar of this
model. ĉis is because, apart for the U(1) sector, also the Higgs sector is plagued by Landau
poles [4, 93, 94, 95, 96, 97, 98], and in this sector the position of these singularities, i.e. the
order of magnitude in energy that one could reach without being forced to change the theory
(within the big desert hypotesis), is much lower than in the gauge sector [92]. In fact, it could
be smaller than the grand uniėcation scale [88, 99, 100, 101, 102]. Since this issue is at the base
of several proposals of newphysics, we believe it is interesting to understand if nonperturbative
effects in the SM can change the picture that one gets from perturbation theory.

Another closely related topic, one of the few unpleasent features of the SM, the understand-
ing of which could receive beneėts from nonperturbative investigations, is the hierarchy prob-
lem, namely: how does it come that themasses of the particles are scaĨered over several orders
of magnitude, instead of being closer to each other? As other similar questions that have to
deal with the concept of “magnitude in diversity”, also this one can be reformulated in terms
of the choice of some initial condition, in this case the UV starting point for the renormaliza-
tion Ěow of the theory. If these initial conditions were chosen in the vicinity of the GFP, we
would expect positive-dimension couplings to grow towards the IR and negative-dimension
interactions to become negligible. ĉe masses, being of the ėrst kind, would be expected to
grow at approximately the same rate and as a consequence only by choosing big differences in
their initial conditions one could get big differences in their low energy values. Hence, in order
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for this ėne-tuning not to be required, one needs a dynamical mechanism able to explain how
different rates of change could arise for parameters with the same canonical dimension. Again,
one could try to achieve this by staying close to the GFP, i.e. within perturbation theory, and
introducing new physics. But another possibility is to allow for the initial conditions of the RG
Ěow to liewell outside theneighborhoodof theGFPand to look for other important dynamical
regimes, different from the weak coupling one, determining such a hierarchy.

In this chapter we will try to address both the triviality and the hierarchy problems from
this nonperturbative point of view, studying the dynamics of a gauged chiral Yukawa system,
serving as a toymodel of the electroweakmodel and of grand uniėcation theories (GUT).ĉe
methodbywhichwewill get such nonperturbative information is still the Euclidean functional
RG equation for the Lagrangian AEA, truncated within the general scheme of the derivative
expansion at next-to-leading order. We will provide ėrst hints that in this kind of models both
the triviality and the hierarchy problems might indeed ėnd a solution without invoking new
physics, the reason being encoded in an asymptotic safety (AS) scenario.

Howdoes AS relate to the triviality and hierarchy problems? Of course, if a theory is asymp-
totically safe no Landau pole can show up in the coupling constants and the theory is consis-
tent and predictive up to arbitrarily high energies. More subtle is the link with the generation
of hierarchies. For this, one has to recall that a possible dynamical deėnition of the canoni-
cal dimension of some coupling can be given as the critical exponent associated with the RG
Ěow along the corresponding direction of theory space at the GFP. ĉe critical exponents at
some FP are deėned by the linearized RG Ěow close to the FP (see eq. (1.3) and the discus-
sion aěer it). ĉerefore they encode the rate of change of the couplings along such Ěow in a
neighborhood of the FP. In case a NGFP exists, couplings that correspond to eigendirections
with the same eigenvalue at the GFP (same canonical dimension), could show a very different
linearized Ěow around the NGFP. Hence, similar initial conditions chosen in the vicinity of
the NGFP would correspond to different values of these parameters geĨing out of the NGFP
regime. Also, the presence of the NGFP singles out and justiėes a preferred set of initial con-
ditions: those close to the FP. Yet again we see that for this mechanism to work some kind of
ėne-tuning is still necessary, the strength of it being related to the question: how close to the
NGFP must we choose the initial condition? Since the rate of change of the couplings is de-
termined by the combination of the distance from the FP and by the magnitude of the critical
exponents, the smaller the critical exponents, the smaller the differences in the output at the
end of the FP regime for different initial conditions, and hence the weaker the required ėne-
tuning. In conclusion, for AS to provide an answer to the hierarchy problem, one needs small
critical exponents and the “right” FP values of the couplings.
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As a ėnal motivation for being interested in AS scenarios in high energy physics, let us recall
that the existence of a ėnite dimensional UV critical surface, providing a ėnite dimensional pa-
rameterization of the theory in terms of the so-called relevant couplings, allows one to write all
the remaining couplings as functions of this ėnite set. ĉis opens the intriguing possibility that
the number of independent couplings be smaller than the one currently used within perturba-
tion theory, in which case one would be able to predict relationships among some parameters
of the SM. Let us mention that SM-alternatives without a fundamental Higgs ėeld have been
based onAS scenarios for fermionic theories [103], which, however, are generically plaguedby
a strong hierarchy problem; see also [104] for an asymptotically free fermionic model where
nonlocal interactions lead to an improved hierarchy. ĉe possible relevance of AS scenarios
in the SM has also been investigated from the point of view of gauged unitary nonlinear sigma
models in [22, 79, 80].

ĉe study of AS scenarios in Yukawa systems was started in [105, 106]. ĉe strategy fol-
lowed in these works to trigger AS is not based on strong coupling peculiarities but on a con-
formal threshold behavior of the scalar vacuum expectation value (vev). In the spontaneous
symmetry breaking (SSB) regime a whole new sector of the theory develops containing inter-
actions mediated by the condensate. ĉe running of the modes interacting with such a con-
densate gets frozen since thesemodes acquire amass and decouple from the Ěow. ĉe running
of the vev itself can be qualitatively described as follows. If one looks at the dimensionless
squared vev κ = v2/(2k2) its beta-function has the structure

∂tκ ≡ ∂t
v2

2k2
= −2κ + interaction terms, ∂t = k

d
dk

. (5.3)

If the interaction terms are absent, the Gaußian ėxed point κ = 0 is the only conformal point,
corresponding to a free massless theory. If the interaction terms are nonvanishing, as is the
case if they approach a NGFP by themselves, the sign of these terms decides about a possible
conformal behavior. Apositive contribution from the interaction terms gives rise to aFPat κ >
0which can control the conformal running overmany scales. If they are negative, no conformal
vev is possible. Since fermions and bosons contribute with opposite signs to the interaction
terms, the existence of a ėxed point κ∗ > 0 crucially depends on the relative strength between
bosonic and fermionic Ěuctuations. More speciėcally, the bosons have to win out over the
fermions.

A ėrst analysis for simple Yukawa systems [105] containing one scalar ėeld and Nf Dirac
fermions revealed that the necessary bosonic dominance actually produces a NGFP, but it oc-
curs only for Nf . 0.3. ĉis result motivated the study of chiral Yukawa systems [106] with
NL leě-handed fermion species and one right-handed fermion as well as NL complex scalars.
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On the one hand such a structure was inteded to mimic the coupling between the SM Higgs
scalar and the leě- and right-handed components of the top quark, also involving Yukawa cou-
plings to the leě-handed boĨom (for NL = 2) and further boĨom-like quarks (for NL > 2)
in the same family. (When the scalar ėeld develops a vev upon symmetry breaking, the top
quark acquires a Dirac mass, whereas the boĨom-type quarks remainmassless in a way similar
to neutrinos.) On the other hand this seĨing was offering a control parameter for boson dom-
inance and for the potential existence of a NGFP: the number NL. Indeed, to leading-order
of the derivative expansion (local-potential approximation), this leě-right asymmetric model
was exhibiting the desired NGFP for 1 ≤ NL ≤ 57. Moreover, one of the admissible ėxed
points had only one UV-aĨractive direction, thus implying that only one physical parameter
had to be ėxed, e.g., the vev v = 246GeV, whereas all other IR quantities such as the Higgs or
the top mass would have been a pure prediction of the theory.

Unfortunately, the NGFP was destabilized at higher order in the derivative expansion. In
fact, a systematic derivative expansion of the AEA for computing the RG Ěow of the model
is reliable if the momentum dependence of full effective vertices takes only liĨle inĚuence on
the Ěow. A direct means for measuring this inĚuence is the size of the anomalous dimensions
η of the ėelds, since next-to-leading order contributions couple to the leading-order deriva-
tive expansion only via terms∼ η. Monitoring the size of η thus gives us a direct estimate of
the reliability of the results. In the aforementioned computation the anomalous dimension of
the right-handed fermions was taking unacceptably large values at the NGFP, thus signaling
the dramatic unreliability of the results. One reason for the size of ηR lies in the fact that the
massless Nambu-Goldstone bosons (NGB’s) and massless boĨom-type fermions contribute
strongly. ĉis is because they are not damped by massive threshold effects induced by cou-
plings to the condensate, and they contribute with a large multiplicity∼ NL. However, as the
massless NGB’s are not present in the SM due to the gauging of the SU(NL) symmetry, one
could expect that this instability of theNGFP could bemuch weaker or completely absent in a
gauged version of this chiral Yukawa model. ĉis expectation is a fundamental motivation for
the present work, in which the gauging is taken into account and its effect on the RG Ěow of
the system is analyzed.

ĉis chapter is organized as follows. In section 5.2, we give a detailed deėnition of themodel
under consideration and of the nonperturbative approximations considered in this work. In
section 5.3, we give the generic set of equations deėning the RG Ěow of the model. In sec-
tion 5.4, 5.5 and 5.6 we analyze the Ěow. Conclusions are presented in Sect. 5.7. Appendix B
describe the notations, the analytic manipulations and the approximations leading to the Ěow
equations studied in the present work.
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5.2 CļĽŇĵŀ YŊĿĵŌĵ ňŏňŉĹŁň ķŃŊńŀĹĸ ŉŃ ĻĵŊĻĹ ĸĹĻŇĹĹň Ńĺ ĺŇĹĹĸŃŁ

ĉe ėeld content of the model we are going to investigate in the present work is the follow-
ing: one right-handed fermion ψR, NL leě-handed fermions ψa

L, NL complex scalars φa and a
SU(NL)Yang-Mills vector potentialWa

ν . ĉemaĨer ėelds belong to the fundamental represen-
tation (indices from the beginning of the latin alphabet) while the gauge potential belong to
the adjoint representation (indices from themiddle of the latin alphabet) of SU(NL). Apart for
this continuous local symmetry we require also invariance of the theory under global U(NL)L

transformations of the leě-handed fermion and the scalar as well as under global U(1)R trans-
formations of the right-handed fermion and the scalar. ĉe projections on the leě-/right-
handed fermion contributions are carried out via the projection operators

PL/R =
1
2
(1± γ5) . (5.4)

ĉe bosons can also be expressed in terms of a real ėeld basis by deėning

φa =
1√
2
(φa1 + iφa2), φa† =

1√
2
(φa1 − iφa2) , (5.5)

where φa1, φ
a
2 ∈ R. ĉe above-mentioned symmetries require the scalar self-interactions to be

wriĨen in terms of the invariant ρ := φa†φa. We denote by

Dab
ν = ∂νδab − īgWi

ν(T
i)ab (5.6)

the covariant derivatives for themaĨer ėelds in the fundamental representation, by f the struc-
ture constants of the su(NL) algebra [Ti,Tj] = ifijlTl and by Fiμν = ∂μWi

ν−∂μWi
ν+ ḡfijlWj

μWl
ν

the nonabelian ėeld strength (here and in the following a sum over repeated indices is under-
stood, unless differently stated, regardless of the position of indices, since every metric is as-
sumed to be positive deėnite).

In the spirit of perturbative (power-counting) renormalizabiliy the classical action subject
to perturbative quantization would read

Scl =
∫
ddx
[1
4
FiμνF

iμν + (Dμφ)†(Dμφ) + m̄2ρ +
λ̄
2
ρ2

+ i(ψ̄a
L /D

abψb
L + ψ̄R/∂ψR) + h̄ψ̄Rφ

†aψa
L − h̄ψ̄a

Lφ
aψR

]
(5.7)

where the classical parameter space would be spanned by the boson mass m̄, the scalar self-
interaction λ̄, the Yukawa coupling h̄ and the gauge coupling ḡ. In order to quantize this action
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one would need some kind of gauge-ėxing. As in this system the Higgs mechanism is known
to take place, a particularly useful gauge-ėxing choice would be the so-called renormalizable
Rα gauge, that is deėned in such a way to cancel the derivative interactions between the gauge
vector and the NGB’s. Separating the scalar ėeld into the vev v/

√
2 and the Ěuctuations Δφ

around the vev
φa =

v√
2
n̂a + Δφa, Δφa =

1√
2
(Δφa1 + iΔφa2) (5.8)

where n̂ is a unit vector (n̂†an̂a = 1) deėning the direction for the vev, one could ėx the gauge
by the condition

Gi(W) = ∂μWi
μ +
√

2iαvḡTi
n̂aΔφ

a = 0 (5.9)

where α is a gauge-ėxing parameter interpolating between the unitarity gauge at α → ∞ and
the Landau gauge at α → 0. From here on the label n̂ in place of a fundamental color index
denotes the contraction of that index with the unit vector n̂ (or n̂†, depending on the position
of the index). In order to affect the NGB’s and not the massive scalar, one usually excludes in
the gauge-ėxing the terms depending on Δφn̂1. To implement such a gauge-ėxing, one could
introduce the following term in the microscopic action

Sgf =
1
2α

∫
ddxGi(W)Gi(W) .

Accordingly, one would need to include ghost ėelds ci and c̄i, with a bare action

Sgh = −
∫
ddx c̄iMijcj

where
Mij = −∂2

μδ
ij − ḡf ilj∂μWlμ +

√
2αvḡ2Ti

n̂aT
j
abΔφ

b (5.10)

again excluding a = n̂ in the sum involving Δφb1.
In conclusion, perturbative quantization of the action (5.7) would go through a bare ac-

tion of the form SΛ = Scl + Sgf + Sgh. As already explained, in AS scenarios power-counting
renormalizability is in general not respected by the microscopic action, therefore we do not
want to restrict ourselves to such bare actions. However we assume that SU(NL) gauge sym-
metry be a fundamental symmetry, as opposed to an emergent one. ĉat is, even if we do not
know the precise form of the bare action, we expect that it will be separable into two parts,
SΛ[Φ,W, W̄] = S̄Λ[Φ, W̄] + SgaugeΛ [Φ,W, W̄], the ėrst one enjoying gauge symmetry and the
second one being some kind of generalized gauge-ėxing, vanishing if one sets W = W̄. ĉe
fundamental gauge symmetry then ties these two parts together by means of the BRST invari-
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anceof thebare action. ĉesameconsiderationsof course apply to thepossibleFPmicroscopic
action. Since we cannot analyze the inėnite possible forms for these actions, we need to make
some ansatz for them. For this task, the requirement of perturbative renormalizability can be
of some help, since we know that at “low” energies some IR-relevant parameters must be non-
vanishing for phenomenological reasons. ĉus, we can consider a truncation of theory space
containing these power-counting renormalizable terms, plus some other perturbatively non-
renormalizable interactions parameterizing our ignorance about the high-energy dynamics.

