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There are three kinds of lies:

lies, damned lies, and statistics.

attributed to Benjamin Disraeli





Abstract

In the last couple of decades we assisted to a reappraisal of spatial design-

based techniques. Usually the spatial information regarding the spatial lo-

cation of the individuals of a population has been used to develop efficient

sampling designs.

This thesis aims at offering a new technique for both inference on individ-

ual values and global population values able to employ the spatial information

available before sampling at estimation level by rewriting a deterministic in-

terpolator under a design-based framework. The achieved point estimator of

the individual values is treated both in the case of finite spatial populations

and continuous spatial domains, while the theory on the estimator of the

population global value covers the finite population case only.

A fairly broad simulation study compares the results of the point esti-

mator with the simple random sampling without replacement estimator in

predictive form and the kriging, which is the benchmark technique for infer-

ence on spatial data. The Monte Carlo experiment is carried out on popula-

tions generated according to different superpopulation methods in order to

manage different aspects of the spatial structure. The simulation outcomes

point out that the proposed point estimator has almost the same behaviour

as the kriging predictor regardless of the parameters adopted for generating

the populations, especially for low sampling fractions. Moreover, the use of

the spatial information improves substantially design-based spatial inference

on individual values.

Keywords: spatial estimation, design-based inference, spatial sampling,

ratio estimator.
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Chapter 1

Introduction

In the last couple of decades, spatial statistics has experienced a rapid

growth and has become one of the most interesting research field. The object

of the inference is often represented by the individual values at unsampled

locations. This problem has often been addressed through a model-based

approach. Indeed, it was thought that design-based techniques were inap-

propriate since they could not capture any spatial dependence. However in

the last few years we witnessed a rediscovery of design-based techniques for

inference on individual values.

1.1 Motivations

From the review of the literature on spatial design-based techniques it

emerged that spatial information is usually used in order to obtain more

efficient sampling designs but almost never to infer on individual values. This

aspect is strictly related to the fact that the main objective of the design-

approach is the inference on global values (i.e. population total or mean).

However, in literature (see for example Bolfarine and Zacks, 1992) can be

found predictive formulation of the usual global estimators.

Brus and de Gruijter (1997) offer a deep insight on the misconceptions

that have always accompanied design-based spatial estimation of values at

unsampled locations. Moreover, they propose an estimator for the value of

any subarea the domain has been divided in: the sample mean of the values

1



2 Introduction

belonging to same subarea is assigned to all the points in it. Thus, their

estimator is not able to replicate the changes at different locations typical of

any spatial dataset nor to replicate the observed values at sampled locations.

The development of an individual design-based spatial estimator arose

from the lack of those in the literature. By observing that labels in a spatial

domain corresponds to the locations coordinates, we propose to use this infor-

mation at estimation level in order to arrange pre-sampling weights according

to the design-based paradigm. In this way the use of spatial information is

merged with inference on individual values under a design-based approach.

Inference on population global values is treated as the sum of the observed

values plus the sum of the estimated values.

This thesis tries to answer whether the design-based estimator is suitable

for inference both (1) on individual values and (2) on population global

values. Moreover, through an extensive simulation study, (3) we investigate

the conditions favourable to their application. In order to make the theory

complete, several variance estimators are proposed whose characteristics are

studied with Monte Carlo experiments.

1.2 Structure of the thesis

The thesis is organized as follows. Chapter 2 provides a historical ex-

cursus on the statistical spatial techniques and gives an insight on the basic

definitions that will be needed in the following chapters.

Chapter 3 offers a review of the kriging: a model-based technique widely

used for inference on individual values belonging to a spatial domain. At the

beginning of the chapter the superpopulation model is introduced and its

properties formalised. Then the parametric functions managing the spatial

dependence and the estimation of their parameters are presented. The pre-

diction of the individual values through the use of these estimated functions

is treated in the following section. Finally, the practical applications of the

kriging are explained.

Chapter 4 covers the estimator we propose and its properties. After

the section addressing the main ideas used for its development the point
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estimator is presented in the case of a finite spatial population. Then, it

is extended to a continuous spatial domain. Finally, the estimation of the

population total is considered as the sum of the estimated values.

A chapter providing the results of individual and global estimations on

spatial populations generated according to different superpopulation models

completes the thesis.





Chapter 2

Analysis of spatial data

In the last few years, the statistical analysis of spatial data has known a

quick growth. An increasing number of application fields need a powerful and

reliable tool upon which other analyses can be carried out. Despite nowadays

its wide application is generally reknown, spatial statistics has struggled to

be fully understood and widely accepted as a statistical methodology.

2.1 A historical excursus of of spatial analysis

Following Webster and Oliver (2007) the first records of what can be

defined spatial statistics began to appear in the early 1910s, although prob-

abilistic problems which can be related to this topic had been raised before

(see Gelfand et al., 2010). In their 1911 paper, Mercer and Hall studied the

uniformity of the yield of small crop plots at the Rothamsted Experimental

Station (now known as Rothamsted Research) and noted that “plots similarly

treated [..] yield considerably different results, even when the soil appears to

be uniform and the conditions under which the experiment is conducted are

carefully designed to reduce errors in weighing and measurement”. Gosset

(aka Sudent) wrote an appendix to the same paper where he recognized that

both autocorrelation and a complete random effect were accountable for the

plots variability. In a 1910 letter to Karl Pearson (Pearson, 1990), the very

Student wrote that it would have been interesting to “work out the law ac-

cording to which the correlation is likely to weaken with increase of unit”.

5
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Both the paper by Mercer and Hall and the letter by Student showed several

embryonic ideas which nowadays are basic to modern geostatistics: spatial

dependence, modellization and correlation range.

In his years at the Rothamsted Experimental Station (1919-1933), Fisher

mostly dealt with the development of statistical inference for agricultural

field trials data. He also detected a sort of spatial variation in his data;

however, he decided to remove it through the use of blocking (i.e. design

of experiment). The variation effects were then estimated by the analysis

of variance (Fisher, 1966). A quite common criticism to Fisher’s works is

that proposing the use of the design of experiment techniques he might have

delayed the understanding of spatial variation. For a deeper look at Student’s

and Fisher’s ideas, see Gelfand et al. (2010).

In his work about how to describe the weather variation and its forecast-

ing, Kolomogorov (1941b) achieved some interesting results. Among other

things, he detected spatial correlation and explicitly wrote an analytic func-

tion able to represent such dependence. Furthermore he developed a method

to interpolate such function using optimal weights (Cressie, 1990). Unfortu-

nately his work never achieved much fame and was forgotten.

Likely, the most important breakthroughs in modern geostatistics were

made in the 1950s and the early 1960s, when works in different discipline

gave it a substantial boost. In his doctoral dissertation about forestry effi-

cient sampling, Matérn (1960, reprinted as Matérn, 1986) detected the effects

of spatial correlation. According to Guttorp and Gneiting (2006), he can be

considered the first to write down a fully parametric class of models for de-

scribing spatial correlation. This family of functions, that now brings his

name thanks to Handcock and Stein (1993), has some appealing properties

that has made it the most used model for spatial correlation (see Subsec-

tion 3.2.2; Cressie, 1993; Diggle and Ribeiro, 2007).

Another fundamental boost was the one given by South African mining

engineer Krige (1951). He figured out how to improve estimation of ore

grades in block mining by taking into account the grades in the neighbouring

blocks. Through the use of empirical methods he developed a way to de-

termine ore grades distribution starting from a sample and using the spatial

autocorrelation between its elements. Krige’s method had become widely
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used in gold mines.

Even if Krige’s work is considered a corner stone in geostatistics, the

formulation of a statistical spatial predictor was derived at the Paris School

of Mines in Fontainebleau. There, in his doctoral dissertation, Matheron

(1962) proposed a theory for optimal spatial linear prediction which takes into

account the spatial correlation, given a finite sample of locations where ore

are extracted. Matheron named his technique kriging, proving how important

Krige’s work had been. As Matheron was working on mining engineering,

Gandin (1963) independently developed quite the same ideas for meteorology

forecasting in the Soviet Union. In the 1980s, it became clear that these

techniques are able to capture spatial correlation and to use it in order to

predict the value of the variable under study at unobserved locations using

a model-based approach.

Design-based techniques have been considered not suitable for spatial

inference for quite a long time. However, in the last twenty years a reappraisal

of the methods of sampling theory has been promoted (Cox et al., 1997;

Stehman, 2000). The reasons of this presumed inadequacy have to be sought

in some misunderstandings. First of all, under a design-based approach,

the spatial dependency of the sampled elements can be avoided since the

sampling design randomizes the locations, not the value of the variable under

study (de Gruijter and ter Braak, 1990). It follows directly from probability

theory (Parzen, 1960) that choosing a sampling design which independently

select the locations lead to the independence of the data. In this sense the

design-based approach “creates independence through randomization” (Brus

and de Gruijter, 1997). As a result of this reappraisal some new design-based

spatial techniques for inference on individual values have been developed.

Among those we recommend the ones recently proposed by Cicchitelli and

Montanari (2012) and Ghosh et al. (2012).

2.2 Some definitions

Let D be a fixed spatial subset of the d-dimensional Euclidean space Rd,

and let u be a generic location in it having coordinates (u1, . . . , ud). More-
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over, let z(u) be the value of the variable under study gathered at u. The

datum z(u) can be thought of as the realization of a not necessarily known

function of the spatial location u. No assumption on the nature of the func-

tion z(·) has been made since the model- and the design-based framework

need different definitions of the function z(·), probabilistic and deterministic

respectively.

The nature of spatial data is somewhat complicated: a datasets consists

of the values of the variable under study, z(u), and the information about

the locations where those are observed at, u-s. Therefore, datasets have

to be seen in a matrix form, but this doesn’t mean that the phenomenon

is necessarily multivariate. If the spatial information is not available, then

inference can be carried out only using simple random sampling.

The forecasting of the unknown values at unobserved locations is usually

carried out by means of interpolation. The large amount of methods that

has been developed can be classified according to various criteria. An in-

terpolator is said global when it predicts the values using a single function

for the whole region. These methods are often computationally complex and

adding or deleting a data point requires a new computation. On the contrary

a local interpolator predicts the value at an unobserved location using multi-

ple different functions whose parameters are optimized for a neighbourhood

(Franke, 1982; Shepard, 1968; Mitas and Mitasova, 1999).

Interpolators assuming a superpopulation probabilistic model are able

to exploit the randomness peculiar to the phenomenon and therefore are

said stochastic. For the values predicted with these methods it is possible

to obtain uncertainty measures and to assess their probabilistic properties.

Deterministic interpolators fail to capture the random nature of the phe-

nomenon since they are based only on geometric properties. It is therefore

impossible to assess any probabilistic property (Webster and Oliver, 2007; Li

and Heap, 2008).

Interpolators which honour the data locations passing through the ob-

served values are defined exact and are opposed to the approximate ones

which fail in doing so. The latter produce a very slowly varying interpo-

lating function and are used when there is some uncertainty about a given

spatial configuration since they reduce the effect of measurement errors.
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Moreover, interpolating methods can be classified on the basis of the

interpolated values depending on whether they produce gradual or abrupt

changes in the interpolated surface.

Finally point interpolation is used for those data that can be collected

at location point level while areal interpolation is used when the domain is

divided in subareas.

Regardless of the method used, the interpolating function must follow the

Tobler’s first law of geography (Tobler, 1970)

Everything is related to everything else, but near things are more

related than distant things.

This assumption indicates a certain spatial relationship between the points

in the domain. The relationship is strong for close points and decreases as

the the distances between them increase. Tobler’s law can be stated in a

mathematical form so that it would be possible to achieve formal results.

The interpolated value at a generic location is a weighted mean of the

observed values

ẑ(u) =
n∑

i=1

λi z(ui),

with weights λi suitably chosen. As it will be seen in the following chapter the

choice of the interpolation methods will affect the definition of the weighting

system.

2.3 Spatial sampling

Let us suppose we are interested in the spatial pattern of a variable under

study in a given domain D. Collecting the data for a continuous surface is

almost impossible given the cost and the time involved. Therefore spatial

sampling seems the only reasonable choice.

When the object of inference is a spatial domain, sampling means select-

ing n locations where to gather the data. An arbitrary sample of locations

is defined as

S = {ui : ui ∈ D, 1 ≤ i ≤ n}.
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Then the observed set of values at the sampled locations is defined as

{z(ui) : ui ∈ S, 1 ≤ i ≤ n}.

Many different spatial sampling designs have been proposed each of those

suitable for the problem under study. In this dissertation we will deal with

finite and continuous population sampling.

According to Cressie (1993) the most commonly used probabilistic sam-

pling designs are the following three:

• in simple random sampling, the sampled locations are chosen according

to a uniform distribution over the region D;

• in stratified random sampling, the domain is divided in non-overlapping

strata and within any of those a simple random sample is drawn;

• in systematic random sample, a location is randomly chosen within D
and the remaining (n−1) are chosen according to a predefined pattern.

Simple random sampling design is used when little is known about the popu-

lation and when there is not any restraint on the inclusion of close locations

in the sample. The stratified random sampling design is used when the do-

main can be divided in subregion and can lead to more efficient inference

when the the strata are homogeneous (Gelfand et al., 2010). The systematic

random sampling design can easily be implemented and allow to have well

defined directional and equally distant classes of sampled locations (Haining,

2003).

A way to add more complex design is to consider the variable probability

ones (Gelfand et al., 2010) where the locations are sampled with varying

probabilities. In this way it is possible to manage inclusion in or exclusion

from the sample for the locations close to the ones already sampled (e.g.

adaptive spatial sampling).

For what regards a two-dimensional domain, it may be divided in subre-

gions by a superimposed grid and each subregion becomes one of the popu-

lation elements to be sampled (finite population sampling). On the contrary

if no grid is superimposed on the domain we will sample from a continuous

population. Grids can be regular (i.e. triangular, squared or hexagonal) or

irregular (e.g., Voronoi tessellation).
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2.4 Model-based and design-based spatial

inference

The randomness involved in (spatial) sampling comes from the combina-

tion of a sampling design with a superpopulation model (Brus and de Gruijter,

1997). The resulting combination leads to the four strategies highlighted in

Table 2.1. As previously mentioned in the introduction, this dissertation will

focus on the duality model- versus design-based spatial inference. Fully de-

terministic strategies involve the use of non-stochastic interpolators whereas

fully random strategies can be considered as a blend of the two different

statistical approaches (model- and design-based).

Table 2.1: Sampling strategies involving two sources of randomness (Brus

and de Gruijter, 1997)

Values at given locations

Fixed Random

Sample locations
Fixed Fully deterministic Model-based

Random Design-based Fully random

Model-based inference assumes that the observed values are the outcome

of a superpopulation model generating the data (see Chapter 3). In spa-

tial analysis the data generating random process is called random field. The

function defined in Section 2.2 in this case is a random function Z(·) depend-
ing on the spatial location u belonging to the domain D and on a random

event ω of the σ-algebra A of subsets of the sample space Ω. The function

can be explicitly written as Z(u, ω). Once the realization of the random

event, ω′, is observed, the function z(u, ω′) is no longer random and depends

only on the spatial location u. On the contrary, if the spatial location u′ is

fixed, Z(ω,u′) is the probability distribution of the variable in that location.

In what follows the dependence on the random event will be implicit when-

ever there will be no risk of misunderstanding. Formally speaking the spatial

random process generating the data is defined as

{Z(u, ω) : u ∈ D, ω ∈ A} = {Z(u) : u ∈ D}.
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Once a set of locations is sampled, observing the values represents the re-

alization of the random event involved. Thus, the set of observed values is

defined as

{z(u, ω′) : u ∈ S} = {z(u) : u ∈ S}.

The object of inference is to model the random function Z(·) in order to

predict the values at unsampled locations. Prediction involves the process

of forecasting the random outcome of the random field through the super-

population model whose parameters are estimated according to the observed

values at the set of sampled locations. Predictors’ properties are derived

according to the joint distribution ξ of the N random variables Z(·).
Since in the model-based approach the sampling design is assumed to be

non-random, sampling from a finite or a continuous population is quite the

same. When the population is finite either a grid is superimposed over the

domain D or we are interested in only a finite number of locations in it.

Probability sampling designs are the core of design-based inference where

the only source of randomness is represented by the sampling design itself

(see Chapter 4). Indeed, the population values are considered fixed, but

unknown. Without loss of generality, these can be seen as the outcome of a

not known function of the spatial locations z(u).

The object of inference can either be the estimation of a summary value

of the population (e.g. total) over the domain D or the individual values z

at any location (point estimation). The properties of the resulting estimator

or point estimator, respectively, are derived according to their distribution

over the σ-algebra S of all the possible samples of the sample space S. The

inclusion probabilities (i.e. the probability that subsets of elements of the

population enters the sample) play a fundamental role.

Spatial design-based inference has been developed in the context of finite

populations, however it is possible to extend its application to the case of infi-

nite population by substituting the inclusion probabilities with the inclusion

density functions (for an example in spatial case, see Cordy, 1993).

From now on, following Cressie (1993), the model-based forecasting of

the value of the variable under study at an unsampled location is called

prediction, while the design-based one is said point prediction.



Chapter 3

Model-based spatial statistics

When dealing with spatial data, the forecasting of the value of the vari-

able under study at an unsampled location is commonly addressed by using

model-based techniques. Those are based on the assumption of the existence

of an underlying superpopulation random model generating the data. The

values at the sampled locations are the realization of a random event of the

σ-algebra A of the sample space Ω. Moreover, they are function of the spatial

location u, having coordinates (u1, . . . , ud), in the domain D ∈ Rd.

The object of inference is the superpopulation model parameter estimated

according to the observed values at the sampled locations. Hence, the esti-

mated model can be used in order to predict the values at the unsampled

locations. In order to infer the random process, sampling is still essential for

convenience and cost reasons. However, it is not necessary for the sampling

to be random since the randomness is induced by the superpopulation model

itself (see Table 2.1).

In this chapter a review of the main geostatistical technique (kriging) will

be presented, mostly following the book by Cressie (1993). In Sections 3.1

the underlying superpopulation model is presented. Section 3.2 concerns the

structure of spatial dependence. Section 3.3 regards the estimation of the

superpopulation parameters. The stochastic interpolator used for predic-

tion is introduced in Section 3.4. A short section highlighting the practical

applications of the kriging ends the chapter.

13
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3.1 The superpopulation model

3.1.1 Some important definitions

In geostatistics, the observed values are the realizations of the spatial

random process

{Z(u) : u ∈ D},

where the D ∈ Rd is the spatial domain with spatial positive volume. In the

previous equation the dependence on the random event ω has been omitted

for sake of ease; whenever the emphasis has to be put on the source of

randomness, it can be either indicated as {Z(u, ω) : u ∈ D, ω ∈ A}, where
(Ω,A,Pr) is a probability space.

Random processes are usually defined through the use of their finite-

dimensional distribution

Fu1,...,uk
(z1, . . . , zk) = Pr{Z(u1) ≤ z1, . . . , Z(uk) ≤ zk},

where k ≥ 1. It must meet the Kolmogorov consistency conditions:

(i) for any permutation π of the set of labels {1, . . . , k}, F must remain

the same

Fuπ(1),...,uπ(k)
(zπ(1), . . . , zπ(k)) = Fu1,...,uk

(z1, . . . , zk);

(ii) for any m ∈ N, F must satisfy

Fu1,...,uk,uk+1,...,uk+m
(z1, . . . , zk,∞, . . . ,∞) = Fu1,...,uk

(z1, . . . , zk).

The random field is said to be real valued if zj ∈ R for any j.

For any location u belonging to the domain D we define the random field

expected value

E[Z(u)] = µ(u),

which is said trend or drift, and its variance

V[Z(u)] = E[(Z(u)− µ(u))2].

For any couple of locations u and u′ belonging to the domain D we define

the random field autocovariance

Cov(Z(u), Z(u′)) = E[(Z(u)− µ(u))(Z(u′)− µ(u′))].
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3.1.2 Stationarity, isotropy and ergodicity

A random field is said to be strong stationary if for any k ≥ 1 and for

any spatial lag h ∈ Rd its finite-dimensional distribution is invariant to space

translations

Fu1+h,...,uk+h(z1, . . . , zk) = Fu1,...,uk
(z1, . . . , zk).

Strong stationarity requires a rather strict condition; therefore, a random

field is said weakly stationary or second-order stationary if the following con-

ditions hold:

(i) its expected value does not depend on the spatial location

E[Z(u)] = µ; (3.1.1)

(ii) its covariance depends only on the spatial lag between the two locations

Cov(Z(u), Z(u+ h)) = C(h)

and is said covariogram. If condition (ii) holds, then the random field vari-

ance does not depend on the location u

V[Z(u)] = Cov(Z(u), Z(u)) = C(0) = σ2. (3.1.2)

In other words stationarity is the property a random field has to replicate

itself in a way that the absolute coordinates lack their importance. Further-

more, if the covariogram is function only of the distance h = ∥h∥, then it is

said isotropic, meaning that the orientation (angle) of the coordinates does

not matter.

We define a process Z intrinsic stationary if the second-order stationarity

conditions hold for the increments Z(u)− Z(u+ h):

(i) the expected value does not depend on the spatial location

E[Z(u)− Z(u+ h)] = 0;

(ii) its variance depends only on the spatial lag between the two locations

1

2
V[Z(u)− Z(u+ h)] =

1

2
E[(Z(u)− Z(u+ h))2] = γ(h). (3.1.3)
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Function γ(·) is known as the semivariogram of Z(u). Note that intrinsic

stationarity does not requires finite variance σ2. Again, if the semivariogram

is function only of the distance, then it is said isotropic. The semivariogram

plays a fundamental role in geostatistics; prediction is often based on its es-

timation because the assumptions on the underlying process are the weakest,

i.e. intrinsic stationarity implies weak stationarity.

Among the weak stationary random fields there is a subset possessing

a fundamental property named ergodicity allowing to estimate the expecta-

tions over the event space Ω through spatial averages. At the time Cressie

(1993) was writing, no one had yet generalized Birkhoff’s ergodic theorem

(Kallenberg, 1997) to the case of a finite spatial sample having continuous

values. However, Gaetan and Guyon (2010) extends it to the multivariate

domain case and states the relationships between ergodicity and the weak

and strong laws of large numbers respectively. A common belief is that statis-

ticians should make the weaker ergodic assumption of the L2-convergence of

the spatial mean Z̄ and of the covariogram (semivariogram) estimator Ĉ(h)

(γ̂(h)) as the domain bounds expand towards infinity in all directions. This

property has more theoretical relevance than practical, since geostatistics

always deals with bounded domains and no replication is possible. For a

deeper coverage of the ergodicity extension to random fields one can have a

look at the book by Cressie (1993), Chilès and Delfiner (1999) and Gaetan

and Guyon (2010).

Finally we define Gaussian a random field if all its finite dimensional

distributions are multivariate Gaussian. Then, if a Gaussian random field is

weak stationary, it is also strong stationary because the Gaussian distribu-

tion is uniquely characterized by its expectation and its covariance function.

Moreover, C(h) → 0, as ∥h∥ → ∞, is a sufficient condition for ergodicity

(Adler, 1981).

3.1.3 The geostatistical model

So far we have stated the stochastic properties of random fields; how-

ever, the forecasting at unsampled locations involves the modellization of

the process itself. Cressie (1993) proposes to decompose the variability of
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the process into various sources so that it will be possible to manage all the

aspects that can induce undesired variability. He models the random process

Z(u) as

Z(u) = µ(u) +W (u) + η(u) + ϵ(u), (3.1.4)

where each component represents a source of variability, endogenous or exoge-

nous, of the process. The quantity µ(u) = E[Z(u)] captures the large-scale

variation of the process and is expressed by its deterministic mean. As a

result all the other components must have null expectation. It can either be

function only of the spatial coordinates or even of some auxiliary variables.

W (u) is an intrinsic stationary random process having semivariogram γW (u)

whose range is larger than the minimum observed lag between the sam-

pled locations. This component is known as smooth small-scale variation.

Component η(u) is said micro-scale variation. It is an intrinsic stationary

process independent of W (u) having a semivariogram range smaller than

the minimum observed lag. Given that, its semivariogram, γη(u), can not

be modelled. Finally, ϵ(u) is the measurement error and is a white noise

process independent of both W (u) and η(u). The ϵ(u)-s are i.i.d. with vari-

ance V[ϵ(u)] = σ2
ϵ .

According to decomposition (3.1.4) and given the characteristics of each

of its components, it results that the semivariogram of the second-order sta-

tionary process Z(u) satisfies the decomposition

γ(·) = γW (·) + γη(·) + σ2
ϵ .

By combining the first three components S(u) = µ(u) +W (u) + η(u) of

decomposition (3.1.4), we obtain the signal model

Z(u) = S(u) + ϵ(u).

The signal model is largely used for assessing the stochastic behaviour of the

random field in order to predict Z(·) or S(·) whether the measurement error

is null or not. The trend µ(u) is not of interest in this analysis with the

exception that if it depends on the location, then a spatial structure for it is

needed since otherwise the process would be non-stationary.
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An alternative model collects the smooth small-scale variation, the micro-

scale variation and the measurement error in the random component δ(u) =

W (u) + η(u) + ϵ(u) highlighting the large-scale variation

Z(u) = µ(u) + δ(u). (3.1.5)

In this way the emphasis is posed on the expected value of the process al-

lowing to analyse the spatial trend (see Subsection 3.4.3)

Cressie (1993) detects more decomposition for Z(u).

