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Abstract

This doctoral dissertation presents a new method to asses the influence of clearance

in the kinematic pairs on the configuration of planar and spatial mechanisms. The

subject has been widely investigated in both past and present scientific literature,

and is approached in different ways: a static/kinetostatic way, which looks for the

clearance take-up due to the external loads on the mechanism; a probabilistic way,

which expresses clearance-due displacements using probability density functions; a

dynamic way, which evaluates dynamic effects like the actual forces in the pairs

caused by impacts, or the consequent vibrations.

This dissertation presents a new method to approach the problem of clearance.

The problem is studied from a purely kinematic perspective. With reference to

a given mechanism configuration, the pose (position and orientation) error of the

mechanism link of interest is expressed as a vector function of the degrees of freedom

introduced in each pair by clearance: the presence of clearance in a kinematic pair,

in facts, causes the actual pair to have more degrees of freedom than the theoretical

clearance-free one. The clearance-due degrees of freedom are bounded by the pair

geometry. A proper modelling of clearance-affected pairs allows expressing such

bounding through analytical functions. It is then possible to study the problem as

a maximization problem, where a continuous function (the pose error of the link of

interest) subject to some constraints (the analytical functions bounding clearance-

due degrees of freedom) has to be maximize.

Revolute, prismatic, cylindrical, and spherical clearance-affected pairs have been

analytically modelled; with reference to mechanisms involving such pairs, the solu-

tion to the maximization problem has been obtained in a closed form.
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Sommario

L’attività di ricerca presentata nella tesi di dottorato concerne lo studio dell’influenza

del gioco nelle coppie cinematiche in meccanismi piani e spaziali. Tale tema è stato

spesso oggetto di studi, tanto nella letteratura scientifica passata quanto in quella

attuale. Da uno studio approfondito, si possono dedurre diverse metodologie per

affrontare il problema: metodologie di tipo statico/cinetostatico, che determinano

la ripresa nel gioco nelle coppie a seguito dell’azione di un carico; metodologie di

tipo probabilistico, che esprimono lo spostamento nelle coppie con gioco in termini

di funzioni densità di probabilità; infine, metodologie che si interessano al problema

dinamico, volte a determinare effetti quali le effettive forze nelle coppie, o gli urti

successivi al distacco e le conseguenti vibrazioni.

La tesi in oggetto presenta una nuova metodologia per affrontare il problema.

Tale metodologia differisce dalle precedenti poiché presenta un’analisi di tipo pura-

mente cinematico. Con riferimento ad una configurazione assegnata per un mecca-

nismo, l’errore di posizione del membro di riferimento viene espresso come funzione

vettoriale dei gradi di libertà introdotti dal gioco. La presenza di gioco in una cop-

pia, infatti, introduce gradi di libertà aggiuntivi; questi gradi di libertà sono però

vincolati. Un’opportuna modellazione delle coppie cinematiche affette da gioco per-

mette di esprimere analiticamente per mezzo di opportune funzioni il vincolo sui

gradi di libertà introdotti. E’ quindi possibile studiare la funzione che rappresenta

l’errore di posizionamento del membro di riferimento riconducendo il problema alla

massimizzazione di una funzione continua definita su un dominio compatto. La

soluzione al problema è ottenuta analiticamente in forma chiusa, modellando coppie

di tipo rotoidale, prismatico, cilindrico e sferico per meccanismi piani e spaziali.
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Introduction

The modelling of clearance in lower kinematic pairs is an old problem, and a lot of

authors in time have proposed solutions based on different approaches. Even today,

none of the proposed solutions can be univocally judged superior the others and

adopted as standard. On the contrary, the different way to approach the problem

is still visible in the scientific literature: each approach has its own strength points,

and is suitable for solving a given class of problems, but not for giving a general

answer.

From a chronological point of view, the clearance problem has been first ad-

dressed as a kinematic problem. Aim of the authors is the position analysis of

clearance-affected mechanisms, that is the determination of the actual pose (posi-

tion and orientation) of each link after the introduction of clearance in the pairs.

However, such a position analysis strongly depends on the clearance take-up, and

therefore on the forces acting in the pairs: the analysis analysis has then to include

a static (or kinetostatic) analysis, and a purely kinematic analysis is not sufficient.

The kinematic and static/kinetostatic analyses need models describing the clearance-

affected pairs: such models have to map the relation between the pair forces and the

clearance take-up. They depend on the kind of pair, and on the kind of mechanisms

the pair belongs to (planar or spatial). When planar mechanisms are involved, pla-

nar models are sufficient to describe the pair. A simple model describing planar

clearance-affected revolute pairs exists. Such a model is usually referred to as equiv-

alent clearance link model. It introduces a fictitious massless link in the pair, which

connects the pin center to the hole center in the pair (see Fig. 1). The fictitious

link is assumed to display along the force direction to represent clearance take-up.

The equivalent clearance link model is very widespread, and is universally accepted

as representative for planar clearance-affected revolute pairs [1, 2, 3, 4]. The use of
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Figure 1: Equivalent clearance link

this model provides the clearance-due displacement in the pair as a function of the

pair forces. After such a displacement is known, the clearance-affected mechanism

becomes an ordinary mechanism, and its position analysis can be performed with

standard techniques. To increase the accuracy, it is possible to perform the analysis

in an iterative way. First, the pair forces are determined in a given configuration;

then, the pair displacements are determined as a function of the pair forces, and

a new configuration is achieved. After that, the pair forces can be re-determined

in the new configuration, and an updated value of the pair displacements can be

evaluated. In this way, a loop is built converging to the actual configuration of the

clearance-affected mechanism [3].

Generalizing the equivalent clearance link to spatial mechanisms in not a trivial

task. The model can be easily adapted for clearance-affected spherical pairs [4, 5];

however, other commonly used pairs, like the revolute or the prismatic ones, need

more complex models. Furthermore, such models strongly depend on the actual

pair design, as different designs define different take-up motions. Some kinetostatic

models for the clearance-affected revolute pair in the form of journal bearing are

presented in [6, 7, 8, 9]. The journal bearing design has been chosen because of

its diffusion, and because it always needs clearance to work. In [10], a kinetostatic

model is presented for prismatic pairs with a given design. All kinetostatic models

provide the clearance-due displacement in the pairing elements as a function of the

force in the pair: after the displacement in the pair is known, it can be used to

perform the position analysis of the mechanism. In [7], the case of a spatial 4-

bar linkage is presented. Regardless of the simple mechanism (only 4 pairs, and 4

links including the ground), the mathematics involved is very complex to handle,

and not intuitive at all. For this reason, most of the authors choose a different
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method to deal with spatial mechanisms: instead of an ordinary position analysis, a

”displacement” analysis is performed. The hypothesis behind this approach concerns

the magnitude of clearance: when small (theoretically infinitesimal) displacements

are involved, it is much easier to analyze the ordinary clearance-free mechanism,

and to find the pose error of its links caused by clearance, rather than analyzing

the clearance-affected mechanism. Finding the position error can be considered

a velocity analysis, rather than a position analysis. In this way, a complex non-

linear problem (the position analysis of a clearance-affected mechanism) is replaced

by an easier, well known non-linear problem (the position analysis of a clearance-

free mechanism) and by a linear problem (the displacement/velocity analysis of

a clearance-affected mechanism). The hypothesis of small values for clearance is

usually fulfilled by real mechanisms, and such method is often followed for both

open- [11, 12] and closed-chain mechanisms [9, 13, 14, 15, 16].

The approach based on kinematics and statics/kinetostatics at the same time

solves the clearance problem in an efficient way, but has a major disadvantage: it

basically depends on the load acting on the mechanism. It can be useful when work-

ing on mechanisms whose working conditions are precisely determined, but cannot

perform the analysis of clearance-affected mechanisms working with unknown loads.

Moreover, it cannot cope with effects like the loss of contact in the pairs. More gen-

erally, it involves statics/kinetostatics, and not kinematics only: as a consequence,

it is not suitable for a general kinematic analysis of clearance-affected mechanisms.

To account for this, some authors have replaced this deterministic approach with

a probabilistic one [17, 18, 19]. Instead of kinetostatic models for the clearance-

affected pairs, they use probability density functions expressing the displacement of

the pairing elements. In this way, the displacements in clearance-affected pairs are

expressed in a way which does not depend on the load, and no static/kinetostatic

analysis is needed. After expressing the displacement in the pairs, the authors de-

termine how such probability error functions propagate from the clearance-affected

pairs to the output. Most of the times, a linear propagation model is used. The

advantage of the probabilistic approach lies in its simplicity, and in the fact that

other effects can be modelled in the same way (e.g., geometric tolerances on the

links). However, it does not look deeply into the contact kinematics of the pair, and

can be hardly associated with the physical side of the problem.
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Another way to address the problem is the dynamic approach. Such approach

does not focus on kinematics only; on the contrary, it considers the actual motion of

the mechanism from a dynamic point of view. It can be used to obtain kinematic re-

sults, such as the trajectory of a mechanism link, or to evaluate completely different

effects, like the actual forces in the joints, the loss of contact in the clearance affected

pairs, the impacts between the pairing elements when the contact is re-established,

or the impact frequency and the consequent vibrations. This approach can be based

either on experimental results [20, 21], or on computer simulations. Computer sim-

ulations have been developed first for planar mechanisms [18, 22, 23, 24], for which

the dynamic models have been enhanced to include link flexibility [25, 26]. The

increased availability of computational resources in the last years could allow its ex-

tension to the spatial case; to the author’s knowledge, however, only simple spatial

mechanisms have been modelled until now [5].

The dynamic approach has the advantage of a very detailed modelling, suitable

for finding almost all information about moving mechanisms. Unfortunately, it has

a number of disadvantages. It is a very complex modelling, and requires simulation

and integration in time: it is then time-consuming, both in the modelling and in the

analysis. The results are strongly influenced by factors like boundary conditions,

or assumptions on post-impact dynamics, and sometimes even by numerical factors

such as the integration method or the integration step. As a result, it becomes a

very specific, low-level tool, which needs testing and validation, and does not allow

for a general approach to the problem.

In the last years, some authors have tried to develop a purely kinematic ap-

proach to the problem. Such an approach aims at a general, high level analysis

of mechanisms from a purely kinematic point of view. In [4], the authors replace

clearance-affected mechanisms with ordinary, underconstrained mechanisms. After

that, they use workspace generation techniques to investigate the workspace of the

new mechanisms in given configurations, and consider the workspace dimension as

a parameter expressing clearance influence.

In what follows, a new method assessing the influence of clearance will be pre-

sented. The method is purely kinematic, and does not require knowledge of the load

acting on the mechanism. In order to work, it needs kinematic models describing the

displacement in the pairs. Analytical models for the most common pairs (revolute,
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prismatic, cylindrical, spherical) are presented in detail. The method can be applied

to both open- and closed-chain mechanisms. It is presented first for planar mech-

anism [27], and is then generalized to the case of spatial mechanisms. It provides

the maximum pose error for the mechanism link of interest. When the mechanism

pairs can be modelled analytically, the solution to the maximization problem is pro-

vided in a closed-form, granting that all possible solutions are found. Moreover, it is

provided in a form which can be easily implemented with high numerical efficiency.
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Chapter 1

Small Displacements Kinematics

The problem of assessing the influence of clearance in the pairs on mechanisms

consists of two main points:

• determining the displacement between the pairing elements of each clearance-

affected pair;

• determining how such a displacement affects the overall mechanism configura-

tion.

