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Introduction

This dissertation comprises four essays on the topic of environmental economics

and industrial organization. In the �rst essay, we develop a two-country world

di¤erential game model with a polluting �rm in each country to investigate the

equilibrium of the game between �rms when they decide to trade or not and to

see under which conditions social welfare coincides with the market equilibrium.

In the second essay, we built a model where �rms strategically choose whether

to participate in an auction/lottery to attain pollution permits, or instead invest

in green R&D, to show that, somewhat counterintuitively, a desirable side e¤ect

of the auction is in fact that of fostering environmental R&D in an admissible

range of the model parameters. The third essay investigates a second-best trade

agreement between two countries when pollution spillovers are asymmetric to

examine the strategic behavior of governments in using pollution taxes and

tari¤s under trade liberalization. The fouth essay studies the pro�tability of

exogenous output constraint in a di¤erential game model with price dynamics

under the feedback strategies.

In the �rst chapter, we have theoretically addressed the e¤ects of trade

liberalization in a two country world di¤erential polluting oligopoly game where

there is transportation cost to investigate the equilibrium of the game between

�rms when they decide to trade or not and to see under which conditions social

welfare coincides with the market equilibrium. We �nd out while in the static

game bilateral trade is always the equilibrium for any acceptable transportation

cost, in the dynamic game social planner can prevent the ine¢ cient outcome

by imposing and determining the proper amount of corrective taxation. We
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�gure out the market equilibrium under the open-loop and feedback strategies

and determine which one of the three cases of bilateral trade, unilateral trade

or autarchy is the equilibrium of the game between two �rms according to the

amount of transportation cost and corrective tax. Then, we determine the

extent of tax amount for various quantities of negative externality to which

social welfare coincides with market equilibrium.

In the second chapter, we examine the welfare implications of trade liberal-

ization when governments behave strategically using environmental policy with

asymmetric pollution spillovers. We investigated a second-best trade agreement

between two countries to examine the strategic behavior of governments in using

pollution taxes and tari¤s under trade liberalization.

We found that when the marginal cost of pollution of the domestic �rm

increases, the pollution-shifting motive is enhanced and government wants to

raise production taxes and surprisingly the rent-seeking behavior is observed

and government raises import tari¤s. On the other hand, when the marginal

cost of pollution of the foreign �rm increases, government want to reduce the

level of tax and interestingly the level of tari¤ as well.

The third chapter is on non-tradable pollution permit and incentives for in-

vestments in green technologies. Acquired wisdom has it that the allocation of

pollution rights to �rms hinders their willingness to undertake uncertain R&D

projects for environmental-friendly technologies. We revisit this issue in a model

where �rms strategically choose whether to participate in an auction/lottery to

attain pollution permits, or instead invest in green R&D, to show that, some-

what counterintuitively, a desirable side e¤ect of the auction is in fact that of

fostering environmental R&D in an admissible range of the model parameters.

Finally, in the last chapter, we investigate the pro�tability of exogenous

output constraints. In a series of papers Gaudet and Salant (1991a,b) show

that, in the case of Cournot competition among producers of perfect substitutes,

a marginal contraction is strictly bene�cial if and only if the number of �rms

in the designated subset exceeds the "adjusted" number of �rms outside it by
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strictly more than one. In the special case of linear cost and demand functions,

the �rms in the subset will gain from an exogenously marginal contraction of

their output if and only if they outnumber the �rms outside the subset by more

than one.

In this paper we generalize this result to the case of dynamic competition

instead of looking at the one-shot game. While in the standard Cournot model

any output constraint is not to the bene�t of constrained �rms, in this paper,

we show that when �rms play a dynamic Cournot game with Markov-perfect

strategies, exogenous output constraint by a subset of �rms results in: (i) in-

crease in the value of unconstraint �rms irrelevant of the amount of constraint

because of having less intensive competition, (ii) increase in the market price for

any output constraint below the optimal level and slightly above that because

of lowering the total output caused by less competition and (iii) increase in the

value of constrained �rms for a viable range of parameters and initial conditions

because of increasing the price during the price path. Our analysis has some ap-

plications to voluntary export restraints (VER), Mergers, Economics Sanctions,

etc.
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Essays in Environmental
Economics
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Chapter 1

A Dynamic Approach to
the Environmental E¤ects
of Trade Liberalization

1.1 Introduction

Controlling the emission of environment-damaging pollution caused by increased

economic activity has received a considerable attention in the �eld of environ-

mental economics. Given that the pollution function is increasing in the output

of the industry, we have the usual trade-o¤ between the price e¤ect and the

negative externality. If we restrict the output the environment is cleaner but

the price is higher.

International trade is playing an important role in expanding global economic

activities and there is an increasing amount of literature regarding trade and the

environment in trade theory1 . However, there are not too many contributions

regarding the e¤ects of trade liberalization in a dynamic context. What creates

negative externality is the stock of pollution not just the current emission of

pollution. Thus, we need a dynamic model to study the environmental e¤ect

of trade liberalization due to the fact that pollution is accumulated over time.

Fujiwara (2009) investigates the e¤ects of free trade on global stock of pollution

using a two country di¤erential game model. We develop a two-country world

1See Copeland and Taylor (2003), Antweiler et al. (2001), inter alia.

3
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di¤erential game model, where there is a polluting �rm in each country, to

derive the open-loop and feedback equilibria of the game between �rms in case

of autarky, unilateral and bilateral trade when there is transportation cost and

also a Pigouvian tax is introduced to reduce damaging emissions.

Most of the existing contributions in the �eld of environmental economics

examine the existence of Pigouvian taxation aimed at inducing �rms to reduce

damaging emissions directly2 or indirectly3 . Accordingly, the common approach

to deal with this problem in all of these studies is to derive the �rst best, where

a social planner chooses a welfare maximizing production plan, and introduce

corrective taxes to induce pro�t-seeking �rms to produce at socially optimum

level. In our study, the game between social planners is not technically solv-

able. As a result, it is not possible to outline the social optimum. However,

we �gure out the market equilibrium and determine which one of the three

cases of bilateral trade, unilateral trade or autarky is the equilibrium of the

game between two �rms according to the transportation cost and Pigouvian tax

quantity. Then, we determine the extent of tax amount for various quantities of

negative externality to which social welfare coincides with market equilibrium.

The remainder of the paper is structured as follows. Section 2 constructs a

basic model. Section 3 brie�y outlines the static version of the game. In section

4, the di¤erential game is illustrated and the open-loop and feedback equilibria

under autarky, unilateral and bilateral trade are characterized. Pro�ts and

social welfares are assessed in section 5. Section 6 concludes the paper.

1.2 The Setup

There are two similar countries, indexed by i = 1; 2. In each country there is

a �rm which produces a single output. Firms supply a homogenous good and

2See Bergstrom et al. (1981), Karp and Livernois (1992, 1994), Benchekroun and Long
(1998, 2002) and Tsur and Zemel (2008).

3To this regard, see Downing and White (1986), Milliman and Prince (1989), Damania
(1996), Chiou and Hu (2001) and Tsur and Zemel (2002), Dragone et al. (2009).
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their productions, qi, have two parts:

qi = qii + qij ; i; j = 1; 2 and j 6= i;

where qii and qij denote the amounts of output produced by �rm i and consumes

in domestic market and is exported to the other country, respectively. It is

obvious that the second part becomes zero if there isn�t any export.

Exporting �rm must pay an iceberg transportation cost which depends on

the amount of export. In our setting, m 2 (0; 1] captures the e¤ect of trans-

portation cost. If there is no transportation cost, m is equal to one. Therefore,

the inverse demand function in each country is

pi = a� (qii +mqji); i; j = 1; 2 and j 6= i;

where qji is the amount of goods which is exported by the �rm j into country i.

Technology is the same for both �rms and production takes place at constant

returns to scale (CRS), with a constant marginal cost c. It is summarized by

the cost function Ci = cqi(t). Hence, �rm i�s instantaneous pro�ts are

�i (t) = pi (t) qii (t) + pj (t)mqij (t)� cqi (t) :

The production of the �nal output creates a negative externality in the form

of polluting emissions��ow which we assume E(t) = Q(t), and it increases the

stock of pollution, Z. Pollution is accumulated over time and is transboundary.

The accumulation process of the world pollutant follows:

_Z (t) =
2P
i=1

qi (t)� kZ (t) ; k > 0; (1.1)

where k is the natural puri�cation rate of the pollutant.

The stock of pollution lowers the consumer surplus by the following rule:

CSi (t) =
(qii (t) +mqji (t))

2

2
� hZ (t)

2

2
; h > 0;

where h measures the e¤ect of negative externality on consumers. However, the

instantaneous social welfare in each country is the aggregate amount of �rm�s

pro�ts and consumer surplus:

SWi (t) = �i (t) + CSi (t) . (1.2)
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By knowing this setting, we are deriving �rms� pro�t equilibria in autarky,

unilateral and bilateral trade. We will compare these pro�ts as well as social

welfares to obtain the trade strategy from the viewpoints of the both, the social

planner and the �rms.

1.3 The Static Problem

As a preliminary step, in this section, we consider the static Cournot game in

order to examine the case where �rms maximize their pro�t functions without

taking into account the negative externality because of the lack of corrective

tax. We consider the game in �gure 1 in which �rms make their trade strategy

decision, where �Ai , �
T
i (�

NT
i ) and �BTi denote the optimal pro�t of �rm i in the

case of autarky, trade (not trade) in unilateral and bilateral trade, respectively.

Figure 1.1: The game between two �rms when they decide to trade (T) or not
(NT).

In autarky case, there is no trade between the two countries and each �rm is

monopolist in its own country with the optimal quantity level of (a� c) =2. In

the unilateral and bilateral trade where �rms play à la Cournot, the equilibrium

amount of outputs is summarized in lemma 1 and 2.

Lemma 1 The equilibrium amounts of �rms�output in unilateral trade in the

static Cournot competition is

qTii =
a� c
2

; qTij =
(a+ c)m� 2c

3m2
;

qNTjj =
(a� 2c)m+ c

3m
:
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Proof. The maximization problem of trading and not trading �rms are

�Ti = max
qii;qij

(a� qii)qii + (a� qjj �mqij)(mqij)� c(qii + qij); (1.3)

�NTj = max
qjj
(a� qjj �mqij)qjj � cqjj ; (1.4)

with the following �rst-order conditions (FOCs):

@�Ti
@qii

= a� 2qii � c = 0; (1.5)

@�Ti
@qij

= am�mqjj � 2m2qij � c = 0; (1.6)

@�NTi
@qjj

= a� 2qjj �mqij � c = 0: (1.7)

Consequently, the resulting levels of individual output are

qTii =
a� c
2

; qTij =
(a+ c)m� 2c

3m2
; qNTjj =

(a� 2c)m+ c
3m

:

Lemma 2 The equilibrium in bilateral trade under static Cournot competition

is

qBTii =
(a� 2c)m+ c

3m
; qBTij =

(a+ c)m� 2c
3m2

:

Proof. The maximization problem of �rms in case of bilateral trade, which is

the same for both because of symmetry, would be

�BTi = max
qii;qij

(a� qii �mqji)qii + (a� qjj �mqij)(mqij)� c(qii + qij): (1.8)

The �rst order conditions of this problem w.r.t. controls are

@�BTi
@qii

= a� 2qii �mqji � c = 0; (1.9)

@�BTi
@qij

= am�mqjj � 2m2qij � c = 0; (1.10)

which leads to this solution:

qBTii =
(a� 2c)m+ c

3m
; qBTij =

(a+ c)m� 2c
3m2

:

Comparing the corresponding pro�ts on autarky, unilateral and bilateral

trade, it is clear that �Ti > �Ai , �
BT
i > �NTi and �Ai > �BTi . Therefore:
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Proposition 3 Under the static framework trade is dominant strategy for both

�rms and (T; T ) is the Nash equilibrium of the game where �rms decide to trade

or not. This is a prisoner�s dilemma game.

Proof. This follows from equilibrium in autarky and lemmas 1 and 2.

Now, we are interested in welfare comparison across the four cases which is

summarized in:

Corollary 4 Under the static framework bilateral trade is welfare improving if

and only if

h <
k2m2(5am+ c(17m� 22))

4(m� 2)(c(4 +m(�4 + 7m))� am(2 + 5m)) ; (1.11)

which coincides the equilibrium of the �rms� game. Otherwise, social welfare

has higher value in the case of autarky.

Proof. By plugging qii, qij , qjj and qji into the stationary condition _Z = 0, the

steady state stock of pollution is obtained which in turn can be plugged into

(1.2) in order to get social welfare amounts in autarky, unilateral and bilateral

trade. Comparing the acquired welfares, we obtain the inequality.

Corollary 5 The less transportation cost is, the more bilateral trade is socially

preferable.

Proof. The right hand side of the inequality (1.11) is increasing in m which

means in order for bilateral trade becomes socially acceptable, h can have a

larger value when transportation cost decreases. This concludes the proof.

However, trade liberalization would increase �rms� output which has two

contradictory e¤ects on consumer surplus. Output increase, on the one hand,

would directly raise consumer surplus, on the other hand, increases the stock

of pollution which in turn reduces consumer surplus. Now, if inequality (1.11)

holds or in the other words h is small enough, pollution increase does not re-

duce the consumer surplus too much and consumers will bene�t from output

enlargement.
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1.4 The Dynamic Game

As it is said before, the production of �nal output creates a cross-boundary

negative externality which is accumulated over time and follows the dynamic

(4.31). Now, by introducing a corrective (Pigouvian) tax, in quadratic form, the

�rms are forced to internalize the negative externality of pollution in a dynamic

framework. Therefore, the �rm i�s optimization problem is formulated as:

max
qi
�i �

Z 1

0

e�rt
h
pi qii + pj mqij � c (qii + qij)�

s

2
Z2
i
dt; (1.12)

subject to (4.31) and Z(0) = Z0. Parameter r > 0 is a constant rate of discount

common to all �rms and parameter s is a policy instrument that policy maker

by manipulating it modi�es taxation. This taxation is not the same if �rms play

open-loop or feedback.