3.2 The structure of spatial dependence

Semivariogram and covariogram estimation plays a critical role in the

prediction of the value of the variable under study at an unsampled location.

Indeed they are the parameters of the random field {Z(u) : u ∈ D} that

needs to be estimated (see Section 3.3). In this section we will have a deeper

look at their properties and empirical estimation.

In Subsection 3.1.2 the semivariogram function γ(h) has been defined as

the variance of the increment Z(u) − Z(u + h) of the intrinsic stationary

process Z(u). Moreover if the process is second-order stationary, then it

is possible to obtain γ(·) from C(·) and vice versa by using the following

relationship:

γ(h) = C(0)− C(h). (3.2.1)

This is why kriging predictors can either be written in semivariogram or

covariogram form. Second-order stationarity is a necessary and sufficient

condition for deriving γ(h) and C(h) one from another. If the process is just

intrinsic stationary, then C(h) can still be obtained as C(0)− γ(h), but it is

not a superpopulation parameter anymore.

3.2.1 Properties of the covariance functions

The validity of a covariogram holds if certain properties are satisfied. Let

us consider a second-order stationary random field {Z(u) : u ∈ D}. First of
all, its covariogram must be even, C(h) = C(−h), since covariance is a sym-

metric operator, Cov(Z(u), Z(u+ h)) = Cov(Z(u+ h), Z(u)). Moreover, in
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order to guarantee non-negative prediction variances, the covariogram must

be positive semidefinite

m∑
i=1

m∑
j=1

αiαjC(uj − ui) ≥ 0,

for any real number α1, . . . , αm and any spatial location. This requirement

means that the model must not have negative variance

V

[
m∑
i=1

αiZ(u)

]
=

m∑
i=1

n∑
j=1

αiαjC(uj − ui).

This condition ensures that the covariogram has monotonically decreasing

positive values since, by the Cauchy-Schwartz inequality, it can be shown

that 0 ≤ |C(h)| ≤ C(0), where variance (3.1.2) of the observations is non-

negative.

The properties of the semivariogram of a second-order stationary random

field {Z(u) : u ∈ D} arise from the covariogram’s ones. Semivariograms must

be even functions, γ(h) = γ(−h), and pass through the origin, γ(0) = 0, since

V[Z(u)− Z(u+ 0)] = V[0] = 0. Moreover, semivariograms must satisfy the

conditional negative semidefiniteness

m∑
i=1

m∑
j=1

αiαjγ(uj − ui) ≤ 0,

for any real number α1, . . . , αm such that
∑m

i=1 αi = 0 and any spatial loca-

tion (Cressie, 1993). In order to explain this requirement, let us consider the

intrinsically stationary process Z(·), then it results(
m∑
i=1

αiZ(ui)

)2

= −1

2

m∑
i=1

m∑
j=1

αiαj(Z(uj)− Z(uj))
2,

since
∑m

i=1 αi = 0. Taking expectations we obtain

0 ≤ V

[
m∑
i=1

αiZ(u)

]
= −

m∑
i=1

m∑
j=1

αiαjγ(uj − ui).
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A necessary condition for the validity of a semivariogram is that it must

satisfy the intrinsic hypothesis, i.e. it must grow more slowly than the squared

distance, ∥h∥2,

lim
∥h∥→∞

γ(h)

∥h∥2
= 0. (3.2.2)

For more conditions on the validity of covariograms and semivariograms one

can have a look at Subsections 2.5.1 and 2.5.2 of the book by Cressie (1993).

The isotropic covariogram C(∥h∥) of a second-order stationary random

field Z(u) is monotonically decreasing and approaches the x-axis as the dis-

tance ∥h∥ increases. Since property (3.2.1) holds, γ(∥h∥) approaches the

upper asymptote, corresponding to C(0), as ∥h∥ → ∞; it is called sill of the

semivariogram, σ2. The distance at which the semivariogram reaches its sill

is said range of the semivariogram, α. When the semivariogram approaches

the sill only asymptotically, the practical range, ϕ = 0.95 × C(0), is used

instead.

It has been said that the semivariogram has to pass through the origin;

however, it is more a theoretical property rather than an empirical one. In

applications it may often happen that γ(h) → τ 2 > 0, as ∥h∥ → 0. There

are two possible explanations to this phenomenon, one endogenous and one

exogenous. The former depends on the fact that no distance smaller than

min{∥uj − ui∥,ui,uj ∈ S} can be observed from the sample. Hence, the

random process η(u), having sill σ2
η, operates at a micro-scale level. The ex-

ogenous phenomenon depends on measurement errors; any repeated measure

at location u can not be gathered without error leading to variability rep-

resented by the variance σ2
ϵ . The combination of the two phenomena leads

to the discontinuity at the origin known as nugget effect whose magnitude is

given by

τ 2 = σ2
η + σ2

ϵ .

In presence of a nugget effect, the quantity σ2 = C(0) − τ 2 is called partial

sill of the semivariogram. Hence, the practical range is defined as the lag at

which the semivariogram reaches ϕ = τ 2 + 0.95× C(0).
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3.2.2 Valid parametric isotropic semivariogram

models

Matheron (1971) states that the behaviour of the semivariogram near the

origin is expression of the continuity and regularity in the space of the pro-

cess Z. First of all, let us define the L2-continuity or mean square continuity

of the process Z at the point u, as

lim
u′→u

E[(Z(u′)− Z(u))2] = 0.

Furthermore, if Z is weakly stationary having semivariogram

1

2
E[(Z(u′)− Z(u))2] = C(0)− C(u− u′)

according to (3.2.1), then Z is L2-continuous at u if and only if C(·) is

continuous at the origin. Moreover, a process Z is said L2-differentiable or

mean square differentiable at the generic point u if the increment

Z(u+ h)− Z(u)

h

converge in L2 as h → 0. If such a limit exists, we call it Z ′(u). Furthermore,

if Z is weakly stationary and the second differentials

∂2

∂h2
1

γ(h), . . . ,
∂2

∂h2
d

γ(h)

exist and are finite for h → 0, where h = [h1, . . . , hd]
⊤, then Z is mean square

differentiable for any u ∈ Rd. For more mathematical details regarding

L2-continuity and L2-differentiability one can have a look at Sections 2.4

and 2.6 of Stein (1999).

Then, following Matheron (1971), we classify the semivariogram models

according to their behaviour near the origin as follows:

(i) γ(h) L2-differentiable is at the origin, so that Z(·) is L2-differentiable

itself and the semivariogram is regular (parabolic behaviour);

(ii) γ(h) is L2-continuous, but not L2-differentiable at the origin, then Z(·)
is mean square continuous and the semivariogram is less regular (linear

trend);
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(iii) γ(h) presents a discontinuity at the origin (i.e. it does not approach 0

as h approaches the origin), then Z(·) is not even L2-continuous and

the semivariogram is highly irregular (nugget effect);

(iv) γ(h) is null at the origin and a positive constant elsewhere, then Z(u)

and Z(u′) are independent for any u ̸= u′ despite their proximity (Z is

called white noise).

Literature is rich of semivariogram models satisfying the previous condi-

tions; however, just a few of them are of practical use. In the following part

of this subsection we introduce the key models, while for a wider range of

them one can have a look at the books by Journel and Huijbregts (1978),

Cressie (1993), Stein (1999) and Chilès and Delfiner (1999). The presented

models are parametric families, γ(h;θ), and the parameter vector can be

composed, among other parameters, by the nugget τ 2, the partial sill σ2 or

the range ϕ or all of them together. All the model that will be presented are

valid in R2 and some of them even for higher dimensional domains. Since

this dissertation deals with two-dimensional random fields, where no different

will be stated we will assume D ∈ R2.

Nugget-only model

The semivariogram (Figure 3.1) of a white noise process, case (iv) of

the classification given by Matheron (1971), corresponds only to the sill, σ2,

of the process. This means that the process has the same expectation and

variance all over the domain with no correlation reflecting the void of spatial

structure. Clearly, it is second-order stationary and satisfy all the validity

conditions. The nugget-only model mathematical formulation is

γ(h; σ2) =

0, if h = 0;

σ2, if h ̸= 0.

Linear model

The linear semivariogram model (Figure 3.2) corresponds to a process

whose covariances change linearly over a large range. However, this assump-
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Figure 3.1: Nugget-only semivariogram model

tion is hardly verified in practice; more realistically it may represent the

initial increase of a second-order stationary model having a linear trend near

the origin. This means that the set of sampled locations does not allow to

infer the range and the sill of the semivariogram because no large enough

lag can be observed. The linear model is intrinsically stationary and its

mathematical formulation is

γ(h;θ) =

0, if h = 0;

τ 2 + β∥h∥, if h ̸= 0.

The parameter vector θ = [τ 2, β]⊤ is constituted by the nugget parameter

and the slope parameter, both non-negative.

0 2 4 6 8 10

0
1

2
3

4
5

6

||h||

γ(
||h

||) τ2 = 1, β = 0.4

Figure 3.2: Linear semivariogram model
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Spherical model

The spherical semivariogram model (Figure 3.3) is widely used when mod-

elling a second-order stationary random field. It has a linear behavior near

the origin, then it grows monotonically until it reaches the sill beyond some

distance. Stein (1999) strongly criticizes the use of this model, arguing that

adopting such a semivariogram may lead to problems when using likelihood-

based methods because γ(h;θ) is only once differentiable at the lag where

the semivariogram reaches the sill. Its mathematical formulation is

γ(h;θ) =


0, if h = 0;

τ 2 + σ2

(
3

2

∥h∥
α

− 1

2

(
∥h∥
α

)3
)
, if 0 < ∥h∥ ≤ α;

τ 2 + σ2, if ∥h∥ > α.

The model parameters are the nugget, τ 2, the sill, σ2, and the range, α,

which must be non-negative.
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Figure 3.3: Spherical semivariogram model

Exponential model

The exponential model (Figure 3.4) grows monotonically from the origin

and, then, approaches the sill asymptotically as ∥h∥ → ∞. This model is

associated with a second-order stationary random field and has been found to

fit well spatial data coming from different applications. According to Webster
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and Oliver (2007), its corresponding autocovariance function has even been

used in order to arrange efficient sampling design. Hence, it can be basically

thought of as the main model of randomness in space. Its mathematical

formulation is

γ(h;θ) =


0, if h = 0;

τ 2 + σ2

(
1− exp

{
−∥h∥

α

})
, if h ̸= 0.

The nugget, τ 2, the sill, σ2, and the range, α, parameters must be non-

negative. The practical range ϕ of the exponential model is usually taken

at α/3.
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Figure 3.4: Exponential semivariogram model

Power model

The power semivariogram model (Figure 3.5) is intrinsically stationary

and presents a convex monotone growth. Its formula is

γ(h;θ) =

0, if h = 0;

τ 2 + β∥h∥λ, if h ̸= 0.

The nugget parameter, τ 2, and the slope parameter, β, must be non-negative.

The exponent has to be non negative, but smaller than 2, 0 ≤ λ < 2, because

otherwise the intrinsic hypothesis (3.2.2) would not be satisfied. As particular

cases of the power model we have the nugget-only model, for τ 2 = 0 and
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λ = 0, and the linear model, for λ = 1. Moreover, the power model is the only

one among the presented to be scale invariant, i.e. ∀a > 0, γ(ah) = aλγ(h)

(Gaetan and Guyon, 2010).
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Figure 3.5: Power semivariogram model

Gaussian model

The Gaussian semivariogram model (Figure 3.6) exhibits a convex cur-

vature near the origin and, then, a concave one before reaching the upper

asymptote. Its formula is

γ(h;θ) =


0, if h = 0;

τ 2 + σ2

(
1− exp

{
−
(
∥h∥
α

)2
})

, if h ̸= 0.

Its only difference from the exponential model is the square in the exponential

function; the parameter constraints are the same too. Relationship between

the range parameter, α, and the practical range, ϕ, is ϕ = α/
√
3. The

Gaussian model approaches the origin with a zero gradient which may lead

to unstable kriging equations (Webster and Oliver, 2007).

Matérn model

The Matèrn model (Figure 3.7) is of great interest because it generalizes

several other models (Gaetan and Guyon, 2010). Its mathematical formula-
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Figure 3.6: Gaussian semivariogram model

tion is

γ(h;θ) =


τ 2 + σ2, if h = 0;

σ2

(
1− 21−ν

Γ(ν)

(
h

α

)ν

Kν

(
h

α

))
, if h ̸= 0,

where the Γ function and νth-order Bessel function Kν(·) are involved. All

the parameters must be non-negative; ν is the smoothness parameter. The

exponential semivariogram model is obtained as a particular case when ν =

1/2 ,while the Gaussian when ν → ∞.
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Figure 3.7: Matèrn semivariogram model
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Complex models

More complex semivariogram models can be obtained by combining the

ones presented since any combination of conditional negative semidefinite

semivariogram functions is still conditional negative semidefinite. For a brief

coverage of the combined models one can have a look at Section 5.3 of the

book by Webster and Oliver (2007).

In some occasions the semivariogram may present a periodic fluctuation.

In this case a semivariogram model involving trigonometric functions (e.g.

wave model) is the most suitable choice (Cressie, 1993; Webster and Oliver,

2007).

Finally, an anisotropic semivariogram is function of both the distance

between locations and the direction of it. Hence, it can not be represented

as a function of the distance anymore. To deal with this problem one can

consider a linear transformation of the lag vector h. Let us consider a d× d

matrix A, then if

γ(h) = γ#(∥Ah∥)

is a real valued function, the semivariogram γ#(·) is said geometrically an-

isotropic (Cressie, 1993; Webster and Oliver, 2007). The linear transfor-

mation A of the Euclidean space is necessary to measure distance between

locations. More complex anisotropic processes can be dealt with hierarchical

methods (Cressie, 1993) or zonal anisotropic models where the components

of vector h are treated separately (Webster and Oliver, 2007).

3.3 Estimating the superpopulation

parameters

Semivariogram estimation can be achieved by using empirical estimators

or parametric models. The former allow to obtain a semivariogram estimate

at those lags obtainable from the set of sampled locations. These methods

are useful to obtain a rough idea of γ(h). The latter consists in fitting a

semivariogram model to the data in order to estimate the model parameters.

Thus, the estimated function is used to infer at the unobservable spatial lags.
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3.3.1 Empirical semivariogram estimators

Let us suppose that the data Z(u1), . . . , Z(un) can be modelled as an

intrinsically stationary process; that is its increment process are weak sta-

tionary. Hence, the expected values E[(Z(u)−Z(u+h))2] appearing in (3.1.3)

can be estimated by the averages of the squared differences of the observed

values at the sampled locations having the same lag, (Z(u) − Z(u + h))2,

once the weak ergodicity assumption has been put forward. Therefore, we

define the empirical estimator of the semivariogram at lag h

γ̂(h) =
1

2|N(h)|
∑
|N(h)|

(Z(ui)− Z(uj))
2, (3.3.1)

where |N(h)| is the number of distinct couples of locations having spatial lag

h between them

N(h) = {(ui,uj) : uj − ui = h, i, j = 1, . . . , n}.

Estimator (3.3.1) was introduced by Matheron in 1962 and that is why it is

sometimes calledMatheron’s method-of-moments estimator. If the underlying

process is isotropic, then the lag vector h is replaced by its length ∥h∥.
Estimator (3.3.1) is even, γ̂(h) = γ̂(−h), and pass through the origin,

γ̂(0) = 0. Furthermore, it is an unbiased estimator of γ(h) unless the random

field is not at least intrinsically stationary (Cressie, 1993) and the data have

a skewed distribution (Lloyd, 2011).

In the Gaussian case, the variance of estimator (3.3.1) can be computed

V[γ̂(h)] ≃ 2γ2(h)

|N(h)|
. (3.3.2)

It is function of the true semivariogram and, therefore, increasing values

of the semivariogram lead to increasing estimated variances. For those in-

terested in the asymptotic behaviour of γ̂(h), we recommend the books by

Cressie (1993) and Gaetan and Guyon (2010).

The advantage in estimating the semivariogram in respect of the covari-

ogram is that γ(h) is defined in more cases than C(h) since the latter relies

on the stronger assumption of second-order stationarity. For weak stationary
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random fields the empirical covariogram is defined as

Ĉ(h) =
1

|N(h)|
∑
|N(h)|

(Z(ui)− Z̄)(Z(uj)− Z̄), (3.3.3)

where Z̄ is the sample mean

Z̄ =
1

n

n∑
i=1

Z(ui)

estimating the process expected value µ. It is not possible to obtain γ̂(h) from

Ĉ(h), and vice versa, since relation (3.2.1) does not hold for estimators (3.3.1)

and (3.3.3). However, if the ratio |N(h)|/n is close to one, then the difference

will be small.

Estimator (3.3.1) is sensitive to outliers; Cressie and Hawkins (1980) pro-

posed two robust estimators of the semivariogram able to safeguard inference

from small independent contamination of a Gaussian process. The former is

basically a correction of estimator (3.3.1) and employs scaled observation in

order to make them more Gaussian like

γ̄(h) =
1

2

(
0.457 +

0.494

|N(h)|

)−1
 1

|N(h)|
∑
|N(h)|

|Z(ui)− Z(uj)|1/2
4

.

(3.3.4)

The latter involves the median of the square root of the absolute value of the

increments having lag h

γ̃(h) =

(
med{|Z(ui)− Z(uj)|1/2 : (ui,uj) ∈ N(h)}

)4
2B(h)

,

where B(h) is a bias correction factor which is asymptotically equal to 0.457.

3.3.2 Semivariogram fitting

Empirical estimators can be useful in getting a rough idea of the semivari-

oram; however, they can not be employed to predict the values at unsampled

locations. In order to predict over the whole domain, continuous functions

are necessary: the fitting of a semivariogram parametric model to the data

is, therefore, crucial.
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Schabenberger and Pierce (2002) divide the fitting methods between the

indirect and the direct ones. The former use transformation of the data as

the responses for the estimation of the model parameters. The latter rely on

rough data for the estimation process.

Least squares methods

Let Θ ⊂ Rp be the parameter space within which the semivariogram

model is defined (see Subsection 3.2.2). Moreover, let k be the number

of classes, N(hi), obtainable form the sampled locations, for any of which

the empirical estimate γ∗(hi) has been computed. Then, the ordinary least

squares (OLS) estimator of the parameters vector is the value

θ̂OLS = argmin
θ∈Θ

{
k∑

i=1

(γ∗(hi)− γ(hi;θ))
2

}
,

where γ∗(·) is any empirical estimator and γ(hi;θ) is any valid parametric

semivariogram model.

As in regression, OLS estimators require uncorrelated and homoscedas-

tic data; both assumptions are not satisfied. Therefore, we introduce the

generalized least squares (GLS) criterion to preserve the appealing geometric

property of the least square estimation and introduce the heteroscedasticity.

Let us suppose that Γ∗ = [Γ∗(h1), . . . ,Γ
∗(hk)]

⊤ is the vector of the k random

variable of the k computable empirical semivariogram, then it has variance

VΓ = V[Γ∗]. The GLS estimator is defined as

θ̂GLS = argmin
θ∈Θ

{
(γ∗ − γ(θ))⊤V−1

Γ (γ̂∗ − γ(θ))
}
,

where γ∗ = [γ∗(h1), . . . , γ
∗(hk)]

⊤ is the vector collecting the empirical semi-

variogram for any of the k classes N(hi), γ(θ) = [γ(h1;θ), . . . , γ(hk;θ)]
⊤ is

the vector collecting the corresponding values of the semivariogram computed

using a valid model.

Unfortunately the covariances of matrix VΓ are hard to compute. How-

ever, Cressie (1985) derived an approximated formula for the variance of the

empirical estimator (3.3.1) and its robust version (3.3.4). Therefore, a widely
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used compromise is to employ the weighted least squares (WLS) estimation

where approximated variances (3.3.2) are collected in the diagonal matrix W

θ̂WLS = argmin
θ∈Θ

{
(γ∗ − γ(θ))⊤W−1(γ̂∗ − γ(θ))

}
.

Cressie (1993) shows that in the case of estimator (3.3.1) the WLS minimiza-

tion problem can be reformulated as

θ̂WLS = argmin
θ∈Θ

{
k∑

i=1

(
|N(h)| γ̂(hi)

γ(hi;θ)
− 1

)2
}
.

He also provides an analogous formulation for the robust estimator (3.3.4).

Estimator θ̂WLS is a rough approximation of the real values, since W is a

poor approximation ofV and variances (3.3.2) are themselves approximations

of the real variances.

The empirical estimator involved in the least squares estimation tech-

niques is a transformation of the data. Therefore, they belong to the indirect

methods.

Likelihood methods

Likelihood estimation methods, introduced in spatial applications by Mar-

dia and Marshall (1984), are said direct since they rely directly on the data;

however, some assumptions on their distribution need to be made. Firstly,

suppose that the underlying process is second-order stationary. Then, sup-

pose that the vector collecting the observed values at the sampled locations is

multivariate Gaussian Nn(Xβ,Σ(θ)), where X is a n×q matrix having rank

q < n and β a q-dimensional vector of coefficients. The variance-covariance

matrix

Σ(θ) =


C(0;θ) C(u1 − u2;θ) · · · C(u1 − uN ;θ)

C(u1 − u2;θ) C(0;θ) · · · C(u2 − uN ;θ)
...

...
. . .

...

C(u1 − uN ;θ) C(u2 − uN ;θ) · · · C(0;θ)


is linked to γ(h;θ) through relation (3.2.1) and depends on θ through the

same parameter space Θ. Then, the log-likelihood is

ℓ(β,θ; z) = c− 1

2
ln |Σ(θ)| − 1

2
(z−Xβ)⊤Σ(θ)−1(z−Xβ),



3.3 Estimating the superpopulation parameters 33

where z is the vector of the observed values at the sampled locations. As a

function of β, it is maximized by

β̂ = (X⊤Σ(θ)−1X)−1X⊤Σ(θ)−1z,

corresponding to the GLS estimator of β in the case V = Σ(θ). This leads

to the profile log-likelihood

ℓ(β̂,θ; z) = c− 1

2
ln |Σ(θ)| − 1

2
z⊤M(θ)z, (3.3.5)

where M(θ) = Σ(θ)−1 −Σ(θ)−1X(X⊤Σ(θ)−1X)−1X⊤Σ(θ)−1. Maximizing

ℓ(β̂,θ; z) leads to the maximum likelihood (ML) estimator θ̂ML.

Maximization of (3.3.5) is a constrained problem for θ ∈ Θ which can

not be solved analytically; iterative methods are necessary, the most known

of which is the Newton-Raphson algorithm.

The ML estimator of the spatial dependence parameter is highly biased

(see Subsection 2.6.3 of Cressie, 1993). In order to avoid this inconvenience

Kitanidis and Vomvoris (1983) proposed to use the restricted maximum like-

lihood (REML) estimation, originally proposed by Patterson and Thompson

(1971), for the estimation in spatial data. It consists in estimating the model

parameters on n − p linearly independent combinations of the original data

known as error contrasts. A linear combination a⊤Z is defined an error con-

trast if E[a⊤Z] = 0 for all β ∈ Rq and all θ ∈ Θ; hence, a⊤Z is an error

contrast if and only if a⊤X = 0. Those are chosen as n − p linearly inde-

pendent elements among those of (I − X(X⊤X)−1X)z. The log-likelihood

becomes (Gelfand et al., 2010)

ℓR(β,θ;w) = c− 1

2
ln |Σ(θ)| − 1

2
ln |X⊤Σ(θ)X| − 1

2
z⊤M(θ)z.

The REML estimator of the model parameters is obtained by maximizing

ℓR(β,θ;w). Once the estimate, θ̃, is available, the estimator of the coefficient

vector is obtained via its GLS estimator, β̃ = (X⊤Σ(θ̃)−1X)−1X⊤Σ(θ̃)−1z.

The REML estimates need iterative procedures too.
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3.4 Spatial prediction using the kriging

With the word kriging, geostatisticians indicate the set of techniques al-

lowing to predict the values of a variable of interest over a spatial domain

employing a function expressing the spatial correlation. Each technique re-

lies on some assumptions made on the geostatistical model and on the nature

of the data to predict. These techniques can be summarized in Table 3.1

(Schabenberger and Pierce, 2002). This subsection only regards the sim-

Table 3.1: Kriging methods according to the assumption made on the un-

derlying process (Schabenberger and Pierce, 2002)

Assumptions Method

Target size Points (Point) Kriging

Areas Block kriging

Known quantities µ known Simple kriging

µ unknown, but constant Ordinary kriging

µ = Xβ, β unknown Universal kriging

Distribution Z(u) ∼ N Kriging

logZ(u) ∼ N Lognormal kriging

ϕ(Z(u)) ∼ N Transgaussian kriging

Z(u) is an indicator Indicator kriging

Gaussian with outliers Robust kriging

Unknown Median polish kriging

µ(u) is a random process Bayesian kriging

Dimension One-dimensional Kriging

d-dimensional Cokriging

Linearity Linear in Z(u) Kriging

Linear in functions of Z(u) Disjunctive kriging

ple kriging, ordinary kriging and universal kriging which are the most used

and known among the others. According to the assumption made, different

methods can be mixed, e.g. universal block kriging. Block kriging will later

be used in Chapter 5; it is about the estimation of the value of the variable
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under study at a subarea of the domain, but the mathematics involved does

not differ from the one of the techniques presented. For a comprehensive

coverage of the other kriging techniques one can have a look at the books by

Cressie (1993), Webster and Oliver (2007), Gaetan and Guyon (2010) and

Gelfand et al. (2010).

