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General abstract

The general aim of this thesis was to investigate the respective contribution of prior information and sensorimotor
constraints to action understanding and prediction, and to estimate their consequences on the evolution of faithful social
learning. Even though a huge amount of literature has been dedicated to the study of action understanding and its role in
social learning, these issues are still largely debated. Here, | critically describe two main perspectives. The first
perspective (i.e., the ‘Theory-theory’ framework) interprets faithful social learning as an outcome of a fine-grained
representation of others’ actions and intentions that requires sophisticated — and uniquely human — socio-cognitive
skills. In contrast, the second perspective (i.e., the ‘simulation theory’ framework) highlights the role of simpler decision
heuristics, the recruitment of which is determined by individual and ecological constraints. The aim of the present thesis
is to provide evidence that these two theoretical contributions are not mutually exclusive.

The general introduction is organised around five sections in which | address the following points: i) the
relationship between social learning and theories of action understanding; ii) the role of prior information in solving the
inverse problem addressed by action understanding; iii) the role of rationality in inference mechanisms involved in
action understanding; iv) the role of object affordances; v) the hybrid model of action understanding.

The experimental contribution of the thesis is divided into four main studies:

. The first study aimed to investigate the role of the inferior frontal cortex (IFC), the anterior intraparietal area
(AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial
magnetic stimulation adaptation paradigm (TMSA). In a first adaptation phase, participants were repeatedly exposed to
goal-directed actions performed by a filmed demonstrator. In a second recognition phase, they were presented pictures
of actions and were asked to match either the type grip or the type of arm action currently presented with those used in
the preceding adaptation phase. Single-pulse TMS was applied over the three regions of interest during the presentation
of each picture. Overall, results showed that stimulating the IFC and S1 improved the recognition of the adapted arm
action, possibly through of ‘simulation’ process of sensorimotor and somatic properties of the observed actions.

. The second work aimed at studying whether, and how, prior information acquired from the probabilistic
sampling of past events and prior information derived from an estimation of sensorimotor/biomechanical constraints of
observed goal-directed actions interact during the prediction of other people’s intentions. Participants performed an
action prediction task in which they were required to infer, under various conditions of visual uncertainty, the intentions
of a demonstrator performing tool-use behaviors. Both the probability of observing the demonstrator achieving a
particular tool function and the biomechanical optimality of the observed movement were varied. Results showed that
biomechanical priors modulate the extent to which participants’ predictions are influenced by probabilistically-induced
expectations.

o In line with this finding, the third study aimed to investigate whether, and how, the interactions between
probabilistic and biomechanical priors modulate motor system activity. This modulation was measured by means of
single-pulse TMS applied over the primary motor cortex (M1) during action prediction under visual uncertainty, before
and after probabilistic exposure to biomechanically optimal and suboptimal actions. Results revealed a suppression of
the corticospinal excitability, whose magnitude was found to depend on the type of actions (biomechanically optimal or
suboptimal) that were probabilistically biased.

. The fourth study tested the extent to which behavioral and ecological constraints — such as the richness of
individuals’ biomechanical repertoire or the type of search space characterizing a problem — influence at a population
level the emergence of faithful social learning strategies (e.g., emulation or imitation), and whether the emergence of
such strategies may explain the stability of observed behavioral traditions. These relationships where explored through
an evolutionary individual-based model. Results showed that the evolution of faithful social learning only occurs if the
behavioral repertoire of a population is large enough, and if the search space does not allow trial-and-error learning.

Overall, the collected data contribute to our understanding of action prediction by humans, by elucidating how
higher-order and lower-order prior expectations interact during action prediction. In addition, these studies offer a new
point of view on the neural underpinnings of action representation and action prediction. Finally, this work provides
promising perspectives for a better understanding of human social learning, with possible extensions to animal models.
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GENERAL INTRODUCTION



The present thesis focuses on the cognitive and cerebral mechanisms underlying how human
observers perceive, predict and learn from their conspecific’s behaviors. It also aims to extend
the result of such investigations to a broader level of description, such as the emergence of
cultural traditions in a population of individuals.

Understanding human culture requires the investigation of at least three main aspects:
the population-level patterning of traditions; the intermediate level of social learning
mechanisms; and the individual-level behavioural and cognitive characteristics (Whiten,
2011). The present thesis contributions to each of these aspects, with particular attention
devoted to the small-scale, individual level. Throughout these pages the reader will thus
encounter theoretical and experimental work that, put together, aims to draw links between the
individual-level and the larger levels of description mentioned above. The main claim of the
present manuscript stems from the well accepted assumption that perceiving and
understanding the behaviors of their conspecifics through the situations in which they take
place is the precondition for social learning and the emergence of culture (Sperber, 1996;
Sperber and Hirschfeld, 2004).

Traditionally, it has been claimed that the emergence of cultural traditions depends on
the use of faithful social learning (i.e., the transmission of information from an individual to
another through behavioral means, in particular, through learning and teaching), that faithful
social learning is an outcome of a fine-grained representation of others’ actions and intentions,
and that this representation requires sophisticated — and uniquely human — socio-cognitive
skills. In the present thesis, in contrast, | suggest a less exclusive and more integrative
position. This position proposes that a fine-grained representation of other people’s actions

and intentions requires sophisticated socio-cognitive skills as well as simpler heuristics and
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decision-making rules, whose recruitment is determined by individual and ecological
constraints. These constraints may have a significant impact on the evolution of social-

learning and, thus, on the emergence of cultural traditions.

The present work is divided into three main parts:

a) A general introduction that aims to identify the sophisticated socio-cognitive skills and
simple heuristics that preside over human action understanding, and that underlines
their cerebral correlates.

b) A general method section in which the experimental techniques used in the presented
studies are described.

c) An experimental part that aims:

i to study the cerebral bases of action perception
ii. to investigate whether, and how, sophisticated skills and simple heuristics
interact during action prediction
iii. to investigate how this interaction modulates brain activity
(\2 to investigate whether, and how, individual and ecological constraints can
impact on the emergence of ‘cultural’ traditions among a population.
d) A general discussion where experimental data are discussed in the larger context of

human social learning.
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A. From social learning to action understanding

Behavioral — or cultural — traditions (i.e., behaviors acquired through some form of social
learning, and which are relatively stable in groups) have been found in humans and in several
non-human species (Laland and Galef, 2009). The existence of these traditions has usually
been considered as a strong marker of faithful social transmission mechanisms that guarantee
both the successful diffusion and the stability of the behaviors (Huffman, 1996; Horner et al.,
2006; Marino et al., 2007). Social learning — that is, the ‘inheritance of acquired behaviors’ —
has been a longstanding interest of biologists and psychologists alike. Indeed, the idea that
animals acquire components of their behavioral repertoire by copying their conspecifics is far
from being new, as witnessed by seminal observations made by Aristotle, for whom human
and non-human social animals have, in varying degrees, natural predispositions to
interindividual communication and social learning (1986). The social learning of new skills,
ranging from the acquisition of complex tool use by humans to the acquisition of vocalization
by birds, is now considered as a well-established and noncontroversial aspect of the adaptive
behavior of vertebrates (Seed and Byrne, 2010). However, if a great deal is known about the
adaptive functions of social learning, such as its impact on the social and cultural transmission
of behaviors, little is known about the cognitive mechanisms that make them possible.

Many forms of social learning mechanisms operate in human behaviors. These forms
are hierarchically organized according to their efficiency for transmitting the behavior to a

third party with fidelity (Rendell et al., 2011). A distinction is usually made between:
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Stimulus enhancement: a demonstrator exposes an observer to a single stimulus, which
leads to a change in the probability that the observer will respond to stimuli of that
type.

Local enhancement: a demonstrator attracts an observer to a specific location, which
can lead to the observer learning about objects at that location.

Observational conditioning: the behaviour of the demonstrator exposes an observer to
a relationship between stimuli, enabling the observer to form an association between
them.

Response facilitation: a demonstrator performing an action increases the probability
that an observer will do the same. This can result in the observer learning about the
context in which to perform the action and the consequences of doing so.

Social facilitation: social facilitation occurs when the mere presence of a demonstrator
affects the observer’s behavior, which can influence the observer’s learning.
Contextual imitation: observing a demonstrator performing an action in a specific
context directly improves learning about how to perform this action in the same
context.

Production imitation: observing a demonstrator performing a novel action, or novel
action sequence, increases the likelihood that an observer performs that action or
sequence.

Emulation: observation of a demonstrator interacting with objects in its environment
increases the likelihood that an observer performs any actions that bring about a similar

effect on those objects.
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Local enhancement, observational conditioning, response facilitation and social
facilitation are forms of incidental, low-fidelity social learning and are most commonly
observed in non-human animals. They involve the detection of contextual information, of low-
level social signals (e.g., the mere presence of a peer) or basic reinforcement signals. These
forms of social-learning are not directly ‘social’. Instead, they result from the fact that
individuals live in a social environment. In these cases, the learned information is mediated
through a social channel (Sterelny, 2009) — i.e., through the observation of others’ behavior —
but the cognitive processes that encode this information are just the same as those that encode
information received from other channels. They are not adaptively specialized in any way for
the processing of socially-channeled information.

In contrast, emulation, contextual imitation, and production imitation are forms of
motivated, faithful (high-fidelity) social learning that have been rarely reported in non-human
animals, except in primates (Voelkl and Huber, 2007) and birds (Akins and Zentall, 1998;
Dorrance and Zentall, 2001). Among primates, humans are well known to be precocious and
efficient imitators and emulators (Tomasello, 1999). The relative rarity of emulation and
imitation in the wild suggests that these sophisticated forms of social learning are the hallmark
of a cognitive specialization for processing social signals (Tomasello et al., 2005). These
faithful forms of social-learning are thus patently ‘social’ because they require the observer to
be intrinsically motivated in directing her/his attention towards the behavior of the
demonstrator. This is particularly salient with humans who are equipped with a set of
psychological dispositions biasing the individual to preferentially orient to the social world

(Chevallier et al., 2012; Csibra and Gergely, 2011).
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Evolving culture through high-fidelity social transmission mechanisms does not merely
rely on social motivation. For example, imitation refers to the ability of overtly copying an
observed action, while emulation refers to the ability to copy the outcome of an observed
action through the observer’s own means. Thus, copying with fidelity a new behavior from
mere observation has been tightly related to the observer’s ability to build a fine-grained
representation of the observed motor sequence, and/or a representation of its underlying cause
(the goal or the intention of the observed agent). In sum, it requires a deep understanding of
other people’s behaviors and the mental states that cause these behaviors (Csibra and Gergely,

2007).

1. Interpreting other people’s behaviors: from theory-theory to motor simulation

Perceiving and understanding our conspecific’s behaviors is one of the pre-requisites for the
emergence of human culture (Tomasello et al., 2005). The typically human disposition to
understand and predict others’ behaviors render an account for a more fundamental aptitude to
represent, or ’read’, other people’s mental states. Understanding others’ behaviors would thus
depend on this robust and early ability to represent and attribute mental states (Baron-Cohen et
al., 1985; Leslie, 1987; Frith and Frith, 2003). Yet, the exact nature of the elementary

mechanisms this ‘mind-reading’ ability relies on is still a matter of debate.
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1.1. The ‘theory-theory’

According to the advocates of the ‘Theory-theory’ framework, understanding behaviors of our
peers would require a preliminary, implicit and tacit ‘naive’ theory of psychological
functioning, involving axioms and elementary inferential mechanisms (Gopnik, 1993; Gopnik
and Meltzoff, 1994). These axioms and inferential mechanisms would be, at least partly
(Carruthers, 1996), based on past experience of the observer, and on laws extracted from the
regularity of past events (Leslie, 1987; Gopnik, 1993). Just like other naive theories, such as
naive physics, the naive theory of psychological functioning enables us to predict and explain
another person’s behavior (Saxe, 2005). Although we daily use this theory, we are not actually
aware of its underlying laws.

The ‘Theory-theory’ approach posits that the emergence of our capacity to explain
others’ behaviors in terms of psychological states — such as ‘beliefs’, ‘desires’ or ‘intentions’ —
intimately depends on interactions experienced by the child with her/his relatives. These
interactions progressively lead the child to form hypotheses about hidden variables (e.g., the
beliefs and desires of her/his relatives) that may explain the behavioral regularities she/he
observes.According to Gopnik and Meltzoff (1994), the child would resemble a ‘little
scientist’ testing successive hypotheses about what may have caused the observed behaviors
(‘he believes that’ or ‘he wants that’). Testing these hypotheses would lead the child to
progressively elaborate a ‘naive’ theory of the psychological functioning of her/his
conspecifics. At a very early stage, the child would possess a primitive concept of ‘belief” and
‘desire’ (the child’s beliefs are always ‘true’ and other people always express the same desires

as her/his own) that would be refined with experience and development. Thus, the ability to
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attribute intentions or beliefs to other people would be related to the elementary ability to infer
mental states causing the observed behaviors and the situation, or context, in which such
behaviors take place. Interestingly, these inferential rules would be crucial to understand
others as well as to build knowledge about oneself. Thus, self-knowledge itself would not be
immediate, but inferential, i.e., mediated by automatic inferences achieved in the presence of
biological agents. Nonetheless, a difference of degree would exist between knowing oneself
and knowing others. Indeed, information we have about ourselves would be more abundant,
and of a better quality, as we naturally are in a better position to collect it. However, this
difference of degree would not be a difference of nature. In one case (knowing oneself) as in
the other (knowing others), we would use the same implicit theory of mind functioning

(Gopnik and Meltzoff (1994).

1.2.  Pitfalls of the Theory-theory: the theory of simulation

A strong argument against advocates of the “theory-theory” is that the formation of a folk
psychology seems to be a relatively late developmental achievement: the ability to attribute
‘false beliefs’, for example, only emerges around 4 years of age (Wimer and Perner, 1983).
Recent data collected in the field of neuroscience — and more particularly in the field of motor
cognition — provides some convincing counterarguments to the ‘Theory-theory” approach (see
for a review, Gallese and Goldmann, 1998). According to these studies, the perception of
others’ mental states would not require the acquisition of a ‘model’ of the other’s mind.
Instead, humans already possess such a model, namely, their own mind. Thus, understanding

other people’s behavior would primarily depend on the observer’s ability to ‘simulate’ the
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‘point of view’ of the observed agent (Goldmann, 1995; Gordon, 1996; Gallese and
Goldmann, 1998).

The acquisition by humans of mental concepts, such as understanding and predicting
intentional behaviors, would depend on this ability to internally replicate (i.e., ‘simulate’)
other people’s behaviors. Here, the simulation process would be based on a representation of
sensori-motor constraints that are shared between the observer and the demonstrator. As the
observer may form motor representations that are similar to those of the observed agent, she
would also be able to (automatically) access the intentions underlying, and causing, such
representations (Wolpert et al., 2003; Blakemore & Decety, 2001; Metzinger & Gallese,

2003).

1.2.1. A brief historical account of simulationist theories

Simulationist theory is divided into two main approaches: the introspectionist approach and
the anti-introspectionist approach. The introspectionnist approach has been mainly popularized
by Goldman (1995), according to whom simulating an observed behavior requires prior
knowledge about what ‘believing” or ‘knowing’ means. Such knowledge is acquired through
introspection and is the necessary precondition for a simulation process to be effective. In this
introspectionist perspective, the simulation process is ‘attributor-dependent’, meaning that the
observer is the reference for the simulation. We often put ourselves into the situation of people
we observe, and approximate what they might think, but the simulation in itself does not elicit

in the simulator the very same states as those experienced by the simulated target.
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In contrast, the anti-introspectionist approach developed by Gordon (1996) posits that
the simulation process is ‘attributor-neutral’, meaning that simulation is a transformation
rather than a transfer. Simulation is the transformation of one’s own situation into the other’s
situation. Here, the introspective dimension is excluded from the simulation. It consists of
simulating a behavior without using any concepts of folk psychology such as ‘belief” or
‘desire’. Rather, it consists of experiencing the values or sensations associated with the
simulated behavior. For example, a child would not simulate her/his relatives as if they had
specific psychological properties (e.g., belief, desire or intention). Instead, when a child faces
a particular situation involving the behavior of a relative, s/he reconstructs the value of the
observed behavior by simulating it, and concludes that the situation has certain properties:
motivational, emotional, etc. In this case, the target of the simulation is more the context in
which an action takes place than the psychological dispositions of the agent. The context
immediately elicits relational properties about the interest or the danger of a behavior achieved

in such a context.

1.2.2. The theory of motor simulation

The existence of this interpretative system based on shared representations has been supported
by the discovery, in monkeys and more recently in birds, of a new type of visuomotor neuron
— i.e., the so-called ‘mirror neurons’. These bimodal neurons were originally found in the
ventral premotor cortex of macaques and have been shown to discharge both when the animal
performs an action and sees the same action performed by a third party (di Pellegrino et al.,

1992; Rizzolatti et al., 1996; Gallese et al., 1996; Rizzolatti et al., 2000). Mirror neuron
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activity has been mainly recorded during the observation of specific goal-related motor acts
(such as reaching and grasping). The firing of these ‘mirror’ neurons would simulate, in the
observer’s brain, the observed movements of the demonstrator: thus, in the absence of overt
motor execution, a part of the observer’s motor system is active as if they were actually
executing this action. That is, the brain transforms the visual information conveyed by the
observed action’s kinematics into equivalent (non-executed) motor commands. Rizzolatti and

Arbib (1998) described the functional role of mirror neurons as follows:

‘The response properties of mirror neurons to visual stimuli can be summarized
as follows: mirror neurons do not discharge in response to object presentation;
in order to be triggered they require a specific observed action. The majority of
them respond selectively when the monkey observes one type of action (such
as grasping). Some are highly specific, coding not only the action aim, but also
how that action is executed. They fire, for example, during observation of
grasping movements, but only when the object is grasped with the index finger
and the thumb.” (p. 188)

The automatic matching of the demonstrator’s movements with motor representations
stored in the observer’s behavioral repertoire would enable the formation of shared motor
representations (Jeannerod, 2001). In line with this claim, it has been suggested that mirror
neurons are involved in various cognitive domains, ranging from imitation to language
acquisition (Rizzolatti and Arbib, 1998). Furthermore, Gallese & Goldman (1998) suggest that
one function of mirror neurons is to ‘enable an organism to detect certain mental states of
observed conspecifics. This function may be part of, or a precursor to a more general mind-

reading ability’ (p. 493). Thus, the activation of these shared motor representations would
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allow the observer to access the goals and intentions of the simulated demonstrator and, by

extension, to draw predictions regarding her/his future behaviors.

The presence in the monkey brain of visuomotor neurons endowed with ‘mirror’
properties is well documented and generally agreed upon. However, their presence in the
human brain is much more controversial (Hickok, 2009), as the correlational techniques used
in human neuroscience provide no direct evidence for their existence (but see Mukamel et al.,
2010). Several studies using functional neuroimaging have, however, suggested the existence
of a cortical network (see figure 1) that is common to the observation, the imagination, and the
execution of a specific action (lacoboni et al., 1999; Rizzolatti et al., 2001 ; Grézes et al.,
2003). This network, called the mirror system or the Action Observation Network (AON), is
distributed along an antero-posterior axis that classicaly involves several cerebral structures
such as:

e the superior temporal sulcus (STS) that, in its posterior part, has multimodal
integration properties (Barnes and Pandya, 1992), is recruited during the observation
of movements of biological agents (Puce and Perrett, 2003). However, an increasing
number of studies suggests that the STS also responds to the relationship between an
observed movement and the structure of the environment, and code for the observation
of goal-directed movements (German et al., 2004; Saxe et al., 2004)

e the inferior parietal lobule (IPL) and, more specifically, the anterior intraparietal
sulcus (AIPs) that is involved in the visual guidance of grasping movements (Faillenot

et al., 1997) as well as in the decoding of observed movements (Bonda et al., 1996). It
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has also been shown that AIPs was sensitive to the goals of actions (Hamiltion and
Grafton, 2006).

e the ventral part of the premotor cortex (PMv) and, more generally, the inferior frontal
cortex (IFC), known to be involved in the execution as well as the observation of
intentional, goal-directed actions (Grézes and Decéty, 2001; lacoboni et al., 1999;
lacoboni et al., 2005; Buccino et al., 2001)

Of note is that the AON may involve other sensory regions that are not classicaly reported as
playing a role in action perception and understanding. In particular, the somatosensory cortices
may be recruited during the observation of actions and may play a role in the estimation of

their sensory consequences (Keysers and Gazzola, 2007, 2010; Kilner, 2011).

According to the most popular assumption, known as the direct-matching hypothesis,
the AON underlies the processes of imitation and intention attribution. Indeed, the direct-
matching hypothesis presupposes that ‘an action is understood when its observation causes the
motor system to resonate’ (Rizzolatti et al., 2001). This motor resonance would allow an
observer to figure out the outcome of the perceived action, for the observer ‘knows its
outcome when he does it” (Gallese et al., 2004). Thus, mirroring an observed action would
provide a simulation device for goal understanding by replicating the observed action in the
observer’s own motor repertoire. Accordingly, the represented action should be ‘executable’,

that is, consistent with the constraints of the observer’s motor system.
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Forward
Connections

Visual Input

Figure 1. Representation of the human ‘mirror system’, also called Action Observation Network (taken from
Kilner et al., 2008). The observation of an action drives the firing of neurons in the superior temporal sulcus
(STS), which drives activity in the inferior parietal area, which in turn drives activity in inferior frontal gyrus.

However, a specific movement — let say, a grasping movement — may have been
executed for several different reasons. And the decoding of the kinematics only would not be
informative enough to allow the observer to unambiguously select the intention that has
caused the observed action. Recent studies have demonstrated that the predictive function of
mirror neurons was varying according to the context in which the observed action scene is

embedded (lacoboni et al., 2005; Fogassi et al., 2005; Chersi et al., 2011). More specifically,
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the selection of an appropriate intention would be done through a process of action
reconstruction. Fogassi and co-workers (2005) proposed that the observation of a motor act
that is at the origins of a given action would trigger within the observer’s mirror system the
subsequent motor act that is likely to be associated with the former, and so on until the action
chain is achieved. Accorrding to these authors, such reconstruction process of action chains
would occur within the parietal lobe in which motor acts would not be represented
independently of the global aim of the action, but rather, would form prewired intentional
chains in which each motor act is facilit ~ ated by the previously executed one.
Consequently, the activation of a specific action chain within the mirror system would allow
the observer to form a representation of the intention that, most likely, the agent is about to
achieve. Interestingly, lacoboni and colleagues (2005) suggested that the activation of an
action chain was specified by contextual information processed in cerebral regions that are
reciprocally connected to the mirror system. This contextual information can be the situational
constraints in which the action takes place (e.g., if the scene provides additional non-motor
cues about which intention the observed agent is more likely to achieve), or the affordances of

objects (e.g., their size, shape, density or texture) that are the target of an action.

In summary, these mechanisms of shared activations of motor representations provide
convincing arguments in favor of the simulationist theory. Our natural capacities to simulate —
that are underpinned by the existence of ‘mirror systems’ of shared representations — would
provide access to the mental states of others — such as the motor intentions that guide their
actions — without the need for any naive theory about human psychology or about mind

functioning in general (Blakemore and Decéty, 2001 ; Gallese, 2003 ; Keysers and Gazzola,
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2007). Moreover, the theory of motor simulation resolves a developmental problem: indeed,
how does theory-theory explain the early capacity of human infants to interpret other people’s
goal-directed behaviors, as young infants do not yet possess psychological concepts such as
‘belief’, ‘desire’, or ‘intention’? Accordingly, motor simulation, based on a hard-wired
property of the motor system, itself, is a good candidate to explain the late elaboration of more
complex interpretative strategies (such as an inferential theory of action understanding).
However, the exact functional role of mirror neurons in action understanding and
action prediction remains debated (Jacob and Jeannerod, 2005; Saxe, 2005; Hickok, 2009;
Mukamel et al., 2010; Rizzolati and Craighero, 2004; Rizzolatti et al., 2001). It has been
suggested that their contribution to the domain of action understanding depends on the level of
complexity of the observed behavior. Indeed, an observed action can be ‘understood’ at

multiple levels, depending on its temporal and structural complexity.

2. Hierarchical representation of actions in the brain

Recent advances in human neuroscience suggest that complex behaviors are hierarchically
organized around distal outcomes (Jeannerod, 2004; Hamilton and Grafton, 2007). Let’s take
the example of an observer watching another agent grasping and lifting a glass full of red
wine. The observer will roughly decompose this action into a hierarchically organized chain of
several motor sub-steps, each ultimately achieving different sub-goals. At the top of the
hierarchy is the agent’s higher-level goal, which is to lift the glass once it has been grasped.
The overarching goal requires the achievement of a sequence of distinct motor steps. One of

these sub-steps may be to grasp the glass with the whole hand, which can be considered as a
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sub-goal to reach the higher-level goal. But in order to achieve this sub-goal, the agent has to
perform a series of motor acts that, in turn, can be decomposed into finer motor patterns (e.qg.,
activating hand muscles during the opening phase of the grasping movement). Of note is that
the higher-level goal can be achieved by the observed agent using a number of alternative
sequences of motor acts. For example, instead of grasping the glass with the whole hand, the
agent may also try to grasp it with two-fingers, or even with the mouth. Although the aim of
these alternatives is same higher-level goal as the one first described, they recruit a different
set of motor sub-steps. In the same way, an identical chain of motor sub-steps (e.g., reaching,
grasping and lifting a glass full of red wine) can lead to different final intentions (e.g., to toast

somebody versus to check the colour of the wine).

Actions can thus be roughly organized according to four levels (Kilner, 2011):
i) the kinematic level: the trajectory and velocity of the action, including both the
reach and grasp phase of a goal-directed action
i) the motor level: the pattern of muscle activity required to produce the
kinematics
iii) the goal level: the immediate purpose of the action, such as to grasp an object
iv) the intention level: the overarching cause — or reason — of the action
These four levels are not independent, but hierarchically organized: the kinematic level
is dependent on the motor level; the motor level is dependent on the goal level, and the goal
level is in turn dependent on the intention level. This hierarchy also defines a continuum of
abstraction, with the intention level defining the most abstract features of action

representation. For example, a specific intention (e.g., pouring liquid into a glass) can be
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achieved through many different motor acts: as such, there is no univocal (i.e., one-to-one)

mapping between the content of the intention and the set of motor alternatives that can

potentially achieve it.

These different levels of representation of goal-directed actions have been shown to be

distributed within a large cerebral network:

1.

the posterior parietal cortex (PPC) is involved in the processing of the lower level,
concrete features of the action (i.e., the kinematic level) and the intentional
planning of movements (Andersen and Buneo, 2002).

the anterior intra-parietal sulcus (AIPs) is known to be involved in the processing
of goal-directed prehension movements, and is assumed to code perceived
interactions between objects and goals (Faillenot et al., 1997; Hamilton and
Grafton, 2006)

the inferior parietal lobule (IPL) and

the inferior frontal gyrus (IFG) would both be involved in the processing of the
action goal or outcome (Hamilton and Grafton, 2008)

the dorsal part (dPMC) and the ventral part (vPMC) of the premotor cortex — that
contains a repertoire of premotor representations recruited both during the
execution and the observation of goal-directed actions (Gallese et al., 2004) — are

involved in the inference of likely action intentions (Rizzolatti & Craighero, 2004)
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3. Pitfalls of the motor simulation theory

We saw that actions are hierarchically organized according to whether they can be identified
or not on the basis of their motor components. Such an organization implies that the highest
levels of the hierarchy — the goal and intention levels — are detached from its lowest levels:
they cannot be strictly reduced to the kinematic and the motor levels. Accordingly, the strategy
that consists in simulating other people’s intentions based on visual information elicited by the
observed movement kinematics only, would be a suboptimal, unreliable strategy.

In a theoretical article, Jacob and Jeannerod (2005) addressed this problem by arguing
that the properties of the mirror system are well designed for representing low-level, motor
subgoals, such as grasping movements of an object-oriented action. On the other hand, such a
system would not be well designed for representing more abstract goals and intentions, such as
social or communicative intentions. To illustrate the pitfalls of the motor simulation theory,

the authors presented the following thought experiment (p.23):

“Consider Dr Jekyll and Mr Hyde. The former is a renowned surgeon who
performs appendectomies on his anesthestized patients. The latter is a
dangerous sadist who performs exactly the same hand movements on his non-
anesthestized victims. As it turns out, Mr Hyde is Dr Jekyll. Suppose that Dr
Watson witnesses both Dr Jekyll's and Mr Hyde's actions. Upon perceiving Dr
Jekyll, alias Mr Hyde, execute the same motor sequence twice, whereby he
grasps his scalpel and applies it to the same bodily part of two different
persons, presumably the very same mirror neurons produce the same discharge
in Dr Watson's brain. Dr Jekyll's motor intention is the same as Mr Hyde's.
However, Dr Jekyll's social intention clearly differs from Mr Hyde's: whereas

Dr Jekyll intends to improve his patient's medical condition, Mr Hyde intends
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to derive pleasure from his victim's agony. By matching them onto his own
motor repertoire, an observer simulates the agent's movements. Simulating the
agent's movements might allow an observer to represent the agent's motor
intention. We surmise that it will not allow him to represent the agent's social

intention.”

According to Jacob and Jeannerod, motor simulation would only play a minor role in
the representation of the more abstract levels of actions. Motor simulation would thus be
involved in representing the action’s low-level features only — the ‘motor intention’ level
(Jacob & Jeannerod, 2005). In the above fictive experiment, the alternative interpretations of
the observed behavior fit equally well with the observed kinematic patterns, and, more
generally, with the visuomotor information conveyed by the action scene. As the current
movement kinematics of either Mr Hyde or Dr Jeckyll do not sufficiently restrict the space of
their candidate and mutually exclusive intentions (i.e., treating or torturing), simulating these
kinematics (mapping the observed kinematics onto the observer’s motor repertoire) does not

represent an optimal strategy for accurate behavioral prediction.
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cure torture

Social intention (Dr. Jeckyil) (Mr. Hyde)
= = : remove anaesthetize
Private intention the appendix
' take pour the

Immediate goal a scalpel chioroform

< reach grasp
Aston to location item
Movements extend preshape close finger maintain

the arm the hand for grip fingertip force

Figure 2. Figure 5. Hierarchical organisation of intentional action (inspired from Hamilton and Grafton,
2006; Chambon, 2008, with example taken from Jacob and Jeannerod, 2005). A social intention
(anticipating a social interaction) could involve several private intentions (tasks goals). Each possible private
intention could be composed of several immediate goals, each of which requires a sequence of basic actions.
Finally, each basic actions is associated with an action that is composed of several movements. Some exemplars
are shown at each level, and the dotted lines represent intermediate goals that are required to distinguish between
the two social intentions ‘to cure’ and ‘to torture’.
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B.  Action understanding as an inverse problem: the role of
prior information

As suggested by the fictive experiment designed by Jacob and Jeannerod, predicting another
person’s behavior is rarely a ‘one-to-one’ mapping problem as many competing intentions
may have potentially caused the observed behavior. Conversely, one specific intention may be
achieved through many different action sequences (‘many-to-one’ mapping problem). In both
cases, predicting an intention from an observed action sequence, or predicting an action
sequence from an intended goal, entails two kinds of inferences that require the observer to
select the most relevant hypothesis among a set of alternatives, which best accounts for the
current situation, and that can be generalized to new situations. In other words, for each
observed behavior that has to be interpreted, the human observer should find an appropriate
strategy that allows him to constrain the space of competing hypotheses. As it has been
previously mentioned, motor simulation mechanisms might not sufficiently constrain such
space.

Overall, understanding or predicting an action can thus be viewed as a kind of inverse
problem (Kilner et al., 2007a, 2007b; Baker et al., 2009; Csibra & Gergely, 2007). Inverse
problems precisely refer to situations in which the same sensory input can have many different
causes, or in which a specific cause may arise from many different sensory inputs. Thus,
inverse problems are ill-posed and cannot be solved by analytic methods, for the available
information does not sufficiently constrain the space of candidate solutions. Inverse problems

are characteristic of many situations in physics or in neuroimaging (Schmidt et al., 1999).
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Inverse problem approaches have also been used to address a number of issues that the visual
system has to solve, such as the perception of bi-stable or degraded stimuli, whose resolution
requires appealing to prior knowledge (such as knowledge about the position and orientation
of the light source) or making further assumptions about the nature of the observed stimulus
(Mamassian and Goutcher 2001). Similarly, many different intentions may be achieved
through the same action kinematics, and many different action kinematics may achieve the
same intention. Crucially, the inverse problem addressed by the intentional inference further
depends on the level of abstractness of the goal to predict or infer — i.e., on the type of
mapping (one-to-one, many-to-one) between the action and the goal it achieves.

In human adults as in infants, the apparent ease of goal inference does not reflect the
complexity of the processes at stake. Humans are very efficient at extracting goals from noisy,
ambiguous, or even sparse sensory data (Baker et al., 2006). What are the specific mechanisms
that make this inductive leap from incomplete data possible, and whereby human observers
solve the inverse problem of action understanding? Just like the resolution of bi-stable stimuli
by the visual system, the inverse problem of action understanding cannot be solved with the
available visual input only. For example, one needs to take into account another class of
information in order to select which of the competing intentions best explains the observed
behavioral sequence. Such information can reflect the observer’s own preferences, her/his
knowledge about the social and the situational contexts in which the action takes place, her/his
knowledge about the function and use of the artifact that is the target of the observed action,
and most importantly, her/his specific knowledge about the observed agent’s behaviors and
intentions (Frith and Frith, 2006). In turn, these classes of information generate prior

expectations allowing the observer to make further assumptions about the cause(s) of the
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observed action, or about the action sequence that may have been used to achieve the intended
goal(s). By analogy, visual perception implicitly assumes that objects of the environment are
illuminated from above and, if the system does not contain any extra information that enable
the observer to solve ambiguities elicited by the convexity of a surface, it automatically
assigns depth values to points on this surface based on this prior assumption about the position
of the light source (Ramachandran, 1988). By making similar assumptions about the cause of
an action, human observers may restrict the number of competing hypotheses in situations
where the current sensory information under-constraints the space of candidate causes for a
same phenomenon. As pointed out by Csibra and Gergely (2007), it is important to underline
that assumptions used by human observers to solve inverse problems are assumptions, which
means that they do not have to be, and not always are, valid. Crucially, in the case of an
inverse problem, the validity of a solution depends on the probability that the assumption is
true (Baker et al., 2006). For example, considering that natural light is generally coming from
above, the assumption of ‘illumination from above’ is highly likely to give valid solutions.
Importantly, the selection of certain assumptions also depends on the current context in which
the action takes place. The ‘illumination from above’ assumption is irrelevant in an
environment where only directionless, artificial light is present. Going back to the example of
the Dr. Jekyll and Mr. Hide, the assumption favoring the ‘Dr. Jekyll explanation’ would

instantly lose its relevance if, let’s say, one heard a strident cry of pain from the victim.

In summary, understanding and predicting other people’s behaviors and intentions requires the
observer to make inductive inferences from intrinsically ambiguous, or sparse data — i.e.,

under conditions of sensory uncertainty. This uncertainty can be purely statistical — e.g.
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resulting from the combinatorial explosion due to the inherent nature of the inverse problem —
or more simply perceptual — e.g. resulting from a noisy or incomplete sensory signal. On the
one hand, prior expectations restrict the space of candidate hypotheses. On the other hand they
enable the observer to infer an action intention from a noisy situation by complementing the
missing visual information (Griffith et al., 2008). Goal or intention inferences thus require

prior knowledge that may be of different types and be derived from various sources.

1. Social environments

Numerous studies have shown that human observers may form prior expectations from the
social intentions of their peers. For example, individuals are prone to take the social risk of
helping another despite the possibility of non-reciprocation. Yet, relationships based on
reciprocal altruism are inherently unstable, for an individual may be tempted to act according
to short-term self-interests only, and thus, accepting the help of others without reciprocating.
However, in spite of the potential cost and disavantage of engaging oneself in reciprocal
interactions, humans are naturally biased to trust their relatives for they naturally expect
reciprocation from other people rather than deception (Trivers, 1971). In line with this
hypothesis, several studies using fMRI (Krueger et al., 2007; Behrens et al., 2008; Rilling et
al., 2004) have demonstrated that engaging in reciprocal interactions - .i.e., deciding whether
to trust a third party or not— involved the same brain system as the Theory of Mind network
(i.e., the dorsomedial prefrontal cortex, the posterior cingulate cortex, and the temporo-parietal

junction).
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In the social domain, reputational knowledge also generates prior expectations that bias
our appreciation of others’ behavior, as well as our motivation to learn new information from
them. More specifically, it has been demonstrated that the moral reputation of a social partner
can outweigh direct experience in deciding whether or not to trust the partner (Delgado et al.,
2005).

Finally, the perception and the understanding of other people’s behavior is also
modulated by other forms of social influence, such as the pressure a group may exert on an
individual’s decision. The modification of an individual’s judgment under such pressure — i.e.,
an effect that is often referred to as ‘social conformity’ — was first demonstrated by Asch in a
series of seminal experiments (1951, 1955). In these experiments, participants were asked to
estimate and make judgments about the relative lengths of line segments. Although these tasks
were perceptually simple, participants frequently made wrong answers when a group of peers
was also giving the wrong answer. Recently, it has been shown, in a perceptual decision-
making task (i.e., judging the beauty of faces) that when individual and group opinions
conflict, the brain generates neural signals in the anterior cingulate cortex (a region located in
the posterior medial frontal cortex) and the ventral striatum that share common features with
the prediction error signal carried by the dopaminergic system, and observed during
reinforcement learning (Jones et al., 2011; Campbell-Meiklejohn et al., 2010). Evidence shows
that the detection of conflicting social feedback is processed by an individual as the detection
of an erroneous action outcome which predicts the magnitude of subsequent behavioral
adjustment (Klucharev et al., 2009). The strength of this ‘prediction error’ signal is correlated
with the amplitude of the conflict, and is predictive of the individual’s propensity to change

future decisions to conform to the group (Klucharev et al., 2009). These results show that the

35



mere presence of a group generates prior expectations that bias the observer’s appreciation of
the behavior of individuals belonging to this group, and alters her/his own decision criterion as

well.

2. Motor expertise

Action understanding and prediction also benefits from prior knowledge acquired from past
experience. Indeed, one can predict the end-state of a movement from its starting
configuration, but such a prediction may also depend on the motor expertise of the observer.
For example, Romani and colleagues (2003) asked basketball players and naive participants to
predict the end-states of filmed basketball free throw shots. By the third frame of the video
clips, basketball players were much more accurate than non-experts in predicting whether the
ball would enter the basket or not. This effect of expertise has been shown to be implemented
in the observer’s own motor system, as revealed by an increase of the corticospinal excitability
during action predictions by expert observers (Aglioti et al., 2008). This finding suggests that
motor expertise helps the observer predict the end-state of an observed action (provided it
belongs to their domain of expertise) by enabling a fine-grained analysis of action kinematics.
Prior motor information emerges from the formation, through practice, of skillful motor
programs the observer uses to anticipate the course of an action. It is of note that the two
studies mentioned above do not specify the extent to which motor priors acquired from
expertise bias the observer’s intention predictions. Rather, these studies demonstrate that
motor priors are a useful source of information for on-line monitoring of action goals whose

representation is already well specified.
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3. Statistical regualities of past events

Another form of prior information acquired from past experience may also play an important
role in action understanding. It is well known that many of our most fundamental abilities are
the result of an implicit adaptation to the statistical regularities of the environment (Reber,
1967, 1993). The ability to extract the structure of events from their frequency of occurence
has been shown to generalize in a number of domain such as language acquisition or
perceptual learning. Interestingly, these mechanisms of statistical learning appear to be
functional at a very early stage of the cognitive development of young humans. Indeed, even
infants are able to detect complex statistical patterns and adapt their future behavior
accordingly (Gopnik and Wellman, 2012). For example, Saffran and co-workers (1996)
investigated how 8-month-old human infants segmented words in a corpus of artificial speech.
The underlying assumption of the authors was that in natural speech, adjacent sounds that co-
occur with a high probability are usually found within words, whereas low probability sound
pairs tend to span word boundaries. According to the authors, this difference in likelihood of
co-occurrence provides potential information for word boundaries, and could contribute to
early language acquisition by strengthening the ability to segment the speech into meaningful
units. They showed that young infants were able to extract statistical patterns in auditory input
that are based on transitional probabilities defining the sequencing of the input's components.
Similar results were also obtained with the learning of sequences of discrete visual stimuli
whose ordering followed a statistically predictable pattern (Fiser and Aslin, 2002a,b), and so
even with younger children of 2 months of age (Kirkham et al., 2002). Furthermore, a recent

study by Wu and collaborators (2011) showed that once the statistical patterns have been
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extracted from the co-occurence of visual stimuli, 9-months-old infants are capable of forming
expectations about visual objects and use them to make inference about their properties (see
also Kersten et al., 2004).

The variety of cognitive domain in which statistical learning appears to be efficient
suggests that these learning strategy is ‘domain general’, that is to say, can potentially be
extended to the learning of many other forms of stimuli (Kirkham et al., 2002). As such, there
is no reason that action understanding and action prediction would not benefit from statistical
information derived from past experience of the observer (Tenenbaum et al., 2011). Indeed,
accumulating information about the number of times a specific action sequence is followed by
a specific goal, or about how frequently an action sequence has been performed to achieve a

particular intention, may actively shape predictions made by an observer.
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C.  Solving the inverse problem: rationality, simple heuristics
and probabilistic inference

All these sources of prior information — i.e., social environments, motor expertise, and
statistical structure of past events — can be used by an observer to constrain the space of
candidate intentions that potentially drive the behavior of the observed agent.