The first point requires detailed models of the clearance-affected pairs; such models

are reported in the following chapters. This chapter will tackle the second point,

and a kinematic relation between the pair displacements and those of the overall

mechanism will be achieved.

The most common method to perform the position analysis of mechanisms relies

on Denavit-Hartenberg matrices [28, 29]. Such matrices are used do describe the

significative geometry of each link (geometry matrices), and to describe the degrees

of freedom of each pair(pair matrices). By properly combining the geometry and

pair matrices, it is possible to obtain a non-linear equation system, usually referred

to as loop closure equations. The solution of such a system determines the value of

all degrees of freedom in the pairs, and gives then a solution to the position analysis.

The Denavit-Hartenberg modelling can be extended to account for clearance

in the kinematic pairs. If a preliminary static/kinetostatic analysis is performed

on the mechanism, it is possible to determine the constraint forces in clearance-

affected joints, and, consequently, the displacement between the pairing elements

7



8 CHAPTER 1. SMALL DISPLACEMENTS KINEMATICS

due to clearance take-up. The Denavit-Hartenberg matrices can then be modified,

to express both the theoretical degree(s) of freedom in the pair, and the clearance-

due displacement [7].

The solution of the ”standard” loop closure equation is not a trivial task; it

becomes even more difficult when clearance has to be considered. For this reason,

other methods have been developed to assess the kinematic effects of clearance. All

these methods rely on the assumption that clearance is small when compared to

the other geometric dimensions. This hypothesis is usually fulfilled by industrial

mechanisms, as designers tend to prescribe small values of clearance to make pairs

work correctly. When clearance is small, its effects - that is, the generalized dis-

placements it causes to the mechanism links after the actuators are locked - can

be reasonably approximated by virtual displacements. In this way, the problem of

solving the position analysis for a clearance-affected mechanism is replaced by two

easier problems:

1. First, solving the position analysis for the clearance-free mechanism, and de-

termining its theoretical configuration;

2. Then, estimating the displacement of its links caused by clearance take-up.

This approach has been used in [11] and [12] to study serial mechanisms, that is,

mechanisms whose links form an open kinematic chain. Since the mechanism is

serial, all pairs have to be actuated: the pair nominal degree of freedom (the rotation

about the pair axis) is given. However, the presence of clearance in the pair gives

raise to a generalized displacement between the pairing elements. To express such a

displacement, it is convenient to introduce two reference systems, one fixed to each

element. The systems are chosen so that one overlaps the other when clearance is not

taken-up. After clearance take-up, the two systems do not overlap any more (see Fig.

1.1). A relative translation has displaced the two origins 0 and 0′. Such translation,

t, is a 3-component vector, and will be called translation error. Furthermore, a

change in the relative orientation has occurred. The change in orientation can be

thought as a relative rotation between the two systems, and represented by a vector

r with direction parallel to the line of rotation and magnitude equal to the rotation

angle. According to Euler’s theorem, r exists and is unique; it will be referred to as

rotation error. Since the rotation about the pair axis is controlled, r is orthogonal
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Figure 1.1: Translation and rotation error

to the pair axis.

Both translation and rotation errors have a direct effect on the relative position-

ing of the links. If a point Ai is assumed on the i-th link, its displacement with

respect to link i− 1, Ai,i−1, caused by the clearance-affected pair, is

∆Ai,i−1 = ti,i−1 + ri,i−1 × (Ai −Oi) (1.1)

whereas the change of orientation ∆Ψi,i−1 of link i with respect to link i− 1 is

∆Ψi,i−1 = ri,i−1 (1.2)

When all clearance-affected revolute pairs are considered at the same time, all effects

can be superimposed because of the linearity of instantaneous kinematics. Eqs. (1.1)

and (1.2) become then

∆An,0 =
n

∑

i=1

ti +
n

∑

i=1

ri × (An −Oi) (1.3)

and

∆Ψn,0 =
n

∑

i=1

ri (1.4)

where An,0 is the point on link n whose displacement is being sought, Oi is the

origin of the reference system on the i-th clearance-affected pair, while ti and ri

are its translation and rotation error. The two equations are still valid when pairs

other than revolute are considered; only, the definition of t and r has to be properly

adjusted: for a prismatic pair, t will be orthogonal to the pair geometric axis; for
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a cylindrical pair, both t and r will be orthogonal to the pair axis; for a spherical

pair, r will be null.

This vectorial approach presents several strength points. It is numerically very

efficient, as it requires vector algebra only instead of matrices. The kinematic compo-

sition of small displacements is very intuitive from a geometric perspective. More-

over, this way of geometrically obtaining the displacement of a link is consistent

with other techniques used to analyze manipulators: when the clearance-due dis-

placements are replaced by the unitary motion of the ideal pair, the elements in

Eqs. (1.3) and (1.4) can be properly arranged to evaluate the Jacobian matrix for

the manipulator; when the displacements are replaced by vectors representing geo-

metric inaccuracies, they can assess the influence of such an error on the pose of a

link.

Unfortunately, Eqs. (1.3) and (1.4) hold for serial mechanisms only. When

closed kinematic chains are considered, the problem becomes more complex. In

[13], the authors generalize Eqs. (1.3) and (1.4) to the case of closed-loops. First,

they consider the kinematic composition of angular and linear velocity. The angular

velocity of link i with respect to link j is given by

ωi,j =

j
∑

k=i

ωk,k−1 (1.5)

where ωk,k−1 is the angular velocity of link k with respect to link k − 1. Similarly,

the linear velocity of point Ai (on link i) with respect of point Aj (on link j) is

vi,j =

j
∑

k=i

vk,k−1 +

j
∑

k=i

ωk,k−1 × (Ak −Ak−1) (1.6)

where Ak and Ak−1 are two representative points on links k and k − 1 respectively,

while vk,k−1 is the linear velocity of point Ak−1.

Equations (1.5) and (1.6) can be used to relate the errors caused by clearance:

when such errors are small, they can be considered as virtual displacement, and can

therefore replace velocities. Moreover, when the loop closure is considered, and all

links (from 0 to n) are taken into account, Eqs. (1.5) and (1.6) become

∆Ψn,0 =
n

∑

k=0

∆Ψk,k−1 = 0 (1.7)
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∆An,0 =
n

∑

i=0

∆Ak,k−1 +
n

∑

i=0

Ψk,k−1 × (Ak −Ak−1) = 0 (1.8)

Equations (1.7) and (1.8) are a set of 2 vector (6 scalar) equations relating the

changes in orientation between two connected links, ∆Ψk,k−1, and the change in

position between some representative points on two connected links, ∆Ak,k−1. Both

changes in orientation and position are due in part to clearance take up, and in

part to the degrees of freedom of the idle pairs that have to adapt to the clear-

ance take-up. If the clearance take-up is somehow determined, e.g. through a

static/kinetostatic analysis, it is possible to use Eqs. (1.7) and (1.8) to determine

the motion in the idle pairs, and then determine the pose error (and indirectly the

mechanism configuration). More generally, the two equations relate the displace-

ment in the clearance-affected pairs with that of the mechanism links. When more

than one loop exists, one set of equations has to be written for every loop.

This approach is as general as the previous one, and works for both open and

closed chains. It could also be generalized to model other error sources, like the

geometric inaccuracies. When the displacements caused by the controlled dofs are

considered instead of those caused by clearance, the solution of Eqs. (1.7) and (1.8)

can be used to evaluate the Jacobian matrix relating output and input variables for

the mechanism.

A different way to obtain equations similar to (1.7) and (1.8) is presented in

[9] and [16]. Instead of the kinematic composition of both angular and linear ve-

locity, the authors use the duality between statics and instantaneous kinematics.

The mechanism link of interest, that is the link whose clearance-due displacement

is sought, is loaded by a virtual load G. The virtual load can be a generalized load:

in that case it can be dealt with as a 6-component vector, 3 components to repre-

sent a force, 3 components to represent a moment. A static analysis of the ideal

clearance-free mechanism provides the (generalized) pair forces, Si. Similarly to the

generalized load, the pair forces Si can be considered as 6-component vectors. When

the mechanism actuators are locked, the mechanism behaves like a fully constrained

structure (isostatic structure), and a linear relation exists between G and each of

the pair forces Si. The linear relation can be expressed as

Si = HiG (1.9)
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where Hi is a 6x6 matrix whose elements depend on the mechanism configuration

only. Matrix Hi can be easily obtained with 6 static analysis: the first one, performed

with a load G1 = [1 0 0 0 0 0]T , provides its first column; the second, performed with

G2 = [0 1 0 0 0 0]T , provides its second column, and so on until G6 = [0 0 0 0 0 1]T

provides its last column.

When virtual generalized displacements ∆γi are introduced between the pairing

elements of n clearance-affected pairs, a virtual generalized displacement ∆Γ arises

on the link of interest. The principle of virtual work can be used to relate all the

displacements; it allows writing the equation

G
T
∆Γ +

n
∑

i=1

S
T

i ∆γi = 0 (1.10)

which can be re-arranged as

G
T
∆Γ +

n
∑

i=1

G
T
Hi

T ∆γi = 0 (1.11)

Since Eq. (1.11) holds regardless of the load, G can be dropped, thus providing

∆Γ = −
n

∑

i=1

Hi
T ∆γi (1.12)

Similarly to Eqs. (1.7) and (1.8), Eq. (1.12) is a purely kinematic relation between

the generalized displacement in the clearance-affected pairs, ∆γi, and that of the link

of interest, ∆Γ. The kinematic relation is based on matrices Hi. Such matrices map

the static relation between load and pair forces; their transpose maps the kinematic

relation between the displacements associated with those forces.

The kinematic relation expressed by Eq. (1.12) is almost the same as that in

Eqs. (1.7) and (1.8). It is as general, and could also be used to include other error

sources. It has the advantage of directly providing the displacement of the link

of interest, and it consists of 6 scalar equations regardless of the number of loops

involved. Furthermore, its formulation can be used in the same way for both open

and closed chain mechanisms.

In what follows, the kinematic analysis of clearance-affected mechanisms will be

performed. The last technique in this chapter will be used to perform the analysis;

however, all the techniques previously reviewed could be used indifferently.



Chapter 2

Clearance in Planar Mechanisms

In this chapter, the study of clearance influence is presented for planar mechanisms.

Because of their simplicity, such mechanisms are commonly used for a number of

tasks. For the same reason, clearance effects have been extensively studied in the

literature. Different authors have presented both kinematic and dynamic models,

up to different detail levels. The clearance model presented here is a high level, very

simplified model. It gives a general overview of the mechanism from a kinematic

perspective, and can be very useful to compare different design solutions. More-

over, it can be considered as the key to better understand the modelling of spatial

mechanisms, presented in next chapter.

