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Introduction

The Standard Model of Particle Physics (SM) constitutes the most successful
achievement in modern physics. In addition, the reliability of the SM theory is
reinforced by the recent observation at LHC of a new particle with the feature of
the predicted Higgs boson. This particle was, in fact, the last missing building block
of the whole framework. As a consequence, the attention of the particle physicists
in the last ∼ 40 years has been focused on Higgs search and on performing high
precision tests of the SM sectors where new physics can be hidden.

In the recent studies, processes involving the electroweak sector of the SM
have received much attention as a strong test of the model by the fact that these
interactions are intimately related to the gauge group of the model. Among them,
Z-boson pair production cross section measurement has a particular importance
since it plays a crucial role also in the Higgs boson study. In fact, ZZ dacaying in
the four charged leptons channel (ZZ → `−`+`−`+) is an irriducible background
that sorrounds the emergence of the Higgs boson events.

The extraordinary performances reached by the Large Hadron Collider (LHC)
in terms of integrated luminosity and center of mass energy in the two early years of
running, made possibile accurate study of rare processes such as ZZ → `−`+`−`+

with a precision superseding and improving the previous LEP and Tevatron results.

The main core of this thesis concerns the measurement of the ZZ → `−`+`−`+

production cross section using LHC 2011 data collected at
√
s = 7 TeV by the

ATLAS detector and resulting in a total integrated luminosity of 4.6 fb−1. The
ZZ selection criteria, the reconstruction and identification efficiencies of leptons
and the expected signal kinematic are presented together with cross section mea-
surements in different phase space regions. The background data-driven estimate
procedure is also discussed. The total cross section is finally compared with the
NLO prediction calculated with modern Monte Carlo generators.

In order to give more detailed comparison of theory to measurement, allowing a
generic comparison of the kinematic distributions to new theories, an “Unfolding”
procedure is also applied. The three differential distributions (∆φ(l, l), pZT and M4l)
are shown unfolded back to the underlying distributions using a Bayesian iterative
algorithm.

3



4 Introduction

Another foundamental aspect carried by interactions involving pair of Z bosons,
is the sensitivity to anoumalus triple gauge couplings (nTGC). In particular, since
a direct coupling of three neutrally charged gouge bosons is forbidden in the SM, a
deviation of sensitive parameters from the SM prediction would provide important
information about new physics beyond it. In this contest, the transverse momentum
of the leading Z is used to provide limits on nTGC as discussed in the final chapter
of this thesis.



Chapter 1

The Standard Model of Particle
Physics

1.1 Introduction

The idea that matter is composed of few elementary building blocks is very
ancient in the human history and it is still today a baseline guide in the world
of particle physics. During the last sixty years, the discovery of the huge amount
of particles in the various scattering experiments, forced physicists in making a
big effort to formulate a model in which the large number of particles could be
explained as combinations of a (relatively) small number of fundamental particles.
This model is currently known as the Standard Model of Particle Physics. In the
Standard Model (SM) the fundamental constituents of matter are quarks and
leptons with the masses reported in Tab. 1.1, that interact via the exchange of
gauge bosons in Tab. 1.2.

Generation Leptons Quarks

1 e νe u d
(0.511 MeV) (∼ 2 MeV) (∼ 2 MeV)

2 µ νµ c s
(106 MeV) (1205 MeV) (95 MeV)

3 τ ντ t b
(1777 MeV) (172 GeV) (4.5 GeV)

Table 1.1: The basic fermions of the Standard Model included approximate observed
masses [1]. The neutrinos νe , νµ and ντ are per construction massless in the Standard
Model.

5
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Mediator Interaction Coupling Strenght

γ Electromagnetic α = e2/4π ' 1/137
W±, Z Weak GF ' 1.16× 10−5 GeV−2

gluon Strong αs = g2
s/4π ' 0.1

Table 1.2: The Standard Model gauge boson propagators within rispective interaction
and coupling strenght.

Since the SM is a quantum field theory an appropriate formalism must be
introduced to construct the Lagrangian operator that discribes the particles and
the interactions among them. A complete discussion can be found in [2], [3] and
[4].

The starting point to build the complex mathematical framework of the SM is
the Noether theorem [5] that establishes relation between symmetries and conser-
vation laws. In particular, for every continuous symmetry transformation which
leaves the Lagrangian invariant, there’s a corresponding divergenceless Noether’s
current and, therefore, a conserved charge. The selection rules observed in na-
ture, where there exist several conserved quantities (energy, momentum, electric
charge...) correspond to dynamical symmetries of the Lagrangian. A special class
of internal symmetries, called gauge-symmetries, occur when the physical system
described by a certain lagrangian is invariant under a local phase transformation.
Theories that satisfy gauge-symmetries are called gauge theories.

The SM is a gauge theory, based on the symmetry group SU(3)C ⊗ SU(2)L ⊗
U(1)Y , which describes strong, weak and electromagnetic interactions, via the
exchange of the corresponding spin–1 gauge fields: 8 massless gluons and 1 massless
photon for the strong and electromagnetic interactions, respectively, and 3 massive
bosons, W± and Z, for the weak interaction. The gauge symmetry is broken by
the vacuum, which triggers the Spontaneous Symmetry Breaking (SSB) of the
electroweak group to the electromagnetic subgroup:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−→ SU(3)C ⊗ U(1)QED . (1.1)

The SSB mechanism generates the masses of the weak gauge bosons, and gives rise
to the appearance of a physical scalar particle in the model, the so-called “Higgs”.
The fermion masses and mixings are also generated through the SSB.

The SM constitutes one of the most successful achievements in modern physics.
It provides a very elegant theoretical framework, which is able to describe the
known experimental facts in particle physics with high precision.
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1.2 Quantum Electrodynamics

Quantum Electrodynamics (QED) was the first of modern quantum theories
and the most theoretically and experimentally studied of the SM. It derives from
the free Dirac Lagrangian imposing the U(1) space time dependent phase tran-
formation. Considering the Lagrangian describing a free Dirac fermion ψ(x) with
mass m:

L0 = i ψ(x)γµ∂µψ(x) − mψ(x)ψ(x) . (1.2)

The local U(1) phase invariance (“Gauge Principle”) is only possible if one in-
troduces a new spin-1 (since ∂µθ has a Lorentz index) field Aµ(x), transforming
as

Aµ(x)
U(1)−→ A′µ(x) ≡ Aµ(x) +

1

e
∂µθ , (1.3)

and defines the covariant derivative

Dµψ(x) ≡ [∂µ − ieQAµ(x)] ψ(x) . (1.4)

This modification is completely fixed and leads to the total Lagrangian of the
QED, LQED:

LQED ≡ −
1

4
Fµν(x)F µν(x) + i ψ(x)γµDµψ(x) − mψ(x)ψ(x) , (1.5)

where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength.
A possible mass term for the gauge field, Lm = 1

2
m2AµAµ, is forbidden because

it would violate gauge invariance, thus the photon is predicted to be massless.
From experiments, mγ < 6 · 10−17 eV [1], in agreement with the above theoretical
prediction.

1.3 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory of strong interactions describ-
ing the dynamics of quarks and gluons. Quarks were first introduced by Gell-Mann
and Zweig in 1964 to explain the spectroscopy of hadrons. The quarks were estabil-
ished as the fundamental constituents of hadrons in the development of the quark
model in ’60s and ’70s and assuming that mesons are qq̄ states while baryons are
qqq one can nicely classify all the known hadronic particles.

QCD is a non-Abelian 1 gauge theory of SU(3) colour symmetry, described
as SU(3)C , which is invariant under SU(3) transformation in colour space. The
SU(3)C symmetry is unbroken as well as the U(1) symmetry in QED, therefore,

1a non-Abelian group is a non commutative group.
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just like the photons, gluons as gauge bosons mediating strong interactions ar also
massless.

Since there exist no coloured hadrons in Nature, one should assume that all
observed hadrons must be colourless, i.e. singlets under rotation in colour space.
This assumption is known as quark confinement, because it implies the impossi-
bility to observe free quarks: since these fundamental particles carry colour they
are confined inside hadrons.

1.3.1 Evidence of Colours

There are several evidences that the colour degree of freedom is actually in 3
species (red, green and blue). A direct test on the colour quantum number can
be obtained from the experimental data on e+e− annihilations at high energies,
looking at the ratio

Re+e− ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1.6)

which at energies well below the Z peak, where the cross-section is dominated by
the γ–exchange amplitude, is given by the sum of the contributing quark electric
charges squared:

Re+e− ≈ NC

Nf∑
f=1

Q2
f =


2
3
NC = 2 , (Nf = 3 : u, d, s)

10
9
NC = 10

3
, (Nf = 4 : u, d, s, c)

11
9
NC = 11

3
, (Nf = 5 : u, d, s, c, b)

. (1.7)

The values in the (1.7), obtained for a number of colours NC = 3, are well in
agreement with experimental measurements.

1.3.2 The QCD Lagrangian

Following the same steps of the QED case and adopting the vector notation in
colour space qTf ≡ (q1

f , q
2
f , q

3
f ), the free QCD Lagrangian can be written:

L0 =
∑
f

q̄f (iγµ∂µ −mf ) qf (1.8)

invariant under arbitrary global SU(3)C transformations in colour space.
To satisfy that the Lagrangian in Eq. 1.8 is also invariant under local SU(3)C

transformations, covariant objects and gauge fields are needed. This leads to the
total QCD Lagrangian:

LQCD ≡ −
1

4
Gµν
a G

a
µν +

∑
f

q̄f (iγµDµ −mf ) qf . (1.9)
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with

Dµqf ≡
[
∂µ − igs

λa

2
Gµ
a(x)

]
qf ≡ [∂µ − igsGµ(x)] qf , (1.10)

and

Gµν
a (x) = ∂µGν

a − ∂νGµ
a + gs f

abcGµ
b G

ν
c . (1.11)

In the Lagrangian of Eq. 1.9 all interactions are given in terms of a single universal
coupling gs, which is called the strong coupling constant. In Eq. 1.10 λa are the
generators of the SU(3)C group and Gµ

a are the eight gauge boson gluon fields. In
Eq. 1.11 the upscripts a, b, c in the structure constants of the SU(3)C symmetry
group fabc take values from 1 to 8.

The presence in Eq. 1.11 of the terms gs f
abcGµ

b G
ν
c gives rise to a new feature of

QCD with respect to QED, i.e. the existence of self-interactions among the gauge
fields. Due to this new self-interactions properties which do not appear in QED,
like asymptotic freedom and confinement (see section 1.3.3), could be explained.

1.3.3 Asymptotic Freedom

As discussed before, gluons have self-interactions because of the non-Abelian
nature of QCD. This nature produces a drastically different behavior of the running
coupling constant αs(Q

2) = g2
s/4π from the QED case. In QED the charge of

the electron appears smaller at large distances due to the screening by vacuum
polarization. In QCD the screening effect exist as well, but due to the presence of
the virtual gluon pairs the net effect on the couling constant is the opposite.

The running coupling constant αs(Q
2) can be written:

αs(Q
2) =

12π

(33− 2nf )ln
Q2

Λ2
QCD

(1.12)

where Λ2
QCD is a free parameter with mass dimension and nf is the number of

quark flavours. The behavior of the Eq. 1.12 is depicted in Fig. 1.1.
For large values of Q2 much larger than Λ2

QCD, the effective couplings between
quarks and gluons becames small and the quarks and gluons behave as free parti-
cles (asymptotic freedom). On the other hand, for small Q2 region like Q2 ' Λ2

QCD,
the quark-gluons coupling becames large and they are confined in hadrons (confine-
ment). Λ2

QCD is thus the scale which separates the world of confinament (hadrons)
and asymptotic freedom (free quarks and gluons).
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Figure 1.1: The running coupling αs as a function of Q2.

1.4 Electroweak Theory

The Glashow-Weinberg-Salam (GWS) model of electroweak interactions is a
non-Abelian gauge theory with SU(2)L ⊗ U(1)Y gauge symmetry accompanied
by the Higgs mechanism (see section 1.4.3). It’s the first successful unification
model in the theory of elementery particle interactions. The discovery of W± and
Z bosons with expected masses and a weak neutral current mediated by a massive
neutral vector boson Z is a great triumph of the model. Moreover, another possible
succes of the SM theory is the recent discovery at LHC, made by the ATLAS and
CMS collaborations, of a new particle in the search for the Standard Model Higgs
boson [6], [7].

1.4.1 Experimental Introduction

The first hint on how to costruct the electroweak theory comes from the exper-
iments that provided a large amount of informations about the dynamics under-
lying flavour-changing processes. The detailed analysis of the energy and angular
distributions in β and pions decays:

µ− → e−ν̄e νµ (1.13)

n→ p e−ν̄e (1.14)

π− → µ−ν̄µ (1.15)

π− → e−ν̄e (1.16)
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clearly suggested that only the left-handed (right-handed) fermion (antifermion)
chiralities participate in those weak transitions and that the strong interaction is
universal. The existence of different neutrino types (νe 6= νµ) and that there are
separately conserved lepton quantum numbers which distinguish neutrinos from
antineutrinos were also determined from experiments. All these experimental infor-
mations plus theoretical considerations related to unitarity determine the structure
of the modern electroweak theory.

1.4.2 The SU(2)L ⊗U(1)Y Theory

Looking at how QED and QCD Lagrangians have been derived using gauge
invariance also the electroweak model structure can be built in the same way. Of
course, to describe weak interactions a more complex group of symmetry is nedeed.
In fact, keeping in mind the experimental results previously discussed, in terms
of SU(2) representations this means that left-handed fermions should appear in
doublets, while the right-handed parts are a weak iso-singlets. The structure of the
first generation Standard Model fermions can be represented with the following
notation. For quarks:

ψ1(x) =

(
u
d

)
L

, ψ2(x) = uR , ψ3(x) = dR . (1.17)

while for the lepton sector:

ψ1(x) =

(
νe
e−

)
L

, ψ2(x) = νeR , ψ3(x) = e−R . (1.18)

We also need to have massive gauge bosons W± and Z in addition to the photon
including the electromagnetic interactions in the model. The simplest group to
consider is then

G ≡ SU(2)L ⊗ U(1)Y , (1.19)

where L refers to left-handed fields and the subindex Y is the hypercharge. In
electroweak theory the gauge bosons couple to fermions by means of hypercharge
and weak isospin. Note that, the identification of U(1)Y with electromagnetism
does not work. The assignment of quantum numbers like T3 (third component of
the weak isospin) and Y reported in Tab. 1.3 play an important role in defining
electroweak structure. These two quantum numbers are related to the classical
electric charge Q via the formula:

Q = T3 + Y/2. (1.20)

The Glashow-Weinberg-Salam Lagrangian of the electroweak model can be divided
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Quarks T3 Y Leptons T3 Y

uL 1/2 1/3 νe 1/2 -1
dL -1/2 1/3 eL -1/2 -1
uR 0 4/3 eR 0 -2
dR 0 -2/3

Table 1.3: SU(2)L ⊗ U(1)Y assignament of T3 and Y quantum numbers.

into the following parts:

LGWS = LF + LG + LS + LY (1.21)

The first term LF is built starting from the free Lagrangian as in QED and QCD

L0 = i ū(x) γµ ∂µu(x) + i d̄(x) γµ ∂µd(x) =
3∑
j=1

i ψj(x) γµ ∂µψj(x) . (1.22)

requiring the Lagrangian L0 to be invariant under local SU(2)L ⊗ U(1)Y gauge
transformations.

In order to satisfy this symmetry requirement, we need to change the fermion
derivatives by covariant objects. Since there are now 4 gauge parameters, 4 different
gauge bosons are needed:

Dµψ1(x) ≡
[
∂µ − i g W̃µ(x)− i g ′ y1Bµ(x)

]
ψ1(x) ,

Dµψ2(x) ≡ [∂µ − i g ′ y2Bµ(x)] ψ2(x) , (1.23)

Dµψ3(x) ≡ [∂µ − i g ′ y3Bµ(x)] ψ3(x) .

where
W̃µ(x) ≡ σi

2
W i
µ(x) (1.24)

denotes a SU(2)L matrix field. Thus, we have the correct number of gauge fields
to describe the W±, Z and γ.

The Lagrangian

LF =
3∑
j=1

i ψj(x) γµDµψj(x) , (1.25)

is invariant under local G transformations.
The gauge-invariant kinetic term for the gauge fields which should be added to LF

is given by:

LG = −1

4
W i
µνW

µν
i − 1

4
Bµν B

µν . (1.26)
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with

W i
µν = ∂µW

i
ν − ∂νW i

µ + g εijkW j
µW

k
ν , (1.27)

Bµν = ∂µBν − ∂νBµ , (1.28)

where W i
µν and Bµν are field strenght tensors of gauge fields corresponding to

SU(2)L and U(1)Y , respectively.
Particularly interesting for the aim of this thesis is the field strengths W i

µν

that contains the quadratic term g εijkW j
µW

k
ν . The Lagrangian LG gives rise to

cubic and quartic self-interactions among the gauge fields, i.e. the coupling between
gauge bosons. In Chapter 2, starting from this part of the kinetic Lagrangian the
anomalous Triple Gauge Couplings together with Diboson production at LHC will
be theoretically discussed in detail.

The SU(2)L ⊗ U(1)Y Lagrangian in Equations 1.25 and 1.26 only contains
massless fields. Due to local gauge invariance the mass terms of both gauge bosons
and fermions can’t appear. In order to make fermions and gauge bosons massive,
as in the real world, the Higgs mechanism and the SSB of the gauge invariance is
needed such as:

SU(2)L ⊗ U(1)Y → U(1)QED. (1.29)

To realize this symmetry breaking, the scalar fields which give rise to the Higgs
mechanism, called Higgs bosons, are introduced. These can be translated in two
additional Lagrangian terms (Ls and LY ) nedeed to complete the total LGWS of
the SU(2)L⊗U(1)Y electroweak model. In the next section (1.4.3) these two terms
are derived together with SSB and Higgs mechanism discussion.

1.4.3 Spontaneus Symmetry Breaking and Higgs Mecha-
nism

SSB occurs when the symmetry of the chosen original Lagrangian has been
broken by breaking the symmetry of the vacuum, in other words, we have SSB if
the Lagrangian of the system is invariant under the a given transformation while
the vacuum state is not. To understand how this can happen and its implication
a first fundamental result called Goldstone Theorem must be taken into account.
The theorem states that starting from a Lagrangian with a global symmetry and
breaking the symmetry of the vacuum states by chosing one particular point among
the degeneretes ones of these states “appears“ a massless particle called Goldstone
boson.

In a practical example, considering a potential function of the complex scalar
field φ(x) (Fig. 1.2):

V (φ) = µ2φ†φ+ h
(
φ†φ
)2
. (1.30)
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To guarantee that the energy of the system remains bounded, h can assume only
positive values, then the minimum of V (φ) depends only on the sign of µ. For
µ2 > 0 the potential has only one minimum at φ = 0, while for µ2 < 0 the
solutions are the fields configurations satisfying:

|φ0| =

√
−µ2

2h
≡ v√

2
> 0 , V (φ0) = −h

4
v4 . (1.31)

Figure 1.2: Shape of the scalar potential for µ2 > 0 (left) and µ2 < 0 (right).

Now considering an SU(2)L doublet of complex scalar fields and the potential
in Eq. 1.30 is possible to construct the Lagrangian of the Goldstone model to give
masses to the gauge bosons:

LS = (Dµφ)†Dµφ− µ2φ†φ− h
(
φ†φ
)2
, (h > 0 , µ2 < 0) , (1.32)

where:

Dµφ =
[
∂µ − i g W̃ µ − i g ′ yφBµ

]
φ , yφ = Qφ − T3 =

1

2
. (1.33)

LS is invariant under local SU(2)L ⊗ U(1)Y transformations. The potential is the
same as in the previous example and associating the classical ground state with
the quantum vacuum it satisfies:

∣∣〈0|φ(0)|0〉
∣∣ =

√
−µ2

2h
≡ v√

2
. (1.34)

Choosing a particular ground state, the SU(2)L ⊗ U(1)Y symmetry gets sponta-
neously broken to the electromagnetic subgroup U(1)QED and by means of the
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Goldstone theorem 3 massless states should then appear. These can be seen using
a clever parametrization of the scalar doublet:

φ(x) = exp
{
i
σi
2
θi(x)

} 1√
2

(
0

v +H(x)

)
, (1.35)

with 4 real fields θi(x) and H(x). These 3 fields θi(x) are exactly the massless
Goldstone bosons associated with the SSB mechanism.

At this stage choosing the physical (unitary) gauge θi(x) = 0 , the massless
excitations of the ground state result unphysical and the Goldstone bosons disap-
pear, so the kinetic piece of the scalar Lagrangian (1.32) takes the form:

(Dµφ)†Dµφ
θi=0−→ 1

2
∂µH∂

µH + (v +H)2

{
g2

4
W †
µW

µ +
g2

8 cos2 θW
ZµZ

µ

}
.

(1.36)
The vacuum expectation value of the neutral scalar has generated a quadratic term
for the W± and the Z, i.e. those gauge bosons have acquired masses:

MZ cos θW = MW =
1

2
v g . (1.37)

In summary by extending the symmetry of the Lagrangian from the global to local
one the 3 massless Goldstone bosons generated by the occurrance of SSB disapear
and going to the unitary gauge the W± and the Z (but not the γ, because U(1)QED

is an unbroken symmetry) have acquired masses, related as in Eq. 1.37.

The same argument for generating gauge bosons masses can be used in the
fermionic case. So, the last piece of the total Lagrangian LGWS in the unitary
gauge (after SSB), takes the form:

LY =
1√
2

(v +H)
{
c1 d̄d+ c2 ūu+ c3 ēe

}
. (1.38)

The SSB mechanism generates fermion masses:

md = −c1
v√
2
, mu = −c2

v√
2
, me = −c3

v√
2
. (1.39)

The values of the fermion masses are arbitrary due to the fact that the parameters
ci are not known. Note, however, that all Yukawa couplings are fixed in terms of
the masses:

LY = −
(

1 +
H

v

) {
md d̄d+mu ūu+me ēe

}
. (1.40)
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1.4.4 Predictions of the Electroweak Theory

The theoretical framework constructed above implies the existence of massive
intermediate gauge bosons, W± and Z related among them via the vacuum expec-
tation value of the scalar field as expressed in Eq. 1.37.

On the other hand the model cannot predict the values of the energy scale v
and of the fermion masses (Tab. 1.1) which must be extracted from experiments.
A direct determination of electroweak energy scale is given by the formula:

v =
(√

2GF

)−1/2

= 246 GeV . (1.41)

where a precise existimation of the Fermi coupling constant GF :

GF = (1.16637± 0.00001) · 10−5 GeV−2 . (1.42)

comes from the measurement of the muon lifetime.
Thus, using Equations 1.41 and 1.37 MZ is predicted to be bigger than MW in

agreement with the measured masses:

MZ = 91.1875± 0.0021 GeV , MW = 80.425± 0.034 GeV . (1.43)

From these experimental numbers, one obtains the electroweak mixing angle

sin2 θW = 1− M2
W

M2
Z

= 0.222 . (1.44)

An independent estimate of sin2 θW comes again from the decay µ− → e−ν̄e νµ.
This method leads to a values of

sin2 θW = 0.215 , (1.45)

in very good agreement with Eq. 1.44.

1.5 The Higgs Boson

Before ending this chapter, dedicated to a Standard Model review, a more
detailed discussion on the Higgs boson is presented in this section. From the the-
oretical point of view the scalar Lagrangian (1.32) has introduced a new scalar
particle into the model: the Higgs H. This Lagrangian in terms of the physical
fields (unitary gauge), LS can be decomposed [2]:

LS =
1

4
h v4 + LH + LHG2 , (1.46)
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where in the LH term the Higgs mass is given by

MH =
√
−2µ2 =

√
2h v . (1.47)

and the LHG2 shows that Higgs interactions are always proportional to the mass
(squared) of the coupled boson. All Higgs couplings are determined by MH , MW ,
MZ and the vacuum expectation value v.

Figure 1.3: Combined LEP and Tevatron measurements on the exclusion mass
range of the Higgs boson.

1.5.1 Experimental Limits on the Higgs Mass

After the introduction of the Higgs Mechanism on the elctroweak model, sev-
eral experiments started to search the evidence of the Higgs boson in the various
accelerator cunstructed all over the world. Before the LHC era all the experimental
searches for the Higgs have only provided a lower bound on its mass, corresponding
to the exclusion of the kinematical range accessible at LEP and the Tevatron 2 as
shown in Fig. 1.3 wich tells:

MH > 114.4 GeV (95%C.L.) (1.48)

MH < 158; MH > 175 GeV (95%C.L.) (1.49)

2Tevatron limits are the ones presented at ICHEP conference in ’10 with a total integrated
luminosity of ' 7 fb−1
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1.5.2 Higgs Search at LHC

The extraordinary performance of the LHC collider in center of mass energy and
collected luminosity during 2011 and 2012, has given the possibility to the ATLAS
collaboration (together with CMS collaboration) to claim the first observation of
a new particle in the search for the Standard Model Higgs boson.
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Figure 1.4: On the left, the distribution of the four-lepton invariant mass, m4l,
for the selected candidates, compared to the background expectation in the 80 to
250 GeV mass range, for the combination of the

√
s = 7 TeV and

√
s = 8 TeV

data. The signal expectation for a SM Higgs with mH = 125 GeV is also shown.
On the right, the distributions of the invariant mass of diphoton candidates after
all selections for the combined 7 TeV and 8 TeV data sample.