Over the last decade, a growing number of studies have investigated the type of
inferential mechanisms involved in action understanding and prediction. In the next
paragraphs I will outline two types of inferential mechanisms, and | will distinguish them on
the basis of both their computational complexity and the type of information computed. These
two classes of mechanisms may interact in action understanding and action prediction. The
first type of mechanism can be termed ‘heuristic’ by analogy with Artificial Intelligence.
Heuristics provide the advantage of being computationally tractable, though restricted to a
narrow domain (Chase et al., 1996). We specifically aim to describe a heuristic that plays an
important role in action understanding: the naive theory of rational action (Gergely and Csibra,
2003) whereby observers assign goals to agents through estimating the optimality of their
actions. The second type of mechanism is the Bayesian probabilistic inference, which provides
the advantage of being very flexible, though computationally more complex (Baker et al.,
2006; Baker et al., 2009). Interestingly, these two types of inferential mechanisms — i.e.,
Bayesian inference and simple heuristics — share a similar basis: both should be rational in
some way, and both are guided by a rational interpretation of the observed action (Gergely and

Csibra, 2003; Baker et al., 2006, 2009).
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1. About rationality

It is important to delimit the notion of ‘rationality’ prior to going further. Generally, the term
‘rationality’ defines a particular causal relationship that links the components of reasoning and
action. Specifically, it refers to the idea that the means used to conduct reasoning or to perform
an action are appropriate given the desires that motivate them. Thus, the notion of ‘rationality’
crucially depends on the notion of ‘goal-directedness’. Of note is that rationality refers to a
very specific type of causal relationship that one can distinguish from the causal relationship
through which physical events are usually described. For example, there is no reason to
believe that a planet behaves rationally when it follows its orbit. Here, the causes that describe
the relationships between the components of such a physical system are formal and efficient,
but not ‘finalistic’. It has long been argued that behaving rationally — i.e., choosing the
appropriate means to optimize the chance of achieving a desired goal — amounts to applying
the rules of the probability theory (Laplace, 1814). In the next paragraph | will explain that
such approach is, however, no longer adapted to explain human action planning, execution,
and prediction. Rationality of human behavior and decision-making is not absolute but limited,
bounded. In other words, rationality is contingent and depends on the internal constraints of

agents, as well as on external constraints of the environment.

1.1. Rationality is bounded

Humans and other animals make inductive inference. Firefighters predict how fire will

progress from various cues such as smoke and roof ‘sponginess’, while peahens rely on how
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elaborated peacocks’ tails are to infer their fitness before deciding whether to mate or not
(Petrie, 1994). For firefighters and peahens alike, the cues which their inferences are based on
are typically uncertain. So how can organisms make rational inferences based on uncertain

cues? According to Peterson and Beach (1967),

“Probability theory and statistics can be used as the basis for psychological
models that integrate and account for human performance in wide range of

inferential tasks.” (p.29)

Following this classical view, human reasoning can be evaluated within the norms
provided by probability theory: if the outcome of reasoning diverges from norms of the
probability theory, one may conclude that there is something wrong with such reasoning, not
with the norms. If there is a mismatch between the two, then the assumption of rationality is
broken.

Suppose you and four of your friends buy lottery tickets consisting of six number
combinations each. Suppose that the combination of numbers is randomly assigned to each
ticket. Suppose that, on the five tickets you and your friends bought, only one is composed of
successive numbers — let’s say ‘22-23-24-25-26" —, and the four others are composed of non-
successive distributed numbers — let’s say ‘3-9-14-20-33-42’. In this situation, the probability
theory clearly argues that each possible combination is as likely to be a winning combination
as another, due to the law of random draws independence. Thus, a combination composed of
successive numbers has the same chance of winnig as a combination involving non-successive
numbers. Now suppose you ask each of your friends to choose a ticket among the five you

bought. The ticket that will remain to you will depend on the choices of your friends. Under
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such circumstances, it is highly likely that you ‘inherit’ a ticket with six successive humbers —
being likely that your friends had chosen tickets with non-successive numbers. Indeed, agents
behave in this situation as if they believed that the better distributed combinations would have
more chance to win. Even though people know the law of random draws independence (i.e.,
each number combination has an equal chance to win), the belief that choosing a non-
successive number distribution is more advantageous persists. This example shows that many
of our daily inferences do not follow the rules of probability theory, especially in situations
where the weighting of every possible alternative leads to a combinatorial explosion. As such,
“rationality” rules do not even approximate human behaviors and inferences, for the human
brain has not evolved to perfectly understand the rules of probability theory. In such
circumstances, no wonder some researchers interpreted human behaviors and inferences as
non-rational, for the human brain is not a super computer adapted to embody the rules of

probability theory. For example, Slovic and co-workers wrote (Slovic et al., 1976):

“It appears that people lack the correct programs for many important
judgmental tasks.... it may be argued that we have not had the opportunity to

evolve an intellect capable of dealing conceptually with uncertainty.” (p.170)

Yet, given the success of the human interpretative skills one has to admit that, to a
large extent, humans are ‘rational’ in some way. The example of lottery tickets suggests that
humans have a strong tendency to attribute decision-relevant properties to objects that, in fact,
do not have any. This tendency highlights the need of finding cues rendering our choices

satisfactory, guided by a specific ‘reason’ or, so to say, rationale. In this context, the example
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of lottery tickets shows that our inferences are biased by our beliefs and other prior
expectations about events, whether they be valid or not.

According to some authors (Chase et al., 1996; Newell, 2005; Simon, 1990), the
classical view of rationality neglects this crucial aspect of behaviors as it assumes that rational
inference is blind to our expectations regarding the content of the processed information and
the context of the task. The alternative view on rationality posits that, given the computational
limitedness of the human mind, human rational inference is necessarily bounded by a number
of constraints associated with the agent itself or with the context of the task (Gigerenzer and
Gaissmaier, 2010; Griffiths et al., 2010).

Rationality is thus limited and bounded (Simon, 1990) in the sense that the agent’s
behavior is strongly constrained by cognitive capacities, time, and structure of the
environment such as the search space of a task (i.e., the number of alternatives that can be
used as relevant solutions to solve a task problem; see Acerbi et al., 2011, 2012). A decision
can thus be interpreted as rational when it is satisfying enough, given the state of these
constraints.

Inference-making mechanisms also depend on the nature of these constraints. For
example, imagine someone who has to infer the emotional state of a person by scrutinizing her
facial expressions — let’s say a smile. What kind of computation is her brain performing? If the
information she has is limited to only the perception of the face, without any additional
knowledge, her brain will use a simple recognition heuristic for the detection of facial
expressions, and she will conclude that the observed individual is happy. Here, the heuristic
underlying the inference consists of a simple cognitive module that generates prior

expectations filtering the sensory inputs. If the inputs pass the filter, prior expectations are
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satisfied, and her brain considers the face as expressing happiness (Sperber and Hirschfeld,
2004). This kind of recognition heuristic provides a rapid and parsimonious solution to the
task problem, and is likely to be valid in a very large number of situations (possibly providing
arguments for why such a module may have evolved through natural selection). Now suppose
that the very same person usually feigns happiness to practice deception, but the observer is
not aware of that. Her brain will use the same (invalid) recognition heuristic. Finally, suppose
the observer and the observed individual are colleagues: the former knows from experience
that the latter usually feigns happiness to practice deception, especially in the case where a
personal interest is at stake. In this context, the mechanism producing the inference will be
more complex and flexible, so that expectations generated by the face recognition heuristic are
weighted by prior expectations that have been formed through probabilistic sampling of past
observations, and by the context of the situation. In any of these cases, the decision that is
made about the psychological state of the other person is rational, whether it is based on
simple heuristics or more complex probabilistic inferences. Such rationality is determined by a
set of internal and external constraints — such as the cognitive capacity of the decision-maker,
the knowledge she possesses about the observed agent, and the environmental context in

which the situation takes place.

1.2.  The principle of rationality

Strikingly, it seems that the computational principles of bounded rational inferences are the
same as those driving our assumptions about the rationality of an observed action. According

to Dan Dennett (1971; 1991) humans do not interpret other people’s behavior as any other
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physical system, but as an ‘intentional system’ endowed with specific desires, beliefs,
intentions, etc. As such, our interpretation of a person’s intention is derived from an estimation
of the rationality that characterizes her/his action. Such estimation is not guided by the rules of
probability but mostly determined by situational constraints and by intrinsic characteristics of
the agent. Put another way, humans assume by default that other agents behave rationally
given situational constraints: this is what Dennett called the ‘principle of rationality’.
According to him, this associated strategy — termed ‘intentional stance’ — provides a powerful
predictive model of living organisms’ behavior. This model would be much better than, for
example, a predictive model based on physical causality.

To illustrate his idea, Dennett (1987) imagines a martian who observes the final of the
american football championship — the Super Bowl. Suppose that an inhabitant of Mars points a
very powerful telescope at Earth and, by chance, falls on the field where the Super Bowl is
currently being played. Suppose that our martian is omniscient in perceiving and predicting
events following a physical causal scheme. Our martian observes human-shaped entities
running to and from the field, throwing a ball, chasing after each others, violently punching
each others, etc. Dennett argues that if our extraterrestrial observer cannot apply the scheme of
‘intentional pattern’ within the principle of rationality, he will not be able to perceive the
observed events as stages of a game, that is to say, as stages of a joint, intentional activity in
which events have a particular ‘reason’ to occur. If our martian does not discover this
interpretative scheme, he will only appreciate the physical aspects of events: movements,
trajectories, collisions, etc. But let’s suppose that he manages to adopt the “intentional stance”
so that he is now able to enjoy the show for what it is: he will understand why one of the

human-shaped entities jumps up and down after having crushed the ball behind a seemingly
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arbitrary line, he will further understand why only the cheerleaders of one side burst out and
those of the opposite side do not, etc.

According to Dennett the human brain has been tuned by natural selection to perceive
‘intentional patterns’ in the behavior of humans and other animals. Dennett further remarks
that some humans also use the intentional stance to attribute rational causes to non-biological
events, such as the hand of God in explaining the occurrence of natural catastrophes. Recently,
research in the field of cognitive neuroscience identified in young human infants a very similar
interpretative strategy (Csibra et al., 1995). These data reveal a very early aptitude of humans
to infer goal-directed, intentional patterns from biological and non-biological events. This
heuristic would assume a priori that observed behaviors are rational, given the constraints of

the situation and the internal properties of the agent.

2. A simple heuristic for goal attribution: the naive theory of rational action

A number of studies have demonstrated that humans are equipped with an interpretative skill
that enables the perception of observed actions as goal-directed, independently of whether
actions involve, or do not involve, biological movements (Gergely and Csibra, 2003).
Strikingly, it has been shown that this skill operates very early during the development, around
the end of the first year of birth (Gergely et al., 1995).

For example, Gergely and colleagues (1995) habituated twelve-month-old infants to a
computer-animated goal-directed event during which a small circle approached and reached a
large circle by jumping over (‘means act’) an obstacle between them (‘situational constraint’).

During the test phase, experimenters changed the situational constraint by removing the
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obstacle. Infants were then presented two test conditions: one in which the small circle
approached and (contacted) the large circle by jumping as in the habituation phase (but
without the presence of an obstacle), and a new one in which the small circle went straight
towards the large circle. Researchers found that infants looked longer at the jumping action,
but showed no dishabituation to the new straight action. The increased looking time registered
during the jumping action indicated a violation of infants’ expectations. This violation of
expectations was due to the fact that the small circle used a suboptimal, inefficient means to
achieve its goal (contacting the large circle) as there was no obstacle to jump over. In contrast,
the fact the the looking time did not increase during the straight action was interpreted as a
satisfaction of infants” normal expectations: the straight action appeared as the most efficient
means to achieve the goal in this situation. These results are interesting for several reasons.
First, they reveal that very young infants are able to perceive actions as goal-directed. Second,
they are able to evaluate which alternative, according to the constraints of the situation,
provides the most efficient means to achieve a goal. Finally, infants expect the ‘agent’ to adopt

the most efficient means available to achieve a given goal.
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Figure 3. Representation of the three types of inference that infants can make on the basis of a teleological
representation of actions (taken from Csibra and Gergely, 2003). One-year old infants were habituated to the
event depicted in the left column (Observed behaviour). Their interpretation of this event was tested by
presenting them with two different outcomes, one of them being incompatible (the middle column), the other one
being compatible (the right column) with a possible inference based on a teleological representation of the event.
Infants looked longer at the incompatible outcome than the compatible outcome events, indicating that they based
their inference on a teleological interpretation of the observed behaviour. The inference of action means (a) has
been demonstrated by Gergely et al. (1995) and Cisbra et al. (1999). The inference of action goals (b) and
situational constraints (c) have been demonstrated by Csibra et al. (2003).

According to the authors, this early sensitivity to action goals and means cannot be
explained by either the framework of the ‘theory-theory’ or by the ‘simulation theory’ alone.
Instead, Gergely and Csibra propose that young human infants can “represent, explain and
predict goal-directed actions by applying a non-mentalistic, reality-based action
interpretational system, the ‘teleological stance’ ” (p.289). The teleological stance is a
primitive version of the intentional stance proposed by Dennett. Like the intentional stance,
this interpretative system is hard-wired, and drives the inference of teleological (i.e., goal-
directed) — rather than causal — relationships between action sequences, future goals, and

current situational constraints. The advantage of this system is twofold. First, it enables young

48



individuals to interpret observed actions as goal-directed without using a theory about how
other people minds work (through reference to propositional concepts such as ‘belief’,
‘desire’, or ‘intention’). Second, it enables young individuals to interpret actions of non-
biological agents (e.g., a circle animated on a computer screen) as goal-directed, without any
reference to motor simulation or resonance mechanisms. Furthermore, the authors argue that
neither the theory-theory nor the simulation theory provide sufficient arguments to account for
the type of mechanisms whereby young infants detect the relevant aspects of a current
situation and use these aspects as the basis for their interpretation of the observed action. The
mechanism would simply rely on a simple but central axiom: the rationality principle.

As described above, the rationality principle provides a powerful predictive model of
events. This model allows human agents to infer a specific type of causal relationship that
other predictive strategies (e.g., strategies based on physical cues) do not permit. Following
this model, human observers expect others' actions to be the most efficient means of achieving
a desired goal, given the current constraint of the situation. An action can be considered as
“efficient” when it minimizes the cost of motor parameters, for example, or when it optimizes
the probability of properly achieving the desired goal. The rationality principle is an axiom
that relates to each of the other three types of intentional mental states that may be attributed
to an agent: her beliefs (‘she believes that’), her desires (’she wants to”), her intentions (‘she
intends to’). The content of these three types of mental states represents the three main aspects
the teleological stance relies on: the situational constraints (‘She believes that’), the goal (‘she
wants to’), the action (‘she intends to do’). One can thus imagine an organism without any
naive psychology that would benefit from a teleological interpretative mechanism. This

organism would be able to evaluate an observed action as the most efficient mean to achieve a
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goal simply by applying the rationality principle to the relevant aspects of the current
situation.

The rationality principle thus serves two functions. First, it generates prior expectations
about how “appropriate” an observed behavior is. Second, these prior expectations can be used
to restrict the space of possible causes for an observed action (see figure 3): given the
information available about the specific contents represented by any two of the three aspects
of the reality (e.g., goal and situational constraints), one can infer what the content represented
by the third aspects ought to be (e.g., action means) (Gergely et al., 1995; Csibra et al., 1999;
Csibra, 2003).

In summary, human infants are equipped with a naive theory of rational action, similar
and the one postulated by Dennett. This theory drives the interpretation and the prediction of
other people’s actions. According to Gergely, Csibra and co-workers, the content of this naive
theory is essentially non-mentalistic, and accounts for goal attribution without motor
simulation. It is based on the rationality principle, which enables the guidance of everyday
inference about action goals, means, and situational constraints in which an action takes place.
This ‘teleological stance’ would be the pre-requisite for using a more complex, mentalistic
interpretation of actions. Recent evidence suggests that this interpretative strategy is applied in
a variety of contexts (Csibra, 2003, Wagner and Carey, 2005) and convincingly accounts for
the behavior of different sorts of ‘agents’: human-like (Sodian et al., 2004; Kamewari et al.,
2005) or not (Luo and Baillargeon, 2005; Bir6 and Leslie, 2007); biologically plausible or not
(Southgate et al., 2008). Remarkably, it has also been shown that ‘rationality’ of an action was
also used by human infants as a key characteristic to decide which behaviors to imitate or not

(Gergely et al., 2002).
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Together, these data show that interpreting other people’s behavior is not primarily
driven by motor properties of the underlying action. Rather, prior expectations, such those
elicited by the teleological stance, play a critical role in our ability to understand and predict

other people’s behavior. Crucially, this ability can be achieved through very simple heuristics.

3. A flexible mechanism for goal attribution: Bayesian probabilistic inference

In the last past few years, some researchers investigated the apparent ease of goal inference
made by human infants and adults. In particular, Baker and co-workers (2009) have
consistently argued that, given the inverse problem of goal attribution (i.e., the fact that the
same sensory input may have many different causes), goal inference must involve complex
computations, rather than simple heuristics.

Furthermore, according to these authors, accounting for the problem of action
prediction with classical statistical learning mechanisms — i.e., recording over the infinite
number of experienced action situations all the ways any number of intentions can be achieved
and all the ways they effectively are achieved — would be almost impossible. Instead, action
understanding and action prediction require a more flexible approach.

Starting from the assumption that everyday inferences about other people’s intentions
are made in noisy or uncertain situations (due to the hidden nature of intentions and to the
intrinsic scarcity of perceptual inputs), Baker and collaborators claim that such inferences can
be convincingly described according to the principle of Bayesian probabilistic inference.

Griffiths et al. (2010) describe the basics of Bayesian probabilistic inference as follows:
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“if a learner considers a set of hypotheses H that might explain observed data
d, and assigns each hypothesis h € H a probability p(h) before observing d
(known as the ‘prior probability’), then Bayes’ rule indicates that the
probability p(h|d) assigned to h after seeing d (known as the ‘posterior
probability’) should be:

p(d|h) p(h)
Ynen p(d|h) p(h)
where p(d|h) is the ‘likelihood’, indicating the probability of observing d if h

p(hld) =

were true, and the sum in the denominator simply ensures that the posterior
probabilities sum to one. Bayes’ rule thus indicates that the conclusions
reached by the learner will be determined by how well hypotheses cohere with

prior knowledge, and how well they explain the data.” (p.358)

Thus, Bayesian probabilistic models highlight the role of prior knowledge in
accounting for how people learn from noisy, or incomplete data, and provide a framework for
explaining precisely how prior knowledge interacts with data to guide inductive inferences.
Remarkably, these models do not require prior knowledge to be innate, such as in the case of
knowledge derived from our intuitive theories (Clark, in press). Prior knowledge can also be
learnt from observed past experience through extracting the probablistic structure of events.
Following this line, Baker et al. (2009) demonstrated in a series of experiments that solving
the inverse problem of action understanding precisely requires prior knowledge about the
structure and the content of agents’ behaviors and intentions. Specifically, it requires the
ability to navigate through a large space of possible interpretations and to infer the best
candidate alternative.

Put in the context of predicting an agent’s intention from perceived movement

kinematics, the Bayesian probabilistic inference combines two parameters: the prior
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probability [p(h)] — i.e., the probability of observing the achievement of a possible intention
(the set of hypotheses H) before the occurrence of the next behavior (the observed data d); and
a perceptual information having a certain likelihood [p(d|h)] —i.e., the likelihood of perceiving
a certain behavioral sequence (d) given that a certain intention (h) is true. From the
combination of these two parameters follows a third parameter, which is the outcome of the
Bayesian inference: the posterior probability p(h|d) — i.e., the probability that the observer’s
assumption is true (h) given the currently observed behavior (d). Thus, predicting the
achievement of a certain intention would consist of combining prior knowledge about the
agent’s intentions (acquired from probabilistic sampling of past events) with the perceptual
evidence accumulated over time.

This is precisely what we (Chambon et al., 2011b) showed in a recent study (see the
published version of the article in appendix n°1). This study aimed at investigating action
prediction in healthy adults and in patients suffering from schizophrenia, who are known to be
impaired at understanding the intentions of other agents. The experimental setting consisted of
four action prediction tasks in which participants observed a filmed agent performing several
types of actions which varyied according to the abstractness of the achieved goal as well as to
the target of the action. In the first two tasks participants were required to infer the basic (i.e.,
the simple goal of a motor act) and superordinate intentions (i.e., the general goal of a
sequence of motor acts) of the observed agent. In the third and the fourth tasks, they were
required to infer the agent’s social basic and social superordinate intentions (i.e., simple or
general goals achieved within the context of a reciprocal interaction). In each of these tasks,
both prior expectations about the observed agent’s intentions and perceptual information were

systematically varied. Prior expectations were manipulated by varying the probability of
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observing the agent achieving a certain intention, at the expense of other competing ones.
Perceptual information (the movement kinematics of the observed agent) was manipulated by
varying the completeness of the action sequence. The underlying hypothesis was that intention
inference of healthy individuals depends on a consistent interaction between visual
information and prior expectations. Accordingly, intention inference of schizophrenic patients
was expected to reflect an abnormal interaction between prior information and perceptual
evidence.

As expected, intention inference in healthy individuals reflected an interaction between
prior expectations and perceptual evidence. The inferences were indeed contingent upon an
adaptive interplay between these two sources of information, with healthy participants tending
to progressively rely more on their prior expectations as the reliability of perceptual evidence
decreased, and vice versa. Crucially, this interaction varied according to the target of the
intention to be inferred, with prior information gaining priority over perceptual evidence when
inferring intentions within a social context rather than a non-social context. In patients with
schizophrenia, results showed no impairment at predicting non-social basic intentions, but
they were impaired for more abstract types of intentions — i.e., non-social superordinate
intention, and both types of social intentions. As expected, these impairments were associated
with abnormal interactions between prior information and perceptual evidence. In the non-
social superordinate condition, schizophrenic patients massively relied on their prior
expectations, whilst disregarding sensory evidence. In contrast, social conditions prompted
exactly the opposite pattern, with patients exhibiting weaker dependence on prior expectations

whilst relying strongly on perceptual evidence.
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This study first showed that prior information acquired from probabilistic exposure and
perceptual information conveyed by movement Kkinematics interact to drive action
understanding. Second, we found that the shape of this interaction was modulated by the type
of intention to infer. The greater the action goal was delayed (superordinate intentions), and
the more abstract it was (social intentions), the less perceptual information conveyed by the
observed kinematics was prone to reduce the space of competing intentions. Accordingly, the
more motor possibilities there are to achieve an intention (many-to-one mapping), the more
observers relied on their prior expectations to infer it.

Interestingly, these results may help reconcile the two major accounts of action
understanding developed over the last two decades, namely, the simulation theory and the
theory-theory. According to the simulation theory, understanding other people’s intentions
requires simulating the observed action via the activation of our own motor planning system.
The result of this simulation process is the selection, in the observer’s own motor repertoire, of
the intention that may have caused the very same action. This explanation highlights the role
of visuomotor information extracted from the observed kinematics. According to the theory-
theory, on the other hand, action understanding is based on an inferential mechanism that
emphasizes the contribution of context-related prior knowledge derived from our intuitive
theories of human behavior (e.g., the naive theory of rational action proposed by Gergely and
Csibra, 2003) as well as on the observer’s past experiences and rules she/he has drawn from
them. While apparently opposed, the data from Chambon et al (2011) are consistent with
several other recent studies which together plead in favor of a complementary role for
simulation and inferential mechanisms in action understanding (Brass et al., 2007; Keysers &

Gazzola, 2007; Kilner et al., 2011; de Lange et al., 2008). Taken together, these studies
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suggest that intention attribution may rely on an adaptive balance between bottom-up sensory
and top-down prior information, whose equilibrium would be modulated by the type of
intentions to be inferred, depending on their temporal and structural complexity — from basic
(one-to-one action/intention mapping) to superordinate (many-to-one action/intention

mapping) and social intentions.

56



D.  Understanding tool-use actions: how object affordances help
solve the inverse problem

The simulation and Theory-theory are expected to account for the understanding of a variety
of actions. Yet, it is of note that a majority of studies that investigates motor simulation
mechanisms uses a specific class of complex actions as stimuli. This class of complex actions
concerns tool-use behaviors (see for reviews, Rizzolatti and Craighero, 2004; Rizzolatti and
Sinigaglia, 2010). Tool-use refers to a type of behavior that consists in manipulating “external
objects with the goal of altering the physical properties of another object, substance, surface,
or medium, via a mechanical interaction”, or that consists in “mediating the flow of
information between the tool user and the environment” (St Amant and Horton, 2008,
pp.1203).

Tool-use behaviors occupy a particular place in human and animal behavior and
deserve a particular attention for several reasons. First, the modern human environment is
overrun by technology, to such an extent that a majority of our daily actions are directed
towards objects, tools and other artifacts. Second, tool-use behaviors are the most frequently
observed markers of cultural traditions, both in human societies and in the wild (Whiten et al.,
1999; Whiten et al., 2005). Third, tool-use behaviors is often take as a comparative model to
assess the ability of individuals to understand and learn socially from their conspecifics
(Whiten, 2011). Finally, the mastering and manufacture of tool-use is frequently summoned to
draw hypotheses about human cultural and cognitive evolution (Sterelny, 2003a; Stout and

Chaminade, 2012).
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1. Attributing a function to a tool requires mechanisms of intention inference

Tool-use refers to a type of behavior that “consists in manipulating external objects with the
goal of altering the physical properties of another object, substance, surface, or medium, via a
mechanical interaction, or that consists in mediating the flow of information between the tool
user and the environment” (St-Amant and Horton, 2008). Understanding tool-use behaviors
requires the acquisition of knowledge about its use and function from observing action means
and goals achieved by tool users. As such, tool-use behaviors cannot be understood at the level
of motor intentions only, where simple object manipulations are involved. Instead, the
achievement of a tool’s function refers to a particular instance of “super-ordinate” intention:
the object itself is not the target of the intention but just a proxy to achieve a temporally distant
goal. As such, tool-use behaviors are a particular incarnation of the inverse problem. They
cannot be solved through merely analyzing the motor sequence underlying the observed
behavior. A functional intention can be achieved using many different motor sequences, and a
particular motor sequence can be performed with the aim of achieving many different
functional outcomes.

As Csibra and Gergely observed (2007), attributing a function to a tool amounts to
‘sticking’ a particular action goal to this tool. As such, the function of an artifact is a ‘frozen’
goal (a tool can serve a similar goal, or function, under a large scope of situations). Obviously,
understanding and predicting tool-use behaviors from observation would thus engage the very
same mechanisms as those described in the preceding sections, namely, i) a mechanism of
visuo-motor transformation subserving the simulation of the observed tool-use action, ii) a

simple heuristic enabling goal attribution with regard to the rationality of the observed tool-
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use action, and, finally, iii) a more elaborate inferential mechanism based upon prior
knowledge acquired from probabilistic sampling of past observations. Together, these
mechanisms would enable human observers to derive knowledge about the possible uses and
functions of a tool from observing goal-directed, intentional movements performed by an

agent.

2. Attributing a function to a tool requires the detection of object affordances

In addition to these mechanisms, human observers may benefit from another type of heuristic
to understand and predict tool-use behaviors. Such an heuristic is based upon the detection of
low-level, local sources of information, such as the manipulative properties of objects, namely,
their ‘affordances’ (Gibson, 1979). Affordances are not intrinsic properties of objects. Rather,
an affordance defines a relational property that emerges from matching the perceived physical
features of an object (e.g. size, shape, texture, density) and the agent’s sensorimotor
constraints, her goals, plans, values, beliefs, and past experiences (Norman, 1988).
Specifically, affordances ‘suggest’” how an agent might interact with an object, given the
sensorimotor constraints of the acting organism. According to Gibson (1979), they represent
the basis which any living mobile organism relies upon to guide its actions in the world. For
example, the vision of a wooden stick planted in the ground, of its size and shape, may prompt
the action of grasping, whereas its density and texture make it perfect to take a piece of fruit
down from a tree. For birds, however, the very same stick may afford the action to rest on its

upper extremity, avoiding the threat of terrestrial predators.
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To underline both the similarities and the differences from the affordance notion
elaborated by Gibson, Ellis & Tucker (2000) proposed the notion of ‘micro-affordances’ to
refer to the potentiated elements of an action. Microaffordances are brain assemblies that
represent objects; they are the product of the conjoining, in the brain, of visual responses and
action - related responses that have developed throughout individual and species history as
part of the process of adapting to the environment. Similarly to the original notion of
affordances, microaffordances are elicited automatically, independent of the goal of the actor.
Thus, microaffordances do not pertain to complex actions, which are probably mediated by the
actor’s goal, such as drinking. Rather, they facilitate simple and specific kinds of interaction
with objects. These simple interactions with objects also imply the activation of conceptual
knowledge. In fact, microaffordances differ from Gibsonian affordances in that they are much
more specific and are a consequence of object-based attention (Vainio et al., 2007). They do
not elicit grasping, but a specific component of grasping, which is suitable to a particular
object. For example, a ball is represented by making accessible the information that it can be
reached and grasped, in order to play with it.

Some recent findings suggest that the detection of affordances is implemented within
motor simulation mechanisms similar to those that are involved in action observation and
action understanding. Specifically, a population of neurons mostly located in the anterior intra-
parietal lobule (AIP) and F5 area of the monkey brain — the canonical neurons — has been
shown to be specifically recruited when individuals deal with geometrical objects. By testing
responses of single neurons located in area F5 of the monkey brain during object-oriented
motor actions, Rizzolatti (1988) and colleagues have shown that F5 neurons selectively

respond to different types of hand prehension movements (e.g., precision grip prehension,
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whole-hand prehension). Canonical neurons in areas F5 and AIP have also been shown to
selectively code for visual properties of three-dimensional objects (size, shape, and
orientation) in a corresponding motor format (Murata et al., 1997; Murata et al., 2000). In
support of these findings, inactivation studies showed that artificial lesions of the monkey’s
area AIP (Gallese et al., 1994) or F5 (Fogassi et al., 2001) elicited a substantial deficit in the
ability to move the hand congruently with the object size and shape. Binkofski and coworkers
(1998, 1999) showed in human subjects that lesions induced in the anterior part of the lateral
bank of the intraparietal sulcus led to deficits of hand shaping for grasping objects similar to
those observed in inactivation studies with monkeys. The presence of canonical neurons in the
intraparietal and ventral limbs of the precentral sulcus of the human brain has also been
suggested (Grezes et al., 2003). The activity of canonical neurons is thought to generate a set
of motor primitives that are recruited in any type of motor action involving effector/object
interactions (Flash and Hochner, 2005).

These motor primitives would participate in the generation of a set of structured motor
patterns which affordances might be primarily elaborated upon. However, something more is

needed to make affordances predictive cues of the object’s function.

3. Affordances, sensorimotor constraints, and the principle of rationality: the

emergence of biomechanical priors

The role of affordances in the individual exploration of objects and the discovery of their
function is well known (Osiurak et al., 2010; Visalberghi et al., 2009; Whiten et al., 2004). In

a recent theoretical commentary (Jacquet et al., 2012a, in press), we proposed that the primary
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function of affordances is just like other types of prior information - to narrow the space of
possible motor acts that one can perform on a given object or tool.

Our proposal is that affordances generate effector-dependent, biomechanical prior
expectations which are in line with the agent’s sensori-motor constraints. Crucially, this type
of prior information would emerge through a primitive form of the rationality principle that
would bias agents to act towards objects with the aim of biomechanical optimization.
Interestingly, it has been shown that both human and non-human primates indeed favor object-
directed behaviors that minimize the muscular and/or articulator costs, given the object’s
affordances and the desired outcome (Rosenbaum et al., 1992; Rosenbaum et al., 1996; Sartori
et al., 2011; Weiss et al., 2007). Biomechanical priors elicited by object affordances would
thus provide a simple heuristic for inferring the function and use of a tool. For example, based
on the amplitude of the observed agent’s grip aperture and the orientation of her wrist, as well
as on the size, the shape, and the texture of the object to be grasped, one may predict whether
this object is meant to be lifted, pushed, or merely transported (Chambon et al., 2011).
Biomechanical priors elicited by affordances may exert strong influences on inference-
making, as the observed agent is expected to adopt a behavior that minimizes biomechanical
costs. Therefore, the understanding and the prediction of tool-use actions should be facilitated
when the observed agent uses a tool in a way that fits the observer’s biomechanical
expectations (low cost behaviors), and should be jeopardized in the case where these
expectations are patently violated (high cost behaviors). In summary, understanding and
predicting tool-use behaviors performed by a third party recruit several interacting
mechanisms. First, a mechanism of motor simulation that, articulated around the axiom of

rationality, enables observers to estimate the biomechanical costs of an action. This estimation
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would then bias the selection of the action that, among competing alternatives, is optimal
given the object configuration and the desired goal. Second, a mechanism of probabilistic
inference enables the observers to derive knowledge from past observations. Such prior
knowledge would participate in the specification of its function and use. These mechanisms
may combine when prior knowledge and biomechanical priors elicited by object affordances
converge. However, they may also compete when these classes of prior information actively
diverge; that is, when the agent’s behavior violates the biomechanical expectations of the

observer whilst being congruent with past observations — and vice versa.

Figure 4. Like humans, non-human animals can take advantages of object affordances to guide their
actions in the world. Affordances provide cues that narrow the space of possible motor behaviors an
individual can execute, given its biomechanical architecture, making possible the achievement of complex
behaviors, such as tool-use, at low cost. The left and the middle photographs are taken from Seed and
Byrne, 2010; the right photopragh is taken from Weiss et al., 2007.
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E. Hybrid model of action understanding

Throughout the present theoretical introduction we have examined several types of
mechanisms that could help in solving the inverse problem associated with action
understanding, and have isolated two types of inference mechanism, each being dependent on
the assumption of rationality and varying according to their computational complexity. In
particular we have discussed how simple heuristics — teleological stance and affordances —, as
well as probabilistic inference, provide the observer with an information that movement
kinematics alone cannot provide. Thus, the teleological stance enables one to derive prior
expectations about the well-formedness of an observed behavior. Affordance-based heuristics
rely on biomechanical prior expectations that emerge from matching the physical properties of
an object with sensorimotor constraints shared by both the observer and the observed agent.
These biomechanical priors over-weight action goals (or tool functions) whose achievement
minimizes biomechanical costs. Finally, Bayesian probabilistic inference allows an observer to
predict an agent’s intention by combining prior knowledge about the agent’s intentions
(acquired from statistical regularities of past observations) with perceptual evidence conveyed
by the action scene.

These three types of inference contribute to solving the inverse problem of action
understanding by constraining the space of possible intentions that may have caused the
observed action. According to the type of action being predicted, these three respective

mechanisms are informed by either sensory (movement kinematics and situational constraints)
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or more abstract cues (goal representation), and even propositional information (the degree of
belief in one particular intention). These mechanisms are somehow compatible with both a
simulationist and a theory-theory account of action understanding, emphasizing the relevance
of a hybrid model that would clarify, at both cognitive and cortical levels, their mutual

influence during inference-making.

1. The ‘predictive coding’ model

The latest version of this ‘hybrid’ model has been recently proposed by Kilner and
collaborators (2007a; 2007b; 2011). The “predictive coding” model accounts for the adaptive
interaction of two sources of information that are involved in action understanding: the prior
information (being acquired from past experience, or being ‘innate’) and the visuo-motor
information conveyed by the action kinematics. This interaction is explained within a
hierarchical model of action understanding (Grafton and Hamilton, 2007). Note that the
formalism used by the model — the predictive coding — is particularly adapted to account for
how an observer solves the inverse problem of action understanding (e.g., many intentions can
explain a particular motor sequence, or various motor sequences can be peformed to achieve
the same intention).

Kilner and colleagues first point out the lack of empirical evidence for the role played
by mirror neurons (and, by extension, the Action Observation Network — also termed ‘mirror
system’) in the human ability to understand other people’s behaviors, which has led some
researchers to speculate that the Action Observation Network (AON) might not even have any

functional role in this regard (Hickok, 2009). They further claim that such confusion arises
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from the lack of specificity of the ‘action understanding’ concept used in the literature. Indeed,
actions can be described at multiple levels and, consequently, there are multiple levels at
which an observed action can be ‘understood’. Following this, they postulate that
hierarchically distinct cerebral regions (having ‘mirror’ properties or not) subserve the
different levels of action understanding: i) the kinematic level, which refers to the trajectory
and velocity profile of the observed goal-directed action, including both the reaching and
grasping phase of the action; ii) the motor level, which refers to the processing and pattern of
muscle activity required to produced the desired kinematics; iii) the goal level, which refers to
the immediate purpose of the observed action, such as grasping an object; and iv) the intention
level, wich refers to the general (i.e., super-ordinate) reason, or cause, that motivates the
execution of the observed action (see figure 5).

The ‘predictive coding’ framework postulates that each level of the hierarchy generates
predictions that specify, or bias, the representations at the inferior level. Predicitions generated
at the highest levels are then compared with current predictions generated at the inferior
levels. Thus, depending on the type of goal being anticipated, the observer will predict a motor
command that is congruent with this goal and, on the basis of her own motor repertoire, will
generate expectations about the specific kinematics that best fits with the predicted motor
command. The comparison between the predicted and the currently observed kinematics will
generate, in the case of a mismatch, a prediction error. The magnitude of such a prediction
error will then be reduced, via forward connections, by updating the representation elaborated
at the more abstract, higher levels. This exchange of reciprocal signals proceeds until the cause

that most likely explains the observed action is inferred, or, in other words, until the
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magnitude of the prediction error is sufficiently minimized to enable accurate inference
(Kilner et al., 2007a; 2007b).

In this respect, the ‘predictive coding’ model provides a biologically plausible
framework for explaining how the brain solves the inverse problem of action understanding by
minimizing, at each cortical level (kinematic, motor, immediate goal, and intention), the
prediction error that is automatically generated during action observation (see figure 6). When
extended to a hierarchical model of brain functioning, such predictive coding also accounts for
how top-down influences can be produced in a dynamic and context-specific way, through
internal properties of the system itself (Friston et al., 2006). In this context, the estimations
generated at the superior levels are the “priors” that inform the inferior levels. By potentiating
sensory information via top-down adjustments of the prediction error signal, these high-order
estimations make possible intention inferences, even in the case of noisy or incomplete

perceptual information (Baker et al., 2006; Summerfield and Egner, 2009).

67



(@)

(b) ‘ A

Key:

== (Generative model

=== Prediction error

Visual input

TRENDS in Cognitive Sciences

Figure 6. (a) Representation of the three reciprocally connected areas of the
human ‘mirror system’, also called the Action Observation Network (taken
from Kilner 2011). Some frontal (such as the ventral IFG) and parietal (such as
the inferior parietal area) regions are known to contain mirror neurons. These
frontal and parietal areas are reciprocally connected (Luppino, 1999) creating a
premotor-parietal mirror system. Neurons within the STS have also been shown
to respond selectively to biological movements, both in monkeys (Oram and
Perrett, 2004) and in humans (Frith and Frith, 1999; Alisson et al., 2000;
Grossman and Blake, 2002). The STS is reciprocally connected to the inferior
parietal area (Seltzer and Pandya, 1994; Harries and Perrett, 1991) and therefore
provides visual input to the mirror system. (b) Representation of the predictive
coding model of the AON (taken from Kilner, 2011). Predictive coding is
based on minimising prediction error though recurrent or reciprocal interactions
among levels of a cortical hierarchy. In the predictive coding model, at each
level of a cortical hierarchy a generative model is implemented which predicts
the representations in the level below. This generative model uses backward
connections to convey the prediction to the lower level. This prediction is then
compared to the representation in this subordinate level to produce a prediction
error. This prediction error is then sent back to the higher level, via forward
connections, to tune the neuronal representation of sensory causes, which in turn
changes the prediction.
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2. Rethinking the function of the AON: two pathways to action understanding

Recently, Kilner (2011) proposed that, at the cerebral level, the concrete and abstract features
of observed actions are encoded through a dorsal and a ventral pathway. A dorsal pathway —
the AON —encodes the more concrete levels of actions (the kinematic and the motor levels),
while the encoding of the more abstract levels (the immediate goal and intention levels)
depends on the interaction between the AON and a ventral pathway linking the middle
temporal gyrus (MTG) with the anterior inferior frontal gyrus (IFG).

The AON involves three main regions that are reciprocally interconnected. Two of
these regions — the inferior parietal lobule (IPL) and the inferior frontal cortex (IFC) — are
endowed with mirror properties. The IFC and the IPL would be involved in the coding of
action goals. The more posterior parts of the IFC — the dorsal (PMd) and ventral premotor
cortices (PMv) — are involved in the selection of the goal representation that best matches the
observed action, Other parietal regions located near the IPL also participate in decoding
features of an observed action. In particular, the anterior intra-parietal sulcus (AIPs) is known
to be involved in the processing of manual prehension movements of object-directed actions,
and is assumed to code for object/goal interactions (Tunik et al, 2007). These two clusters of
brain regions receive inputs from the superior temporal sulcus (STS), which contains
polysensory neurons that respond to motion from different perceptual modalities (Barraclough
et al., 2005). The posterior part of the STS is potentially involved in the identification of
intentional biological movements (Van Owervalle and Baetens, 2009).

According to the predictive coding model, action understanding would, and could, not

only rely on the sole Action Observation Network. Rather, this network would be informed by
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prior expectations about goals and intentions that are formed along the ventral pathway. When
the most likely goal has been specified, the sensory consequences of the action would be
inferred by the dorsal pathway through brain areas of the AON. Note that prediction of the
most likely intention could possibly be estimated outside the AON, from an analysis of
contextual information surrounding the action scene (possibly through regions of the

‘mentalizing’ system such as the anterior frontomedian cortex, (Brass et al., 2007).
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Figure 5. Example of action understanding in the two-pathway framework (taken from Kilner, 2011). The
demonstrator’s intention is to drink a cup of tea. The first step of action understanding is the visual processing
and the identification of the object as a cup. The second step is the retrieval, within the observer’s motor
repertoire, of actions that he learned to be associated with that object. The third step is the selection of the most
probable actions that can be achieved, given the demonstrator’s final intention. Of note is that many actions can
be selected. However, the likelihood of an action is signalled through the strength of that action’s representation
(indicated by the transparency of the picture). The top action is less probable and thus is not selected. The fourth
step is the encoding of the motor parameters to generate a prediction of the sensory consequences of the observed
action. Again multiple actions can be encoded as before. The fifth step is the prediction of the sensory
consequences of the most probable action. Here only the most probable action is encoded. In this schematic, steps
2—4 would be encoded in the ventral pathway of the connected areas MTG, BA47, BA45 and BA44/BA6 with the
representation of the action changing from the abstract to the concrete through these steps (left rainbow arrow).
Steps 4-5 would represent the generation of the predicted sensory consequences of the action encoded in the
dorsal AON pathway (right rainbow arrow).
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F. Experimental outlines

The experiments presented in this doctoral thesis are guided by a series of questions that can
be articulated along two dimensions: an individual dimension, through which processes of
action recognition and action prediction are investigated; and a populational dimension,
through which mechanisms of social transmission are modeled to account for the emergence

of behavioral patterns among groups of individuals.

1. The first study (Experimental Contribution Chapter 1) concerns the representational
aspect of perceived actions. More specifically, it aimed to investigate whether, and how, the
inferior frontal cortex (IFC), the anterior intraparietal region (AIP) (two regions composing
the Action Observation Network), and the primary somatosensory cortex (S1), are involved in
the coding of two specific action features that are hierarchically organized. The first feature is
the type of grip used by an observed agent to perform a specific action. The second feature is
the subsequent arm movement that leads to the achievement of the action outcome. To do so, a
simple action recognition task was designed. In a first step, participants were required to
observe repeated movies showing a demonstrator acting on a multipurpose tool in order to
achieve one out of two different goals by using either a power or a precision grip. In a second
step, static pictures presenting the action outcomes were shown, and participants were asked to
match either the current grip or the current arm action with the one performed in the preceding

action movies. To assess the role of the three mentioned target brain areas, a single-pulse
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transcranial magnetic stimulation technique was applied during the presentation of each static

picture.