2.1 Pose Error Function

When working in the plane, a rigid body can have up to three degrees of freedom

(dofs). Two of them concern its position in the plane - translation dofs; the third

one concerns its orientation - rotation dof. When all actuators of a clearance-free

mechanism are locked, the three dofs are determined for every link. This is not

true for clearance-affected mechanism: because of clearance take-up, the links are

allowed a limited motion. The limited motion of the mechanism link of interest will

be called from here on position error. It can be represented by the 3-component

vector ∆Γ

∆Γ =









∆X

∆Y

∆Θ









(2.1)
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14 CHAPTER 2. CLEARANCE IN PLANAR MECHANISMS

with two translation components, ∆X and ∆Y and one rotation component, ∆Θ.

A similar definition applies to the clearance-affected pairs. Theoretically, such

pairs allow one (or two) dof(s) between the pairing elements; when the actuators

are locked, those dofs are uniquely assigned. Because of clearance, however, a rela-

tive motion between the pairing elements exists. The relative motion between the

elements of the i-th pair will be referred to as ∆γi, and called local displacement.

Similarly to Eq. (2.1), it can be represented by a 3-component vector:

∆γi =









∆xi

∆yi

∆θi









(2.2)

with two translation components, ∆xi and ∆yi and one rotation component, ∆θi.

A kinematic relation exists between ∆Γ and ∆γi. When clearance magnitude is

much smaller than the link size, it can be expressed by Eqs. (1.3) and (1.4), (1.7)

and (1.8), or (1.12). As previously explained, Eq. (1.12) will be used from here on,

that is

∆Γ = −
n

∑

i=1

Hi
T ∆γi (1.12 repeated) (2.3)

where n is the number of clearance-affected pairs, and Hi are known matrices ob-

tained through the static analysis of the clearance-free mechanism. Since a planar

mechanism is considered, they are 3x3 matrices.

Equation (2.3) provides the pose error ∆Γ as a function of some unknown pa-

rameters, the local displacements ∆γi and, consequently, of their components ∆xi,

∆yi, and ∆θi. In order to determine the pose error, it is sufficient to study such a

function. To do this, a proper definition of the local displacements is first needed.

2.2 Pair Modelling

The definition of the local displacements ∆γi basically depends on the kind of pair

considered. The most common pairs are the revolute and the prismatic one.

2.2.1 Revolute pair

A clearance-free revolute pair allows a relative rotation between the pairing elements,

bounding all relative translations. On the contrary, the presence of clearance permits
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Figure 2.1: Revolute Pair

the relative translation between the pairing elements. With reference to Fig. 2.1,

the local displacement ∆γi can be expressed as

∆γi =









ρi cos(αi)

ρi sin(αi)

0









(2.4)

The rotation component has a null value, because the relative rotation between

the elements is not caused by clearance but belongs to the pair dofs. The two

translation components are expressed in the coordinate system shown in Fig. 2.1,

whose origin lies on the theoretical pair center. They are expressed as functions of

two parameters, ρi and αi, reported in Fig. 2.1. The numerical definition of the

parameters uniquely identifies the relative positioning of the pairing elements. The

two parameters cannot assume any value but are constrained by the pair design: ρi,

the distance between the pin and the hole center, has to be equal to or smaller than

the clearance value. This can be easily expressed by

0 ≤ ρi ≤ ǫ (2.5)

where ǫ is clearance magnitude. When ρi is equal to the clearance value, the pin is in

contact with the hole on a point whose angular position is defined by the parameter

αi. When ρi is smaller than the clearance value, the pin is floating with respect to

the hole.

2.2.2 Prismatic Pair

A clearance-free prismatic pair allows the translation along one direction between the

pairing elements; the translation along the other direction and the relative rotation
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Figure 2.2: Prismatic Pair

are constrained. Clearance allows these last two dofs. With reference to Fig. 2.2,

the displacement ∆γj is

∆γj =









0

σj

τj









(2.6)

σj and τj are two parameters: σj associated with a translation orthogonal to the

pair geometrical axis, and τj represents the relative rotation. The translation along

the pair geometrical axis is not present in ∆γj because it belongs to the ideal pair,

and is not caused by clearance. The numerical definition of σj and τj uniquely

defines the relative position between the pairing elements. The values of σj and τj

are bounded by the pair design. After ∆γi is applied to the slider, the y-displacement

of its corner points (point A, B, C, and D in Fig. 2.2) has to be equal to or smaller

than the value of clearance. This determines the four constraints


























L sin(τj) + d cos(τj) + 2σj − d− 2ǫ ≤ 0

−L sin(τj) + d cos(τj) + 2σj − d− 2ǫ ≤ 0

−L sin(τj) − d cos(τj) + 2σj + d+ 2ǫ ≥ 0

L sin(τj) − d cos(τj) + 2σj + d+ 2ǫ ≥ 0

(2.7)

For the sake of clarity, it is convenient to represent the inequalities (2.7) in a graphic

way. In a σj - τj plane, the inequalities define the internal part of a [concave] diamond

- see Fig. 2.3. When the hypothesis of small clearance is used, the inequalities (2.7)

are simplified to


























Lτj + 2σj − 2ǫ ≤ 0

−Lτj + 2σj − 2ǫ ≤ 0

−Lτj + 2σj + 2ǫ ≥ 0

Lτj + 2σj + 2ǫ ≥ 0

(2.8)

and the sides of the diamond in Fig. 2.3 become straight lines.
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Figure 2.3: Constraints on σj and τj

2.3 Study of the Pose Error

The definition of the local displacements (2.4) and (2.6) when plugged into Eq.

(2.3) defines the pose error as a function of the unknown parameters describing the

contact in the pairs: αi and ρi for each revolute pair, σj and τj for each prismatic

pair. Because of the structure of Eq. (2.3), based on the hypothesis of small values

for clearance, each component of the pose error is

• a linear trigonometric function when revolute-pair parameters appear;

• a linear function when prismatic-pair parameters appear.

The pose error has the form

∆Γ =









...Hi1,1ρi cos(αi) + Hi1,2ρi sin(αi) + ...+ Hj1,2
σj + Hj1,3

τj + ...

...Hi2,1ρi cos(αi) + Hi2,2ρi sin(αi) + ...+ Hj2,2
σj + Hj2,3

τj + ...

...Hi3,1ρi cos(αi) + Hi3,2ρi sin(αi) + ...+ Hj3,2
σj + Hj3,3

τj + ...









(2.9)

where Hia,b represents the element in the a-th row, b-th column in matrix Hi. It

is possible to study each component of the pose error, in order to determine its

maximum and minimum value. Such a study is simplified by the fact that each

component is a linear function, thus.

• the maxima/minima exist, and lie on the domain border;

• the function can be split in n parts, where n is the number of clearance-affected

pairs. Each part can be dealt with separately, to find its maximum/minimum;

the global maximum/minimum will be the sum of all the maxima/minima for

the different pairs.
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The numerical procedures to find the maximum/minimum for revolute and prismatic

pairs are hereafter reported.

2.3.1 Revolute Pair

When the q-th component of the pose error ∆Γ given by Eq. (2.9) is considered,

the contribution of the i-th clearance affected revolute pair is

f = Hiq,1ρi cos(αi) + Hiq,2ρi sin(αi) (2.10)

The function f is subject to the constraint

0 ≤ ρi ≤ ǫ (2.11)

where ǫ is clearance magnitude. Since the maxima/minima lie on the domain border,

it is

ρi = ǫ (2.12)

The values of αi generating maxima/minima can be obtained by the condition

∂f/∂αi = 0 (2.13)

which yields

αi1 = arctan(Hiq,2/Hiq,1)

αi2 = arctan(Hiq,2/Hiq,1) ± π
(2.14)

where one of the two values of αi generates a maximum, the other one generates a

minimum.

2.3.2 Prismatic Pair

When the q-th component of the pose error ∆Γ given by Eq. (2.9) is considered,

the contribution of the j-th clearance affected revolute pair is

f = Hjq,2
σj + Hjq,3

τj (2.15)

The variables σj and τj are subject to the constraints



























L sin(τj) + d cos(τj) + 2σj − d− 2ǫ ≤ 0

−L sin(τj) + d cos(τj) + 2σj − d− 2ǫ ≤ 0

−L sin(τj) − d cos(τj) + 2σj + d+ 2ǫ ≥ 0

L sin(τj) − d cos(τj) + 2σj + d+ 2ǫ ≥ 0

(2.16)
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Table 2.1: Mechanism dimensions

Dimensions value

OB 10

AC 40

CD 10

AO 25

h 20

where ǫ is the magnitude of clearance. The constraints are graphically shown in Fig.

2.3. Since f is a linear function defined on a concave domain, its maxima/minima are

generated on the domain vertices. It means that f can have a maximum/minimum

in one of the four points

σj = +ǫ τj = 0

σj = −ǫ τj = 0

σj = 0 τj = + arctan(dL+2ǫL−d
√

L2−4dǫ−4ǫ2

d2+2dǫ+L
√

L2−4dǫ−4ǫ2
)

σj = 0 τj = − arctan(dL+2ǫL−d
√

L2−4dǫ−4ǫ2

d2+2dǫ+L
√

L2−4dǫ−4ǫ2
)

(2.17)

Using the hypothesis of small clearance, Eq. (2.17) becomes

σj = +ǫ τj = 0

σj = −ǫ τj = 0

σj = 0 τj = +2ǫ/L

σj = 0 τj = −2ǫ/L

(2.18)

After these four points have been found, the evaluation of f in these points permits

finding its maximum/minimum value.

2.4 Numerical Example

In this section, the clearance influence analysis is applied to an ordinary quick-return

mechanism. The mechanism is shown in Fig.2.4. The mechanism dimensions are

reported in Table 2.1; all lengths are in arbitrary units (a.u.). The angular position

of the crank OB, θ, is considered as the input, whereas the linear position of the

slider - identified by the x-coordinate of point D, xD - is the output. The input

value θ = 7

8
π is chosen to perform the analysis. Once the crank angle θ is given,
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Figure 2.4: Ordinary quick-return mechanism

the position analysis provides two possible configurations for the mechanism. The

configuration in Fig.2.4 is chosen; in such a configuration, xD = −4.9775. All pairs

are affected by clearance. Clearance magnitude is assumed to be 0.1 a.u. for both

revolute and prismatic pairs. The dimensions of the slider in each prismatic pair

have to be given to determine the maximum rotation τ ; such dimensions are assumed

to be 3 a.u. for the slider length (L in Fig. 2.2), 1 a.u. for the slider transverse

dimension (d in Fig. 2.2).