In the remainder of this section, the problem is solved for the open-loop

equilibrium and feedback equilibrium as well.

1.4.1 Open-Loop Solution

Here we characterize the open-loop equilibria of the three cases, starting with

the autarky which is the simplest one because there is only one supplier in each

country.

Proposition 6 At the open-loop Nash equilibrium under autarky, the steady

state levels of the price and the individual output are

pOLAi = a� qOLAii ; qOLAii =
k(a� c)(k + r)
2(k(k + r) + s)

;

where OLA denotes the open-loop equilibrium at autarky. Such a steady state

is saddle point stable.

Proof. The Hamiltonian equation of �rm i is:

HA
i (t) = e��t

n
qii(t) (a� qii (t)� c)�

s

2
Z2(t) (1.13)

+ �i(t) [qii(t) + qjj(t)� kZ(t)]
o
;
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where �i(t) = �i (t) e
�t and �i (t) is the co-state variable associated with Z(t).

Consider the �rst-order condition w.r.t. qii(t):

@HA
i (t)

@qii(t)
= a� 2qii (t)� c+ �i(t) = 0: (1.14)

This yields the optimal open-loop output for the �rm i as follows4 :

qii (t) =

� 1
2 (a� c+ �i(t)) if a > c� �i(t);
0 otherwise.

(1.15)

The adjoint equation for the optimum is

@�i(t)

@t
= r�i(t)�

@HA
i (t)

@Z(t)
= (k + r)�i(t) + sZ (t) ; (1.16)

and the associated transversality condition is

lim
t!1

�i (t) :Z (t) = 0:

Di¤erentiating (1.15), using (1.16) and symmetry assumption, we obtain

dq (t)

dt
� _q (t) =

1

2
[(k + r)�(t) + sZ (t)] : (1.17)

From (1.14), we know

�(t) = �a+ 2q (t) + c:

By substituting this into (1.17), we have

_q (t) = �1
2
[(k + r) (a� 2q (t)� c)� sZ (t)] : (1.18)

Therefore, the dynamic system can be rewritten in matrix form as follows:�
_q
_Z

�
=

�
k + r s

2
2 �k

� �
q
Z

�
+

�
� 1
2 (k + r) (a� c)

0

�
: (1.19)

Since the determinant of the above two-by-two matrix is negative, the equilib-

rium point is a saddle, with

pOLAi = a� qOLAii ; qOLAii =
k(a� c)(k + r)
2(k(k + r) + s)

:

4 In the remainder, we consider the positive solution.
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Proposition 7 At the open-loop Nash equilibrium under unilateral trade, the

steady state levels of the price and the individual outputs are

pOLTi = a� qOLTii ; pOLNTj = a� qOLNTjj �mqOLTij ;

qOLTii =
3km2(a� c)(k + r) + a(m� 2)(m� 1)s
6km2(k + r) + (4 +m(7m� 4))s ; (1.20)

qOLTij =
2k(c(m� 2) + am)(k + r) + 4a(m� 1)s

6km2(k + r) + (4 +m(7m� 4))s ;

qOLNTjj =
2km(am+ c� 2cm)(k + r)� a(m2 +m� 2)s

6km2(k + r) + (4 +m(�4 + 7m))s ;

where OLT and OLNT denote the open-loop equilibrium in unilateral trade for

trading and not trading �rms, respectively. Such a steady state is saddle point

stable.

Proof. In unilateral trade, only one �rm exports. The Hamiltonian for the

trading and not trading �rms are

HT
i (t) = e��t

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(1.21)

+ �i(t) [qii(t) + qij(t) + qjj(t)� kZ(t)]
o
;

HNT
j (t) = e��t

nh
pj(t)qjj � cqj �

s

2
Z2(t)

i
(1.22)

+ �j(t) [qii(t) + qij(t) + qjj(t)� kZ(t)]
o
:

The �rst-order necessary conditions w.r.t. control variables, adjoint equations

and associated transversality conditions for the optimum are

@HT
i (t)

@qii(t)
= a� 2qii (t)� c+ �i(t) = 0; (1.23)

@HT
i (t)

@qij(t)
= am� 2m2qij (t)�mqjj (t)� c+ �i(t) = 0; (1.24)

@HNT
i (t)

@qjj(t)
= a� 2qjj (t)�mqij (t)� c+ �j(t) = 0; (1.25)

@�i(t)

@t
= r�i(t)�

@HT
i (t)

@Z(t)
= (k + r)�i(t) + sZ (t) ; (1.26)

@�j(t)

@t
= r�j(t)�

@HNT
j (t)

@Z(t)
= (k + r)�j(t) + sZ (t) ; (1.27)



1.4. The Dynamic Game 12

lim
t!1

�i (t) :Z (t) = 0; lim
t!1

�j (t) :Z (t) = 0:

Di¤erentiating FOCs w.r.t. time and using adjoint equations we obtain the

following control dynamical system:8<: _qii (t) = � 1
2 [(k + r) (a� 2qii (t)� c)� sZ (t)] ;

_qij (t) = � 1
3m2 [(k + r) (m (a� 3mqij (t) + c)� 2c)� s (2�m)Z (t)] ;

_qjj (t) = � 1
3m [(k + r) (am� 3mqjj (t)� c(2m� 1))� s(2m� 1)Z (t)] :

(1.28)

Solving (1.28) together with (4.31), yields the stable steady state equilibrium

point in (1.20).

Proposition 8 At the open-loop Nash equilibrium under bilateral trade, the

steady state levels of the price and the individual outputs are

pOLBTi = a� qOLBTii �mqOLBTji ;

qOLBTii =
km(am+ c� 2cm)(k + r) + 2a(1�m)s

3km2(k + r) + 4(m(m� 1) + 1)s ; (1.29)

qOLBTij =
k(c(m� 2) + am)(k + r) + 2a(m� 1)s
3km2(k + r) + 4(m(m� 1) + 1)s :

where OLBT denotes the open-loop equilibrium at bilateral trade. Such a steady

state is saddle point stable.

Proof. As mentioned before, the two �rms and two countries are symmetric.

Then, the Hamiltonian function of each �rm in bilateral trade is

HBT
i (t) = e��t

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(1.30)

+ �i(t) [qii(t) + qij(t) + qjj(t)� qji(t)� kZ(t)]
o
:

Considering the �rst-order conditions, adjoint equations and associated transver-

sality conditions:

@HBT
i (t)

@qii(t)
= a� 2qii (t)�mqji (t)� c+ �i(t) = 0;

@HBT
i (t)

@qij(t)
= m (a� 2mqij (t)� qjj (t))� c+ �i(t) = 0;

@�i(t)

@t
= r�i(t)�

@HBT
i (t)

@Z(t)
= (k + r)�i(t) + sZ (t) ;
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lim
t!1

�i (t) :Z (t) = 0;

yields the dynamics of �rm i�s controls:�
_qii (t) = � 1

3m [(k + r) (am� 3mqii (t)� c(2m� 1))� s(2m� 1)Z (t)] ;
_qij (t) = � 1

3m2 [(k + r) (m (a� 3mqij (t) + c)� 2c)� s (2�m)Z (t)] :
(1.31)

Solving (1.31) accompanied by the dynamics of �rm j�s control variables and

(4.31), fully characterizes the stable steady state equilibrium point in (1.29).

1.4.2 Feedback Solution

Here, we characterize a subgame perfect Cournot equilibrium in Markov strate-

gies where �rms employ pollution dependent decision rules when maximizing

their discounted pro�t. Therefore, changes in the stock of pollution stimulate

responses, through Pigouvian tax, by all players that are re�ected in their quan-

tity choices.

Proposition 9 At the feedback Nash equilibrium under autarky, the steady state

levels of the price and the individual output are

pFAi = a� qFAii ; qFAii =
1

2

�
a� c+ eAZ + fA

�
;

where FA denotes the feedback equilibrium at autarky and

eA =
1

3

�
2k + r �

p
(2k + r)2 + 6s

�
;

fA =
2(a� c)eA

2(k + r)� 3eA :

Proof. The Bellman equation of �rm i in autarky is

rVi (Z (t)) = max
qii(t)

n
qii(t) [pi(t)� c]�

s

2
Z2(t) (1.32)

+
@Vi (Z (t))

@Z (t)
[qii(t) + qjj(t)� kZ(t)]

�
;

where Vi (Z (t)) is the value function of �rm i. Given the linear quadratic form

of the maximand, we assume the quadratic value function:

Vi (Z) =
ei
2
Z2 + fiZ + gi; (1.33)
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so that
@Vi (Z)

@Z
= eiZ + fi: (1.34)

where ei, fi and gi are unknown coe¢ cients and the indication of time is omitted

to ease the exposition. Taking the FOC w.r.t. qii and using (1.34), we obtain:

qFAii =
1

2

�
a� c+ eAZ + fA

�
; pFAi = a� qFAii ; (1.35)

where eA and fA can be calculated by using (1.35) and rewriting (1.32) as

follows:

�1Z
2 + �2Z + �3 = 0; (1.36)

where

�1 =
1

4

�
e(3eA � 4k � 2r)� 2s

�
; (1.37)

�2 =
1

4

�
4eA(a� c) + 2fA(3eA � 2 (k + r))

�
; (1.38)

�3 =
1

4

�
(a� c)2 + fA(4 (a� c) + 3fA)� 4gAr

�
: (1.39)

Equation (1.36) is satis�ed if expressions (1.37)-(1.39) are simultaneously zero.

This results to the following solution:

eA =
1

3

�
2k + r �

p
(2k + r)2 + 6s

�
;

fA =
2(a� c)eA

2(k + r)� 3eA :

Proposition 10 At the feedback Nash equilibrium under unilateral trade, the

steady state levels of the prices and the individual outputs are

pFTi = a� qFTii ; pFNTj = a� qFNTjj �mqFTij ;

qFTii =
1

2

�
a� c+ eTZFT + fT

�
;

qFTij =
(2�m)(eTZFT + fT � c) + am

3m2
;

qFNTjj =
c+m(a� 2c) + (2m� 1)(eTZFT + fT )

3m
;
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where FT and FNT denote the feedback equilibrium in unilateral trade for trad-

ing and not trading �rm and

eT =
9m2(2k + r)� 3

p
9m4(2k + r)2 + 2m2(16 +m(37m� 28))s
16 +m(37m� 28) ;

fT =
eT (c(16 +m(25m� 22))� am(11m+ 8))
eT (16 +m(37m� 28))� 18m2(k + r)

:

Proof. The Bellman equations of trading and not trading �rms in unilateral

trade are5 :

rVi (Z (t)) = max
qi(t)

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(1.40)

+
@Vi (Z (t))

@Z (t)
[qii(t) + qij(t) + qjj(t)� kZ(t)]

�
;

rVj (Z (t)) = max
qj(t)

nh
pj(t)qjj � cqj �

s

2
Z2(t)

i
(1.41)

+
@Vj (Z (t))

@Z (t)
[qii(t) + qij(t) + qjj(t)� kZ(t)]

�
;

with the same value function form that was introduced before. Taking the FOCs

w.r.t. controls and using (1.34), we obtain:

qFTii =
1

2

�
a� c+ eTZFT + fT

�
; (1.42)

qFTij =
1

2m2

�
am� c+ eTZFT + fT �mqFNTjj

�
; (1.43)

qFNTjj =
1

2

�
a� c+ eTZFT + fT �mqFTij

�
: (1.44)

By solving (1.43) and (1.44) simultaneously, the amounts of qFTij and qFNTjj is

taken. Using these and rewriting (1.40) or (1.41) as (1.36) and as the same

procedure as the previous proof, we can calculate eT and fT .

Proposition 11 At the feedback Nash equilibrium under bilateral trade, the

steady state levels of the price and the individual outputs are

pFBTi = a� qFBTii �mqFBTji ;

qFBTii =
c+m(a� 2c) + (fBT + eBT z)(2m� 1)

3m
;

5We omit the full calculations but they are available upon request.
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qFBTij =
(2�m)(eBTZFBT + fBT � c) + am

3m2
;

ZFBT =
2(am(m+ 1) + 2(fBT � c)(m(m� 1) + 1))

3km2 � 4eBT (m(m� 1) + 1) ;

where FBT denotes the feedback equilibrium in bilateral trade and

eBT =
9m2(2k + r)�

p
81m4(2k + r)2 + 36m2(22� 28m+ 22m2)s

2(22� 28m+ 22m2)
;

fBT =
eBT (m2(5a� 16c) +m(5a+ 22c)� 16c)
9m2(k + r)� eBT (22� 28m+ 22m2)

:

Proof. When there is trade between two countries, the Bellman equation of

�rm i is

rVi (Z (t)) = max
qi(t)

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(1.45)

+
@Vi (Z (t))

@Z (t)
[qii(t) + qij(t) + qjj(t)� qji(t)� kZ(t)]

�
:

Taking the �rst order necessary conditions and using the similar procedure with

the previous proofs leads to �nd the Nash equilibrium of the game in bilateral

trade6 .

Remark 12 The parameter m must be belong to (m
¯
; 1] in which m

¯
is

-
2c

a+ c
in the static game,

-
2ck(k + r) + 2as

k(a+ c)(k + r) + 2as
in the open-loop equilibrium,

- the positive root of k (f � c) (2�m) + a (km+ 2e (1�m)) = 0 in the feedback equilibrium where
(e; f) is equal to

�
eT ; fT

�
and

�
eBT ; fBT

�
for unilateral and bilateral trade,respectively,

otherwise �rms do not have an incentive to trade due to high transportation

cost. This results from the condition qij > 0.

Corollary 13 In the dynamic equilibria, the maximum acceptable transporta-

tion cost decreases when s increases and in the limit when s goes to in�nity, it

must be zero.