In Fig. 1.4 are reported the invariant mass distributions in the two main chan-
nels (H → ZZ∗ → l+l−l+l− and H → γγ) of the Higgs search as performed
by the ATLAS detector. These results together with the one obtained in the
H → WW (∗) → lνlν dacay channel provide conclusive evidence for the discov-
ery of a new particle with mass:

MH = 126.0± 0.4(stat)± 0.4(sys) GeV (1.50)
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In the narrow region, 122-133 GeV the significance of the excess observed events
is 5.9σ (Fig.1.5). Taking into account the entire mass region of the search, 110-600
GeV, the global significance of the excess is 5.1σ.
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Figure 1.5: The observed (solid) local p0 as a function of mH in the low mass
range. The dashed curve shows the expected local p0 under the hypothesis of a
SM Higgs boson signal at that mass with its plus/minus one sigma band. The
horizontal dashed lines indicate the p-values corresponding to significances of 1 to
6 sigma.
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Chapter 2

Diboson Physics and Anomalous
Triple Gauge Couplings at LHC

2.1 Introduction

As presented in the previous chapter in section 1.4.4, the Standard Model (SM)
of the electroweak theory makes precise predictions to study the gauge symmetry of
the SM. In order to investigate more in depth the SM, gauge boson self-couplings
have received much attention by the fact that these interactions are intimately
related to the gauge group of the model, and a deviation from the SM would
provide important information about the kind of new physics beyond it. In this
chapter the attention is focused on the trilinear couplings ZZV (with V = γ or
Z) and on the discussion of the Z boson pair production at LHC collider.

Z/γ

q̄

q

Z

Z

Figure 2.1: The ZZZ neutral TGC vertex forbidden by the SM.
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2.2 Triple Gauge Coupling

In section 1.4.2 the electrowek Lagrangian is presented. The term LG (Eq. 1.26)
can be shown to generate self-interactions among the gauge bosons. It turns out
that terms with gauge bosons of the same type are all zero. In other words the
SM forbids, at tree level, the Z pair production via the triple gauge vertex shown
in Fig. 2.1. So new physics beyond the SM can manifest itself if an anoumalous
interaction between three neutral gauge bosons arises.

2.2.1 Effective Lagrangian of the Neutral Triple Gauge
Couplings

The most general vertex of self-interacting gauge bosons is shown in Fig. 2.2
where q1, q2 and p are the momenta of the two on-shell Z bosons and the s-channel
propagator respectively.

Figure 2.2: Feynman rule for the ZZV vertex.

The effective Lagrangian generating the vertex in Fig. 2.2 is

L =
e

M2
Z

[fV4 (∂µV
µβ)Zα(∂αZβ) + fV5 (∂σVσµ)Z̃µβZβ], (2.1)

where Vµν = ∂µVν − ∂νVµ and Z̃µβ = 1
2
εµνρσZ

ρσ. The couplings fVi (i = 4, 5) are
dimensionless complex functions of q2

1, q2
2, p2 and zero at tree level. All couplings

violate charge conjugation C, the terms fV4 are CP violating while fV5 terms are
CP conserving.

The parton level diboson production cross sections with anomalous couplings
grow with the parton center of mass energy

√
s. In order to avoid unphysical results

that would violate unitarity, the center of mass energy dependence is taken into
account introducing the following form factor parameterization of the coupling
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parameters fVi :

fVi (s) =
fVi0

(1 + s/Λ2
FF )n

(i = 4, 5), (2.2)

where ΛFF is the energy scale which is related to the scale of the new physics
generating the anomalous ZZV couplings. This kind of form factor ensures that
the couplings vanish at high center of mass energy.

In Eq. 2.2 the values of fVi0 and the power n of the form factor at low energy are
constrained by partial wave unitarity of the inelastic ZZ production amplitude in
fermion-antifermion annihilation at arbitrary center of mass energy.

Selecting an exponent well above the minimum value 3/2, as shown in [8],
ensures that the ZZ differential cross section stay well below unitarity limit at
energies

√
s >> ΛFF >> MZ .

A common choice adopted for LHC case and that will be used in this thesis to
derive limits in Chapter 7 is n = 3 and ΛFF = 2 TeV [9].

2.2.2 Anomalous Neutral Triple Gauge Couplings (nTGC)

As already mentioned in the previous section, the two couplings fVi (i = 4, 5)
contribution are zero at tree-level. The simplest Standard Model method for gen-
erating them is considering a virtual one-loop effect of heavy fermions. Fig. 2.3
illustrates this diagram which is normally called the fermionic triangle. The SM

Figure 2.3: One-loop fermionic triangle vertex.

prediction of these contribution are expected to be of the order of 10−4 [8].

There are many models beyond the SM that ganerates non zero nTGC. One
example is the Miminally Supersimmetric Standard Model (MSSM) which is able
to generate the triangle diagram in Fig. 2.3 where the heavy fermions are charginos
and neutralinos. Charginos will contribute to fZ,γ5 , while the neutralinos to fZ5 only.
The total contribution to nTGC in MSSM is expected to be of the same order of
magnitude of the one predicted for the SM (10−4).
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2.3 ZZ production at LHC

The production of pairs of Z bosons at the Large Hadron Collider (LHC) and
in general at hadron colliders proceeds at tree level via the qq̄ → ZZ Fynman
diagrams in Fig. 2.4, with the possible non SM contribution of the diagram in
Fig. 2.1 previously discussed. Another contribution comes from gg → ZZ via the
quark box diagrams in Fig. 2.5. Possible deviations from SM expectations for the
total or differential ZZ production cross sections could be indicative of the pro-
duction of new resonances decaying to Z bosons or other non-SM contributions
such as anomalous neutral triple gauge couplings (nTGC). To perform high pre-
cision measurements of this kind, modern tool called Monte Carlo generators are
available to calculate SM prediction of the sensitive parameters to test in high
energy experiments.

q̄

q

Z

Z

(a) t−channel ZZ production. (b) t−channel ZZ production.

Figure 2.4: The SM tree-level Feynman diagrams for ZZ production through the
qq̄ initial state in hadron colliders.

g Z

g Z

Z

Z

g Z

g Z

Figure 2.5: Feynman diagrams for gg → ZZ production.
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2.3.1 Monte Carlo Event Generators

Monte Carlo (MC) event generators are needed to make theoretical predictions
for high-energy reactions. In modern colliders, such as LHC, primary reactions
involve hadrons. In the initial state hadrons are the colliding particles and in the
final state they are used to define observables of interest.

Due to the asymptotic freedom of QCD discribed in section 1.3.3, the interac-
tion of partons can be calculated using perturbation theory if the scattering process
involves large invariant momentum transfer and correspondingly short time scales.

This make possible to evaluate the cross section for the production of an X-
particle final state using the decomposition:

σX = Σa,b

∫ 1

0

dx1dx2fa(x1, µ
2
F )fb(x2, µ

2
F )× σab→X(x1, x2, αS(µ2

R), Q2/µ2
F , Q

2/µ2
R)

(2.3)
where fa,b(x1,2, µ

2
F ) are parton distribution functions (PDF) and σab→X is the

parton-level cross section. Q2 is the energy of the process while µ2
F and µ2

R are
the factorization and renormalization scales respectively. To compute the cross
section in Eq. 2.3 two ingredients are necessary:

1. Parton-level cross section: (from theory)

2. PDF: (fit from experiments, but evolution from theory)

The parton-level cross section can be computed as a series in perturbation
theory, using the coupling constant as an expansion parameter:

σab→X = σ0 + αSσ1 + .... (2.4)

By calculating the short distance coefficient (Eq. 2.4) at tree-level (σab→X = σ0)
is possible to obtain the first estimate (leading-order LO) of rates for inclusive final
states. Even if at this order, extra radiation is included, a LO cross section can
strongly depend on the factorization and renormalization scales. A first reliable
estimate of the total cross section can be calculated using a next-to-leading order
approximation of Eq. 2.4, where a more accurate description of extra radiation is
included and new effects coming up from higher order terms (e.g., opening up of
new production channels or phase space dimensions) can be evaluated.

Due to their importance a separate section (see 2.3.2) is dedicated to PDF.
In the following, a list of the most common used MC generators is presented.

For each generator the main focus is on the ZZ diboson process implementation
in the simulation. Depending on the accuracy of the ZZ process description, each
MC generator will be used with different scope in the main analysis presented in
this thesis.
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• POWHEG BOX:
PowhegBox [11] is a next-to-leading order (NLO) MC generator including,
for the ZZ diboson case leptonic decays, Z(γ∗) interference and non-resonant
graphs. It provides calculations without the Z mass at the zero-width ap-
proximation, so it is appropriate to model fiducial phase-spaces where at
least one of the two Z is off-shell.
It will be used as the baseline signal MC for the ZZ → `−`+`−`+ selection
presented in Chapter 4.

• MC@NLO:
MC@NLO [12] is a package which combines a Monte Carlo event gener-
ator with NLO calculations for QCD processes. MC@NLO makes use of
the HERWIG event generator [13] for the parton shower and hadroniza-
tion/fragmentation processes, plus the JIMMY [14] package for the underly-
ing event. In the analysis presented here, MC@NLO is used to model tt̄ and
single top background processes.

• MCFM:
MCFM [15] is a parton-level Monte Carlo program which gives cross section
predictions for a large number of processes at hadron colliders. In particular,
it is able to calculate diboson production cross sections at LO and NLO in
QCD perturbation expansion.
MCFM provides NLO cross section prediction for the ZZ measurement pre-
sented in this thesis (see section 2.3.3).

• SHERPA:
Sherpa [16] is a leading order event generator that includes initial state
radation, parton showering and underlying event. SHERPA is also able to
produce samples with anoumalus triple gauge couplings and will be used to
extract limits on fVi (i = 4, 5) (see Chapter 7).

• GG2ZZ:
The gg2zz [17] implements a complete calculation of gluon-induced loop
processes gg → Z(γ∗)Z(γ∗) → `−`+`−`+. The contribution to ZZ produc-
tion in pp collisions is not included in the NLO calculations of qq̄-induced
processes implemented in programs such as POWHEG and MC@NLO.
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2.3.2 Parton Distribution Functions

In hadron-hadron collisions, such as the LHC case, proton compositeness has
to be taken into account in cross-section calculations and predictions. Protons are
composed, in first approximation, by two up quark and a single down quark, called
valence quarks. In addition to the valence quarks, the virtual gluon and quark
“sea” should be considered. In general the particles composing hadrons both from
valence and sea are called partons. In the parton model, proposed by Feynman and
devoloped by Byorken, the hadron is considered as an incoherent superposition of
partons. The momentum fraction x carried by each parton with respect the whole
hadron at a momentum transfer Q2 is described by a probability density functions
called, in the proton case, Parton Distribution Functions (PDF):

f(x)dx ≡ P (x ∈ [x, x+ dx], Q) f = q, q̄, g. (2.5)

Since the uncertainty on theoretical cross section calculation mostly arise from
PDFs uncertainty, different set of PDFs are used to take into accont the experi-
mental results. The most popular families of PDF are presented in the following:

• CTEQ PDFs:
The CTEQ6.6 [18] is a NLO parton distribution, based on an implementa-
tion of the heavy-quark mass effect in perturbative QCD cross sections, with
significant improvement with respect to the ordinary zero-mass scheme. The
evolution equation from the low energy region to the high energy region is
performed at NLO.
The CTEQ6.6 PDFs have been recently superseded by the new CT10 [19]
version. This new version includes in the fit : combined HERA-I Deep Inelas-
tic Scattering (DIS) data, Tevatron inclusive jet production and Z-rapidity
measurement.

• MSTW2008:
MSTW2008 [20] PDFs provide fit at LO, NLO and NNLO. The fit includes
a large amount of data from fixed-target experiments, HERA and Tevatron,
starting from input parton distributions parametrised at Q2 = 1 GeV. Sev-
eral theoretical refinements and developments in the fitting procedure have
been introduced, as treatment of heavy flavors in a general-mass variable
flavor number scheme, extended input parameterization for strange quarks
and gluon distributions and a new treatment of PDF uncertainties.

• HERAPDF:
The HERAPDF1.0 set is based on the combination of published H1 and
ZEUS measurements from HERA I on inclusive DIS in neutral (NC) and
charged current (CC) reaction [21]. The PDF fit is performed at NLO using
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a variable-flavour-number scheme and includes error PDF sets parametrizing
experimental and model uncertainties.

• ABKM09:
The ABKM09 PDF fit is performed at NLO and NNLO using a fixed-flavour-
number scheme and is based on DIS measurements and fixed target Drell-Yan
production [22].

2.3.3 ZZ Inclusive Cross Section Predictions

The first calculation including NLO corrections to the process, qq̄ → ZZ,
was presented in [23]. The spin correlations in the decays and phenomenology for
the Tevatron and 14 TeV LHC was presented in [24]. Finally, contributions from
a gluon-gluon initial state, gg → ZZ, were first considered in [25]. The results
presented in this section are obtained using the framework as reported in [26].
At next-to-leading order (NLO) in QCD, the total cross section for non-resonant
ZZ production is predicted to be 6.18+0.25

−0.18 pb. In this calculation MCFM [15] with
CT10 in the on-shell (zero-width) approximation is used. A 5.8% contribution from
gluon fusion is also included. The more realistic case using the natural width of
the Z boson, together with the requirement that both Z bosons are within the Z
mass window (66-116 GeV), leads to the following NLO cross section prediction:

σ(ZZ) = 5.89+0.22
−0.18 pb. (2.6)

In the cross sections calculated above the renormalization (µR) and factoriza-
tion (µF ) scales are set equal to half the mass of the diboson system. The quoted
theoretical uncertainties result from using the full CT10 parton distribution func-
tion error set and varying µR and µF scales simultaneously by a factor of two.
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2.4 Previous Experimental Results from LEP,

Tevatron and LHC

Z boson pair production was studied at LEP by the L3 [27], OPAL [28], ALEPH
[29] and DELPHI [30] collaborations in multiple final states. The cross section was
measured over a range across the threshold for ZZ production, as shown in Fig.
2.6. At an energy of

√
s = 200 GeV, the combined cross section is measured to

be σ(e+e− → ZZ) = 0.90 ± 0.12 pb. LEP experiments have also set limits on
anomalous ZZZ and ZZγ couplings.

Both Tevatron experiments DØ and CDF have also studied Z bosons pair
production. The DØ analysis of ZZ → `−`+`

′−`
′+ and ZZ → `−`+νν̄ lepton

production with 6.4 fb−1 of data has yielded a measurement of 1.40+0.43
−0.37 (stat.)±

0.14 (sys.) pb [31]. Additionally, limits on anomalous ZZZ and ZZγ∗ couplings
have also been derived [32]. The CDF experiment has used 1.9 fb−1 of data and in
the combined `−`+`

′−`
′+ and `−`+νν̄ channels measured a cross section of σ(ZZ) =

1.4+0.7
−0.6 (stat.+ sys.) pb [33].

Figure 2.6: ZZ production cross section as a function of
√
s measured at LEP.

Recently, ATLAS [34] and CMS [35] have released results on ZZ production,
both experiments with the first 1 fb−1of the 2011 data at

√
s = 7 TeV. AT-
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LAS, with 1.02 fb−1of data, measured a cross section of 8.5+2.7
−2.3 (stat)+0.4

−0.3 (syst)±
0.3 (lumi.) pb, consistent with the theoretical expectations. Using this cross sec-
tion, limits on the nTGCs were derived and the improvement with respect to LEP
and Tevatron measurements is shown in Fig. 2.7.
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Figure 2.7: Anomalous nTGC 95% confidence intervals from ATLAS, LEP [36]
and Tevatron [37] experiments. Integrated luminosities, centre-of-mass energy and
cut-off Λ for each experiment are shown.



Chapter 3

The Large Hadron Collider and
the ATLAS Experiment

3.1 Introduction

The Large Hadron Collider (LHC) [38] is a two-ring, superconducting acceler-
ator and collider installed in the 27 km long Large Electron-Positron (LEP) [39]
tunnel aiming to extend the frontiers of particle physics with its unprecedented
high energy and luminosity. It is the largest particle accelerator in the world. It is
located beneath the border of France and Switzerland, at a depth between 50 and
175 m below the surface. The next sections are dedicated to describe the design,
performance and experiments of the LHC collider. Among these experiments, the
ATLAS detector will be described in datail since it is the one used to collect the
data analyzed in this thesis.

3.2 LHC Design and Performance

LHC has been designed to shed light on an energy region almost unexplored
yet. Most of the design parameters are therefore close to the technical limits.

In the LHC tunnel two proton beams circulate in opposite directions and collide
in four points. The design performance foresees an energy of 7 TeV for each beam,
in order to obtain total center-of-mass energy of 14 TeV and a collison rate of 40
MHz. In 2010 and 2011 the energy was somewhat lower, 7 TeV, while in the 2012
the center-of-mass energy was rised up to 8 TeV. The maximum collision rate was
20 MHz, i.e. a collision every 50 ns. A total integrated luminosity of ∼ 5 fb−1

and ∼ 20 fb−1 has been delivered by LHC to the ATLAS experiment respectively
in the 2011 and 2012 data taking periods. A peak instantanous luminosity of
L ∼ 8 · 1033cm−2s−1 has been reached in August 2012. In Fig. 3.1 is shown the

31
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Figure 3.1: Total integrated luminosity delivered by LHC and recorded by ATLAS in
2011.

total integrated luminosity recorded by ATLAS in 2011 wich corresponds to the
amount of data used for the analysis presented in this thesis.

In the LHC ring, the two beams circulate into two separate ultrahigh vacuum
chambers at a pressure of 10−10 Torr. The beams are labelled 1 and 2, where the
former circulates clockwise and the latter in the opposite direction. In order to keep
the beams into circular trajectories, 1232 superconducting dipole magnets generate
a magnetic field of 8.4 T at a current of 11.85 kA and a temperature of 1.9 K.
Other 392 superconducting quadrupole magnets produce a field of 6.8 T necessary
to focalize the beams. The fields strenght and currents above are predicted in the√
s = 14 TeV running scenario.

The most important parameters of the LHC in the 7-8 TeV running conditions
are reported in Tab. 3.1.

3.2.1 The Injection Chain

To reach the desired center-of-mass energy, protons are accelerated through a
chain of accelerators as presented in Fig. 3.2.

• Linac2: It is a linear accelerator for protons and ions. It injects beams of
50 MeV in the following accelerator with a rate of 1 Hz. The duration of
each pulse ranges from 20 µs to 150 µs depending on the number of required
protons.

• Proton Synchrotron Booster (PSB): It speeds up the beams coming
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Parameters Values
Maximum collision energy 8 TeV (2012)

Number of particles per bunch 2.0 · 1014

Number of fill bunches 1368
Bunch separation 50 ns

Bunch width (ATLAS) 16.7 µ m
Peak Luminosity 7.78 · 1033cm−2s−1

Inelastic pp cross section (ATLAS 7 TeV) 68 mb
73 mb predicted at 8 TeV

Number of collision per bunch 10− 40

Table 3.1: LHC main parameters.

Figure 3.2: Scheme of injection chain at LHC.

from Linac2 to an energy of 1.4 GeV. The accelerator is composed of 4
superimposed rings. Five bunches circulate in each ring that are then focused
and sent through a magnet deflector into a single line for injection into the
next accelerating element.

• Proton Synchrotron (PS): It accelerates protons up to an energy of 28
GeV. It can be set to separate the bunches by the needed time 50-25 ns.
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• Super Proton Synchrotron (SPS): It is used as final injector for protons
and heavy ions bringing the energy from 28 GeV to 450 GeV.

After injection in the LHC ring at 450 GeV, protons are accelerated up to the
energy of 7(8) TeV (for each circulating beam).

3.3 LHC Experiments

Figure 3.3: Position of the experiments along LHC ring.

Four experiments are installed along the LHC tunnel (see Fig. 3.3):

- A Toroidal LHC ApparatuS (ATLAS): it is a multi-purpose experiment
which works at high luminosity (L = 1033−34cm−2s−1). Section 3.4 is fully
dedicated to the apparatus description.

- Compact Muon Solenoid (CMS): it is a multi-purpose experiment de-
signed to work up to high luminosity with the same intents of ATLAS, but
implemented with different technologies.

- LHCb: it performs accurate measurements in the flavour physics of the
B mesons, for example CP violation. Since the production and the decay
vertices of B-mesons are difficult to reconstruct when there is more than one
interaction per bunch crossing, LHCb works at a luminosity lower than the
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one designed for ATLAS and CMS (about L = 1032cm−2s−1), using proton
beams less focused near the interaction point.

- A Large Ion Collider Experiment (ALICE): it is dedicated to the study
of a condensed status of the matter, called quark-gluon plasma, by detecting
particles that are produced in heavy ions collisions. Due to the high nucleus-
nucleus cross section, the higher track density per collision and the technolo-
gies implemented by the detector, ALICE can work up to luminosities of
L = 1027cm−2s−1.

Other two experiments are installed along the tunnel:

- LHCf : it measures γ and π0 spectra in the very forward region at luminosity
of L = 1029cm−2s−1. The aim is the calibration of Monte Carlo generators
in cosmic rays studies. This detector was installed in 2009 and worked only
during the data taking at 900 GeV.

- Total Cross Section, Elastic Scattering and Diffraction Dissociation
at the LHC (TOTEM): it is designed to measure the total pp cross section
at a luminosity of L = 1029cm−2s−1. It is installed along the beam pipe near
CMS.

3.4 The ATLAS Detector at LHC

The ATLAS detector [40], [49], [50] is the largest one among the four main
experiments located around the LHC ring. It’s a general purpose apparatus that
can provide a wide range of physics studies spanning from precision measurements
of standard model parameters to the uncovering of phenomenon due to new physics
such as the recent new “Higgs-like” particle observation [6].

The extreme LHC environement in terms of radiation doses and particle mul-
tiplicity, combined with the performance requirements for precision measurements
sets new standards for the detector, which has to be met by employing a wide
range of different techniques in each subsystem of the ATLAS experiment.

In the next sections the experimental design of the ATLAS experiment is pre-
sented.

3.4.1 ATLAS Detector Overview

The ATLAS detector, installed 100 m underground in the interaction Point 1
along the LHC tunnel, is nominally forward-backward symmetric with respect to
the interaction point. The magnet configuration (see section 3.4.2) comprises a thin
supercunducting solenoid surrounding the inner-detector cavity, and three large
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superconducting toroids (one barrel and two end-caps) arranged with eight-fold
azimuthal symmetry around the calorimeters. The inner detector (see section 3.4.3)
is immersed in the 2 T solenoidal field and surrounded by the calorimeters (see
section 3.4.4). Outside of the calorimeters is located the muon spectrometer (see
section 3.4.5) that difines the overoll dimensions (25 m in height and 44 m in
length) of the ATLAS detector.

The overall ATLAS detector layout is shown in Fig. 3.4 and its main perfor-
mance goals are listed in Tab. 3.2.

Figure 3.4: Schematic view of the ATLAS detector. The dimensions of the detector are
25 m in height and 44 m in length. The overall weight of the detector is approximately
7000 tonnes.

The origin of the ATLAS coordinate system is defined as the nominal interac-
tion point. The beam direction defines the z-axis and the x-y plane, transverse to
the beam direction. The positive x-axis is defined as pointing from the interaction
point to the center of the LHC ring. The positive y-axis is defined as pointing
upwards. The A-side (C-side) of the detector is defined as the side with positive
(negative) z.
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Detector component Required resolution η coverage

Measurement Trigger

Tracking σpT /pT = 0.05% pT ⊕ 1% ±2.5

EM calorimetry σE/E = 10%/
√
E ⊕ 0.7% ±3.2 ±2.5

Hadronic calorimetry

barrel and end-cap σE/E = 50%/
√
E ⊕ 0.3% ±3.2 ±3.2

forward σE/E = 100%/
√
E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon spectrometer σpT /pT = 10% at pT = 1 TeV ±2.7 ±2.4

Table 3.2: General performance goals of the ATLAS detector. The units for E and pT
are GeV.