Three virtual static analyses of the mechanism provide matrices H. The first

virtual analysis is performed with a load G1 = [1 0 0]T , that is with a force along the

x-direction. The force is applied to point D. This analysis provides the first column

of all matrices H. The second analysis is performed with a virtual load G = [0 1 0]T ,

that is with a force directed along the y-axis and applied to point D. It provides

the second column of all matrices H. The third analysis is performed with a virtual

load G = [0 0 1]T , that is with a moment acting on the slider. It provides the third
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column of each matrix H. The final result is:

H1 =









+1.5653 0 0

+0.5017 0 0

0 0 0









for the revolute pair in O;

H2 =









−0.5653 0 0

+0.4539 0 0

0 0 0









for the revolute pair in A;

H3 =









+1.5653 0 0

+0.5017 0 0

0 0 0









for the revolute pair in B;

H4 =









+1.5653 0 0

+0.5017 0 0

0 0 0









for the prismatic pair in B;

H5 =









+1 0 0

+0.9555 0 0

0 0 0









for the revolute pair in C;

H6 =









+1 0 0

+0.9555 0 0

0 0 0









for the revolute pair in D;

H7 =









0 0 0

−0.9555 1 0

0 0 1








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for the prismatic pair in D. All matrices are expressed in the reference system shown

in Fig. 2.4.

The local displacements for the revolute pairs are

∆γi =









ρi cos(αi)

ρi sin(αi)

0









with i = 1, 2, 3, 5, 6. These displacements are related to the revolute pairs in O,

A, B, C, and D respectively. The local displacement for the prismatic pair in B,

expressed in the coordinate system in Fig. 2.4, is

∆γ4 =









0.9523σ4

0.3052σ4

τ4









while the local displacement in the prismatic pair in D, expressed in the same

coordinate system, is

∆γ7 =









0

σ7

τ7









It is now possible to use (Eq. 2.3) to obtain the function describing the slider pose

error. The function has 3 components: the first two are the x− and y−displacement

of point D; the third one is the slider rotation. The pose error function is

∆Γ =



















































∆X =

+1.5653 · ρ1 cos(α1) + 0.5017 · ρ1 sin(α1)

−0.5653 · ρ2 cos(α2) + 0.4539 · ρ2 sin(α2)

+1.5653 · ρ3 cos(α3) + 0.5017 · ρ3 sin(α3)

+1.0000 · ρ5 cos(α5) + 0.9555 · ρ5 sin(α5)

+1.0000 · ρ6 cos(α6) + 0.9555 · ρ6 sin(α6)

+1.6437 · σ4 − 0.9555 · σ7

∆Y = σ7

∆Θ = τ7


















































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Figure 2.5: Ordinary quick-return mechanism affected by clearance: maximum error on

the output slider position

The slider position error along the y-axis (∆Y ) and its orientation error (∆Θ) depend

only on the clearance in the prismatic pair in D, whereas the slider position error

along the x-axis (∆X) depends on the clearance in all the pairs.

The study of the functions ∆X, ∆Y and ∆Θ provides the maximum errors

affecting the slider caused by clearance. The numerical solution is:

1. For ∆X,

ρ1 = 0.1 α1 = {0.3102;−2.8314} =⇒ ∆X = ±0.1644

ρ2 = 0.1 α2 = {−0.6765; 2.4651} =⇒ ∆X = ±0.0725

ρ3 = 0.1 α3 = {0.3102;−2.8314} =⇒ ∆X = ±0.1644

σ4 = ±0.1 τ4 = 0 =⇒ ∆X = ±0.1644

ρ5 = 0.1 α5 = {0.7626;−2.3789} =⇒ ∆X = ±0.1383

ρ6 = 0.1 α6 = {0.7626;−2.3789} =⇒ ∆X = ±0.1383

σ7 = ±0.1 τ7 = 0 =⇒ ∆X = ±0.0956

=⇒ ∆X = ±0.9379

2. For ∆Y ,
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σ7 = ±0.1 τ7 = 0 =⇒ ∆Y = ±0.1

=⇒ ∆Y = ±0.1

3. For ∆Θ,

σ7 = 0 τ7 = ±0.0668 =⇒ ∆Θ = ±0.0668

=⇒ ∆Θ = ±0.0668

Figure 2.5 reports the mechanism configuration associated with the maximum

error on the slider position along the x-axis (the magnitude of clearance is amplified

to show the contact conditions in the pairs).



Chapter 3

Spatial Clearance-Affected

Mechanisms

The study of clearance influence presented in the previous chapter can be extended

to the case of spatial mechanisms. The kinematic analysis of spatial clearance-

affected mechanisms can be performed as for planar mechanisms. The only difference

concerns the kinematic pairs. With spatial mechanisms, a wider variety of pairs

can be used; furthermore, the kinematic behavior of the clearance-affected pairs is

strongly influenced by the pair design, and its modelling is more complex.

In this chapter, the analysis of clearance influence is detailed for spatial mecha-

nisms. After the definition of the pose error, the chapter focusses on the modelling

of the most common pairs, and on the maximization of the pose error.

3.1 Pose Error Function

A rigid body has up to six degrees of freedom (dofs). Three concern its position -

translation dofs; three concern its orientation - rotation dofs. When all actuators of

a clearance-free mechanism are locked, the six dofs are determined for every link.

However, the presence of clearance allows a limited link motion. The motion of the

mechanism link of interest will be called from hereon position error, and referred to

25
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as ∆Γ. It can be represented by a 6-component vector,

∆Γ =



























∆X

∆Y

∆Z

∆Ξ

∆H

∆Υ



























(3.1)

where ∆X, ∆Y , and ∆Z represent the change in position of a reference point on the

link of interest, while ∆Ξ, ∆H, and ∆Υ represent a change in the link orientation.

When magnitude rotation is small, these last three parameters can be intended as

the components of a vector; if the rotation creating the change in orientation is

considered, such a vector has the same direction as the rotation axis, and the same

magnitude as the rotation magnitude.

Clearance-affected pairs can be treated in a similar way: while clearance-free

pairs constrain some dofs between the pairing element, clearance-affected pairs limit

those dofs, but do not constrain them completely. They allow thus a relative dis-

placement. Such displacement will be referred to as ∆γi, and called local displace-

ment. It can be represented by a 6-component vector,

∆γi =



























∆xi

∆yi

∆zi

∆ξi

∆ηi

∆υi



























(3.2)

where ∆xi, ∆yi, and ∆zi are associated with the linear displacement, and ∆ξi, ∆ηi,

and ∆υi are associated with the angular displacement.

A kinematic relation exists between ∆Γ and ∆γi. When clearance magnitude is

small, it can be expressed by one between Eqs. (1.3) and (1.4), (1.7) and (1.8), or

(1.12). As previously explained, Eq. (1.12) will be used from here on:

∆Γ = −

n
∑

i=1

Hi
T ∆γi (1.12 repeated) (3.3)
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where n is the number of clearance-affected pairs, and Hi are known matrices,

obtained through the static analysis of the clearance-free mechanism. Since spatial

mechanisms are considered, they are 6x6 matrices.

Equation (3.3) provides the pose error ∆Γ as a function of some unknown pa-

rameters, the local displacements ∆γi. In order to determine the pose error, it is

sufficient to study such a function. In order to do that, a proper definition of the

local displacements is first needed.

3.2 Pair Modelling

The local displacements ∆γi depend on the kind of pair, as different pairs define

different relative motions, and, by converse, different displacements. Some common

pairs are here revised.

3.2.1 Revolute Pair

A revolute pair allows one rotational dof only between the pairing elements. The

local displacement ∆γi will then involve the components which are supposed to be

bounded. If ∆γi is expressed in a reference system with z-axis along the pair axis,

it can be defined as

∆γi =



























∆xi

∆yi

∆zi

∆ξi

∆ηi

0



























(3.4)

Because of the cylindrical symmetry usual for revolute pairs, it is convenient to

express ∆γi as

∆γi =



























ρi cos(φi)

ρi sin(φi)

∆zi

θi cos(ψi)

θi sin(ψi)

0



























(3.5)
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Figure 3.1: Journal bearing

where ρi, φi, θi, and ψi are parameters defining the relative displacement between

the pairing elements. The value of such parameters is bounded by the geometry of

the pairing elements; thus, it is necessary to refer to a specific design for the revolute

pair. The journal bearing design reported in Fig. 3.1 is chosen. Such a design is

common for revolute pairs; moreover, it always needs clearance in order to work.

Two reference systems, each one fixed to one of the pairing elements, are taken;

when clearance is not taken up, the two systems overlap and their origins lie on

the theoretical pair center (see Fig. 3.1). ∆γi can be intended as the displacement

between the two pairing elements, and its magnitude is bounded by the possible

contact between the elements. The contact can occur in not more than four points:

1. on the upper rim of the hole;

2. on the lower rim of the hole;

3. on the upper shoulder;

4. on the lower shoulder.

The contact could also occur on one line and one plane; however, from a kinematic

point of view, such a contact can be modelled exactly like a 3-point contact, with

the two points on the rims belonging to the contact line.
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When small displacements are considered, the displacement of a point on the

upper rim is









L
2
θi sin(ψi) + ρi cos(ψi)

−L
2
θi cos(ψi) + ρi sin(ψi)

− sin(θi) sin(ψi)
d
2

cos(α) + sin(θi) cos(ψi)
d
2

sin(α) + ∆zi









(3.6)

where d is the pin diameter, L is the pin length, and α identifies the point on the rim.

The displacement component in a plane parallel to the xy-plane has to be smaller

than the magnitude of radial clearance. This can be expressed by the inequality

(

L

2
θi sin(ψi) + ρi cos(ψi)

)2

+

(

−
L

2
θi cos(ψi) + ρi sin(ψi)

)2

≤ ǫ2r (3.7)

where ǫr is the magnitude of radial clearance. Eq. (3.7) can be simplified to

ρ2
i +

L2

4
θ2
i + ρiθiL sin(ψi − φi) ≤ ǫ2r (3.8)

The displacement of a point on the lower rim is









−L
2
θi sin(ψi) + ρi cos(ψi)

L
2
θi cos(ψi) + ρi sin(ψi)

− sin(θi) sin(ψi)
d
2

cos(β) + sin(θi) cos(ψi)
d
2

sin(β) + ∆zi









(3.9)

where β identifies the point on the rim. The displacement component in a plane

parallel to the xy-plane has to be smaller than the magnitude of radial clearance;

this can be expressed by the inequality

(

−
L

2
θi sin(ψi) + ρi cos(ψi)

)2

+

(

L

2
θi cos(ψi) + ρi sin(ψi)

)2

≤ ǫ2r (3.10)

which can be simplified to

ρ2
i +

L2

4
θ2
i − ρiθiL sin(ψi − φi) ≤ ǫ2r (3.11)

The z-component displacement of a point on the upper shoulder is

D

2
θi sin(δ − ψi) + ∆zi (3.12)

where D is the shoulder diameter, while δ identifies the point on the rim. Its

maximum magnitude occurs for the point with δ = ψi + π
2
, and is

D

2
θi + ∆zi (3.13)
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This displacement has to be smaller than the value of axial clearance, ǫa, thus the

following constraint function is obtained

D

2
θi + ∆zi ≤ ǫa (3.14)

Similarly, the z-component displacement of a point on the lower shoulder is

expressed by Eq. (3.12). Its minimum magnitude occurs when δ = ψi −
π
2
, and is

−
D

2
θi + ∆zi (3.15)

This displacement has to be bigger (i.e. smaller in magnitude, but with negative

sign) than the value of axial clearance, ǫa, thus the following constraint function is

obtained

−
D

2
θi + ∆zi ≥ ǫa (3.16)

which becomes

D

2
θi − ∆zi ≤ ǫa (3.17)

In summary, four constraint functions have been identified for a clearance-affected

pair designed as a journal bearing. The four constraint functions are reported in

the set (3.18), and reflect the possible contacts between the pairing elements. When

the contact occurs on four points, they have to be considered at the same time.