Proof. Di¤erentiating m
¯
, illustrated in remark 8, in the open-loop and the

feedback equilibria w.r.t. s we found that @m
¯@s > 0. Thus, increasing s leads to

increasing the minimum acceptable value of m or in the other word lowering the

maximum rate of tranpostation cost by which trade is doable.
6The full calculations are available upon request.
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Figure 1.2: (a) Pro�t comparison according to the level of transportation cost
and tax rate under the feedback information; (b) welfare comparison according
to the level of negative externality and tax rate under the open-loop information

1.5 Pro�t and Welfare Assessment

In this section, by using equilibrium values, we compare �rms�pro�ts in autarky,

unilateral and bilateral trade to determine the equilibrium of the game between

�rms where they decide to trade or not, in the open-loop and in the feedback

solutions. In addition, we will look into the case which leads to the e¢ cient

level of social welfare.

Because of having too many parameters, comparing the results is di¢ cult.

Therefore, we use a numerical analysis to assess the pro�ts and welfares in the

three cases for the open-loop and the feedback equilibria, respectively. In our

setting, the parameters a; c; k and r are given and in the remainder we assume

that they have de�nite and plausible values of 10; 0; 0:5 and 0:05, respectively.

In �gure 2a, the pro�ts of �rms in di¤erent cases, under open-loop equilibria,

is compared according to the amounts of transportation cost and Pigouvian tax.

As it can be seen in this �gure, the equilibrium of the game illustrated in �gure 1

depends on the amounts ofm and s. In the region below the curve, trade is dom-

inant strategy for both �rms which leads to the equilibrium
�
�OLBT1 ; �OLBT2

�
and due to the fact that in this region the pro�t of �rms in autarky is greater
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Figure 1.3: (a) Pro�t comparison according to the level of transportation cost
and tax rate under the feedback information; (b) welfare comparison according
to the level of negative externality and tax rate under the feedback information

than bilateral trade, this game is a prisoner�s dilemma. In the region above the

curve, the condition of remark 8 is not satis�ed. Therefore, non of them choose

trade strategy and
�
�OLA1 ; �OLA2

�
is the equilibrium of the game.

Figure 2b depicts the regions that conditioned on the value of parameters h,

s and m bilateral trade (autarky) becomes the preferable case from the social

welfare point of view. In this �gure, for m = 1, the solid line divides the region

of parameters h and s into two areas where in the upper region bilateral trade

is socially preferable and in the lower area autarky. The dashed line does the

same but form =m
¯
. For any other amount ofm we have an analogous boderline

between the solid and the dash lines. As it can be seen in the �gure, when m

decreases the area where bilateral trade is socially e¢ cient shrinks. However,

depending on the amount of existing h, policy maker can determine tax rate in

such a way that either bilateral trade or autarky become socially e¢ cient.

Figure 3a compares the pro�ts of �rms in di¤erent cases according to the

amounts of transportation cost and Pigouvian tax for feedback information. As

it can be seen in this �gure, in region I, where m is close to one and s is not too

large, trade is dominant strategy for both �rms which leads to the equilibrium�
�FBT1 ; �FBT2

�
. In this region the pro�t of �rms in autarky is greater than
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bilateral trade, therefore, this equilibrium is not pareto e¢ cient. In region II,

there is not any unique equilibrium and �rms play a chicken game. If �rms play

simultaneously, they make a systematic mistake to reach the equilibrium, and

if they play sequentially, the problem is who plays �rst and gains the enormous

bene�ts of the trade. In the last region, III, because of high transportation cost,

trade is not possible and autarky is the equilibrium.

In �gure 3b, it is shown that which one of the three cases (autarky, unilateral

and bilateral trade) is socially e¢ cient according to the amounts of negative

externality and corrective tax rate. Similar to �gure 2b the solid line is for

m = 1 and the dashed line is for m =m
¯
. In the region above the curves,

bilateral trade is e¢ cient from the social planner point of view. In the other

region autarky is socially e¢ cient. Note that in some situations unilateral trade

can be the e¢ cient case socially. It means that if what one country gains is

more than what the other looses, over all, they gain. But this makes a huge

coordination problem. The problem is that which country accepts not to sell

to the other country. In this case, there should be a side payment. Hence,

unilateral trade is very hard to sustain.

However, if the social planner makes a deal about taxation, he makes a deal

about s as well and this deal is di¤erent if he knows �rms are playing open-loop

equilibrium or feedback equilibrium.

Consequently, if �rms play under the open-loop strategies, in order for the

socially e¢ cient equilibrium coincides with the market equilibrium, according

to the amounts of h and m,social planner must determine s in a way that it

characterizes a point in the lower (upper) region of �gure 2a and the uper (lower)

region in �gure 2b. The most e¢ cient point for the welfare (if it is applicable)

takes place on the dividing curves (depended on m) in �gure 2b.

If �rms play under the feedback rule, bilateral trade can be the most prefer-

able case if social planner can determine the tax rate, according to the amounts

of h and m, in a way that it characterizes a point in region I of �gure 3a and

the upper region in �gure 3b. Otherwise, he must choose s such that the equi-
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librium characterizes a point in region III of �gure 3a and the lower region in

�gure 3b where autarky is the preferable case.

However, it is not clear to social planners whether �rms are playing open-

loop or feedback. Considering the �gure 2, if social planners assume that �rms

are playing under open-loop equilibrium and they determine s in order to in-

duce bilateral trade, they may face an unexpected outcome. Because if �rms

are playing feedback instead of open-loop, autarky may be welfare improving

provided that the point places in the region above the curve in �gure 2b and

below the curve in �gure 3b. Therefore, to avoid this problem policy makers

must determine s for any given exogenous pair of (h; s) to satisfy the stricter

constraint.

1.6 Concluding Remarks

In this paper, we have theoretically addressed e¤ects of trade liberalization

in a two country world di¤erential polluting oligopoly game. We found out

when �rms decide to trade or not, if the transportation cost is not too large,

under the open-loop information they play a prisoner�s dilemma in which trade

is the dominant strategy for both otherwise they play autarky. In order for

trade to be dominant strategy in feedback information, the Pigouvian tax and

transportation cost must have relatively lower values. For larger amounts of

transportation cost and corrective tax, the equilibrium can be unilateral trade

or autarky.

By comparing social welfares in autarky, unilateral and bilateral trade, we

showed that, depending on the e¤ects of negative externality on consumer and

the transportation cost, policy maker can determine the amount of Pigouvian

tax so that market equilibrium coincides with socially e¢ cient equilibrium. This

taxation is di¤erent if �rms are playing open-loop equilibrium as compare to the

feedback equilibrium.
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Chapter 2

Strategic environmental
policies under international
competition with
asymmetric pollution
spillovers

2.1 Introduction

The environmental consequences of trade liberalization have received a consid-

erable attention in trade theory and environmental economics. International

trade is playing an important role in expanding global economic activities and,

therefore, many individuals have argued that trade liberalization will lead to an

increase in world pollution.

Although globalization brings about many bene�ts and opportunities, some

environmentalists have resisted freer trade, because governments which are un-

able to use trade policy may lower their environmental standards to give com-

petitive advantage to existing domestic industries and protect their economy.

This has led some economists to investigate the relationship between trade and

the environment.1

The established literature on trade and environment suggests that, while

1Copeland and Taylor (2003) provides a comprehensive review of the link between trade
and the environment.
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each country can gain from trade, it expands global pollution. Fujiwara (2009)

investigates the e¤ects of free trade on global stock of pollution and he �nds

that under trade liberalization the stock of pollution is larger as compared to

the autarky.

Another part of the literature deals with the links between strategic environ-

mental policies and the patterns of trade and pollution levels. Stem from the

Brander and Spencer (1985) model, Rauscher (1994), Kennedy (1994), Barrett

(1994), Walz and Wellisch (1997) and Tanguay (2001) all show that governments

can have incentives to use environmental policies to subsidize their exports. It

is bene�cial for rent-shifting governments to set an environmental tax below

the Pigouvian level in an international oligopoly. Such a weak environmental

regulation to support domestic �rms has been called ecological dumping.

The aim of this study is to examine the welfare implications of trade liber-

alization when governments behave strategically using environmental policy in

the presence of transboundary pollution. However, we model the transbound-

ary pollution in such a way that it allows drawing the results also in pure local

pollution and global environmental problem.

In this paper, we consider two symmetric countries with a single �rm in

each producing a homogenous good. The two �rms may export a part of their

production to the other country. In our model trade of the same product occurs

between countries.2 Thereby, we have a two-stage game where in the �rst stage

governments decide about the environmental and trade policies, and the two

�rms compete �a la Cournot in the second stage. The most important di¤erence

of this study with the aforementioned literature is that we allow for assymetric

environmental damages between the two countries in our model.

We �nd that when the marginal cost of pollution of the domestic �rm in-

creases, the pollution-shifting motive is enhanced and government wants to raise

production taxes and the rent-seeking behavior is observed and government

2Brander (1981) and Brander and Krugman (1983) showed that intraindustry trade occurs
because each �rm perceives each country as a separate market and makes distinct output
decisions for each.
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raises import tari¤s. On the other hand, when the marginal cost of pollution of

the foreign �rm increases, government want to reduce the level of tax and the

level of tari¤ as well.

In addition, contrary to existing literature, it is shown that the global pollu-

tion decreases in bilateral trade compared to autarky provided that the di¤er-

ence between the emission rates of the two �rms is su¢ ciently large. This result

holds even for the case of pure local pollution. Furthermore, it is shown that

how the asymmetric pollution emissions a¤ects the �rms�pro�t and countries�

welfare.

The rest of the paper is organized as follows. Section 2 constructs the general

framework of the model and describes autarkic equilibria. Section 3 devoted to

the �rms� equilibrium. In Section 4 we turn to the games between the two

governments. Comparing the trade equilibria with the autarkic equilibria takes

place in section 5. Section 6 concludes the paper.

2.2 The fundamentals

2.2.1 The setup

There are two countries, indexed by i = 1; 2. In each country there is a �rm

which produces a single output. Their productions, qi, have two parts:

qi = qhi + qei; i; j = 1; 2;

where qhi and qei denote the amounts of output produced by �rm i and consumes

in the domestic market and is exported to the other country, respectively.

The inverse demand function in each country is

pi = a� (qhi + qej); i; j = 1; 2 and j 6= i;

where qej is the amount of good which is exported by the �rm j into country i.

Production takes place at constant returns to scale (CRS), with a constant

marginal cost c which is summarized by the cost function Ci = cqi(t).

The production of �rm i, qi, creates a constant per unit emission level, �i.

While �rms are homogenous in their cost functions, it is assumed that they are
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hetrogeneous in their environmental damage functions, Ei

Ei(qi) = �iqi = �i (qhi + qei) ; i; j = 1; 2;

which is not con�ned to the country where the production takes place and gives

rise to a transboundary pollution problem.

The foreign production results in a negative externality in home country at

the �xed level  , per unit of its environmental damage. Hence, the negative

externality caused by home and foreign production in country i is

exi(qi; qj) = Ei(qi) +  Ej(qj):

where  2 [0; 1], and  = 0 denotes the case of pure local pollution and  = 1

denotes the case of pure global environmental problem.

In order to protect the environment, country i levies an environmental tax,

� i, on its polluting production and imposes a tari¤ , �i,on imported items.

Hence, �rm i�s instantaneous pro�ts are

�i = piqhi + pjqei � cqi � � iqi � �jqei; i; j = 1; 2 and j 6= i;

Tax revenues are distributed in the form of a lump sum to the consumers. Thus,

the social welfare in each country is the aggregate amount of �rm�s pro�ts, con-

sumer surplus, tax and tari¤ revenues minus negative environmental externality

caused by home and foreign �rms productions:

Wi = �i + CSi + � iqi + �iqej � exi; (2.1)

where CSi = (qhi + qej)
2
=2:

2.2.2 The autarkic equilibrium

Now, we consider a closed economy where there is no trade between countries

and each �rm is monopolist in its own country. Therefore, given the government

environmental policy � i, the �rm i maximizes her monopolistic pro�t �i =

piqi � cqi � � iqi, i = 1; 2. By �rst-order condition (FOC), we obtain qAi =
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1
2 (a� c� � i) where the superscript A denotes the autarky. At the equilibrium,

�rm i�s reaction to the tax policy is @qAi =@� i = �1=2.

In the autarky, the government�s �rst-best environmental policy is intro-

duced by the Pigovian tax �Ai = �i. Note that because of transboundary pol-

lution, the foreign �rm�s production creates negative externality in the home

country but it is not a¤ected by the home government policy.

Therefore, the Cournot-Nash equilibrium in the autarky is

qAi =
1

2
(a� c� �i) ; (2.2)

�Ai =
1

4
(a� c� �i)

2
; (2.3)

WA
i =

3

8
(a� c� �i)

2 � 1
2
 �j

�
a� c� �j

�
; (2.4)

EAi =
1

2
�i (a� c� �i) ; (2.5)

exAi = EAi +  E
A
j =

1

2

�
(a� c)

�
�i +  �j

�
� �2i �  �2j

�
; (2.6)

exAG = exAi + ex
A
j =

1

2
(1 +  )

�
(a� c)

�
�i + �j

�
� �2i � �2j

�
; j 6= i; (2.7)

where G denotes the global negative environmental externality.

2.3 Trade liberalization

In this section, we want to investigate the �rms behavior and governvent policies

after trade liberalization. In what follows, we construct a two-stage game. In

the �rst stage, governments determine the level of tax and tari¤ and in the

second stage, the two �rms simultaneously choose their outputs.

2.3.1 The �rms�equilibrium

By backward induction, we �rst solve the two international Cournot competitors

problem when choosing their export and home production levels, qej and qhi

respectively. The problem facing �rm i is

max
qhi;qei

�i = (a� qhi � qej) qhi + (a� qhj � qei � �j) qei � (c+ � i) (qhi + qei) ;
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Taking the FOCs, we obtain the following reaction functions

@�i
@qhi

= a� 2qhi � qej � c� � i = 0;

@�i
@qei

= a� qhj � 2qei � c� � i � �j = 0:

Solving the FOCs of both �rms simultaneously, we �nd

qCNhi =
1

3
(a� c� 2� i + � j + �i) ; (2.8)

qCNei =
1

3
(a� c� 2� i + � j � 2�j) ; (2.9)

where CN denotes the Cournot-Nash equilibrium. From equations (2.8)-(2.9)

it is found that @qCNhi =@� i = @qCNei =@� i = �2=3 < @qAi =@� i = �1=2, which

implies that, �rst, the �rm i reacts to the tax levied by the home government

by reducing her output and, second, this reaction is stronger compared to the

autarky. However, the �rm reaction to the foreign tax is opposite. As the foreign

government increases the tax rate, the domestic �rm enhances her output, i.e.

