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Introduction 

 
The purpose of this work is to develop a method for locating volcanic 

tremor sources. This method will be applaied on Stromboli vulcano dataset 

(7 years of recods). The work will concentrate mostly identifyng the 

number and location of the sources investigating on their temporal 

variation. 

Volcanic tremor has attracted considerable attention by seismologist 

because of its potential value as a tool for forecasting eruptions and better 

understanding the physical processes that occur inside active volcanoes. 

However, unlike tectonic earthquakes where the dominant source process 

is brittle failure of rock, the driving mechanism of tremor seems to involve 

complex interactions of magmatic fluids with the surrounding bedrock. 

These interactions are responsible for the following distinct characteristics 

found in volcanic tremor recorded at many volcanoes worldwide: a) the 

onset of tremor may be emergent or impulsive, with its amplitude showing 

in many cases a dirct relationship the volcanic activity; b) in the frequency 

domain the spectra consist of a series of sharp peaks in the band 0.1-7 Hz, 

representing either a fundamental frequency and its harmonics, or a 

random distribution, while quite often they  exhibit temporal variations in 

their content; c) the depth of the source can very considerably from one 

volcano to another in the range of a few hundred metres to 40 km; d) 

tremor may occur prior to and/or after eruptions with a duration that 

ranges from several minutes to several days or months. The methods used 

to study tremor include spectral analysis using both the Fast Fourier 
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Transformation and the Maximum Entropy Method, polarisation analysis 

of the wavefield and methods that make use of array data to deduce the 

backazimuth and type of the seismic waves as well as the location of the 

source. Visual and/or recorded acoustic observations of the ongoing 

volcaanic activity have assisted in many cases to further constrain 

proposed physical mechanisms for the generation of tremor. The models 

suggested as possible sources of tremor can be grouped as follows: a) fluid 

flow induced oscillations of conduits transporting magmatic fluids; b) 

excitation and resonance of fluid-filled cracks; c) bubble growth or 

collapse due to hydrothermal boiling of groundwater; d) a variety of 

models involving the oscillations of magma bodies with different 

geometries. It has been proposed by many authors that the source of 

tremor is not unique and may differ from one volcano to another, a fact 

that adds mor difficulty in the source modelling efforts.   

Most methods used to locate volcanic tremor sources are: 1) use of array, 

2) the calculation of wave field amplitude. The study on volcanic tremor 

for Stromboli volcano will be carried out adopting the latter basing the 

method on a realistic wavefield model. 
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1 Chapter 

Volcanic Tremor 
 

1.1 General Consideration of Volcanic Tremor 
 

Volcanic tremor that occurs the eruptions of volcanoes is one of the most 

interesting phenomena characterizing the dynamics of eruption. Whereas 

volcanic-tectonic earthquakes (Gorshokov, 1954) principally do not differ 

from ordinary tectonic ones and volcanic (explosive) earthquakes have 

many common features with powerful explosions, volcanic tremor seems 

to be a unique phenomenon that has no correspondences with any other 

phenomena being studied with seismic methods.  

Volcanic tremor was recoded for the first time during the Usu volcanic 

eruption (Omori 1911) in 1910 and after that was recorded repeatedly 

during the eruption of volcano Kilauea (Eaton and Richter, 1960; Finch, 

1949), Mauna Loa (Finch, 1943; Jaggar, 1920), Krakatau and Paricutin 

(Finch, 1949), Vesuvius (Imbo, 1935), Meakan-dake (Sakuma, 1959).  

In the course of seismic investigation of volcanic tremor, some regularities 

were found that characterize this process, the principal ones of which are 

as follows: 1) stability of volcanic tremor in time (from 2-3 days to several 

months) (Gorshkov, 1954; Finch, 1943, 1949; Jaggar, 1920; Omori, 1911), 

2) stability of the period and the amplitude of tremor (Gorshkov, 1954; 

Finch, 1949; Macdonald, 1952; Sakuma, 1957). 

In most of the above mentioned papers the authors have supposed in the 

obvious form that the volcanic tremor is provoked by the displacements of 
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masses in the deep or near surface parts of volcano apparutus. So, a 

nonstationary source was suggested as the cause of a time stationary 

phenomena. In particular, Fincher (1949) supposed that the source of 

volcanic trembling on Hawaii was “rhythmic shock activity of rising lava”. 

However, from the geological and seismological points of view one cannot 

imagine such  a mechanism of “tectonic-magmatic generator” that forces 

the pillar of lava some kilometers high to pulsate with the stable frequency 

and amplitude for some weeks or even some months. 

In other papers, leakage of gases trhough the system of cracks (Sakuma, 

1959), and the movement of magma in the channel were taken as possible 

sources of volcanic tremor. 

Volcanic tremor is, as previously noted, always a sign of high activity. 

However since the exct mechanisms are still unknonw, the importance and 

timing between the first appearance of tremor and possible eruptive 

activity is sill a matter of discussion (McNutt, 2000a). 
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1.1.1 Tremor Frequency Distributions 

The mean and median frequencies are both near 3.5 Hz, and 90% of the 

data lie between 1 and 9 Hz. It is often observed that tremor frequencies 

are relatively insensitive to changes in azimuth or small changes in 

distance (attenuation becomes important only over large distances). 

 

1.1.2 Duration 

One of the most basic pieces of information about a tremor episod is its 

duration. Figure 1 shows a histogram of tremor durations for two samples, 

488 cases from a single volcano, Pavlof (Alaska), and a worldwide sample 

of 1100 cases from 84 volcanoes. Short-duration episodes, those lasting 

minutes to hours, account for 93% of the Pavlof sample and 80% of the 

worldwide sample. The two distributions roughly mimic each other, that 

is, a single volcano and a large group of volcanoes share common features. 

Most of the long-duration tremor episodes, those lasting weeks or longer, 

accompany long-duration eruptions. 
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Fig.1. Volcanic tremor durations for 488 cases from Pavlof Volcano and for a worldwide sample of 
1100 cases from 84 volcanoes. Heights of bars are proportional to percentage of total data sample. 
Times are 2-59 min (M), 1-23 h (H), 1.6 days (D), and 1 week or longer (W). 
 (From S.R. McNutt, 1987) 
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1.1.3 Aplitudes 

 
It normalizes or standardizes the amplitudes to a common reference. This 

is essentially the same type of solution used in the determination of 

earthquake magnitudes. A normalization called reduced displacemente 

(R.D.) is widely used. There are two formulas. For body wave (P- waves 

and S-waves): 

 

 
 

For surface waves (Rayleigh waves, Love waves. And PL waves): 

 

 
 

Where A is amplitude in centimeters peak-to-peak, r is distance from 

source to seismic station in centimeters, M is sismograph magnification at 

the tremor frequency, and λ is wavelenght in centimeters. The  term is a 

correction for root mean square (rms) amplitude, assuming that most 

tremor resembles a sinuisod. The formulas correct for the effects of 

geometric sperading, instrument magnification, and rms amplitude, but not 

for attenuation. Both formulas were mathematically derived from the far-

field expressions for displacement at a point source. The surface wave 

formula explicitly includes the wavelength. The normalization distance is 
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1cm, which is essentially at the source. The unit of reduced displacement 

are cm^2. A seismic station that can record earthquakes of magnitude 1.0 

will also record tremor of 2.2 cm^2 reduced displacement at 3 Hz. For 

each increase of one earthquake magnitude unit, the reduced displacement 

increases by a factor of 10. (Seismology, Theoretical.) 
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1.1.4 Special Cases: A. Banded Tremor 

 
“Banded” tremor occur in regular, periodic bursts separated by quiescence 

of uniform duration.  The resulting pattern looks like stripes or bands on 

seismograms. The degree of regularity is partly a function of the speed of 

revolution of the seismograph drum. If the duration of the tremor signal or 

quiescent period is an integer multiple of the period of revolution, then the 

tremor will appear exactly banded. If the two are dissimilar, the signal will 

appear irregularly banded. Most examples of banded tremor have been 

recorded during times of hydrothermal activity, suggesting that the tremor 

may be caused by cavities refilling at a uniform rate and then boiling off. 

The magmatic cases suggest flow at uniform rate into a shallow magma 

body that eruption when some critical capacity or strength is exceeded. 

 

 

B. Spasmodic Tremor 

Most tremor looks like an irregular sinusoid with frequencies between 1 

and 5 Hz. A second type of tremor, called spasmodic tremor, consists of 

pulses of high frequency, usually 5-10 Hz or more. In some cases, the 

pulses are discrete earthquakes producing separate P-waves and S-waves. 

In others the seismograms are phaseless. The signal is continuous in the 

sense that new subevents occur before the coda of the previous subvent 

returns to background levels (Fig. 2). Spasmodic tremor has been recorded 

at Kilauea, Mount. S. Helens. Although this type of tremor has only been 
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recorded at a small number of volcanic areas, no signals like these are 

known from nonvolcanic areas. The presence of fluids has been suggested 

as a contributing cause of spasmodic tremor, since fluids would increase 

the pore pressure and lubrificate fault surface. 
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Fig. 2. Seismograms of a typical earthquake and typical spasmodic tremor at Mammoth Mountain, 
Calfornia. The spasmodic tremor burst has overlapping coda of small earthquakes and high 
background signal level that persist beyond normal coda decay times. 
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C. Deep Tremor 

 
Most tremor originates at shallow depths (0-5 km), but deep tremor or 

deep LF events occur repeatedly at Kilauea at depths of 30-60 km. The 

durations of these episodes rarely exceed 1 h. Deep LF events are known 

at Izu-Oschima (Japan) where a single monotonic LF event occurred at a 

depth of 30 km, at Lassen Peak (California) whre about one dozen long-

period events between depths of 16 and 22 km were recorded, and at 

Mammoth Mountain, where a sigle LF event at a depth of 18 km was 

recorded. 
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2 Modelling the source of volcanic tremor 
 

The process of how magma ascends from a deeper source and moves 

towards the surface  causing an eruption has been studied extensively by 

many authors and at different scales. On the smallest possible scale 

magma is considered to flow through the porous matrix of partially molten 

rock, forming during its ascent shape-preserving waves as has been 

demonstred analytically (Scott and Stevenson, 1984) and experimentally 

(Scott and Stevenson, 1986). On a larger scale, the interior of a volcano is 

modelled as consisting of a shallow magma reservoir fed by a deeper 

source and a cylindrical-shaped conduit that transports the fluid upwards 

and may be connected to a network of other conduits (Fedotov,1981). In 

general the reservoir is considered to behave elastically under variable 

stress conditions imposed by fluid accumulation or outflow. The 

cylindrical conduit on the oder hand is believed to exhibit more 

complicated, viscous behaviour so that a high driving fluid pressure from 

below results in deformations transmitted periodically as expansions or 

contractions of its wall (Ida and Kumazava, 1986; Ida, 1996). Elastic 

behaviour of the conduit may also be expected when the fluid pressure 

builds up quikly, forcing the conduit to respond elastically by a fast 

opening (Maeda, 2000). 

Several observations made during eruptions seggest a direct link between 

inward and outward flow of magma from a reservoir and the generation of 

volcanic tremor. Tilt observations indicate the occurence of cycles of slow 

build-up of ground dformation starting as volumetric expansion and 

terminating with contraction, being accompanied almost always by tremor 
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episodes (Kilauea Dvorak and Okamura, 1985; Izu Oshima Oikawa et al., 

1991; Fukao et al., 1998). 
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2.1 Resonance of large magma bodies 
 

Among the first model to be used in order to explain the occurence of 

volcanic tremor is that of the free oscillations of magma bodies of various 

shapes. For example Sassa (1936) and later Shima (1958) and Kubotera 

(1974) suggested that the observed 10-s-period tremor at Mt. Aso was 

caused by the oscillation of a spherical magma chamber beneath the 

volcano. Assuming that the low-frequency earthquakes may be a kind of 

impulse response of the tremor-generating system, Chouet (1985) 

proposed a model to explain such earthquakes by studing the oscillations 

of a buried magmatic pipe. The pipe consisted of three parts: on the top a 

hemispherical cavity filled with gas was considered to be triggering the 

oscillations due to excess gas pressure, in the middle the resonating pipe 

had a cylidrical shape and was filled with magma, and at the bottom it was 

shut by a horizontal disk. The calculated free surface response of this 

system showed an impulsive signature in the vicinity of the pipe, but 

evolved to harmonic wavetrain at larger diastances. Based on similar ideas 

about the relationship of tremor and low-frequency earthquakes, Crosson 

and Bame (1985) studied the resonance of a magmatic filled spherical 

cavity encased in country rock which contained a smallar cavity filled with 

gas. The motivation for such a model also came from observations at 

Stromboli, where low-frequency earthquakes were found to originate a 

few seconds prior to exsplosions. In that sense expansion of the gas-filled 

cavity could set the magma-filled one into resonance. The signal generated 

by such an oscillation had a frequency content of 1-5 Hz, consistent with 

the observations, and an impulsive signature in the time domain. Again it 
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was assumed that sustained expansions of the gas-filled pocket (probably 

due pressure variations) would give rise to continuous tremor.  
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 2.2 Hydrothermal boiling 
 

The fact that the formation of bubbles in a liquid is an efficient way of 

seismic energy generation has long been recognised and utilised in 

exploration geophysics (Dobrin and Savit, 1986). Gysers and geothermal 

reservois are natural sources of such seismic energy and seismological 

studies  at the Old Faithful geyser revealed the existence of tremorlike 

signals related to boiling of ground-water (Kieffer, 1984; Kedar et al., 

1996). Leet (1988) suggested that processes similar to the ones observed at 

Old Faithful could be used to explain the generation of volcanic tremor 

recrded during quiet periods at certain volcanoes, which he called “non 

eruption tremor”. Two restrictions regarding this model are: a) the magma 

chamber underneath the volcano acting as the source of heat should not 

reside at higer elevation level than the groundwater table; and b) the 

process should operate at shallow depths, so that steam can be separated 

from the liquid. Obviously, hydrothermal boiling cannot explain tremor 

processes operating at depths larger than a few kilometres from the Earth’s 

surface.  Boiling of graundwater causes the formation and growth of 

bubbles in the liquid that may collapse if they encounter a liquid ragion of 

lower temperature. Either of these two mechanisms can generate seismic 

energy, but Leet (1988) found that bubble collapse is 10^2 - 10^4 times 

more efficient in converting thermal power to seismic power; the boiling 

heat transfer rates in order for bubble collapse to generate 1-Hz tremor 

should be about 1000 MW, which he notes is the upper limit of observed 

heat flow in volcanic crater lakes and geothermal areas. The resulting 

signal is expected to resemble white noise, with equal energy in all 
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frequency bands, which is in contrast to the sharply peaked tremor spectra. 
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2.3 Excitation of fluid-filled cracks 
 

Brittle failure of rock and crack formation inevitably accoompany any 

upward movement of magma during different stages of volcanic activity. 