In this work the choice of the truncation is very simple: we RG-improve the perturbatively
renormalizable bare action, allowing for a scale dependence of the coupling constants already
appearing in it, furthermore we admit a generic potential for the scalar ėeld, and we also intro-
duce wave function renormalizations for the maĨer ėelds. Explicitly

Γk =

∫
ddx
[
Uk(ρ) + Zφ,k(Dμφ)†(Dμφ) + i(ZL,kψ̄a

L /D
abψb

L + ZR,kψ̄R/∂ψR)

+ h̄kψ̄Rφ
a†ψa

L − h̄kψ̄a
Lφ

aψR +
ZW,k

4
FiμνF

iμν +
Zφ,k

2α
GiGi − c̄iMijcj

]
. (5.11)

As far as the gauge-ėxing Gi and the corresponding operatorM are concerned, we would
like them to enjoy the good properties of both background-gauge and Rα-gauge. ĉerefore we
choose them as in (5.9,5.10), but in these expressions we replace the ordinary differentiation
with covariant derivatives D̄w.r.t. the backgroundėeld W̄. However, due to the extreme simpli-
ėcation of the present truncation, and since we are interested only in an approximate one-loop
beta function for the gauge coupling, this choice is practically indistinguishable from a non-
background-covariant Rα-gauge. Let us stress that we neglect all local non-derivative terms in
the spinor and in the ghost sectors different from the ones in (5.11) and that we keep a naive
paĨern of gauge-breaking BRST-preserving interactions. Furthermore in our study we neglect
the difference between the interactions involving the background gauge ėeld and those involv-
ing its quantum expectation value. In the particular case NL = 2 a different family of chiral
Yukawa couplings exists, involving the Levi-Civita tensor εab. In the present work we are not
going to take the possibly important effect of these operators into account.

To sum up, the subset of theory space we are considering is parameterized by Zφ,k, ZL,k,
ZR,k, ZW,k, α, h̄k, v and all the parameters contained inUk different from v itself. It is also useful
to introduce a simplifying notation for the masses in the SSB regime, which however are not
independent from the parameters listed above. ĉe mass matrix for the gauge bosons is given
by

m̄2 ij
W =

1
2
Zφḡ2v2{Ti,Tj}n̂n̂ (5.12)

89



and since it is diagonalizable, we can (and we will) choose a basis in adjoint color space where

m̄2 ij
W = m̄2

W,iδ
ij (no sum over i) . (5.13)

ĉe scalar mass matrix
m̄2 ab

φ = v2U′′k

(
v2

2

)
n̂an̂†b .

In a diagonalizing basis becomes m̄2 ab
φ = m̄2

φ,aδ
ab (no sum over a), and of course there is only

one nonvanishing eigenvalue for the radial mode. Furthermore the “top mass”, i.e. the mass of
the ψ n̂

L mode, is given by

m̄ψ =
h̄kv√

2
. (5.14)

5.3 RĹłŃŇŁĵŀĽŐĵŉĽŃł ĺŀŃŌ

All the parameters inside the truncation are expected to have a nontrivial dependence on the
scale k, as indicated by the subscripts we introduced. A large part of this dependence can be
trivially predicted, at least in a neighborhood of the GFP, on the basis of the canonical dimen-
sionality of these parameters, therefore it is useful to redeėne the couplings in such a way to
wash out this dimensional scaling. In so-doing, we are taking a free theory as a reference, by as-
signing to it a vanishingRGĚow. Since this redeėnition corresponds to a rescaling of the ėelds,
we can include in it also the wave function renormalizations, so that in the new Lagrangian the
ėelds will be canonically normalized at every scale. One calls the corresponding parameters
“dimensionless” and they are given by

h2k =
kd−4h̄2k
ZφZLZR

, g2 =
ḡ2

ZWk4−d
,

uk(ρ̃) = k−dUk(Z−1φ kd−2 ρ̃), κk =
Zφv2

2kd−2
= ρ̃min

where the last equation is for the value of ρ̃ that minimizes the effective potential at every scale
k. Accordingly, the dimensionless masses are deėned as

m2
W,i =

m̄2
W,i

ZWk2
, m2

φ,a =
m̄2

φ,a

Zφk2
, mψ =

m̄ψ√
ZLZRk

.

ĉe remaining parameter α, that is already dimensionless, will be required to vanish at every
scale, thus ėxing Landau gauge at every RG step. At a FP also the beta functions of the previ-
ous dimensionless couplings must vanish. ĉe contribution of the non-canonical ėeld renor-

90



malizations to these beta functions is encoded in the following scale-dependent anomalous
dimensions

ηφ = −∂t logZφ , ηW = −∂t logZW

ηL = −∂t logZL , ηR = −∂t logZR .

SeĨing the anomalous dimensions to zero deėnes the leading-order derivative expansion. At
next-to-leading order, it is important to distinguish between ZL,k and ZR,k as they acquire dif-
ferent loop contributions, see below. Let us stress that, since we are going to compute the
running of only one coupling in the pure gauge sector, by projecting the Ěow on the squared
ėeld-strength, ḡ can be considered as k-independent and the nontrivial renormalization of g is
completely encoded in ηW. For our purposes, we use a linear regulator functionRk that is opti-
mized for the present truncation [41, 42]. ĉedeėnitions of this regulator and of the threshold
functions which appear in the beta functions of the maĨer sector are given in App. B.1.

5.3.1 FŀŃŌ ĹŅŊĵŉĽŃłň ĺŃŇ ŉļĹ ŁĵŔĹŇ ķŃŊńŀĽłĻň

Detailed information about the derivation of the Ěow equations for the maĨer sector of this
truncation, in arbitrary Euclidean space dimensions d and for anyNL, is given in App. B.2. In-
troducing the abbreviation vd = 1/(2d+1πd/2Γ(d/2)), and calling dγ the dimension of the
representation of the Clifford algebra (i.e. our γ’s are dγ × dγ matrices), without perform-
ing further approximations apart for the ones already discussed, we ėnd the set of equations
showed in the following. ĉe Ěow of the potential is described by

∂tuk = −duk + (d− 2 + ηφ)ρ̃u
′
k + 2vd

{
− 2(N2

L − 1)l(G)d0 (0)

+

N2
L−1∑
i=1

[
(d− 1)l(GB)d0T

(
m2

W,i
)
+ l(GB)d0L (0)

]
+ (2NL − 1)ld0 (u

′) + ld0 (u
′ + 2ρ̃u′′)

− dγ
[
(NL − 1)l(F)d0L (0) + l(F)d0L

(
ρ̃h2k
)
+ l(F)d0R

(
ρ̃h2k
)]}

(5.15)

For the symmetric phase, one usually expands the effective potential around zero ėeld,

uk =

Np∑
n=1

λn,k
n!

ρ̃n = m2
k ρ̃ +

λ2,k
2!

ρ̃2 +
λ3,k
3!

ρ̃3 + · · · (5.16)
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while for the SSB phase, where the minimum of the effective potential uk acquires a nonzero
value κk := ρ̃min > 0, it is more efficient to use a different expansion

uk =
Np∑
n=2

λn,k
n!

(ρ̃− κk)n =
λ2,k
2!

(ρ̃− κk)2 +
λ3,k
3!

(ρ̃− κk)3 + · · · . (5.17)

Given the Ěow of uk (5.15), the Ěows of m2
k or λn,k in both phases can be read off from an

expansion of the Ěow equation and a comparison of coefficients. For the Ěow of κk, we use the
fact that the ėrst derivative of uk vanishes at the minimum, u′k(κk) = 0. ĉis implies

0 = ∂tu′k(κk) = ∂tu′k(ρ̃)|ρ̃=κk + (∂tκk)u′′k (κk)

⇒ ∂tκk = − 1
u′′k (κk)

∂tu′k(ρ̃)|ρ̃=κk . (5.18)

Note that the expansion coefficients λn,k inEqs. (5.16) and (5.17) are not identical. Since there
is liĨle risk that the notation of the different regimes interferes with each other, we refrain from
introducing different symbols.

In the SSB regime, the Ěow of the Yukawa coupling and the scalar anomalous dimension for
the NGB can, in principle, be different from that of the radial mode. As the NGB’s as such are
not present in the standardmodel, we compute the Yukawa coupling and the scalar anomalous
dimension by projecting the Ěow onto the radial scalar operators in the SSB regime. Note that
this strategy is different from that used for critical phenomena in other Yukawa or bosonic sys-
tems, where the Nambu-Goldstone modes can dominate criticality. Accordingly, the Ěow of
the Yukawa coupling hk can be derived and we ėnd the same result already presented in [106],
that is

∂th2k = (d− 4 + ηφ + ηL + ηR)h
2
k + 4vdh4k

{
− l(FB)d1,1 (ρ̃h2k, u

′
k) + l(FB)d1,1 (ρ̃h2k, u

′
k + 2ρ̃u′′k )

+ (2ρ̃u′′k )l
(FB)d
1,2 (ρ̃h2k, u

′
k)− (6ρ̃u′′k + 4ρ̃2u′′′k )l

(FB)d
1,2 (ρ̃h2k, u

′
k + 2ρ̃u′′k ) (5.19)

+ (2ρ̃h2k)l
(FB)d
2,1 (ρ̃h2k, u

′
k)− (2ρ̃h2k)l

(FB)d
2,1 (ρ̃h2k, u

′
k + 2ρ̃u′′k )

}
.

ĉe vanishing of the gauge contributions to the running of this coupling is a special feature of
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Landau gauge, and it is shortly explained in App. B.2. Finally the anomalous dimensions

ηφ =
8vd
d

(
ρ̃(3u′′k + 2ρ̃u′′′k )

2md
2,2(u

′
k + 2ρ̃u′′k ) + (2NL − 1)ρ̃u′′2k md

2,2(u
′
k)

+ dγh2km
(F)4
4 (ρ̃h2k)− dγ ρ̃h4km

(F)4
2 (ρ̃h2k)

)
− 8vd(d− 1)

d

N2
L−1∑
i=1

{
(5.20)

2g2
NL∑
a=1

Ti
n̂aT

i
an̂ l

(BGB)d
1,1

(
u′k,m

2
W,i
)
+

m4
W,i

ρ̃

[
2ad1
(
m2

W,i
)
+ m(GB)d

2
(
m2

W,i
)]}

ηR =
4vd
d
h2k
[
m(FB)d

1,2 (ρ̃h2k, u
′
k + 2ρ̃u′′k ) + m(FB)d

1,2 (ρ̃h2k, u
′
k) + 2(NL − 1)m(FB)d

1,2 (0, u′k)
]

(5.21)

ηL =
4vd
d
h2k
[
m(FB)d

1,2 (ρ̃h2k, u
′
k + 2ρ̃u′′k ) + m(FB)d

1,2 (ρ̃h2k, u
′
k)
]
+

8vd(d− 1)
d

g2
N2

L−1∑
i=1

{
NL∑
a=1

Ti
n̂aT

i
an̂

[
m(FGB)d

1,2
(
0,m2

W,i
)
− ad3

(
0,m2

W,i
)]

(5.22)

+ (Ti
n̂n̂)

2
[
m(FGB)d

1,2
(
ρ̃h2k,m

2
W,i
)
− m(FGB)d

1,2
(
0,m2

W,i
)
− ad3

(
ρ̃h2k,m

2
W,i
)
+ ad3

(
0,m2

W,i
) ]}

.

If, in the chosen basis in fundamental color algebra, the direction of the vev n̂ has a single non-
vanishing component, i.e. if n̂a ∝ δaA, the anomalous dimension of the leě-handed fermion
takes a simpler form

ηL =
4vd
d
h2k
[
m(FB)d

1,2 (ρ̃h2k, u
′
k + 2ρ̃u′′k ) + m(FB)d

1,2 (ρ̃h2k, u
′
k)
]

(5.23)

+
8vd(d− 1)

d
g2

NL∑
a=1

N2
L−1∑
i=1

Ti
AaT

i
aA

[
m(FGB)d

1,2
(
δaA ρ̃h2k,m

2
W,i
)
− ad3

(
δaA ρ̃h2k,m

2
W,i
)]

.

In all the eqs. (5.19-5.23) the whole r.h.s. is to be evaluated at the value ρ̃ = κk that minimizes
the potential uk. ĉe explicit form of these equations for the linear regulator can be found in
App. B.2.