@qCNhi =@� j = @qCNei =@� j > 0.

Furthermore, the level of import decreases as the government of the home

country increases the level of tari¤ (@qCNej =@�i < 0), and, consequently, the

home �rm�s production increases (@qCNhi =@�i > 0).

2.3.2 The noncooperative government policies

Now, knowing the �rms� behavior in the second stage, we move to the �rst

stage where the environmental taxes and tari¤s are determined by governments

as Stackelberg strategic leaders. The total welfare of each country is de�ned as

the summation of consumer surplus, the �rm�s pro�ts, tax and tari¤ revenues

minus the negative environmental externality caused by both home and foreign

�rms. Thus, the government�s problem in country i is de�ned

max
� i;�i

WCN
i = �CNi + CSCNi + � iq

CN
i + �iq

CN
ej � exCNi : (2.10)

We consider a non-cooperative game where each country unilaterally make deci-

sion about the environmental tax and tari¤ to maximize its own national welfare,
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and ignores its impact on the other. This problem is done with governments

choosing their pollution tax � i and tari¤ �i and knowing the reactions of both

�rms in the second stage. Thus, the FOCs are

@WCN
i

@� i
=
1

9

�
12�i � 6 �j � 7� i � � j + 3�i + 2�j � 4(a� c)

�
= 0;

@WCN
i

@�i
=
1

3

�
a� c� �i + 2 �j + � i � � j � 3�i

�
= 0:

Solving the FOCs of the problems of both governments simultaneously, we �nd

the equilibrium amount of pollution tax and tari¤

��i =
1

96

�
167�i � 43�j + 32 

�
�i � 2�j

�
� 28(a� c)

�
; (2.11)

��i =
1

48

�
16(a� c) + 19�i � 35�j + 16 

�
�i + �j

��
: (2.12)

As it can be seen from (2.11), @��i =@�i = (167 + 32 ) =96 > @�Ai =@�i = 1,

therefore, as the �rms�emission rates increase the home government increases

the tax level. And, surprisingly, this taxation is stronger as the rate of spill-over

rises. Futhermore, in the international competition, �rms faces a stronger envi-

ronmental taxation compared to autarky. However, the government�s reaction

to the incease in the foreign �rm�s pollution is reduction in levied tax on his

home �rm, i.e. @��i =@�j < 0. Also, interestingly, we can see that the equi-

librium level of tari¤ on imports increases with the domestic rate of pollution

production, i.e. @��i =@�i > 0. In addition, this tari¤ decreases when the foreign

pollution increases, @��i =@�j < 0. Furthermore, we can see that @��i =@ > 0

when �j < �i=2, and @�
�
i =@ > 0.

Finally, the market equilibrium becomes

q�hi =
1

96

�
52(a� c)� 113�i + 61�j � 32 

�
�i � 2�j

��
;

q�ei =
1

96

�
20(a� c)� 79�i + 59�j � 32 

�
2�i � �j

��
:

Then the total output of �rm i is

q�i =
1

4

�
3(a� c)� 8�i + 5�j � 4 

�
�i � �j

��
: (2.13)
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Consequently, the negative externality produced by the home and foreign �rms

in country i is

exTi = �iq
�
i +  �jq

�
j ; (2.14)

where T denotes the case of trade liberalization. Therefore, the global pollution

and the total negative externality caused by �rms�production are

ETG = �iq
�
i + �jq

�
j ; (2.15)

exTG = (1 +  )E
T
G; (2.16)

where G stands for the global.

2.4 Trade vs autarky

In this section, we compare the autarkic equilibrium with the noncooperative

restricted trade equilibria. We want to know how the asymmetric pollution

spill-over makes some di¤erences.

2.4.1 Global pollution

Comparing (2.7) and (2.16), yields

�exG = exTG � exAG

=
1

4
(1 +  )

h
(a� c)

�
�i + �j

�
�
�
6�2i + 6�

2
j � 10�i�j + 4 

�
�i � �j

�2�i
:(2.17)

In the symmetric case where �i = �j = �, we have �exGji=j =
�
2 (1 +  ) (a� c� �).

Since from (2.2) we know that a � c � � � 0, the total externality and globa

pollution in bilateral trade is larger than autarky. However, in the asymmetric

case �i 6= �j , there exists a range of parameter in which global pollution and

consequently total negative externality in the autarkic equilibrium are larger

than the restricted trade. In �gure 1, for a given value of a � c, �exG is de-

picted in the space of (�i; �j). In the region between the two curves �exG is

positive, therefore, trade liberalization is detrimental for the environment if the

two �rms�rates of emissions are almost equal. Note that the dotted line in this

and the following �gures represent the points where �i = �j . On this points we



2.4. Trade vs autarky 33

have ETG > EAG , which is consistent with the existing literature with symmetric

emission rate.

Figure 1: Global pollution comparison.
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The region beyond the curves represents the points where �ex < 0. There-

fore, for a wide range of asymmetric emission rates, trade liberalization not only

is not a bad news for the environment but also it could even make reduction

in the environmental damages. This result is contrary to the almost all of the

previous studies where they argue that trade liberalization leads to increase in

environmental pollution.

As it is shown in �gure 1, as the rate at which pollution crosses borders,  ,

increases the region where the restricted trade is environmentally detrimental

shrinks. Thus, for a pure global environmental problem (i.e.  = 1) the re-

gion where international trade compared to autarky is environmental friendly

becomes even larger.
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2.4.2 Externality in home country

A part of the negative externality caused by polluting production is created

by the domestic �rm and another part by the foreign �rm because of having

transboundary pollution ( > 0). Therefore, in the case of autarky we still have

the negative environmental e¤ect of foreign �rm activity. In order to compare

the negative externality in country i in the international trade framework with

the autarky, we should compare (2.6) with (2.14) which yields

�exi = exTi � exAi =
1

4
�j
�
(a� c) + 5�i � 6�j + 4 

�
�i � �j

��
: (2.18)

Figures 2: Negative externality comparison in country i where a)  = 0, b)  = 1=2, c)  = 1.
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It can be easily shown that in the case of international trade competition

environmental damages is larger than the autarky provided that �i = �j . For

the general values of emission rates, in �gures 2, we have plotted �exi in the

space of (�i; �j), for the case of: a) pure local pollution,  = 0, b) an exam-

ple of transboundary pollution,  = 1=2, and c) pure global pollution,  = 1.

In these �gures, only in the regions between the two curves (in �gure 2a, be-

tween the curve and vertical axis) trade will increase the negative environmental

externality in country i.
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2.4.3 Output

Considering (2.2) and (2.13), in �gures 3, we have shown the region on the right

side of the ticker curves where �rm i produces more in international competi-

tion. Thus, provided that the �rm i�s pollution spill-over is su¢ ciently larger

than her rival�s; her total production in the presence of international trade is

lower than the case of autarky. This is a very good news for environmental-

ist which even noncooperative environmental and trade policies make the more

environmentally ine¢ cient �rm to reduce her production.

Figures 3: Total output comparison for �rm i where a)  = 0, b)  = 1=2, c)  = 1.
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In the �gures 3 and 4, the thinner lines represent the points where below

them q�ei < 0, and therefore, there is not any export by the �rm i to the country

j.

2.4.4 Pro�ts and welfare

Finally we want to examine the pro�tability and welfare consequences of trade

liberalization.
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Figures 4: Pro�t and welfare comparison in country i where a)  = 0, b)  = 1=2, c)  = 1.
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Figures 4, in the space of (�i; �j), shows the regions inside the curves where

�rm�s pro�t and social welfare of country i under the autarky are larger than

the ones in international competition. The lower curves represent the points

where �rm�s pro�ts in autarky and international trade are equal, and the upper

curves characterizes the points where the social welfare in autarky and trade

are the same. Consitent with the other studies, �rms� pro�ts in the case of

symmetric pollution spill-overs decreases in trade liberalization. However, in

the case of asymmetric pollution spill-over, trade liberalization decreases the

�rm�s pro�ts provided that her pollution spill-over is su¢ ciently larger than her

rival in international competition.

In the case of pure local pollution, trade liberalization always increases total

welfare. As  increases the regions where �rms pro�ts in autarky is larger than

international trade shrink and the regions where social welfare in autarky is

larger than international trade expand. However, although in the presence of

transboundary pollution governments prefer autarky rather than international

competition when �rms production functions are the same, they prefer restricted

trade where they use environmental and trade policies rather than autarky pro-

vided that the home �rm�s pollution spill-over is lower than her rival.
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2.5 Concluding Remarks

In this paper, we considered a two-country world model with a single polluting

�rm in each country to examine the welfare implications of trade liberaliza-

tion when governments behave strategically using environmental policy with

asymmetric pollution spillovers. We investigated a second-best trade agreement

between two countries to examine the strategic behavior of governments in using

pollution taxes and tari¤s. We found that when the marginal cost of pollution

of the domestic �rm increases, the pollution-shifting motive is enhanced and

government wants to raise production taxes and surprisingly the rent-seeking

behavior is observed and government raises import tari¤s. On the other hand,

when the marginal cost of pollution of the foreign �rm increases, government

want to reduce the level of tax and interestingly the level of tari¤ as well.

Furthermore, it is shown that how the level of taxes may increase or decrease

when/as the rate at which pollution crosses borders rises. We also show that,

because of asymmetric pollution spill-over, the global pollution may decrease

after trade liberalization.
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Chapter 3

Non-Tradeable Pollution
Permits as Green R&D
Incentives

3.1 Introduction

The regulation of industries producing negative environmental e¤ects is a hot

issue in the current literature. Most of the existing contributions in the �eld

of environmental economics examine the existence of Pigouvian taxation aimed

at inducing �rms to reduce damaging emissions directly1 or indirectly2 (for an

exhaustive overview, see Bovenberg and Goulder, 2002; and Requate, 2005).

Another possibility consists in assigning �rms pollution rights, which in turn

can be tradable.3 The latter, in general, is indeed a short run remedy that

in principle does not modify the nature of the production technology used by

�rms, while clearly in the long run it would be best to attain new environmental-

friendly technologies.

A comparatively limited number of contributions investigate the link be-

tween some forms of environmental regulation and the incentives to generate

1See Bergstrom et al. (1981), Karp and Livernois (1992, 1994), Benchekroun and Long
(1998, 2002), Poyago-Theotoky (2007) and Tsur and Zemel (2008).

2To this regard, see Downing and White (1986), Milliman and Prince (1989), Damania
(1996), Chiou and Hu (2001), Tsur and Zemel (2002) and Dragone et al. (2010).

3See von der Fehr (1993), Sartzetakis (1997), Tietenberg (2003) and MacKenzie (2011),
inter alia. For a modelization of the auction design for the allocation of pollution rights and
the resulting R&D incentives to abate pollution in a Cournot duopoly, see Sunnevåg (2003).
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and adopt green technologies or pollution-abatement measures.4 In particular,

La¤ont and Tirole (1996) argue that pollution permits diminish or eliminate al-

together �rms�incentives towards green R&D because once a �rm has acquired

the right to pollute then she �nds it more convenient to leave aside any uncertain

and costly project eventually yielding a green technology. A qualitatively similar

conclusion is reached by Damania (1996) in a supergame where quantity-setting

�rms aims at stabilising collusion while considering the feasibility of green R&D

project, being subject to Pigouvian taxation.

Our aim is to nest into this debate by modelling the interplay between the

costly acquisition of pollution rights on one side and green innovation incentives

on the other, so as to single out the possibility for a public agency aiming at

preserving the environment to design the distribution of pollution rights as an

instrument to foster environmental R&D. The mechanism yielding this result

can be intuitively explained as follows. Instead of modelling an auction for

pollution rights, we envisage the possibility that, in order to acquire them, �rms

must participate to a lottery controlled by the government. If the outcome

of such lottery is the assignment of pollution rights to a limited number of

�rms (say, one), the losers face two alternatives: the �rst is to stay out of the

market, the other is to enter with a clean technology. In view of this, the

regulator may set up the lottery with this in mind, expecting to get two eggs

in one basket. That is, awarding, say, monopolistic pollution rights to a single

�rm may not necessarily force the regulator to accept a suboptimal trade-o¤

between market power (and the associated negative price e¤ect) and pollution

abatement, provided that - with some positive probability - losers are going to

innovate and enter the market with new clean technologies. To illustrate this

perspective, we adopt a simple model involving two �rms, that choose whether

to participate in the lottery or try their luck in an uncertain R&D project aimed

at the attainment of a green technology. We characterise (i) the equilibria of the

4See Jung et al. (1996); Denicolò (1999); and Scotchmer (2011). Montero (2002) com-
pares the R&D incentives across a number of possible policy instruments, including emission
standards and either auctioned or tradeable permits.
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game between �rms, based on expected pro�t incentives, (ii) the consequences on

consumer surplus, and (iii) the social preferences over alternative scenarios. The

outcome of our analysis is that there exists a non-empty region of parameters

where social and private incentives are indeed aligned, in such a way that at least

one �rm prefers to invest in R&D, so that it appears that assigning pollution

rights via the lottery can be taken - at least indirectly - as a means to drive

pro�t-seeking �rms to invest their resources in green technologies even in absence

of taxation or subsidization.

The remainder of the paper is structured as follows. Section 2 illustrates the

setup. Section 3 brie�y outlines the problem from the consumers�viewpoint.

In section 4, the �rms�equilibrium behaviour is illustrated. Section 5 assesses

the social welfare consequences of market equilibria. An example based on the

Cournot model is contained in section 6. Section 7 concludes the paper.