When the contact is on three point, only three of them have to be considered: as an

example, if the contact occurs on the two rims and on the upper shoulder, only the

first, the second and the third inequality in the set (3.18) have to be considered.



























ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) ≤ ǫ2r

ρ2
i + L2

4
θ2
i − ρiθiL sin(ψi − φi) ≤ ǫ2r

D
2
θi + ∆zi ≤ ǫa

D
2
θi − ∆zi ≤ ǫa

(3.18)

3.2.2 Cylindrical Pair

A cylindrical pair allows the rotation about one axis and the translation along the

same axis. The local displacement ∆γj involves the components which are supposed

to be bounded: when ∆γj is expressed in a reference system with z-axis along the
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pair axis, it can be defined as

∆γj =



























∆xj

∆yj

0

∆ξj

∆ηj

0



























(3.19)

Because of the cylindrical symmetry, it is convenient to express ∆γj as

∆γi =



























ρj cos(φj)

ρj sin(φj)

0

θj cos(ψj)

θj sin(ψj)

0



























(3.20)

where ρj , φj , θj , and ψj are parameters defining the displacement between the

pairing elements. The value of such parameters is bounded by the geometry of the

pairing elements. The design reported in Fig. 3.2 is chosen. The contact between

the pairing elements is very similar to that of the revolute pair, and can occur on

two points only (A and B in Fig. 3.2). Again, when the contact occurs on one line,

it can be modelled by referring to the extremes of that line only.

When small displacements are considered, the displacement of point A is









L
2
θj sin(ψj) + ρj cos(ψj)

−L
2
θj cos(ψj) + ρj sin(ψj)

− sin(θj) sin(ψj)
d
2

cos(α) + sin(θj) cos(ψj)
d
2

sin(α) + ∆zj









(3.21)

where d is the pin diameter, L is the pin length, and α identifies the point. The

displacement component in a plane parallel to the xy-plane has to be smaller than

the magnitude of radial clearance. This can be expressed by the inequality

(

L

2
θj sin(ψj) + ρj cos(ψj)

)2

+

(

−
L

2
θj cos(ψj) + ρj sin(ψj)

)2

≤ ǫ2r (3.22)

where ǫr is the magnitude of radial clearance. Eq. (3.22) can be simplified to

ρ2
j +

L2

4
θ2
j + ρjθjL sin(ψj − φj) ≤ ǫ2r (3.23)
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Figure 3.2: Cylindrical pair

The displacement of point B is









−L
2
θj sin(ψj) + ρj cos(ψj)

L
2
θj cos(ψj) + ρj sin(ψj)

− sin(θj) sin(ψj)
d
2

cos(β) + sin(θj) cos(ψj)
d
2

sin(β)









(3.24)

where β identifies the point. The displacement component in a plane parallel to

the xy-plane has to be smaller than the magnitude of radial clearance; this can be

expressed by the inequality

(

−
L

2
θj sin(ψj) + ρj cos(ψj)

)2

+

(

L

2
θj cos(ψj) + ρj sin(ψj)

)2

≤ ǫ2r (3.25)

which can be simplified to

ρ2
j +

L2

4
θ2
j − ρjθjL sin(ψj − φj) ≤ ǫ2r (3.26)

In summary, two constraint functions have been identified for a clearance-affected

cylindrical pair. The two constraint functions are reported in the set (3.27).






ρ2
j + L2

4
θ2
j + ρjθjL sin(ψj − φj) ≤ ǫ2r

ρ2
j + L2

4
θ2
j − ρjθjL sin(ψj − φj) ≤ ǫ2r

(3.27)

3.2.3 Spherical Pair

A spherical pair constrains any translation between the pairing elements, while it

allows any rotation. Thus, the local displacement ∆γk involves the translation com-

ponents only. When ∆γj is expressed in a reference system with z-axis along the
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Figure 3.3: Spherical pair

pair axis, it can be defined as

∆γk =



























∆xk

∆yk

∆zk

0

0

0



























(3.28)

Because of its symmetry, it is convenient to express ∆γk as

∆γi =



























ρk cos(φk) cos(ψk)

ρk sin(φk) cos(ψk)

ρk sin(ψk)

0

0

0



























(3.29)

where ρk, φk, and ψk are parameters expressing the displacement between the pairing

elements. The value of such parameters is bounded by the geometry of the pairing

elements. The contact between the pairing elements can occur on one point only,

and the displacement magnitude has to be smaller than clearance magnitude. This

implies

∆x2 + ∆y2 + ∆z2 ≤ ǫ2 (3.30)

or, by using Eq. (3.29),

0 ≤ ρk ≤ ǫ (3.31)

where ǫ is the magnitude of clearance.
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3.2.4 Prismatic Pair

A prismatic pair allows one translational dof only between the pairing elements.

The local displacement ∆γl will then involve the components which are supposed

to be bounded. If ∆γl is expressed in a reference system with z-axis parallel to the

translation axis, it can be defined as

∆γl =



























∆xl

∆yl

0

∆ξl

∆ηl

∆ζl



























(3.32)

where xl and yl are parameters expressing the translation error, while ξl, ηl and

ζl express the rotation error. The value of such parameters is bounded by the

geometry of the pairing elements; thus, it is necessary to refer to a specific design

for the revolute pair. The design reported in Fig. 3.4 has been chosen. Two reference

systems, each one fixed with one of the pairing elements, are taken; their z-axis lies

on the pair geometric axis, while the origin is in the pair geometric center (see Fig.

3.4). ∆γl can be intended as the displacement between the two pairing elements,

and its magnitude is bounded by the possible contact between the elements. The

contact can occur in eight different points, reported as Pn, n = 1..8, in Fig. 3.4.

The coordinates of points Pn are

Pn =









±a/2

±a/2

±l/2









(3.33)

where a is the pair lateral dimension, and l is the pair length. When small displace-

ments are considered, the displacements of points Pn is

∆Pn =









± l
2
∆ηl ∓

a
2
∆ζl + ∆xl

∓ l
2
∆ξl ±

a
2
∆ζl + ∆yl

0









(3.34)
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Figure 3.4: Prismatic pair

The x and y coordinates of ∆Pn have to be equal to or smaller than clearance

magnitude ǫ, thus providing the inequalitiy set











































































−l∆ηl − 2∆xl − a∆ζl ≤ 2ǫ −l∆ξl − 2∆yl − a∆ζl ≤ 2ǫ

−l∆ηl − 2∆xl + a∆ζl ≤ 2ǫ −l∆ξl − 2∆yl + a∆ζl ≤ 2ǫ

−l∆ηl + 2∆xl − a∆ζl ≤ 2ǫ −l∆ξl + 2∆yl − a∆ζl ≤ 2ǫ

−l∆ηl + 2∆xl + a∆ζl ≤ 2ǫ −l∆ξl + 2∆yl + a∆ζl ≤ 2ǫ

l∆ηl − 2∆xl − a∆ζl ≤ 2ǫ l∆ξl − 2∆yl − a∆ζl ≤ 2ǫ

l∆ηl − 2∆xl + a∆ζl ≤ 2ǫ l∆ξl − 2∆yl + a∆ζl ≤ 2ǫ

l∆ηl + 2∆xl − a∆ζl ≤ 2ǫ l∆ξl + 2∆yl − a∆ζl ≤ 2ǫ

l∆ηl + 2∆xl + a∆ζl ≤ 2ǫ l∆ξl + 2∆yl + a∆ζl ≤ 2ǫ

(3.35)

3.3 Study of the Pose Error

After the local displacements (3.5), (3.5), and (3.29) have been defined, their in-

troduction into Eq. (2.3) defines the pose error as a function of the numerical

parameters in the pairs: ρi, φi, ∆zi, θi, and ψi for each revolute pair; ρj , φj , θj , and

ψj for each cylindrical pair; ρk, φk and ψk for each spherical pair; and ∆xl, ∆yl,

∆ξl, ∆ηl, and ∆ζl for each prismatic pair. Because of the structure of Eq. (2.3),
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the q-th component of the pose error has the form

∆Γq = ...Hiq,1ρi cos(φi) + Hiq,2ρi sin(φi) + Hiq,3∆zi + Hiq,4θi sin(ψi)

+Hiq,5θi sin(ψi) + ...+ Hjq,1
ρj cos(φj) + Hjq,2

ρj sin(φj) + Hjq,4
θj sin(ψj)

+Hjq,5
θj sin(ψj) + ...Hkq,1ρk cos(φk) cos(ψk) + Hkq,2ρk sin(φi) cos(ψ + k)

+Hkq,3ρk sin(ψk) + ...+ Hlq,1∆xl + Hlq,2∆yl + Hlq,4∆ξl + Hlq,5∆ηl+

+Hlq,6∆ζl + ...

(3.36)

Equation (3.36) is valid when all matrices H and displacements ∆γ are expressed

in the same reference system. In general, however, the reference systems chosen to

express ∆γ in the form of Eqs. (3.5), (3.20) and (3.29) are different. It is then

convenient to introduce suitable matrices to change the coordinates from the local

reference systems in the pairs to the global reference system in which matrices H

have been obtained. Such matrices are 6x6 orthogonal matrices in the form

Mi =





Ri 0

0 Ri



 (3.37)

where Ri is the 3x3 rotational matrix that changes the coordinates between the local

system of the i-th pair and the global coordinate system. Equation (3.36) takes thus

the form

∆Γq = ...Ki,1ρi cos(φi) +Ki,2ρi sin(φi) +Ki,3∆zi +Ki,4θi sin(ψi)

+Ki,5θi sin(ψi) + ...+Kj,1ρj cos(φj) +Kj,2ρj sin(φj) +Kj,4θj sin(ψj)

+Kj,5θj sin(ψj) + ...Kk,1ρk cos(φk) cos(ψk) +Kk,2ρk sin(φi) cos(ψ + k)

+Kk,3ρk sin(ψk) + ...+Kl,1∆xl +Kl,2∆yl +Kl,4∆ξl +Kl,5∆ηl+

+Kl,6∆ζl + ...

(3.38)

where Ki,j are numerical coefficients depending on Hi and Mi.

Equation (3.38) is a continuous function of the parameters introduced to describe

the pair displacement, and is defined on a limited domain. It is then possible to state

that it has a maximum on its domain. Another interesting property is that there is

no coupling between those parameters: no term contains two (or more) parameters

referring to two (or more) different pairs. In this case, the function can be split in n

sub-functions, one for each clearance-affected pair. The maximization of the entire

function can then be replaced by the maximization of n simpler function, as the

function maximum will be the sum of the maxima for all parts.

