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1 Introduction and Overview 
 

 

 

 

 

 

 

 

 

 

 

 

The internal dynamics of the earth results in stress accumulation in specific areas. 

If, during this process of accumulation, the limit of break-resistance of the material 

is exceeded, a crustal fracture is generated (seismic source) with consequent energy 

release in the form of seismic waves. 

Understanding the characteristics of the seismic source plays a very important role, 

not only to increase scientific knowledge of the phenomenon that can cause an 

earthquake, but also for the study of the soil displacement generated by the 

earthquake and the possible consequences upon structures (buildings, 

infrastructures etc…) stricken by this energy (seismic risk). 

Study of the seismic source is performed particularly by analysis (inversion) of 

recorded seismograms (seismic waves) at seismic stations. Initially, the analysis 

was focused on the study of long-period components of seismic waves using the 

point-source approximation; from this point of view the source of the earthquake is 

generally represented by the moment tensor, which contains information on the 
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fault size, magnitude, fault plane orientation and also the faulting style. 

Subsequently, the evolution of theoretical knowledge of the source in terms of 

relationships between frequencies and soil acceleration, combined with the 

development of more powerful computing machines, led to focus on the low period 

components. This step resulted in obtaining ever greater details on the dynamics of 

the source of an earthquake. 

Another important source of information in the study of the source characteristics 

can be given by the analysis of the static deformation field registered with satellite 

techniques (e.g. InSAR, GPS etc). The inversion of the static field, instead, is very 

important since it allows to introduce in our source model different constraints, 

such as at the seismic moment or the presence or not of slip near the surface. 

The breaking process can be studied either by a kinematic or dynamic type of 

approach. The use of this latter is closely related to knowledge of the distribution of 

the stress that triggers the earthquake as well as to the strength of materials subject 

to fracture. The kinematic approach instead, regardless of the dynamic conditions, 

needs a description of the characteristics of the rupture by means of a few 

parameters, such as, for example, dimensions of the source, distributions of final 

displacement, rupture velocity	  and rise time. It seems therefore clear that when 

considering the seismic source from the kinematic point of view we get a 

reasonable simplification in the representation of the seismic radiation emitted 

during the fracture process because, once set the macroscopic parameters (seismic 

moment, stress drop, focal mechanism, geometry of fault, ...), it will depend only 

on the heterogeneity of the rupture velocity, slip and rise time on the fault. 

In any case, when we want to determine the source parameters from the analysis 

(inversion) of seismograms, also a kinematic description of the seismic source may 

become complicated to deal with. In fact, the presence of a heterogeneous 

distribution of propagation speed of the rupture makes strongly non-linear the 

relationship between the data and the parameters of the source, which, for all 
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practical purposes, will result in the need to use a search method capable of 

sampling the space of models widely enough in the process of inversion. 

Considering this, if we do not want to use an approach that linearizes the 

dependence of the data on the parameters, we must have a method of computing the 

forward problem (synthetic seismograms) at the base of the inversion process, 

accurate and fast as regards the calculation time. Once defined the forward 

problem, it is necessary to implement the method of data inversion. For this 

purpose we need to define a misfit function that takes into account the more or less 

good agreement between the observed and simulated data and determines the 

distribution of the model’s parameters optimizing this function through an 

appropriate search engine. 

PhD work carried out in these years has had as its subject the study of kinematic 

rupture property of the seismic source, through the inversion of both static and 

dynamic fields generated by the earthquake itself.  

In this context, in the first work we investigate the fault geometry of the 

Christchurch earthquake (New Zealand, February 21, 2011) from the analysis of the 

GPS and InSAR data-sets and then we derive a kinematic source model from the 

joint inversion of all the available strong-motion, GPS and InSAR data-sets. To 

analyze the Christchurch earthquake we used the non-linear inversion method based 

on the simulated annealing algorithm, developed by Delouis et al. (2002). This 

method was modified during this PhD thesis to account for both the exploration of 

fault geometry and estimation of errors associated to retrieve parameters. Particular 

importance was also given to different preliminary analyzes performed on the 

original data-sets. 

For this work we considered a complete set of data consisting of both the 

dynamic range of deformation (strong-motion data) and the static one (InSAR and 

GPS data). 

The use of the kinematic model of rupture of an event during the inversion process 
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of the static field of deformation is very important in that, unlike the dynamic 

range, it not only allows to perform studies relating also to spatial position of the 

source, but also to introduce additional constraints on the final distribution of the 

source parameters on the fault plane. 

During this work particular importance has been given to the study of the resolution 

of the final model obtained and to the analysis of the errors in the distribution of the 

source parameters through the study of the distribution of marginal probability, 

built from the final breaking model obtained during the exploration process. 

In a second phase a novel inversion technique was developed, based on direct 

analysis of the apparent Source Time Function (aSTF) of a seismic event. The idea 

behind this work is to minimize all the main error sources during the process of 

simulation of synthetic seismograms. 

In fact, several studies have been made to simulate theoretically and empirically the 

propagation of short-period seismic waves in a heterogeneous and therefore 

realistic structure of the Earth. These studies show that the excitation of high 

frequency seismic waves is strongly dependent not only on the complexity of the 

source processes associated with heterogeneity on the fault (which is what we want 

to study), but also on attenuation and scattering site effects along the propagation 

path (propagation effects). All these factors, if not duly taken into account during 

the simulation process of ground motion, can strongly influence the final result. 

The solution of all these problems has been obtained in this work through the 

deconvolution of seismic radiation studied for its Empirical Green Function. 

To summarize, the work carried out during my PhD assignment was mainly 

focused on the study and development of different techniques for the construction 

of the kinematic model of rupture of a seismic event. 

Chapter 2: This chapter deals with the basic theoretical concepts of elasto-dynamic 

(strong-motion data) and elasto-statics (InSAR and GPS data) and their application 

to the study of the seismic source.  
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Chapter 3: In this chapter we describe the fundamental theory of inversion, 

distinguishing between the linear, linearized and non-linear inverse problem 

approaches. In the final part of the Chapter, we give particular emphasis to the 

description of the global optimization strategy (Simulated Annealing Algorithm and 

Genetic Algorithm) used for the methods developed in this PhD work. 

Chapter 4: The space-time distribution of the coseismic slip of the 21 February 

2011, Mw 6.2, Christchurch earthquake, New Zealand, is explored through a joint 

inversion of geodetic and strong-motion data. The geodetic data consist of both 

Global Position System (GPS), from campaign and continuous stations, and 

synthetic aperture radar (SAR) interferograms from two ascending satellite tracks. 

The strong motion data consist of 10 stations located in the Canterbury Plain, these 

stations offering a good azimuthal coverage of the event.  

The kinematic rupture model for the analyzed event was obtained using the 

parameterization and nonlinear inversion scheme proposed by Delouis et al. (2002) 

In particular, for any subfault we explore for the local source time function (local 

slip history), slip direction, and rupture onset time. The geometry of the fault plane 

used for the kinematic inversion is inferred from the analysis of the geodetic data. 

To validate our results we perform a resolution study for both the single and 

complete data sets, and an error analysis of our final kinematic rupture model. 

Chapter 5: We present an approach to infer the slip and rupture velocity 

distributions on the fault plane from the non-linear inversion of the apparent Source 

Time Functions (aSTFs), obtained from the Empirical Green Function 

deconvolution method. The main advantage of this technique is that it allows 

overcoming, in the forward modeling, the limitations related to the computation of 

the Green function, as the choice of a correct and reliable earth propagation model. 

We perform a parameter resolution and uncertainty study, which is based on the 

analysis of the misfit function in the neighbourhood of the best-fit model. In this 

chapter we present the results obtained by applying the technique to synthetic and 
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real records from an Mw 4 event occurred during the 2009 L’Aquila (Central Italy) 

aftershock sequence.  

Chapter 6: We report here the final considerations of my PhD work. 
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2 The Seismic Source 
 

 

 

 

 

 

 

 

 

 

 

 

2.1 Introduction 

An earthquake is a direct result of a fracturing process that occurs in the earth's 

crust. The rupture is a consequence of the variation from the state of equilibrium. A 

given volume of matter is subject to several sources of stress, for example: the 

weight of the overlying materials (lithostatic load), the pressure forces associated 

with the tectonic movements, movement of fluids etc.  

The equilibrium state is broken when the strains accumulated reach the material’s 

mechanical strength limits; when this happens there occurs a seismic fracture. Once 

the stress is released the region returns to a state of equilibrium; if the tectonic 

movements persist, the stress will accumulate again. An earthquake is therefore 

interpreted as a rock displacement along a surface (fault plane) inside a volume. 

Generally the fault size ranges from millimetres (rock samples in laboratory 

experiments) to thousands of kilometres (North Anatolian fault, San Andreas 
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Fault). 

The chance that an area could produce a seismic rupture process and then an 

earthquake is closely influenced by the thermal regime in the area. Most of the 

earthquakes indeed occur in the most superficial portions of the earth's crust, in 

which the relatively low temperature ensures elastic behaviours of materials. In the 

deeper crust portions instead the high temperature leads to a ductile behaviour of 

the materials. 

The most important consequences of a rupture process are the generation of 

dynamic events (elastic waves) and a static deformation field in the surrounding 

areas. In this chapter we want to provide the main basic mathematics required to 

compute both these fields. 

 

2.2 Elastic waves in homogeneous media 

The motion of each point of a generic volume V is completely determined when we 

know the forces acting inside and the stress agents on its surface S. In this case, 

according to Euler’s formulation, Newton's second law for continuous media is 

2.1 

!!!"
!

+ !!!" =
!
!" !!!!"

!!
 

 

where !! are the forces acting on the volume element dV, !! are stresses acting on 

the surface dS, ! is the density and !! is the velocity of each point of the volume. 

In terms of the stress tensor ! (!! = !!"!!) and applying the Gauss theorem to the 

surface integral, we get 

2.2 

!! +
!!!"
!!!

!" =
!
!" !!!!"

!!
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If the density is independent from time, the equation can be written as follows 

2.3 
!!!"
!!!

+ !! = !
!!!
!"  

 

On the other hand, the total derivative of the velocity with respect to time can be 

written as 

2.4 
!!!
!" =

!!!
!" + !!

!!"!
!!!

 

 

but considering infinitesimal deformation and very small speed variations with the 

distance, the second order terms can be neglected and thus the total derivative can 

be approximated by the partial derivatives  

2.5 

!
!!!

(!!"#$!!")+ !! = !
!!!!
!!!  

 

where the stress  and the velocity (!!)	   are expressed in terms of deformation 

(!!" = !!"#$!!", where !!"#$ is the elastic tensor) and displacement for an elastic 

medium respectively, !!" =
!
!

!!!
!!!

+ !!!
!!!

 and considering elastic constant 

coefficients, we have 

2.6 

!!"#$
!!!!
!!!!!!

+ !! = !
!!!!
!!!  

 

For homogeneous and isotropic media !!"#$ can be written in terms of Lame’s 
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coefficient so that the equation 2.6 becomes 

2.7 

! + ! ∇ ∇ ∙ ! + !∇!!+ ! = !! 

 

Given the mass forces F, the solution of 2.7 provides the displacement field for 

elastic continuous, homogeneous, isotropic and infinity media. 

A common alternative form of this equation employs the vector identity 

2.8 

∇!! = ∇ ∇ ∙ ! − µμ∇×∇×!  

 

Allowing (2.7) to be written as 

2.9 

! + 2! ∇ ∇ ∙ ! − (!∇×∇×!)+ ! = !! 

 

Equations 2.7 and 2.9 are complicated, 3D, partial differential equations for 

displacements in a continuum, initiated by non-specified source.  

The processes behind an earthquake can be described using a system of mass forces 

acting in the focal region. Outside this region the mass forces agents are only 

gravitational (F = mg) and except for the very large period (T> 600 s) seismic 

waves, the influence of gravity is very small and therefore neglected. So, 

considering the Earth as an unbounded medium, we can use the equation 2.21 to 

determine the elastic displacement outside the focal region. 

 

2.3 The Green Function 

Neglecting the gravitational forces, the mass forces that appear in the equation of 

motion (equation 2.7) can be used to describe the processes that generate 

earthquakes. Generally speaking, these forces F (x, t) which can be thought of as 
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being functions of spatial coordinates and time, may be different from one 

earthquake event to another and are defined only within a certain volume (focal 

region). 

An example of time dependence is the harmonic function 

2.10 

! !; ! = !(!)!!"# 

 

In seismology this form of time dependence simplifies the solution of several 

problems. Indeed, harmonic functions, although not realistic, can be used to find 

more complex solutions for time dependent functions using the Fourier transform 

operator.  

One important kind of mass force for many solutions of elasto-dynamic problems is 

provided by a time and space unit impulse with arbitrary direction. This force can 

be mathematically represented using the Dirac’s Delta function: 

2.11 

!! !!; ! = !(!! − !!)!(! − !)!!" 

 

The force is applied to the coordinates !! at the time ! and is zero outside these 

space-time coordinates. The orientation of this force is identified by the associated 

components with the index n. If we replace this force in the equation 2.1, the 

solutions that are obtained represent the elastic displacement as a function of time 

at each point of coordinates x in a certain volume V surrounded by a surface S. 

Each component of the displacement (n index) depends on the orientation of the 

force (i index) and then the displacement is a second order tensor of components 

!!"(!!, !!; !, !), which is a function of the space-time coordinates (xs, t) at every 

point V and of the coordinates and time of the application  point of the force (!!  ,  !). 

Replacing in the equation of motion and taking into account the stress function of 

the displacement we get 
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2.12 

!!!"!"
!

− !!"#$
!!!"
!!!

!"
!

= !(!! − !!)!(! − !)!!"!"
!

 

 

Applying the Gauss theorem for an elastic, homogeneous and infinite medium we 

can write the previous equation as follows: 

2.13 

!!!" − !!"#$
!!!"
!!!

= !(!! − !!)!(! − !)!!" 

 

The solutions of the equations 2.12 and 2.13 are the elastic displacements generated 

by an impulsive force in space and time, which is why the tensor G is called the 

elasto-dynamic Green function. The Green function depends on the space 

characteristics, the elastic coefficients and density. What is more, in a finite space it 

also depends on the shape of the volume V and the boundary conditions on the 

surface S. For any propagation space there is a different Green function that defines 

how the medium mechanically responds to an impulsive excitation and is therefore 

a space characteristic. 

 

2.4 The reciprocity and representation theorems  

Let us consider an elastic space of volume V surrounded by a surface S. For a 

forces mass system f acting on each volume element dV and stress Tu, let “u” be 

the resulting displacement. In the same volume we have a second forces system g 

and stress Tw, which provide a displacement w. It can be shown (Aki and Richards, 

1980) that Betti’s reciprocity theorem applies so that: 

2.14 

!! − !!! !!!"
!

+ !!!!!!"
!

= !! − !!! !!!"
!

+ !!!!!!"
!
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Betti's theorem relates the corresponding displacements of two forces and stress 

systems that act in the same volume. Reorganizing and time-integrating the terms 

of equation 2.12 we get 

2.15 

!"
!!

!!
!(!!!! − !!!!)!"

!

= !"
!!

!!
(!!!! − !!!!)!"

!
+ !"

!!

!!
(!!!!! − !!!!!)!"

!
 

 

This equation is a generalized form of Betti’s theorem, known as Green-Volterra 

formula. 

An interesting case is when the displacements and velocities are zero before a 

specific time. This implies the causality principle because the space is not energized 

until the motion begins. Under this condition we find the following (Aki and 

Richards, 1980) 

2.16 

!"
!!

!!
(!!!! − !!!!)!"

!
= + !"

!!

!!
(!!!!! − !!!!!)!"

!
 

 

In seismology this is an important result because it allows a representation of the 

displacement of given forces and stress system (complex) as a function of one 

produced by a different system that might be known and simpler.  

The simplest system of forces that could be used is represented by a force impulse 

unitary in space and time. Under these conditions, as seen above, the corresponding 

displacement is given by the Green function.  

Replacing g with the equation 2.11 in 2.16, “w” in the same equation with the 

Green tensor G and after some mathematical manipulations (Aki and Richards, 
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1980) we find the following: 

2.17 

!! !!; ! = !"
!!

!!
!!!!"!"

!
+ !"

!!

!!
!!"!! − !!"#$!!

!!!"
!!!

!! !"
!

 

 

This result is known as the “Representation Theorem”. The equation is used to 

determine the displacements produced by a system of elastic forces defined in a 

volume and by a stress and displacement system defined on a surface, using the 

Green function. In this equation the Green function is a “propagator”; in fact it 

allows propagating forces, stress or displacement effects, defined at (î; t) to 

determine the elastic displacements at (x, t). 

Generally the determination of the Green function is complex and the difficulties 

increase with the complexity of the considered propagation space. The advantage of 

using the Representation Theorem, however, is related to the possibility for a 

specific space to solve the equation of motion only once to determine the Green 

function and then use the results obtained results to propagate different forces and 

strain systems in the same space. 

 

2.5 Kinematic models of Seismic Source 

In seismology, understanding the mechanics of the seismic source requires 

correlation of the seismic waves observed to the parameters that describe the 

source: in the forward problem, seismic waves are obtained starting from the 

theoretical models for the source, while in the inverse problem the parameters of 

the model for the source are derived from the seismic waves observed. In both 

approaches, the first step will be the definition of the seismic source in terms of a 

mechanical model physically representing the fracture. These models, or 

representations of the seismic source, are defined by a number of parameters that 

influence the complexity of the models themselves: simple models are associated 
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with few parameters while more complex models will require a higher number of 

them (Madariaga, 1983; Koyama, 1997). 

The seismic fracture problem can be approached using a kinematic or dynamic 

point of view. 

The kinematic models are a simplification of a real fracture process involving a 

priori assumptions in the definition of the shape of the Source Time Function (STF) 

and stopping conditions of the rupture at the fault borders. In these models the 

rupture processes are studied independently from the stress that caused them. This 

type of models, however, is very important for the interpretation of seismograms 

and estimating the source parameters:  seismic moment, orientation of the fracture 

etc. 

The second approach connects instead the fracture process, the mechanical 

properties of the material in the focal zone and the agents’ stress. The dynamic 

models are very complex and in most cases their solution can be obtained only by 

using numerical methods. 

 

2.6 Fractures and Dislocations 

A mechanical representation of the earthquake source can be obtained in terms of 

fractures or dislocations that occur in an elastic medium. Volterra developed the 

elastic theory of dislocations first in 1907 (Love, 1945). 

A dislocation is a displacement or deformation discontinuity through an internal 

surface of an elastic medium. For this discussion we consider only displacement 

dislocations, and so the stress is always continuing along the internal surface and 

the problem will be solved using the Representation Theorem in terms of the Green 

function (equation 2.17). The focal region is a surface Σ with two sides, a positive 

and a negative one. This surface can be considered as derived from the focal 

volume V0 that is flattened to form a surface with the two sides stuck together. We 
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denote with !! the surface local coordinates and with ni(!!) the normal vector to its 

points. If there is a displacement discontinuity (slip) from side to side of this 

surface, it shall be given by the equation 

2.18 

!!! !!; ! − !!! !!; ! = ∆!!(!!; !) 

 

where the superscripts + and - are the displacements measured on the positive and 

negative sides of the surface Σ. In absence of mass forces (F = 0), the stresses are 

continuous through Σ and the conditions on the external surface Σ are continuous 

too. We can write the equation 2.17 as follows 

2.19 

!! !!; ! = !"
!!

!!

∆!!(!!; !)!!"#$!!(!!)
!!!"(!!, !!; !, !)

!!!
!"

!
 

 

In this formulation the seismic source is represented by a dislocation (or 

displacement discontinuity) defined by the slip vector ∆! on the surface Σ, which 

corresponds to the relative displacement of the two fault sides. This discontinuity is 

non-elastic, thus even if the stress became zero, they would remain. In the general 

case, ∆!(!! , !) may have a different direction for each !!   point of the surface Σ and,  

for each of these points, it may change in time from a zero value at t = 0 up to a 

maximum value for a particular instant. The normal to the surface Σ, denoted by the 

unit vector n(Σ), can have different direction for each surface point but, in general, 

it is considered constant since it is assumed that Σ is a plane. Green's function G 

includes the effects of the medium on the propagation from the point !!, on the 

surface Σ, to the point xi where we want to evaluate elastic displacements. To solve 

the problem according to the equation 2.19 we need to know the Green function or 

better its derivatives.  
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The equation 2.19 corresponds to a kinematic source model, so a model for which 

the elastic displacements u are derived from the slip vector ∆! that we must know a 

priori, rather than being derived from stress conditions in the focal region as is 

done for dynamic models. After some mathematical steps in equation 2.19 we can 

replace the vector ∆!  with the function ∆! , which represents the velocity 

dislocation function (slip rate). As a consequence, the elastic displacement does not 

depend on the slip by but on the slip rate. This means that the source radiates elastic 

energy only when it moves. 

As a special case, we consider an isotropic medium, whose Lamé coefficients are 

!  and !. Using this notation for the elastic constant we can write the equation 2.19 

as follows: 

1.20 

!! !!; ! = !"
!!

!!

∆!(!) !!!!!!!" + ! !!!! + !!!!
!!!"
!!!

!"
!

 

 

2.7 The Green function for a homogeneous elastic whole space 

As said above, the Green function represents the solution of the wave equation for 

an impulsive force in space and time.  