3.2 The setup

Consider a one-shot non cooperative game played by two single-product �rms,

indexed by i = 1; 2, supplying a homogeneous good with the same marginal cost.

Initially, they share the same brown technology, whereby the production of the

�nal output creates a negative externality in the form of polluting emissions.

We suppose that, to mitigate the environmental implications of this technology,

the government introduces a regulation according to which if a �rm wants to

produce she must not pollute the environment or she has to buy the pollution

right which is sold by the government only to one �rm. Therefore, at the outset,

each �rm faces the following perspective:

� she can take part in a lottery for emission rights. The exogenous individual

probability of winning the lottery is p = 1=2, and the winner must pay

a �xed fee F to the government in order to acquire the emission permit.

Since we may suppose that F is redistributed among consumers as windfall

money, the total e¤ect of these costs on welfare is nought. The loser incurs

a �xed cost � to shut down and quit the market. Alternatively,
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� the �rm may invest a given amount, K, to attain a green technology which

comes out of the R&D division with probability � 2 [0; 1]. If so, she has

the right to produce as her technology is now clean. If, instead, the R&D

project yields no results, the �rm, besides K, incurs a �xed cost � to quit

the market. The innovation is patentable; in case both �rms innovate,

the authority allows both of them to patent the new technology and a

symmetric green duopoly obtains.

In line with this setting, we have three cases: (i) both �rms participate in

the lottery for pollution rights; (ii) both invest in R&D looking for a green

technology; (iii) one buys the pollution rights while the other invests in search

of the green technology. In all cases, the marginal cost of production remains

the same, the only di¤erence between the two technologies being that one is

clean and the other is not.

Therefore, denoting the participation in the lottery as L and the search for

a green technology as G, we have the 2� 2 game shown in matrix 1.

1

2
L G

L E�LL; E�LL E�LG; E�GL

G E�GL; E�LG E�GG; E�GG

Matrix 1

Here, E�GG, E�GL, E�LG and E�LL are �rms�expected pro�ts when both

invest in green technology, one of them invests in green technology and the other

buys the pollution permit, or both take part in the lottery, respectively.

Consider �rst the scenario where both �rms are participating in the lottery.

In this case, the winner becomes a monopolist and makes monopoly pro�ts,

while the loser gets no revenues and also incurs a �xed cost �. Therefore, the

individual expected pro�ts in this case are

E�LL =
�M � F � �

2
; (3.1)
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where �M is gross monopoly pro�t. The non-negativity of E�LL requires �M >

F + �:

Alternatively, when both �rms invest in R&D for a green technology, the

expected pro�ts for each �rm are

E�GG = �K + � [(1� �)�M + ��D]� (1� �) �: (3.2)

Expression (3.2) consists of the R&D cost and the sum of (i) monopoly pro�ts

if the �rm succeeds in innovating before the other and get the exclusive patent,

and (ii) gross duopoly pro�ts, �D < �M , if both �rms show up simultaneously

at the patent o¢ ce with the green technology to get it patented on parallel,

as it is rational for a smart government to have a totally green duopoly com-

bining environmental friendly production with the equally desirable of output

expansion on market price and therefore on consumer surplus.

In the third case, in which one invests to attain a clean technology and

one participates in the lottery, since the �rm which takes part in the lottery is

the only potential buyer, she will obtain the pollution permit for sure and her

expected payo¤ is

E�LG = �F + (1� �)�M + ��D; (3.3)

which depends on whether the rival succeeds in innovating or not. Accordingly,

the maximum willingness to pay for the emission right cannot exceed (1��)�M+

��D: In this scenario, the expected payo¤ for the �rm activating the R&D

project is

E�GL = �K + ��D � (1� �) �: (3.4)

Hence, the game has a two-stage structure, where the �rst stage describes the

�rms�choice between taking part in the lottery or investing in green R&D, and

the second models market behaviour. Moves are simultaneous in both stages,

with complete, symmetric and imperfect information in each, while strategies

taken at the �rst stage are observable to �rms prior to playing the second stage.

The solution concept is subgame perfection by backward induction.
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3.3 The consumers�view point

We shall now have a look at the level of consumer surplus generated by con-

sumption (and therefore gross of the redistribution of F ) in the three di¤erent

perspectives:

(G,G) In this case, the expected surplus for consumers is the aggregate amount

of the monopolistic consumer surplus if one �rm innovates and the other

one does not, and the duopolistic consumer surplus if both �rms attain

the innovation:

ECSGG = 2�(1� �)CSM + �2CSD; (3.5)

where CSM and CSD are the levels of consumer surplus in monopoly and

duopoly, respectively.

(L,G) or (G,L) If one �rm buys the pollution permit and the other invests in

R&D, the expected consumer surplus becomes

ECSLG = ECSGL = (1� �)CSM + �CSD � (1� �)EM � �ED; (3.6)

illustrating the fact that depending on the probability of innovation, con-

sumers incur some amount of negative externality either in monopoly, EM ,

or in the asymmetric duopoly where only one of the two �rms creates a

negative externality, ED(< EM ).

(L,L) If both �rms participate in the lottery, one of them wins it and becomes

a monopolist with the existing brown technology, which obviously entails

a negative externality for consumers:

ECSLL = CSM � EM : (3.7)

By comparing these functions, we have

�gl;llcs � ECSGL � ECSLL = � [CSD � CSM + EM � ED] ; (3.8)
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�gg;glcs � ECSGG�ECSGL = (1� �) [(2�� 1)CSM � �CSD + EM � ED]+ED;

(3.9)

�gg;llcs � ECSGG � ECSLL = (2� (1� �)� 1)CSM + �2CSD � EM : (3.10)

Since we know that CSD > CSM and EM > ED, it is easily shown that �gl;llcs >

0 which means that consumers prefer the perspective in which one �rm goes for

the green technology rather than that in which both take part in the lottery.

For the other two expressions, (3.9) and (3.10), we �nd that as � increases

�gg;glcs and �gg;llcs increase monotonically and, for su¢ ciently large values of �,

they become positive. Therefore, while from the consumers�standpoint having

one �rm investing in green technologies and the other buying pollution rights is

more desirable than having both involved in the lottery for the pollution rights,

consumers dislike the idea that both �rms may disregard pollution permits and

to invest symmetrically in clean technologies unless the probability of successful

innovation be su¢ ciently high.

Having characterised consumer preferences concerning the strategi behav-

iour of �rms, there remains to assess the pivotal role of the R&D cost K in

determining whether there exists a parameter range wherein social and private

incentives are indeed reciprocally aligned.

3.4 Equilibrium analysis

Here, we characterise the subgame perfect equilibrium solution of the non co-

operative game between the two �rms, based on the examination of matrix 1.

The shape of �rms�strategic behaviour is essentially determined by probability

� as well as the relative size of costs F and K.

Considering (3.1), (3.2), (3.3) and (3.4), we have

�gl;ll� � E�GL � E�LL = 1

2
(F � �M ) + ��D �

�
1

2
� �

�
��K; (3.11)
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�gg;lg� � E�GG�E�LG = F�(1��)2�M��(1��)�D�(1� �) ��K; (3.12)

�gg;ll� � E�GG�E�LL = 1

2
F �

�
1

2
� � (1� �)

�
�M +�

2�D�
�
1

2
� �

�
��K:

(3.13)

If the right hand sides of (3.11)-(3.13) are simultaneously positive, investing in

search of the green technology is a dominant strategy for both �rms and (G;G)

emerges as the unique and Pareto-e¢ cient equilibrium of the game. The game

is instead a prisoners�dilemma with (G;G) as the unique but Pareto-ine¢ cient

equilibrium if the RHS of (3.11-3.12) is positive while (3.13) is negative. Inde-

pendently of the nature of the resulting equilibriium, we may compare �gl;ll� ,

�gg;lg� and �gg;ll� ; which results in:

�gg;lg� ? �gl;ll� 8 2� (2� �) ? �M � F + �
�M � �D

� 	 > 1; (3.14)

�gg;lg� ? �gg;ll� 8 2� ? �M � F + �
�M � �D

� 	 > 1; (3.15)

�gg;ll� > �gl;ll� always. (3.16)

The fact that inequality (3.16) is met over the entire admissible parameter space

means that if a �rm �nds that the case where she invests in R&D and her rival

buys the pollution right is more pro�table than the case in which both take part

in the lottery for pollution rights, certainly she prefers the symmetric green R&D

outcome rather than the symmetric lottery; therefore, E�GG > E�GL. In order

to assess the sign of the other two inequalities, in �gure 1 we plot the two curves

2� (2� �) and 2� and the straight line 	. Depending on the value of �, we

have three domains where the sign of the inequalities changes: (0; �1), (�1; �2)

and (�2; 1).
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Figure 1 :
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For � 2 (0; �1),5 we have �gg;lg� < �gl;ll� and �gg;lg� < �gg;ll� . Thus, if

F �K is high enough (i.e. the cost of R&D is su¢ ciently lower than the cost

of pollution rights) such that �gg;lg� > 0, both �rms �nd it pro�table to invest

in green technologies and (G;G) is the Pareto e¢ cient equilibrium of matrix 1.

If instead F �K is su¢ ciently low such that �gl;ll� < 0, the equilibrium of the

game is (L;L). The remaining situation is where �gg;lg� < 0 and �gl;ll� > 0.

In this case, as it is discussed in Proposition 1, we have asymmetric equilibria

along the secondary diagonal in chicken game where one �rm buys the pollution

right while the other invests in green technology.

In the region (�1; 1), we have �gg;lg� > �gl;ll� . Therefore, if �gl;ll� > 0, the

unique and Pareto e¢ cient equilibrium is (G;G). Where instead �gg;lg� < 0; the

equilibrium is (L;L) and in (�1; �2) this is a Pareto ine¢ cient equilibrium of a

5 It is worth mentioning that since 	 > 1, this region always exists. In the cases � >
�M � 2�D + F or �D � F , 	 could become higher than 2 and, therefore, �1 = 1.
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prisoner�s dilemma game. In the other cases (i.e. �gl;ll� < 0 and �gg;lg� > 0),

the matrix becomes a coordination game with the two equilibria on the main

diagonal of matrix 1, i.e., either both �rms participate in the lottery or both

invest in search of the green technology. In such a coordination game and in

the region (�2; 1), we have E�GG > E�LL.

The above discussion yields the following result:

Proposition 14 A chicken game, with E�GL > E�LL and E�LG > E�GG

and therefore (G;L) and (L;G) are Nash equilibria, may arise provided that �

and � are su¢ ciently large. Otherwise, only symmetric equilibria are observed.

Proof. Considering (3.11) and (3.12), we have

�gl;ll� > 0...8..K < �1
2
�M + ��D �

�
1

2
� �

�
� +

1

2
F � �1; (3.17)

�gg;lg� < 0...8..K > �(1� �)2�M � �(1� �)�D � (1� �) � + F � �2: (3.18)

It is obvious that both �1 and �2 are upward sloping with respect to �. In

�gure 2, we plot the two curves �1 and �2 against �.
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Figure 2 :
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In this �gure, as it can be checked from (3.17) and (3.18), at � = 0, we

have �2 (= F � �M � �) < �1
�
= 1

2 (F � �M � �)
�
< 0. There could be an

intersection, ~�, between the curves provided that � < �M �2�D+F , otherwise,

~� = 1. This yields �1 > �2 in the region (0; ~�). Therefore, there exists a viable

range of parameters between the two curves, region II, where matrix 1 becomes

a chicken game with asymmetric equilibria along the secondary diagonal of the

2 � 2 game where one �rm buys the pollution right and the other goes for the

green technology. However, in the vicinity of � 0, in order to have at least one

�rm investing in green technologies K should be negative, which is economically

inadmissible. Thus the probability of successful innovation must be high enough

so as for the �rms to have an incentive to invest in R&D. Finally, in regions I,

III and IV we observe a pure coordination game along the main diagonal, as

both (G;G) and (L;L) are Nash equilibria.
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3.5 Social optimum

We are now in a position to put together consumers�likings and �rms�incentives

so as to evaluate social preferences according to the expected welfare levels

arising in the three possible cases.

Since the pollution permit fees are going to be redistributed across con-

sumers, the social planner decides only on the basis of K (and not F ). Then,

the expected amount of social welfare in each case is as follows:

ESWGG = �2K + 2�(1� �)SWM + �2SWD � 2(1� �)�; (3.19)

ESWLG = ESWGL = �K+(1��)SWM+�SWD�(1��)EM��ED�(1��)�;

(3.20)

ESWLL = SWM � EM � �: (3.21)

in which SWM and SWD are the social welfare levels (gross of external e¤ects)

in monopoly and duopoly, respectively.

By comparing (3.19), (3.20), (3.21) and knowing that SWD > SWM and

ED < EM , we can characterise social preferences in the space (�;K) as in

�gure 3.
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Figure 3: The upper and lower solid curves, respectively, characterise the points where expected social welfare levels in LL and LG(GL), and GG and LG(GL) are the same.
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This �gure shows that social welfare is highest in GG, LG (or GL) and LL

if (�, K) are such that the industry allocation falls in region I, II and III,

respectively.

Now, we have to ascertain whether the regions in �gure 3 overlap, at least

to some extent, with the corresponding regions in �gure 2. More precisely, we

are looking for conditions ensuring that the two regions labelled as II in �gures

2 and 3 do overlap.

Proposition 15 Provided �rms incur a su¢ ciently large cost to quit the mar-

ket, there exists a range of parameters wherein pro�t incentives yield asymmetric

equilibria generated by a chicken game where E�GL > E�LL and E�LG > E�GG

and such equilibria are also socially e¢ cient.

Proof. In order to prove the validity of this claim, it su¢ ces to observe that

there are in�nitely many admissible values of F such that the curves delimiting
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region II in �gure 2 intersect the horizontal axis in �gure 3 between the origin

and the curve dividing regions I and II in �gure 3.

For illustrative purposes, in the next section we lay out an example based

on the linear Cournot model.