The maximization procedure is here reported for the pairs previously considered.
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3.3.1 Revolute Pair

The sub-function concerning a revolute pair has the form

f = Ki,1ρi cos(φi) +Ki,2ρi sin(φi) +Ki,3∆zi +Ki,4θi cos(ψi) +Ki,5θi sin(ψi) (3.39)

subject to the constraints



























ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) ≤ ǫ2r

ρ2
i + L2

4
θ2
i − ρiθiL sin(ψi − φi) ≤ ǫ2r

D
2
θi + ∆zi ≤ ǫa

D
2
θi − ∆zi ≤ ǫa

(3.40)

The maximum for f is to be looked for on the domain border; inside the domain,

local maxima have to satisfy the condition ∇f=0, which leads to the system







































Ki,1 cos(φi) +Ki,2 sin(φi) = 0

−Ki,1ρi sin(φi) +Ki,2ρi cos(φi) = 0

Ki,3 = 0

Ki,4 cos(ψi) +Ki,5 sin(ψi) = 0

−Ki,4θi sin(φi) +Ki,5θi sin(ψi) = 0

(3.41)

whose only solution gives a null value for both ρi and θi (provided the condition

Ki,3 = 0 is satisfied); such a solution is neither the function minimum nor its max-

imum. The domain border is defined by the constraints (3.40). In principle, all

possible comibinations of the four constraint functions should be considered. From

a physical point of view, however, the domain border is associated with the complete

take-up of clearance. When clerance is completely taken-up, the contact between

the pairing elements can occur

• on four points, two on the shoulders and two on the rims;

• on three points, two on the shoulders and one on one rim;

• on three points, one on one shoulder and two on the rims;

• on one line and one plane.

The last case can be considered as a degeneration of the previous one, where the two

points on the rims identify the contact line, while the point on the shoulder identifies
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the contact plane. Furthermore, the contact on two points on both shoulders is only

possible when the condition

ǫa/D ≤ ǫr/L (3.42)

where ǫa is the axial clearance, ǫr is the radial clearance, D is the shoulder diameter,

and L is the pin length. The occurrence of contact in clearance-affected journal

bearings is detailed in [8].

The maximization of function f is performed using the Lagrange multipliers

technique; in order to use this technique, all three contacts have to be considered.

Contact on four points

Considering all four constraint functions (3.40) at the same time implies four contact

points, two on the rims and two on the shoulder. The four inequalities become

equations; the last two equations in (3.40) provide

∆zi = 0

θi = 2ǫa/D
(3.43)

while the first two equations provide

ρ2
i = ǫ2r − ǫ2a

L2

D2

ψi = φi ± π
(3.44)

It clearly appears that the contact on four points is only possible if

ǫ2r − ǫ2a
L2

D2
≥ 0 (3.45)

Moreover, it can be assumed

ψi = φi (3.46)

if both positive and negative value for ρi are accounted for. f becomes then function

of φi only,

f = Ki,1ρi cos(φi) +Ki,2ρi sin(φi) +Ki,4

2ǫa
D

cos(φi) +Ki,5

2ǫa
D

sin(φi) (3.47)

and reaches its maxima/minima when

(

Ki,1ρi +Ki,4

2ǫa
D

)

sin(φi) =

(

Ki,2ρi +Ki,5

2ǫa
D

)

cos(φi) (3.48)
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Equation (3.48) provides four values for φi: two are obtained with ρi =
√

ǫ2r − ǫ2a
L2

D2 ,

and two with ρi = −
√

ǫ2r − ǫ2a
L2

D2 . The numerical value of f can be evaluated for

each of the four solutions, so as to determine which solution generates the global

maximum/minimum.

Contact on two points on the shoulder and one point on the rim

When three constraint functions from inequalities become equations, three contact

points are imposed. If the third and the fourth of (3.40) are considered, two contact

points lie on the two shoulders. The third contact point is on one of the rims: the

upper one if the first constraint in (3.40) holds as an equation, the lower one if the

second does. From hereon, the constraint set



























ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) = ǫ2r

ρ2
i + L2

4
θ2
i − ρiθiL sin(ψi − φi) ≤ ǫ2r

D
2
θi + ∆zi = ǫa

D
2
θi − ∆zi = ǫa

(3.49)

will be considered; however, all results are the same for the set



























ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) ≤ ǫ2r

ρ2
i + L2

4
θ2
i − ρiθiL sin(ψi − φi) = ǫ2r

D
2
θi + ∆zi = ǫa

D
2
θi − ∆zi = ǫa

(3.50)

The third and fourth equations in (3.49) yield

∆zi = 0

θi = 2ǫa/D
(3.51)

The maximization problem can then be studied by using the Lagrange multipliers

technique; the function

f = Ki,1ρi cos(φi) +Ki,2ρi sin(φi) +Ki,4θi cos(ψi) +Ki,2θi sin(ψi) (3.52)

subject to the constraint

v = ρ2
i +

L2

4
θ2
i + ρiθiL sin(ψi − φi) − ǫ2r = 0 (3.53)
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has to be maximized. An auxiliary function has to be introduced in order to apply

the Lagrange multipliers technique. Such an auxiliary function can be defined as

F = f + λv (3.54)

where λ is a scalar parameter (multiplier). The local maxima/minima have then to

satisfy the condition ∇F = 0, leading to the non-linear system



























(Ki,1 cos(φi) +Ki,2 sin(φi)) + 2λρi + λθiL sin(ψi − φi) = 0

ρi(−Ki,1 sin(φi) +Ki,2 cos(φi)) − ρiλθiL cos(ψi − φi) = 0

θi(−Ki,4 sin(ψi) +Ki,5 cos(ψi)) + ρiλθiL cos(ψi − φi) = 0

ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) − ǫ2r = 0

(3.55)

in the unknown ρi, φi, ψi, and λ. The system can be re-arranged as



























λθiL sin(ψi − φi) = −(Ki,1 cos(φi) +Ki,2 sin(φi)) − 2λρi

ρiλθiL cos(ψi − φi) = ρi(−Ki,1 sin(φi) +Ki,2 cos(φi))

ρiλθiL cos(ψi − φi) = −θi(−Ki,4 sin(ψi) +Ki,5 cos(ψi))

ρiθiL sin(ψi − φi) = +ǫ2r − ρ2
i −

L2

4
θ2
i

(3.56)

The first and the fourth equations yield

−ρi(Ki,1 cos(φi) +Ki,2 sin(φi)) − 2λρ2
i = λ

(

ǫ2r − ρ2
i −

L2

4
θ2
i

)

(3.57)

while the combination of the first and second equation yields

θ2
i λ

2L2 − 4ρ2
iλ

2 −
(

K2
i,1 +K2

i,2

)

= 4ρiλ(Ki,1 cos(φi) +K2,i sin(φi)) (3.58)

By combining Eqs. (3.57) and (3.58),

λ2 =
(

K2
i,1 +K2

i,2

)

/4ǫ2r (3.59)

Equation (3.59) determines two possible values for λ. After λ has been determined,

the system can be reduced to

Aρ8
i +Bρ6

i + Cρ4
i +Dρ2

i + E = 0 (3.60)



3.3. STUDY OF THE POSE ERROR 41

where A, B, C, D, and E are numerical coefficients:

A = 64L2(K2
i,1 +K2

i,2)
2

B = −32L(K2
i,1 +K2

i,2)
[

L(K2
i,1 +K2

i,2)(4ǫ
2
r + L2θ2

i )+

+2(Ki,2Ki,4 −Ki,5Ki,1)(4ǫ
2
r − θ2

iL
2)

]

C = (4ǫ2r − θ2
i − L2)

[

L2(4ǫ2r − θ2
i − L2)(K4

i,1 +K4
i,2 + 2K2

i,1 + 2K2
i,2)

+8L(4ǫ2r + θ2
iL

2)(K2
i,1 +K2

i,2)(Ki,4Ki,2 −Ki,1Ki,5)
]

+

+θ2
iL

2ǫ2r

[

128Ki,1Ki,2Ki,4Ki,5 + 4(16ǫ4r + θ4
iL

4)(K2
i,4 +K2

i,5)(K
2
i,1 +K2

i,2)

+32(K2
i,5 −K2

i,4)(K
2
i,2 −K2

i,1)
]

D = −4(K2
i,1 +K2

i,1)(Lθi − 2ǫ)2(Lθi + 2ǫ)2
[

L(ki,5Ki,1 −Ki,4Ki,2)(L
2θ2

i − 4ǫ2) + 2(K2
i,4 +K2

i,5)(L
2θ2

i + 4ǫ2)
]

E = (K2
i,4 +K2

i,5)(K
2
i,2 +K2

i,1)(Lθi − 2ǫ)4(Lθi + 2ǫ)4

(3.61)

Equation (3.60) provides up 8 solutions for ρi. For each pair {λi, ±ρi} it is possible

to find two values for φi (Eq. (3.57)); for each φi, two values of ψi (third equation in

(3.55)). In this way, up to 64 solution sets can be identified for the non-linear system

(3.57). Among these sets, those which do not satisfy the inequality in (3.49) have to

be discarded. Each of the remaining sets can generate a local maximum/minimum.

The evaluation of function (3.52) with all solution sets, and the comparison of the

consequent values, allow the determination of the global maximum/minimum.

Contact on two points on the rim and one point on the shoulder

When three constraint functions from inequalities become equations, three contact

points are imposed. If the first and the second inequalities in (3.40) are considered,

two contact points lie on the rim. The third contact point is on one of the shoulder:

the upper one if the fourth constraint in (3.40) holds as an equation, the lower one
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if the third does. From here on, the constraint set



























ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) = ǫ2r

ρ2
i + L2

4
θ2
i − ρiθiL sin(ψi − φi) = ǫ2r

D
2
θi + ∆zi = ǫa

D
2
θi − ∆zi ≤ ǫa

(3.62)

will be considered; however, all results are the same for the set



























ρ2
i + L2

4
θ2
i + ρiθiL sin(ψi − φi) = ǫ2r

ρ2
i + L2

4
θ2
i − ρiθiL sin(ψi − φi) = ǫ2r

D
2
θi + ∆zi ≤ ǫa

D
2
θi − ∆zi = ǫa

(3.63)

The first and second equations in (3.62) yield

ψi = φi ± π

ρ2
i + L2

4
θ2
i = ǫr

(3.64)

The first condition in (3.64) expresses the fact that the translation in a plane orthog-

onal to the pair axis [ρi cos(φi), ρi sin(φi)] occurs along the rotation axis identified by

θi, and can have both directions. If both positive and negative values are considered

for ρi, the condition can be simplified to

ψi = φi (3.65)

The maximization problem can then be studied by using the Lagrange multipliers

technique; the function

f = Ki,1ρi cos(φi) +Ki,2ρi sin(φi) +Ki,3∆zi +Ki,4θi cos(φi) +Ki,2θi sin(φi) (3.66)

subject to the constraints

v1 = ρ2
i + L2

4
θ2
i − ǫ2r = 0

v2 = D
2
θi + ∆zi − ǫa = 0

(3.67)

has to be maximized. An auxiliary function has to be introduced in order to apply

the Lagrange multipliers technique. Such an auxiliary function is

F = f + λv1 + µv2 (3.68)
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where λ and µ are scalar parameters. The local maxima/minima have then to satisfy

the condition ∇F = 0, leading to the non-linear system



















































(Ki,1 cos(φi) +Ki,2 sin(φi)) + 2λρi = 0

ρi(−Ki,1 sin(φi) +Ki,2 cos(φi)) + θi(−Ki,4 sin(φi) +Ki,5 cos(φi)) = 0

(Ki,4 cos(φi) +Ki,5 sin(φi)) + L2

2
λθi + D

2
µ = 0

Ki,3 + µ = 0

ρ2
i + L2

4
θ2
i − ǫ2r = 0

D
2
θi + ∆zi − ǫa = 0

(3.69)

in the unknown ρi, θi, φi, ∆zi, λ, and µ. From the fourth equation,

µ = −Ki,3 (3.70)

while, from the first two,

cos(φi) = −2λρi

Ki,1ρi +Ki,4θi

ρi

(

K2
i,1 +K2

i,2

)