3.4.1 Simple kriging

Let Z be a second-order stationary random field whose expected value

function, µ(u), and variance structure, Cov(Z(u), Z(u′)) = C(u − u′), are

known for any location of the domain. Moreover, let us suppose that we are

interested in predict the value Z at any location of the domain by employing

the observed values, Z = [Z(u1), . . . , Z(un)]
⊤, of a random field.

Then, for any generic u0 ∈ D, we define the predictor p(Z;u0) mean

squared (prediction) error (MSPE)

MSPE(p(Z;u0)) = E[(Z(u0)− p(Z;u0))
2], (3.4.1)

which is widely used in prediction error problems. Given that a sample

of n locations has been drawn, the MSPE is minimized by the conditional

expectation

p(Z;u0) = E[Z(u0)|Z], (3.4.2)

which is known to be the optimal predictor.

Obtaining predictor (3.4.2) can result in a daunting task even if the true

law of the random field Z is known. Hence, the use of linear predictors

p(Z;u0) = λ0 +
n∑

i=1

λiZ(ui) = λ0 + λ⊤Z, (3.4.3)

is a very common answer. In this case MSPE (3.4.1) is the squared mean of

the prediction error plus its variance

E[(Z(u0)− λ0 − λ⊤Z)2] = (µ(u0)− λ0 − λ⊤µ)2 +V[(Z(u0)− λ0 − λ⊤Z)2]

= (µ(u0)− λ0 − λ⊤µ)2 + σ2
0 − 2λ⊤c0 + λ⊤Σλ,

(3.4.4)
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where E[Z] = µ, Cov(Z, Z(u0)) = c0 and V[Z] = Σ and the expectation and

variance at point u0 are E[Z(u0)] = µ(u0) and V[Z(u0)] = σ2
0, respectively.

Once the the squared mean term of (3.4.4) is made null, in order to find the

best linear predictor (BLP), we need to find the values of λ0 and λminimizing

the variance term. These conditions are met by

λ0 = µ(u0)− λ⊤µ (3.4.5)

and

λ = Σ−1c0, (3.4.6)

provided Σ is invertible. Equations (3.4.5) and (3.4.6) together are the

weighting system that, substituted in linear predictor (3.4.3), leads to the

simple kriging predictor

Ẑsk(u0) = c⊤0 Σ
−1(Z− µ) + µ(u0).

The minimized prediction error

σ2
sk(u0) = σ2

0 − c⊤0 Σ
−1c0

is also known as kriging variance. The simple kriging takes his name from

the fact that the assumption of knowing the spatial mean function, µ(·), is
needed. By relaxing this assumption we obtain the ordinary kriging and

universal kriging (see Table 3.1).

Stein (1999) states that if the process is Gaussian, then under mean

squared prediction error the simple kriging predictor is the best predictor

since the BLP is equal to the conditional expectation. Moreover, still in

the case of a Gaussian process, he adds that the conditional distribution of

Ẑsk(u0) given the data, Z = z, is Gaussian N (λ0 + λ⊤z, σ2
0 − c⊤0 Σ

−1c0).

3.4.2 Ordinary kriging

By supposing the mean structure of the process unknown but fixed all

over the domain (see Table 3.1), the predictor we obtain by minimizing the

MSPE is the ordinary kriging predictor which is known to be optimal. The
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resulting model comes from (3.1.5) for which a fixed mean has been assumed

Z(u) = µ+ δ(u), (3.4.7)

where δ(u) is a zero-mean intrinsic stationary process with known variance

structure, Γ = [γ(u−u′)]. The predictor at the generic location u0 is formally

equal to (3.4.3), where λ0 = 0 has been set,

p(Z;u0) =
n∑

i=1

λiZ(ui) = λ⊤Z (3.4.8)

and the following condition on the λ coefficients must hold

n∑
i=1

λi = 1⊤λ = 1. (3.4.9)

The condition on the coefficients guarantees that linear predictor (3.4.8) is

unbiased, E[p(Z;u0)] = µ = E[Z(u0)], and once the MSPE is minimized

leads to the best linear unbiased predictor (BLUP).

Let us define the vector collecting the squared differences between values

at the location u0 to predict and the ones the sampled locations,

y0 = [(Z(u0)− Z(u1))
2, . . . , (Z(u0)− Z(u1))

2]⊤,

and the matrix of the squared differences between the values at sampled

locations, Y = [y⊤
1 , . . . ,y

⊤
n ]

⊤. Then, under condition (3.4.8), the MSPE of

predictor (3.4.8) is

E[(Z(u0)− λ⊤Z)2]−m(1⊤λ− 1) = λ⊤E[y0]−
1

2
λ⊤E[Y]λ−m(1⊤λ− 1)

= 2λ⊤γ0 − λ⊤Γλ−m(1⊤λ− 1),

(3.4.10)

where γ0 = E[y0], Γ = E[Y] and m is a Lagrange multiplier ensuring that

the condition on the coefficients is satisfied. Equation (3.4.10) is minimized

by the following coefficient vector and value of the Lagrange multiplier, re-

spectively:

λ = Γ−1

(
γ0 + 1

1− 1⊤Γ−1γ0

1⊤Γ−11

)
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and

m = −1− 1⊤Γ−1γ0

1⊤Γ−11
,

where m is the estimator of the mean, provided Γ is invertible. The ordinary

kriging predictor results

Ẑok(u0) =

(
γ0 + 1

1− 1⊤Γ−1γ0

1⊤Γ−11

)⊤

Γ−1Z

having kriging variance

σ2
ok(u0) = γ⊤

0 Γ
−1γ0 −

(1⊤Γ−1γ0 − 1)2

1⊤Γ−11

A stronger hypothesis need to be posed in order to reformulate the or-

dinary kriging weighting system in terms of the covariogram function. As-

suming model (3.4.7) still holds, component δ(u) needs to be a second-order

stationary random field with known variance structure, Σ. In this way MSPE

(3.4.10) becomes

C(0) + λ⊤Σλ− 2λ⊤c0 −m(1⊤λ− 1),

leading to the corresponding ordinary kriging weighting system

λ = Σ−1

(
c0 + 1

1− 1⊤Σ−1c0

1⊤Σ−11

)
and

m = −1− 1⊤Σ−1c0

1⊤Σ−11
.

The corresponding kriging variance is

σ2
ok(u0) = C(0)− c⊤0 Σ

−1c0 −
(1⊤Σ−1c0 − 1)2

1⊤Σ−11
.

3.4.3 Universal kriging

Let us recall that µ(u) = E[Z(u)] is the large-scale variation of the process

at location u, depending on it indirectly from auxiliary functions known over

the domain. Assuming that the mean structure is function of the spatial

location, i.e. it varies over the domain, corresponds to adopt the mean model
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(3.1.5). Moreover, if the function µ(·) is unknown, the underlying hypothesis

is a further relaxation of the one at the basis of the ordinary kriging.

Let us assume that δ(·) is a zero-mean intrinsic stationary random field

with semivariogram γ(·). Moreover, let µ(u) be an unknown combination of

known functions {f0(u), . . . , fp(u)}. Then, the mean model can be rewritten

as

Z(u) = x(u)⊤β + δ(u), (3.4.11)

where x(u) = [f0(u), . . . , fp(u)]
⊤ is the (p+ 1)-dimensional vector collecting

the auxiliary functions fi(u) and β ∈ Rp+1 is a vector of unknown parameters.

Hence, the observed data can be written as

Z = Xβ + δ, (3.4.12)

where X = [x(u1)
⊤, . . . ,x(un)

⊤]⊤ is the n × (p + 1) matrix collecting the

values of the auxiliary functions {f0(·), . . . , fp(·)} computed at the sampled

locations {ui ∈ S, i = 1, . . . , n}.
The linear predictor

p(Z;u0) =
n∑

i=1

λiZ(ui) = λ⊤Z (3.4.13)

at a generic location u0 must meet the condition on the coefficients

λ⊤X = x⊤
0 . (3.4.14)

where x0 = [f0(u0), . . . , fp(u0)]
⊤. This condition is necessary and sufficient

to guarantee uniform unbiasedness of the predictor, E[p(Z;u0)] = E[λ⊤Z] =

λ⊤Xβ, which is equal to x⊤
0 β = E[Z(u0)], for all β ∈ Rp+1. Once the MSPE

is minimized, predictor (3.4.13) is the BLUP. By posing 1⊤λ = 1 and f0 = 1,

we obtain the ordinary kriging assumption (3.4.9) on the predictor.

The MSPE of the universal kriging predictor (3.4.13) is

E[(Z(u0)− λ⊤Z)2]− (x0 −X⊤λ)⊤m,

where m = [m0, . . . ,mp]
⊤ is a vector of p + 1 Lagrange multipliers ensuring

that condition (3.4.9) is satisfied. By assuming f0 = 1 we obtain one of the

unbiasedness conditions, 1⊤λ = 1, which along with the use of model (3.4.11)
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and the corresponding data formulation (3.4.12) under condition (3.4.14) lead

to the mean squared term of the MSPE

E[(Z(u0)− λ⊤Z)2] = E[(x⊤
0 + δ(u0)− λ⊤Xβ − λ⊤δ)2]

= E[(δ(u0)− λ⊤δ)2]

= λ⊤E[d0]−
1

2
λ⊤E[D]λ

= 2λ⊤γ0 − λ⊤Γλ,

where the vector collecting the squared differences of process δ(·) between

values at the location u0 to predict and the ones the sampled locations,

d0 = [(δ(u0)− δ(u1))
2, . . . , (δ(u0)− δ(u1))

2]⊤,

and the matrix of the squared differences between the values at sampled

locations, D = [d⊤
1 , . . . ,d

⊤
n ]

⊤ are involved. Hence, the resulting MSPE to be

minimized is

2λ⊤γ0 − λ⊤Γλ− (x0 −X⊤λ)⊤m. (3.4.15)

Equation (3.4.15) is minimized for the following values of the coefficient

vector and Lagrange multiplier vector, respectively:

λ = Γ−1(γ0 +X(X⊤Γ−1X)−1(x0 −X⊤Γ−1γ0))

and

m = −(X⊤Γ−1X)−1(x0 −X⊤Γ−1γ0),

provided all the matrices requiring inverse are invertible. The resulting uni-

versal kriging predictor is defined as

Ẑuk(u0) = (γ0 +X(X⊤Γ−1X)−1(x0 −X⊤Γ−1γ0))
⊤Γ−1Z

with kriging variance

σ2
uk(u0) = γ⊤

0 Γ
−1γ0 − (x0 −X⊤Γ−1γ0))

⊤(X⊤Γ−1X)−1(x0 −X⊤Γ−1γ0)).

Universal kriging predictor (3.4.3) relies on the assumption that process

Z is intrinsically stationary; let us strengthen this hypothesis by considering
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it second-order stationary. This allow us to rewrite MSPE (3.4.15) in terms

of the covariogram

C(0) + λ⊤Σλ− 2λ⊤c0 − (x0 −X⊤λ)⊤m,

which is minimized by vectors

λ = Σ−1(c0 +X(X⊤Σ−1X)−1(x0 −X⊤Σ−1c0))

and

m = −(X⊤Σ−1X)−1(x0 −X⊤Σ−1c0).

The corresponding kriging variance is

σ2
uk(u0) = C(0)−c⊤0 Σ

−1c0+(x0−X⊤Σ−1c0))
⊤(X⊤Σ−1X)−1(x0−X⊤Σ−1c0)).

3.4.4 Practical applications of the kriging predictor

The theoretical results of this section are far from being employable in

practical applications. All the kriging methods, here presented or not, re-

lies on the assumption that the process variance structure (covariogram or

semivariogram) is known. Actually, it has to be estimated from the observed

values using the techniques of Section 3.3, once a valid semivariogram (co-

variogram) model has been chosen. Simply put, prediction is based on the

same data used for the estimation of the semivariogram parameters leading

to coefficients that are no longer linear since they depend on the very data

(Stein, 1999). Therefore, the resulting kriging predictors differs from opti-

mal kriging weights (BLUP) derived in the previous section. Moreover, the

corresponding kriging variances are not equal to the real variances of the

subotptimal kriging predictors employed. This may lead to several problems

in applications.

Chilès and Delfiner (1999) state that a semivariogram model whose be-

haviour near the origin is correctly represented leads to good estimates even if

the model is seriously misspecified everywhere else (remember that the semi-

variogram behaviour near the origin completely characterizes the continuity

and regularity of the process in the space, as stated in Subsection 3.2.2).
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Cressie (1993) extends analyses on the effects of the estimation of the

parameter of a semivariogram model. Let us firstly consider the effect of

the nugget parameter, defined as γ(h) → τ 2 > 0, as ∥h∥ → 0, on the

semivariogram. Recall from Section 3.2 that its magnitude is given by

τ 2 = σ2
η + σ2

ϵ ,

where σ2
η and σ2

ϵ are the micro-scale process η(u) sill and the measurement

error ϵ(u) variance, respectively. In practice it is hard to determine the

micro-scale process variance structure because the shorter observed lag is

rarely short enough to model the semivariogram behaviour near the origin.

Theoretically, the measurement errors may come from repeated measures or

laboratory errors; however, in practice, it is not possible to assess its extent.

These aspects combined lead to an estimation of the nugget effect through

interpolation of semivariograms estimates near the origin. To safeguard infer-

ence from this inconvenience one should predict the measurement-error-free

process S(u) = µ(u) +W (u) + η(u) known as signal model. The resulting

(ordinary or universal) kriging predictor, Ŝ(u), is obtained using the corre-

sponding kriging equations where the ith element of vector γ0 is posed equal

to the measurement error process variance, σ2
ϵ , whenever u ∈ S. Therefore,

the kriging variance is modified by subtracting σ2
ϵ from the corresponding

equation. Analogous modifications can be obtained for the simple kriging

or the kriging equations expressed in terms of the covariogram. The signal

predictor Ŝ(u) turns out to be non-exact leading to more smoothed values

as larger as σ2
ϵ is. The most extreme scenario happens when the process has

a fixed trend and its randomness is completely due to measurement errors

Z(·) = µ+ ϵ(·). The resulting predictor is given by

Ẑ(u) =

Z̄, if u /∈ S;

Z(ui), if u = ui ∈ S,

where Z̄ is the sample mean. Furthermore, it results that Ŝ = Z̄ (Cressie,

1993), that is the signal predictor corresponds to the SRSWoR estimator in

predictive form (Bolfarine and Zacks, 1992). Then, one must pay attention

when predicting outside the set of sampled locations since the kriging equa-
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tions are the same for the the process Z(·) and S(·), but the kriging variances
differ in the measurement error variance σ2

ϵ .

Let us now focus on the sill parameter of the process Z. When existing,

it has been defined as lim∥h∥→∞ γ(∥h∥) and its value is given by the sum of

the sills of the large- and micro-scale processes plus the measurement error

variance

σ2 = σ2
W + σ2

η + σ2
ϵ ,

where σ2
W is the sill of the large-scale process W , when µ(u) = µ. It is worth

noticing that the micro-scale sill, σ2
η, is larger than the estimated one and,

therefore, the sill of the process, σ2, is larger than the sum of the large-scale

sill and the estimated nugget effect. This is due to the fact that the estimated

nugget effect is obtained by extrapolating an experimental semivariogram at

lags close to zero.

The range parameter has been defined as the maximum lag at which the

process shows spatial dependence. It may be inaccurately thought to use the

range estimate in order to provide a kriging neighbourhood for the location to

predict and consider only the locations less distant. However, this approach

could lead to some problems since the nugget effect would not be considered.

Cressie (1993) concludes stating that all the three parameters estimates

are important and have a considerable effect on the kriging estimates. More-

over, since the kriging predictor is suboptimal, the kriging variance is smaller

than the effective one due to the semivariogram parameters estimation

σ2

k ≤ E[(ˆ̂p(Z;u)− Z(u))2],

where the second hat in the predictor emphasises the fact that the semivari-

ogram parameters are estimated.

For a deeper insight into (mathematical and statistical) stability of the

kriging predictor one can have a look at the book by Cressie (1993).

Likelihood semivariogram fitting methods (Subsection 3.3.2) strongly rely

on the Gaussianity assumption of the random field; however, assuming this is

highly restrictive. Maximum likelihood estimation methods are very sensitive

to anomalous observations. Least squares methods (Subsection 3.3.2) can be

thought of as a valid fitting alternative; nevertheless, they are still sensitive to
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aberrant values even if less so (Stein, 1999). Diggle et al. (1998) empirically

proved that Monte Carlo Markov Chain methods are a reliable prediction

tool for non-Gaussian random fields.

The nugget parameter estimation is not the only one affected by lag

problems. Indeed semivariogram fitting does not perform well when the

sample is small and just few lags are observed for a sufficiently large domain.

Therefore, the search for sampling designs, not necessarily probabilistic, that

may lead to good estimates is still an open topic and, perhaps, it may vary

case by case. In order to improve the estimation of the parameter of the

Matèrn model, Stein (1999) suggest to add a few closely packed observations

to an evenly spaced design; conceptually, this idea can be extended to any

other semivariogram model.



Chapter 4

Design-based spatial estimation

revised

In design-based spatial inference the spatial information has usually been

used in order to obtain efficient sampling designs. According to Webster and

Oliver (2007) several authors have used the exponential semivariogram as

the basis for their theoretical studies on sampling startegies efficiency (e.g.

Cochran, 1946; Yates, 1948; Quenouille, 1949; Matérn, 1960).

Since the 1990s we assisted to a reappraisal of the design-based techniques

for inference on spatial data: de Gruijter and ter Braak (1990) were among

the firsts to assess that these can be usefully applied to spatial datasets

provided a random sampling is practicable. Brus and de Gruijter (1997)

gave a first, and probably the only one, individual estimator which assigns

the mean of the values observed at the set of sampled values belonging to

a subarea to all the points in it. A part from them, researchers focused on

the estimation of population quantities (e.g. mean and total). Among the

last works regarding this topic we point out the papers by Cicchitelli and

Montanari (2012) and Ghosh et al. (2012).

In this chapter a new technique for design-based spatial inference is de-

veloped. We propose an estimator able to use the spatial information known

at population level for estimating, firstly, the individual values (point esti-

mation) and, then, a summary population value (i.e. mean or total). In

the following section the basic concepts behind this idea are presented. Sec-

45
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tion 4.2 covers the achieved point estimator along with its properties and

variance estimation in a finite population case. In Section 4.3 the point esti-

mator is extended to a continuous domain. The population synthetic value

estimation along with its properties is discussed in Section 4.4.

4.1 Basic concepts

The basic idea in design-based spatial inference is to use the spatial in-

formation known before sampling in order to obtain sampling designs more

efficient than simple random sampling (SRS), which for cost and estimation

reasons may not be the most suitable one. In this chapter we introduce and

develop the idea of using the spatial information at estimation level rather

than at sampling design level.

The starting point is a deterministic interpolator which can not be associ-

ated to any uncertainty measure. When the set of known locations is thought

of as a realization of a probabilistic sampling design, then the deterministic

interpolator itself can be randomized.

The weights of the deterministic interpolator chosen as the starting point

depend on the spatial lag between the locations of the whole domain which

are assumed to be known. Therefore, as typical of the design-based inference

paradigm, the weighting system involved in the estimator can be constructed

for the whole population before sampling.

The underlying concept is that the locations labels defined as the spa-

tial coordinates may be regarded as population information. Viewing the

labels as informative, simple random sampling without replacement (SR-

SWoR) seems the most suitable sampling design.

4.2 Estimating individual quantities

in design-based finite spatial population

Let us consider a bounded finite spatial domain belonging to the two-

dimensional Euclidean space D ⊂ R2, and the function z(u) belonging to

the set C1(D). Moreover, let L = {u1, . . . ,un} be a set of n locations, each
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denoted by its coordinates ui = (xi, yi), where the value of z(·) is known.

Shepard (1968) proposed a smooth (continuous and once differentiable) func-

tion able to approximate z(u) on D by means of interpolation, named inverse

distance weighted (IDW) interpolator.

Let w(u) be a n-dimensional standardized weighting vector whose ele-

ments are a monotonic decreasing function of the Euclidean distance between

each location belonging to L and an arbitrary one u = (x, y) ∈ D

wi(u) =
∥ui − u∥−α

n∑
j=1

∥uj − u∥−α

=
d−α
i

n∑
j=1

d−α
j

, (4.2.1)

where α ∈ R+ and di = ∥ui − u∥ is the Euclidean distance between two

points. The proposed weighting system is constructed such that the influence

of values at u1, . . . ,un decreases as the distance from the arbitrary point u

increases, according to Tobler’s law (Tobler, 1970).

The resulting interpolated value at an arbitrary location is

ẑ(u) =

z⊤w(u), if u /∈ L;

z(u), otherwise;
(4.2.2)

where z = [z(u1), . . . , z(un)]
⊤ is the vector of the observed values at the

point belonging to L. Interpolation involves evaluating z(·) at an arbitrary

location u not belonging to the set L and reproducing the observed value

when such location belongs to the set. Therefore, the IDW interpolator is

exact.

The continuity assumption for the interpolating function holds:

lim
u→ui

ẑ(u) = z(u),

since as u approaches ui, the Euclidean distance ∥ui − u∥ approaches 0 so

that the numerator and denominator of the ith term in (4.2.1) diverge while

the others remain bounded.
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First differentiability holds for any point in D:

∂ẑ(u)

∂x
= −α

n∑
i=1

∑
j ̸=i

d−2−α
i d−α

j (x− xi)z(ui)(z(ui)− z(uj))(
n∑

i=1

d−α
i

)2 ,

where substituting (y − yi) to (x− xi) gives the expression for ∂ẑ(u)/∂y.

Shepard (1968) suggested that a choice of α = 2 for the exponent is the

best, leading to easier computation and more satisfactory empirical results.

Without loss of generality from now on, we assume α = 2.

4.2.1 The IDW point estimator

Let us suppose that a (regular) grid has been superimposed over the

domain D or that we are interested in estimating the value of the variable

under study at a finite number of locations in the domain D. In the second

case we suppose that the coordinates are known for each location before the

sampling. In the first case, without loss of generality, we suppose to know

the coordinates of the centroid ui = (xi, yi) of each sub-area. Both the cases

are linked to the idea of finite population inference since we can think of a

population P of fixed size N .

In spatial datasets the labels can be considered as informative since they

corresponds to the locations’ coordinates. In this thesis we propose a way to

implement this information at the estimation level; therefore, in order not to

use the same information at sampling level as well, simple random sampling

sampling without replacement (SRSWoR) seems the most suitable design.

Furthermore, let us suppose that the values z(u1), . . . , z(uN) come from a

fixed unknown deterministic function, z : R2 → R, evaluated at the sampled

location, u1, . . . ,un.

Under the finite population design-based framework, the known locations,

u1, . . . ,un, belonging to the set L of equation (4.2.2) are considered as the

realization of a probabilistic random sampling, denoted as s. Formally speak-

ing s is an element of the the σ-algebra S of all the possible samples of the
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sample space S. From now on we will use S as an arbitrary element be-

longing to S, and s as its realization. Inclusion in the generic sample S is

managed by the Bernoulli random variable Qi = I(i∈S) assuming value 1 if

the location ui belongs to the arbitrary sample S. On the contrary exclusion

from the sample is managed by complement to 1 of the Bernoulli random

variable managing inclusion, 1−I(i∈S), since inclusion in and exclusion from

the sample are two mutually exclusive events.

It is now possible to rewrite interpolator (4.2.2) for the generic ith pop-

ulation element as a design-based point estimator:

ẑ(ui) =

I(i∈S)z(ui) + (1− I(i∈S))
∑
j ̸=i

ϕijz(uj)I(j∈S)

I(i∈S) + (1− I(i∈S))
∑
j ̸=i

ϕijI(j∈S)

=

I(i∈S)z(ui) +
∑
j ̸=i

ϕijz(uj)I(j∈S) − I(i∈S)
∑
j ̸=i

ϕijz(uj)I(j∈S)

I(i∈S) +
∑
j ̸=i

ϕijI(j∈S) − I(i∈S)
∑
j ̸=i

ϕijI(j∈S)
, (4.2.3)

where ϕij = d−2
ij = ∥uj −ui∥−2 is the inverse squared Euclidean distance be-

tween the ith and the j th population locations. As the IDW interpolator, the

achieved IDW point estimator attributes the observed value to the location

ith if it is sampled, and otherwise evaluates z(·). The resulting IDW point

estimator is a ratio of sums of linear combinations of random quantities and,

therefore, its properties will be analytically obtained only in approximate

form.