5.3.2 FŀŃŌ ĹŅŊĵŉĽŃł ĺŃŇ ŉļĹ ĻĵŊĻĹ ķŃŊńŀĽłĻ

While for the maĨer couplings we performed the computation for generic d, dγ ,NL and with-
out further approximations apart for the chosen truncation and gauge, for the gauge coupling
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we limit ourselves to an approximate one-loop beta function in d = 4, dγ = 2 andNL = 2, 3.
ĉe further approximation applies to the massive threshold behavior of the radial leě-handed
spinor, and the details of it and of the derivation of the Ěow equation can be found in App. B.3.
ĉis approximation is expected not to affect our qualitative investigations because we are in-
terested only in the regime of weak gauge coupling. To summarize, we can write the gauge
one-loop β-function as

∂tg2 = g2 ηW (5.24)

ηW =
−g2

16π2
(22NL

3
LW(m2

W,i) −
2NL

3
Lψ(m2

ψ)−
NL

3
Lφ(m2

φ,a)
)

and for SU(2)we have, in the regime of SSB

LW(m2
W) =

1
44

(
21 +

21
1 + m2

W
+ 2
)

, m2
W =

g2κk
2

Lψ(m2
ψ) =

1
4

(
1 +

1
1 + m2

ψ

)
, m2

ψ = h2kκk

Lφ(m2
φ) =

1
4

(
1 +

1
1 + m2

φ

)
, m2

φ = 2λ2,kκk (5.25)

where the threshold function Lψ(m2
ψ) is not exact but accurate enough for our purposes. If we

specify a constant pseudo-abelian magnetic background ėeld

Fiμν = m̂iFμν , m̂im̂i = 1 , Fμν = Bε⊥μν

where the constant antisymmetric tensor ε characterizes the spacedirectionswhich are affected
by the constantmagnetic ėeld upon theLorentz force, the deėnition of the threshold functions
for generalNL can be given in terms of νa, the eigenvalues of (m̂iTi)ab for the fundamental rep-
resentation, and in terms of νi, the eigenvalues of (m̂lτ l)ij = im̂lfilj for the adjoint representa-
tion, as follows (using the linear regulator)

LW(m2
W) =

3
22NL

21
3

N2
L−1∑
i=0

|νi|2

1 + m2
W,i

+
NL

3


Lψ(m2

ψ) =
2
NL

NL∑
a=1

1
1 + h2κδaA

|νa|2

Lφi(m2
φ) =

2
NL

NL∑
a=1

1
1 + m2

φ,a
|νa|2 .
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Recall that for all the gauge groups only one particular component ofm2
φ,a is nonvanishing and

equal to 2λ2κ. Since we are interested in the search for FP’s with a vanishing gauge coupling,
the exact threshold behaviour is unnecessary and forNL > 2 we can roughly approximate the
gauge beta function by

∂tg2 = −
g4

16π2

(
22NL

3(1 + 2κg2
NL

)
− 2

3
− 1

6

(
N2

L − 1
N2

L
+

1
N2

L(1 + 2κλ)

))
. (5.26)

5.3.3 PĵŇĵŁĹŉĹŇ ķŃłňŉŇĵĽłŉň

Let us ėnally discuss several constraints on the couplings as, e.g., dictated by physical require-
ments as well as by our truncation. As our truncation is based on a derivative expansion, sat-
isfactory convergence is expected if the higher derivative operators take liĨle inĚuence on the
Ěow of the leading-order terms. In the present case, the leading-order effective potential re-
ceives higher-order contributions only through the anomalous dimensions. ĉerefore, con-
vergence of the derivative expansion requires

ηL, ηR, ηφ . O(1).

ĉis condition will serve as an important quality criterion for our truncation. ĉe symmetric
regime is characterized by a minimum of uk at vanishing ėeld. A simple consequence is that
the mass term needs to be positive. Also, the potential should be bounded from below, which
in the polynomial expansion translates into a positive highest nonvanishing coefficient,

m2
k, λnmax,k > 0.

In the SSB regime, the minimum must be positive, κk > 0, the potential should be bounded,
and in addition the potential at the minimum must have positive curvature,

κk, λnmax,k, λ2,k > 0.

Osterwalder-Schrader positivity requires

h2k > 0.

Finally, if one accepts Dyson’s suggestion it might be necessary to ask

g2 > 0
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in order to avoid unitarity violations. Beyond that, there are no constraints on the size of the
couplings as in perturbation theory.

5.3.4 Mĵňň ńĵŇĵŁĹŉĹŇĽŐĵŉĽŃł

In the next sectionswewill present an analysis of the Ěow equations introduced in the previous
subsections, and the results of the search for NGFP’s. ĉere, as a ėrst step towards a complete
understanding of the RG within our truncation, we will consider a simple polynomial expan-
sion of the effective potential and we will set λ3,k and higher terms to zero. ĉe anomalous
dimensions of the maĨer ėelds can then be expressed exclusively in terms of the couplings
κ, λ2, h2, g2. In this case, substituting the η’s by these expressions, we obtain the following Ěow
equations in the maĨer sector

∂tκ = βκ(κ, λ2, h
2, g2)

∂tλ2 = βλ(κ, λ2, h
2, g2)

∂th2 = βh(κ, λ2, h
2, g2).

It is useful to reparameterize the system in terms of the particle masses that occur in the argu-
ments of the threshold functions, therefore, dropping numerical factors, we introduce themass
parameters

μH := κλ2, μF := κh2, μG := κg2 .

ĉe actual squared masses, m2
φ, m2

ψ and m2
W, are then proportional to these parameters. ĉe

Ěow equations for the μ’s can then be computed from the original set of Ěow equations for
g2, κ, λ2 and h2, yielding

∂tμH = (∂tκ)λ2 + κ(∂tλ2),

∂tμF = (∂tκ)h2 + κ(∂th2),

∂tμG = (∂tκ)g2 + κ(∂tg2).

Aside these three equations,weneed to take into account theĚowof g asdeėnedbyeqs. (5.24,5.25).

5.4 LĽŁĽŉ Ńĺ ĵňŏŁńŉŃŉĽķĵŀŀŏ ĺŇĹĹ ĻĵŊĻĹ ķŃŊńŀĽłĻ

Because of the mechanism based on the conformal threshold behavior of the vev explained in
the ėrst sectionof this chapter, we focus our aĨentionon theSSB regime. ĉis is also supported
by the fact that at a ėrst numerical analysis noNGFP has been found in the symmetric regime.
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ĉus, within the simple mass parameterization of theory space described above, we observe
that changing the gauge coupling by hand leads us to the FP depicted in Fig.5.1
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Figure 5.1: Fixed points in the mass parameterization for NL = 2 depending on the
gauge coupling.

ĉus we suspect the following behavior of the mass terms as g2 → 0:

μH → 0 (g2 → 0), (5.27)
μH
g2
→ const. (g2 → 0), (5.28)

μF → const. (g2 → 0), (5.29)

μG → const. (g2 → 0). (5.30)

We now want to discuss the limit g2 → 0 in the Ěow equations for the mass parameters. As
the ratio μH/g

2 converges to a constant we set μH = χg2 in the Ěow equations and perform the
limit g2 → 0 aěerwards, yielding

∂tg2 = 0, ∂tμH = 0, ∂tμF =
μF
μG

(∂tμG), (5.31)

As the Ěow equations for g2 and μH vanish identically in this limit they are suitable for a ėxed-
point solution, however, not to determine the position of this ėxed point for the other parame-
ters (μG, μF), as they don’t provide nontrivial algebraic equations. Further, the Ěow equations
for μG and μF are proportional in this limit and therefore we are leě with only one equation for
the three remaining parameters, given by the Ěow of μG, which is discussed in the next sections
for different values ofNL.
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5.4.1 FĽŎĹĸ ńŃĽłŉ ĺŃŇNL = 2

ĉecaseNL = 2 is the simplest one, concerning the algebra. Recall that herewemiss a possibly
important invariant in the truncation, theYukawacoupling involving theLevi-Civita tensor εab.
However, the qualitative features of the algebra concerning its ėxed-point structure remain the
same as we go to higherNL, see next section. Here, we ėnd

∂tμG = −2μG +
9μG − 8μF + (10 + 9μF − 2μG)μGμF

16π2χ(1 + μF)2(2 + μG)2
. (5.32)

To determine a line of ėxed points of the mass parametrization in the asymptotically free limit
we set up the Ěow equation for the ratio χ = μH/g

2:

∂tχ = ∂t(
μH
g2

), (5.33)

which is supposed to vanish at the ėxed point. ĉis yields

χ∗ = − 1
32π2

(2μF(1 + 3μF)
(1 + μF)3μG

−
9(2 + 3μG)
(2 + μG)3

)
. (5.34)

We can plug this result into the Ěow equation for μG to solve for the ėxed point giving three
solutions for μF as a function of μG. ĉe Ěows of μF and μG are proportional and their ratio
remains undetermined for the moment.
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Figure 5.2: Fixed points in the mass parameterization for NL = 2. Left panel: Real part
(red solid) and imaginary part (blue dashed).

If we want to single out the FP of Fig.5.1 we have to ask for vanishing beta function of the
Yukawa coupling. ĉis beta function is exactly zero in the limit g2 → 0. Using ėnite values for
g2 instead and tuning the gauge coupling towards zero we ėnd that μ∗G = 0.413552 which ėts
to the plot of Fig.5.1. ĉus the FP is given by

(μ∗H, μ
∗
F, μ
∗
G) = (0, 0.38, 0.41) . (5.35)
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5.4.2 FĽŎĹĸ ńŃĽłŉ ĺŃŇNL = 3

ĉe caseNL = 3 (and even higher ones) follows from a straightforward generalization of the
previous section.

∂tμG = −2μG +
1

16π2χ(1 + μF)2(2 + μG)2(3 + 2μG)2

×
(

24 (6 + μF(5 + 6μF))μG + 2(90 + μF(107 + 90μF))μ
2
G

+ ((57 + μF(58 + 57μF))μ
3
G − 8μFμ

4
G − 72μF

)
. (5.36)

and

χ∗ = − 1
32π2

(2μF(1 + 3μF)
(1 + μF)3μG

+
48

(2 + μG)3
(5.37)

− 36
(2 + μG)2

+
54

(3 + 2μG)3
− 27

(3 + 2μG)2
)
.
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Figure 5.3: Fixed points in the mass parameterization for NL = 3. Left panel: Real part
(red solid) and imaginary part (blue dashed).

5.5 CŇĽŉĽķĵŀ EŎńŃłĹłŉň

We deėne the stability matrix

Bi
j =

∂βi
∂gj

∣∣∣
g∗
, (5.38)

in terms of the couplings gj from the mass parameterization {g2∗, μ∗F, μ∗G, χ∗}. ĉe negative
eigenvalues of the stability matrix are the critical exponents and determine the stability prop-
erties of our system. In the following we perform a stability analysis of our system in mass
parameterization forNL = 2 andNL = 3.
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For NL = 2 the critical exponents depending on μg are depicted in Fig. 5.4. Two of the
four critical exponents vanish and thus are hardly visible. ĉe other two are distinguishable
for μg < 0.38. For μg > 0.38 they are a complex pair which can be seen on the right plot in
Fig. 5.4. Note that the critical exponents corresponding to the ėxed point (g2∗, μ

∗
F, μ
∗
g , χ
∗) =
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Figure 5.4: Critical exponents for NL = 2.

(0, 0.38, 0.41, 0.0018) are

θ1/2 = 1± 0.36i , θ3 = θ4 = 0 . (5.39)

ĉe ėrst two critical exponents are building a complex pair and thus cause a spiraling approach
towards the ėxed point on the corresponding hypersurface. ĉe normal direction to this spiral
is the vector vn = (0, 0.00044,−0.00040, 0). ĉe last two are marginal directions and we
have to investigate them in more details.

ForNL = 3 the critical exponents are shown in Fig. 5.5.
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Figure 5.5: Critical exponents for NL = 3.
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5.6 FŀŃŌ ĺŇŃŁ ŉļĹ ŊŀŉŇĵŋĽŃŀĹŉ ŉŃ ŉļĹ ĹŀĹķŉŇŃŌĹĵĿ ňķĵŀĹ

We observe that the Ěow to the infrared is divided into three regimes. ĉe ėrst is a ėxed point
regime: at a large scale (say k ∼ Λ), the system is near theNGFPandwould approach to it even
furtherwhenmoving Λ towards theUV. In this regime the Ěow is fairly describedby the critical
exponents of the NGFP. ĉe second is a transition regime, where the system in dimensionless
couplings runs rapidly away from the FP.ĉis is shown in the plots of Fig. 5.6 at around t ' 12.
In the standard model, that would correspond to scales up to a few orders of magnitude larger
than the electroweak scale. ĉe third is a freeze-out regime, where the dimensional masses
almost stop running, a behavior that can be immediately spoĨed in Fig. 5.7 at around t ' 7. In
terms of the dimensionless quantities of Fig. 5.6 this corresponds to an exponential behavior
∼ e−2t = 1/k2 and it occurs approximately for t < 12. Roughly speaking, this is the analog of
the electroweak scale in the standard model.

Apart for the ones justmentioned, following the Ěow towards the IRwemeetmore relevant
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scales, that however are unphysical and due to the truncation and therefor we do not show
them. For example, aěer the “electroweak freeze-out” near t ' 7 of Fig. 5.7, there seems to be
another rapid transition in the dimensional masses near t ' −10 in the scalar Higgs mass and
also a small response in the fermion mass. We suspect that this is an artifact generated by the
impossibility, within our truncation, to distinguish the radialmode self-interactions from those
of the “quasi” NG modes. ĉis is an old problem in the deep IR of these types of truncations
based on a Cartesian scalar basis, where the NGmodes can contribute to the Ěow of the radial
quantities “forever” towards the deep IR, even though in a non-linear basis it is immediately
clear that these modes decouple. Even more in the IR, our Ěow eventually hits the Landau
pole of the gauge coupling and gets destabilized. In summary and in practice, we should just
stop the Ěow aěer the electroweak freeze out in order to stay away from both: the Nambu-
Goldstone artifacts at and the gauge coupling blow up.

Interestingly, if we read off the IR masses in the freeze-out regime we observe that for all
starting values that lead to reasonable IR Ěows the ratio of the top quark mass to the Higgs
mass and the gauge boson mass to the Higgs mass are limited to a range between 30 and 70.
Furthermore the ratio of the top quark mass and the gauge boson mass is equal for all reason-
able Ěows.

5.7 SŊŁŁĵŇŏ

In this chapter we have presented a computation of the RG Ěow of a gauged chiral Yukawa
system, includingNL leě- and one right-handend spinors, as well asNL complex scalars, plus a
SU(NL) vector gaugeboson, coupled via a chiral Yukawaandminimal gauge terms, plus a scalar
self-interaction. At next-to-leading order in the derivative expansion of the AEA we have de-
rived the complete beta functions and anomalous dimensions of this maĨer sector, for generic
dimension d and rank NL. We have supplemented them with a one loop beta function of the
gauge coupling including approximate massive threshold effects in the regime of spontaneous
symmetry breaking. With this set of Ěow equations we have started analyzing the laĨer regime
founding evidence for the presence of a non-Gaußian ėxed point (NGFP) in d = 4 for both
NL = 2 andNL = 3, and we believe that this FP should survive also for bigger values of NL.
We have also computed the critical exponents ėnding values of order one, while the anoma-
lous dimensions remain small and thus support the reliability of the derivative expansion. ĉe
analysis of the Ěow for larger truncations of the potential and for general d andNL is still to be
completed and unfortunately we are not able to comment further on it in this thesis.