For an elastic, homogeneous, isotropic and infinite space, if the force is applied in 

the origin of the reference system at time t = 0 the Green function is the solution of 

the equation 

2.21 

!! = !!+ ! + ! ∇ ∇ ∙ ! − !∇×∇×! 

 

In this equation the body force per unit volume (!!) is written in the time-

dependent form !" ! = !(!)!(!)! (where a is a unit vector in the direction of the 

force). The function F(t) is the time history of the applied body-force. 
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Different time histories can be used: delta functions ! ! , step function, H(t) etc. To 

find our solutions we use the vector identity  

2.22 

!! = ! ! ! ! ! = −! ! ∇!
!
4!" = −!(!) ∇ ∇ ∙

!
4!" − ∇×∇×

!
4!"  

 

We search for a solution of the form 

2.23 

! ! = ∇ ∇ ∙ !! − ∇×∇×!!    where   
∇×!! = 0
∇ ∙ !! = 0 

 

We can now split the elastodynamic equation into two different terms  

2.24 

! + 2! ∇!!! =
!(!)
4!" !+

!!!!
!!!  

!∇!!! =
!(!)
4!" !+

!!!!
!!!  

 

With Ap=Apa and As=Asa we get the following scalar equations: 

1.25 

∇!!! =
!(!)

4! ! + 2! ! +
1
!!
!!!!
!!!  

∇!!! =
!(!)
4!"# +

1
!!
!!!!
!!!  

where ! = !!!!
!

 and ! = !
!
 are the P and velocity, respectively. Before solving 

these complex equations we find the solution of the inhomogeneous wave equation 

2.26 

∇!! !!, !!, !!, ! −
1
!!
!!!
!!! !!, !!, !!, ! = ! !!, !!, !!, !  
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A form that is often used for g is 

2.27 

! !, ! = −! ! ! ! = −! ! ! !  

 

The solution of the equation 2.26 is 

2.28 

! !, ! =
1
4!

!(! − ! !)
!  

 

This solution is important because it shows that the solution for a symmetric point-

source impulse is an outward-propagating wave that decays in amplitude as 1/r. We 

know that the form of spherically symmetric waves that solves the homogeneous 

equation is 

2.29 

∇!! −
1
!! ! = 0 

! =
1
! ! ! −

!
! +

1
! ! ! +

!
!  

 

which is a standard D’Alembert-type solution. The 1/r factor is required to keep 

the total energy of the spreading wave front constant. Given 2.28, we can find 

additional solutions: 

2.30 

∇!! −
1
!!
!!!
!!! = −! !− ! ! ! − !  

! !, ! =
1
4!

!(! − ! − |!− !|/!)
|!− !|  
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This solution is for a point force at time ! = ! at position ! = (!!, !!, !!). Another 

simple solution is given by 

2.31 

∇!! −
1
!!
!!!
!!! = −! !− ! !(!) 

! !, ! =
1
4!

!(! − ! − |!− !|/!)
|!− !|  

 

If the source extends in a Volume V as well as in time, we have 

2.32 

∇!! −
1
!!
!!!
!!! = −!(!, !) 

! !, ! =
1
4!

!(!, ! − |!− !|/!)
|!− !| !"

!

 

 

which says that the field at (x,t) is sensitive to source activity in the element dV 

only at the delayed time ! − !− ! . Thus we can write solutions to eq. 2.25 as 

follows 

2.33 

!! =
1
4!

−!(! − |!− !|/!)
4! ! + 2! !|!− !|!"

!

 

!! =
1
4!

−!(! − |!− !|/!)
4!"#|!− !| !"

!

 

 

where ! = 0 for a point source at the origin. Now we must integrate over the 

volume around x. Given the distance !− ! = !" (where ! is the transit time), it 

can be shown that 
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2.34 

!! =
1

4!"# ! ! −
!
! − ! !"! −

!

!
! ! − ! !"!

!

!
 

!! =
1

4!"# ! ! −
!
! − ! !"! −

!

!
! ! − ! !"!

!

!
 

 

This displacement field is obtained by computing the equation 

2.35 

! = ∇ ∇ ∙ !! − ∇×∇×!! 

 

Given a single body force F(t) applied at the origin in the x1 direction, the equation 

2.34  becomes 

2.36 

!! !, !

=
1

4!"#
!!

!!!!!!
1
! !" ! − ! !"!

! !

! !
+

1
4!"#!!

!!!
!!!!!!

! ! −
!
!

+
1

4!"#!! !!"
−!!!
!!!!!!

! ! −
!
!  

 

In the general case of a point force in the xj direction, we have the classic Stokes 

solutions: 

2.36 

!! !, !

=
1
4!" 3!!!! − !!"

1
!! !" ! − ! !"!

! !

! !
+

1
4!"!! !!!!

1
!

!!!
!!!!!!

! ! −
!
!

−
1

4!"!! !!!! − !!"
1
! ! ! −

!
!  
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where the parameters !!  is the cosine direction (!! = !! ! = !" !!! ). In the 

equation 2.36 the first term behaves like 1 !! (near-field term) while the other 

behaves like 1 ! (far-field terms).  

 

2.8 Finite dimensions fault: Kinematic models 

A realistic representation of the seismic source must include the fault dimensions 

and their effects on the seismic radiation. The models developed of extended source 

were first kinematic, describing dislocations that propagate on a finite surface area. 

 

 

 
Figura 2.1: An extended source of size L, slip ∆! at the point xi, which produces an elastic displacement u 

in xi 

 

 

The general characteristics of the kinematic models of an extended source are: a 

surface Σ on which a dislocation ∆!(!!) propagates in a given direction with a 

constant velocity, from the origin (!! = 0) to a final distance L (Figure 2.1); the 

rupture velocity assumed constant and less than the wave propagation velocity in 

the considered earth model (! < ! < !). 
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It can be shown that the dislocation for the P waves, in the far-filed approximation, 

is given by the equation 

2.37 

!!! =
!

4π!!
ℜ(!! , !! , !!)  

!!
∆! !!; ! −

!
! !" 

 

where ! = |!! − !!| is the distance between the observation point x and a generic 

source point  (!), ℜ(!! , !! , !!) is the radiation pattern, which depends on the 

orientation of the source (l,n) and the location of the observation point (!!). 

If we are interested only in the time function of the waveform at a point at a 

distance r0 from the origin (Figure 2.2), we can simply compute the integral 

2.38 

! ! = ∆! !!; ! −
!
! !"

!
 

 

Expanding r in the Taylor series around r0 and neglecting the !! terms following the 

first, we find 

2.39 

! ≅ !! − !!!! 

 

Being !!! !!  the second order term and L the maximum value of !! , the 

approximation 2.39 is correct for displacement characterized by wavelength ! for 

which !!! ≫ !!. Under these conditions the elastic displacements for the P wave is 

2.40 

! ! = ∆! !!; ! −
!! − !!!!

! !"
!

 

 

The Fourier transform of the previous equation is 
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2.41 

! ! = !"
!

∆!(!)!!!"(!!
!!!!!!!

! )
!

!!

!" 

 

 Indicating the Fourier transform of ∆! !  with ∆!(!) , !(!)  is given by the 

following 

2.42 

! ! = !!"!!/! !"∆!(!!;!)
!

!!!"!!!!/!!" 

 

 

The Fourier transform of the elastic displacement !(!) takes the form of a spatial 

Fourier transform on the fault plane of the Fourier transform of the slip ∆!(!). The 

exponential !!! ! = !!!    that appears in equation 2.41 represents the projection of 

the wave number k on the fault plane Σ. 

If the time history of the slip function is expressed by a Heaviside function 

(∆! !! , ! = ∆! !! !(!)), its Fourier transform is ∆! !! (!"), and replacing in 

equation 2.41 we have 

2.43 

! ! = !!"!!/! !"∆!(!!)
!

!!!"!!!!/!!" 

 

For low frequencies we find 

2.44 

! !⟶ 0 ≈ ! ∆! !!
!

!" ≈ ! < ∆! > ! = !! 
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The spectral amplitude is proportional to the seismic moment. The constant 

proportionality depends on factors shown in equation 2.37. If the slip does not 

change its sign, the spectral width at high frequencies will tend to zero. 

The general shape of the amplitude spectrum ! ! , corresponding to a finite size 

source is constant at low frequencies and, as we shall discuss below, starts to 

decrease from a frequency which is proportional to the inverse of the source size. 

The behaviour of the spectrum at high frequencies is 1 !!, where ! takes values 

between 0 and 3 and generally equals 2 (Aki, 1967). 

 

2.9 The Haskell model 

The kinematic finite dimensions source model, known as a Haskell model (1964), is 

characterized by a rectangular fault of length L and width W. The Haskell model is 

also characterized by fractures that propagate only along the direction L with a 

constant velocity v (Figure 2.2). The rupture process occurs in a homogeneous, 

elastic, isotropic and unlimited space; we make this choice in order to minimize the 

propagation effects and to focus our attention only on the related source 

phenomena. 

Skipping the mathematical steps, shown by Aki and Richards (1980), and assuming 

that the receiver is sufficiently far from all points of the fault, only the far-field 

terms produce significant contribution for the Green function computation; in this 

case it can be shown that P waves displacement spectrum to the receiver located in 

r is given by the following equation 

2.45 

 

! !,! =
!ℜ

4!"#!!!"#∆!(!)
sin!
! ! !! !"! !!!!!  
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Figure 2.2: Haskell Source Model 

 

being ℜ the radiation pattern and 

 

2.46 

! =
!"
2

1
! −

cos!
!  

 

with the ! angle shown in figure 2.2. 

The shape of the amplitude spectrum is defined by the !"#!
!

 factor. For given values 

of ! and L, X depends only upon ! and therefore the !"#!
!

 at low frequencies tends 

to 1 while at high frequencies decreases at 1 ! rate. 
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The spectrum shape 2.44 also depends on the shape of ∆! ! . If the STF  (Source 

Time Function) has a linear ramp shape (Figure 1.2): 

 

2.47 

∆! ! =

0                      !"#  ! < 0
!
! !  !"#  0 < ! < !
!                        !"#  ! > !

 

 

 

Calculating the Fourier transform of 2.47 and substituting in 2.45 we have that 

 

2.48 

! !,! =
!ℜ

4!"#!!!"#
sin!
!

!!!"# − 1
!" ! !! !"! !!!!!  

 

 

This last equation provides the analytical solution for calculation of the 

displacement spectrum associated to the Haskell source. Of course, displacement 

time function could be obtained calculating the anti-Fourier transform of 2.48. At 

high frequencies the spectrum highlights in equation 2.48 decreases as 1 !! . 

Figure 2.3 represents the spectrum as a function of frequency logarithm. Its shape is 

constant at low frequencies but starting from a particular frequency (!!), generally 

called corner frequency, its envelope is a straight line of slope -2 (Figure 2.3). This 

particular form of the spectrum is the combined result of finite size source effects 

and rise time.  

The real seismic waves spectra show these characteristics also showing the finite 

size of the source and confirming the rise time (!) (Aki, 1967). 
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Figure 2.3: Amplitude spectrum of seismic waves corresponding to an Haskell source model 

 

The influence of the finite size of the source can be isolated introducing the 

directivity function ! ! , defined by Ben-Menahem (1961) as the ratio of the 

spectral amplitudes of the waves that leave the source in the opposite direction (y 

and y + p). According to 2.45 and 2.46 this ratio is given by 

2.49 

! ! =
sin !" 2! ! ! − cos! ! ! + cos!
sin !" 2! ! ! + cos! ! ! − cos!  

 

where c is the seismic phase velocity propagation considered. This function is 

characterized by a series of maximum and minimum depending on L and v and it 

can be used to determine the source and the velocity rupture. 

The spectrum associated with a Haskell model where the rupture propagates in a 

bilateral way presents two corner frequencies (figure 2.4), !! and !!, instead of 

only one (Savage, 1972). For P and S waves, ! = 0.9!; !!, !! and !! are given 

by 
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2.50 

!:

!! =
!
!!

!! =
!.!!
!

!! =
!.!!!

!"

           !:

!! =
!.!!
!

!! =
!.!!
!

!! =
!".!!!

!"

 

 

The corner frequencies associated with P waves are always smaller than those 

associated to the S waves. Generally, the corner frequencies observed correspond to 

!! from which we can evaluate the source size: 

2.51 

!" ! ! =
1.7!
!!!

=
3.8!
!!!

 

 

Differences between !!, !! and !! depend on the relative dimension of L and W: 

if W << L, when the fault is long and narrow, the difference between the 

frequencies is large; on the opposite, if  ! ≈!, then the three frequencies are very 

close. 

 

 
Figure 2.4: Amplitude spectrum corresponding to a Savage (1972) source model. 
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2.10 The Source Time Function 

The Source Time function (STF) gives the time dependence of the slip function on 

the fault. Functions commonly used to represent the STF are (Figure 2.5): 

2.52 

∆! ! = ∆!! !  

∆! ! =
∆!
!
;       0 ≤ ! ≤ !

∆!;                         ! > !
 

∆! ! = ∆! 1− !!! !  

 

In all previous cases the displacements begin at time t = 0 and reach a maximum 

slip value ∆!. 

 

 
Figure 2.5: Source function examples: (a) step function; (b) a ramp function with rise time !;  and (c) an 
exponential function with rise time  !. 

 

In the first equation 2.52, ∆!(!) has the shape of a Heaviside function and reaches 

its maximum value instantaneously at time t = 0. In the second case 2.52, ∆!(!) 

increases linearly between t = 0 and ! = ! and at this time reaches its maximum 

value. STF introduces the source parameter !, which shows the time necessary to 

reach its maximum displacement value (rise time). In the third case 2.52,  ∆!(!)  is 

a continuous function for t> 0 and the dislocation reaches its maximum value 

asymptotically. The elastic displacements sometimes depend directly on slip rate  
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∆!. For the first two models we have 

 

2.53 

∆!(!) = ∆!"(!) 

∆!(!) = ∆! ! ! − !(! − !)  

 

 

In both cases, for t = 0, the slip rate instantly leaps from 0 to its maximum value 

∆!  (Figures 2.6a and 2.6b). In the first case, the slip rate is an impulse, while in the 

second case it is characterized by duration !. More realistic STF present a velocity 

slip that increases from zero to its maximum value and then decreases to zero after 

a certain time.  

A model that satisfies these conditions is a triangular function (Figure 2.6c): 

 

2.54 

∆! ! =

                              0, ! < 0    

                        ∆!
2!
!
, 0 ≤ ! ≤

!
2

∆!
2(! − !)

! ,
!
2 ≤ ! ≤ !

                          0, ! > !

 

 

The slip rate increases linearly from zero at t = 0 reaching the maximum value (∆!) 

at time ! = ! 2 and then decreases linearly to zero at time ! = !. During the first 

part of the process, the slip acceleration (∆!) is positive, while in the second part it 

is negative. If we increase the duration of the source, we can use a trapezoidal STF 

(Figure 1.6d). In this case the slip rate keeps its maximum value for a certain time 

interval before decreasing to zero at ! = !. 
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Figure 2.6: Relation between ∆!  (Source Time Function) and ∆! . (a) a impulse function; (b) a 
rectangular function of duration !; (c) triangular function of duration !; and (d) a trapezoidal function 
of duration !.  

 

The STF models mentioned are simple single event sources. A complex source can 

be represented by an STF with several triangles (Nabelek et al. 1984) or trapezoids 

of different heights (Figure 2.7). In this way it is possible to represent STF 

characterized by accelerations (∆! > 0), deceleration (∆! < 0) and stops (∆! = 0). 
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Figura 2.7: The Source Time Function (∆!) for a complex source composed by different events. 

 

2.11 Elastostatics 

In the previous sections we studied the seismic source problems in elasto-dynamic 

and consequently how to define the displacement field at a given site, associated 

with the seismic wave propagation. In these sections instead we want to study the 

earthquake effect in terms of static displacement field generated in the surrounding 

areas, and which can be acquired through different techniques. The main methods 

of recording these fields are by satellites, like the SAR (Synthetic Aperture Radar) 

and GPS (Global Position System). 

Now we want to find the static displacement u at point P in an isotropic, infinite, 

homogeneous elastic medium, due to a force at point O. Our medium is 

characterized by density ! and elastic constants ! and !. 

We define the point force F by 

2.55 

! = lim
!"→!

!!!" 
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where f is the force per unit mass, !! is the body force per unit volume, and !" is a 

small volume element being acted on. We introduce the 3-dimensional delta 

function !(!) 

2.56 

! ! =
0                                    ! ≠ 0

! ! !" = 1
!

 

 

Using the Gauss theorem we can find that 

1.57 

! ! =
−1
4! ∇

! 1
! 

 

which allows us to represent the delta function by spatial derivatives of the radial 

coordinate !!!. 

2.12 The Green function for a single force  

As for the dynamic case will now define the static displacement associated with a 

point source. We now apply the mathematical representation of a point force as 

defined in the equation 2.56-2.57 to our elastic equations for equilibrium (1.9), with 

! = 0 

2.58 

! + 2! ∇ ∇ ∙ ! − (!∇×∇×!)+ ! = !! 

 

Let us have a point force F at the origin 

2.59 

! = !! = !!! ! = −!∇!
!
4!"  

= −! ∇ ∇ ∙
!
4!" − ∇×∇×

!
4!"  
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where a is a unit vector in the direction of the force. To define the previous 

equation we used the vector identity (2.8). The equation of equilibrium becomes 

2.60 

−!∇!
!
4!" = −! ∇ ∇ ∙

!
4!" − ∇×∇×

!
4!"  

= ! + 2! ∇ ∇ ∙ ! − (!∇×∇×!)+ 

 

 

We are searching for a solution of the following form 

2.61 

! = ∇ ∇ ∙ !! − ∇×∇×!!          where 

∇ ∙ !! = !           ∴ !!!! = ∇ ∇ ∙ !!
∇ ∙ !! = !           ∴ !!!! = −∇×∇×!!

 

 

based on the idea that any displacement field can be represented by a sum of 

solenoidal and irrotational fields. Substitution of this solution leads to 

2.62 

∇ ∇ ∙
−!!
4!" + (! + 2!)∇

!!! + ∇×∇×
!!
4!" − !∇

!!! = 0 

 

which can be satisfied by having 

2.63 

! + 2! ∇!!! =
!!
4!" 

!∇!!! =
!!
4!" 

 

If we now represent !! = !!! and !! = !!!, we get the Poisson equations 

2.64 
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∇!!! =
!

4! ! + 2! ! 

∇!!! =
!!
4!"# 

 

Since ∇!! = 2 ! ,we  can  integrate  these  to  have 

2.65 

!! =
!"

8! ! + 2!  

!! =
!"
8!" 

 

These solutions could be used to solve the inhomogeneous equations 2.63. We 

evaluate the displacements by inserting then into 2.61. 

Plugging in our potentials Ap and As and expressing the vector operations with 

indicial notation, 2.61 and 2.65 yield the ith component of displacement for a unit 

force (F=1) in the jth direction, !!
!: 

2.66 

!!
! =

1
8! ! + 2!

!
!!!

!"
!!!

−
1
8!"

!
!!!

!"
!!!

+ !!"
1
8!" ∇

!! 

=
1
8!" !!"∇!! −

! + !
! + 2!

!!!
!!!!!!

 

 

or 

2.67 

!!
! =

1
8!" !!"!,!! − Γ!,!"  

 

where 
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2.68 

Γ =
! + !
! + 2! 

 

For a Poisson solid (! ≈ !) we find Γ ≈ 2
3. We have oriented our reference 

system in the reference frame of the source and we compute displacements relative 

to this local source reference frame. 

Equations 2.66 and 2.67 represent the Somigliana tensor. The previous tensor is 

symmetric, !!
! = !!!. For a force, F, applied in the x1 direction, the six independent 

permutations are 

2.69 

!!! =
!
8!"

2
! − Γ

1
! −

!!!

!!  

!!! =
!
8!" Γ

!!!!
!!  

!!! =
!
8!" Γ

!!!!
!!  

!!! =
!
8!"

2
! − Γ

1
! −

!!!

!!  

!!! =
!
8!" Γ

!!!!
!!  

!!! =
!
8!"

2
! − Γ

1
! −

!!!

!!  

 

2.13 Three-dimensional models of faulting, the Mansinha and Smylie 

solutions 

The displacement field for the slip on a fault in an infinite elastic medium can be 

derived from the Betti reciprocal theorem as seen for the elasto-dynamics case. 
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That theorem relates two elastic fields in a singularity free region bounded by the 

surface A: 

2.70 

!!!"!! = !!!!"!!! 

 

Compared to the previous formulation (equation 1.14), for the static formulation we 

neglected the time-dependent terms. In the applications of this theorem to the 

deformation produced by slip on a fault, the elastic field (ui,pij) is produced by the 

slip and the other field is taken as produced by a delta-function stress applied at Q 

in the direction of the xk axis. This stress produces the elastic fields at M given by 

the equation 1.66 and by 

2.71 

!!"! = !!!"
!!!!

!!!
+ !

!!!!

!!!
+
!!!!

!!!
 

 

In the previous formulation the superscript k index, added to Ui and Pij, identifies 

the direction of the force. To avoid singularities within the surface A in equation 

2.70, small volumes surrounding both Q and the fault surface must be excluded. 

This introduces two new internal surfaces, a sphere A1 about Q and the flat surface 

Σ about the fault area. 