The main result of such rock fracturing is the generation of various types 

of seismic signals, ranging from events that can hardly be distinguished 

from common tectonic earthquakes to low-frequency events with emergent 

onsets, absence of clear S-wave phases and a slowly decaing coda Chouet, 

1996). Injection of water into hot dry rock has been found to produce 

seismic signals  similar to low-frequency volcanic earthquakes and 

supports the idea of a source that involves the opening of tensile cracks 

caused by excess fluid pressure (Bame and Fehler, 1986). The overall 

similarity of tremor and low-frequency events in the time and frequency 

domains, notwithstanding their different signal has been pointed out by 

many authors as indicating that a common source may be at work, and 

which of the two seismic signals will be generated depends on the duration 

of the excitation mechanism (Fehler, 1983; Chouet, 1985; Hofstetter and 

Malone, 1986; Tsuruga et al., 1997; Almendros et al., 1997). Volcanic 

tremor underneath Kilauea during the 1963 eruption was mainly composed 

of P waves, shared the same source area with the low-frequency 

eartquakes and was deep enough to assume that the observed tremor could 

be explained by the magmatic pressure build-up as magma moves away 

from a deep reservoir beneath the summit of the volcano. The cracks may 

be placed in a series and are connected by narrow channels that open when 

magma pressure reaches a critical value, facilitating the movement of fluid 

from one crack to the next one. The vibration caused by such a movement 
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was found to have a period proprtional to the crack length and amplitude 

that depended on the excess pressure and the area of extension. In order to 

explain the temporal variations of the frequency content during a tremor 

episod from higer (5-10 Hz) to lower frequenzies (1.5-3 Hz), Aki and 

Koyanagi (1981) suggested that this process starts with a few cracks 

generating a signal of small period which increases as more cracks vibrate 

and the length of the chain gets longer. However, two descrepancies have 

been pointed out regarding this model; first, as the length of the chain is 

increasing, thisshould lead to sustematic lowering of the frequencies of the 

length of the chain is increasing of the tremor signal, which was not 

observed. Second, numerical studies on crack generation and growth show 

that a tensile stress regime combined with the fact that the largest part of 

each crack is expected to be filled with fluid, favour catastrophic growth 

rather than a stable opening-closing process (Sammis and Julian, 1987). 

Chouet (1986, 1988) considered the displacement of the walls of a fluid-

filled crack (Fig. 4) caused by a pressure disturbance in the fluid as a 

possible model for the generation of low-frequency earthquakes, as well as 

tremor, if the disturbance is sustained. This model is qualitatively different 

from that proposed by Aki et al. (1977), since it assumes the vibration of 

only one crack with no inflow or outflow of fluid taking place. The 

caracteristics of the far field wavefield radieted by a rectangular shaped 

vibrating crack, filled with an inviscid fluid and assuming that the 

surrounding bedrock behaves as a Poisson solid, were found to depend on 

the following parameters: a) the crack geometry; b) the position and the 

area over which the pressure disturbance occurs; c) boundary conditions 

for the stress on the crack’s surface and the fluid flow at the crack 
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paramiter; and d) a dimensionless quantity called the crack stiffness C and 

the fluid-solid impedance contrast Z. Volcanic tremor underneath Kilauea 

during the 1963 euption was mainly composed of P waves, shared the 

same source area with the low-frequency earthquakes and was deep 

enough to assume that its source had to do with magma transportation 

rather than degassing processes (Aki et al., 1977; Aki and Koyanagi, 

1981). Aki et al. (1977) proposed that the observed tremor could be 

explained by the jerky extension of a chain of cracks caused by magmatic 

pressure build-up as magma moves away from a deep reservoir beneath 

the summit of the volcano. The cracks may be placed in a series and are 

connected by norrow channels that open when magma pressure reaches a 

critical value, facilitating the movement of fluid from one crack to the next 

one. The vibration caused by such a movment was found to have a period 

proportional to the crack length and an amplitude that depended on the 

excess pressure and the area of extension. In order to explain the temporal 

variations of the frequency content during a tremor episode from higer (5-

10 Hz) to  lower frequencies (1.5-3 Hz), Aki and Koyanagi (1981) 

suggested that this process starts with a few cracks generating a signal of 

small period which increases as more cracks vibrate and the length of the 

chain gets longer. However, two discrepancies have been pointed out 

regarding this model; first, as the length of the chain is increasing, this 

should lead to systematic lowering of the frequencies of the tremor signal, 

which was not observed. Second, numerical studies on crack generation 

and growth show that a tensile stress regime combined with the fact that 

the largest fluid, favour catastrophic growth rather than a stable opening-

closing process (Sammis and Julian, 1987). Chouet (1986, 1988) 
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considered the displacement of the walls of a fluid-filled crack caused by a 

pressure disturbance in the fluid as a possible model for the generation of 

low-frequency earthquakes, as well as tremor, if the disturbance is 

sustained. This model is qualitatively differnt from that proposed by Aki et 

al. (1997), since it summes the vibration of only one crack with no inflow 

or out flow of fluid taking place. 
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Malone, 1986; Tsuruga et al., 1997; Almendros et
al., 1997).

Volcanic tremor underneath Kilauea during the
1963 eruption was mainly composed of P waves,
shared the same source area with the low-fre-
quency earthquakes and was deep enough to as-
sume that its source had to do with magma trans-
portation rather than degassing processes (Aki et
al., 1977; Aki and Koyanagi, 1981). Aki et al.
(1977) proposed that the observed tremor could
be explained by the jerky extension of a chain of
cracks caused by magmatic pressure build-up as
magma moves away from a deep reservoir be-
neath the summit of the volcano. The cracks
may be placed in a series and are connected by
narrow channels that open when magma pressure
reaches a critical value, facilitating the movement
of £uid from one crack to the next one. The vi-
bration caused by such a movement was found to
have a period proportional to the crack length
and an amplitude that depended on the excess
pressure and the area of extension. In order to
explain the temporal variations of the frequency
content during a tremor episode from higher (5^
10 Hz) to lower frequencies (1.5^3 Hz), Aki and
Koyanagi (1981) suggested that this process starts
with a few cracks generating a signal of small
period which increases as more cracks vibrate
and the length of the chain gets longer. However,
two discrepancies have been pointed out regard-
ing this model ; ¢rst, as the length of the chain is
increasing, this should lead to systematic lowering
of the frequencies of the tremor signal, which was
not observed. Second, numerical studies on crack
generation and growth show that a tensile stress
regime combined with the fact that the largest
part of each crack is expected to be ¢lled with
£uid, favour catastrophic growth rather than a
stable opening^closing process (Sammis and Juli-
an, 1987).

Chouet (1986, 1988) considered the displace-
ment of the walls of a £uid-¢lled crack (Fig. 17)
caused by a pressure disturbance in the £uid as a
possible model for the generation of low-fre-
quency earthquakes, as well as tremor, if the dis-
turbance is sustained. This model is qualitatively
di¡erent from that proposed by Aki et al. (1977),
since it assumes the vibration of only one crack

with no in£ow or out£ow of £uid taking place.
The characteristics of the far-¢eld wave¢eld radi-
ated by a rectangular shaped vibrating crack,
¢lled with an inviscid £uid and assuming that
the surrounding bedrock behaves as a Poisson
solid, were found to depend on the following pa-
rameters : (a) the crack geometry; (b) the position
and the area over which the pressure disturbance
occurs ; (c) boundary conditions for the stress on
the crack’s surface and the £uid £ow at the crack
perimeter; and (d) a dimensionless quantity called
the crack sti¡ness C and the £uid-solid impedance
contrast Z, de¢ned as:

C ¼ bL
Wd

; Z ¼ b sK
b fa

ð17Þ

where b is the bulk modulus of the £uid, W is the
rigidity of the solid, L is the crack length, d is the
crack thickness, bs is the density of the solid with
K its P-wave velocity and bf the density of the
£uid with P-wave velocity equal to a. For many
di¡erent combinations of the above parameters

Fig. 17. Geometry of the £uid-¢lled crack model described
by Chouet (1986, 1988); see text for more details. The
shaded area indicates the place of application of the pressure
transient that triggers resonance (B.A. Chouet, pers. comm.,
2001).

VOLGEO 2511 29-10-02

K.I. Konstantinou, V. Schlindwein / Journal of Volcanology and Geothermal Research 119 (2002) 161^187180

 
Fig. 3. Geometry of the fluid-filled crack model described by Chouet (1986, 1988). The shaded area 
indicates the place of application of the pressure transient thet triggers resonance. 
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2.4  Fluid-flow-induced oscillations 
 

The quantitative study of magma flow through a geometrically irregular 

volcanic conduit poses a diffult numerical problem which requires the 

formulation and simultaneous solution of a system of partial differential 

equations describing the flow of the fluid as well as the elastic disturbance 

being caused by the coupling to the surrounding rock (Chouet and Julian, 

1985). Futher complications may arise if the fluid consists of a gas and 

liquid phase, or if the thickness of the conduit changes in space as well as 

in time, effectively exhibiting viscous or visco-elastic behaviour. In 

models of tremor generation involving fluid flow, a number of simplyfing 

assumptions are usually made: a) the fluid has constant density and 

consists of one phase only, b) the motion occurs in one or two dimension 

and c) the conduit behaves elastically, while its thickness can only change 

as a function of time. Based on these assumptions and using the principles 

of conservation of mass and momentum for the fluid, Julian (1994) 

derived a third-order system of non-linear ordinary differential equations 

that describe the flow inside a verically extending crack connecting an 

upstream and downstream reservoir (Fig.3). 

Another type of flow-induced oscillation may occur if the fluid system is 

suddendly perturbed from its equilibrium state by some external cause, 

like fracturing of the surrounding bedrock and formation of a new conduit, 

or a sudden variation in the fluid supply (St Lawrence and Qamar, 1979; 

Ferrick et al., 1982). This will result in the generation of a fluid transient 

with characteristics that will depend on the physical properties of the fluid, 

the geometry of the conduit and the boundary conditions. Pressure 
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oscillations caused by the transient will displace the conduit walls 

generating elastic waves in the surrounding medium. 

More complicated behaviour is expected if the conduit  is a part of an 

extended network such as is believed to exist beneath many volcanoes. 

Energy considerations show that once the system is perturbed  it will 

continue to oscillate, until damped primarily by fluid friction, since 

dissipation of energy due to the generation of seismic waves is relatively 

small (Ferrick and St. Lawrence, 1984). Similar unsteady flow in cinduits 

followed by tremor-like seismic signals has been reported at a power plant 

at oroville, California caused by a faulty valve and at Tarbella dam, 

Pakistan, while water was moving through outflow tunnels (McNutt, 

1986). 
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metrically irregular volcanic conduit poses a di⁄-
cult numerical problem which requires the formu-
lation and simultaneous solution of a system of
partial di¡erential equations describing the £ow
of the £uid as well as the elastic disturbance being
caused by the coupling to the surrounding rock
(Chouet and Julian, 1985). Further complications
may arise if the £uid consists of a gas and liquid
phase, or if the thickness of the conduit changes
in space as well as in time, e¡ectively exhibiting
viscous or visco-elastic behaviour. In models of
tremor generation involving £uid £ow, a number
of simplifying assumptions are usually made: (a)
the £uid has a constant density and consists of
one phase only, (b) the motion occurs in one or
two dimensions and (c) the conduit behaves elas-
tically, while its thickness can only change as a
function of time.