3.6 Example

Consider a market where 2 symmetric �rms producing the same homogeneous

good with zero marginal cost c = 0. The inverse demand function is de�ned

as p = A � Q; where Q =
P
qi, i = 1; 2 and qi � 0 is the individual output

of �rm i. If �rm i wins the lottery or succeeds in her innovation, qi is strictly

positive; otherwise she is not allowed to operate in the market. Accordingly, the

industry can be either a monopoly or a duopoly. Therefore, the optimal level

of output as well as the corresponding pro�ts are either qM = A=2, �M = A2=4

or qD = A=3 and �D = A2=9, and the resulting social welfare levels (gross

of negative externalities) are SWM = 3A2=8 and SWD = 4A2=9. To model

pollution, we assume that the negative externality is a quadratic function of

output, E = bQ2=2. Hence, externalities in the two cases are EM = bA2=8 and

ED = bA2=18.

Then, plugging pro�ts, social welfare levels and externalities in inequalities

(3.12), (3.11) and (3.13), we get

E�GG > E�LG if k < f � (1� �) (9� 5�)
36

� (1� �) 
; (3.22)

E�GL > E�LL if k <
f

2
� (9� 8�)

72
�
�
1

2
� �

�

; (3.23)

E�GG > E�LL if k <
f

2
�
�
10�2 � 18�+ 9

�
72

�
�
1

2
� �

�

; (3.24)

where k = K=A2, f = F=A2 and 
 = �=A2.

Note that, in order for �rms to have an incentive to take part in the lottery,

F must not be greater than �D, i.e. f � 1=9, as the �rm participating in the

lottery may expect the other �rm to come up with new technology.
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Figure 3.1: The gray aresa represent the regions where �rms�strategic incentives
and social incentives are reciprovally aligned. In (a) � is strictly positive, in (b)
� � 0.

By comparing (3.19), (3.20) and (3.21) we �nd

ESWGG > ESWLG if k <
b(9� 5�)� (1� �)(27� 22�)

72
� (1��)2
; (3.25)

ESWGL > ESWLL if k <
5� (1 + b)

72
� (1

2
� �)
; (3.26)

ESWGG > ESWLL if k <
9b+ 54�� 22�2 � 27

72
�
�
(1� �)2 + (1

2
� �)

�

:

(3.27)

Now, we can perform a numerical simulations by normalizing all but two para-

meters. For instance, taking plausible values b = 1=5, f = 1=10 and 
 = 1=10,

we can plot k against � to assess inequalities (3.22), (3.23), (3.24), (3.25), (3.26)

and (3.27). The outcome is illustrated in �gure 4.

In regions I, II and III; �rms and the social planner alike prefer GG, LG

(GL) and LL, respectively. Therefore, it can be seen that, when � is not close to

zero, there indeed exists a viable range of parameters (area II) where we have

a chicken game whose equilibria are also welcome from the planner�s viewpoint.

This con�rms our main point that using the instrument of assigning pollution

right through the simple lottery we have modelled here may indeed serve the

purpose of creating a side incentive for �rms losing the lottery in the �rst place

or deciding not to participate in it to take the alternative root which is to �nance
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R&D e¤orts for green technologies.

3.7 Concluding Remarks

There are two main lines of research in modelling the abatement of polluting

emissions: the optimal assignment of pollution rights and the introduction of

corrective taxes or subsidies to internalize the externality and provide �rms with

R&D incentives that otherwise would not arise spontaneously.

We have taken an alternative route to highlight the possibility that a mecha-

nism for the costly acquisition of pollution rights might actually turn the losers

into green innovators. According to our analysis, it seems indeed that controlling

pollution rights may exert - somewhat unexpectedly - some positive long-run

impacts on the environmental performance of industries by virtue of indirect

innovation incentives that can be considered as the side-e¤ect of the allocation

of pollution rights.



Bibliography

[1] Benchekroun, H. and N.V. Long (1998). E¢ ciency inducing taxation for

polluting oligopolists. Journal of Public Economics, 70, 325-42.

[2] Benchekroun, H. and N.V. Long (2002). On the multiplicity of e¢ ciency

inducing tax rules. Economics Letters, 76, 331-36.

[3] Bergstrom, T.C., J.G. Cross and R.C. Porter (1981). E¢ ciency-inducing

taxation for a monopolistically supplied depletable resource. Journal of Public

Economics, 15, 23-32.

[4] Bovenberg, A.L. and L.H. Goulder (2002). Environmental taxation and reg-

ulation, in A.J. Auerbach and M. Feldstein (eds). Handbook of Public Eco-

nomics, vol. 3, 1471-1545.

[5] Chiou, J.-R. and J.-L. Hu (2001). Environmental research joint ventures

under emission taxes. Environmental and Resource Economics, 21, 129-46.

[6] Damania, D. (1996). Pollution taxes and pollution abatement in an oligopoly

supergame. Journal of Environmental Economics and Management, 30, 323-

36.

[7] Denicolò, V. (1999). Pollution-reducing innovations under taxes or permits.

Oxford Economic Papers, 51, 184-199.

[8] Downing, P.B. and L.J. White (1986). Innovation in pollution control. Jour-

nal of Environmental Economics and Management, 8, 225-71.

57



Bibliography 58

[9] Dragone, D., L. Lambertini, G. Leitmann and A. Palestini (2010). A Sto-

chastic Optimal Control Model of Pollution Abatement. Nonlinear Dynamics

and System Theory, 10, 117-24.

[10] Jung, C., K. Krutilla and R. Boyd (1996). Incentives for advanced pollution

abatement technology at the industry level: An evaluation of policy alterna-

tives. Journal of Environmental Economics and Management, 30, 95-111.

[11] Karp, L. and J. Livernois (1992). On e¢ ciency-inducing taxation for a non-

renewable resource monopolist. Journal of Public Economics, 49, (2), 219-39.

[12] Karp, L. and J. Livernois (1994). Using automatic tax changes to control

pollution emissions. Journal of Environmental Economics and Management,

27, 38-48.

[13] La¤ont, J.-J. and J. Tirole (1996). Pollution permits and environmental

innovation. Journal of Public Economics, 62, 127-140.

[14] MacKenzie, I.A. (2011). Tradable permit allocations and sequential choice.

Resource and Energy Economics, 33, 268-78.

[15] Milliman, S.R. and R. Prince (1989). Firm incentives to promote techno-

logical change in pollution control. Journal of Environmental Economics and

Management, 17, 247-65.

[16] Montero, J.-P. (2002). Permits, standards, and technology innovation. Jour-

nal of Environmental Econonomics and Management, 44, 23-44.

[17] Poyago-Theotoky, J. (2007). The organization of R&D and environmental

policy. Journal of Economic Behavior and Organization, 62, 63-75.

[18] Requate, T. (2005). Dynamics incentives by environmental policy instru-

ments - A survey. Ecological Economics, 54, 175-95.

[19] Sartzetakis, E.S. (1997). Tradeable emission permits regulation in the pres-

ence of imperfectly competitive product markets: welfare implications. Envi-

ronmental and Resource Economics, 9, 65-81.



Bibliography 59

[20] Scotchmer, S. (2011). Cap-and-trade, Emissions taxes, and innovation. In-

novation Policy and the Economy, 11, 29-53.

[21] Sunnevåg, K.J. (2003). Auction design for the allocation of emission permits

in the presence of market power. Environmental and Resource Economics, 26,

385-400.

[22] Tietenberg, T. (2003), The tradable-permits approach to protecting the

commons: lessons for climate change. Oxford Review of Economic Policy, 19,

400-19.

[23] Tsur, Y. and A. Zemel (2002). The regulation of environmental innovations.

Journal of Environmental Economics and Management, 44, 242-60.

[24] Tsur, Y. and A. Zemel (2008). Regulating environmental threats. Environ-

mental and Resource Economics, 39, 297-310.

[25] von der Fehr, N.-H.M. (1993). Tradable emission rights and strategic inter-

action. Environmental and Resource Economics, 3, 129-51.



Bibliography 60



Part II

Dynamic Cournot Oligopoly

61





Chapter 4

Exogenous Output
Constraint in a Dynamic
Oligopoly

4.1 Introduction

Consider an industry consisting of N symmetric �rms each producing a ho-

mogenous output. Then, the output levels of a subset of M (< N) �rms are

constrained into a constant level. If the remaining �rms simultaneously make

the best reply to this exogenous constraint, we want to investigate under what

circumstances is this to the bene�t of constrained subset.

In a series of papers Gaudet and Salant (1991a,b) show that, in the case of

Cournot competition among producers of perfect substitutes, a marginal con-

traction is strictly bene�cial if and only if the number of �rms in the designated

subset exceeds the "adjusted" number of �rms outside it by strictly more than

one. In the special case of linear cost and demand functions, the �rms in the

subset will gain from an exogenously marginal contraction of their output if and

only if they outnumber the �rms outside the subset by more than one.

In this paper we generalize this result to the case of dynamic competition

instead of looking at the one-shot game. While in the standard Cournot model

any output constraint is not to the bene�t of constrained �rms, in this paper,

we show that when �rms play a dynamic Cournot game with Markov-perfect
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strategies exogenous output constraint by a subset of �rms results in: (i) increase

in the value of unconstrained �rms irrelevant of the amount of constraint because

of having less intensive competition, (ii) increase in the market price for any

output constraint below the optimal level and slightly above that because of

reduction in the total output caused by less competition and (iii) increase in the

value of constrained �rms for a viable range of parameters and initial conditions

because of increasing the price during the price path.

Our analysis has some applications to voluntary export restraints (VER),

Mergers, Economics Sanctions, etc. Mai and Hwang (1988) examine VERs in

a static duopoly model by using a conjectural variations approach. They �nd

that if the free trade equilibrium is Cournot, a VER set at the free trade level of

imports will have no impact on pro�ts. We show that if the free trade equilib-

rium is Cournot played with Markovian (subgame-perfect) strategies, then the

imposition of a VER at the free trade level of imports increases the market price

and the pro�ts of the foreign and domestic �rm. Hence, the VER is voluntary

in the dynamic Cournot model.

Suppose that the subset of �rms represents �rms that are part of a cartel.

Our study explains how it is to their bene�t when they agree on producing a

constant level of quantity, for example thier optimal steady state level of output

before the merger.

Consider the international market in which a group of countries are exporting

a speci�c good. Now, assume that one of these exporting countries is sanctioned

by part (not all) of the importing countries. This imposed economic sanction

force that country to be constrained to a lower output level which, however,

can be to her advantage. Our analysis characterizes circumstances under which

economic sanctions are not e¤ective.

The rest of the paper is organized as follows. Section 2, present the model.

In section 3, the dynamic equilibria are derived before and after the exogenous

output constraint. Circumstances under which the exogenous output constraint

is pro�table is examined in section 4. In section 5, robustness of the result is
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checked by conjectural variations equilibrium. Some applications are presented

in section 6. Finally, section 7 concludes the paper.

4.2 A dynamic oligopoly model

Consider a dynamic oligopoly market consisting of N symmetric �rms each

producing a homogenous output. Firms are assumed to produce with strictly

concave technologies described by the cost functions

C(qi(t)) =
1

2
q2i (t); i = 1; :::; N; (4.1)

where qi(t) � 0 is the output of �rm i produced at time t. The equilibrium price,

�p(t), in period t is related to industry output by means of an inverse demand

function which in its linear version is given by

�p(t) = a�
NX
i=1

qi(t) (4.2)

where the units of measurement are chosen such that the slope of the demand

curve is -1. Thus, the single period pro�t function of �rm i is given by

�i(t) = [a�
NX
i=1

qi(t)]qi(t)�
1

2
q2i (t): (4.3)

Equation (4.3) represents a classical one-shot Cournot game. However, in this

paper we want to look at the continuous time dynamic competition where �rms

are assumed to maximize the discounted stream of pro�ts over an in�nite plan-

ning horizon with r > 0 as the constant discount rate. We are interested in

deriving Markov-perfect equilibria for this game. In order to solve for those

equilibria, we make use of the "sticky price" model introduced by Fershtman

and Kamien (1987). It is given by

max�i =

Z 1

0

e�rtfp (t) qi (t)�
1

2
q2i (t)gdt; (4.4)

subject to

_p (t) = s[a�
NX
i=1

qi (t)� p (t)]; p (0) = p0: (4.5)



4.3. Dynamic equilibria 66

In (4.4) and (4.5) it is assumed that the actual market price deviates from its

level given by the demand function but moves towards it with a constant speed

of adjustment denoted by s (0 < s � 1). Thus, we have sticky prices.

The strategy spaces available to the �rms should be speci�ed in order to

clearly de�ne the dynamic Cournot game (4.4). The assumption that the in-

dustry equilibrium is identi�ed as a subgame-perfect Cournot equilibrium in

Markov strategies means that �rms design their optimal policies as decision

rules dependent on the state variables of the game (in our case price). This

means that �rms take into account the rivals reactions to their own actions as

expressed by the state variables of the game. This is exactly the characteristic

present in the case of conjectural variations equilibrium.

4.3 Dynamic equilibria

As motivated in the introduction, we are interested to see whether �rms bene�t

from being forced to act non-strategically or not. To this end, in this section

we want to derive the dynamic equilibrium of game (4.4) under two di¤erent

scenarios. First, we solve for the equilibrium when all theN �rms in the industry

are strategic players. Next, we consider the scenario where M strategic players

are eliminated by being forced to be constrained to a constant level of output

and we derive the equilibrium in this scenario.

If value of non-strategic �rm increases compared to the unconstrained case,

the answer to the question is yes. This is what we focus on in next section.

4.3.1 Unconstrained oligopoly equilibrium

We derive the equilibrium of the model in which �rms employ price depen-

dent decision rules when maximizing their discounted pro�ts. Thus, changes in

the market price stimulate responses by all players that are re�ected in their

quantity choices. This corresponds to the recognized interdependence present

in oligopolistic markets.