Thus, the surface A is now broken into three closed surfaces A0, A1 and Σ, which 

are shown schematically in figure 2.8. 

In the limit as the radius of !! ⟶ 0, the integration over A1 in equation 2.70 

contributes ui(Q) on the left-hand side and nothing on the right-hand side. As the 

surface Σ  is shrunk down so that it fits the fault surface quite closely, the 

contribution from the right-hand side of eq. 2.70 will vanish and that from the left-

hand side will be ∬ ∆!!!!"!Σ!!. Here the surface Σ has been divided into two  
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surfaces Σ! and Σ! representing the two sides of the fault. Then ∆!!   (= !!! − !!!) 

is the discontinuity in displacement (i.e. slip) in crossing the fault surface. 

 

 
Figura 2.8: The surface involved in the application of the reciprocal theorem. 

 

Note that the integration is over only Σ! not Σ. Finally, if the outer surface A0 is 

allowed to recede to infinity, it can be shown for a finite slipped area that 

integration over A0 does not contribute to eq 2.70. Thus, we arrive at the Volterra 

formula 

 

1.72 

!! ! = Δ!!(!)!!"!(!,!)!Σ!!(!) 

 

 

where the positive direction of Σ! is taken along the outward normal from Σ. For  

the particular case where the fault may be modelled as a simple dislocation loop,  
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∆!! can be replaced by the Burgers vector and removed from the integral. 

The displacement field generated by slip on a small element of a fault can be shown 

to be the same that is generated by the application of a double-couple force system 

at the fault element. This equivalence is shown in figure 2.9. 

 

 

 
Figure 2.9: Equivalence of a double-couple force system to slip either of two orthogonal surface elements. 

 

 

Mansinha and Smylie have given closed analytical expression for the displacement 

fields for a rectangular loop, two sides of which are parallel to the free surface (fig. 

2.10). They have assumed that the elastic constants ! and ! are equal. The dip ! for 

the fault model is arbitrary.  

The Burges vector b must lie in the plane of the dislocation loop but may be either 

parallel to (strike slip) or perpendicular (dip slip) to the strike of the fault plane, 

obviously a combination (oblique slip) of strike and dip may be generated by 

superposition. 
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Figure 2.10: Coordinate system used to describe a three-dimensional fault model in a half space. The 
plane x3=0 is a free surface, and the shaded rectangle represents the fault surface.  

 

Figure 2.4 shows the coordinates system used by Mansinha and Smylie for their 

solutions. The length of the fault is 2L and down-dip width d2 - d1. The point at 

which the displacement is studied is x1, x2, x3 and the integration variables on the 

fault are !!, !!, !!. In our results we used some abbreviations ss done by Mansinha 

and Smylie: 

2.73 

! = !! cos! + !! sin! 

!! = (!! − !!)! + (!! − !!)! + (!! − !!)! 

!! = (!! − !!)! + (!! − !!)! + (!! + !!)! 

!! = !! sin! − !! cos! ,      !! = !! cos! + !! sin!, 

!! = !! sin! + !! cos! ,      !! = −!! cos! + !! sin!, 

ℎ! = !! − !! − !! !,      !! = !! − !! ! + !!!, 

 

The integrals to be evaluated are of the form 
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2.74 

!! = [                ]!!!
!

!!
!"

!!

!!
 

 

 

The results of the integration are given in indefinite form and must be evaluated at 

the limits of integration indicated above. For 0 < ! < 90!, the direction of the 

Burges vector b is specified by the movement and the normal dip-slip movements 

are associated with positive b.  

For strike-slip displacement (b parallel to x1):  

 

 

2.75 

 

12!
!!
!

= !! − !!
2!!

! ! + !! − !
−
4!! − 2!! cos!
! ! + !! + !

−
3 tan!

! + !! + !!
+
4!!!! sin!

!!

− 4!!!!!! sin!
2! + !! + !

!! ! + !! + ! !

− 6tan!!tan!!
! − !! cos! ! − ! + !! + ! ! sin!

!! − !! !! + ! cos!

+ 3tan!!
!! − !! !! − !

!!!
− 3tan!!

!! − !! !! − !
!!!

; 
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12!
!!
!

= sin! 3 tan! sec! ln(! + !! + !!)− ln ! + !! − !

− 1+ 3tan!! ln ! + !! + ! +
2!! cos!

!

− 2 sin!
2!! !! cos! − !! sin! + !! !! + !! sin!

! ! + !! + !
− 3 tan!

!! − !!
! + !! + !!

+ 2
!! cos! − !! sin! − !!sin!!

! + 4!!!! sin!
!! − !! + !! cos!

!!

− 4!!!!!!!sin!!
2! + !! + !

!! ! + !! + ! ! ; 

 

 

12!
!!
!

= cos! ln ! + !! − ! + 1+ 3tan!! ln ! + !! + !

− 3 tan! sec! ln ! + !! + !! +
2!! sin!

! + 2 sin!
!! + !! sin!

!

−
2!!! cos!

! ! + !! − !
+
4!!!!sin!! − 2 !! + !! sin! !! + !! sin!

! ! + !! + !

+ 4!!!! sin!
!! − !! + !! sin!

!! − 4!!!!!!! cos! sin!
2! + !! + !

!! ! + !! + ! ! ; 

 

 

For dip-slip displacement (b down dip) 

 

 

2.76 
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12!
!!
!

= !! − !! sin!
2
! +

4
! − 4

!!!!
!! −

3
! + !! + !!

− cos! 3 ln ! + !! + !! + 2
!! − !!
! + 4

!! − !!
! + 4

!!!! !! + !!
!!

+
3

cos! ln ! + !! + !! − sin! ln ! + !! + !

+ 6!!
cos!
! −

!! sin!
! ! + !! + !!

; 

12!
!!
!

= sin! − ln ! + !! − !!

+ ln ! + !! − !! +
4!!!!

! ! + !! − !!
+
3(!! − !!)
! + !! + !!

+ !! − !! ! 2
! ! + !! − !!

+
4

! ! + !! − !!
− 4!!!!

2! + !! − !!
!! ! + !! − !! !

− cos! !! − !!
2 !! − !!

! ! + !! − !!
+

4 !! − !!
! ! + !! − !!

+ 4!!!! !! + !!
2! + !! − !!

!! ! + !! − !! !

+ 6 tan!!
!! − !! !! − !!
ℎ + !!+!! ! + ℎ

− 3 tan!!
!! − !! !! − !

!!!
+ 6 tan!!

!! − !! !! − !
!!!

+ 6
1

cos! tan
!! ! − !! cos! ! − ! + !! + ! ! sin!

!! − !! !! + ! cos!

+ !!
sin!! − cos!! !! + ! + 2!! cos! sin!

! ! + !! − !!
+

!! − !! sin!!
! ! + !! + !

; 
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12!
!!
!

= sin! !! − !!
2 !! − !!

! ! + !! − !!
+

4 !! − !!
! ! + !! − !!

− 4!!!! !! + !!
2! + !! − !!

!! ! + !! − !! ! − 6 tan!!
!! − !! !! − !!
ℎ + !!+!! ! + ℎ

+ 3 tan!!
!! − !! !! − !

!!!
− 6 tan!!

!! − !! !! − !
!!!

+ cos! ln ! + !! − !!

− ln ! + !! − !! − 2
!! − !! !

! ! + !! − !!
− 4

!! − !! ! − !!!!
! ! + !! − !!

− 4!!!! !! − !! ! 2! + !! − !!
!! ! + !! − !! !

+ 6!! cos! sin!
2 !! + !

! ! + !! − !!
+

!! − !!
! ! + !! + !

− !!
sin!! − cos!!
! ! + !! − !!

. 

 

Because 0/0 forms occur in the limit !⟶ 90! , some care must be taken in 

evaluating the foregoing equations for vertical faults. For this special case the 

following expressions given by Mansinha and Smylie are convenient: 

For strike-slip faults (! = 90!)  

2.77 

12!
!!
!

= !! !! − !!
2

! ! + !! − !!
−

5! + 8!!
2! ! + !! + !! ! +

4!!!! 2! + !! + !!
!! ! + !! − !! !

+ 3 tan!!
!! − !! !! − !!

!!!
− 3 tan!!

!! − !! !! + !!
!!!

; 
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12!
!!
!

= − ln ! + !! − !!

+
1
2 ln ! + !! + !! −

4!!!!
! ! + !! + !!

+
5!! − 3!!

2 ! + !! + !!

+ !!!
2

! ! + !! − !!
−

5! + 8!!
2! ! + !! + !! ! + 4!!!!

2! + !! + !!
!! ! + !! + !! ! ; 

 

12!
!!
! = !!

2
! −

2
! + 4

!!!!
!! +

3
! + !! + !!

+
2(!! + 3!!)

! ! + !! + !!
; 

 

and dip-slip faults (! = 90!) 

1.78 

12!
!!
! = !!

2
! +

4
! − 4

!!!!
!! −

6!!
! ! + !! + !!

; 

 

12!
!!
!

= − ln ! + !! − !!

+ ln ! + !! − !! −
6!!! + 10!!!!
! ! + !! + !!

+
6!! !! − !!
! ! + !! + !!

+ !!!
2

! ! + !! − !!
−

4
! ! + !! − !!

+ 4!!!!
2! + !! − !!

!! ! + !! − !! ! ; 

 

12!
!!
!

= !!
2 !! − !!

! ! + !! − !!
−

2 !! + 2!!
! ! + !! − !!

− 4!!!! !! + !!
2! + !! − !!

!! ! + !! − !! !

+ 3 tan!!
!! − !! !! − !!

!!!
− 3 tan!!

!! − !! !! + !!
!!!

 

 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

59 

Figure 2.11 shows the displacement field on the free surface for the two different 

models of strike-slip on a vertical fault. In both models slip is assumed to extend to 

the free surface (d1 = 0). 

 

 
Figure 2.11: Surface deformation for two models of strike slip on a vertical fault. Horizontal 
displacement is on the left and vertical displacement on the right. 
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3 Introduction to inverse theory 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

The inverse theory is a set of mathematical techniques that allows to obtain 

information, about property of a physical system not directly measurable from 

observations made on it. These observations are measures series (data) made on the 

system itself. The numerical (or statistical) knowledge of specific physical 

properties of a system, which in general are not directly measurable, are the 

objective of inverse problems. These properties are also called model parameters. 

We must also admit the possibility that there is some specific mathematics theory 

(model) that is able to link model parameters and data. 

The inversion theory therefore, starting from data and a specific model, provides 

information of characterizing model parameters (figure 2.1). In contrast, the 

forward theory is defined as the process to predict measurement results (data) 

through a model and a set of specific conditions that relate to the problem studied 
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(model parameters). 

The scientific procedure to follow for studying a physics system could be 

summarized as (Tarantola 1967): 

• Physical system parameterization, which is to find a parameters set, able to 

fully characterize the system; 

• Forward problem formulation, which is to define a mathematics model for 

the physical system, which allows to predict measurements results, once 

assigned model parameters; 

• Inverse problem formulation, which is the model parameters determination 

through the data. 

The first and second points of this formulation were described in the previous 

chapter; in this chapter instead we are going to describe the last point.  

 

 
Figure 3.1: Formulation of forward and inverse problems 

 

3.2 Inverse problems formulation 

Imagine performing N measurements for a particular physical system. Results of 

these measures could be represented as elements of vector (d) with size N: 

3.1 
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!! = (!!,!!……!! , ) 

 

Similarly, the parameters of the model that characterizes the physical system could 

be represented as elements of a vector m with size M: 

3.2 

!! = (!!,!……!! , ) 

 

For the inverse problems formulation, parameters, model and data have to be linked 

with mathematical relationships (model). In real situations the model could be 

represented by one or more implicit equations.  

3.3 

!!(!,!) = 0 

!!(!,!) = 0 

…. 

!!(!,!) = 0 

 

In many cases it is possible to separate data and model parameters and so obtain, 

with respect to the data, L = N linear equations (in this configuration, the data could 

be non-linearly dependent on model parameters through a vector function g): 

3.4 

! !,! = 0 = !− !(!) 

 

In the simplest case, the function g is linear with respect to model parameters and 

so we have the matrix equation 

3.5 

! !,! = 0 = !− !"� 

 

Equation 3.5 is the basis of the linear discrete inversion theory: many inverse 
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problems that arise from physical experience use exactly this formulation. In other 

cases, there are problems involving more complicated equations that could be 

solved by linear approximations. The matrix G (with N x M size) is called kernel.  

Equation 3.5, in the inversion discrete theory could be written as: 

3.6 

!! = !!"
!

!!!

!! 

 

3.3 The inverse problems solution 

Generally we would expect the numerical values of the model parameters as the 

result of an inverse problem. Unfortunately, only in few and simple cases, an 

inverse problem is able to provide this type of information. 

Typically we make compromises between the type of information that we want and 

those that actually can be obtained from a given data set. These compromises lead 

to inverse problems solutions that are somehow more abstract than the simple 

estimation of the model parameters. In other words, it is necessary to identify the 

most important features of a solution and do what is possible to accentuate them. 

The most immediate solution of an inverse problem is the mest estimation of the 

model parameters. Often, however, the simple estimation of the model parameters 

is not able to give information on how the solution is affected by errors present on 

the data, and so it is not possible to quantify the quality solution. One solution for 

this problem is to introduce constraints that can be both absolute and probabilistic. 

 

3.4 The linear invers problems solution 

The easiest way to solve the linear inverse problem (equation 3.5) is based on the 

measure of "distance" between observed and predicted (on the basis of a given 

model mest) data  



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

65 

3.7 

!!"# = !!!"# 

 

choosing the model for which the predicted data are very similar to those observed. 

For any observation we define a "prediction error" (misfit) 

3.8 

!!!!!!"# − !!
!"# 

 

and the best fit model is that defined by the parameters that provide the total error 

E, as small as possible. We could define E, for example, as 

3.9 

! = !!!
!

!!!

 

 

We explicitly note that the total error E is the square Euclidean length of the vector 

!! = (!!, !!… . !!). If we minimize the expression 3.9, the method is also called 

least squares method. 

The Euclidean length however is only one of the possibilities to quantify this vector 

dimension (norm). The norm definitions commonly used are based on the sum of 

some degree of the vector elements (L1 norm, L2 norm ecc.). 

Generally norm with high degree give higher weight to the larger elements of e: 

indeed if we consider the limit case ! → ∞  we give only to the large element of e, a 

weight different from zero. The least squares method makes use of L2 norm. 

We derive now the least-squares linear inverse problem solution. Starting from the 

definition of E (equation 3.9), we have 

3.10 

! = !!! = !− !!!"# ! !− !!!"# = 
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= !! − !!"!!
!"#!

!!!
!
!!! !! − !!"!!

!"#!
!!! = 

=    !!
!"#

!

!!!

!

!!!

!!
!"# !!"

!

!!!

!!" − 2 !!
!"# !!"!!

!

!!!

+ !!!!
!

!!!

!

!!!

 

 

To find the minimum E, we derive its expression for mq and after we equalize the 

result to zero, obtaining 

3.11 

!"
!!!

= 2 !!
!"# !!"!!" − 2 !!"!! = 0

!

!!!

!

!!!

!

!!!

 

 

which in matrix notation can be written as 

3.12 

!!!!!"# − !!! = ! 

 

Assuming that the GTG inverse matrix exists, the solution of the equation 3.12 is 

given by 

3.13 

!!"# = !!! !!!!! 

 

which is the solution to the least-squares linear inverse problem. 

 

3.5 Generalized inverse and resolution matrix 

Most solutions of linear inverse problems present a linear dependence on the data 

that can be expressed as 

3.14 

!!"# = !"+ ! 
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being M and v  a matrix and vector, independent from the data from the data (d), 

respectively. For example, referring to 3.13, ! = [!!!]!!!!and v is the null 

vector. We now move the attention from !!"#to the operator matrix M. Since the 

matrix M resolves the inverse problem  !" = !, it is often called generalized 

inverse and denoted by !!!  so that the solution to the inverse problem, given by 

equation 3.5, is expressed as 

3.15 

!!"# = !!!! 

 

We explicitly note that G-g is not the G inverse matrix in the usual sense, that it is 

not necessarily square and that neither G-gG nor GG-g are equal to the identity 

matrix (ℑ).  

Suppose now we have found a generalized inverse G-g that solves the inverse 

problem 3.5. It is possible to know“a posteriori” how the estimated model 

parameters is able to reproduce the data. We have 

3.16 

!!"# = !!!"# = ! !!!!!"# = !!!! !!"# = !!!"# 

 

The square matrix of N x N size denoted by R, is also called resolution data matrix 

(Menke, 1989) and describes in some way the quality data prediction. If R = ℑ, 

then dpre = dobs and the prediction error is zero. Consider the ith row of R, if all the 

row elements are equal to zero except the ith (that is equal to one), then the data is 

accurately predicted. On the other hand, suppose that the ith row of R contains more 

elements different from zero: 

3.17 

[… 0  0  !!!!  !!   !!!!    0  0… ] 

 

In this case, !!
!"#, is equal to 
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3.18 

!!
!"# = !!"!!!"# = !!!!! + !!!!! + !!! + !!!!!

!

!!!

 

 

and then the predicted value is a weighted mean of the near four values. If the true 

datum little depends on the auxiliaries’ coefficients, then a weighted average 

produces an estimate reasonably near to observed value. Finally, the R matrix 

describes how well the data can be independently predicted or, in other words, 

solved. 

 

 
Figure 3.2: The probability distribution P(d1,d2) is represented with isoline of equal value as function f d1 
and d2. These data, therefore, are not related, indeed large values of d2 could correspond to small or big 
values of d1.  

 

Of course the same reasoning could be applied to the model parameters. To analyze 

this case, we suppose that a set of mtrue parameters exists that identifies the true 

model (unknown) and so Gmtrue = dobs. Then 

3.19 

!!"# = !!!!!"# = !!! !!!"#$ = !!!! !!"#$ = !!!!"#$ 
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The square matrix of size M x M that we have denoted by Rm is the said model 

resolution matrix (Menke, 1989). If Rm = ℑ, then each model parameter is exactly 

determined. 

 

3.6 Correlation and covariance  

During experiments the collected data number could be high, so it is necessary to 

quantify the probability that a set of random variables assume the corresponding 

values of the measured results.  

The joint probability distribution P(d) provides the probability that the first 

collected data is in a neighborhood of d1, the second is in a neighborhood of d2, and 

so on. If the data are independent, this joint probability distribution is the single 

individual probability distributions product (Figure 2.2): 

3.20 

! ! = ! !! !" !! !…!(!!) 

 

However, in same case, measurement results are themselves correlated: high d1 

values corresponding to high or small (or anyway particular) d2 value (Figure 3.3). 

It is necessary in this case that the probability joint distribution accounts for this 

correlation. 

For a given joint probability distribution, we can check the goodness, with respect 

to the studied problem, choosing a suitable function that divides the plane (d1, d2) 

into four quadrants, with alternating sign, with centre on the centre distribution 

(Figure 3.4). 

If we multiply this function for the probability distribution and then integrate the 

entire plane, the result will be zero for not related distribution (since they occupy in 

the same way the four quadrants); differently, related distributions will provide 

positive or negative results, since they tend to be concentrated in two opposite 
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quadrants (Figure 3.5). 

 
Figure 3.3: The probability distribution P(d1,d2) is represented with isoline of equal value as function f d1 
and d2. These data are correlated, indeed large values of d2 correspond to large values of d1. The 
probability distribution is characterized by mean values <d1> and <d2> and amplitude given by s1 and 
s2. The angle ! is a measure of the correlation and is linked to the covariance. 

 

 
Figure 3.4: The function (d1-<d1>)(d2-<d2>) separate the plane (d1,d2) in four quadrants with alternating 
signs. 

 

If the function that we use to test the quality distribution for the joint probability is 

that of figure 3.4 ((!!−< !! >)(!!−< !! >)), being <d> the expected value for 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

71 

d, the resulting correlation measure is call covariance: 

3.21 

!"# !!,!! = !!!

!!

!!

!!!

!!

!!

… !!!

!!

!!

!!−< !! > !!−< !! > !(!) 

 

we can explicitly note that the covariance of a datum with itself is the variance. 

When we have a lot of data, it is convenient to define the covariance matrix 

3.22 

[!"#  !]!" = !!!

!!

!!

!!!

!!

!!

… !!!

!!

!!

!!−< !! > !!−< !! > !(!) 

 

The diagonal elements of the covariance matrix provide a measure of the width of 

the data distribution while the diagonal outside elements indicate correlation degree 

of each data pair. 

Of course the bases of the inversion theory is that data and model parameters are in 

relation to each other. Any method that provides a solution for an inverse problem 

will tend, therefore, to report data errors on the estimation of model parameters. As 

a result, the estimate of model parameters are themselves random variables that are 

described by a probability distribution !(!!"#). Whether the real parameters are or 

are not random variables, depends on the examined problem. The estimate 

parameters are in any case random variables. If we consider a case in which model 

parameters have a linear dependence with data (equation 3.14), it is possible to 

derive some properties of the parameters probability distribution without calculatig 

it. In particular, the mean and covariance of such distribution are given respectively 

by (Menke, 1989) 

3.23 

<! >  = ! < ! > +! 



[INTRODUCTION	  TO	  INVERSE	  THEORY]	  

 

72 

!"#  ! = ![!"#(!)]!! 