One motivation for this computation was the opportunity to check that a mechanism for
triggering the formation of NGFP’s in the RG Ěow of a theory is provided by the conformal
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threshold behavior of the scalar vev. While previous investigations were leading to partial re-
sults, spoiled by the dominance of unphysical Nambu-Goldstone boson contributions, in the
present approach these contributions are killed by the Higgs mechanism and the regime of
spontaneous symmetry breaking indeed exhibits at least a NGFP.

ĉe physical consequences of the presence of such a FP could be many and profound, and
they provided further motivations for embarking in these computations. If its existence were
conėrmed by further studies, this NGFP could provide the solution to one fundamental and
long-standing problem of the standard model: the triviality of the scalar sector. ĉis would be
the case if the NGFP had the right properties to render the theory asymptotically safe. Fur-
thermore, if the corresponding critical exponents were small enough, this FP could allow also
for a partial or total smoothing of the hierarchy problem. Of course, a big difference between
the present system and the electroweak sector of the standard model is the presence of a U(1)
sector in the laĨer, that also brings its own triviality problem. However this is absent in grand
uniėcation theories, that could also present the same basic dynamical mechanisms underlying
the apparent asymptotic safety of our gauged chiral Yukawa system. Also in these theories, the
knowledge of the RG Ěow outside the perturbative regime is of primary importance for estab-
lishing the soundness and the physical predictions of the model. For these reasons we plan to
properly analyze the Ěow of our model also forNL > 2.

In order to conėrm the asymptotic safety scenario, future studies will have to considermore
general truncations of theory space, in order to rule out the possibility that this NGFP be an
artifact of the approximations adopted in the present analysis, and in order to conėrm that the
number of relevant and marginally-relevant directions for this NGFP is ėnite and sufficiently
small to be useful for phenomenology. ĉiswould be an abstract or computational approach to
the consolidation and validation of the present theoretical picture, while another possibility for
future investigations couldbe taking amorephysical point of viewand trying todeduce testable
phenomenological consequences of asymptotic safety scenarios in the standard model and in
grand uniėcation pictures.

In the present fRG approach and by truncations similar to the ones studied in this chapter,
one could also address the important problem of the stability of the quantuum vacuum of the
Higgs sector, that is likely to require a nonperturbative approach for its proper understanding.
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6
Conclusions

In this thesis we have discussed a representation of quantummechanics and quantum and sta-
tistical ėeld theory based on a functional renormalization Ěow equation for the one-particle-
irreducible average effective action, and we have employed it to get information on some spe-
ciėc systems.

In chapter 2 we have derived this representation from a functional integral representation,
stressing one necessary condition for these two frameworks to be equivalent: the presence of
a rising delta functional in the regularized path integral. To this end we have derived a proper
normalization of this Ěow equation from a regularization in phase space andwe have discussed
the consequences of this natural normalizationon the contributionof free ėelds to the constant
term of the effective potential, ėnding an automatic disappearance of the need for quartically
divergent counter-terms.

In chapter 3 we have extended this representation to get a description of the full dynamics
in phase-space in terms of average effective Hamiltonian actions. Such an extension provides
a tool for the nonperturbative quantization also of theories whose bare Hamiltonians are not
quadratic in the momenta. We have checked its reliability and its power for computing ob-
servables such as the ground state energy and gap of these theories, by a simple exercise in
quantum mechanics. We have also considered the possibility to apply this phase-space repre-
sentation to ėeld theory, either in a Lorentz non-covariantHamiltonian setup or in a particular
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Lorentz covariant formulation. For the laĨer we have derived a ėrst truncated Ěow that could
deserve future numerical studies in order to look for new universality classes and to test this
unusual Lorentz covariant quantization. ĉen we have discussed more possible applications
of this Hamiltonian representation.

One of these applications has been started in chapter 4, were we have addressed the study
of linear and nonlinear O(N) models by means of this new tool. Regarding the linear model,
it could be interesting to investigate if spontaneous symmetry breaking can occur in a new
way, intrinsically involving a nontrivial momentum sector. As far as the nonlinear model is
concerned, this representation allows to study these systems in a fully Hamiltonian framework
even for bare actions that are quadratic in the momenta. Our starting point in this case has
been a critical comparison between this representation and the geometric background ėeld
method that is usually adopted for the nonlinear systems. We have outlined how modiėed
Ward-Takahashi identities can be used to take into account the nonlinear symmetry along the
RG Ěow. ĉe ėnal goal of this research project is to study the ėxed point structure and the uni-
versality classes of both systems and to compare the resultswith all the other availablemethods.
Unfortunately this work is unėnished because the research is still ongoing.

In chapter 5 we have employed the traditional RG Ěow equation representation in conėgu-
ration space for the study of a toy model of the electroweak sector of the standard model or of
grand uniėcation theories, in order to see if this tool can give new insights in the understanding
of the triviality and of the hierarchy problems. To this end we have derived nonperturbative
approximate beta functions for the couplings of this gauged chiral Yukawa system. Speciėcally,
we computed the running of the maĨer sector at next to leading order in the derivative expan-
sion for generic spacetime and unitary gauge group dimensions, while we improved the one-
loop running of the gauge coupling by approximatemassive threshold effects. ĉe preliminary
analysis of the RG Ěow shows the presence of an interacting ėxed point in the spontaneous
symmetry breaking regime, for both SU(2) and SU(3) gauge groups, thus conėrming that a
conformal threshold behaviour of the scalar vacuum expectation value can lead to such ėxed
points. We also started the analysis of the linearized RG Ěow around such a FP as well as of
the subsequent Ěow towards the IR. ĉese result provide a ėrst positive hint for the possible
asymptotic safety of themodel, that would solve the triviality problem and could lead to a par-
tial or total smoothening of the hierarchy problem.

Moredetaileddiscussions about the results of the corresponding investigations canbe found
in the ėnal sections of each chapter.
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A
Appendices to chapter 3

A.1 TļĹĹĺĺĹķŉĽŋĹHĵŁĽŀŉŃłĽĵłĵķŉĽŃłĵňŉļĹĻĹłĹŇĵŉĽłĻĺŊłķŉĽŃłĵŀ
Ńĺ 1PI ŋĹŇŉĹŎ ĺŊłķŉĽŃłň

In this appendix we are going to prove that the effective Hamiltonian action is the generating
functional of the one particle irreducible (1PI) proper vertices, in the sense that the tree level
amplitudes computed with vertex functions and propagators extracted from it are equal to the
full perturbative series generated by the bare Hamiltonian action. For the ease of the explana-
tion we limit this discussion to the QM case, choosing ~ = 1 as a unit of action. ĉe proof
works just as for the usual Lagrangian effective action [107, 108].

1. Write down a path integral based on a Hamiltonian bare action which is (1/g)-times the
Hamiltonian effective action, with g an external parameter. ĉis rescaling of the action entails
a corresponding rescaling of the Liouville form λg ≡ 1

g λ =
1
g p̄dq̄. ĉus, in order to deėne the

new path integral we must adopt a functional measure μg =
√

Detσg corresponding to the
symplectic structure σg = dλg:

eiWg[I,J] =

∫
[dpdq] μg[p, q]e

i
g{Γ[p̄,q̄]+I·p̄+J·q̄} . (A.1)

2. Recognize that the parameter g allows one to distinguish different loop orders in the per-
turbative evaluation of this path integral. In fact eqs.(3.17,3.13) show that in the perturbation
theory generated by Γg ≡ 1

gΓ the vertex functions are proportional to 1/g while propagators
are proportional to g. ĉus any graph with i internal lines and v vertices gives a contribution
proportional to gi−v. Since the number of loops is l = i − v + 1, any loop expansion is an
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expansion in powers of g of the kind

Wg[I, J] =
∞∑
l=0

gl−1Wg,l[I, J] . (A.2)

3. Evaluate the same path integral by a stationary phase method, an approximation that can
be made arbitrarily good by tuning g arbitrarily close to zero. Since by deėnition the exponent
at the stationarity point gives theW[I, J] of eqn. (3.4), one gets

eiWg[I,J] ∼
g→0

μg[p, q]
(

Det
1

2πg
Γ [p̄, q̄](2)

)− 1
2

e
i
gW[I,J] . (A.3)

4. Expand the logarithm of the last result in powers of g. Because

log μg[p, q] = −Tr log g+ log μ[p, q]

log
(

Det
1

2πg
Γ [p̄, q̄](2)

)− 1
2

= Tr log g+ log
(

Det
1
2π

Γ [p̄, q̄](2)
)− 1

2

the combination of eqs. (A.2) and (A.3) gives

∞∑
l=0

gl−1Wg,l[I, J] ∼
g→0

1
g
W[I, J]− i log

{
μ[p, q]

(
Det

1
2π

Γ [p̄, q̄](2)
)− 1

2
}

that is: Wg,0[I, J] = W[I, J].

A.2 TļĹ ĹĺĺĹķŉĽŋĹ HĵŁĽŀŉŃłĽĵł ĵķŉĽŃł ĺŇŃŁ ĵ ŋĵŇĽĵŉĽŃłĵŀ ĺŃŇŁŊŀĵ
Ńł ŉļĹHĽŀĶĹŇŉ ňńĵķĹ

ĉis appendix is to prove the proposition of section 2 about the possibility to deėne the effec-
tiveHamiltonian action in the operator representation bymeans of a variational principle. ĉe
following arguments are not original, but just the obvious extension of those presented in [66].
In order to compute the extremum (3.8) with the constraints (3.9) one introduces three La-
grangemultipliersw(t), I(t), J(t) and looks for the extremumof 〈ψ−, t|i∂t−Ĥ+J(t)q̂+I(t)p̂−
w(t)|ψ+, t〉with respect to the two states |ψ±, t〉. SeĨing the two functional derivatives to zero
gives (

i∂t − Ĥ+ J(t)q̂+ I(t)p̂
)
|ψ+, t〉 = w(t)|ψ+, t〉 (A.4)(

i∂t − Ĥ+ J(t)q̂+ I(t)p̂
)
|ψ−, t〉 = w∗(t)|ψ−, t〉 . (A.5)
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It is possible to deėne the states

|+, t〉 = exp
{
i
∫ t

−∞
dt′ w(t′)

}
|ψ+, t〉 , |−, t〉 = exp

{
−i
∫ +∞

t
dt′ w∗(t′)

}
|ψ−, t〉

(A.6)
which solve the following Schrödinger equation(

i∂t − Ĥ+ J(t)q̂+ I(t)p̂
)
|±, t〉 = 0 (A.7)

and satisfy theboundary conditions: limt→∓∞ |±, t〉 = |0〉 . Inotherwords, |+, t〉 = ÛI,J(t,−∞)|0〉
and 〈−, t| = 〈0|ÛI,J(+∞, t) , such that

eiW[I,J] = 〈0|ÛI,J(+∞,−∞)|0〉 = 〈−, t|+, t〉 = e i
∫+∞
−∞dt′ w(t′) , (A.8)

that is: W[I, J] =
∫ +∞
−∞dt

′ w(t′) . On the other hand, by contracting eq. (A.4) with 〈ψ−, t| and
using the previous equation, alongwith the constraints (3.9), one ėnds that for the stationarity
states the following relation holds∫ +∞

−∞
dt 〈ψ−, t|i~∂t − Ĥ|ψ+, t〉 = W[I, J]−

∫ +∞

−∞
dt [J(t)q̄(t) + I(t)p̄(t)] . (A.9)

To prove that the values of I and J on the r.h.s. are the extremal ones it is necessary to take
derivatives of this equation with respect to the sources, and remember that on the l.h.s. the
extremal value cannot depend on the Lagrangemultipliers, nor can the constraint points p̄ and
q̄ on the r.h.s.

A.3 TļĹ ŇĹĵŀĽŐĵŉĽŃł Ńĺ ŉļĹ ŇĽňĽłĻ ĸĹŀŉĵ ĺŊłķŉĽŃłĵŀŌļĹł k→ Λ

In order to analyze the k → Λ limit of eq. (3.26) we ėrst perform a change of variables in the
path integral:

p′ = p− p̄+ (rk∂t)−1
δΓk

δq̄
, q′ = q− q̄− (rk∂t)−1

δΓk

δp̄

and then deėne the complex variable: z = (p′ − iq′)/
√

2. ĉe result of these manipulations
is:

eiΓk[p̄,q̄] =
∫

[dz] μk exp i
{

1
2

∫
dt (z∗rk i∂tz− zrk i∂tz∗)−

δΓk

δq̄
· (rk∂t)−1

δΓk

δp̄

+S
[
p̄− (rk∂t)−1

δΓk

δq̄
+
√

2<(z), q̄+ (rk∂t)−1
δHk

δp̄
−
√

2=(z)
]}

.

Under the assumption that Γk stays ėnite for any k ∈ [0, Λ], when k→ Λ every Γk-dependent
term on the right hand side (r.h.s.) gets killed by the divergence of rk. On the other hand, since
μk = Det

( 1+rk
2π δ

)
(excluding the possible zero eigenvalues), the ėrst term in the exponent to-

115



gether with the regularized functional measure provides a rising delta functional, constraining
z, i.e. (p− p̄) and (q− q̄), to vanish.¹ ĉus in this limit the r.h.s. reduces to exp{iS[p̄, q̄]} and
the AEHA coincides with the bare Hamiltonian action. To show that a rising delta functional
is indeed realized we need to prove that the quadratic form (z∗rk i∂tz− zrk i∂tz∗) is positive
deėnite. ĉis is not obvious since i∂t is a real operator on the spaces of functions one is usually
interested in, but whose sign is not ėxed. However, if the domain of the functional integral is
such that all contributions coming from the time boundaries are vanishing, and if the Fourier
transform is allowed, then one can write (the reader should interpret the integrals as generic
sums over unspeciėed domains)

i
2

∫
t
(z(t)∗rk i∂tz(t)− z(t)rk i∂tz(t)∗) =

∫
t
p′(t)rk i∂tq′(t)

=
1
2

∫
E
rk(E2)E (p′(−E)q′(E)− q′(−E)p′(E))

=

∫
E
θ(E)rk(E2)E (p′(−E)q′(E)− q′(−E)p′(E))

= i
∫
E
θ(E)rk(E2)E (x−(E)∗x−(E)− x+(E)∗x+(E))

where we assumed q(t) and p(t) real, such that for their Fourier transforms satisfy p(−E) =
p(E)∗ and q(−E) = q(E)∗, we deėned x±(E) = (p′(E)± iq′(E)) /

√
2, and we denoted by θ

the Heaviside step function. ĉe last equation shows that the diagonalization of the quadratic
form gives two complex Gaussians which can be independently rotated to real Gaussians with
positive deėnite inverse variances. In reality they might be not positive deėnite and allow for
zero modes, but we will not discuss this possibility in the present work.