3.4.2 Magnet System

The ATLAS magnet system is a complex of four large supercunditing magnets
with unique features. The geometry of magnet windings can be seen in Fig. 3.5.
It has been designed to provide the optimal conditions for particle identification
and momentum measurement for each detector system separately. It consists of
a Central Solenoid, a Barrel Toroid and two End-Cap Toroids described in the
following.

Central Solenoid

The central solenoid is aligned on the beam axis and designed to provide a 2 T
axial magnetic field for the inner detector. This 2 T field strength, with a peak of 2.6
T at the windings, was chosen to maintain good tracking for low pT particles that
otherwise in a stronger magnetic field would never reach the inner detector. The
position of the central solenoid in front of the elctromagnetic calorimeter demands
a careful minimisation of the material in order to achieve the desired calorimeter
performance. The axial length of the solenoid is 5.8 m and the inner and outer
diameters are 2.46 m and 2.56 m respectively, resulting in a total thickness of 0.66
radiation lengths. The coil mass is 5.4 tonnes and the stored energy is 40 MJ.

The electromagnetic forces are counteracted by the combination of the coil
and warm-to-cold machanical support, which maintains the concentricity of the
windings.

Barrel Toroid

The barrel toroid consists of eight coils encased in individual racetrack-shaped,
stainless-steal vacum vessels. It is installed outside the hadronic tile calorimeter
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Figure 3.5: Geometry of magnet windings and tile calorimeter steel. The eight barrel
toroid coils, with the end-cap coils interleaved are visible. The solenoid winding lies
inside the calorimeter volume.

and it’s designed to provide an average toroidal magnetic field of approximately
0.5 T (the peak field is 4 T) for the muon detectors in the central regions. The
total length is 25 m, the outer diameter is 20.1 m and inner diameter is 9.4 m. The
conductor and coil winding technology is essentially the same in the barrel and
end-cap toroids; it is based on winding a pure Al-stabilised Nb/Ti/Cu conductor
into pancake-shaped coils, followed by vacuum impregnation.

End-Cap Toroids

It is composed by 8 rectangular coils arranged in a single cylindrical vessel.
The outer diameter is 10.7 m while the inner diameter is 1.65 m. The total lenght
is 5 m. The vessel is mounted at the ends of ATLAS in order to close the magnetic
field lines produced by the Barrel Toroid. With this configuration the magnetic
field is orthogonal to the beam axis and has a value of 2 T.

3.4.3 Inner Detector

The ATLAS Inner Detector (ID) shown in Fig. 3.6 is totally immersed in the 2 T
magnetic field formed by the central solenoid. The ID consists of the three indepen-
dent but complementary sub-detectors of Fig. 3.7. At inner radii, high-resolution
pattern recognition capabilities are available using discrete space-points from sili-
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con pixel layers and stereo pairs of silicon microstrip (SCT) layers. At larger radii,
the transition radiation tracker (TRT) comprises many layers of gaseous straw
tube elements interleaved with transition radiation material.

These three subsystems function independently in order to have precise mea-
surements of the charged particles trajectories, including impact parameter mea-
surements and vertexing within the pseudorapidity range |η| < 2.5.

Figure 3.6: The layout of the Inner Detector.

The Pixel Detector

In the ATLAS vertex detector, the usage of finely segmented silicon pixel sen-
sors provides a spatial resolution of 12 µm in R−φ and 100 µm in z. These perfor-
mances are needed in order to obtain a spacial resolution better than the charac-
teristic length scale of the heavy quark decay that is of the order of cτ = 100−400
µm.

The nominal pixel size is 50 µm in the φ direction and 400 µm in z (barrel
region, along the beam axis) or r (end-cap region). The pixel detector is made
from 1744 tile-like modules. Each module contains 47232 pixel sensor covering an
active area of 16.4× 60.8 mm2 and resulting in over 80 million read-out channels.
To ensure maximal coverage, the sensor modules are mounted in staves along the
z-axis and tilted by 1 degree to create a small overlap between the modules in the
φ-direction.
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The Semiconductor Tracker

The SCT sensors is the second building block of the ATLAS ID. As in the pixel
detector case it makes use of silicon as active material and rely on many of the same
ideas and much of the same semiconductor technology. Where the pixel detector
uses high granularity silicon pixel sensors, the SCT uses silicon micro-strip sensors.
Each silicon detector is 6.36 × 6.30 cm2 , with 768 readout strips each, with 80
µm pitch. One side of the detector have readout strips aligned along the z axis;
on the other side the strips are rotated by 40 mrad to improve the resolution in
the z-direction. The SCT provides eight precise measurements (four space points)
and the designed resolution in the barrel are 17 µm (R − φ) and 580 µm in the
z-coordinate. The total number of readout channels in the SCT is approximately
6.3 million.

Figure 3.7: Drawing showing the sensors and structural elements of the ID traversed
by a charged track of 10 GeV pT in the barrel inner detector.

The Transition Radiation Tracker

The last subsystem in the inner detector is based on technology using gaseous
drifts tubes. The basic TRT detector elements are polyaimide drift (straw) tubes
filled with a gas mixture of 70% Xe, 27% CO2 and 3% O2. Each straw is 4 mm
in diameter for a maximum straw lenght of 144 cm in the barrel. The tubes are
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arranged in 36 layers. A gold-plated tungsten wire in the middle of each tube
collects the signal. Each layer is interspersed with a radiator to stimulate transition
radiation from ultrarelativistic particles. Transition radiation arises when an ultra-
relativistic charged particle traverses the boundary between materials of different
dielectric constants. This effect is proportional to the γ-factor of the traversing
particle and can provide particle identification capabilities from the amount of
transition radiation produced by a given particle.

The TRT system can provide 36 hits per track with an intrinsic precision of 130
µm per tube covering the range η < 2.0. In the barrel region (|η| < 1.0), the tubes
are placed parallel to the beam axis, while in the end-cap regions (0.8 < |η| < 2.0)
they are arranged radially on wheels.

3.4.4 Calorimeters

The ATLAS calorimeters (Fig. 3.8) consist of a number of sampling detectors
with full φ-symmetry and coverage around the beam axis. Calorimeters in ATLAS
absorb and measure the energy of charged and neutral particles, as well as jets.
They also detect missing transverse energy by summing up all the measured energy
deposits. Missing energy can be a sign of interesting new physics, such as the
production of new weakly interacting neutral particles as neutralinos. Fig. 3.9
shows the amount of material in units of radiation length of each part of the
calorimeters. These requirements are necessary in order to fully stop the most
energetic particles produced in pp collisions at ATLAS.

Figure 3.8: The ATLAS calorimetry system.



42 Chapter 3. The Large Hadron Collider and the ATLAS Experiment

Figure 3.9: Cumulative amount of material, in units of interaction length, as a func-
tion of |η|, in front of the electromagnetic calorimeters, in the electromagnetic calorime-
ters themselves, in each hadronic layer, and the total amount at the end of the active
calorimetry.

The Electromagnetic Calorimeter

The ATLAS electromagnetic (EM) calorimeter is designed to identify and mea-
sure with high precision the energy of electrons and photons. It surrounds the inner
detector and is divided into three parts. A barrel part, within |η| < 1.475, and two
endcaps situated within 1.375 < |η| < 3.2. The calorimeter system has also an ad-
ditional forward module to cover the region closest to the beam (3.1 < |η| < 4.9).

The barrel and the end-cap modules are divided into three parts, the so-called
samplings, with different granularity depending on the distance from the interac-
tion point. A sketch of a barrel module of the EM calorimeter is shown in Fig.
3.10.

The EM calorimeter is composed by liquid argon as active material, with
accordion-shaped kapton electrodes, and lead absorber plates as passive medium.
When a particle traverses the liquid argon gap, it creates charge by ionization.
The signal is then collected on readout electrodes. The EM calorimeter in the re-
gion 0 < |η| < 1.8 is preceded by a presampler detector to correct for electron
energy losses in the material upstream the EM calorimeter. The performances of
the ATLAS calorimeter are reported in Tab. 3.2.
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Figure 3.10: Sketch of a barrel module of the electromagnetic calorimeter where the
different layers and sampling granularity are clearly visible.

The Hadronic Calorimeter

The hadronic calorimeters are designed to absorb and measure particles that
interact via the strong nuclear force. They consist of a Hadronic Tile Calorimeter
(HTC) made of iron and plastic scintillator (tile) in the barrel region (|η| < 1.7), a
liquid argon sampling calorimeter in the end-caps (Hadronic End-Caps Calorime-
ter, HEC) for 1.5 < |η| < 3.2 coverage, and a Forward Calorimeter (FCAL), very
close to the beam pipe, made of liquid argon, iron and tungsten, that covers the
region of |η| < 5.

The ATLAS tile sampling calorimeter has a unique feature. In this detector the
tiles are made to point radially out from the beam line. In this way, the particles
emerging from the interaction point traverse the tiles in the longitudinal direction.
This kind of design has the possibility to reach a finer readout segmentation in the
z direction for high pT particles giving a better shower shape determination and
Emiss
T resolution.

At higher η, the radiation level will be higher and thus the hadronic calorimeter
(HEC) in the region behind the EM end-caps is based on the more radiation
resistant liquid argon tecnology. Here, the absorber material is copper. Finally the
FCAL at the highest η must therefore be designed to cope with a very high particle
flux.
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The thicknesses of the calorimeters have to be tuned in order to contain all
the hadronic shower, to minimize the punch-through into the muon system and to
provide a good resolution for high energy jets. The total thickness is 11 interaction
lengths. The overall performances are summarized in Tab. 3.2.

3.4.5 Muon Spectrometer

The muon spectrometer forms the outer part of the ATLAS detector and is
designed to detect charged particles exiting the barrel and end-cap calorimeters
and to measure their momentum in the pseudorapidity range |η| < 2.7. It is also
designed to trigger on these particles in the region |η| < 2.4. The driving per-
formance goal is a stand-alone transverse momentum resolution of approximately
10% for 1 TeV tracks, which translates into a sagitta along the z (beam) axis of
about 500 µm, to be measured with a resolution of ≤ 50 µm. Muon momenta
down to a few GeV (∼ 3 GeV, due to energy loss in the calorimeters) may be mea-
sured by the spectrometer alone. Even at the high end of the accessible range (∼ 3
TeV), the stand-alone measurements still provide adequate momentum resolution
and excellent charge identification. To meet these requirements the muon system
uses two types of precision tracking chambers, namely the Monitored Drift Tube
chambers (MDT) at low |η| and the Cathode-Strip Chambers (CSC) at high |η|.

The capability to trigger on muon tracks is an additional design criteria of the
muon system. For this purpose, dedicated fast trigger chambers have been installed
in between the precision chambers in both the barrel and the end-cap region. In
the barrel region (|η| < 1.05), Resistive Plate Chambers (RPC) were selected for
this purpose while in the end-cap (1.05 < |η| < 2.4) Thin Gap Chambers (TGC)
were chosen. A general view of the muon spectrometer is shown in Fig. 3.11.

Precision Tracking Chambers

The basic detection elements of the MDT chambers are aluminium tubes of 30
mm diameter and 400 µm wall thickness, with a 50 µm diameter central W-Re
wire. The tubes are operated with a non-flammable mixture of 93% Ar and 7%
CO2 at 3 bar absolute pressure. The shape and dimensions of the drift tubes were
in general chosen to optimize solid angle coverage. To obtain high spatial resolution
the MDTs chambers are constructed from 2× 4 monolayers of drift tubes for the
inner station and 2× 3 monolayers for the middle and outer stations. In this way
an overall spatial resolution of 30 µm can be achieved.

The sensitive element of the CSC’s is a multi-wire proportional chambers with
the wires oriented in the radial direction. Each chamber is composed of several
layers where each layer is made from an 18.75 mm thick sheet of polyurethane
foam sandwiched between two 0.82 mm thick copper-clad laminates in which a 17
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Figure 3.11: End and side view of the muon spectrometer.

µm thick copper cladding forms the cathodes. Both cathodes are segmented, one
with the strips perpendicular to the wires (providing the precision coordinate) and
the other parallel to the wires providing the transverse coordinate. The position of
the track is obtained by interpolation between the charges induced on neighbouring
cathode strips. The anode wires have a diameter of 30 µm and are made of gold-
plated tungsten with 3% rhenium, however the anode signal is not read out. The
CSC’s chambers are arranged in two disks of eight chambers each.

Trigger Chambers

The trigger chambers of the muon system provide fast information on muon
tracks traversing the detector, allowing the first level of trigger (see section 3.6)
logic to recognize their multiplicity and approximate energy range.

The RPC is a gaseous parallel electrode-plate (i.e. no wire) detector. Two
resistive plates, made of phenolic-melaminic plastic laminate, are kept parallel to
each other at a distance of 2 mm by insulating spacers. The electric field between
the plates of about 4.9 kV/mm allows avalanches to form towards the anode, along
the ionizing tracks. The signal is read out via a capacitive coupling to metallic
strips, which are mounted on the outer faces of the resistive plates.

Thin Gap Chambers (TGC’s) are used in the end-cap region. They operate on
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the same principle as multi-wire proportional chambers, and they provide good
time resolution and high rate capability. TGC’s are multi-wire proportional cham-
bers with a wire-to-cathode distance of 1.4 mm being smaller than the wire-to-wire
distance of 1.8 mm, as shown in Fig. 3.11. With a highly quenching gas mixture
of CO2 and n-C5H12 (n-pentane), this cell geometry allows for an operation in a
quasi-saturated mode, i.e. with a gas gain of 3× 105.

3.5 ATLAS Forward Detectors

A precise luminosity measurement is an important benchmark for the search of
new physics in a modern particle experiment. Different types of forward detectors
have been designed and developed in ATLAS to accomplish this task according to
the space left by the other subdetectors.

Fig. 3.12 shows the ATLAS forward detectors ordered according to their dis-
tance from the interaction point (IP). The closest to the IP is a Cerenkov detector
called LUCID (LUminosity measurement using Cerenkov Integrating Detector, see
section 3.5.1), the second system is the Zero-Degree Calorimeter (ZDC, see section
3.5.2) and the most remote detector is the absolute luminosity detector ALFA
(Absolute Luminosity For ATLAS, see section 3.5.3). In addition to these subde-
tectors in section 3.5.4 is presented the BCM (Beam Condition Monitor) since it
is used in ATLAS luminosity determination (see section 3.5.5).

Figure 3.12: Placement of the forward detectors along the beam-line around the
ATLAS interaction point.
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3.5.1 LUCID

LUCID is a Cherenkov detector specifically designed for measuring the lumi-
nosity in ATLAS. Sixteen mechanically polished aluminium tubes filled with C4F10

gas sorround the beampipe on each side of the IP at a distance of 17 m, covering the
pseudorapidity range 5.6 < |η| < 6.0. The Cherenkov photons created by charged
particles in the gas are reflected by the tube walls until they reach the photomul-
tiplier tubes (PMTs) situated at the back end of the tubes. Additional Cherenkov
photons are produced in the quartz PMT window. The Cherenkov light created
in the gas tipically produces 60-70 photoelectrons per incident charged particle,
while the quartz window adds another 40 photoelectrons to the signal. If one of
the LUCID PMTs produces a signal over a preset threshold (equivalent to ' 15
photoelectrons), a ”hit” is recorded for that tube in that bunch crossing.

3.5.2 ZDC

The ZDC detector is mainly dedicated to measure the centrality in heavy ion
collisions. It is able to count and measure the energy of the neutral particles at zero
degrees with respect to the beam line that are not swapt away by the magnetic
field in the beam pipe. Since in Pb-Pb collisions the centrality of the interaction is
strongly correlated to the very forward (spectator) neutrons, the impact parameter
can be measured by ZDC. In pp collisions ZDC provides an additional minimum
bias trigger for ATLAS.

The pseudo-rapidity range covered by ZDC is |η| > 8.3. ZDC is a sampling
compact calorimeter composed of tungsten alloy as absorber material and quartz
fibers, which generate and transmit the Cherenkov light produced by showers of
secondaries to the readout system.

The ZDC is situated in a slot in the TAN (Target Absorber Neutral) absorber,
which would otherwise contain inert copper bars as shielding. The TAN is located
at ±140 m from the interaction point, at the place where the straight-section of
the beam-pipe is divided back into two independent beam-pipes.

3.5.3 ALFA

ALFA is the ATLAS system for the determination of LHC absolute luminosity
via elastic scattering at small angles. The accuracy of 2 − 3% in luminosity mea-
surement can be achieved by using special optics configuration: LHC running at
high β∗ , low luminosity and parallel-to-point focusing, to focus all the particles
scattered at the same angle in the same position y at the detector position.

To measure the particles scattered at very small angles (about 3 µrad), the
detector must approach the beam to about 1.5 mm. The technology used to achieve
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this goal is the so-called Roman Pot, a system integrated with the beam pipe and
able to move the detector close to the beam.

ALFA is situated at 240 m from the interaction point at either sides of ATLAS.
Each module is composed by 2 groups of scintillating plastic fibers of square cross-
section (0.5×0.5 mm2 ), at 90 degrees with respect to each other. A tipical spatial
resolution obtained with this configuration is about 30 µm. The pseudo-rapidity
coverage range is 10.6 < |η| < 13.5.

3.5.4 BCM

The BCM detector consists of two stations (forward and backward) each with
four modules placed close to the beam pipe. Each module includes two diamond
sensors read out in parallel. The stations are located symmetrically around the
interaction point, positioning the diamond sensors at z = ±184 cm and r = 55
mm (a pseudo-rapidity of about 4.2). Equipped with fast electronics (2 ns rise
time) these stations measure time-of-flight and pulse height to distinguish events
resulting from lost beam particles from those normally occurring in proton-proton
interactions. BCM also provides a measurement of bunch-by-bunch luminosities
in ATLAS by counting in-time and out-of-time collisions. It was indeed originally
designed to monitor background levels and issue beam-abort requests when beam
losses start to risk damaging the Inner Detector.

3.5.5 Luminosity Overview

The rate of physics processes produced at colliders is a function of both their
cross section and the luminosity of the collider. The instantaneous luminosity,
providing the event rate for unit cross section, depends on the number of particles
circulating into the beams as well as the overlap integral of the beams. For two
perfectly head-on beams, the higher the number of particles and the smaller the
beam size, the higher the number of collisions. In order to discover rare processes
high luminosity or, equivalently, high event-rate is a must.

Instantaneous and Integrated Luminosities

The instantaneous luminosity L is defined as the ratio between the interaction
rate R of any process and its cross section σ. It is expressed in units of cm−2s−1

and it is independent of the process itself.

L =
R

σ
(3.1)
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The instantaneous luminosity can be inferred from the machine parameters: if the
two beams are made of identical bunches, these are Gaussian in shape and perfectly
overlapping without crossing angle, the luminosity is given by:

L = frnb
N1N2

4πσxσy
(3.2)

where σx,y are the gaussian transverse profiles of the beams, e.g. the standard
deviations of the bidimentional gaussians, N1 and N2 are the number of protons
in the bunches of beam 1 ans 2, nb is the number of bunches and fr is the beam-
revolution frequency.

Eq. 3.2 can be rewritten also in terms of other parameters which are directly
accessible from LHC:

L = F
N1N2frnbγ

4πβ∗ε
(3.3)

where N1 and N2 are the number of particles in the bunches, γ is the relativistic
factor for the colliding particles (i.e. Ep /mp for the colliding protons at the LHC),
ε is the emittance which describes the extent occupied by the particles of the beam
in the phase space. The beta functions β∗ describes the focusing properties of the
magnetic lattice and F is a factor that takes into account the angle at which the
beams cross each other.

The integrated luminosity L is obtained by integrating the instantaneous lumi-
nosity over a certain time interval t and is expressed in units of cm−2:

L =

∫ t

0

L (t′)dt′ (3.4)

At LHC, the instantaneous luminosity is expected to decrease by 1% every 10
minutes according to the power law:

L = L0e
− t
τ (3.5)

where τ ' 14 h.

Luminosity Calibration Via Van der Meer Scan

To determine the luminosity by means of Equations 3.2 or 3.3 is difficult since
a good measurement of the lateral beam sizes is needed. One way to obtain reliable
measurement of the beam sizes at the IP is to measure the beam profile in some
place away from the interaction point (IP) and then extrapolate to the IP. The
drawback of this method is that a good knowledge of the β∗ function is needed for
the extrapolation. Since the uncertainty of the β∗ function can be as high as 10%,
this sets a upper limit in the precisions at which the absolute luminosity can be
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determined using this method. This uncertainty could possibly be reduced if the
beam divergence at the IP can be measured.

Another way to measure the beams widths at the IP was originally proposed
by Van der Meer in 1968 [51]. In this method the beam sizes can be determined by
moving the two beams across each other and simultaneously monitor the relative
change in counting rate.

In terms of colliding beam parameters, the luminosity is defined as:

L = nbfrN1N2

∫
ρ1(x, y)ρ2(x, y)dxdy (3.6)

where nb is the number of colliding bunches, fr is the machine revolution frequency
(11245.5 Hz for LHC), N1(2) is the number of particles per bunch in beam 1(2)
and ρ1(2)(x, y) is the particle density in the transverse plane (x-y) of beam 1(2) at
the IP. Under the general assumption that there is no correlation between x and
y, the luminosity can be written as:

L = nbfrN1N2Ωx(ρ1(x)ρ2(x))Ωy(ρ1(y)ρ2(y)) (3.7)

where:

Ωx(ρ1, ρ2) =

∫
ρ1(x)ρ2(x)dx ρ1(x) =

∫
ρ1(x, y)dy (3.8)

Ωx is the beam overlap integral in the x direction, with an analogous definition for
the overlap integral in the y direction. With the Van der Meer method the overlap
integral can be calculated as:

Ωx(ρ1, ρ2) =
Rx(0)∫
Rx(x)dx

(3.9)

where Rx(x) is the rate at displacement x. We define Σx by the equation:

Σx =
1√
2π

∫
Rx(x)dx

Rx(0)
(3.10)

When Rx(x) is Gaussian, Σx coincides with the standard deviation of the rate
distribution. By using Equations 3.9 and 3.10, the luminosity can be rewritten as:

L =
nbfrN1N2

2πΣxΣy

(3.11)

which is the general formula to extract luminosity from machine parameters by
performing a beam separation scan.

The main source of systematics to the luminosity determined from beam pa-
rameters is the uncertainty in the measurements of the beam currents. Other errors
come from the relative centering of the two beams and systematic uncertainties
related to the change of the beam emmitance during the scans. A complete dis-
cussion on systematics uncertainties on the absolute luminosity calibration can be
found here [53].
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Final Uncertainty on Luminosity

The luminosity scales determined by the ATLAS Collaboration for 2010 and
2011 [52] [53] have been calibrated based on vdM scan data. Systematics uncer-
tainties on the absolute luminosity calibration are reported in Tab. 3.3.

Uncertainty Source δL /L [%]
Data Year 2010 2011
Bunch Population Product 3.1 0.5
Other vdM

Calibration Uncertainties 1.3 1.4
Afterglow Correction 0.2
BCM Stability 0.2
Long-Term Consistency 0.5 0.7
µ Dependence 0.5 0.5
Total 3.4 1.8

Table 3.3: Relative uncertainty on the calibrated luminosity scale broken down by
source.

The combination of these systematic uncertainties results in a final uncertainty
on ATLAS luminosity scale during pp collisons at

√
s = 7 TeV of δL /L = ±3.4%

for the 48 pb−1 of data delivered in 2010 and δL /L = ±1.8% for the 5.6 fb−1

delivered in 2011.
The analysis presented in this thesis, although fully based on 2011 data, was

completed before the final value (±1.8%) became public. As a consequence the final
results reported here will be affected by a preliminary 2011 luminosity uncertainty
existimation that was ±3.9%.

3.6 ATLAS Trigger and Data Acquisition Sys-

tems

At LHC, the production cross section of interesting physics signatures (Higgs
production, SUSY particles etc...) is expected to be around seven orders of mag-
nitude lower than the cross section of minimum bias QCD events. To record all
minimum bias events, considering that each colliding event corresponds to ∼ 1
MB space, one would need 40 TB free disc space per each second. Since current
technology does not allow this enormous amount of data to be captured the AT-
LAS experiment developed a series of procceses, called the trigger system, to filter
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out the minimum bias events with a rejection factor of at least 107 while keeping
100% efficiency in the selection of interesting physics.

Figure 3.13: Block diagram of the ATLAS trigger and data acquisition systems.

At ATLAS this trigger system [54] is divided into three levels called Level-
1 (LVL1), Level-2 (LVL2), and the Event Filter (EF). Each trigger level refines
the decisions made at the previous level and, where necessary, applies additional
selection criteria. A block diagram of the ATLAS trigger and data acquisition
(DAQ) systems can be seen in Fig. 3.13.