Theorem 16 There exists a Markov perfect equilibrium of the �sticky price�
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model in an N �rm dynamic Cournot oligopoly given by

q� (p) = p(1� sK) + sE; (4.6)

V (p) = 1
2Kp

2 � Ep+ g; (4.7)

and

p(t) = p� + (p0 � p�)eDt; (4.8)

where p0 is the initial price and p� is the steady state price

p� =
a�NsE

1 +N(1� sK) ; (4.9)

K, E, g and D are de�ned as

K =
2s(N + 1) + r �

q
[2(N + 1)s+ r]

2 � 4s2(2N � 1)
2s2(2N � 1) ; (4.10)

E =
�sKa

s(N + 1) + r � s2K(2N � 1) ; (4.11)

g =
s2E2(2N � 1)� 2sEa

2r
; (4.12)

D = s[N(sK � 1)� 1]: (4.13)

Proof. See Appendix A.

The results of Theorem 1 have the following implications. Firstly, the equi-

librium quantities of the in�nite horizon game do not coincide with that of the

one shot game if �rms employ Markov strategies. Secondly, �rms produce more

(and hence market price is lower) in the dynamic game compared to the classical

Cournot model. The interpretation of this result arises from the price depen-

dent decision rules (4.6). In particular, with an increase in price �rms react by

producing more. To see why this causes equilibrium quantities to be closer to

the competitive equilibrium consider the following scenario. Assume that a �rm

i �nds it pro�table to reduce its equilibrium quantity. This causes the market

price to increase. Given the feedback decision rules of the competitors their op-

timal response to the increasing price is to increase their equilibrium quantities

thus o¤setting �rm i�s action. This behavior causes in equilibrium all �rms to

produce beyond the level of simple Cournot quantities.
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4.3.2 Exogenous output constraint

After having characterized the unconstrained equilibrium we assume that a sub-

set of M (M < N) strategic players are eliminated by being constrained to a

constant level of output, �q (0 < �q < a). Moreover, we assume that these �rms

cannot deviate as they are constrained to these output levels. Thus, the game

played by the N �M strategic players in the model of sticky prices becomes

max�Ci =

Z 1

0

e�rtfp (t) qi (t)�
1

2
q2i (t)gdt; i =M + 1; :::; N; (4.14)

subject to

_p (t) = s[a�M �q �
NX

i=M+1

qi (t)� p (t)]; p (0) = p0: (4.15)

This provides us with the following result.

Theorem 17 If a subset of M �rms in an N �rm dynamic Cournot oligopoly

is forced to act non-strategically through being exogenously constrained to the

output choices �q, there exists a Markov perfect equilibrium of the �sticky price�

model, where the remaining N�M �rms play strategically the dynamic Cournot

game, given by

~q (p) = p̂(1� sK̂) + sÊ: (4.16)

V̂ (p) = 1
2K̂p

2 � Êp+ ĝ; (4.17)

and

p̂(t) = ~p+ (p0 � ~p)eD̂t; (4.18)

where p0 is the initial price and ~p is the steady state price

~p =
a� (N �M)sÊ �M �q

1 + (N �M)(1� sK̂)
; (4.19)

K̂, Ê, ĝ and D̂ are de�ned as

K̂ =
2s(N �M + 1) + r �

q
[2(N �M + 1)s+ r]

2 � 4s2(2(N �M)� 1)
2s2(2(N �M)� 1) ;

(4.20)

Ê =
�sK̂a� sK̂M �q

s(N �M + 1) + r � s2K̂(2(N �M)� 1)
; (4.21)
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ĝ =
s2Ê2(2(N �M)� 1)� 2sÊa+ 2sÊM �q

2r
: (4.22)

D̂ = s[(N �M)(sK̂ � 1)� 1]: (4.23)

And the present value of a non-strategic �rm becomes

V̂ C = Ap+ ĝC ; (4.24)

where A and ĝC are

A =
�q

r � D̂
;

ĝC =
�q(D̂(2~p� �q) + r�q)

2r(D̂ � r)
:

Proof. See Appendix B.

It is important to note, however, that the behavior of the �rms in the

subset after being non-strategic does not correspond to an equilibrium. The

strategically-playing �rms, however, are in dynamic Cournot equilibrium.

4.4 Pro�table output constraint

Theorem 18 Assume that the subset of M strategic players are eliminated by

being exogenously constrained to the output choices �q, whereas the remaining

N �M �rms react strategically to this exogenous change in a dynamic Cournot

game with Markov-perfect strategies. This results in an

(a) increase in the market price for any �q � q�;

(b) increase in the present value of strategic �rms irrespective of the amount

of �q;

(c) increase in the present value of non-strategic �rms for a viable range of

parameters and initial conditions.

Proof. See Appendix C.

However, the steady state price ~p could be larger than p� even for some

values of �q above the q�. Consider �q = �q� where � > 0, therefore, we have

~p > p� () 0 < � < �ND̂
Ms

� (N �M)D(a(1� sK̂) + sÊ)
Ms(a(1� sK) + sE) ;
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The expression in the right hand side of the inequality is always greater than 1,

for all plausible amounts of parameters. The thinner curve in �gure 1 represents

the ranges of parameters in the space of (M;�), for a given values of other

parameters, where the two steady state prices, ~p and p�, are equal. In the region

below the curve ~p is larger than p�. Therefore, the market price in constrained

equilibrium at every instant is higher compared to unconstrained equilibrium.

Figure 1: Pro�tability of acting non-strategically for the �rms in the subset.
On the dashed line � = 1 (�q = q�). On the thin solid curve ~p = p� and
below (above) it, is larger (smaller) than p�. Beyond the two thick solid
curves exogenous output constraint is never pro�table for non-strategic �rms.
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In �gure 1, in the regions between the thick curves, non-strategic �rms can

bene�t from an exogenous output constraint. In the region II constrained �rms

bene�t by producing more and selling them at a higher price at every instant.

In the region I, while constrained �rms are constrained to a large output level,

they can still bene�t since D < D̂ < 0 and, therefore, price in constrained

equilibrium moves to its steady state level more slowly. Region III, represents

the points where excluding some of strategic players from the game make the
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competition in the industry less aggressive and pushes the price up in such a way

that constrained �rms bene�t even with a substantial decrease in their quantity.

Figures 2: Comparing the value functions of a non-strategic �rm
before (V , the curve) and after (V̂ c, the straight line)
the exogenous output constraint.
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However, provided that the parameters characterize a point in region I, II

or III, the pro�tability of output constraint depends on the initial condition

and how far the initial price is di¤erent from the steady state level. This is

shown in �gures 2. In �gures 2 (i) and 2 (ii), if the initial price belongs to

(0; pa) (or (pb; pa)), we can argue that V̂ C (p) always has a larger value than

V (p). Whereas, in the case where p0 is outside the (0; pa) (or (pb; pa)) , output

constraining is not to the bene�t of the non-strategic �rms in so far as p̂(t)

arrives to the interval and it becomes pro�table afterwards. Figures 2 (iii) and

2 (iv) corresponds to the points beyond the thick curves in �gure 1 and illustrate
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the case where constrained �rms do not bene�t for any initial condition.

Note that, in our analysis, we consider general output constraint �q > 0 and

examine the pro�tability of it in a dynamic context. However, at the steady

state and for output constraint �q = q�, we have the following corollary.

Corollary 19 The steady state pro�ts of non-strategic �rms increase when they

are constrained to their equilibrium output level q�.

Proof. As it was indicated before, after eliminating some strategic players,

the steady state price increases (~p > p�). Therefore, since the output level does

not change, the �rm�s revenue will increase while the cost remains the same as

before. Hence, the non-strategic �rms make higher pro�ts in steady state.

4.5 Robustness of results

We have shown that, in a dynamic Cournot oligopoly when �rms employ Markov-

ian strategies, eliminating a subset of strategic players from the competition

can be to the bene�t of all the strategic and non-strategic players. Although

we make use of the sticky price model, results do not correspond to the price

stickiness. In this section, the robustness of results is evaluated through a conjec-

tural variations analysis.1 As it is shown in Dockner (1992), a static conjectural

variations analysis approximates long-run dynamic interactions. Hence, we are

interested in conjectural variations equilibrium in both unconstrained and con-

strained cases, and, then, examining the pro�tability of being a non-strategic

player.

In the unconstrained equilibrium, all �rms are strategic players. Firms have

symmetric pro�t functions given by

�i = p(Q)qi � C(qi); (4.25)

where Q is the industry output, p(Q) is a general inverse demand curve and

C(qi) is a general cost function. First order conditions in the case of conjectural

1The conjectural variation is the �rm�s conjectures about her rivals�behavior.
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variations equilibrium are given by

@�i
@qi

= p(Q) + p0(Q)qi � C 0(qi) + p0(Q)qi[
NP

j=1;j 6=i

@qj
@qi

] = 0; (4.26)

where @qj
@qi

is the conjecture of �rm i about �rm j�s behavior. The industry

output, price and cost functions are assumed to be Q =
PN

i=1 qi, p(Q) = a�Q

and C(qi) =
1
2q
2
i , respectively. Thus, the equilibrium corresponding to the

F.O.C. of (4.26) is

q�cv =
a

2 +N + � (N � 1) ;

where the subscript cv denotes the conjectural variations equilibrium, and �rms

are presumed to have identical conjectures � = �ij =
@qj
@qi
. This conjecture be-

longs to the interval [�0; 0] where �0 2 (�1; 0) is the minimum viable conjecture

which solves �� = p�cvq
�
cv� 1

2q
�2
cv = 0, and � = 0 replicates the standard Cournot

oligopoly.

However, in a consistent conjecture equilibrium (CCE)2 , the conjectural vari-

ation must be equal to the reaction function. The �rm�s reaction function is the

�rm�s actual behavior and is de�ned by qi = �i (qj) which solves (4.26). The

implicit di¤erentiation of (4.26) yields

[1 + (�+ 1) (N � 1)] @�i
@qj

p0(Q) + p0(Q)� @�i
@qj

= 0:

Considering symmetric reaction functions, @�i@qj
= @�

@q and equating conjectural

variation and reaction function, i.e. @�
@q = �, the consistent conjecture is ob-

tained3

�� = �N + 1�
p
5 +N (N � 2)

2N � 2 :

It can be easily shown that �� 2 (�0; 0). Therefore, the slope of consistent

conjecture lies between �1 and 0 which refer to Bertrand and Cournot compe-

titions. Hence, in a CCE, the competition among �rms in an oligopoly is more

aggressive compared to the Cournot.

2Consistent conjectures equilibrium is discussed comprehensively in Bresnahan (1981).
3There exists a second root which is lower than �1 and is not acceptable.
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Now, we want to know the consequences of excluding a subset of strategic

players from the competition. Let us force a subset of M �rms to be non-

strategic players by constraining them to a constant output levels �q where this

constraint is binding. Thus, the remaining N �M strategic �rms solve the �rst

order conditions

@�i
@qi

= p(Q) + p0(Q)qi � C 0(qi) + p0(Q)qi[
NP

j=M+1;j 6=i

@qj
@qi

] = 0: (4.27)

Evaluating this �rst order condition along the equilibrium of (4.26) yields

@�i
@qi

����
q=q�cv

= �p0(Q)q�cv[
MP

j=1;j 6=i

@qj
@qi

] < 0: (4.28)

This, however, implies (given the second order conditions) that industry out-

put shrinks when a subset of �rms is constrained to their equilibrium in the

unconstrained case. Hence, market price increases and both strategic and non-

strategic players bene�t, irrespective of the size of the M .

Now, consider a general output constraint �q = �q�cv, � 2 (0; 2). Assuming

symmetry between the N �M strategic players, the equilibrium output level of

(4.27) becomes

~qcv =
a (2 +N + (N � 1)��M�)

(2 +N + � (N � 1)) (N �M + 2 + � (N �M � 1)) ;

and the resulting market price is

~pcv = a�M�q�cv � (N �M) ~qcv:

Therefore, the unconstrained and constrained �rms�pro�ts are

~� = ~pcv~qcv �
1

2
~q2cv; (4.29)

~�c = ~pcv�q �
1

2
�q2; (4.30)

where ~� denotes the pro�ts in constrained case, and subscript c stands for the

constrained �rms.

Figure 3 shows the range of parameters in the space of (�; �) where un-

constrained and constrained �rms can bene�t from output constraint. The two
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Figure 4.1: Pro�tability of exogenous output constraint in conjectural variations
equilibrium in the space of (�; �). The lower curve and the upper one represent
the points where �rms�pro�ts in the two cases are equal for the constrained
and unconstrained �rms, respectively. On the right hand side of the curves
both type of �ms bene�t.



4.6. Applications 76

curves in this �gure are the locus of the points where �rms have the same pro�ts

in unconstrained and constrained equilibria. However, the gray area represents

the points where both type of �rms bene�t while in the dotted area only con-

strained �rms bene�t.

As it can be seen, �rms�pro�ts can increase even if they are constrained

to an output level higher than the unconstrained equilibrium. The pro�tability

of output constraint decreases as �rms�conjectures goes to zero. These results

are consistent with the results of the dynamic competition when �rms employ

Markovian strategies.

In the �gure, � = 0 corresponds to the standard static Cournot competition

in which any output constraint in not bene�cial neither for the constrained �rms

nor for the unconstrained ones.

4.6 Applications

4.6.1 Voluntary export restraints

The study we have conducted has many applications among which voluntary

export restraints (VERs) is the most obvious one. It is of importance to inter-

national trade policy to answer the question whether domestic and/or foreign

�rms bene�t from the imposition of so-called �voluntary�export restraints by

the foreign producer. If the foreign producer�s pro�t increases by restraining

export to the domestic market, VERs are indeed �voluntary�.

