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PREFACE

The subject of this Ph.D. research thesis is the theoretical and computational study of biological 

system. 

Computational  science  now  is  very  advanced,  and  it  allows  us  to  perform  very  sophisticated 

simulations.

In this work I have applied molecular mechanics models to proteins, investigating about different 

properties. I report here the more significant results: intra-residue energy distribution of proteins, 

aromatic stabilization, and configurational temperature.

This thesis is organized into independent chapters. chapter 1 is about theoretical and computational 

background, while chapter 2 treats about intra-residue energy distribution of proteins. In chapter 3 

aromatic  stabilization  topic  is  discussed,  and  in  chapter  4  we  speak  about  configurational 

temperature.

Finally, in chapter 5 there are conclusions and general remarks.

I  want  to  thank  Professor  Francesco  Zerbetto  for  his  support,  useful  discussion  and  financial 

support. I'm also very grateful to all people in lab.
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CHAPTER 1 

THEORETICAL AND COMPUTATIONAL BACKGROUND

1.1 COMPUTATIONAL CHEMISTRY

The term theoretical chemistry may be defined as a mathematical description of chemistry, whereas 

computational chemistry is usually used when a mathematical method is sufficiently well developed 

that it can be automated for implementation on a computer. Note that the words exact and perfect 

do not appear here, as very few aspects of chemistry can be computed exactly. Almost every aspect 

of chemistry, however, can be described in a qualitative or approximate quantitative computational 

scheme.

Molecules  consist  of  nuclei  and  electrons,  so  the  methods  of  quantum  mechanics  apply. 

Computational  chemists  often  attempt  to  solve  the  non-relativistic  Schrödinger  equation,  with 

relativistic corrections added, although some progress has been made in solving the fully relativistic 

Schrödinger equation. It is, in principle, possible to solve the Schrödinger equation, in either its 

time-dependent form or time-independent form as appropriate for the problem in hand, but this in 

practice is not possible except for very small systems. Therefore, a great number of approximate 

methods strive  to  achieve  the  best  trade-off  between accuracy and computational  cost.  Present 

computational chemistry can routinely and very accurately calculate the properties of molecules 

that contain no more than 10-40 electrons. The treatment of larger molecules that contain a few 

dozen electrons is computationally tractable by approximate methods such as density functional 

theory (DFT). There is some dispute within the field whether the latter methods are sufficient to 

describe complex chemical reactions, such as those in biochemistry. Large molecules can be studied 

by  semi-empirical  approximate  methods.  Even  larger  molecules  are  treated  with  classical 

mechanics in methods called molecular mechanics.

In theoretical chemistry, chemists, physicists and mathematicians develop algorithms and computer 

programs to predict  atomic and molecular properties and reaction paths for chemical reactions. 

Computational  chemists,  in  contrast,  may  simply  apply  existing  computer  programs  and 

methodologies to specific chemical  questions.  There are  two different aspects  to computational 

chemistry:
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• Computational studies can be carried out in order to find a starting point for a laboratory 

synthesis, or to assist in understanding experimental data, such as the position and source of 

spectroscopic peaks. 

• Computational studies can be used to  predict  the possibility of so far  entirely  unknown 

molecules or to explore reaction mechanisms that are not readily studied by experimental 

means. 

Thus  computational  chemistry  can  assist  the  experimental  chemist  or  it  can  challenge  the 

experimental chemist to find entirely new chemical objects.

Several major areas may be distinguished within computational chemistry:

• The prediction of the molecular structure of molecules by the use of the simulation of forces 

to find stationary points on the energy hypersurface as the position of the nuclei is varied. 

• Storing and searching for data on chemical entities. 

• Identifying correlations between chemical structures and properties. 

• Computational approaches to help in the efficient synthesis of compounds. 

• Computational  approaches  to  design  molecules  that  interact  in  specific  ways with other 

molecules (e.g. drug design).

1.2 MOLECULAR STRUCTURE

A given molecular formula can represent a number of molecular isomers. Each isomer is a local 

minimum on the energy surface (called the potential energy surface) created from the total energy 

(electronic energy plus repulsion energy between the nuclei) as a function of the coordinates of all 

the nuclei. A stationary point is a geometry such that the derivative of the energy with respect to all 

displacements of the nuclei is zero. A local (energy) minimum is a stationary point where all such 

displacements lead to an increase in energy. The local minimum that is lowest is called the global 

minimum and corresponds to the most stable isomer. If there is one particular coordinate change 

that leads to a decrease in the total energy in both directions, the stationary point is a transition 

structure and the coordinate is the reaction coordinate. This process of determining stationary points 

is called geometry optimisation.

The determination of  molecular  structure by  geometry optimisation  became routine  only  when 

efficient  methods  for  calculating  the  first  derivatives  of  the  energy  with  respect  to  all  atomic 
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coordinates became available. Evaluation of the related second derivatives allows the prediction of 

vibrational frequencies if harmonic motion is assumed. In some ways more importantly it allows the 

characterisation of stationary points. The frequencies are related to the eigenvalues of the matrix of 

second derivatives (the Hessian matrix). If the eigenvalues are all positive, then the frequencies are 

all real and the stationary point is a local minimum. If one eigenvalue is negative (an imaginary 

frequency), the stationary point is a transition structure. If more than one eigenvalue is negative the 

stationary point is a more complex one, and usually of little interest. When found, it is necessary to 

move the search away from it, if we are looking for local minima and transition structures.

The  total  energy  is  determined  by  approximate  solutions  of  the  time-dependent  Schrödinger 

equation, usually with no relativistic terms included, and making use of the Born-Oppenheimer 

approximation which, based on the much higher velocity of the electrons in comparison with the 

nuclei,  allows the separation of  electronic and nuclear  motions,  and simplifies the Schrödinger 

equation. This leads to evaluating the total energy as a sum of the electronic energy at fixed nuclei 

positions plus the repulsion energy of the nuclei. A notable exception are certain approaches called 

direct  quantum  chemistry,  which  treat  electrons  and  nuclei  on  a  common  footing.  Density 

functional methods and semi-empirical methods are variants on the major theme. For very large 

systems the total energy is determined using molecular mechanics. The ways of determing the total 

energy to predict molecular structures are:

– Ab initio methods

– Density Functional theory

– Semi-empirical and Empirical methods

– Molecular Mechanics

In the next chapter there will be a brief introduction about Molecular Mechanics methods, the ones 

most used in this work

1.3 MOLECULAR MECHANICS AND FORCE FIELDS

The microscopic state of a molecular system can be described by defining the position (qi) and 

momentum (pi) of each particle of the system at every time.

Considering the Born-Oppenheimer approximation, the Hamiltonian of a system can be expressed 

as a function of the nuclear variables, the rapid motion of the electrons having been averaged out. 

This classical approach requires the use of Force Field (from now on,  FF)  methods, known as 
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Molecular Mechanics (MM), which consider the total potential energy of a chemical structure as a 

function of the only nuclear atomic positions. Making the additional approximation that a classical 

description is adequate, we may write the Hamiltonian  H of a system containing  N particles as a 

sum of kinetic and potential energy:

)()(),( NNNN qVpKpqH += . (1.1)

Usually the kinetic energy K takes the form 

i

N

i
i mpK 2/

1

2∑∑
=

=
α

α (1.2)

where mi is the molecular mass and the index α  runs over the different (x,y,z) components of the 

momentum of the molecule i.

The potential energy V may be divided into terms depending on the coordinates of individual atoms 

for the given conformation, such as the stretching of bonds, the opening and closing of angles, the 
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Equation 1.3 represents the simplest MM Force Field.

As it is shown in Figure 1.1, the mechanical molecular model considers atoms as spheres 

and bonds as springs.
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Figure 1.1 Schematic of a molecular force field: the mechanical molecular model considers atoms  

as spheres and bonds as springs. The mathematics of spring deformation can be used to describe  

the ability of bonds to stretch (a), bend (b), and twist (c). Non-bonded atoms (greater than two  

bonds  apart)  interact  through  van  der  Waals  attraction,  steric  repulsion,  and  electrostatic  

attraction/repulsion.  These  properties  are  easiest  to  describe  mathematically  when  atoms  are  

considered as spheres of characteristic radii (d,e).

The mathematics of spring deformation can be used to describe the ability of bonds to stretch, bend, 

and twist. In fact, the first term of the potential energy function in Equation 1.3 is similar to the 

Hooke’s law for a spring deformation. It represents the bond stretching and describes the interaction 

between pairs of bonded atoms by a harmonic potential, increasing in energy as the bond length li  

deviates from its reference value  li,0. The second term is the angle of bending θi of the molecule, 

again modelled using a harmonic potential. In both terms,  ki represents the force’s constant. The 

third term is a torsional potential that  shows how the energy changes as a bond rotates: the  Vn 

parameter controls the amplitude of the curve, the n parameter controls its periodicity and reflects 

the type symmetry in the dihedral angle, and γ shifts the entire curve along the rotation angle axis 

ω. 

Non-bonded atoms (greater than two bonds apart) interact through van der Waals attraction, steric 

repulsion,  and  electrostatic  attraction/repulsion.  These  properties  are  easiest  to  describe 

mathematically when atoms are considered as spheres of characteristic radii. Therefore the fourth 

contribution is the non-bonded term, calculated between all pairs of atoms belonging to different 

molecules or to the same molecule but separated by at least three bonds. In a simple FF, the non-

bonded term is  usually  modelled using a  Coulomb potential  term for  electrostatic  interactions, 

where Q are the charges and rij the distances, and a Lennard-Jones or Buckingham potential for Van 

der Waals interactions, where εij and σij control the depth and position (interatomic distance) of the 

potential energy well for a given pair of non-bonded interacting atoms.
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The  FF,  thus,  enables  the  potential  energy of  a  molecule  (or  of  a  system of  molecules)  to  be 

calculated  rapidly  and  pretty  accurately.  It  also  allows  describing  the  energy  changes  of  the 

molecule  caused  by  internal  system  changes,  like  rotations  around  a  bond,  as  well  as  the 

interactions between non-bonded parts of the system. More sophisticated FF may have additional 

terms, but they contain the same four fundamental components. 

Few important features characterize a Molecular Mechanics Force Field:

• The parameter set implemented in the functional form. Parameters quantitatively define the 

single energy contributions for each group of interacting atoms and, as a consequence, they 

govern the computation of the whole energy function. 