The LVL1 trigger makes fast decision in order to select the bunch crossings
containing interesting events. It is hardware based and receives data from the
calorimeters and the muon system (RPCs and TGCs). LVL1 fast identifies and
processes the so-called Regions-of-Interests (RoI’s) of each event, where high ac-
tivity has been detected. The RoI’s are essentially geographical coordinates in η
and φ, for which the LVL1 selection process has identified an interesting signature
using informations coming from the various sub-systems. The LVL1 target is to
reduce the initial rate of 40 MHz to 75 kHz in order to be handle by the detector
readout systems. The time necessary for L1 to decide whether to reject or keep
the event is 2.5 µs.

The second step of the ATLAS trigger system is the LVL2 which refines the
information from the previous step by acquiring additional data from increasingly
more detectors. The LVL2 trigger uses RoI information on coordinates, energy,
and type of signatures to limit the amount of data which must be transferred from
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the detector readout. The LVL2 trigger reduces the event rate to below 3.5 kHz,
with an average event processing time of approximately 40 ms.

The final stage of the event selection is carried out by the EF. It uses offline
analysis procedures on fully-built events to further select events down to a rate
which can be recorded for subsequent offline analysis. The EF reduces the event
rate to approximately 200 Hz, with an average event processing time of order four
seconds.

The ATLAS DAQ receives and buffers the event data from the detector-specific
readout electronics at the LVL1 trigger rate. It transmits to the LVL2 trigger any
data requested by the trigger (typically the data corresponding to RoI’s) and, for
those events fulfilling the LVL2 selection criteria, event-building is performed. The
assembled events are then moved by the data acquisition system to the event filter,
and the events selected there are moved to permanent event storage. In addition to
controlling movement of data down the trigger selection chain, the data acquisition
system also provides for the configuration, control and monitoring of the ATLAS
detector during data-taking. Supervision of the detector hardware (gas systems,
power-supply voltages, etc.) is provided by the Detector Control System (DCS).
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Chapter 4

ZZ → `−`+`−`+ Event Selection
and Recostruction

4.1 Introduction

This chapter is an accurate description of the event and object selection to
perform the ZZ cross section measurement presented in the next chapter. The
LHC 2011 data collected at

√
s = 7 TeV using the ATLAS detector together with

MC samples are described in section 4.2. The selection criteria for the ZZ events
decaying in the four charged leptons channel are described in section 4.3.

4.2 Data Samples

4.2.1 Data 2011

This study uses a data sample of proton-proton collisions taken between Febru-
ary and November 2011 at a center-of-mass energy of

√
s = 7 TeV at the LHC.

Events are selected using a data-quality flag called Good Run List (GRL) in which
the good operational state of each sub-detectors is required. The total integrated
luminosity as reported by the ATLAS luminosity calculation tool is 4640 pb−1. The
estimate of the luminosity uncertainty is 3.9% as discussed in section 3.5.5. In AT-
LAS data are recorded in different physics streams depending to the trigger object
(electron, muon, jet, etc...) that fired the event. Two data streams are used in this
analysis: physics Muons and physics Egamma. From about one month and a half,
May to June 2011, part of the calorimeter (corresponding to 6 Front-End boards)
was absent from data taking. The corresponding decrease in detector acceptance
is taken into account by a proper scaling in the Monte Carlo samples.

55
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4.2.2 Signal Monte Carlo Samples

The ZZ → `+`−`+`− process is modeled using PowhegBox [11] as signal
MC. PowhegBox is a next-to-leading order (NLO) MC generator, with up to
one parton in addition to the ZZ system which use CT10 as parton density func-
tion (PDF) set. In addition, the LO multi-leg generator Sherpa [16] with the
CTEQ6L1 PDF set [27] is used to evaluate systematic uncertainties by comparing
with PowhegBox and to generate signal samples with anomalous neutral triple
gauge couplings. Since the above mentioned samples have only qq̄ → ZZ produc-
tion, the gg → ZZ production is estimated using gg2zz [17] interfaced to Herwig
[13] and Jimmy [14] for hadronization and multiple parton scattering. The Z∗/γ∗

interference is implemented appropriately in all the above generators.

MCID Process Generator events fiducial k-factor εfilter cross section [pb]

(ZZ ; ZZ∗)

126159 ZZ → e+e−e+e− PowhegBox 100000 1.00 ; 1.00 0.70 0.0657

126160 ZZ → µ+µ−µ+µ− PowhegBox 100000 1.00 ; 1.00 0.71 0.0657

126861 ZZ → e+e−µ+µ− PowhegBox 200000 1.00 ; 1.00 0.63 0.1516

126862 ZZ → µ+µ−τ+τ− PowhegBox 200000 1.00 ; 1.00 0.13 0.1517

126863 ZZ → e+e−τ+τ− PowhegBox 200000 1.00 ; 1.00 0.13 0.1515

126864 ZZ → µ+µ−τ+τ− PowhegBox 100000 1.00 ; 1.00 0.013 0.06597

116600 gg →ZZ → `+`−`+`− gg2zz 65000 1.00 ; 1.00 0.60339 0.00279

116601 gg →ZZ → e+e−e+e− gg2zz 65000 1.00 ; 1.00 0.99319 0.00279

116602 gg →ZZ → µ+µ−µ+µ− gg2zz 65000 1.00 ; 1.00 0.99475 0.00279

116603 gg →ZZ → e+e−µ+µ− gg2zz 65000 1.00 ; 1.00 0.99411 0.00558

126148 ZZ → `+`−`+`− Sherpa 459998 1.68 ; 1.60 1.0 0.26622

Table 4.1: The ZZ signal production process, the MC ID run number, the MC
generator used, the cross section and number of fully simulated MC events are
given above. The MC simulation filter is an event selection at the generator level.

In Tab. 4.1 the ZZ MC signal samples used in this analysis are listed. The
corresponding cross section, the k-factor needed to correct this to the NLO predic-
tion (calculated with respect to the NLO MCFM [15] prediction), and the event
generator filter efficiency are shown. The filters are mainly used to reject τ events.
In the Sherpa sample a dilepton mass of at least 12 GeV, and for the lepton pT

to be > 1 GeV are required, while the PowhegBox filter requires 3 leptons with
pT> 5 GeV and a dilepton mass >4 GeV. Finally, in the gg2zz samples, a filter
demanding at least 3 leptons (e or µ) with pT>5 GeV and |η| < 10 is applied to
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the events at the generator level.
ATLAS is simulated [56] with a program based on Geant4 [57]. The simulation

includes the detector response to additional inelastic pp events, distributed so as
to reproduce the number of collisions per bunch-crossing in the data. Interactions
in the out-of-time bunches from pile-up are also included in the simulation.

4.2.3 Background Processes

The Z+jets W+jets, Zγ and Wγ (Tables A.1 and A.2) backgrounds are mod-
eled using LO Alpgen [58] generator with CTEQ6L1 PDFs set interfaced with
Herwig and Jimmy for parton showers and underlying events respectively. Top
quark background events (tt̄, Wt and single top, Tab. A.3) as well as WW back-
ground are simulated with MC@NLO [12] with CT10 PDFs. ForW/Z+γ (Tab. A.4),
MadGraph [59] LO generator with CTEQ6L1 PDFs is also used together with
Pythia for hadronization and showering. Finally, events with heavy flavor dijets
(Tab. A.3) are modeled with PythiaB [60].

The cross sections for the simulated processes, generator names, generator level
filter efficiencies and total number of events are shown in Appendix A. Whenever
LO event generators are used, the cross sections are corrected by using k-factors
to NLO or NNLO (if available) derived from matrix element calculations [61].

4.3 ZZ → `−`+`−`+ Selection Criteria

Electrons and muons are the physics objects needed in the analysis for the
ZZ events reconstruction. The ZZ candidate must pass a series of requirements,
based on event preselection criteria (see section 4.3.1), lepton object requirements
(see section 4.3.2) and finally selection requirements of the ZZ system (see sec-
tion 4.3.3).

4.3.1 Event Preselection

The ‘preselection‘ is commonly used to select a ‘good‘ event rejecting cosmic
ray background and events with bad data-quality flag. The event preselection cuts
applied are reported here:

1. Good Runs List cut
Keep events with the detector in a fully operational state (applied only for
data).

2. Trigger cut
The ZZ candidate events in all final-states are pre-selected with either the
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Period e trigger µ trigger
B-I e20 medium mu18 MG

J-K e22 medium mu18 MG medium

L-M e22vh medium1 mu18 MG medium

Table 4.2: Lepton trigger chain used in the corresponding 2011 data periods.

unprescaled single-electron or the unprescaled single-muon triggers. The trig-
ger chains used in the ATLAS internal subdivision and nomenclature of the
2011 dataset (labelled as “Period”) are reported in Tab. 4.2.
For the electron (muon) chain a corresponding pT of at least 20 (18) GeV
is required to the leptons that fired the trigger. The lepton that fulfills the
trigger requirements is called the triggered object.

3. Primary vertex cut
To reject cosmic ray events, the primary vertex of the event must have at
least 3 tracks associated with it.

4. Event Cleaning cut
LAr calorimiter noise warning flag must not be set indicating an event with
the calorimeter in a good operational state.

5. Overlap removal cut
Objects are removed from the event using a (∆R =

√
∆η2 + ∆φ2) overlap

criteria:

• remove electrons within ∆R < 0.1 of any selected muon;

• if two selected electrons overlap within ∆R < 0.1, remove lower-pT
electron.

4.3.2 Object Reconstruction

The reconstructed physics objects used in this study are briefly described here.
The main objects needed to reconstruct the ZZ event are electrons and muons.

Electrons

The requirements which must be satisfied by the selected electrons are sum-
merized in Tab. 4.3.

Two different kind of electrons can be distinguished depending on their pseudo-
rapidity η. “Central” electrons are reconstructed in the region |η| < 2.47, while
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“forward” electrons are used to extend the pesudo-rapidity coverage to 2.47 <
|η| < 3.16.

Requirement `−`+`−`+ final state

Central Electron Selection:

1. e: Type GSF, author==1 or 3

2. e: Quality (OQ AND 1446 == 0)

3. e: ID cut Loose++

4. e: η |η| < 2.47 (include crack: 1.37 < |ηCluster| < 1.52)

5. e: ET ET > 7 GeV

6. e: z0 z0 < 2 mm

7. e: d0 |d0|/σ(d0) < 6

8. e: Track isolation ΣpT (∆R < 0.2)/pT < 15%

9. e: Calorimeter isolation calo ΣET (∆R < 0.2)/ET < 30%

10. e: Overlap removal a) Remove e if ∆R < 0.1 from µ

b) Remove lowest ET e in ∆R < 0.1 from another e

Forward Electron Selection:

1. e: Type author==8

2. e: Quality (OQ AND 1446 == 0)

3. e: ID cut Tight

4. e: η 2.50 < |η| < 3.16

5. e: ET ET > 20 GeV

6. e: Overlap removal Remove if overlaps with central

electron or any muon in ∆R < 0.1

Table 4.3: Electron selection requirements.

Central electrons are reconstructed with the “standard” electron algorithm [62].
In order to account for the effect of bremsstrahlung in the inner detector, tracks
are refitted using a Gaussian-sum filter (GSF) [63].

GSF is a non-linear generalization of the Kalman filter, which takes into account
non-Gaussian noise, introduced by bremsstrahlung emission, by modeling it as a
weighted sum of Gaussian components. A dedicated algorithm refits all tracks
associated to existing electrons using the GSF, and then loops over electron and
photon calorimeter clusters trying to match them with a GSF refitted track.
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Central electrons are required to pass the 2011 egamma “Loose++” electron
identification requirements [64].

To avoid problems with the front-end boards of the liquid argon calorimeter
or other data quality issues, all electron candidates are required to pass an object
quality cut (OQ). This OQ defines a bad electron and indicates that its cluster is
affected by at least one of the following three conditions: the presence of a dead
front-end board in the first or second sampling layer, the presence of a dead region
affecting the three samplings, or the presence of a masked cell in the core.

To ensure that the candidates come from the primary vertex, the absolute z0 of
the electron track with respect to the primary vertex must be less than 2 mm and
the d0 significance is required to be less than 6. z0 is the z distance of the track
at the point of closest approach (longitudinal impact parameter) and d0 is the
transverse distance to the beam axis at the point of closest approach (transverse
impact parameter) in the ATLAS coordinate system defined as in section 3.4.1.

Electrons in the region 1.37 < |ηcluster| < 1.52 are retained; their energy (both
for electrons in data and in simulated events) is scaled appropriately using the
tools provided by the e-gamma performance group.

Electron candidates are required to have a transvers energy ET > 7 GeV.

In order to reject non-prompt leptons from the decay of heavy quarks and
fake electrons from misidentified jets (charged hadrons or photon conversions),
all selected electrons are required to be isolated both in the tracker and in the
calorimeter. The track isolation cut requires that the scalar sum of the transverse
momenta of inner detector tracks inside a cone of size ∆R = 0.2 around the
electron must be smaller than the 15% of the electron ET . For the calorimeter
isolation, the ratio of the sum of the transverse energy in calorimeter cells within
a cone of ∆R < 0.2 around the electron must be less than 30% of the electron
ET . The energy in the isolation cone does not include the energy of the electron
itself, and is corrected for the effects of pileup using the official prescription of the
e-gamma performance group.

Forward electrons are reconstructed from calorimeter information only since
ATLAS inner detector (ID) is not able to cover the pseudo-repidity range beyond
|η| = 2.5. In this case the transverse momentum is computed from the calorimeter
energy and the electron direction, where the electron direction is computed using
the primary vertex position and the shower barycentre position in the calorimeter.
Without ID informations, isolation requirements can’t be imposed on such elec-
trons and moreover it is not possible to determine the electron charge. Since the
lack of tracking makes it harder to reject hadronic and photonic fakes, to lower the
background these electrons are required to pass tighter identification requirements
[64].
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Muons

Muons are identified by matching tracks (or track segments) reconstructed in
the muon spectrometer to tracks reconstructed in the inner detector [62]. The
muon selection requirements for the ZZ → `−`+`−`+ are summarized in Tab. 4.4.

Two different algorithm are used for muons reconstructions: the STACO and the
CaloTrkMuID algorithms. The STACO muons reconstructed through the statistical
combination of the parameters from an inner detector track and those from a muon
spectrometer track or track segment are called Combined muons and Segment Tag
muons respectively. If muons have no inner detector track, they are reconstructed
from a muon spectrometer track only (Stand Alone muons, SA).

All STACO muons are required to pass the “loose” identification criteria.

Combined muons (CM) and Segment Tag muons (ST) are used in the pseudo-
rapidity region |η| < 2.5, with pT > 7 GeV and they are referred to as “central
muons”. Muons in the region 2.5 < |η| < 2.7 are defined “forward muons”. Forward
muons are required to have a full muon spectrometer track, which, where it is
possible, it is combined with an inner-detector track. Due to inner detector pseudo-
rapidity coverage, only muons up to |η| < 2.6 have such a chance, with decreasing
probability as the |η| increases. The rest of the muons in the 2.5 < |η| < 2.7 region
are SA, reconstructed using only the information from the muon system.

The CaloTrkMuID algorithm use the calorimeter to tag inner-detector tracks as
originating from muons. Muons selected by this algorithm are referred to as “Calo-
tag muons”. “Calo-tag muons” muons are only considered in the region |η| < 0.1,
and are not selected if they overlap with a selected “central muons” muon within
∆R < 0.1.

A series of cuts are prescripted from the ATLAS Muon Performance group to
define good quality tracks [65]. This recomandations ensure that the inner detector
tracks have a minimum number of hits in each silicon sub-detector.

To ensure that the candidates come from the primary vertex (identified as
the vertex that has the highest

∑
p2

T of associated tracks), the magnitude of the
longitudinal impact parameter with respect to the primary vertex, |z0|, must be
less than 2 mm and the transverse impact parameter, d0, must have significance
(|d0|/σd0) less than 3.5. These requirements are not applied to Stand Alone muons
which have no inner-detector track.

All muons are required to be isolated from energy deposits in the calorimeter.
The ratio of the sum of the transverse energy in calorimeter cells within a cone of
∆R < 0.2 around the muons must be less than 30% of the muon pT for muons with
|η| < 2.5. A tighter isolation ratio (less than 15%) is applied for forward muons
(2.5 < |η| < 2.7).
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Requirement `−`+`−`+ final state

Standard Muons

1. µ: type “loose” STACO muons

Combined or SegmentTagged

2. µ: pT and η pT > 7 GeV, |η| < 2.5

3. µ: ID hits MCP recommendation, see Sec.4.3.2

4. µ: z0 |z0| < 2 mm

5. µ: d0 |d0|/σ(d0) < 3.5

6. µ: track iso ΣpT(∆R < 0.2)/pT < 15%

7. µ: calo iso calo ΣET (∆R < 0.2)/pT < 30%

Forward Muons

1. µ: type “loose” STACO muons

Combined or StandAlone

2. µ: pT and η pT > 10 GeV, 2.5 < |η| < 2.7

3. µ: ID hits MCP recommendation, see Sec.4.3.2

4. µ: z0 |z0| < 2 mm

5. µ: d0 |d0|/σ(d0) < 3.5

7. µ: calo iso calo ΣET (∆R < 0.2)/pT < 15%

Calo-tag Muons

1. µ: type Calorimeter Tagged muons

2. µ: pT and η pT > 20 GeV, |η| < 0.1

3. µ: ID hits MCP recommendation, see Sec.4.3.2

4. µ: z0 |z0| < 2 mm

5. µ: d0 |d0|/σ(d0) < 3.5

6. µ: track iso ΣpT(∆R < 0.2)/pT < 15%

7. µ: calo iso calo ΣET (∆R < 0.2)/pT < 30%

8. Quality Cuts CaloMuonIDTag > 10 ||
CaloLRLikelihood > 0.9

9. Overlap Removal Remove if overlaps with a

standard muon in ∆R < 0.1

Table 4.4: Muon selection requirements.
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4.3.3 ZZ → `−`+`−`+ Candidate Event Selection

The ZZ → `−`+`−`+ selection includes the following final states with electrons
and muons: e+e−e+e−, µ+µ−µ+µ−, and e+e−µ+µ−. All selection criteria are the
same for the three channels except for the trigger matching.

Z candidates selected are classified according to two nomenclatures:

• Classification according to the proximity to the Z-pole mass, results in the
Z candidates called primary (closest to pole), or secondary (furthest from
the Z pole).

• Classification according to their pT, results in calling them leading (higher
in pT), or subleading (lower in pT).

The final ZZ candidate selection steps are described in the following list.

1. Four leptons
The event must have four and only four leptons passing the selection criteria
listed in section 4.3.2. This cut simplifies the equations for the background
estimate (see section 5.6). MC predictions show 1.3% of signal events would
fail this cut. In data, no events with more than four fully selected leptons
were observed.

2. Trigger match
The events passing the pre-selection are required to possess a “trigger-matched
lepton”, i.e., a lepton that is within ∆R < 0.1 of the triggered object. At
least one trigger-matched lepton must have pT > 25 GeV and |η| < 2.47 (if
it is an electron) or pT > 20 GeV and |η| < 2.4 (if it is a muon).

3. Quadruplet Formation
There must be two same flavour, oppositely charged lepton pairs. In e+e−e+e−

and µ+µ−µ+µ− events there are two possible ways of pairing the four lep-
tons into opposite sign pairs. The pairing which minimises the quantity
|m12−mZ |+|m34−mZ | is chosen, where m12, m34 are the invariant masses of
the two lepton pairs consisting of leptons ’1’,’2’,’3’,’4’ and mZ is the Z-pole.

4. “Primary” Z candidate
The Z candidate closest to the Z pole must satisfy the mass cut 66 < m12 <
116 GeV.
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5. “Secondary” Z candidate
Two non-exclusive mass cuts are applied to the secondary Z candidate, one
to select the event as a ZZ event, one to select the event as a ZZ∗ 1 event :

(a) To be classified as a ZZ event the secondary Z candidate must satisfy
the mass cut 66 < m34 < 116 GeV.

(b) To be classified as a ZZ event the secondary Z candidate must satisfy
the mass cut m34 > 20 GeV.

(c) The leptons are requried to be separated according to the following
criteria: ∆R(`, `) > 0.2.

The expected background contributions to the final selected sample are mainly
modeled with a data-driven estimate. Monte Carlo simulations are used as a clo-
sure test and will be discussed in the next chapter as well as the systematics
uncertainties.

4.3.4 ZZ → `−`+`−`+ Candidate Plots

The selection described in the previous sections leads to 84 ZZ∗candidates, out
of which 66 are classified as ZZ candidates.

Fig. 4.1 shows an event display for a selected ZZ → µ+µ−µ+µ− event. The
inner detector tracks are colored in red and required to have a minimum transverse
momentum of 200 MeV. The four reconstructed muon tracks are drawn in blue. The
muon precision chambers shown in green have recorded at least 6 hits. The yellow
structures belong to the muon trigger system. In purple, all calorimeter cells of the
hadronic endcap calorimeters and the forward calorimeters with energy deposits of
at least 1 GeV are shown, while in light green are the cells of the electromagnetic
calorimeter fulfilling the same requirement.

The pseudorapidity η and rapidity Y distributions of leading and subleading
Z for the ZZ∗ and ZZ candidates are shown in Fig. 4.2 and Fig. 4.3, respectively.

The transverse momentum (pT ) of the two leptons forming the leading Z in
both ZZ∗ and ZZ candidates selection are reorted in Fig. 4.4. In these plots data
points are compared with only PowhegBox signal.

Figure 4.5 shows the observed correlation for candidates between the transverse
momentum of the Zs and the ∆R of the two leptons forming the pair. Figure 4.6
shows the observed correlation for ZZ → `−`+`−`+ candidates between the in-
variant mass of the four lepton system MZZ and the minumum ∆R of the two
leptons forming the pair.

1From here on ZZ will indicate the selection with both on-shell Z, while ZZ∗ the case where
one of the Z is allowed to be off-shell.
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µ1

µ2

µ4

µ3

Run Number: 183602, Event Number: 282919

Date: 20110618, 06:36:40 CET

ZZ→4μ candidate in 7 TeV collisions

primary Z mass : 89.18 GeV

pT(μ1) = 61.60 GeV

pT(μ2) = 25.68 GeV

secondary Z mass : 88.03 GeV

pT(μ3) = 42.69 GeV

pT(μ4) = 38.60 GeV

Figure 4.1: Event display of a ZZ → µ+µ−µ+µ− candidate event (Run Number
183602, Event Number 282919). One Z candidate has a mass of 89.18 GeV and a
pT of 36.04 GeV and it is formed by two muons (µ1,µ2) with pT , η, φ of 61.60
GeV, -0.89, -2.11 rad and 25.68 GeV, 0.09, 1.10 rad, respectively. The other Z
candidate has a mass of 88.03 GeV and a pT of 46.39 GeV and it is formed by two
muons (µ3,µ4) with pT , η, φ of 42.69 GeV, -2.55, 1.39 rad and 38.60 GeV, -1.23,
-0.54 rad, respectively. The four lepton system has a mass of 239.69 GeV and a pT
of 21.99 GeV.
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Figure 4.2: The top row shows the pseudorapidity η distributions of the leading (left)
and the subleading (right) Z of the ZZ∗ candidates. In the same way the rapidity Y is
shown in the bottom row.
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Figure 4.3: The top row shows the pseudorapidity η distributions of the leading (left)
and the subleading (right) Z of the ZZ candidates. In the same way the rapidity Y is
shown in the bottom row.
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Figure 4.4: The top row shows the pT distributions of the leading (left) and the
subleading (right) leptons of the leading Z for ZZ∗ candidates. The same lepton pT
distributions are shown for ZZ candidates in the bottom row.
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Figure 4.5: The pT of the Z candidate versus the ∆R of the two leptons forming the
pair. The events observed in the data are shown as black dots and the signal prediction
as boxes.
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Figure 4.6: The invariant mass of the four lepton system MZZ versus the minimum
∆R between leptons forming the Z pairs. The events observed in the data are shown as
black dots and the signal prediction as boxes.
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Chapter 5

ZZ → `−`+`−`+ Production Cross
Section Determination

5.1 Introduction

In this chapter the first main topic of this thesis is presented. ZZ total cross
section measurement together with other two cross sections in a restricted ’fiducial’
phase space for the `−`+`−`+ final state are discussed. The first when both Z’s are
required to be on-shell, and the second where one Z is allowed to be off shell, i.e.
the ZZ∗ case.

As already reported in Chapter 2 using the CT10 [19] PDF set the total
cross section for on-shell ZZ production at NLO calculated with MCFM [15] is
5.89+0.22

−0.18 pb. MCFM calculation includes the gluon-gluon contribution to ZZ pro-
duction. The reported uncertainties arise from the choice of the renormalisation
and factorisation scales (µR = µF) and from the uncertainty in the chosen PDF.
They are assessed by repeating the calculations with µR = µF = 0.5mZZ and
µR = µF = 2mZZ and compared to the nominal µR = µF = mZZ and using the 52
error sets of the CT10 PDFs.