+ θi (Ki,4Ki,1 +Ki,2Ki,5)

sin(φi) = −2λiρi

Ki,2ρi +Ki,5θi

ρi

(

K2
i,1 +K2

i,2

)

+ θi (Ki,4Ki,1 +Ki,2Ki,5)
(3.71)

It is then possible to obtain λ from the third equation,

λ = µD
ρi

(

K2
i,1 +K2

i,2

)

+ θi (Ki,1Ki,4 +Ki,2Ki,5)

(Ki,1Ki,4 +Ki,2Ki,5)
(

4ρ2
i + L2θ2

i

)

− ρiθi

[

L
(

K2
i,1 +K2

i,2

)

− 4
(

K2
i,4 +K2

i,5

)]

(3.72)

Equations (3.71) can then be combined; the result is

Aρ4
i +Bρ3

i θi + Cρ2
i θ

2
i +Dρiθ

3
i + Eθ4

i = 0 (3.73)

where A, B, C, D, and E are numerical coefficients:

A = 4µ2D2
(

K2
i,1 +K2

i,2

)

− 16 (Ki,1Ki,4 +Ki,2Ki,5)
2

B = 8 (Ki,1Ki,4 +Ki,2Ki,5) +
[

L2
(

K2
i,1 +K2

i,2

)

− 4
(

K2
i,4 +K2

i,5

)

+ µ2D2
]

C = 4µ2D2
(

K2
i,4 +K2

i,5

)

− 16
(

K2
i,4 +K2

i,5

)2
− L4

(

K2
i,1 +K2

i,2

)2
+ (3.74)

+8L2 (Ki,1Ki,5 +Ki,2Ki,4)
2 + 16L2

(

K2
i,1K

2
i,4 +K2

i,2K
2
i,5

)

D = −2L2 (Ki,1Ki,4 +Ki,2Ki,5)
[

L2
(

K2
i,1 +K2

i,2

)

− 4
(

K2
i,4 +K2

i,5

)]

E = −L4 (Ki,1Ki,4 +Ki,2Ki,5)
2
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Considering the fifth equation in (3.69), Eq. (3.73) can be reduced to a 8th-degree

biquadratic equation, in the form

A′ρ8
i +B′ρ6

i + C ′ρ4
i +D′ρ2

i + E′ = 0 (3.75)

with

A′ = ǫ8r

[

(2L)2
(

L2B − 4D
)2

+
(

AL4 + 4CL2 + 16E
)2

]

B′ = 4ǫ3r
[

2
(

CL2 − 8E
) (

AL4 − 4CL2 + 16E
)

− L2
(

12D − L2B
) (

4D − L2B
)]

C ′ = 16ǫ2r
[

CL2
(

CL2 − 24E
)

+ 2E
(

AL4 + 48E2
)

+ 2L2D
(

6D − L2B
)]

D′ = −64ǫ2r
[

E2 + L2
(

D2 − 2EC
)]

E′ = 256E2

(3.76)

Up to 8 real solutions exist for Eq. (3.75). They can be found in a closed form.

For each value of ρi, up to 4 values for θi can be found through Eq. (3.73). Once

a set {ρi, θi} has been determined, Eqs. (3.72) and (3.71) determine one value for

λ and φ. The last equation in (3.69) provides one value for ∆zi. In this way, up to

32 solutions can be found for the non linear system (3.69). Each set can generate a

local maximum/minimum. The evaluation of function (3.66) with all solution sets,

and the comparison of the consequent values, allow the determination of the global

maximum/minimum.

After the local maxima/minima have been determined for each kind of contact,

the comparison between their numerical value permits determining

• the global maximum/minimum;

• the kind of contact associated with it;

• the values of the contact parameters ρi, θi, φi, ψi, and ∆zi generating it.

3.3.2 Cylindrical Pair

The sub-function concerning a cylindrical pair has the form

f = Kj,1ρj cos(φj) +Kj,2ρj sin(φj) +Kj,4θj cos(ψj) +Kj,5θj sin(ψj) (3.77)



3.3. STUDY OF THE POSE ERROR 45

subject to the constraints






ρ2
j + L2

4
θ2
j + ρjθjL sin(ψj − φj) ≤ ǫ2r

ρ2
j + L2

4
θ2
j − ρiθjL sin(ψj − φj) ≤ ǫ2r

(3.78)

When the maximum for f is to be looked for on the domain border; inside the

domain, local maxima have to satisfy the condition ∇f=0, which leads to the system



























Kj,1 cos(φj) +Kj,2 sin(φj) = 0

−Kj,1ρj sin(φj) +Ki,2ρj cos(φj) = 0

Kj,4 cos(ψj) +Kj,5 sin(ψj) = 0

−Kj,4θj sin(φj) +Kj,5θj sin(ψi) = 0

(3.79)

whose only solution gives a null value for both ρi and θi; such a solution is neither

the function minimum nor its maximum. The domain border is defined by the

constraints (3.78), which can be combined to obtain

ρ2
j + L2

4
θ2
j − ǫ2

ψj = φj ± π
(3.80)

As for the revolute pair, when positive and negative values are considered for ρj , it

is possible to assume

ψj = φj (3.81)

The maximization of function f is performed using the Lagrange multipliers tech-

nique. An auxiliary function has to be introduced in order to apply the technique.

Such an auxiliary function can be defined as

F = f + λ

(

ρ2
j +

L2

4
θ2
j − ǫ2

)

(3.82)

where λ is a scalar parameter (multiplier). The local maxima/minima have to satisfy

the condition ∇F = 0, leading to the non-linear system



























(Kj,1 cos(φj) +Kj,2 sin(φj)) + 2λρj = 0

ρj(−Kj,1 sin(φj) +Kj,2 cos(φj)) + θj(−Kj,4 sin(φj) +Kj,5 cos(φj)) = 0

(Kj,4 cos(φj) +Kj,5 sin(φj)) + L2

2
λθj = 0

ρ2
j + L2

4
θ2
j − ǫ2

(3.83)

in the unknown ρi, φi, and λ. The non linear system (3.83) can be solved like

(3.69). Up to 32 solution sets exist, which means that there are up to 32 local
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maxima/minima. The evaluation of function (3.77) with all solution sets, and the

comparison of the consequent values, allow the determination of the global maxi-

mum/minimum.

3.3.3 Spherical Pair

The sub-function concerning a spherical pair has the form

f = Kk,1ρk cos(φk) cos(ψk) +Kk,2ρk cos(φk) sin(ψk) +Kk,3ρk sin(ψk) (3.84)

subject to the constraint

v = 0 ≤ ρk ≤ ǫ (3.85)

The maximum for f is to be looked for on the domain border; inside the domain,

local maxima have to satisfy the condition ∇f=0, which leads to the system



























Kj,1 cos(φj) +Kj,2 sin(φj) = 0

−Kj,1ρj sin(φj) +Ki,2ρj cos(φj) = 0

Kj,4 cos(ψj) +Kj,5 sin(ψj) = 0

−Kj,4θj sin(φj) +Kj,5θj sin(ψi) = 0

(3.86)

whose only solution gives a null value for ρj (provided that at least one among Kk,1,

Kk,2, and Kk,3 is not null); such a solution is neither a minimum nor a maximum.

The domain border is defined by

ρk = ǫ (3.87)

Function f becomes then

f = Kk,1ǫ cos(φk) cos(ψk) +Kk,2ǫ cos(φk) sin(ψk) +Kk,3ǫ sin(ψk) (3.88)

and its maxima/minima have to satisfy the condition ∇f = 0, leading to the non

linear system







ǫ cos(φk) (−Kk,1 cos(φk) +Kk,2 sin(φk)) = 0

ǫ sin(ψk) (−Kk,1 cos(φk) +Kk,2 sin(φk)) + ǫKk,3 cos(ψk) = 0
(3.89)

in the unknowns φk and ψk only. Up to eight solutions can be easily found for such

a system. The evaluation of function (3.84) for all solution sets, and the comparison

of the consequent values, allow the determination of the global maximum/minimum.
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3.3.4 Prismatic Pair

The sub-function concerning a prismatic pair has the form

f = Kl,1∆xl +Kl,2∆yl +Kl,4∆ξl +Kl,5∆ηl +Kl,6∆ζl (3.90)

subject to the constraints










































































−l∆ηl − 2∆xl − a∆ζl ≤ 2ǫ −l∆ξl − 2∆yl − a∆ζl ≤ 2ǫ

−l∆ηl − 2∆xl + a∆ζl ≤ 2ǫ −l∆ξl − 2∆yl + a∆ζl ≤ 2ǫ

−l∆ηl + 2∆xl − a∆ζl ≤ 2ǫ −l∆ξl + 2∆yl − a∆ζl ≤ 2ǫ

−l∆ηl + 2∆xl + a∆ζl ≤ 2ǫ −l∆ξl + 2∆yl + a∆ζl ≤ 2ǫ

l∆ηl − 2∆xl − a∆ζl ≤ 2ǫ l∆ξl − 2∆yl − a∆ζl ≤ 2ǫ

l∆ηl − 2∆xl + a∆ζl ≤ 2ǫ l∆ξl − 2∆yl + a∆ζl ≤ 2ǫ

l∆ηl + 2∆xl − a∆ζl ≤ 2ǫ l∆ξl + 2∆yl − a∆ζl ≤ 2ǫ

l∆ηl + 2∆xl + a∆ζl ≤ 2ǫ l∆ξl + 2∆yl + a∆ζl ≤ 2ǫ

(3.91)

Since f is a linear function, its maximum is to be found on the domain border. The

domain is defined by the inequalities (3.91); its border can be obtained by changing

all inequalities into equations. The shape of the domain defined by (3.91) is not

easy to figure out, as it involves five variables - ∆xl, ∆yl, ∆ξl, ∆ηl, and ∆ζl - and

therefore a 5-dimensional space. In order to better understand it, it can be noted

that the variables are almost completely decoupled, in the sense that no equation

contains ∆xl and ∆yl at the same time, or ∆ξl and ∆ηl. ∆ζl only appears in all

equations. The system (3.91) can then be split in two parts,



























−l∆ηl − 2∆xl − a∆ζl = 2ǫ −l∆ηl − 2∆xl + a∆ζl = 2ǫ

−l∆ηl + 2∆xl − a∆ζl = 2ǫ −l∆ηl + 2∆xl + a∆ζl = 2ǫ

l∆ηl − 2∆xl − a∆ζl = 2ǫ l∆ηl − 2∆xl + a∆ζl = 2ǫ

l∆ηl + 2∆xl − a∆ζl = 2ǫ l∆ηl + 2∆xl + a∆ζl = 2ǫ

(3.92)

and


























−l∆ξl − 2∆yl − a∆ζl = 2ǫ −l∆ξl − 2∆yl + a∆ζl = 2ǫ

−l∆ξl + 2∆yl − a∆ζl = 2ǫ −l∆ξl + 2∆yl + a∆ζl = 2ǫ

l∆ξl − 2∆yl − a∆ζl = 2ǫ l∆ξl − 2∆yl + a∆ζl = 2ǫ

l∆ξl + 2∆yl − a∆ζl = 2ǫ l∆ξl + 2∆yl + a∆ζl = 2ǫ

(3.93)

The system (3.92) defines eight planes in the 3-dimensional space {∆xl,∆ηl,∆ζl}.