In the design-based finite population framework the information concern-

ing the arbitrary sample S is usually summarized in the N -dimensional ran-

dom vector Q = [Q1, . . . , QN ]
⊤ of Bernoulli random variables managing in-

clusion in the sample, i.e. Qi = I(i∈S). Once a sample s is drawn from the

population, the realization of random vectorQ is the N -dimensional vector q

containing n unit values in correspondence of the sampled locations and zero

otherwise.

Let us define the N×N symmetric matrix containing the inverse squared

Euclidean distances between the population locations and having null diag-
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onal

Φ =


0 ∥u2 − u1∥−2 · · · ∥uN − u1∥−2

∥u1 − u2∥−2 0 · · · ∥uN − u2∥−2

...
...

. . .
...

∥u1 − uN∥−2 ∥u2 − uN∥−2 · · · 0

 .

By using matrix Φ and the random vector Q, we define the weighting

vector

hi = Q ◦ ϕ∗
i −QiQ ◦ ϕi

= Qiei + (1−Qi)Q ◦ ϕi, (4.2.4)

where ϕi = Φei is the ith column of matrix Φ, ϕ∗
i = ϕi + ei, ei is the ith

N -dimensional canonical basis and ◦ is the Hadamard product. The IDW

point estimator (4.2.3) can be rewritten in matrix form as

ẑ(ui) = h∗⊤
i z = (h⊤

i 1N)
−1h⊤

i z, (4.2.5)

where z = [z(u1), . . . , z(un)]
⊤ is the N -dimensional vector collecting the

observed values.

Estimation for all the population locations can be performed at the same

time by using the N×N matrixH = [h⊤
1 , . . . ,h

⊤
N ]

⊤ collecting row vectors h⊤
i :

H = (1NQ⊤) ◦Φ∗ − diag(Q)(1NQ⊤) ◦Φ

= diag(Q) + diag(1N −Q)(1NQ⊤) ◦Φ,

where Φ∗ = Φ + IN and ◦ is the Hadamard product. The vector of the

estimated values is defined as

ẑ = H∗z = diag(H1N)
−1Hz, (4.2.6)

where H∗ = [h∗⊤
1 , . . . ,h⊤

N ]
∗⊤ is the matrix collecting row vectors h∗⊤

i .

4.2.2 Expected value

Following Stuart and Ord (1987), the expected value of estimator (4.2.5)

is obtained in approximate form using the delta method (Appendix A) since

the IDW point estimator is the ratio of sums of linear combinations of random

quantities.
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Theorem 4.2.1. The usual delta method first order approximation (A.2) of

the expected value of estimator (4.2.5) is

E[ẑ(ui)] =
z(ui) + at1i
1 + at2i

+Op(n
−1), (4.2.7)

where constant

a =
N − n

N − 1
(4.2.8)

is defined and the following combinations of the population values and func-

tion of the Euclidean distances are used:

t1i =
∑
j ̸=i

ϕijz(uj) = ϕ⊤
i z (4.2.9)

and

t2i =
∑
j ̸=i

ϕij = ϕ⊤
i 1N . (4.2.10)

Proof. In (4.2.7), the expected values of the numerator and denominator are

easily obtained using the first-order inclusion probabilities

E[Qi] = E[I(i∈S)] =
n

N
(4.2.11)

and second-order inclusion probabilities

E[QiQj] = E[I(i∈S)I(j∈S)] = E[I(i∈S)]E[I(j∈S|i∈S)] =
n

N

n− 1

N − 1
. (4.2.12)

Combining these basic results from sampling theory with the delta method

first-order approximation, we obtain the IDW point estimator’s approximate

expected value:
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E[ẑ(ui)] =

E

[
I(i∈S)z(ui) + (1− I(i∈S))

∑
j ̸=i

ϕijz(uj)I(j∈S)

]

E

[
I(i∈S) + (1− I(i∈S))

∑
j ̸=i

ϕijI(j∈S)

] +Op(n
−1)

=

E[I(i∈S)z(ui)] +
∑
j ̸=i

ϕijz(uj)E[I(j∈S)]−
∑
j ̸=i

ϕijz(uj)E[I(i∈S)I(j∈S)]

E[I(i∈S)] +
∑
j ̸=i

ϕijE[I(j∈S)]−
∑
j ̸=i

ϕijE[I(i∈S)I(j∈S)]
+Op(n

−1)

=

n

N
z(ui) +

n

N

(∑
j ̸=i

ϕijz(uj)−
n− 1

N − 1

∑
j ̸=i

ϕijz(uj)

)
n

N
+

n

N

(∑
j ̸=i

ϕij −
n− 1

N − 1

∑
j ̸=i

ϕij

) +Op(n
−1)

=
z(ui) + at1i
1 + at2i

+Op(n
−1).

Under the matrix formulation (4.2.5) of the IDW point estimator, we get

the expected value of the weighting vector (4.2.4):

E[hi] =
n

N
(ei + aϕi),

where constant (4.2.8) is retrieved.

The first-order inclusion probabilities defined in (4.2.11) can be collected

in the N -dimensional vector

E[Q] =
n

N
1N (4.2.13)

and the second-order inclusion probabilities (4.2.12) in the N -dimensional

vector

E[QiQ] =
n

N

(
n− 1

N − 1
1N +

N − n

N − 1
ei

)
. (4.2.14)

In the previous vector, the second term in brackets manages the second-order

inclusion probability of the ith individual in SRSWoR which corresponds to

the first-order inclusion probability:

E[Q2
i ] = E[Qi] =

n

N
. (4.2.15)
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Using vector (4.2.14), we obtain the expected value of vector hi:

E[hi] = E[Qi]ei + E[(1−Qi)Q] ◦ ϕi

= E[Qi]ei + E[Q] ◦ ϕi − E[QiQ] ◦ ϕi

=
n

N
ei +

n

N
ϕi −

n

N

n− 1

N − 1
ϕi

=
n

N

(
ei +

N − n

N − 1
ϕi

)
=

n

N
(ei + aϕi). (4.2.16)

The second term in brackets of the vector of the second-order inclusion prob-

abilities (4.2.14) does not appear since the Hadamard multiplication for ϕi of

ei produces a null vector because of the iith null element of ϕi (Appendix B).

Using expected value (4.2.16) and the usual delta method first-order ap-

proximation, the approximated expected value (4.2.7) can be rewritten in

vector form as

E[ẑ(ui)] = E[h∗
i ]

⊤z = (E[hi]
⊤1N)

−1E[hi]
⊤z+Op(n

−1)

=
z(ui) + at1i
1 + at2i

+Op(n
−1), (4.2.17)

where t1i = ϕ⊤
i z and t2i = ϕ⊤

i 1N .

The approximated expectation of the vector of estimated values (4.2.6)

is vector

E[ẑ] = diag(1N + at2)
−1(z+ at1) +Op(n

−1), (4.2.18)

where the N -dimensional vectors t1 = Φz = [t11, . . . , t1n]
⊤ and t2 = Φ1N =

[t21, . . . , t2n]
⊤ are involved. The previous expectation comes directly form the

one of the weighting matrix H:

E[H] = diag(E[Q]) + (1NE[Q]⊤) ◦Φ− E[diag(Q)(1NQ⊤)] ◦Φ

=
n

N
IN +

n

N
Φ− n

N

n− 1

N − 1
Φ =

n

N

(
IN +

N − n

N − 1
Φ

)
=

n

N
(IN + aΦ),

where first- and second-order inclusion probabilities vectors, (4.2.13) and

(4.2.14) respectively, are used. It is straightforward to obtain approximated
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expected value (4.2.18) as follows

E[ẑ] = E[diag(H1N)
−1H]z = diag(E[H]1N)

−1E[H]z+Op(n
−1)

= diag(1N + at2)
−1(z+ at1) +Op(n

−1).

4.2.3 Variance

For the same reasons as for the expected value, the variance of the IDW

point estimator is obtained in approximate form using the delta method

(Appendix A).

Theorem 4.2.2. Following the standard first-order delta method approxi-

mation of the variance of the ratio of random quantities, the approximated

variance of estimator (4.2.5) is

V[ẑ(ui)] = k⊤
i E[hih

⊤
i ]ki +Op(n

−2), (4.2.19)

where

ki =
N

n

(1 + at2i)z− (z(ui) + at1i)1N

(1 + at2i)2
. (4.2.20)

Proof. Starting from equation (A.3) the resulting first-order delta method

approximation of the variance of the IDW point estimator is

V[ẑ(ui)] =
E[(h⊤

i z)
2] (E[h⊤

i ]1N)
2

(E[h⊤
i ]1N)4

− 2
E[h⊤

i zh
⊤
i 1N ] E[h

⊤
i ]z E[h

⊤
i ]1N

(E[h⊤
i ]1N)4

+
E[(h⊤

i 1N)
2] (E[h⊤

i ]z)
2

(E[h⊤
i ]1N)4

+Op(n
−2). (4.2.21)

By the algebraic manipulation of the second term of the previous equation,

we obtain

2E[h⊤
i zh

⊤
i 1N ] = z⊤E[hih

⊤
i ]1N + 1⊤

NE[hih
⊤
i ]z,

leading to the following rewriting of equation (4.2.21):

V[ẑ(ui)] =
E[(h⊤

i z)
2] (E[h⊤

i ]1N)
2

(E[h⊤
i ]1N)4

− E[h⊤
i ]1N z⊤E[hih

⊤
i ]1N E[h⊤

i ]z

(E[h⊤
i ]1N)4

− E[h⊤
i ]z 1

⊤
NE[hih

⊤
i ]z E[h

⊤
i ]1N

(E[h⊤
i ]1N)4

+
E[(h⊤

i 1N)
2] (E[h⊤

i ]z)
2

(E[h⊤
i ]1N)4

+Op(n
−2)

(4.2.22)
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First of all, we need to compute the second moment of weighting vector

(4.2.4). Using idempotence property (4.2.4) of the second-order inclusion

probabilities of the same individual in SRSWoR, vector hi’s second moment

results

E[hih
⊤
i ] = E[(Qiei +Q ◦ ϕi −QiQ ◦ ϕi)(Qiei +Q ◦ ϕi −QiQ ◦ ϕi)

⊤]

= E[Q2
i eie

⊤
i +Qiei(Q ◦ ϕi)

⊤ −Q2
i ei(Q ◦ ϕi)

⊤

+Qi(Q ◦ ϕi)e
⊤
i + (Q ◦ ϕi)(Q ◦ ϕi)

⊤ −Qi(Q ◦ ϕi)(Q ◦ ϕi)
⊤

−Q2
i (Q ◦ ϕi)e

⊤
i −Qi(Q ◦ ϕi)(Q ◦ ϕi)

⊤ +Q2
i (Q ◦ ϕi)(Q ◦ ϕi)

⊤]

= E[Qieie
⊤
i ] + E[(Q ◦ ϕi)(Q ◦ ϕi)

⊤]− E[Qi(Q ◦ ϕi)(Q ◦ ϕi)
⊤].

(4.2.23)

Starting from the last line of the previous equation, the first expected

value’s computation is straightforward

E[Qieie
⊤
i ] = E[Qi]eie

⊤
i =

n

N
eie

⊤
i

and comes directly from first-order inclusion probability (4.2.11) in SRSWoR.

Using the square matrix collecting the second-order inclusion probabilities

proposed by Dol et al. (1996), the second expected value of equation (4.2.23)

results

E[(Q ◦ ϕi)(Q ◦ ϕi)
⊤] = E[QQ⊤] ◦ ϕiϕ

⊤
i

=
n

N

(
N − n

N − 1
IN +

n− 1

N − 1
1N1

⊤
N

)
◦ ϕiϕ

⊤
i

=
n

N

(
N − n

N − 1
diag(ϕi)

2 +
n− 1

N − 1
ϕiϕ

⊤
i

)
, (4.2.24)

where the distributive property of the Hadamard product has been used.

Using a matrix analogous to (4.2.24) collecting the the third-order inclusion

probabilities, the third expectation in (4.2.23) is

E[Qi(Q ◦ ϕi)(Q ◦ ϕi)
⊤] = E[QiQQ⊤] ◦ ϕiϕ

⊤
i

=
n

N

{
n− 1

N − 1

(
N − n

N − 2
IN +

n− 2

N − 2
1N1

⊤
N

)
+

N − n

N − 1
eie

⊤
i

}
◦ ϕiϕ

⊤
i

=
n

N

n− 1

N − 1

(
N − n

N − 2
diag(ϕi)

2 +
n− 2

N − 2
ϕiϕ

⊤
i

)
.
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The Hadamard products between the quantities involved in the calculus of

the previous equation are collected in Appendix B.

Finally, we obtain vector hi’s second moment

E[hih
⊤
i ] =

n

N

(
eie

⊤
i +

N − n

N − 1

(
1− n− 1

N − 2

)
diag(ϕi)

2

+
n− 1

N − 1

(
1− n− 2

N − 2

)
ϕiϕ

⊤
i

)
=

n

N
(eie

⊤
i + b diag(ϕi)

2 + c ϕiϕ
⊤
i ),

where the following constatnts are defined:

b =
N − n

N − 1

(
1− n− 1

N − 2

)
=

N − n

N − 1

N − n− 1

N − 2

and

c =
n− 1

N − 1

(
1− n− 2

N − 2

)
=

n− 1

N − 1

N − n

N − 2
.

Starting from equation (4.2.22), we factorize the approximated variance

of the predictor as

V[ẑ(ui)] =
E[(h⊤

i z)
2] (E[h⊤

i ]1N)
2

(E[h⊤
i ]1N)4

− E[h⊤
i ]1N z⊤E[hih

⊤
i ]1N E[h⊤

i ]z

(E[h⊤
i ]1N)4

− E[h⊤
i ]z 1

⊤
NE[hih

⊤
i ]z E[h

⊤
i ]1N

(E[h⊤
i ]1N)4

+
E[(h⊤

i 1N)
2] (E[h⊤

i ]z)
2

(E[h⊤
i ]1N)4

+Op(n
−2)

=
E[h⊤

i ]1N z⊤E[hih
⊤
i ](z E[h

⊤
i ]1N − 1NE[h

⊤
i ]z)

(E[h⊤
i ]1N)4

− E[h⊤
i ]z 1

⊤E[hih
⊤
i ](z E[h

⊤
i ]1N − 1NE[h

⊤
i ]z)

(E[h⊤
i ]1N)4

+Op(n
−2)

=
(E[h⊤

i ]1N z⊤ − E[h⊤
i ]z 1

⊤
N)E[hih

⊤
i ](E[h

⊤
i ]1N z− E[h⊤

i ]z 1N)

(E[h⊤
i ]1N)4

+Op(n
−2)

= k⊤
i E[hih

⊤
i ]ki +Op(n

−2) (4.2.25)

and we define the following vector:
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ki =
E[h⊤

i ]1N z− E[h⊤
i ]z 1N

(E[h⊤
i ]1N)2

=
N

n

(1 + at2i)z− (z(ui) + at1i)1N

(1 + at2i)2
, (4.2.26)

where expectation (4.2.16) is retrieved.

4.2.4 Covariance

The covariance between two IDW point estimators is obtained in approx-

imated form through the delta method (Appendix A) since estimator (4.2.5)

is the ratio of sums of linear combinations of random quantities.

Theorem 4.2.3. Using the first-order delta method approximation of the

covariance between two ratios of random quantities, the approximated co-

variance between two IDW point estimators is

Cov(ẑ(ui), ẑ(uj)) = k⊤
i E[hih

⊤
j ]kj +Op(n

−2), (4.2.27)

where vectors ki and kj are defined in equation (4.2.20).

Proof. Starting from equation (A.4) the resulting first-order delta method

approximation of the covariance between two IDW point estimators is

Cov(ẑ(ui), ẑ(uj)) =
E[h⊤

i ]1N z⊤E[hih
⊤
j ]z E[h

⊤
j ]1N

(E[hi]⊤1N)2(E[h⊤
j ]1N)2

−
E[h⊤

i ]1N z⊤E[hih
⊤
j ]1N E[h⊤

j ]z

(E[hi]⊤1N)2(E[h⊤
j ]1N)2

−
E[h⊤

i ]z 1
⊤
NE[hih

⊤
j ]z E[h

⊤
j ]1N

(E[hi]⊤1N)2(E[h⊤
j ]1N)2

+
E[h⊤

i ]z 1
⊤
NE[hih

⊤
j ]1N E[h⊤

j ]z

(E[hi]⊤1N)2(E[h⊤
j ]1N)2

+Op(n
−2). (4.2.28)

Analogously to what has been done for the variance, we need to com-

pute the mixed first moment of two IDW point estimators’ non-standardized
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weighting vectors

E[hih
⊤
j ] = E[(Qiei +Q ◦ ϕi −QiQ ◦ ϕi)(Qjej +Q ◦ ϕj −QjQ ◦ ϕj)

⊤]

= E[QiQjeie
⊤
j +Qiei(Q ◦ ϕj)

⊤ −QiQjei(Q ◦ ϕj)
⊤

+Qj(Q ◦ ϕi)e
⊤
j + (Q ◦ ϕi)(Q ◦ ϕj)

⊤ −Qj(Q ◦ ϕi)(Q ◦ ϕj)
⊤

−QiQj(Q ◦ ϕi)e
⊤
j −Qi(Q ◦ ϕi)(Q ◦ ϕj)

⊤

+QiQj(Q ◦ ϕi)(Q ◦ ϕj)
⊤]

= E[QiQjeie
⊤
j ] + E[Qiei(Q ◦ ϕj)

⊤]− E[QiQjei(Q ◦ ϕj)
⊤]

+ E[Qj(Q ◦ ϕi)e
⊤
j ] + E[(Q ◦ ϕi)(Q ◦ ϕj)

⊤]

− E[Qj(Q ◦ ϕi)(Q ◦ ϕj)
⊤]− E[QiQj(Q ◦ ϕi)e

⊤
j ]

− E[Qi(Q ◦ ϕi)(Q ◦ ϕj)
⊤] + E[QiQj(Q ◦ ϕi)(Q ◦ ϕj)

⊤].

(4.2.29)

We start by computing the first expected value involved in the previous

equation by using the second-order inclusion probability:

E[QiQj]eie
⊤
j =

n

N

n− 1

N − 1
eie

⊤
j .

Using a formulation analogous to the one proposed by Dol et al. (1996) we

compute the second expectation of equation (4.2.29) as

ei(E[QiQ] ◦ ϕj)
⊤ =

n

N
ei

{(
N − n

N − 1
ei +

n− 1

N − 1
1N

)⊤

◦ ϕ⊤
j

}

=
n

N

(
N − n

N − 1
ϕijeie

⊤
i +

n− 1

N − 1
eiϕ

⊤
j

)
. (4.2.30)

We continue by computing the expectation of the third term of equation

(4.2.29)

ei(E[QiQjQ] ◦ ϕj)
⊤ =

n

N

n− 1

N − 1
ei

[{
N − n

N − 2
(ei + ej) +

n− 2

N − 2
1N

}⊤

◦ ϕ⊤
j

]

=
n

N

n− 1

N − 1

(
N − n

N − 2
ϕijeie

⊤
i +

n− 2

N − 2
eiϕ

⊤
j

)
. (4.2.31)

Similarly to (4.2.30), the fourth expected value is
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(E[QjQ] ◦ ϕi)e
⊤
j =

n

N

(
N − n

N − 1
ϕijeje

⊤
j +

n− 1

N − 1
ϕie

⊤
j

)
. (4.2.32)

The fifth expectation of equation (4.2.29) is similar to (4.2.24):

E[QQ⊤] ◦ ϕiϕ
⊤
j =

n

N

(
N − n

N − 1
IN +

n− 1

N − 1
1N1

⊤
N

)
◦ ϕiϕ

⊤
j

=
n

N

(
N − n

N − 1
diag(ϕi ◦ ϕj) +

n− 1

N − 1
ϕiϕ

⊤
j

)
.

The sixth expectation in equation (4.2.29) is

E[QjQQ⊤] ◦ ϕiϕ
⊤
j =

n

N

[
N − n

N − 1

N + n− 3

N − 2
eje

⊤
j +

n− 1

N − 1

n− 2

N − 2
1N1

⊤
N

+
n− 1

N − 1

N − n

N − 2

{
ej(1N − ej)

⊤ + (1N − ej)e
⊤
j

+ diag(1N − ej)}] ◦ ϕiϕ
⊤
j

=
n

N

n− 1

N − 1

[
N − n

N − 2

{
ϕijejϕ

⊤
j + diag(ϕi ◦ ϕj)

}
+

n− 2

N − 2
ϕiϕ

⊤
j

]
. (4.2.33)

The seventh expectation is similar to (4.2.31)

(E[QiQjQ] ◦ ϕi)e
⊤
j =

n

N

n− 1

N − 1

(
N − n

N − 2
ϕijeje

⊤
j +

n− 2

N − 2
ϕie

⊤
j

)
.

The eighth expected value is computed in a way analogous to (4.2.33)

E[QiQQ⊤] ◦ ϕiϕ
⊤
j =

n

N

n− 1

N − 1

[
N − n

N − 2

{
ϕijϕie

⊤
i + diag(ϕi ◦ ϕj)

}
+

n− 2

N − 2
ϕiϕ

⊤
j

]
.

The last expectation involves fourth-order inclusion probabilities
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E[QiQjQQ⊤] ◦ ϕiϕ
⊤
j =

n

N

n− 1

N − 1

[
N − n

N − 2

N + n− 5

N − 3

{
eie

⊤
i + eje

⊤
j

+ eie
⊤
j + eje

⊤
i

}
+

n− 2

N − 2

N − n

N − 3

{
ei(1N − ei − ej)

⊤

+ ej(1N − ei − ej)
⊤ + (1N − ei − ej)e

⊤
i

+(1N − ei − ej)e
⊤
j + diag(1N − ei − ej)

}
+

n− 2

N − 2

n− 3

N − 3
1N1

⊤
N

]
◦ ϕiϕ

⊤
j

=
n

N

n− 1

N − 1

[
N − n

N − 2

{
N + n− 5

N − 3
ϕ2
ijeje

⊤
i

+
n− 2

N − 3

(
ϕijej

{
(1N − ei) ◦ ϕj

}⊤
+ ϕij {(1N − ej) ◦ ϕi} e⊤i

+ diag(ϕi ◦ ϕj)
)}

+
n− 2

N − 2

n− 3

N − 3
ϕiϕ

⊤
j

]
.

The relations collected in Appendix B are involved in the calculus of the

approximated covariance between two IDW point estimators.

The equation of the mixed first moment (4.2.29) becomes

E[hih
⊤
j ] =

n

N

{
n− 1

N − 1
eie

⊤
j + bϕij(eie

⊤
i + eje

⊤
j ) + c(eiϕ

⊤
j + ϕie

⊤
j )

+
N − n− 2

N − 3
bdiag(ϕi ◦ ϕj) +

N − n− 1

N − 3
cϕiϕ

⊤
j

− cϕij(ejϕ
⊤
j + ϕie

⊤
i ) +

N + n− 5

N − 3
cϕ2

ijeje
⊤
i

+
n− 2

N − 3
cϕij(ej{(1N − ei) ◦ ϕj}⊤ + {(1N − ej) ◦ ϕi}e⊤i )

}
.

Using the vector defined in equation (4.2.26), we factorize the approxi-

mated covariance in a way similar to equation (4.2.25)

Cov(ẑ(ui), ẑ(uj)) =

(
E[h⊤

i ]1N z⊤ − E[h⊤
i ]z 1

⊤
N

)
E[hih

⊤
j ]
(
z E[h⊤

j ]1N − 1N E[h⊤
j ]z
)

(E[h⊤
i ]1N)2(E[h⊤

j ]1N)2

+Op(n
−1)

= k⊤
i E[hih

⊤
j ]kj +Op(n

−2). (4.2.34)
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where vectors ki and kj are defined in equation (4.2.26).

Variances (4.2.19) and covariances (4.2.27) of the IDW point estimators

can be collected in the N ×N symmetric matrix

Σ =


V[ẑ(u1)] Cov(ẑ(u1), ẑ(u2)) · · · Cov(ẑ(u1), ẑ(u2))

Cov(ẑ(u2), ẑ(u1)) V[ẑ(u2)] · · · Cov(ẑ(u2), ẑ(uN))
...

...
. . .

...

Cov(ẑ(uN), ẑ(u1)) Cov(ẑ(uN), ẑ(u2)) · · · V[ẑ(uN)]



=


k⊤
1 E[h1h

⊤
1 ]k1 k⊤

1 E[h1h
⊤
2 ]k2 · · · k⊤

1 E[h1h
⊤
N ]kN

k⊤
2 E[h2h

⊤
1 ]k1 k⊤

2 E[h2h
⊤
2 ]k2 · · · k⊤

2 E[h2h
⊤
N ]kN

...
...

. . .
...

k⊤
NE[hNh

⊤
1 ]k1 k⊤

NE[hNh
⊤
2 ]k2 · · · k⊤

NE[hNh
⊤
N ]kN

+Op(n
−2).

(4.2.35)

4.2.5 Asymptotic properties

The IDW point estimator turns out to be finite population consistent

according to definition (c) of page 168 of Särndal et al. (1992). Let us

consider only a fixed finite population P of N locations in the domain D for

which we have an increasing sample size n, then

lim
n→N

ẑ(ui) = z(ui).