First, the total and ”fiducial” cross section definitions will be given in sec-
tion 5.2, then acceptance values and systematic uncertainties on the cross section
measurements are described in sections 5.3, 5.4 and summarized in section 5.5.
The background estimation is reported in section 5.6, the distributions of the se-
lected candidates are shown in section 5.7 and finally the cross section results are
calculated in section 5.8.

71
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5.2 Fiducial and Total Cross Section Definition

The fiducial cross sections are defined such that they correspond closely to the
experimental selection cuts in a particular final state. They are therefore free from
any systematic errors that arise from extrapolating to regions of phase space which
are not measured.

In our case the ZZ → `−`+`−`+ on-shell (ZZ) fiducial volume is defined by
the following cuts:

• ZZ → `+`−`+`−, ` = e, µ, where each Z decays to a particle-antiparticle
pair of a given lepton flavor, i.e. Z → e−e+ or Z → µ−µ+;

• 66 < m12(Z) < 116 GeV, where m12(Z) is the mass of the Z reconstructed
from the first and second leptons. The same-flavor, opposite-sign lepton pair-
ings are chosen such that the mass of the reconstructed Z is closest to the
PDG value of the Z mass;

• 66 < m34(Z) < 116 GeV, where m34(Z) is the mass of the Z reconstructed
from the third and fourth leptons;

• Transverse momentum of leprons: p`T > 7 GeV;

• Leptons pseudorapidity range: |η`| < 3.16.

• Minimum ∆R (∆R =
√

∆η2 + ∆φ2) between any two out of the four selected
leptons in the event to be greater than 0.2: min(∆R(`, `)) > 0.2.

The second fiducial volume, allowing one Z to be off-shell (ZZ∗), is defined as:

• ZZ∗ → `+`−`+`−, ` = e, µ;

• 66 < m12(Z) < 116 GeV;

• m34(Z∗) > 20 GeV;

• p`T > 7 GeV;

• |η`| < 3.16.

• min(|∆R(`, `)|) > 0.2.

For a given ZZ(∗) → `−`+`−`+ sub-channel where ` ∈ {e, µ}, the fiducial cross
section 1 is defined:

σfid
ZZ(∗)→`−`+`−`+ =

N obs
`−`+`−`+ −N

bkg
`−`+`−`+

L× CZZ(∗)→`−`+`−`+
(5.1)

1The subscript `−`+`−`+ in the fiducial cross section formula means that it is multiplied by the
specific channel Branching Ratio, i.e: σfid

ZZ(∗)→`−`+`−`+
= σfid

ZZ(∗) ×BRcomb(ZZ(∗) → `−`+`−`+).
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Here, N obs
`−`+`−`+ and N bkg

`−`+`−`+ denote the number of observed and background
events respectively, L is the luminosity and CZZ(∗)→`−`+`−`+ is the correction factor
defined in section 5.3.

In addition to the fiducial cross section, we also calculate a production cross
section in the total phase space volume for the ZZ case only. The ZZ total pro-
duction cross-section is calculated as:

σtotZZ =
N obs
`−`+`−`+ −N

bkg
`−`+`−`+

L×BRcomb(ZZ → `−`+`−`+)× AZZ→`−`+`−`+ × CZZ→`−`+`−`+
(5.2)

where AZZ→`−`+`−`+ is the correction factor defined in section 5.4 which repre-
sents the fiducial cuts efficiency. The specific-channel branching ratio BR(ZZ →
`−`+`−`+) for both Z decaying in leptons is [BR(ZZ → `−`+`−`+)]2 = [0.03366]2

per channel [1]. The summation of all possible combinations (eeee, µµµµ and
eeµµ, where the last counts 2) gives a combined branching fraction BRcomb(ZZ →
`−`+`−`+) = 4× 0.0336622 = 0.004532.

5.3 Fiducial Acceptance Definition

The primary purpose of using the fiducial cross section defined in Eq. 5.1 is to
correct the reconstructed-level cross section to a truth-level cross section defined
by a fiducial volume corresponding to the volume in which the measurement is
performed. The reason to only correct to a fiducial volume is that this correction
will be less sensitive to purely theoretical uncertainties like the PDF set used.
This correction essentially gives the probability of reconstructing an event, given
that all the objects in the event would have been in the detector and passed our
selection level cuts.
CZZ in Eq. 5.1 is defined as:

CZZ = εtrig × εevent × εlep × αreco (5.3)

where εtrig is the trigger efficiency, εevent is the efficiency of the event level cuts
(like the primary vertex cut, etc.), εlep is the product of the individual efficiencies
for the four leptons to pass the lepton object selection cuts, and finally αreco is
the reconstruction to generator-level fiducial volume correction which also includes
smearing corrections and resolutions. CZZ is calculated separately for each channel
by applying the necessary MC with respect to data corrections to the signal ZZ →
`−`+`−`+ MC (such as smearing, pileup reweighting, reconstruction scale factors,
etc.) and finding the ratio of the number of events which pass the reconstruction
level cuts to the number of events which pass the fiducial volume cuts at the
generator level. Thus,
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CZZ =
NMC Pass All Cuts

Reconstructed ZZ × SF

NMC Fiducial Volume
Generated ZZ

(5.4)

where the scale factor (SF) is applied on an event-by-event level. The SF (see
section 5.3.1) is used to correct for discrepancies in trigger efficiency and recon-
struction efficiency between data and MC in the ZZ → `−`+`−`+ channel and is
defined as

SF =
εdatatrig

εMC
trig

· ε
data
reco

εMC
reco

(5.5)

with εreco = εlep·εevent. Since the selection cuts for electrons and muons are different,
the fiducial volume corresponding to exactly our selection cuts for each ZZ →
`−`+`−`+ sub-channels are also different. In order to calculate a combined fiducial
cross section, we would need to first perform an additional extrapolation to a
common fiducial volume and then extract a combined cross section in the combined
volume.

The fiducial acceptance (CZZ) calculation and comparison between various gen-
erators is reported in Tab. 5.1. Values are shown for both ZZ and ZZ∗ selections
in the three different dacay channels and in the combined one with only associated
statistical uncertainty.

ZZ → `−`+`−`+ Channel, ZZ∗ Selection
Generator e+e−e+e− µ+µ−µ+µ− e+e−µ+µ− combined
Sherpa 0.420 ± 0.004 0.682 ± 0.004 0.536 ± 0.003 0.544 ± 0.002
Pythia 0.413 ± 0.004 0.689 ± 0.004 0.543 ± 0.003 0.547 ± 0.002
PowhegBox 0.408 ± 0.004 0.674 ± 0.004 0.537 ± 0.003 0.539 ± 0.002
gg2zz 0.457 ± 0.002 0.761 ± 0.002 0.589 ± 0.002 0.600 ± 0.001
PowhegBox + gg2zz 0.410 ± 0.004 0.679 ± 0.004 0.540 ± 0.003 0.542 ± 0.002

ZZ → `−`+`−`+ Channel, ZZ Selection
Generator e+e−e+e− µ+µ−µ+µ− e+e−µ+µ− combined
Sherpa 0.437 ± 0.004 0.689 ± 0.004 0.550 ± 0.003 0.557 ± 0.002
Pythia 0.425 ± 0.004 0.695 ± 0.004 0.549 ± 0.003 0.555 ± 0.002
PowhegBox 0.426 ± 0.005 0.682 ± 0.004 0.543 ± 0.003 0.549 ± 0.002
gg2zz 0.466 ± 0.002 0.765 ± 0.002 0.596 ± 0.002 0.606 ± 0.001
PowhegBox + gg2zz 0.428 ± 0.005 0.687 ± 0.004 0.546 ± 0.003 0.552 ± 0.002

Table 5.1: Fiducial acceptance, CZZ , comparisons between various generators.
The top section of the table shows CZZ for the ZZ → `−`+`−`+ channel with the
ZZ∗ selection, while the bottom section with the ZZ selection. Only statistical
uncertainties are shown.
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5.3.1 Efficiency Correction Scale Factors

To correct for discrepancies in trigger, reconstruction and identification ef-
ficiency between data and MC, performance groups provide scale factors to be
applied on event-by-event level in the lepton selection.

MC events are also re-weighted to account for any difference in the number of
pileup vertices in the data and MC samples. The pileup re-weighting makes the
distribution of MC events as a function of the number of reconstructed primary
vertices similar to the distribution observed in data. The change of pileup condition
during data and the different states of the detector response are also modeled in
the official ATLAS pileup reweighting tool. The overall event-level scale factors
resulting from the corrections are given in Tab. 5.2.

Channel Overall Scale Factor
ZZ ZZ∗

`−`+`−`+ 0.9672 0.9653
e+e−e+e− 0.9523 0.9475
µ+µ−µ+µ− 0.9807 0.9804
e+e−µ+µ− 0.9646 0.9629

Table 5.2: Overall event level scale-factors (the results of applying the scale fac-
tors to all the relevant objects in an event) applied to the MC, split by decay
channel. The overall scale-factors correct for muon identification efficiency, elec-
tron reconstruction and identification efficiencies and trigger efficiency.

The systematics of scale-factors correction for muon identification efficiency,
electron reconstruction and identification efficiencies is treated in section 5.3.2,
while here is described more in depth the trigger case.

The scale factors to account for the mis-modeling of the single-lepton trigger
efficiency in the MC with respect to the data have been derived using the tag-and-
probe method (T&P) on Z → `+`− events. The scale factors are applied to leptons
forming the Z candidate which match to a trigger object as described above. The
scale factor depends on the lepton flavor and pT of the individual leptons. It is
calculated according to Eq. 5.6 where Nl is the number of leptons matching to a
trigger object, εData,ln is the trigger efficiency determined with T&P from data for
a single lepton flavor of lepton ln, and εMC,ln is the trigger efficiency determined
with T&P from MC.

SF =
1−

∏Nl
n=1(1− εData,ln)

1−
∏Nl

n=1(1− εMC,ln)
(5.6)

The systematic uncertainty associated with the scale factors for muon triggers
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is 0.2%, while the one associated with the electron trigger is 1%, which are given
by muon and e-gamma performances group respectively.

The trigger efficiencies determined with the ZZ MC samples after the selec-
tion cuts except for the trigger object-lepton matching and the triggered-object
requirement are listed in Tab. 5.3.

Channel Trigger Efficiency [%]
ZZ Selection ZZ∗Selection

eeee 100.0+0.0
−0.4 99.6+0.2

−0.5

µµµµ 98.7+0.4
−0.6 98.2+0.4

−0.5

eeµµ 99.6+0.2
−0.3 98.8+0.3

−0.4

llll 99.4+0.2
−0.2 98.8+0.2

−0.2

Table 5.3: Trigger efficiencies for ZZ events after all selection cuts excluding the
trigger match and trigger requirement.

The systematic uncertainty associated to trigger SF is reported in the summary
table Tab.5.8. It is evaluated by summing in quadrature the statistical uncertainty
obtained from MC and the systematic error of the efficiency.

5.3.2 Systematic Uncertainties on CZZ

The main sources of systematics on the cross section measurement arises from
the electron and muon object reconstruction and identification.

Electrons

The systematic uncertainties coming from electron object are summarized in Tab. 5.4.
The uncertainty values used are those provided by the ATLAS performance group.

• Reconstruction and Identification Efficiency: The differences observed
in the reconstruction and identification efficiencies between the data and MC
are taken into account by weighting the simulation with scale factors pro-
vided by the egamma group. The systematic uncertainties are then deter-
mined by varying the scale factors within their quoted uncertainties (±1σ).
The electron identification efficiency scale factors and their uncertainties are
determined from W and Z T&P measurements and are given as a function
of η, ET , and electron algorithm (loose, medium, etc.). The uncertainties of
the η and ET dependent scale factors are added in quadrature to obtain the
combined electron identification uncertainty. A similar procedure is followed
for the extraction of the scale factors related to reconstruction efficiency.
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• Energy Scale: The systematic uncertainties on the energy scale derived
from the 2011 dataset and implemented in the official ATLAS tool provided
by the e-gamma group are used on the Monte Carlo to obtain the associated
uncertainty on the signal acceptance.

• Energy Smearing: Since the MC does not reproduce the observed energy
resolution in data, a smearing is applied to it. The systematic uncertainties
associated with the smearing procedure are obtained from the official ATLAS
tool provided by the e-gamma performance group.

• Electron Isolation and Impact Parameter: The uncertainties are as-
signed by the Higgs to ZZ analysis [66]. For electrons with pT less than 15
GeV they are found to be 5%, for 15-20 GeV 2%, for 20-35 GeV 1% and for
pT above 35 GeV, the uncertainty is less than 1%.

Source % eeee eeµµ

CZZ Uncertainties ZZ ZZ∗ ZZ ZZ∗

e energy resolution < 0.1 < 0.1 < 0.1 < 0.1
e energy scale 0.5 0.6 0.1 0.1
e identification efficiency 5.5 6.0 2.7 2.8
e reconstruction 3.9 4.0 1.9 2.0
e isolation/z0/d0Sig 3.3 3.6 1.6 1.7
Total (CZZ) 7.5 8.1 3.7 3.8

Table 5.4: Systematic uncertainties of electrons considered in the cross-section
calculation.

Muons

The systematic uncertainties coming from muon objects are similar to the
electrons and they are summarized in Tab. 5.5.

They are of three types:

• Reconstruction efficiency: The event yields are computed while varying
efficiency scale factor applied to MC following the recommendations of the
muon performance group for 2011 data [65]. The event number variations
are symmetrical around the nominal values.

• pT smearing and scale: The momentum scale correction is turned off as a
conservative systematic estimate of the uncertainty in the scale correction.
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The smearing uncertainty is calculated by varying the MC muon pT smearing,
according to the uncertainty on muon pT observed in data. This smearing
uncertainty is estimated separately for Inner Detector parameter variation
and Muon Spectrometer parameter variation. As a conservative estimate the
absolute value of the maximum variation between lower and higher smearing
is taken as the systematic uncertainty.

• Muon Isolation and Impact Parameter: In analogy with the electron
case the uncertainties are assigned by the Higgs to ZZ analysis [66]. For
muons with pT less than 15 GeV they are found to be 2%, for 15-20 GeV 1%
and for pT above 20 GeV, the uncertainty is less than 1%.

Source % µµµµ eeµµ

CZZ Uncertainties ZZ ZZ∗ ZZ ZZ∗

µ momentum resolution < 0.1 < 0.1 < 0.1 < 0.1
µ momentum scale < 0.1 < 0.1 < 0.1 < 0.1
µ reconstruction efficiency 1.2 1.2 0.6 0.6
µ isolation/z0/d0Sig 2.2 2.4 1.1 1.2
Total (CZZ) 2.5 2.7 1.3 1.3

Table 5.5: Systematic uncertainties of muons considered in the cross-section cal-
culation.

5.4 Total Acceptance Definition

In order to calculate a total cross section, one must correct the reconstruction
level cross section to full phase space of possible truth level quantities. This is
performed by applying a correction from the fiducial volume to the full phase
space at truth-level. This correction is defined as AZZ and is calculated as

AZZ =
NMC Fiducial Volume

Generated ZZ

NMC All
Generated ZZ

(5.7)

In analogy with CZZ , AZZ is calculated for each channel separately and the results
are shown in Tab. 5.6.

The uncertainty on the correction from the fiducial cross section to the total
cross section come from PDF uncertainty, and it is assessed by varying the PDF
set, the factorisation and renormalization scales and taking the weighted difference
with the correction calculated with a gg → ZZ generator.
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ZZ → `−`+`−`+ Channel, ZZ∗ Selection
Generator e+e−e+e− µ+µ−µ+µ− e+e−µ+µ− combined

MCFM 0.755 ± 0.002 0.755 ± 0.002
PowhegBox 0.745 ± 0.001 0.745 ± 0.001 0.749 ± 0.001 0.747 ± 0.001
gg2zz 0.919 ± 0.004 0.919 ± 0.004 0.919 ± 0.004 0.919 ± 0.003
PowhegBox + gg2zz 0.755 ± 0.001 0.755 ± 0.001 0.758 ± 0.001 0.757 ± 0.001

ZZ → `−`+`−`+ Channel, ZZ Selection
Generator e+e−e+e− µ+µ−µ+µ− e+e−µ+µ− combined
MCFM 0.795 ± 0.001 0.795 ± 0.001
PowhegBox 0.796 ± 0.001 0.796 ± 0.001 0.796 ± 0.001 0.796 ± 0.001
gg2zz 0.932 ± 0.004 0.932 ± 0.004 0.932 ± 0.004 0.932 ± 0.004
PowhegBox + gg2zz 0.804 ± 0.001 0.804 ± 0.001 0.804 ± 0.001 0.804 ± 0.001

Table 5.6: Acceptance AZZ comparison between different generators. The table
shows AZZ for the ZZ → `−`+`−`+ channels for both ZZ (top) and ZZ∗ (bottom)
selections.

The uncertainty on the total acceptance AZZ was estimated by shifting the
factorization and renormalization scales up and down by a factor of two and by
determining the uncertainty with the 52 CT10 error sets. Adding them in quadra-
ture, the total PDF and scale uncertainty is 0.6%. An additional 1.1% uncertainty
due to initial state radiation, final state radiation and underlying event modeling is
evaluated by comparing the acceptance in MCFM [15] and PowhegBox [11]. This
difference is found to be 1.1%. The total systematics uncertainty of the fiducial-
to-total phase-space acceptance correction is therefore 1.3% as reported in the
summary table Tab. 5.8.

5.5 Summary of Acceptance Values and System-

atic Uncertainties

In Tab. 5.7 final combined expected correction factors AZZ and CZZ for the
ZZ and ZZ∗ selection are reported. A complete summary of the acceptance (CZZ
and AZZ) systematic uncertainties used in the cross section measurement is shown
in Tab. 5.8. It includes CZZ systematics from leptons object selection (see Tab. 5.4
and Tab. 5.5) and acceptance (CZZ and AZZ) theoretical systematics uncertainty
evaluation arising from PDF and scale uncertainties and for the differences between
various generators (see Tab. 5.6 and Tab. 5.1). In addition trigger systematics
uncertainty, evaluated as reported in section 5.3.1 and luminosity uncertainty as
discussed in section 3.5.5 of Chapter 3 are also shown.
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`−`+`−`+ channel AZZ CZZ

ZZ∗ Selection 0.757 ± 0.001 ± 0.019 0.542 ± 0.002 ± 0.022

ZZ Selection 0.804 ± 0.001 ± 0.010 0.552 ± 0.002 ± 0.021

Table 5.7: Expected correction factors (AZZ for the fiducial-to-total acceptance
and CZZ for the fiducial reconstruction) for the ZZ and ZZ∗ selection. The first
uncertainty is statistical and the second is systematic.

Source % eeee µµµµ eeµµ llll

Reconstruction Uncertainties ZZ ZZ∗ ZZ ZZ∗ ZZ ZZ∗ ZZ ZZ∗

e energy resolution < 0.1 < 0.1 - - < 0.1 < 0.1 < 0.1 < 0.1

e energy scale 0.5 0.6 - - 0.1 0.1 0.1 0.2

e identification efficiency 5.5 6.0 - - 2.7 2.8 2.4 2.5

e reconstruction 3.9 4.0 - - 1.9 2.0 1.7 1.7

e isolation/z0/d0Sig 3.3 3.6 - - 1.6 1.7 1.4 1.5

µ momentum resolution - - < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

µ momentum scale - - < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

µ reconstruction efficiency - - 1.2 1.2 0.6 0.6 0.7 0.7

µ isolation/z0/d0Sig - - 2.2 2.4 1.1 1.2 1.3 1.3

IP Resolution < 0.1 < 0.1 0.4 0.4 0.3 0.3 0.3 0.3

Trigger < 0.1 < 0.1 0.3 0.4 0.1 0.2 0.2 0.2

Total Reconstruction Uncertainty (CZZ) 7.5 8.1 2.6 2.7 3.9 4.1 3.5 3.7

Theoretical Uncertainties ZZ ZZ∗

MC Generator Difference (CZZ) 1.6 1.5

PDF & Scale (AZZ) 0.6 2.5

MC Generator Difference (AZZ) 1.1 0.2

Total (AZZ) 1.3 2.5

Total (CZZ) 7.7 8.3 3.0 3.1 4.2 4.3 3.9 4.0

Luminosity 3.9

Table 5.8: Summary of all relative acceptance uncertainties considered in the
cross-section calculation for the ZZ → `−`+`−`+ channel. Sums in quadrature of
the weighted average of the three channels and a combined uncertainty are shown.
Luminosity uncertainty is also shown.
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5.6 ZZ → `−`+`−`+ Backgrounds Estimation

ZZ production with subsequent dacay to four charged leptons is a rare SM
process where the main background contributions are Z+jet, Zbb̄, Z+γ+jet, and
top decays (tt̄ and single top). Such background processes have two prompt leptons
from W and Z decays, and two “fake” leptons (from charged hadrons faking an
electron or a muon) or leptons from heavy flavour decays. Additional background
arise from diboson WZ+jet (and WW+jets) events containing three (two) prompt
leptons and one (two) fake lepton. Since the ZZ → 4` is the only SM process with
four prompt leptons in the final state, all background processes have at least one
fake lepton, and can be estimated using the data-driven approach.

5.6.1 Data-driven Estimation

ZZ signal events contain isolated, prompt leptons from a vector-boson decay
while leptons from the background sources mentioned above tend to be spatially
correlated with jets. While the majority of these leptons will fail the isolation
requirement, the tails of the jet distributions may have electrons or muons which
satisfy the isolation and identification requirements.

Since the tails of jet fragmentation is not well model by Monte Carlo predic-
tions, better estimates of event yields for this kind of backgrounds can be calculated
directly from data. To estimate the background contribution of four-lepton events
in which at least one lepton does not originate from a Z decay, we identify a sample
of events in the data adjacent to the signal region but dominated by this type of
background, by inverting some of the identification requirements. We extrapolate
to the signal region using an extrapolation factor (a “fake factor”, FF ) measured
in this background sample.

Fake Faktors Calculation

To derive the fake factors, we identify “pre-lepton” objects by applying nearly
all the lepton selection requirements, but reserve a few requirements for a second
stage. The pre-leptons are then classified either as “selected leptons” (denoted by
“L”), if they pass all the remaining requirements at the second selection stage, or as
“lepton-like jets” (denoted by “J”), if they fail some of the remaining requirements
at the second selection stage. These requirements depend on whether the lepton
is an electron or a muon (see Tab. 5.9). For muons, the “J” are muon candidates
that fail the isolation requirement or fail the impact parameter requirement but
not both. For electrons with |η| < 2.47, the lepton-like jets are clusters in the
electromagnetic calorimeter matched to inner detector tracks that fail either the
full electron selection or the isolation requirement but not both. For electrons with
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Selected leptons Lepton-like jets

Muons Track iso < 0.15 (d0-significance > 3.5 and Track iso < 0.15 and Calo iso < 0.30)

and Calo iso < 0.30 or (d0-significance < 3.5 and (Track iso > 0.15 or Calo iso > 0.30)

and d0-significance < 3.5

Electrons Track iso < 0.15 (!Loose++ and Track iso < 0.15 and Calo iso < 0.30)

and Calo iso < 0.30 or (Loose++ and Track iso > 0.15 and Calo iso > 0.30)

and Loose++

Forward

Electrons Tight !Tight

Table 5.9: Summary of requirements for selected leptons and lepton-like jets.

|η| > 2.5, the lepton-like jets are electromagnetic clusters that are reconstructed
as electrons but fail the tight identification requirements.

The regions defined by the cuts are represented visually in Fig. 5.1.

PASS

d0sig

FAIL

d0sig

A:

SELECTED

LEPTONS

B: 

FAIL d0sig only

FAIL isolation only

D:

C: 

isolation and d0sig
FAIL both 

PASS isolation FAIL   isolation

A:

SELECTED

LEPTONS

D:

PASS isolation

FAIL electron ID  only
isolation and electron ID

FAIL isolation only

FAIL both 

C: B: 

FAIL   isolation

electron ID

(loose++)

electron ID

(loose++)

PASS

FAIL

Figure 5.1: Definition of selected leptons and lepton-like jets for muons (left) and
electrons (right).

To extrapolate to the signal region, we need to know the fake-factor, the ratio
of the number of selected leptons to the number of lepton-like-jets. This fake factor
is defined as:

FFlepton =
Ndata

selected leptons −N
MC WZ, ZZ
selected leptons

Ndata
lepton−like jets −N

MC WZ, ZZ
lepton−like jets

(5.8)

To measure the fake-factor, we select a sample of events which have a recon-
structed Z and then look for an additional lepton in the event that satisfies either
the selected lepton or lepton-like jet requirements. The requirements to categorize
the event as “Z-tagged” can be found in Tab. 5.10.
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Criteria Selection
Leptons Either 2 selected Muons or 2 selected Electrons
Z-reconstruction oppositely charged leptons

1 trigger matched lepton
|Mll −MZ | < 20 GeV

MET MET < 25 GeV

Table 5.10: Summary of requirements to select Z candidate events. The additional
leptons in the event, if any, are used to estimate the fake factor for this sample.