Dockner and Haug (1991) analyses VERs in a di¤erential game model with

a domestic and foreign producer of a homogenous good sold in the domestic

market. There are several di¤erences between this contribution and present

study. First, Dockner and Haug (1991) analysis is restricted in a speed of

price adjustment that goes to in�nity. However, in our model it is possible to

investigate price behavior in determining the pro�tability of VERs. Second, with

the model presented here we can consider more than one foreign and domestic

�rm which provides us the chance to examine the incentive for VER in relation

to the number of constrained �rms and the level of output they are constrained
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to.4

In addition to Dockner and Haug (1991) that shows the imposition of a VER

at the free trade level of imports increases the market price and the pro�ts of

all �rms in the industry, our analysis implies that: market price increases for

any output constraint which in below the free trade level of imports; it is always

to the bene�t of domestic �rms for any level of exports that foreign �rms are

restricted to and �nally in part (c) of theorem 5 it is comprehensively explained

under which conditions and for what level of output export restraint is pro�table

for foreign �rms.

4.6.2 Horizontal Mergers and Cartels

When in an N -�rm industry a subset of M �rms is constrained to a constant

level of output, since there is strategic interaction among N�M+1 �rms rather

than N �rms, the level of competition in the industry will decrease which is

always to the bene�t of unconstrained �rms as it is proved in theorem 5. We

show when the subset of �rms are constrained to q* which is their steady state

equilibrium level before the exogenous output constrained, the anticompetitive

forces due to an exogenous output constraint can be strong enough to bene�t

the subset of �rms as well. Theorem 5 also discusses about conditions and other

output levels that being constrained to it can be advantageous for the subset of

�rms.

The same story holds when we consider the pro�tability of mergers and

cartels. Our model does not precisely �t the horizontal merger problem in which

�rms solve their strategic problem to determine the equilibrium output level.

However, in general, output contraction creates the same results that horizontal

mergers and cartels can create that are reduction in aggregate output, increase

in the market price and therefore increase in the pro�t of N �M outside �rms.

Now, assume that the subset represents �rms that are part of a cartel. Here, we

4For another contribution on VERs in a di¤erential game you can see Calzolari and Lam-
bertini (2007) who study the impact of VERs in a duopoly game with a Ramsey capital
accumulation dynamics
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can de�ne cartel as an agreement in which �rms in the subset agree on being

constrained to a constant level of output (for example q�) and as it is shown in

theorem 5, it can be pro�table for them. It is di¢ cult for antitrust authority

to recognize such a cartel in which a subset of �rms is constrained to their

steady state equilibrium level before the exogenous output constraint. Dockner

and Gaunersdorfer (2001), Benchekroun (2003), Esfahani (2012) and Esfahani

and Lambertini (2012)5 using a dynamic model with sticky prices, investigate

the pro�tability of horizontal mergers in the speci�c case of instantaneous price

adjustment.

4.6.3 Economic sanctions

Economic sanctions are punishments imposed on a country by one or a group

of countries due to various reasons. Economic sanctions may take a number of

forms including: embargo on exports, embargo on imports, �nancial controls,

transportation and communication controls, sequestration of property, preemp-

tive purchasing and other measures. For extensive discussion, see Bornstein

(1968).

We are considering import restrictions from the target country into the par-

ticipants which attempts to reduce the target country�s foreign exchange earn-

ings. There is a debate over the e¤ectiveness of economic sanctions in their

ability to achieve its intention even if any import restrictions enacted by sanc-

tioners ensures income reduction in target country. However, our analysis can

address the question of whether sanctions can reduce the target country�s in-

come.

Suppose thatM �rms in the subset represent �rms in the target country. The

rest of the N �M Firms are outside the target country. Sanctioning countries

by enforcing import restrictions are the cause of exogenous output constraint

in the target country. Part (c) of theorem 5 explains how sanctions can be

designed by imposing countries in order to decrease the present value of �rms

5They considered non-linear demand function and the open-loop equilibrium.
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in the imposed country through the level of output that they force the target

country to be constrained to.

4.7 Conclusion

In the case of static Cournot competition among producers of perfect substi-

tutes, output constraint is never to the bene�t of constrained �rms. When �rms

use feedback strategies, eliminating a subset of strategic players by exogenously

constrained them to a constant level of output results in: (i) increase in the value

of strategic �rms irrelevant of the amount of constraint because of having less

intensive competition, (ii) increase in the market price for any output constraint

below the optimal level and slightly above that because of total output reduc-

tion caused by less competition and (iii) increase in the value of non-strategic

�rms for a viable range of parameters and initial conditions because of increase

in the price during the price path.

APPENDIX

Appendix A:

Proof of Theorem 1: The proof is carried out for symmetric interior

solutions. We use dynamic programming. The Bellman equation is given by

rV i (p) = max
qi
fpqi �

1

2
q2i + sV

i
p (p) [a�

NX
i=1

qi � p]g; (4.31)

where V i (p) is the optimal value function of �rm i. Since the game is symmetric

and linear quadratic we conjecture symmetric, quadratic value functions

V i (p) = 1
2Kp

2 � Ep+ g; (4.32)

which implies that

V ip (p) = Kp� E; (4.33)

where K, E and g are constants that need to be determined. Maximizing the

right hand side of equation (4.31) gives

qi = p� sV ip (p) : (4.34)
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Thus, the feedback rules are given by

qi (p) = p(1� sK) + sE: (4.35)

Substituting this last expression and using the quadratic value function (4.32)

into the Bellman equation yields

1
2p
2
�
1� rK � 2sK(N + 1) + s2K2(2N � 1)

�
+ p(asK + E(r + s) + sNE � s2EK(2N � 1))

+ s2E2(2N � 1)� sEa� rg = 0: (4.36)

The requirement that this equation be satis�ed for all values of p implies that

K, E and g have to satisfy

1� rK � 2sK(N + 1) + s2K2(2N � 1) = 0; (4.37)

asK + E(r + s) + sNE � s2EK(2N � 1) = 0; (4.38)

s2E2(2N � 1)� sEa� rg = 0: (4.39)

The solutions to equations (4.37)-(4.39) are given by

K =
2s(N + 1) + r �

q
[2(N + 1)s+ r]

2 � 4s2(2N � 1)
2s2(2N � 1) ; (4.40)

E =
c� sKa

s(N + 1) + r � s2K(2N � 1) ; (4.41)

g =
s2E2(2N � 1)� 2sEa

2r
: (4.42)

With the decision rules (4.35) the price equation (4.5) becomes

_p+ ps[N(1� sK) + 1] = s(a�NsE); (4.43)

which is a linear �rst order di¤erential equation. A solution to this equation is

given by

p(t) = p� + (p0 � p�)eDt; (4.44)

where p� is the steady state price

p� =
a�NsE

1 +N(1� sK) ; (4.45)
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p0 is the initial price and D is the constant

D = s[N(sK � 1)� 1]:

This constant is only negative, and hence the Markov-perfect equilibrium is

globally stable if we choose the negative root of (4.40). Equations (4.35) and

(4.40) to (4.45) give us the Markov-perfect equilibrium in linear strategies for

the di¤erential game (4.4) and (4.5) for any �nite s. This completes the proof.

Appendix B:

Proof of Theorem 2: The Bellman equation of the problem (4.14)-(4.15)

is given by

rV̂ i (p) = max
qi
fpqi �

1

2
q2i + sV̂

i
p (p) [a�

MX
j=1

�qj �
NX

i=M+1

qi � p]g; (4.46)

where V̂ i (p) is the optimal value function of �rm i, which is an unconstrained

�rm in the constrained case. Maximization of the right hand side of the Bellman

equation gives

q̂i (p) = p� sV̂ ip (p) ; (4.47)

Substituting (4.47) into (4.46) and inducing symmetry yields

rV̂ (p) = p(p� sV̂p (p))�
1

2
(p� sV̂p (p))2 (4.48)

+sV̂p (p) [a� p�M �q � (N �M)(p� sV̂p (p))]:

As with the unconstrained case, we propose the following quadratic value func-

tion

V̂ (p) = 1
2K̂p

2 � Êp+ ĝ;

which implies that

V̂p (p) = K̂p� Ê;

where K̂, Ê and ĝ are constants that need to be determined. Thus, the feedback

rules are given by

q̂i (p) = p(1� sK̂) + sÊ: (4.49)
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Substituting V̂ (p) and V̂p (p) in (4.48) and collecting with respect to p, we

obtain

�1p
2 + �2p+ �3 = 0; (4.50)

where

�1 =
1
2

�
1� rK̂ � 2sK̂(N �M + 1) + s2K̂2(2(N �M)� 1)

�
; (4.51)

�2 = asK̂+Ê(r+2s)+sÊ(N�M�1)�sK̂M �q�s2ÊK̂(2(N�M)�1); (4.52)

�3 = s2Ê2(N �M � 1
2 ) + sÊM �q � sÊa� rĝ: (4.53)

The equation (4.50) is satis�ed if expressions (4.51)-(4.53) are simultaneously

zero. This results to the following solution

K̂ =
2s(N �M + 1) + r �

q
[2(N �M + 1)s+ r]

2 � 4s2(2(N �M)� 1)
2s2(2(N �M)� 1) ;

(4.54)

Ê =
�sK̂a� sK̂M �q

s(N �M + 1) + r � s2K̂(2(N �M)� 1)
;

ĝ =
s2Ê2(2(N �M)� 1)� 2sÊa+ 2sÊM �q

2r
:

Using (4.49), a solution to equation (4.15) is given by

p̂(t) = ~p+ (p0 � ~p)eD̂t;

where ~p is the steady state price

~p =
a� (N �M)sÊ �M �q

1 + (N �M)(1� sK̂)
;

p0 is the initial price and D̂ is the constant

D̂ = s[(N �M)(sK̂ � 1)� 1]:

This constant is only negative and if we choose the negative root of (4.54) the

Markov-perfect equilibrium is globally stable.

The discounted present value of the constrained �rm is derived from

V̂ C (p(t)) =

Z 1

t

e�r(��t)[p(�)� 1
2
�q]�qd� ; (4.55)
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where V̂ C is the value function of the constrained �rms and p(:) is the price

given by (4.18). Substituting (4.18) in (4.55), we have

V̂ C (p(t)) = ert�q

�Z 1

t

e�r� (~p� 1
2
�q)d� +

Z 1

t

e�(r�D)� (p0 � ~p)d�
�
; (4.56)

which results to

V̂ C =
1

r
(~p�q � 1

2
�q2) +

1

r � D̂
(p0 � ~p)�qeD̂t; (4.57)

Thus, we obtain

V̂ C = Ap+ ĝC ;

where A and ĝC are

A =
�q

r � D̂
;

ĝC =
�q(D̂(2~p� �q) + r�q)

2r(D̂ � r)
:

This proves the theorem.

Appendix C:

Proof of Theorem 3: Looking at (4.10) and (4.20), it is obvious that K

and K̂ have the same functional form with this di¤erence that instead of N we

have N �M in K̂. Thus, since it can be easily shown that @K=@N < 0, we �nd

that K̂ > K > 0. We have the similar story to compare E with Ê and g with

ĝ. Substituting (4.10) in (4.11), we can show that @E=@N > 0. Thus, as the

number of �rms decreases the coe¢ cient E will decrease. This together with

having the negative term �sK̂M �q in equation (4.21) we can argue that, as long

as �q is positive, Ê < E < 0. With the same procedure we can show that always

ĝ > g > 0. Therefore, comparing (4.7) and (4.17), for all values of p we obtain

V̂ (p) > V (p). This concludes (b).

Considering (4.10) and (4.20), it can be easily shown that for all values

of parameters sK < sK̂ < 1. So, comparing (4.13) and (4.23), we �nd that

D < D̂ < 0. Furthermore, looking at steady state prices it can be shown that

for �q � q�, the steady state price (4.19) is larger than (4.9). Therefore, it can be

simply proven that the price path (4.18) is greater than (4.8) which concludes

(a).
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Now, in order to examine (c) we have to compare (4.7) and (4.24). Since

V (p) is a convex function and V̂ C (p) is a linear function of p, by equating these

two equations, we obtain

pl =
A+ E �

p
(A+ E)2 � 2K(g � ĝC)

K
; l = a; b; (4.58)

where pa > pb (if there exist any pb). Therefore, in principal, for positive values

of p, the two value functions may have (i) one intersection if the radicand is

larger than zero and ĝC > g, (ii) two intersections provided that the radicand

has a positive value and g > ĝC , (iii) one tangency point when the radicand is

zero, and (iv) no intersection when the radicand is negative. Therefore, having

a viable range of parameters for which acting non-strategically is to the bene�t

of �rms mainly depends on the amount of (A + E)2 � 2K(g � ĝC). Here,

we are interested in its positive values. Using a numerical analysis, a range

of parameters in the space of (M;�) is depicted in �gure 1by means of two

dividing curves (the thicker ones) where between them the amount of radicand

is positive and beyond them it is negative. Situation (iv) corresponds to the

regions beyond the curves. However, in the region between the two curves, we

do have a viable range of parameters for output constraint to be pro�table for

the non-strategic �rms which corresponds to (i) or (ii). Figures 2 show (i), (ii),

(iii) and (iv) graphically.

The condition (iii) occurs in the limit where s goes to zero, because we have

lim
s!0

(A+ E)2 � 2K(g � ĝC) = 0;

and, therefore, there is a single common point in V (p) and V̂ C (p). Furthermore,

the slope of V (p) at pa = A+E
K isV 0 (p) = Kp�E = A, which is the same as the

slope of V̂ C (p). Thus, the contacting point is a tangency point. Hence, when

the price does not adjust at all (i.e. s = 0), acting non-strategically is never

to the bene�t of the non-strategic �rms. However, for 0 < s < 1 there is a

range of parameters where the non-strategic �rms also bene�t from the output

constraining. Comparing the steady state prices (4.9) and (4.19) and prices
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driven from (??), we found that

p� < ~p 2
�

(0; pa) in (i),
(pb; pa) in (ii).

Now, looking at (4.18), we know that p̂ starts at the initial price p0 and moves

towards the steady state price ~p. Therefore, provided that the initial price

belongs to (0; pa) (or (pb; pa)), we can argue that V̂ C (p) always has a larger

value than V (p). Whereas, in the case where p0 is outside the aforementioned

interval, output constraining is not to the bene�t of the non-strategic �rms in

so far as p̂(t) arrives to the interval and it becomes pro�table afterwards.
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