A.4 TļĹ ĵŋĹŇĵĻĹ ĹĺĺĹķŉĽŋĹ HĵŁĽŀŉŃłĽĵł ĵķŉĽŃł Ľł EŊķŀĽĸĹĵł ňńĵķĹ
ĵłĸWĽķĿ ŇŃŉĵŉĽŃł

Ofcourse theHamiltonian formalismwithout timemakes liĨle sense. However it couldbenice
to forget about the evaluation of integrals with poles once and for all by working in Euclidean
space from the very beginning. In this appendix the reader will ėnd the translation, of some
of the main formulas of the present work to Euclidean space and a discussion on the possible
equivalence of the theories in Minkowski and Euclidean space, i.e. on the feasibility of a Wick
rotation to imaginary time.

Let’s start with scalar QM. In this case Wick rotation (t → −iτ) of eq. (3.3) with ac-
tion (3.1) is safe and leads to a convergent path integral

eW[I,J] =

∫
[dpdq] μ[p, q]e−{S[p,q]−Jq−Ip}

¹Although the quadratic form (rk i∂tδ) in the exponent and the operator in the measure (1+ rk)δ asymp-
totically differ for a factor i∂t, the path integral is properly normalized [? ] in such a way to be ėnite for a free
system (∀k ∈ [0, Λ]) and to show a k-independent divergence in theH = 0 case.
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with action
S[p, q] =

∫
dτ [−p(τ)i∂τq(τ) + H(p(τ), q(τ))] . (A.10)

ĉe regularization goes as usual

eWk[I,J] =

∫
[dpdq] μke

−{S[p,q]+ΔSk[p,q]−Jq−Ip}

with ΔSk and μk which can still be chosen according to formulas (3.21) to (3.25) if we replace
∂t with−i∂τ (the minus sign here is due to the global minus factorized in front of the action).
ĉe deėnition of the AEHA is

Γk [p̄, q̄] + ΔSk [p̄, q̄] = ext
I,J

(I · p̄+ J · q̄−Wk[I, J])

which is equivalent to

e−Γk[p̄,q̄] =
∫

[dpdq] μk[p, q]e
−
{
S[p,q]+ΔSk[p−p̄,q−q̄]−(p−p̄)

δΓk
δp̄ −(q−q̄)

δΓk
δq̄

}
. (A.11)

From it the Ěow equation follows

Γ̇k =
1
2
Tr
[(

Γ(2)
k + Rkδ

)−1
Ṙkδ
]
−

μ̇k
μk

(A.12)

whereRkδ = ΔS(2)k . We see that this equation formallydiffers fromtheMinkowskianone(3.29)
by the absence of the imaginary factor i on the l.h.s, by a globalminus factor on the r.h.s. and by
the fact that insideRk we ėnd the operator i∂τ instead of ∂t. ĉus, for instance, in the particular
case of an off-diagonal regulator the explicit form of the Ěow equation becomes

Γ̇k = Tr

[
(−ṙki∂δ)

((
−rki∂δ +

δ2Γk

δq̄δp̄

)
− δ2Γk

δp̄δp̄

(
rki∂δ +

δ2Γk

δp̄δq̄

)−1 δ2Γk

δq̄δq̄

)−1]
− Tr

[
ṙk (1 + rk)

−1 δ
]
. (A.13)

Next let’s consider scalar covariant HamiltonianQFT. Since πν is a vector,Wick rotation in-
volves also its zero component, regardless of whether or not we allow for transversemomenta:
x0 → −ix4 and π0 → −iπ4. However, performing such a replacement in the action (3.52)
with Hamiltonian (3.51) one ėnds that

iS→
∫
ddx
[
1
2
(π − ∂φ)2 − 1

2
(∂φ)2 − V(φ)

]
therefore the integral over π diverges. In other words such a Wick rotation cannot be per-
formed. ĉe main difference from the case of QM, or the reason for such a failure, is the fact
that the momenta are assumed to rotate along with time. Despite this problem, one possible
reason for studying a Euclidean covariant Hamiltonian formulation is that we know that the
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Euclidean non-covariant Hamiltonian theory makes perfectly sense because it is related by a
continuos Wick rotation to the corresponding Minkowskian theory. ĉerefore the Euclidean
covariant formulation can be derived from the non-covariant Hamiltonian formulation and
studied as a generalization of it. By deėnition the bare action of such a covariant Hamiltonian
Euclidean theory reads

S[πν, φ] =
∫

ddx [−πνi∂νφ +H(πν, φ)] . (A.14)

Its Hamiltonian quantization in a scheme where only longitudinal momenta are present is
based on the functional integral

Z[Iν, J] =
∫

[dπνdφ] δ
[
Πνρ
⊥ πρ

]
μ e−{S[π

ν,φ]−Iν·πν−J·φ} .

Again, to get a functional RG Ěow equation representation of this integral on introduces a k-
dependence in the bare action and in the measure. In the following we choose an off diagonal
quadratic regularization, i.e. of the kind (3.56), but with ∂ν replaced by i∂ν. ĉe deėnition of
the AEHA is the same as in Euclidean quantum mechanics

Γk [π̄ν, φ̄] + ΔSk [π̄ν, φ̄] = ext
Iν,J

(Iν · π̄ν + J · φ̄−Wk[Iν, J]) (A.15)

wherefrom the usual integro-differential equation

e−Γk[π̄
ν,φ̄] =

∫
[dπνdφ] δ

[
Πνρ
⊥ πρ

]
μk e

−
{
S[πν,φ]+ΔSk[(π−π̄)ν,φ−φ̄]−(π−π̄)ν

δΓk
δπ̄ν−(φ−φ̄)

δΓk
δφ̄

}
. (A.16)

Again, the Euclidean Ěow equation can be obtained from the Minkowskian one by stripping
the imaginary i on the l.h.s., by changing the global sign on the r.h.s. and by replacing rk∂δ with
rki∂δ.

As far as fermions are concerned, no new behavior under Wick rotation shows up, because
of the identiėcation of conėguration space with the reduced phase space.
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B
Appendices to chapter 5

B.1 TļŇĹňļŃŀĸ ĺŊłķŉĽŃłň

In general one can choose different regulators for the scalar bosons (B), for the gauge bosons
(GB), for the ghosts (G) and for the spinor fermions (F). ĉen the regularized kinetic (or
squared kinetic) terms are given by

PB = p2(1 + rkB) , PF = p2(1 + rkF)2,
PGB = p2(1 + rkGB) , PG = p2(1 + rkG) .

Accordingly, the loop momentum integrals appearing on the r.h.s. of the Ěow equation can
be classiėed and corresponding threshold functions deėned. If one denotes with ∂̃t differ-
entiation w.r.t. t = log(k/k0) acting on the regulators only, with

∫
p ≡

∫ ddp
(2π)d and with
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vd = 1/(2d+1πd/2Γ(d/2)), these functions read

ldn(ω) = (n+ δn,0)
k2n−d

4vd

∫
p

∂tPB
Zφ(PB + ωk2)n+1

,

l(F)dn,L/R(ω) = (n+ δn,0)
k2n−d

2vd

∫
p

∂t
(
ZL/R p2 rF

)
(1 + rF)

ZL/R(PF + ωk2)n+1

l(GB)dnT (ω) = (n+ δn,0)
k2n−d

4vd

∫
p

∂t (ZW p2 rGB)
ZW(PGB + ωk2)n+1

l(GB)dnL (ω) = (n+ δn,0)
k2n−d

4vd

∫
p

∂t
(
Zφ p2 rGB

)
Zφ(PGB + ωk2)n+1

l(G)dn (ω) = (n+ δn,0)
k2n−d

4vd

∫
p

∂t (p2 rG)
(PG + ωk2)n+1

l(FB)dn1,n2 (ω1, ω2) = −k2(n1+n2)−d

4vd

∫
p
∂̃t

1
(PF + ω1k2)n1(PB + ω2k2)n2

l(BGB)dn1,n2 (ω1, ω2) = −k2(n1+n2)−d

4vd

∫
p
∂̃t

1
(PB + ω1k2)n1(PGB + ω2k2)n2

m(F)d
2 (ω) = −k6−d

4vd

∫
p
p2∂̃t

(
∂

∂p2
1

PF + ωk2

)2

m(F)d
4 (ω) = −k4−d

4vd

∫
p
p4∂̃t

(
∂

∂p2
1 + rF

PF + ωk2

)2

m(GB)d
2 (ω) = −k6−d

4vd

∫
p
p2∂̃t

(
∂

∂p2
1

PGB + ωk2

)2

md
n1,n2(ω1, ω2) = −k2(n1+n2−1)−d

4vd

∫
p
p2∂̃t

(
∂
∂p2PB

(PB + ω1k2)n1

∂
∂p2PB

(PB + ω2k2)n2

)

m(FB)d
n1,n2 (ω1, ω2) = −k2(n1+n2−1)−d

4vd

∫
p
p2∂̃t

(
1 + rF

(PF + ω1k2)n1

∂
∂p2PB

(PB + ω2k2)n2

)

m(FGB)d
n1,n2 (ω1, ω2) = −k2(n1+n2−1)−d

4vd

∫
p
p2∂̃t

(
1 + rF

(PF + ω1k2)n1

∂
∂p2PGB

(PGB + ω2k2)n2

)

ad1(ω) = −k6−d

16vd

∫
p

1
p2
∂̃t

(
1

PGB + ωk2

)2

ad3(ω1, ω2) = −k4−d

4vd

∫
p
∂̃t

(
1 + rF

PF + ω1k2
1

PGB + ω2k2

)
.

We choose the same optimized regulator for the scalar bosons, for the gauge bosons and for
the ghosts

yrB/GB/G(y) = (1− y)θ(1− y), (B.1)
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where y = q2/k2. Instead, for the spinor fermions the function rF(y) is chosen such that
y(1 + rB) = y(1 + rF)2. Using this regulator in the WeĨerich equation, we can perform
all momentum integrations analytically, obtaining

ldn(ω) =
2(n+ δn,0)

d
1− ηφ

d+2

(1 + ω)n+1 ,

l(F)dn,L/R(ω) =
2(n+ δn,0)

d
1− ηL/R

d+1

(1 + ω)n+1 ,

l(GB)dnT (ω) =
2(n+ δn,0)

d
1− ηF

d+2

(1 + ω)n+1 ,

l(GB)dnL (ω) =
2(n+ δn,0)

d
1− ηφ

d+2

(1 + ω)n+1 ,

l(G)dn (ω) =
2(n+ δn,0)

d
1

(1 + ω)n+1 ,

l(FB)dn1,n2 (ω1, ω2) =
2
d

[
n1

1− ηL+ηR
2(d+1)

(1 + ω1)1+n1(1 + ω2)n2
+ n2

1− ηφ
d+2

(1 + ω1)n1(1 + ω2)1+n2

]
,

l(BGB)dn1,n2 (ω1, ω2) =
2
d

[
n1

1− ηφ
d+2

(1 + ω1)1+n1(1 + ω2)n2
+ n2

1− ηF
d+2

(1 + ω1)n1(1 + ω2)1+n2

]
,

m(F)d
2 (ω) =

1
(1 + ω)4

,

m(F)d
4 (ω) =

1
(1 + ω)4

+
1− 1

2(ηL + ηR)
(d− 2)(1 + ω)3

−
(

1− 1
2(ηL + ηR)
2d− 4

+
1
4

)
1

(1 + ω)2
,

m(GB)d
2 (ω) =

1
(1 + ω)4

,

md
n1,n2(ω1, ω2) =

1
(1 + ω1)n1(1 + ω2)n2

,

m(FB)d
n1,n2 (ω1, ω2) =

1− ηφ
d+1

(1 + ω1)n1(1 + ω2)n2
,

m(FGB)d
n1,n2 (ω1, ω2) =

1− ηF
d+1

(1 + ω1)n1(1 + ω2)n2
,

ad1(ω) =
1− ηF

d

d− 2
1

(1 + ω)3
,

ad3(ω1, ω2) =
2

d− 1
1− ηF

d+1

(1 + ω1)(1 + ω2)2
+

1
d− 1

(
1− ηL

d

)
− ω1

(
1− ηR

d

)
(1 + ω1)2(1 + ω2)

.
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B.2 DĹŇĽŋĵŉĽŃł Ńĺ ŉļĹ ĺŀŃŌ ĹŅŊĵŉĽŃłň ĺŃŇ ŉļĹ ŁĵŔĹŇ ňĹķŉŃŇ

Wehave to evaluate the r.h.s of eq. (1.1), for whichwe need the Γ(2)
k matrix. Let us consider the

ėelds φi, ψL, ψR, W, c, c̄ as column vectors, with a number of components respectively given
by NL, dγNL, dγ , d(N2

L − 1), (N2
L − 1), (N2

L − 1). Accordingly let us consider ψ̄L and ψ̄R
as row vectors. Taking care of the partly Grassmann-valued ėeld components and the Fourier
conventions, let us denote by ΦT(q) the row vector with components φT1 (q), φ

T
2 (q), ψ

T
L(q),

ψ̄L(−q), ψT
R(q), ψ̄R(−q), WT(q), cT(q), c̄T(q), and by Φ(p) the column vector given by its

transposition. ĉen Γ(2)
k is computed as follows

Γ(2)
k =

−→
δ

δΦT(−p)
Γk

←−
δ

δΦ(q)
.

For a proper IR regularization, a regulator which is diagonal in ėeld space is sufficient and con-
venient,

Rk(q, p) = δ(p− q)


RkB 0 0 0
0 RkF 0 0
0 0 RkGB 0
0 0 0 RkG

 ,

with a 2NL × 2NL matrix for the scalar bosonic sector

RkB =

(
Zφ,kδabp2rkB 0

0 Zφ,kδabp2rkB

)
,

an 2dγ(NL + 1)× 2dγ(NL + 1)matrix for the spinor sector

RkF = −


0 ZL,kδab/pT 0 0

ZL,kδab/p 0 0 0
0 0 0 ZR,k/pT

0 0 ZR,k/p 0

 rkF ,

a diagonal d(N2
L − 1)× d(N2

L − 1)matrix for the gauge vector boson

RkGB = ZW

(
Πμν
⊥ +

Zφ

αZW
Πμν
‖

)
δijp2rkGB ,

where the Π’s are the usual longitudinal and transverse projectors with respect to pμ, and a
2(N2

L − 1)× 2(N2
L − 1)matrix for the ghosts

RkG =

(
0 δijp2rkG

−δijp2rkG 0

)
.