• Transferability of parameters. The same set of parameters can be used to model a series of 

related molecules,  not  explicitly  included during the parameter optimisation,  rather than 

having to define a new set of parameters for each individual molecule. Transferability has 

some limitations: the larger the number of parameters that are extrapolated, the lower the 

accuracy of the force field.

• The empirical form. There is not an “a priori” form for a  FF. The functions of a  FF very 

often are meant to offer a compromise between accuracy and computational efficiency: the 

most accurate functional form may often be unsatisfactory for efficient computation.

•  The Atom Type concept. It is more that the simple atomic number. It contains information 

about the hybridization state (i.e. an implicit description of the motion of its electrons) and, 

sometimes, about the local environment of an atom. When preparing an input for MM it is 

necessary to assign an atom type for each atom in the system.

The parameterization of the  FF represents the most difficult and time-consuming step in a  MM 

calculation. Once the right functional form for describing the system has been chosen, one has to 

decide which set of parameters to introduce. Derived parameters are expected to be transferable to 

other classes of molecules. Transferability is one of the most important properties of a force field. 

1.4 ENERGY MINIMIZATION METHODS

The most popular application of the empirical potential energy function is to find the geometry of a 

molecule (or an assemblage of molecules) which corresponds to a minimum of the potential energy 

function. In MM, the energy of a molecule in its ground electronic state is a function of only the 

coordinates  of  its  atoms.  If  nuclei  move,  the  energy  changes.  Such changes  in  energy  can  be 

considered as displacements on a multidimensional surface, called the Potential Energy Surface 
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(PES).

The minimization of the potential energy function (i.e., geometry optimization) involves a search 

for the minimum of a function and usually requires calculations of derivatives of the potential 

energy  function  versus  independent  variables  (in  our  case,  coordinates).  Most  programs  use 

cartesian coordinates as independent variables, however, in some cases, internal coordinates may be 

used. The derivatives of potential energy are denoted as: 

i

i x

V
g
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∂= ;

ji

ij xx

V
H

∂∂
∂=

2

(1.4)

where gi is the gradient (i.e., first derivative) of the potential energy V with respect to a cartesian 

coordinate  xi of an atom;  Hij, called  Hessian matrix, is the second derivative of the energy with 

respect  to  the cartesian coordinates.  In  most  modern programs these  derivatives  are  calculated 

analytically, i.e., the appropriate mathematical formulae for corresponding terms are incorporated 

into the program. Some older codes compute derivatives numerically by approximating the slope of 

an energy function (or its gradient in the case of second derivatives) from finite differences. The 

derivatives are used not only in function minimization but also yield forces acting on atoms (from 

energy gradients) and normal modes of vibration (from the Hessian matrix).

There are three major approaches to find a minimum of a function of many variables: 

• Search Methods -- utilize only values of the function itself.  They are usually slow and 

inefficient,  but  are  very  simple  to  program,  since  deriving  cumbersome  formulas  for 

derivatives  is  not  necessary.  In  spite  of  their  inefficiency,  the  search  algorithms  are 

infalliable and always find a minimum. For this reason, they are often used as an initial step, 

when the starting point in optimization is far from the minimum. Another disadvantage of 

search techniques is that they are very inefficient for a large number of optimized variables 

and converge very slowly when the number of variables is more then 10. 

• Gradient Methods -- utilize values of a function and its gradients. These are currently the 

most popular methods in molecular mechanics. They offer a much better convergence rate 

than search methods and do not require a lot of computer memory (only 3N first derivatives 

are  needed).  However,  in  some  situations  they  fail  to  converge  to  a  minimum.  The 

conjugated gradient algorithm is considered the most robust in this class. 

• Newton Methods -- are the most rapidly converging algorithms which require values of 

function, and its first and second derivatives. The memory required for storing the Hessian 
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matrix  is  proportional  to  N2 (i.e.,  prohibitive  for  large  macromolecules).  The  BFGS 

algorithm is considered the most refined one.

In general, the minimization methods are iterative. They require on input some initial estimate for 

the position of the minimum, and provide a  better  estimate for the minimum as a  result.  This 

corrected estimate is used as an input into the next cycle (i.e., iteration) and the process is continued 

until there is no significant improvement in the position of the minimum.

Most search methods and minimization methods using derivatives are the descent series methods, 

i.e., each iteration results in a solution which corresponds to a lower (or equal) value for the energy 

function:

( )( ) ( )( ) ( )( ) ( )( )min21 ... xVxVxVxV start ≥≥≥ . (1.5)

As a consequence, these methods can only find the minimum closest to the starting estimate and 

will never cross to a minimum (however deep) if it is separated from the starting estimate by a 

maximum  (however  small).  There  is  no  general  way  of  finding  a  global  minimum  (i.e.,  the 

minimum corresponding to the lowest possible value of the function). A different initial geometry 

will usually lead to a different final minimum.

Only on very simple molecules will the single geometry optimization yield the global minimum on 

the first trial. To find a global minimum one has to perform many minimizations and use different 

initial coordinates for each run.[2]

1.5 MOLECULAR DYNAMICS METHODS

Computer simulation methods allow the analysis of complex systems, by producing replications of 

the macroscopic system with a handy and manageable number of particles. A computer simulation 

generates a representative ensemble of possible configurations of these small replications: in this 

way  accurate  calculations  of  structural  and  thermodynamic  properties  can  be  performed,  by 

analysing the mechanical properties of molecules. Therefore the behaviour of the system in time 

can be studied and properties such as internal energy, entropy, pressure, temperature and so on, can 

be determined.

MD simulations address numerical solutions of Newton’s equations of motion on an atomistic or 
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similar  model  of  a  molecular  system.  In  fact,  all  of  the  information  needed  to  calculate  the 

dynamics of a system can be found from the potential energy function V of the system.

The force F on atom i in the system can then be determined from the equation:

VF ii −∇= (1.6)

Using the Newton classical approximation, MD simulates the motion of particles in a system they 

react to forces caused by interactions with other particles. Forces so evaluated are used to determine 

accelerations. Particle velocities are initially determined by a random distribution, but then they are 

updated according to the calculated accelerations. 

For  the  continuous  nature  of  the  potential  functions  describing  interactions  between  atoms  or 

molecules, it is necessary to integrate the equations of motion by dividing the calculation into a 

series of short time steps, which should be at least one order of magnitude shorter than the shortest 

motion simulated. An important assumption to be made is to consider forces acting on the atoms 

constant over the time-interval: at each step forces are recomputed and a new set of accelerations, 

velocities  and  positions  are  obtained.  Following  this  technique,  MD  simulations  generate  a 

trajectory of the system describing its evolution over time.

The general property A of the system is calculated as an average upon all the M visited states:

( )∑
=

=
M

i

NN
i pqA

M
A

1

,
1

(1.7)

where  q refers to the coordinates and  p to the linear momenta of the  N particles constituting the 

system. 

MD simulations can thus be considered as a deterministic method: they provide information about 

the “real” evolution of the system over time, and they allow to go back over past states of the 

system as well as to predict future arrangement of its particles. This dynamical view of molecular 

systems thus provides a useful and important tool for studying time-dependent processes.

1.6  STEPS IN A MD SIMULATION

The first thing before starting with a MD simulation is to decide which  FF to use to model the 
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interactions between atoms or molecules in the system.

A simulation can then be described according to four principal points:

1) Choice of the initial configuration. This is a crucial moment of the entire simulation. It’s 

very important to set up starting configuration of the system as much as possible similar to 

the  real  conformation;  in  fact,  wrong  starting  coordinates  may  compromise  the  whole 

simulation process. Generally, homogeneous  liquids (i.e.,  composed by molecules of the 

same type) are described by a standard lattice structure (for example, a face-centred cubic 

lattice) as starting configuration. The dimensions of the lattice are chosen in such a way to 

respect  as  much as  possible  the  real  density  of  the  simulated  systems.  Usually,  before 

proceeding with the simulation, a first minimization of the system energy is required in 

order to eliminate any term of high energy, which may cause instability in the simulation.

2) Equilibration phase. The system is allowed to evolve from the initial configuration until 

certain stability in the simulation is reached. At this stage, thermodynamic and structural 

properties,  such as energy,  temperature,  pressure,  are monitored:  once their  values have 

become stable, equilibration is reached. Order parameters can be also used to check when an 

equilibration phase can be considered completed.

3) Production phase. This is the real simulation stage. The system is set free to evolve and it is 

possible to calculate reliable properties.

4) Analysis.  Properties  not  calculated  during  the  simulation  from the  molecular  mechanics 

program are evaluated and the configurations produced (and stored) are examined. This 

phase is  important not only to know how the system changes,  but also to check if  any 

problems occurred during the simulation after the equilibration step.

When starting an MD simulation, the initial velocities of all the molecules must be specified: this 

usually is done by randomly selecting a set of velocities from the Maxwell-Boltzmann’s distribution 

at the temperature of the simulation.
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The Gaussian distribution of Equation 2.8 gives the probability p(vix) that an atom i of mass mi, has 

a velocity vix in the x direction at the temperature T. Initial velocities are usually adjusted to give a 

zero total linear momentum:

∑
=

==
N

i
iivmP

1

0 (1.9)

The normal process of equilibration will then redistribute the energy amongst the different degrees 

of freedom. Precise adjustments to the kinetic temperature are made by scaling velocities during 

equilibration.

Careful  monitoring  of  the  behaviour  of  properties  during  the  simulation  can  help  to  check  if 

problems occur, and in this unfortunately case, the simulation has to be restarted from scratch after 

removing the cause of the problem.

1.7 FINITE DIFFERENCE METHODS IN MD SIMULATIONS

Finite difference methods are the numerical recipes used in MD simulations to integrate equations 

of motion and to generate trajectories, under the assumption that the energy potential terms are pair 

wise additive. 

If we consider a system of atoms, with Cartesian coordinates ri and the usual definition of K and V 

then the equation of motion becomes:

iii Frm = (1.10)

where mi is the mass of atom i and Fi is defined by Equation 1.6.

For a given  FF characterizing the physical system, the integration method is responsible for the 

accuracy of the simulation results. If the integration method works correctly, the simulation will 

provide exact results, within the errors due to the computer finite number representation. However, 

any finite difference method is naturally an approximation for a system evolving continuously in 

time. An integration algorithm or integrator is required to have some well defined features such as:

• Accuracy. It has to approximate the true trajectory.

• Stability. It has to avoid small perturbations generating numerical instabilities.
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• Robustness. It should allow integrations for relatively long time steps.

A standard method for solution of ordinary differential equations is the finite difference approach. 