2. The second study (Experimental Contribution Chapter 2) was built upon the
assumption that action prediction amounts to solving an inverse problem. This study thus
aimed to investigate whether such a problem could be solve through a simple heuristic — such
as the detection of object affordances — or required a more complex form of inference — such
as probabilistic inference. More specifically, we investigated here the contribution of two
types of prior information to the prediction of actions presented under various conditions of
visual uncertainty. Using typical techniques from experimental psychology, we designed an
action prediction task in which participants were required to infer the intentions of a filmed
demonstrator acting on a multipurpose tool by using either a biomechanically optimal or
suboptimal strategy. The first type of prior information that was manipulated directly emerged
from the detection of object affordances, and provided expectations about the biomechanical
optimality of the observed actions. The second type of prior information that was manipulated
was the prior knowledge that observers derived about the demonstrator’s behaviors and
intentions from probabilistic sampling of past observations. Inspired from the framework of
Bayesian inference, this experiment studied whether, and how, these two types of priors —
biomechanical and probabilistic priors — interact to actively bias predictions made by

participants.

3. The objective of the third study (Experimental Contribution Chapter 3) was to

investigate whether, and how, the interaction between biomechanical and probabilistic priors
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modulates the activity of the motor system in a task where participants were required to
predict a demonstrator’s intentions. To do so, we adapted experiment #2 to an on-line TMS
design. Corticospinal excitability was measured by means of single-pulse TMS applied over
the primary motor cortex (M1) during action prediction, before and after probabilistic

exposure to optimal and suboptimal actions.

4, The fourth and last study (Experimental Contribution Chapter 4) tested the extent to
which some constraints, such as the richness of the biomechanical repertoire of an individual,
or the type of search space characterizing a problem (two issues that relate to the notion of
inverse problem), may influence the emergence of faithful social learning strategies (e.g.,
emulation or imitation) at a population level, and whether the emergence of such strategies
may explain the stability of observed behavioral traditions. To explore these relationships, an

evolutionary individual-based model was built.
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The first experiment presented in this thesis focused on a perceptual aspect of action
understanding. In particular, it aimed at studying whether, and how, the primary
somatosensory cortex (S1) — together with the inferior frontal cortex (IFC) and the anterior
intraparietal region (AIP) that are classically reported as forming the Action Observation
Network (AON) — is involved during the perception of distinct features of complex actions,
i.e., the type of grip used and the type of effector configuration (arm) associated with action
outome. Indeed, recent studies suggested that S1 may be recruited during the perception of
observed actions within an estimation of their sensorimotor and somatic consequences (Keyser
and Gazzola, 2007; Keyser et al., 2010; Valchev et al., 2012).

To investigate the respective contribution of S1, AIP and IFC in the perception of these
action features, we used a transcranial magnetic stimulation adaptation paradigm (TMSA)
(Silvanto et al., 2008). The underlying assumption of TMSA paradigms is that the impact of
magnetic stimulation over a neural population does not only depend on the stimulation
properties itself, but also on the initial state of the neural population prior to delivery of the
stimulus. TMS may thus have a differential effect on neurons according to their initial
activation state. Specifically, TMS behaviorally facilitates the detection of perceptual features
enconded by adapted neural populations, compared with non-adapted, within the stimulated
brain area (Silvanto et al., 2008). TMSA paradigms consist in manipulating the initial state of
neural populations prior to the stimulation by perceptual adaptation. The adaptation phase
simply consists in exposing the participant to the repetition of a stimulus (e.g., a visual
stimulus) for a duration usually comprised between 40and 60 sec. The adaptation induces
habituation in a subset of cells that code for a particular feature of that stimulus, making them

a selective target for TMS. Consequently, stimulation time locked to the cognitive task (e.g.,
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the detection of the adapted stimulus among non-adapted stimuli) should selectively improve
the performance in processing the stimulus to which the targetd neurons were previously
adapted. TMS adaptation paradigms have been recently successfully tested in various domains
of cognition, such as language (Cattaneo et al., 2009a; 2009b) and number processing (Cohen
Kadosh et al., 2010), multisensory interaction (Romei, 2007) or motor acts observation
(Cattaneo et al., 2010; 2011).

In line with these works, we used a TMSA paradigm in two tasks of action recognition.
During these tasks, participants were habituated to adaptation movies showing a human actor
performing two types of complex object-directed actions (lifting the object to open a box
versus turning the object to switch-on a light) using either a power (whole hand grip) or a
precision grip (pinch grip). After each adaptation phase, a series of static pictures presenting
the final end-states of each possible possible action was presented. In the first task,
participants were required to detect the similarity between the grip currently used in the static
pictures and the grip previously used in the adaptation movie. In the second task, they were
required to detect the similarity between arm movements that led to the final action end-states
of the static picture and those observed in the preceding adaptation movie. At the onset of each
static picture, single-pulse TMS was delivered over the IFC, S1 and AIP. We aimed at
investigating the role of these structures in the coding of two key features of actions, namely
the type of grasp and the type of effector configuration that leads to the outcome of the

observed action.
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Abstract

The perception of other people’s actions is negociated by a large cerebral network distributed
along a parieto-frontal axis — the Action Observation Network (AON). The AON, notably
composed of the anterior intraparietal area (AIP) and the inferior frontal cortex, is assumed to
cods action components into a hierarchical manner, ranging from movement kinematics to
action goals and intentions. Recent studies suggest that other sensory areas, such as the
primary somatosensory cortex (S1), could actively participate in action perception. Yet, no
causative evidence has been brought in favor of such involvement. Furthermore, it is not yet
clear whether, and how, the AIP, the IFC and the S1 cortices are differentially recruited during
the perception of observed complex goal-directed actions. The objective of the present study is
to investigate these issues by using a transcranial magnetic stimulation adaptation technique
(TMSA). TMSA paradigms allow to scrutunize the causal involvement of specific brain areas
in the achievement of behavioral tasks, and so by manipulating the state of these regions
through the adaptation of neuronal populations to a constant stimulus. Here, we used single-
pulse TMS over the left AIP, IFC and S1 cortices after the exposure to complex goal-directed
actions. Participants repeatedly observed adaptation movies in which a demonstrator acted on
a two-purpose tool by achieving two distinct action goals using either a power or a precision
grip. After the exposure to adaptation movies, test pictures of the four possible action end-
states (2 grips x 2 intentions) were presented. In a first task, participants were required to
judge whether the test pictures presented a similar or a different grip compared to the one
previously observed during the adaptation movies while in a second task, they were asked to
judge whether the type of arm action used by the demonstrator to achieve his goal was similar
or different. TMS was applied at the onset of each test pictures over the AIP, IFC and S1
cortices. If these regions play a role in the processing of the grip or the arm action features, the
recognition of the adapted stimulus should be improved. First, results showed that stimulating
the IFC impaired the recognition of the grip, independently of its type (adapted or non-
adapted), and impaired the recognition of the non-adapted arm action. Second, stimulating S1
improved the recognition of the adapted arm action. These findings provide the first evidence
that the IFC and the sensorimotor regions of the AON such as S1 are causatively involved
during the perception of complex-goal directed actions.

Keywords: action perception, mirror system, state-dependency TMS, Action Observation
Network, primary somatosensory cortex.
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Introduction

Interpreting the behaviors of others crucially requires the ability to decode the observed
kinematic information into a causal relationship between the motor sequence and its outcome.
It has been suggested that this ability depends on action ‘simulation’ mechanisms mapping
observed motor acts onto corresponding motor programs and associated somatosensory
consequences stored into the observer’s action repertoire (Rizzolatti and Craighero, 2004;
Wilson and Knoblich, 2005; Urgesi et al., 2010; Keysers et al., 2010; Avenanti and Urgesi,
2010). Imaging and neurophysiological evidence have suggested that such action simulation
mechanisms rely on the activity of a widespread bilateral network of cortical brain regions,
usually referred to as the action observation network (AON) (Grafton, 2009). Classically,
inferior frontal cortex (IFC, including the ventral premotor cortex and the posterior part of the
inferior frontal gyrus) and the anterior intraparietal cortex (AIP) have been considered
important nodes of the AON coupling action observation with execution. Seminal studies on
monkey indicate that a proportion of neurons in these frontoparietal regions increase their
firing rate during both action perception and execution (so called ‘‘mirror neurons’’) (di
Pellegrino et al. 1992; Gallese et al. 1996; Fogassi et al. 2005) and may be involved in
perceiving and understanding others’ actions.

In addition, mounting imaging and neurophysiological evidence in humans suggest that
the somatosensory cortices may be also involved in perceiving others’ behavioral states
(Adolphs et al., 2000; Keysers et al., 2004; Bufalari et al., 2007; Valeriani et al., 2008;
Avenanti et al., 2009). In particular, the primary somatosensory cortex (S1) is consistently

active during action perception and execution (Rossi et al., 2002; Avikainen et al., 2002;
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Avenanti et al.,, 2007; Gazzola and Keysers, 2009) and may be thus be considered an
additional node of the AON (Keysers et al., 2010).

Although the involvement of IFC, AIP and S1 in perceiving others’ actions has been
suggested in several imaging and neurophysiological studies (Caspers et al., 2010), it should
be noted that these methods provide only correlational evidence and cannot establish a direct
causal link between brain and function. Transcranial magnetic stimulation (TMS) provides an
extraordinary non-invasive method to interact with neural tissue and thus provide that a brain
region is critical for behavior. Typically, TMS is used with the aim of disrupting neural
activity associated with cognitive processes by inducing random neuronal activity that is
uncorrelated with the ongoing activity (i.e. “virtual lesions”). Previous studies using these
methods have suggested that disruption of activity in IFC (Pobric and Hamilton, 2006) or S1
(Valchev et al., 2012) reduces the ability to infer the weight of objects being lifted by a human
hand. Moreover, inhibition of IFC has been shown to generate several disturbances affecting
various aspects of action perception and understanding. In particular, inhibition of IFC can
result in the disruption of action simulation activity within the motor system (Avenanti et al.,
2007; Avenanti et al., 2012), the impairment of the ability to discriminate between two
different pictures of actions (Urgesi et al., 2007; Candidi et al., 2008), or the impairment to
discriminate between deceptive or truthful actions (Tidoni et al., 2012, unpublished
observations). These virtual lesions studies indicate that manipulation of neural activity in the
AON (mostly in the IFC) impairs action perception. Critically however, to date no studies
have compared the causative influence of IFC, AIP and S1 in an action recognition task.

Moreover, virtual lesions approaches suffer from two main limitations. First, the effect

of brain stimulation is not limited to the target brain region, but can spread ortho- and anti-
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dromically along neural connections (Avenanti et al., 2007; Avenanti et al., 2012). Hence,
TMS may be best conceptualized as modulating activity across large scale networks reached
from the directly targeted brain region (Valero-Cabre et al., 2005, 2007). Second, even within
the targeted brain region, virtual lesion TMS approach cannot elucidate how distinct neural
populations within the stimulated area interact to give rise to perception and behavior
(Silvanto and Pascual-Leone, 2008; Avenanti and Urgesi, 2010).

Recently, TMS-adaptation (TMSA) paradigms have been developed to tackle these
limitations and to provide information on the cortical topography of brain functions and the
causal relation of neural activity in the targeted areas to behavior. The TMSA paradigm is
based on the well established notion of state-dependency, i.e. that TMS effects depends on the
context and the initial state of the stimulated neurons. Specifically, TMS is thought to
differentially modulate neurons that are activated by a given perceptual or cognitive process
relative to neurons that are not activated by such process (Silvanto et al. 2008). Evidence
suggests that TMS preferentially facilitates the less active neurons and/or suppresses the more
active neurons within a stimulated brain region and it has been shown that this differential
modulation have behavioral consequences (Cattaneo and Silvanto, 2008).

In the TMSA paradigm, the state of the neurons prior to the TMS pulse is manipulated
in a controlled way by means of perceptual adaptation. The adapting stimulus induces
habituation in a subset of neurons that code particular stimulus features, making them a
selective target for TMS. Stimulation time-locked to the cognitive task and delivered over the
cortical area containing the adapted neurons should selectively improve the performance in
processing the adapted stimulus features relative to the non-adapted ones and/or reciprocally,

should impair the performance in processing the non-adapted stimulus feature relative to the
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adapted ones. Hence, TMSA method allows targeting functionally distinct but spatially
overlapping neural populations (Silvanto et al., 2009). This paradigm has been successfully
used to explore color and motion perception in the visual cortex (Silvanto and Muggleton,
2008) as well as to investigate language and number processing in the parietal cortex
(Cattaneo et al., 2009; Cohen-Kadosh et al., 2010). However, it should be noted that brain
stimulation during TMSA paradigm may also lead to disruption of neural function i.e. to
“state-independent” virtual lesions effects (Burton et al., 2009).

Recently, the TMSA technique has been used by Cattaneo and colleagues to explore
action perception mechanisms (Cattaneo et al., 2010a). In this study, participants observed
adapting movies showing an actor performing grasping or pulling motor acts with either the
hand or the foot. After each series of adapting movies, participants were subsequently
presented a series of test pictures showing the same or different motor acts, matched for
effectors and/or actions. For each test pictures, they were asked to provide a similarity
judgment, i.e. whether the current picture presented an action that was identical or different to
the one presented in the preceding adapting movies, irrespective of the effector used to
perform the action. It was found that response times (RTs) to adapted actions were shorter
when TMS was applied over two visuo-motor nodes of the AON, namely the IFC and AIP.
This improvement was independent of the type of effector that was involved in the adapting
movies, while stimulation of a visual node of the AON (the superior temporal sulcus, STS) led
to effector specific improvements. These findings suggested a hierarchy in the representation
of others’ actions, with visual and visuo-motor nodes of the AON being critically involved in
processing others’ actions in an effector specific and more abstract manner, respectively.

However, in that study, RTs and accuracy measures were analyzed separately and thus it is not
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clear whether speed accuracy trade-off effects were at play in the study. Moreover, no sham
stimulation condition was present in the design and thus unspecific effects of TMS are not
determined.

The experiments performed in the present study are inspired from the Cattaneo et al.’s
paradigm (2010a), but proposed a finer-grained analysis of action perception mechanisms.
Indeed, instead of manipulating the type of effector (i.e., hand versus foot), we kept the same
effectors (i.e., the hand) but manipulated the type of action the actor could perform (i.e., lifting
an object to open a box versus turning an object to switch-on a light; see fig.1) and the type of
grip the actor could use to perform the action (i.e., power versus precision grip). Critically,
subjects had to perform two tasks in which they had to provide similarity judgments both on
the arm action (irrespective of the grip being used to perform the action; Arm action
recognition task) and on the grip used in the action (irrespective of the type of action; Grip
recognition task) while active TMS was applied to the left IFC, left AIP and left S1, and sham
TMS was applied to the vertex. To rule out any speed-accuracy trade off, the effect of TMS on
the two action perception tasks was assessed by merging both RTs and accuracy into a single
measure of performance (inverse efficiency index). By this way we were able to test the causal
involvement of key nodes of the AON in the differential visual coding of specific actions

(lifting vs opening) and action components (power versus precision grip).
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Materials and Methods

Participants

Twenty-seven healthy adults (16 females, 11 males; mean age = 25.8, SD = 5.18) volunteered
to participate in the study. All participants were right-handed, reported normal or corrected-to-
normal vision acuity, and were naive to the purpose of the experiment. None of them reported
evidence for neurological or psychiatric diseases. The experimental setting was approved by
the ethics committee of the Bologna University’s Department of Psychology and was carried
out in accordance with the ethical standards of the 1964 Declaration of Helsinki. All
participants gave a written and informed consent and were remunerated 24 Euros for

participating in the study.

Stimuli

Participants were seated in a comfortable chair in front of a 19-inch computer screen on which
series of video clips (adaptation movies) and static pictures (test pictures) were displayed.
Adaptation movies consisted in 2000ms video clips (30 frame / second, subtending 35 degrees
of visual angle) showing a male actor operating on an unfamiliar tool. The tool consisted of a
handle designed to make possible two different goal-oriented actions using two different types
of hand grip. More specifically, the actor could either i) lift the handle to open the box; or ii)
turn the handle to switch-on the light. These two actions could be performed using either e) a
power (whole-hand) or ee) a precision (pinch) grip (see figure 1). Thus, four types of videos
were created following a 2 (type of action: lifting, turning) x 2 (type of grip: power, precision)

design. A total of 24 clips for each category were created. All movies were equalized for
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temporal homogeneity such that the initial (from still hand to tool grasping) and last phase of
the action (tool manipulation) involved the very same number of video frames and lasted 1000
ms each. In order to minimize the influence of memorized kinematics on the participants’
performances, a movie was presented only one time per adaptation phase.

Test pictures consisted in single frames extracted from the four possible adaptation
movies. They presented the actor in the four possible postures, corresponding to the final end-
state of the four possible motor actions (i.e., lifting with power grip, lifting with precision grip,

turning with power grip, turning with precision grip). Each test picture lasted 1500ms.
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Figure 1. Example of the four adaptation movies that participants encountered during the experiments. All
adaptation movies had a duration of 2000 msec and all began with the demonstrator’s static hand. The actor could
then use either a ‘power’ or a ‘precision’ grip to achieve either the action of lift the object to open the box (‘open’
arm action) or turning the object to switch on the light (‘turn’ arm action).
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Tasks

Subjects performed two tasks (Action recognition, Grip recognition) in two separate sessions
on the same day. In both tasks, subjects were presented with a series of adaptation movies
showing one of the four motor actions (lifting with power grip; lifting with precision grip;
turning with power grip; turning with precision grip) followed by a series of 12 test pictures (3
exemplars for each action). In the Arm action recognition task, participants were asked to
identify, for each test picture, whether the action (lift versus turn the handle) implied in the
picture was similar or different as compared to that shown in the preceding adaptation movies
(independently of the grip used in the action). In the grip recognition task, they had to reported
whether the grip depicted in the picture (power versus precision grip) was similar or different
relative to that shown the preceding adaptation movies (independently of the type of action
being performed). Responses were made with the index and middle finger of the left hand
(ipsilateral to the stimulated hemispheres) on a keyboard and responses time (RTs) and

accuracy were recorded and analyzed off-line.

General Procedure

Participants performed the two tasks in two sessions separated by a pause of 15min duration.
The order of the tasks was counterbalanced across subjects. The Eprime 2.0 software
(Psychology Software Tools, Inc, USA) was used to collect both reaction times (RTs) and
percentages of correct responses.

Action and Grip recognition tasks were performed in 4 different TMS blocks (Sham,

IFC, S1, AIP) whose order was randomized across subjects. Each block included 4 trials. On
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each trial, participants were first presented with 30 adaptation movies displaying one of the
four possible motor actions. Movies were separated by a white fixation cross of 250ms
duration. The series of adaptation movies (lasting 67.5 s in total) was followed by a written
signal of 2000ms duration. This signal simply consisted in a pattern of 8 exclamation points
the aim of which was to inform participants about the up-coming presentation of test pictures.
Then a sequence of 12 test pictures (4 action types x 3 different exemplars) was shown. Test
pictures lasted 1500 ms each and were separated by a fixation cross of 1000 ms of duration. At
the onset of each test picture, a single-pulse TMS was delivered (Silvanto et al., 2007;
Cattaneo et al., 2010a). Participants were first required to carefully watch the series of
adaptation movies and then they had to compare the test pictures to the movies (see figure 2).
A fixation cross was shown in the inter-trial interval (15 s duration). The order of the trials and
of the test pictures was randomized. A total of 48 responses were then collected in each block
(4 trials x 12 test pictures). In both tasks, half of the test pictures showed adapted Action/Grip

configurations and half showed non-adapted Action/Grip configurations.
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Figure 2. Example of a TMS block (each subject parformed 4 different TMS block: sham, IFC, S1, AIP). A TMS
block included 4 trials. On each trial, participants were first presented with 30 adaptation movies showing one of
the four possible motor acts (‘adaptation phase’). The series of adaptation movies was followed by a 12 test
pictures (‘test pictures block’ consisted of 4 action types x 3 different exemplars ). Test pictures lasted 1500 ms
each and were separated by a fixation cross of 1000 ms of duration. At the onset of each test picture, a single-
pulse TMS was delivered. Participants were first required to carefully watch the series of adaptation movies and
then they had to compare the test pictures to the movies. A total of 48 responses were then collected in each TMS
block (4 trials x 12 test pictures).

Transcranial Magnetic Stimulation

TMS pulses were delivered with a figure-of-eight coil (70mm) and a Magstim Rapid?
stimulator (Magstim, Whitland, Dyfed, U.K.). The individual resting motor threshold (rMT) of

each participant was identified as the minimal stimulation intensity producing motor evoked
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potentials (MEPSs) of at least 50 pyV amplitude in the right first dorsal interosseous muscle
(FDI), with 50% probability on at least 5 on 10 consecutive stimulations (Rossini et al., 1994).
MEPs were recorded by means of a Biopac Student Lab MP36 electromyograph (Biopac
Systems, Inc, U.S.A.). EMG signals were band-pass filtered (30 Hz—1000 Hz) and digitized
(sampling rate at 5 kHz). Pairs of silver/silver chloride surface electrodes were placed over the
muscle belly and over the first articulation of the right index finger, whereas a ground
electrode was placed on the internal bone of the right elbow. The intensity of stimulation used
during the experiments was then set at 110% of the individual rMT. The experiment was
programmed using Eprime 2.0 software (Psychology Software Tools, Inc.) to control stimuli
presentation and trigger the magnetic stimulator.

Coil position was identified on each participant’s scalp using the SofTaxic Navigator
system (EMS, Italy) or functional methods as in our previous TMS research (Avenanti et al.
2007; Avenanti et al., 2012; Bertini et al. 2010; Serino et al. 2011). Skull landmarks (nasion,
inion, and two preauricular points) and about 60 points providing a uniform representation of
the scalp were first digitized by means of a Polaris Vicra Optical Tracking System (NDI,
Canada). Coordinates in Talairach space were automatically estimated by the SofTaxic
Navigator from an MRI-constructed stereotaxic template.

Scalp positions corresponding to IFC and AIP were identified by means of the
SofTaxic Navigator system. The IFC was targeted in the anterior-ventral aspect of the
precentral gyrus (ventral premotor cortex) at the border with the pars opercularis of the
inferior frontal gyrus (coordinates: x = -52, y = 10, z = 24), corresponding to Brodmann’s area
6/44 (Avenanti et al. 2012; Mayka et al. 2006; Van Overwalle et al. 2009; Caspers et al. 2010;

Urgesi et al. 2007). The AIP region was targeted in the anterior sector of the intraparietal

91



sulcus (x = -40, y = -40, z = 45, corresponding to Brodmann’s area 40; Van Overwalle et al.
2009; Caspers et al. 2010).

TMS studies that successfully targeted the hand region in S1 positioned the coil 1-4
cm posterior to the motor hotspot (Balslev et al., 2004; Avenanti et al., 2007; Valchev et al.,
2012). In keeping, S1 was indentified using a two steps procedure. We first localized the hand
region in the motor cortex (corresponding to the optimal scalp position for evoking MEPs in
the FDI muscle) and then moved the coil 2 cm backward. We assumed that from this position
we could stimulate the hand region in S1 with minimum effects on M1. To test this
assumption directly, we checked that TMS pulses at 110% rMT with the coil in the above
position did not elicit any detectable MEP. The three identified sites (IFC, S1, AIP) were
marked on the bathing cap with a pen. Then the neuronavigation system was used to estimate

the projections of the scalp sites on the brain surface (see figure 3).
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Figure 3. Schematic representation of the 3 stimulation sites. The red dot represents the cortical representation of
the right FDI muscle located on the left prilary motor cortex (M1). It was used to individuate the resting motor
threshold (rMT) on which the stimulator intensity was set (110% of the rMT). The purple dot represent the left
inferior frontal cortex (IFC), targeted in the anterior-ventral aspect of the precentral gyrus (ventral premotor
cortex) at the border with the pars opercularis of the inferior frontal gyrus (coordinates: x = -52, y = 10, z = 24).
The green dot represents the left primary somatosensory cortex that was targeted by moving the coil 2 cm
posterior to the FDI location. Finally, the blue dot represents the left AIP region, targeted in the anterior sector of
the intraparietal sulcus (x = -40, y = -40, z = 45).
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Data Analysis

The proportion of correct responses and RTs were analyzed off-line (see table 1 and 2). For
each condition, RTs deviating more than two standard deviations from the individual mean
were discarded. During the IFC stimulation, three participants reported being surprised by the
stimulation in the first sub-block of test pictures (12 trials), resulting in an absence of response
during this sub-block. This was actually a side effect of the stimulation which brought about
facial muscle contractions and slight movements of the mandible. Accordingly, responses
collected during this sub-block were removed from the analyses. No similar effects were
found in the remaining blocks or in the other participants.

Statistical analyses were conducted on the inverse efficiency (IE) index (Akhtar and
Enns 1989; Christie and Klein 1995; Kennett et al 2001; Townsend and Ashby, 1983),
obtained by dividing the median RT by the proportion of correct responses, calculated for each
experimental condition and for each subject separately. By combining response latencies and
accuracy into a single measure, this index allows to discount possible criterion shifts or speed
accuracy tradeoffs in the different TMS conditions. A lower value on IE indicates a better
recognition performance, while a higher value on IE indicates a lower recognition
performance. For the Arm action recognition task, IE scores were submitted to a 4 x 2 x 2
repeated-measures ANOVA with Stimulation (Sham, IFC, S1, AIP), Arm action (adapted,
non-adapted) and Grip (adapted, non-adapted) as within-subject factors. A similar analysis
was conducted on IE scores of the Grip recognition task. Before reporting the two ANOVAs, a
preliminary Task (Action, Grip) x Stimulation x Grip x Arm movement ANOVA was carried

out. Post-hoc analyses were carried out using the Newman-Keuls test.
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Table 1 Grip recognition task
Median RTs in ms (standard deviation) / proportion of correct responses

Adapted grip Nan-adapted grip
Adapted arm action Non-adapted arm action Adapted arm action Non-adapted arm action
NoTMS 604 (72)/0.96 632 (66) /096 661 (101)/096 643 (94)/097
IFC 662 (133)/0.95 666 (107)/0.96 687 (114)/0.94 727 (150)/0.96
51 634 (085)/0,98 605 (85) /0,99 659 (94)/0,94 659 (75)/0,96
AP 613 (60)/ 098 618 (85)/0.97 652 (90)/ 095 660 (98)/0.97

Table 2 Arm action recognition task
Median RTs in ms (standard deviation) / proportion of correct responses

Adapted arm action Non-adapted arm action

Adapted grip Non-adapted grip Adapted grip Non-adapted grip
NoTMS 480 (79)/096 476 (78) /098 493 (75)/099 480(63) /097
IFC 491 (74)/0.98 493 (68) /099 511(94)/096 502 (87)/098
51 444 (60)/ 0,96 460 (69) /0,98 477 (75)10,96 474 (70) 10,97
AP 465 (66)/ 0.97 465 (61)/0.96 483 (63)/0.99 478(63)/0.99

Results

The Task x Stimulation x Action x Grip ANOVA on the IE index revealed several effects
including the main effect of Task (F126 = 321.41, p < .00001) with greater IE values (lower
performance) for the Grip (mean £ SD: 677 ms £ 76) relative to the Arm action recognition
task (493 ms = 64) and a marginally significant quadruple interaction (F3 7 =2.67, p = .053).
Thus, to further analyze the data, two separate Stimulation x Arm action x Grip ANOVAs

were carried out, one for each Task.

Grip recognition task (see table 1)

The ANOVA on the IE index computed on the Grip recognition task revealed a main effect of
Grip (F126 = 20.30, p = .0001) with greater IE scores for non-adapted (701 * 80) relative to
adapted grips (654 + 81) and a main effect of Stimulation (F3 75 = 8.81, p =.00004), accounted

for by the higher IE scores in the IFC block relative to the other blocks (all p <.0004) which
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in turn did not differ from one another (all p > .80) (see figure 5). No Grip x Stimulation
interaction was found (F3;7s = 1.57, p = .20), suggesting that TMS did not induce any state-
dependency effects in the Grip recognition task, but only a strong virtual lesion effect (lower
performance) when applied over the IFC. No other significant main effects or interactions

were found (all p > .18).

Grip recognition task
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660 -
640 -
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Figure 5. Arm action recognition task: interaction effect ‘Stimulation” % ‘Arm action’. The vertical axis
represents the mean inverse efficiency (IE) index (obtained by dividing the median RT by the proportion of
correct responses collected during the test pictures blocks of the Arm action recognition task). The horizontal axis
represents the four stimulation condition. The black columns represent IE index calculated for the adapted arm
actions. The grey columns represent IE index calculated for the non-adapted arm actions.

Arm action recognition task (see table 2)

The ANOVA on the IE index computed during the Arm action recognition task showed a

main effect of Stimulation (F3 s = 4.27, p = .0008), a main effect of Arm action (F1 26 =4.35, p
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=.047) and, most importantly, a significant Stimulation x Arm action interaction (F3 7= 3.12,
p = .031) (see figure 4). Post-hoc analysis (Newman-Keuls range tests) of the interaction
suggested that no clear behavioral correlate of adaptation was present when Sham stimulation
was administered as comparable IE scores were seen for adapted relative to non-adapted
actions (p = 0.48). Similarly no difference between adapted and non-adapted actions were
found in the AIP block (p = 0.66). In striking contrast, when IFC or S1 stimulation was
administered a clear ‘state change’ was induced in the subject’s perceptual system as a
function of prior exposure to the adapting movies. In the S1 block we found that adapted
actions elicited lower IE (better performance) relative to non-adapted actions (p = .004) and to
all the other conditions in the other blocks (all p <.032). In the IFC block, we found that non-
adapted actions elicited higher IE (worst performance) relative to adapted actions (p = .0005)
and to all the other conditions in the other blocks (all p <.0006). No other significant post-hoc
differences were found (p > .13). Moreover, no other main effect or interactions was

significant in the ANOVA (all p > .18).
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Figure 4. Grip recognition task: main effect of the ‘Stimulation’ factor. The vertical axis represents the mean
inverse efficiency (IE) index (obtained by dividing the median RT by the proportion of correct responses
collected during the test pictures blocks of the Grip recognition task). The horizontal axis represents the four
stimulation condition.

Discussion

Mounting evidence suggest that the ability to recognize the actions of others is underpinned by
a large cortical network, called the AON (Grafton 2009), which includes occipital and
temporal regions involved in the visual processing of body and biological motions (Keysers
and Perrett, 2004; Downing and Peelen, 2011; Urgesi and Avenanti, 2011; Avenanti et al.,
2012); and sensorimotor regions coupling action execution with perception (Chong et al.

2008; Etzel et al. 2008; Kilner et al. 2009; Oosterhof et al. 2010). The IFC, AIP and S1 are
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important sensorimotor regions of the AON and are consistently recruited not only when
sensing or moving the body but also when perceiving the actions of others (Van Overwalle
and Baetens 2009; Caspers et al. 2010; Grosbras et al., 2012). However, to date causative
evidence that non-invasive stimulation of specific AON regions influences action perception is
relatively scarce.

Few previous TMS studies have shown that online interference with IFC worsens: i)
the ability to judge the weight of a box when seen lifted by a human agent (Pobric and
Hamilton, 2006); ii) the visual discrimination of static images of actions with different
kinematics (Urgesi et al., 2007); ii) the recognition of deceptive movements (Tidoni et al.
unpublished observations). All these studies have shown impairments in the recognition of
relatively simple actions like lifting a box or grasping an object. It is not yet clear whether
similar disruption in action perception can be obtained with stimulation of other sensorimotor
regions of the AON such as AIP or S1, nor whether stimulating these regions may impair
perception of complex goal-oriented motor actions involving multiple sub-actions.
Furthermore, it should be noted that virtual lesion approach indicates that IFC and possibly
other regions of the AON may be critical for the recognition of others’ actions but do not
provide causative evidence on how others’ motor acts are represented in the brain.

In the present study we used the TMSA paradigm to investigate the neural
representation of observed complex goal-directed actions in the sensorimotor nodes of the
AON. Participants were presented with adapting movies of an actor performing complex goal-
directed actions on a tool by using a specific grip and were asked to categorize test pictures as

showing similar or different action/grip relative to the adapting movie.
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In the ‘arm action recognition task’, we found that applying TMS over S1 and IFC
induced state-dependent effects on action recognition (see figure 4). TMS over S1 induced a
selective decrease of IE index for pictures presenting the adapted action, indicating that
stimulation of S1 improved the analysis of actions to which participants have been previously
adapted. Similar greater performance for adapted relative to non-adapted actions was found
with TMS over IFC, but not with sham stimulation or stimulation of AIP. Such pattern of
findings suggests that TMS over S1 and IFC specifically enhanced performance of the neural
subpopulations that respond to a specific invariant feature, i.e. the type of arm action, between
the adapting stimulus and the test stimulus. The TMS-induced behavioral enhancement
occurred when subjects had to attend to such invariant feature (i.e. in the Arm Action
recognition task) and was absent when processing of the same feature was task-irrelevant (i.e.
in the Grip recognition task). The state-dependency effects of TMS over S1 and IFC are well
in keeping with the notion that repeated visual presentation of motor acts may induce action-
specific adaptation phenomena in S1 (Dinstein et al., 2007) and IFC (Kilner et al., 2011). Our
study significantly expands this notion by demonstrating behavioral consequences of such
neural adaptation in the AON. Taken together these findings indicate that TMS over key nodes
of the AON may behaviorally modulate the adapted relative to the non-adapted action
features. Notably, both state-dependent effects of S1 and IFC stimulation were obtained for
the adapted versus non-adapted action regardless of the type of grip used by the demonstrator
to achieve it. These findings suggest that neurons in IFC and S1 are critically involved in the
visual coding of goal-oriented actions at a relatively abstract level of representation in which
low-level components of the action (i.e., the particular way the action is performed) are less

reliable. These findings hint at a relatively abstract coding of goal-oriented motor acts in S1
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which is independent from lower-level components such as the type of grip used to perform
the action.

It should also be noted that the pattern of data found with stimulation of IFC suggest a
decrease in performance for test pictures showing the non-adapted relative to the adapted
action, which may be in part due to a summation of state-dependent and virtual lesion effects
during stimulation of IFC. State-independent virtual lesions effects were clear in the Grip
recognition task where subjects showed impaired performance when TMS was applied over
the IFC relative to the other stimulation conditions (see figure 5). This result suggests that IFC
is a critical node for the coding of observed grasping movements. However, the general
impairment of behavioral performances after stimulation over this area indicates that both
kinds of grip are coded within a unique neuronal population. This may explain why, in the
‘Grip recognition task’, TMS stimulation over the IFC results in a virtual lesion-like, state
independent effect. In contrast, the distinct effect of stimulation over S1 and IFC over the
recognition of arm actions suggest that the different types of arm actions — adapted and non-
adapted — that are represented within segregated neuronal populations. Of note is that the
complexity of the visual analysis (i.e., a global analysis for the ‘Arm action recognition task
versus a local analysis for the ‘Grip recognition task’) of the adapted stimuli and the task
difficulty as well may have compromised the observation of state-dependent effects in the
‘Grip recognition task’. Nevertheless, our study shows that a clear distinction in different
neuronal populations tuned to a specific action-related feature is more likely to occur with the
processing of the overarching action than with the grip.

The occurrence of this virtual lesion-like effect (also observed, to a lesser extent, in the

IFC stimulation of the ‘Arm action recognition task’) is plausibly due to a jeopardized
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maintenance of action-related information in working memory relative to the adapted
stimulus, rather than the deterioration of the stimulus perception per se (TMS is delivered at
the onset of the test picture, when the information is not yet processed on the retina). Indeed,
the task requires the subjects to maintain active the representation of the adapted stimulus

during the recognition task (Candidi, 2008; Urgesi et al., 2007).

Conclusion

In summary, our results provide the first evidence that the IFC and the sensorimotor regions of
the AON such as S1 are causatively involved during the perception of complex-goal directed
actions. This recruitment is accounted for by the fact that TMS over S1 and IFC specifically
enhanced performance of the neural subpopulations that respond to a specific invariant feature
(i.e. the type of arm action) between the adapting stimulus and the test stimulus, and so
independently of the behavioral sequence that composes the on-going action (i.e., the
relationship between the type of grip used and the action goal). Furthermore, our study reveals
that the facilitatory effect of TMS observed after adaptation to an invariant stimulus may
partially overlap with inhibitory effect similar to virtual lesions techniques. This overlap could
depend on the difficulty of the task at play, and possibly on the neural state of brain regions
that are not currently targeted by the stimulation but that actively participate in the coding of

stimulus features.
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CHAPTER 2
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The Experimental Contribution Chapter 1 provides evidence that the primary
somatosensory cortex (S1) plays a role during the observation of other people’s actions. It is
possible that S1feeds other regions of the Action Observation Network (AON) and especially
the inferior frontal cortex (IFC) with which it is reciprocally connected, with sensorimotor and
somatic information about the action that is currently observed.

Interestingly, sensorimotor and somatic information could also be used by an observer
to estimate the biomechanical costs (muscular and articulatory) engaged in the execution of an
action that is currently observed. In the Experimental Contribution Chapter 2, |
hypothesized that the detection of some visual cues that enable an observer to make prediction
about these costs activate prior information that biases the interpretation of other people’s
actions. In this study, these visual cues were provided by the object affordances. The detection
of object affordances would activate prior information that provides a simple decision
heuristic, recruited by default during the interpretation other agents’ actions. Besides prior
information conveyed object affordances, human observers take advantage of another kind of
prior information to infer other people’s intentions, that is, information extracted from the
statistical regularities of past events (Griffiths et al., 2008). Indeed, human observers use the
probability of occurence of another agent’s intentions as a reliable source of information to
infer the underlying intentions of upcoming actions (Chambon et al., 2011a, 2011b). Both
these types of prior information may participate in action understanding. However, little is
known about wheter, and how, these two classes of priors interact during the prediction of
other people’s intentions. Using methods of experimental psycholgy, this was what the study

presented in the chapter 2 aimed to test.
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Abstract

Learning about the function and use of tools through observation requires the ability to exploit
one’s own knowledge derived from past experience. It also depends on the detection of low-
level local cues that are rooted in the tool’s perceptual properties. Best known as
‘affordances’, these cues generate biomechanical priors that constrain the number of possible
motor acts that are likely to be performed on tools. The contribution of these biomechanical
priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if,
and how, affordances interact with higher-order expectations that are generated from past
experience — i.e. probabilistic exposure — to enable observational learning of tool use. To
address this question we designed an action observation task in which participants were
required to infer, under various conditions of visual uncertainty, the intentions of a
demonstrator performing tool-use behaviors. Both the probability of observing the
demonstrator achieving a particular tool function and the biomechanical optimality of the
observed movement were varied. We demonstrate that biomechanical priors modulate the
extent to which participants’ predictions are influenced by probabilistically-induced prior
expectations. Biomechanical and probabilistic priors have a cumulative effect when they
‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually
inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to
suboptimal behaviors).

Key words: Action prediction, Affordances, Prior information, Observational learning, Tool
use.
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Introduction

Tool-use refers to a type of behavior that consists in manipulating external objects with the
goal of altering the physical properties of another object, substance, surface, or medium, via a
mechanical interaction, or that consists in mediating the flow of information between the tool
user and the environment [1]. A growing amount of evidence suggests that the acquisition of
knowledge about object use and function through observation is not the privilege of human
subjects [2]. Yet, the richness and complexity of our technology suggests that we are
particularly well adapted for such competence [3-6]. It has been argued that this competence
arises from a set of interpretative and learning predispositions that allows human observers to
i) decode kinematic information into the causal relationships between a behavioral sequence
and its result [7], ii) interpret biological movements performed by others as ‘rational’ (i.e.
assuming that the most optimal actions means are adopted to achieve a particular goal) [8],
and iii) accumulate knowledge from past observations about an agent’s intentions and
behaviors, and use this database in order to predict future events [9-13]. Together, these
mechanisms would enable human observers to derive knowledge about the possible uses and
functions of a tool from observing goal-directed, intentional movements performed by an
agent [14-16]. In this article we posit that these sophisticated learning skills could also benefit
from simpler heuristics allocated to the detection of low-level, local sources of information,
such as the manipulative properties of objects [17].

These properties, called ‘affordances’, are not intrinsic to objects but depend on their
possible interactions with agents [18]. In its extended form [19] an affordance defines a

relational property that emerges from matching the perceived physical features of an object
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(e.g. size, shape, texture, density) and the agent’s biomechanical architecture, her goals, plans,
values, beliefs, and past experiences. They are also described as dispositional states of the
agent’s nervous system [20]. Critically, affordances ‘suggest’” how one may interact with an
object [21, 22]. For example, the size and shape of a softball mean that it fits into the human
hand, and its density and texture make it perfect for throwing. We posit that object affordances
contribute to delineating the number of potential motor acts that can be performed on a given
object. They do this by generating effector-dependent, biomechanical priors which are in line
with the agent’s bodily architecture [17]. These priors then bias individuals to act on objects
with the aim of biomechanical optimization. In both human and non-human primates,
preferentially performed behaviors are generally those that minimize the muscular and/or
articulator costs, given the object’s affordances and the desired outcome [23-26].

Crucially, this minimization of costs also transfers to tool use learning. A prominent
example is provided by our extensive technologies. Humans deliberately manufacture tools
whose complex physical attributes offer naive users affordances that enable the extraction of
their functions at low cost [27-29]. Interestingly, the evolution of human technology might
have increased the utility of simple heuristics such as affordance detection, in order to
facilitate the highly demanding cognitive problem of tool use learning [28,30-32]. In our
technological environments, the detection of affordances might thus play a crucial role in the
acquisition of tool use skills through individual (i.e. trial-and-error learning) as well as social
learning (i.e., learning from observing another agent’s behaviors). Perceiving affordances may
thus facilitate the extraction of functional features associated with an object manipulated by a
third party [16]. For example, based on the amplitude of the observed agent’s grip aperture

and the orientation of her wrist, as well as on the size and texture of the object to be grasped,
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one may predict whether this object is meant to be lifted, pushed, or merely transported [11].
As suggested above, agents are expected to adopt tool-use behaviors that minimize
biomechanical costs. Therefore, learning of a tool function through observation should be
facilitated when a demonstrator uses a tool in a way that fit the observer’s biomechanical
expectations (behaviors that minimize the muscular and/or articulator costs), and should be
jeopardized in the case where these expectations are patently violated (behaviors that increase
the muscular and/or articulator costs).