See. App. B.1 for the deėnition of the shape functions rk.
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B.2.1 FŀŃŌ ĹŅŊĵŉĽŃł ĺŃŇ ŉļĹ ńŃŉĹłŉĽĵŀ

ĉe Ěow of the potential can be computed by seĨing the ėeld φa to a constant value and by
killing all the other average ėelds on the r.h.s. of the Ěow equation. ĉen, in Landau gauge
the matrix Γ(2)

k + Rk can be easily inverted. Multiplying with the derivative of the regulator,
and taking the supertrace yields the result. ĉis can be interpreted as an improved one-loop
computation for a 0-point function, i.e. a sum over all the one-loop graphs with no external
legs. ĉe gauge contribution takes the form of a closed gauge boson propagator, and since it
does not involve any vertex, it should not explicitly depend on ḡ. Indeed we get

∂tUk =
1
2

∫
p
∂tPB

[
2NL − 1
ZφPB + U′k

+
1

ZφPB + U′k + 2ρU′′k

]
− dγ

∫
p

{[
(NL − 1) +

ZLZRPF
ZLZRPF + ρh̄2k

]
∂t[ZLrkF]

ZL(1 + rkF)
+

ZLZRPF
ZLZRPF + ρh̄2k

∂t[ZRrkF]
ZR(1 + rkF)

}

+
1
2

N2
L−1∑
i=1

∫
p

[
(d− 1)

∂t(ZWp2rkGB)
ZWPGB + m̄2

W,i
+

∂t(Zφp2rkGB)
ZφPGB

]
−
∫
p

(N2
L − 1)p2∂trkG

PG

that is, in terms of threshold functions

∂tUk = 2vdkd
{
(2NL − 1)ld0

(
U′k
Zφk2

)
+ ld0

(
U′k+2ρU′′k

Zφk2

)
− dγ

[
(NL − 1)l(F)d0L (0) + l(F)d0L

(
ρh̄2k

ZLZRk2

)
+ l(F)d0R

(
ρh̄2k

ZLZRk2

)]
− 2(N2

L − 1)l(G)d0 (0) +
N2

L−1∑
i=1

[
(d− 1)l(GB)d0T

(
m̄2
W,i

ZWk2

)
+ l(GB)d0L (0)

]}
whereUk is a functionof ρ. Switchingover todimensionless quantities this becomes eq. (5.15),
and for our choice of the optimized regulator we eventually get

∂tuk = −duk + (d− 2 + ηφ)ρ̃u
′
k +

4vd
d

{
2NL − 1
1 + u′k

(
1−

ηφ
d+ 2

)
+

1
1 + u′k + 2ρ̃u′′k

(
1−

ηφ
d+ 2

)
−dγ

[(
1−

ηL
d+ 1

)(
(NL − 1) +

1
1 + ρ̃h2k

)
+

(
1−

ηR
d+ 1

)
1

1 + ρ̃h2k

]

+

N2
L−1∑
i=1

[
(d− 1)

1− ηF
d+2

1 + m2
W,i

+

(
1−

ηφ
d+ 2

)]
− 2

(
N2

L − 1
)}

.
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B.2.2 FŀŃŌ ĹŅŊĵŉĽŃł ĺŃŇ ŉļĹ YŊĿĵŌĵ ķŃŊńŀĽłĻ

For thederivationof the Ěowof theYukawa coupling, weėrst separate thebosonic ėeld into the
vev and a purely radial deviation from the vev, i.e. according to (5.8) where we set Δφ2 = 0,
since we are mainly interested in the Yukawa coupling between the fermions and the radial
mode. ĉe projection of the Ěow equation on such an operator reads

∂th̄k = −
1√
2

−→
δ

δψ̄ n̂
L(p)

−→
δ

δΔφn̂1(p′)
∂tΓk

←−
δ

δψR(q)

∣∣∣∣∣
0

. (B.2)

ĉe vertical line indicates that the equation is evaluated at vanishing momenta p′ = p =

q = 0 and at vanishing Ěuctuation ėelds. Next, we can decompose the matrix (Γ(2)
k + Rk)

into two parts. One part, which we call (Γ(2)
k,0 + Rk), contains only v and is independent of

the Ěuctuations. ĉe remaining part, ΔΓ(2)
k , contains all Ěuctuating ėelds. Recalling that the

r.h.s. of the Ěow equation can be wriĨen in terms of the operator ∂̃t acting on the logarithm of
(Γ(2)

k + Rk), inserting in it this decomposition of (Γ(2)
k + Rk) and expanding by means of the

Mercator series one can write

∂tΓk =
1
2
∂̃tSTr log(Γ(2)

k,0 + Rk) +
1
2

∞∑
s=1

(−)s+1

s
∂̃tSTr

[(
ΔΓ(2)

k

Γ(2)
k,0 + Rk

)s]
. (B.3)

Plugging this expression into equation (B.2), only the term to third power in ΔΓ(2)
k survives the

projection. Since we took three derivatives of the WeĨerich equation, the diagrammatic inter-
pretation of the result is in terms of one-loop graphs with three external legs: two fermions of
opposite chirality and one scalar. ĉe gauge contribution comes from triangular loops with
three different propagators: one scalar, one spinor and one gauge vector. It always involves the
two-scalars-one-vector vertex. ĉis vertex is proportional to the difference of incoming scalar
momenta, while the gauge boson propagator in Landau gauge is transverse. ĉese two facts
plus conservation of momentum entail that the direct gauge contribution to the momentum-
independent Yukawa coupling under consideration vanishes at one loop. In agreement, per-
forming the matrix calculations and taking the supertrace, we get from the Ěow equation

∂th̄k = −
h̄3k
2

∫
ddp
(2π)d

∂̃t

[
1

ZLZRPF + ρh̄2k

(
2ρU′′k

(ZφPB + U′k)2
− 6ρU′′k + 4ρ2U′′′k

(ZφPB + U′k + 2ρU′′k )2

)

+
2ρh̄2k

(ZLZRPF + ρh̄2k)2

(
1

ZφPB + U′k
− 1

ZφPB + U′k + 2ρU′′k

)
− 1
ZLZRPF + ρh̄2k

(
1

ZφPB + U′k
− 1

ZφPB + U′k + 2ρU′′k

)]
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where the whole r.h.s. is to be evaluated at the value ρ = 1
2v

2 that minimizes the potentialUk.
In terms of the threshold functions as deėned in App. B.1 this reads

∂th̄2k =
4vdh̄4k

ZLZRZφk4−d
[2ρU′′
Zφk2

l(FB)d12

(
ρh̄2k

ZLZRk2
, U′
Zφk2

)
− 6ρU′′ + 4ρU′′′

Zφk2
l(FB)d12

(
ρh̄2k

ZLZRk2
, U
′+2ρU′′

Zφk2

)
+

2ρh̄2k
k2

l(FB)d21

(
ρh̄2k

ZLZRk2
, U′
Zφk2

)
− 2ρh̄2k

k2
l(FB)d21

(
ρh̄2k

ZLZRk2
, U
′+2ρU′′

Zφk2

)
−l(FB)d11

(
ρh̄2k

ZLZRk2
, U′
Zφk2

)
+ l(FB)d11

(
ρh̄2k

ZLZRk2
, U
′+2ρU′′

Zφk2

) ]
.

Switching over to dimensionless quantities, we end up with the representation (5.19) given in
the main text. In the case of a optimized cutoff it reads

∂th2k = (d− 4 + ηφ + ηL + ηR)h
2
k − 4vdh4k

{

− 1
d

4ρ̃ku
′′
k

(1 + ρ̃kh
2
k)(1 + u′k)2

[
1

1 + ρ̃kh
2
k

(
1−

1
2(ηR + ηL)
d+ 1

)
+

2
1 + u′k

(
1−

ηφ
d+ 2

)]

+
1
d

12ρ̃ku
′′
k + 8ρ̃2ku

′′′
k

(1 + ρ̃kh
2
k)(1 + u′k + 2ρ̃ku

′′
k )

2

×
[

1
1 + ρ̃kh

2
k

(
1−

1
2(ηR + ηL)
d+ 1

)
+

2
1 + u′k + 2ρ̃ku

′′
k

(
1−

ηφ
d+ 2

)]

+
2
d

1
(1 + ρ̃kh

2
k)(1 + u′k)

[
1

1 + ρ̃kh
2
k

(
1−

1
2(ηR + ηL)
d+ 1

)
+

1
1 + u′k

(
1−

ηφ
d+ 2

)]
− 2

d
1

(1 + ρ̃kh
2
k)(1 + u′k + 2ρ̃ku

′′
k )

×
[

1
1 + ρ̃kh

2
k

(
1−

1
2(ηR + ηL)
d+ 1

)
+

1
1 + u′k + 2ρ̃ku

′′
k

(
1−

ηφ
d+ 2

)]

− 1
d

4ρ̃kh
2
k

(1 + ρ̃kh
2
k)

2(1 + u′k)

[
2

1 + ρ̃kh
2
k

(
1−

1
2(ηR + ηL)
d+ 1

)
+

1
1 + u′k

(
1−

ηφ
d+ 2

)]

+
1
d

4ρ̃kh
2
k

(1 + ρ̃kh
2
k)

2(1 + u′k + 2ρ̃ku
′′
k )

×
[

2
1 + ρ̃kh

2
k

(
1−

1
2(ηR + ηL)
d+ 1

)
+

1
1 + u′k + 2ρ̃ku

′′
k

(
1−

ηφ
d+ 2

)]}
.
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B.2.3 FŀŃŌ Ńĺ ŉļĹ ňķĵŀĵŇ ĵłŃŁĵŀŃŊň ĸĽŁĹłňĽŃł

For the derivation of the Ěow of Zφ,k, we decompose the bosonic ėeld as in App. B.2.2. ĉe
projection of the WeĨerich equation onto the massive scalar kinetic term leads us to

∂tZφ,k = − ∂

∂(p′2)
δ

δΔφn̂1(p′)
δ

δΔφn̂1(q′)
∂tΓk

∣∣∣∣∣
0

.

As before the vertical line indicates that the equation is evaluated at vanishing momenta p′ =
q′ = 0 and at vanishing Ěuctuation ėelds. Expanding again the r.h.s. of the Ěow equation
according to eq. (B.3), this time only the secondorder term (s = 2) contributes. Sincewe took
two derivatives of the Ěow equation, the diagrammatic interpretation of the result is in terms
of one-loop graphs with two external scalar legs. From a one-loop analysis we expect the direct
gauge contributions to be of two kinds. One is due to the two-scalars-one-vector vertex and
produces a loop containing one scalar and one gauge boson propagator. ĉis is present in both
the symmetric and in the spontaneously broken regimes. Another is due to the two-scalars-
two-vectors vertex and, if one identiėes two external scalar legs with the vev, it produces a loop
containing two gauge boson propagators. ĉerefore this contribution will be present only in
the SSB regime. Indeed, performing the matrix calculations and taking the supertrace we ėnd

∂tZφ =
1
d

∫
p
∂̃t

{[
(3
√

2ρU′′k + 2
√

2ρ3U′′′k )
2p2Z2

φ

(
∂
∂p2PB

(ZφPB + U′k + 2ρU′′k )2

)2

+(2NL − 1)2ρU′′2k p2Z2
φ

(
∂
∂p2PB

(ZφPB + U′k)2

)2]

+dγ

[
2h̄2kp

4ZLZR

(
∂

∂p2
1 + rF

ZLZRPF + ρh̄2k

)2

− 2ρh̄4kp
2
(

∂

∂p2
1

ZLZRPF + ρh̄2k

)2
]

−4(d− 1)ḡ2Z2
φ

NL∑
a=1

N2
L−1∑
i=1

Ti
n̂aT

i
an̂

(ZφPB + U′k)(ZWPGB + m̄2
W,i)

+
(d− 1)

ρ

N2
L−1∑
i=1

m̄4
W,i

(
1

p2(ZWPGB + m̄2
W,i)

2 + 2p2
(

∂

∂p2
1

ZWPGB + m̄2
W,i

)2
)
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and again the whole r.h.s. is to be evaluated at the value ρ = 1
2v

2 that minimizes the potential
Uk. Translating this result in terms of threshold functions

∂tZφ = − 8vd
Z2
φk

6−dd

[(
3
√ρU′′k + 2

√
ρ3U′′′k

)2
md

22

(
U′k+2ρU′′k

Zφk2
,
U′k+2ρU′′k

Zφk2

)
+(2NL − 1)ρU′′2k md

22

(
U′k
Zφk2

,
U′k
Zφk2

)]
−

4vddγ
d

[
2h̄2k

ZLZRk4−d
m(F)d

4

(
ρh̄2k

ZLZRk2

)
− 2ρh̄4k

Z2
LZ2

Rk
6−dm

(F)d
2

(
ρh̄2k

ZLZRk2

)]

+
16vd(d− 1)

d
ḡ2Zφ

k4−dZW

NL∑
a=1

N2
L−1∑
i=1

Ti
n̂aT

i
an̂ l

(BGB)d
11

(
U′k
Zφk2

,
m̄2
W,i

ZWk2

)

−8vd(d− 1)
d

N2
L−1∑
i=1

m̄4
W,i

Z2
Wk

6−dρ

[
2ad1
(

m̄2
W,i

ZWk2

)
+ m(GB)d

2

(
m̄2
W,i

ZWk2

)]
and then in terms of dimensionless quantities we end up with eq. (5.20). For the optimized
cutoff the explicit form is

ηφ =
4vd
d

18u′′2k ρ̃ + 24u′′ku′′′k ρ̃
2 + 8u′′′2k ρ̃3

(1 + u′k + 2ρ̃u′′k )4
+

(2NL − 1)8vd
d

ρ̃u′′2k
(1 + u′k)4

−
8vddγ
d

ρ̃h4k
(1 + ρ̃h2k)4

+
8vddγ
d

h2k

(
1

(1 + ρ̃h2k)4
+

1− 1
2(ηL + ηR)

(d− 2)(1 + ρ̃h2k)3
−
(

1− 1
2(ηL + ηR)
2d− 4

+
1
4

)
1

(1 + ρ̃h2k)2

)

− 32vd
d

g2(1− 1
d)

NL∑
a=1

N2
L−1∑
i=1

Ti
n̂aT

i
an̂

(
1− ηφ

d+2

(1 + u′k)2(1 + m2
W,i)

+
1− ηF

d+2

(1 + u′k)(1 + m2
W,i)

2

)

+ 8vd(1− 1
d)

N2
L−1∑
i=1

m4
W,i

ρ̃

(
2

d−2(1−
ηF
d )

(1 + m2
W,i)

3 +
1

(1 + m2
W,i)

4

)
.