Based on these assumptions and using the prin-
ciples of conservation of mass and momentum for
the £uid, Julian (1994) derived a third-order sys-
tem of non-linear ordinary di¡erential equations
that describe the £ow inside a vertically extending
crack connecting an upstream and a downstream
reservoir (Fig. 14). Considering a £uid density
and viscosity typical for basaltic melts (b=2500

Table 3
Reported visual and acoustic observations related to tremor activity

Region Visual/acoustic observation Reference

Pavlof Lava fountaining related to high-amplitude tremor McNutt, 1986; Garce¤s and Hansen, 1998

Klyutchevskoy Variation of tremor spectral amplitude envelope whenever the
eruptive activity changed

Gordeev et al., 1990

Kilauea Gas-piston events associated with cycles of ponding and withdrawal
of lava from the crater followed by high-amplitude tremor

Ferrazzini and Aki, 1992

Mt. Semeru Pumping and explosion sounds with durations of 40 s^16 min that
coincided with tremor episodes

Schlindwein, 1994

Stromboli Gas bursts at the top of the magma column coincide with high-
amplitude tremor

Ripepe et al., 1996; Ripepe, 1996

Arenal Di¡erent explosion sounds that are accompanied by ash plumes
and precede tremor episodes

Benoit and McNutt, 1997; Garce¤s et al.,
1998; Hagerty et al., 2000

White Island Eruptive/intrusive activity always followed by inharmonic tremor Sherburn et al., 1998

Satsuma-Iwojima Strong tremor occurring while vent emmits high-temperature
volcanic gas

Ohminato and Ereditato, 1998

Karimsky/Sangay ‘Chugging’ tremor episodes followed by steam locomotive-like
sounds

Johnson and Lees, 2000

Fig. 14. Lumped parameter model of the generation of vol-
canic tremor. Viscous incompressible £uid £ows in the x di-
rection from the upstream to downstream reservoir through
a channel of length (L) with imperfectly elastic walls, mod-
elled as movable but undeformable blocks of mass 2M, sti¡-
ness 2k and damping constant 2A (all measured per unit dis-
tance in the z direction). All motion occurs in the x^y plane
and it is independent of z. The dynamic variables are the
channel thickness h(t) and the £uid speed v(x,t) (from Julian,
1994; reproduced with permission of American Geophysical
Union).

VOLGEO 2511 29-10-02
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Fig. 4. Lumped parameter model of the generation of volcanic tremor. Viscous incompressible fluid 
flows in the x direction from the upstream to downstream reservoir through a channel of length (L) 
with imperfectly elastic walls, modelled as movable but underformable blocks of mass 2M, stiffness 
2k and damping constant 2A (all measured per unit distance in the z direction). All motion occurs in 
the x-y plane and it is independent of z. The dynamic variables are the channel thickness h(t) and 
the fluid speed v(x,t) (from Julian, 1994). 
 
 
 
 
 
 
 
 
 
 
 



	   33	  

3 Volcanic tremor at Kilauea volcano 
 
Harmonic tremor characterized by an almost constant frequency pattern 
throughout the duration of its seismic signal is associated with eruptive 
activity and magma movement in Hawaii. The signal frequency is believed 
to vary inversely to the length of the generating source, and amplitude 
varies according to rate of magma movement under confining pressure. 
The eruption related tremor reflects high-frequency seismic and acoustic 
disturbance from lava-fountain activity. The amplitude of eruption tremor 
oscillates at intervals of a few seconds in a temporal pattern resembling 
that of intense lava fountaining, in which high bursts repeatedly occur 
seconds apart. This characteristic pattern may be related to pulsating 
magma movement driven by continual pressure fluctuations. Added to the 
eruption zone activity, tremor and long-period events that are localized at 
the summit vary in intensity according to the maagnitude and rate of the 
associated inflation-deflation episodes. Long-period events and tremor are 
inferred to share a common origin, and selected long-period events with 
identifiable onset times are locatable using standard earthquake locating 
techniques. The locations of long-period event may, in turn, be used to 
identify the source region of  tremor beneath Hawaii and to further define 
depth-time classifications of tremor. 
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3.1 Harmonic tremor 
 
Harmonic tremor, a seismic indicator of magma movement and eruptive 
activity, has been instrumentally documented at the Hawaiian Volcano 
Observatory (HVO) since 1912. It is identified on seismograms by a 
sustained signal that varies within a limited range of frequencies. Its 
duration is determined by the duration of volcanic eruption or of 
accelerated magmatic activity within the transpport system. At HVO, 
tremori s classified into three categories of inferred depth on the basis of 
relative amplitude and real extent of detection in the seismic network. 
Tremor is logged in terms of minutes per hour for short episodes and hours 
par day for longer events. Most of our tremor data is related to activity at 
Kilauea, since that is ehere most activity has occurred in the past 20 years 
and where our network of seismometers is densest. Seismic data collected 
from such prolonged Kilauea eruptions as the Mauna Ulu sequence in 
1969-1974 and the Puu Oo sequence in 1983-1985, and from a significant 
southwest rift intrusion in August 1981 have provided a comprehensive 
record of  shallow tremor associated with eruptions and intrusions, s well 
as, tremor associated with the aftermath of eruptive-intrusive activity or 
during periods of increased magmatic activity within the magma transport 
sustem at depth. Tremor near eruptive vents varies in amplitude according 
to the vigor of eruption. The seismic signal associated with eruption 
attenuates rapidly with increasing distance from the eruptive vent. 
Harmonic tremor that occurred in places or times unrelated to eruption is 
presumed to be associated with magma movement at depth. It is 
commonly localized beneath the Kilauea summit region at crustal depths 
but spreads to cover a large area beneath the active volcanoes in the south 
Hawaii region at mantle depths. Episodes of such tremor are often 
accompanied by increased numbers of long-period events, which have 
measurable onsets and travel tmes across the seismic network that fit P-
wave velocities expected for normal earthquakes. The amplitude and 
signal duration of the long-period events vary like those of earthquakes, 
but otherwise their spectra resemble those of tremor in having consistently 
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peaked frequencies throughout the coda. Similarity of the distance-
attenuation rates for the long-period events and for tremor further implies a 
common source or origin. If we accept a common origin for long-period 
events and tremor, then the precise determination of hypocenters for a 
sufficient number of long-period events accurately constrains the source 
region for tremor beneath Hawaii. The depth distribution of located long-
period events as a function of time provides insight into the dynamic 
processes involved in the ascent of magma pluming system to eruptions of 
lava on the surface. Koyanagi and others (1976) have shown how swarms 
of short-period earthquakes outline the upper boundary of the shallow 
storage system beneath the summit of Kilauea and how a persistent source 
of long-period events defines the magmatic feeding sysstem below. A 
region in which few earthquakes occur, lacated at a depth of 3-6 km, is 
interpreted to be the storage zone of magma having an expected low 
rigidity. Swarms of shallow earthquakes and rapid changes in ground tilt 
during vigorous intrusions of magma are often accompanied by a 
background of low-amplitude tremor. Upon eruption of lava, the tremor 
amplitude increases and the frequency of earthquakes decreases. During 
the euption, the amplitude of tremori is influenced by lava movement and 
fountaining at the eruption site and by magma movement within the 
conduit sistem near the summit. Bursts of tremor at intermediate depths 
beneath Kilauea are occasionally recorded during eruptions, but these 
usually accompany gradual inflation of the summit. Persistent deep tremor 
in the mantle beneath south Hawaii had individual episodes that last one-
half hour to several hours, and their cumulative reduced displacement as a 
function of time yields a rate of magma ascent from the mantle (Aki and 
Koyanagi,19981). Reduced displacement refers to the source intensity of 
tremor calculated from seismographically measured ground amplitudes. 
 
 
 
 
 



	   36	  

3.2 The Mauna Ulu eruption in 1969 
 
The Mauna Ulu eruption series was preceded frequency of shallow 
earthquakes in the summit region several weeks before and a subsequent 
increase in the number of east-rift earthquakes a week before the pre-
eruption seismic swarm. The initial outbreak on May 24, 1969, started 
within hours of earthquake swarms and weak tremor in the east rift and 
deflation of the summit. Increased harmonic tremor occurred just before 
the lavaa outbreak on the east rift. After a two-week repose, activity 
renewed with long periods of quiescence persisted until the end of the 
year, producing 12 pronounced episodes of strong eruption. The intense 
fountaining episodes accompanied by high-amplitude tremor generally 
lasted less than a day; they were spaced at intervals varyng from several 
days to more than two months. Between the major episodes, low amplitude 
tremor was continous in the aerea of the active vents. The repeated pattern 
of eruption and accompanying sequence of tilt and seismic events is 
summarized in figure (Fig. 5). The nearness of th eruptive vent to the 
summit made it difficult to distinghish tremor possiblygenerated from 
separate sources along the conduit system during major episodes of 
eruption. Strong eruption tremor dominated at stations near the eruptive 
vents, as well as at those in the summit region. Gradual inflation and an 
increase in shallow earthquakes at the summit preceded the eruptive 
outbreaks. Shallow tremor at the eruption vent increased in aplitude 
simultaneously with the increase in lava output and fountaining. Abrupt 
onsets and endings these eruptive episodes were accompanied by equally 
rapid changes in tremor amplitude. Sustained high rates of summit 
deflation associated with the major eruptive outbreaks were followed by 
an increase in very small long-period events and harmonic tremor at the 
summit. Harmonic tremor sometimes developed into a fluctuating pattern, 
in which bursts of higher amplitude lasting 5-10 seconds occurred 
repeatedly and as frequently as several times per minute level of 
continuous tremor, and long-period events with higher amplitude and more 
definable onset times occurred at wide intervals of many minutes. The 
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areal variation of tremor amplitude is shown in figure 6 1-min samples of 
seismograms from temporary stations occupied with a jeep-mounted 
mobile seismic unit. This survey was made a few hours after a major 
eruptive episode in order to avoid seismic and acoustic noise from hugh 
fountaining and during a time interval when tremor amplitude remained 
fairly stable so that time difference had minimal effect on station-to-station 
comparisons. However, the sampling was intended to be soon enough after 
the eruptive episode to capture the expected stabilizing movement of 
magma within the conduit system following a major outbreak. The survey 
was repeated several times after major episodes of lava fountaning. For 
comparability, the tremor was recorded at the same instrumental gain at 
each station. Amplitude read from continously recording stations near the 
eruptive vent and in the summit area were used for reference. The 
comparisons of amplitudes in figure 7A and 7B generally indicate a 
persistent source at the active vent, and a secondary source at the summit 
caldera region, which decay to background after about a day of activity. 
Between major episodes of lava fountaining, when eruptive activity was 
limited to varyng rates of visible lava movement in the vent (Swanson and 
other, 1979), the amplitude of harmonic tremor recorded on seismographs 
within a few km of the vent changed according to the rate of lava 
movement. An example of time variation in tremor amplitude that 
correlated with a pattern of lava oscillation in the Mauna Ulu vent is 
shown in figure 8.  High and low activity alternated at intervals of a few to 
many hours. During other intervals between major outbreaks of lava, low 
tremor activity showed fairly constant amplitude sustained for many days, 
or erratic showed fairly constant amplitude sustained for many days, or 
erratic fluctuations with peak amplitudes lasting from less than a minute to 
many minutes, or cyclic patterns with regular time intervals of amplitude 
changes. One variety of cyclic oscillation, descibed as gas piston activity 
(Swanson, 1971), was defined by tremor of low amplitude for 5-15 
minutes during gradual rise of the lava column in the vent. The increased 
seismic signal during collapse of the lava column characteristically has a 
symmetrical cigar-shaped envelope: amplitude increases gradually, 
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reaches a peak at least several times above the initial background, and 
finally decreases at a rate comparable to the rate of increase during onset. 
Signal frequencies at peak amplitudes are 2-5 Hz at recording distance of 
about one kilometer from the eruptive vent. The tremor signal is generally 
local and decreases below background noise a few kilometers from the 
source vent. This oscillating pattern of lava and tremor activity, sometimes 
lasting for many days, was observed again during the Puu Oo eruption.  
 