Expert tool users, like tool learners, may also benefit from past experience in their
daily interactions with objects [33]. It has been widely demonstrated that naive human
observers form knowledge (e.g. about tools and their potential use) by taking advantage of
statistical regularities gathered from past observations [9-13]. The more times an individual
associates a certain observed goal (e.g. the achieved tool function) with a certain observed
action (e.g. the way of achieving the tool function), the more likely she is to expect that they
will be seen together again [34]. These ‘probabilistic’ priors, acquired from past experiences,
are crucial when the biomechanical information conveyed by tool affordances is too
ambiguous or noisy to sufficiently constraint the range of candidate functions. Conversely,
reference to biomechanical priors that are generated by tool affordances may be required when
the use of the current tool cannot be based on previous experiences. Critically, both these
classes of priors may be recruited when sensory information conveyed by movement
kinematics is too incomplete to predict how an agent is most likely to behave. This occurs
when many competing intentions are equally congruent with the not-yet completed behavior

[11].
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While the contribution of both these classes of priors to the individual-learning of
tools’ functions and use has long been demonstrated, it is not yet clear whether, and how, they
may both combine to enable social learning of tool use (i.e., learning from observing another
agent’s behaviors). Here, we directly addressed this question in a task that required
participants to predict, under various conditions of visual uncertainty, the intentions of a
demonstrator who was using a multi-purpose tool. Affordance-related priors (termed
‘biomechanical’ priors) and priors acquired from past observations (termed ‘probabilistic’
priors) were manipulated by varying the biomechanical optimality of the tool behaviors and
the probability (low versus high) of observing optimal versus suboptimal tool behavior.

We hypothesized that both biomechanical and probabilistic priors would have an effect
on prediction. First, participants should be more accurate in predicting optimal than
suboptimal behaviors (biomechanical bias). Second, participants should be more accurate in
predicting behaviors that are most likely to occur throughout a specific experimental session
(probabilistic bias). Third, we expected an interaction between these two classes of priors,
whereby participants would preferentially respond towards the biased behaviors when the
probabilistic bias is assigned to optimal behaviors. Finally, we expected this effect to vary as a
function of the amount of visual uncertainty conveyed by the action being performed. Thus,
the propensity to respond towards the biased behaviors should be strengthened as the amount

of visual information shown in the action videos decreases.
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Method

Participants

Twenty-four healthy volunteers (mean age=26.5, SD=4.40) took part in an action prediction
task. All were right-handed, naive to the purpose of the experiment, and reported normal or
corrected-to-normal visual acuity. The experimental protocol was performed with approval of
the University of Bologna - Department of Psychology - ethical committee and in accordance
with the Declaration of Helsinki (2008) [35]. All participants gave their verbal and informed
consent to participate in the study. Owing to the non-invasive, purely behavioral nature of
our study (without any emotional stimuli), the University of Bologna - Department of
Psychology - ethical committee considered verbal consent was appropriate and approved this
consent procedure. Socio-demographic information (full name, age, sex, gender, handedness,
education) has been collected for each subject on a separate sheet. The sheet contained an
"Approve" box that was checked by the experimenter after the subject gave their verbal

consent to participate.

Stimuli

Stimuli consisted in movies featuring a demonstrator acting on a two-purpose tool. The tool
consisted of a movable handle screwed onto the lid of a box. The handle offered two distinct
affordances enabling the demonstrator to grasp the object with a power or a precision grip (see
fig.1). Using either grip, the demonstrator could achieve two intentions: Opening the box by
lifting the handle (intention O); Switching on the light by rotating the handle (intention S) (see

fig.1).
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Two movie formats were displayed, both having a total duration of 2000msec (see
fig.1): a complete format in which actions lasted until the achievement of the underlying
intention (the grasp and the demonstrator’s final intention were apparent); an incomplete
format in which action course stopped 800msec after movement onset (only the grip was
apparent but the demonstrator’s final intention was not) while the last displayed frame was
presented on the screen for the remaining 1200msec.

All movies were equalized for temporal homogeneity in such a way that the duration of
the sub-steps of each action involved the same number of video frames (sub-step 1: static hand
to physical contact with the tool=1000ms; sub-step 2: physical contact with the tool to action

end-state=1000ms).

General Procedure

Participants sat in front of a monitor on which video clips that showed a male demonstrator
acting on a tool were displayed (see fig.1). The entire experiment was composed of three
distinct experimental sessions. In each session, participants had a different probability of
observing the demonstrator achieving his intentions using an optimal (cost-free) or a
suboptimal (high cost) behavioral strategy [33].

For each of the three sessions, 4 blocks of 24 complete action movies were interleaved
with 4 blocks of 12 incomplete action movies. Crucially, the probabilistic bias was exclusively
assigned during the complete action movie blocks, where participants could benefit from a
high amount of visual information to identify the demonstrator’s intentions. In contrast, in the

incomplete action movies the amount of visual information was too low for the observer to
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unambiguously infer the demonstrator’s intention. Thus, blocks of complete action movies
were used to generate prior expectations in favour of either the optimal or the suboptimal
behavioral strategy. These expectations were induced through biased probabilistic exposure. In
contrast, blocks of incomplete movies were used to test the effect of each type of bias
(probabilistic and biomechanical biases) on the participants’ decisions when confronted with
visually uncertain action scenes (see [11], for a similar procedure).

For each of the 144 action movies, participants were required to predict the
demonstrator’s intention by pressing, with their right index and middle fingers, one of two
adjacent computer keys corresponding to the two possible intentions. The procedure used was
a self-paced procedure: participants were instructed to make their response as soon as they
though they had enough visual information to produce an accurate response. However, note
that both complete and incomplete movies ran until completion independently of the subject’s

response.
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Figure 1: Examples of the four combinations ‘grip X intention’ that participants encountered during the
experiment, and that lead to ‘optimal’ or ‘suboptimal’ behaviors. All combinations began with the
demonstrator’s static hand. The actor could then use either a ‘power’ or a ‘precision’ grip to achieve either the
intention of Opening the box (O) or Switching the lights on (S). The combination between the kind of grip and the
kind of final intention resulted in the complete action as being labeled biomechanically optimal (OPTIMAL) or
suboptimal (SUBOPTIMAL). Whereas the complete action movies lasted until the achievement of the underlying
intention for a total duration of 2000msec, the incomplete action movies stopped 800msec after the movement
onset (when the demonstrator was about to grasp the tool) while the last displayed frame remained on the screen
for a duration of 1200 msec, so that observers had information about the grip but no information (on that trial)
about the demonstrator’s intention.

Typical trial

All trials started with a white fixation-cross that appeared for 1000msec on a dark

background. The fixation cross was immediately followed by either a complete or an
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incomplete action movie (see above for further details). After each decision, response time
was displayed on the screen for 500msec. For those trials in which participants did not
respond, or responded too late, ‘NO RESPONSE’ was displayed on the screen. The next trial
started immediately after the 500msec visual feedback period. This feedback allowed us to
avoid a ‘guessing bias’ that could occur during the presentation of complete action sequences,
and that could hinder the integration of the probabilistic bias (see [11], for a similar
procedure). The presentation of stimuli and recording of responses (correct/incorrect and
response times) was synchronized using E-prime2 software (Psychology Software Tools, Inc,

USA).

Biomechanical priors

The four possible action combinations (2 grips x 2 intentions) were divided into two types of
behavioral category (optimal versus suboptimal) on the basis of their low or high
biomechanical cost. This procedure allowed us to manipulate biomechanical priors emerging
from perceived affordances (see fig.1):

i) Optimal behaviors. Using the power grip to achieve the intention of opening the box
by lifting the handle was cost-free, as was using the precision grip to achieve the intention of
switching the lights on by turning the handle. These two combinations were identified as
optimal behaviors (low biomechanical cost).

i) Suboptimal behaviors. The precision grip increased the cost of achieving the intention

of opening the box, whereas the power grip increased the cost of achieving the intention of
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switching on the lights. These two combinations were identified as suboptimal behaviors (high
biomechanical cost).

The biomechanical cost of action movies were pre-tested on 10 naive individuals. They
were asked to estimate the muscular and/or articulator cost of each perceived movement on a
5-point Likert scale (ranging from 0 = null cost to 5 = very high cost). As expected, optimal
behaviors (precision grip/switching-on the lights and power grip/opening the box, mean score
= 1.01) were estimated as significantly less costly than suboptimal ones (precision
grip/opening the box and power grip/switching-on the lights, mean score = 3.13) (two-tailed t-
test for paired data: t = -20.87, p < .0001). It is of note that the intentions achieved with a
precision grip were rated as less costly than those achieved with a power grip for both optimal
(precision grip/switching-on the lights, mean score = 0.55, versus power grip/opening the box,
mean score = 1.47; two-tailed t-test for paired data: t = -54.83, p < .0001) and suboptimal
behaviors (precision grip/opening the box, mean score = 2.90, versus power grip/switching-on

the lights, mean score = 3.37; two-tailed t-test for paired data: t = -30.82, p <.0001).

Probabilistic priors

Unbeknownst to the participants, the probability of observing the demonstrator using an
optimal or a suboptimal behavioral strategy was varied within the three distinct experimental
sessions (‘baseline’, ‘convergent bias’, ‘divergent bias’ — see below). Varying the probability
distributions of each possible strategy allowed us to manipulate each participant’s probabilistic
priors, that is, prior expectations they could form about the behavioral strategy being favored

by the demonstrator to achieve the tool’s functions. After each participant performed the task,
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we controlled for the extent to which she/he was aware of the induced bias. As expected, none
of the subjects spontaneously reported that one type of action was more likely observed than
another.
i) Baseline session: no probabilistic bias. In the first session, participants had an equal
probability of observing the demonstrator achieving his intention by performing an optimal or
a suboptimal behavior.
i) ‘Convergent bias’ session: probabilistic bias towards optimal behaviors. In this
session participants were biased towards ‘optimal’ behaviors to the detriment of ‘suboptimal’
behaviors. In 80% of the ‘box opening’ trials the demonstrator opened the box using a power
grip, and in 80% of the ‘light switching’ trials he switched on the lights using a precision grip.
Here, behaviors that were preferentially used by the demonstrator converged towards the
participant’s biomechanical priors.
iii)  ‘Divergent bias’ session: probabilistic bias towards suboptimal behaviors. In this
session participants were biased towards ‘suboptimal’ behaviors to the detriment of ‘optimal’
behaviors. In 80% of the ‘box opening’ trials the demonstrator opened the box using a
precision grip, and in 80% of the ‘light switching’ trials he switched on the lights using a
power grip. Here, the behaviors that were preferentially used by the demonstrator diverged
from the participant’s biomechanical priors.

All participants began the experiment with the baseline session. The order of the two

bias sessions (convergent and divergent) was counterbalanced across participants.

Training phase
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Prior to the experiment participants were familiarised with the task. The training consisted of

an unbiased complete action movie block followed by an incomplete action movie block.
Data analysis

We analysed the percentage of correct responses (hits) and response times (RTs) collected for
both complete and incomplete action movies. Responses for incomplete actions were encoded
as correct if the predicted intentions conformed to those that the demonstrator actually
achieved in their complete format. Participants who responded too early on more than 10
percent of the complete action movies were discarded from further analyses (responses were
considered as too early when they occurred between 0 and 1000msec after movie onset,
making accurate predictions impossible). Using this criterion, two subjects were excluded.

All statistical analyses were performed separately for complete and incomplete action
movies. The magnitude of the probabilistic bias and its interaction with biomechanical
expectations was investigated by comparing performance during the baseline session with that
during the two biased sessions. The hit rates and RTs were then analysed usinga 2 x 2 x 3
repeated-measures ANOVAs. The first two-level factor was the ‘type of behavior’ (optimal
versus suboptimal behaviors), the second two-level factor was the ‘type of grip’ (power versus
precision grip), and the third, three-level factor was the ‘probabilistic bias’ (baseline versus
convergent bias versus divergent bias). Post-hoc Fisher tests were used to compare
performance between conditions.

We further investigated the learning dynamics internal to each session by comparing
data (hits and RTs) collected during the first (time-step 1) and the second half (time-step 2) of

each session. Thus, for each session, the hits rates and RTs were analysed using 2 x 2 x 2
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repeated-measures ANOVAs with ‘time-step’ (time-step 1 versus time-step 2), ‘type of
behavior’ (optimal versus suboptimal behaviors), and ‘type of grip’ (power versus precision
grip) as two-level factors. Post-hoc Fisher tests were used to compare performance between
conditions.

For all analyses, p < .05 was taken as the criterion for significance and eta squared (1)
was used as a measure of effect size. Statistical analyses were performed using Statistica 9

(www.statsoft.com).

Results

Overall performance

Complete action movies (Hits and RTs)

The 2 (type of behavior) x 2 (type of grip) x 3 (probabilistic bias) repeated-measures
ANOVAs revealed a main effect of the ‘type of behavior’ on both hits (F;2; = 18.08, p < .001,
N =.46) and RTs (F121 = 93.43, p <.0001, 1 = .82). Participants were more accurate and faster
at predicting optimal than suboptimal behaviors (hits: 88% vs. 81%; RTs: 1382msec vs.
1444msec). The main effect of the ‘probabilistic bias’ was also significant on both hits (F2,42 =
6.5, p <.01,=.24) and RTs (Fz42=22.18, p <.0001, } = .51). In the divergent bias session,
participants made more accurate predictions compared to the baseline (hits: 88% vs. 84%, p <
.05) and the convergent bias sessions (hits: 88% vs. 82%, p < .001). However, when compared
to baseline, RTs were faster in both the convergent (1368msec vs. 1452msec, p < .0001) and

the divergent bias sessions (1420msec vs. 1452msec, p < .05). It is of note that a difference
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occurred also between the two bias sessions, with faster RTs in the convergent bias session
(1368msec vs. 1420msec, p < .001). Finally, a main effect of the ‘type of grip” was found on
hits only (F121 = 23.27, p <.0001, /| = .53), with participants being overall more accurate at
predicting behaviors that were performed with a precision than a power grip (88% vs. 81%).

The two-way interaction ‘type of behavior’ x ‘probabilistic bias’ was significant for
both hits (F242 = 19.76, p < .0001, 1§ = .48) and RTs (F24, = 31.69, p < .0001, | = .60) (see
fig.2a,b). Post-hoc comparisons (LSD Fisher tests) indicated that during the baseline session —
where both types of behaviors were equally probable — participants were more accurate
(87.5% vs. 80%, p < .01) and faster (1411msec vs. 1492msec, p < .0001) at predicting optimal
compared to suboptimal behaviors. A similar pattern was observed in the convergent bias
session. Participants were more accurate (91% vs. 72%, p < .0001) and faster (1308msec vs.
1427msec, p < .0001) at predicting the optimal behaviors when these behaviors were more
frequently shown than the suboptimal ones. In the divergent bias session, no differences were
found between the optimal and suboptimal behaviors, despite the fact that the latter were more
frequently shown than the former (hits = 85% vs. 90%, p > .05; RTs = 1427msec vs.
1414msec, p > .05). Thus, increasing the probability of observing suboptimal behaviors did
not significantly increase the number of correct responses for these behaviors compared to the
optimal ones.

Interestingly, the interaction effect between the optimality of the behavior and the
probabilistic bias was further modulated by the type of grip used, as revealed by a significant
three-way interaction between all three factors for hits (F42 = 9.49, p <.001, 1 = .31). In the
baseline session, the preference for optimal over suboptimal behaviors was observed for

power grip only (post hoc test comparing optimal/power grip vs. suboptimal/power grip: p <
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.0001; post-hoc test comparing optimal/precision vs. suboptimal/precision grip: p > .05). In the
convergent bias session, participants were impaired at predicting suboptimal over optimal
behaviors irrespective of the type of grip used. In the divergent session, no difference between

optimal and suboptimal behaviors was observed, irrespective of the type of grip used.

Incomplete action movies (Hits and RTS)

The 2 (type of behavior) x 2 (type of grip) x 3 (probabilistic bias) repeated-measures
ANOVAS revealed a main effect of the ‘type of behavior’ on both hits (F12; = 17.19, p <.001,
N =.45) and RTs (F121=6.97, p = .01, 1 = .25); participants were more accurate and faster at
predicting optimal than suboptimal behaviors (hits: 58% vs. 42%; RTs: 1176msec Vs.
1215msec). This preference for optimal behaviors significantly differed from chance (t-test for
single mean, t > 4.40, p < .001).The main effect of the ‘probabilistic bias’ was significant only
for RTs (F242=5.75, p < .01, = .21). This indicated that, compared to the incomplete movie
blocks of the baseline session, participants make faster predictions in the incomplete movie
blocks of the convergent bias (1156msec vs. 1235msec, p < .01). Note that they also tended to
make faster predictions in the incomplete movies of the divergent bias session (1194msec vs.
1235msec, p = .08). The main effect of ‘type of grip’ was not significant (hits and RTs: all F >
.33, all p > .48).

The two-way interaction ‘type of behavior’ x ‘probabilistic bias’ was significant for
both hits (F242=9.84, p <.001, = .32) and RTs (F24,=3.34, p < .05, 1 = .14) (see fig.2¢c,d).
As for the complete movie blocks, post-hoc comparisons (LSD Fisher tests) indicated that, in
the baseline session, participants were more accurate at predicting optimal than suboptimal

behaviors (59% vs. 35%, p < .001). This preference for optimal behaviors significantly
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differed from chance (t-test for single mean, t > 3.32, p < .01).They were also more accurate
(66% vs. 36%, p < .0001) and faster (116msec vs. 1197msec, p < .001) at predicting optimal
than suboptimal behaviors in the incomplete action movie blocks of the convergent bias
session. Again, the preference for optimal behaviors was significantly different from chance
level (t-test for single mean, t > 4.75, p < .001). However, in the incomplete action movie
blocks of the divergent bias session, we did not find any differences between the optimal and
the suboptimal behaviors, although the latter were most likely observed than the former in the
complete movie blocks that preceded (hits = 49% vs. 55%, p > .05; RTs = 1187msec vs.
1202msec, p > .05). Note that performances for both optimal (t-test for single mean, t < -0.17,
p > .05) and suboptimal behaviors (t-test for single mean, t > 1.46, p = .15) did not
significantly differ from chance.

Finally, the interaction effect between the ‘type of behavior’ performed (optimal vs.
suboptimal) and the ‘probabilistic bias’ (baseline vs. convergent vs. divergent) was modulated
by the type of grip (power vs. precision) used by the demonstrator (F, 4= 3.37, p <.05, | =
.14). In the incomplete action movie blocks of the baseline and convergent bias sessions, the
difference between optimal and suboptimal behaviors was observed independently of the type
of grip used. In the incomplete action movie blocks of the divergent bias session, a difference
between optimal and suboptimal behaviors was observed only when both of them were
achieved by a precision grip (optimal/precision = 47% vs. suboptimal/precision = 59%). Note
that the proportion of correct predictions for suboptimal behaviors achieved with a precision

grip differed from chance (t-test for single mean, t > 2.38, p <.05).

126



a COMPLETEACTION MOVIES c INCOMPLETEACTION MOVIES
100 4

90 9

80 o

g
w L
g 70 ns
s —_
o 80 o
2
ko]
2 50 4
=
o
o
40 o
30 9
20 4
Baseline Convergent Divergent Baseline Convergent Divergent
= Optimal
b d )
1600 1600 & Suboptimal
1550 1550
1500 1500
= 1450 1450
E 1400 1400
w1350 1350 ns
g ~— Rk ns
= 1300 1300 — —_
@
2 1250 1250
[+]
§ 1200 1200
1150 1150
1100 1100
1050 1050
1000 1000
Baseline Convergent Divergent Baseline Convergent Divergent

Figure 2: Overall performances. a) and c) represent the mean percentages of correct responses collected during
complete and incomplete action movies for all three sessions. b) and d) represent the mean response times
collected during complete and incomplete action movies for all three sessions. The green columns refer to the
mean percentages of correct predictions for observed ‘optimal’ behaviors (pooled across ‘power’ and ‘precision’
grip). The orange columns refer to the mean percentages of correct predictions for observed ‘suboptimal’
behaviors (pooled across ‘power’ and ‘precision’ grip). Error bars denote the standard error of the mean.

Overall performance: preliminary discussion (fig.2)

Results for the complete action movies demonstrate that, compared to baseline, the
probabilistic bias significantly improved participants’ performance — as also indicated by
faster reaction times in the two bias sessions. Note that the rate of correct responses was

overall higher in the divergent session. This is easily explained by the fact that, in the
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convergent session, the probabilistic bias assigned to optimal behaviors concomitantly
increased the errors rate for unbiased (i.e., suboptimal) behaviors. In contrast, the probabilistic
bias assigned to suboptimal behaviors did not alter the participants’ ability to accurately
predict the unbiased (i.e., optimal) behaviors. Thus, the higher the probability that a behavior
occured, the better and faster it was predicted, irrespective of its type (optimal or suboptimal).
These results indicate that, as expected, participants were successful in integrating the
probability distributions of both convergent and divergent bias sessions.

The second set of results shows that the biomechanical constraints generated by the
detection of tool affordances play a major role in participants’ predictions: participants were
more accurate and faster at predicting behaviors that minimized biomechanical costs,
irrespective of probabilities. Thus, in both the complete and incomplete action movies of the
baseline session (i.e. a session in which the demonstrator equally selected between the two
available behavioral strategies), participants preferentially chose intentions achieved by
optimal behaviors rather than suboptimal behaviors (see fig.2a,b,c,d). This result demonstrates
that when participants cannot rely on past observations (i.e., on probability) to decide how an
observed agent is most likely to behave, they tend to rely on their biomechanical priors by
default. That is, they assume that the observed agent behaves ‘rationally’, i.e., that he favors
strategies which minimize biomechanical costs.

The third set of results concerns the interaction between the two kinds of priors
(biomechanical and probabilistic) (fig.2a,b,c,d). We found that both the magnitude and
dynamics of the probabilistic bias differed as a function of the type of behavior, with
participants’ biomechanical expectations overriding the effect of the probabilistic bias. Thus,

in the convergent bias session (probabilistic bias assigned to optimal behaviors) performance
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decreased for the suboptimal behaviors, and was facilitated for the optimal behaviors, as
expected. This pattern of performance — observed in both the incomplete movie and complete
movie blocks — suggests that it is costly for participants to inhibit a response that fits with their
biomechanical expectations, even though a high amount of visual information is available.
However, in the divergent bias session (probabilistic bias assigned to suboptimal behaviors),
no significant differences were found between the two alternatives: participants did not
preferentially choose the suboptimal behavior over the optimal one, although the former was
more likely to be performed than the latter. This pattern suggests that participants actively
integrated both types of priors, by combining their respective effects. Thus, when probabilistic
and biomechanical priors diverged, the overall effect tended to sum to zero, resulting in
performances that did not significantly differ from chance for both optimal and suboptimal
behaviors.

Finally, we found that the type of grip used by the demonstrator had an effect on the
participants’ predictions when 1) the probability of each competing intention was equal
(baseline session), and ii) when the intention that was eventually achieved was fully visible
(complete movies). This finding can be accounted for by a facilitatory effect of the precision
grip. Although suboptimal behaviors that were achieved with a precision grip were estimated
as suboptimal, they were nevertheless estimated as less constraining than those performed
with a power grip. Interestingly, this facilitatory effect was easily overcome by the
probabilistic bias, since it disappeared in both the convergent and divergent bias sessions. It is
of note that this tendency to over-estimate the optimality of precision grips may be due to the
biomechanical characteristics of the effector itself. Indeed, performing prehension movements

with either a power grip or a precision grip differentially affects the synergies of arm
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segments. While the achievement of a power grip exerts constraints on many degrees of
freedom of the arm (i.e. the wrist, elbow and shoulder) [36], the precision grip offers more
flexible solutions [37], independently of the overall cost of the final action (e.g. opening the

box with a precision grip).

Learning dynamics

Complete action movies (Hits and RTs)

i) Baseline session. The 2 x 2 x 2 repeated-measures ANOVA performed on ‘time-step’
(time-step 1 vs. time-step 2),‘type of behavior’ (optimal vs. suboptimal) and ‘type of grip’
(power vs. precision grip) revealed a main effect of the ‘type of behavior’ for both hits (F1 21 =
11.57, p < .01, 1 = .36) and RTs (F121=47.7, p <.0001, 1 = .69), with optimal behaviors
being overall faster (1411msec vs. 1493msec) and more accurately predicted (88% vs. 80%)
than suboptimal ones. A main effect of ‘type of grip’ was also found on hits only (F121 = 9.48,
p <.01, 1 =.31), with behaviors achieved using a precision grip being overall more accurately
predicted than those achieved using a power grip (87% vs. 80%). The two-way interaction
‘time-step’ x ‘type of behavior’ was significant for hits (F121 = 4.91; p < .05, 1 = .19) (see
fig.3a). Post-hoc comparison tests (LSD Fisher tests) showed that the difference between the
percentage of hits observed at time-step 1 for the optimal and the suboptimal behaviors (90%
Vvs. 78%; post-hoc test: p <.0001) was no longer significant at time-step 2 (85% vs. 82%; post-
hoc test: p > .05). Neither the main effect of ‘time-step’, nor the two-way interaction ‘time-
step’ x ‘type of grip’, nor the three-way interaction was significant (hits and RTs: all F <2.93,

all p >.10).
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i) Convergent bias session. The same 2 x 2 x 2 repeated-measures ANOVA performed
on complete movie blocks of the convergent bias session revealed main effects of ‘time-step’
(hits: F121=9.80; p <.01, 1 =.32; RTs: F11=6.87; p < .05, 1 = .25) and ‘type of behavior’
(hits: g1.21 = 34.09; p < .0001, 7§ = .62; RTs: F11=43.61; p <.0001, §j = .67) on both hits and
RTs. Participants were more accurate but slower at predicting the demonstrator’s intention at
time-step 1 than at time-step 2 (hits = 85% vs. 78%, p <.01); RTs = 1386msec vs. 1337msec,
p <.05). Overall, they were more accurate and faster at predicting likely optimal than unlikely
suboptimal behaviors (hits = 91% vs. 73%, p < .0001; RTs = 1307msec vs. 1416msec, p <
.0001). A main effect of the ‘type of grip” was also shown on hits only (Fy ;= 17.26; p <.001,
N = .45), revealing that participants more accurately predicted behaviors performed with a
precision than a power grip (87%vs. 77%, p < .001), independently of their optimality and of
the time-step. Furthermore, the two-way interaction ‘time-step’ x ‘type of behavior’ was
significant for hits (F121=9.07; p < .01, 1 = .30) (see fig.3a). Post-hoc analyses (LSD Fisher
tests) showed that throughout the session, participants were overall more accurate at predicting
the optimal than the suboptimal behaviors, and that this advantage for optimal behaviors
increased over time (time-step 1 = 91% vs. 79%, p < .001; time-step 2 = 91% vs. 66%, p <
.0001). The two-way interaction between ‘time-step’ x ‘type of grip’ as well as the three-way
interaction were not significant (hits and RTs: all F < 1.60, all p > .22).

iii)  Divergent bias session. The same 2 x 2 x 2 repeated-measures ANOVA performed on
complete movie blocks of the divergent bias session showed a main effect of ‘time-step’ (F1.21
=5.04.; p <.05, 1 =.19), with better performance at time-step 1 than at time-step 2 (90% vs.
85%). A main effect of the ‘type of grip” was also found on hits (F121 = 6.99.; p < .05, /| =

.25), with better performance for behaviors performed with a precision than a power grip (90%
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vs. 84%), irrespective of their optimality. The interaction between the ‘time-step” and ‘type of
behavior’ factors was significant for hits only (F121 = 6.85.; p < .05, 1 = .25) (see fig.3a). In
the first half of the session participants performed equally well (post-hoc test: p > .05) for the
likely suboptimal (time-step 1 = 89%) and the unlikely optimal behaviors (time-step 1 = 91%).
In the second half, however, they were more accurate at predicting the suboptimal behaviors
(time-step 2 = 91% vs 79%; p < .01). This was associated with decreased performance for the
unlikely optimal behaviors throughout the session (time-step 1 = 90% vs. time-step 2 = 79%).
The main effect of ‘type of behavior’, the ‘time-step’ x ‘type of grip’ interaction, and the

three-way interaction were not significant (hits and RTs: all F < 3.83, all p >.06).

Incomplete action movies (Hits and RTs)

i) Baseline session. The 2 x 2 x 2 repeated-measures ANOVA performed on ‘time-step’
(time-step 1 vs. time-step 2),‘type of behavior’ (optimal vs. suboptimal) and ‘type of grip’
(power vs. precision grip) showed a main effect of the ‘type of behavior’ on hits only (F121 =
17.96, p < .001, 1 = .46). In the incomplete movie blocks of the baseline session, participants
were more accurate at predicting optimal (59%) than suboptimal (35%) behaviors,
independently of the time-step. Neither the main effects of ‘time-step’ or ‘type of grip’, nor
the two-way interactions ‘time-step’ x ‘type of grip’ and ‘time-step’ x ‘type of behavior’ (see
fig.3b), nor the three-way interaction were significant (hits and RTs: all F < 1.21, all p > .28).
i) Convergent bias session. The same 2 x 2 x 2 repeated-measures ANOVA performed
on incomplete movie blocks of the convergent bias session revealed a main effect of ‘time-
step” on RTs only (F121 = 9.53; p < .01, f = .31). Overall, participants responded slower at

time-step 1 (1178msec) than at time-step 2 (114Imsec). A main effect of the ‘type of
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behavior’ was present for both RTs (F121= 14.11; p < .01, 1 =.40) and hits (F1 21 =21.17; p <
.001, 1 = .50), with participants being more accurate (66% vs. 36%) and faster (1116msec vs.
1203msec) at predicting optimal than suboptimal behaviors. The main effect of the ‘type of
grip’, the ‘time-step’ x ‘type of grip’ and ‘time-step’x ‘type of behavior’ interactions (see
fig.3b), and the three-way interaction were not significant (hits and RTs: all F < 3.77, all p >
.07).

iii) Divergent bias session. The same 2 x 2 x 2 repeated-measures ANOVA performed on
incomplete movie blocks of the divergent bias session showed a significant interaction
between the ‘time-step’ and ‘type of behavior’ on hits only (F121=8.39; p <.01, 1 =.27) (see
fig.3b). Post-hoc tests (LSD Fisher tests) demonstrated that in the first half of the incomplete
movie blocks, rates of correct predictions for the optimal and the suboptimal behaviors did not
differ (time-step 1 = 54% vs. 54%; p > .05). However, a difference occurred in the second half
of the incomplete movie blocks, with suboptimal behaviors being more accurately predicted
than optimal ones (time-step 2: optimal = 44% vs. suboptimal = 57%; p < .001). Of note is the
fact that this effect was due to the rate of correct predictions for the optimal behaviors
decreasing over the session (time-step 1 = 54% vs. time-step 2 = 44%; p < .01). However,
neither the performance for suboptimal behaviors (t-test for single mean, t < 1.47, p = .15) nor
the performance for optimal behaviors (t-test for single mean, t < -1.32, p = .19) significantly
differed from chance level. No significant main effects were revealed (hits and RTs: all F <
1.87, all p > .19). Neither the ‘time-step’ x ‘type of grip’ interaction was significant (hits and

RTs: all F <.74, all p > .40).
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Figure 3: Learning dynamics. a) and b) represent the mean percentages of correct responses collected during
complete and incomplete action movies for all three sessions. The green columns refer to the mean percentages of
correct predictions for ‘optimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). The orange columns
refer to the mean percentages of correct predictions for ‘suboptimal’ behaviors (pooled across ‘power’ and
‘precision’ grip). Error bars denote the standard error of mean.

134



Learning dynamics: preliminary discussion (fig.3)

In both the baseline and the convergent bias session, analyzing the evolution of response
patterns over time (from time-step 1 to time-step 2) revealed an early preference for the
optimal behaviors (see fig.3a,b). This preference was already present in the first half of the
baseline session and did not vary further with increasing probabilities. Interestingly, this
preference for behaviors that minimized biomechanical costs seemed impervious to their
probabilistic likelihood sampled from past observations. This suggests that biomechanical
priors might short-circuit probabilistic sampling, and might interfere with decisions based on
the extraction of statistical regularities.

In the divergent bias session (suboptimal bias), the evolution of the response pattern
from time-step 1 to time-step 2 suggests that the absence of a difference between performance
for optimal and suboptimal behaviors — although the latter were more frequently shown —
could be primarily due to participants’ initial preferences for optimal behaviors (see fig.3a,b).
This preference progressively decreased over time as the probability of observing suboptimal
behaviors concomitantly increased. However, overall, this increase was not sufficient to
compensate for the participants’ initial lack of preference toward suboptimal behaviors.

Finally, it is noteworthy that the number of responses toward optimal versus
suboptimal behaviors was overall greater in the incomplete, relative to the complete, action
movies in both the baseline and the convergent bias sessions. This difference may account for
the fact that the rate of hits for both the optimal and suboptimal behaviors was very high in the
complete movie blocks. Therefore, the number of responses for optimal behaviors, and hence
the difference between the two types of behavior, could not further increase due to a ‘ceiling’

effect. Alternatively, this difference may be accounted for by the fact that, in conditions of
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visual uncertainty, individuals tended to favor responses that were consistent with their prior
expectations. Interestingly, this assumption is consistent with the finding that one’s priors
(here, an intrinsic preference for optimal behaviors) are primarily used to complement sensory
uncertainty in order to allow decisions, and thus actions, to be made even in cases of noisy

signals or sparse data [11,16].

Discussion

The aim of this study was to test how the biomechanical expectations conveyed by tool
affordances interact with prior knowledge about tool function and use, and whether this
interaction influences predictions about a demonstrator’s intentions when using tools. Here,
we provide the first evidence that low-level local cues such as object affordances influence the
learning and prediction of tool-use behaviors. We demonstrate that biomechanical priors
modulate the extent to which participants’ predictions are influenced by probabilistically-
induced prior expectations (see fig.2). In particular, we found that when the demonstrator’s
behavior satisfied both the participants’ biomechanical and probabilistic priors, the learning
cost decreased, as participants efficiently combined both types of priors to make their
predictions. Conversely, when the demonstrator’s behavior violated the biomechanical but not
the probabilistic priors, the learning cost increased, as participants had to deal with two
conflicting sources of prior information.

Specifically, the dynamics of the integration of these probabilistic expectations was

strongly dependent on the biomechanical optimality of the observed behaviors (see fig.3).
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When the probabilistic bias favored suboptimal behaviors, participants needed a greater
number of observations to neutralize a preference for optimal behaviors, as well as to derive
and use probabilistic information to predict suboptimal behaviors. Furthermore, performance
during both the baseline and the convergent bias sessions showed that participants exhibited
an initial preference for optimal behaviors that was sustained throughout the session, and did
not vary with changes in probabilistic bias. Interestingly, this initial preference was even
stronger in the interrupted sequences, where subjects had little information about the
demonstrator’s intention. The strong influence of biomechanical priors in these sequences
suggests that these priors might be primarily used in the case of noisy signals or sparse data.
As such, they may be specifically suited to reduce the intrinsic uncertainty of goal-directed
behaviors [16]. In sum, biomechanical priors provided by the tool’s affordances acted as an
inductive bias [13], complementing the available perceptual information when this
information did not sufficiently constrain the number of potential solutions (e.g. ‘opening a
box’ versus ‘switching the lights on”).

Together, these findings complement recent results published by Chambon and co-
workers [11]. In their study, participants were requested to infer the intentions of a
demonstrator who performed various actions on meaningless objects. The authors showed that
as the amount of visual information conveyed by movement kinematics progressively
decreased, participants responded more frequently toward the intentions that had the highest
probability of occurring. Chambon et al.’s findings are consistent with a Bayesian estimation
scheme: the less information one has about the action scene, the greater the weight of one’s
priors in the decision. Put another way: the higher the sensory uncertainty, the more the

probabilistic bias is used to ‘resolve’, or ‘complement’, this sensory uncertainty. Our findings
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suggest that the effect of priors gathered from probabilistic sampling of past observations also
depends on whether or not the visual information conveyed by the movement’s kinematics
meets the expectations that are induced by an object’s affordances.

Even though visual information did not meet these expectations, participants tended to
assume the demonstrator to behave in an optimal way. In other words, they expected the
demonstrator to act as a ‘rational”’ agent — i.e., an agent who adopts the most optimal (i.e., least
costly) action means to achieve his goal given the constraints of the current situation. This
echoes recent evidence showing that humans, even at a very early age, consider their
conspecifics to be rational agents [8,38,39]. Thus, children may posit states of the world
occasionally counterfactual to the perceptual evidence (such as the presence of occluded
physical objects) but consistent with a rational interpretation of the observed action [40,41].
Here, we show that, rather than being restricted to external, environmental aspects of reality
(e.g., a ball jumps an obstacle to reach a new location versus a ball jumps to reach a new
location but there is no obstacle present), the situational constraints through which the rational
attributes of an observed behavior are estimated, are extended to self-centred, sensorimotor
properties that observers share with the observed agents.

This issue is currently debated in the literature. On one hand, previous findings suggest
that in early infancy such sensorimotor cues do not play an essential, selective role in the
rational interpretation of observed actions. For example, Southgate and colleagues [42]
showed that 6- to 8- month-old infants attributed rational properties to observed actions even
when the movements used to achieve them were biomechanically impossible. In their study,
rationality was defined as conditions in which the observed goal-directed movements were

adapted to external situational constraints, independently of the biomechanical plausibility of
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these movements. On the other hand, other evidence suggests that a rational interpretation of
goal-directed actions may be predicated upon sensorimotor information conveyed by
movement kinematics [43]. On a similar line, Southgate and co-workers [44,45] recently
showed that the motor system of 9- to 15-months old infants was activated during the
prediction of observed actions. The authors proposed that the activation of the motor system,
instead of being driven by current visual information, was driven by the infants’ expectations
about the movements by which an attributed goal would likely be achieved. Given these
contradicting data, one may speculate that the coupling of a rational interpretation of goal-
directed actions with the processing of sensorimotor cues such as object affordances might be
highly dependent on motor expertise acquired from experience [46]. Furthermore, this
coupling might mature later in development. Our results suggest that the coupling of
biomechanical with probabilistic priors may be particularly strong in adult observers,
presumably equipped with a high degree of motor expertise.

Biomechanical and probabilistic priors may recruit two different — and parallel — neural
systems that occasionally combine to derive information about tool use and function from
observation. However, the exact nature and function of these systems is still a matter of
conjecture. Effector-dependent, biomechanical priors may exert their influence on action
prediction by differently weighting action alternatives within the motor repertoire of posterior
frontal cortices such that certain actions become favored over others according to the
biomechanical constraints of the motor effectors. This process of weighting action alternatives
could be mediated by reciprocal inhibitory connections within the motor cortices, either by
suppressing or increasing the activity of current competitors [47]. Occasionally, probabilistic

priors may exert top-down influences on the selection of action alternatives within premotor
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cortices by using evidence gathered from past events to re-assigning new weights to the set of
possible actions. Interestingly, these probabilistic priors may recruit more anterior frontal
regions, such as the dorsolateral [48] or the inferior parts [49] of the dorsolateral prefrontal
cortex. As a result, one may speculate that an abnormal connectivity between dorsolateral
prefrontal and premotor regions — resulting from an impaired biasing influence from anterior
to more posterior frontal cortices — would lead to abnormal action selection [50,51]. Such
abnormal selection might jeopardize acquisition of motor expertise and the ability to infer

other people’s intentions from observation [52].

Conclusion

To our knowledge, the present study provides the first evidence that object affordances play a
major role in the learning and prediction of observed tool-use behaviors. In particular, we
show that perceiving observed behaviors as rational depends on low-level local cues from
which their biomechanical costs are estimated with regard to their final goals. We suggest that
biomechanical expectations elicited by affordances impede or bias the extraction of
probabilistic regularities from past events. When these statistical regularities favor the
observation of biomechanically suboptimal behaviors, biomechanical expectations delay the
acquisition of probabilistic priors. Consequently, they also hinder the use of these priors in
solving the uncertainty that is associated with incomplete visual signals.

Interestingly, one may extrapolate from our results that increasing the number of

observations for suboptimal behaviors would further boost the weight devoted to probabilistic
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information in the participants’ decisions. If this is the case what might this boost reflect and
how might the brain represent it? Further studies should investigate how, and whether, the
increasing weight of probabilistic information is associated with an update of biomechanical
priors. Such an update could occur through a mechanism of visuomotor learning mediated by
the plastic properties of the motor system [53-55]. This would allow one to determine whether
the interaction between a ‘rational’ interpretation of actions and the detection of affordances
recruits a modular, domain-specific process that would configure the experience of the
external world per se. Implications for the social learning of tool use could be particularly
important, as it would suggest that the larger the magnitude of this interaction for learners, the
less able they would be to predict and learn from biomechanically suboptimal or unexpected
behaviors. More generally, we believe that this cognitive selectivity for biomechanical
optimality could contribute to the convergence of individual behaviors towards homogeneous
patterns [17]. This could arise in the absence of high-level, faithful social transmission
mechanisms such as true imitation of observed action goals and means [56- 58]. Affordances
could enhance the efficiency of less precise, though less costly, forms of social learning
strategies in the acquisition of novel tool use, like emulation learning [59] or stimulus

enhancement [60].
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The Experimental Contribution Chapter 2 showed that prior information aquired from
probabilistic exposure and prior information derived from an estimation of the biomechanical
costs engaged during observed actions interact, and that this interaction modulates the
prediction of participants regarding a demonstrator’s intentions. In the study presented in the
Experimental Contribution Chapter 3, | was interested in investigating whether such an
interaction also translates into the motor system, possibly through a modulation of the motor
resonance mechanisms.

To test this, | used single-pulse TMS over the primary motor cortex (M1) to probe
corticospinal excitability changes (CSE) during an action prediction task that was similar to
the one deigned in the Experimental Contribution Chapter 2. Thus, in this task, both the
biomechanical optimality of actions being observed and their probability of occurrence were
varied. The very similar stimuli were used: the task consisted of the presentation of a series of
movies showing an actor performing two types of object-directed actions (lifting an object to
open a box versus turning an object to switch-on a light) using either a power (whole hand
grip) and a precision grip (pinch grip). In a first step, participants were presented a series of
incomplete action movies where only the grasping phase was visible. In a second, step, they
were presented a series complete action movies where both the grasping phase and the action’s
final outcome were visiable, and where one action type was more likely observed than
another. In third step, a second series of incomplete action movies was presented. For each
movie of the three series, participants were required to predict the final intention of the actor
(open the box versus switch-on the light). Three groups of participants were tested, each being
subjected to a specific probability distribution of optimal and suboptimal actions during the

complete movie series. Single-pulse was assigned over the left M1 during the observation of
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incomplete action movies, prior and after the observation of complete action movies in which
the probabilistic biases were implemented. Comparing MEPs between the first and the second
series of incomplete movies enabled us to study the effect of probabilistic sampling of past
events on CSE as well as its interaction with the visual information conveyed by the
movement kinematics. By doing so, we were able to draw inference about whether the motor
simulation processes were tuned by higher-order expectations, namely, the expectations
generated by the probabilistic exposure to a specific action type.