B.2.4 FŀŃŌ Ńĺ ŉļĹ ňńĽłŃŇ ĵłŃŁĵŀŃŊň ĸĽŁĹłňĽŃłň

For the anomalousdimensionsof the spinors, theprocedure is very similar to theone explained
for the scalar. Since one of the leě spinors becomesmassive in the broken regime, we compute
the anomalous dimension of that component (the n̂− th) only. We start with the projection

∂tZL/R,k = −
1

2vddγ
trγμ

∂

∂p′μ

−→
δ

δψ̄ n̂
L/R(p′)

∂tΓk

←−
δ

δψ n̂
L/R(q′)

∣∣∣∣∣
0

where again the vertical line denotes that the equation is evaluated at vanishingmomenta p′ =
q′ = 0 and at vanishing Ěuctuation ėelds. Expanding again the r.h.s. of the Ěow equation
according to eq. (B.3) only the second order term (s = 2) contributes. Obviously the right
handed fermion does not receive direct corrections from the gauge bosonwhile the leě handed
fermion does, since its interactions allow for a gauge propagator to appear in the relevant Feyn-
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man graphs already at one loop. ĉe gauge-independent contributions differ from the results
of [106] for a factor 2, which was due to a harmless mistake.

For the right-handed spinor the result is

∂tZR =
h̄2k
d

∫
ddp
(2π)d

p2∂̃t

[
ZR(1 + rF)

ZLZRPF + ρh̄2k

(
Zφ

∂
∂p2PB

(ZφPB + U′k + 2ρU′′k )2
+

Zφ
∂
∂p2PB

(ZφPB + U′k)2

)

+2(NL − 1)
ZR(1 + rF)
ZLZRPF

Zφ
∂
∂p2PB

(ZφPB + U′k)2

]
.

Introducing threshold functions

∂tZR = − 4vdh̄2k
dZφZLk4−d

[
m(FB)d

12 (
ρh̄2k

ZLZRk2
,
U′k+2ρU′′k

Zφk2
) + m(FB)d

12 (
ρh̄2k

ZLZRk2
,

U′k
Zφk2

)

+2(NL − 1)m(FB)d
12 (0, U′k

Zφk2
)
]
.

In terms of dimensionless quantities we recover eq. (5.21), which for the optimized cutoff be-
comes

ηR =
4vd
d
h2k

[
1− ηφ

d+1

(1 + ρ̃h2k)(1 + u′k + 2ρ̃u′′k )2
+

1− ηφ
d+1

(1 + ρ̃h2k)(1 + u′k)2
+ 2(NL − 1)

1− ηφ
d+1

(1 + u′k)2

]
.

For the leě-handed fermion the result is

∂tZL =

∫
ddp
(2π)d

∂̃t

{
h̄2k
d

ZLp2(1 + rF)
ZLZRPF + ρh̄2k

(
Zφ

∂
∂p2PB

(ZφPB + U′k + 2ρU′′k )2
+

Zφ
∂
∂p2PB

(ZφPB + U′k)2

)

− (d− 1)
d

ḡ2Z2
L

N2
L−1∑
i=1

[
(Ti

n̂n̂)
2
(

2
ZWPGB + m̄2

W,i
+ 2p2

∂

∂p2
1

ZWPGB + m̄2
W,i

)
×
(

ZR(1 + rF)
ZLZRPF + ρh̄2k

− ZR(1 + rF)
ZLZRPF

)
+

NL∑
a=1

Ti
n̂aT

i
an̂

(
2

ZWPGB + m̄2
W,i

+ 2p2
∂

∂p2
1

ZWPGB + m̄2
W,i

)
ZR(1 + rF)
ZLZRPF

]}
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in terms of threshold functions

∂tZL = − 4vdh2k
dZφZRk4−d

[
m(FB)d

12

(
ρh2k

ZLZRk2
,
U′k+2ρU′′k

Zφk2

)
+ m(FB)d

12

(
ρh2k

ZLZRk2
,

U′k
Zφk2

)]
− 8vd(d− 1)

d
ḡ2ZL

ZWk4−d

N2
L−1∑
i=1

{
(Ti

n̂n̂)
2
[
m(FGB)d

12

(
ρh2k

ZLZRk2
,
m̄2
W,i

ZWk2

)
− m(FGB)d

12

(
0, m̄2

W,i
ZWk2

)
−ad3

(
ρh2k

ZLZRk2
,
m̄2
W,i

ZWk2

)
+ ad3

(
0, m̄2

W,i
ZWk2

)]
+

NL∑
a=1

Ti
n̂aT

i
an̂

[
m(FGB)d

12

(
0, m̄2

W,i
ZWk2

)
− ad3

(
0, m̄2

W,i
ZWk2

)]}

and translated in dimensionless quantities this results in eq. (5.22). Explicitely, for the opti-
mized cutoff this reads

ηL =
4vd
d
h2k

(
1− ηφ

d+1

(1 + ρ̃h2k)(1 + u′k + 2ρ̃u′′k )2
+

1− ηφ
d+1

(1 + ρ̃h2k)(1 + u′k)2

)

+
8vdg2

d

N2
L−1∑
i=1

(Ti
n̂n̂)

2

[
(d− 3)(1− ηF

d+1)

(1 + m2
W,i)

2

(
1

1 + ρ̃h2k
− 1
)

−
1− ηL

d

(1 + m2
W,i)

(
1

(1 + ρ̃h2k)2
− 1
)
+

ρ̃h2k
(
1− ηR

d

)
(1 + m2

W,i)(1 + ρ̃h2k)2

]

+
8vdg2

d

NL∑
a=1

N2
L−1∑
i=1

Ti
n̂aT

i
an̂

[
(d− 3)(1− ηF

d+1)

(1 + m2
W,i)

2 −
1− ηL

d

(1 + m2
W,i)

]
.

If, in the chosen basis in fundamental color algebra, the direction of the vev n̂ has a single non-
vanishing component, i.e. if n̂a ∝ δaA, this anomalous dimension takes a simpler form, given
in eq. (5.23), and for the optimized cutoff that becomes

ηL =
4vd
d
h2k

(
1− ηφ

d+1

(1 + ρ̃h2k)(1 + u′k + 2ρ̃u′′k )2
+

1− ηφ
d+1

(1 + ρ̃h2k)(1 + u′k)2

)

+
8vdg2

d

NL∑
a=1

N2
L−1∑
i=1

Ti
AaT

i
aA

[
(d− 3)(1− ηF

d+1)

(1 + m2
W,i)

2(1 + δaA ρ̃h2k)
−

1− ηL
d

(1 + m2
W,i)(1 + δaA ρ̃h2k)2

+
δaA ρ̃h2k

(
1− ηR

d

)
(1 + m2

W,i)(1 + δaA ρ̃h2k)2

]
.

B.3 FŀŃŌ ĹŅŊĵŉĽŃł ĺŃŇ ŉļĹ ĻĵŊĻĹ ķŃŊńŀĽłĻ

In this appendix we will set d = 4, dγ = 2. Since we want to compute the one loop beta
function we set all the wave function renormalizations to one (O(∂tZ) terms on the r.h.s. of
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the Ěow equation lead to higher loop corrections of the βg2 function).

B.3.1 CŃłŉŇĽĶŊŉĽŃł ĺŇŃŁ ŉļĹ ĻĵŊĻĹ ŁŃĸĹň

For the gauge contribution, the relevant part of the effective Lagrangian is

Lk 3
1
4
(Fiab)

2 + ḡ2Wi
μW

j
μφ
†aTi

abT
j
bcφ

c + Lk,gf + Lk,gh

=
1
4
(Fiab)

2 +
ḡ2v2

2
n̂†aTi

abT
j
bcn̂

cWi
μW

j
μ + · · · .

ĉis deėnes the mass matrix for the gauge bosons, as given in eq. (5.12). As the generators are
real, the mass matrix has real eigenvalues. In order to compute the running coupling, we use
theBFMandproject on the operatorF2/4. For the Ěowweneed Γ̄(2)

k , the part of the action that
is invariant under gauge transformations of the background ėeld, because to the present order
of the calculation the terms arising from Γgauge

k can be ignored. ĉe Hessian for the Ěuctuating
W-boson reads

Γ̄(2) ij
k μν

∣∣∣
W
= D lj

T μν +

(
1− 1

α

)
Dil

μD
lj
ν + m̄2 ij

W δμν

the contributions from ghost Ěuctuations are

Γ̄(2) ij
k

∣∣∣
gh
= −Dil

μD
lj
μ + O(α2)

and as we will later consider Landau gauge (α → 0), we ignore from now on the ghost-Higgs
contributions. For a covariantly-constant background ėeld, projectors onto the longitudinal
and transverse subspaces (w.r.t. the background ėeld) exist

Π⊥ + Π‖ = 1 , Π2
⊥/‖ = Π⊥/‖ , Π⊥Π‖ = 0

such that

Γ̄(2) ij
k μν

∣∣∣
W
=Π il

⊥ μλ

[
D lj

T λν + m̄2 ij
W δλν

]
+Π il

‖ μλ

[
1
α
D lj

T λν + m̄2 ij
W δλν

]
see [16, 109] for the deėnition of DT, Π⊥, Π‖. We choose a similar decomposition for the
regulator

Rk

∣∣∣
W
= Π⊥DTrk

(
DT

k2

)
+ Π‖

1
α
DTrk

(
DT

k2

)
hence also the functional trace on the r.h.s. of the Ěow equation decomposes into these two
sectors. Using the important property that

Tr
[
Π‖f(DT)

]
= Tr

[
f(−D2)

]
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we get

Tr

[
∂tRk

Γ(2)
k + Rk

]
W

= Tr

[
Π⊥

DT∂trk
(DT

k2
)

DT
(
1 + r

(DT
k2
))

+ m̄2
W

]
+Tr

 (−D2)∂trk
(
−D2

k2

)
(−D2)

(
1 + r

(−D2

k2
))

+ αm̄2
W


and writing Π⊥ = 1 − Π‖ in the ėrst term we obtain two unconstrained traces for different
differential operators. ĉe ghost contribution gives

Tr

[
∂tRk

Γ(2)
k + Rk

]
gh

= −2Tr

 (−D2)∂trk
(
−D2

k2

)
(−D2)

(
1 + r

(−D2

k2
))


such that the total contribution reads (α→ 0)

STr

[
∂tRk

Γ(2)
k + Rk

]
W

= Tr

[
DT∂trk

(DT
k2
)

DT
(
1 + r

(DT
k2
))

+ m̄2
W

]
− Tr

 (−D2)∂trk
(
−D2

k2

)
(−D2)

(
1 + r

(−D2

k2
))

+ m̄2
W


− Tr

 (−D2)∂trk
(
−D2

k2

)
(−D2)

(
1 + r

(−D2

k2
))
 .

For the ease of the calculation we choose a basis in adjoint color space where the gauge boson
mass matrix is diagonal, as in (5.13), and we also specify a constant pseudo-abelian magnetic
background ėeld

Fiμν = m̂iFμν , m̂im̂i = 1 , Fμν = Bε⊥μν
where m̂ is the above-mentioned basis in the Cartan of the color algebra, and the constant
antisymmetric tensor ε characterizes the space directions which are affected by the constant
magnetic ėeld upon the Lorentz force. ĉen, recalling that the adjoint generators are (τ l)ij =
ifilj we can call νi the eigenvalues of ifiljm̂l such that the covariant derivative

Dij
μ = (∂μ − iνi)δij (non sum over i)

is also diagonal and so are D2 and DT. Hence DT and m̄2
W, as well as D2 and m̄2

W commute.
ĉen equation (B.4) can be brought to the propertime form:

STr

[
∂tRk

Γ(2)
k + Rk

]
W

= −
∫ ∞
0

ds h̃(s, 0)Tr
[
e−s
−D2

k2

]
+

∫ ∞
0

dsTr
[
h̃
(
s,m2

W
) (

e−s
DT
k2 − e−s

−D2

k2

)]
where h̃ is the Laplace transform of the following function

h
(
y,m2

W
)
=

y∂trk(y)
y(1 + rk(y)) + m2

W
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that is
h
(
y,m2

W
)
=

∫ ∞
0

ds h̃
(
s,m2

W
)
e−sy

and as beforem2
W = m̄2

W/k
2. ĉe heat kernel traces are known, see [109]

Tr
[
h̃
(
s,m2

W
)
e−s
DT
k2

]
=

Ωk4

4π2s2

N2
L−1∑
i=1

h̃
(
s,m2

W,i
)

×
{ sbi

k2

sinh
( sbi
k2
) + sbi

k2
sinh
(
sbi
k2

)}
Tr
[
h̃
(
s,m2

W
)
e−s
−D2

k2

]
=

Ωk4

16π2s2

N2
L−1∑
i=1

h̃
(
s,m2

W,i
) sbi

k2

sinh
( sbi
k2
)

Tr
[
h̃(s, 0)e−s

−D2

k2

]
=

Ωk4

16π2s2

N2
L−1∑
i=1

h̃(s, 0)
sbi
k2

sinh
( sbi
k2
) (B.4)

where bi = ḡ|νi|B and Ω is the spacetime volume. ĉe ėrst trace above is over spacetime and
Lorentz and color indeces, the other two only over spacetime and color indeces. For the run-
ning gauge coupling we just need the terms of order b2i . Since on the l.h.s. of the Ěow equation
we have ∂tΓk = ΩB2∂tZW/2, in terms of the renormalized coupling g2 and the anomalous
dimension (such that ∂tg2 = βg2 = ηWg

2) we obtain

ηW
∣∣∣
W
=
−g2

32π2

N2
L−1∑
i=0

[
21h
(
0,m2

W,i
)
+ h(0, 0)

] |νi|2
3

. (B.5)

Using

h(y, x) =
y∂tr(y)

y(1 + r(y)) + x
= −2

y2r′(y)
y(1 + r(y)) + x

we ėnd that
h(y, 0) = −2

yr′(y)
(1 + r(y)) + x

.