 

Therefore the covariance of the estimates model parameters depends on the data 

covariance and the way in which the error is reported by the data in the model. It is 

then useful to define a unitary covariance matrix that characterizes the errors 

amplification degree when reported in the model. If we assume that all data is 

uncorrelated and presents the same variance !!, the unitary covariance matrix 

unitary is given by (Menke, 1989) 

3.24 

!"#!  ! =
1
!! !

!! !"#  ! !!!! = !!!!!!! 

 

Even if the data is correlated, it is often possible to obtain some normalization of 

the data covariance matrix in order to define the matrix covariance as unitary 

(Menke, 1989) 

3.25 

!"#!  ! = !!! !"#  ! !!!! 

 

3.7 Linearized inverse method 

Inverse problems are non-linear if the relationship that describes then (equation 3.5) 

is not linear. One of the possible ways of solving non linear inverse problems is to 

make them locally (i.e., in the neighborhood of a point) linear. In practice, we 

rewrite the equation 3.5 in the form 

3.26 

! = ! !! +
!!
!! !! 

 

we make linear the inverse problem 2.5 in a neighborhood of m0 since the 3.26 can 
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be written as 

3.27 

!− ! !! =   !!! 

 

where !!" =
!!!
!!!

.  

If the function G is analytically defined, then the matrix A is known exactly, 

otherwise it must be obtained numerically differentiating G. Starting from an initial 

model m0, it is therefore possible to obtain the solution m1 of the linearized inverse 

problem. Probably, the solution m1 will not be the exact one. It is however, possible 

to obtain, using m1 as the initial model, a new solution to the problem 3.27 that will 

be better than the previous one. Such  a procedure is repeated iteratively until the 

obtained solution is sufficiently accurate. 

Finally, using a linearized approach, the non-linear inverse problem is returned to a 

series of linear problems solved in succession. 

 

 
Figure 3.5: The probability distribution P(d1,d2) is represented with isolines of equal value as a function 
of d1 and d2 when the data are (a) unrelated, (b) positively correlated, and (c) negatively correlated. 

 

3.8 Non-linear inverse method 

If the equation 3.5 is strongly non-linear then the inverse problem solution with a 

linearized approach is unusable. Indeed, a strongly non-linear function is often 
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multimodal and, if the initial model is chosen in a neighborhood of a relative 

minimum, for example, the linearized solution will tend to converge towards it. 

From a conceptual point of view, the non-linear inverse methods are simpler than 

those linearized: indeed, they are proposed to find the model that better justifies the 

observed data minimizing the distance between these and the theoretical ones 

predicted. 

The cost function (misfit) E, defined in equation 3.9, is a measure of this gap. At the 

base of non-linear inverse methods we have, therefore, the optimization methods of 

the cost function. 

 

3.9 Optimization method 

The optimization problem in the simplest form, consists of, given a function f that 

depends on one or more independent variables, finding the values of the variables at 

which f assumes a maximum or minimum value. An extreme (i.e. a maximum or 

minimum point) of a given function could be global if it corresponds to the absolute 

maximum or minimum of the function, or local, if it is a relative maximum or 

minimum (figure 3.6). 

The search of a global extreme of a function is often a complicated problem. 

Typical methods for the detection of one extreme function point are those known as 

hill climbing scheme category. 

A generic example of this hill climbing method is illustrated in figure 3.7. We chose 

a starting point in the parameter space (panels A and B of Figure 3.7), then it 

determines the local maximum variation direction and we move for a given distance 

in this direction (panel C in Figure 3.7), here we estimate the new local maximum 

variation direction and so on until it reaches a position at which all near directions 

are descendent and so we finally identify the function extreme point (panel D of 

figure 3.7). 
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Figure 3.6: Extreme value of a function defined on an interval. The points A, C and E are local maxima, 
while point G is the global maximum. Points B and F are local minima while the global minimum is point 
D.  

 

The hill climbing methods work very well if we are analyzing unimodal functions. 

However if we consider the case in figure 3.8, where we have an absolute 

maximum surrounded by different relative maxima, it is clear how the hill climbing 

methods could provide good results only if the starting point is near the absolute 

maximum. 

Therefore it is clear that the starting point (or, generally the initial model 

parameters) for this kind of method can strongly influence the final result. 

The hill climbing optimization techniques represent therefore a class of local search 

methods since they allow finding the extreme point function only close to the initial 

model. The function of Figure 3.8 instead presents typical problems for which 

global optimization techniques work better. 

In the example of Figure 3.8 the central peak covers about 1% of the space 

parameters. Under these conditions, it seems clear that there is only 1% probability 

that a random throwing provide a good starting point, sufficiently close to the 

central peak in order to enable to achieve the absolute function maximum. 
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Figure 3.7: Allegory that shows the operating way of a hill climbing scheme. From a starting random 
point (panels A and B) is followed the maximum slope direction (panel C). We stop the exploration when 
the maximum is reached.  

 

This problem introduces the iterated hill climbing technique: we have to restart the 

selected optimization method, each time with a different initial model, randomly 

chosen. 

At the same time, it is sufficient to note the values of the model parameters 

corresponding to the different maximum and when we are sure that we have 

sampled all the space parameters, we choose the model corresponding to the 

maximum. 

Returning to the figure 3.8 example, as mentioned above, since the central 

maximum covers a region of the order of 1% in the space parameters, we could 
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expect to locate it with a number of iterations for the optimization process that is of 

102. If we have an optimization problem involving a high dimension of the 

parameter space and/or situations in which the absolute extreme covers only a small 

fraction of the parameter space, a local search method could need a lot of 

computational time. 

These considerations allow us to identify what are the performances required for a 

global optimization method: 

• Absolute performance: how accurate is the solution we get with the 

optimization method chosen? 

• Global performance: how can you be sure that you have found the true 

extreme global parameter space? 

• Relative performance: is the "job number" required by the method used to 

provide a solution? 

Many optimization methods are designed to match the best possible way to the first 

and to the third point simultaneously. At the same time however, we may give an 

answer to the second point only if we have specific initial work assumptions. 

In the next paragraph we are going to describe, specifically, the methods used for 

our work, although other methods may be encountered in the relevant literature 

(e.g. Downhill Simplex Neighborhood algorithm etc.). 

  

3.10 Simulated Annealing 

The simulated annealing method exploits a statistical mechanical analogy to search 

for the global minimum of an objective function ! possessing a large number of 

secondary minima. The algorithm simulates the process of chemical annealing in 

which a melted crystalline material is cooled slowly through its freezing point, 

thereby approximately settling into its energy ground state. 

By identifying the objective function with the energy of the crystalline material and 
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by appropriate definition of a temperature parameter for the simulations, it is 

possible to simulate a “cooling”of the system to be optimized. A sufficiently 

slow cooling of this system will, by analogy to the chemical annealing, result in 

convergence to a near-optimal configuration, characterized by a near-minimal value 

of the objective function.Simulated annealing is based on the Metropolis-Hasting 

algorithm or the Gibbs sampler, and we shall therefore take a closer look at this 

algorithm here. 

 

 

 
Figure 3.8: The represented function is an example of a complex optimization problem. The arrow 
indicates the absolute maximum. 

 

3.10.1 The Metropolis Hasting Algorithm 
The idea behind the Metropolis-Hastings algorithm is to generate samples of a 

probability distribution p over a high-dimensional space ℳ  under the special 

difficulty that no explicit mathematical expression exists for p. 
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Only an algorithm that allows us to calculate the values of p at a given point in the 

space is available. This is a typical situation in geophysics where p is a probability 

density derived from a misfit function ! through, for example 

3.28 

! !! = !!!(!!"(!!)) 

 

Where mk is a model and A and B are constants. Very often p(mk) can be evaluated 

for a particular Earth model through a very computer-intensive calculation. 

A detailed description of Metropolis-Hastings algorithm is not the subject of this 

paper, so in this section I only describe assumptions that are at the base of this 

technique (for any detail we refer to Sambridge & Mosegaard 2002). For simplicity, 

we consider a situation where we wish to sample a probability distribution p in a 

discretized model space ℳ . Sampling from the distribution p means that the 

probability of visiting model m is proportional to p(m). To generate a simple 

algorithm that samples p, we can make the following assumptions: 

1. The probability of visiting a point mi in model space, given that the 

algorithm currently is at point mj, depends only on mj and not on previously 

visited points. This is the so-called Markov property. This property means 

the algorithm is completely described by a transition probability matrix Pij 

whose ijth component is the conditional probability of going to point mi, 

given the algorithm currently visits mj. 

2. For all points mj in ℳ, there is exactly N points mi, including mj itself, for 

which Pij is nonzero. If this property holds, we say that the algorithm is 

regular, and the set of N accessible points constitutes what we call the 

neighborhood ℵ!of mj. 

3. It is possible for the algorithm to go from any point mj to any other point mi, 

given enough steps. An algorithm satisfying this property is called 

irreducible.  
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The problem now is which transition probability matrix (Pij) to use. Generally there 

exists infinitely many such transition matrices, and so we can choose one that is 

simple (for more details see Sambridge and Mosegaard 2002). 

 

3.10.2  Simulated annealing algorithm 
It is an empirical fact that the process of chemical annealing, where a crystalline 

material is slowly cooled through its melting point, results in formation of highly 

ordered, low-energy crystals. 

The slower the cooling, the more perfect is the crystal growth, and the lower is the 

lattice energy. This process can be viewed as a “physical optimization method”in 

which the objective function is the lattice energy E. In each step of the algorithm, 

thermal fluctuations in the system are simulated by randomly perturbing model 

parameters, and the fluctuations are controlled by a temperature parameter T. 

The simulated annealing algorithm (Kirkpatrick et al., 1983) runs as follows: in 

each step random perturbations of the model parameters mj of the numerical system 

are attempted. The new set of model parameters mi is accepted if the value of the 

objective function E decreases. 

However, if E increases, the new parameter may be accepted with probability 

3.29 

!!""#$% = !(!
∆!
! ) 

 

where ∆!  is the change in the objective function and T is the temperature 

parameter. If the new model is rejected, a new perturbation is attempted in the next 

move, and the above process of decision is repeated. 

A close inspection of the above algorithm reveals that for constant temperature 

parameter T it is actually a Metropolis-Hasting algorithm designed to sample the 

probability distribution (Metropolis et al., 1953), 
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3.30 

!! ! =
!(!

!(!)
! )

!(!)  

 

which is known in statistical physics as the Gibbs-Boltzmann distribution. Here 
1
!(!) is normalization constant. In simulated annealing, however, the temperature 

parameter is gradually decreased from a high value, allowing large “thermal” 

fluctuations, down to zero, where only decreasing values of the objective function 

are allowed. For decreasing temperature T the Gibbs-Boltzmann distribution 

converges toward a distribution having all its probability mass in the global 

minimum for E.  

 

3.11 The Genetic Algorithm 

The natural selection principle states that individuals who better adapt to their 

environment, on average, leave behind more offspring than their less suitable 

colleagues. 

For natural selection to lead to evolution, two more essential ingredients are 

required: inheritance (offspring must retain at least some of the features that made 

their parents fitter than average, otherwise evolution is effectively reset at every 

generation) and variability (at any given time individuals of varying fitness must 

coexist in the population, otherwise natural selection has nothing to operate on). 

In nature, the information determining the growth and development of individuals 

is encoded as linear sequences of genes that can each assume a finite set of 

"values". In sexual species, when two individuals breed, complementary portions of 

their genetic material are passed on to their offspring and combined to define that 

offspring’s full genetic makeup. That is the inheritance part. In the course of “

preprocessing”the genetic material to be later passed on to offspring, copy 
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mistakes and truly random alternation of some gene values also occur occasionally. 

These mutations, coupled to the fact that an offspring receives complementary 

genes from two parents, provide the necessary source variability. 

The individual that moves, feeds and mates in real space can be looked at as the 

outer manifestation of its defining genes. Think then of an individual- do its genes 

assume fitness as a function of the values? What evolution does, is to drive a 

gradual increase in average fitness value over several generations. It should 

however be clarified that the evolutionary process does not optimize, at least not in 

the mathematical sense. 

What evolution does, is produce individuals of above-average fitness. 

Fundamentally, genetic algorithms are a class of search techniques that use 

simplified forms of the biological process of natural selection: inheritance and 

variability. Strictly speaking they are not optimization methods per se, but can be 

used to form the core of a class of robust and flexible methods known as genetic 

algorithm-based optimizers. 

Let us consider a generic optimization problem. One is given a “model” that 

depends on a set of parameters u, and a functional relation f(u), which returns a 

measure of quality (or better, fitness) associated with the corresponding model. The 

optimization task usually consists in finding the vector u* in parameter space 

corresponding to the model that maximizes the fitness function f(u). Define now a 

population as a set of NP realizations of the parameters u. The schematic 

description of the operation mode of a genetic algorithm in an optimization problem 

is: 

1. Randomly initialize population and evaluate fitness of its members; 

2. Breed selected members of current population to produce offspring 

population (selection based on fitness); 

3. Replace current population by offspring population; 

4. Evaluate fitness of new population members; 
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5. Repeat steps 2 to 4 until the fittest member of the current population is 

deemed fit enough, more "suitable" the current population. 

 

 
Figure 3.9: Breeding in genetic algorithms. Here the process is illustrated in the context of a 2-D 
maximization problem. An individual is an (x, y) point, and two such parent individuals are needed for 
breeding (denoted P(P1) and P(P2)). The one-point crossover and one-point mutation operators act on 
string representations of the parents to produce offspring strings S(O1) and S(O2), which are finally 
decoded into two offspring (x, y) points P(O1) and P(O2). 

However, the important novelty of genetic algorithms lies with step 2: breeding 

between the elements of the population. It is in the course of breeding that 

information is passed and exchanged across population members. How this 

information transfers, needs a more detailed discussion.  

Suppose we want to determine the maximum of a function of two variables, for 
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example, that of figure 3.8. In this case, since the parameter space is two-

dimensional, each population member is identified by a pair of coordinates (x, y) 

and so is “defined” by two floating point numbers. The first step is to encode the 

two floating-point numbers defining each individual selected for breeding. Here 

this is done simply removing the decimal point and concatenating the resulting set 

of simple decimal integers into a “chromosome”, like the string in lines 01-06 in 

figure 3.9. 

Breeding proper is a two-step process. The first step is crossover. The two strings 

generated by the encoding process are laid side by side, and a cutting point is 

randomly selected along the length of the defining strings. The string fragments 

located right of the cutting point are then interchanged, and spiced onto the 

fragments originally located left of the cutting point (lines 07-12 of figure 3.9, for a 

cutting point located between the third and fourth decimal digit). The second 

breeding step is the mutation.  For each string produced by the crossover process, a 

few randomly selected digits (or better, genes), are replaced by new, randomly 

selected digit value  (lines 13-16 of figure 3.9, for a mutation hitting the tenth digit 

of the second offspring string). The resulting fragments are finally decoded in two 

(x, y) pairs, for which the fitness is evaluated. Note that the offspring incorporates 

intact “chunks”of the genetic material from both parents, that is, the needed 

inheritance as well as the promised exchange of information between trial solutions. 

In any case, both the crossover and mutation operations also involve purely 

stochastic components, such as the choice of cutting point, site of mutation, and 

new value of mutated digit. This is where we get variability needed to sustain the 

evolutionary process. It should also be noted that the crossover and mutation 

operators, operating in conjunction with the encoding/decoding process (figure 3.9), 

preserve the total range in parameter space. This means, for example, that if the 

floating-point parameters defining parent solutions are restricted to the range 

[0.0,1.0], then the offspring solution are restricted in the same range. This is a very 
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important property, through which one can introduce hardwire constraints such as 

positivity that allows to set the constraints to, for example, non- negative solutions. 

Indeed having the mutation operator act on the encoded form of the parent solution 

has the interesting result that offspring can differ very much or very little from their 

parents, depending on whether the digits affected by mutation decode into one of 

the leading or trailing digits of the corresponding floating-point number. 

From the point of view of parameters space exploration, this implies that a genetic 

algorithm can carry out both wide exploration and fine-tuning in parallel. 

Figure 3.10 shows the population evolution, during the search for maximum of the 

function of figure 3.8, on which the genetic algorithm acts.  

Finally, it must be possible to calculate the function f (u) for all possible values of u 

but this feature should not be necessarily differentiable since the differentiability of 

the fitness function is not required by the algorithm and this, from a practical point 

of view, is a great advantage. 

In conclusion, genetic algorithms differ from other optimization methods for the 

following reasons (Goldberg, 1989): 

• They work on sets of coded parameters and not on the same parameters; 

• They carry out research on a population of points and not on individual 

points; 

• They use information from a fitness function without resorting its 

derivatives; 

• They use probabilistic and non-deterministic transition rules. 

 



[INTRODUCTION	  TO	  INVERSE	  THEORY]	  

 

86 

 

 
Figure 3.10: Comparison, during the research of minimum, between Genetic Algorithm (top) and down 
hill simplex method (bottom). The concentric circles in both figures indicate the rings of secondary 
maxima, and the larger, solid dot in the top figure is the fittest solution of the current generation while in 
the bottom figure the two triangles represent the used simplex . 
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4 Combining strong-motion, InSAR and GPS data to 
refine the fault geometry and source kinematics 
of the 2011, Mw 6.2, Christchurch earthquake 
(New Zealand) 

 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

On 21 February 2011 at 23:51 (UTC time), the Mw 6.2 Christchurch earthquake 

occurred near (just 7 km southeast) the center of the Christchurch city, the second 

largest city in New Zealand, on the south island. State that the best-double couple 

focal mechanism for the event initially indicates oblique slip (59/59/147, 

strike/dip/rake GCMT), although the large degree of non-double couple motion 

points to source complexity. Extremely high accelerations (as 2.2 g, being g the 

gravity acceleration) were recorded near the epicenter area (Kaiser et al. 2011). 

Additionally, this event caused soil liquefaction, landslides, large rockfalls and a 

widespread damage to buildings of Christchurch (the damage was valued at about 

US$ 12-16 billion), and, tragically, 185 confirmed fatalities. The Christchurch 
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earthquake occurred just six months after the 4 September 2010, Mw 7.1 Darfield 

earthquake, which broke the previously unknown Greendale fault in the west area 

of the Canterbury plain (figure 4.1). 

For the Christchurch earthquake different fault geometries and source models for 

the slip and rupture velocity distributions are available in literature (Beavan et al. 

2011; Barnhart et al. 2011; Holden et al. 2011 Elliott et al. 2012, Beavan et al. 

2012, Atzori et al. 2012). In particular, in these works authors proposed both simple 

(one fault plane) (Beavan et al. 2011, Barnhart et al. 2011, Holden et al. 2011) and 

complex (two o more fault planes) (Elliott et al. 2012, Beavan et al. 2012, Atzori et 

al. 2012) fault geometry solutions. These geometries were inferred analyzing GPS 

data and aftershocks distribution (Beavan et al. 2011, Barnhart et al. 2011) and 

different InSAR data-sets (Elliott et al. 2012, Beavan et al. 2012, Atzori et al. 

2012). On the other hand, the large complexity of the coseismic surface 

displacement close to the epicentral area (around Christchurch city), deriving from 

both GPS and InSAR data, indeed seems to suggest that a complex fault geometry 

with 2 or more fault planes is more realistic than a model with a single plane. 

The aim of this study is to investigate the fault geometry of the Christchurch 

earthquake from the analysis of the GPS and InSAR data-sets and then to derive a 

kinematic source model from the joint inversion of all the available strong-motion, 

GPS and InSAR data-sets, through the non-linear inversion method based on the 

simulated annealing algorithm developed by Delouis et al. (2002). This method was 

modified during this Phd thesis to account both the exploration of fault geometry 

and estimation of errors associated to retrieve parameters. Particular importance 

was also given different preliminary analyzes performed on the original data-sets. 

This analyzes was performed through different procedure and method developed 

during this work.  Preliminarily, as explained in the following, we performed a 

selection of the available deformation data combining GPS and SAR observations 

in order to find a model able to explain the complex geometry of the coseismic 
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displacement data. No kinematic rupture models for the 21 February 2011  

 

 
Figure 4.1: Regional CMT focal mechanism for Mw > 4.0 shocks within the 2012-2011 

Canterbury sequence. The black line represents the superficial trace of the Greendale fault, 

responsible for the Darfield earthquake. 

 

 

Christchurch earthquake have been proposed in the previous studies (Beavan et al. 

2011; Holden, 2011; Barnhart et al. 2011; Beavan et al. 2012; Atzori et al. 2012; 

Elliott et al. 2012) combining strong-motion, InSAR and GPS data in a joint 

inversion.  

 

4.2 Tectonic and geological setting of the Canterbury plains 

Seismicity in New Zealand is associated with the movements related to the 

boundary of the Pacific and Australian plates (40 mm/yr). The regional tectonics is 

dominated by three major structure: the oblique subduction of the Pacific plate 

beneath the Australian plate along the Hikurangi Trough; oblique right-lateral 
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striking structures such as the 650 km-long Alpine fault (according to DeMets et al. 

(1994) and Sutherland et al. (2006) this fault accommodates 70-75 % of the 40 

mm/yr plate motion) and the Marlborough fault zone; the oblique subduction of the 

Australian plate beneath the Pacific plate on the Puysegur Trench (figure 4.2). 