Given the molecular positions, velocities, and other dynamic information at time t, we attempt to 

obtain the positions, velocities etc. at a later time t+δt. The equations are solved on a step-by-step 

basis; the choice of the time interval δt will depend somewhat on the method of solution, but δt will 

be significantly smaller than the typical time taken for a molecule to travel its own length.

The simplest and most straightforward way to construct an integrator is by expanding positions and 

velocities in Taylor series. Dividing the simulation in fixed time intervals, δt, the expansion reads:

( ) ( ) ( ) ( ) ...
6

1

2

1
)( 32 ++++=+ tbttatttvtrttr δδδδ (1.11)

( ) ( ) ( ) ( ) ...
2

1 2 +++=+ tbtttatvttv δδδ (1.12)

( ) ( ) ( ) ...++=+ ttbtatta δδ (1.13)

where v is the velocity, a the acceleration, and b the third derivate, and so on.

The Verlet algorithm[3] is probably the most used method for integrating the equations of motion in 

MD simulation. This method uses the positions and the accelerations at the time t, and the positions 

from the previous step, r(t-δt), to calculate the new positions at t+δt. The Verlet algorithm equations 

are written in the following way:

( ) ( ) ( ) ( ) ...
2

1 2 +++=+ tatttvtrttr δδδ (1.14)

( ) ( ) ( ) ( ) ...
2

1 2 ++−=− tatttvtrttr δδδ (1.15)

By adding the two last equations one obtains:

( ) ( ) ( ) ( )tatttrtrttr 22 δδδ +−−=+ (1.16)

In the Verlet integration algorithm velocities do not appear explicitly, but they can be calculated in 
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several ways. One of these is the following:

( ) ( ) ( )[ ] tttrttrtv δδδ 2/−−+= (1.17)

Implementation of the Verlet algorithm is straightforward and the storage requirements are modest 

and include two sets of positions (r(t) and r(t-δt)) and the accelerations, a(t). One of its drawbacks 

is that positions r(t+δt) are obtained by adding a small term, δt2a(t), to the difference of two much 

larger terms (see Eq. 2.17). This may cause a loss of precision. The Verlet algorithm shows other 

problems, like the difficulty to calculate the velocities, which are not available until the positions 

have been computed at  the  next  step.  In  addition,  it  is  not  self-starting:  the new positions  are 

obtained from the current positions r(t) and the positions from the previous step, r(t-δt). At t  = 0, 

there  is  only  one  set  of  coordinates  and it  is  necessary  to  employ some other  ways to  obtain 

positions at time, t–δt.

A large number of variations of the Verlet algorithm have been developed:

• The velocity Verlet method[4] evaluates positions, velocities and accelerations at the same time 

and this does not affect negatively the precision of the calculation:

( ) ( ) ( ) ( )tatttvtrttr 2

2

1 δδδ ++=+ (1.18)

( ) ( ) ( ) ( )[ ]ttatattvttv δδδ +++=+
2

1
(1.19)

The velocity Verlet algorithm is actually implemented as a three-stage procedure, the new velocities 

requiring accelerations at the times  t and  t+δt.  Thus, as first step, positions at the time  t+δt are 

calculated,  using  velocities  and  accelerations  at  time  t,  and  then,  velocities  at  time  t+
2
1

δt are 

determined, using the equation:

( ) ( )ttatvttv δδ
2

1

2

1 +=




 + (1.20)

The new forces are then computed from the current positions, thus giving a(t+δt). In the final step, 

the velocities at time t+δt are calculated using the following relation:
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( ) ( )tttattvttv δδδδ ++




 +=+

2

1

2

1
(1.21)

• The  Beeman’s algorithm[5]  uses  a  more  accurate  expression  for  the  velocities,  and,  as  a 

consequence,  gives  a  better  energy  conservation  and  the  kinetic  energy  can  be  calculated 

directly from the velocities:

( ) ( ) ( ) ( ) ( )ttattatttvtrttr δδδδδ −−++=+ 22

6

1

3

2
(1.22)

( ) ( ) ( ) ( ) ( )tttattattatvttv δδδδδ −−++=+
6

1

6

5

3

1
(1.23)

All  these methods have similar accuracies and are expected to produce identical  trajectories in 

coordinate space.

1.8 MD SIMULATIONS AT CONSTANT  TEMPERATURE AND PRESSURE

Molecular  dynamics  simulations  can  be  performed  sampling  the  phase  space  of  the  system 

considered in ensembles: the most frequently used are the  NVE or  microcanonical  ensemble, the 

NVT or  canonical  ensemble,  the  NPT or  isothermal-isobaric  ensemble, and  the  µVT or  grand 

canonical ensemble.[1]

The need to maintain the temperature constant during a simulation arises from different reasons. For 

example, one may wish to know how a system behaves under certain temperature conditions, such 

as for the unfolding of protein, or in a phase transition or, also, if an annealing process has to be 

simulated. Moreover, it is worthwhile remembering that the temperature can be considered as an 

external stimulus affecting the macroscopic behaviour of a given system. 

Being the temperature of the system closely related to the time average of the kinetic energy, it can 

be left unchanged by scaling the velocities[6] of the particles, with a multiplying factor λ, or by 

coupling the simulated system to an external bath[7] with a constant temperature. In the first case, 

the relative temperature change is given by the following equations:
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( )
B

ii
N

i

N

i B

ii

Nk

vm

Nk

vm
T

2

11

2

3

2

2

1

3

2

2

1 ∑∑
==

−=∆ λ
(1.24)

( ) ( )tTT 12 −=∆ λ (1.25)

( )tTTnew /=λ (1.26)

In the second treatment, the bath acts as a source of thermal energy, adding or removing heat from 

the system introducing the possibility to change atomic velocities at each step. The rate of change of 

temperature is proportional to the difference in temperature between the bath and the system:

( ) ( )( )tTT
dt

tdT
bath −=

τ
1

(1.27)

The scaling factor for the velocities reads:

( ) 




 −+= 112

tT

Tt bath

τ
δλ (1.28)

If  τ is large, then the coupling is weak. If  τ is small, the coupling is strong. When the coupling 

parameter equals the time step, the algorithm becomes equivalent to the simple velocity scaling 

method. 

In the same way, one may wish to keep the pressure constant during a simulation: this enables the 

study of certain phenomena such as the onset of pressure induced phase transitions. Many methods 

used for  pressure control  are  similar  to  those used for  temperature:  the  pressure is  maintained 

constant by simply scaling the volume, or by coupling the system to an external pressure bath. The 

rate of the pressure change is given by:

( ) ( )( )tPP
dt

tdP
bath

P

−=
τ
1

(1.29)

Pτ  is the coupling constant, Pbath is the pressure of the bath, and P(t) is the actual pressure at time t. 

Introducing the system compressibility, k, the volume of the simulation box is scaled by a factor λ, 
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equivalent to scaling the positions by λ1/3. Thus:

( )bath

P

PP
t

k −−=
τ
δλ 1 (1.30)

ii rr 3/1λ=′ (1.31)

1.9 OPLS FORCE FIELD

Of all the several force field available, the OPLS (Optimized Potentials for Liquid Simulations)[16] 

is one of the most suitable to describe our kind of system (proteins).

In this FF, the nonbonded interactions are represented by the Coulomb plus Lennard-Jones terms in 

Equation 2.42, where Eab is the interaction energy between molecules a and b:

ij

aon

i

bon

j

ijij
ij

ij

ji
ab f

rrr

eqq
E ∑∑

⋅ ⋅






















−+=

6

6

12

122

4
σσ

ε (1.32)

Standard combining rules are used such that ( )12
jjiiij σσσ =  and ( )12

jjiiij εεε = . The same expression 

is used for intramolecular nonbonded interactions between all pairs of atoms (i < j) separated by 

three or more bonds. Furthermore, fij = 1.0 except for intramolecular 1,4-interactions for which fij = 

0.5. Nonbonded interactions are also evaluated for intramolecular atom pairs separated by three or 

more bonds. It was found to be necessary to scale the 1,4-nonbonded interactions to permit use of 

the same parameters for inter- and intramolecular interactions. Scaling factors fij = 1/2 for both the 

Coulombic and Lennard-Jones interactions emerged as the final choice.

The energetics for bond stretching and angle bending are represented by Equations. 1.33 and 1.34.

( )2
eq

bonds
rbond rrKE −= ∑ (1.33)

( )2
eq

angle
angle KE θθθ −= ∑ (1.34)

The last intramolecular term is for the torsional energy (Eq. 1.35),
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( )[ ] ( )[ ] ++−+++= ∑ 22cos1
2

1cos1
2

21
ii

i

ii
i

i

torsion f
V

f
V

E ϕϕ

( )[ ]33cos1
2
3

ii

i

f
V +++ ϕ (1.35)

where φi is the dihedral angle, V1, V2 and V3 are coefficient in the Fourier series, and f1, f2 and f3 are 

phase angles, which are all zero for the present system. The total torsional energy, Etorsion, is then the 

sum of this series for each dihedral angle.

The general equations of the OPLS force field read:

abtorsionanglebond EEEEE +++= (1.36)

1.10 TINKER: A MOLECULAR MODELING PACKAGE

The computer simulations of collapsing bubbles were performed with TINKER[22,25] a molecular 

modeling package designed to be a user friendly system of programs and routines for Molecular 

Modeling Mechanics and Dynamics. It is intended to be enough modular to enable development of 

new computational methods and enough efficient to meet most production calculation needs. Rather 

than  incorporating  all  the  functionality  in  one  monolithic  program,  TINKER provides  a  set  of 

relatively small programs that interoperate to perform complex computations. The most important 

tasks performed by the program are:

1) Build protein and nucleic acid models from sequence.

2) Energy minimisation and structural optimisation.

3) Analysis of energy distribution within a structure.

4) Molecular and stochastic dynamic simulations.

5) Simulated annealing with a choice of cooling schedules.

6) Normal modes and vibrational frequencies.

7) Conformational search and global optimisation.

8) Transition state location and conformational pathways.

9) Fitting of energy parameters to crystal data.

10) Distance geometry with pairwise metrization.
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11) Molecular volumes and surface areas.

12) Free energy changes for structural mutations.

13) Advanced algorithms based on potential smoothing.