The origin of the third lepton in the event is dominated by jets from Z+jets
events but can also include leptons from WZ and ZZ. These latter are removed
using a MC prediction via the terms NMC WZ, ZZ

selected leptons and NMC WZ, ZZ
lepton−like jets.

The fake factor is calculated by subtracting the WZ+ZZ contribution in each
histogram from the data to remove the contribution from isolated analysis level
leptons which are from an expected source and then dividing the selected lepton
distributions by the lepton-like jet distributions.

In this way, the fake factor distributions parametrized in pT end η are found and
are given in Figures 5.2 and 5.3 for central and forward electrons and in Fig. 5.4
for muons. Due to the lack of statistics above 60 GeV for the pT parametrization,
all muon-like jets with pT > 60 GeV used the fake factor for the last filled bin
(50 − 60 GeV). The fake-factor is applied directly from the histograms assuming
no correlation between pT and η, with the equation:

FF (pT, η) =
FF (pT)× FF (η)

< FF (pT, η) >
, (5.9)

where < FF (pT, η) > is the average fake factor in the control samples, averaged
over both pT and η.

Fake Lepton Background Formula

The fake lepton background to the four-selected-lepton sample has contribu-
tions from events with two fake leptons (F ) plus two true leptons (T ) and events
with one fake lepton plus three true leptons. Thus, we write the number of back-
ground events as:

N fake
4` = NTTFF × f × f +NTTTF × f (5.10)

where f is the fraction of fake leptons which are reconstructed as selected leptons.
NTTTF events can be WZ+1 jet events, while NTTFF events can be, for example,
from Z+2 jets, tt̄, tW+1 jet and single top+2 jets.
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Figure 5.2: Fake Factor distribution for electrons parametrized in pT, left and η,
right.

Figure 5.3: Fake Factor distribution for forward electrons parametrized in pT
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Figure 5.4: Fake Factor distribution for muons parametrized in pT, top and η,
bottom.
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Denoting selected leptons as L and lepton-like jets as J (as discussed in begin-
ning of section 5.6.1), then the fake factor (FF) and the probability (f) of a fake
lepton to be found as selected lepton are

f =
L

L+ J
and FF =

L

J
(5.11)

which when combined give:

FF =
f

1− f
and f =

FF

1 + FF
(5.12)

Events with two selected leptons and two lepton-like jets given as a function
of T and F objects can be written:

NLLJJ = NTTFF × (1− f)2 (5.13)

Events with three selected leptons and one lepton-like jet, can be ralated to
their true composition by writing:

NLLLJ = NTTFF × 2f(1− f) +NTTTF × (1− f) (5.14)

where the factor of 2 is due to combinatorics. Combining these last two equa-
tions under the assumption that L/(L+J) = 1 for true leptons and correcting for
the small contribution (NZZ

LLLJ) from ZZ → 4` events which are reconstructed as
LLLJ events, the correct value for the background estimate can be proven to be:

N fake
4` = (NLLLJ −NZZ

LLLJ)× FF −NLLJJ × FF 2 (5.15)

Statistical and Systematic Uncertainties

In the case when LLJJ and LLLJ events are found in the data, the statistical
uncertainty can be calculated directly by adding the relative error from the FF
applied to those events in quadrature with the relative error on the number of
events measured in the channels.

However, if there are no events found, the best estimate is a contribution of
zero and we set a 68% confidence level (CL) upper limit on the expected yields
corresponding to an upper limit of 1.29 events. This number is then scaled by the
FF (evaluated at the pT bin with the largest fake factor), and we quote it as the
sigma of a Gaussian truncated at zero.

If the overall N fake
4` estimate turns out to be negative, then we quote a truncated

Gaussian with mean at zero and sigma equal to the estimated statistical and
systematic uncertainties added in quadrature. This is conservative compared to
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Ingredients in Eq.5.15 eeee µµµµ 2e2µ Combined (````)

(+) NLLLJ × FF 1.63± 0.34 0.21± 0.21 1.84± 0.40 3.67± 0.57

(−)NLLJJ × FF 2 0.96± 0.10 0.33± 0.16 0.83± 0.09 2.12± 0.21

(−)ZZ correction 0.17± 0.13 0.12+0.20
−0.12 0.34± 0.21 0.63± 0.32

Fake estimate, N fake
4` 0.50+0.57

−0.50(stat) < 0.64 [0+0.57
−0 (stat) 0.66+0.70

−0.66(stat) 0.92+1.10
−0.92(stat)

±0.26(syst) +0.30
−0 (syst)] ±0.55(syst) +0.71

−0.74(syst)

Table 5.11: ZZ fake estimate in 4.6 fb−1 of data.

quoting a sigma equal to the estimated uncertainty minus the negative estimate
for the mean background value.

As a systematic uncertainty on the fake factor used, we take the largest of the
statistical uncertainties and the difference between the fake factor derived in data
with that derived in MC (from Alpgen Z+jets samples).

Data-driven Background Estimates

The fake estimates are shown in Tab. 5.11 for on-shell ZZ events and in
Tab. 5.12 for ZZ∗ events. The total fake background for on-shell ZZ events is

0.92+1.10
−0.92(stat.)+0.71

−0.71(syst.) (5.16)

and for ZZ∗ events the total fake background is

9.07± 2.32(stat.)± 1.30(syst.) (5.17)

where the systematic uncertainty comes from the statistical and systematic un-
certainty on the fake factors. The statistical and systematic errors given for the
fake estimates in Tables 5.11 and 5.12 are calculated by coherently fluctuating the
ingredients in Eq. 5.15 up and down by one sigma such that the error on the fake
estimate is maximized.

5.6.2 Monte Carlo Background Estimations

The MC predictions have high statistical uncertainty and rely on good modeling
of leptons in jets, they are used only as a cross-check to nominal data-driven
background estimates.

Tab. 5.13 show the MC predictions for the number of events passing the se-
lection requirements for Z+jets, WZ/WW and top-quark (tt̄ and single-t) back-
grounds in all channels. All numbers are normalised to 4.6 fb−1.
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Ingredients in Eq.5.15 eeee µµµµ 2e2µ Combined (````)

(+) NLLLJ × FF 8.85± 0.98 0.21± 0.21 10.63± 1.06 19.70± 1.46

(−)NLLJJ × FF 2 4.24± 0.23 1.10± 0.31 4.24± 0.23 9.58± 0.45

(−)ZZ correction 0.29± 0.18 0.20+0.25
−0.20 0.56± 0.28 1.05± 0.42

Fake estimate, N fake
4` 4.33± 1.39(stat) < 0.91 [0+0.77

−0 (stat) 5.84± 1.57(stat) 9.07± 2.32(stat)

±0.62(syst) +0.49
−0 (syst)] ±0.93(syst) ±1.29(syst)

Table 5.12: ZZ∗ fake estimate in 4.6 fb−1 of data.

The dominant source of background is Z+jets. The MC-based prediction is 1.49
± 0.37 background events in the `−`+`−`+ combined case for the ZZ selection and
8.26 ± 1.30 events for the ZZ∗ selection; this is to be compared with the data-
driven estimate of 0.92 ± 1.10 ± 0.71 events for the ZZ selection and 9.07 ±
2.32 ± 1.30 events for the ZZ∗ selection. Both data-driven and MC background
estimations result in good agreement.

Cut Z+jets WZ/WW Top
Four Leptons 34.46 ± 3.40 2.03 ± 0.44 0.27 ± 0.21

Trigger Match 32.96 ± 3.33 2.02 ± 0.44 0.27 ± 0.21
2 OS-SF Pairs 14.29 ± 1.91 1.28 ± 0.27 0.19 ± 0.20

66 < MZ1 < 116 GeV 10.03 ± 1.57 1.16 ± 0.26 0.00 ± 0.00
MZ2 > 20 GeV 7.43 ± 1.29 0.83 ± 0.17 0.00 ± 0.00

66 < MZ2 < 116 GeV 1.24 ± 0.36 0.25 ± 0.08 0.00 ± 0.00

Table 5.13: MC predicted number of events passing various levels of selection
for the Z+jets, WZ/WW and top quark backgrounds in all four-lepton channels
combined. The Z+jets background includes contributions from both light and
heavy flavour jets. The top quark background includes contributions from tt̄ and
single top. The yields are normalised to 4.64 fb−1.
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5.7 Candidates Kinematic Distributions

The summary table of observed and expected events selected as described in
the previous chapter together with background estimation calculated in section
5.6 is reported in section 5.7.1. The kinematic distributions for selected candidate
events are shown in section 5.7.2.

5.7.1 Observed and Expected Events

The number of expected and observed events after applying all selection cuts
are shown in Tab. 5.14. Both statistical and systematic uncertainties are given for
both (ZZ and ZZ∗) selections in the table. In the ZZ → `−`+`−`+ channel we
observe 66 events passing the on-shell selection, with 53.4 ± 0.3 ± 2.2 signal and
0.9 ± 1.1 ± 0.7 background events expected (the first uncertainty is statistical and
the second is systematic). Allowing one Z to be off-shell, we observe 84 events,
with a signal expectation of 64.4 ± 0.4 ± 4.6 and a background expectation of 9.1
± 2.3 ± 1.3.

ZZ → `−`+`−`+ e+e−e+e− µ+µ−µ+µ− e+e−µ+µ− `−`+`−`+

Observed ZZ 16 23 27 66

Observed ZZ∗ 21 30 33 84

Expected ZZ 10.3 ± 0.1 ± 1.0 16.5 ± 0.2 ± 0.9 26.7 ± 0.2 ± 1.7 53.4 ± 0.3 ± 3.2

Expected ZZ∗ 12.3 ± 0.2 ± 1.2 20.5 ± 0.2 ± 1.1 31.6 ± 0.3 ± 2.0 64.4 ± 0.4 ± 4.0

Expected Bkg ZZ 0.5 ± 0.6 ± 0.3 0.3(stat)± 0.3(syst) 0.7 ± 0.7 ± 0.6 0.9 ± 1.1 ± 0.7

Expected Bkg ZZ∗ 4.3 ± 1.4 ± 0.6 < 0.7(stat)± 0.5(syst) 5.8 ± 1.6 ± 0.9 9.1 ± 2.3 ± 1.3

Table 5.14: Summary of observed events and expected signal and background
contributions in the individual sub-channels and combined. The background esti-
mations cover Z + X, top, other diboson processes, and W + X. The first error
is statistical while the second is systematic. The systematics quoted on the signal
and background yield do not include the uncertainty on the luminosity.

5.7.2 Kinematic Distributions

Figure 5.5 shows the mass of the leading Z candidate versus the mass of the
subleading Z candidate for the data and predicted signal events in the ZZ →
`−`+`−`+ channel. The estimated background distribution to this plot is shown in
Fig. 5.6.
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Distributions of the mass of the leading and subleading Z (M leading Z,M subleading Z)
in the ZZ∗ selection case are shown in Fig. 5.7. Obviously this case includes
also the distributions of M leading Z and M subleading Z for both on-shell Z ′s in the
mass window (66-116 GeV). MZZ , pleading Z

T , psubleading Z
T and pZZT for the final

ZZ → `−`+`−`+ candidates are shown in Figure 5.8 for the selection allowing one
Z to be off-shell (mZ2 > 20 GeV), for all four-lepton final states combined. Fig. 5.9
shows the same distributions for events passing the ZZ selection (66 GeV < mZ2 <
116 GeV). In all plots, the points are data and the stacked histograms shows the
signal and background prediction from simulation and data-driven methods, nor-
malized to the luminosity of the data. The gray band indicates the combined
statistical and systematic uncertainty on the signal prediction.

Similar distributions split by four-lepton final state are given in Appendix B.
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Figure 5.5: The mass of the leading Z candidate versus the mass of the subleading
Z candidate. The events observed in the data are shown as solid points and the signal
prediction from simulation normalized to the luminosity of the data as pink boxes, where
the size of each box is proportional to the yield in that bin. The solid red box indicates
the ZZ signal region defined by the cuts on the Z masses. The area enclosed by the
dashed blue lines indicates the ZZ∗ signal region, defined by the cuts on the Z and Z∗

masses.
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Figure 5.6: The simulated distribution of the mass of the leading Z candidate versus
the mass of the subleading Z candidate in background events. The distribution is taken
from Monte-Carlo and normalised to the estimated background. The area enclosed by
the dashed blue lines indicates the ZZ∗ signal region, defined by the cuts on the Z and
Z∗ masses.
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Figure 5.7: M leading Z (top) and M subleading Z (bottom) distributions for ZZ →
`−`+`−`+ candidates in all four-lepton channels allowing one Z to be off shell
(ZZ∗selection).
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Figure 5.8: Kinematic distributions for ZZ → `−`+`−`+ candidates in all four-lepton
channels allowing one Z to be off shell (ZZ∗selection). On top the MZZ , in the central

row the pleading ZT (middle left) and the psubleading ZT (midle right) and finally the pZZT

are shown.
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Figure 5.9: Kinematic distributions for ZZ → `−`+`−`+ candidates in all four-lepton
channels applying the on-shell (ZZ) selection. The top plot shows the MZZ ,in the middle

row the pleading ZT (left) and psubleading ZT (right) and finally on the bottom the pZZT are
shown.
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5.8 Cross Section Results

The combined (eeee, eeµµ and µµµµ) cross section has been calculated us-
ing a minimum log-likelihood approch, taking into account Poisson statistics and
systematic uncertainties. The decay channels are merged before maximizing the
profile likelihood function with respect to the cross section σ.

5.8.1 Fiducial and Total Cross Section

The profile likelihood function for the fiducial cross section is the product of a
Poisson probability distribution (P ) and Gaussian distribution function for each of
the nuisance parameters (CZZ , AZZ , N bkg, L) affected by a systematic uncertainty.

The Poisson function for the number of observed events N obs is

P (σ,CZZ , N
bkg;N obs) =

e−(s(σ,CZZ)+Nbkg) ·
(
s(σ,CZZ) +N bkg

)Nobs

N obs!
, (5.18)

where the number of signal events is a function of the cross section, the background
N bkg and other quantities such as the integrated luminosity and correction factors.

For the fiducial cross sections, the number of signal events is

s(σfid
ZZ→`−`+`−`+ , CZZ) = σfid

ZZ→`−`+`−`+ × CZZ × L (5.19)

while for the total cross section:

s(σtot
ZZ , CZZ) = σtot

ZZ × CZZ × AZZ × BRcomb(ZZ → `−`+`−`+)× L (5.20)

The AZZ in the latter formula accounts for the total volume of the measurement
and BRcomb(ZZ → `−`+`−`+) is the specific channel combined branching ratio
discussed in section 5.2.

The measured fiducial cross sections with associated statistical and systematic
uncertainties for ZZ and ZZ∗ selection are reported in Equations 5.21 and 5.22
respectively.

σfid
ZZ→`−`+`−`+ = 25.4+3.3

−3.0(stat.)+1.2
−1.0(syst.)± 1.0(lumi.)(fb) (5.21)

σfid
ZZ∗→`−`+`−`+ = 29.8+3.8

−3.5(stat.)+1.7
−1.5(syst.)± 1.2(lumi.)(fb) (5.22)

The total cross section for ZZ production results

σtot
ZZ = 7.0+0.9

−0.8(stat.)+0.4
−0.3(syst.)± 0.3(lumi.)(pb)
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5.9 Summary

A measurement of the ZZ → `−`+`−`+ production cross-section with the AT-
LAS detector in LHC proton- proton collisions at

√
s = 7 TeV has been performed

using electrons and muons in the final state. In a dataset with an integrated lumi-
nosity of 4.64 fb−1 a total of 66 ZZ and 84 ZZ∗ candidates were observed with a
background expectation of 0.9 ± 1.1(stat) ± 0.7(syst) and 9.1 ± 2.3 ± 1.3. The
Standard Model expectation for the number of signal events is 53.4 ± 0.3 ± 2.2
for the ZZ and 64.4 ± 0.4 ± 4.6 for the ZZ∗ case.

The fiducial cross-sections were determined to be

σfid
ZZ→`−`+`−`+ = 25.4+3.3

−3.0(stat.)+1.2
−1.0(syst.)± 1.0(lumi.)(fb)

σfid
ZZ∗→`−`+`−`+ = 29.8+3.8

−3.5(stat.)+1.7
−1.5(syst.)± 1.2(lumi.)(fb)

In the ZZ selection with both Z on-shell the total cross section was determined
to be

σtot
ZZ = 7.0+0.9

−0.8(stat.)+0.4
−0.3(syst.)± 0.3(lumi.)(pb)

The result is consistent with the NLO Standard Model prediction of 5.89+0.22
−0.18 pb,

calculated with Z bosons with a mass between 66 and 116 GeV.
Recently ATLAS published [67] the ZZ cross section combining the above

ZZ → `−`+`−`+ channel with the ZZ → `−`+νν̄ channel. The obtained total
cross section value is 6.7+0.7

−0.7(stat.)+0.4
−0.3(syst.)±0.3(lumi.)(pb). The comparison with

theoretical predictions and other measurements are shown in Fig. 5.10.
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Chapter 6

Unfolding of Differential
Distributions

6.1 Introduction

In this chapter the “Unfolding” procedure applied on three differential distri-
butions (∆φ(l, l), pZT and M4l) of the ZZ selection is presented. This procedure,
also referred as “Inverse Problems” or ”Unsmearing” concerns the correction of
distorted distributions. Distortion of distributions occurs when the values of a
variable are subject to additional random flactuations due to the limited reso-
lution of the measuring device. In section 6.2 the general unfolding problem is
formulated, the adopted methodology for the ZZ case follows in section 6.3 and
finally the unfolding results are presented in section 6.4.

6.2 Formulation of the Unfolding Problem

In high energy physics experiments the main goal is to determine the true
underlying value of any measured observable. In any experiment, the distribution
of a measured observable differs from that of the corresponding “true” physical
quantities due to detector effects, such as limited acceptance, reduced efficiency,
and finite resolution. From a mathematical point of view [68, 69], given some
observable kinematical quantity x distributed according to f(x), its probability
density function (p.d.f.), one typically measures a different variable y distributed
according to a different p.d.f g(y). The relation between f(x), to be determined in
an experiment and the measured distribution g(y) is given by the integral equation:

g(y) =

∫
A(y, x)f(x)dx, (6.1)

97
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where the resolution function A(y, x) describes the detector effects on the mea-
surement. The problem to determine f(x) (true distribution) from the measured
distribution g(y) is called “Unfolding”. Frequently one does not know the full
analytic parameterizations of g(y) and A(y, x), but instead one has discretized
samplings of the distributions in the form of histograms. Treating each bin of a
histogram as a vector or matrix element, the convolution Eq 6.1 can be represented
in matrix form,

Ax = y (6.2)

which can be solved for x, given the vector y. The vector y with n elements
represents the data histogram of measured quantities y, and the distribution f(x)
is represented by a histogram of the vector x with m elements. The transformation
matrix from x to y is represented by the n×m response matrix A. The elements
of the response matrix aij can be thought of as the probability for a true value xj
to be measured as a value yi.

While analytic parameterization of A is not typically available, one can gen-
erally model these detector effects using Monte Carlo (MC) simulations of the
underlying physics and a model of the detecting device, whereby the interactions
of predicted particles with the matter content of the detector are simulated. Given
the response matrix, the underlying true distribution from a measured spectrum
can be determined inverting the smearing effects of the measured data to produce
directly a measured true distribution, i.e. look for a solution of the form x = A−1y.
By unfolding the distributions one provides a result ahich can directly be compared
with those of other experiments as well as with theoretical predictions which may
be developed in the future.

There are many unfolding procedures [68, 69, 70, 71, 72] one can use to deter-
mine the true underlying distribution of the measured data. In the following only
the simple “Bin-by-Bin” and the “Bayesian” methods are briefly described. For a
complete discussion one can refer to the above literature.

6.2.1 Bin-by-Bin Unfolding

Bin-by-Bin is the simplest unfolding technique. For each bin in the observed
vector, y, a correction factor, ci is calculated from a control sample (typically from
Monte Carlo simulation) that describes the ratio of observed to true events. For
example, given a simulated sample of observed ysim and true xsim measurements,
the correction factors are calculated as simply:

ci = ysimi /xsimi
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For an observed data sample ydata, the final, unfolded result is taken simply
to be:

xdatai = ydatai /ci

This technique is conceptually very simple, avoids complicated error calcula-
tions and bin-to-bin correlations, and requires little computation. However, since
there are no explicit bin-to-bin migration corrections, this method can be safely
used if the bin-purity exceeds 80%, such that the majority of reconstructed events
remain within the bin in which they were generated. In fact, if the bin purities are
low, the unfolded result is highly biased by the control sample used to produce the
bin-by-bin corrections. In other words, with the Bin-by-Bin method, completely
different results depending on the MC sample used can be found.

While the bin-by-bin unfolding technique is used in this analyses as a cross-
check unfolding method, the nominal values are coming from the Bayesian unfold-
ing technique, briefly described in the following.

6.2.2 Bayesian Unfolding

Bayesian unfolding [72] is an iterative unfolding algorithm that uses Bayes
theorem to perform unfolding, treating the response matrix as a description of the
probability of observed data given the true distribution.

Mathematically, the Bayesian unfolding algorithm attempts to determine the
probability distribution of true events given the observed data and the response
matrix, stated as:

P (x | y,A, I) (6.3)

where, as before, x is the true distribution, y is the observed data, A is the
response matrix, and the new variable, I, is the underlying assumptions of the
analysis, which are usually left implicit.

By use of Bayes theorem, we may rewrite Eq. 6.3 as

P (x | y,A, I) ∝ P (y | x,A, I) · P (x | I) (6.4)

where the first term on the right is the likelihood of the observed data, and the
second term is the prior on the underlying truth distribution.

A difficulty arises from this equation in that the unfolded value will be strongly
influenced by the the underlying prior distribution. In particular, if a Monte Carlo
model is used to produce a prior, as is typically the case, the unfolded value will
be biased towards the truth distribution of the Monte Carlo used. Further, this
method näıvely can suffer from problems related to regularized matrix inversion:
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namely, oscillations due to amplified statistical errors. To solve both of these prob-
lems, Bayesian unfolding uses an iterative smoothing approach, which allows the
number of iterations to be used a regularization parameter.

The first iteration consists of solving Eq. 6.4 above using the supplied Monte
Carlo truth distribution as the prior distribution. For subsequent iterations, the
result from the previous iteration is used as the prior. The more iterations that are
run, the less the bias from the Monte Carlo truth distribution becomes. However,
at the same time, as the bias decreases, the statistical uncertainty increases, as
statistical fluctuations are amplified due to the positive feedback nature of the
system. Thus, the number of iterations serves to balance the strength of the bias
with the size of the oscillations. In general, the number of iterations taken is small
(see section 6.4.3), as otherwise the statistical errors become very large.

The main advantages in using this technique are listed in the following:

• It is implemented in the RooUnfold package, which simplifies integration
with ROOT based analysis.

• It contains only one parameter, the number of iterations, which is easily
understood and readily optimized, because good solutions occupy a relatively
small phase in this parameter.

• It can take into account of any kind of smearing and migration from the true
values to the observed ones.

• It provides the correlation matrix of the results.

• The algorithm is very fast, which makes uncertainty calculations via toy
Monte Carlo and pseudo-experiments computationally feasible.

• The prior distribution does not negatively impact the ability of the algorithm
to correctly unfold rapidly falling distributions.

For these reasons, Bayesian unfolding has been chosen as the nominal procedure
for the final result of this analysis.

6.3 Specific Adopted Methodology

The “unfolding” methodology used in this analysis is described here. In or-
der to transform the measured distribution d, with y as the signal and b as the
expected background contribution, to the unfolded distribution x, the following
three quantities via fully simulated Monte Carlo signal samples are defined:
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• the response matrix A. The response matrix accounts for bin-to-bin mi-
grations between the reconstructed and the truth distribution. It should be
noted that it is only defined for events which are selected on reconstruction
level and also fall in the fiducial volume defined on truth level.

• the correction factors ci =
Nreco
i

Ntruth
i
|in fid. for each bin i of the unfolded distri-

bution, as the ratio of reconstructed events N reco
i in bin i over the number of

MC truth events N truth
i . where all events are required to fall in the fiducial

region defined in truth level. It should be noted that the bin i is defined here
by the truth value of the unfolding variable. This correction factor accounts
for acceptance and efficiency losses on the reconstruction level.

• the fiducial factors fi =
Nin fid.
i

Ni
|is reco. for each bin i of the reconstructed

distribution, as the ratio of events which fall in the fiducial region on truth

level N in fid.
i over all events Ni, where all events are required to be recon-

structed and selected in the same bin. It should be noted that the bin i is
defined here by the reconstructed value of the unfolding variable. This cor-
rection factor is used to correct for those reconstructed events, which do not
fall in the fiducial region and hence have no associated truth-value which can
be used during the unfolding.