In the BFM the y → 0 limit is constrained; the only regulators permiĨed must satisfy h(y →
0, 0) = 2. In the massless limit we thus obtain

ηW
∣∣∣
W
= − 1

16π2
22
3
g2

N2
L−1∑
i=0

|νi|2 = −
1

16π2
22
3
g2NL .

which agrees with standard perturbation theory. Let us work out the massive case using the
linear regulator (B.1). In this case h(y, x) = 2(1 + x)−1θ(1 − y), the gauge contribution to
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the gauge βg2 function thus reeds

βg2
∣∣∣
W
= ηW

∣∣∣
W
g2 = − g4

16π2

21
3

N2
L−1∑
i=0

|νi|2

1 + m2
W,i

+
NL

3

 .

ĉe ėrst term now depends on the choice of n̂a the direction of the vev in fundamental color
space. ĉis is expected, as for higher gauge groups different breaking paĨerns and gaugemasses
can arise. ĉis term also depends in general on |νi|2, i.e. on m̂i. ĉis is also plausible, as the di-
rections of the vev implicitly also allows for the deėnition of different couplings: depending
on the relative direction of the gauge Ěuctuation w.r.t. the vev, the Ěuctuations can couple dif-
ferently to maĨer.

For SU(2) things become simpler

m̄2 ij
W =

g2v2

4
n̂†aσ iabσ

j
bcn̂

c=
g2v2

4
(δij+ iεijl(n̂†σ ln̂)) (B.6)

such that tr m̄2 ij
W = 3g2v2/4. Let us denote cl = (n̂†σ ln̂). ĉis is a vector in adjoint color

space which is an eigenvector of the mass matrix, with eigenvalue g2v2/4. One can choose a
diagonalizing orthonormal basis {e1, e2 = c/|c|, e3} in adjoint color space such that the mass
matrix takes the form

m̄2
W =

g2v2

4

2 0 0
0 1 0
0 0 0

 .

Now recall that the |νi| are the eigenvalues of (−ifijlm̂l), that for SU(2) simply is (−iεijlm̂l).
ĉerefore in SU(2) the eigenvalues are (1,−1, 0) for any choice of m̂. However, depending on
the direction of m̂w.r.t. the basis deėned above, the νi could be {ν1 = 1, ν2 = −1, ν3 = 0} or
anypermutation thereof. ĉe twoextremecases for SU(2) aremaximal orminimal decoupling.
Maximal decoupling happens if |ν1| = |ν2| = 1 and ν3 = 0, and in this case

βg2
∣∣∣
W
= − g4

16π2

[
21
3

(
1

1 + g2v2
2k2

+
1

1 + g2v2
4k2

)
+

2
3

]
(B.7)

while minimal decoupling happens if ν3 = 0 and |ν2| = |ν3| = 1, and correspondingly

βg2
∣∣∣
W
= − g4

16π2

[
21
3

(
1 +

1
1 + g2v2

4k2

)
+

2
3

]
. (B.8)

For SU(2) the ambiguity of the β-function arises solely from the ambiguity of deėning a cou-
pling in the presence of a vev. In fact, there are more quadratic invariants than the only F2,
such as for example n̂†aFiμνTi

abT
j
bcF

j
μνn̂c. For higher groups, even the mass matrix depends on

the choice of n̂a.
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B.3.2 CŃłŉŇĽĶŊŉĽŃł ĺŇŃŁ ňķĵŀĵŇ ŁŃĸĹň

ĉe contribution from scalar Ěuctuations to the gauge β function arises from the scalar kinetic
term. ĉe calculation is very similar to that of the longitudinal modes with two differences:
the ėeld is complex and lives in the fundamental representation. Moreover the dimensionless
scalar mass matrix in the broken regime readsm2 ab

φ = (λ2v2/2k2)n̂an̂†b. Let us not aĨempt to
solve the problem in full generality as for the gauge modes, but conėne ourselves to a simple
choice of backgrounds. Most importantly, we choose the color direction of the pseudo abelian
background to satisfy

Wi
μ= m̂iWμ , m̂im̂i=1 , [(m̂iTi), n̂⊗ n̂†]=0 . (B.9)

It is important to note that this does not constrain the choice of the vev-direction n̂a. ĉis
is because we can always choose a basis in fundamental color space such that the projector
Pn̂ = n̂ ⊗ n̂† is diagonal. ĉen the commutation relation (B.9) can be satisėed by choosing
(m̂iTi)ab to be in the Cartan, i.e. by choosing it to be diagonal in that basis.

Let’s consider as an example SU(2). Let n̂ = (0, 1). ĉen we choose m̂ = (0, 0, 1) such
that

(m̂iTi)ab =
1
2
σ3 =

1
2

(
1 0
0 −1

)
.

Beforewe continuewith the scalar Ěuctuations, let uswork out the consequences of this choice
for thegaugemodesof thepreceding section. ĉevector c for this choicebecomes c = (0, 0,−1)
and the mass matrix for the gauge modes, given by (B.6), is

m̄2 ij
W =

ḡ2v2

4
(δij − iεij3) =

ḡ2v2

4

1 −i 0
i 1 0
0 0 1

 . (B.10)

ĉe deėnition of νi, right above (B.4), combined with the choice m̂ = (0, 0, 1) requires us to
compute the eigenvalues of

−iεij3 = −i

 0 1 0
−1 0 0
0 0 0

 .

ĉe simultaneous eigenvectors of this matrix and of m̄2
W are given by

v1 =

0
0
1

 , v2 =

1
i
0

 , v3 =

 1
−i
0


with the corresponding set of eigenvalues: {m̄2

W,1 = ḡ2v2
4 , ν1 = 0}, {m̄2

W,2 = ḡ2v2
2 , ν2 = 1},

{m̄2
W,3 = 0, ν3 = −1}. ĉis choice of m̂ corresponds to the minimal decoupling case of

eq. (B.8). ĉese considerations tell us that themaximal decoupling solution of eq. (B.7)might
not be permiĨed, as it would not correspond to a legitimate choice of m̂ such that m̂iTi be in the
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Cartan (which we had also assumed in the gluonic case in eq. (B.4)). It seems that this choice
of m̂ satisfying (B.9) corresponds to deėning the coupling with respect to the unbroken part
of the gauge group.

Let us now return to the scalar Ěuctuations; eq. (B.9) ensures that the covariant derivative
in the fundamental representation satisėes

[Dμ, n̂⊗ n̂†] = 0

for our choice of the background ėeld. ĉen also [−D2, n̂⊗ n̂†] = 0 and thus [−D2,m2
φ] = 0

follow, such that−D2 andm2
φ can be simultaneously diagonalized. ĉerefore

Tr
[

∂tRk

Γ(2) + Rk

]
φ
= Tr

 −D2

k2 ∂trk
(
−D2

k2

)
−D2

k2
(
1 + rk

(−D2

k2
))

+ m2
φ

 .

Because of the above considerations, we can rewrite the previous expression in the propertime
form

Tr
[

∂tRk

Γ(2) + Rk

]
φ
=

∫ ∞
0

dsTr
[
h̃(s,m2

φ)e
−s−D2

k2

]
=

Ω
16π2

∫ ∞
0

ds
NL∑
a=1

h̃(s,m2
φ,a)

(
−1

6
b2a

)
where we extracted from the third equation of (B.4) the term of order b2i , andwe denotedwith
m2

φ,a the eigenvaluesof themassmatrix (there is onlyonenonvanishing eigenvalue for the radial
mode), and ba = ḡ|νa|B, with νa being now the eigenvalues of (m̂iTi)

ab, now related to the
fundamental representation. In particular, using the standard normalization for the generators
of the fundamental representation

NL∑
a=1

|νa|2 = tr
[(
m̂iTi)2] = m̂im̂j

1
2
δij =

1
2
.

Another difference from the gauge case is that the scalar ėeld is complex and thus there is no
factor 1/2 in front of the trace on the r.h.s. of the Ěow equation. Hence, analogous to (B.5),
the contribution of the scalar to the Ěow of ZW reads

ηW
∣∣∣
φ
=

g2

16π2

NL∑
a=1

h(0,m2
φ,a)
|νa|2

3
. (B.11)

In the massless case, since h(0, 0) = 2, ηW|φ =
g2

16π2
1
3 in agreement with perturbation theory.
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In the general massive case and using the linear regulator, we get

ηW
∣∣∣
φ
=

g2

16π2
2
3

NL∑
a=1

1
1 + m2

φ,a
|νa|2 .

For all the gauge groups only one particular component of m2
φ,a is nonvanishing and equal to

2λ2κ. For SU(2) the νa are unique and equal to {−1
2 ,−

1
2}. ĉerefore in this case

ηW
∣∣∣
φ
=

g2

16π2
1
3

[
1
2
+

1
2

1
1 + 2λ2κk

]
.

B.3.3 CŃłŉŇĽĶŊŉĽŃł ĺŇŃŁ ĺĹŇŁĽŃł ŁŃĸĹň

ĉe relevant part of the effective Lagrangian is

Lk 3 i(ψ̄a
L /D

abψb
L + ψ̄R/∂ψR) + h̄k(ψ̄Rφ

a†ψa
L − ψ̄a

Lφ
aψR)

in which again we set any wave function renormalization to one. For (5.8) we can choose a
gauge background ėeld such thatDab

μ and Pn̂ = n̂ ⊗ n̂† as well as P(1−n̂) = 1 − Pn̂ commute,
such that the above parts ofLk can be wriĨen as

Lk 3 i(ψ̄a
L /D

abPbc(1−n̂)ψ
c
L) (B.12)

+ i(ψ̄ n̂
L /Dψ

n̂
L + ψ̄R/∂ψR) +

h̄kv√
2
(ψ̄Rψ

n̂
L − ψ̄ n̂

LψR)

where the second /D is projected along n̂. ĉeėrst line corresponds to themassless boĨom-type
fermions. ĉeir contribution is the standard perturbative contribution weighted by eigenval-
ues νa in the orthogonal complement. Let n̂ point into the A-direction: n̂a = δaA. ĉen the
contribution of the massless fermions to the running coupling is

∂tg2
∣∣∣
ψ(1−n̂)

=
g4

16π2
4
3

NL∑
a=1,a6=A

|νa|2 .

If the sum ran over all a’s we would get
∑NL

a=1 |νa|2 = 1/2 leading to the correct perturbative

result. Combining ψ n̂
L and ψR into a Dirac spinor Ψ =

(
ψ n̂
L

ψR

)
, the second line of (B.12) can

be wriĨen
Lk 3 iΨ̄ /DALΨ + m̄ψΨ̄γ5Ψ

where /DAL = γμ(∂
μ − ḡνAWμPL), with the usual deėnition of the leě-projector PL = 1

2(1−
γ5), and we introduced the “top-mass” m̄ψ as deėned in eq. (5.14). Since the regularized Ěuc-
tuation operator for Ψ satisėes (Γ(2)

k + Rk)
2 = /D2

AL(1 + rk)2 + m̄2
ψ and since tr[γ5 /DAL] = 0
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one gets

Tr
[

2 ∂tRk

Γ(2) + Rk

]
Ψ
= Tr

 /D2
AL

(
1 + rk

(
/D2
AL
k2

))
∂tr
(

/D2
AL
k2

)
/D2
AL

(
1 + rk

(
/D2
AL
k2

))2
+ m̄2

ψ


=

∫ ∞
0

ds h̃(s, m̄2
ψ)Tr

[
e−s

/D2AL
k2

]
(B.13)

Here we need to know the spectrum of

/D2
AL = γμ(∂

μ − gνAWμPL)γν(∂
ν − gνAWνPL) = γμγν(∂

μ − gνAWμPR)(∂ν − gνAWνPL)

= γμγν(D
μ
R + ∂

μ
L)(D

ν
L + ∂ν

R) = /D2
L + γμγν(∂

μ
LD

μ
L + Dμ

R∂
ν
R) (B.14)

where we denoted ∂μ
L/R = ∂μPL/R and took advantage of: /D2

L = γμγνD
μ
RDν

L and ∂μ
L∂

ν
R = 0.

Let us take a shortcut at this point. We already know that the contribution of (B.13) to the
β-function in the massless limit must be of the form

∂tg2
∣∣∣
ψ n̂

=
g4

16π2
4
3
|νA|2 .

ĉisėxes theO(s0)-term inTr
[
e−s

/D2AL
k2

]
tobe the sameas theO(s0)-term inTr

[
e−s

/D2L
k2

]
. ĉese

heat-kernel traces could differ to higher orders in s, due to the two extra terms in (B.14). ĉese
higher-order terms could (unlike as for /D2

L) in principle contain terms of order B2 and thus
contribute to the beta function via functions of the form

fp(m
2
ψ) =

∫ ∞
0

ds h̃(s,m2
ψ)s

p =

[(
− ∂

∂y

)p

h(y,m2
ψ)

]
y=0

wherem2
ψ is the dimensionless top mass squared: m2

ψ = h2kκk. Because of what just said about
themassless limitwemust have fp(0) = 0. Furthermore fp has also to show threshold behavior,
that is: fp(m

2
ψ → ∞) → 0. As the precise dependence of h(0,m2

ψ) is anyway regulator-
dependent, we can ignore the potentially nonvanishing fp(m

2
ψ) for all qualitative discussions.

ĉerefore, without any further explicit calculation, we approximate the threshold behavior of
the massive fermion mode by the same form as for the other modes

∂tg2|ψ =
g4

16π2
4
3

NL∑
a=1

1
1 + h2κδaA

|νa|2 .

for SU(2) this implies

∂tg2|ψ =
g4

16π2
2
3

(
1
2
+

1
2

1
1 + h2κ

)
.
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To summarize, we can write the gauge one-loop β-function approximately as given in the
main text in eqs. (5.24,5.25).
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