 

 
Figura 4.2: Tectonic setting of New Zealand (after Bradley & Cubrinovski 2011) 

 

The Christchurch earthquakes is one of the main aftershocks of the Canterbury 

sequence, which began in September 4, 2010 with the Mw 7.1 Darfield earthquake 

that occurred in the western part of the Canterbury plains (figure 4.1). The 
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magnitude of the Christchurch 

 
Figura 4.3: Active fault map, earthquakes, topography and place names of the northern half of 

the South Island of New Zealand, covering the recent earthquake epicentral regions of 

Darfield and Christchurch at the north end of the Canterbury Plains. Focal mechanisms are 

from the GCMT catalogue for the 2010 and 2011 events studied here (black) and earthquakes 

Mw 5.5+ (grey) covering the period 1976–2009 [Ekström et al., 2005]. Earthquake epicenters 
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from the Engdahl catalogue [Engdahl and Villaseñor, 2002] are shown by grey circles. The 

active faults (black lines) are from the Institute of Geological and Nuclear Science (GNS) 

Active Faults Database. The main Alpine Fault and faults of the Marlborough Fault Zone 

(Hope, Clarence, Awatere and Wairau Faults) are marked to the north of Christchurch. Grey 

dashed outlines indicate the footprints of InSAR coverage for the three ascending and one 

descending ALOS tracks. The white arrow indicates the 40 mm/yr of relative motion of the 

Australian Plate relative to the Pacific Plate based upon the MORVEL motion [DeMets et al., 

2010]. The inset map indicates the region of study (blue rectangle), plate boundaries (red) 

from Bird [2003], relative plate velocities (mm/yr) at the tips of New Zealand and the MUVEL 

pole of rotation [DeMets et al., 2010] (after Elliott et al., 2012). 

 

earthquake (Mw 6.2) was larger than the magnitude of the two previously largest 

aftershocks, which occurred just some days after the Darfield event, characterized 

by Mw 4.8 and 4.9, respectively. The Darfield earthquake occurred on the 

previously unknown 40 km long Greendale fault (Gledhill et al. 2011) located 

about 30 km west of Christchurch. As with the Darfield earthquake, the 

Christchurch event also occurred on a previously unknown fault under the city of 

Christchurch. Before the beginning of the Canterbury sequence, the area was in fact 

characterized by a very low seismicity rate at least in the last 5 decades (Engdahl & 

Villaseor, 2002). Moreover, before the sequence, the principal seismic hazard for 

this region was presumed to arise from the major fault, present and mapped on the 

Marlborough Fault Zone (figure 4.3). Indeed, before the Canterbury sequence, the 

area was characterized by a very low seismicity rate (Bannister et al. 2011). 

Nevertheless, the geodetic data acquired before 2010 indicated that strain was 

slowly accumulating within the region (Wallace et al. 2007; Beavan et al. 2002), 

leading to suspect the presence of active faults in the subsurface of the Canterbury 

area.  
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Figure 4.4: Synoptic tectonostratigraphic column for the Canterbury Plains (not to scale). T=Torlesse 
basement assemblage; CRET = Late Cretaceous terrestrial sequence; MSV=Mt. Somers volcanics; PG= 
Paleogene marine sequence; M-P =  Miocene-Pliocene marine-terrestrial sequence; BPV = Miocene 
Banks Peninsula volcanics; Q-G = Quaternary gravels (after Sibson et al. 2011). 

 

On the other hand, the late Quaternary alluvial fan deposits that generally cover the 

Canterbury plains make it very difficult to recognize such faults (Forsyth et al. 

2008) (a detailed description of the local geology (figure 4.4) of this area is: a 

basement of highly deformed Mesozioc Torlesse metagraywackes; a Late 

Cretaceous-Neogene cover sequence; a cover sequence of Late Cretaceous-

Paleogene terrestrial-marine sedimentary units; a regressive Miocene-Pliocene 

clastic sequence containing the basaltic Bank Peninsula volcanism; Quaternary 

alluvial fan deposits.). Thus, the occurrence of the sequence was in part a surprise. 

The Christchurch earthquake was followed by two major aftershocks of Mw 5.8 

and 5.9, that occurred within two hours of the mainshock and located SSW of the 

main event (Bannister et al. 2011). These two events were characterized by a strike-

slip focal mechanism. Furthermore, the aftershocks distribution, inferred the 

locations performed by GeoNet, seems to highlight a prevalent east-west trending 
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(Bannister et al. 2011). A further Mw 6.0 aftershock occurred on 13 June 2011, 

with an epicenter some 5 km further to ENE. 

Evidence on the contemporary regional stress field in the central South island 

(Sibson et al. 2011, Sibson et al. 2012), were derived mainly from: stress inversion 

from earthquake focal mechanism, breakout determination from Galleon-1 borehole 

(Wilson et al. 1985) and strain-rate derived from GPS studies. Results of these 

analyzes suggests a uniform regional stress field on the Canterbury region with 

maximum compressive stress !!  horizontal and orientated WNW-ESE ( ∼

115!)(see figure 4.5). Similarly, Wallace et al. 2007 employed a rotational elastic 

block model to describe present deformation in the South Island, founding a 

maximum contraction strain rate oriented 100 ±8! within the Canterbury/Otago 

block. 

 

 
Figure 4.5: Seismotectonic carton of the 2010-2011 Canterbury sequence in relation to the surface 
outcrop of Banks peninsula volcanism (BPV), central Christchurch city (C), and the inferred regional 
stress field. Epicenter of major aftershocks are represented by stars; thick bold line= Greendale fault 
surface rupture. The left box represents the expected orientations of newly formed structures 
(ellipse=extension fracture; solid lines= Coulomb shears; dashed lines= ductile shears)(after Sibson et al. 
2011) 
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4.3 Inversion technique 

To invert strong-motion and coseismic displacement data we adopt the approach 

proposed by Delouis et al. (2002).  

The forward problem for the strong-motion data is solved through the 

representation theorem (Aki & Richards, 1980 and 2002) written in terms of 

moment-rate (starting from equation 2.17 to obtain the representation theorem in 

terms of moment rate we have use the similarity ! = !"∆!, where ! is the 

moment-rate, ! is the rigidity, A is the Fault area and ∆! is the slip-rate) assuming 

that each single subfault, in which the fault plane is discretized, can break only once 

when it is reached by the propagating rupture front. The Green functions associated 

with a simple shear dislocation point-source located at the center of each subfault, 

are computed, at any station, by the discrete wavenumber method of Bouchon 

(1981) in a 1D velocity model. In this way we are able to compute full-wavefield 

synthetic seismograms. For the application to the Christchurch earthquake 

presented in this paper we used the 1-D velocity model provided for the area under 

investigation by Reyners & Cowan (1993). 

The Source Time Function (STF) for each subfault is parameterized according to 

Nabelek (1984) and it is represented by a set of isosceles triangular time windows 

of variable height, and mutually overlapping (figure 4.6). 

The number and duration of triangles has to be mainly chosen according to the 

dominant period of real data. Following this representation of the source, the 

parameters that are searched through the inversion of strong-motion records, or 

joint seismological – geodetic data, are the rupture onset time, the rake direction, 

and the amplitude for any of the triangular moment rate functions used (figure 4.6). 

As for the strong-motion data, even for the GPS and InSAR data the synthetic 

displacements are obtained through the resolution of the representation theorem. 
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Figure 4.6: Parameterization used for any fault segment. Each fault segment is rectangular, but 
the total rupture model can include various fault segments. Any segment is represented by a 
regular grid of source points (black dots), located at the centre of any cell, of sizes sl and sw, 
called sub-faults (SF). The hypocentre coincides with one of the source points of the main 
segment. The strike, dip, L and W of each fault segment are fixed a priori, as well as the size 
for each SF (sl and sw). The rake angle, represented by the red vector, can vary on the 
different SF, within an interval defined a priori. The !!

!(!) function is the punctual Source 
Time Function (STF) which can vary from the different SF. The STF is represented by a series 
of triangular functions (NT) of width (!). The initialization time for any SF is free to vary 
depending on the velocity rupture interval defined a priori. 

 
The Green functions for the static displacement are generated using the formulation 

of Savage (1980) (see paragraph 2.13) that considers each subfault as a slipping 

surface embedded in an elastic half-space. However, the coseismic static 

displacements are sensitive only to the rake and to the local slip value, not the time 

history of the rupture. The local slip value can be obtained from the local STF, 

since the area under the STF is equal to the local seismic moment that is in turn 

related to the local rupture area (known) and to the slip amplitude. Furthermore, 

since the InSAR data represent a relative measurement of displacement, the static 

offset for the InSAR data became another parameter that we explore trough the 
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inversion. 

The total cost function (Fcost) in the inversion procedure is defined as the sum of 

two terms. The first one is the weighted (wj) sum of the root mean-square misfit 

function i.e., the L2 norm of observed minus synthetic data, normalized by the 

observed data (rmsj), for the ND available data sets. In this case-study, we have 

ND=3 different data-sets corresponding to strong-motion, InSAR, and GPS data. An 

additional term in the cost function is introduced in order to minimize the total 

seismic moment of the model moment (Momod) taking into account an a priori value 

of seismic moment (Moapriori). In conclusion, the misfit function is given by: 

4.1 
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where Oi and Ci represent the real (observed) and synthetic (computed) data, n is 

the number of data for any data sets and the coefficients CMo is the weight for the 

moment constraint.  

For searching the minimum of the cost function, the model space is explored in a 

quasi-global manner by using the simulated annealing algorithm (Aarts & Korst 

1989). However, before performing the inversion, we have to set the investigation 

ranges for any of the model parameters (i.e., rupture time, rake direction, and 

moment-rate). 

Moreover, we first invert only the coseismic static displacements associated with 

InSAR and GPS data to search for the optimal fault orientation and position. We 

will call this step the “fault inversion”. In the case of Christchurch event, we started 

fixing the position in space of the fault center by-eye on the basis of the shape of 

the SAR’s fringes near to the epicentral location area. 
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Figure 4.7: Block diagram for the method used to determine the geometry and mechanism for the 
Christchurch earthquake. 

 

Then, we searched for the better position (xc, yc, zc) of the fault center, and strike 

and dip angles, through the inversion of InSAR and GPS data. In other words, the 

“fault inversion” scheme is based on the use of two nested cycles. The external 

cycle allows for exploring the position and orientation of the fault plane; by using 

the internal cycle we search for the slip distribution on the fault plane retrieved in 

the external cycle (see figure 4.2). This “fault inversion” scheme is of course 

expensive from the computational point of view mainly because for any given fault 

plane we need to compute the Green function. However this approach there is no 

trade-off between the fault depth and slip amplitude (Beavan et al. 2011). 

 

4.4 Data 

For the Christchurch earthquake a large amount of data of different nature, such as 

strong-motion, GPS and SAR data, are available due to the great expansion of the 

accelerometric and GPS networks that followed the occurrence of the Darfield 

earthquake. 
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Table 4-1: Main characteristics of recording stations of the Christchurch earthquake (after Bradley et al. 

2011).  

 

4.4.1 Strong motion data 
After the 2010, September 4 Darfield earthquake the New Zealand accelerometric 

network in the Canterbury plains was supplemented by 13 additional strong-motion 

stations with CUSP-3 data-logger and triaxial MEMs sensors, by the GeoNet 

network (New Zealand National Hazard Monitoring Network) and its regional 

component, the CanNet network (Canterbury Network). 
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Figure 4.8: From top to bottom, fault-normal and parallel horizontal and vertical acceleration 
time histories observed at various locations in the Christchurch region from the 21 February 
earthquake, respectively. 
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 The Christchurch earthquake was then recorded at 25 stations at epicentral distance 

between 2 and 50 km (see figure 4.8 and table 4.1). 

On the basis of some preliminary analyses performed using the fault geometry 

proposed by Beavan et al. (2011) and looking at the soil conditions (see table 4.1), 

we decided to use only the 10 strong-motion stations (black triangles in figure 4.9) 

located at distances ranging between 2 and 20 km.  The selected stations show in 

any case a good azimuthal coverage. Some of the discarded stations (e.g., ROLC, 

TPLC and CACS) simply represent a duplication of the selected ones. Moreover, 

stations like PRPC, SHLC and HPSC are contaminated by strong site effects linked 

to intense liquefaction phenomena first recognized in the case of the Darfield 

earthquake (Beavan et al. 2010 and Palermo et al. 2010) so we decided to exclude 

them from our modeling. However, all recordings used in this study are influenced 

at some degree by site effects. The Canterbury plain is in fact characterized by very 

shallow layers inducing non-linear amplifications or trampoline effects (Fry et al. 

2011). Moreover, as pointed out by Holden et al. (2011), ground conditions within 

Christchurch are highly variable and will require further studies for stations in this 

region to be included in the modeling. To choose the correct frequency band in 

which filtering data, two independent analyses were performed. First, we searched 

for the frequency range in which the S-phase polarization was stable (e.g., Emolo & 

Zollo, 2005), finding 0.05-0.5 Hz as the optimal frequency range for all the selected 

records (figure 4.10). 

Then, we performed some preliminary strong-motion inversions in different 

frequency bands around the limits obtained from the polarization analysis and 

selecting the range providing the lowest misfit. We found 0.1-0.5 Hz as the best 

frequency band. 
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Figure 4.9 Source-receivers geometry for the Christchurch event. The triangles correspond to 
the GeoNet (New Zealand National Hazard Monitoring Network) and CanNet (Canterbury 
Network) strong-motion stations installed in the Canterbury plains. The white and black 
triangles indicate the discarded and used seismic stations, respectively. Red dots represent the 
epicentral location for the 4 September 2010, Mw 7.1 Darfield and for the 21 February 2011, 
Mw 6.2, Christchurch (Bannister et al. 2011) earthquake. The focal mechanisms, from the 
Global Centroid Moment Tensor catalogue, for these two events are also shown in the Figure. 

 

Thus, accelerometric data to be used in the inversion were processed removing 

mean and trend, integrated twice, and band-pass filtered in the range 0.1-0.5 Hz by 

a 3 poles Butterworth filter. The horizontal components form the CanNet stations 

were also rotated, from their original orientation, to the North-South and East-West 

orientation. Finally, data were decimated from their original sampling frequency to 

2.5 Hz. 
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Figure 4.10: Example of polarization analysis for the station MQZ and HVSC.  
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4.4.2 The InSAR data 
The InSAR data used to model the Christchurch earthquake were the same used by 

Elliott et al. (2012), and derived from the Japanese Aerospace Exploration 

Agency’s (JAXA) L-Band ALOS instrument (for all the information related to the 

two used track we referred to the table 5 of Elliott et al. 2012).  The two tracks 

available for the studied area, i.e., tracks 335 (panel a of figure 4.11) and 336 (panel 

b of figure 4.11), are partially overlapping and cover most of the deformation area 

around the Christchurch city. The two ascending interferograms were acquired 

within the time periods 10 January-25 February 2011 (track 335), and 27 October 

2010-4 March 2011 (track 336). The two longer-wavelengths ALOS data, 

particularly the 336 track, present some area on the eastern part of the Christchurch 

city, where the fringes of the SAR data were incoherent, likely as a consequence of 

soil liquefaction. In fact, as said before, the 2010 Darfield earthquake generated 

strong liquefaction phenomena and also building damage on this part of the city 

(Palermo et al. 2010), which presumably changed the scattering properties of the 

ground.  

Nevertheless, coherent fringes coverage is clearly visible just west of the Avon-

Heathcote estuary, in particular for the 335 track (figure 4.11 panel a). The fringes 

shape in this area is of great importance because it could provide information 

related to the geometry of the rupturing source. The peak displacement along the 

line-of-sight (los) was about 50 cm (toward the satellite) in the south-east area of 

the Christchurch city of about 50 cm, and about 24 cm around the center. For all the 

information related to the processing of the SAR data we refer to the work of Elliott 

et al. (2012). Two additional tracks from ascending and descending orbit were 

available for the Christchurch area from the Italian Cosmo-SkyMed (CSK) X-band 

radar satellite, acquired on 19 and 23 February 2011, and 20 February and 16 

March 2011, respectively. However, these data are highly incoherent so we decided 

to not using them in our modeling. 
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Figure 4.11: Coseismic geodetic deformation data (InSAR and GPS) for the Christchurch 
earthquake. Panels a and b show the two ascending interferograms, acquired within the time 
periods 10 January-25 February 2011 (track 335) and 27 October 2010-4 March 2011 (track 
336), respectively. In panel a the black box indicates the area with the highest complexity of 
the fringes shape. The panels c and d represent the horizontal and vertical component, 
respectively, of the GPS sites used in this work. In the Figure, red dots correspond to the 
epicentral location of the Christchurch earthquake (Bannister et al. 2011). 

 

4.4.3 The GPS data 
A total of 193 GPS sites are available for the Christchurch earthquake: 57 sites are 

campaign GPSs collected between the 28 February and the 14 April 2011 

subsequently the Darfield earthquake; 5 points are continuous GPS (cGPS) from 

regional sites of the Land Information New Zealand (LINZ) operated by the 
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GeoNet; 8 are cGPS operated by private companies in the Christchurch city; and 

123 sites are low-accuracy campaign GPSs collected between the 14 and the 27 

April 2011. For all the information relating to the processing of the GPS data we 

refer to the work of Beavan et al. (2011). To select the GPS sites to be inverted in 

order to determine the earthquake rupture model, we perform an initial selection 

based on the epicentral distance of GPS sites. In order to select the sites closest to 

the epicentral area, we set a threshold distance of 30 km, keeping in this way 132 

sites (panel c and d Figure 4.11). Looking at the general trend of the GPS data 

(panel c of Figure 4.11), we can observe the presence of some sites (e.g., A572, 

BDUH, BDUF, and B1E1) having a shape and/or amplitude, especially on the 

horizontal component, which are not consistent with the general trend highlighted 

by other GPS. The general trend seems to suggest the presence of a fault plane, 

having a strike around 60o and characterized by a strike-slip component. Beavan et 

al. (2011) tried to model the outliers increasing the complexity of the model, but 

they were not able to successfully model these anomalous GPS data. Thus, the 

analysis performed by Beavan et al. (2011) leads us to hypothesize that these sites 

were affected by large errors, associated, for instance, with the liquefaction 

phenomena, rather than the consequence of a complex rupture model.  

We tried to model the complete set of data with a 2 fault model, without more 

success. We therefore performed a second selection in order to exclude from the 

data-set those data that could be considered as outliers (figure 4.12). To this end, 

we perform the following procedure: 

 

• we computed, over a regular grid centered on the epicentral of the 

Christchurch earthquakes, the SAR values using a bicubic spline 

interpolation, obtaining in this way, the SAR values at the GPS sites; 

• we projected the three GPS components on the line of sight (LOS) of the 

SAR and then computed the difference, at the GPS sites, between the SAR 
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values from the interpolations and the corresponding SAR values obtained 

from the three GPS components; 

• using only some selected and considered most reliable GPS sites, we 

computed the mean value (µ) and the standard deviation (σ) of the SAR 

differences obtained in the previous step; 

•  we defined the interval [min;max], being 

min = µμ− σ 

max = µμ+ σ 

• and finally retained only those GPS data inside this range.  

 

 

 
Figure 4.12: Block diagram representing the method adopted for GPS sites selection. 

The results of this analysis are listed in figure 4.9. To compute the selection interval 

we chose only the GPS that in some previous analysis showed a surface 
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deformation very similar to that provided by the InSAR data. The corresponding 

GPS stations are only those reported in the red box in figure 4.8. The results 

obtained for this study, provide a µ and σ respectively of 1.5 and about 3 cm. 

Finally, we retain a total of 76 GPS site for the inversion. Moreover, the mean value 

of 1.5 cm also provides an indicative estimation of the offset value associated with 

the InSAR data. Moreover most of the GPS excluded by this analysis also coincides 

with the GPS sites with the greatest measuring error (see the GPS table provided by 

Beavan et al. 2011). 

 

 
Figure 4.13: GPS data selection. In the left panel the red box delimitates the GPS sites used to 
select the GPS data to be used for the inversion (see text for details). The right panel 
hightlights the result of the GPS selection analysis. In this panel the blue and red colors 
indicate the used and discarded GPS sites, respectively. 

 

4.5 Inversion results 

The strong-motion, InSAR and GPS data selected as described in the previous 

section constitute the whole data set we used for the inversion. 

Following the principle of parsimony, economy or succinctness as set out by the 

Occam’s razor, we first tried to model the Christchurch earthquake using the 

simplest possible fault model, i.e., we started to model the event using a single fault 
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plane. A similar approach was also followed by Beavan et al. (2011) and Elliott et 

al. (2012), even if the complex pattern of InSAR and GPS data around the 

Christchurch city western of the Avon-Heathcote estuary suggests a more complex 

model. The same complexity seems also to be required from the moment tensor 

solutions from seismological catalogues (GeoNet) that shows a large non double-

couple component for this event (Figure 4.9).  

 

 
Figure 4.14: Kinematic rupture model for the Christchurch earthquake. The left panel shows 
the slip and onset time distribution for the Christchurch event, obtained assuming a single-
fault plane model from the joint inversion of InSAR, GPS and strong-motion data. The 
position and geometry of the fault plane has been instead obtained from the analysis of 
coseismic geodetic data alone (InSAR and GPS). In the Figure, the black arrows indicate the 
slip vectors. The left panel shows the Global Source Time Function (GSTF) for the obtained 
slip model. 