It has been argued that single-pulse TMS offers a dynamic picture of motor simulation
processes that are at stake during action observation (Fadiga et al., 2005). The reason is that
the TMS application over M1 enables the on-line measurement of CSE at high temporal
resolution. The first evidence of a modulation of CSE during the observation of biological
actions in humans was provided by Fadiga and collaborators in 1995. In this seminal study,
experimenters applied TMS over the cortical representation of the hand in M1 and recorded
motor-evoked potentials (MEPs) of various hand muscles, while participants observed
transitive (e.g., grasping an object) or intransitive (e.g., lifting the arm) arm-hand movements.
During observation of grasping action, the amplitude of MEPs recorded from two muscles
involved in grasping movements (the first dorsal interosseus ‘FDI” and the opponent pollicis
‘OP’) increased, as compared with those observed in the control condition. According to the
authors, this finding demonstrates the involvement of a motor simulation mechanism during
action observation, a prerequisite for action understanding and prediction.

The study by Fadiga and collaborators provided the basis of more than 15 years of
single-pulse TMS studies on action observation (Alaerts et al., 2009; Alaerts et al., 2010;

Aziz-Zadeh et al., 2002; Brighina et al., 2000; Catmur et al., 2007; Cesari et al., 2011; Clark et
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al., 2004; Gangitano et al., 2001; Lago and Fernandez-del-Olmo, 2011). The underlying
hypothesis of these studies is that observing others’ actions potentiates the neural populations
located in the area corresponding to the cortical representation of muscles that are involved in
the execution of the observed actions. According to Fadiga and collaborators (2005), this
potentiation would decrease the activation threshold of these neurons, which leads to a
facilitation effect after the TMS delivery, as reflected by an increase of CSE. This facilitation
effect is often interpreted as an indice that motor simulation mechanisms operate during action
observation.

In parallel, single-pulse TMS over M1 has also been recently used to uncover, with
action preparation paradigms, the impact of statistical regularities of past events over the CSE
of participants (Bestmann, 2008; van Elswijk et al., 2007). It appears that the predictability of
an event is encoded within the motor system, as indirectly revealed by an increase of CSE
when cues serving for action preparation were highly expected by participants.

Thus, single-pulse TMS applied over M1 offers a powerful technique allowing the
measurement of CSE changes that could occur through the modulation of sensorimotor

components of action stimuli as well as the modulation of their probability distributions.
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Abstract

Motor resonance mechanisms — the automatic activation in the motor system of sensorimotor
representations that are equally recruited during the execution and the observation of an action
— are assumed to enable an observer to infer the goal or intention of another agent’s action.
However, it is not yet clear whether, and how, these mechanisms can be adaptively modulated
by different sources of prior information, such as i) the prior knowledge an observer may
accumulate about another agent’s behavior through the probabilistic sampling of past events,
ii) the biomechanical optimality of the observed actions (the muscular and articulator costs of
given action). The present study aimed to test whether the interactions between biomechanical
expectations and prior knowledge about a demonstrator’s behaviors, which are known to
influence the participants’ predictions of the demonstrator’s intentions, can modulate the
motor system activity. To test this, we used single-pulse TMS applied over the primary motor
cortex (M1) to derive a well-established measure the corticospinal excitability (CSE) of
participants during an action prediction task. In this task participants were required to infer,
under various conditions of visual uncertainty, the intentions of a demonstrator performing
tool-use behaviors. Both the probability of observing the demonstrator achieving
biomechanically optimal and suboptimal actions was varied. Our results show that motor
resonance processes are sensitive to biomechanical optimality, in such a way that they
adaptively adjust their activity depending on prior expectations of the observer. This
adjustment is here demonstrated via the maintenance of corticospinal excitability in conditions
where biomechanical and prior knowledge acquired from probabilistic exposure strictly
converge, and a decrease of excitability when they diverge. This regulatory activity could
reflect an adaptive mechanism whereby the brain efficiently weights information gathered
from probabilistic sampling of past observations to optimize the understanding, the prediction,
and possibly the acquisition of new behaviors.

Keywords: action prediction, prior information, motor resonance, transcranial magnetic
stimulation.
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Introduction

The human cultural landscape abounds with unstable, changing, and open-ended behavioral
environments (Boyd and Richerson, 1985). Under such circumstances, understanding,
predicting and learning new behaviors from observation requires the ability to adaptively deal
with each environment’s intrinsic uncertainty by exploiting, adjusting, or inhibiting
information of various sources (Collins and Koechlin, 2012). One type of information is the
observer’s expectations regarding the type of motor sequence performed to achieve a predicted
goal given the biomechanical constraints of the effector itself (Gallese and Goldman, 1998). It
has previously been shown that actions of both human and non-human animals aim to be
biomechanically optimal, i.e. to minimize the muscular and articulator costs of the action
(Flash and Hochner, 2005; Rosenbaum et al., 1992, 1996; Sartori et al., 2011; Weiss et al.,
2007). Recent experimental work in humans suggests that this function of minimizing costs
also transfers to action prediction (Jacquet et al., 2012b, in press), with observers expecting
others to behave in accordance with biomechanical optimality rules. Biomechanical prior
expectations play a role in action prediction when the observed action is directed to, or
mediated by, an object or a tool, as the tool’s affordances ‘tell’ the agent and the observer how
to act on it appropriately. Affordances thus reduce the number of possible motor acts one can
perform on an object or a tool given the biomechanical constraints of the agents (Gibson,
1979). Predicting and learning new behaviors from observation also depends on acquiring
prior knowledge about another person’s intentions, or goals, from probabilistic sampling of
past experience (Baker et al., 2009; Chambon et al.,2011; Csibra and Gergely, 2007). Both

biomechanical and probabilistic information have been demonstrated to be crucial for action
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prediction (see Chambon et al., 2011). Specifically, it has been shown that biomechanical and
probabilistic priors adaptively interact during the prediction of optimal and suboptimal actions,
with the nature of their interaction depending on whether subjects were exposed to
probabilistic behaviors that converge with, or diverge from, biomechanical optimality (Jacquet
et al.,, 2012b, in press). Indeed, the influence of biomechanical expectations on action
prediction was found to progressively decrease over time, as the probability of
biomechanically suboptimal behaviours concomitantly increased (Jacquet et al., 2012b, in
press).

How the brain mediates competition between these two potentially conflicting sources
of information remains unclear. Biomechanical and probabilistic priors may recruit two
different — and parallel — neural networks that converge at some point in order to derive
information from observation about action movements and goals. It has been suggested that
probabilistic priors may exert top-down influences on the selection of action alternatives
within premotor cortices, by using evidence gathered from probabilistic sampling of the
environment (i.e., past observations) to re-assign new weights to the whole set of possible
actions. Interestingly, such top-down influences would recruit anterior regions of the frontal
hierarchy, such as the dorsolateral (Koechlin et al., 2003) or the inferior parts (Kilner et al.,
2011) of the prefrontal cortex. In contrast, biomechanical priors may exert their influence on
action prediction downstream of the frontal hierarchy by differentially weighting action
alternatives within the motor repertoire of posterior frontal cortices, so that certain actions
become favoured over others according to the biomechanical constraints of the motor
effectors. This process of weighting action alternatives would be mediated by reciprocal

inhibitory connections within the motor cortices, either by suppressing or increasing the
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activity of current competitors (Cisek et al., 2007). The emergence of biomechanical priors
may thus be closely related to motor resonance mechanisms — i.e., the transformation of visual
input containing kinematics of a biological movement into the corresponding motor programs
stored in the observer’s motor repertoire. This transformation is assumed to be mediated by
mirror system activity of the human brain (Rizzolatti and Craighero, 2004). This mirror
activity would allow the observer to understand the outcome of an action by matching the
motor components of the observed action with the corresponding sensorimotor representations
stored in her/his own behavioral repertoire (Wilson, Knoblich, 2005; Urgesi et al., 2010;
Avenanti and Urgesi, 2010). Thus, motor resonance might be a simulation device that aids
goal understanding by replicating the observed action in the observer’s own motor system.
Accordingly, the represented action should be ‘executable’, that is, consistent with the
constraints of the observer’s motor system (Csibra, 2007).

It has long been argued that motor resonance processes are automatically activated by
the mere observation of biological movements. If this is the case, they would actively
participate in action perception, a view that has received considerable empirical support in the
last two decades (see for a recent review Rizzolatti and Sinigaglia, 2010). However, the role of
these resonance processes in action prediction is still a subject of controversy. Indeed,
predicting others’ behaviors through motor resonance would be possible under conditions in
which the observer owns a representation of the intended goal. That is to say, prediction would
be possible if, and only if, the goal underlying the observed motor act is known in advance, or
is familiar to the observer (Csibra, 2007; Kilner, 2011). Thus, motor resonance mechanisms

would be particularly well suited for predicting goal-directed behaviors achieved in stable,
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familiar contexts (Aglioti et al., 2008), while being less suited to unfamiliar and open-ended
ones (Csibra, 2007; Csibra and Gergely, 2007).

As such, enriching or degrading the familiarity of an action — by increasing the
probability of observing either familiar and biomechanically optimal actions, or unfamiliar,
biomechanically suboptimal actions — should modulate motor resonance processes,
respectively, increasing or lowering corticospinal excitability, according to biomechanical
optimality (Southgate et al., 2008, 2009). The present study aimed to test this assumption by
investigating whether, and how, priors derived from probabilistic exposure influence motor
resonance mechanisms in a task that required predicting ongoing, open-ended behaviors. To
do so we used an on-line transcranial magnetic stimulation (TMS) technique during an action
prediction task that has been described previously (Jacquet et al., 2012b, in press). Applying
single-pulse TMS over the primary motor cortex (M1) is a well-established way to probe
motor resonance mechanisms that are active during action observation (Alaerts et al., 2009;
Alaerts et al., 2010; Aziz-Zadeh et al., 2002; Brighina et al., 2000; Catmur et al., 2007; Cesari
et al., 2011; Clark et al., 2004; Gangitano et al., 2001; Lago and Fernandez-del-Olmo, 2011).
Observing an agent performing an action facilitates neural activity in an area corresponding to
the cortical representation of muscles that are involved in the execution of that same action.
This facilitation effect is measured as an increase in corticospinal excitability (CSE), and is
expected to signal the involvement of motor resonance mechanisms during action observation
(Fadiga et al., 1995, 2005).

During the action prediction task, adult participants were required to infer the
intentions of a filmed demonstrator acting on a tool that elicited two distinct affordances, each

of which was biomechanically optimal for performance of a specific goal. The biomechanical
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optimality of tool-use actions as well as the probability of observing the demonstrator using an
optimal versus suboptimal strategy were varied. Single-pulse TMS was applied over the left
primary motor cortex (M1) of participants while they viewed videos in which they had to
predict the demonstrator’s final goal. TMS was applied before and after they watched a block
of videos in which the probability of observing optimal or sub-optimal actions was
manipulated (see Material and Methods, below). Three groups of participants were each
assigned a specific probabilistic environment (bias): i) the demonstrator equally used optimal
and suboptimal behaviors to achieve his intention; ii) the demonstrator preferentially used
optimal behaviors, and iii) the demonstrator preferentially used suboptimal behaviors. This
procedure allowed us to assess the effect of varying the contribution of the two classes of
priors (probabilistic and biomechanical) to action prediction, together with investigating how

such variations translate into changes of corticospinal excitability.

Material and Methods

Participants

Fifty-four healthy volunteers (29 women) aged 19-36 (mean = 24, SD = 4.2) took part in an
action prediction task similar to the procedure used in Jacquet et al. (2012b, in press). All were
right-handed, naive to the purpose of the experiment, and reported normal or corrected-to-
normal visual acuity. All participants gave written informed consent and received payment for
their participation in the study. Information about the experimental hypothesis was provided

only after the experiment had been completed. The experimental protocol was performed with
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approval of the local Ethical Committee (Comité de Protection des Personnes SUD-EST 1V,
no. 2010-A01180-39) and in accordance with the Declaration of Helsinki (2008). All
participants did not present any neurological, psychiatric, or other medical problems that are

contraindicated for TMS (Wassermann, 1998).

General Procedure

Participants sat in front of a monitor on which 2000 ms action movies were displayed. The
experimental session was divided into three blocks. In all three blocks participants watched
videos featuring a demonstrator acting on a tool and were required to guess the goal of the
demonstrator’s action (for a similar procedure, see Jacquet et al., 2012b, in press). The tool
consisted of a movable handle screwed onto the lid of a box. The handle offered two distinct
affordances enabling the demonstrator to grasp the object with a power or a precision grip (see
fig.1). Using either grip, the demonstrator could achieve two actions: opening the box by
lifting the handle (intention A); switching on the light by rotating the handle (intention B) (see
fig.1). In the first and third parts participants watched incomplete movies in which the action
stopped 800ms after movement onset (at this time only the grip was apparent not the
demonstrator’s final goal) and the last displayed frame was presented on the screen for
1200ms. During these incomplete videos a single TMS pulse was applied after movie onset. In
the second part, participants watched complete movies in which the action lasted until
achievement of the goal (opening or turning), and both the grasp and the demonstrator’s goal
were apparent. No TMS was applied during these complete videos, and each participant was

randomly assigned to one of three experimental groups each characterized by a specific
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probability distribution of optimal and suboptimal complete action movies. These complete
movies were used to bias participants in favour of either optimal or suboptimal behavioral
strategies. Of note is that each video (incomplete and complete) was unique: it was shown
only one time per block.

Using the power grip to achieve the intention of opening the box by lifting the handle
was low-cost, as was using the precision grip to achieve the intention of switching the lights
on by turning the handle. These two combinations were identified as optimal behaviors (low
biomechanical cost). The precision grip increased the cost of achieving the intention of
opening the box, whereas the power grip increased the cost of achieving the intention of
switching on the lights. These two combinations were identified as suboptimal behaviors (high
biomechanical cost) (see Figure 1).

Participants assigned to the ‘No bias’ group had an equal probability of observing the
demonstrator achieving his intention by performing an optimal or a suboptimal behavior.
Participants assigned to the ‘Convergent bias’ group were biased towards ‘optimal’ behaviors,
to the detriment of ‘suboptimal’ behaviors. In 80% of the ‘box opening’ trials the
demonstrator opened the box using a power grip, and in 80% of the ‘light switching” trials he
switched on the lights using a precision grip. Here, behaviors that were preferentially used by
the demonstrator converged towards the participant’s biomechanical priors. Finally,
participants assigned to the ‘Divergent bias’ group were biased towards ‘suboptimal’
behaviors, to the detriment of ‘optimal’ behaviors. In 80% of the ‘box opening’ trials the
demonstrator opened the box using a precision grip, and in 80% of the ‘light switching’ trials
he switched on the lights using a power grip. Here, the behaviors that were preferentially used

by the demonstrator diverged from the participant’s biomechanical priors. Of note is that the
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distributions of optimal and suboptimal behaviors during the incomplete movie block were
kept equiprobable: participants were presented the same number of optimal and suboptimal
actions.

For each of the 288 action movies that composed an experimental session (96
incomplete in part 1, 96 complete in part 2, 96 incomplete in part 3) participants were required
to predict the demonstrator’s intention by producing a vocal response (‘A’ for opening the
box; ‘B’ for switching on the lights). Vocal responses were recorded via a microphone.
Participants were instructed to make their response as soon as they thought they had enough
visual information to produce an accurate response. Note however that both complete and
incomplete movies ran for the full 2000ms independently of the timing of the subject’s
response.

Prior to the experiment participants were familiarised with the task by watching six

incomplete movies and an unbiased block of twelve complete movies.
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Figure 1: Examples of the four combinations ‘grip X intention’ that participants encountered during the
experiment, and that lead to ‘optimal’ or ‘suboptimal’ behaviors. All combinations began with the
demonstrator’s static hand. The actor could then use either a ‘power’ or a ‘precision’ grip to achieve either the
intention of opening the box or switching the lights on. The combination between the kind of grip and the kind of
final intention resulted in the complete action as being labeled biomechanically optimal (OPTIMAL) or
suboptimal (SUBOPTIMAL). Whereas the complete action movies lasted until the achievement of the
underlying intention for a total duration of 2000ms, the incomplete action movies stopped 800ms after the
movement onset (when the demonstrator was about to grasp the tool) while the last displayed frame remained on
the screen for a duration of 1200 ms, so that observers had information about the grip but no information (on that
trial) about the demonstrator’s intention.
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Typical trial

All trials started with a white fixation-cross that appeared for 2500ms on a dark background.
The fixation cross was immediately followed by either a complete or an incomplete action
movie that lasted 2000ms. On each trial participants verbally indicated which goal the
demonstrator was about to achieve and at the end of the video response time was displayed on
the screen for 500ms. For those trials in which participants did not respond, or responded too
late, ‘NO RESPONSE’ was displayed on the screen. The next trial started immediately after
the 500ms response feedback period. This feedback allowed us to avoid a ‘guessing bias’ that
could occur during the presentation of complete action sequences, and that could hinder the
integration of the probabilistic bias (see for a similar procedure, Jacquet et al., 2012b, in
press).

For each incomplete movie, a single-pulse TMS was randomly delivered at 600, 700
and 800ms after the onset of the movies, when the type of grip used by the demonstrator was
fully visible. Each block of incomplete movies included 16 trials without TMS in order to
minimize the predictability of the stimulation. Each participant also performed three blocks of
a TMS control condition, in which motor evoked potentials were recorded during 20 single
TMS pulses over M1 while they viewed a white fixation cross located in the middle of a black
screen (Gangitano et al., 2001). The inter-pulse interval was similar between 4800 and 5200
ms, and three blocks of 20 black-screen trials were included in the experiment; 1) before the
first block of incomplete videos, 2) after the first block of incomplete videos, and 3) after the
second block of incomplete videos. This procedure allowed us to check for any modulation of

corticospinal excitability that did not depend on our experimental variables (e.g., fatigue).
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The presentation of stimuli, the recording of vocal responses (response times) and the
TMS triggering was synchronized using Presentation software (Neurobehavioral Systems,

Inc, USA).

TMS and electromyographic (EMG) recording

Motor-evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI)
muscle of the right hand. Of note is that the FDI muscle is strongly involved in the execution
of each action type that was presented to participants. EMG recordings were performed using
Ag-AgCl electrodes placed in a belly-tendon configuration. EMG activity was amplified and
digitized with a CED Power 1401 interface and sampled at 5 kHz. Spike2 software
(Cambridge Electronic Design, Cambridge, England) was used for off-line data analysis.

A Magstim rapid® stimulator (The Magstim Company, Carmarthenshire, Wales)
generated single-pulse stimuli, delivered through a figure-of-eight coil (7O mm diameter)
placed tangentially to the scalp with the handle pointing backward and at a 45° angle away
from the midline. During the recording sessions, the coil was positioned over the left primary
motor cortex (M1) in correspondence with the optimal scalp position (OSP), defined as the
position from which MEPs with maximal amplitude were recorded from FDI. The OSP was
identified by moving the intersection of the coil in 1cm steps around the hand area of the left
motor cortex and by delivering TMS pulses at constant supra-threshold intensity. Participants
wore a bathing cap on which the OSP for stimulation was marked. The mark and the coil

position relative to the mark were then recorded on each participant’s scalp using the SofTaxic
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Navigator system (EMS, Italy). The coil was held by hand and its position with respect to the
target on the reconstructed brain was continuously monitored during the experiment.

The individual resting motor threshold (rMT) of each participant was identified as the
minimal stimulation intensity that produced motor evoked potentials (MEPS) of at least 50 pV
in the FDI, with 50% probability on 10 consecutive stimulations (Rossini et al., 1994).
Stimulation intensity during the recording sessions was set at 120% of the rMT and ranged
from 33% to 50% (mean = 41%; SD = 6) of the maximum stimulator output. Using this

procedure, a clear and stable signal was obtained from the targeted muscle in all participants.

Data preprocessing

Peak-to-peak amplitudes of the MEPs were determined off-line from the raw EMG data
(Spike2, version 7.02). To control for background EMG activity the data were visually
inspected during the experiment. MEPs the amplitude of which could not be distinguished
from the background activity were removed from the analysis. Background EMG was further
controlled by computing the root mean squared (RMS) of the EMG during the 100ms prior to
the TMS pulse.. Trials on which the pre-stimulus RMS exceeded the average (of the 80 TMS
trials in the block) by more than two standard deviations were discarded. Trials on which MEP
amplitude was greater than or less than 2 standard deviations from the mean were also
removed.

The peak-to-peak amplitudes (mV) of the remaining MEPs were then determined and
converted into a corticospinal excitability (CSE) change index, expressed as the LOG(10)

transformation of percentages of variation relative to the mean MEP amplitude obtained in the
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TMS control conditions. Importantly, the CSE change indices collected during the first
incomplete movie block were computed relative to the mean MEP amplitude of the control
blocks 1 and 2; while the CSE change indices collected during the second incomplete movie
block were computed relative to the mean MEP amplitude of the control blocks 2 and 3. This
procedure allowed us to disentangle corticospinal excitability changes due to our independent
variables from non-specific modulations in corticospinal variability across time.

Because we stimulated at 120% of resting motor threshold, the absolute amplitude of
the control MEPs varied considerably between subjects. Since these control MEPs were used
to normalize data collected during the incomplete movies we reasoned that it would be best to
maximize the physiological homogeneity of all participants and to include only those
participants who had mean MEP amplitudes during the control conditions greater than 0.8
mV. The choice of this criterion was based upon the now-common procedure of choosing a
stimulation intensity that gives a 1mV MEP. Consequently, 11 participants were selected for
the ‘No bias’ session analysis (7 women; mean age = 23, SD = 3.15), 10 for the ‘Convergent’
session analysis (3 women; mean age = 24.6, SD = 4.93), and 12 for the ‘Divergent’ session

analysis (6 women; mean age = 24.3, SD = 3.92).

Behavioral performance. We analysed the percentage of correct responses (hits) and
response times (RTs) collected for both complete and incomplete action movies. Participants
did not receive any feedback about the accuracy of their responses during the incomplete
action videos, and responses were classed as correct if the predicted goal was the same as that
actually achieved by the demonstrator in the complete format of that particular video. All

statistical analyses were performed separately for each of the three movie blocks.
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The hit rates and RTs collected during the complete movie block were analysed using 2
x 2 x 3 repeated-measures ANOVAS. The first two-level factor was the ‘type of behavior’
(optimal versus suboptimal), the second two-level factor was the ‘type of grip’ (power versus
precision), and the third, three-level factor was the ‘probabilistic bias’ (no bias versus
convergent bias versus divergent bias).

The hit rates and RTs collected during the two incomplete movie blocks were then
analysed using 2 x 2 x 2 x 3 repeated-measures ANOVAs. The first two-level factor was
the ‘block’ (pre-test versus post-test), the second two-level factor was the ‘type of behavior’
(optimal versus suboptimal), the second two-level factor was the ‘type of grip’ (power versus
precision), and the third, three-level between-subject factor was the ‘probabilistic bias’ (no

bias versus convergent bias versus divergent bias).

MEP data. MEP data were only collected during incomplete videos, for which there was no
information concerning the goal of the action. Since we were interested in knowing whether
corticospinal excitability was modulated as a function of action prediction, a trial was
classified as optimal or suboptimal according to the participant’s decision on that trial,
regardless of whether or not this decision was correct. Thus, ‘optimal”’ and ‘suboptimal’ trials
contain both hits and false alarm. The percentage of MEPs excluded (too much background
EMG activity or MEPs that were 1.96 SD up or down the mean MEP amplitude) ranged
between 7 and 9% for the pre- and post- blocks (84 trials each) and was approximately equal
for the three different groups.

A2 x 2 x 2 x 3repeated-measures ANOVA was then performed, with ‘block’ (pre-

test versus post-test), ‘type of behavior’ (optimal versus suboptimal) and ‘type of grip” (power

164



versus precision) as two-level within-subject factors and the ‘probabilistic bias’ (no bias

versus convergent bias versus divergent bias) as three-level between-subjects factor.

Results

Behavioral performance (Hits and RTS)

Complete action movies

Figure 2 shows the mean percentage of correct responses (upper panel) and mean reaction
times (bottom panel) collected during complete action movies. The 2 (type of behavior) x 2
(type of grip) x 3 (probabilistic bias) repeated-measures ANOVAs revealed a main effect of
the ‘type of behavior’ on both hits (F1 30 = 28.20, p < .001) and RTs (F130 = 43.79, p < .001).
Participants were more accurate and faster at predicting optimal than suboptimal behaviors
(hits: 90% vs. 75%; RTs: 1374ms vs. 1449ms). A main effect of the ‘type of grip’ was found
only for RTs (Fy13 = 9.84, p < .01), with participants being overall faster at predicting
behaviors that were performed with a precision than a power grip (1398ms vs. 1425ms).

The two-way interaction (type of behavior) x (probabilistic bias) (see figure 2) was
also significant for both hits (F2.30 = 12.29, p <.001) and RTs (F230 = 26.74, p < .0001). Post-
hoc comparisons (LSD Fisher tests) indicated that during the no bias group — where both types
of behaviors were equally probable — participants were more accurate (92% vs. 77%, p < .05)
and faster (1398ms vs. 1425ms, p < .05) at predicting optimal compared to suboptimal
behaviors. A similar though stronger pattern was observed in the convergent bias group where
optimal behaviors were more likely to be observed. Participants were more accurate (96% vs.

59%, p < .0001) and faster (1307ms vs. 1510ms, p < .05) at predicting optimal compared to
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suboptimal behaviors. Furthermore, when compared to the no bias group, participants in the
convergent bias group were less accurate and slower at predicting the unbiased suboptimal
behaviors (hits = 59% vs. 77%; RTs = 1510ms vs. 1425ms). In the divergent bias group no
differences were found between the optimal and suboptimal behaviors, despite the fact that the
latter were more frequently shown than the former (hits = 84% vs. 86%, p > .05; RTs =
1428ms vs. 1415ms, p > .05). Thus, increasing the probability of observing suboptimal
behaviors did not significantly increase the number of correct responses for these behaviors
compared to the optimal ones, however it cancelled the natural preference towards optimal
behaviors that was present in the no bias group.

Finally, the (type of grip) x (type of behavior) interaction was significant for RTs only
(F230 = 4.78, p < .05). Overall, participants were faster at predicting suboptimal behaviors
when achieved with a precision than with a power grip (1426ms vs. 1471ms, p >.001).

No other significant main or interaction effects were observed (all p > .07).
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Figure 2. Behavioral performances. The upper graph represents the mean
percentages of correct responses collected during complete action movies for all
three sessions. The inferior graph represents the mean response times collected
during complete action movies for all three sessions. The blue columns refer to the
mean percentages of correct predictions for observed ‘optimal’ behaviors (pooled
across ‘power’ and ‘precision’ grip). The red columns refer to the mean percentages
of correct predictions for observed ‘suboptimal’ behaviors (pooled across ‘power’
and ‘precision’ grip). Error bars denote the standard error of the mean.
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Incomplete action movies
Figure 3 shows the mean percentage of correct responses (upper panel) and mean reaction
times (bottom panel) for the incomplete action movie blocks before (pre) and after (post)
exposure to one of three probabilistic biases. The 2 (block) x 2 (type of behavior) x 2 (type
of grip) x 3 (probabilistic bias) repeated-measures ANOVASs revealed a main effect of the
‘type of behavior’ on both hits (F130 = 73.89, p < .001) and RTs (F130 = 37.72, p < .001);
participants were more accurate and faster at predicting optimal than suboptimal behaviors
(hits: 64% vs. 37%; RTs: 1329ms vs. 1392ms). This preference for optimal behaviors
significantly differed from chance (t-test compared to 50%, t > 8.68, p < .001). The main
effect of ‘type of grip’ was significant for RTs only (F1 27 = 15.31, p <.001). Participants were
faster at predicting behaviors performed with a precision grip than a power grip (1337ms vs.
1382ms, p < .001).

The two-way interaction ‘type of behavior’ x ‘type of grip’ was significant for hits

only (F130 = 6.24, p < .05). Post-hoc tests (LSD Fisher tests) showed that participants were

more accurate at predicting optimal rather than suboptimal behaviors, for both power (61% vs.
39%, p < .001) and precision grips (67% vs. 34%, p < .001).

Finally, the three-way interaction ‘block’ x ‘type of behavior’ x ‘probabilistic bias’
(see figure 3) was significant for hits (F;.3 = 4.51, p < .05). First of all, post-hoc comparisons
(LSD Fisher tests) indicated that accuracy in pre-test was similar for the three probabilistic
bias groups for both optimal and suboptimal behaviors (no bias = 64% vs. 35%; convergent
bias = 68% vs. 39%; divergent bias = 62% vs. 38%; all p > .35). This is crucial as it

demonstrates that the predictions of each group were equally guided by default by
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biomechanical expectations conveyed by the object’s affordances. Furthermore, in the no bias
group, no differences were observed between the pre-test and the post-test, for either optimal
(64% vs.63%, p > .05) or suboptimal behaviors (35% vs. 35%, p > .05), and participants were
more accurate at predicting optimal than suboptimal behaviors in both the pre (64% vs. 35%, p
< .001) and post-test blocks (63% vs. 35%, p < .001). Of note is that, in the two blocks, this
preference for optimal behaviors significantly differed from chance (pre-test = t-test compared
to 50%, t > 4.28, p < .01; post-test = t-test against 50, t > 4.54, p < .01). In the convergent
group, a similar pattern was observed for optimal behaviors, with participants being equally
accurate in pre-test and in post-test (68% vs. 72%, p > .05). However, the accuracy decreased
in post-test for suboptimal behaviors (39% vs. 29%, p < .05). Note that in both these blocks,
participants were more accurate at predicting optimal than suboptimal behaviors (pre-test =
68% Vvs. 39%, p < .001; post-test = 72% vs. 29%, p < .001). Once again, in the two blocks of
incomplete movies, the preference for optimal behaviors significantly differed from chance
(pre-test = t-test for single mean, t > 6.65, p < .001; post-test = t-test compared to 50%, t >
7.17, p < .001). Post-hoc analyses also showed that the probabilistic exposure to optimal
behaviors strengthened the participants’ preference for these behaviors in the post-test, when
compared to the no bias group in which both behaviors were equally presented (72% vs. 63%,
p <.05). Interestingly, in the divergent group, the preference for optimal behaviors observed in
pre-test (62% vs. 38%, p < .001) which differed significantly from chance level (t-test
compared to 50%, t > 3.80, p < .0) was cancelled in the post-test, as indicated by the fact that
performance for both optimal (56%; t-test against 50, t > 1.89, p > .05) and suboptimal
behaviors (43%; t-test compared to 50%, t > -1.52, p > .05) did not differ from chance. A

comparison with the post-test of the no bias session further shows that after being exposed to
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the divergent bias, participants were significantly more likely to predict suboptimal behaviors
(35% vs. 43%, p <. 05). This result indicates that the probabilistic exposure to suboptimal
behaviors conflicted with biomechanical expectations of participants in such a way that the
preference for optimal behaviors was no longer observed.

No other significant main effect effects were observed (all p > .08).
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Figure 3. Behavioral performances. The upper graphs represent the mean percentages of correct responses
collected during incomplete action movies of the pre-test and post-test, and for all three sessions. The blue
columns refer to the mean percentages of correct predictions for observed ‘optimal’ behaviors (pooled across
‘power’ and ‘precision’ grip). The red columns refer to the mean percentages of correct predictions for observed
‘suboptimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). Error bars denote the standard error of the
mean.

Behavioral performances: preliminary discussion

These results demonstrate that, consistent with previous findings (Chambon et al., 2011;
Jacquet et al., 2012b, in press), participants in both the convergent and divergent groups
successfully integrated the probability distributions. This was evidenced by comparing the
results for complete movies for the two biased groups with those of the no bias group (see

figure 2). Results from the no bias group are characterized by a natural preference for optimal
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behaviors, that is, for behaviors that satisfied the participants’ biomechanical prior
expectations. Indeed, in the absence of any relevant information about which behaviour was
most likely to be performed (in the no bias group the demonstrator achieved his intention by
equally performing either optimal or suboptimal behaviors), participants made predictions on
the basis of their biomechanical priors, even though there was enough visual information
conveyed by the action scene (the video) to predict with 100% accuracy using only visual
information. Note that this pattern was reinforced in the convergent bias group where optimal
behaviors were more likely to be observed, as indicated by an increase in reaction times and a
decrease in hit rate for the unbiased, suboptimal behaviors. Conversely, this intrinsic
preference for optimal behaviors disappeared in the divergent bias group in which suboptimal
behaviors were more likely to be observed.

These observations further highlight the impact of biomechanical expectations on the
performances: they were overall more accurate and faster at predicting behaviors that
minimized biomechanical costs, irrespective of probabilities. Indeed, in both the complete (see
figure 2) and incomplete (see figure 3) action movies of the no bias group (i.e. who observed
the demonstrator selecting between the two available behavioral strategies with equal
probability), participants preferentially chose intentions achieved by optimal actions rather
than suboptimal actions. This result demonstrates that when participants cannot rely on prior
knowledge acquired from recent experience (i.e., on probability) to decide how an observed
agent is most likely to behave, they rely on their biomechanical priors by default. That is, they
assume that the observed agent behaves ‘optimally’, favouring strategies that minimize

biomechanical costs.

171



Finally, the present results show that the magnitude of the probabilistic bias differed as
a function of the type of behavior, with participants’ biomechanical expectations overriding
the effect of the probabilistic bias. In the convergent bias group (probabilistic bias assigned to
optimal behaviors), performance was facilitated for the optimal behaviors, as expected. The
fact that such a pattern was observed in both the complete movies (see figure 2) and the post-
test blocks of incomplete movies (see figure 3) suggests that it is particularly costly for
participants to take decisions against what is in line with rules of biomechanical optimality,
even though the amount of visual information is sufficiently high to infer the demonstrator’s
intention based on movement kinematics alone. Strikingly, a very different pattern emerged
for the divergent bias group. Indeed, in this group no difference was found between the
optimal and suboptimal behaviors, although the latter were more frequently observed than the
former. This pattern suggests that participants actively integrated both types of priors: when
probabilistic and biomechanical priors diverged, the overall effect tended to sum to zero,
resulting in performance that did not significantly differed from chance for both optimal and

suboptimal behaviors.

MEP data (CSE change index)

Incomplete action movies

The 2 (block) x 2 (type of behavior) x 2 (type of grip) x 3 (probabilistic bias) repeated-
measures ANOVAs revealed a main effect of the ‘block” on the CSE change index (F130 =
6.92, p < .05). Corticospinal excitability was greater in the pre-test compared to the post-test

blocks (139% vs. 116%), independent of the type of probabilistic exposure.
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The most interesting finding was the significant two-way interaction effect ‘block’ x
‘probabilistic bias’ (F230 = 5.66, p = .01). As expected, post-hoc comparisons (LSD Fisher
tests) showed that CSE change index for the pre-test block did not differ between the three
probabilistic bias groups (no bias = 141%; convergent = 128%; divergent = 145%; all p > .45).
Critically, in the divergent session, CSE was significantly reduced in the post-test block (145
vs. 100, p <.001). A similar, albeit not significant tendency was present in the no bias group,
CSE being slightly lower in the post-test block (141% vs. 114%, p=.062) whereas, in the
convergent group, MEP amplitude had the opposite, non-significant tendency (128% vs.
138%, p > .31). These results indicate that the type of probabilistic environment that
participants were exposed to prior to the post-test block affected the CSE. In particular, only
when this environment departed from that fitting biomechanical priors, the CSE level was
significantly decreased.

No other significant main interaction effect were observed (all p > .29).
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Figure 4. MEPs data. The graph represents the mean CSE change index recording
during the incomplete action movies for all three sessions. The CSE change index
reflects the % of variation of MEPs amplitude relative to the mean MEPs amplitude
recorded during the TMS control condition (see table 1). The blue columns refer to the
mean CSE change index for the pre-test (pooled across ‘power’ and ‘precision’ grip as
well as ‘optimal’ and ‘suboptimal’ behaviors). The red columns refer to the mean CSE
change index for the post-test (pooled across ‘power’ and ‘precision’ grip as well as
‘optimal’ and ‘suboptimal’ behaviors). Error bars denote the standard error of the
mean.

MEP data: preliminary discussion

Our results revealed a gradient of CSE that is a function of the adequacy of the probabilistic
context sampled from the complete movies to the participants’ biomechanical priors. When
the probabilistic context satisfies biomechanical optimality rules, the CSE level is maintained,
while when the probabilistic context contradicts or violates biomechanical optimality, the CSE
level decreased. In the no bias group there was a slight (non significant) decrease in CSE,

independently of the type of behaviors (see figure 4). Interestingly, in the convergent session
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there was a stabilization of the CSE relative to the post-test block. Finally, in the divergent
session, where participants were most likely to observe behaviors that departed from
biomechanical optimality, the level of CSE was significantly decreased post-test. Overall,
these results show that CSE changes may depend on the type of behaviour that was most
frequently shown to the subject (optimal versus sub-optimal) during the complete video
session, and on the degree to which the probabilistic environment matched the participants’
biomechanical expectations. Indeed, the divergent session profoundly suppressed CSE
possibly because participants were maximally exposed to actions that did not satisfy

biomechanical optimality rules.

General discussion

The objective of this study was to test whether the interactions between biomechanical
expectations (conveyed by tool affordances) and prior knowledge (acquired from probabilistic
exposure) about a demonstrator’s behaviors — known to influence the participants’ predictions
of the demonstrator’s intentions — can modulate the motor system activity.

In a previous study (Jacquet et al., 2012b, in press), we provided the first evidence that
biomechanical priors emerging from the detection of object affordances interact with priors
acquired from probabilistic sampling of past events and can bias the prediction of observed
actions. The behavioral data of the present study closely replicate our previous findings. We
show that biomechanical expectations arising from the detection of object affordances adjust

the participants’ dependence on prior knowledge induced by probabilistic exposure. More
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specifically, when the behaviors gathered from probabilistic exposure satisfied these
biomechanical prior expectations, participants efficiently combined both biomechanical and
probabilistic priors to make their predictions. Conversely, when the behaviors gathered from
probabilistic exposure violated the biomechanical priors, participants had to deal with two
conflicting sources of prior information, which resulted in predictions close to chance level.
Overall, the tendency to the decrease in CSE level in the no bias session was
suggestive of a general attenuation of the motor cortical activity. However, although CSE
level significantly changed after repeated exposure to action stimuli, both the direction and the
magnitude of this change tended to vary according to the probabilistic environment to which
the participants were exposed, as well as on the degree to which this environment was
biomechanical optimal. Thus, instead of reflecting an effect of neural adaptation, the
suppression of corticospinal excitability observed as a tendency in the no bias, and clearly in
the divergent session, are indicative of a change that does not allow the motor system to
resonate anymore. This process occurred when the observed behavior departed from
biomechanical optimality. Thus, in the ‘convergent bias’ group, participants watched the
demonstrator acting in accordance with such expectations, and no CSE change was observed.
In the ‘divergent bias’ group, the behaviors performed by the demonstrator frequently
departed from biomechanical optimality, and the CSE level that was subsequently measured
dramatically decreased, when compared to the initial exposure to incomplete actions (before
the probabilistic bias). This pattern of findings suggests that motor resonance is not fully
encapsulated and automatic, but can be actually quite malleable and sensitive to changes in the
probabilistically-induced expectations. Further, we found that the magnitude of this inhibitory

process was a function of the degree of reliability of the observer’s biomechanical
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expectations, i.e., of how reliable biomechanical optimality rules were to predict the
behavioral environment.

This CSE suppression may further suggest that the involvement of motor resonance
mechanisms in action prediction is dependent on the interaction between the biomechanical
prior expectations and the nature of the environment in which the prediction needs to be made,
such that high levels of CSE are maintained only in environments that are consistent with
these expectations. This is evidenced by the observation of different levels of CSE within each
of the three environments (no bias vs. convergent vs. divergent). Motor resonance mechanisms
— that are sensitive to biomechanical optimality — are therefore not affected by observation
indistinctly (see also Catmur et al, 2007; Stefan et al., 2005, 2008). Rather, they could be
modulated according to whether observation did, or did not, satisfy rules of biomechanical
optimality. These findings are consistent with recent studies demonstrating that activity of the
motor system of 9- to 15-months old infants is driven, during action prediction, by prior
expectations about which movement is most likely to be performed in order to achieve a given
goal, rather than by the current visual information alone (Southgate et al., 2009, 2010).

What may be the function of such a regulatory activity of the motor resonance
mechanism? We suggest it may protect the observer against errors of prediction in the case
where observation and expectations conflict, and would do so by leaving inadequate action
representations with reduced resonance weights. In the context of the present task, such a
weight reduction would operate during the observation of complete movies by down-
regulating (in the no bias and the divergent bias groups) action representations that match with
biomechanical prior expectations. Interestingly, the dorsal fronto-median cortex has been

shown to underlie such ‘refraining’ process in a task requiring voluntary inhibition of
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prepotent impulsive responses, through top-down inhibition of premotor areas (Khiin et al.,
2008). Our results open the interesting possibility that a similar veto on action prediction also
operates at a low, implicit level, with the aim of preventing observers from making
maladaptive decisions. Thus, in the divergent bias session, where biomechanical optimality
and probabilistic likelihood of the observed behaviors conflicted, participants might have
refrained from inferring optimal behaviors. This regulation of motor resonance mechanisms
may arise from top-down influences generated by the accumulation of probabilistic priors in
the frontal regions. It could be that increasing the probabilistic likelihood of conflicting
behaviors should in turn attenuate the influence of biomechanical expectations, through
possible top-down adjustment of activation thresholds in the motor mirror system. This
adjustment would result in decreasing the influence of motor resonance mechanisms on
prediction, hence down-regulating the predictive value of low-level, kinematic features of the
observed action. The role of motor resonance in action understanding and prediction has long
been documented and debated (Rizzolatti and Craighero, 2004; Rizzolatti and Sinigaglia,
2010; for review). Through internal simulation of an action performed by a third party, an
observer would be able to predict — on the basis of his or her own motor representations — the
future states of the observed action, and, by extension, to infer the underlying intention
(Gallese and Goldman, 1998). However, in order to be a reliable source of information for
action prediction, motor resonance mechanisms must primarily be fed with a prior
representation of the goal to predict (Csibra, 2007; Kilner, 2011). On this account, processes
of motor resonance would not be suitable for inferring new goals, and would adjust poorly to
unfamiliar, open-ended, environments. Regulation of automatic resonance processes through

higher-order probabilistic representations of the environment may provide an adaptive
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mechanism to enable acquisition of unexpected, new behaviors. Interestingly, behaviors that
over-ride rules of biomechanical optimization are regularly promoted by human culture. This
is the case for many human cultural praxes, such as in some forms of sports, dances or music.
Such praxes are often considered as socially valuable behaviors precisely because they are
particularly difficult to learn and master. In some kinds of sport and dance practices, for
example, biomechanical ‘suboptimality’ is perceived as a marker of excellence, and is socially
rewarded for that reason. Importantly, vetoing direct, automatic resonance processes may also
facilitate the learning of new behaviors from observing a non-expert model. Indeed, relying on
prior knowledge gathered from probabilistic sampling of past observations may occasionally
prove more helpful than merely evaluating the (biomechanical) optimality of the observed

behavior.