 
 



	   39	  

 
 
 
Fig.5. Plot of summit tilt, numbers of shallow earthquakes, relative amplitud of tremor and episodes 
of eruption for the Mauna Ulu eruption of Kilauea Volcano. May-October 1969. Tilt mesaurements 
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at 2-hours interval from the Uwekahuna east-west component tiltmeter near the northwest rim of 
Kilauea caldera. Earthquake counts at 2-hour intervals from selected local stations, detection 
threshold estimated at about magnitude 0.1. Amplitude of tremor taken from adjusted hourly 
readings of smoked-paper records and plotted in relative units above background noise at three 
stations: Mauna Loa (MLO), 25 km from the eruption site; West Pit (WPT), 11 km from the 
eruption site; and East Koar (EKO), 5 km from the eruption site. Times of major eruptive epsodes 
indicated by horizontal bars and labeled with their sequence numbers. Data beyond October 
incomplete and therefore omitted.  
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Fig. 6. Armonic tremor recorded by portable seismograph following eruptive episode IV of the 
Mauna Ulu eruption. The numbers indicate the order in which each site was monitored. All 
seismogram segments are one minute long . A, Immediatly after the eruptve episode. Note the 
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moderate-amplitude tremor at the summit stations 11 and 14. B, One day after the eruption. Note 
that tremor in the summit area (stations 1 and 19 here) has decreased to background noise. 
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Fig. 7. Portions of a smoked-paper seismogram from station (EKO) on the upper east rift zone of 
Kilauea, 4.5 km from the eruptive vent, that monitored varying amplitudes of low tremor associated 
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with confined lava moment following a major episode of the Mauna Ulu eruption in October 1969. 
Recording speed and instrumental magnification were kept constant over the entire interval of time. 
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3.3 The Puu Oo eruption in 1983-1985 
 
The pattern of seismicity from mid-1982 to 1985 and continuing reflects 
the mechanical process within Kilauea Volcano that developed into a 
major eruptive sequence in the east rift zone (Koyanagi and others, in 
pres). The geologic and geophysical data pertaining to the sequence of rift 
intrusions, fissure outbreaks, and eruptive episodes from a centralized vent 
system for this eruption from 1983 to mid-1984 are summarized by Wolfe 
and others. From Semptember to December 1982, increase of shallow 
earthquake in the summit region during periods of inflationary ground tilt, 
alternating with downrift-migrating swarms of earthquakes in the east rift 
zone during deflationary periods, indicated that episodic surges of magma 
were supplying the conduit sistem in the rift zone. This episodic activity 
led to a major intrusive event on January 2, 1983: rapid summit deflation 
and vigorous downrift migration of shallow earthquakes were sustained for 
24 hours and finally resulted in a fissure outbreak in the east rift zone. 
High-frequency tremor accompanied the pre-eruption swarm of 
earthquakes in the east rift. The sustained deflation at the summit was 
accompanied by short-period earthquake, presumably due to fracturing of 
the host rocks in response to the withdrawal of magma, and harmonic 
tremor and long-period events associated with the accelerated magmatic 
activity. The onset of eruption was accompanied by a marked increase in 
east-rift tremor, followed by five days of incremental intrusion 
earthquakes and outbreak of lava farther downrift. The early weeks of the 
Puu Oo eruption were charavcterized by strong tremor with erratic high-
frequency signals from a wide source area. As the pattern of eruption 
changed from fissure outbreaks to multiple –vent eruption and eventually 
to repeated lava emissions from e single vent system at Puu Oo, weaker 
and more continous harmonic tremor originated near the eruptive vent and 
corresponded in amplitude to the vigor of eruptive activity. Episodes of 
high lava fountains accompanied by high-amplitude tremor that usually 
lasted from less than a day to more than a week occurred at intervals of 
about one to nine weeks. Between major episodes of eruption, the 
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amplitude of the local tremor varied according to the level of the limited 
lava activity, which was sometimes visible, at depths of 0-50 m in the 
vent. The patterns of tremor recorded near the actice Puu Oo vent between 
eruptive episodes are illustrated in figure 8. As in the Mauna Ulu eruption, 
burst of moderate-amplitude tremor lasting about one minute occurred 
repeatedly during periods of low-amplitude tremor background tremor 
lasting 5-15 minutes that characterized gas piston activity (figure 8A). 
More sustained episodes consisting  of increased amplitude lasting about 
three hours were observed during a repose period in February 1985 (figure 
9B). major episodes of high fountains and lava output were accompanied 
by increased tremor, whose amplitude excceded by more than an order of 
magnitude de continuous backfround tremor during intervals of subdued 
eruptive activity. The rapid response of seismic amplitude to changes in 
lava fountaning and output rate imply that the principal source of tremori s 
shallow and localized at the eruption site. Convincing evidence of a deeper 
tremor source beneath the summit of Kilauea, separated from activity in 
the eruption region, was the tremor recorded at the North Pit following 
sustained high rates of deflactionary tilt at the summit. This relationship of 
tremor that varied in amplitude and duration according to the rate and 
magnitude of the episodes of the Puu Oo eruption from 1983 to mid-1984, 
and a reduction of the data indicating this relation is documented by 
Koyanagi and others. These episodes of summit tremor that accompanied 
major episodes of the eruption were frequently preceded by increasing 
rates ad amplitudes of discrete long-period events, which peaked into 
continuous tremor and then decayed gradually back to background, with 
bursts of long-period events, at progressively lower amplitude and wider 
intervals of time (figure 9). in contrast to both the summit storage zone and 
the east-rift eruption site, the rift conduit connecting them remained 
virtually free of detectable harmonic tremor during the repeated major 
episodes of  eruption. From this we infer an absence of barriers in the 
central part of the lateral conduit system, allowing quasi-steady flow of 
magma with minimal pressure fluctuations. A chronological sequence of 
lava production, increased harmonic tremor in the east rift zone and 



	   47	  

summit, and ground tilting is outlined in figure 10 for one of the vigorouse 
eruptive episodes in the prolonged east rift eruption. Ground tilt showing 
rapid deflation during the twenty-fifth eruptive episod in September 1984 
(figure 10) was measured as the east-west component on a continuously 
recording tiltmeter located at Uwekahuna vault northwest of the summit 
deformation center. Deflationary tilt started gradually at about 1400 (H.s.t) 
on September 19 and accelerated in rate at 1700. It continued at a high rate 
until 0600 on September 20 and then gradually declined, ending by about 
0900. The deflationary tilt during these 19 hours totaled 15 microradians, 
and it reached a maximum rate of 1.35  per hour at about 2000 on 
september 19.  Peak-to-peak amplitude of harmonic tremor was measured 
on Develocorder seismograms from station MPR for east-rift tremor and 
from station NPT for summit tremor. Ground oscillation in micrometers 
was reduced from the amplitude measurement averaged for about one 
minute at each hour and adjusted for instrumental magnification at the 
recorded frequency and for station corrections. The average period of the 
east-rift tremor signal recorded at MPR was about 0.5 s, and that of the 
summit tremor recorded at NPT was about 0.3 s. Station MPR, situated 
about 6 km west of the eruptive vent, recorded rapid increase and decrease 
of the east-rift tremor at the onset and end of the eruptive episode, with a 
temporary decrease in the middle. The hourly sampling rate used in figure 
11 omitted a strong burst of tremor between 1622 and 1633 during the 
early activity, as well as the exact times of rapid changes at the onset and 
end of the vigorous fountaining episode.   
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Fig.8. Portions of seismograms from revolving-drum recorders at stations on Kilauea Volcano 
showing various seismic events. A, Record from station PUK, about 1 km west of the eruptive vent 
Puu Ooshowing gas-piston events (X) and south flank earthquakes (Y). B, Record from station 
KMM showing a cyclic pattern of  low tremor at the eruptive vent between the major episodes on 
February 4 and March 13, 1985, of the Kilauea east-rift eruption. Episodes of high tremor (C) less 
than an hour in duration repeatedly alternated with several hours of lower amplitude (D) during 
February 7-11, 1985. Two cigar-shaped (E) recorded at 0946 and 1145 were signals characteristic 
of cyclic lava movement, termed gas-piston acttivity, in the vent. Numerous microshocks (F) 
associated with thermal contraction crackingon the adjacent new lava flows, degassing explosions, 
and continual structural adjustments at the vent were conspicuous during times of lowbackground 
tremor. Other varieties of repose tremor during the prolonged eruption at Puu Oo are described by 
Wolfe and others. 
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Fig.9. Section of smoked-paper seismograms from station NPT showing the sequence of harmonic 
tremor and long-period events at the summit following episode 30 of east-rift eruption on February 
4-6, 1985. Recording speed and instrumental magnification were kept constant over the entire time 
interval. A, Period from 0900  to 2000 on February 6 shows an increased number of discrete long-
period events in a decreasing background of continuous tremor. Occasionally, stronger long-period 
events were recorded widely on the summit network of station. 
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Fig.10. Change in tilt and tremor amplitude during and after episode 25 of the prolonged Kilauea 
east-rift eruption characterized by high lava production and fountaning. Tremor amlitudes are 
approximate averages, ±0.2 micrometers. Curves between hourly readings were interpolated. 
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2 Chapter 
Methods of analysis applied to volcanic tremor 

 
2.1 Method of spectral estimation 

 
In most studies of volcanic tremor the estimation of the frequency content 

has been one of the primary tools for investigating the nature of the signal. 

However, any method used for the calculation of the spectrum should be 

able to cope successfully with a number of characteristics not present in 

other seismic signals. First, tremor can persist for long periods of time 

resulting in the accumulation of large amounts of data that have to be 

analysed. Second, they may exhibit strong temporal variations in 

amplitude and/or frequency content that should be monitored, because of 

their importance for source modelling  and eruption forecasting. Third, the 

calculated spectrum may have multiple sharp peaks around narrow 

frequency bands, in which case a high degree of resolution is required in 

order to resolve the individual frequencies. One of the first spectral 

methods to be applied to digital tremor data was the direct segment 

method (Bath, 1974). The long tremor time series is divided into smaller 

non-overlapping segments and the spectrum is calculated for each segment 

by means of a Fast Fourier Transform (FFT). The final spectral estimate is 

then the average of all the individual spectra. This method has been used 

in volcanic tremor recordings from Mt. St. Helens (Fehler, 1983; 

Hofstetter and Malone, 1986). It enhances the spectral peaks that are 

common to every time segment and suppresses those generated by random 
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noise. A similar method for real-time spectral estimation of tremor data 

has been implemented at the Ruapehu volcano observatory (Hurst, 1985),  

where average spectra are calculated over successive 3-min intervals with 

a frequency resolution of 0.1 Hz in the band between 0.05 and 4.04 Hz 

(Sherburn et al., 1999) (Fig. 11). In order to detect temporal changes in the 

frequency content of the signal a direct comparison of the averaged spectra 

should be performed. Such a comparison of spectra from different time 

periods is feasible only when the amount of data is relatively small and the 

observed variations are larger than the ambient noise levels. A better way 

of detecting temporal variations is by incorporating in the display all the 

variables that are likely to change (time, frequency, amplitude). This 

accomplished by creating a spectrogram (Fig. 12), which is a 2D 

representation of the variations of spectral amplitude and frequency of the 

observed signal as time elapses. The calculation of the spectrogram can be 

achieved by moving a sliding window over the whole length of the time  

series and estimating the amplitude spectrum by performing an FFT for 

overlapping positions of the window (e.g. Mt. Semeru-Schlindwein et al., 

1995; Ruapehu-Sherburn et al., 1999). The resolution of the spectrum 

obtained by using an FFT algorithm is proportional to the reciprocal of the 

window length chosen for the analysis. In order to increase the spectral 

resolution more than it is possible with the FFT, the Maximum Entropy 

Method (MEM) (Burg, 1967) has been applied in a number of cases 

(Pavlof- McNutt, 1986; Izu-Oshima-Yamaoka et al., 1991; Mt. Etna-Seidl 

et al., 1990). Assuming that the time series is generated by a linear random 

mechanism MEM fits to the data, in a least squares sense, an 
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autoregressive process of order  of the form (detailed derivations of 

these equations can be found in Ulrych and Bishop (1975)): 

                   (1) 

by applying a prediction filter of length , where  are the filter 

coefficients calculated by solving the normal equations posed by the least 

squares problem,  is a white noise series with zero mean and  

variance. Then the spectrum of  will be estimated by the equation: 

                                    (2) 

where  is frequency and M represents the total number of samples in the 

time series considered for the analysis. If the selected time window of the 

data is small enough MEM will produce a much higher resolution 

spectrum than the usual FFT methods, otherwise the result will be 

essentially the same.  
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2.1.2 Identification of source effects from observed spectra 

 
Any recorded seismic signal can be considered as the result of the 

consecutive application of a series of linear filters to the original wavelet 

generated by a source (Lay and Wallace, 1995). This can be represented 

mathematically by the convolution of one filter with the other in the time 

domain : 

                                  (3) 

or the equivalent equation in the frequency domain: 

                                      (4) 

where  is the recorded waveform,  is the original source wavelet,  

 represents the filter characteristics due to the propagation of the 

signal through the Earth,  represents filtering effects due to the 

structure beneath the recording station and  accounts for the filtering 

due to limited frequency bandwidth of the recording instrument. Hereafter 

we will refer to ,  and  filters as “source”, “path” and “site 

effects” respectively. Since in most cases the resulting spectrum consists 

of a series of sharp peaks, a major difficulty is to successfully determine 

which factors have shaped it. A comparison between tremor and 

earthquake spectra recorded at the same station is a common method of 

checking for possible site effects, since they should influence both signals 

(Mt. St. Helens-Fehler, 1983; Kilauea-Goldstein and Chouet, 1994; 

Deception Island-Almendros et al., 1997). Unfortunately it is far more 

difficult to find and isolate path effects, mainly because of the limited 

knowledge of the structure between the source and the receivers in most 
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volcanic areas. If the recording stations are close enough and azimuthally 

distributed around the source, similarities in spectra of different stations 

may be attributed to source effects (e.g. Pavlof-Mc Nutt, 1986). A less 

empirical approach to the source-path effect separation problem involves 

the use of spectral ratios for pairs of events recorded at a number of station 

(Sakurajima-Tsuraga et al., 1997). The method uses two time windows A 

and B from a tremor time series that were recorded at several different 

stations. Based on the assumption that these two events are generated by 

the same source and at the same hypocentral area, the path and site effects 

will be the same, thus Eq. 4 will be yielding spectral ratios of the storm 

 for the th station. The correlation of the estimated ratios 

for the all station and for different frequency bands can be checked by 

performing a statistical covariance analysis, where high correlation 

coefficients should indicate a common source effect for the two events. 

This method may not be always applicable, since the assumptions for 

events generated by the same source and at the same depth are not 

generally valid in every volcanic environment. The problem of the correct 

identification of specific frequencies as source effects and not as 

propagational artefacts has been made easier with the widespread use of 

spectrograms that display any new frequency as it appears. Since the path 

and site effect factors listed in Eq. 3 behave as linear filters and cannot 

generate new frequencies to their input signal (Anstey, 1981), these 

frequencies can only be attributed to a source effect. 
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2.1.3 Study of the wavefield properties – Polarisation analysis- 

 
A further step in the analysis of the volcanic tremor is the study of its 

wavefield and the identification of the types of waves that compose it. The 

standard method that has been used for such an analysis is that of the 

covariance matrix (Montalbetti and Kanasewich, 1970; Jurkevics, 1988) 

which utilizes data recorded by one or more three-component 

seismometers. The method works in the time domain by badpass filtering 

the signal around the frequency band of interest and then calculating the 

covariance matrix for a short, sliding time window along the time series by 

using the following equation: 

                                                         (5) 

where  is the data matrix in one 

window and  is the th sample of component ,  is the number of 

samples and T denotes the transpose of X. the estimated covariance matrix 

S will be of the form: 

                                                               (6) 

where z, n, e denote the vertical, north-south and east-west components 

respectively and  is the cross-variance of the vertical and east-west 

components, while  is the auto-variance of the vertical component. 