Figure 6.1: Principle method for unfolding in a distribution in a fiducial volume.

With these definitions, we have the equations:

yi = (di − bi) · fi
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xi = (A−1
i,j yi) · ci

which is schematically illustrated in Fig. 6.1. The central value of the unfolded
distribution is based on the nominal MC simulation of the signal samples, including
all detector corrections such as efficiencies, scales and resolutions. An array of
event-information for a given signal Monte Carlo sample, is defined and called
signal NTuple in the following. It contains value and event weights (MC truth
weight, reconstruction or trigger efficiency...) of the quantity to be unfolded at
both “truth” and “reconstruction” level.

The statistical uncertainty of the unfolded distribution is tested via Toy-Monte
Carlo tests. Each measured data-entry di is Poisson fluctuated and the full nominal
unfolding procedure is applied. This is repeated 200 times and the RMS of the
resulting unfolded values xi is taken as statistical uncertainty.

The systematic uncertainties are evaluated as follows: For each systematic un-
certainty, i.e. each scale, efficiency or resolution variation, a new signal NTuple
is produced for which the corresponding systematic variation has been applied. In
a second step, the quantities A, ci and fi are defined with the signal NTuple,
each corresponding to one systematic variation. The measured data-distribution is
then unfolded for all instances separately, leading to one distribution xsys for each
systematic uncertainties. The difference δsysi = xi − xsysi is defined as systematic
uncertainty in each bin. The corresponding covariance matrix for bins i and j is
defined via

Covi,j = δsysi × δ
sys
j .

The several covariance matrixes of all systematic uncertainties can be linearly
added, which enables the definition of the global bin-by-bin correlation matrix Ci,j
via

Ci,j =
Covi,j√

Covi,i
√
Covj,j

.

Most systematic uncertainties are split up in an upwards and downwards varia-
tion of 1σ around their nominal values, e.g. once the Monte Carlo signal sample is
processed with a jet energy scale +1σ and once with a jet energy scale −1σ. These
two variations clearly are fully correlated. In order to give a conservative estimate
during the first round of this measurement, we take the larger value of δsysi for
both variations as symmetric error. The corresponding correlations are estimated
via the Monte Carlo sample including the +1σ variation.
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6.4 ZZ → `−`+`−`+ Unfolded Distributions

The differential cross sections present a more detailed comparison of theory to
measurement, allowing a generic comparison of the kinematic distributions to new
theories. Variables which are sensitive to new phenomena, such as pZT , ∆φ(l, l) M4l,
have been chosen to be unfolded with bin boundaries in order to maximize sensitiv-
ity to nTGCs. At the same time, the bin widths were chosen to be commensurate
with the detector resolution.

Bin Estimated Background Expected Signal Observed events

0 < pT(Z) < 60 GeV 0.63± 0.75± 0.48 27.9 ± 0.2 ± 1.0 ± 1.8 28

60 < pT(Z) < 100 GeV 0.20± 0.24± 0.15 14.6 ± 0.2 ± 0.6 ± 1.0 25

100 < pT(Z) < 200 GeV 0.09± 0.10± 0.07 9.3 ± 0.1 ± 0.4 ± 0.8 11

200 < pT(Z) GeV 0.01± 0.01± 0.01 1.6 ± 0.1 ± 0.1 ± 0.2 2

0 < ∆φ(`+, `−) < 0.5 rad 0.05 ± 0.06 ± 0.04 2.5 ± 0.1 ± 0.1 ± 0.4 4

0.5 < ∆φ(`+, `−) < 1.0 rad 0.07 ± 0.08 ± 0.05 3.7 ± 0.1 ± 0.2 ± 0.3 8

1.0 < ∆φ(`+, `−) < 1.7 rad 0.10 ± 0.12 ± 0.08 8.9 ± 0.2 ± 0.4 ± 0.8 11

1.7 < ∆φ(`+, `−) < π rad 0.70 ± 0.84 ± 0.54 38.3 ± 0.4 ± 1.4 ± 2.6 43

0 < M4` < 240 GeV 0.39± 0.47± 0.30 28.8 ± 0.3 ± 1.0 ± 1.4 35

240 < M4` < 300 GeV 0.18± 0.21± 0.14 12.8 ± 0.2 ± 0.5 ± 0.9 17

300 < M4` < 400 GeV 0.15± 0.18± 0.11 7.7 ± 0.1 ± 0.3 ± 0.5 7

400 < M4` GeV 0.21± 0.21± 0.12 4.0 ± 0.1 ± 0.2 ± 0.7 7

Table 6.1: Data-driven backgrounds of `−`+`−`+ , and expected signal in the ZZ
selection, together with the observed data as a function of i) the pT of the leading
Z (top section), ii) the ∆φ between the two leptons of the leading Z (middle
section), and iii) of the mass of the `−`+`−`+ system (bottom section).

In the ZZ → `−`+`−`+ selection the binning used is [0, 60, 100, 200 GeV] in
the case of the pZT while [0, 0.5, 1.0, 1.7, π] is used for the ∆φ(l, l) unfolding, where
the Z is the one with the highest pT (leading Z) and the two leptons are the ones
forming the leading Z. The third variable chosen is the mass of the four leptons
system, M4l

1, in the following binning: [0, 240, 300, 400 GeV]. The expected signal
yield, the observed events and the data-driven backgrounds, calculated as discussed

1the mass of the four leptons system is indicated, in a completely equivalent way, also as mZZ .
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in the previous chapter, for the three binned distributions (pZT , M4l and ∆φ(l, l))
are shown in Tab. 6.1

6.4.1 Unfolding Results

The unfolded distributions are normalized within the given kinematic range to
unity, i.e. we measure (1/σfid)dσfid/dX (where X is the unfolded variable). The
normalization implies that detector corrections which are independent from the un-
folding variable X have no impact on the final result. Hence, only shape-dependent
systematic effects will impact the final result. In addition, the normalization re-
quirement leads to an additional constraint which also impacts the bin-by-bin
correlation for the statistical uncertainties. This can be most easily understood
when considering only two bins. In order to keep the overall normalization con-
stant, the upwards fluctuation of one bin, implies a downward fluctuation in the
other bin. The unfolded distributions are shown in Fig. 6.2 using “natural” bin
widths and the response matrices used in the unfolding in Fig. 6.3. The distribu-
tions are normalised to the fiducial cross-sections derived in the previous chapter.
The measured values are compared with the predictions from the MC generators
used to model the signal processes. The same distributions using a different bin
choice are shown in Appendix C.

6.4.2 Unfolding MC closure tests

A closure test is perfomed to verify the correctness of the procedure applied.
The signal MC (PowhegBox) is used to generate the response matrix and then
the reconstruction level distribution from the same MC is unfolded. Figure 6.4
shows the results where the unfolded and truth distributions are found to match
exactly.

The dependence of the unfolding from the MC used to calculate the response
matrix is tested unfolding the same MC sample but using different MC samples
to build the response matrix: the PowhegBox distribution is unfolded using a
response matrix based on Sherpa and compared to the expected truth distribu-
tion. The results are presented in Fig. 6.5. The bias due to using Sherpa for the
response matrix are at a maximum level of 4% depending on the bin and/or the
variable considered. This is accounted for in the systematic uncertainty (see entries
labelled as “MC generator” in tables of section 6.4.4).

6.4.3 Unfolding Procedure Stability

The stability of the unfolding procedure is tested by comparing the results
of the Bayesian unfolding algorithm up to 10 iterations. The differences in terms
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Figure 6.2: Unfolded distributions for ZZ → `−`+`−`+ selection.
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Figure 6.3: Response matrices for ZZ → `−`+`−`+ selection.
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Figure 6.4: Closure test results. MC signal events are used here as “data”.
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Figure 6.5: Closure test results for ZZ → `−`+`−`+ unfolding MC signal events,
used here as “data”, with a response matrix from a different MC.
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of percentage change in each bin with respect to one iteration and the next one
are shown in top part of Fig. 6.6. The variation of the statistical uncertainties is
shown in the bottom pad of the same figure. The number of iterations equal to
3 has been choosen as a compromise between reduction of bias and increase in
statistical uncertainty. The difference with using 4 iterations is accounted in the
systematic uncertainty and reported again in tables of section 6.4.4 labelled as
“Unfolding”.
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Figure 6.6: Statbility and statistical uncertainty of the Bayesian unfolding in
each bin as a function of the number of iterations.

6.4.4 Systematic Uncertainties

The systematic uncertainties on the unfolded distributions are reported in
Tables 6.2, 6.3, 6.4. Since we measure normalized distributions, only the shape-
dependent systematic effects are accounted for in these tables. The correlation
matrices for systematics uncertainties are shown in Fig. 6.7.
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Bins (0, 60) (60, 100) (100 , 200) (200 , 600)

1/σ dσ/dpZT 0.42 0.39 0.16 0.03

Uncertainties [%]

Stat Unc. 15.68 16.61 30.39 74.13

Stat Unc.(MC) 0.52 0.59 1.04 2.49

Sys Unc. 1.13 0.77 2.54 3.25

Bkg Unc. 0.21 0.15 0.15 0.20

MC generator 0.59 0.28 2.08 1.19

Unfolding 0.05 0.08 0.09 0.07

Electron energy resolution 0.03 0.02 0.15 0.17

Electron energy scale 0.77 0.35 0.92 1.44

Electron id. efficiency 0.14 0.09 0.13 0.11

Electron isol. efficiency 0.07 0.03 0.08 0.14

Electron rec. efficiency 0.03 <0.01 0.02 0.15

Muon momentum resolution (MS) 0.02 0.08 0.11 0.25

Muon momentum resolution (ID) 0.05 0.05 0.13 0.82

Muon momentum scale 0.21 0.10 0.33 0.22

Muon isol. efficiency 0.05 0.03 0.07 <0.01

Muon rec. efficiency 0.04 0.02 0.07 0.04

Trig. efficiency 0.01 0.02 <0.01 0.04

Backgrounds 0.21 0.15 0.15 0.20

Table 6.2: Summary of statistical and systematic uncertainties represented as a
percentage for the unfolded pZT spectrum. Only shape-dependent systematic un-
certainties are listed.
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Bins (0.00 , 0.50) (0.50 , 1.00) (1.00 , 1.70) (1.70 , 3.14)

1/σ dσ/d∆φ 0.07 0.14 0.18 0.61

Uncertainties [%]

Stat Unc. 53.24 34.58 30.09 11.14

Stat Unc.(MC) 2.76 2.21 1.41 0.52

Sys Unc. 5.10 3.28 3.87 0.56

Bkg Unc. <0.01 0.14 0.12 0.07

MC generator 4.14 2.33 3.55 0.08

Unfolding 0.04 0.26 0.09 0.04

Electron energy resolution 0.26 0.25 0.05 0.04

Electron energy scale 0.55 0.46 0.47 0.09

Electron id. efficiency 0.11 0.04 <0.01 0.02

Electron isol. efficiency 0.07 <0.01 0.02 <0.01

Electron rec. efficiency 0.08 0.07 0.03 0.03

Muon momentum resolution (MS) 0.32 0.08 0.15 <0.01

Muon momentum resolution (ID) 0.82 0.08 0.08 0.05

Muon momentum scale 0.19 0.22 0.35 0.13

Muon isol. efficiency <0.01 0.03 0.03 0.02

Muon rec. efficiency 0.04 0.07 0.02 0.02

Trig. efficiency 0.10 0.02 0.03 <0.01

Backgrounds <0.01 0.14 0.12 0.07

Table 6.3: Summary of statistical and systematic uncertainties represented as a
percentage for the unfolded ∆φ(`, `) spectrum. Only shape-dependent systematic
uncertainties are listed.
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Bins (0 , 240) (240, 300) (300 , 400) (400 , 800)

1/σ dσ/dM4l 0.52 0.27 0.10 0.11

Uncertainties [%]

Stat Unc. 13.12 23.03 39.85 37.34

Stat Unc.(MC) 0.44 0.79 1.21 1.46

Sys Unc. 2.00 2.15 1.65 3.70

Bkg Unc. 0.07 0.10 0.17 0.38

MC generator 1.61 1.57 0.39 3.13

Unfolding 0.05 0.20 0.48 0.17

Electron energy resolution 0.02 0.06 0.21 0.14

Electron energy scale 0.97 1.05 0.74 1.22

Electron id. efficiency 0.09 0.05 0.03 0.26

Electron isol. efficiency 0.03 0.02 <0.01 0.08

Electron rec. efficiency 0.06 <0.01 0.05 0.22

Muon momentum resolution (MS) 0.03 0.08 0.20 0.24

Muon momentum resolution (ID) 0.06 0.14 0.24 0.16

Muon momentum scale 0.47 0.62 0.41 0.27

Muon isol. efficiency 0.02 0.03 0.05 0.02

Muon rec. efficiency 0.03 0.01 0.05 0.07

Trig. efficiency <0.01 <0.01 0.02 <0.01

Backgrounds 0.07 0.10 0.17 0.38

Table 6.4: Summary of statistical and systematic uncertainties represented as
a percentage for the unfolded M4l spectrum. Only shape-dependent systematic
uncertainties are listed.



6.4. ZZ → `−`+`−`+ Unfolded Distributions 113

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

φ∆

0-1 1-2 2-3 3-4

φ∆

0-1

1-2

2-3

3-4

1.00 0.92 -0.54 0.60

0.92 1.00 -0.42 0.73

-0.54 -0.42 1.00 0.17

0.60 0.73 0.17 1.00

SystematicCorrelationMatrix

(a) Correlation matrices for ∆φ(`, `) distribu-
tion.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(Z) [GeV]TP

0-1 1-2 2-3 3-4
(Z

) 
[G

eV
]

T
P

0-1

1-2

2-3

3-4

1.00 0.19 -0.52 -0.15

0.19 1.00 0.20 0.64

-0.52 0.20 1.00 0.78

-0.15 0.64 0.78 1.00

SystematicCorrelationMatrix

(b) Correlation matrices for pZT distribution.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M4l [GeV]

0-1 1-2 2-3 3-4

M
4l

 [G
eV

]

0-1

1-2

2-3

3-4

1.00 -0.82 -0.30 -0.78

-0.82 1.00 0.70 0.95

-0.30 0.70 1.00 0.63

-0.78 0.95 0.63 1.00

SystematicCorrelationMatrix

(c) Correlation matrices for M4l distribution.

Figure 6.7: Correlation matrices for detector systematic uncertainties for ZZ →
`−`+`−`+.
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6.5 Summary

In this chapter the unfolding of diffirential distributions for ZZ → `−`+`−`+

selection has been presented. The transverse momentum of the leading Z (pZT ), the
angular difference between the two leptons forming the leading Z (∆φ(l, l)), and
the mass of the four leptons system (M4l), were unfolded back to the underlying
distributions using a Bayesian iterative algorithm, within the fiducial region. The
uncertainty on the unfolded distributions is dominated by the statistical uncer-
tainty, which is about 30% in most bins while the systematic uncertainty is no
more than 5% in any bin.

The distributions reported in Fig. 6.2 are consistent with Standard Model pre-
diction in each case.



Chapter 7

Limits on nTGC at ATLAS

7.1 Introduction to nTGC

In this chapter, a search for anomalous trilinear ZZγ∗ and ZZZ couplings
is presented. As alredy discussed in section 2.2 of Chapter 2 and following the
framework of Ref. [9], anomalous nTGCs for on-shell ZZ production can be pa-
rameterized by two CP-violating (fV4 ) and two CP-conserving (fV5 ) complex pa-
rameters (where V = Z, γ) which are zero in the Standard Model. Partial-wave
unitarity is ensured by using a form-factor parameterization that causes the cou-
pling to vanish at high parton center-of-mass energy

√
ŝ: fVi = fVi0/(1 + ŝ/Λ2)n.

Here, Λ is the energy scale at which physics beyond the Standard Model will be
directly observable, fVi0 are the low-energy approximations of the couplings and
n is the form-factor power. Values n = 3 and Λ = 2 TeV has been chosen for
all cases. These values ensure that the limits are within the values provided by
unitarity at LHC energies. Limits are also calculated for the case of not imposing
a form factor parametrization (Λ =∞).

7.2 nTGC Signature

The signature of anomalous neutral triple gauge couplings is enhanced cross
section at high energies (ŝ) and at large scattering angles. Thus, observables which
are proportional to the invariant mass of the diboson system and the gauge boson
transverse momentum are particularly sensitive to contributions from anomalous
couplings to the scattering amplitude. In ATLAS previous analysis with 1 fb−1,
limits on anomalous gauge boson couplings were determined using the ZZ cross
section alone [34]. Using the 2011 data sample (∼5 fb−1) the limits on anomalous
nTGCs presented in this thesis are determined using the observed and expected
numbers of ZZ → `−`+`−`+ events binned in pZT (leading Z transverse momen-

115
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Expected background Expected ZZ signal Observed events

ZZ → ```′`′

0 < pZT < 60 GeV 0.6± 0.8± 0.5 27.9 ± 0.2 ± 2.0 28
60 < pZT < 100 GeV 0.2± 0.2± 0.2 14.6 ± 0.2 ± 1.2 25
100 < pZT < 200 GeV 0.1± 0.1± 0.1 9.3 ± 0.1 ± 0.9 11

pZT > 200 GeV 0.01± 0.01± 0.01 1.6 ± 0.1 ± 0.3 2

Table 7.1: Total background, expected signal, and observed events as a function
of the pT of the leading Z for the ZZ → `−`+`−`+ channel. For the expected
signal and background events, the first uncertainty is statistical and the second is
systematic.

tum), as reported in Tab. 7.1.
Figure 7.1 shows a comparison of the Z transverse momentum for standard

model ZZ MC production (pink) and for samples, generated using Sherpa [16],
including anomolous triple gauge couplings nTGC values close to the previous
limits obtained by ATLAS. The same plot including also the oserved binned data
distribution of Tab. 7.1 is shown in Fig. 7.2.

Figure 7.1: Z-boson transverse momentum for standard model ZZ (pink) and for
samples including anomalous triple gauge couplings. The nTGC coupling parameters
are set at values near the edge of the exclusion set in the 1 fb−1 analysis [34].

The dependency of the couplings on the expected number of events in each
pZT bin is parameterized using fully simulated events, generated with Sherpa [16],
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Figure 7.2: Leading Z pT for 4 different aTGC samples set at values near the
edge of the exclusion set in the 1 fb−1 analysis. The signal and background are
also included in the plot.

subsequently reweighted using the Baur-Rainwater [9, 73] and BHO [74] MC gen-
erators, with the procedure described in the next section.

7.2.1 Matrix Element Reweighting Procedure

The matrix elements containing information on TGCs have been extracted from
the next-to-leading order matrix elements from the BHO MC generator for 2→ 5
events and the Baur-Rainwater MC generator for 2 → 4 events [9, 74, 73] and
introduced in a framework [75] that enables a calculation of the amplitude given
the four vectors and PDG codes of the incoming partons and outgoing particles
from the hard process.

In this way the reweighting framework works as an afterburner on existing MC
events and can in principle be applied to any ZZ MC events as long as parton
information from hard scattering is available. In the present analysis, the effects
of anomalous contributions are studied by reweighting Sherpa MC events.

For ZZ production there are 4 anomalous couplings (fVi , V = Z, γ∗ and i =
1, 2). Since they enter linearly in the Lagrangian, they will appear quadratically
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in the amplitude and the differential cross section can be written in bilinear form

dσSM+TGC = F00 + fγ4 F01 + fZ4 F02 + fγ5 F03 + fZ5 F04

+ (fγ4 )2 F11 + fγ4 f
Z
4 F12 + fγ4 f

γ
5 F13 + fγ4 f

Z
5 F14

+
(
fZ4
)2
F22 + fZ4 f

γ
5 F23 + fZ4 f

Z
5 F24

+ (fγ5 )2 F33 + fγ5 f
Z
5 F34

+
(
fZ5
)2
F44 (7.1)

where Fij are coefficients out of which (F00) corresponds to the SM operator contri-
bution and the rest consist of operator contributions associated with the anomalous
couplings.

Using this expansion, an event originating from SM sample can be reweighted
to a TGC point by assigning the weight

weight =
dσSM+TGC

dσSM

(7.2)

In practice, we reweight using a sample generated at a given TGC point to any
other set of TGC values in order to cover the high pZT tail of the phase space with
better MC statistics.

For a specific sample of events the only thing that differs in the calculation of
two different weights are the TGCs. The Fij’s are completely specified by the kine-
matics of the participating particles and thus unaffected by a change of anomalous
coupling. A recalculation of Fij for different anomalous couplings is redundant.

A priori, there are 25 different coefficients. However, using the symmetry prop-
erty of the coefficients (Fij = Fji), it is seen that only 25−10 = 15 are independent.
By using Eq. 7.1 it is possible to write down 15 equations that uniquely determine
the coefficients Fij.

To illustrate the procedure, consider the simplified situation where only one
coupling constant exists. In this case, there are 3 coefficients to be determined as
can be seen from the expression for the cross section

dσSM+TGC = F0 + fF1 + f 2F2 (7.3)

where the notation has been slightly simplified (f is one of the four TGCs and
F0 = dσSM).

Using three different values of f , e.g f = {0, 1,−1}, three independent equa-
tions are written down (in matrix form) dσ1

dσ2

dσ3

 =

 1 0 0
1 1 1
1 −1 1

 F0

F1

F2

 (7.4)
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Denoting the matrix containing the coupling values Â, the cross sections d~σ and
the coefficients ~F , the equations are easily manipulated to give the coefficients

d~σ = Â ~F ⇒ ~F = Â−1d~σ (7.5)

Clearly, Â must be invertible. This is the case when the couplings are chosen
such that the three equations in Eq. 7.4 are independent. When considering all
four couplings at the same time, the matrix Â is 15×15 and d~σ and ~F are 15-
dimensional vectors.

We then calculate the yield coefficients for the given TGC parameters for our
observable. We do that taking into account all the applied corrections in each
event. This way we end up with 15 coefficients that can be translated into the
yield coefficients multiplying the number of expected events by

Fij/F00 ·Nexpected. (7.6)

Limits on the anomalous couplings are setted using both the total event yield
and the differential yield, so both yield coefficients are reported.

YSM Yfγ4 YfZ4 Yfγ5 YfZ5

53.41± 0.17 0.5± 0.2 −0.06± 0.4 5.6± 0.3 5.3± 0.5

Yfγ4 f
γ
4

Yfγ4 fZ4 Yfγ4 f
γ
5

Yfγ4 fZ5

3153.1± 20.0 2944.8± 22.2 −5.6± 7.9 −0.5± 4.4

YfZ4 fZ4 YfZ4 f
γ
5

YfZ4 fZ5

4518.7± 38.7 −0.5± 4.4 −2.4± 14.3

Yfγ5 f
γ
5

Yfγ5 fZ5

2904.7± 17.1 2709.6± 19.3

YfZ5 fZ5

4161.6± 34.1

Table 7.2: Yield coefficients for form factor Λ = 2 TeV and n = 3 for ZZ →
`−`+`−`+ calculated for the total number of events.

Tables 7.2 and 7.3 show the yield coefficients for the total number of events in
the ZZ → `−`+`−`+ channel and for each pT . They were derived from a non-SM
sample with TGC parameters set to fγ4 = 0.0, fγ5 = −0.1, fZ4 = 0.0 and fZ5 = 0.0.