The  basic  design  the  TINKER program allows  the  use  of  several  different  parameter  sets.  At 

present, the distributed and implemented parameters set are: MM2,[17] MM3,[18] OPLS/OPLS-

AA,[19] AMBER-95,[20] CHARMM27.[21]

Many of the various energy minimisation and MD calculations can be performed on fully or partial 

geometries, over Cartesian, internal or rigid body coordinates, and including a variety of boundary 

conditions  and  crystal  cell  types.  TINKER differs  from  many  other  currently  available  MM 

programs  by  the  possibility  given  to  the  user  to  modify  the  source  code  that  is  extensively 

commented. The distributed individual routines should be considered as a template for the user who 

wants  to  introduce  new features  to  the  main  program.  The core  of  TINKER consists  of  about 

110’000  lines  written  in  Fortran77.  Both  spherical  cutoff  images  and  replicates  of  a  cell  are 

supported by all TINKER programs that implement PBC. Whenever the cutoff distance is too large 

for the minimum image to be the only relevant neighbour, TINKER automatically switches off the 

image formalism to use replicate cells.

During the present PhD thesis, we have used the main TINKER programs, with some modifications 

in order to fit to our type of problem.
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CHAPTER 2 

THE INTRA-RESIDUE DISTRIBUTION OF ENERGY IN 

PROTEINS

2.1 INTRODUCTION

The analysis of the frequency of appearance of specific structural arrangements of amino acid 

residues in proteins has had a profound impact on the investigation of protein structures and has 

brought, among the rest, to the development of statistical potentials that are rather accurate in 

the prediction of folding patterns.[1-6] Such potentials are extremely versatile and effective. 

They compete directly, or may even be superior to, with those used in molecular mechanics and 

molecular dynamics simulations.[7-8] Conversion of frequencies of occurrence into potentials 

implicitly assumes that the sample of protein structures of the database behaves like, or reflects, 

the dynamics of the proteins, where Boltzmann distribution is valid. 

While conformance to the  Boltzmann hypothesis, Bh, must be understood as a qualitative - 

although  very  useful  -  statement,[9]  examples  of  protein  properties,  and  related  energy 

contributions,  that  conform to it,  are  numerous  and include  hydrophobicity,[10,11]  various 

types  of  sidechain/side-chain  interactions,[12-14]  proline-isomerization,[15]  hydrogen 

bonds,[16] internal cavities,[17]  interactions at the level of specific atom types,[18-19] and the 

propensity of the φ/ϕ ratio.[20,21]

Here,  we  test  the  conjecture  that  Bh applies  to  the  deformation  energy  of  the  individual, 

naturally occurring amino acids,  AA, in a database of highly resolved protein structures of 

nearly  200  proteins.  The  deformations  are  the  sum  of  strain  contributions  for  stretching, 

bending and torsions, plus variations from equilibrium of other energy terms such as van der 

Waals and Coulomb interactions.  Molecular mechanics is  used to calculate the energies of 

41672 residues that are assessed in the light of Bh, both globally and divided according to the 

nature of the residue. The picture that emerges is that Boltzmann distribution holds for the 

intra-residue energy distribution of the single residues. When the focus shifts from the single 

types of residues to the individual proteins, the energy distribution, often (~50%) takes the form 

of a Poisson distribution characterized by the same parameters of the entire set of proteins.
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2.2 BACKGROUND

Protein structures were obtained in pdb format from the PAPIA (Parallel Protein Information 

Analysis)  service  [http://www.cbrc.jp/papia/papia.html].  Only  X-ray  structures  were 

downloaded, with resolution up to either 1.5 or to 1.6 Å, the minimal number of residues was 

set  to  40,  the sequence similarity  was set  to  less  than 20%. At  the higher  resolution,  136 

proteins were obtained. Removal from the set of broken chains and chains with one or more 

unphysically over-distorted residues reduced them to 122. Analogously, at the slightly lower 

resolution,  there  were  75  additional  structures.  The  selection  procedure  is  similar  to  that 

adopted by Shortle in the very recent investigation of the Boltzmann distribution of the φ and ϕ 

angles.[21] A choice of resolutions larger than 1.6 Å was deemed to introduce too high an 

inaccuracy in the calculation of the internal energy of individual residues.

Individual  residue  energies  were calculated with the TINKER program, [22-24]  which has 

found a number of applications in our laboratory,[25-28] using the AMBER/OPLS/UA force 

field.[29-30]  The  united  atom approach,  UA,  avoids  the  difficulty  caused  by  the  lack  of 

hydrogen atoms in most of the structures. The initial and final residues were not included in the 

calculations. For each of the 41672 aminoacids, the energy was calculated with the “group” 

keyword of the program. For each type of residue, the lowest energy in the data set of the 

individual  amino  acids  was  subtracted.  The  energy  values  are  therefore  distortion  energy, 

which is the sum of torsional, bending and stretching energies of deformation together with the 

local energy variation (internal to the residue) induced by the change of interatomic distances in 

the van der Waals and Coulomb terms.

The energies of residues were binned with a step size of 1 kcal mol-1.  Apart  from being a 

practical tool, the bin size also reduces the inaccuracy of the energy calculated for each residue 

due to (i) the uncertainty of the atom positions in the X-ray structures and (ii) the computational 

model. The unsmoothed, histogram-like, data set, U, were compared with smoothed data set, S, 

obtained using analytical functions. 

To test the hypothesis that smoothed and unsmoothed data are indistinguishable, we used a 

nonparametric, distribution free statistic. Notice that this distribution is NOT the Boltzmann 

distribution, but is the distribution of the differences between smoothed and unsmoothed data. 

The Kolmogorov-Smirnov, K-S, test[31] compared the Normalized Cumulative Distribution 

Functions, NCDF, (the third kind of distribution to appear in this treatment) of sets U and S. If 

the absolute value of the maximum difference between the two NCDF, Dmax, exceeds a certain 

value,  which is  a  function of  the number  of  bins,  the level  of  significance,  p,  is  low (for 
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instance, <0.05) and the hypothesis is rejected. A rather similar treatment was recently reported 

for the characterization of the mass spectra of proteins[32] and the distribution of deformations 

in molecular crystals.[33] 

2.3 RESULTS AND DISCUSSION

The initial conjecture of this work is that also the internal energy of the individual residues - in 

the protein structural database - follows Boltzmann distribution. The theory of the applicability 

of the Boltzmann distribution to biomolecules has been discussed by Grzybowski et al.[34] In 

particular,  they  recognized  that  a  database  of  structures  frozen  in  their  minimum  energy 

conformation does not represent a proper canonical ensemble of conformational states.[34]

Some care must  be  exerted  to  describe  the  distribution  because  the  levels  accessible  by a 

distorted residue are accidentally degenerate. Indeed, a given AA residue can obtain energy E 

by deforming along its several internal coordinates in more than one way. For a given amino 

acid, r, the Boltzmann population, Pr(Er), is proportional to

P r E r µg r E r exp− E r

k BT  (2.1)

where gr(Er) is the density of accessible states at energy Er. In practice, g(E) counts the ways in 

which different deformations of a residue give a certain energy and grows very rapidly with the 

energy. Neither the numerical values of  g(E),  nor the shape of the function are known and 

depend both on the number of atoms of the residue and on its plasticity. Intuitively, a small 

moiety deforms in fewer ways than a large one and is therefore characterized by a smaller g(E); 

analogously, a rigid fragment is more difficult to distort than a floppy one, which must have a 

larger g(E). 

Because of the relative chemical similarity of the residues and although g(E) may be an entirely 

different function for each residue, it was decided to investigate if it could be taken as a simple 

function of the type

g r Er =E
αr

(2.2)

where αr differs for every one of the 20 naturally occurring amino acids. Equation 2.2 appears in 

the  corresponding  expression  for  the  ideal  gas35 and  was  found  to  give  the  best  statistical 

significance compared to other fast growing functions, such as the exponential one.

After  calculating the energy of  the individual  AA for  a  sample  of  highly resolved protein 

structures (see Background section for details), they were binned in steps of 1 kcal mol-1. The 
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smallest  set  was 653 residues for tryptophan, the largest  sample were the 3650 residues of 

alanine. They generated 20 unsmoothed distributions that were compared to the function that 

results  by  substitution  of  eq.  2.2  into  eq.  2.1,  where  the  coefficient  αr was  optimized 

numerically through the calculation of a grid of points to obtain the “best agreement” between 

unsmoothed, U, and smoothed, S, data and KBT is set to room temperature. The role of KBT in 

this  context  may  be  open  to  some  discussion.  Most  proteins  are  crystallized  at  room 

temperature. However, some of the structures are measured and resolved at lower temperatures 

where,  if  they  crystallized,  they might  assume another  folding pattern  thereby establishing 

different  inter-residue  interactions  and,  ultimately,  different  intra-residue  energy.  A 

compromise must be made and the use of the higher temperature was deemed more consistent. 

To check the stability of the procedure, KBT was varied from the Room Temperature value but 

this lead to a worse agreement.  Interestingly, Grzybowski et al.[34] noticed that a database of 

structures has a thermodynamic temperature that is given by the derivative of entropy (in their 

case, the conformational entropy) with respect to the energy.

Figure 2.1 shows the comparison between smooth and unsmooth distributions.  The smooth 

distributions are obtained from the functions that are used in the Kolmogorov-Smirnov test and 

found to be a statistically significant description of the unsmooth data. In several cases, ARG, 

GLN, LYS, MET, PRO, the agreement appears quantitative. However, while the figures have 

an  illustrative  purpose,  the  quantitative  agreement  must  not  be  sought  at  this  level.  The 

practical reason is that differences between U and S may add or subtract, along the distribution, 

in a “misleading” way. 
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Figure  2.1.  Comparison  of  the  smoothed and unsmoothed energy  distributions  of  the  20  

residues.

The Kolmogorov-Smirnov test[31]  on  the  Normalized  Cumulative  Distribution,  NCD,  was 

devised to appraise quantitative differences between distributions. Figure 2.2 compares such 

NCD. Visual inspection is rather satisfactory, although it is necessary to determine the largest 
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difference between the NCD and compare it with tabulated values[31] in order to determine the 

statistical significance and if U and S are indistinguishable. A similar treatment was recently 

reported for the characterization of the mass spectra of proteins[32] and the distribution of 

deformations in molecular crystals.[33]
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Figure 2.2. Comparison of the normalized cumulative distributions, NCD, of the 20 residues.

Table 2.1 shows a summary of the results. The best αr values for the individual residues along 

with the p value. If p>0.05, U and S are considered indistinguishable.