Conclusion

Our results support the idea that motor resonance processes, sensitive to biomechanical
optimality, may adaptively adjust their activity depending on prior expectations of the
observer. This adjustment is here demonstrated via a maintenance of corticospinal excitability
in conditions where biomechanical and probabilistic expectations strictly match, and a
decrease of excitability when they diverge. This regulatory activity would reflect an adaptive
mechanism whereby the brain efficiently weights information gathered from probabilistic
sampling of past observations, to optimize the understanding, the prediction, and possibly the

acquisition of new behaviors.
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EXPERIMENTAL CONTRIBUTION

CHAPTER 4
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One of the overarching objectives of the present thesis is to understand how the cognitive and
behavioral characteristics of humans affect their ability to learn socially from observing their
conspecifics, and to figure out what the consequences of these characteristics could be on the
emergence of cultural traditions (i.e., the transmission and the stabilization among a
population of behavioral patterns via social learning). However, such a prospect is of limited
interest without testing the impact of individuals’ cognitive and behavioral characteristics on
the learning dynamics at stake at a population level. This is what we aimed to do in the last
study presented in this thesis. The objective of the Experimental Contribution Chapter 4
was to model behavioral constraints of individuals (such as the biomechanical constraints of
the acting body) and to study their impact on i) their ability to learn socially from each other
and on ii) the evolution of stable behavioral patterns among the population they belong to. To
do so, we used a computer simulation procedure known as individual-based modeling.
Individual-based models (or also term Agent-based models) is a class of computational
models for simulating the actions and interactions of autonomous agents (both individual or
collective entities such as groups). The aim of these models is to assess the effects of these
agents’ interactions on the system as a whole. Individual-based models combine elements of
game theory, complex systems, emergence, computational sociology, multi-agent systems, and
evolutionary programming (Grimm and Railsback, 2005). They are used to explain the
emergence of a variety of higher-order patterns, from network structures ranging from terrorist
organizations to consumer behavior. Thus, individual-based models are perfectly adapted to
simulate the simultaneous operations and interactions of multiple agents, in an attempt to re-
create and predict the appearance of complex patterns at the population level, such as the

emergence of behavioral traditions among a group through social transmission mechanisms.
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The process is one of emergence from the lower (micro) level of systems to a higher (macro)
level. The basic principles of individual-based models are that i) simple behavioral rules
generate complex behavior, ii) the whole is greater than the sum of the parts. Individual agents
are typically characterized as bounded rational agents, presumed to be acting in what they
perceive as their own interests, such as reproduction, economic benefit, or social status, using
heuristic learning or simple decision-making rules. Agents in individual-based models can
thus experience learning, adaptation, and reproduction. In most of the cases, individual-based
models are composed of i) numerous agents specified at various scales, ii) decision-making
heuristics, iii) learning rules or adaptive processes, iv) an interaction topology; and v) a non-
agent environment.

Accordingly, the aim of our model was to study, at a population level, the potential
effect of various constraints (e.g., the size of the behavioral repertoire of an individual and the
type of search space characterizing a task problem) on the ability of individuals to evolve
behavioral traditions through the acquisition of faithful social learning. Even though they
generally represent simplifications of reality, the use of evolutionary individual-based models
is increasing in animal and human behavior studies. The reason is that they enable the
identification of different selective pressures under varying ecological conditions, thus helping
researchers to select the data needed to understand otherwise opaque phenomena (see also

Acerbi et al., 2011).
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Abstract

Behavioral “traditions”, i.e. behavioral patterns that are acquired with the aid of social learning
and that are relatively stable in a group, have been observed in several species. Recently,
however, it has been questioned whether non-human social learning is faithful enough to
stabilize those patterns. The observed stability could be interpreted as a result of various
constraints that limit the number of possible alternative behaviors, rather than of the fidelity of
transmission mechanisms. Those constraints can be roughly described as “internal”, such as
mechanical (bodily) properties or cognitive limitations and predispositions, and “external”,
such as ecological availability or pressures. Here we present an evolutionary individual-based
model that explores the relationships between the evolution of faithful social learning and
behavioral constraints, represented both by the size of the behavioral repertoire and by the
“shape” of the search space of a given task. We show that the evolution of high-fidelity
transmission mechanisms, when associated with costs (e.g. cognitive, biomechanical,
energetic, etc.), is only likely if the potential behavioral repertoire of a species is large and if
the search space does not provide information that can be exploited by individual learning.
Moreover we show how stable behavioral patterns (“traditions™) can be achieved at the
population level as an outcome of both high-fidelity and low-fidelity transmission
mechanisms, given that the latter are coupled with a small behavioral repertoire or with a
search space that provide substantial feedback. Finally, by introducing the possibility of
environmental change, we show that intermediate rates of change favor the evolution of
faithful social learning.

Keywords: animal social learning; cultural evolution; cultural transmission; copying fidelity;
individual based modeling.
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Introduction

Examples of behavioral “traditions”, i.e. behaviors acquired with the aid of some forms of
social learning, and which are relatively stable in groups, have been found in several species
(Laland and Galef, 2009). The existence of these traditions has been usually considered as a
strong indication of the presence of faithful social transmission mechanisms that guarantee
both the successful diffusion and the stability of the behaviors involved (Huffman, 1996;
Horner et al., 2006; Marino et al., 2007). In particular, since imitation - i.e. the high-fidelity
copy of novel behaviors through the reproduction of action sequences of observed individuals
(Call and Carpenter, 2002; Tennie et al., 2006; Whiten et al., 2009) - has often been viewed as
the learning mechanism that best explained the emergence of human traditions (Boyd and
Richerson, 1996; Tomasello et al., 1993; Tomasello, 1999), it is assumed that also non-human
traditions are supported by similar imitative capacities (Claidiére and Sperber, 2010).

However, it has been recently questioned whether non-human social learning is
actually faithful enough to produce such stable behavioral patterns. For example, it has been
shown that in experimental settings great apes tend to scarcely use imitation (Tennie et al.,
2006; Tennie et al., 2009; Tennie et al., 2010). On a more theoretical side, Claidiére and
Sperber (2010) argued that the fidelity of social learning, as deduced by transmission chain
studies in different species, may explain the propagation, but not the stability, of non-humans
behavioral traditions.

Accordingly, researchers have begun to examine whether, and how, non-human
animals, unequipped with faithful social learning capacities, could be able to develop

behavioral traditions (Huber et al., 2009; Shea, 2009). It has been suggested that stable
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behavioral patterns could also result from transmission mechanisms less faithful than
imitation, such as emulation, social and local enhancement, or even from trial-and-error
learning (Caldwell and Millen, 2009; Franz and Matthews, 2010; Heyes, 1993; Laland and
Hoppitt, 2003; Matthews et al., 2010; Whiten et al., 2003). Finally, it has been proposed that
the observed stability could be the result of constraints that limit the number of possible
alternative behaviors, more than the result of the fidelity of transmission mechanisms (Tennie
et al., 2009; Claidiére and Sperber, 2010).

In this paper we investigate the relationship between behavioral constraints and faithful
social learning through an evolutionary individual-based model in which a hypothetical
“species”, first unequipped with high-fidelity copying mechanisms, may evolve them under
different conditions. More specifically, we assumed that increasing the fidelity of social
learning had some costs (e.g. cognitive, energetic, etc.) and also that the behavior of this
species was variously constrained.

We introduced two kinds of constraints into our model. The first series of constraints
limited the variety of individuals’ behavioral repertoires. In real-life those constraints would
translate into a set of “internal” factors, such as cognitive limitations (e.g. poor working
memory capacities limit the number of behavioral sequences a species can plan or copy; van
Leeuwen et al., 2009), cognitive biases (e.g. preference for certain classes of stimuli or certain
types of demonstrators towards which one directs its behaviors; van de Waal et al., 2010), or
bodily (biomechanical) architecture of acting individuals (e.g. limited degrees of freedom of
effectors restrict the flexibility by which one can interact with external objects; Desmurget et
al., 1995). In our model those constraints determined the number of the possible behavioral

alternatives a species was provided with. Note that this indicates the distribution of potential
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behaviors, limiting the space in which the search for the optimal behavior is made, while the
actual behaviors a population will show is a subset of those.

The second series of constraints pertained to the specific task one has to resolve and
can be exemplified by a set of “external” factors (e.g. ecological) that shape the structure of
the search space in which the candidate solutions takes place (Acerbi et al., 2011; see also
Goldstone et al., 2008). For example, finding the ripest fruits on a tree is a very different
problem with respect to choosing an edible fruit among different (perhaps including
poisonous) fruits. In the former case an individual can try different fruits and, given adequate
sensory and cognitive capacities, can choose to eat the sweetest ones; a strategy that is clearly
not efficient in the latter situation. Here, we identified three distinct search spaces (see Figure
1), distinguished by the way payoffs were distributed among possible behaviors and, by
consequence, by their tendency to enable individual search strategies. In the Methods section
we describe the three spaces used in the model in detail and provide a real-life example for
each.

The model we developed is individual-based (Grimm and Railsback, 2005), meaning
that we simulated interactions at the level of single individuals, and evolutionary, i.e. an
evolutionary algorithm (Holland, 1975) is used to optimize the behavior of individuals. The
evolutionary algorithm acted on a variable that encoded the fidelity of social learning of each
individual. Individuals that performed better resulted in proportionally more “offspring” than
others. Even though they generally represent simplifications of reality, the use of evolutionary
individual-based models is increasing in animal behavior studies. The reason is that they

enable the identification of different selective pressures under varying ecological conditions,
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thus helping researchers to select the data needed to understand otherwise opaque phenomena
(see also Acerbi and Nunn, 2011).

In the next section, we describe the implementation and the features of the model in
detail, before presenting the results. We first investigated in which conditions a species,
starting from completely unreliable social learning capacities, and thus relying upon individual
learning only, was likely to evolve costly faithful social learning mechanisms. Secondly, we
analyzed how population behavioral homogeneity (i.e. behavioral traditions) could be reached
under different behavioral constraints, i.e. varying the size of the behavioral repertoire as well
as the tasks' search spaces. Finally, we run other simulations allowing the possibility of
environmental change, and we tested its effect on the evolution of faithful social learning. In
the last section, we discuss the relevance of our results for the study of animal social learning
and culture, limitations and possible extensions of our model, as well as some broad

implications for modern human culture.

Methods

General description of the model

All simulations involved populations of individuals (N=100) that interacted in discrete time
steps (until T=10000). At the beginning of the simulations each individual was assigned a
behavior, randomly chosen among all possible behaviors characterizing its population.

Populations varied with respect to the size of their behavioral repertoire (S): we distinguished
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three different experimental conditions, with populations disposing of a repertoire of 10, 100,
or 200 possible behaviors.

At each time step, individuals interacted in pairs. Each individual (the learner) was
paired with another individual (the demonstrator) randomly chosen among the ten individuals
of the population with the highest payoffs (see below for how payoffs were calculated). Thus,

each learner attempted to copy the behavior of its paired demonstrators. The accuracy of social
learning depended on an individual characteristic, determined by the parameter ¢ (fidelity of

social learning). At the beginning of the simulations, * was initialized equal to zero for all
individuals (making social learning completely unreliable for all individuals) and its value
evolved through time.

Evolutionary dynamics resulted from a death-birth process in which newborns

inherited the value of ¢ from fittest individuals. Below we describe the details of the model's

implementation.

Behavioral repertoire and search spaces

Experimental conditions varied with respect to the size of the population's behavioral
repertoire (S=10, 100, and 200 possible alternative behaviors) as well as to how payoffs were
distributed among possible behaviors, determining three different “search spaces”. Behavioral
payoffs varied between 0 and 1, and only a single behavior, randomly selected, brought the

maximum payoff to individuals in all spaces.
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The smooth space

In smooth spaces (see Figure 1a), different behaviors laid on a payoff gradient, and the
“closest” a behavior was to the optimal one, the higher its payoff. Payoffs were modeled as a
Gaussian distribution (as in Boyd and Richerson, 1985 and Mesoudi and O'Brien, 2008).
Smooth spaces represent tasks for which, even if an optimal solution exists, sub-optimal
alternatives are similar in terms of payoff returns. Moreover, the existence of a payoff gradient
provides a way to orient individual searches so that individual learning (e.g trial and error
learning) can potentially be as effective as social learning (Acerbi et al., 2011). Even complex
behaviors like chimpanzees' ant dipping have aspects that may be considered searches in
smooth spaces (Humle and Matzusawa, 2002). An individual, for example, can repeatedly
experiment with sticks of different length, self-evaluate the outcomes of different attempts,

and then arrive at the measure that is most appropriate in a given situation.

The rugged space

Rugged spaces (see Figure 1b) represent “difficult” tasks for which only few good solutions
exist. Contrary to smooth spaces, the structure of such tasks does not provide ways to orient
individual searches. In our simulations rugged spaces were generated by assigning to every
possible behavior a random payoff drawn from an exponential distribution with mean=1
(rescaled between 0 and 1), so that a single behavior led to the maximum payoff, while a
restricted number of alternatives approximate it and a vast majority led to low payoffs. One
real-life example of a task represented by a rugged search space could be foraging in a patchy,
heterogeneous, environment (see e.g. Gil and Wolf, 1977). In such a situation, an individual

can potentially try different sources of food, with only few of them being fruitful, without
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knowing in advance which one will be the richest. The knowledge of one source, furthermore,

does not give information about the quality of the other sources present in the environment.

The peaked space

Finally, peaked spaces (see Figure 1c) represent even more difficult tasks, for which only a
single behavior provides a payoff to individuals, distinguishing it from the two other search
spaces described above. In Acerbi et al. (2011) we argued that many real-life tasks, especially
in human culture, fit this description. One simple example is tying a knot: performing a
behavior similar — but not equal — to the one requested to tying the knot does not produce a
“less effective” knot, but in general does not produce any usable result. For this kind of task it
is likely that any form of individual learning would be very ineffective, since there is nothing

in the search space that could orient the search and there is only a single rewarding solution.
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Figure 1. Search spaces used in the simulations. Schematic representation of the three payoff distributions used
in the simulations determining the three different search spaces. (a) Smooth space. (b) Rugged space. (c) Peaked
space. (See text for details).
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The copying process

The outcome of the copying process depended on the observer's value of ¢ . Figure 2
illustrates how the new behavior was picked up by the observer. Once the demonstrator was

chosen, a new behavior was randomly selected in the search area included between

S
ii(l_ o) with respect to the demonstrator's behavior, and retained by the individual if its

payoff was equal or higher with respect to the current payoff.

When ¢ s close to 1 — such that the fidelity of the learner's copy is almost perfect —

this expression is close to 0, meaning that individuals will assume a behavior closely

approximating the demonstrator's behavior (with * =1 the copied behavior will be exactly the
demonstrator's behavior, so, in this case, social transmission equates to replication). On the

S

% s close to 0, the expression is close to 7 , covering a large range of the

contrary, when

behavioral repertoire. Since behaviors that decrease individual's payoff are discarded, ¢ =0

can be considered cases of pure individual learning.
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Demonstrator
behavior

Payoff associated to behavior

Possible behaviors

Figure 2. Schematic representation of the copying process (in a smooth search space).
Given the demonstrator behavior, the learner will randomly pick up one behavior in the gray

area. The size of the area is given by =+ Z(l—a) , Where S is the size of the population's

behavioral repertoire and * represents the learner's fidelity of social learning. (See text for
details).

Average payoff and evolutionary algorithm

A basic assumption of our model was that faithful social learning has some cost, and this cost
modulated the payoff an individual received from performing a behavior. Individual payoff

was hence determined both by the behavior performed and by the fidelity of social learning
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represented by their value of ¢ .

In more detail, the payoff of individuals (P;), at each time step, was equal to:
P.=P,—aC

that is, the payoff obtained by the behavior performed (Py), minus the value of ¢
multiplied for a factor C:

We varied the value of C from 0 (no cost) to 0.5 (highest cost), with steps of 0.1,
representing alternative situations in which using (and evolving) faithful social learning could
be more or less costly.

The average individual payoff, used to select individuals for reproduction in the
evolutionary algorithm, was simply the sum of all payoffs an individual had had in the course
of its life, averaged for the number of time steps it was alive.

Individuals were selected for reproduction according to their average payoff. At each

time step one individual, randomly chosen among the entire population, was replaced by a

“newborn”. The newborn individual inherited the value of ¢ from another individual that
was randomly chosen among the ten individuals with the highest average payoffs. The
behavior of the newborn was initialized randomly. In other words, the fidelity of social
learning, and not the behavior per se, was genetically inherited and, hence, subject to

evolutionary pressures.

Finally, with a small probability of mutation (# =0.05), the inherited value of ¢ was

randomly reinitialized with a value comprised between 0 and 1.

198



Simulation procedures

In a first set of simulations we studied three different sizes of behavioral repertoires (S=10,
100, and 200) for each payoff distribution (smooth space, rugged space, and peaked space).
For each condition, we varied the cost factor of fidelity (C=0, 0.1, 0.2, 0.3, 0.4, and 0.5) and
we ran 100 simulations for every value of C, recording the average value of fidelity evolved.
We then analyzed how, in peaked search spaces, the interaction between the fidelity of
social learning and the size of the behavioral repertoire impacted the populations' behavioral
diversity, namely, the number of behavioral patterns present in a population. To calculate
behavioral diversity we used Simpson's diversity index. Simpson's diversity index was
developed mainly to assess ecological diversity, taking into account both the number and
relative abundance of species present in a given environment (Simpson, 1949). Recently it has
been used to assess behavioral diversity in cultural evolutionary models (Kandler and Laland,
2009; Enquist et al., 2010). According to this index the diversity of a population can be

represented as:

where 4@ is the frequency of the i variant in the population. The value of D tends
towards 1 as the behavioral diversity of a population increases, and is equal to 0 when all
individuals share the same behavioral variant.

We also measured directly the number of existing behaviors at the end of simulations,
comparing the effect of the three different search spaces, keeping the other parameters

constant (S=200, C=0.2).
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In a second set of simulations, we added the possibility of environmental changes. An
additional parameter (p.=0.001, 0.01, and 0.1) determined at each time step the probability of
the payoff distribution to be fully reinitialized. Note that reinitialization of payoffs did not
change the structure of the search space but it changed the distribution of payoffs among the
behaviors. In smooth spaces as well as in peaked spaces, this involved the “shifting” of the
optimal behavior in a different position, and in rugged spaces the re-assignation of a random
payoff to every possible behavior drawn from the exponential distribution described in

subsection 2.2.2. Notice that when p.=0 this condition reduces to the basic simulation.

Symbol  Short description Values

N Population size 100

T Number of time steps 10000

S Size of the behavioral repertoire 10, 100, 200

C Cost factor of fidelity 0,0.1.0.2,0.3,0.4,05
u Mutation rate 0.05

Pe Probability of environmental change 0, 0.001, 0.01,0.1

Table 1. Main parameters and their value used in the model. Bold typeface values are values varied in
different experimental conditions.
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Results
Faithful social learning evolves with large behavioral repertoire and in peaked

spaces

The results of our simulations showed that, in stable environments, costly faithful social
learning evolved only if two conditions were simultaneously met: the populations had a large
behavioral repertoire, and the task structure was a peaked space (see Figure 3).

When faithful social learning was cost-free (C=0), all populations converged towards

high average values of ¢, showing that high-fidelity transmission mechanisms proved
advantageous to individuals in all conditions. However, when copying mechanisms involved
costs that impacted on the individual's payoff (C>0), these costs were only worthwhile in
situations where an individual search was ineffective. This occurred in peaked search spaces,

and with populations characterized by a sufficiently large behavioral repertoire (see Figure

3c).
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Figure 3. Average fidelity evolved at the end of simulations versus cost factor of fidelity. (a) Smooth space.
(b) Rugged space. (c) Peaked space. Different lines colors in the three conditions represent different sizes of the
behavioral repertoire: blue line: S=200; red line: S=100, black line: S=10. (Each data point is an average on 100
runs).
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Behavioral homogeneity results from both high-fidelity social learning

mechanisms and low-fidelity mechanisms

Figure 4 depicts the evolutionary trajectories of typical runs in the peaked space condition, for
populations having different sizes of behavioral repertoire and for three different values of C.
We have chosen to analyze in detail the peaked space condition because in this condition
faithful social learning evolves also when is costly (see results in Figure 3). Each point in the
plots represents the “position” of a population with respect to its behavioral diversity (x-axes)
and its average fidelity of social learning (y-axes), sampled at an interval of 100 time steps,
during each run. Populations that are in the left part of the graphs are behaviorally
homogeneous populations and populations that are on the right side are behaviorally diverse.
With respect to y-axes, populations that are in the lower part of the graphs lack hi-fidelity
social learning abilities while population in the upper part posses them.

Populations always “started” in the bottom right corner of the graphs, i.e. they were

diverse (at the beginning of the simulations behaviors were randomly initialized) and

individuals also did not possess hi-fidelity social learning abilities (% was initialized at 0 for
all individuals). When faithful social learning was cost-free (C=0, Figure 4 left), populations,
irrespective of their behavioral repertoire's size, “moved” towards the high left corner of the
plot during the simulation run, i.e. towards behavioral homogeneity and faithful social
learning. It is worth noting that populations with a small behavioral repertoire (black line)
could move to the left area of the plot (i.e. towards behavioral homogeneity) without
individuals being required to increase their social learning ability (this happened only in later

stages of the simulation). On the contrary, populations with larger behavioral repertoire (blue
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and red lines) were required to increase the faithfulness of social learning (“moving up in the
plot™) in order to move towards behavioral homogeneity.

For intermediate costs of faithful social learning (C=0.1, Figure 4 center), the
evolutionary trajectories of populations with large behavioral repertoire were similar, while
the population with small behavioral repertoires reached homogeneity without developing
faithful but costly social learning. Finally, when faithful social learning was even more costly
(C=0.2, Figure 4 right), even populations with large behavioral repertoires did not evolve it,
and their behavioral diversity remained high.

In sum, while behaviorally diverse populations (right part of the plots) were the
outcome of a large behavioral repertoire coupled with low-fidelity social learning mechanisms
(Figure 4 right), behavioral homogeneity (i.e. low diversity, left part of the plots) could be the
product either of faithful social learning (Figure 4 left) or of low-fidelity social learning,

provided that the behavioral repertoire was small (Figure 4 center, black line).
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Figure 4. Evolutionary trajectories of populations. Evolutionary trajectories of populations in respect to
behavioral diversity (x-axes) and average fidelity of social learning (y-axes). Each point in the plot represent the
“position” of a population at a given stage of the evolution (sampled every 100 time steps in a simulation run).
Different lines colors represent different sizes of the behavioral repertoire: blue line: S=200; red line: S=100,
black line: S=10. The cost factor of social learning varies in the three panels: from left to right C=0, C=0.1,
C=0.2.
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However, the size of the potential behavioral repertoire was not the only factor that
influenced the final behavioral diversity of a population. We analyzed simulation runs with the
same behavioral repertoire size (S=200) and the same cost factor for social learning (C=0.2)
and we measured the number of behaviors present at the end of the simulations for the three
different search spaces (Figure 5). In smooth and rugged spaces, where faithful social learning
did not evolve (see results in Figure 3 a and b), the populations showed approximately 20
different behaviors. In peaked search paces, however, the final number of behavior in absence
of faithful social learning was higher, and the same number of behaviors was reached only

when faithful social learning evolved.
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Figure 5. Final number of behaviors present in populations in the three different search
spaces. Each point of the plot represents the results of a simulation in respect to the final
number of behaviors present in the population (x-axes) and the average fidelity of social
learning evolved (y-axes), keeping fixed the factor cost of social learning (C=0.2) and the
size of the behavioral repertoire (S=200). Orange: peaked space, red: rugged space, green:
smooth space. (For each space 100 simulations were run).

Intermediate rates of environmental change favor the evolution of faithful social
learning

Finally, we analyzed the effect of environmental variation on the evolution of faithful
social learning, running additional simulations for populations with a large behavioral

repertoire (S=200). Populations with a large behavioral repertoire were specifically targeted as
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the above described results showed that in these conditions faithful social learning was more
likely to evolve when the environment was fixed.

In smooth search spaces, environmental variation had no effect on the evolution of
faithful social learning (Figure 6a), and populations remained composed of individuals with
poor copying abilities, even when the environment was variable. For rugged and peaked
search spaces (Figure 6b and 6c), we found instead that the evolution of faithful social
learning was favored for intermediate rates of environmental variation. In fact, when the rate
of environmental variation was too high (p.=0.1) the average values of fidelity evolved were

similar to the condition in which the environment was stable (p.=0).
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Figure 6. Stacked bar plot of the average fidelity evolved with different probabilities of environmental
change for population with S=200 (size of the behavioral repertoire). The different colors in the bars
represent different values of C (factor cost of faithful social learning) from C=0.1 (darker) to C=0.5 (lighter). We
did not take into account C=0 because in this condition faithful social learning always evolved for p.=0 (see
Figure 3). (a) Smooth space. (b) Rugged space. (c) Peaked space. (Each data is an average on 100 runs).
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Discussion

General discussion of the results

The present individual-based model examined the relationship between behavioral constraints
and the evolution of faithful social learning. Constraints varied according to the size of the
behavioral repertoire of populations (10 vs. 100 vs. 200 possible alternative behaviors) and
according to the intrinsic structure of the search space characterizing the task problem (smooth
space vs. rugged space vs. peaked space). We firstly analyzed, by varying the cost for
individuals to use faithful transmission mechanisms (from null to high cost), how and in which
type of search spaces populations with different sizes of behavioral repertoire would take
advantage of such faithful social learning. We also took into account the effects of fidelity of
social learning and behavioral constraints on the behavioral diversity at population level. We
investigated whether populations unequipped with high-fidelity transmission mechanisms
were prone to develop and stabilize novel behavioral patterns in a manner outwardly similar to
populations equipped with high-fidelity transmission mechanisms. Finally, the effect of the
rate of environmental change in which populations evolved (from no to fast environmental
change) was studied.

Three main results emerged. First, in stable environments, costly faithful social
learning evolved only in populations with large behavioral repertoires, and particularly in
peaked search spaces. Second, the convergence towards behavioral homogeneity resulted from
high-fidelity social learning mechanisms but also from low-fidelity mechanisms, when they

were associated with a small behavioral repertoire or with smooth and rugged search spaces.
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Third, intermediate rates of environmental change favored the evolution of faithful social
learning.

The evolution of faithful social learning, when costly, strongly depended on behavioral
constraints. According to our results, we should expect to find, in real-life, faithful social
learning in conditions in which a species, or a group, has many behavioral alternatives (a large
S in our model) and, at the same time, in which the task at hand does not provide any structure
useful to orient the individual's search. In particular these conditions were met in peaked
spaces. Tasks characterized by this search space had two interesting features. First, only a very
narrow number of behaviors — in our model, only one — led to success (i.e. the payoff
achievable with sub-optimal behaviors is zero, differently from other spaces). Secondly,
performing behaviors other than the single successful solution did not provide any feedback
that individuals could use to estimate the optimality of a given behavior. This result confirms
and enriches our previous findings (Acerbi et al., 2011) where we showed that, for tasks
whose search structure could be modeled as a peaked space, imitation — i.e. a specific instance
of high-fidelity social learning mechanism — was more effective than emulation and individual
learning.

We also showed that the convergence of a population towards behavioral homogeneity
could result, as expected, from high-fidelity social learning mechanisms, but also from low-
fidelity social learning mechanisms. An analysis of simulations for peaked search spaces
demonstrated that a population with a small behavioral repertoire could become behaviorally
homogeneous without developing high-fidelity social learning mechanisms. Additionally, our
results also showed that when the number of potential behaviors was large, the search

structure had an impact on the number of behaviors actually present in the population. In
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particular, relative homogeneity in absence of high-fidelity social learning mechanisms was
obtained for smooth and rugged search spaces, but not for peaked spaces.

This observation is of importance since the emergence of behavioral homogeneity in
wild populations is often presumed to be a sign of faithful social learning (Huber et al., 2009).
While this could certainly be the case — in the simulations presented here faithful social
learning does indeed produce behavioral homogeneity — our model provides an alternative
explanation. This explanation is based on the existence of behavioral constraints, may they be
due to physical and/or cognitive limitations, or ecological factors (shaping the search space of
a given task). It has been shown that behavioral constraints can lead to the re-appearance of
presumed cultural behaviors in naive captive individuals (Huffman and Hirata, 2004; Tennie
et al., 2008; see also Masi, 2011). With regard to ecological influences, it has long been
suggested that these may help explain the distribution of several behaviors across populations
(Humle and Matzusawa, 2002; though see Schéning et al., 2008; Mdbius et al., 2008). For a
behavior presumed to be a product of faithful social transmission, one has to check whether its
diffusion among the population is accounted for by such alternative possibilities (see also
Laland and Janik, 2006; Tennie et al., 2009). Of course, as nearly always in modeling, our
model represents an ideally simplified situation. However, one could imagine having an
estimation of the possible alternative behaviors a species is likely to use (see e.g. Changizi,
2003), as well as an estimation of the search structure of a specific task (for example the
distribution of resources in a specific environment and their energetic/caloric contribution).
These data can then be used to parameterize the model. In this way one could obtain more
realistic results that could be used as a guide to analyze whether, in a specific situation, a

given population is likely to make use of social learning.
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Finally, by manipulating the probability of environmental change, we showed that
intermediate rates of environmental change favored the evolution of faithful social learning.
Importantly, with moderate rates of environmental change, costly faithful social learning
evolved not only in peaked spaces, but also in rugged search spaces. This is consistent with the
idea that the three search spaces we modeled represent three different levels of “difficulty”
(see below however for how we intend the meaning of “difficulty” here), with smooth spaces
representing “easy” tasks, followed by rugged spaces, and then by peaked spaces as the most
difficult ones. More generally, this result is coherent with the broad consensus that the
evolution of social learning is more likely to occur for an intermediate rate of environmental
change than for no change — where genetic evolution is favored - or fast change — where
individual learning is favored (see e.g. Henrich and McElreath, 2003; Wakano et al., 2004;

Aoki et al., 2005).

Related literature and possible extensions of the model

The results of our model are, in general, consistent with the “costly information hypothesis”
(Boyd & Richerson, 1985), according to which social learning is favored when acquiring
information individually is costly or inaccurate (see e.g. Rogers, 1988; Boyd & Richerson,
1995; Wakano et al., 2004; Aoki et al., 2005). We aimed to illustrate how this trade-off
between social and individual learning could be realized in a scenario analogous to many real-
life situations, focusing on the notion of behavioral constraints, and we believe that this
illustration may be of some use for field biologists and comparative psychologists who study

social learning and cultural evolution.
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The role of the variation of search spaces, or adaptive landscapes, have been
considered in previous models of cultural evolution (Boyd & Richerson, 1992; Mesoudi,
2008). These models show how multimodal adaptive landscapes — i.e. search spaces with more
than one peak — favor social learning, contrary to unimodal adaptive landscapes, where
individual learning is favored. Our results add to these previous finding by showing that also
in unimodal adaptive landscapes social learning may be favored, as long as the search space
does not provide information that can be used to orient individual learning (our peaked space
condition).

Previously, other computational models (Hinton & Nowlan 1987) had shown that
problems analogous to tasks represented by the peaked space could be solved through a
combination of individual learning and genetic evolution. Since we did not consider genetic
evolution (i.e. our evolutionary algorithm acted on the accuracy of social learning, and not on
the actual behavior), our model is unable to address this question, though we obtained the
same qualitative result with respect to the poor performance of individual learning alone. In a
later development of Hinton and Nowlan's model (Best, 1999), the possibility of social
learning was added, and it was shown that, indeed, the combination of social learning and
genetic evolution improved the performance compared to the combination of individual
learning and genetic evolution. In Best's model, however, social learning was cost-free and no
changes in the search space or in the size of the behavioral repertoire were taken into account.

As with many models, we concentrated here on few parameters that we thought of
fundamental importance for our study, namely the cost of acquiring faithfully social
information, the size of the behavioral repertoire, the different search spaces, and, as a final

check of the validity of our model, the extent of environmental variation. Interesting
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developments could consist in examining the effects of other factors on the results here
reported. For example, we used a basic evolutionary algorithm, mainly intended as a proof-of-

concept tool, keeping a fixed — and high — selection pressure, a simple implementation of the

mutation — ¢

was reinitialized every time a mutation occurs —, and we did not consider the
effect of population size on evolutionary dynamics. We had run some exploratory simulations
to test the effects of the variation of these parameters (not reported in the results section).

Varying population size (N=200; N=500) and changing the way mutations were implemented

(% each time modified by a value randomly selected between -0.1 and +0.1) did not seem to
change qualitatively our main results. Selection pressure, however, had some impact on the
results. Interestingly, less selection pressure (“reproducing” individuals randomly chosen
among the twenty, or fifty, individuals with the highest average payoffs) favored the evolution
of social learning when costs were high, at least in peaked and rugged search spaces, and for
large behavioral repertoires (S=100; S=200). We interpret this result as meaning that, with
high selection pressures, “lucky” individuals that found optimal behaviors without using costly
social learning were highly favored by the evolutionary algorithm, making populations of
social learners unstable. The interactions between population size and selection pressure are
anyhow inherently complex, and we plan to explore their effect on the evolution of faithful
social learning in scenarios like ours in future works.

We also assumed that individuals were randomly paired in their interactions, a part
from the fact that only individuals with proportionally high payoffs were targeted as possible
demonstrators. Starting from the same set-up, one could certainly include more realistic rules

of interactions, considering for example individuals being in different ways selective in their
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decisions about when and from who to copy (for the importance of these and other social
learning “‘strategies” see Laland, 2004; Rendell et al. 2011), or explicitly consider a spatial
dimension in the model, with individuals having different movement “rules” and interactions
constrained by physical proximity.

As a final remark, we initialized our populations with random behaviors, chosen
among all the possible alternatives of their potential behavioral repertoire. This is possibly an
unrealistic situation (real populations do not show highly diverse — and certainly not random —
behaviors) but we believe such a simplification to be useful as a “starting point” for the
evolutionary algorithm. Again, future work could analyze how behavioral constraints impact
on the evolution of social learning, starting from homogeneous populations that behave sub-
optimally or already optimally, in which case social learning would be necessary to maintain

the correct behavior through time.

General considerations and implications for modern human culture

We conclude with some general considerations derived from our results. In social learning
research, the complexity of a task is often considered suggestive of the presence of social
learning — with “easy” tasks being solved with individual learning and “difficult” tasks
needing social transmission (see also Acerbi et al., 2011). Especially in laboratory tasks,
experimenters try to propose “difficult” tasks to animals to encourage the use of social
information to solve them (Day et al., 2003, Baron et al., 1996, Laland, 2004, Tennie et al.,
2009). While this is probably a good rule of thumb, our model suggests that what makes

faithful social learning useful is not the difficulty of a task per se (see also Tennie and
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Hedwig, 2009) but the fact that relatively unconstrained behavioral alternatives are potentially
involved in that task (or, if you prefer, a task is “difficult” when this happens). A spider's web
may or may not be less complex than potato washing, what is different is that, in the former
case, natural selection, working on the genetic level, highly constrained the behavioral
repertoire, narrowing down the possible alternatives.

Within this perspective, even very complex human “cultural” behaviors may be a result
of a combination of a genetically/ecologically narrowed behavioral repertoire, constrained
search spaces, and some form of social learning (Sperber, 1996). One might consider, for
example, cookery traditions. The impressive variability of foods consumed in different
cultures is the outcome of various forms of cultural transmission (between and within
societies) that nonetheless act on a “constrained space”: ecologically constrained (local
availability of products), genetically constrained (only some products are edible; some taste
preferences are at least partly innate, Rozin, 1990), and technologically constrained (many
products have to be processed in a specific way to became edible; the technologies available in
a group limit the choice of processing food techniques). On the other side, some cultural
behaviors are relatively less constrained. Many fashions and fads, for example, result from
pure transmission processes (see e.g. Bentley et al., 2007): the fashion of, say, “wearing
green” one year but not the next has not much to do with behavioral constraints as we intended
them in this paper. Analogously, if we take into consideration highly complex technological
tasks, products of human cumulative culture (Richerson and Boyd, 2005), behavioral
constraints become less and less important. Building a kayak — or an airplane — is certainly
subject to constraints (all in all airplanes need to fly and kayaks need to float) but their

guidance is so loose that only high fidelity copying mechanisms can allow an individual to
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acquire the necessary skills to produce them. Humans, nevertheless, also excel in a parallel
strategy to solve those problems: cultural “epistemic engineering” (Sterelny 2003) is,
according to the view presented here, a matter of narrowing the alternative solutions to a
problem, and artificially build highly informative search spaces so as to reduce the need of
costly social learning.

In conclusion, we believe that an explicit attention towards what is learned, and
towards the potential alternatives and constraints, may enrich the theoretical toolbox of social

learning modeling, and possibly our understanding of humans and other species' culture.
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This thesis had several objectives. The experiment described in Chapter One focused on a
perceptual aspect of action understanding, and aimed to investigate the role of the inferior
frontal cortex (IFC), the anterior intraparietal region (AIP) (thought to form part of the Action
Observation Network — AON) and the primary somatosensory (S1) cortex in the hierarchical
decoding of observed actions. The experiment described in Chapter Two investigated the
contribution of prior information and sensorimotor constraints to action understanding and
prediction, while Chapter Three’s experiment was designed to probe whether the interaction
between these two variables modulates corticospinal excitability (CSE) during action
prediction. Finally, in Chapter Four we attempted to model at a population level the impact of
these behavioral constraints on the emergence and maintenance of behavioral traditions
acquired by means of social transmission mechanisms. Even though a huge amount of
literature has been dedicated to the study of action understanding and its role in social
learning, the nature of the relationships between these two issues is still a matter of debate.
Overall, the experimental studies presented in this thesis invrease our understanding of these
relationships. In particular, within this domain there is a lack of evidence regarding whether,
and how, high-level (e.g., acquired from probabilistic exposure) and low-level (e.g., derived
from the estimation of biomechanical costs engaged in the observed action) prior expectations
adaptively interact during action prediction. There is also very little evidence concerning the
brain mechanisms that underlie these adaptive interactions. The broader contribution of this
work is to highlight the importance of behavioral constraints and simple decision heuristics in

the emergence of cultural traditions.
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In the Experimental Contribution Chapter 1 entitled ‘Perturbing the Action Observation
Network during perception and categorization of others’ actions: state-dependency and
virtual lesion TMS effects’, we tested the respective contributions of the inferior frontal
cortex (IFC), the anterior intraparietal region (AIP) (two areas that are thought to form part of
the Action Observation Network (AON), also referred to as the human mirror system) and the
primary somatosensory cortex (S1) in the perception and the recognition of observed tool-
directed actions. To do so, we used a transcranial magnetic stimulation adaptation paradigm
(TMSA). The aim of this type of paradigm is to manipulate, prior to the stimulation, the initial
state of brain regions thought to play a role in the decoding a specific stimulus. The basic
assumption is that if the target regions are involved in the decoding of test stimuli, the
repeated exposure to a constant stimulus should result in an habituation in a subset of neurons
that are located in these regions (Silvanto et al., 2008; Cattaneo et al., 2008). As neurons
encoding the adapted attribute of the stimuli (i.e., the type of grip used versus the state of the
effector configuration when the action outcome is reached) are made less active/excitable by
adaptation, the application of TMS over the target regions should perceptually/behaviorally
facilitate the less active/excitable neural populations relatively more than the active ones (e.g.
faster reaction times for recognizing the stimulus that was previously adapted). After the
adaptation phase, neurons that are sensitive to the stimulus attributes are assumed to have a
baseline level of activity that is lower than neurons that are not tuned by adaptation (Li et al.,
1993), and the latter group are more prone to reach a ceiling level of activation. This

facilitation effect may occur because for the less active neurons there is a greater range for
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firing rate to be increased. TMSA paradigms enable one to estimate the causal involvement of
brain regions in behavioral tasks (e.g. perceptual discrimination tasks) with better spatial
resoluation than repetitive TMS techniques (see Silvanto and Pascual-Leone, 2008).

Using TMSA, we were interested in testing the causal involvement of the sensorimotor
nodes of the AON in the differential visual coding of specific actions and action components.
Participants were presented with adapting movies of an actor performing complex goal-
directed actions on a tool (actions in which an object was lifted in order to open a box versus
actions in which the same object was turned in order to switch-on a light) by using two kinds
of grips (actions achieved with the use of a power versus precision grip) and were further
asked to categorize test pictures as showing similar or different action/grips relative to the
adapting movie. TMS was applied after the adaptation phase, at the onset of each test picture.

The key finding of this study was that applying TMS over S1 and IFC induced state-
dependent effects on action recognition (see chapter 1 of the thesis, figure 4, pp. 98). TMS
over S1 induced a selective decrease in the Inverse Efficiency index (i.e., a single measure of
performance merging both RTs and accuracy) for pictures presenting the adapted action,
indicating that stimulation of S1 improved the visual analysis of actions to which participants
have been previously adapted. A similar improvement in performance for adapted relative to
non-adapted actions was found with TMS over IFC, but not with sham stimulation nor
stimulation of AIP. These results suggest that TMS over S1 and IFC specifically enhanced
performance of the neural subpopulations that respond to a specific invariant feature, i.e. the
type of arm action, between the adapting stimulus and the test stimulus. The TMS-induced

behavioral enhancement occurred when subjects had to attend to such invariant feature (i.e. in
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the Arm Action recognition task) and was absent when processing of the same feature was
task-irrelevant (i.e. in the Grip recognition task).