120 Chapter 7. Limits on nTGC at ATLAS

YSM Yfγ4 YfZ4 Yfγ5 YfZ5
0 < pZT < 60 27.93± 0.03 −0.02± 0.06 0.02± 0.12 −0.04± 0.08 1.7± 0.2

60 < pZT < 100 14.63± 0.03 0.1± 0.1 0.3± 0.2 1.0± 0.1 0.5± 0.2

100 < pZT < 200 9.28± 0.06 0.2± 0.1 −0.1± 0.3 3.5± 0.2 2.9± 0.4

200 < pZT 1.55± 0.03 0.2± 0.1 −0.3± 0.2 1.4± 0.1 0.3± 0.3

Yfγ4 f
γ
4

Yfγ4 fZ4 Yfγ4 f
γ
5

Yfγ4 fZ5
0 < pZT < 60 46.5± 1.3 46.4± 1.1 −0.06± 0.2 −0.10± 0.1

60 < pZT < 100 117.5± 2.6 114.0± 2.3 0.3± 0.5 0.4± 0.3

100 < pZT < 200 726.6± 7.9 681.9± 7.4 3.0± 3.3 0.4± 1.5

200 < pZT 2828.3± 10.9 2628.1± 18.2 −11.2± 9.0 −1.6± 5.1

YfZ4 fZ4 YfZ4 f
γ
5

YfZ4 fZ5
0 < pZT < 60 74.3± 1.8 −0.1± 0.1 −0.3± 0.3

60 < pZT < 100 177.6± 3.6 0.4± 0.3 0.7± 0.7

100 < pZT < 200 1048.8± 12.4 0.4± 1.5 −0.6± 4.3

200 < pZT 4022.7± 35.7 −1.6± 5.1 −2.9± 17.0

Yfγ5 f
γ
5

Yfγ5 fZ5
0 < pZT < 60 31.5± 1.1 31.6± 1.0

60 < pZT < 100 87.1± 2.2 84.7± 2.1

100 < pZT < 200 624.1± 6.4 585.7± 6.3

200 < pZT 2702.1± 4.6 2509.0± 14.1

YfZ5 fZ5
0 < pZT < 60 50.8± 1.6

60 < pZT < 100 132.5± 3.3

100 < pZT < 200 899.8± 10.9

200 < pZT 3847.5± 29.4

Table 7.3: Yield coefficients for Λ = 2 TeV and n = 3 for ZZ → `−`+`−`+

calculated in each bin of pZT .
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7.2.2 nTGC Limits Extraction

Limits on the nTGC paramters are set using a maximum profile likelihood
ratio following a frequentist limit approach [76]. The 95% C.L. interval for each
anomalous coupling are determined separately with the other couplings set to their
SM values. The full likelihood function for the TGC determination is a product
of the Poisson probability distribution (P ), with Gaussian terms (G) representing
each of the nuisance parameters, and m is the number of bins. Since we have
nuisance parameters for both signal and background, ~β = {β1, β2, . . . , β2m} are
nuisance parameters which express the fractional uncertainty as:

true N i
sig = N i

sig · (1 + βi) (7.7)

true N i
bkg = N i

bkg · (1 + βi+m) (7.8)

The full likelihood function is given as:

L(~x, ~β) =
m∏
i=1

P (N i
data, µ

i(~x, ~β))× 1

(2π)m
e−

1
2(~β·C−1·~β), (7.9)

where
µi(~x, ~β) = N i

sig(~x)(1 + βi) +N i
bkg(1 + βi+m). (7.10)

and
Nsig = (YSM + YfVi · f

V
i + YfVi fVi · (f

V
i )2) · L · CZZ . (7.11)

where the number of signal Nsig is expressed as a function of nTGC parameters
using the reweighting procedure described in the previous section. The statistic
ratio test R(x) is constructed by taking the ratio of the profile maximum likelihood
at a test nTGC parameter value x = fVi to the full maximum likelihood. That is

R(x) =
L(n|x, ˆ̂

β)

L(n|x̂, β̂)
. (7.12)

where
ˆ̂
β is the best estimator of β that maximizes the numerator for the fixed test

value of x, and x̂ and β̂ are the values of x and β which maximize the denominator.
The observed value of the test statistic, Robs(x), is computed using the observed

data nobs. The same ratio is calculated for a large number of pseudo experiments for
each test value of x, and compared with the observed Robs(x). A point is rejected
if more than 95% of the pseudo-experiments have a larger profile likelihood ratio
value than the one observed in data. In each pseudo-experiment, the number of
“observed” data events in each bin is randomly sampled from a Poisson distribution
with mean equal to the number of data N i

sig and background N i
bkg events in each

bin which are allowed to flucuate gussianly within their uncertainties.
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To find the expected sensitivity, the SM expectations for the signal and back-
ground were used to generate a large number of toy MC observed data sets. In this
case, due to slow computation, the 95% confidence interval is calculated using the
best fit value ± the errors computed by setting the delta log-likelihood to 1.92.
The plots showing the expected limit results of the pseudo-experiments are shown
in Fig. 7.3 using a form factor Λ = 2 TeV and in Fig. 7.4 without imposing it. In
this plots the expected limits are computed also using the M4l binned distributions
which is shown to have less sensitivity to nTGC.

The obtained limits on the four couplings parameters are given in Tab. 7.4.
Only the pZT binned case is reported since again gives the best constraints.

Coupling fγ4 fZ4 fγ5 fZ5

No Form Factor

1 bin

expected [−0.039, 0.039]± 0.008 [−0.033, 0.033]± 0.007 [−0.039, 0.039]± 0.008 [−0.034, 0.033]± 0.007

observed [−0.051, 0.051] [−0.043, 0.044] [−0.053, 0.052] [−0.045, 0.044]

4 Z pT bins

expected [−0.017, 0.017]± 0.005 [−0.015, 0.015]± 0.004 [−0.017, 0.017]± 0.005 [−0.015, 0.015]± 0.004

observed [−0.020, 0.020] [−0.017, 0.017] [−0.020, 0.020] [−0.017, 0.017]

Form Factor

1 bin

expected [−0.076, 0.076]± 0.015 [−0.063, 0.063]± 0.014 [−0.080, 0.078]± 0.016 [−0.067, 0.065]± 0.014

observed [−0.101, 0.100] [−0.084, 0.084] [−0.106, 0.104] [−0.088, 0.087]

4 Z pT bins

expected [−0.038, 0.038]± 0.010 [−0.031, 0.032]± 0.008 [−0.039, 0.038]± 0.010 [−0.032, 0.032]± 0.008

observed [−0.044, 0.044] [−0.037, 0.037] [−0.045, 0.045] [−0.037, 0.038]

Table 7.4: One dimensional 95% CL limits on the anomalous gauge boson cou-
plings in the ZZ → `−`+`−`+ channel, where the limit for each coupling assumes
the other couplings fixed at their SM value. Both the expected and observed limits
are shown.
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Figure 7.3: 95% confidence intervals corresponding to limits extracted by setting
delta log-likelihood = 1.92 in 1000 toy experiments for nTGC parameters. The
distribution of widths extracted for different observables are compared for one
versus several bins. A form factor scale of Λ = 2 TeV and n = 3 has been used in
the pseudo-experiments.
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Figure 7.4: The 95% confidence interval widths corresponding to limits extracted
by setting delta log-likelihood = 1.92 in 1000 toy experiments for nTGC parame-
ters. The distribution of widths extracted from different observables are compared.
No form factor scale has been used (i.e. Λ =∞ or equivalently n = 0)
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7.3 Summary

In this chapter the extraction procedure of nTGC limits has been presented.
The event yields as a function of the leading Z transverse momentum pZT of the
ZZ → `−`+`−`+ selection is used to derive 95% confidence intervals for anomalous
neutral triple gauge boson couplings by performing a maximum profile likelihood
ratio. The limits on the ZZ anomalous triple gauge couplings derived are more
than 5 times better than the ones derived in the previous ATLAS paper [34]. No
deviation from the SM is observed.

In the ATLAS paper of recent pubblication [67] the same limits are derived
combining both ZZ → `−`+`−`+ and ZZ → `−`+νν̄ channels. The results com-
pared with other experiments are shown in Fig. 7.5.
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Figure 7.5: Anomalous nTGC 95% confidence intervals from LHC, LEP [36]
and Tevatron [37] experiments. Integrated luminosities, centre-of-mass energy and
cut-off Λ for each experiment are shown.
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Conclusions

The work presented in this thesis is focused on the measurement of the ZZ →
`−`+`−`+ production cross-section with the ATLAS detector in LHC proton-proton
collisions at

√
s = 7 TeV, performed using electrons and muons in the final state.

In a dataset with an integrated luminosity of 4.64 fb−1 a total of 66 ZZ and 84
ZZ∗ candidates are observed with a background expectation of 0.9 ± 1.1 ± 0.7
and 9.1 ± 2.3 ± 1.3. The Standard Model expectation for the number of signal
events is 53.4 ± 0.3 ± 2.2 for the ZZ and 64.4 ± 0.4 ± 4.6 for the ZZ∗ case.

The fiducial cross-sections are determined to be

σfid
ZZ→`−`+`−`+ = 25.4+3.3

−3.0(stat.)+1.2
−1.0(syst.)± 1.0(lumi.)(fb)

σfid
ZZ∗→`−`+`−`+ = 29.8+3.8

−3.5(stat.)+1.7
−1.5(syst.)± 1.2(lumi.)(fb)

In the ZZ selection with both Z on-shell the total cross section was determined
to be

σtot
ZZ = 7.0+0.9

−0.8(stat.)+0.4
−0.3(syst.)± 0.3(lumi.)(pb)

The result is consistent with the MCFM NLO Standard Model prediction of
5.89+0.22

−0.18 pb, calculated with Z bosons with a mass between 66 and 116 GeV.
Then, the transverse momentum of the leading Z (pZT ), the angular difference

between the two leptons forming the leading Z (∆φ(l, l)), and the mass of the four
leptons system (M4l), were unfolded back to the underlying distributions using a
Bayesian iterative algorithm, within the fiducial region. The uncertainty on the
unfolded distributions is dominated by the statistical uncertainty, which is about
30% in most bins while the systematic uncertainty is no more than 5% in any bin.
The distributions reported are consistent with Standard Model and no deviation
from the prediction has been observed in each case.

Finally, the extraction procedure of nTGC limits is presented. The event yields
as a function of the leading Z transverse momentum pZT of the ZZ → `−`+`−`+

selection is used to derive 95% confidence intervals for anomalous neutral triple
gauge boson couplings by performing a maximum profile likelihood ratio. The
limits on the ZZ anomalous triple gauge couplings derived improve Tevatron and
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LEP results and are more than 5 times better than the ones derived in the previous
ATLAS measurement using 1 fb−1. No deviation from the prediction of the SM is
observed.



Appendix A

MC Background Tables

In the following tables are reported the simulated background processes used
in the ZZ → `−`+`−`+ analysis and described in section 4.2.3 of Chapter 4. The
cross section values, generator names, generator level filter efficiencies and total
number of events of each process are shown.
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MCID Process Generator events k-factor εfilter cross section [pb]

107650 ZeeNp0 Alpgen/Jimmy 6368284 1.25 1.0 668.32

107651 ZeeNp1 Alpgen/Jimmy 1334897 1.25 1.0 134.36

107652 ZeeNp2 Alpgen/Jimmy 809999 1.25 1.0 40.54

107653 ZeeNp3 Alpgen/Jimmy 220000 1.25 1.0 11.16

107654 ZeeNp4 Alpgen/Jimmy 60000 1.25 1.0 2.88

107655 ZeeNp5 Alpgen/Jimmy 20000 1.25 1.0 0.83

107660 ZµµNp0 Alpgen/Jimmy 6615230 1.25 1.0 668.68

107661 ZµµNp1 Alpgen/Jimmy 1334296 1.25 1.0 134.14

107662 ZµµNp2 Alpgen/Jimmy 404947 1.25 1.0 40.33

107663 ZµµNp3 Alpgen/Jimmy 110000 1.25 1.0 11.19

107664 ZµµNp4 Alpgen/Jimmy 30000 1.25 1.0 2.75

107665 ZµµNp5 Alpgen/Jimmy 10000 1.25 1.0 0.77

107670 ZττNp0 Alpgen/Jimmy 10613179 1.25 1.0 668.40

107671 ZττNp1 Alpgen/Jimmy 1999491 1.25 1.0 134.81

107672 ZττNp2 Alpgen/Jimmy 404950 1.25 1.0 40.36

107673 ZττNp3 Alpgen/Jimmy 509847 1.25 1.0 11.25

107674 ZττNp4 Alpgen/Jimmy 29999 1.25 1.0 2.79

107675 ZττNp5 Alpgen/Jimmy 45000 1.25 1.0 0.77

116250 ZeeNp0 M10to40 pt20 Alpgen/Jimmy 994949 1.22 1.0 3051.6

116251 ZeeNp1 M10to40 pt20 Alpgen/Jimmy 299998 1.22 1.0 87.87

116252 ZeeNp2 M10to40 pt20 Alpgen/Jimmy 499997 1.22 1.0 41.40

116253 ZeeNp3 M10to40 pt20 Alpgen/Jimmy 149998 1.22 1.0 8.38

116254 ZeeNp4 M10to40 pt20 Alpgen/Jimmy 40000 1.22 1.0 1.85

116255 ZeeNp5 M10to40 pt20 Alpgen/Jimmy 10000 1.22 1.0 0.46

116260 ZµµNp0 M10to40 pt20 Alpgen/Jimmy 999849 1.22 1.0 3051.6

116261 ZµµNp1 M10to40 pt20 Alpgen/Jimmy 300000 1.22 1.0 84.87

116262 ZµµNp2 M10to40 pt20 Alpgen/Jimmy 999994 1.22 1.0 41.45

116263 ZµµNp3 M10to40 pt20 Alpgen/Jimmy 150000 1.22 1.0 8.38

116264 ZµµNp4 M10to40 pt20 Alpgen/Jimmy 39999 1.22 1.0 1.85

116265 ZµµNp5 M10to40 pt20 Alpgen/Jimmy 10000 1.22 1.0 0.46

116270 ZττNp0 M10to40 pt20 Alpgen/Jimmy 999649 1.22 1.0 3055.1

116271 ZττNp1 M10to40 pt20 Alpgen/Jimmy 299999 1.22 1.0 84.93

116272 ZττNp2 M10to40 pt20 Alpgen/Jimmy 498899 1.22 1.0 41.47

116273 ZττNp3 M10to40 pt20 Alpgen/Jimmy 150000 1.22 1.0 8.36

116274 ZττNp4 M10to40 pt20 Alpgen/Jimmy 39999 1.22 1.0 1.85

116275 ZττNp5 M10to40 pt20 Alpgen/Jimmy 10000 1.22 1.0 0.46

Table A.1: MC samples/processes used to model Z+X, including Z+jets and
Drell-Yan samples. The corresponding cross sections, generator names, generator
level filter efficiencies and total numbers of events are shown in this table. NpX
(X=0. . . 5) in the process name refers to the number of additional partons in the
final state.
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MCID Process Generator events k-factor εfilter cross section [pb]
107680 WeνNp0 Alpgen 3358884 1.2 1.0 6921.6
107681 WeνNp1 Alpgen 2499645 1.2 1.0 1304.3
107682 WeνNp2 Alpgen 3768632 1.2 1.0 378.29
107683 WeνNp3 Alpgen 1008947 1.2 1.0 101.43
107684 WeνNp4 Alpgen 250000 1.2 1.0 25.87
107685 WeνNp5 Alpgen 69999 1.2 1.0 7.0
107690 WµνNp0 Alpgen 3462942 1.2 1.0 6919.6
107691 WµνNp1 Alpgen 2498593 1.2 1.0 1304.2
107692 WµνNp2 Alpgen 3768737 1.2 1.0 377.83
107693 WµνNp3 Alpgen 1008446 1.2 1.0 101.88
107694 WµνNp4 Alpgen 254950 1.2 1.0 25.75
107695 WµνNp5 Alpgen 70000 1.2 1.0 6.92
107700 WτνNp0 Alpgen 3418296 1.2 1.0 6918.6
107701 WτνNp1 Alpgen 2499194 1.2 1.0 1303.2
107702 WτνNp2 Alpgen 3750986 1.2 1.0 378.18
107703 WτνNp3 Alpgen 1009946 1.2 1.0 101.51
107704 WτνNp4 Alpgen 249998 1.2 1.0 25.64
107705 WτνNp5 Alpgen 65000 1.2 1.0 7.04

Table A.2: MC samples/processes used to model W+jets. The corresponding
cross sections, generator names, generator level filter efficiencies and total numbers
of events are shown in this table. NpX (X=0. . . 5) in the process name refers to
the number of additional partons in the final state.

MCID Process Generator events k-factor εfilter cross section [pb]
105200 tt̄ MC@NLO 14983835 1.0 0.55551 164.57
117360 t-channel→e MC@NLO 994897 1.0 1.0 6.94
117361 t-channel→ µ MC@NLO 999295 1.0 1.0 6.83
117362 t-channel→ τ MC@NLO 999948 1.0 1.0 7.26
117363 s-channel→e MC@NLO 199899 1.0 1.0 0.498
117364 s-channel→ µ MC@NLO 199850 1.0 1.0 0.498
117365 s-channel→ τ MC@NLO 190000 1.0 1.0 0.498
105500 Wt MC@NLO 994897 1.0 1.0 15.74
105757 bbcc µ10µ10X PythiaB 296599 1.0 1.0 2830.3
105758 bbcc µ10e10X PythiaB 795695 1.0 1.0 4017.1
105759 bbcc e10e10X PythiaB 2920985 1.0 1.0 1693.0

Table A.3: MC samples/processes used to model top (including tt̄ and single
top) and dijet backgrounds. The corresponding cross sections, generator names,
generator level filter efficiencies and total numbers of events are shown in the table.
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MCID Process Generator events k-factor εfilter cross section [pb]
105985 WW Herwig 50000 1.52 0.38863 29.592
105986 ZZ Herwig 50000 1.41 0.21152 4.6
105987 WZ Herwig 50000 1.58 1.0 3.432
117410 γWNp0 Alpgen 210000 1.432 1.0 213.06
117411 γWNp1 Alpgen 265000 1.432 1.0 52.199
117412 γWNp2 Alpgen 175000 1.432 1.0 17.259
117413 γWNp3 Alpgen 264999 1.432 1.0 5.3361
117414 γWNp4 Alpgen 64999 1.432 1.0 1.3762
117415 γWNp5 Alpgen 20000 1.432 1.0 0.3382
128850 γ∗W(`νee) Pythia,MadGraph 294999 1.0 1.0 4.80130
128851 γ∗W(`νµµ) Pythia,MadGraph 149900 1.0 1.0 1.45360
128852 γ∗W(`νττ) Pythia,MadGraph 50000 1.0 1.0 0.21330
108323 γZ(ee) Pythia,MadGraph 50000 1.41 1.0 9.63
108324 γZ(µµ) Pythia,MadGraph 50000 1.41 1.0 9.63
108325 γZ(ττ) Pythia,MadGraph 50000 1.41 0.15 9.41
105940 W+Z→lνqq MC@NLO 25000 1.0 1.0 1.6889
105941 W+Z→lνll MC@NLO 25000 1.0 1.0 0.15924
105942 W+Z→qqll MC@NLO 24950 1.0 1.0 0.49836
106024 W+Z→ τνll MC@NLO 25000 1.0 1.0 0.07962
106025 W+Z→lνττ MC@NLO 25000 1.0 1.0 0.07962
106026 W+Z→ τνττ MC@NLO 24950 1.0 1.0 0.03981
106027 W−Z→ τνll MC@NLO 25000 1.0 1.0 0.04302
106028 W−Z→lνττ MC@NLO 25000 1.0 1.0 0.04302
106029 W−Z→ τνττ MC@NLO 25000 1.0 1.0 0.02151
105970 W−Z→lνqq MC@NLO 25000 1.0 1.0 0.91264
105971 W−Z→lνll MC@NLO 100000 1.0 1.0 0.08605
105972 W−Z→qqll MC@NLO 100000 1.0 1.0 0.2693
113190 W+Z→qqττ MC@NLO 25000 1.0 1.0 0.24918
113191 W−Z→qqττ MC@NLO 25000 1.0 1.0 0.13465
105921 qq→W+W−→eeνν MC@NLO 199949 1.0 1.0 0.503
105922 qq→W+W−→eµνν MC@NLO 200000 1.0 1.0 0.503
105923 qq→W+W−→eτνν MC@NLO 200000 1.0 1.0 0.503
105924 qq→W+W−→ µµνν MC@NLO 199000 1.0 1.0 0.503
105925 qq→W+W−→ µeνν MC@NLO 199949 1.0 1.0 0.503
105926 qq→W+W−→ µτνν MC@NLO 200000 1.0 1.0 0.503
105927 qq→W+W−→ ττνν MC@NLO 199678 1.0 1.0 0.503
105928 qq→W+W−→ τeνν MC@NLO 199950 1.0 1.0 0.503
105929 qq→W+W−→ τµνν MC@NLO 200000 1.0 1.0 0.503
106011 gg→W+W−→eeνν gg2ww 10000 1.0 0.99 0.0145
106012 gg→W+W−→eµνν gg2ww 10000 1.0 0.99 0.0145
106013 gg→W+W−→eτνν gg2ww 10000 1.0 0.92 0.0145
106014 gg→W+W−→ µµνν gg2ww 9999 1.0 0.99 0.0145
106015 gg→W+W−→ µeνν gg2ww 10000 1.0 0.99 0.0145
106016 gg→W+W−→ µτνν gg2ww 10000 1.0 0.93 0.0145
106017 gg→W+W−→ ττνν gg2ww 10000 1.0 0.33 0.0145
106018 gg→W+W−→ τeνν gg2ww 10000 1.0 0.92 0.0145
106019 gg→W+W−→ τµνν gg2ww 10000 1.0 0.93 0.0145

Table A.4: MC samples/processes used to model diboson backgrounds, including
WW , Wγ and Zγ. The corresponding cross sections, generator names, generator
level filter efficiencies and total numbers of events are shown in the table.



Appendix B

ZZ → `−`+`−`+ Kinematic
Distributions per Channel

Figures B.1, B.3 and B.5 show distributions ofM leading Z,M subleading Z, pleading Z
T ,

psubleading Z
T , pZZT , andMZZ for the final ZZ → `−`+`−`+ candidates in the e+e−e+e−

µ+µ−µ+µ− and e+e−µ+µ− final-states, respectively, for the selection allowing one
Z to be off-shell (mZ2 > 20 GeV). Figures B.2, B.4 and B.6 show the same dis-
tributions for events passing the ZZ selection (66 GeV < mZ2 < 116 GeV), again
for the e+e−e+e− µ+µ−µ+µ− and e+e−µ+µ− final-states, respectively.

In all plots, the points are data and the stacked histograms shows the signal
and background prediction from simulation, normalized to the luminosity of the
data. The gray band indicates the combined statistical and systematic uncertainty
on the signal prediction.
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Figure B.1: Kinematic distributions for ZZ → `−`+`−`+ candidates in the e+e−e+e−

final-state, allowing one Z to be off shell (ZZ∗selection). The top row shows M leading Z

(left) and M subleading Z (right), without any cut on the distribution being plotted. The

second row shows pleading ZT (middle left) and psubleading ZT (right) and finally the third
row pZZT (left) and MZZ ( right).
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Figure B.2: Kinematic distributions for ZZ → `−`+`−`+ candidates in the e+e−e+e−

final state, applying the on-shell (ZZ) selection. The top row shows M leading Z (left)
and M subleading Z (right), without any cut on the distribution being plotted. The second

row shows pleading ZT (middle left) and psubleading ZT (right) and finally the third row pZZT

(left) and MZZ ( right).
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Figure B.3: Kinematic distributions for ZZ → `−`+`−`+ candidates in the µ+µ−µ+µ−

final-state, allowing one Z to be off shell (ZZ∗selection). The top row shows M leading Z

(left) and M subleading Z (right), without any cut on the distribution being plotted. The

second row shows pleading ZT (middle left) and psubleading ZT (right) and finally the third
row pZZT (left) and MZZ ( right).
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Figure B.4: Kinematic distributions for ZZ → `−`+`−`+ candidates in the µ+µ−µ+µ−

final state, applying the on-shell (ZZ) selection. The top row shows M leading Z (left) and
M subleading Z (right), without any cut on the distribution being plotted. The second row

shows pleading ZT (middle left) and psubleading ZT (right) and finally the third row pZZT (left)
and MZZ ( right).
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Figure B.5: Kinematic distributions for ZZ → `−`+`−`+ candidates in the e+e−µ+µ−

final-state, allowing one Z to be off shell (ZZ∗selection). The top row shows M leading Z

(left) and M subleading Z (right), without any cut on the distribution being plotted. The

second row shows pleading ZT (middle left) and psubleading ZT (right) and finally the third
row pZZT (left) and MZZ ( right).
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Figure B.6: Kinematic distributions for ZZ → `−`+`−`+ candidates in the e+e−µ+µ−

final state, applying the on-shell (ZZ) selection. The top row shows M leading Z (left) and
M subleading Z (right), without any cut on the distribution being plotted. The second row

shows pleading ZT (middle left) and psubleading ZT (right) and finally the third row pZZT (left)
and MZZ ( right).
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Appendix C

ZZ → `−`+`−`+ Unfolded
Distributions with Different
Binning

To increase the resolution of the information the data provide in the high
momentum, high mass area, the last bin of the pZT and M4` distributions of Fig. 6.2
in Chapter 6, has been split in two bins: [0− 60, 60− 100, 100− 200, 200− 300, >
300 GeV] [0−240, 240−300, 300−400, 400−600, > 600 GeV] respectively. The last
bin has a much bigger systematics (from PDF uncerntaity) and a lower statistics
than the one just before. The result of this binning in pZT and M4` are shown
in Fig. C.1. Figure C.2 shows the normalized and unfolded distributions of the
ZZ → `−`+`−`+ channel.
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Figure C.1: Unfolded distributions for ZZ → `−`+`−`+.
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(b) Normalized and unfolded pZT distribution.
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Figure C.2: Normalized and unfolded distributions for ZZ → `−`+`−`+.
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