Residue αr/αr’ p Residue αr/αr’ p Residue αr/αr’ p
ARG 21.4/15.41 0.64 THR 5.42/5.31 0.25 PHE 8.36/8.65 0.03
GLN 12.10/8.40 0.59 TRP 9.18/10.81 0.12 ALA 8.61/5.88 0.01
GLU 19.42/11.0

5

0.55 TYR 10.69/11.3

9

0.11 ASN 19.0/11.8

1

0.01

LEU 6.90/6.85 0.39 SER 7.20/5.25 0.08 ILE 6.65/7.38 0.007
MET 10.78/9.74 0.38 PRO 2.60/6.18 0.06 VAL 5.86/7.48 0.0011
HIS 15.39/9.59 0.26 CYS 6.16/6.06 0.04 ASP 21.0/11.8

8

10.-9

LYS 15.37/10.0

4

0.25 GLY 8.91/4.63 0.03

Table 2.1. Residues, their αr values and relative p values. For αr’, see text below.

The statistical treatment gives some surprises. For instance, the good visual matches for proline 

both  in  figure  1  and  2  are  highly  penalized  in  terms  of  the  statistical  significance  by  the 

deviation that exists in the first bin. In any event, inspection shows that 12 out of 20 natural 

occurring AA residues have p>0.05.  Decreasing the level of confidence to p>0.01 increases the 

number to 17 AA out of 20. It is tempting to suggest that if more highly resolved structures of 

proteins were available, all the residues would follow eq. 2.1. At this level of confidence, the 

distribution  of  their  unsmoothed data  set  of  energies  is  undistinguishable  from that  of  the 

smoothed function.  

The form of eq. 2.2, that is the energy dependence of the density of states, is critical for the 

results. On the one hand, the use of gr(Er) functions with more than one parameter would likely 
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make all pr>0.05. On the other hand, the present  αr  values should be justified on a physical 

basis since even this one-parameter function results in a very steep growth.  Physically, the 

functions measure the deformability/rigidity of each residue at given energy, which, in turn 

must  depend  on  the  vibrations  of  the  system.  In  fact,  a  lower  frequency  implies  a  softer 

potential  energy  curve  and  a  greater  tolerance  for  distortion  along  the  coordinate  of  the 

potential. When there are many degrees of freedom, and therefore vibrations, the softer they are 

the  denser  the  manifold  of  vibrational  levels  is  at  a  given  energy.  This  is  given  by  the 

convolution  of  the  vibrational  levels  of  the  first  vibration  with  those  of  the  second,  all 

convolved with the levels of the third one, and so on and so forth. One can therefore attempt to 

establish whether proportionality between number of (possible) deformations, g(E), and density 

of  vibrational  states exists.  In order to  calculate  the density  of states,  for  each residue the 

geometry of a  triplet  of  AA terminated by two GLYs was optimized and the fundamental 

vibrational frequencies were calculated, after removal of the GLYs frequencies. The densities 

of vibrational densities were determined by a time-honored algorithm,[36] that has found a 

variety  of  applications  in  our  group,[37-38]  and  fitted  to  equation  2  to  obtain  αρ’  values 

(reported in Table 2.1). Figure 2.3 compares the values of αρ and αρ’. In many cases the ratio of 

the two exponents is close to one and a correlation is clearly present, although its coefficient is 

not high, r=0.82, removal of 8 residues, brings it to r=0.91. 
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Figure 2.3. Comparison of  the exponents of  eq.  2.2 with  the exponents obtained from the  

calculation of the vibrational density of states for the 20 residues.

In consideration of the simplification made to calculate the  αρ’ values, we felt that the g(E) 

functions of the residues were justified. In turn, this implies that the working hypothesis that the  

energy of distortion AA residues in proteins follows Boltzmann equation holds. 

The first practical consequence of these results is that one can define a normalized probability 

for a single macromolecule. Based on the probability of distortion of the single residues, one 

can write 

P B , protein=
1
N ∏r , i

N

E r ,i 
αrexp − E r ,i

k BT  (2.3)

Where N is the number of residues, Er,i is the energy calculated for the i-th residue of the r-th 

type and KBT is the room temperature thermal energy. Figures 2.4a and 2.4b show the results of 

the application of eq. 2.3 to the 122 proteins of the sample and to the extra 75 proteins with 
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resolution between 1.5 and 1.6 Å. For convenience, the probability P is given as a logarithm 

and a subscript B is introduced to denote its Boltzmannian origin (see below). Apart from a few 

sporadic cases, ln(PB) provides a homogeneous descriptor of the structure of existing proteins. 

Analysis of the handful of structures with low probability did not reveal the presence of any 

physical  reason that  should make us disregard them such as steric clashes.  However,  their 

clustering at high probabilities is taken as an additional proof that the description embedded in 

the underlying equations is valid and that the exponents of Table 2.1 are homogeneous.

Figure 2.4. lnPB, with P according to the Boltzmann-based eq. 2.3, of (a) the 122 proteins of  

the sample with 1.5 Å resolution; b) the 75 proteins of the sample with resolution between 1.5  

and 1.6 Å (two proteins are not present because their value is below –25). The bin-size is 0.1.  

The subscript B is introduced to denote its Boltzmannian origin.

The threshold value for ln(PB) could be set to –5.0 (10 proteins would remain out of the two 

samples with this threshold value) and used in the evaluation of the significance of protein 

structures, for instance in the prediction of protein folding.

We now take a different approach and consider the energy of distortion of all the individual 

residues. This is a phenomenological approach that reveals a Poisson-like distribution. The data 

were therefore smoothed by the function

P P E =λE exp −λE  (2.4)

Where E is the energy of the individual residues not divided according to the type. The best 
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value for λ is 0.265, which gives p=0.975!! The values are the same, both when one considers 

the 22970 residues of the proteins with up to 1.5 Å resolution and when one extends the sample 

to the 41672 residues of the proteins with up to 1.6 Å resolutions. The extremely large p value 

means  that  the  distribution  of  the  energies  of  distortion  in  the  database  of  proteins  is 

indistinguishable by the function of eq. 2.4. 

The Poisson distribution arises  from counting comparatively rare  events occurring in  time, 

space, area, etc. Apart from the well-known example of the recording of radiation by means of 

a Geiger counter, other phenomena that follow the Poisson distribution involve the presence of 

errors such as the imperfections on a continuously produced bolt of cloth or the misprints in a 

book. The sum of the energy of deformation of the individual residues in a protein therefore 

follows the same distribution of random errors/defects. A result that in retrospect is perhaps not 

too surprising since the distribution of residues may appear random, despite its serving well-

defined biological purposes. The distribution results from the convolution of all the Boltzmann 

distributions of the 20 residues.

(a) (b)
Figure  2.5.  a)  Comparison  of  the  smoothed  and  unsmoothed  energy  distributions  for  all  

residues; b) Comparison of the cumulative energy distributions.

Equation 2.4 differs fundamentally from the “Boltzmann probability”.  Boltzmann equation  

implies  a  physical  basis  for  the  energy  distribution  and  is  based  on  the  accessible 

states/deformations, g(E). On the contrary, eq. 4 is purely phenomenological and is based on  

the accessed states/deformations. 
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The Kolmogorov-Smirnov test  was applied to the distribution of energies of the individual 

residues  in  each protein.  In  order  to  do it,  a  histogram and a  cumulative distribution was 

generated for the single macromolecules and tested against eq. 4, with  λ equal to the value 

obtained for the whole set. Figure 6 plots the histogram for the logarithm of the probabilities. 
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Figure 2.6.  ln(pP) of the sample of 197 proteins (eight proteins are not shown because their  

value is below –25). The bin-size is 0.1. The subscript P is introduced to denote the Poisson-

like origin.

Of the proteins in the database, 51.3% have p>0.05 and 81.7% have p>0.001. More than 50% 

follow eq. 4. If p is set >0.05, the threshold value to consider in figure 6 is –2.99 (it grows to –

6.91 if p>0.001). 
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Figure 2.7. ln(PB) vs ln(pP): the two descriptors do not correlate. 11 proteins are outside the  

plot area.

The two descriptors, PB and pP, share the intra-residue potential energy excess as a common 

origin. However, their differing nature appears when they are plotted one against the other for 

all the proteins in the samples, see figure 2.7, where there is no correlation between the two 

descriptors that are therefore independent. This is not surprising, based, as they are, one on the 

distortions  that  can exist  in  the residues,  and the other  on the  distortions  that  actually  are 

present in the database. 

2.4 CONCLUSION

This work starts from a concept that is becoming common in the analysis of the properties of 

proteins:  Hydrophobicity,[10-11]  various  types  of  sidechain/side-chain  interactions,[12-14] 

proline-isomerization,[15] hydrogen bonds,[16] internal cavities,[17] interactions at the level of 

specific atom types,[18,19] and the propensity of the  φ/ϕ ratio[20,21] have all been found to 
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follow the Boltzmann distribution, or in other words to conform to the Boltzmann hypothesis. 

In  principle,  this  is  not  entirely  obvious  a  priori.  The  protein  structures  deposited  in  the 

databases are obtained for conformations at, or close to, minima of the potential energy surface. 

Each  degree  of  freedom  of  each  molecule/structure  should  be  populated  according  to 

Boltzmann distribution. However, it is worth noticing two features:

i)  the role of Boltzmann law appears readily out of the databases,

ii) several properties are independent of the others. In other words, some degrees of 

freedom  can  be  separated  (adiabatically)  from  the  others  so  that  the  role  of  the 

Boltzmann distribution emerges from the analysis of their structures .

The addition of the internal degrees of freedom of the 20 types of residues to the seven other 

cases mentioned above contributes to further the idea that the databases should be explored not 

only in the search of general rules for the structural parameters, but also from the point of view 

of basic physical laws.

The second part of the work considers the excess energy of all the residues inside the protein. 

Since  the  energy  levels  of  the  20  different  residues  are  different  from  one  another,  the 

distribution of the energies may not be of Boltzmann type. The distribution is actually due to 

the sum of the distortion energies of the”i” residues (here i=41672) each belonging to one of 

the twenty types of residues, r. In practice

∑
i r 

41672

E
α
i  r exp− E i r 

k BT =λE exp −λE   (2.5)

the resulting function is empirical, but not unexpected since both sides of equation 5 contain 

exponential functions and it seems reasonable that with the proper values of the parameters the 

equality holds. In practice, the sum on the left can be considered a power expansion of the 

right-hand side of the equation. Perhaps more unexpected is that individual proteins, or at least 

more than 50% of the high-resolution structures of 197 proteins selected here, conform to the 

empirical distribution of energies. One can envisage some interesting follow-ups to this finding. 

The first could be the application of a test based on the validity of equation 4 to the structures 

that are obtained from X-ray diffraction experiments, a test that may expedite the refinement. 