Solving the eigenvalue problem  will give the three 

eigenvalues  and their corresponding eigenvectors . 

The three principal axes of the polarization ellipsoid will be given by , 



	   57	  

with  the eigenvectors are equal to  in amplitude units. One 

non-zero eigenvalue implies a purely rectilinear ground motion, while two 

non-zero eigenvalues characterize a purely elliptical palarisation. In order 

to obtain a measure of what kind of motion prevails in the time window 

the rectilinearity and planarity coefficients are used, that are given by 

 and  respectively. The method 

described above has been used to study the wavefield properties of 

volcanic tremor from Mt. Etna for a time period spanning 6 years (1987-

1993) during which different kinds of volcanic activity were at work, 

including periods of quiescence, Strombolian activity or lava fountaining 

(Ferrucci et al., 1990; Ereditato and Luongo, 1994; Wegler and Seidl, 

1997). The polarization analysis for the whole of this period revealed a 

persistent pattern of high values for the rectilinearity  coefficient with an 

east-west polarization, suggesting that the wavefield consists of waves 

radiated by a vertical extended source aligned along the north-south 

direction. The dominant wave types have been identified either as P waves 

(Ferrucci et al., 1990) or as Love/SH waves (Ereditato and Luongo, 1994; 

Wegler and Seidl, 1997) showing a complicated overlapping pattern. 

Similar observations have been reported for the tremor wavefield in other 

volcanoes, such as Arenal where the dominant wave type was identified as 

S waves by Benoit and McNutt (1997), whereas composition of the 

wavefield and were unable to identify any particular wave type.  
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2.1.4 Study of wavefield and source location using array methods 

- Method of correlation coefficients – 

 
While polarization analysis can give a qualitative picture of the 

composition of the tremor wavefield (even using data from only one 

seismometer), array methods can provide a much more detailed knowledge 

of it, at the expense of having to use more instruments and a specific 

receiver geometry. Aki (1957) designed and used the method of 

correlation coefficients in order to identify the predominant wave type of 

the background seismic noise generated by traffic in Tokyo. The method 

assumes that the recorded seismic signal is stationary and stochastic in 

time and space and that it consists mostly of surface waves, implying that 

the method can resolve wavefield properties generated by shallow sources. 

The spatial correlation function is calculated for pairs of receivers, one 

being at the centre of a semicircular array (reference receiver) and the 

others at its circumference, covering an azimuth of 0 to  degrees. This 

function is defined as: 

            (7) 

where the angle brackets denote averaging over time,  and 

 are the Cartesian coordinates of the two 

receivers,  is the distance between them and   is the azimuth of the two 

receivers measured from the direction of the   axis. Integrating this 

function for the azimuth range covered by the array will give: 

                                                 (8) 
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For a wave with a phase velocity  the azimuthally averaged 

correlation function is related to the power spectrum  by the 

equation: 

                                (9) 

where  is the Bessel function of zero order. In almost all the cases one or 

more specific frequency bands are of interest: filtering the signal through a 

narrow bandpass filter centred at , the power spectrum will be 

, where  is the spectral power density of 

the signal at frequency  and  is the Dirac function. The correlation 

function will become: 

                                            (10) 

the correlation coefficient  can then be defined as: 

                                                          (11) 

and the azimuthal average of the correlation coefficients will be equal to: 

                                                            (12) 

it is possible therefore to calculate the correlation coefficients for different 

values of   and azimuth , then fit a Bessel function to the coefficients 

and recover the phase velocity  of the recorded waves. By further 

analysis of the dispersion curves one may obtain the 2D velocity structure 

beneath the array for depths ranging 100 m to 1 Km. the equations that 

relate the correlation coefficients with the phase velocities of different 

wave types (Rayleigh, Love) can be found in Aki (1957, 1959). A contour 

map of the coefficients versus azimuth and frequency (Fig. 13) is used in 

order to determine the backazimuth of the incoming waves. Assuming that 
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a plane wave is propagating at a fixed azimuth θ, the correlation 

coefficients with the phase velocities of different wave types (Rayleigh, 

Love) can be found in Aki (1957, 1959). A contour map of the coefficients 

versus aximuth and frequency (Fig. 13) is used in order to determine the 

backazimuth of the incoming waves. Assuming that a plane wave is 

propagating at a fixed azimuth θ, the correlation coefficient will be: 

 
                                                              (13) 

where  is the time delay between two receivers separated by distance  at 

an azimuth . In this sense ρ is costant along the wavefront 

(  and decays in a direction perpendicular to it ( . 

Open conduit volcanoes that exhibit either permanent degassing or regular 

lava fountaining activity are good candidates for applying the correlation 

method, since the tremor source can be considered to a good 

approximation stationary and it is shallow enough to excite sufficient 

surface waves. The application of the method in three different volcanic 

systems (Kilauea-Ferrazzini et al., 1991; Masaya-Metaxian et., al 1997; 

Stromboli-Chouet et al ., 1998) showed that the recorded waves were 

coming from the summit crater of each volcano, where most of activity 

was visually observed. In the case of Masaya volcano, two arrays were 

available for the application of the method and the intersection of their 

backazimuth directions was used to lacate the tremor source. Although at 

Masaya and Stromboli the tremor wavefield was found to consist of both 

Rayleigh and Love waves, at Kilauea only Rayleigh waves could be 

identified after the study of their dispersion curves. 
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2.1.5 Semblance methods for source location 

 
A realistic visualization of the tremor source should not only account for 

the temporal evolution of its properties, but should also extend spatially 

over some volume underneath a volcano, representing possibly a channel 

geometry over a magma reservoir or hydrothermal fluid circulation 

through a system of cracks. The methods discussed so far can pinpoint the 

area of origin of tremor, but cannot delineate in the three or even two 

dimensions. Furumoto et al. (1990,1992) attempeted to image the source 

of tremor at Izu-Oshima volcano using a portable array of vertical 

component seismometers. The array was situated near the crater and 

recorded tremor during a fissure formation episode. Their approach was to 

take advantage of the available multichannel data by calculating the 

semblance. (Neidel and Tanner, 1971) which is defined as: 

S=                                                       (14) 

Where N is the number of stations,  is a seismogram recorded at the 

ith station in the  time sampled and  is the number of samples that 

defines a time window. Assuming that the coherency of signal is being 

maximized in certain time windows because of phases arriving from a 

source, it is possible to calculate source-receiver travel time (Gottshammer 

and Surono  2000) applied a similar grid based method in order to locate 

the tremor source at Bromo volcano, but used signal power instead of 

semblance). In this way the spatial distribution of the semblance values 

can be depicted with the higher values covering the area of the seismic 
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source. In the case of Izu-Oshima only the high frequency (5-25 Hz) part 

of the recorded tremor was analysed using the method outlined above, 

because Furomoto et al. (1990, 1992) noted that inclusion of larger 

wavelengths would have resulted in the deterioration of spatial resolution 

due to the small aperture of the array (500m). The semblance distribution 

showed two separate areas with high values inside the caldera, which also 

coincided with the tips of the fissure that was formed during the eruption. 

Furumoto et al. (1992) suggest that these two source regions are the tips 

way up to the surface. The high frequency tremor was then interpreted as 

the result of the brittle fracture of rock owing to fluid-solid interaction as 

magma is being injected in the crack. An expanded definition of 

semblance has been used in order to locate the source region of  volcanic 

tremor with a dominant period of 7-10 s (Mt. Etna-Seidl et al., 1981; 

Stromboli-Chouet et al., 1999; Mt. Aso-Kawakatsu et al., 1994, 2000; Mt 

Erebus-Rowe et al., 2000; Iwate –Nishimura et al., 2000). This kind of 

tremor appears in the time domain more as a swarm of discrete pulses 

rather than continuous episodes (Fig. 14); it occurs even when no signs of 

volcanic activity are observed and the particle motion indicates a high 

degree of rectilinearity with a direction pointing from each station to the 

crater of the volcano. In this case it is reasonable to assume that the source 

is isotropic and use the radial component ® from each station in order to 

calculate the semblance, penalising any departure from a pure rectilinear 

motion (caused by propagation effects) by subtracting the other 

components (V,T). The semblance will be: 

                       (15) 
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this definition takes advantage not only of a large number of stations that 

improve the signal to noise ratio, but it also incorporates independent 

information about the tremor wavefield, such as the rectilinearity. 

Kawakatsu et al. (2000) call this semblance “waveform semblance” and 

use it to locate the source region of the long-period tremor in a similar 

manner to that of Furumoto et al. (1990, 1992) (Fig. 15).  
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2.1.6 Visual and acoustic observations related to tremor 

activity 

 
An important way of gaining insight into the physical processes that 

generate tremor and other volcanoseismic phenomena is the visual 

monitoring of the eruptive activity. Even though a range of different 

factors may be involved when it comes to a decision for conducting such 

observations (accessibility to the erupting site, possible danger posed to 

the lives of the scientific crew, use of different type of instruments like 

video camera, etc.) the independent information that will be collected may 

play a significant role for explaining possible physical mechanisms. 

Detailed visual observations described by Ferrazzini and Aki (1992) 

during a seismic experiment at Kilauea combined with instrument 

recordings enable them to distinguish between the different physical 

mechanisms that generate tremor and spindle-shaped signals called gas-

piston events (Swanson et al., 1979). High-amplitude tremor was being 

recorded during the first month of the experiment and visual observations 

around the crater indicated lava fountaining activity while glows could be 

seen at night. A decrease in the tremor amplitude marked the onset of gas-

piston events reflecting a change in the volcanic activity: the level og the 

lava lake in the crater started rising, with upwelling domes appearing at the 

surface of the lake and bursting of bubbles started occurring. After that the 

level of the lake fell, but the same kind of ponding and withdrawal of lava 

continued in episodic cycles. Tremor signals accompanied by sounds 

observed in volcanoes that exhibit explosive degassing activity (Fig.16) 
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prompted researchers to the investigate the possibility of a common link 

between the two phenomena. Even though it has been well know that 

volcanic eruptions can generate pressure disturbances in the atmosphere 

with a frequency that can range between  and 20 Hz (Richards, 1963), 

until recently there was no systematic recording of the temporal variations 

of these signals near erupting volcanoes. Nowadays the installation of very 

sensitive microphones that record air-pressure waves with high resolution 

is an important supplement to the seismic monitoring of active volcanoes 

(Stromboli-Ripepe et al., 1996; Pavlof-Garcés and Hansen, 1998; Arenal-

Garcés et al., 1998; Sakurajima-Garcés et al., 1999; Karimsky/Sangay-

Johnson and Lees, 2000; Mt. Erebus-Rowe et al., 2000) in the case of the 

Pavlof 1996 eruption, a common pattern of signals was observed 

consisting of pairs of short duration low-frequency/high-frequency phases 

on the seismograms superposed on the background tremor (Fig. 17) while 

at the same time explosion sounds were recorded by the microphones. An 

explanation for the appearance of these two phases during explosion 

episodes has been given by Garcés and Hansen (1998) based on the 

concept of a stratified magma column. This column is assumed to be 

composed of layers of magma with depth- and time-varying physical 

properties. While the deepest parts are dense and viscous, exhibiting high 

sound velocity, the shallower layers become less dense because of increase 

in the bubble content owing to degassing that lowers their sound velocity. 

A steady flow of magma from a deeper reservoir is not expected to alter 

the stratification, therefore the deepest, dense layer acts as the area of 

generation of seismic waves (tremor) that, due to the sharp impedance 

contrast with the upper parts, can only propagate in the surrounding 
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bedrock (low-frequency part). A similar process may occur in the 

shallower layer where metastable gas mixtures of and  can 

produce explosions that can only propagate in the atmosphere and then 

back to the ground (high-frequency air wave). On the other hand, an 

unstable, turbulent flow of magma can disrupt the stratification and 

smooth the density contrast between the layer boundaries so that it is 

possible to have sound waves propagating through the different parts of 

the magma column. Theoretical models of these processes have been 

published by Garcés (1997) and Garcés and McNutt (1997), while results 

from their direct application to model waveforms of seismoacoustic data 

acquired during the 1996 eruption of Pavlof volcano have been published 

by Garcés et al. (2000). Table 1 summaries visual as well as acoustic 

observations related to tremor activity reported at volcanoes around the 

world. 
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lated for each segment by means of a Fast Fourier
Transform (FFT). The ¢nal spectral estimate is
then the average of all the individual spectra.
This method has been used in volcanic tremor
recordings from Mt. St. Helens (Fehler, 1983;
Hofstetter and Malone, 1986). It enhances the
spectral peaks that are common to every time seg-

ment and suppresses those generated by random
noise. A similar method for real-time spectral es-
timation of tremor data has been implemented at
the Ruapehu volcano observatory (Hurst, 1985),

Fig. 5. Velocity waveform, spectrogram and amplitude spec-
trum of 20 s of inharmonic tremor recorded at White Island.
The shades in the spectrogram are as in Fig. 5. In contrast
to the harmonic tremor of Fig. 4, inharmonic tremor is very
common at White Island and usually accompanies volcanic
activity (from Sherburn et al., 1998).