It can be easily be proved by noticing that if the sample coincides to the

whole population, then the event of being sampled is sure and point estimator

(4.2.5) will be the observed value itself since ẑ(ui) reproduces the observed

value at sampled locations.

4.2.6 Variance estimation

In this subsection three different variance estimators for the variance of

estimator (4.2.5) are presented: a näıve one and two jackknife ones.

Firstly, we propose to estimate the vector ki of equation (4.2.20) using

the vector of the estimated values (4.2.6). Vector ki estimator is obtained by
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substituting ẑ for the unknown quantities involved in equation (4.2.26):

k̂i =
N

n

(1 + at2i)ẑ− (z(ui) + at̂1i)1N

(1 + at2i)2
. (4.2.36)

Analogously, linear combination (4.2.9) is estimated by

t̂1 =
∑
j ̸=i

ϕij ẑ(uj) = ϕ⊤
i ẑ,

while combination (4.2.10) does not need to be estimated because the squared

inverse Euclidean distances are known before sampling.

The resulting näıve estimator of variance (4.2.19) is

V̂n[ẑ(ui)] = k̂⊤
i E[hih

⊤
i ]k̂i.

Following Wolter (2007), we suggest the use of two jackknife estimators,

one of which is known to be conservative. We define the first variance esti-

mator as

V̂1[ˆ̄z(ui)] =
1

n(n− 1)

n∑
k=1

(ẑ(ui)k − ˆ̄z(ui))
2, (4.2.37)

where ˆ̄z(ui) is the mean of the n pseudo-values ẑ(ui)k of the IDW point

estimator for the ith location defined as

ẑ(ui)k = nẑ(ui)− (n− 1)ẑ(ui)(k),

where ẑ(ui)(k) is the IDW point estimator computed by excluding the k-th

sampled location. An alternative estimator, which is known to be conserva-

tive, is defined by substituting the mean of the pseudo-values ˆ̄z(ui) for the

estimated value ẑ(ui):

V̂2[ˆ̄z(ui)] =
1

n(n− 1)

n∑
k=1

(ẑ(ui)k − ẑ(ui))
2. (4.2.38)

Variance estimators (4.2.37) and (4.2.38) are both used when the sampling

fraction f = n/N is negligible, otherwise the modification

ẑ(ui)
∗
(k) = ẑ(ui) + (1− f)1/2(ẑ(ui)(k) − ẑ(ui)) (4.2.39)

might usefully be applied instead of ẑ(ui)(k).

For a deeper compendium see Appendix C.
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4.3 Estimating individual quantities

in design-based continuous spatial popu-

lation

One of the most peculiar characteristics of spatial data is that they usually

are gathered in a continuous domain. As we have seen in the previous chapter

geostatistics can be employed for predicting unobserved data either in the

spatial finite population case or the continuous domain case. In order to do

so in design-based framework we need to pass from inclusion probabilities to

inclusion density functions.

4.3.1 From inclusion probabilities to inclusion density

functions

The main idea for using the design-based spatial inference in a continuous

spatial domain is to replace the usual inclusion probabilities used for the finite

population case with the inclusion density function defined by Cordy (1993).

Let us now suppose that the spatial domain is a bounded open set,

D ⊂ R2, and a fixed size sample design is chosen for the sake of simplic-

ity. Following Cordy (1993), we define a sampling design as a probability

measure P on the σ-algebra Sn of all the possible samples of size n, satisfy-

ing the following regularity conditions:

(i) the joint probability density function f defined on Sn, of the n random

variables denoting the locations U 1, . . . ,Un to sample, satisfies

P (E) =

∫
E

f dλn

for each measurable set E ⊂ Sn, where λn denotes Lebesgue measure

on Dn;

(ii) the inclusion density function

π(u) =
n∑

i=1

fi(u), (4.3.1)

where fi denotes the marginal density of U i, is positive for each u ∈ D.
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Requirement (ii) can be thought of as the continuous version of the statement

that in the finite population case assesses that every unit in the population

has a positive probability of being sampled.

Analogously we define the pairwise inclusion density function as

π(u,u′) =
n∑

i=1

∑
i̸=j

fij(u,u
′),

and so on.

For practical purposes one can consider inclusion density function (4.3.1)

as the number of locations to be sampled per unit area of the domain.

For what regards SRSWoR the sampling locations are selected at random

leading to independence among them. Therefore, the density function f of

the n random variables denoting the locations U 1, . . . ,Un to sample can be

expressed as the product of the marginal density functions fi:

f(u1, . . . ,un) =
n∏

i=1

fi(ui).

The marginal density function managing the inclusion of a location in the

sample is a Bernoulli random variable, leading to the first-order inclusion

density function in SRSWoR from a continuous domain

π(u) =
n

|D|
,

where |D| =
∫
D du denotes the area of the domain D. Analogously the

pairwise inclusion density function of two spatial locations is defined as

π(u,u′) =
n(n− 1)

|D|2
,

and so on.

4.3.2 The spatial point estimator in the continuous

population case

Formally, the expression of the IDW point estimator for a continuous

domain is the same as the one of the finite population case: (4.2.3) and,

therefore, (4.2.5).
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Its expectation

E[ẑ(ui)] =
z(ui) + at1i
1 + at2i

+Op(n
−1),

differs form (4.2.7) only in the constant

a = 1− n− 1

|D|
,

now defined according to the inclusion density function of SRSWoR.

The same holds for the variance:

V[ẑ(ui)] = k⊤
i E[hih

⊤
i ]ki +Op(n

−2),

where vector ki and the second moment E[hih
⊤
i ] become

ki =
|D|
n

(1 + at2i)z− (z(ui) + at1i)1N

(1 + at2i)2

and

E[hih
⊤
i ] =

n

|D|
(eie

⊤
i + b diag(ϕi)

2 + c ϕiϕ
⊤
i ),

respectively. As for the expectation, the involved constants need to be defined

according the higher order inclusion density function:

b =

(
1− n− 1

|D|

)2

and

c =

(
1− n− 1

|D|

)
n− 1

|D|
.

Following the same reasoning as above, we obtain the covariance between

two IDW point estimators in a continuous spatial domain

Cov(ẑ(ui), ẑ(uj)) = k⊤
i E[hih

⊤
j ]kj +Op(n

−2),

where the mixed first moment E[hih
⊤
j ] becomes

E[hih
⊤
j ] =

n

|D|

{
n− 1

|D|
eie

⊤
j + bϕij(eie

⊤
i + eje

⊤
j ) + c(eiϕ

⊤
j + ϕie

⊤
j )

+ bdiag(ϕi ◦ ϕj) + cϕiϕ
⊤
j − cϕij(ejϕ

⊤
j + ϕie

⊤
i ) + cϕ2

ijeje
⊤
i

+c
n− 2

|D|
ϕij(ej{(1N − ei) ◦ ϕj}⊤ + {(1N − ej) ◦ ϕi}e⊤i )

}
.
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4.4 Estimating population quantities

in design-based finite spatial population

In the previous sections point estimation has been treated either in a

finite population or in a continuous domain. It represents a novelty in the

context of design-based inference since it normally deals with the estimation

of population synthetic quantities (i.e. totals or means). In this section

the usual spatial design-based finite population inference is enriched by the

use of the results of Section 4.2. For the sake of simplicity, in the following

subsections only the population total estimator will be treated, since the

population mean estimator is easily obtained by dividing by N .

4.4.1 Estimation of the population total

Given that the IDW interpolator is exact and that the resulting point

estimator holds the same property, the population total estimator can be

expressed as the sum of the values contained in vector (4.2.6) as follows:

t̂(z) = 1⊤
N ẑ =

N∑
i=1

ẑ(ui) =
∑
i∈S

z(ui) +
∑
j /∈S

ẑ(uj), (4.4.1)

where the ẑ(uj)-s are the IDW point estimators evaluated in the unsampled

locations. Previous equation’s last equality is the usual estimator of the

population total in predictive form of design-based inference (Bolfarine and

Zacks, 1992).

4.4.2 Statistical properties

Since estimator of the population total is the sum of the estimated values,

its expectation is the sum of the expectations of the IDW point estimators:

E[t̂(z)] = E[1⊤
N ẑ] = 1⊤

NE[ẑ]

= 1⊤
Ndiag(1N + at2)

−1(z+ at1) +Op(n
−1)

=
N∑
i=1

z(ui) + at1i
1 + at2i

+Op(n
−1),
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where expected values (4.2.18) and (4.2.17) are retrieved.

Estimator (4.4.1) variance is defined as

V[t̂(z)] =
N∑
i=1

V[ẑ(ui)] +
N∑
i=1

∑
j ̸=i

Cov(ẑ(ui), ẑ(uj))

=
N∑
i=1

N∑
j=1

k⊤
i E[hih

⊤
j ]kj +Op(n

−2) = 1⊤
NΣ1N , (4.4.2)

where variances (4.2.19) and covariances (4.2.27) are retrieved.

Using notation of Subsection 4.2.5, we define the infinite sequence of

nested increasing size populations {Pν}ν∈N belonging to the very spatial do-

main D. From each of them we draw a sample Sν generating the increasing

sequence of sample sizes {nν}ν∈N. Both the population size Nν and the sam-

ple size nν diverge as ν → ∞ (i.e. Nν → ∞, nν → Nν). Hence, the estimator

of the population total is asymptotically p-unbiased

lim
ν→∞

E[t̂ν(z)− tν(z)] = 0,

where tν(z) is the population total f population Pν to estimate (Särndal et al.,

1992).

Estimator (4.4.1) of the population total is finite population consistent

(Särndal et al., 1992); the proof is straightforward once one has noticed the

convergence to zero of constant a of the individual IDW point estimator as

n → N .

4.4.3 Variance estimation

A näıve estimator of the variance can be obtained following Subsec-

tion 4.2.6 by using k̂i in place of ki in equation (4.4.2):

V̂n[t̂(z)] =
N∑
i=1

k̂⊤
i E[hih

⊤
i ]k̂i +

N∑
i=1

∑
j ̸=i

k̂⊤
i E[hih

⊤
j ]k̂j,

where estimator k̂i is defined in equation (4.2.36).

Analogously to what has been done for the IDW point estimator of in-

dividual quantities, two jackknife variance estimators are proposed. Let us
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define the pseudo-values

t̂(z)k = nt̂(z)− (n− 1)t̂(z)(k),

where

t̂(z)(k) =
∑
i∈S

z(ui) +
∑
j /∈S

ẑ(uj)− z(uk) + ẑ(uk) (4.4.3)

is the total estimator calculated on the subsample of n − 1 locations where

the kth sampled one has been omitted. The first jackknife variance estimator

is defined as

V̂1[ˆ̄t(z)] =
1

n(n− 1)

n∑
k=1

(t̂(z)k − ˆ̄t(z))2.

The alternative conservative estimator is obtained by substituting the mean

of the pseudo-values ˆ̄t(z) for the estimated value t̂(z):

V̂2[ˆ̄t(z)] =
1

n(n− 1)

n∑
k=1

(t̂(z)k − t̂(z))2.

If the sampling fraction f = n/N is not negligible, values (4.4.3) might

usefully be substituted for

t̂(z)∗(k) = t̂(z) + (1− f)1/2(t̂(z)(k) − t̂(z)). (4.4.4)

4.4.4 A GREG-like estimator

Let us start by defining the geographically weighted regression (GWR)

proposed by Brunsdon et al. (1998). In a way similar to the IDW interpolator,

the GWR employs the information close to an unobserved location to produce

an estimate of the variable under study in that location.

Consider the general regression model for a generic location

zi = x⊤
i β + εi,

whose estimate is given by

ẑi = x⊤
i β̂ + εi,

where β̂ = (X⊤X)−1X⊤z is the usual ordinary least squares (OLS) estimator.

The regression coefficient vector β is global in the sense that it employs the
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information concerning all individuals. Estimator β̂ is very helpful in a stan-

dard context, but in a spatial domain considering the spatial relation related

to each location usually produces better results. GWR exploits this idea

by modifying the usual regression model introducing a different coefficient

vector which is able to use the information of each location’s neighbourhood:

z(ui) = x⊤
i β(ui) + ε(ui).

The coefficient vector estimator is obtained as a weighted least square (WLS)

β̂(ui) = (X⊤W(ui)X)−1X⊤W(ui)z, (4.4.5)

where the diagonal N ×N matrix containing the reciprocal of the variances

is substituted by the diagonal matrix containing a decreasing function of the

Euclidean distance:

W(ui) =


w1(ui) 0 · · · 0

0 w2(ui) · · · 0
...

...
. . .

...

0 0 · · · wN(ui)

 . (4.4.6)

Brunsdon et al. (1998) firstly suggest to use as function of the distances

a step function

wj(ui) =

1, if dij ≤ r;

0, otherwise;

where r is the chosen radius of the neighbourhood and dij = ∥uj−ui∥. They
also suggest the use of spatially adaptive kernels leading, however, to the

problem of the choice of the bandwidth parameter, h. For a deeper insight

into GWR one can have a look at Fotheringham et al. (2000).

Consider now the weighting system defined in equation (4.2.1), it is a

decreasing function of the Euclidean distance which, as such, is well suitable

for being used as the diagonal elements of matrix (4.4.6). In this case no

radius has been chosen, meaning that all the locations in the domain are

taken into account. Note that the IDW interpolator weighting system can

be easily modified in order to deal with the presence of a radius (Shepard,
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1968). In this way the weights involved in matrix (4.4.6) are defined as

wj(ui) =

d−2
ij , if i ̸= j;

0, otherwise.

The proposed estimator of the total (4.4.1) is such that no auxiliary in-

formation is needed in order to obtain an estimate. In the GWR it means

that matrix X reduces to a vector having only unit values, 1N . As for the

IDW point estimator, the information regarding the sample is summarized

in vector Q collecting the Bernoulli random variables managing inclusion in

the sample defined in Subsection 4.2.1. Estimator (4.4.1) can, therefore, be

rewritten as

t̂(z) =
∑
i∈D

ẑ(ui) =
∑
i∈S

z(ui) +
∑
i/∈S

ẑ(ui)

=

{
1n +

∑
i/∈S

1⊤
nW(ui)

−1

1⊤
nW(ui)−11n

}⊤

zn, (4.4.7)

where zn = [z(u1), . . . , z(un)]
⊤ is the vector of the observed values in the

sampled locations.

Formulation (4.4.7) of the total estimator has the appealing look of the

generalized regression (GREG) estimator (Särndal et al., 1992):

t̂(y) =

{
1n +

∑
i/∈S

xi(X
⊤Σ−1X)−1X⊤Σ−1

}⊤

y∗,

where Σ = diag(σ2
i ) is the diagonal matrix containing the variances of each

sampled individual and y∗ = [w1y1, . . . , wnyn] is the vector of the observed

values suitably weighted according to the sampling design. In the case with-

out auxiliary variable it becomes an estimator where the unobserved values

are estimated using a weighting system based on the inverse of the vari-

ances σ2
i :

t̂(y) =

{
1n +

∑
i/∈S

1⊤
nΣ

−1

1⊤
nΣ

−11n

}
y∗.
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Simulation study

In order to evaluate the performances of the IDW point estimator, a

Monte Carlo experiment has been performed. The data used in the simu-

lations are generated according to different random superpopulation mod-

els (Section 5.1). For each dataset the Monte Carlo experiment consists in

drawing 1000 samples using SRSWoR for four different sampling fraction

(f = 0.05, 0.10, 0.15, 0.20). Estimator (4.2.5) results are compared with the

kriging predictor and the SRWoR estimator in predictive form (Appendix D

and Bolfarine and Zacks, 1992) through some indicators.

The results of the simulation are obtained using a routine written for the

statistical software R

5.1 Generating the populations

In order to fully appreciate the strengths and weaknesses of the proposed

IDW point estimator in respect to the kriging predictor and the SRSWoR

estimator in predictive form, we analyse different populations. Those are

the realization of a random field having an exponential semivariogram with

different parameters configuration, allowing us to control the reliance of the

proposed technique on the change of the parameters of the random field

generating the data. The superpopulation models generating the populations

analysed in the simulations are collected in Table 5.1.

The spatial domain, D, is a 20 × 20 square with a superimposed regu-

71
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Table 5.1: Random superpoluation models generating the populations anal-

ysed in the simulations

Semivariogram µ σ2 ϕ τ 2

A exponential 2 4 15 0.00

B exponential 2 4 6 0.00

C exponential 2 4 45 0.00

D exponential 2 4 90 0.00

E exponential 2 1 15 0.00

F exponential 2 1 45 0.00

G exponential 2 8 15 0.00

H exponential 2 8 45 0.00

I exponential 2 4 15 0.25

J exponential 2 4 45 0.25

K exponential 2 4 15 1.00

L exponential 2 4 45 1.00

lar grid. All the populations are generated as a realization of a Gaussian

random field, using the function grf of the R-package geoR (Ribeiro Jr and

Diggle, 2001). Table 5.1 summarizes the parameters of the exponential semi-

variogram of the random field generating the data as the result of an un-

conditional simulation (Diggle and Ribeiro, 2007). Suppose the random field

{Z(u) : u ∈ D} has mean

µ(u) = E[Z(u)], u ∈ D,

and covariance

C(u,u′) = Cov(Z(u), Z(u′)), u,u′ ∈ D.

Then, the vector of the population values Z = [Z(u1), . . . , Z(uN)]
⊤ has mean

E[Z] = µ and covariance matrix V[Z] = Σ whose ij th element is the covari-

ogram C(ui,uj). Let ε = [ε(u1), . . . , ε(uN)]
⊤ be a vector ofN i.i.d. Gaussian

random variables, N (0, 1), then the population values are obtained through

the relation

Z = µ+ Lε.
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In the previous equation L is a lower triangular matrix having strictly positive

diagonal elements obtained through the Cholesky decomposition (Rubinstein

and Kroese, 2007) of the matrix collecting the covariogram values of the

process at the N locations

Σ = LL⊤.

The main characteristics of each population of Table 5.1 are presented in

Appendix E. A perspective plot and a tile plot shows the population spatial

configuration. The random field semivariogram, having parameters as in

Table 5.1, is plotted against the population one. A table summarizing the

main descriptive statistics completes each section.

5.2 Results

In this section we present the results of the Monte Carlo experiments for

the IDW point estimators (4.2.5) and (4.4.1) both for a finite spatial pop-

ulation. The simulation studies regard the comparison of the estimators’

performances with those of the kriging predictor and the SRSWoR in pre-

dictive form through the following indicators computed on the basis of the

Monte Carlo simulation:

• bias;

• root mean squared error (RMSE);

• coverage of the 95% confidence interval.

In order to evaluate the sampling fraction’s effect on the estimation (pre-

diction) of the unobserved values at unsampled locations, we firstly analyse

each population at a time. We compare the IDW point estimator’s perfor-

mances with those of the kriging predictor and of the SRSWoR estimator in

predictive form. Estimation of individual quantities and of the population

total are considered. Finally, we focus on the variance estimation by com-

paring the performances of the näıve variance estimator and of the jackknife

ones; in the case of the estimation of the population total we will consider

only the jackknife ones for computational reasons.
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Then, the analysis will focus on how varying each parameter of the super-

population model generating the data affect estimation in comparison with

the kriging and the SRSWoR estimator in predictive form. The comparison

regards estimation of both individual quantities and the population total.

For what regards the kriging predictors, in the simulations we used the

ordinary block kriging method. The choice of the ordinary kriging (Sub-

section 3.4.2) is motivated by a preliminary comparison with the results

provided by the universal kriging (Subsection 3.4.3) where no appreciable

difference has been found. Therefore, the computationally less demanding

ordinary kriging has been adopted and implemented in the routine through

the function krige.control of the geoR package (Ribeiro Jr and Diggle,

2001). The block kriging (see Table 3.1) is adopted when the location is not

a spatial point but a subarea of the domain. The geoR package makes no

difference between kriging and block kriging provided the coordinates of the

point of balance of each subarea are used. The semivariogram model used for

prediction is the same as the one used for generating the populations; thus,

the model misspecification is not taken into account. Similarly, the recursive

algorithm employs the parameters values used for generating the data as its

initial values. Both the models and the parameter values are collected in

Table 5.1.

5.2.1 The effect of the sampling fraction

Population A

In this subsection we concentrate on the analysis of the performances of

the IDW point estimator both for individual and global estimationin the case

of population A whose spatial configuration and main descriptive statistics

are collected in Appendix E.1. Let us first focus on the IDW point estimator

and its overall spatial behaviour as the sampling fraction increases compared

to the kriging predictor and the SRSWoR estimator in predictive form. The

results of the Monte Carlo experiments regarding their overall distributions

of the bias, the RMSE and the coverage of the 95% confidence interval for

all the locations at the same time are collected in Table 5.2. For all the

three techniques the mean and median values of the bias distributions are
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sufficiently close to zero. In the case of the IDW, point estimator both the

mean and median are negative indicating a possible slightly underestimation

problem. In the kriging and SRSWoR cases the median assumes a negative

sign, in contrast with a positive mean. Moreover, the three overall bias distri-

butions shrink as the sampling fraction increases. The IDW point estimator

and the kriging predictor are nearly identical and both seem reasonably sym-

metric around zero. The overall bias distribution of the SRSWoR estimator

in predictive form shrinks less than the other two as the sampling fraction in-

creases; moreover, the minimum values are much larger than those observed

for the overall bias distributions of the other methods.

Almost the same can be said for the overall RMSE distribution: the IDW

point estimator and the kriging predictor seem to globally outperform the

SRSWoR estimator in predictive form; however, it shows smaller minimum

values maybe due to the fact that values close to the population mean are

less affected by estimation errors. The IDW point estimator’s overall RMSE

distribution shows smaller minimum than the kriging predictor ones and

almost comparable maximum values.

For what regards the overall distribution of the coverage of the 95% con-

fidence interval centred in the estimated (predicted) values, the SRSWoR

estimator in predictive form shows a poor behaviour in comparison with the

other methods. The IDW point estimator overall distribution of the cover-

age has a peculiar characteristic: its mean and median decrease at increasing

sampling fractions. Indeed at a sampling fraction of f = 0.05 the point

estimator overall coverage distribution is comparable to the kriging’s one.

In order to better understand the spatial behaviour of the proposed meth-

ods, the coverage of the 95% confidence interval centred in the estimated

(predicted) values is plotted in Figure 5.1 for all locations. In the first row,

corresponding to the IDW point estimator, the coverage tends to conform

over the domain as the sampling fraction increases. This leads to the de-

creasing central tendency indices’ values at growing sampling fractions of

Table 5.2. By comparing all the plots, it appears even clearer how much both

the IDW point estimator and the kriging predictor outperform the SRSR-

WoR estimator in predictive form in terms of coverage. Moreover, at small

sampling fractions it seems that the IDW point estimator and the kriging
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predictor coverages have very similar spatial distributions.
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Figure 5.1: Population A: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

Table 5.3 collects the bias, RMSE and coverage of the estimator (predic-

tor) of the population total computed through the Monte Carlo experiments.

Let us first consider the bias, the IDW point estimator is the most biased of

the three methods analysed: it tends to underestimate the population total,

t = 391.722, by a quantity decreasing with the increase of the sampling frac-

tion. Not very surprisingly the expansion estimator is the one performing

better given the standard situation of population A. In terms of RMSE, the

total predictor based on the individual kriging predictors performs slightly

better than the IDW point estimator and the expansion estimator showing
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faster decreasing values as the sampling fraction increases; the IDW point

estimator is the second best. The coverage values of the three methods fluc-

tuate around the nominal value of 95% and show a very similar behaviour.

Table 5.4: Population A: distribution of the overall bias of the estimators of

the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -1.188 -1.226 -1.450 -1.739

1st Qu. -0.427 -0.351 -0.317 -0.322

median -0.314 -0.233 -0.190 -0.167

mean -0.371 -0.284 -0.254 -0.248

3rd Qu. -0.240 -0.154 -0.111 -0.087

max -0.124 -0.053 -0.033 -0.022

V̂1[ẑ(ui)
∗]

min -0.523 -0.978 -1.333 -1.722

1st Qu. -0.051 -0.138 -0.208 -0.257

median 0.003 -0.049 -0.076 -0.098

mean -0.019 -0.094 -0.142 -0.183

3rd Qu. 0.029 -0.002 -0.010 -0.024

max 0.204 0.084 0.073 0.040

V̂2[ẑ(ui)
∗]

min -0.514 -0.976 -1.332 -1.722

1st Qu. -0.046 -0.136 -0.208 -0.258

median 0.007 -0.047 -0.076 -0.098

mean -0.013 -0.093 -0.142 -0.183

3rd Qu. 0.033 -0.001 -0.010 -0.024

max 0.232 0.090 0.074 0.040

Finally, for population A, the kriging predictor and the corresponding

predictor of the population total perform slightly better than the iDW point

estimator and IDW point estimator of the total. In individual estimation

(prediction), both these techniques outperform the SRSWoR estimator in

predictive form. However, this is not true when the object of inference is the

population total since population A is fair enough.