Alternatively, a similar test could be used to assist the prediction of the folded structures of 

proteins out of the many that can be generated computationally.

List of symbols

There are four symbols related to the letter “p/P” with the meaning reported below:

p is the level of significance that a hypothesis is  statistically valid;  here, it  is used in 
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conjunction with the Kolmogorov-Smirnov test to ascertain if a set of energies of distortion is 

described  by  a  function  whose  parameters  are  varied  to  obtain  the  highest  statistical 

significance.

Pr(Er) it  is the probability that a residue is distorted and has energy Er;  this probability is 

Boltzmann multiplied the density of states; each type of residue, r, has a different density of 

states; the function for the density of states is determined using the Kolmogorov-Smirnov test 

on the distribution of distortion energies of the database of high resolution structures.

PB it is product of the Pr(Er) of the residues along a protein

pP is the level of significance obtained by the Kolmogorov-Smirnov test that the distortion 

energy of the residues of a single protein follows Poisson distribution of eq. 4 with λ=0.265.
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CHAPTER 3 

AROMATIC STABILIZATION OF PROTEINS

3. 1 INTRODUCTION

The origin of the additional stability of thermophilic proteins has received considerable attention 

both experimentally and theoretically.[1-7] The picture that has emerged is that different protein 

families adapt to high operating temperature using different structural tools, and that proteins from 

extreme and moderate thermophiles are stabilized by different mechanisms.[1]  Perhaps, the rule 

observed most consistently in the structures of thermophilic proteins is an increase in the number of 

ion pairs  with increasing growth temperature.   Other  parameters  tend to  show only qualitative 

trends.[1]  It has been suggested that the presence of extra salt bridges (and hydrogen bonds) results 

in a lower heat capacity of unfolding than in mesophilic proteins. Higher folding stability and lower 

heat capacity can both be modeled by a simple approach.[2]

In addition to Coulomb interactions, adaptation to high temperatures involves a number of subtle 

co-operative effects, often specific to a given protein family. These include (i) minimization of 

surface energy, (ii) hydration of non-polar surface groups, (iii) burying of hydrophobic residues, 

(iv)  optimization of  core  packing,  (v)  hydrogen bonds,  and (vi)  optimization  of  weak protein-

protein and protein-solvent interactions. This complex picture is further complicated by the fact that 

high melting temperature is not always synonymous with greater thermodynamical stability.[3]

One contribution that has come under scrutiny as a source of additional stability of thermophilic 

proteins is the aromatic electrostatic interaction, leading to so-called aromatic clusters. A graph 

spectral method was used[4] to identify aromatic clusters for a dataset of 24 protein families for 

which the crystal structures of thermophilic and mesophilic homologues were available. For 17 

different thermophilic protein families, the analysis showed the presence of additional aromatic 

clusters, or enlarged aromatic networks, absent in the corresponding mesophiles.  These clusters 

were often located close to the active site of the thermophilic enzyme. A geometrical analysis of the 

packing geometry of the pairwise aromatic interaction showed a preference for T-shaped orthogonal 

packing.[4] However,  a local  increase of the energetic stability via improved packing does not 

unequivocally favour a given mutation, because it may imply concomitant limitations on motion. 

Rigid structures imply higher vibrational frequencies, which, in turn, imply smaller entropy and 

militate against decrease of the free energy. In the simplest (harmonic) approximation, entropy is 
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associated with mobility, and the qualitative expectation is that a strongly stabilizing geometrical 

motif gives a lower entropy and hence a poorer free energy.

We therefore decided to investigate the entropic contribution of the mutated aromatic fragments in 

thermophilic proteins using the dataset of proteins identified by Kannan and Vishveshwara.[4]

3.2 BACKGROUND

All Molecular Dynamics calculations were carried out with the TINKER program,[8-10] which has 

found  a  number  of  applications  in  our  laboratory,[11-15]  using  the  AMBER/OPLS/UA  force 

field.[16,17]  Only  the  clusters  of  the  mutated  residues  in  the  thermophilic  and  the  mesophilic 

proteins were allowed to undergo dynamics, subject to the interaction with the rest of the protein. 

For each cluster, 420 ps of dynamics were run, with the initial 20 ps sufficient for equilibration.

In order to calculate the entropy, a computer program was written based on the approach of Schäfer, 

Mark and van Gunsteren, based on the equation[18] 

S=
1
2
k B ln∣1

k BTe
2

h2
M

1
2 sM

1
2∣ (3.1)

where e is the base of natural logarithms, M is the diagonal matrix of atomic masses, and  is the 

covariance matrix of the atomic position fluctuations

sij=〈  xi−〈 xi 〉   x j−〈 x j 〉 〉 (3.2)

the other symbols have their usual meanings. The larger the mobility of a cluster of atoms, the 

greater is the entropy calculated from eq. (1 and, in practice, if the position of any particular atom 

fluctuates greatly, its entropic contribution is large. 

To evaluate the vibrational motions of a cluster as a single unit, every picosecond, we calculate 

O=∑
i

atoms

 x i  tDt −x i t  
2
∑

i

atoms

 yi  tDt − yi  t  
2
∑

i

atoms

 z i  tDt −z i  t  
2/N (3.3)

where N is the number of atoms in the cluster. O is a measure of the overall motion of the cluster. 

Its Fourier Transform gives the frequency of the motion. Three frequency ranges were explored 0-

10 cm-1, 0-30 cm-1, and 0-50 cm-1. After the Fourier transform, we take the integral of the vibrational 

amplitudes, I, in absolute value over this range of frequency.  The result is conveniently expressed 

in ppm.

3.3 RESULTS AND DISCUSSION

Full calculation of the entropy for a large set of proteins is daunting as positional fluctuations may 
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not converge within the time of a molecular dynamics (MD) run. A simplified, reduced approach is 

in order. It was decided to investigate the vibrational freedom of aromatic clusters in thermophilic 

protein and compare it with the motion of the equivalent set of residues in the mesophile. In this 

way, an entropy can be assigned to the cluster. In the MD calculations, every residue of the clusters 

undergoes dynamics, subject to interaction with the remainder of the protein, which is held frozen. 

Advantages and disadvantages of calculating entropy as the sum of the contributions of individual 

residues are critically discussed in ref. [19]. Qualitatively, since entropy is an extensive property, 

freezing the main body of the protein amounts to neglect of the (second order) effect of fragment 

motion on that of a much larger object.  It  is reasonable to expect for the thermophilic and the 

mesophilic fragments embedded in  the protein a similar  accuracy.   Relative values,  or entropy 

ordering, should be predicted accurately, while the absolute values could be inaccurate.

Overall, 16 pairs of proteins and 36 clusters were investigated, see Table 3.1. The systems are taken 

from Table II of ref. [4]. 
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Protein Cluster Thermophile 

residues

Mesophile 

residues

Protein Cluster Thermophile 

residues

Mesophile 

residues
1.  Neutral 

protease  (1THL 

/1NPC)

1

TYR93 ILE94 9. 

Reductase 

(1EBD 

/1LVL) 1

PHE209 TYR210

TYR151 ASN152 PHE358 TYR355
TRP115 TRP116 2 TYR321 ALA318

2 TYR28 TYR29 TYR339 PRO336
TYR24 LEU24 3 TYR59 ARG81

2.  Lactate 

dehydrogenase 

(1LDN /1LDM) 1

PHE156 PHE170 PHE194 LEU193

TRP 187 TRP201 PHE79 ILE84
PHE216 HIS228 TYR189 TYR190

2 TYR266 TYR278 4 PHE115 VAL120
PHE300 LEU313 PHE134 CYS135

3

PHE115 PRO129 10.  Triose 

phosphate 

isomerase 

(1BTM 

/1TIM) 1

TYR165 TYR163

PHE119 ILE133 TYR209 TYR207

4 PHE103 PHE117 PHE221 LEU219
PHE136 LEU150 2 PHE67 LYS67
TYR131 TYR145 TYR73 PHE73
TRP134 TRP148 3 TRP9 TRP11
TYR261 MET273 PHE21 LEU23
TYR272 PHE285 PHE242 PHE239
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PHE315 PHE329 11. 

Xylanase 

(1YNA 

/1XYN) 1

TYR13 TYR5

5 PHE51 LEU65 TRP9 *
PHE23 ILE37 TYR170 ASN157

6 PHE16 ALA30 TYR171 TYR158
TYR234 SER246 TYR72 LEU62

3. 

Phosphofructo 

kinase (3PFK 

/2PFK) 1

PHE230 LEU231 TYR87 TYR77

TYR196 PHE197 PHE92 ASN82

2 TYR38 TYR39 TYR76 TYR66
TYR69 GLY70 TRP78 TRP68

4.  Ribonuclease 

H (1RIL /2RN2)1

PHE7 PHE8 PHE133 PHE121

TYR67 SER68 TRP137 ILE125

2 TYR72 TYR73 2 TYR26 TYR17
TRP104 TRP104 TYR14 ASP6
PHE77 ILE78 TRP16 ASN8
PHE118 TRP118 TYR34 PHE24
PHE120 TRP120 12. 

Glycosyltra

nsferase 

(1XYZ 

/2EXO) 1

PHE205 PHE202

TRP81 TRP81 TYR228 PHE222
TRP85 TRP85 PHE237 ILE231
TRP90 TR90 PHE187 TYR184
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5.  Malate 

dehydrogenase 

(1BMD 

/4MDH) 1

TRP184 TRP184 PHE277 VAL270

PHE192 TYR192 2 TRP288 TRP281
TYR272 TYR278 TRP280 TRP273
TYR280 TYR286 PHE293 PHE286
PHE282 PHE288 TYR296 GLU289
PHE302 PHE308 13. 

Triacylglyc

erol 

acylhydrola

se  (1TIB 

/1LGY) 1

PHE51 ILE19

TRP213 TRP218 PHE66 TYR62
PHE218 PHE223 TYR16 PHE169
PHE196 ASN196 PHE13 GLN193
TYR214 LEU219 PHE169 PHE13

2 TYR18 TYR18 TYR194 PHE257
PHE22 TYR22 PHE10 ILE10

3 PHE62 LEU62 PHE262 TYR256
TYR141 SER141 PHE7 VAL171
PHE152 PHE152 TYR261 ILE48

6.  Hydrolase 

(2PRD /1INO) 1

PHE57 TYR57 TYR171 TYR16

TYR32 ILE32 14. 