 

As described in the Method section (paragraph 4.3) , before performing the data 

inversion to retrieve the kinematic rupture model, we started searching for the 

geometry of the (single) fault plane to be used as a priori information for data 

inversion. Using the geodetic coseismic information (76 GPS sites and the track 

335 for InSAR data), and fixing the fault center at the hypocentre, as suggested by  
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Figure 4.15: Real (thick lines) and synthetic (thin lines) computed, for the single fault model 
(red box), ground-displacement strong motion records for the north–south, west-east and up-
down components, respectively. Data are band-pass filtered in the 0.1-0.5 Hz frequency range. 
The Figure in the middle shows the source-receiver and fault plane geometry used for the 
strong-motion inversion. 
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Bannister et al. (2011), we obtained a fault plane with a strike of about 61°, dipping 

toward SE with an angle of 66°, and an average rake of 166°. 

With this fault geometry we then performed the joint inversion using data from the 

10 selected strong-motion stations, the two SAR tracks and the 76 GPS sites. Plane 

dimensions equal to L=15 km and W=11 km and it was discretized in 1 km2 

subfaults.  

 

 
Figure 4.16 Coseismic GPS vector fitting for the single fault model. Left panel: observed (blue 
arrows) and modeled (red arrows) horizontal displacement corresponding to the kinematic 
rupture model shown in Figure 4. Right panel: observed (blue arrows) and modeled (red 
arrows) vertical displacement. In The black rectangulat frame indicates the fault geometry 
(projected into the surface), while the red dot is the epicentral location (Bannister et al. 2011). 

 

The local STF of each subfault is represented by three triangular functions of 0.6 s 

duration with an overlapping of 0.3 s. The maximum allowed duration of slip for a 

subfault is thus 1.2 s. The results of this inversion are provided in Figures 4.14-

4.15-4.16-4.17. The dislocation model that we retrieved (Figure 4.14) is 

characterized by a large patch of slip, localized NE of the hypocentre, with a 

maximum slip value of about 4.2 m. The average slip on the fault is 0.55 m that 

corresponds to a seismic moment of about 2.8 x 1025 dyne cm. The rupture velocity 
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is characterized by a slip weighted average value of 1.9 km/s s (to compute this 

average value we used a weighted linear regression between distance of any sub-

faults and rupture time; the weight is given by the slip value). The source time 

function has a total duration of about 7 s, and is characterized by 2 main picks at 3 

and 6 s (Figure 4.14). 

Although the general fit between real and synthetic data is quite good for all used 

data (strong-motion, figure 4.15; GPS, figure 4.16; InSAR, figure 4.17), looking at 

the section in the direction of minimum variation of the InSAR fringes (c-d section 

in figure 4.17) it is possible to conclude that the source model derived using a 

single fault plane is not able to explain the complexity of the real data in the area 

west of the Avon-Heathcote estuary. We therefore increased the complexity of our 

model adding a second fault plane.  

As for the previous case, even for the two faults model we first inferred the 

geometry and position of the two fault planes, adopting the same strategy followed 

for the single fault model. Thus, according to the geodetic coseismic data 

distribution (InSAR and GPS data) we first defined the exploration intervals for the 

different parameters and then we performed the inversion searching for the strike, 

dip, average rake and fault center of the two faults.  

In particular, the exploration interval for the strike parameter, for the second fault 

plane included in our modeling was mainly suggested by the curvature in the NNE 

direction of the InSAR data (track 335). Moreover, while the center of the largest 

plane was fixed like in the previous case (single fault model) at the hypocentre 

location provided by Bannister et al. 2011, the fault center of the second fault plane 

was instead explored.From the inversion of the InSAR and GPS data, we found a 

first plane having a strike of about 60° and a dip of 68°, results that are very similar 

to the single fault model, and characterized by a prevalent strike-slip movement 

with a small reverse component. 
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Figure 4.17: Observed (left), modelled (centre) and residual (right) SAR interferograms based 
on the single fault plane model, for the Christchurch earthquake. The panel a and b represent 
the 336 and 335 used tracks, respectively. Also shown, sections across the interferograms. The 
location of the sections are shown on the observed interferograms of panel b. 
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Figure 4.18 Slip maps from the inversion of real data, for the two fault model. Panels a, b, c and 
d display the slip maps for the GPS, InSAR, strong-motion and joint inversions, respectively. 
The joint inversion combines the three different real data-sets. Black arrows indicate the slip 
vectors. For the joint inversion, we also show the rupture time as contour lines. The red stars 
represent the hypocentre location on the fault plane. 

 

The second fault plane has strike and dip equal to 10° and 57° respectively, and a 

center located about 1.5 km northward of the main fault center, at a depth of 3.7 

km. Moreover, in contrast with from the main fault, the second one is characterized 

by a dominant reverse fault style.To perform the joint strong-motion, GPS and 

InSAR data inversion for the source kinematics we set the planes extensions to 

15x11 km2 and 7x7 km2, respectively, discretized by 1x1 km2 subfaults. 
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Figure 4.19 Time evolution of the rupture, for the two faults model, from the joint inversion of 
InSAR, GPS, and strong-motion data given at intervals of 0.4 seconds. The left and right 
panels show the non-cumulative and cumulative slip evolution, respectively. Red stars 
correspond to the hypocentre location on the fault plane. 

 

The rupture model obtained from the inversion is shown in figure 4.18, where we 

report the slip distribution, for the strong motion (panel c), GPS (panel a), SAR 

(panel b) and joint inversion (panel d), over the two fault planes. The main fault 

plane is characterized by a dislocation pattern very similar to the distribution 

inferred for the single fault model. The main patch of slip (maximum slip of about 

4.1 m) is again located NE of the hypocentre, while the average slip over the whole 

fault plane is about 0.5 m. Moreover, an average rake of 1500 also characterizes the 



[SOURCE	  GEOMETRY	  AND	  KINEMATIC	  FOR	  THE	  2011	  CHRISTCHURCH	  EARTHQUAKE]	  
 
 

116 

main plane. The second plane is instead characterized by a lower average slip 

(about 0.32 m with a maximum value of about 2 m) and shows a main reverse 

movement (average rake about 90o). The global average slip over both fault planes 

is about 0.45 m corresponding to a seismic moment of about 3.0 x 1025 dyne cm 

(i.e., Mw 6.2). Most of slip in our rupture model is concentrated between 2 and 5.5 

km depth. This result is in agreement with the lack of superficial evidence of the 

rupture plane and with the fringes shape, highlighted especially from the 335 track.  

 

 
Figure 4.20: Global Source Time Function (GSTF) for the two faults plane model obtained from 
the joint inversion of InSAR, GPS and strong motion data. The GSTF depicts the evolution of 
the moment-rate with time. 

 

The rupture velocity has a slip weighted average value of about 1.9 km/s. 

Analyzing the rupture-times distribution (Figure 4.14 panel d), we infer that, on the 

main fault plane, the rupture front accelerates at the beginning and then its speed is 

reduced. Moreover, the rupture front acceleration was higher on the right side of the 

fault plane.  
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Figure 4.21 Real (thick lines) and synthetic (thin lines) computed for the two fault planes 

model (red box), ground-displacement strong motion records for the north–south, west-east 

and up-down component, respectively. Data are band-pass filtered in the 0.1- 0.5-Hz frequency 

range. The panel in the middle shows the source-receiver and the fault plane geometry 

(surface projection) used for this analysis. 
 

17
2˚

30
'

17
2˚

45
'

−4
3˚

45
'

−4
3˚

30
'

10
 k

m

M
Q
Z

C
BG
S C
C
C
C

C
H
H
C

C
M
H
S

H
V
SC

LI
N
C

LP
C
C

R
EH
S

R
H
SC

17
2˚

30
'

17
2˚

45
'

−4
3˚

45
'

−4
3˚

30
'

N
 S

ta
:L

IN
C

E
Z

N
 S

ta
:O

M
Q

Z
E

Z

N
 S

ta
:C

BG
S

E
Z

N
 S

ta
:C

H
H

C
E

Z

N
 S

ta
:C

M
H

S
E

Z

N
 S

ta
:H

VS
C

E
Z

N
 S

ta
:R

H
SC

E
Z

N
 S

ta
:C

C
C

C
E

Z

N
 S

ta
:R

EH
S

E
Z

N
 S

ta
:L

PC
C

E
Z

10
 s

10
 c

m
O

bs
C

al



[SOURCE	  GEOMETRY	  AND	  KINEMATIC	  FOR	  THE	  2011	  CHRISTCHURCH	  EARTHQUAKE]	  
 
 

118 

The rupture duration of the whole faults system lasted about 7 s (Figure 4.18 panel 

d), like for the single fault model. This observation indicates that the second fault 

plane broke at the same time as the first one. In figure 4.19 we provide the 

snapshots, for the non-cumulative (panel a) and cumulative (panel b) slip, at 

intervals of 0.4s describing the time evolution of the rupture. It is possible to 

observe that appreciable values of slip appear 1.6 s after the origin time, while the 

final slip pattern on the first plane is obtained after 5.2 s. Moreover, the second fault 

starts contributing to the breakage after about 4 s from the nucleation time. 

The source time function for this model is characterized by the presence of three 

peaks (figure 4.20), the main of which appears at about 2 s and is associated with 

the main slip patch (this first peak is very similar, for shape and amplitude, to that 

which characterizes the global source time function for the single fault model); the 

second peak at about 4 s is due to the rupture of the second fault, instead. 

Looking at the rupture models obtained from the separate inversions of the single 

data sets (Figure 4.18), it is possible to conclude that a second fault plane is 

required, mostly by the InSAR data. The RMS misfit function is markedly 

improved for the InSAR data, passing from 0.42 for the single fault plane to 0.27 

for the two faults model (see also figure 4.23). 

 Finally, another important result is observed from the residuals analysis on the 

InSAR data. The introduction of a second fault plane, to model the complex fringes 

shape near the rupture zone, leads indeed to a clear reduction of the maximum 

residuals value (from 30 cm for the single fault model to 10 cm for the two-faults 

model) for both the 335 and 336 tracks (see figures 4.17 and 4.23). Moreover, we 

found an offset of about 0.1 and 0.3 cm for the track 335 and 336, respectively; 

values that are consistent with 1.5 cm expected from the initial analysis performed 

with the GPS data. 

 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

119 

 
Figure 4.22: Coseismic GPS vector fitting for the two faults model. Left panel: observed (blue 
arrows) and modelled (red arrows) horizontal displacement corresponding to the kinematic 
rupture model shown in Figure 8, panel d. Right panel: observed (blue arrows) and modelled 
(red arrows) vertical displacement. The black rectangular frames indicate the fault geometry 
(surface projection), the red dot the epicentral location (Bannister et al. 2011). 

 

We tested the 1 fault and two fault models both with the restricted (76 stations) and 

complete (203 stations) GPS data-sets, but it did not made much difference (see 

Table 1). Another point that needs to be considered is the evaluation of the 

statistical meaning of models described by a different number of parameters, when 

the same data sets are used. This study can provide an independent way to choose 

between the models with one or two fault plane. This analysis is addressed by the 

corrected Akaike Information Criterion (AICc) for model selection Akaike (1974). 

This criterion sets that, among various models with different parameters number, 

we have to choose the one that minimizes the function: 

4.2 

!"#$ = ! ∙ ln 2!" +   
!(! + !)
! − ! − 2 

 

where, E represents the misfit value, N the number of data and, finally, P the 
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number of parameters.  

 

rms InSAR GPS 
(76 stations) 

GPS 
(203 stations) 

Strong 

Motion 

Joint 

1 Fault model 0.42 0.39 0.77 0.62 0.59 

2 Faults 

model 
0.27 0.35 0.72 0.61 0.53 

Table 4-2: Root Mean Square (RMS) values from the inversion analysis. In the table we report 
the different RMS values obtained from the inversion of any separate data-set (InSAR, GPS 
and Strong-motion) and for the joint inversion (Joint). Results are listed for the two source 
models studied in this paper. Moreover, for the GPS data two different cases, corresponding to 
the 76 selected GPS stations and to the complete data-set, are reported. The joint RMS is 
obtained combining InSAR, strong-motion and selected GPS data. 

 

To search for the minimum of the AICc corresponds to finding the best 

compromise between fit quality and simplicity of the model.  

The results of the Akaike test show very clearly how the misfit improvement 

obtained for the geodetic coseismic deformation data, from a statistical point of 

view is sufficient to warrant the introduction of the second fault plane, and so for 

the introduction of a greater number of parameters. The same however is not true 

for the strong-motion data. These results, in any case, can be justified for the 

narrow frequency band used for the strong-motion data inversion, which clearly is 

not sufficient to reconstruct the rupture complexity. 

 

4.5.1 Resolution test 
To assess the resolution associated with the different data sets and evaluate the 

advantages of the joint inversion, we present here the application of the inversion 

scheme to the synthetic data.  
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Figure 4.23: Observed (left), modelled (centre) and residual (right) SAR interferograms based 
on the two fault planes model, for the Christchurch earthquake. The panel a and b represent 
the 336 and 335 used tracks, respectively. Also shown, sections across the interferograms. The 
location of the sections are shown on the observed interferograms of panel b. 
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This test allows to study the performances and limitations of the algorithm and to 

analyze its spatial and temporal resolution for the real data. For this test we only 

used the two faults model and the same conditions as for the real case.  

I will describe now the source model that I used to compute the synthetic data. In 

particular I used the slip distribution shown in figure 4.24, panel a. Four asperities 

of different shape and dimension (a1, a2, a3, a4), three on the main fault and one on 

the secondary fault characterize this model. These asperities were located at 

strategic points of the fault, because we want to see if they are actually resolved by 

the data. The total seismic moment associated with this slip distribution is equal to 

3.0x1025 dyne cm. The rake angle is uniform and set to 110°, a value that represents 

a good compromise between the two findings obtained for the two fault planes from 

the inversion of the real data.The rupture velocity is uniform on both planes (2.0 

and 1.8 km/s, respectively) except on the slip patch where the velocity rupture 

increases to 2.7 km/s; so we have a total average rupture velocity over the two fault 

plane of 2.2 km/s. Moreover, the rupture initiates at the same hypocentre location as 

for the inversion of the real data. A normally distributed random noise was finally 

added to the synthetic data.The random noise had a standard deviation of 0.1. 

Figure 4.24 (panel b, c, d, e) presents the slip distribution obtained from the 

inversion of both separate and joint data sets. Concerning the InSAR analysis we 

performed the joint inversion of the two available tracks (335-366). The InSAR 

data allow finding quite well the position and shape of the asperities a1, a2 and a4 

(see panel b figure 4.24), but they are not able to locate the asperity in the deeper 

part of the main fault. Furthermore the asperities a1 and a2, which are separated in 

the initial model, seems to be connected each other in the slip distribution retrieved 

through the inversion, showing a limit in the resolving power of these data. 

As in the case of the InSAR data, the GPS data identify the asperities a1, a2 and a4 

(see panel c figure 4.24). Again, the shape of the asperities is only approximately 

retrieved and then also this kind of data has a lower resolution in the lower part of 
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the model. Compared to InSAR however, the shape of the asperities a1 and a2 is 

better resolved, though the two asperities appear again linked. Differently from the 

geodetic data, the inversion of strong-motion data provides a rupture in which all 

the asperities are quite correctly identified both for their shape and position (see 

panel d figure 4.24). 

 

 
Figure 4.24: Slip maps from the resolution tests. Panels a, b, c, d and e correspond to the slip 
maps for the synthetic model (two fault planes), and then for the GPS, InSAR, strong-motion 
and joint inversions, respectively. The joint inversion combines the three different synthetic 
data sets. The black arrows indicate the slip vectors, while the red star represents the 
hypocentre location. 

 

Moreover, the strong-motion data also provides a good resolution of the deepest 
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part of the main fault, which is most likely due to the relative shorter distance of all 

the stations from the source. Finally, the joint inversion (see panel e figure 4.24) of 

the three data sets shows a very good improvement on the resolution of the initial 

slip model with respect to the single data-sets cases. It should be noted that the 

seismic moment inferred from the InSAR, GPS, strong-motion and joint inversions, 

though in a general good agreement with the starting model, is slightly 

overestimated. Concerning the rupture velocity, the joint inversion provides an 

average value of 2.0 km/s, slightly lower than the average value of the initial model 

(2.2 Km/s).So these tests allow us to conclude that the main features retrieved from 

the joint inversion of real data are quite well resolved.  

 

 

4.5.2 Errors analysis 
We evaluated errors estimates on our final model following the approach proposed 

by Emolo & Zollo (2005). For each subfault we focused on one by one of the 5 

parameters defined on it (i.e., rupture time, rake, and the three moment values). 

Fixing all the model parameters at their best values, we perturbed the selected 

parameter around its best pbest. Then, for each p∈[0.9pbest;1.1pbest] we evaluated the 

misfit E(p), accounting for all the available data and finally we computed the 

function 

 

4.3 

pdf(p) = Ce
!!

! !
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Figure 4.25: Relative error distributions for the InSAR (left) and GPS (right) data inversions. 
From the top to the bottom are displayed the relative errors for the slip vector and for the 3 
moment values, corresponding to the three triangular functions whereby we discretized any 
local source time function. 

 

where the normalization constant C is given by: 

4.4 

 

C =
1

!
[!!

!(!)
!!!!

]
!"!.!!!"#$

!.!!!"#$

 

 

In this way the function pdf(p) assumes the meaning of a marginal probability 

distribution function for the parameter pbest. The parameter σ0
2 in the two previous 
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equations is the unknown variance of the misfit function, and accounts for errors 

both in the modeling and in the data. It determines the shape of the pdf and, in the 

present case, it has to be assigned arbitrarily, according to the best-fit model 

variance. 

We can characterize these probability distribution functions by their overall widths. 

  

 
Figure 4.26: Relative error distributions for the strong-motion data (left) and joint (right) 
inversions. From the top to the bottom are displayed the relative errors for the onset-time, slip 
vector and for the 3 moment values, corresponding to the three triangular functions whereby 
we discretized any local source time function. 
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One way of measuring the width of a distribution is to multiply it by a function that 

is zero near the center of distribution and that grows on either side of center. The 

area under the resulting function gives a quantitative measure of the width of the 

distribution. If one chooses the parabola (p- pbest)2 as that function, then this area 

gives the variance σ2 of the distribution. 

4.5 

!! =    (! − !!"#$)! ∙ !"#(!)!"
!.!!!"#$

!.!!!"#$
 

 

According this approach we computed the relative errors for all the model 

parameters and both for separate and joint data sets. The results of this analysis are 

shown in the figure 4.25 and figure 4.26. We generally find a relative error of about 

25-30 %, with the largest errors associated with the rupture times. This last result is 

consistent with the slight underestimation on the velocity rupture we found from the 

resolution test. 

 

4.6 Discussion and Conclusion 

The Canterbury Plain over the last two years has been characterized by two main 

seismic events: the September 4, 2010, Mw 7.1 Darfield earthquake and the 

February 21, 2011, Mw 6.2 Christchurch earthquake. The latter occurred in an area 

characterized by a large aftershock activity related to the Darfield earthquake and 

by an increase of the Coulomb static stress induced by the previous earthquake 

(Zhan et al. 2011). All this information seems to suggest that the Darfield 

earthquake may have influenced the occurrence of the Christchurch event.  

A large quantity of data of different nature, e.g. InSAR, GPS, and strong-motion 

data, are available for the Christchurch earthquake. In particular, the coseismic 
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geodetic data suggest a complex geometry for the source, as in the case of the 

Darfield event (Elliott et al. 2012, see figure 4.32) that occurred in the western part 

of the Canterbury plains. 

 

 
Figure 4.27: Kinematic rupture model retrieved by Holden et al., 2011. 

 

 
Figure 4.28: Kinematic rupture model retrieved by Barnhart et al. 2011. A: rupture model for the 
Darfield earthquake; B: source model for the Christchurch earthquake. 

We used the non-linear inversion method proposed by Delouis et al. (2002) to 
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invert the available data sets in order to determine the geometry of the fault plane(s) 

and the kinematics features of the seismic source for the Christchurch event. 

Adopting a single-fault model, we found a plane striking N59° and with a dip angle 

of 66°. This result is consistent with the inferences obtained by Barnhart et al. 2011 

(strike=59o and dip=64o), see figure 4.28 and by Beavan et al. (2011) (strike=59o 

and dip=66.5o), see figure 4.29, analyzing the GPS data. The faulting mechanism is 

prevalently strike-slip with a small reverse component (average rake = 150o), quite 

consistent with the solution reported in the catalogues GCMT, while differences 

mainly for the rake are found with respect to the GeoNet catalogue. Our average 

rake angle is consistent to that found by Beavan et al. (2011) but is different to that 

by Barnhart et al. 2011 (~70!).  

The kinematic rupture model found in this case is very similar to those provided by 

Beavan et al. (2011) and Barnhart et al. 2011 and it is characterized by a main slip 

patch located NE of the hypocentre. Compared to the Beavan et al. (2011) and 

Barnhart et al. 2011 models, however, our model presents a much more localized 

slip patch characterized by a maximum slip value of about 4.3 m, larger than 2.5 m 

found by Beavan et al. (2011) and 2.1 m found by Barnhart et al. 2011.  

Our maximum value of 4.3 m is in any case very close to that retrieved by Holden 

(2011), 4.2 m, inferred from the inversion of the strong-motion data (figure 4.27). 