Fig. 6. (A) Amplitude spectra of tremor from Ruapehu
showing a peak at 0.8 Hz (marked with arrow) and peaks at
2 and 7 Hz. The spectra are an average of 129 3-min read-
ings over a period of 6.5 h from three di¡erent stations (after
Sherburn et al., 1999). (B) Same as in (A) for tremor with
peaks at 2 and 3 Hz and wideband tremor (after Sherburn et
al., 1999).
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Fig. 11. (A) Amplitude spectra of tremor from Ruapehu showing a peak at 0.8 Hz (marked with 
arrow) and peaks at 2 and 7 Hz. The spectra are an average of 129 3-min readings over a period of 
6.5 h from three different stations (after Sherburn et al., 1999). (B) Same as in (A) for tremor with 
peaks at 2 and 3 Hz and wideband tremor (after Sherburn et al., 1999). 
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where average spectra are calculated over succes-
sive 3-min intervals with a frequency resolution of
0.1 Hz in the band between 0.05 and 4.04 Hz
(Sherburn et al., 1999) (Fig. 6A,B).

In order to detect temporal changes in the fre-
quency content of the signal a direct comparison
of the averaged spectra should be performed.
Such a comparison of spectra from di¡erent
time periods is feasible only when the amount of
data is relatively small and the observed varia-
tions are larger than the ambient noise levels. A
better way of detecting temporal variations is by
incorporating in the display all the variables that
are likely to change (time, frequency, amplitude).

This is accomplished by creating a spectrogram
(Fig. 7), which is a 2D representation of the var-
iations of spectral amplitude and frequency of the
observed signal as time elapses. The calculation of
the spectrogram can be achieved by moving a
sliding window over the whole length of the time
series and estimating the amplitude spectrum by
performing an FFT for overlapping positions of
the window (e.g. Mt. Semeru-Schlindwein et al.,
1995; Ruapehu-Sherburn et al., 1999).

The resolution of the spectrum obtained by us-
ing an FFT algorithm is proportional to the re-
ciprocal of the window length chosen for the anal-
ysis. In order to increase the spectral resolution

Fig. 7. Spectrogram of tremor recorded at Mt. Semeru with 10 harmonics clearly visible. The vertical axis marks the beginning
of every calculation window and dark shades indicate high energy, light shades low energy. Note how the spectral lines represent-
ing each harmonic shift as time elapses, keeping the same horizontal distance from each other; this phenomenon, which has been
termed ‘gliding’, was also observed at Arenal volcano by Hagerty et al. (2000) (from Schlindwein et al., 1995; zAGU, repro-
duced with permission of American Geophysical Union).
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Fig. 12. spectrogram of tremor recorded at Mt. Semeru with 10 harmonics clearly visible. The 
vertical axis mark the beginning of every calculation  window and dark shades indicate high energy, 
light shades low energy. Note how the spectral lines representing each harmonic shift as time 
elapses, keeping the same horizontal distance from each other; this phenomenon , which has been 
termed “gliding”, was also observed at Arenal volcano by Hagerty et al. (2000) (from Schlindwein 
et al., 1995). 
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b ðr; B ; g 0Þ ¼
P ðr; B ; g 0Þ
P ð0; B g 0Þ

ð11Þ

and the azimuthal average of the correlation co-
e⁄cients will be equal to:

!bb ðr;g 0Þ ¼ J0
g 0

cðg 0Þ
r

! "

ð12Þ

It is possible therefore to calculate the correlation
coe⁄cients for di¡erent values of g and azimuth
B, then ¢t a Bessel function to the coe⁄cients and
recover the phase velocity c(g0) of the recorded
waves. By further analysis of the dispersion curves
one may obtain the 2D velocity structure beneath
the array for depths ranging 100 m to 1 km. The
equations that relate the correlation coe⁄cients
with the phase velocities of di¡erent wave types
(Rayleigh, Love) can be found in Aki (1957,
1959). A contour map of the coe⁄cients versus
azimuth and frequency (Fig. 8) is used in order
to determine the backazimuth of the incoming
waves. Assuming that a plane wave is propagating
at a ¢xed azimuth a, the correlation coe⁄cient
will be:

b ðr; B ; g 0Þ ¼ cos
g 0r
cðg 0Þ

cos ða3BÞ
! "

¼

cos ½g 0d ðr; B ; g 0Þ% ð13Þ

where d is the time delay between two receivers
separated by distance r at an azimuth B. In this
sense b is constant along the wavefront (B= a! Z/
2) and decays in a direction perpendicular to it
(B= a).

Open conduit volcanoes that exhibit either per-
manent degassing or regular lava fountaining ac-
tivity are good candidates for applying the corre-
lation method, since the tremor source can be
considered to a good approximation stationary
and it is shallow enough to excite su⁄cient sur-
face waves. The application of the method in
three di¡erent volcanic systems (Kilauea-Ferrazzi-
ni et al., 1991; Masaya-Me¤taxian et al., 1997;
Stromboli-Chouet et al., 1998) showed that the
recorded waves were coming from the summit
crater of each volcano, where most of the activity
was visually observed. In the case of Masaya vol-
cano, two arrays were available for the applica-
tion of the method and the intersection of their
backazimuth directions was used to locate the
tremor source. Although at Masaya and Strom-

Fig. 8. Contour maps of the correlation coe⁄cients b(r, B, g0) calculated from tremor data recorded at Kilauea (Pu’u O’o crater)
over a window of 180 s. The three plots correspond from left to right to the vertical, radial and transverse component. The fre-
quency axis is taken along the radius of the circle with the origin at the centre. Note the rapid decrease of values along the EW
direction, while they remain almost constant along the NS which is the direction that the wavefront is oriented (from Ferrazzini
et al., 1991; zAGU, reproduced with permission of American Geophysical Union).
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Fig. 13. Contour maps of the correlation coefficients  calculated from tremor data 
recorded at Kilauea (Pu’u O’o crater) over a window of 180 s. the three plots correspond from left 
to right to the vertical, radial and transverse component. The frequency axis is taken along the 
radius of the circle with the origin at the centre. Note the rapid decrease of values along the EW 
direction, while they remain almost constant along the NS which is the direction that the wavefront 
is oriented (from Ferrazzini et al., 1991). 
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boli the tremor wave¢eld was found to consist of
both Rayleigh and Love waves, at Kilauea only
Rayleigh waves could be identi¢ed after the study
of their dispersion curves.

3.2.2.2. Semblance methods for source location
A realistic visualisation of the tremor source

should not only account for the temporal evolu-
tion of its properties, but should also extend spa-
tially over some volume underneath a volcano,
representing possibly a channel geometry over a
magma reservoir or hydrothermal £uid circulation
through a system of cracks. The methods dis-
cussed so far can pinpoint the area of origin of
tremor, but cannot delineate it in three or even
two dimensions. Furumoto et al. (1990, 1992) at-
tempted to image the source of tremor at Izu-
Oshima volcano using a portable array of vertical
component seismometers. The array was situated
near the crater and recorded tremor during a ¢s-
sure formation episode. Their approach was to
take advantage of the available multichannel
data by calculating the semblance (Neidel and
Tanner, 1971) which is de¢ned as:

S ¼

X

L

j¼1

X

N

i¼1

f i;jðiÞÞ

 !2

N
X

L

j¼1

X

N

i¼1

f 2i;jðiÞ

ð14Þ

where N is the number of stations, fi;jðiÞ is a seis-
mogram recorded at the ith station in the j time
sample and L is the number of samples that de-

¢nes a time window. Assuming that the coherency
of the signal is being maximised in certain time
windows because of phases arriving from a
source, it is possible to calculate source-receiver
travel times by changing the source location on
a 2D or 3D grid of nodes and evaluating the
semblance for each window speci¢ed by these
travel times (Gottscha«mmer and Surono (2000)
applied a similar grid based method in order to
locate the tremor source at Bromo volcano, but
used signal power instead of semblance). In this
way the spatial distribution of the semblance val-
ues can be depicted with the higher values cover-
ing the area of the seismic source.

In the case of Izu-Oshima only the high fre-
quency (5^25 Hz) part of the recorded tremor
was analysed using the method outlined above,
because Furumoto et al. (1990, 1992) noted that
inclusion of larger wavelengths would have re-
sulted in the deterioration of spatial resolution
due to the small aperture of the array (500 m).
The semblance distribution showed two separate
areas with high values inside the caldera, which
also coincided with the tips of the ¢ssure that was
formed during the eruption. Furumoto et al.
(1992) suggest that these two source regions are
the tips of an expanding crack, formed by magma
forcing its way up to the surface. The high fre-
quency tremor was then interpreted as the result
of the brittle fracture of rock owing to £uid^solid
interaction as magma is being injected in the
crack.

An expanded de¢nition of semblance has been
used in order to locate the source region of vol-

Fig. 9. Vertical velocity waveform of very long period tremor recorded at Pu’u O’o crater, Hawaii. The trace has been bandpass
¢ltered between 0.01 and 0.1 Hz (from Bond, 2000).
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Fig. 14. Vertical velocity waveform of very long period tremor recorded at Pu’O’o crater Hawaii. 
The trace has been bandpass filtered between 0.01 and 0.1 Hz (from Bond, 2000). 
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canic tremor with a dominant period of 7^10 s
(Mt. Etna-Seidl et al., 1981; Stromboli-Chouet
et al., 1999; Mt. Aso-Kawakatsu et al., 1994,
2000; Mt. Erebus-Rowe et al., 2000; Iwate-Nish-
imura et al., 2000). This kind of tremor appears in
the time domain more as a swarm of discrete
pulses rather than continuous episodes (Fig. 9);
it occurs even when no signs of volcanic activity
are observed and the particle motion indicates
a high degree of rectilinearity with a direction
pointing from each station to the crater of the
volcano. In this case it is reasonable to assume
that the source is isotropic and use the radial
component (R) from each station in order to cal-
culate the semblance, penalising any departure
from a pure rectilinear motion (caused by prop-
agation e¡ects) by subtracting the other compo-
nents (V, T). The semblance will be:
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This de¢nition takes advantage not only of a
large number of stations that improve the signal
to noise ratio, but it also incorporates inde-
pendent information about the tremor wave-
¢eld, such as the rectilinearity. Kawakatsu et
al. (2000) call this semblance ‘waveform sem-
blance’ and use it to locate the source re-
gion of the long-period tremor in a similar man-
ner to that of Furumoto et al. (1990, 1992) (Fig.
10).

Fig. 10. Example of location of two very long-period tremor events using the waveform semblance method, from Pu’u O’o crater,
Hawaii. The source position in the maps and the depth cross-sections on the right is represented by a cross, while the shaded
area shows the size of the error region (from Almendros et al., 2002; zRAS, reproduced with permission of Blackwell Science).
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Fig. 15. Example of location of two very long-period tremor events using the waveform semblance 
method, from Pu’u O’o crater, Hawaii. The source position in the maps and the depth cross-section 
on the right is represented by a cross, whie the shaded area shows the size of the error region ( from 
Almendros et al., 2002). 
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3.3. Visual and acoustic observations related to
tremor activity

An important way of gaining insight into the
physical processes that generate tremor and other
volcanoseismic phenomena is the visual monitor-
ing of the eruptive activity. Even though a range
of di¡erent factors may be involved when it comes
to a decision for conducting such observations
(accessibility to the erupting site, possible danger
posed to the lives of the scienti¢c crew, use of
di¡erent type of instruments like video cameras,
etc.) the independent information that will be col-
lected may play a signi¢cant role for explaining
possible physical mechanisms. Detailed visual ob-
servations described by Ferrazzini and Aki (1992)
during a seismic experiment at Kilauea combined

with instrument recordings enabled them to dis-
tinguish between the di¡erent physical mecha-
nisms that generate tremor and spindle-shaped
signals called gas-piston events (Swanson et al.,
1979). High-amplitude tremor was being recorded
during the ¢rst month of the experiment and vis-
ual observations around the crater indicated lava
fountaining activity while glows could be seen at
night. A decrease in the tremor amplitude marked
the onset of gas-piston events re£ecting a change
in the volcanic activity: the level of the lava lake
in the crater started rising, with upwelling domes
appearing at the surface of the lake and bursting
of gas bubbles started occurring. After that the
level of the lake fell, but the same kind of ponding
and withdrawal of lava continued in episodic
cycles.