Pyrophosp

hatase 

(2PRD 

/1OBW) 1

PHE57 TYR57

7.  Phospho 

glycerate  kinase 

(1PHP /3PGK) 1

TYR303 PHE322 TYR32 ILE32
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TYR261 VAL279 15. 

Carboxype

ptidase 

(1OBR 

/2CTC) 1

PHE272 TYR265

2 PHE225 PHE240 PHE266 TYR259
PHE249 LEU267 PHE274 PHE267
PHE260 VAL278 PHE233 LEU219

8.  Subtilisin 

(1THM /1ST3) 1

TYR174 ARG164 PHE230 LYS216

TYR171 TYR161 TYR212 TYR204
TYR175 TYR163 TYR216 TYR208
TRP199 GLY189 TYR214 TYR206

2 TYR196 TYR186 TYR151 ALA141
TYR265 LEU256 TRP264 TRP257

3 TYR210 GLN200 PHE174 ASN171
TYR7 SER3 TYR149 TRP147
TYR218 TYR208 16. 

Ornitine 

carboxypep

tidase 

(1AIS 

/2OTC)

1 PHE21 GLU38

TRP168 LEU197

Table 3.1. Pairs of thermophilic and mesophilic proteins together with their pdb codes (the first is  

for the thermophile, the second the mesophile) and their clusters investigated in this work. 

Free-energy comparison involves both enthalpic and entropic factors. In order to compare proteins 

with and without aromatic clusters it is necessary to define differential properties. We first examine 

∆∆H,  which  are  given  by  the  average,  over  each  Molecular  Dynamics  run,  of  the  energy  of 

interaction between  each cluster and the rest of the protein. The term ∆∆H is preferred over ∆H 

since the latter  entails  the contribution from the formation of the covalent bonds,  which is not 

considered here (or is effectively subtracted).  

Figure  3.1  compares  these  differential  enthalpies  for  the  fragments  in  the  mesophilic  and 

thermophilic proteins in the data set.  The range of values covered by the ∆∆H’s is substantial. 

However, once each value is divided by the number of residues in the cluster, the average is 106 

kcal mol-1. This value is similar to that of a single CC carbon bond, but is due to, and includes, all 
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the van der Waals and Coulomb interaction between a single residue in the cluster and all the other 

residues in the protein. Figure 3.1 demonstrates a linear correlation between the two sets, with 

correlation factor r=0.98. Some of the correlation is due to the (trivial) correlation in the number of 

residues of the mesophilic clusters and their thermophilic counterparts. However, a much weaker 

correlation, r=0.47, is found when ∆∆H is divided by the number of residues in the cluster, see 

figure 3.1b. As mutations typically involve only a few residues out of the many in the protein, such 

a linear relationship is unexpected. Significantly, however, the quantities ∆∆H give no additional 

stabilization of thermophiles over mesophiles, beyond that of the inherent internal energy of the 

local aromatic interaction. Figure 3.1c and 3.1d show that for the majority of clusters there is no net 

enthalpic advantage due to the thermophilic mutations. Indeed, 12 clusters are stabilized, 6 are 

destabilized, and half of them are neither stabilized nor destabilized.

a) b)
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c)
d)

Figure 3.1. Comparison of differential enthalpies of interaction for fragments in thermophilic and 

mesophilic proteins. ∆∆H accounts for the interaction of a given fragment with the remainder of  

the  protein,  after  subtraction  of  the  internal  energy  at  0  K,  i.e.  the  stabilization  inherent  in  

formation of the cluster. ∆∆∆H is the enthalpy difference between thermophiles and mesophiles.  

Each datapoint  refers  to  one cluster  in  a  thermophile/mesophile  pair.  (a)  is  the energy  is  per 

cluster,  the  best-fit  line  (dashed)  corresponds  to  ∆∆H(mesophile)=  23.71  kcal  mol-1 +1.04 

∆∆H(thermophile),  with  r=0.98;  b)  the  energy per  cluster  has  been  divided by the  number  of  

residues in the cluster, r=0.47; c) ∆∆∆H of the enthalpies of each cluster with the residues in the  

same order of the original database as in Table 3.1; d) ∆∆∆H ordered increasingly.

During the Molecular Dynamics runs, entropy builds up until convergence is reached. Figure 3.2 

shows two examples of the convergence of entropy (the first and the last cluster of the set). Similar 

plots for all the other clusters have been calculated.
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Figure 3.2. Convergence in time of the entropy for the first and last cluster of the 36 investigated.  

The solid line is for the mesophiles, the dashed line is for the thermophiles.

Figure 3.3a  and 3.3b  compare  the entropic  stabilization,  T∆S,  with  the enthalpic  stabilization 

energy for thermophiles and mesophiles.  Within each group there is a good linear correlation 

between the two quantities, although the two slopes differ. At 298 K, that is the temperature used in  

the plots,  the enthalpic  factor  substantially  exceeds  the  entropic  one.  The  correlation  between 

entropy and enthalpy in the two sets of clusters suggests that two components of free energy are 

governed by the same factors.
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a) b)

Figure  3.3. Comparison  of  the  entropic,  T∆S,  and enthalpic  stabilization:  a)  thermophiles,  b)  

mesophiles. T was set to 298 K. The best-fit line corresponds to ∆H(thermophile)= -9.08 T∆S + 

67.41, with r=0.96; and H(mesophile)= -8.41 T∆S –33.32, with r=0.91.

Figure 3.4 compares the  entropies,  S,  of aromatic  clusters  and the equivalent  fragments in the 

thermophilic  and mesophilic  proteins.  There is  another  linear correlation between the two sets, 

S(mesophile)=-40.42 cal mol-1 K-1 + 1.047 S(thermophile), with a correlation factor r=0.98. Once 

again, correlation of motional entropy of these residues within an unchanged bulk protein is not 

expected a priori. 
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Figure  3.4. Comparison  of  the  entropic  contributions  of  the  aromatic  clusters  and equivalent  

fragments  of  thermophilic  and  mesophilic  proteins.  The  best-fit  line  (dashed)  corresponds  to  

S(mesophile)=-41.42±7.82 cal mol-1 K-1 + 1.047±0.037 S(thermophile), with r=0.98.

The fit indicates a systematic entropic advantage introduced by the “aromatic” mutations. Out of  

the  36  clusters,  only  three  have  greater  entropy  in  the  mesophilic  proteins.  This  is  better 

appreciated in figures 3.5a and 3.5b where the substantial entropic advantage of the thermophilic  

mutations is readily perceived.
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a) b)

Figure 3.5. Comparison of differential entropies of the fragments in the clusters of thermophilic  

and mesophilic proteins: a) ∆∆S for each cluster with the residues in the same order of the original  

database as in Table 3.1; db) ∆∆S ordered increasingly.

The correlation evidently has a positive slope, slightly in excess of unity, and an intercept indicating 

a negative entropy of ~20  R (where  R is the universal gas constant).  These two features of the 

correlation shed light on two different aspects of the cluster motion. First, the slope is qualitatively 

consistent with the notion that aromatic clusters are locally more rigid: their internal motions have 

higher frequencies and contribute less to the entropy than motion of the corresponding mesophile 

fragments.  Thus,  if  the  intercept  of  the  linear  fit  were  not  non-zero,  the  presence  of  aromatic 

clusters would be an entropic disadvantage, with mesophilic proteins having greater entropy than 

the thermophiles. However, the intercept is large and negative.  Several simple approaches were 

tested with the intent of explaining the entropic advantage.  Correlation of the entropic values with 

the largest root mean square deviation from the equilibrated structure did not show any systematic 

trends.  Nor  did  a  similar  correlation  with  the  number  of  conformers,  n,  (actually  with  log  n) 

detected  during the Molecular Dynamics run. The best explanation we were able to find is based on 

the  hypothesis  that  the  advantage  arises  from a  systematic  difference  in  low-frequency,  high-

amplitude motions undergone by the cluster units. In the aromatic case, several residues are tightly 

coupled together, and will move together; in the mesophiles the equivalent residues are less strongly 

interacting and can be expected to move more independently. Such motions of the relatively rigid 

aromatic-cluster subunits are expected to be highly anharmonic and to lead ultimately to a higher 
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entropy. This hypothesis can be tested: integrated amplitudes, I,  of low-frequency vibrations of 

clusters in thermophiles and the corresponding fragments in mesophiles were computed and are 

compared in Figure 3.6.

a) b) c)

Figure 3.6. Comparison of  integrated amplitudes of  whole-cluster  motions  in  thermophile  and 

mesophile pairs. The dashed line has unit slope and is used to indicate the divide between cases  

where the amplitude is larger in the thermophile (the majority) from those where it is larger in the  

mesophile: a) the cutoff has been set to 10 cm-1; b) the cutoff has been set to 30 cm-1; c) the cutoff  

has been set to 50 cm-1.

The figure shows that most  thermophile aromatic  clusters have significantly greater integrated  

amplitude in their  low frequency region than do the corresponding fragments in mesophiles, a  

result that is not sensitive to the cutoff. This then, is a source of entropic advantage.

3.4 CONCLUSION

In conclusion, aromatic fragments in thermophilic proteins tend to generate larger entropy via their 

overall low-frequency motion. This feature indicates one direction for exploration in connection 

with rational design of ultrastable proteins.  Finally, it  may be noted that the aromatic residues 

present in the 36 clusters are tryptophan, tyrosine, and phenylalanine. The latter two (together with 

cysteine) have substantially increased their frequency of occurrence with respect to ancient proteins 

over the last three billion years.[20] The present work suggests that one advantage of their presence 

is greater stability arising from their entropic contribution.

52



3.5 REFERENCES 

[1] Szilagyi,  A.;  Zavodszky,  P.  Structural  differences  between  mesophilic,  moderately 

thermophilic  and  extremely  thermophilic  protein  subunits:  results  of  a  comprehensive  survey, 

Struct. (London) 2000, 8, 493-504. 

[2] Zhou, H.-X. Toward the physical basis of thermophilic proteins: linking of enriched polar 

interactions and reduced heat capacity of unfolding, Biophys. J. 2002, 83, 3126-3133. 

[3] Ladenstein,  R.;  Antranikian,  G.,  Proteins from hyperthermophiles:  stability  and enzymic 

catalysis close to the boiling point of water,  Advances in Biochemical Engineering/Biotechnology 

61(Biotechnology of Extremophiles) 1998, 37-85. 

[4] Kannan,  N.;  Vishveshwara,  S.  Aromatic  clusters:  a  determinant  of  thermal  stability  of 

thermophilic proteins, Prot. Engin. 2000, 13, 753-761. 