These findings, to the best of my knowledge, provide the first causative evidence of an
involvement of S1 in the perception of complex goal-directed actions. This raises the question
about whether S1, like AIP and IFC, contains mirror neurons that discharge both when an
individual executes an action and when she/he observes the very same action (di Pellegrino et
al., 1992). Interestingly, it has been demonstrated that half of the neurons of the IFC
(specifically the ventral part of the premotor cortex) respond to somatosensory stimulation,
suggesting that the mirror system may have functional links with the somatosensory cortices
(Rizzolatti et al., 1988). S1 and S2 are known to be recruited in the processing of tactile,
proprioceptive, and nociceptive information (see for a review Keysers et al., 2010). S1 has
been shown to be more active when viewing hands manipulating objects (e.g., grasping a cup
of tea) than actions that do not involve object manipulation (e.g., pointing movements)
(Buccino et al., 2001; Pierno et al., 2009). Additionally, a differential activation of S1 was
revealed when observers watched someone moving a heavy object compared to a light object
(Molnar-Szakacs et al., 2006). Finally, it has been shown that when participants watched
movies in which demonstrators manipulate objects, activity was consistently observed in S1.
According to Keysers and co-workers (2010), this suggests that S1 could be involved in
‘representing the haptic combination of tactile and proprioceptive signals that would arise if
the participants manipulated the object in the observed way’ (pp. 423).

The results of our study could be in line with these findings. However, the
improvement in behavioral performance during the stimulation of S1 was observed when

participants had to categorize the type of action that was performed by the filmed
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demonstrator, independently of the type of grip used to achieve these actions. One
interpretation of this is that S1 actively participates in a mid-level analysis of the observed
motor actions, taking into account the general state of the effector at the end-state of the action
rather than the local variation of movement kinematics such as those characterizing the
difference between power and precision grips. Possibly, S1 may inform other regions of the
AON (and in particular the IFC in which action selection processes occur) with somatic cues
that could be further used to ‘simulate’ the type of action that is currently observed.
Unfortunately, our study failed to reveal consistent behavioral differences between the types
of adapted actions. Indeed, according to the findings reported above, one may expect that
stimulating S1 would improve the recognition of the adapted lifting action compared with the
adapted switching action, especially when these two actions were performed with a grip that
increased their general biomechanical costs (i.e., the use of a precision grip is better suited
than a power grip to achieve the light switching action and, conversely, the use of a power grip
is better suited than a precision to achieve the box opening action). Although S1 has been
shown to be sensitive to the sensorimotor constraints associated with observed actions
(Molnar-Szakacs et al., 2006), we did not find such an effect. The absence of such an effect in
our experiment is not contradictory in itself, as it could suggest that S1 underlies our general
capacity to represent what it would feel like to move one’s own arm and hand in an observed
way, independently of whether what is observed is associated with a high or low sensorimotor
constraints. In conclusion, the observation of other people’s actions recruits not only the
classical sensorimotor nodes of the AON such as IFC and AIP, but also S1 which could be
involved in ‘simulating” how our own body would move and interact with objects that are the

targets of the actions we observe.
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The first experimental study of this thesis showed that action recognition requires the
contribution of the primary somatosensory cortex, which is involved in the decoding of
sensorimotor as well as somatic information conveyed by observed actions. Together, this
information can be used by an observer to estimate the sensorimotor constraints (the muscular
and articulatory costs) engaged in the execution of an action that is currently observed. In the
Experimental Contribution Chapter 2 entitled ‘Object Affordances Tune Observers’
Prior Expectations About Tool-Use Behaviors’, we postulated that the detection of visual
cues — the affordances of an object or a tool — that enable an observer to make predictions
about such constraints activate prior information that biases the interpretation of other people’s
actions. Such priors (here termed ‘biomechanical priors’) were thought to provide an
economic, by default, interpretative strategy on which observers rely in order to understand
and predict actions. Besides prior information conveyed by an estimation of the sensorimotor
constraints of an observed actions, human observers can take advantage of another kind of
prior information to infer other people’s intentions, that is, information extracted from the
statistical regularities of past events (Griffiths et al., 2008). It has been shown recently that
human observers use the probability of occurence of another agent’s intentions as a reliable
source of information to infer, from observation, the intentions of an agent’s upcoming actions
(Chambon et al., 20114, 2011b). Furthermore, these studies showed that participants were able
to modulate the contribution of this information as a function of the available perceptual
evidence as well as the type of intention to be inferred. More specifically, human observers

progressively disengage from sensorimotor information in favor of probabilistic information
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when the perceptual evidence decreases (i.e., when the visual information conveyed by the
action scene was stopped before the completion of the observed action) and when the goal to
be inferred pertains to the higher levels of description of the action hierarchy (i.e., when the
goal could potentially be achieved by a variety of motor actions).

The objective of our second experiment was thus to manipulate the biomechanical and
probabilistic prior expectations of participants in order to study whether, and how, they
interacted during action prediction. We designed a task in which participants were required to
infer, under various conditions of visual uncertainty, the intentions of a demonstrator who
manipulated a two-purpose tool using either a power or a precision grip in order to achieve
two different intentions (opening the box versus switching-on the light). Affordance-related
priors (termed ‘biomechanical’ priors) and priors acquired from past observations (termed
‘probabilistic’ priors) were manipulated by varying the biomechanical optimality (i.e., using a
precision grip to switch-on the light and using the power grip to open the box minimized the
sensorimotor constraints associated with goal achievement) of the tool-use actions and the
probability (low versus high) of observing optimal versus suboptimal tool-use actions. Results
of this study showed that biomechanical priors modulate the extent to which participants’
predictions are influenced by probabilistically-induced expectations. Crucially, it was revealed
that when the demonstrator’s behavior satisfied both the participants’ biomechanical and
probabilistic priors, participants were able to efficiently combine both types of priors to make
their predictions. Conversely, when the demonstrator’s behavior conflicted with the
biomechanical but not the probabilistic priors, it was costly for participants to inhibit the
irrelevant sources of prior information, that is, the biomechanical priors. Nonetheless, our

results suggest that increasing the number of observations of suboptimal behaviors could lead
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to a progressive decrease in the influence played by biomechanical priors, in favour of
probabilistic priors.

Overall, our study demonstrates that prior information elicited by the sensorimotor
constraints of the observed action and priors acquired from probabilistic exposure both
contribute to action understanding. However, it appears that their respective weight in the
prediction depends on the type of behavioral ‘environment’ (the type of behavior that is more
likely to occur given past observation) observers are confronted with: biomechanical priors
being particularly suited to make predictions in familiar behavioral environment (e.g., when
observed agents behave according to the rules of biomechanical optimality); probabilistic
priors being particularly suited to generate predictions in new or unfamiliar behavioral
environment (e.g., when rules of biomechanical optimality are overridden or patently
violated).

One of the intriguing aspects of this study concerns the strong predictive value of
object affordances. Indeed, we propose that object affordances trigger a simple decision
heuristic that is particularly efficient in predicting tool-use behaviors in conditions of visual
uncertainty, and we observed that this decision heuristic is particularly difficult to inhibit. We
proposed that affordances are predictive cues because they are perceived within the principle
of rationality (Dennett, 1987), i.e., the fact that an action goal is expected to be achieved with
the most optimal action means that are available given the situational constraints in which the
action takes place (Gergely and Csibra, 2003; Csibra and Gergely, 2007). Here, object
affordances are predictive of the upcoming action goals because each of them (the affordance
that elicits a power grip and the affordance that elicits a precision grip) is ‘rationally’ adapted

to reach a specific goal (e.g., the affordance that elicits a power grip is particularly prone to be

227



exploited in order to open the box), with the rationality of the observed actions depending on
whether or not the agent minimizes the muscular and articulatory costs.

The mere visual detection of an object affordance has been shown to automatically
trigger in the observer’s motor system (in the anterior intraparietal region and in the inferior
frontal cortex of monkeys and humans) a set of motor commands corresponding to the
afforded action (Murata et al., 1997; Murata et al., 2000; Gallese et al., 1994; Fogassi et al.,
2001; Binkofski et al., 1998, 1999; Grezes et al., 2003). Following this, one can rightfully
question whether the predictive value of affordances evidenced by our results can be
accounted for by a mechanism of motor ‘simulation’ or motor ‘resonance’ generated by the
human mirror system. The answer to this question depends upon the function one attributes to
the mirror system.

The first alternative — the well known direct matching hypothesis (Rizzolatti et al.,
2001) —supports the idea that observing a demonstrator who is about to exploit a particular
affordance activates in the observer’s mirror system low-level motor representations
corresponding to the detailed kinematics that are currently observed (i.e., the hand and digit
configuration prior to the grasping movement). The activation of low-level motor
representations by observation, resulting from visuomotor transformation carried out by mirror
neurons, then propagates upwards in the observer’s own hierarchically organized action
system (see Hamilton and Grafton, 2006) to estimate which higher level goals might have
generated the observed action (Fogassi et al., 2005; lacoboni et al., 2005; Wolpert et al.,
2003). However, this ‘bottom-up’ propagation would be efficient only for predicting the
action’s motor sub-goals (e.g., predicting the type grasping movement that is about to be

performed), and not the higher level goals (e.g. opening the box) (Jacob and Jeannerod, 2005).
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In our experiment, action stimuli were designed such that predicting the underlying intention
poses an inverse problem (Baker et al., 2009), i.e., the analysis of sensorimotor information
conveyed by the initial stages of the observed actions is not sufficient to unambiguously infer
the demonstrator’s intention. Thus, how do observers, when confronted with a specific type of
grasping movement, select a particular goal among the two possible alternatives (i.e., opening
the box versus switching-on the light)? Unfortunately, the direct-matching hypothesis alone
fails to explain the directionality of the participants’ goal choice, whether it is biased by
probability or by the observed biomechanical constraints. Nonetheless, it does not mean that
mirror mechanisms are not involved in this kind of inference.

Mirror mechanisms may indeed be recruited, but in a different way. For the motor
simulation mechanisms to be involved in the prediction of complex goal-directed actions such
as those presented in our second experimental work, one should assume that the observer has a
prior representation of the goal that is more likely to be achieved by the demonstrator (Csibra,
2007; Kilner et al. 2007a, 2007b; Kilner, 2011). This is precisely what the rationality principle
presupposes: considering an observed action as rational (or, in the context of our task, as
biomechanically optimal) means that a causal link is drawn between the action means (e.g.,
using a precision grip) and the goals (e.g., turning the tool in order to switch-on the light).
Thus, watching a demonstrator using a specific object affordance enables an observer to select
by default, between the two concurrent goals, the one that minimizes the muscular and
articular costs. This selection can occur because the observer has a prior representation of
these two concurrent goals. This strategy has been showed to be particularly efficient when
participants have no additional information about the general behavior of the demonstrator

(i.e., information acquired from a probabilistic sampling of past events), or when the visual
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information conveyed by the action scene is noisy or incomplete. We showed that when
participants had such additional information (i.e., when they integrated the probabilistic bias in
which suboptimal behaviors were favoured), they were able to progressively inhibit the
affordance-based inferential strategy to favor a strategy based on probabilistic information,
though to a lesser extent. In this context, action mirroring would serve a very different
function from the function postulated by the direct-matching hypothesis. This function is not
to access the high-level goals and intentions through bottom-up propagation but to anticipate
the course of the observed action through a top-down reconstruction of its motor sequence
(Csibra, 2007; Kilner et al., 2007a, 2007b, Kilner, 2011). Crucially, this means that the
understanding of the action goal and intention is the input rather than the output of the
mirroring process. According to the ‘action reconstruction’ hypothesis, simulation occurs as
the prior representation of the overarching goal is mapped onto the observer’s own mirror
system, within which it can propagate downwards to generate the corresponding motor code at
the lower levels (see also the chapter E of the General Introduction of the thesis). According to
Csibra (2007), this top-down propagation does not contradict the idea of motor simulation but
instead, assumes that motor simulation is ‘predictive in nature, generating motor actions for
goal conjectures rather than the other way around’ (pp. 441).

In summary, these two models of action mirroring can be differentiated by two aspects:
the action interpretation level at which visuomotor transformation is performed (low-level
versus high-level mirroring) and the directionality of the propagation within the action system
following mirroring (bottom-up versus top-down propagation). The ‘direct-matching’
hypothesis assumes that simulation mechanisms occur at a low-level of action description (i.e.,

the kinematic level) and generate a bottom-up propagation within the hierarchically organized
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action representation system, supposedly allowing the inference of high-level goals and
intentions. The ‘action reconstruction’ hypothesis assumes that simulation mechanisms occur
at a high or intermediate level of description (i.e., the intention or the goal level) and generate
a top-down propagation within the hierarchically organized action interpretation system. This
top-down propagation enables the on-line monitoring of the action course in order to test the
likelihood of the to-be-predicted intentions. It is unlikely that the first interpretation fits the
results obtained in our second experimental work, especially because direct-matching fails to
solve the inverse problem represented by the understanding of our action stimuli (one type of
grasping movement could equally lead to two action goals). The second interpretation,
however, could fit with these results, especially because participants based their prediction on
a prior representation of the demonstrator’s intentions, being inferred from a rational
estimation of the biomechanical costs (low versus high) of the observed actions
(biomechanical priors) or from the probabilistic exposure (probabilistic priors) to a particular

behavior (biomechanically optimal or suboptimal).
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The ‘action reconstruction’ hypothesis — for which the predictive coding model (see chapter E
of the General Introduction) developped by Kilner and co-workers provides a biologically
plausible framework (Kilner et al., 2007a, 2007b; Kilner, 2011) — also offers an interesting
framework to interpret some results obtained in the third experimental work presented in this
thesis.

The first objective of the Experimental Contribution Chapter 3, entitled
‘Modulating human motor resonance: exposure to suboptimal actions suppresses
corticospinal excitability’, was to exploit the behavioral results obtained in the experimental
chapter 2 and to assess whether the motor system could hold traces of the behavioral changes
exhibited by the observed demonstrator. In order words, | investigated whether the interactions
between biomechanical priors (conveyed by the detection of object affordances) and prior
knowledge (acquired from probabilistic exposure) about a demonstrator’s behaviors, which
influence the participants’ predictions of the demonstrator’s intentions (see Experimental
Contribution Chapter 2) can modulate the motor system activity. To this aim, | used single-
pulse TMS applied over the primary motor cortex (M1) to measure of the corticospinal
excitability (CSE) of participants during action prediction. To do so, we adapted the
experimental design used in our previous study (see Experimental Contribution Chapter 2) to
an on-line TMS paradigm. Once again, the biomechanical optimality of tool behaviors
performed by the demonstrator, as well as the probability of observing him achieving an
intention using optimal and suboptimal behaviors, were varied. Three behavioral

‘environments’ were then created, each characterized by a different probability of observing
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the demonstrator performing optimal and suboptimal behaviors (i.e., in the no bias condition,
the demonstrator equally performed optimal and suboptimal behaviors while in the convergent
bias session the demonstrator favoured optimal behaviors and in the divergent bias session he
favoured suboptimal behaviors). While the convergent probabilistic bias provided a stable
environment (i.e., an environment that conformed to the predictions based on biomechanical
priors), the no bias and the divergent probabilistic biases provided comparatively more
unexpected, open-ended environments (i.e., an environment that did not conform to the
predictions based on biomechanical expectations). We applied TMS over the left M1 of
participants during the prediction of visually uncertain actions, both before and after the
probabilistic exposure.

Two lines of results emerged. Behaviourally, we closely replicated our previous
findings by showing that when the behaviors gathered from probabilistic exposure and
biomechanical prior expectations of participants converged, they efficiently combined both
types of priors to make their predictions. Conversely, when the two priors diverged,
participants had to deal with two conflicting sources of prior information, which resulted in
predictions close to chance level. Physiologically, we showed that the the type of
probabilistically-induced behavioral environment translated into changes in CSE. Specifically,
a decrease in CSE occurred when the participants were exposed to behaviors that violated the
biomechanical optimality rules, i.e., when the observed action could not be matched with the
participant’s biomechanical expectations. These last results reveal that CSE, which possibly
reflects the involvement of motor resonance mechanisms in action observation (Fadiga et al.,
2005) is malleable and can be altered IN TIME, by varying the degree to which biomechanical

and probabilistic prior expectations match. Indeed, high levels of CSE were maintained only
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in environments that were consistent with the convergence of biomechanical and probabilistic
prior expectations (in our task: the convergent bias session).

Interestingly, these results suggest that the acquisition of probabilistic information
affects the level of CSE, and potentially, the state of the mirror system. However, CSE
changes were only observed at the group level, that is, according to the type of probabilistic
bias participants were exposed to. Furthermore, no differences in CSE were revealed between
the different types of action that participants observed, both during the first and the second
series of visually uncertain actions. The absence of a difference is not surprising in itself. One
can indeed consider that motor simulation mechanisms are not a direct-matching but instead,
an action reconstruction process that starts from an analysis of the higher-level action
component that is then propagated downwards through the hierachically organized action
representation system to generate the lower level motor codes (Csibra, 2007; Kilner et al.,
2007a, 2007b; Kilner, 2011). In the three groups of participants, the CSE level measured
before the probabilistic exposure was increased relative to the observation of a black screen.
CSE remained high after exposure to the no bias and convergent bias, but exposure to the
divergent bias significantly decreased CSE levels. This might be because during the
incomplete movies that preceded the exposition to the probabilistic biases as well as during the
incomplete movies that followed the convergent bias, participants’ predictions were mainly
driven by their biomechanical priors. In other words, they expected to observe an action
sequence that was congruent with their prior representation of the goals, that is, an action
sequence that minimized the biomechanical costs given the final goal that had to be reached.
More specifically, the level of CSE facilitation was relatively constant within these conditions

possibly because in each of them, the likelihood of observing an intention resulting in optimal
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behaviors was confirmed both by the observation of complete movies and by their
biomechanical priors — priors that were used by default during the incomplete movies to
complement the missing visual information (Jacquet et al., 2012b, in press). However, CSE
decreased after exposure to suboptimal behaviors possibly because the likelihood of observing
optimal behaviors progressively decreased as participants accumulated disconfirmatory
evidence. The decrease in CSE could potentially occur because of the mismatch between what
was actually observed by participants (a demonstrator achieving his intentions using
suboptimal behaviors) and their prior expectations derived from biomechanical constraints of
the motor system.

Interstingly, such an interpretation is consistent with the ‘predictive coding’ framework
proposed by Kilner and co-workers (Kilner et al., 2007a, 2007b, 2011) which proposes a
biologically plausible model for the action reconstruction hypothesis. The ‘predictive coding’
framework postulates that hierarchically distinct cerebral regions (having ‘mirror’ properties
or not, such regions forming the AON network) subserve the different levels of action
understanding: the kinematic level, the motor level, the goal level, and the intention level. The
model postulates that each level of the hierarchy at which an action can be analysed generates
prediction signals that specify, or bias, the representations at the inferior level. Predictions
generated at the highest levels are then compared with current predictions generated at the
lower levels. Thus, depending on the type of goal being anticipated, the observer will predict a
motor command that is congruent with this goal and, on the basis of her own motor repertoire,
will generate expectations about the specific kinematics that best fit with the predicted motor
command. The comparison between the predicted and the currently observed kinematics will

generate, in the case of a mismatch, a prediction error. The magnitude of such a prediction
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error will then be reduced, via forward connections, by updating the representation elaborated
at the more abstract, higher levels. This exchange of reciprocal signals proceeds until the cause
that most likely explains the observed action is inferred, or, in other words, until the
magnitude of the prediction error is sufficiently minimized to enable accurate inference
(Kilner et al., 2007a; 2007b). According to this model, the mirror neuron system would be
particularly active when the prediction error is minimized. Interestingly, the level of CSE in
our study decreased after expectations generated byobservation and prior expectations
conflicted (divergent bias), and this could possibly generate a prediction error resulting in the
weakening of the mirror activity.

This influence of prior expectations could be conceived as a way to either facilitate or
inhibit mirror system activity, depending on whether the probabilistically-induced ‘behavioral’
environment converges or diverges with the sensorimotor constraints of the system. Our
findings support the second possibility (i.e., lack of resonance when the behavior biased by
probabilistic exposure diverges from sensorimotor constraints). Together, these findings are
crucial as they suggest that mirror processes are not automatically engaged during action
understanding or, to say the least, that these processes are altered by higher-order expectations
about other people’s intentions and behaviors.

One may speculate about whether this alteration of CSE is purely incidental and
passive, resulting from a mismatch between what is observed and the motor programs that are
stored in the observer’s own motor reportoire, or whether it reflects an active inhibitory
process. Being equipped with active inhibitory process would provide certain advantages. The
suppression of motor resonance through higher-order probabilistic representations of the

environment could be viewed as a subtle adaptive response, for in some environments mirror
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mechanisms would lose their predictive value. Thus, our argument is that such modulatory
effects may protect the observer against maladaptive predictions in the case where observation
and expectations conflict. Further studies are needed to establish whether CSE suppression is
obtained via a passive process (i.e., conditions violated = no resonance) or implies an active
inhibitory process that could veto ‘automatic’ motor resonance activity in order to reduce the
weight of inadequate action representations (Khin et al., 2009).

Ultimately, the active regulation of motor resonance processes through higher-order
probabilistic representations of the environment may provide an adaptive mechanism to enable
acquisition of unexpected, new behaviors. Interestingly, behaviors that override rules of
biomechanical optimization are regularly promoted by human culture. Relying on prior
knowledge gathered from probabilistic sampling of past observations may thus occasionally
prove more helpful than merely evaluating the (biomechanical) optimality of the observed

behavior.
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The first three experimental contributions presented in this thesis were previously discussed
highlight the role of sensorimotor (including somatic) constraints and prior information in the
ability of human observers to understand their conspecifics’ intentions. | attempted to illustrate
how these types of information may generate distinctive decisional biases that alter the
prediction of observed actions. In particular, the extraction of information concerning the
frequency of occurrence of a particular intention was efficiently used by observers to make
inferences about intentions underlying up-coming actions. Additionally, the detection of
sensorimotor constraints from visual cues such as object affordances activates a simple
decision heuristic that, coupled with expectations about the rationality of observed actions,
provides a by default strategy upon which observers rely to make predictions about intentions
of observed agents. Our experimental works show that these two decisional mechanisms could
be differentially recruited according to the type of ‘behavioral’ environments observers are
confronted with: the probabilistic inference being particularly adapted to make predictions in
unfamiliar ‘behavioral’ environments (i.e. when the likely behaviors are biomechanically
suboptimal), and the affordance-based heuristic being particularly adapted to make predictions
in familiar ‘behavioral’ environments (i.e., when the likely behaviors are biomechanically
optimal). Nevertheless, | believe that one of the most interesting findings of these works is the
strong predictive value of object affordances, especially because it represents a cognitively
tractable and economic inferential strategy that is efficient in a numerous daily situations. It

provides an alternative to complex, cognitively costly strategies that are usually evoked by

238



researchers to account for the social learning of complex object-directed actions such as tool
use.

| propose that affordances, and the function of minimizing biomechanical costs, have a
significant impact on the acquisition of behaviors through social learning. In a recent
commentary article (Jacquet et al., 2012a, in press), | addressed this question to Krist Vaesen
(Vaesen, 2012) who, in his target article, argued that the acquisition of tool-use behaviors
from social learning crucially depended on uniquely human, sophisticated socio-cognitive
skills. My purpose was to claim that those skills were also based on simpler detection systems
humans could share with other animal tool users. Accordingly, | discussed the impact of object
affordances on the understanding and the social learning of tool use.

Here | report the main gist of this commentary (see also appendix B for the complete
version) which, | believe, provides a clear example of how the results of the experimental
chapter 2 and 3 can be extended to the broader domains of social learning and cultural

evolution:

“Krist Vaesen speculates that the humans’ capacity to learn
novel tool use from observing goal-directed movements
performed by others (Csibra & Gergely 2007) is a hallmark of
our uniqueness, and is based on “higher” socio-cognitive skills.
It has been proposed that such skills were supported by the
ability to 1) decode Kkinematic information into causal
relationships between a behavioural sequence and its result
(Gergely 2007), 1ii) interpret others’ behaviors as rational
(assuming that the most efficient observed action means are
adopted to achieve a particular goal; Gergely & Csibra 2003) and

iii) accumulate a priori knowledge from past observations about
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agents” intentions and behaviours in order to predict future
events (Chambon et al. 2011). We agree with the author that the
sophistication of such socio-cognitive skills goes far beyond
those of any other animals. Yet, we believe that this
sophistication could also be the result of simpler systems
allocated to the detection of low-level, local sources of
information, such as the manipulative properties of objects called
“affordances”.

Affordances define relational properties that emerge from
matching the perceived physical features of objects and the
agent’s biomechanical architecture, goals, plans, values, beliefs,
and past experiences. We propose that affordances allow agents
to delineate the number of candidate motor acts that could be
performed on tools. We postulate that affordances constrain the
number of possible solutions by generating biomechanical prior
expectations in line with the bodily architecture of agents. These
priors would bias individuals to act towards objects aiming at
biomechanical optimization (Rosenbaum et al. 1996; Weiss et al.
2007). As the author rightly points out, compared to other
animals, the many degrees of freedom characterizing human
effectors and their striking motor control considerably enhances
our ability to detect new affordances and new potential objects
uses. All this contributes to increase the variety of the
behavioural repertoire.

Nonetheless, we are skeptical about the idea that the
primary advantages such architectural properties brings for tool
use acquisition is fine-grained social learning. Indeed, in many
situations, detecting tools affordances allows learners to avoid
such a high-level but costly strategy. Instead, this biomechanical

uniqueness could increase the probability of individual
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innovation, particularly in situations where novel tools are
physically unstructured and multi-purpose. For example,
Acheulean stone tools are poorly structured and roughly
symmetrical objects with a cutting edge. They do not offer
affordances salient enough to constrain the number of candidate
motor acts that could be perform on them. Sterelny (2003a)
points out that the exact functions and uses of Acheulean stone
tools, though they were the dominant element of human
technology for over a million years, remain a matter of debate. It
is more plausible that our ancestors — who were predisposed to
behavioural innovation thanks to their high biomechanical
flexibility — progressively discovered not one or two, but a
multitude of tasks that Acheulean stone tools could roughly carry
out.

We argue that the evolution of the human technological
environment favoured the utility of simpler systems such as
affordances detection. This eases the negotiation of the highly
demanding cognitive problems of tool use learning (Clark 1997;
Dennett 1995; Sterelny 2003a, 2003b). Indeed, tools we interact
with daily are designed for specific purposes. Affordances that
are available through their complex physical attributes offer the
chance for naive users to extract their functions at low cost
(Dennett 1982, 1995; Gregory 1981; Norman 1988). In our
engineered environments, affordances play a crucial role in the
acquisition of tool skills through individual trial-and-error as
well as social learning. More specifically, we argue that
perceiving affordances directly biases the understanding of tool
behaviours performed by others, and consequently the extraction
of related functional knowledge. The biomechanical priors that

emerge from the perception of tools affordances constrain the
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number of candidate motor acts an individual could initiate.
Similarly, they also tune the observer’s prior expectations about
which motor behaviors are most likely to be performed by
others, enhancing their predictability and learnability. Learning
about a novel tool from observing a demonstrator using it in a
biomechanically “rational” way would be less costly than
learning from a demonstrator that violates our expectations. That
is, the convergence of the demonstrator’s and observer’s
biomechanical expectations facilitates an efficient learning
strategy, based on kinematics, rationality principle or prior
knowledge. Taken together, these observations question the
exact role of high-level, fine-grained social learning in the
acquisition of new tool skills. Relevant to this is work addressing
animal behavioural “traditions” — behavioural patterns which are
relatively stable in groups and are at least partly maintained by
some forms of social learning. These could result from
constraints that limit the number of possible alternative
behaviours, more than from the robustness of high-level social
transmission mechanisms (Claidiere & Sperber 2010; Tennie et
al. 2008). Here, we posit that the crucial role affordances play in
the acquisition of tool use strongly suggests that fine-grained
social learning strategies, such as true imitation of observed
action goals and means, is sometimes less important than
previously assumed. In fact, affordances, together with
ecological constraints and other products of epistemic
engineering, could enhance the effectiveness of more frugal
forms of socially-directed learning (Acerbi et al. 2011; Franz &
Matthews 2010) like emulation learning (i.e. the observer copies
action goals performed by a demonstrator without considering

action means) or even stimulus enhancement (i.e. when an
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individual directs its behaviour towards an object or a part of an

object with which it saw another individual interact).”
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In the above commentary, | speculated that sensorimotor constraints could bias the learning of
new behaviors from observation. The Experimental Contribution Chapter 4 entitled
‘Behavioral constraints and the evolution of faithful social learning’ examined, with the
help of an individual-based model, the relationship between similar constraints and the
evolution of faithful social learning. The claim of this work is that the emergence of
behavioral traditions within a population of human and non-human individuals could be
accounted for by both high-fidelity (e.g., imitation and emulation) and low-fidelity (e.g.,
stimulus enhancement) social transmission mechanisms. The model aimed to demonstrate that
the use of high-fidelity and low-fidelity social learning strategies was a function of both the
type of behavioral constraints (biomechanical and cognitive factors that specify the number of
potential behaviors individuals were provided with) and the type of search space of a task (the
number of alternatives observers could perform to reproduce the outcome of the behavior
performed by the demonstrator). We thus tested this hypothesis by modeling three fictive
populations of individuals, each characterized by a different number of available behaviors (10
versus 100 versus 200 possible alternative behaviors). Each population was then submitted to
three specific task problems, each being potentially solved by a certain number of behavioral
alternatives. More specifically, in the smooth space, many behavioral alternatives could be
achieved to solve the task problem. In the rugged space however, only few alternatives could
lead to the optimal solution. Finally, in the peaked space, just one alternative led to the
optimal solution. These three task structures were thought to differentially orient the

individual search (trial and error learning), in such a way that for the rugged and peaked space,
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social-learning was expected to be more efficient than individual learning (for only few
solutions led to payoffs). Thus, we simulated interactions at the level of single individuals,
such that individuals of a population interacted in discrete time-steps. At each time-steps
individuals interacted in pairs. Each individual (the observer) was paired with another
individual (the demonstrator) randomly chosen among the ten individuals of the population
with the highest payoffs (the payoff an individual received from performing a behavior). Thus,
each learner attempted to copy the behavior of its paired demonstrators. An evolutionary
algorithm was further used to optimize the behavior of individuals. The evolutionary
algorithm acted on a variable that encoded the fidelity of social learning of each individual.
Individuals that performed better (i.e., that maximize the fidelity of the copy) resulted in
proportionally more “offspring” than others. Finally, we also added the possibility of
environmental changes by assigning different probability for the three distributions payoff
(smooth versus rugged versus peaked space) to be reinitialized during the simulations. This
procedure allowed analyzing how the interaction between the fidelity of social learning and
the size of the behavioral repertoire impacted the populations’ behavioral diversity, namely,
the number of behavioral patterns present in a population. Three main results emerged from
the simulations. First, in stable environments (environments where the payoff distribution
remained unchanged), faithful social learning evolved only in populations with large
behavioral repertoires, and particularly in peaked search spaces. Second, results showed that
the convergence towards behavioral homogeneity resulted from high-fidelity social learning
mechanisms but also from low-fidelity mechanisms. Third, intermediate rates of

environmental change favored the evolution of faithful social learning.
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These results are particularly relevant for the take-home message of the present thesis.
Indeed, our simulations suggest that a population of individuals that is highly constrained
(small number of potential behaviors) can evolve something similar to cultural traditions,
without the need of costly faithful social-learning abilities such as true imitation. The fact that
this could happenin peaked space (i.e., a search space that is unlikely to favor individual
learning, given the small number of solutions that bring a payoff) is important. Indeed, it could
mean that, even with human populations, many complex behaviors can be ‘transmitted’ from
an individual to another without the need of sophisticated social-learning abilities. This is the
idea | speculated on in the commentary article previously mentioned (section B of the general
discussion or appendix B). | believe that this is precisely what happens when a human
demonstrator learns object-directed or tool-use actions by observing a third party. The
observer’s behavior is guided by the interaction between the object affordances and the
biomechanical constraints of his body, such that both the observer and the demonstrator’s
behavior converge. Consequently, the outcome of the learning process resembles a
sophisticated imitative process but, instead, reflects a convergence that results from the
processing of sensorimotor cues. This convergence would be incidental, in the sense that it
does not result from a sophisticated social learning mechanisms.

Finally, I argue that similar phenomena occur more frequently than usually assumed in
our human technological societies. Indeed, even very complex human ‘cultural’ behaviors
such as tool-use and other object manipulations may be a result of a combination of a
constrained behavioral repertoire, constrained search spaces, and some form of social learning
(Sperber, 1996). This is possible because humans engineer their environment in such a way

that it becomes informationally transparent (Sterelny, 2003). For example, humans

246



deliberately manufacture tools whose complex physical attributes offer naive users
informative cues (the affordances) that enable the extraction of their functions at low cost
(Dennett, 1982, 1995; Gregory, 1981). | believe that the evolution of human technology might
have favored the use of low-fidelity social transmission mechanisms, and so, without affecting

the final fidelity of the transmission.
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An impaired ability to appreciate other people’s mental states is a well-established and stable cognitive deficit in schizophrenia
which might explain some aspects of patients' social dysfunction. Yet, despite a wealth of literature on this topic, the basic
mechanisms underying these impairments are still poorly understood, and their links with the clinical dimensions of schim-
phrenia remain unclear. The present study simed to investigate the extent to which patients’ impaired ability to appreciate other
people’s intentions (known as mentalizing) may be accounted for by sbnormal interaction between the two types of information
that contribute to this ability: (i) the sensory evidence conveyed by movement kinematics; and (i) the observer's pdor expect-
ations. We hypothesized that this is not a generalized impairment, but one confined o certain types of inkentions. To test this
assumption, we designed four tasks in which participants were required to infer either: (i) basic intentions (i.e. the simple goal
of a motor act): (i) superordinate intentions (i.e. the general goal of a sequence of motor acts): (iil) social basie: or (iv) social
superondinate intentions (lLe. simple or general goals achieved within the contest of a reciprocal interaction). In each of these
tasks, both prior expectations and semsory information were manipulated. We found that patients correctly inferred non-social,
basic intentions, but experienced difficulties when inferring non-social superordinate intentions and both basic and supenordin-
ate social intentions. These poor performances were associated with two abnormal patterns of interaction between prior
expectations and sensory evidence. In the non-social superordnate condition, patients elied heavily on their prior expectations,
while disregarding sensory evidence. This pattern of intemction predicted the severity of ‘positive’ symptoms. Social conditions
prompled exactly the opposite pattern of interaction: patients exhibited weaker dependence on prior expectations while relying
strongly on sensory evidence, and this predicted the severity of ‘negative’ symptoms. We suggest both these patterns can be
accounted for by a disturbance in the Bayesian inferential mechanism that integrates sensory evidence (conveyed by movement
kinematics) into prior beliefs (about others’ mental states and attitudes) to produce accurate inferences abort other people’s
intentions.
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Mentalizing under influence in schizaphsenia

Brain 2011: 134; 37283741 | 3729

Keywords: schirophrenia; mentalizing; sensory evidence, prior expedations; Bayesian inte gration

Abbreviation: TFT = tit-for-tat

Introduction
M&temamﬁgﬁﬂﬁmn:&sﬂnq:hmmaum
sontfial funetioning, mflecting impaisments in inbenp

niecation and relatindaps ﬁe Corayran, 2001, for menewl
Many authors have propeied that some specs of patients
sontfial dysfunction are a consedquend of a deficil in mentaliing,
defined 2 the apgritive ability to attibute mental sties (such =
intentions) to othes and explsin and predict their behaviour on
that basis Féth, 2004; Harrington ef al, 2005; Speng of al,
2007). Bxtensive research over te kst two decades ha provided
robust evidence for the presence of a sdable menlslizing
impeimment i schiophrenia Gmong of al, 2007, Borz of al,
2009, However, both the natwe and the extent of tha
impmiment remsin widely debated, owing to its exteme hetera-
genely amang cinical subgrougs of schimphrenia (McCabe of al,
2004; Harrington ef &l 2005; Bac ef &/, 2011}

It has been sugpe=ted that incomstent resulls in the Heratums
may be the mnsequence of the grast vasely of eds wed, bath
in terme of stimuolus type (vedal versus mnographic) and
complenily [Walter of al, 2009). Crucially, the helerogeneity of
the dats muld ako resuft from a lack of mntol over the vanisbl
under examinaBon. Indesd, ‘intention” & a term embadng vasows
sulbtypes, the coment of which can vay slong two masin dimen-
Soms: the sope and the target Chambon of al, 2001)
The ‘scope dimensdon’ reles o e complexily of the intended
o, and diflesnlistes ‘baic intentions’ directed ot Gmple maobor
gosk feg. graping an object) fom ‘superordinate inftentions’
divected =l somewhal mare @amples mak g, quendhing ane’s
thirst), the achievement of which typically involves the mmpletion
of & number of subgosk feg. greping a gles, opening a tap,
filing the ghs, dosing the tp, ele) Pachers, 2000, 2008).
On the 'taget dmension’, ‘non-sodal intention” directed at an
olject aan be dafnguished fom ‘socil intertion” directed at a
third party (Blakemore and Féth, 2004; Caamidaro of &, 2007).
The shiity i apgreciste other peagle’s intentions thus refers to
separate procedes that could be differentislly recrited depending
an the scoge and/for the target of the ntention being consdesmd.
Ao such, one cannel eclude the ponshiily that patients may
show impaited understanding of one particular type of nlention
while the apprecabon of other inlention types & spared.

S far, few studies have direcly tested patient’ shifties to
apgreciate daBnel types of intention within fie same experimentsl
sellings, or wsing the same matesl acos madibions. One study
found thet ducrganived petients were impeimd =t evalusting
supemrdinate intenfors but not bese nbentions (Zalla of al,
20043, Another recent study suggested hat patients may not be
impmied in appreciating schons direcled 2l inanimate objects, but
specifically in inferéng ntenBons achieved within fie coned of
sontfial irderaction (Walker af ., 2009). Dsertanglng this confus-
ing aray of findings mquises investigaling patients’ menalizing
ahilities, 2t & more fine-graned level of funclibning. That &, not
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only by ssedng patients’ @w performance in nlenfon mamgni-
tion tmbs, but sko by further exploring how individusl with
schizophmnia deal with the nfomaBon thet usually contributes
o such recogrition.

Aftributing intentions to an observed agent can be desoribed 2
2 Bayedsn infemnce drawing upon two ditindive types of
information: () the ‘sensory evidence’ svailsble from the adion
sene feived from the agent's movement kinemastis); and
@) the olrewers pricar expectstions’ abowt which intention &
the met Bely came of what B observed, given pait experence
(Baker af ., 2006, 200% Goffiths of &, 2008) I has been
shown thet inbention inferene: & contingent upon an adaplive
inferpley  between theie two souces of infosmafon, with
particpants tending & mly progresively mone on e o
expedation & the mishifty of semory evidens: decresse, and
wite versa. Crudaly, the inleadion has abo been found to vary
aarding to the type’ of nlenBon b be inferred, with partici-
pant’s prior experence ganing pafly over pereptual evidence
when nferring intentions from within 2 social conbext rather than
in Bolation {Chambon af af., 2011).

Building on thewe previow findings, we hypothesized thst
patients’ helerogensess mentalzing shilies @ull be scomnted
for by an stnosmal weighting of these two deses of information
{prine knowledge and senson evidence), which i turn might
depend on the spedlic dimensons (e, the sope and targel) of
the inention being contidered. This fon echoss Fletcher
and Frith's (2009) suggesfon that both the sberrant perasptions
(hallucinatins) and befieh (delusons) of schizoph might be
caused by an shnosmally in the brain's nferendgng mechanims,
resuting i a dimnished shilly to iregrate new expedences
{e.g. sensory evidence) with stomd knowlkdge based on pevious
expedences (e prior knowledge Hemsley, 2005). Criically,
distudbance of ths (Rayedan) inferentisl mechanim could be a
good predicior of the severdly of schizophrenia symploms. For
examiple, the mentlzing profile of patients with postive symp-
e might be charscteried by 2 Endency to give excesive credi
o endogenos, self-genersted information &g, prior ex peclations
of how people are supposed to behawve under some diraim-
stances), wheress patients with negative symploms might displey
& stimufi-induced mentalisng style that may be scoounted for by
an exagpersted tendency to fos on directly observable, extenmasl
information, rather than inner experdences (Frith, 1994, Taylbe,
1994).

In e pesent sludy, we dimdly beted the shove assumgtion
by ass=sing palenls’ understanding of the base or superardinate
intenfors of an agent perfosming an action in either Bolstion, o
within the context of sodal mdprocation. Both semsary and prior
information were manipulated by: () vaning the completenss of
adion sequendes; and (7 selkdively inceasing the pobabiity of a
particular interbion aceuring within the ssquencs, =t the expense
of competing intertion fypes. We then koked =t (7)) whether
patients’ performances on each intention inference ek may be
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amounted for by an abnormal dependence on prior knowledge
andfor sensory evidence, and (5) whether s shaormal depend -
ence—i observed —comelsted with the scale for the =eesment
of pesifve (Andmaen, 1984), negstive (Andresen, 1983) o
disorganization symptoms of schiaghrens

Materials and methods

Participants
All patients fulfilled DSM-1V aiteria of schimphrenia (Americn
Paychislic Aasocistion, 1904) with no other paychiatic disgnoss
on DEM-IV Asds | Exdusion cfteria induded histosy of neundoge-
al s or trauma, skohol o dag dependence sccarding to
DEM-W crleria, anaslphabetim and being =60 yesrs of age.
All palenls were receiving anfipsychobic medicaon and were
chrscally stable at the time of fstng. Comparson parbopnts
repoded no papchistie problems (Table 1), and were systematic-
aly makched with patients for age, handednes (Okdfield, 1971)
and yeas of educstion (Table 1). All padicipants repoded nonmsl
or comected bo-normal visual acuity. After recehiing a complete
desaripBon of the sudy, wiiten informed coment was oblsined
amording to e Dechmbon of Helanki The reseach wa
approved by the locdl Ethical Commitkee (BRME1-80) and al
partidpants received 10 euns for taking part

Fow distind groups of @ntok § =30 for esch group) and
patients {1 =20 for each grougd perkamed the four disting
tambs, Individuals with schizophrenia wer skded to obtsin fow
groups of patients matched for the severity of negative (scale for
the sisesment of negative symploms; Andressen, 1983), positive
(scae for the aiesment of postive gymploms; Andresien, 19849

Table 1 Clinical and demographic characteristics

W, Chambon ef al.

anel disoganizfon symploms Table 1). The discaganizBon score
wat compuled by summing the fallowing subscores: bizarre
behaviour, positive rmal thought deorder {fom e scsle for
the = t of podbve symploms), abgia and inappropriste
affect (fom the sk for the sseament of negafve sympoms).
These Bems have besn shown to comtiute =gulsr and
fundamental components of the dsorganization  dimension
{Hardy -Bayle of 2), 2003). In the socisl base L=k, one pafent
wad excluded becmse of poor pedormance [e. 2 standard
devistions ED<)] frm the group mean).