Consider now the variance estimation, we analyse the three estimators
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proposed in Subsection 4.2.6 for the IDW point estimator. The näıve esti-

mator bias is compared with the jackknife variance estimators (4.2.37) and

(4.2.38) where modification (4.2.39) is used since in any of this cases the

sampling fraction, f , is not negligible. The distribution of the overall bias of

the variance estimators of the Monte Carlo experiments are collected in Ta-

ble 5.4. The overall bias distribution of the two jackknife estimators is quite

the same. The bias of the estimators of the variance of the IDW point esti-

mator is less shrunk around its median as the sampling fraction increases; the

same can be said for the jackknife estimators. At small sampling fractions,

it seems that both the jackknife estimators performs slightly better having

a smaller difference between the maximum and minimum values. However,

the maximum of their overall bias distribution is always positive. At higher

sampling fractions, the variance estimators perform quite in the same way.

However, the näıve estimator bias is negative for each location. Estimator

V̂2[ẑ(ui)
∗] seems the more conservative variance estimator.

Table 5.5: Population A: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] -278.204 -380.318 -9.446 125.877

V̂2[ˆ̄t(z)
∗] -250.543 -375.690 -7.883 126.629

Analogously we consider the variance estimation of the IDW point estima-

tor of the population total. The analysis focuses only on the two jackknife

estimators of Subsection 4.4.3 where modification (4.4.4) is applied. The

näıve estimator is not consider due to its computational intractability. The

results of the Monte Carlo simulation are collected in Table 5.5. Even in

the case of the estimator of the variance of the IDW point estimator of the

population total both the jackknife estimators show a very similar behaviour.

Population B

Appendix E.2 collects the main descriptive statistics of population B.

The overall distributions of the bias, the RMSE and the coverage of the 95%
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confidence interval centred in the estimated (predicted) values are collected

in Table 5.6. The dispersion of the distributions of the overall bias for the

analysed methods shrinks as the sampling fraction increases. For all the

techniques the mean and median overall bias fluctuate around the zero value

suggesting that in the case of population B the estimators and predictor

are generally unbiased. The IDW point estimator and the kriging predictor

show a similar overall bias distribution and both outperform the SRSWoR

estimator in predictive form.

In terms of the overall distribution of the RMSE, the SRSWoR in predic-

tive form shows slightly lower minimums and greater maximums, but similar

means and medians. The IDW point estimator and kriging predictor again

show very similar distributions having lower values.

The overall coverage distribution of the SRSWoR estimator in predic-

tive form has a worse behaviour than those of the IDW point estimator and

kriging predictor: the mean and median values are lower and the the third

quartile has a decreasing tendency as the sampling fraction increases. The

IDW point estimator seems to perform slightly better than the kriging pre-

dictor when the sampling fraction is small, f = 0.05. At a sampling fraction

of 10% the overall distributions of the coverage of the IDW point estimator

and of the kriging predictor are still similar, but at the higher fractions the

latter has a more desirable behaviour.

In order to better appreciate the coverages of the 95% confidence inter-

val centred in the estimated (predicted) value for the analysed techniques

we turn to their spatial distributions. Again, both the IDW point estimator

and the kriging predictor outperform the SRSWoR estimator in predictive

form (Figure 5.2). Moreover, the coverage maps show that the IDW point

estimator has a better behaviour than the kriging predictor at the smallest

sampling fraction, f = 0.05. As the sampling fraction increases, the com-

parison of the plots in the first and second rows of Figure 5.2 shows that the

coverage of the kriging predictor gets little by little higher than the one of

the IDW point estimator.

The values regarding the bias, the RMSE and the coverage of the esti-

mator of the population total based on the IDW point estimator, the kriging

predictor of the population total and the expansion estimator are collected
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in Table 5.7. All the proposed methods of inference on the population total

seem to underestimate the true value at almost all the sampling fractions

analysed, being negative biased. Among those, the expansion estimator is

the less biased. However, along with the kriging predictor its bias is not

monotonously decreasing. The estimator of the population total based on

the IDW point estimator has a slightly nicer behaviour than the one of the

kriging predictor in terms of bias.
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Figure 5.2: Population B: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

The RMSE of the total estimator based on the IDW point estimator is

quite the same as the one of the kriging predictor. Both of them have values

lower than the ones showed by the expansion estimator.
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No substantial difference can be noticed in the coverages of the 95% con-

fidence interval centred in the estimated (predicted) values, since they are

close to the nominal level. Moreover, there is not any clear trend in the

coverage as the sampling fraction increases.

Table 5.8: Population B: distribution of the overall bias of the estimators of

the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -1.485 -1.837 -2.390 -2.862

1st Qu. -0.729 -0.624 -0.611 -0.639

median -0.584 -0.443 -0.357 -0.329

mean -0.613 -0.505 -0.471 -0.468

3rd Qu. -0.444 -0.299 -0.223 -0.176

max -0.225 -0.111 -0.069 -0.044

V̂1[ẑ(ui)
∗]

min -0.897 -1.543 -2.170 -2.778

1st Qu. -0.105 -0.286 -0.427 -0.533

median -0.005 -0.089 -0.147 -0.190

mean -0.050 -0.182 -0.271 -0.348

3rd Qu. 0.043 -0.003 -0.019 -0.038

max 0.223 0.098 0.105 0.066

V̂2[ẑ(ui)
∗]

min -0.885 -1.540 -2.169 -2.778

1st Qu. -0.098 -0.283 -0.427 -0.533

median 0.001 -0.088 -0.146 -0.190

mean -0.041 -0.180 -0.270 -0.348

3rd Qu. 0.050 -0.002 -0.019 -0.038

max 0.249 0.101 0.106 0.067

Finally, for population B the IDW point estimator and the kriging pre-

dictor outperform the SRSWoR estimator in predictive regardless of the di-

mension of the sample. At the smallest sampling fraction, f = 0.05, the

IDW point estimator is the most suitable for inference on individual quanti-

ties. This is not true any more at a sampling fraction of f = 0.10 when the

two techniques are practically equivalent and, moreover, the relationship is
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reversed at higher sampling fractions. For what regards inference on the pop-

ulation total, estimator (4.4.1) and the kriging predictor are just slightly more

biased than the expansion estimator; however, they have smaller RMSE. The

coverage values are similar and fluctuate around the nominal level.

Consider now variance estimation for the IDW point estimator, Table 5.8

collects the bias distribution of the näıve variance estimator and of the two

jackknife estimators, where modification (4.2.39) has been adopted. Esti-

mator V̂2[ẑ(ui)
∗] seems the more conservative presenting, however, negative

values.

Table 5.9: Population B: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 438.450 -228.476 109.671 281.262

V̂2[ˆ̄t(z)
∗] 466.997 -224.075 111.084 281.930

We analyse the bias distribution of the jackknife estimators of the variance

of the IDW point estimator of the population total, where the correction for

the sampling fraction has been adopted. The results of the Monte Carlo

experiment for population B are in Table 5.9. The two proposed estimators

show little difference in the bias distribution, which has not a monotonous

trend.

Population C

Appendix E.3 collects the main descriptive statistics of population C

along with the perspective, tile and semivariogram plots. Table 5.10 col-

lects the main descriptive quantities of the overall bias, RMSE and cover-

age distributions of the IDW point estimator, the kriging predictor and the

SRSWoR estimator in predictive form. The kriging predictor overall bias

distribution has generally lower values than those of the SRSWoR estimator

and of the IDW point estimator; however, the differences with the latter are

substantially smaller. The spatial median and mean of the three bias distri-
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butions are close enough to zero and the difference between the maximum

and minimum decreases as the sampling fraction increases.

The RMSE overall distribution of the IDW point estimator and of the

kriging predictor present basically the same mean and median values, whereas

the corresponding SRSWoR estimator’s ones are substantially larger. The

IDW point estimator present lower minimum and larger maximum RMSE

values than those of the kriging predictor, while both outperform the SR-

SWoR estimator in predictive form.

In terms of coverage the overall mean and median values of the kriging

predictor are closer to the nominal level than those of the other methods.

However, the difference with the IDW point estimator is smaller than the

one with the SRSWoR estimator. Moreover, the latter has overall maximum

values which fail in reach the nominal level at any sampling fraction. Looking

at the trend at increasing sampling fractions, the mean and the median

are not increasing monotonous for any of the three methods; furthermore,

the IDW point estimator’s median is monotonously decreasing. A deeper

analysis on the spatial distribution of the coverage of the 95% confidence

interval centred in the estimated (predicted) values follows. The IDW point

estimator’s coverage (Figure 5.3) tends to become more uniform as the sample

size increases, by levelling peaks and troughs. As the sampling fraction

increases, the kriging predictor basically maintains the same coverage level

for those locations having a value close to the nominal level and improves

coverage for the locations affected by lower values. The SRSWoR estimator

in predictive form has a spatial coverage distribution which, consistently to

its formulation, provides a good coverage only for those locations having a

population value close to the population mean. Finally, the comparison of

the plots in Figure 5.3 shows that both the IDW point estimator and the

kriging predictor have a much better behaviour than the SRSWoR estimator

in predictive form in terms of coverage. Moreover, at the smallest sampling

fraction, f = 0.05, the spatial distribution of the coverage is almost the same

to the kriging predictor’s one. However, at increasing sampling fractions the

latter removes the troughs more efficiently.

Let us now consider the inference on the population total. Table 5.11

collects the bias, RMSE and coverage of the 95% confidence interval centred
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in the estimated (predicted) values for the three methods in the case of

population C. Estimator (4.4.1) of the population total has the largest bias

and tends to overestimate the true value. The expansion estimator has a

slightly better behaviour and underestimate the population total. Finally,

the predictor of the population total based on the kriging has the smallest bias

among the analysed methods. Moreover, at the highest sampling fraction,

f = 0.20 its bias is close to zero.
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Figure 5.3: Population C: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

In terms of RMSE of the proposed techniques, the IDW point estimator

of the population total and the kriging predictor of the population total have

quite similar values; the former has slightly lower values. The expansion
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estimator’s RMSE is substantially larger than the ones of the other techniques

at all the sampling fractions.

Apart from the smallest sampling fraction, f = 0.05, the IDW point

estimator of the population total fails to reach the nominal level. It happens

just the opposite for the kriging predictor of the population total; it exceeds

the nominal 95% level at f = 0.15 and f = 0.20. The expansion estimator

of the population total has coverages lower than the nominal level at any

sampling fraction.

Table 5.12: Population C: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -0.558 -0.496 -0.565 -0.670

1st Qu. -0.183 -0.134 -0.118 -0.117

median -0.128 -0.082 -0.064 -0.054

mean -0.150 -0.107 -0.096 -0.093

3rd Qu. -0.086 -0.053 -0.040 -0.029

max -0.045 -0.018 -0.010 -0.006

V̂1[ẑ(ui)
∗]

min -0.197 -0.373 -0.516 -0.658

1st Qu. -0.010 -0.042 -0.069 -0.091

median 0.008 -0.009 -0.022 -0.030

mean 0.001 -0.031 -0.053 -0.069

3rd Qu. 0.018 0.002 -0.003 -0.006

max 0.109 0.067 0.030 0.021

V̂2[ẑ(ui)
∗]

min -0.194 -0.373 -0.515 -0.658

1st Qu. -0.008 -0.042 -0.069 -0.091

median 0.010 -0.009 -0.022 -0.030

mean 0.003 -0.030 -0.053 -0.069

3rd Qu. 0.020 0.003 -0.003 -0.006

max 0.117 0.069 0.031 0.021

The overall bias distribution of the estimators of the variance of the IDW

point estimator proposed in Subsection 4.2.6 are summarized in Table 5.12.
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Jackknife estimator (4.2.38) with modification (4.2.39) for not negligible sam-

pling fractions is the more conservative, despite even assuming negative val-

ues.

Table 5.13: Population C: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] -32.730 71.167 41.302 16.482

V̂2[ˆ̄t(z)
∗] -15.975 73.510 41.997 16.812

The results on the bias of the jackknife estimators of the variance of

estimator (4.4.1) of the population total adopting modification (4.4.4) are

collected in Table 5.9. Both of them are far from being unbiased; however,

estimator V̂2[ˆ̄t(z)
∗] has a more conservative behaviour and, therefore, is to

be preferred.

Population D

Table 5.14 summarizes the overall distribution of the bias, the RMSE and

the coverage of the 95% confidence interval of the three methods for popula-

tion D (Appendix E.4). The IDW point estimator’s overall bias distribution

has maximum values larger than the kriging predictor’s ones despite show-

ing slightly lower minimum values; median and mean values are similar. In

terms of the overall bias distribution, the SRSWoR estimator in predictive

form performs worse than the other two methods; moreover, it is less con-

centrated around its central tendency values.

In terms of the overall RMSE distribution, both the IDW point estimator

and the kriging predictor outperform the SRSWoR estimator. By comparing

the distributions of the first two techniques, it results that the IDW point

estimator has lower minimum and larger maximum values than the kriging

distribution’s ones; medians and means gets more different as the sampling

fraction increases, while first quartile values are pretty similar.

The overall coverage distribution of the kriging predictor shows higher

mean and median values than those of the other techniques in spite of the
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sampling fraction; however, the IDW point estimator’s ones are not as dis-

similar as those of the SRSWoR in predictive form. The maximum values of

the overall coverage distribution of the IDW point estimator are similar to

the kriging ones and both exceed the nominal level. The maximums of the

SRSWoR estimator overall coverage distribution barely reach the nominal

level of 95%.
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Figure 5.4: Population D: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

In order to better understand the spatial distribution of the coverage of

the 95% confidence interval centred in the estimated (predicted) values, the

coverage maps relative to each technique at the different sampling fractions

are collected in Figure 5.4. It can be seen that as the sampling fraction
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increases both the coverage of the IDW point estimator and kriging predictor

gets higher; the same can not be said for the SRSWoR estimator in predictive

form since the values of the coverage seems to remain quite the same, perhaps

they even tend to decrease. As already pointed out for the overall coverage

distribution, it seems that the IDW point estimator works almost as well as

the kriging predictor for the lowest sampling fraction; as it grows, the latter

shows higher and higher coverages.

Table 5.16: Population D: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -0.420 -0.535 -0.596 -0.665

1st Qu. -0.137 -0.084 -0.072 -0.066

median -0.081 -0.047 -0.037 -0.031

mean -0.102 -0.069 -0.060 -0.057

3rd Qu. -0.050 -0.029 -0.020 -0.016

max -0.019 -0.007 -0.003 -0.002

V̂1[ẑ(ui)
∗]

min -0.153 -0.362 -0.492 -0.618

1st Qu. -0.002 -0.023 -0.037 -0.047

median 0.007 -0.003 -0.012 -0.017

mean 0.004 -0.017 -0.032 -0.042

3rd Qu. 0.016 0.005 -0.001 -0.003

max 0.079 0.045 0.029 0.026

V̂2[ẑ(ui)
∗]

min -0.143 -0.360 -0.492 -0.618

1st Qu. -0.001 -0.023 -0.037 -0.047

median 0.008 -0.003 -0.012 -0.017

mean 0.006 -0.016 -0.032 -0.042

3rd Qu. 0.018 0.005 -0.001 -0.003

max 0.086 0.046 0.029 0.026

The indicators regarding the results of the Monte Carlo experiment on

the techniques for inference on the population total are summarized in Ta-

ble 5.15. In terms of bias the kriging predictor and the expansion estimator
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have similar behaviours; it is worth noticing that at a sampling fraction

f = 20% the bias is almost null. Both techniques perform better than the

IDW point estimator showing lower bias.

In terms of RMSE the IDW point estimator shows values close to the

kriging predictor’s ones, despite being the most biased. Both outperform the

expansion estimator showing substantially lower RMSE.

The coverages of three methods for inference on the population total are

close to the nominal value of 95% regardless of the sampling fraction.

Table 5.16 shows the overall bias distributions of the three variance es-

timator for the individual IDW point estimator. The jackknife conservative

estimator V̂2[ẑ(ui)
∗] seems the more conservative despite presenting negative

values.

Table 5.17: Population D: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 441.242 245.552 30.417 6.374

V̂2[ˆ̄t(z)
∗] 453.126 247.404 31.060 6.681

Analogously, the conservative jackknife estimator of the variance of the

IDW point estimator of the population total is the one to be preferred com-

pared to the non conservative one.

Population E

Population E (Appendix E.5) presents a range value slightly larger than

the mean distance observed in the domain and a low sill value. The main

indicators of the overall distributions of the bias, the RMSE and of the cover-

age for the inference on individual quantities at different sampling fractions

are shown in Table 5.18. In terms of bias, the three techniques presents quite

the same median and mean values; however, the overall distribution of the

IDW point estimator and the kriging predictor are more concentrated around

their central tendency values. Moreover, at low sampling fraction (5% and

10%) these two methods have quite the same distribution. As the sampling
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fraction increases the kriging predictor’s overall distribution becomes more

shrunk around its median.

The RMSE overall distributions of the IDW point estimator and of the

kriging predictor have substantially lower values than those of the distribu-

tion of the SRSWoR. The IDW point estimator seems to perform slightly

better at the lowest sampling fraction since its maximum is lower than the

one of the overall RMSE distribution of the kriging predictor; nevertheless,

the former has a slightly higher minimum value. As the sampling fraction

increases this relation is reverted.
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Figure 5.5: Population E: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

At a sampling fracion of f = 0.05 there is quite no difference between

the overall coverage distribution of the IDW point estimator and the kriging
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predictor. However, for higher sampling fractions it seems that the latter has

better performances. The SRSWoR estimator in predictive form has a less

appealing overall coverage distribution compared to the other ones.

In Figure 5.5 the maps of the coverage of the different methods over the

domain are presented in order to give its spatial distribution. At the lowest

sampling fraction, the maps of the coverage of the IDW point estimator

and the kriging predictor are practically equal. As the sampling fraction

increases the difference becomes relevant as the latter shows higher and higher

coverages. The SRSWoR estimator has much lower coverages than the other

techniques for inference on individual quantities.

Table 5.20: Population E: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -0.297 -0.307 -0.363 -0.435

1st Qu. -0.107 -0.088 -0.079 -0.081

median -0.079 -0.058 -0.047 -0.042

mean -0.093 -0.071 -0.064 -0.062

3rd Qu. -0.060 -0.039 -0.028 -0.022

max -0.031 -0.013 -0.008 -0.005

V̂1[ẑ(ui)
∗]

min -0.131 -0.245 -0.333 -0.430

1st Qu. -0.013 -0.035 -0.052 -0.064

median 0.001 -0.012 -0.019 -0.025

mean -0.005 -0.024 -0.035 -0.046

3rd Qu. 0.007 0.000 -0.003 -0.006

max 0.051 0.021 0.018 0.010

V̂2[ẑ(ui)
∗]

min -0.129 -0.244 -0.333 -0.430

1st Qu. -0.012 -0.034 -0.052 -0.064

median 0.002 -0.012 -0.019 -0.025

mean -0.003 -0.023 -0.035 -0.046

3rd Qu. 0.008 0.000 -0.002 -0.006

max 0.058 0.022 0.018 0.010
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Let us now consider inference on the population total: Table 5.19 sum-

marizes the indicators used for comparing the three techniques. In terms

of bias the expansion estimator shows the best results; however, it is not

dissimilar to the kriging predictor’s one. The IDW point estimator of the

population total seems to underestimate the true value slightly more than

the other methods.

The RMSE of the IDW point estimator and of the kriging predictor are

quite the same, especially at a sampling fraction of 5%. Despite being less

biased than the other techniques, the expansion estimator has higher RMSE

suggesting that it has higher variance.

The coverage of the 95% confidence interval of the three methods are

pretty similar, and they lay close to the nominal level regardless of the sam-

pling fraction.

Table 5.20 summarizes the overall bias distribution of the variance estima-

tors of the IDW point estimator at different sampling fractions. As pointed

out in the literature (Wolter, 2007), estimator (4.2.37) involving correction

(4.2.39) for not negligible sampling fractions is the most conservative among

the jackknife ones. The results prove that it is the best among those proposed

in Subsection 4.2.6 too.

Table 5.21: Population E: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] -69.551 -95.080 -2.362 31.469

V̂2[ˆ̄t(z)
∗] -62.636 -93.922 -1.971 31.657

Table 5.21 shows the behaviour of the two jackknife estimator of the

variance of the IDW point estimator of the population total. Analogously to

the estimator of the variance of the individual estimator, estimator V̂2[ˆ̄t(z)
∗]

shows a more conservative behaviour.
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Population F

Population F (Appendix E.6) is the realization of a stationary random

field having exponential semivariogram with a low sill value and a relatively

high range parameter. Table 5.22 shows the main indicators for the overall

bias, RMSE and coverage distributions of the three techniques for inference

on the individual values. The mean and median of the overall bias distri-

bution of the IDW point estimator is close to zero as well as those of the

kriging predictor and the SRSWoR estimator in predictive form; however, it

is less concentrated around its central tendency values regardless of the sam-

pling fraction. For what regards the IDW point estimator, its overall bias

distribution has minimum values similar to the ones of the kriging predictors

at low sample fractions, f = 0.05 and f = 0.10; whereas the former has

higher maximum. As the sampling fraction increases, the resulting overall

bias distribution of the kriging predictor becomes more shrunk around its

median.

In terms of RMSE, there is not any appreciable difference between the

medians and means of the overall distributions of the IDW point estimator

and f the kriging predictor; the minimums are almost the same too, while the

former’s maximum slightly exceeds the latter’s. Both of them outperform the

SRSWoR estimator in predictive form since its overall distribution presents

higher values.

The overall coverage distribution of the kriging predictor has higher mean

and median values. The IDW point estimator’s distribution ones are slightly

lower, whereas the SRSWoR has a poor behaviour in terms of coverage.

The coverage maps for the three techniques at different sampling fractions

are collected in Figure 5.6. It can be clearly seen that both the IDW point

estimator and the kriging predictor outperform the SRSWoR estimator in

predictive form. Quite surprisingly, given the high range parameter used for

generating population F, at the lowest sampling fraction (5%) the IDW point

estimator performs not much worse than expected compared to the kriging

predictor. As the sampling fraction increases both get to perform better;

however, the coverage of the kriging predictor gets closer to the nominal

level quicker than the IDW point estimator’s one. The SRSWoR estimator’s
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coverages are far from the nominal level.

The results for inference on the population total are presented in Ta-

ble 5.23. The expansion estimator is pretty much unbiased; however, the

biases of the IDW point estimator and kriging predictor are sufficiently low.
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Figure 5.6: Population F: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

The RMSE of the expansion estimator is higher compared to the ones of

the other techniques which have quite the same values.

The IDW point estimator fails in reaching the nominal level of 95% at the

lowest sampling fraction and nearly reaches it at the higher fractions. The

kriging predictor and the expansion estimator have coverages at least equal

to the nominal level.
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Table 5.24 collects the main indicators of the overall bias distributions

of the estimators of the variance of the IDW point estimator for individ-

ual quantities. Once again, estimator V̂2[ẑ(ui)
∗] has the more conservative

behaviour among those proposed in Subsection 4.2.6 even though it mostly

assumes negative values as well as the other variance estimators.

Table 5.24: Population F: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -0.146 -0.163 -0.181 -0.207

1st Qu. -0.051 -0.036 -0.032 -0.029

median -0.034 -0.021 -0.016 -0.014

mean -0.040 -0.029 -0.025 -0.024

3rd Qu. -0.024 -0.013 -0.009 -0.007

max -0.011 -0.005 -0.002 -0.001

V̂1[ẑ(ui)
∗]

min -0.072 -0.116 -0.160 -0.197

1st Qu. -0.003 -0.011 -0.017 -0.023

median 0.002 -0.002 -0.005 -0.007

mean -0.001 -0.008 -0.014 -0.018

3rd Qu. 0.005 0.001 0.000 -0.001

max 0.019 0.010 0.006 0.004

V̂2[ẑ(ui)
∗]

min -0.069 -0.116 -0.160 -0.197

1st Qu. -0.003 -0.011 -0.017 -0.023

median 0.002 -0.002 -0.005 -0.007

mean 0.000 -0.008 -0.014 -0.018

3rd Qu. 0.006 0.001 0.000 -0.001

max 0.020 0.011 0.006 0.004

For the estimator of the variance of the IDW point estimator of the pop-

ulation total, the conservative jackknife estimator involving the correction

for not negligible sampling fractions is the most conservative among those

studied in the Monte Carlo simulation (Table 5.25), nevertheless assuming

negative values at low sampling fractions.
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Table 5.25: Population F: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] -57.786 -12.770 3.516 0.683

V̂2[ˆ̄t(z)
∗] -54.149 -12.199 3.709 0.773

Population G

Population G (Appendix E.7) is generated using a range parameter barely

exceeding the mean distance observable in the domain and a rather large sill

parameter. The results of the simulation study for inference on individual

quantities are summarized in Table 5.26. Both the IDW point estimator and

the SRSWoR estimator seem to be slightly biased in terms of the median of

their overall distribution, whereas the corresponding mean are close enough

to zero. The kriging predictor is unbiased both in terms of mean and median

of the overall bias distribution. Regardless of the sampling fraction, the over-

all bias distributions of the IDW point estimator and of the kriging predictor

are quite similar, while the SRSWoR has a poorer behaviour. At the lowest

sampling fraction the IDW point estimator has an overall bias distribution

slightly more concentrated around its central tendency than the one of the

kriging predictor; as the sampling fraction increases the latter has a more

desirable behaviour.