Compared to the Holden (2011) kinematic model, which prescribes a total rupture 

duration of about 4s, we found a lower average rupture velocity, which leads us to 

have a total duration of the rupture of about 7 s. Then, we moved to consider a 

more complex fault model as also done by Beavan et al. (2011) (figure 4.29), 

Atzori et al. 2012 (figure 4.30), Beavan et al. (2012) (figure 4.31) and Elliott et al. 

(2012) (figure 4.32). Our geometries, retrieved from the inversion of InSAR data, 

are quite different from the two-fault models proposed in previous researches even 

if they share some features with both already published models.  
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Figure 4.29: Kinematic rupture model retrieved by Beavan et al., 2011. 

 

 

In particular while our main plane is similar to that of Beavan et al. (2011), the two 

models completely differ for the second plane. In fact, the second plane by Beavan 

et al. (2011) is characterized by a strike-slip mechanism and is located south of the 

main plane (in this work the position of the second fault plane was obtained from  
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Figure 4.30: Kinematic rupture model retrieved by Atzori et al. 2012. In figure have been reported the 
two fault plane related to the Christchurch earthquake and the fault plane related with the 6 June 2011 
aftershock. 

 

the aftershock distribution), while in our model the second plane is located north of 

the first and is mainly associated with a reverse mechanism.On the other hand, our 

model is similar to those proposed by Elliott et al. (2012) and Atzory et al. (2012) 

who studied the InSAR data. These models share a quite similar geometry with two 

planes having different strike, the lower strike fault plane characterized by a 

dominant reverse movement and the higher strike plane with a mainly strike-slip 

mechanism. The two models strongly differ for the slip dstribution. In fact, the 

Elliott et al. (2012) and Atzori et al. 2012 rupture models prescribe the large part of 

the total seismic moment as associated with the reverse fault plane with the lower 

strike while in our model, most of the seismic moment is instead associated with 

the fault plane having higher strike and strike-slip mechanism, which is also, in our 

case, the plane containing the hypocentre of the event.  
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Figure 4.31: Kinematic rupture model by Beavan et al. 2012. 

 

Compared to the fault geometry proposed in Beavan et al. 2011, in a following 

work (Beavan et al. 2012) the author introduced in his model a third fault plane 

located north of the main fault plane. This fault plane shows a good agreement for 

geometry, position and mechanism compared to our northern segment. The 

possibility of introducing a third fault plane was also investigated in this work, but 

was rejected because it did not report any improvement in misfit compared with the 

two fault models, for all of the data-set used. On the other hand already in Beavan 

et al. 2011 the author noted that the introducing of a second segment, located south 

of the main one, did not lead to any statistically significant improvements on the 

model.  

Concluding, we found that the addition of the second fault plane in our model for 

the Christchurch earthquake, leads to a marked improvement in the fit of the InSAR 

data (track 335), even if it does not provide a substantial improvement in fit 

between real and synthetic data for the strong-motion and GPS data sets. The 

second fault plane, however, allows us to reproduce in our synthetic data some 

complex shape of the InSAR fringes that cannot be explained by a single fault 

model. Finally, it should also be highlighted how the introduction of the second 
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fault plane in any case does not lead to a degradation of the RMS for both the GPS 

and strong-motion data. 

Furthermore, another point that seems to endorse the choice of a complex fault 

geometry for the Christchurch earthquake is that also the Darfield earthquake is 

characterized by a complex faulting geometry with the alternation of planes having 

different strike and whose mechanism changes from strike-slip to reverse (Elliott et 

al. 2012. Beavan et al. 2012. Atzori et al. 2012). 

The geometry and source model for the Christchurch earthquake retrieved in this 

work well fit with the regional stress field actually present in the Canterbury plains 

and characterized by a maximum contraction axis !! of 0!/115! (Sibson et al. 

2011, Wallace et al. 2007) (figure 4.5). From this point of view a key role, 

however, has the uncertain orientation of !! axes. Indeed if the predominant strike-

slip event (see figure 4.1) seems to suggest a horizontal !! axis, the simultaneous 

presence of inverse events in the Canterbury area, may indicate local variation of 

!!.  Furthermore, considering the mixture of strike-slip and reverse faulting during 

the entire Canterbury sequence, it seems likely that the stress field is of the form 

!! > !! = !! ∼ !! with local variance between !! = !! and !! = !!. 

Therefore, considering this, we hypothesize that orientations and mechanisms 

(150!and 90! for southern and northern segments, respectively) of two fault planes 

used to model the Christchurch earthquake are associated to a local rotation from 

horizontal plane of the !! axes.  As suggested also by other authors (Holden et al. 

2011, Sibson et al. 2011, Barnhart et al. 2011) it is possible that perturbation of 

local stress in the Christchurch area could be driven by the presence of the now 

extinct volcano Banks Peninsula south of the Canterbury plains 
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Figure 4.32: Kinematic rupture model retrieved by Elliott et al., 2012. 
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5 Earthquake Source Kinematics of Moderate 
Earthquakes From the Inversion of Apparent 
Source Time Functions 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

One main target of observational seismology is to estimate the earthquake source 

characteristics from the recorded ground motion. To this end, various methods 

aimed at reconstructing source kinematic models from the inversion of seismogram 

have been proposed during the time (e.g., Beroza et al. 1988; Hartzell & Liu 1995; 

Delouis et al. 2000; Emolo & Zollo, 2005; Liu et al. 2006; Piatanesi et al. 2007;  

Lucca et al. 2012). The kinematic description of the earthquake source, as 

compared to the dynamic one, has the advantage of using a limited number of 

parameters, characterizing the source time function, i.e., the final slip and rupture 

velocity distributions on the fault, the slip duration, the fault geometry and 

orientation. Nevertheless, even using a simple kinematic description of the source,  
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the problem of inverting the ground-motion recordings may become strongly non-

linear, when considering variable rupture velocity and/or rise-time on the fault. 

From this point of view, the most important effect is the trade-off between the slip 

value and rupture-velocity distribution on the fault, which can produce similar 

effects on the seismic waveforms (Emolo 2001; Emolo et al. 2008; Ameri et al. 

2009). 

The method proposed in this work to determine the slip and rupture velocity 

distributions on the fault plane is based on the inversion of the apparent Source 

Time Function (aSTFs). The aSTF differently from a local Source Time Function, 

takes into account also the propagation times between the source and receivers and 

therefore incorporates the directivity effects of the seismic source; a local Source 

Time Function represents the slip history for any source in which the fault plane is 

discretized. The technique used to obtain the aSTF of a seismic event is that 

proposed by Vallée (2004) based on the analysis of Empirical Green function 

(EGF). A method based on the inversion of an aSTF, compared to ones where the 

theoretical Green functions are considered, has the advantage to naturally include 

the path propagation, anelastic attenuation and site amplification effects which can 

affect the source parameter modeling if not properly described by numerically 

computed Green functions. Moreover it also allows performing the inversion at 

frequencies higher than those generally used in seismograms inversions that, for 

large magnitude earthquakes, are, at the most, are few Hertz. In this method indeed, 

the frequency band in which the inversion is performed does not depend on the 

particular velocity model used but only on the frequency range in which the aSTF 

have been derived. At the same time the main disadvantage is due to the reliability 

of the retrieved aSTF for an extended fault rupture, which in turn depends on the 

availability of an adequate set of Empirical Green Function (EGF) records, which 

provide an optimal azimuthal coverage of the source. When using a single EGF 

event, as in the present study it is critical to find the proper range of source-to-site 
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distance for which the propagation effects from any point on the fault can be 

adequately approximated by using a single EGF. The EGF devonvolution technique 

proposed by Vallée (2004) for the computation of the aSTFs of a seismic event in 

particular is based on the projected Landweber method. This method was 

introduced in seismology by Bertero et al. (1997), with the additional constraint 

that the area of the aSTFs (which represents the scalar moment of the earthquake) 

has to remain the same at all the stations. 

 

5.2 The Empirical Green Function Approach 

Knowledge of the seismic source requires modeling the propagation between the 

source and the receiver (Green’s functions). Under the hypothesis of linear wave 

propagation, the Green’s functions may also be replaced by the records of small 

earthquakes occurring on the same fault with the same focal mechanism and the 

same stress drop, commonly referred to as Empirical Green’s functions (EGFs). 

The use of small events as EGFs was first proposed by Hartzell (1978). It was 

subsequently used and developed by Mueller (1985), Fukuyama and Irikura (1986), 

Mori and Frankel (1990), Ammon et al. (1993), Velasco et al. (1994), Courboulex 

et al. (1997a), and Ihmlè (1996). The idea is to deconvolve the mainshock from the 

smaller event (EGF) to obtain a apparent source time function (aSTF) at each 

considered station. The durations of each aSTF are then examined to retrieve some 

interesting properties regarding the extent and rupture velocity of the event. 

By starting from the representation theorem, for a large earthquake of moment M1, 

we can write: 

5.1 

!!! !,! = −!!"!!!!!!!" !, !!,! ! !,! !!!! !!!! !"!

!

 

 



[KINEMATIC	  INVERSION	  OF	  ASTF]	  
 
 

138 

where Gip denotes the spatial derivative of the Green function. Here we assume that 

1) the Green function Gip is the same for all the points of the fault except for a 

phase shift ! !− !!  due to the varying distance between source and receiver (far-

field approximation), 2) the earthquake has a constant mechanism. M is a unit 

tensor independent of ! and ω, ! !,! , the inverse Fourier transform of ! !,! , is 

a causal, positive scalar function, monotonically increasing over [0, D], where D is 

the unknown duration of the source, and constant elsewhere (for more details see 

Vallée 2004). 

For a smaller earthquake of scalar moment M0, with same location and similar focal 

mechanism of large earthquake, ! !,!  can be approximated by 

5.2 

! !,! = ! !− !! !" ! ! =
! !− !!

!"  

 

where TF(H(t)) is the Fourier transform of the Heaviside function, which leads to 

5.3 

!!! !,! = −!!"
!!

!" !!!!!" !, !!,!  

 

Therefore, by deconvolving equation (4.1) from equation (4.3), we obtain the aSTF, 

defined as !! in the equations: 

5.4 

!! ! =
!!

!!
!" ! !,! !!!! !!!! !"!

!

=
!!

!!
!" ! !,! !

!!" !
!!

!!!! !"!

!

 

 

where vΦ, the phase velocity and u the wave propagation direction, are assumed 

constant. This assumption compels us to study separately each wave type in the 

EGF analysis. The aSTF is a positive, bounded-support function and its duration 
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will also depend on the position of the station, the phase, and the rupture velocity 

but it will of course remain bounded. Another important property of the aSTF is 

that its integral value is independent of the stations or the wave type used in the 

deconvolutions and is equal to the relative moment between the mainshock and the 

EGF. 

 

5.3 Projected Landwebber Method 

The deconvolution method of Vallée (2004) is based on the approach of Bertero et 

al. (1997), who developed a simple method to include positivity and temporal 

constraints on the aSTFs, based on the Landweber method. It was shown by Bertero 

et al. (1995) that the latter method was slower but more accurate than conjugate 

gradient methods.  

Called U1 and U0 the mainshock and EGF waveform, respectively, the problem is 

to identify the aSTF Fθ verifying 

5.5 

!! ∗ !! − !! = !"#"!$! 

 

or equivalently  

5.6 

!!∗ ∗ !! ∗ !! = !!∗ ∗ !! 

 

(e.g., Bertero, 1989), where U0* is the adjoin operator of U0. Through mathematical 

manipulations, equation (4.6) can thus be written as 

5.7 



[KINEMATIC	  INVERSION	  OF	  ASTF]	  
 
 

140 

!! = !! + !! −! ∗ !! − !! ∗ !!  

 

In an iterative scheme, the last equation becomes 

5.8 

!!
!!! = !!! + !!! −! ∗ !! − !! ∗ !!!  

 

where τ is the relaxation parameter which must satisfy the condition 0 < τ ≤ 

2/(supω|U0(ω)|)2 and is classically chosen equal to 1/(supx|U0(ω)|)2. 

Let us suppose that we know that the aSTF belongs to some closed and convex set 

C. Then equation (4.8) can be modified as follows: 

5.9 

!!
!!! = !! !!! + !!! −! ∗ !! − !! ∗ !!!  

 

where Pc denotes the metric projection on C. In the absence of noise, Fn is shown to 

converge, but only weakly, toward the expected solution of 

5.10 

!! ∗ !! − !! = !"#"!$!, !! ∈ ! 

 

Bertero et al. (1997) defined C as the set of nonnegative causal functions that are 

zero for t > D. However, we can be even more restrictive and let C be the set of 

nonnegative causal functions that are zero for t > D and for which the integral over 

[0D] is equal to M1/M0. It can be immediately verified that the newly defined set 

that we call Cm is closed and convex. We now must define the projection PCm itself 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

141 

in order to compute equation (4.9). Given a function h, it can be shown that PCm(h) 

can be naturally computed, that is, we essentially add a proper, additive constant to 

h to derive PCm(h) from h. it is shown that PCm is approximated by: 

5.11 

!!"ℎ ! = ! + ℎ ! + !
!! −!!

!!
!"

, !"  ! ∈ 0,!

0, !"#!$ℎ!"!

 

 

where k is a positive real number.  

Given PCm, the computation procedure is again completely as the one of Bertero et 

al. (1997): we start from Fθ 0 = 0, compute equation (4.8) in the frequency domain, 

and come back to the time domain to use PCm as defined by equations (4.9) and 

(4.11). We then obtain Fθ 1 and repeat the operation, transforming into the 

frequency domain to compute again equation (4.8) and so on. The scheme (4.9) is 

semiconvergent, that is, it approaches the solution before diverging again. 

However, the minimum seems very flat, and good results are obtained after a few 

hundred iterations. 

 

5.4 Metodology 

The approach used to invert the aSTFs generalizes the technique proposed by 

Emolo and Zollo (2005) to invert strong-motion data. The model parameters are the 

values of slip and rupture velocity specified, as in the original formulation, at a set 

of control-points on the fault plane. The distributions over the whole fault at a finer 

scale are then obtained by a bicubic interpolation; this is required, for example, for 

the correct computation of the representation integral to solve the forward problem 
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thus avoiding undesired spatial aliasing effects. The best slip and rupture velocity 

values at the fault control-points are determined by using the Genetic Algorithm 

(Goldberg 1989; Charbonneau 1995) to search for the maximum of a fitness 

function, based of the comparison between real and synthetic STFs. A multi-scale 

approach is adopted, according to which the number of control-points is 

progressively increased in successive inversion runs so to move from a high- to 

low-wavelength description of kinematic parameters on the fault. The optimal 

model parameters set is finally chosen according to the Akaike Information 

Criterion (Akaike, 1974) for model selection and modified from its original 

formulation by Cavanaugh (1997). Following this Akaike’s criterion, the best 

parameterization is the one that minimizes the function: 

5.12 

!"#$ = ! ln 2!" +
! ! + !
! − ! − 2   

 

In equation 5.12, N is the number of data, P is the number of the model parameters, 

i.e., the number of slip and rupture velocity values used to define the model and, 

finally, E represents the misfit value (obtained like the L2-norm between real and 

synthetic data). The model that satisfies this criterion represents the best 

compromise between fit quality and simplicity of the model. 

 

5.4.1 The Forward Problem 
Following the Emolo & Zollo (2005) formulation, the ground displacement 

associated with the seismic phase propagating, with velocity c, at a given receiver 

located at x, can be obtained as the sum of signals emitted by elementary sources 

(subfaults) densely distributed on the rupturing surface: 

5.13 
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!! !, ! = !!,!! (!, !)
!,!

 

 

where the ground displacement produced by the subfault (m,n), !!,!! !, ! , is given 

by the representation integral (Aki & Richards, 2002): 

 5.14 

!!,!! !, ! = !!,!!! !, !; !, 0 ∗ !Δ!!,!(!; ! − !!,!! )!Σ
!"#$%"&'

 

 

 

 
Figure 5.1: The rupture front (red lines) starts from a point (asterisk) and then propagates on 
the fault with a general heterogeneous velocity. When a fault point is invested from the 
rupture front, starts to move i.e. changes from a null value to a final dislocation value D at 
time t. In figure are also shown the strike (!) and dip (!) angle that allow the identification of 
the fault plane orientation. 

 

In (5.14), !!,!!!   is the Green’s function in the far-field approximation !  is the 
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medium rigidity, Δ!!,!  is the time-derivative of local Source Time Function and 

!!,!!   represents the time needed by the wave c to travel from the elementary source 

(located on the fault plane at the position !) to the receiver. 

In the case of a single Green’s function, that can be considered representative of a 

median fault-point !, as, for instance, on Empirical Green’s Function, we have 

5.15 

!!,!!! (!, !; !, 0) ≃   !!"#(!, !; !, 0) 

 

Replacing the equation 5.14 in equation 5.13, and using the condition 5.15, we find: 

5.16 

!! !, ! = !!"# !, !; !, 0 ∗ !Δ!!,!(!; ! − !!,!! )!Σ
!"#$%"&'

!,!
 

 

Since the apparent Source Time Function can be computed deconvolving the EGF 

from the observed seismogram 

5.17 

!"#$(!, !) = (!! ∗ !!"#)!! 

 

The final formulation of our forward modeling can be written as 

5.18 

!"#$ !, ! = (!! ∗ !!!")!! = ! Δ! (!; ! − !!,!! )!Σ
!"#$%"&'!,!

 

 

The Empirical Green’s Function (GEGF) must satisfy three conditions: 

1. Its magnitude is at least one unit smaller than the mainshock one;  
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2. The fault mechanism for the mainshock and EGF events are similar and 

EGF is located on the mainshock fault plane, so that it can approximate the 

path propagation effects, including anelastic attenuation and site effects.  

3. Distances of receivers from the fault are much larger than the linear 

extension of the fault, so that a single EGF record can be used to reproduce 

the propagation effects from any fault point; 

The local Source Time Function in equation 5.14 is approximated by a box-car 

function. Its onset time clearly depends on the time at which the rupture front 

reaches the sub-fault (m,n), to resolve the equation 5.18 we have also to estimate 

the rupture time on the fault. For a heterogeneous rupture-velocity distribution this 

problem is solved using the 2D finite-difference code of Podvin & Lecomte (1991), 

which computes the rupture times at any point of a discretized fault plane, given a 

source nucleation position and a distribution of the rupture velocity. 

 

5.4.2 The Podvine & Lecomte Algorithm 
The calculation of synthetic seismograms makes use, among other parameters, of 

the time distribution on the fault rupture. The subject of inversion will be, rather 

than the times, the rupture velocity. Therefore it is necessary to have a method able 

to allow calculation of times from the rupture velocity. For its reliability and 

calculation speed, we chose for this purpose the algorithm of Podvin & Lecomte 

(1991). This algorithm, starting from the distribution of slowness (s), parameterized 

on a regular grid in a propagation medium, and noting the position of the origin of 

the times (the position of an artificial source of seismic waves or, as in our case, the 

position on the fault hypocentre the earthquake), calculates the time path of the 

wave faster in the nodes of the grid solving the first order equation eikonal 

5.19 
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!"
!"

!

+
!"
!"

!

= !! 

 

where T is the travel time of the seismic wave with slowness s. 

Rather than using representation through a regular grid of slowness as a 

mathematical tool to solve, with finite differences, equation 5.19, Podvin & 

Lecomte (1991) approximates the slowness model using a model with square cells 

of side h with a constant slowness value. Applying, systematically, Huygens’s 

principle to this model, we have the following five estimators for the travel time 

from the M point to P point (see Podvine & Lecomte 1991).  

5.20 

if 0 ≤ !! − !! ≤ !!
!

, then !! = !! ± ℎ!
! − !! − !! ! 

 

for direct waves that travel ! → ! → ! 

5.21 

if 0 ≤ !! − !! ≤ !!
!

, then !! = !! ± ℎ!
! − !! − !! ! 

 

 

for direct waves that travel ! → ! → ! 

5.22 

!! = !! + 2ℎ! 

 

for direct waves that go from M to P, 

5.23 

!! = !! + ℎ  min  (!, !!) 
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for direct waves that travel ! → ! → ! as head wave, and 

5.24 

!! = !! + ℎ  min  (!, !!!) 

 

for waves that travel ! → ! → ! as head wave. The travel time from M to P is 

assigned the smallest value among those supplied by the five estimators 5.20 - 5.24. 

 

5.4.3 The Inverse Problem 
The final slip and rupture velocity values at the control-points along the fault are 

determined by searching for the maximum of a fitness function F, defined 

hereinafter. For this aim we used the Genetic Algorithm (GA), which provides a 

very efficient and fast method for the global exploration of a misfit function in a 

multidimensional model space (Goldberg 1989; Sambridge & Drijkoningen 1992; 

Charbonneau 1995; Boschetti et al. 1996). After each run of the inversion 

procedure the number of control-points is progressively increased. At each step, the 

parameter search is performed in the neighborhood of the model determined in the 

previous step, with a smaller number of grid nodes. The range of allowed slip- and 

rupture-velocity values (which we used to define the initial population for the GA) 

around the model estimated in the previous run are then progressively decreased as 

we move ahead with the inversion. This approach is similar to the “multi-scale” 

strategy that is commonly used in seismic tomography and in migration techniques 

(Lutter et al. 1990; Jin & Beydoun 2000), to explore efficiently complex, multi-

dimensional, model parameter spaces. 

If we consider a set of Ns seismic station for which the aSTFs are available, the 

fitness function to be maximized is given by  

5.25 

! =
!!"# − !
!!"#
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where 

5.26 

! =
[ !!"!"# − !!"!!!" ]!