[5] Dalhus,  B.;  Saarinen,  M.;  Sauer,  U.  H.;  Eklund,  P.;  Johansson,  K.;  Karlsson,  A.; 

Ramaswamy, S.; Bjork, A.; Synstad, B.; Naterstad, K.; Sirevag, R.; Eklund, H, Structural basis for 

thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases, J. 

Mol. Biol. 2002, 318, 707-721. 

[6] Cowan, D. A. Thermophilic proteins: stability and function in aqueous and organic solvents. 

Comparative  Biochemistry  and Physiology,  Part  A:  Molecular  & Integrative  Physiology  1997, 

118A, 429-438. 

[7] Jaenicke, R.; Bohm, G.  1998, The stability of proteins in extreme environments.  Current  

Opinion in Structural Biology, 1998, 8, 738-748. 

[8] Dudek, M.J.; Ponder, J.W. Accurate modeling of the intramolecular electrostatic energy of 

proteins. J. Comp. Chem 1995, 16, 791-816.

[9] Kundrot, C.E.; Ponder, J.W.; Richards, F.M. Algorithms for calculating excluded volume 

and its derivatives as a function of molecular conformation and their use in energy minimization. J. 

Comp. Chem. 1991, 12, 402-409. 

[10] Ponder,  J.W.; Richards, F.M. An efficient Newton-like method for molecular mechanics 

energy minimization of large molecules. J. Comp. Chem. 1987, 8, 1016.

[11]    B.  Trebbi,  M. Fanti,   I.  Rossi,  F.  Zerbetto, The intra-residue distribution of energy in 

proteins, J. Phys. Chem. B, 2005, 109, 3586-3593.

[12] Biscarini F, Cavallini M, Leigh DA, León S, Teat SJ, Wong JKW, Zerbetto F. The Effect of 

Mechanical Interlocking on Crystal Packing,  Predictions and Testing, J. Am.  Chem. Soc.  2002, 

124, 225-233.

[13] León, S.; Leigh, D.A.; Zerbetto, F. The effect of guest inclusion on the crystal packing of p-

53



tert-butylcalix[4]arenas, Chem. Eur. J. 2002, 8, 4854-4866.

[14] Höfinger, S.; Zerbetto, F. On the cavitation energy of water, Chem. Eur. J. 2003, 9, 566-569.

[15] Teobaldi, G.; Zerbetto, F. Molecular dynamics and implications for the photophysics of a 

dendrimer-dye guest-host systems, J. Am. Chem. Soc. 2003, 125, 7388-7393.

[16] Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.; Profeta, S. Jr; 

Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins, J.  

Am. Chem. Soc. 1984, 106, 765-784.

[17] Maxwell, D.S.; Tirado-Rives, J.; Jorgensen, W.L. A comprehensive study of the rotational 

energy profiles of organic systems by ab initio MO theory, forming a basis for peptide torsional 

parameters, J. Comp. Chem. 1985, 16, 984-1010.

[18] Schlitter,  J.  Estimation  of  absolute  and  relative  entropies  of  macromolecules  using  the 

covariance matrix,  Chem. Phys.  Lett.  1993,  215,  617-621;  H. Schäfer,  A. E.  Mark,  W. F.  van 

Gunsteren,  Absolute  entropies from molecular dynamics simulation trajectories,  J.  Chem. Phys. 

2000, 113, 7809-7817.

[19] Schäfer,  H.;  Daura,  X.;  Mark,  A.E.;  van  Gunsteren,  W.F.  Entropy  Calculations  on  a 

Reversibly Folding Peptide:  Changes  in  Solute  Free Energy Cannot  Explain Folding Behavior, 

Proteins: Struct., Funct., Gen. 2001, 43, 45–56.

[20] Brooks, D.J.; Fresco, J.R. Increased Frequency of Cysteine, Tyrosine, and Phenylalanine 

Residues Since the Last Universal Ancestor, Molec. & Cell. Proteomics 2002, 1, 125–131.

54



CHAPTER 4

CONFIGURATIONAL TEMPERATURE

4.1 INTRODUCTION

Temperature,  the macroscopic expression of  kinetic energy,  reflects  the dynamics of molecular 

ensembles.  Because  of  the  energy  flow  between  degrees  of  freedom,  temperature  must  be 

obtainable in terms of the geometrical deformations accessed by the particles. Indeed, in recent 

years models describing a configurational temperature, Tconf,  have appeared.[1-5] They offer the 

possibility  of  evaluating  temperature  from  potential  energy  derivatives  at  the  (instantaneous) 

structure of the molecular system. While a variety of applications have been discussed,[1-4] only a 

single experimental application has been presented so far.[5] 

4.2 BACKGROUND

The configurational temperature is given by the first and the second derivatives of the potential 

energy

k BT conf=

∑
j

〈∣∇ jU∣2 〉

∑
j

〈∇ j
2U 〉

(4.1)

where  

 

kB  is Boltzmann’s constant,  ∇ jU  the gradient,  ∇ j
2U the  Laplacian of the potential 

energy U , with respect to the position of the j-th particle. The summation may be over all particles 

in the system or restricted to a single species, or even to an individual particle. This equation is also 

known  as  a  hypervirial  relation.[1,2]  It  was  used  by  Rugh[3]  as  an  independent  estimate  of 

temperature in simulations and recommended as a diagnostic test for lack of equilibrium by Butler 

et al.[4]

4.3 RESULTS AND DISCUSSION

Equation 4.1 is here used initially to assess its accuracy in a practical implementation by performing 

molecular dynamics simulations at constant kinetic temperature on Crambin, a small protein with 
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46 residues and 327 heavy atoms. Figure 1 compares at 50, 100 and 300 K configurational and 

kinetic temperatures, Tkin,  in a molecular dynamics run of 100 ps. The kinetic temperature was 

maintained constant by coupling to a bath.[6] This algorithm is a common feature of computer 

packages that perform molecular dynamics and we are only interested in showing the reliability of 

the  present  approach  to  calculate  Tconf.  Other expressions  for  the  temperature  exists,[7]  but  as 

illustrated in figure 4.1, equation 4.1 suffices for the present purposes.

a) b) c)
Figure  4.1. Molecular  dynamics  simulation  of  Crambin:  a)  50K,  <Tkin>=50.00±0.05  K, 

<Tconf>=50.76±2.87  K;  b)  100K,  <Tkin>=99.98±0.50  K,  <Tconf>=102.33±5.48  K;  c)  300K, 

<Tkin>=299.93±1.63 K, <Tconf>=301.50±16.52 K; 

Throughout the simulations, the configurational temperature maintains values very similar to Tkin. 

Notice that the standard deviation of Tconf for the simulation at 100 K is 5.48 K. The approach 

requires a sufficiently large number of degrees of freedom. In other MD runs - not shown - we 

observed that it is already successful for anthracene and heptane.

Crystallographic structures are continuously deposited. The Brookhaven database [8] contains more 

than 40,000 protein and DNA structures.  Protein structures were obtained in pdb format from the 

PAPIA (Parallel  Protein Information Analysis)  service [9].  Only X-ray derived structures were 

considered, with a minimal resolution of 2.0 Å. The minimal number of residues was set to 40, the 

sequence similarity was set to less than 20%. A total of 935 structures was downloaded; 85% of 

them provide the temperature of the experiment, that we call TPDB.

Of  these 935 structures we calculated configurational temperature. Gradients and Laplacians were 

calculated with the TINKER program[19-21] which has found a number of applications in our 
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laboratory.[22-25] Trivial  hot spots such as atoms with dangling bonds were removed from the 

sums in equation. Force field used was OPLS[17].

We noticed the presence of about 60 outliers. Outliers are dued to errors in atom coordinates and 

lack of chains often present in the deposited structures. In corrispondence of the chain problems T 

usually becames enormous and affects all the calculation.

We have developed an algorithm to solve this problem. Protein chains were divided into small 

blocks of 20-atoms size. Configurational temperature was calculated for all  blocks.  We applied 

standard statistical method to treat outliers, discarding critical values over <T>+7σ:  then a new 

average value was calculated.  

Average of the temperature of the experiment, <TPDB>, is 130.85 K. Average of configurational 

temperature, <Tconf>, is 134.99 K. There is a good agreement because experimental data and our 

calculations. 

Experimentally, the majority of the structures are measured at 100 K. This temperature  prevents 

radiation damage to  the crystal  and allows  the  collection of  more  data  than from an  unfrozen 

crystal. It also avoids the water transition that takes place in hydrated proteins, at 220 K, with the 

sudden onset of anharmonic and liquid-like motion.[10-16] 

In  order  to  make  the  statistical  treatment  straightforward,  it  was  decided  to  consider  only  the 

structures recorded at 100 K. Only structures with similar average gradients were considered The 

final sample was 538 proteins. In this case <TPDB>, is obviously 100 K, and we found an average 

value of <Tconf>=107.45. Again there is a good agreement between experimental  and calculated 

data.

4.4 CONCLUSION

We have calculated configurational temperature for a database of experimental structures. To our 

knowledge, it's the first time that a such thing is done. We show a good agreement beetween out 

calculations and experimental data, that is an encouraging starting point.

But a variety of issues remain open. For instance, one could ask how the present approach performs 

with other structural databases such as the Cambridge one; or how the protein structures obtained 

from NMR measurements behave with respect to Tconf; or if the structures are equilibrated or present 

hot  spots.  I  believe  that  the  concept  of  configurational  temperature  coupled  to  data  mining  in 

structural databases will  deliver a host of important information in the close future and will be 
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useful in structural refinement, and I hope to continue my work about it.
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CHAPTER 5 

CONCLUSIONS AND GENERAL REMARKS

In this Ph.D research thesis I have applied computational models to proteins, investigating about 

different  properties,  reporting  the  more  significant  results:  intra-residue  energy  distribution  of 

proteins (i), aromatic stabilization (ii), and configurational temperature (iii). 

Results are encouragins, so one can say that computational methoods, and in particular molecular 

mechanics, are very suitable to describe biological system like proteins.

In (i) we analized the energy distribution of a protein database, finding that they follow Boltzmann's 

law.

In (ii) we found that aromatic fragments in thermophilic proteins tend to generate larger entropy via 

their  overall  low-frequency  motion.  This  feature  indicates  one  direction  for  exploration  in 

connection with rational design of ultrastable proteins.

In  (iii),  finally,  we  have  calculated  configurational  temperature  for  a  database  of  experimental 

structures, showing a good agreement beetween out calculations and experimental data.

For more details, please refer to single chapters' conclusion paragraph.
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