Fig. 11. Vertical component velocity waveform (bandpass ¢ltered 0.3^10 Hz) and amplitude spectrum of a tremor episode re-
corded at Sangay volcano, Ecuador. This kind of quasi-periodic tremor has been termed a ‘chugging’ event and is commonly ac-
companied by a sound resembling that of a steam locomotive. Similar events to this have been also observed at Arenal volcano,
Costa Rica by Benoit and McNutt (1997) (after Johnson and Lees, 2000).
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Fig. 16. Vertical component velocity waveform (bandpass filtered 0.3-10 Hz)and amplitude 
spectrum of a tremor episode recorded at Sangay volcano, Ecuador. This kind of quasi-periodic 
tremor has been termed a “chugging” event and is commonly accompanied by a sound resembling 
that of a steam locomotive. Similar events to this have been also observed at Arenal volcano, Costa 
Rica by Benoit and McNutt (1997). 
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Tremor signals accompanied by sounds ob-
served in volcanoes that exhibit explosive degas-
sing activity (Fig. 11) prompted researchers to in-
vestigate the possibility of a common link between
the two phenomena. Even though it has been well
known that volcanic eruptions can generate pres-
sure disturbances in the atmosphere with a fre-
quency that can range between 1033 and 20 Hz
(Richards, 1963), until recently there was no sys-
tematic recording of temporal variations of these
signals near erupting volcanoes. Nowadays the
installation of very sensitive microphones that rec-
ord air-pressure waves with high resolution is an
important supplement to the seismic monitoring
of active volcanoes (Stromboli-Ripepe et al.,
1996; Pavlof-Garce¤s and Hansen, 1998; Arenal-
Garce¤s et al., 1998; Sakurajima-Garce¤s et al.,
1999; Karimsky/Sangay-Johnson and Lees, 2000;
Mt. Erebus-Rowe et al., 2000). In the case of the
Pavlof 1996 eruption, a common pattern of sig-
nals was observed consisting of pairs of short du-
ration low-frequency/high-frequency phases on

the seismograms superposed on the background
tremor (Fig. 12), while at the same time explosion
sounds were recorded by the microphones.

An explanation for the appearance of these two
phases during explosion episodes has been given
by Garce¤s and Hansen (1998) based on the con-
cept of a strati¢ed magma column (Fig. 13). This
column is assumed to be composed of layers of
magma with depth- and time-varying physical
properties. While the deepest parts are dense
and viscous, exhibiting high sound velocity, the
shallower layers become less dense because of an
increase in the bubble content owing to degassing
that lowers their sound velocity. A steady £ow of
magma from a deeper reservoir is not expected to
alter the strati¢cation, therefore the deepest, dense
layer acts as the area of generation of seismic
waves (tremor) that, due to the sharp impedance
contrast with the upper parts, can only propagate
in the surrounding bedrock (low-frequency part).
A similar process may occur in the shallower layer
where metastable gas mixtures of H2O and CO2

Fig. 12. Velocity waveform and spectrogram of an explosion signal with a low-frequency/high-frequency pair superposed on the
background tremor, recorded during the 1996 eruption of Pavlof. The spectrogram was calculated using a sliding 1.28-s Hanning
window with 90% overlap. Dark shades indicate high energy and light shades low energy (from Garce¤s and Hansen, 1998;
zAGU, reproduced with permission of American Geophysical Union).
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Fig. 17. Velocity waveform and spectrogram of an explosion signal with a low-frequency/high-
frequency pair superposed on the background tremor, recorded during the 1996 eruption of Pavlof. 
The spectrogram was calculated using a sliding 1.28-s Hanning window with 90% overlap. Dark 
shades indicate high energy and light shades low energy ( from Garcés and Hansen, 1998). 
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metrically irregular volcanic conduit poses a di⁄-
cult numerical problem which requires the formu-
lation and simultaneous solution of a system of
partial di¡erential equations describing the £ow
of the £uid as well as the elastic disturbance being
caused by the coupling to the surrounding rock
(Chouet and Julian, 1985). Further complications
may arise if the £uid consists of a gas and liquid
phase, or if the thickness of the conduit changes
in space as well as in time, e¡ectively exhibiting
viscous or visco-elastic behaviour. In models of
tremor generation involving £uid £ow, a number
of simplifying assumptions are usually made: (a)
the £uid has a constant density and consists of
one phase only, (b) the motion occurs in one or
two dimensions and (c) the conduit behaves elas-
tically, while its thickness can only change as a
function of time.

Based on these assumptions and using the prin-
ciples of conservation of mass and momentum for
the £uid, Julian (1994) derived a third-order sys-
tem of non-linear ordinary di¡erential equations
that describe the £ow inside a vertically extending
crack connecting an upstream and a downstream
reservoir (Fig. 14). Considering a £uid density
and viscosity typical for basaltic melts (b=2500

Table 3
Reported visual and acoustic observations related to tremor activity

Region Visual/acoustic observation Reference

Pavlof Lava fountaining related to high-amplitude tremor McNutt, 1986; Garce¤s and Hansen, 1998

Klyutchevskoy Variation of tremor spectral amplitude envelope whenever the
eruptive activity changed

Gordeev et al., 1990

Kilauea Gas-piston events associated with cycles of ponding and withdrawal
of lava from the crater followed by high-amplitude tremor

Ferrazzini and Aki, 1992

Mt. Semeru Pumping and explosion sounds with durations of 40 s^16 min that
coincided with tremor episodes

Schlindwein, 1994

Stromboli Gas bursts at the top of the magma column coincide with high-
amplitude tremor

Ripepe et al., 1996; Ripepe, 1996

Arenal Di¡erent explosion sounds that are accompanied by ash plumes
and precede tremor episodes

Benoit and McNutt, 1997; Garce¤s et al.,
1998; Hagerty et al., 2000

White Island Eruptive/intrusive activity always followed by inharmonic tremor Sherburn et al., 1998

Satsuma-Iwojima Strong tremor occurring while vent emmits high-temperature
volcanic gas

Ohminato and Ereditato, 1998

Karimsky/Sangay ‘Chugging’ tremor episodes followed by steam locomotive-like
sounds

Johnson and Lees, 2000

Fig. 14. Lumped parameter model of the generation of vol-
canic tremor. Viscous incompressible £uid £ows in the x di-
rection from the upstream to downstream reservoir through
a channel of length (L) with imperfectly elastic walls, mod-
elled as movable but undeformable blocks of mass 2M, sti¡-
ness 2k and damping constant 2A (all measured per unit dis-
tance in the z direction). All motion occurs in the x^y plane
and it is independent of z. The dynamic variables are the
channel thickness h(t) and the £uid speed v(x,t) (from Julian,
1994; reproduced with permission of American Geophysical
Union).
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2.1.7  Volcanic tremor at Stromboli 
Stromboli volcano is in a steady explosive state with volcanic tremor as 

stationary phenomenon. It has been demonstrated that at Stromboli 

volcanic tremor assumes different amplitudes according to different 

explosive activity of the volcano. High explosivity generally coincides 

with an increase of the volcanic tremor amplitudes (Nappi, 1976) while 

during period with few explosions, volcanic tremor shows low amplitudes. 

Source models have to deal with the low frequency range of the seismic 

signal (from 1 to 5 Hz) and stability of some spectral peaks. Physical 

models proposed to explain the origin volcanic tremor take into 

consideration resonant effects produced by the geometry of volcanic 

conduits or by vibrations of a fluid filled tensile-crack generated by an 

excess of pressure in the fluid magma. Tremor could be originated from 

resonant effects produced by the geometry of volcanic conduits (Seidl et 

al., 1981; Ferrick et al, 1982). According to this model, different frequency 

content of the seismic signal is directly linked to the length of the conduit 

sections. A different model suggestes that volcanic tremor is produced by 

vibrations of a fluid-filled tensile-crack (Aki et al., 1977). Vibrations 

would be generated by an excess of pressure in the fluid. Magma, moving 

through sudden openings of tiny cracks, produces tremor. Following this 

model, it has been proposed (Chouet, 1985) that fluid magma vibrates 

according to oscillations of the crack. In spite of the different dynamics 

proposed to explain the origin of volcanic tremor, there is general 

agreement on the fundamental role played by pressure fluctuations in 

magma dynamics to generate seismic signals (Ripepe, 1995). Since 1993 
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the use of high sensitive pressure sensors in very near field conditions (150 

m from the vent) at Stromboli has revealed that small gas bursts, which are 

not producing clear seismic transient signals, generate low pressure 

impulses. According to simultaneous infrasonic and seismic records, we 

suggest that volcanic tremor at Stromboli is produced by the pressure drop 

arising from the explosions of small gas bubbles, once they reach the top 

of the magmatic column. In a volcanic systems with open conduits, the 

explosive source can be thought to be confined at the top of the magmatic 

column. In this case the source is represented by exploding gas pockets 

contained in the fluid magma. This is confirmed by experiments of 

simultaneous records of seismic and air waves produced by the same 

volcanic explosion (Braun and Ripepe, 1993). Frequency contents (3-8 

Hz), propagation velocity (340 m/s typical of sound speed in the air at 300 

K) and low pressure values (5-8 Pa), measured at a distance of 150 m from 

the crater, bring to the conclusion that these atmospheric pressure waves, 

correlated to volcanic explosions, are infrasonic (Vergniolle and Brandeis, 

1994). The high sensitivity and the small distance (150m) from the vent of 

the pressure sensors used, have revealed unusual infrasonic signals even in 

absence of volcanic explosions.  The striking relationship between energy 

variation of infrasonic impulses and seismic energy fluctuations indicates 

that infrasonic and volcanic tremor are linked together to a common 

source. This source is dynamically represented by the burst of small gas 

bubbles at the top of magmatic column.  
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3 Chapter 
 
Finite element method. 
 
3.1 The physical domain. 
 
The first thing we have to describe is the geometry (Figure 1). we are thus 
given a polygon in the plane . We call this polygon . Its boundary is a 
closed polygonal curve . The boundary of the polygon, , is divided into 
two parts, that over the whole of  and do not overlap: 
• The Dirichlet boundary , 
• The Neumann boundary . 

The Dirichelt boundary is where diaplacements are given as data; the 
Neumann boundary is where normal stresses are given as data. Each of 
these two parts is composed by full sides of the polygon. 
 
 
                                                                                                                                   
 

Lesson 1

Linear triangular elements

1 The model problem

All along this course we will be working with a simple model boundary value problem,
which will allow us to put the emphasis on the numerical method rather than on the
intricacies of the problem itself. For some of the exercises and in forthcoming lessons we
will complicate things a little bit.

In this initial section there is going to be a lot of new stuÆ. Take your time to read it
carefully, because we will be using this material during the entire course.

1.1 The physical domain

The first thing we have to describe is the geometry (the physical setting of the problem).
You have a sketch of it in Figure 1.1.

Ω

ΓD
ΓN

Figure 1.1: The domain ≠ and the Dirichlet and Neumann boundaries

We are thus given a polygon in the plane R2. We call this polygon ≠. Its boundary
is a closed polygonal curve °. (There is not much diÆerence if we suppose that there is

3

 
 
Figure 1: The domain  and the Dieichlet and Neumann boundaries. 
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3.2 Green’s Theorem 
 
The approach to solve this problema bove with the Finite Element Method 
is based upon writing it in a completely different form, which is sometimes 
called weak or variational form. The most important theorem in this 
process or reformulating the problemi is Green’s Theorem, one the most 
popular results of Vector Calculus. Sometimes it i salso called Green’s 
First Formula. The theorem states that  
 

 
 
note that there are two types of integrals in this formula. Both integrals in 
the left-hand side are domain integrals in , whereas the integral in the 
right-hand side is a line integral on the boundary  Γ. The resulti s also true 
in three dimensions. In that case, domain integrals are volume integrals 
and boundary integrals are surface integrals. The dot between the gradients 
denotes simply the Euclidean product of vectors, so 
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3.3 The problem, written in weak form 
 
The departure point for the weak or variational formulation is Green’s 
Theorem. Here it is again 
 

. 
 
Note that we have parted the integral on   as the sum of the integral over 
the two sub-boundaries, the Dirichlet and the Neumann boundary. Now we 
substitute what we know in this formula: we know that  in  
and that  on . Therefore, after some recording 
 

 
 
Note now that we have written all occurences of u on the left hand side of 
the equation except for one we have left on the right. In fact we don’t 
know the value of  on that part of the boundary.  
 

,         on  
therefore 

 
 if   on  

 
 
We have not imposed yet the Dirichlet boundary condition ( on ). 
Newertheless, we have imposed a similar one ti the function , but in a 
homogeneous way. As written now, data (  and ) are in the right-hand 
side and coefficients of the equation ( the only one we have is ) are in the 
left-hand side. The expression on the left-hand side is linear in both  and 

. It is a bilinear form of the variables  and  . The expression on the 
right-hand side is linear in . 
Without specifying spaces where  and  are, the weak formulation can be 
written as follows: 
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for all , such that  on . 
 
Note how the two boundary conditions appear in very different places of 
this formulation: 
 

1) The Dirichlet condition ( given displacements ) is imposed apart 
from the formulation and involves imposing it homogeneously to the 
testing function . It is called an essential boundary condition. 

2) The Neumann condition ( given normal stress ) appears inside the 
formulation. It is called a natural boundary condition.  
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3.4 The discrete variational problem 
 
The finite element method ( with linear finite elements on triangles ) 
consists of the followinh discrete version of the proceding weak 
formulation: 
 

 
 

 
We have done trhee substitutions: 
 

1) We look for the unknown in the space  instead of the whole 
Sobolev space. This mean that we have reduced the problem to 
computing  in the vertices of the triangulation (in the nodes) and 
we are left with a finite number of unknowns. 

2) We have substituted the Direchlet condition by fixing the values of 
unknowns on dirichlet nodes. This fact reduces the number of 
unknowns of the system to the number of free nodes. 