At a sampling fraction of f = 0.05, the IDW point estimator has lower

RMSE since its overall distribution generally shows lower values. For higher

sampling fractions, the kriging predictor improves and generally the overall

RMSE distribution presents lower values, while medians and means remain

quite similar. The SRSWoR estimator in predictive form has minimum values

of the overall RMSE distribution close, or even equal, to those of the other

techniques; however, its medians, means and maximums are substantially

higher.

In terms of coverage of the 95% confidence interval, the kriging predictor

seems the one to be preferred regardless of the sampling fraction: its overall

distribution has higher median and mean. For f = 0.05, the main indicators
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of the overall coverage distribution of the IDW point estimator are not much

different from those of the kriging predictor; however, this difference gets

bigger for increasing sampling fractions. The SRSWoR estimator has a poor

coverage.
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Figure 5.7: Population G: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

Figure 5.7 maps the coverage of the three methods in the domain at

different sampling fractions. As pointed out for the overall distribution,

the coverage of the IDW point estimator is generally lower than the one

of the kriging predictor. More specifically, at a sampling fraction of 5%,

the difference is quite small; as the sampling fraction increases the kriging

predictor’s coverage improves more quickly.
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The results of the Monte Carlo experiment for inference on the population

total are collected in Table 5.27. The kriging predictor and the expansion

estimator are practically unbiased and both outperform the IDW point es-

timator in terms of bias. The bias of the first two techniques has not a

monotone behaviour for increasing sampling fractions.

Table 5.28: Population G: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -1.918 -2.213 -2.656 -3.076

1st Qu. -0.881 -0.680 -0.616 -0.608

median -0.633 -0.441 -0.366 -0.305

mean -0.697 -0.541 -0.497 -0.487

3rd Qu. -0.431 -0.288 -0.229 -0.172

max -0.220 -0.098 -0.056 -0.031

V̂1[ẑ(ui)
∗]

min -1.007 -1.921 -2.532 -3.051

1st Qu. -0.069 -0.247 -0.363 -0.477

median 0.021 -0.068 -0.141 -0.192

mean -0.024 -0.170 -0.279 -0.360

3rd Qu. 0.068 0.011 -0.019 -0.038

max 0.445 0.248 0.122 0.109

V̂2[ẑ(ui)
∗]

min -0.996 -1.919 -2.531 -3.051

1st Qu. -0.059 -0.243 -0.363 -0.476

median 0.026 -0.067 -0.140 -0.192

mean -0.013 -0.168 -0.278 -0.359

3rd Qu. 0.077 0.012 -0.019 -0.038

max 0.486 0.256 0.124 0.110

Despite having rather high bias, the IDW point estimator has a RMSE

similar to the the kriging predictor’s one which is the lowest. The values of

the expansion estimator are substantially higher than those of the other two

techniques.

The coverage of the IDW point estimator and expansion estimator are
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generally lower than the nominal level. The kriging predictor’s ones exceed

the 95% except for the lowest sampling fraction.

Table 5.28 collects the main indicators of the overall bias distribution

of the estimators of the variance of the IDW point estimator. Estimator

V̂n[ẑ(ui)] is the more conservative one despite presenting negative values.

Table 5.29: Population G: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 818.788 592.312 446.865 264.123

V̂2[ˆ̄t(z)
∗] 869.959 600.503 449.534 265.527

Analogously, the corresponding estimator V̂2[ˆ̄t(z)
∗] of the variance of the

IDW point estimator of the population total is to be preferred to V̂1[ˆ̄t(z)
∗]

as shown in Table 5.29.

Population H

Table 5.30 summarizes the results of the Monte Carlo experiment on

population H (Appendix E.8) which has been generated with an exponential

semivariogram having the same sill parameter as population G and a larger

range parameter. The overall bias distributions of the three methods have

almost null means; the same goes for the medians except for the SRSWoR es-

timator in predictive form. The kriging predictor shows a nicer behaviour, es-

pecially at large sampling fractions since the overall bias distribution shrinks

more quickly around the central tendency values. For f = 0.05, the overall

bias distribution of the IDW point estimator is almost equal to the kriging

predictor’s one; as the sampling fraction increases the performance of the

latter improves more quickly than the other techniques do.

In terms of RMSE, the kriging predictor has lower median and mean

values of the the overall distribution. At the lowest sampling fraction the

difference between its overall distribution and the IDW point estimator’s one

is rather null. Both of them outperform the SRSWoR estimator.
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The overall coverage distribution of the kriging predictor have rather

higher medians and means than those of the other techniques. As usual, the

difference increases along with the sampling fraction. The SRSWoR has the

poorest coverage regardless of the sampling fraction.
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Figure 5.8: Population H: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

By looking at Figure 5.8, it is even clearer how the kriging predictor

offers higher coverages. The results for the IDW point estimator are not far

from those, however, presenting some problems in estimating values at some

spatial locations. The results suggests not use the SRSWoR estimator in

predictive form .

Table 5.31 summarizes the results of the Monte Carlo experiment for in-

ference on the population total. The bias of the kriging predictor of the
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population total decreases quicker than the one of the other techniques and

reaches the zero already at f = 0.15. At a sampling fraction of 5%, the ex-

pansion estimator’s bias in absolute value has a similar value to the kriging’s

one; however, at higher sample sizes, it decreases less quickly. The IDW

point estimator seems to not negligibly overestimate the population total

regardless of the sampling fraction.

Table 5.32: Population H: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -1.382 -1.363 -1.630 -1.891

1st Qu. -0.479 -0.344 -0.310 -0.304

median -0.334 -0.205 -0.153 -0.130

mean -0.389 -0.270 -0.232 -0.224

3rd Qu. -0.234 -0.127 -0.088 -0.063

max -0.113 -0.056 -0.029 -0.012

V̂1[ẑ(ui)
∗]

min -0.629 -1.138 -1.526 -1.885

1st Qu. -0.022 -0.117 -0.185 -0.226

median 0.022 -0.020 -0.046 -0.067

mean 0.005 -0.074 -0.124 -0.165

3rd Qu. 0.059 0.009 -0.001 -0.013

max 0.208 0.142 0.094 0.053

V̂2[ẑ(ui)
∗]

min -0.617 -1.135 -1.525 -1.884

1st Qu. -0.016 -0.114 -0.185 -0.226

median 0.026 -0.019 -0.046 -0.067

mean 0.012 -0.073 -0.123 -0.165

3rd Qu. 0.065 0.010 -0.001 -0.013

max 0.225 0.146 0.095 0.053

The kriging predictor has the lowest RMSE, and the difference with the

other techniques can not be neglected. Despite being not much biased, the

expansion estimator has the poorest performances, while the RMSE of the

IDW point estimator of the population total lies in between.
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The coverage of the kriging predictor of the population total at least

reaches the nominal level except for f = 0.15, whereas the other techniques

exceeds it only at the lowest sampling fraction.

From Table 5.32 it can be seen that, despite assuming negative values, the

conservative jackknife estimator of the variance of the IDW point estimator

involving the modification for not negligible sampling fractions has the best

performance in terms of bias.

Table 5.33: Population H: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 565.285 44.778 206.092 117.082

V̂2[ˆ̄t(z)
∗] 604.762 51.248 208.235 118.113

Analogously, according to Table 5.33, estimator V̂2[ˆ̄t(z)
∗] of the variance

of the IDW point estimator of the population total is to be preferred.

Population I

Population I (Appendix E.9) has been generated from a superpopulation

model having exponential semivariogram model with small nugget parameter

and a range parameter slightly exceeding the domain mean distance. Ta-

ble 5.34 collects the main indicators of the overall distributions of the bias,

the RMSE and the coverage for the three methods at different sampling frac-

tions. All the methods seems unbiased since the medians and means of the

overall bias distributions are reasonably close to zero. The SRSWoR estima-

tor in predictive form shows the worst behaviour among the three techniques

analysed; the discrepancy with the other methods increases with the sam-

pling fraction. At the lowest sampling fraction, the IDW point estimator

seems to be slightly less biased than the kriging predictor; as the sampling

fraction increases this relationship is reverted, and the latter shows better

performances.

The overall RMSE distributions have a pattern similar to the overall

bias distributions. At f = 0.05 the IDW point estimator has slightly lower
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RMSE values, and for the other sampling fractions the performances of the

kriging predictor become better. Moreover, despite assuming higher values,

the overall RMSE distribution of the SRSWoR estimator in predictive form

has median and mean values very close to the ones of the other methods

at the lowest sampling fraction. For higher sampling fractions the SRSWoR

estimator has worse performances.
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Figure 5.9: Population I: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

Quite surprisingly, the overall coverage distribution of the IDW point

estimator presents decreasing medians and means for increasing sampling

fractions. Hence, it has generally higher coverages than the kriging predictor

at f = 0.05. As the sampling fractions increases, the coverages of the kriging

predictor gets higher. The SRSWoR has very low coverages.
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Figure 5.9 maps the coverages over the domain. The poor behaviour of

the SRSWoR estimator in predictive form can be easily spotted. From the

maps corresponding to the IDW point estimator, the loss of effectiveness

for increasing sample sizes can be easily seen; on the contrary, the kriging

predictor’s improves its coverages. The higher coverages of the IDW point

estimator for the lowest sample size are clear.

Table 5.36: Population I: distribution of the overall bias of the estimators of

the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -1.916 -2.580 -2.900 -3.279

1st Qu. -0.652 -0.498 -0.471 -0.485

median -0.478 -0.319 -0.253 -0.219

mean -0.547 -0.408 -0.368 -0.362

3rd Qu. -0.379 -0.226 -0.154 -0.115

max -0.205 -0.091 -0.054 -0.037

V̂1[ẑ(ui)
∗]

min -1.189 -1.976 -2.527 -3.130

1st Qu. -0.087 -0.193 -0.287 -0.378

median 0.003 -0.036 -0.077 -0.111

mean -0.040 -0.127 -0.201 -0.267

3rd Qu. 0.047 0.018 0.000 -0.017

max 0.170 0.127 0.113 0.044

V̂2[ẑ(ui)
∗]

min -1.165 -1.968 -2.525 -3.129

1st Qu. -0.078 -0.191 -0.287 -0.378

median 0.008 -0.035 -0.077 -0.111

mean -0.032 -0.126 -0.201 -0.266

3rd Qu. 0.057 0.019 0.000 -0.016

max 0.189 0.131 0.116 0.045

Let us now consider the results regarding inference on the population

total collected in Table 5.35. The bias of the three techniques is reasonably

low; however, while for the kriging predictor and the expansion estimator

it has a decreasing trend, for the IDW point estimator it remains almost
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constant.

At a sampling fraction of 5%, the RMSE values are pretty similar among

them; as the sample size increases, the difference becomes relevant. The

kriging predictor has the lowest RMSE, while the expansion estimator shows

the worst performance despite having a nice bias behaviour.

The coverages of the three techniques are close to the nominal level of

95% and sometimes they even exceed it.

Table 5.36 shows that the jackknife estimator of the variance of the IDW

point estimator involving the modification for not negligible sampling frac-

tions is the most conservative among the proposed one despite assuming

negative values.

Table 5.37: Population I: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] -903.368 99.933 554.123 200.454

V̂2[ˆ̄t(z)
∗] -876.650 104.196 555.544 201.168

Estimator V̂2[ˆ̄t(z)
∗] of the variance of the IDW point estimator of the

population total is the more conservative, as pointed out by the literature

(Wolter, 2007).

Population J

Population J (Apendix E.10) is the realization of a random field having

exponential semivariogram model with a small nugget parameter and a rather

large range parameter. The results of the Monte Carlo experiment for infer-

ence on individual values are collected in Table 5.38. The three techniques

are practically unbiased in terms of the median and mean of the overall bias

distributions. At the lowest sampling fraction the overall bias distributions

of the IDW point estimator and of the kriging predictor can be considered

equal. As the sample size increase the kriging predictor has better perfor-

mances. The values of the main indicators of the overall bias distribution
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of the SRSWoR estimator in predictive form suggest that it is more biased

than the other methods.
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Figure 5.10: Population J: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

In terms of RMSE, the kriging predictor’s overall distribution assumes

slightly lower values than the IDW point estimator’s one. The SRSWoR

estimator’s RMSE has higher overall values than the other techniques.

The SRSWoR estimator has substantially lower coverages than the ones

of the other methods. According to the main position indicators of the

overall bias distributions, the kriging predictor offers the best coverage of

the 95% confidence interval. The medians and means of both the IDW point

estimator and the kriging predictor have a decreasing trend for increasing

sampling fractions.
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Figure 5.10 collects the maps of the coverage at the different sampling

fractions. From the maps regarding the performances of the kriging, it can

be seen that it has slightly higher coverages than the other techniques. The

maps on the bottom of the figure highlights how poor is the behaviour of the

SRSWoR estimator in predictive form in terms of coverages.

Table 5.40: Population J: distribution of the overall bias of the estimators of

the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -0.711 -0.713 -0.932 -1.084

1st Qu. -0.299 -0.206 -0.183 -0.183

median -0.218 -0.141 -0.101 -0.083

mean -0.245 -0.172 -0.149 -0.144

3rd Qu. -0.157 -0.096 -0.063 -0.043

max -0.097 -0.042 -0.018 -0.009

V̂1[ẑ(ui)
∗]

min -0.309 -0.562 -0.878 -1.073

1st Qu. -0.018 -0.074 -0.114 -0.149

median 0.014 -0.014 -0.030 -0.040

mean 0.006 -0.051 -0.083 -0.107

3rd Qu. 0.040 0.006 -0.001 -0.005

max 0.142 0.080 0.039 0.033

V̂2[ẑ(ui)
∗]

min -0.305 -0.561 -0.878 -1.073

1st Qu. -0.015 -0.073 -0.114 -0.148

median 0.018 -0.014 -0.030 -0.040

mean 0.011 -0.050 -0.083 -0.107

3rd Qu. 0.043 0.007 -0.001 -0.005

max 0.157 0.085 0.040 0.034

Table 5.40 collects the results of the Monte Carlo experiments for infer-

ence on the population total. Despite the biases of the different techniques

are low and reasonably close to zero, the RMSE values are different. The

kriging predictor has the lowest values; the IDW point estimator’s ones are

not far from those, and the expansion estimator has the poorest behaviour.
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The coverages of the three methods are close to, or even exceeds, the

nominal level, except for highest sampling fraction at which they fail to reach

the 95%.

The results regarding the estimators of the variance of the IDW point

estimator proposed in Subsection 4.2.6 are consistent to those of the previous

subsections, as estimator V̂2[ẑ(ui)
∗] is the most conservative.

Table 5.41: Population J: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 511.993 -4.676 72.675 175.939

V̂2[ˆ̄t(z)
∗] 537.742 -1.083 73.809 176.458

Analogously, the jackknife estimator of the variance of the IDW point

estimator of the population total involving the modification for not negligible

sampling fractions is the one to be preferred.

Population K

Population K (Appendix E.11) is the realization of a superpopulation

model having a range parameter barely exceeding the mean distance observ-

able in the domain and a rather large nugget parameter. Table 5.42 collects

the main position indicators of the overall bias, RMSE and coverage distri-

butions of the three methods. Quite surprisingly and inconsistently to the

results on the other populations, the IDW point estimator has an overall bias

distribution very similar to, and sometimes even more appealing than, the

kriging predictor’s one, regardless of the sampling fraction. The SRSWoR

estimator seems more biased than the other methods despite having almost

identical median and mean of the overall bias distribution.

The overall RMSE distribution of the IDW point estimator shows that a

reduction in the bias leads to slightly lower values; the medians and means are

very similar to the kriging predictor’s ones especially at the lower sampling

fractions. As usual, the SRSWoR estimator in predictive form has the worst
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performances; however, the values of the overall RMSE distribution are not

as far from the ones of the other techniques as for other populations.
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Figure 5.11: Population K: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

The coverages of the SRSWoR estimator are lower than those of the IDW

point estimator and of the kriging predictor. The last one’s overall coverage

distribution has lower median and mean than the ones of estimator (4.2.5)

at the lower sampling fraction, while the relationships is reverted at higher

sample sizes.

From the comparison of the first and second row of Figure 5.11, it appears

that IDW point estimator has slightly higher coverages than the kriging

predictor at the lowest sampling fraction. At f = 0.10 and f = 0.15 it
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is hard to spot a substantial difference. Finally, at the highest sampling

fraction the kriging predictor has higher coverages. As usual, the coverages

of the SRSWoR estimator in predictive form are the lowest.

Table 5.44: Population K: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -1.472 -2.213 -2.706 -3.072

1st Qu. -0.595 -0.506 -0.491 -0.492

median -0.459 -0.340 -0.280 -0.255

mean -0.499 -0.414 -0.394 -0.398

3rd Qu. -0.366 -0.240 -0.178 -0.136

max -0.252 -0.123 -0.080 -0.047

V̂1[ẑ(ui)
∗]

min -0.986 -1.862 -2.523 -3.027

1st Qu. -0.072 -0.203 -0.308 -0.394

median 0.003 -0.066 -0.115 -0.149

mean -0.040 -0.147 -0.233 -0.300

3rd Qu. 0.045 0.000 -0.018 -0.032

max 0.131 0.094 0.086 0.077

V̂2[ẑ(ui)
∗]

min -0.972 -1.858 -2.522 -3.026

1st Qu. -0.066 -0.199 -0.308 -0.394

median 0.008 -0.065 -0.114 -0.149

mean -0.033 -0.146 -0.233 -0.300

3rd Qu. 0.052 0.001 -0.017 -0.032

max 0.140 0.097 0.088 0.078

Table 5.43 collects the results of the Monte Carlo experiments for infer-

ence on the population total. The bias of the three methods are close enough

to zero; however, none of these has a monotonous decreasing trend. The

IDW point estimator of the population total seems slightly more biased than

the other techniques.

As for the case of inference on individual values, the IDW point estimator

gain from being less biased: its RMSE is practically the same as the kriging
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predictor one. The expansion estimator has a RMSE closer to the values of

the other methods than it has been for other populations.

The coverages of the three techniques for inference on the population

total exceed the nominal level at the lower sampling fractions, and then they

even fail in reaching it.

Estimator V̂2[ẑ(ui)
∗] of the variance of the IDW point estimator is re-

sulted the more conservative one among those presented in Subsection 4.2.6

(Table 5.44).

Table 5.45: Population K: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 253.211 25.760 -105.710 -132.359

V̂2[ˆ̄t(z)
∗] 277.899 29.507 -104.572 -131.847

Analogously, Table 5.45 shows that the corresponding estimator of the

variance of the IDW point estimator of the population total has a conservative

behaviour when compared to the other jackknife estimator.

Population L

Population L (Appendix E.12) is the result of a simulated random field

having a rather large nugget parameter and a rather large range parameter.

The results of the Monte Carlo simulations for the bias, RMSE and coverage

are collected in Table 5.46. In terms of the median and mean of the overall

bias distributions, the kriging predictor is slightly better than the IDW point

estimator; both have more advisable performances than the SRWoR estima-

tor. At the lowest sampling fraction the overall bias distribution of the IDW

point estimator is very similar to the kriging predictor’s one.

The median and mean of the overall RMSE distribution of the IDW point

estimator are almost the same as the kriging predictor’s ones; however, the

former has lower maximum values except for the smallest sampling fraction.

In terms of median and mean of the overall RMSE distribution, the SR-

SWoR estimator in predictive form has a behaviour similar to the one of the
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other techniques; nevertheless, it is more disperse around its central tendency

values.

The median and mean overall coverages of the kriging predictor are

slightly higher than those of the IDW point estimator except for the lowest

sampling fraction where the values are more or less the same. The SRSWoR

has a poor behaviour in terms of coverage.
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Figure 5.12: Population L: spatial distribution of the coverage of the 95%

confidence interval centred in the estimated (predicted) value for the three

methods

By comparing the top left coverage map and the one below it, it can

be seen that the IDW point estimator and the kriging predictor give quite

the same results in terms of coverage of the 95% confidence interval. The

performances of the latter improve slightly more quickly as the sampling
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fraction increases. The bottom maps highlight the poor behaviour of the

SRSWoR estimator in terms of coverage.

Table 5.48: Population L: distribution of the overall bias of the estimators

of the variance of the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂n[ẑ(ui)]

min -0.915 -1.456 -2.012 -2.492

1st Qu. -0.479 -0.405 -0.388 -0.401

median -0.353 -0.273 -0.242 -0.218

mean -0.388 -0.323 -0.309 -0.314

3rd Qu. -0.256 -0.175 -0.127 -0.098

max -0.161 -0.076 -0.045 -0.031

V̂1[ẑ(ui)
∗]

min -0.515 -1.274 -1.943 -2.492

1st Qu. -0.058 -0.166 -0.252 -0.328

median 0.016 -0.054 -0.093 -0.129

mean -0.016 -0.112 -0.182 -0.239

3rd Qu. 0.047 0.008 -0.011 -0.025

max 0.130 0.078 0.046 0.039

V̂2[ẑ(ui)
∗]

min -0.507 -1.273 -1.943 -2.492

1st Qu. -0.051 -0.166 -0.252 -0.328

median 0.021 -0.053 -0.093 -0.129

mean -0.011 -0.111 -0.182 -0.239

3rd Qu. 0.053 0.008 -0.011 -0.025

max 0.138 0.080 0.048 0.040

From the analysis of Table 5.47 regarding the results of the Monte Carlo

experiments for inference on the population total, it results that, despite

being the more biased method, the IDW point estimator of the population

total has a quite nice RMSE when compared to the other techniques. On

the other hand, the expansion estimator has the highest RMSE even though

it is the least biased.

The coverages of the 95% confidence interval of the three techniques al-

most ever fail in reaching the nominal level.
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Again and consistently with the results on the previous populations, the

conservative jackknife estimator of the variance of the IDW point estimator

has the more appealing performances among those studied in the Monte

Carlo simulations (see Table 5.48).

Table 5.49: Population L: bias of the jackknife estimators of the variance of

the estimator of the population total based on the IDW point estimator

f 0.05 0.10 0.15 0.20

V̂1[ˆ̄t(z)
∗] 1560.817 437.918 94.067 94.808

V̂2[ˆ̄t(z)
∗] 1588.035 443.565 96.340 96.119

Estimator V̂2[ˆ̄t(z)
∗] of the variance of the IDW point estimator of the pop-

ulation total is the more conservative when compared to the other jackknife

one.

5.2.2 The effect of the superpopulation parameters

In this subsection we focus the analysis on the effects that varying pa-

rameters of the superpopulation model have on inference. By comparing the

results of the Monte Carlo experiments presented in the previous subsection,

we would like to give an idea of when the IDW point estimator is more suit-

able than the kriging predictor or the SRSWoR estimator in predictive form.

Firstly, we concentrate on the population generated by an exponential semi-

variogram model. According to Table 5.1, by comparing populations A, B,

C and D we assess the effect of the range parameter, ϕ. Populations A, C, E,

F, G and H give information on how different sill values, σ2, affect inference.

Finally, we compare populations A, B, I, J, K and L to assess the effects of

the nugget parameter effect.

The range parameter

In order to understand how a different range parameter of the exponen-

tial semivariogram model superpopulation having exponential semivariogram

affects the inference, we start by comparing Tables 5.6, 5.2, 5.10 and 5.14.
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When we analysed populations A, B,C and D we already pointed out that,

for inference on individual values, the SRSWoR in predictive form is outper-

formed by the IDW point estimator and the kriging predictor. Thus, the

following analysis is focused on the comparison of only those last two.

The distribution of the overall bias of the IDW point estimator is similar

to the kriging predictor’s one when the range parameter does not exceed

the maximum distance observable in the domain (in the study case 28.284),

especially at low sampling fractions. On the contrary for ϕ = 45 and ϕ =

90 the kriging predictor seems to better capture the spatial nature of the

phenomenon even at low sampling fractions. This aspect may depend on the

choice of the inverse squared Euclidean distance in weighting system (4.2.1)

which does not weighs the more distant observations properly; perhaps a

lower exponents could lead to better results.

In terms of RMSE, the Monte Carlo experiments highlighted that the

IDW point estimator has an overall distribution exhibiting lower values than

the kriging predictor’s one when the range parameter is smaller than the max-

imum distance observable in the domain. This peculiarity is more evident

at small sampling fractions (e.g. f = 0.05 and f = 0.10). As the sampling

dimension increases the overall RMSE distribution of the IDW point esti-

mator still has lower minimum values, but its maximum exceeds the kriging

predictor’s distribution ones. The higher the sampling fraction, the more

the RMSE distribution is affected by this phenomenon. Moreover, when

the range parameter is greater than the maximum distance in the domain

(e.g. ϕ = 45, 90) the kriging predictor performs generally better, although

the minimum of its RMSE distribution is greater than the one of the IDW

point estimator’s distribution. Again, the sensitivity of the RMSE to the

range parameter of the semivariogram model adopted to generate the popu-

lations might suggest that the inverse squared Euclidean distance could not

be the most suitable weighting system for highly spatial correlated popula-

tions. Perhaps, exponent values between 1 < α < 2 might produce better

results.

Finally, by the comparison of Tables 5.6, 5.2, 5.10 and 5.14, not much

can be said about the overall coverage distribution of the IDW point esti-

mator and the kriging predictor. The latter seems to basically have a better
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behaviour in terms of median and mean of the overall coverage distribution.