!!(!)
!!!

!!
!!!

[ !!"!"# ]!
!!(!)
!!!

!!
!!!

 

 

Emax is the maximum allowed value for the cost function that is assumed, in our 

applications, as the misfit value obtained for a homogeneous slip model. In the 

relationship (5.26), Sobs represents the observed aSTF and Stheo is the aSTF 

computed for a given set of model parameters. Moreover, Nt. is the number of 

samples of the aSTFs at the receiver i-th. 

 

5.5 Application 

On April 6, 2009, at 01:32 UT, a moderate earthquake, Mw6.3, struck central Italy, 

in Abruzzo region causing more than 300 casualties and an extended damage. The 

mainshock was preceded by a sequence started a few months before and 

culminating with a ML4.1 event on March 30, followed by a ML 3.9 and ML 3.5 

foreshocks on April 5. The April 6 main event was followed by an intense 

aftershock activity that lasted several months (Cirella et al. 2009; Maercklin et al. 

2011). The largest events in the sequence were the Mw 5.6 April, 7 and Mw 5.4, 

April 9 aftershocks which occurr a few kilometers south and north of the main 

shock (Chiarabba et al. 2009).  

We applied the inversion procedure described above to determine the rupture 

parameters of a Mw 4 aftershock occurred on 2009, April 09, at 04:43 UTC. The 

records from a Mw3 event occurred on 2009, April 13, at 21:19 UTC have been 

used as EGFs (figure 4.3 and table 5.1). Both accelerometric and velocimetric data 

recorded by DPC-RAN (National Accelerometric Network managed by the 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

149 

Department of Civil Protection) and INGV National Institute of Geophysics and 

Volcanology) networks (figure 5.2 and table 5.2) have been considered for the 

analysis of the Mw 4 event. The apparent source time functions have been 

computed by applying the stabilized deconvolution technique proposed by Vallée 

(2004), which integrates in the deconvolution process four physical constraints on 

the aSTFs, e.g. the causality, positivity, limited duration, and equal area. 

 

 

 
Figura 5.2: Source-receivers geometry. The blue triangles represent the DPC-RAN and INGV 
seismic stations used in this study. The white star and the red dot represent the location for the 
master and the EGF events, respectively. The computed focal mechanisms are also shown in 
the figure. 

To satisfy the validity condition for the EGF approach (ref. equation 5.15), a 
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preliminary study of the complete aftershocks catalogue for the Aquila seismic 

sequence was carried out based on the difference in magnitude and location for a 

large number of pairs master event-EGF. The master event was located using the 

probabilistic location method (NLLOC, Lomax et al. 2000) at latitude of 42.50oN, 

longitude of 13.37oE and depth of 11.27 km. Finally, the focal mechanisms were 

computed through the FPFIT code (Reasemberg et al. 1985) from the P-wave 

polarities finding for the master event strike=135o, dip=35o,rake=-90o. 

The deconvolution was performed for the direct S-wave in the frequency range of 

0.2-10 Hz. The S-wave windows were selected by identifying the stable 

polarization windows (Emolo & Zollo 2005). 

 

 
Figura 5.3: a) Waveforms for the Mw4.0, April 09, 2009 earthquake (master event) analyzed in 
this study. The waveforms are organized as a function of the epicentral distance. b) aSTFs 
estimated through the deconvolution of the selected EGF from the master event. 

 

We assume that in this frequency band and in the near-source distance conditions 

(R<50 km), the direct S-wave is the most energetic phase. The minimum frequency 

(fmin) was chosen according to the limit imposed by the expected corner frequency 

(fc) of the master event, i.e fmin << fc. The maximum frequency has been estimated 

by analyzing the stability of the direct S-wave polarization with time along the 

seismogram, which provides a good indication of the optimal frequency range to be 
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used for the source parameter waveform inversion (Emolo & Zollo 2005). 

 

 
Figura 5.4: Slip (left side) and velocity rupture models (right side) for the Mw4.0, April 09, 

2009 earthquake. The results of the inversion corresponding to a different control-points 

number are shown. The black dots represent the control-points. (a) 5 x 5 grid. (b) 9 x 9 grid. 

(c) 17 x 17 grid. The red star in each panel indicates the rupture nucleation point on the fault 

plane, corresponding to the earthquake hypocentre. In the panel b the red box represents the 

second fault plane adopted (see text for details) 

The waveforms of the master event and the corresponding aSTFs, achieved by EGF 

deconvolution, are shown in the panels a and b of figure 5.3, respectively. We note 
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the strong directivity effect associated with the source, highlighted by the 

differences in signal durations and amplitudes at stations CAMP and RM09. The 

relative position of these station and difference in waveforms indicate a preferred 

rupture direction to the Southwest for this event. 

 

5.5.1 Kinematics Inversion for the Mw 4.0, April 09, 2009 event 
The inversion of real-data is performed assuming an initial 2x2 km2 fault plane 

centered at the earthquake hypocentre and running, according to the multi-scale 

procedure, three inversions using 5x5, 9x9 and 17x17 control-points, respectively. 

As explained before, the optimal slip and rupture velocity maps were finally chosen 

using the statistical criterion of Akaike. 

Figure 4.4 displays the results obtained at the end of each step of the multi-scale 

approach. According to the Akaike criterion, we select the 9x9 control-points maps 

as the best-fit result. For this model we found a misfit of 0.41 and a corresponding 

fitness of 0.91. Looking at the results corresponding to control-points distribution, 

we explicitly note the increasing degree of complexity of the resulting images that 

can be associated with the contribution of small wavelength components, as the 

number of control-points increases. 

The best-fit slip distribution (panel b in figure 5.4) is characterized by an average 

slip of about 0.8 cm corresponding to a seismic moment of 0.9x1015 Nm. This 

estimation is consistent with the value obtained from the inversion of S-wave 

displacement spectra (Mo= 1x1015 Nm), by using a parametric modeling approach 

(Orefice & Zollo 2010).  

The rupture velocity distribution presents an isotropic distribution on the fault plane 

with area characterized by a higher velocity in the southwestern sector of the fault. 

This acceleration of the rupture front explains the clear directivity effects visible on 

the aSTFs recorded at RM09 and CAMP stations. In fact, they show large 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

153 

amplitude with small duration and small amplitude associated with large signal 

duration, respectively. 

 

 
Figura 5.5: Comparison between real (red line) and synthetic (blue and green lines) aSTFs at 
the different stations. The blue line represents the synthetic aSTFs computed for the whole 
fault model shown in figure 3 (panel b), while the green line is relative to the fault portion 
limited by the red box in figure 3 (panel b). 

The comparison between real and synthetic aSTFs (Figure 5.5) show that, despite a 
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general good agreement between the two sets of data, there are some short-period 

features (especially for the station AQU) that aren’t reproduced.  

Moreover, a general disagreement between the duration of real and synthetic aSTFs 

is observed. In fact, the duration of the synthetic aSTFs is generally larger than the 

duration of the real signals. 

 

 
Figura 5.6: Slip (left panel) and velocity rupture models (right panel) for the Mw4.0, April 09, 
2009 earthquake. The results of the inversion corresponding to a 11x9 control-points 
distribution. The red star in each panel indicates the rupture nucleation point on the fault 
plane, corresponding to the earthquake hypocentre. 

 

To eliminate the inconsistency between theoretical and real aSTFs duration, we 

observe that a large part of the fault plane is characterized by very low slip values, 

so we decided to select a smaller fault plane. The new fault plane was identified as 

the surface included by the 1-cm slip isoline (panel b of figure 5.4) that corresponds 

to the minimum slip value producing appreciable amplitude in the data with respect 

to the noise-level. 
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The new fault dimensions are 1 km along the strike and 0.8 km along the dip 

direction. These dimensions are also consistent with the source radius estimation 

(about 500 m) obtained from the corner frequency estimated from the displacement 

spectra analysis. In this new configuration, the hypocentre is located near the SE 

side (0.8 km along strike and 0.5 km along dip) of the fault plane (panel b in figure 

5.4) testifying a quasi-unilateral rupture propagation to NW for this event. 

 
Event Date 

dd/mm/yy 

hh/mm/ss 

Mw Focal Mechanism 

strike/dip/rake (Degree) 

Localization 

Lat/Lon (Degree) 

Depth 

(Km) 

Master 09/04/2009 

04:43:09 

4.0 135/35/-90 42.509/13.379 9.3 

EGF 13/04/2009 

21:19:52 

3.0 130/40/-80 42.502/13.373 9.6 

Table 5-1: Main characteristic of analyzed event. Localization and focal mechanism are estimated 
through NLLOC (Lomax et al., 2000) and FPFIT (Reasemberg et al., 1985), respectively. 

 

We then performed a new inversion for this smaller fault plane considering both 

constant and variable rupture velocity models and using 11x9 control-points 

distribution. The selected control-point configuration allows us to reconstruct the 

aSTFs up to the maximum frequency that we want to model (10 Hz). The results of 

this inversion are reported in figures 4.5 and 4.6. Concerning the constant velocity 

rupture model, different inversions were performed for different velocity values in 

the range 2.0-3.0 km/s, obtaining the minimum misfit for <vr>=2.8 km/s.  

The results for the model with variable rupture velocity are shown in the figure 5.6 

panel a and b. This model is preferred from the statistical point of view according to 

Akaike criterion, since it provide a lower value of the Akaike parameter (equation 

5.12) than constant velocity rupture model. Two main dislocation patches, with an 

areal dimension of about 400 and 600 m2, characterize the slip distribution, which 
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has an average value of 3.6 cm, corresponding to a seismic moment of 0.9 x 1015 

Nm, when the 1 x 0.8 km2 fault plane is considered. The rupture initially 

enucleated in an area of low slip, but with relatively high rupture velocity. The 

rupture velocity distribution is characterized by an initial acceleration followed by a 

deceleration of the rupture front. The deceleration occurs in correspondence of the 

separation zone between the two-slip patches. The rupture velocity model presents 

an average velocity rupture of 2.5 km/s, which is consistent with the value retrieved 

by Cirella et al. 2009 for the L’Aquila mainshock.  

 
Station name Latitude (degree) Longitude (Degree) Elevation (m) 

AQU 42.3540001 13.4049997 710 

CAMP 42.5357819 13.4090004 1283 

OFFI 42.9350014 13.6857004 320 

RM01 42.2767067 13.3355703 Unknown 

RM04 42.1884613 13.4514599 Unknown 

RM09 42.4355011 13.1864901 Unknown 

T0101 42.3307648 13.3026333 850 

T0102 42.3967171 13.3139172 707 

T0103 42.3618507 13.4244833 849 

T0106 42.3069000 13.3837004 1205 

Table 5.2: Characteristics of used stations. 

 

Looking at the comparison between real and synthetic aSTFs (figure 5.5) we note 

the good accordance between the signal durations. Moreover, we are able to 

reconstruct the complex features of the real data as in the case of the stations AQU, 

T0102 and T0103. Finally, the new fault plane configuration allows us to also 

recover additional energy at the RM09 station.  

 

To compute the relative error associated with the final slip and velocity rupture 
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maps we used the method proposed by Emolo & Zollo (2005). The uncertainties 

associated with the source kinematic parameters (slip and velocity rupture) are 

estimated through a perturbation analysis performed at any single control-point 

around the final best model pbest, selecting one parameter at a time and fixing all the 

remaining one at the best fit values. The misfit is then evaluated for each perturbed 

parameter so it is possible to construct the probability density function (pdf):  

 

5.27 

pdf(p) = Ce
!!

! !
!!!!  

 

 

where C is a normalization constant (see equations 8 in Emolo & Zollo 2005). 

The equation 5.27 represents the marginal probability distribution function for each 

parameter around its best value in the considered range [-10% pbest; +10% pbest], and 

it allows estimating the uncertainties on the rupture model parameters. The 

parameter σ0
2 in the previous equations is the unknown variance of the misfit 

function, and it accounts for errors both in the modeling and data. The value of the 

σ0
2 parameter is assumed according with the best fit model variance. 

The relative uncertainties on slip and rupture velocity are shown in figure 5.7. This 

result shows that the relative errors, both for slip and for rupture velocity, are 

around 30 %. The two maximum slip patch shows in figure 5.6 (panel a) 

correspond with the minimum errors in figure 5.7 (panel a). Moreover the relative 

errors for the velocity rupture highlight how the rupture front deceleration (figure 

5.6, panel b) corresponds with the minimum errors (figure 5.7, panel b). 
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Figura 5.7: Relative error distributions for the final slip (left) and rupture velocity (right) 
associated with the models shown in the figure 5. In figures the red star indicates the rupture 
nucleation point. 

 

5.5.2 Resolution test 
Different synthetic analyses have been performed to test and validate the inversion 

procedure and the obtained results, using different source-receivers geometry and 

rupture models. The general strategy adopted for these tests consisted in 

• assigning realistic slip and velocity distributions on a given fault plane; 

• computing the synthetic aSTFs at different stations, and adding some 

random noise; 

• performing the inversion procedure and comparing the retrieved models 

with the initial ones. 
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Figura 5.8: Synthetic test. Comparison between the “true” rupture model (panel a) and that 
inferred from the inversion (panel b). The left and right sides of each panel represent the slip 
and velocity rupture distribution, respectively. The red star indicates the position of the 
rupture nucleation point on the fault plane. 

 

Among the several test performed, we present here the results for the modeling of a 

Mw4.0 events, associated with a 1 x 0.8 km2 fault plane (strike=135o, dip=35o), 

prescribing a distribution for the slip having a Gaussian shape with a maximum 

value of 7.5 cm and an average value of 2.6 cm. The rupture velocity distribution is 

characterized by an initial acceleration in correspondence of the hypocentre 

location, followed by a deceleration toward the left side of the fault and has an 

average value of about 2.5 km/s. The starting rupture model is reported in the panel 

a of figure 5.8. For this synthetic test we considered the same source-stations 
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geometry shown in figure 1 and so this study represents a resolution test for the 

application of the inversion technique to real data, presented above. We performed 

the inversion of synthetic records in the frequency range 0.2-10 Hz. 

We perform an inversion considering both the cases of constant and variable 

rupture velocity. The results of this study are reported in figures 5.8 (panel b) and 

5.9. As for the real case, also for this synthetic test the Akaike criterion indicates 

the variable rupture velocity model is preferred. 

 

 
Figura 5.9: Synthetic test. Slip model from the inversion of the synthetic aSTFs, corresponding 
to the model shown in figure 5.8 (panel a), considering a constant velocity rupture model. The 
red star indicates the position of the rupture nucleation point on the fault plane. 

 

The retrieved final slip and rupture velocity models show similar shape and features 

of the initial model, but with a more scattered pattern and are characterized by an 

average slip and rupture velocity of 2.6 cm and 2.5 Km/s, respectively. Finally, 
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Figure 5.10 shows the difference between the initial and retrieved slip and rupture 

velocity maps. Both the constant and variable velocity rupture models show that in 

both cases the area with the greatest error is localized near bottom of the fault 

(figure 5.10 panel a and c). Furthermore the constant velocity rupture model 

overestimated the maximum slip.  

Overall, the results from the synthetic tests suggest that, despite the small fault 

dimension and the uneven azimuthal station coverage, we expect a good parameter 

resolution on the fault plane, and in particular, we are able to discriminate between 

uniform and variable slip/rupture velocity distributions. 

 

 
Figura 5.10: Residual distributions. The panels a and b show the difference between the 
synthetic (figure 5.8, panel a) and inferred (figure 5.8, panel b) slip and velocity rupture 
models, respectively. The panel c instead is the difference between the synthetic (figure 5.8, 
panel a) and inferred slip model (figure 5.9). 

 

5.6 Conclusions 

In this study we have developed a method for the inversion of the apparent Source-

Time Functions aimed at inferring the kinematic rupture model (i.e., slip and 

rupture velocity distributions) for a seismic event. In our method, the model 

parameter space is explored by searching for the maximum of a fitness function, 
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obtained from a misfit function defined as the L2-norm of difference between real 

and synthetic data, through the using of the Genetic Algorithm (Golberg 1989; 

Charbonneau 1995). 

The main advantages of inverting aSTFs are related to the possibility to avoid the 

explicit calculation of the Green functions needed for solving the forward problem 

related to the simulation of the synthetic data. Reliable Green functions 

computation is crucial for any seismogram inversion/simulation technique and they 

strongly depend on the accuracy of the velocity structure, in addition to the 

numerical approximations associated with adopted method. Moreover, site 

amplification effects are naturally accounted and removed by the EGF 

deconvolution. These phenomena, depending on the local geological characteristics 

at the receivers, may strongly influence the seismic signals and then bias the data 

inversion. Finally, the use of aSTFs can allow performing the data inversion in a 

much wider frequency range compared with usually adopted inversion approaches. 

The main disadvantage of this method is, however, at the same time associated with 

the calculation of reliable aSTFs for a given seismic event that is, for instance 

related to the availability of seismograms to be used as Empirical Green Function 

for the seismic event of interest.  

In this paper we presented the application of the proposed inversion method to both 

a synthetic and a real data-sets. In particular, we studied a Mw 4 aftershock of the 

2009 L’Aquila (central Italy) seismic sequence, for which, due to the availability of 

different EGFs, it was possible to determine the aSTFs at the different stations. For 

this event the inversion results show a rupture model associated with a fault plane 

of 1x0.8 km2 and characterized by a total seismic moment of about 0.9 1015 Nm, 

corresponding to a moment magnitude of 3.9.  

Our study shows the feasibility to image the complexity of an earthquake rupture 

process at a kilometric size, rupture scale. The slip model consists of two main 

patches (maximum amplitude of about 17 cm) localized NW of the hypocentre. The 
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Akaike test suggests, both for the real and synthetic analysis, that a variable rupture 

velocity model has to be preferred with respect to a constant rupture velocity 

propagation. We found an average rupture velocity of about 2.5 km/s, with an 

initial acceleration of the rupture front toward the SW direction, followed by a 

deceleration of the same near the left side of the fault plane. The rupture has 

nucleated in a low slip-high rupture velocity area propagated almost unilaterally 

toward the southwest direction. The parameter uncertainty analysis shows that the 

zones on the fault plane characterized by large slip and rupture velocity are well 

resolved as being characterized by low errors (around 25%). 

The encouraging results obtained by this new approach lead us future applications 

of the method to larger magnitude events, provided that the conditions related to the 

calculation of reliable aSTFs are verified. 

  



[KINEMATIC	  INVERSION	  OF	  ASTF]	  
 
 

164 

 

 
 
 



[INFERENCES	  ON	  EARTHQUAKE	  KINEMATIC	  PROPERTIES	  FROM	  DATA	  INVERSION:	  TWO	  
DIFFERENT	  APPROACHES]	  

 

 165 

 
 

6 In Summary … 
 

The purpose of this PhD thesis was to investigate the source kinematic 

characteristics of an earthquake through the inversion of data that recorded the 

event. To this end, different data-sets obtained through varies acquisition methods, 

as seismic stations (dynamic wave filed) and satellite techniques (static deformation 

field) are today available. In particular the joint use of all these data, rather than just 

one type could provide details on the estimation of source characteristic at different 

wavelength scale. 

During my PhD, starting from the original formulations proposed by Bertrand et 

al., 2000 and Emolo & Zollo 2005, I developed inversion methods and applied then 

at different earthquakes. In particular large efforts have been devoted to the study of 

the model resolution and to the estimation of the model parameter errors. 

To study the source kinematic characteristics of the Christchurch earthquake we 

performed a joint inversion of strong-motion, GPS and InSAR data using a non-

linear inversion method. Considering the complexity highlighted by superficial 

deformation data, we adopted a fault model consisting of two partially overlapping 

segments, with dimensions 15x11 and 7x7 km2, having different faulting styles. 

This two-fault model allows to better reconstruct the complex shape of the 

superficial deformation data. The total seismic moment resulting from the joint 

inversion is 3.0x1025 dyne.cm (Mw = 6.2) with an average rupture velocity of 2.0 

km/s. The main slip patch (maximum slip of about 4.2 m) occurred 3km NE of the 

hypocenter, on the first fault plane that was characterized with by a dominant 

strike-slip movement. The second fault plane, characterized by a dominant reverse 

faulting, activated about 3-4 sec later than the rupture on the first fault plane, and 
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the maximum slip on it was about 2 m. The first and second plane accounted for 

80% and 20% of the total seismic moment, respectively. The global Source Time 

Function shows a total duration of about 7 s. The slip distribution is mainly 

concentrated between 2 and 5.5 km in depth. The lack of slip near the surface is 

perfectly consistent with both the absence of observed surface rupture, and with the 

shape highlighted by the InSAR coseismic deformation data. Errors associated with 

the kinematic model have been estimated of around 20-30 %. 

The 2009 Aquila sequence was characterized by an intense aftershocks sequence 

that lasted several months. In this study we applied an inversion method that 

assumes as data the apparent Source Time Functions (aSTFs), to a Mw 4.0 

aftershock of the Aquila sequence . The estimation of aSTFs was obtained using the 

deconvolution method proposed by Vallée et al., 2004. The inversion results show 

a heterogeneous slip distribution, characterized by two main slip patches located 

NW of the hypocenter, and a variable rupture velocity distribution (mean value of 

2.5 km/s), showing a rupture front acceleration in between the two high slip zones. 

Errors of about 20% characterize the final estimated parameters. 
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