3) Finally, we have reduced the testng space from  to its discrete 
subspace  . We will show right now that this reduces the infinite 
number of tests of the week formulation to a finite number of linear 
equations. 
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 3.5 The associated system  
 
We write again the discret problem, specifying the numbering of Dirichlet 
nodes in the discrete Dirichlet condition: 
 

 
 

 
 
Our next claim is the following: the discrete equations 
 

 
 

 
 
are equivalent to the following set of equations 
 

 
 

 
 
Obviously this second group of equations is a small part of the originalo 
ne: it is enough to take  . However, because of the 
linearity of the first expression in , if we have the second for all , we 
the equaion for all possible linear combination of these functions, that is 
for all  . Recapitulating, the method is equivalent to this set of N 
equations to determine the function  : 
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To arrive to linear system, we have first to write   in terms of the nodal 
basis functions  
 

 
 
Then we substitute the discrete Dirichlet condition in this expression 
 

 
 
Finally we plug this expression in the discrete variational equation 
 

 
 
apply linearity, noticing that  
 

 
 
and move to the right-hand side what we already know (the Dirichlet data) 
 

 
 
This is a linear system with a many equations as unknows, namely with 

 equations and unknowns. The unknowns are in fact the 
nodal values of  on the free (non-Dirichlet) vertices of the triangulation. 
After solving this linear system, the formula for lets us recover the 
function everywhere, not only nodes. 
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3.6 The wave equation 
 
We will use homogeneous Dirichlet conditions in the entire boundary of 
the domain. The wave propagation problem is then  
 

 
 
If we try the finite difference in time approach, the simplest thing to do is 
to apply the central difference approximation to the second derivative. If 
we take a fixed time step, this means approximating  
 

 
 
When applied to the time-variable in the wave equation we obtain the 
explicit time-step 
 

 
 
After doing the weak formulation and introducing finite element spaces 
and beses, we end up with 
 

 
 
The initial value for  is easy. We still need . For that, we can do very 
easy by taking a Taylor approximation 
 

 
 
or take a false discrete time -1 and use the equation 
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to obtain the equation 
 

 
 
together with the central difference approximation 
 

 
 
Then we need to give a weak formulation of this too. And do all the finite 
element stuff. 
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Introduction 
 

The purpose of this work was to develop and to test a locating sources 

method of the volcanic tremor and to apply it at the existent dataset for 

Stromboli volcano.    

For the location of the source, we used a locating procedure based on a 

probabilistic approach. The likelihood has been calculated through (by) a 

misfit function. 

In fact, we looked for to locate the source of the tremor, whose location 

minimizes the error (mistake) between the observed amplitude and the 

calculate amplitude. The locating source of volcanic tremor has been 

represented by a distribution of probability over a regular grid of points 50 

meter apart and frequency between 1 and 3 Hz. The inversion of the source 

has been performed in the frequency domain, using the amplitude of the 

wave field only. We have made the synthetic tests using  sources with 

different depth and different configurations of the seismic networks. 
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4 Chapter  

Application at Stromboli Volcano 

 

4.1 Green’s Function. 

 
We developed a procedure to calculate the amplitude and phase of the 

wave field made by a source of tremor in a volcanic structure. Our purpose 

has been to simulate the wave field of volcanic tremor considering a 

complex topography. To able to perform the location of volcanic tremor in 

an enviroment with complex topography and to able to simulate the wave 

field in this situation, we needed some techniques for the calculation of 

Green’s functions. We have decided to use the Element Finete Method 

(FEM) to calculate the Green’s functions in the Fourier domain, because 

the elastodynamic Green’s Functions are written like elliptic equations in 

the Fourier domain. The FEM is a suitable technique to resolve the 

problems kind elliptic. This method is particularly suitable when the 

boundary condition have some complex geometries. We considered an 

approximation of a point source where the signal wavelength is much 

greater than the distance between the source and receiver. The 

displacement field  of the point source is : 

 

where the first term (zero-order)  represents the single force while, the 

second term (one-order) represents the moment tensor components. 
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4.2 Finete Element Method (FEM). 

 
The Finete Element Method (FEM) is a numerical technique suitable to 

look for an approximate solutions of problems described by differential 

equations. In our case, the differential equations are equations of second 

order partial differential. These equations are reduced to a system linear 

equations with the Finet Element Method. Our purpose has been to make a 

math model of a system, the geometry, the equations which rule the 

physical characteristics of this model, considering some boundary 

conditions. We consider the strong form of the equation: 

 

and considering the following condition: 

 

 

we obtain the weak form of the Laplace’s equantion. 

 

This equation is an integro-differential equation composed from volume-

integrals and surface-integrals. 
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4.3 Example computation 

 

The Green’s function are calculated in the frequency domain, through a 

trhee-dimensional finet element method using the simulation software 

“Comsol multiphysics”. We have imposted the Perfect Matched Layers 

(PML) boundary conditions the edges of the model (fig. 1). The 

discretized model has been done using the topography of Stromboli. The 

maximun elements size was chosen based on the minimum wavelength, 

related to the maximum frequency used (3Hz). The velocity model 

constists in a homogenueouse medium with compressional wave velocity 

 and  (Fig). For our porpuse, the Green’s 

Function are obtained for a point source positioned over a grid nodes 

spaced 50 m apart (Fig. 2). 

 

where  rapresent the displecement field in the frequency domain. 
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Fig. 1 Stromboli Geometry 
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Fig. 2 Tetrahedral Mesh 
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This model has been developed considering two boundary conditions: 1) 

Neumann’s condition, 2) Dirichlet’s condition. The Neumann’s condition 

imposes the derivative of the normal function has to assume a value on the 

edge of the surface. In our case, this condition has been used to assume the 

cancellation condition of the normal stress of the free surface. On the other 

hand, the Dirichlet’s condition, for our purpose, has been assumed fixed 

where the displacement over the surface is 0. We have used this condition 

because we need to specify a condition over the free surface to ensure 

stability to the solution (the condition imposes that the volume is stopped 

also if there is a force which acts on the source). Anyway, this condition is 

appropriate to mold the wavefield, because the wavefield decays before it 

arrives to the external edge, because it is damped by the Perfect Matched 

Layers (PML). The PML is an additional domain where the alastodynamic 

equations change. In this way, the waves have an exponential decay in a 

particular direction. We choose a spherical model because the direction of 

the decay is radial.  

Below we show the results of Green’s Function  calculated for a 

source with 500 m of elevation and 2 Hz of frequency (Fig. 3) 
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Fig. 3  Up: Absolute value. Considerable effect of the topography over the wavefield. The 
amplitudes are concentraded on the concavity of “La Sciara del Fuoco”. 
Down: Green’s Function phase. 
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4.4 Location of the source. 
 

For location of the source of the volcanic tremor, we used a probabilistic 

approach. We calculated a theoric source using a simple last square 

approach: 

 

where N is the number of channels,  is the Green’s Function 

generalized for an isotropic source,  are the observed data and  is the 

frequency.  

Then, we calculated the misfit function for every point of the regular grid: 

 

using a probabilistic approach, to assess the location quality, we have: 

 

where  is our probability function and  is our misfit function. The 

probability function then is normalized, so we have: 
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4.5 Synthetic tests. 
 

We made synthetic tests, using sources with various depth, different 

network configurations, with frequencies between 1 and 3 Hz and  a flat 

amplitude spectrum. With increasing of the depth of the source and with 

the decreasing of the stations, the probability function worsens. Despite it, 

the location seemes to be quite  accurate. 

In figures 4, 5,6,7,8, 9  are rapresented the probability distribution. The red 

points indicate the seismic stations of the network, the blu stars represents 

he volcanic tremor source. 
 

 

 
Fig. 4   12 stations, 99% confidence volume, elevation 400 m. 
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Fig. 5    12 stations, 99% confidence volume, elevation -400 m. 

 

 
 

 

Fig. 6   8 stations, 99% confidence volume, elevation 400 m 
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Fig. 7  8 stations, 99% confidence volume, elevation -400 

 

 

 

 

 
Fig. 8  6 summit stations, 99% confidence volume, elevation 400 m. 

 

 

 



	   98	  

 
Fig. 9  6 summit stations, 99% confidence volume, elevation -400 m. 
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4.6 Stromboli dataset 

 
On February 27, 2007, by about 09:00 UTC, a landslide signal was seen 

by the analysts involved in the sourveillance activity. At 12:34 UTC, the 

volcano started the effusive phase, and at 12:39 UTC a stronger landslide 

seismic signal was recorded. The lava flowed from a fracture that opened 

in the North-East crater, down the “La Sciara del Fuoco” flank. With the 

beginning of the lava flow, the explosive activity at the summit vents 

ceased. In the first few hours of the effusive phase, the tremor amplitude 

showed two episodes of strong incrementation and the nit dropped down a 

very low level. These two episodes have distinctive spectral features that 

make them clearly distinguishable from the common volcanic tremor. One 

of the most interesting feature  is that the amplitude was maximum at the 

STR8 station (located close to the “La Sciara del Fuoco”).   

The method was able to locate the volcanic tremor sources at Stromboli. 

The  non-linear probabilistic approach is well suited for this task. The 

multiple tremor sources have been identified at Stromboli during on 

February 27, 2007, eruption. The  changes in the source location may 

reflect the emptying of the shallow volcanic conduit during the lava flow.  

Before the effusive phase, the source is located under the summit craters 

along “La Sciara del Fuoco” (Fig. 10). 

After the effusive phase, there are three relative maxima of the probability 

distribution. These could be linked to three different sources: one is 

located near the craters, one close to the lava flow vent and the last one is 

deepest (FIg. 11). 
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Fig. 10   Before the effusive phase: Time 00:05 UT, Window lenght 20:48 s, Frequency 1-3 Hz, 12 

Stations, 90% Confidence volume. 
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Fig. 11   After the effusive phase: Time 23:40 UT, Window lenght 20:48 s, Frequency 1-3 Hz, 90% 

Confidence volume. 
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Conclusions 

 
The purpose of this work is to develop a method for locating volcanic 

tremor sources. This method will be applaied on Stromboli vulcano dataset 

(7 years of recods). The work will concentrate mostly identifyng the 

number and location of the sources investigating on their temporal 

variation. 

Volcanic tremor has attracted considerable attention by seismologist 

because of its potential value as a tool for forecasting eruptions and better 

understanding the physical processes that occur inside active volcanoes. 

However, unlike tectonic earthquakes where the dominant source process 

is brittle failure of rock, the driving mechanism of tremor seems to involve 

complex interactions of magmatic fluids with the surrounding bedrock. 

These interactions are responsible for the following distinct characteristics 

found in volcanic tremor recorded at many volcanoes worldwide: a) the 

onset of tremor may be emergent or impulsive, with its amplitude showing 

in many cases a dirct relationship the volcanic activity; b) in the frequency 

domain the spectra consist of a series of sharp peaks in the band 0.1-7 Hz, 

representing either a fundamental frequency and its harmonics, or a 

random distribution, while quite often they  exhibit temporal variations in 

their content; c) the depth of the source can very considerably from one 

volcano to another in the range of a few hundred metres to 40 km; d) 

tremor may occur prior to and/or after eruptions with a duration that 

ranges from several minutes to several days or months. The methods used 

to study tremor include spectral analysis using both the Fast Fourier 
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Transformation and the Maximum Entropy Method, polarisation analysis 

of the wavefield and methods that make use of array data to deduce the 

backazimuth and type of the seismic waves as well as the location of the 

source. Visual and/or recorded acoustic observations of the ongoing 

volcaanic activity have assisted in many cases to further constrain 

proposed physical mechanisms for the generation of tremor. The models 

suggested as possible sources of tremor can be grouped as follows: a) fluid 

flow induced oscillations of conduits transporting magmatic fluids; b) 

excitation and resonance of fluid-filled cracks; c) bubble growth or 

collapse due to hydrothermal boiling of groundwater; d) a variety of 

models involving the oscillations of magma bodies with different 

geometries. It has been proposed by many authors that the source of 

tremor is not unique and may differ from one volcano to another, a fact 

that adds mor difficulty in the source modelling efforts.   

Most methods used to locate volcanic tremor sources are: 1) use of array, 

2) the calculation of wave field amplitude. The study on volcanic tremor 

for Stromboli volcano will be carried out adopting the latter basing the 

method on a realistic wavefield model. 

On February 27, 2007, by about 09:00 UTC, a landslide signal was seen 

by the analysts involved in the sourveillance activity. At 12:34 UTC, the 

volcano started the effusive phase, and at 12:39 UTC a stronger landslide 

seismic signal was recorded. The lava flowed from a fracture that opened 

in the North-East crater, down the “La Sciara del Fuoco” flank. With the 

beginning of the lava flow, the explosive activity at the summit vents 

ceased. In the first few hours of the effusive phase, the tremor amplitude 

showed two episodes of strong incrementation and the nit dropped down a 
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very low level. These two episodes have distinctive spectral features that 

make them clearly distinguishable from the common volcanic tremor. One 

of the most interesting feature  is that the amplitude was maximum at the 

STR8 station (located close to the “La Sciara del Fuoco”).   

The method was able to locate the volcanic tremor sources at Stromboli. 

The  non-linear probabilistic approach is well suited for this task. The 

multiple tremor sources have been identified at Stromboli during on 

February 27, 2007, eruption. The  changes in the source location may 

reflect the emptying of the shallow volcanic conduit during the lava flow.  

Before the effusive phase, the source is located under the summit craters 

along “La Sciara del Fuoco”. 

After the effusive phase, there are three relative maxima of the probability 

distribution. These could be linked to three different sources: one is 

located near the craters, one close to the lava flow vent and the last one is 

deepest. 

The future developments could be: to include the attenuation factor to 

employ this method at volcanic structures bigger like Kilauea volcano, 

Etna volcano; to consider complex sources; to employ the method in real 

time. 
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