The eight planes define a diamond-shaped volume, shown in Fig. 3.5. On the other
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Figure 3.5: Domain for {∆xl,∆ηl,∆ζl}

hand, the part of function f involving the three variables ∆xl, ∆ηl, and ∆ζl is

f1 = Kl,1∆xl +Kl,4∆ηl +Kl,5∆ζl (3.94)

and defines a plane in the same space. Consequently, the maximum of f1 has to be

on one of the vertices vn, n=1..6, defined in Table 3.1.

Similarly, it is possible to define a 3-dimensional space {∆yl,∆ξl,∆ζl}, and a

function f2 as

f2 = Kl,2∆yl +Kl,3∆ξl +Kl,5∆ζl (3.95)

The sistem (3.93) defines a diamond-shaped volume similar to that in Fig. 3.5,

whose vertices un, n=1..6, are reported in Table 3.2. The maximum of f2 has to be

in one of those vertices.

Even if the two spaces {∆xl,∆ηl,∆ζl} and {∆yl,∆ξl,∆ζl} have one variable in

common, vertices vn and un are completely independent. As a consequence, when

f1 and f2 are maximized/minimized at the same time, the union of the two sets vn

and un has to be considered: the global maximum/minimum for function f has to be

in one of the points reported in Table 3.3. The evaluation of function (3.90) for all

points in Table 3.3, and the comparison of the consequent values, allows determining

its global maximum/minimum.

3.4 Numerical Example

A parallel manipulator with three dofs, known as Tsai Manipulator [30], is studied.

The mechanism shown in Fig. 3.6. It consists of two platforms, one assumed as
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Table 3.1: Domain vertices for ∆xl, ∆ηl, and ∆ζl

Vertex ∆xl ∆ηl ∆ζl

v1 −ǫ 0 0

v2 +ǫ 0 0

v3 0 −2ǫ/l 0

v4 0 +2ǫ/l 0

v5 0 0 −2ǫ/a

v6 0 0 +2ǫ/a

Table 3.2: Domain vertices for ∆yl, ∆ξl, and ∆ζl

Vertex ∆xl ∆ηl ∆ζl

u1 −ǫ 0 0

u2 +ǫ 0 0

u3 0 −2ǫ/l 0

u4 0 +2ǫ/l 0

u5 0 0 −2ǫ/a

u6 0 0 +2ǫ/a
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Table 3.3: Domain vertices for ∆xl, ∆yl, ∆xil, ∆ηl, and ∆ζl

Vertex ∆xl ∆yl ∆ξl ∆ηl ∆ζl

1 −ǫ 0 −ǫ 0 0

2 −ǫ 0 +ǫ 0 0

3 −ǫ 0 0 -2ǫ/l 0

4 −ǫ 0 0 +2ǫ/l 0

5 +ǫ 0 −ǫ 0 0

6 +ǫ 0 +ǫ 0 0

7 +ǫ 0 0 -2ǫ/l 0

8 +ǫ 0 0 +2ǫ/l 0

9 0 -2ǫ/l −ǫ 0 0

10 0 -2ǫ/l +ǫ 0 0

11 0 -2ǫ/l 0 -2ǫ/l 0

12 0 -2ǫ/l 0 +2ǫ/l 0

13 0 +2ǫ/l −ǫ 0 0

14 0 +2ǫ/l +ǫ 0 0

15 0 +2ǫ/l 0 -2ǫ/l 0

16 0 +2ǫ/l 0 +2ǫ/l 0

17 0 0 0 0 -2ǫ/a

18 0 0 0 0 +2ǫ/a



3.4. NUMERICAL EXAMPLE 51

Figure 3.6: Tsai Manipulator

the frame (base) and the other one as end-effector (platform). The two platforms

are connected by three serial kinematic chains (legs), each one composed of a first

passive universal joint, a controlled prismatic pair and a second passive universal

joint. Under some geometric and mounting conditions, the platform has a pure

translational motion [30]. The universal joint centers on both the base and the

platform are located at the vertices of two equilateral triangles, inscribed in two

circles with radius 200 and 100 respectively (all lengths are in arbitrary length

units). The three revolute pair axes on the base and on the platform form equilateral

triangles. Each universal joint is modelled as the union of two clearance-affected

revolute pairs, whose dimension (with reference to Fig. 3.1) are D = 2, L = 5,

εr = 0.01, εa = 0.01.

The mechanism is controlled by the length of the three legs, and provides the

platform position as output. The platform position can be represented by the posi-

tion of its geometrical center, point A in Fig. 3.6, in an absolute reference system.

A reference system centered in the base geometrical center, with the z-axis orthogo-

nal to the base and the y-axis passing through the center of one universal joint has

been chosen as the absolute one. The aim of the analysis is to find the displace-

ment of the platform due to clearance in the revolute pairs. In order to apply the

method the mechanism configuration has to be assigned. The configuration defined

by A = [87,−37, 85] has been chosen.
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The kinematic analysis previously described can be used to define the pose error

function. For the sake of clarity, only the third component of the pose error function

- the position error in the vertical direction - is reported.

∆Γ3 =































































+0.16439 · ρ11 sinφ11 + 0.088706 · ∆z11 − 75.866 · θ11 sinψ11

+0.16439 · ρ12 cosφ12 + 0.088706 · ρ12 sinφ12 − 75.866 · θ12 cosψ12

+0.16439 · ρ13 cosφ13 + 0.088706 · ρ13 sinφ13 − 75.866 · θ13 cosψ13

+0.16439 · ρ14 sinφ14 + 0.088706 · ∆z14 − 75.866 · θ14 sinψ14

+0.96127 · ρ21 sinφ21 − 0.12925 · ∆z21 + 16.246 · θ21 sinψ21

+0.96127 · ρ22 cosφ22 − 0.12925 · ρ22 sinφ22 + 16.246 · θ22 cosψ22

+0.96127 · ρ23 cosφ23 − 0.12925 · ρ23 sinφ23 + 16.246 · θ23 cosψ23

+0.96127 · ρ24 sinφ24 − 0.12925 · ∆z24 + 16.246 · θ24 sinψ24

−0.095720 · ρ31 sinφ31 + 0.040537 · ∆z31 + 49.930 · θ31 sinψ31

−0.095720 · ρ32 cosφ32 + 0.040537 · ρ32 sinφ32 + 49.930 · θ32 cosψ32

−0.095720 · ρ33 cosφ33 + 0.040537 · ρ33 sinφ33 + 49.930 · θ33 cosψ33

−0.095720 · ρ34 sinφ34 + 0.040537 · ∆z34 + 49.930 · θ34 sinψ34
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(3.96)

In Eq. (3.96), ρij , θij , φij , ψij , and ∆zij , i = 1..3, j = 1..4, are the parameters

referring to the j-th pair of the i-th leg. The pairs in each leg are numbered starting

form the base, while the legs are numbered as shown in Fig. 3.6. These parameters

are expressed in local reference systems. For each leg, the local reference systems

are defined as follows:

• for the first pair (i.e., the pair fixed to the base), the local x-axis lies on the

axis of the second revolute pair, the local z-axis is along the pair axis, and the

y-axis is orthogonal to both according to the right-hand rule;

• for the second pair (i.e., the mobile pair in the base universal joint), the local

y-axis lies on the axis of the first revolute pair, the local z-axis is along the pair

axis, and the x-axis is orthogonal to both according to the right-hand rule;

• for the third pair, the local y-axis lies on the axis of the fourth revolute pair,

the local z-axis is along the pair axis, and the x-axis is orthogonal to both

according to the right-hand rule;

• for the fourth pair (i.e., the pair fixed to the platform), the local x-axis lies on
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Table 3.4: Contact parameters for each pair

Leg Pair ρ φ ∆z θ ψ Contrib.

1 1 0.00005 −π/2 0.00600 0.0039999 −π/2 0.30399

1 2 −0.00005 −3.14157 0.00600 0.0039999 −3.14157 0.30346

1 3 −0.00005 −3.14157 0.00600 0.0039999 π 0.30346

1 4 0.00005 −π/2 0.00600 0.0039999 −π/2 0.30399

2 1 0.00147 π/2 −0.00604 0.0039563 π/2 0.06648

2 2 0.00146 −0.0028802 0.00604 0.0039569 −0.00288 0.06570

2 3 0.00146 −0.0028802 0.00604 0.0039569 −0.00288 0.06570

2 4 0.00147 π/2 −0.00604 0.0039563 π/2 0.06648

3 1 −0.00005 π/2 0.00600 0.0039999 π/2 0.19996

3 2 −0.00005 0.00001 0.00600 0.0039999 0.00001 0.19972

3 3 −0.00005 0.00001 0.00600 0.0039999 0.00001 0.19972

3 4 −0.00005 π/2 0.00600 0.0039999 π/2 0.19996

the axis of the third revolute pair, the local z-axis is along the pair axis, and

the y-axis is orthogonal to both according to the right-hand rule.

The maximization of ∆Γ3 provides as result

max(∆Γ3) = 2.2786 l.u. (3.97)

The maximizing values of the contact parameters and their contribution for each

pair are reported in Table 3.4.
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Conclusions

In this doctoral dissertation, a new method to asses the influence of clearance in the

kinematic pairs on the configuration of planar and spatial mechanisms has been pre-

sented. Unlike previous methods, the approach to the clearance-problem is purely

kinematic, as no knowledge of the loads acting on the mechanisms is needed to per-

form the analysis. Despite this, the displacements caused by clearance are modelled

in a completely deterministic way.

With reference to a given mechanism configuration, the pose error of the mech-

anism link of interest is expressed as a vector function. Such a function involves the

displacements in the clearance-affected pairs, considered as independent variables.

These displacements are constrained by the geometry of the pair. The most common

kinematic pairs (revolute, prismatic, cylindrical, and spherical) have been modelled,

so that all constraints could be expressed by analytical functions. The problem has

then be studied like a maximization problem, where a continuous function (the pose

error of the link of interest) subject to some constraints (the analytical functions

bounding clearance-due degrees of freedom) has to be maximize. The solution to the

maximization problem has been obtained in a closed form for mechanisms containing

revolute, prismatic, cylindrical, and/or spherical clearance-affected pairs.
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