However, attention must be paid to the smallest sampling fraction, f = 0.05:

for the lower range parameter the IDW point estimator has higher overall

median and mean coverage than the kriging predictor. These values are quite

the same for ϕ = 15 and are in opposite relationship when the range param-

eter exceeds the maximum distance observable in the domain. In order to

better understand the spatial distribution of the coverage, we compare the

plots of Figures 5.2, 5.1, 5.3 and 5.4, where each row concerns one of the

analysed techniques. Looking at these maps it is clear that the IDW point

estimator has a coverage comparable to the kriging predictor’s one when the

sampling fraction is small and the range parameter is not too great. More-

over, the technique proposed in this thesis has even a better coverage when

the range parameter is ϕ = 6 (i.e. population B) and the sampling fraction

is small, f = 0.05.

In order to assess how inference on the population total is affected by the

range parameter, we compare Tables 5.7, 5.3, 5.11 and 5.15. In terms of bias

we note a substantial worsening of the performances of the estimator of the

population total based on the IDW point estimator as the range parameter

goes from ϕ = 6 to ϕ = 15. This is in contradiction with the behaviour

of the expansion estimator and the kriging predictor. The latter presents

few changes, whereas the former even reduces its bias. When the range

parameter is greater than the maximum distance observable in the domain

the kriging predictor of the population total shows a smaller bias than the

estimator based on the IDW point estimator and the expansion estimator

as it happens for inference on individual values. It seems that globally the

expansion estimator has a more consistent behaviour in terms of bias at

different range parameters.

Surprisingly, the RMSE decreases as the range parameter increases what-

ever the technique. The estimator of the population total based on the IDW

point estimator has values not much higher than the kriging predictor’s ones,

despite being the most biased techniques.

In terms of coverage the three techniques present values close to the nom-

inal level of 95% at different sampling fraction and for different range param-

eter values.
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Regardless of the range parameter used for generating the populations

and of the sampling fraction, estimator V̂2[ˆ̄z(ui)] along with modification

(4.2.39) seems the best choice: it is the one with a behaviour closer to a

conservative variance estimator. The same can be said for the corresponding

estimator of the variance of the estimator of the population total based on

the IDW point estimator.

The sill parameter

The effect of a varying sill parameter in the suprmodel generating the

populations is taken into account by comparing populations A, E and G

for a range parameter slightly exceeding the mean distance in the domain,

ϕ = 15, and populations C, F and H for a rather large range parameter,

ϕ = 45.

The performances of both the IDW point estimator and kriging predic-

tor for inference on individual values are relatively high in comparison with

those of the SRSWoR estimator in predictive form; thus, in the following

analysis on the effects of the sill parameter for inference on individual values

it will be omitted. Let us first start by analysing the results of the sill pa-

rameter for a rather low range parameter. By the comparison of Tables 5.2,

5.18 and 5.26 it can be seen that for the lowest sampling fraction (f = 0.05)

the IDW point estimator’s overall bias distribution is very similar to the

kriging predictor’s one. At increasing sampling fractions a small difference

becomes more and more relevant as the distribution of the former technique

becomes more shrunk around its central tendency values, regardless of the

sill parameter value. Moreover, as the superpopulation parameter increases,

the overall bias distributions of both methods become more disperse. For

the lowest sill parameter, σ2 = 1, the IDW point estimator’s overall RMSE

distribution has lower values than the kriging predictor’s one except for the

higher sampling fraction; at f = 0.15 the two distributions are rather simi-

lar. Regardless of the sampling fraction and of the sill parameter value, the

kriging predictor has higher overall median and overall mean coverages than

the IDW point estimator.

As pointed out in the previous subsection, by increasing the range param-
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eter, the IDW point estimator becomes more biased. Thus, the comparison

of Tables 5.10, 5.22 and 5.30 highlights that the IDW point estimator has

an overall bias distribution similar to the kriging predictor’s one only for a

sampling fraction of f = 0.05, regardless of the sill parameter. For increas-

ing sample sizes the kriging predictor is less biased. Analogously, the overall

RMSE distributions are similar at f = 0.05 and f = 0.10 for the lowest sill

parameter, σ2 = 1, and at f = 0.05 for σ2 = 4; in the other cases the kriging

predictor generally presents lower values. In terms of median and mean of

the overall coverage, the kriging predictor always performs better than the

IDW point estimator.

From the comparison of Tables 5.3, 5.19 and 5.27, it can be seen that

the expansion estimator is less biased than the other techniques for inference

on the population total except for higher sill values in the case of a rather

low range parameter. However, in terms of RMSE are far from those of

the kriging predictor and the IDW point estimator, which have quite similar

behaviours. Regardless of the technique used, the coverages are sufficiently

close to the nominal level in the case of σ2 = 1 and σ2 = 4; for the highest

sill value the kriging predictor is the only one to reach a coverage of 95%

except for the lowest sampling fraction.

In contradiction to the results on the previous populations, a larger range

parameter (Tables 5.11, 5.23 and 5.31) reduces the bias of the IDW point

estimator of the population total despite remaining the most biased method.

In this case the kriging predictor of the population total is less biased than

the other techniques except for the lowest sill value. Again, the RMSE of the

IDW point estimator and ofthe kriging predictor are lower than the expansion

estimator’s one; the differences become more relevant for higher sill values.

Coverages are affected by the increase of the range parameter: the kriging

predictor is the only one having close to the nominal level except for the

lowest sampling fraction at which all the methods have good performances.

Regardless of the range and sill parameters the jackknife estimator of

the variance of the IDW point estimator involving the modification for not

negligible sampling fractions is the most conservative one despite presenting

negative values. Analogously, the corresponding variance estimator of the

IDW point estimator of the population total is the one to be preferred.
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The nugget parameter

By comparing the results on populations A, C, I, J, K and L, we address

the extent of the nugget parameter on inference for populations having a

range parameter barely exceeding the mean distance observable in the do-

main, ϕ = 15, and a rather large parameter, ϕ = 45.

Let us first consider the populations generated with a smaller range pa-

rameter (A, I and K); the results of the Monte Carlo experiments for inference

on individual values are collected in Tables 5.2, 5.34 and 5.42, respectively

concerning populations with τ 2 = 0, τ 2 = 0.25 and τ 2 = 1.00. The following

analysis regards the comparison of the IDW point estimator with the kriging

predictor only since the SRSWoR estimator in predictive form has always

given worse results. At the lowest sampling fraction the IDW point estima-

tor seems to be slightly less biased since its overall bias distribution is more

concentrated around its central tendency values than the kriging predictor’s

one. As the sampling fraction increases, the kriging improves its performance

more quickly: at f = 0.10 the two overall bias distributions are quite similar,

while higher sample sizes favour the model-based technique. The same can

be said for the overall RMSE distribution. Moreover, it seems that even for a

10% sampling fraction the IDW point estimator has at least the same perfor-

mances as the kriging predictor; higher fractions lead to better results of the

kriging except for population L which has been generated with the highest

nugget parameter. As the nugget parameter increases, the IDW point esti-

mator tends to reach the same coverages of the kriging predictor especially

at lower sampling fraction.

By comparing Tables 5.6, 5.38 and 5.46, it can be noticed that a rather

large range parameter favours the kriging predictor as it improves its perfor-

mances consistently with the previous analyses. For a null nugget parameter

the kriging predictor offers better performances than the IDW point estima-

tor regardless of the sampling fraction. But as the nugget parameter increases

the IDW point estimator improves especially at the lowest sampling fraction.

For τ 2 = 1.00 and f = 0.05, it seems to have slightly better performances in

terms of the overall distributions of the bias, RMSE and coverage.

The results of the simulations for inference on the population total confirm
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the idea that a high nugget effect improves the performances of the IDW point

estimator. The comparison of Tables 5.3, 5.35 and 5.43 highlights that the

IDW point estimator of the population total reduces its bias as the nugget

parameter increases, regardless of the sampling fraction. The fact that the

RMSE gets closer to the kriging predictor’s one reflects this aspect. The

coverages of the three techniques remain pretty close to the nominal level.

For higher values of the range parameter, the IDW point estimator of the

population total still has RMSE values close to the kriging predictor’s ones;

however, the results on the bias are not as appealing as for the population

having lower range parameter. Especially, it seems that in the case of the

highest nugget parameter estimation is affected by a not negligible bias. The

coverage of the 95% confidence interval for the three techniques barely reach

the nominal level especially for τ 2 = 1.00.

The Monte Carlo experiments highlights once again that the conservative

jackknife estimator of the variance involving the modification for not negli-

gible sampling fractions is to the one to be preferred among those proposed

both for inference on individual or population values.



Chapter 6

Conclusions

This final chapter aims at summarizing the main ideas developed through-

out the thesis. The characteristics of the IDW point estimator are highlighted

along with some future lines of work. As a final thought, we believe that the

IDW point estimator represents quite a novelty for the inference on individ-

ual values under a design-based framework since we have only been able to

find a simpler estimator in the paper by Brus and de Gruijter (1997).

6.1 Overview

The major goal of this thesis were to develop a complete theory for design-

based spatial estimation both for inference on individual and global values.

The theoretical results were then tested through Monte Carlo experiments

in order to asses

(1) whether the IDW point estimator is suitable for inference on individual

values;

(2) whether it is able to infer on the global population value;

(3) the conditions favourable to their application.

The simulation study performed in Chapter 5 pointed out that the results

of the IDW point estimator for inference on individual values are not far

from the results of the kriging predictor which represents the benchmark for
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spatial statistics. Moreover, it emerges that the employment of the spatial

information represents a major boost to design-based inference on individual

values when compared to the classic SRSWoR estimator in predictive form.

Answer to question (1) is pretty straightforward: the technique we propose

may not be as good as the kriging predictor, but definitely has appealing

properties at least for the populations analysed in the simulation study.

Inference on population global values highlighted that the IDW point es-

timator is generally slightly more biased than the other techniques. However,

its RMSE is much closer to the values of the kriging predictor of the popula-

tion total than to those of the expansion estimator. Therefore, objective (2)

has been proved to be fully satisfied in the sense that the use of spatial infor-

mation at estimation level improves design-based inference on a population

global value.

The answer to objective (3) is harder since it is not easy to manage all

the different aspects of a spatial population. First of all, we can say that the

IDW point estimator, both for individual and global values, has given the

best results for low sampling fractions. In this case the results are at least

comparable to the kriging ones. This is perhaps due to the difficulty to rightly

estimate the semivariogram parameters when the the sample does not permit

to observe enough spatial lags. Indeed, as the sampling fraction increases,

the performances of the model-based technique improve faster than the IDW

point estimator’s ones which sometimes even remain constant. Moreover,

in the simulation study we limited the analysis only to twelve populations

generated in order to manage different aspects of a spatial superpopulation

model. The simulation study has shown that populations generated by using

a rather large range parameter of the exponential semivariogram model pro-

duce worse results of the IDW point estimator. This is perhaps due to the use

of the inverse squared Euclidean distances; adopting a lower exponent, say

1 < α < 2, may lead to better results. The sill parameter of the exponential

semivariogram corresponds to the variance of the random field at each point.

It results that by introducing more variability the IDW point estimator’s

performances becomes poorer. Finally, the analysis pointed out that higher

values of the nugget parameter improve the performances of the IDW point

estimator. This is perhaps due to the difficulty of the semivariogram fitting
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techniques to estimate the micro-scale process.

Finally, the simulation study confirmed that the jackknife estimator of

the variance which is known to be conservative (Wolter, 2007), is indeed the

more conservative among the two proposed in Subsections 4.2.6 and 4.4.3,

despite assuming even negative values. The näıve estimator of the variance

of the IDW point estimator of the individual values has always produced the

worst results and, moreover, it is even computationally more requesting than

the jackknife ones.

6.2 Open topics and future developments

The theoretical results presented in this thesis leave some questions open.

First of all, the asymptotic properties of the IDW point estimator are not

complete: the asymptotic p-unbiasedness and p-consistency (Särndal et al.,

1992) have yet to be proved. Along with the asymptotic properties, it could

help to obtain the asymptotic distribution of the proposed estimator in order

to better understand its behaviour. The proposed jackknife variance estima-

tors are not suitable for use in practical application since they may produce

negative values. Therefore, the development of a conservative variance esti-

mator is still an open topic.

The simulation study presented in the previous chapter does not fully

cover the whole range of possibilities. The semivariogram model used for the

prediction of the values is the same as the one used for generating the popula-

tions; moreover, in the computations, the values of its parameters have been

initialized with the true population values. These aspects leave no room for

the model misspecification problem typical of the model-based techniques.

Therefore, the fact that the results of the Monte Carlo experiments are not

too far from the best combination of the kriging somewhat defends the good-

ness of the proposed technique. However, a broader simulation study, which

takes into account these aspects, may give interesting results in the case of

model misspecification.

The simulation could be widened by the introduction of other superpop-

ulation models: different semivariogram models and non-Gaussian random
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fields may lead to different results. A white-noise process could be inves-

tigated since in this case the kriging predictor coincides with the SRSWoR

estimator in predictive form. Finally, it may be interesting to analyse even

fully deterministic surfaces. The use of auxiliary variable through the use of

GWR may help the estimation and ad hoc populations may be analysed.



Appendix A

Approximating the properties

of random variables through

the delta method

Let us consider the Taylor series expansion of a function f : Rd → R

f(x) =
k∑

|α|=0

Dα f(x0)

α!
(x− x0)

α + o(∥x− x0∥k)

k∑
|α|=0

Dα f(x0)

α!
(x− x0)

α +O(∥x− x0∥(k+1)),

where the multi-index notation is employed |α| = α1 + · · · + αn, α! =

α1! · · ·αn! and xα = xα1
1 · · · xαn

n .

Let the argument of f(·) be a d-dimensional random variable. Its kth-

order Taylor series approximation around the expected value µ = E[X ] is

f(X ) =
k∑

|α|=0

Dα f(µ)

α!
(X − µ)α + o(∥X − µ∥k)

=
k∑

|α|=0

Dα f(µ)

α!
(X − µ)α +O(∥X − µ∥(k+1)). (A.1)

The kth-order approximation of the expected value of the function f(X )

is obtained by taking the expectation of the kth-order approximated func-
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tion (A.1) Analogously, we obtain the kth-order approximation of the vari-

ance of the same function of random variables as well as for the covariance

between two different functions, f(·) and g(·), of two d-dimensional random

variables, X and Y .

Let us consider the first-order Taylor approximation of the bivariate func-

tion f(x, y) = x/y in the point (x0, y0)

x

y
=

x0

y0
+

1

y0
(x− x0)−

x0

y20
(y − y0) +O((x− x0)

2 + (y − y0)
2).

The approximation at the first-order of the ratio of two random variables

f(X, Y ) = X/Y in the point (E[X],E[Y ]) is

E

[
X

Y

]
=
E[X]

E[Y ]
+ op(n

−1/2)

=
E[X]

E[Y ]
+Op(n

−1). (A.2)

Analogously, we obtain the variance of the same ratio

V

[
X

Y

]
=
V[X]

E[Y ]2
− 2

Cov(X,Y ) E[X]

E[Y ]3
+

V[Y ] E[X]2

E[Y ]4
+ op(n

−3/2)

=
V[X]

E[Y ]2
− 2

Cov(X,Y ) E[X]

E[Y ]3
+

V[Y ] E[X]2

E[Y ]4
+Op(n

−2). (A.3)

Finally ,the covariance between two ratios of random variables, X/Y e W/Z,

in the points (E[X],E[Y ]) and (E[W ],E[Z]) is

Cov

(
X

Y
,
W

Z

)
=
Cov(X,W )

E[Y ] E[Z]
− E[W ] Cov(X,Z)

E[Y ] E[Z]2
− E[X] Cov(Y,W )

E[Y ]2 E[Z]

+
E[X] E[W ] Cov(Y, Z)

E[Y ]2 E[Z]2
+ op(n

−3/2)

=
Cov(X,W )

E[Y ] E[Z]
− E[W ] Cov(X,Z)

E[Y ] E[Z]2
− E[X] Cov(Y,W )

E[Y ]2 E[Z]

+
E[X] E[W ] Cov(Y, Z)

E[Y ]2 E[Z]2
+Op(n

−2). (A.4)

For a deeper look at the delta method, one can see Section 5.3 of the book

by Bickel and Doksum (2001) or Chapter 4 of the book by Small (2010).



Appendix B

Relations between quantities

involved in the calculus of the

statistical properties of the

IDW point estimator

The following Hadamard product is involved in the proof of the calculus

of the approximated expectation in Theorem 4.2.1:

ei ◦ ϕi = 0N×1.

The following Hadamard products are involved in the proof of Theo-

rem 4.2.2 regarding the calculus of the approximated variance of the IDW

point estimator:

eie
⊤
i ◦ ϕiϕ

⊤
i = 0,

diag(1N − ei) ◦ ϕiϕ
⊤
i = diag(ϕi)

2,

(1N − ei)e
⊤
i ◦ ϕiϕ

⊤
i = 0,

ei(1N − ei)
⊤ ◦ ϕiϕ

⊤
i = 0,

1N1
⊤
N ◦ ϕiϕ

⊤
i = ϕiϕ

⊤
i .

The following equalities are used in the proof of Theorem 4.2.3 regarding

the computation of the approximated covariance between two IDW point
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estimators:

ei ◦ ϕj = ϕijei

1N ◦ ϕi = ϕi

ei ◦ ϕi = 0N×1

IN ◦ ϕiϕ
⊤
j = diag(ϕi ◦ ϕj)

1N1
⊤
N ◦ ϕiϕ

⊤
j = ϕiϕ

⊤
j

eie
⊤
i ◦ ϕiϕ

⊤
j = 0N×N

eje
⊤
j ◦ ϕiϕ

⊤
j = 0N×N

ej(1N − ej)
⊤ ◦ ϕiϕ

⊤
j = ϕijejϕ

⊤
j

(1N − ej)e
⊤
j ◦ ϕiϕ

⊤
j = 0N×N

diag(1N − ej) ◦ ϕiϕ
⊤
j = diag(ϕi ◦ ϕj)

ei(1N − ei)
⊤ ◦ ϕiϕ

⊤
j = 0N×N

(1N − ej)e
⊤
j ◦ ϕiϕ

⊤
j = ϕijϕie

⊤
i

eie
⊤
j ◦ ϕiϕ

⊤
j = 0N×N

eje
⊤
i ◦ ϕiϕ

⊤
j = ϕ2

ijeje
⊤
i

(1N − ei − ej)e
⊤
i ◦ ϕiϕ

⊤
j = ϕij {(1N − ej) ◦ ϕi} e⊤i

ei(1N − ei − ej)
⊤ ◦ ϕiϕ

⊤
j = 0N×N

(1N − ei − ej)e
⊤
j ◦ ϕiϕ

⊤
j = 0N×N

ej(1N − ei − ej)
⊤ ◦ ϕiϕ

⊤
j = ϕijej

{
(1N − ei) ◦ ϕj

}⊤
diag(1N − ei − ej) ◦ ϕiϕ

⊤
j = diag(ϕi ◦ ϕj).



Appendix C

Jack-knife variance estimation

The jackknife provides a quick and reliable tool for estimating the variance

of an estimator for the infinite case when using a SRSWoR. Jack-knife is

basically a resampling technique consisting in randomly divide the original

sample in k groups of size m, n = mk.

Let θ̂ denote an estimator and Vp[Θ̂] its variance calculated in respect of

the estimator distribution over the σ-algebra S of all the possible samples

of the sample space S. Then we define the jackknified version of a generic

estimator as

ˆ̄θ =
1

k

k∑
α=1

θ̂α,

where θ̂α is the pseudo-value defined as

θ̂α = kθ̂ − (k − 1)θ̂(α) (C.1)

and θ̂(α) is the estimator of the same functional form as θ̂ calculated calculated

for each subsample. In the case of a linear estimator, it results that the

jackknified estimator is equal to the parent estimator, ˆ̄θ = θ̂. However, for

non-linear estimators it is generally not true.

Then, we define the variance of the jackknified estimator as

V̂1[
ˆ̄Θ] =

1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ)2,
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which can be used as an estimator of the variance of estimator θ̂. A conser-

vative alternative to the previous variance is

V̂2[
ˆ̄Θ] =

1

k(k − 1)

k∑
α=1

(θ̂α − θ̂)2.

The previous variance estimators can likewise be used; however, the sam-

pling fraction f = n/N needs to be negligible. If not, the following modi-

fication of the estimator functional used in the subsamples provides better

results:

θ̂∗(α) = θ̂ − (1− f)1/2(θ̂(α) − θ̂).

If k = n each subsample has dimension n − 1 since only one unit of the

original sample is omitted at a time.

For a deeper insight on the jackknife variance estimation techniques one

can see Wolter (2007)



Appendix D

The expansion estimator and

its predictive form

As Bolfarine and Zacks (1992) point out, design-based estimators are

rarely presented in their predictive form. They refer to the paper by Ro-

drigues et al. (1985) as the main work on the subject.

In example 1.3.1 of their book, they rewrite the expansion estimator of

the population total in predictive form as

t̂E(y) =
N

n

∑
i∈S

yi = nȳ + (N − n)ȳ.

Therefore, the unsampled values is estimated by the sample mean:

ŷj = ȳ, ∀j /∈ S.

Unfortunately, nothing is known about the statistical properties of such

estimators.
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Appendix E

The simulated populations

Each population from A to L is the realization of a Gaussian random field

having superpopulation model and parameters as collected in Table E.1.

Table E.1: Random superpoluation models generating the populations anal-

ysed in the simulations

Semivariogram µ σ2 ϕ τ 2

A exponential 2 4 15 0.00

B exponential 2 4 6 0.00

C exponential 2 4 45 0.00

D exponential 2 4 90 0.00

E exponential 2 1 15 0.00

F exponential 2 1 45 0.00

G exponential 2 8 15 0.00

H exponential 2 1 45 0.00

I exponential 2 4 15 0.25

J exponential 2 4 45 0.25

K exponential 2 4 15 1.00

L exponential 2 4 45 1.00
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E.1 Population A
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Figure E.1: Population A: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.2: Population A: descriptive statistics

mean 0.979 median 0.856

standard deviation 1.671 interquartile range 4.609

skewness 0.375 quartile skewness 0.040

kurtosis -0.346 octile kurtosis 0.006
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E.2 Population B
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Figure E.2: Population B: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.3: Population B: descriptive statistics

mean 1.676 median 1.594

standard deviation 1.882 interquartile range 2.781

skewness 0.207 quartile skewness 0.079

kurtosis -0.431 octile kurtosis -0.107
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E.3 Population C
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Figure E.3: Population C: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.4: Population C: descriptive statistics

mean 1.499 median 1.411

standard deviation 1.246 interquartile range 1.795

skewness 0.280 quartile skewness 0.084

kurtosis -0.308 octile kurtosis -0.059
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E.4 Population D
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Figure E.4: Population D: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.5: Population D: descriptive statistics

mean 3.579 median 3.725

standard deviation 1.085 interquartile range 1.597

skewness -0.011 quartile skewness -0.296

kurtosis -0.301 octile kurtosis -0.155
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E.5 Population E
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Figure E.5: Population E: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.6: Population E: descriptive statistics

mean 1.490 median 1.428

standard deviation 0.835 interquartile range 1.159

skewness 0.375 quartile skewness 0.040

kurtosis -0.346 octile kurtosis 0.006
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E.6 Population F
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Figure E.6: Population F: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.7: Population F: descriptive statistics

mean 1.967 median 2.002

standard deviation 0.603 interquartile range 0.870

skewness -0.048 quartile skewness ?-0.107

kurtosis -0.530 octile kurtosis 0.016
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E.7 Population G
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Figure E.7: Population G: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.8: Population G: descriptive statistics

mean 2.406 median 2.270

standard deviation 2.263 interquartile range 2.974

skewness 0.100 quartile skewness 0.102

kurtosis -0.257 octile kurtosis 0.027
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Figure E.8: Population H: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.9: Population H: descriptive statistics

mean 1.377 median 1.454

standard deviation 2.012 interquartile range 2.964

skewness 0.009 quartile skewness -0.083

kurtosis -0.534 octile kurtosis -0.025
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E.9 Population I
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Figure E.9: Population I: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.10: Population I: descriptive statistics

mean 1.866 median 1.805

standard deviation 1.740 interquartile range 2.439

skewness 0.040 quartile skewness 0.055

kurtosis -0.147 octile kurtosis -0.100
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E.10 Population J
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Figure E.10: Population J: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.11: Population J: descriptive statistics

mean 3.083 median 2.996

standard deviation 1.547 interquartile range 2.179

skewness 0.233 quartile skewness 0.039

kurtosis -0.498 octile kurtosis -0.004
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E.11 Population K
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Figure E.11: Population K: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.12: Population K: descriptive statistics

mean 1.658 median 1.629

standard deviation 1.739 interquartile range 2.670

skewness 0.094 quartile skewness 0.037

kurtosis -0.634 octile kurtosis -0.177
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Figure E.12: Population L: (a) perspective and (b) tile plots, (c) true (dashed

line) versus empirical (empty dots) semivariogram

Table E.13: Population L: descriptive statistics

mean -0.811 median -0.923

standard deviation 1.684 interquartile range 2.312

skewness 0.045 quartile skewness 0.053

kurtosis -0.474 octile kurtosis 0.142
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