Common procedure in the four tasks

In each Lak, patvipants were indruded to infer the intention of
an acke manpulsting non-mesningful oljects. The spedfic an-
tribufons of semory evidenee and pdor knowledge to the inten-
thonal inferend: were manpulsted by varying the amount of visual
informativn (e, the completenes of action sequendes) and the
pevbabiily of omurence asodated with each different intenfion,
respectively Bee Chambon of &l (2011) for detsiled descaripBons
of the video dips used in each tak].

Each Lk comied of two expermental sewion. Firsl, 2 bate-
e seion, chamderired by a flal (unbismed) probabibly distdbu-
tion, in which 2l ntenBons had the same pobatility of occurrence
screns trink. Seawndly, 2 bizs ssmson, in which gior knowledge
wa manipulsted by increming the probabily of one inbention
(the 'lkely”’ intentivn, 55% of the t6ak) to the detriment of the
ofers (unfibdy’ intertions, 22% each), resuling in bising
parbcipnls towards the Feely ntention. This bizs was randomly
sagned s that esch idention wes equally bimed scress
parbcipnls.

Charactesistics Apge Education Handednes Dumtion of SANS score SAPS soore Disorganization
{year) fyears) illness smoe*
Expesment
Hon-social basic
Healthy fo =20 351 7.5 1.9 () 087 (@14
Patients (o= X 2283 1.1 {1.7) 083 (18 103 {7.5) 205 (15) 219 @as) 161 (129)
Poydue 085 @12 a3z
Hon-socal superondinate
Healthy fo =20 365 @9 121 {15) ag @in
Patients (o= X 346 @5 1.6 {1.8) ara {@in 123 (a1} 22018 299 (158) 129 83)
Poydue 028 a2é a1
Sodal bagic
Healthy fo =20 342 (105} 1.4 (1.8} 082 (14
Patients {n= 19} 52 @) M.2{1.7) a7 @19 11 (8.4} 240241} 285 @23) 145 (1248)
Poydue ars a8 as7y
Healthy fo =20 ELTN-E 1 123 (12) 085 (@13
Patients (o= X 338 00y 1.7 a1 @15 1.9 (48} 248 (39 294 (151} 115 E.9)
Poydue 058 Q27 (1.4) .28
al P03 al P05 EE T al P=na

s of St swowes for Bizame: behavioar, prollive fomead Sought dsceder fom (ke SAPS, and aiogia and inappecpdate atiect from S SANS.
SMHE = Scale dor e Asemmend dor e Megalee Sympdoeng SARS = Scale dor the Asceament of Podive Symptoas. Data ae mesam SO0
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The amount of visual information was manipusted by vaying
the dusBon of the video dips. Adion were thus ether presented
with a very high (1880 ms after movement omef, high (1 640 ma),
maderaste (1580ma), o kw (1480ms) amount of visusl nforma-
tin [see Chambon el &l (20011) for the selection and mabal of
these amaunts].

The beteline and e bis se=gons were compaied of teo by pes
of interlasved bodks: ‘overl’ bods, i which the adiom wes
shown with a very high amount of visual information (1880 me)
o albvw prdicipnts to deardy distinguish the different intertions,
and ‘covert’ blbcks, in which adion were of varying dusBon
{1480, 1560 or 1640me) (Rg. 1). The overt blocks were used to
s partidpants in favour of one particular infention (Le. the Flely
intention), whems the covert blods wem wed b beit the effect
of the bim on achon sequendes shown with vanying amounts of
wisual information.

Each experimentsl sequence (one overt block folowed by one
covert block) was repeated nine Bmes ower each sesson. The
ouler of sk wa randomized and varied between parbcipants.
Futhermos, each dip was mesented oy ance to prevent any
influence of memorizd knematic parameters on parbcips s’
pedornmandes .

Al clips weme filmed using a digital cames (Sony™- HDR-SR7)
and were scquised and tslosd usng e software Adobe
Prmiem™ They wers presented on & compuler monibos
(I AMAT 197 al a distane of @em fom the pantiipant.

Brsin 2011: 134; 37283741 | 373

Finally, pdor to aach besk, 2 brsining sewwion was condudsd with
distinel cligm from Brase used in the xpedmental seeiom,

MNon-social tasks

In both the nonsocal besec and the nonsocal superordinate
ks, video clim depicled 2 single ador manpulsting {mlsting,
Fiting or transporting) rectangular cubes. The cubes were of Simi-
lar gre (3w Gom) and orentation, and placed &t an equal detance
(1E8em) from the stading pastion of the actor's hand Fig. 2A
and B).

MNon-social basic task

In the non-social bese tek, particpants wes first required to
observe one noomplete manipulstion of 2 dngle cube (lasting
for 1480, 1560 o 1640ms after movement omell. A regponse
soesn representing the firsd ker of each poisble non-socisl,
basic intention (o lmmpod, @B or olate) then appesred for
2500ms, during which parbidpant had fo pres the keyboard
button cormesponding to the intention inferred Qransport, Bt or
redate) as quickly and accurstely = possible. In the bist sstson,
the non-sodal bae infention for which the probability of ocour-
rence was incresed (e e By intention) was amunterbalaned
acow particpants.

A BASIC axp. B SUPEROADIMATE mxp.
(VERAT oz 8 COVERT black 8 VBT block W0 CONVERT stk 86
[ o, TR ] R - o P - o DN T - - . -
e ey s
L R T L T R t s T LT R hfﬁ“‘"
— e LR s
o2 o8 G a T Ty
C SOCIAL BASIC exp. D S0CIAL SUPERDRD. exp.
(VERT ek W COVERT block VERT black & COVERT Mook 6
W o NN - c BNENEN- o BENNENENNNEN - - M-
EEEE T EE RN 18 -
OB o " [ o
eE W o= oA w5 W W =
ok a (>3

Figue 1 Tak desgn Examples of the typical expenimental sequence (one overt block followed by one covert blodk) used in both e
basefine and the bis sesions. Owvert bbcks (0): 18 movies with 2 very high, comnstant amount of visual nformation (1880 me). Covert
Ienches {C): miine moviees with three diffesnt amounts of vausl nfosmaBon (1480, 1560 and 1640 ms). In the four taks, the probebility of
all intentions was held comntant scres the block, exceptin the overt blocks of the biss sewion, where one particular intention had a2 greater
mobabifty of cccusing than the athers. [A) In the bate tek, subjeck had to identiy 2 sngle imended sction (L= Bit R = rotsle;

T = tengpad). {B) In the supemrdinate tak, abjects had to identily the final intended sctivn Gndicated by & red leter) of an action
sequence baading to shapes 1, 2 or 3 (31 = shape 1, ete). (0 In e sodal bee bk, sulbjects had to identify the intended action of the
second player {red Eter). D) In the socsl superordinate tak, subjeck had to identify the inended acBon of the second player (red letber)
leading to configurations 1, 2,3 or 4 {¢1 = configumBon 1, eke). In both the sodal besic and social superosdinale tads, the achon or the
configusBon achieved by each player indicaied sither a cooperative or a defective state gy (00 = cooperste; DF = defect). In aach
experiment, a pobabiistic bis wes sdmed to one partioular adion (basd, shape Buperosdinate) or strategy (social). The md question
mark indicaies the action for which the amaunt of vEusl information varied (basic: a dngle action; superordinate: the l=t action of

e secuenie].
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W, Chambon ef al.

WrEUS Superordinate

Non-social

VETEUE =,

Social

A
]

Figure 2 Example; of stimuf for eadh of the four tasks . (A) Non- social bese inbention task; (B) non-socisl superordinate inbention tadk; (C)
social betic infention ek and (D) socisl superosdinate ntenBon tak. The black oo indicates the stading pasition of the hand.

Mon-social superordinate task

Wideo i showed a sequence of thies adion f&.g. to transpart,
to rotate or fo Bt 2 cubs) kading to the combucBon of one out
of three possble non-mesningful shapes (41, 42 or 43; Fg 18).
Each sequene wes therefos dharscleizd by a superondinate
intenfion t build one of these thres final shapes. The duration
of the video sequences was varied (leting 1480, 1560 or 1630 ms
after movement omet) o that the ket acion wes rendemd
incomplets, Partiipanls were imtruded to inkr the super-
ardingle intenBon and b pive 2 respome indicsling the nslue
of the k=i inompele adion in the sequence by peesting
the correspanding keyboard butkn = quickly and acurstely =
psibie

Crucialy, to ensure that padicpents wene bizsed bwards the
superoadinate intenfon itselfl and nol merely towards e find
adion, commutstive (e inkchangesble) sequences wene wed
a0 that each shape could be constructed from multiple, disting
sequences of activns. Sequences shown in the mwert blocks were
thus distinet from those wed in the overl blods g e shape <1
could be obtsined from the sequence 'I-ift-miate’ in an oved
blodk, but fom the sequence Tit—rolste-HE' in 2 awvert block).
In the bim sesion, the probabilly of bulding one of the fhres
final shapes wes incessed 2 the expense of the other twe, whikt
kesging e pmbsbiity of esch smgle sclion accusming duning
shape-builing equal. The specific shape thal wa bimed wa
counterbalanced agos particpants.

Social intention tasks

In the two socal tsks (sodal baic and social supemedinate),
partidpants were instucted to infer whether & socil intention
wi of either a cooperstive o defective nature. They observed

twe players engaged n 2 socisl game, in which they ether conp-
erated by conrdinating their adions in oxder b achieve a shared
pomd, o defected by mhusing to conrdinate heir acborm . One aiter
the other, the two players either tramported the cube chesest to
them towards the centre of the boaed, o misted it so that #
remasined st the same pliee (Fg 2C and D). The fist player's
sction was alvays shown enfirddy to the parfcpants, while the
second players adion wa made inawmpkle by varying il dur-
ation aoow the (dak (1480, 1560 or 1640ms affer is omet)
Parfcipants had to infer the nature of the semnd player's socisl
iention (Le. conperstive o deledive). To do so, they were in-
structed to give a maponse shout the nature of fe incomplete
sction (ie. lo rolste o lo banspor) which wnambiguously
denoted the socsl inlenBon, by messng #e amesponding
button = quickly and scourately = posdble (R for rotate, T for
transpart).

In the video cligs, the second player's sodsl imentin eiher
difered from #hat of the firsl gayer 2. the first player defected
and the second coopemied, o the fird player coopersted while
the second defected) or @ mirrored #he first players inbention
(ie. both players mopersted o defected). This second type of
response shategy B known = a ‘B-for-kt (TFT) strstegy. In
Stuafons of dembeve cooperation, a TFT dmiegy & known to
frequently be a more intuitive and sumeishul stolegy than ster-
nalive ones, such & 'shways cooperating’, ‘shways defecting” or
‘ading randomly’ [Axelod, 1997, Andeé and Day, 2007
Chambon af 21, 2011). We thus dhose b experimentally strength-
en tis exsting 2 priori bizs by incresing the probability that
the second pliyer adopls a TFT strategy, ie uses a shrafegy
that mirrers their oppanents. In the bis session, the probes bility
that the second player responded TFT wes thesfore ingesied o
that on average, he wa more Beely b cooperste (rather than
defech) i the first player had previously conpersted, and to defect
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{mther than moperste) if the first player had previbusdy defeced.
In the baseline sesion, however, the probabilty of 2 TFT respomns
was equal bo that of repomes wing alemative srabege
(Le. cooperation in respone to defection, or defection in respone
to aopeaBorn).

Bizing e second plyers stolegy in Bis way emwed that
paticpens il steion b he whobk scion sequence, snae
to succesfully predid the inentions of a player using 2 TFT steat-
egy il i essential to ke inte scount what the first pliyer has
dene. Furthesmore, using a TFT bis ko pevenied parfidpants
fom  gving stereotyped responses (e.g sways responding
‘eoeperale’ o ‘defect’ )

Social basic task

In the socisl batie task, particpants wem mquisd to infer 2 socisl
[defective o mopestive) intention that we denoked by the
secand pliyer’s acdion This scbion consaled of sther bamprtng
2 cube object (pinted with 2 red or 2 bue ne) bward the
mickdle of 2 gid (lermed hank’) or mlating it s thel i remsined
in i adping kestion.

Social superordinate task

In the sodal supemedinate tak, the social ntenBon infemed we
actieved by the sequende of both playes’ schons and herefos
corresponded to a final @nfiguration of cubes (Fg. 10). Payes
acted in turn with the goal to vertically align firee cubes amang
the: four available ones {one cube wa printed with 2 blue Bne; the
ofher three with 2 red Ene). The individual gosk of the first and
the semnd players were b slign e thies cubes ginled with 2
red fne Grrespective of he ofentafon of e Bnes) o to aign
three cubes with the same Bne odentaBon (respedive of fine
coonr), respechvely. Combining both posible stoke ges for each
player resutled in four powible find configuration: of the cubes:
bath players defected, sach preventing the other foom achieving
his geal (Coniguration 4: no signment); bot players conpeaied,
in arder to achieve both of their goak (Configuration 3: cubes
wer simed acording o both their cobur and line arientaBion);
the first gayer defected, preventing the second fram schieving his
goad, whist the second conpersted, helang the fist achieve hi
poal (Configwration 1: cubes were sgned sccording fo their
calour); or finally, the first plager moperated, heling the second
achieve his goal, whild the semnd defected preventing e first
frem achising his godl (Configumbon 2 cubes were signed
sccarding to Bne anentstion) (g 1D).

As in the nonsecil superandinate tek, commutative sequences
wee used 5o thal esch configuration could be oblsined from
dufinet sequences of actions, enduring that the second players
inention {e.g playing TFT coubd not be pedcled from his
snge adion {e.g lo rotsle, or to Fanspart) bat enly from the
enfire sequence of actions. Furthesmore, the overall probebiifie
of each srategy (cooperstive or defechee) and of esch single
sction (i roble o to bampor) were kept equal scrss the
e,
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Data analyses

Hits and reaction times

In the overt bods of the bis and baeline sewions, patients’ and
control’ perentage of coned responses [hik) were compaed
using bwo-samiphe (e These analpses were performed to
emure that both goups were equally suceisiul in integrating
the flat (besefine sesson) and bismed fbis sewbon) probabiity
dstributions asodated with each imtention.

Mok that imentions wes equaly probable in the baeline
sessdon We therefore referred fo = fubure' Fely (F-Beely) and
“fuduse ' unkely (f-unlikely) those ntentims whise probability wa
incmamed oely intention), or decrassed (unlicely intenfion), in the
subsequent b sesson.

In the covert blocks of the baeline and bist se=sipns, hits and
readion ftimes were analsed independently wing 2x2x3
mixed-model, mpeaked masures ANDVAL wih group (oontrak
verae patients) = a between-subjects Bdos, and infention
(f-kely versus funfkely intentions) or bis (Bhely versus unfibely
intenfiors), and amounts of visual information (bw, moderste and
highl as within-subjects fackws. Posd hoc Fuher tesls were
then perkrmed to identify differences betwean condifions.

Whenever the varance stuchire did not comform to e
requimments for parametc anshyes, bogarthmic tram omstions
were wmed o oblsin the required conformity. Anahyies wene per-
formed usng the sstifesl software Statition 7 (wwwslatiof
.cam).

Bias effect

Toy asiess, whether the shignment of 2 biss diffesntly sfeded the
performance of petients compared with @ntol scres the fowr
types of ntention, a soore reflecting te ‘b= effect’ wa calo-
Isted for esch subject, in each =k This soore was oblsined by
subtracting the number of cormect respomes for the Foely intention
from thise of the umbkely ones, in te covert blocks of the bis
sesdon We then performed 2 3 w4 w2 repesbed -messne
ANOWVA with amount of visual nformation (ow, modemie, and
highl & a within-subjects factor, and type of intention (non-sodal
baic; nen-socisl aperordinate; social babe; socal superondinate)
and group (contmls verius patients) = between-subjects dos.

Effect of the amount of visual information

Wi ahio miulsted 2 smre refleciing the influence of the vasation
in amount of visual information on esch parcpant’s performance.
This score was oblsined, for esch parliipant, in esch L=k, by
sublrading the poportion of comect responss oblained in e
high visusl information condifon fom that obtined in the low
viual inkrmation @ndition. Thi sawe was hen enered in a
2 x4 x 2 repested-messres ANOVA with biss (kely versus
unlkely infentions) = a withinsubjeck factor, and type of
intenfion and group as betwesn-abjects factors,

Relationship to dinical symptoms

Finally, regmsbon analyses were conducted to evaluate the influ-
ence of pafents’ cognifive performance on their dinical sy mploms.
In particuler, we sewshed whether an shnormal dependence an
the bas andfor on veuwd inkrmation was pedidive of e
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sympbom severity on the diflesn & of schizaph
mesumd (s for the seesment of negative gymploms, seae
for the smesiment of podtive symploms and diorganiation
senes). For each cinical score, we conducted regmeion analyss
using either the ‘bies effect’ sore or the visua information e fect’
sawe & predidor vadables, We used both these raw sares
(ample Bnesr regmsson), of teir transhormed vales (dmple
non-fnear regresson with logarithmic, polynomial or exponen sl
transfosmatom). Modek with #ie highet sdjusted R and 2
P < D05 are reporied.

Results

For each sessbon, two-tailed (leb were perfomed betwesn the
twie unlikely for futuse unlikely) intention on both resclion time
and hits. As no dgrificant differences appesred (2l four taks: al
P 005, ses Supgementary Figs 1, 2A and B), performances
for thess two unbkely intention wes pooled for subsequent
anahyses,

Hits and reaction times

Baseline session

Overt blodks [mataining very high and constant amount of viusl
information): in 2l our tads, patients performed & suaeshully =
control when e amount of visual information was very high
{mean comect resporses > 94.5%, SD< 39 betwesn-gmup
compaitans: &l P x005), revesng thal pefents and controk
were equally sudesiul in ntegmfng the probabilty distributions
amodated with aach intention.

Covert blods (contsining vanying amounts of visual informa-
ton): #he 2 (group) « 2 GntenBon: {-kely versus f-unlkely) « 3
{visual information) ANOWVA pedormed on both non-social (e
and Superoelinate) Laks revesled thal patients performed fe Lk
a5 sudeshully 5 control particpants [main effect of goup, &l Fs
1,48 < 1.25, al P 0.26]. Futhermaone, there wes no sgnii-
cant differences in hils and resction times between the “fuure’
Bkely intenfon (ie. the one that parbidpant wall be bizsed
towands in the subsequent bas sesdon) and the ‘future’ unibely
intenBon, indicating thel prior to bimsing, there was no & priosi
bis ywands one intenfon over another [main effed of infention
(fkely verss f-unlkely): al Fs (148 < 003, &l P 084;
group « inention  nleractin  efled, al Fo1,48) < 012, al
P= 0721

P the amount of visual information noresed, inbentions werne
ducriminated both fasber and more sucoeshlly [man effed
of visud information: &l Fs (2,96) > 2511, &l P < 0001]. This
improvement did not differ between patient and comparion
partidpants [group x visual information inleadion effect, all Fs
2,98 <056, al P 057]. The group « intentin o visual infor-
magen inleraction was net sgnficant, indicsting that incmasng
the amount of visual information improved both groups’ perfanm-
ance equally, and independently of the type (future’ kely versus
“futuse' unlkely) of intention [l F4{2,96) < 061, &l P> 054
(Suppementary Fig 1A and B).

W, Chambon ef al.

The 2 (goup) x2 (ntenBor Bkely versus f-unikely) x 3
{visual information) ANOVAs perfosmed on both social (Base
and Supemedinate) tais revesled that patents Ended to be les
suceiiul than contral &t recogniding intentions [main effect of
grup, Al F's {1 A7-48) = 293, dl P < 0.084)]. Maore specifically,
in e socisl supemedinate tak, we found a sgnificant interaction
effect for hits between group and intention (future’ Blely versus
futwre' unikely) factors, ndicsting that, prior lo being bsed,
control padicipants diplayed an eary preferenc: towards inferring
& TFT compared with other strategie, which was not found e
the patent group [geoup xintention inersction, Fli 48) =63,
P=0id; post hoc test comparing TFT versus other strategies
in comrol parbidpank, P<000; post hoc test evmparing
contrals  verms  pebents on reponding  TFT, P =00034]
(Sugplementary Fg. 3). In the socisl bate tak, conbrok sko
inferred & TFT response mare fequenty than schizaphesrnic
patenls (wo-sample [test {= -238, P=0028), bt the
gmup xintention inleadion effect did not reach significance
M1 =27, P=0.11]1

In socisl batic and socal superordinste tads, the performance
of bot goup incesed with fhe amount of visual information
[main efled of wvisuad nformation: &l P2 94-96) = 19864,
all Pz 0uB01], bad that incesse wes larger for patients than o
contral [group = visud information, &l Fo2 94-96) = 317, &
Pz QU0G]. This incresie was due to patients inferdng TFT less
frequently in the amndition of 2 bw amaunt of visual infosmafon,
whilkl nferring TFT as often & contral for mediom and high
amounts {pod hoc bedt comparing pementage of hits between
coniras verns paents for bow amount of vsual nfosmaBon,
Pz QU06; no dgnificant diferences found for the other amounk).
The gmup xintention « viual information  interadion  effect,
however, wa not dagrificant [& Fs (294-96) < 017, &
P = 0.21] (Supglementary Fig. 2A and B).

In summary, n &l four teks intertion were recognized both
fasber and mone sucesshuly = the amount of visusl information
incrested. In the non-socisl teds, hils and readion times for
Yulwe' [kely and unfkely intertions did not differ betwesn
prug, wheres in the socil teds, control parbcpants exhibited
an early preference for TFT strategies, prior to asignment of any
probabiistic iz This pelerence for intesing TFT over sftemative
strategies was net found in petients, which may scmunt for fsc
tendency to perkrm bets succssfully han ontol partidpants in
socil tmis, even when obebiBbes were not manipulsted
Impodantly, contrd padicpents tended B make mos TFT
regpenses a5 the amount of viual information decressed. This
resulied in ‘mechanically’ reducing differences in the @ of
Bhely miponss betwesn sl thwes {kw, medum and high)
amounts of vEusl nformation. The effect wes nol observed in
patiens, due bo teir inifsl bd of preference for TFT.

Bias session

Orwert bocks (very high and @nstant amount of visual infosma-
tion): in all fouwr tasks both contol and patients perfosmed the
task succes fully when the amount of viusl information was very
high (mean corect resporses = 95%, 5D < 3.1; betwean-group
comparson: al P 005), ndesting that patients and conbak
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weme equally succesbul o nlegrating the (bimed) probebility
distribution ssocaied with each intention.

Cowert Wodks (vayng amounts of vauwl nformation): four
difnet 2 (moup) x 2 (bias: Bkely versus unikely) x3 (visual
information)  ANOWVAs have been perfosmed on eadh fak
(non-sodal bade non-sodal superordinate, socal bate and socisl
spemrdinate). In 2l fow ks, parbcipants wes both mos
accurate and faster in recognizing the Bhely inention fe. the
imention whate probabiity of oocurene wa noresed ot the
expenie of the other competing ones; main effect of bis:
Fafl A7-48) = 33.41, &l P Q00]. Smilady, perkrmanc
incresed wih the amourt of visuad nfomation in al teds
[main effect of visusd nfommaton, &l Fd2 94-96) = 1818, &
P<0O0] Ths effedt wa sprificantly modulsted by the
baas factor [visual information « bz interacbon effect, all Fs
{2,949 = 1562, al P<0001], with partidpants responding
mire frequently toward the Bkely intenfon as the amount of
visual information progressvely decrasied, a finding  consstent
with pevious el Chambon ef &, 2011

In the non-sodal base tek, patients pedormed the tek =
suressfully ai contrd  pantiipants  fmain effect of group
1A =03, P=085], while in the non-socsl superoadinate
condiion they exhibited significantly poarer pedormances than
contmls [main effect of group FH A8) = 917, P = 00@E]. In the
nen-social superordinatle tmk, the goup « bizs inberaction wes
sgrificant [Fl 48) = 5.47, P = 0.023]. Inkesstingly, demmpasing
this effect using pest hoc Fisher fests revesled that pafents chase
the unikely itention bess frequently than anbrols (P < 0001, but
chose the lkely ntention = fequently 23 otk (Sugplementay
Fg. 4A). Futhermaose, in this task | incressng the amount of visual
information maded & larger incmae of the rate of ey’
respanse; for contmls than for patient [group = visual nforma-
tion, F2,96) = 335, P=0.04; post hoc tesk companing per cent
of hit between conrob veras petients for medium and high
amounts of nformation, &l P < 005 no Sgnificant difference
was found for the bow amounf]. Mo significant group o bis
ar group x viud nfamation interadion were found N the
naon-social bate Lk,

In both socil ks, patients tended to recognize intentions bex
surresshully than contral padicipants [main effect of goup 2l Fs
{1,47-48) =28, P <009 The grous « bias ineraction effect
was  dgnificant n the sockl sperordinsle  tsk  only
[F1,48) = 637, P=0u014]: n tiE condition, patents wems b
Bhely to choose 2 TFT intenBon fesst significant difference test
P =002}, while chaosing the ofer, unliely srategies = offen =
contel (Supgementary Fg. 4B). Crucily, we found that
pabents’ performance incresed to 2 langer extent than contral’
& the amount of visual nformation incessed in the two social
tesks [group « visual information, al Fa{2,94-99 =311, 2
P 006]. As in the baselne setdion, thal increse was due to
pabents infering TFT best frequently in the condition of 2 bw
amaunt of veusl information (pail hoe ledls compadng per cent
of hits between controli versus patients for the low amount of
information, &l P < 0U05; no sgnificant diffesnces were found for
the ather amaunts). & & nolewodhy that this patien of perfom-
anie (e, fewsr mepones bward TFT intertion and a greater
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effect of amount of visual infosmaBon) wa exsclly the oppaite
of that olserved in the non-sodal superondinate k.

Finally, we did not find any sgnifican goup x bis « veu
information infeadion effect in any of the fow taks [ Fs
{2,94-96) < 232, al P 011, ndicafing that the contraks’ pref-
emnce for TFT strategies was not modulsted by the amount of
visual information availsble Supgementary Figs 1C and D, and
2C and D).

In surmimary, in 2l fouwr take, both goups wes mos scorste
and faster when responding toward e lkely Ge. bimed) inen-
tion, and showed incresied pefemnce to ths intention = the
amaunt of visual information dedessed. |t B of note that this
finding & comitent with pedicbom made by 2 Dayeian ssfima-
tion scheme: in SluaBons of sparse or incomplele dats, partic-
pants nd o compensste for visual unesrinty by appesing to
their pdor knowled ge (Chambon ef al, 2011).

In the non-social superosdinate tak, we found patients had
difficules in duengaging kom their péor expectations fe. e
Fkedy intention) to skd 2 response congruent with the unikely
intenBon, while reying ks on viael idomaBon b make thei
decibon. Such dificutlie: were ssocisted with poor perfonmanoes
in thi condifion.

While petients sko ended to pedorm b=s sucesshully than
controli in e beo socs beds, e performances however
exhibited an opposte patlern of nlersction between semory
and prior information: they were e sendtive than contral to
the TFT biss, which resulted in their ped & incrasing o &
larger extent than control &= a funcbon of the amount of visusl
infarmation

Effect of the bias across different types
of intentions

The 3 {visusl information) x 4 (ype of ntenbon) x2 (groug)
AMOWA firsl revesled a significant effect of the type of intention
[main effect of type of intention, F3,191) =117, P < 0U0M],
with parbeipants rehying mos on the bz to infer both sodal
and non-socal superordinate intenfors, compared fo baic ones
{post hoc ests compaing supemrdinate and b tmbs, al
P < 001 This diflesnce interaded with group [group x inben-
ton intemdion effect, FE3,191) = 11.06, P < 0001]. Indeed, the
bz exerted a graster nfluence on patients’ response than oon-
trok” in the non-sodal superordinste conditon ¢ = 0U00R) while @
exerbed 2 smaller influence on their response compared to contras
in bot soual condifions (&l P < 0.008) (Rg. 3).

Thiss difference mull refled the preferend: for TFT that contral
akeady exhibiled in the baselne segon Gee abowve), rather than
reflecting a pure probabiiibe bism effect. Therefoms, lo sdes
whether respomtes toward TFT stoleges incresed to the same
extent with bising scros groups, we performed an additional 2
(group: conbrals, patients) x2 (sesson: TFT-baseline, TFT-bis)
repested -messums  ANOVA. Mo sgnificant  difference  wa
observed [group « sesson ineraction effect both socisl cond-
tiors, &l Fs {147-48) < 0.7, &l P> 039], indicating that the
group diflemnce for responding TFT in e bis sesdon wa due
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Bias effoct across all types of intention
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Figure 3 B et (%) for ol types of intenBon Laks, The
prester the b afled, e marne i s respand boward the
ey [, bimed) inention. 57 - patient with schbaghrenis;
COMP = comparison parbcipants. *P < 0.05 **P < 0.005;
sep 0000

to contrald’ nitiel preference for responding TFT in the baaline
SESERON.

Effect of the amount of visual
information across different types of
intentions

The 2 (b= Beely versus unfikely) <4 {ype of intention) x 2
(group) ANOWVA reveakd a significant main effect of goup
F119) =412, FP=004] showing that overall, patients’
performances improved to a geater extent than @nkol’ when
inceang the amount of vl information. However, the sgni-
cant  interacBon  betwsen goup and type of infention
[FI319) =612, P < 0001] further revesled thal, while inces-
ing the amaunt of visual information impeoved patients” perform-
ance mare than conbras’ in both socal base and  sodal
superorlinale conditions fpodt hee tets, all P < 0.005), pebents’
performance impaved bo 2 Ewser exdent & this amount incresied
in the non-socal superomdinate condiion (past hoc test, P = 0.03)
{Fig. 4.

Clinical symptoms: regression analyses

Bias effect

In the non-social superordinate tak, the bis effect Sgrificantly
and posbvely predicied both scale for the sresment of poitive
symptoms R7 =039, P=0.003) and duorganization (R"= 0.21,
P =0ud) seoms (Rg. 5A and B). The higher the effect of the
bizs on patients’ perfosmances (e the mos they relied on ther
pricr knovwledge to make thein decrion], the mone Bty patents
were to be deorganized and exhibil postive symploms. In both
social tadks, the bism effect was found to significantly and nega-
tively predict the scale for the smesment of negative symploms

V. Chambon &f &l
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Figure 4 Effect of the amount of veual information (%) for 2
types of infention conddered. The greater the sare, the maone
parbcipnls’ perk & improved = the it of visual
information incresied. 57 = patient with schizophrenia;
COMP = compaison particpants. *P < 0.05; **P < 0.005.

seom (R7 =022, P=0.03 for the socisl besic tak, and B =032,
P 0008 for the social superordinate tad). Thesfore, the smaller
the effect of the iz on patients’ perbrmancees (e, te ks they
refied on ther prios for inferring a social intention), the maore
severe the negative sympboms (Rg. 5C and D).

Effect of visual information

In the socil superosdinaste intention ek, the effled of visual
informativn dgnificantly prediced the sale for the ssenment
of negstive symploms scom (A7 =044, P =000} and—but to
a lemer extent—the desorganization score (A= 028, P=001)L
The higher the efied of visusl information on paties’ repornes
(e the mare they relied on the veual infomaBon to make e
deckion), the mom severe ther negafve and dsorganization
symptons (Fg. SBL In the sosl b task, this effedt Ended
to predit the salk for the mesament of negative symploms
seom but the regmsson meffident did nol mach significance
(R =018, P =0.068 (Fg. 6A).

Discussion

The present study simed to investigate whether the impaied sbi-
ity of schimphrenic patients to appreciate other people’s ntenfons
& confined to a partioular type of intention, = opposed to being
genemized. To tet ths hypothess, we dedgned a senhe of taeks
that required the identification of different types of intentions,
varying on the dimemions of smpe (bade, superordinate) or
target (non-social, sockl. We further hypotheszed that, o
present, a bocalized deficd woull be scmunted for by abnosmal-
s in the interplay betwesn prioe knowledge and semary evi-
dence, which nosmaly undedies the shilly to infer others’
intentions {Chambon of al, 2011)
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We first showed that controls and patients ame sengfve © bath
types of informston, and their interaction. ﬁatdp-bopmt
wes more succeshl i iz deryi
when the visusl information omveyedb/headaonsemm
incressed. Secondly, they shawed more sccurscy and were faster
when recognisng Feely pared to unikely intenti Finally,

both gmups’ pedormanas exhibited 2 stong biss effect, which
progresively incmased a2s the amount of visusl information
decressed, and vice verss. Gudally, we sio observed spedific
diffemnces between the tvogmp Depmdvgoﬂﬁnma
target of the presented i patients with schizaph

showed an sbnormal weighting of either pior knowledge o
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sensary information, which was futher ssocisted with the sever-
ity of postive or negafve symploms of the condition.

Inferring non-social intentions

‘Whikit perkrming & succesfully a5 animb when inferring inben-
thorm nvalving & single adion (basie intentions), patints exbhibied
poarer paformance when recognizing intentions invalving &
‘sequence’ of baic motor ads Buperondinate inlentions). These
posiwer performances cannol be due to an incressed astientionsl
load, resufting Fom paying atention b 2 sequence of Hhires
adiom as opposed to 2 sngle acl, Sne patients were
equally sueeesful i contrals in the beeline w=gom of the super-
ordinate condition. Indesd, diflemnce betwesn the petient and
control groups wene anly found in the biss sesion, wherne the tak
requisd them to mrogedy sample the probe bility distribution -
cisted with each type of fkely or unlikely) interntion.

Speciically, poarer performance in fhe biss dewion wes dhansc-
terized by a decessed number of respores bward unibely
intenBom, with palens having difficully deengaging fom thei
bized expectsBorns to sect bes Bhely shematives . Crocially, this
atmasmal dependencs on bised expectstions may not be pimar-
iy due to a faulty weighting of probabillie—pafents msponded
towands Bhely intenbors = offen = contml—but to an inshilty to
revie prios expectations in Bghl of new evidence. Thi asumplion
B supported by the fact thal incresdng the amount of viu
information was of ke beneft to patients’ performances than
controls’, ndicafing that patients mbed on visual informatibn to
2 lemser exlent than omparmen pedicpents to make thei
deciEion.

This inabifity to dsengage from prios, self-genensted eupect-
afons, together with 2 Endengy to demgard exemalfemory
evidence, echoss spedfic bizes observed in schizophrena agow
& wide range of sudies, sudh 2 the so-caled 'bis agsint disoon-
firmatory evidence’ (Woodwand af 2, 2008, o 2 Endensy to
make hasty deckions (jumping lo @nduson’: Garely ef al,
1991). Indesd, in s of pobsbilstic mamoning, individus
with schimphrenia tend to make judgements based upan kes evi-
dence than mmparson parbidpant andfor to hold prior beliefs
despite the evidertial support (Brankove and Paunowvic, 1999;
Jones ef 2, 1999). Owr resule in e supemrdinate condition
revesl that this bass may not be spedfic o the domain of reason-
ing, but may sko extend to mentsling, pobentisly undedying
such abnosmaites in schimphrenia. When having to  make
deciion shout ofier peogle’s nonsocsl) inlentions, patients
preferenBaly mied on previoudy fosmed expedstion, ie on
befiefs shout how the olbewved agent B most Beely to behave,
while negecting potentially disconfimma by viual informaton.

It & nofeworty that this pattern of performance was only
observed in the supsrordinate, but not in the basie condition.
We beleve that this finding may be accourted for by the specific
progerdy of the interbon manipulsted Indesd, 2 superadinate
intenBon & achieved by 2 squence of imerchangesble basic ac-
tiors, and, therefos, cannol be directly deduced fmm the ournent
adion per e (Pacheds, 2000 Jacob and Jeamnerod, 2005).
Infering supemrdinale inentions fus mquites te parbopant to
refer b a ditsl mpeentstion of the el which & not disdly

W, Chambon ef al.

avaiable from olsenation and @nsequently tends to be leis chal-
lenged by veual evidence (Chambon of al, 2001). IntenBons
which are not predictable from mersly observing the cument
sction, e, aperosdinate intentions, may thus agmavate patiens’
tendency not to revie their belefs in the face of progresively
dumnfirmatory evidence from the aclivn scene.

An impaired revison proes could sgnal a diturbance in the
{Bayesian) inferenfal mechanism, which @mpares new sensory
evidene with dored knowledge of the wodd, or prior belefs
{eg. befiefs shoul what & the most Beely cause of an observed
behaviour, aut of the poistie abematives). Under nonmal creum-
slances, & difference betwesn expected and observed information
pives e to a prediction emor that can be wed to update one's
mandel of the wodd §Gner of &, 2007a, b Fetcher and Frith,
2009, A distusbance in B error-dependent updsting mechansm,
pesaibly caused by sMerstions in the dopaminegic croutry
{Gradin ef al., 20 1), may result in paBents having an sbaormsl
degres of certainty in their beliels shout other people’s infetion.
W thewe befieh are not challenged by edemasl svidence and, i
necegary, replaced with contedualy approgriste bebefs, patiens’
inferences aboad others’ mental stales woul be besed on an
outdated model of the corent stustin. This could result in
patenls exhititing maladaptive or bizarre behaviows (Thambean
ef al, X008 Barbalst of af, 2009) andfor holding incormect (e,
deluded) belels sbout the mal causes driving other's behaviour
{Fletcher and Frith, 2008). Prdsel in ine with ths ssumpen,
we found thal patient’ shnamsl dependence an péor expect-
ationy predicied the sevedly of postive symploms of schizophe-
nia: the more pafients reied on their priors to make their dedsion,
the mom severe these symploms were.

This observafion sheds new fight on previous evidence of
patenls with pawiily symptoms msstbibuting sclions o nen-
agents, o over-stbibuting ntenBonsly whes there & none
{Abu-Akel and Bajey, 2000; Bentall ef 2/, 2001; Blakemaore
ef al, 2003), espedally in shuations that require continuoes mani-
tering of viusl Sgnak ading from the action scene (Franck of al,
2001). This ‘hyperintentionably’ may indesd result fram the
quaniitstive over-genembon of hypothese: and an inabilty to
revie them in Bght of deconfirmatory evidence, potenBally result-
ing in parandd (over-linlerpretstion of other people’s goak
{Abu-Akel and Bajey, 2000; Bara of af, 2011). UbGmately,
aver-reliane on unchallenged, inlernal expedston, whisl di-
missing external evidence, could lead pafents o make sbnoomal
dinBneBons betwesn the resl causes driving ather people’s behay -
jour, and their subjdive belieh shout what these causes should,
or might be. Such a confusion between external and internal
slabes of affasirs would underming a pafents ahility to separste
thei own intentions fom thate of othes (Frith and Costoran,
1936), o to disentangle exemnal expenences from imer experi-
ences (Watler of al., 2009, a feature thet frequently acompanies
parancid andfor pasivity symiptoms, such &5 the welk docums mbed
‘dedusion of contral’ (Brine ef 4/, 2008).

Inferring social intentions

Surprangly, the pafents pattern of performance on socil taks
war the exact opposle of ke patiesm obsened on non-socisl
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tads. On sodal tais, pelients mled on the avaiable viusl
information to & gester extent than contrals, whilst showang a
degeased sendtivity to the bz e towamds TFT intentbon).
Futhermaoss, this pattern of performance predicted the severity
of negative symploms: pafents with more devere negative symp-
toms wene b semibive lo Be bizs fe they were bes flely
lo select TFT) and comvesely, were more mlant on visual
information Lo make their decsson.

Al fimt dght, & bower semifvily fo the biss in the social condi
tins may seem at odds with pabients’ exe=sve miance on péor
knewledge i the previcws (non-sodsl) conditions, However,
pefonmanc: in the bz dewion indicated that patients did nosmal
Iy integeie the [bized) probabiity distibution of the sesson, with
the numiber of maponses toward TFT incmaing with s probs bty
of oocurrence, a3 found in @ntol. Rather, we found that unlike
conteyl participants, patients dd not exhibit any eardy preferenc
for TFT in the bameline seison—that &, prioe Lo being bised
toward this paticular mode of inberaction. It & noteworhy that
while neressng the pobsbiity of TFT wes of benelit to both
gruge, this norese wes not encugh o compensste for patients’
inilial defict.

This almence of an nherent pelesnce for TFT suggests that for
pabents, social Slustions may nol prampd the same expects fom
= those typaaly chserved in hesithy padicpents. Indeed, stu-
ations identified = imohing sodal interactions are prone to igger
daormain-specific expectations concerning the way agents am el
to behave in sudh stustins (Cateli of &/, 2000; Schol and
Temoubst, 2000; Kouts &« af., 2010). Under normal drowm-
slanems, these modulsr, highdevel axpedaion may conbibuke
to griodly being gven to some intentionsl causes sl the expeme
of other, compefing cause feg. coopemfon in reponse to
pevious  moperstion, defeclion i msponse to deledion;
Chambaon el &, 2001). Relane on these domasin-spedfic, pdor
expectstivns, which can be inducd even by basic movemsnk
(such a4 the misfve s oof o el figures; Heider
and Smmel, 1944), may peowve gucal in Shuation of sparse
dats, o when sensary evidence & oo noiy lo gusrantes scusie
inference-making (Baker of &, 2004). Poor perfosmance in social
condiion suggests thal patients lack the prics ex pedation which
usualy bies social nferendes, consibent with a previow sugpestion
that impovesshed sodal knowledge, fom which these expect-
ations may be dedved constibubes an intsnsc festure of
schizaghrenia (Cutting and Maorphy, 1990).

Concomitantly, impovershed expectstions within the socal
domain may acount for why patens wene excesively over-
refal on visusl information. As previowly sugpested, nfering
another agent's inention requiss the adsplive integrativn of
new exiemal evidene nte pior belefs shout the agent’s posk
and attitudes (Baker &of af., 2006; Retcher and Frith, 2009), which
B contingent upon the relative refisbilly of these bwo sounes of
information Chambon ef &, 2011). Resufs in the socal condi
tions suggest a dstubance in the inbegrative mechansm that
B exadly the oppeile of whal wa olmerved i non-socisl
condliomn: impovershed expectsting wilhin the socisl domsin,
resulfing in a reduced shiily o draw relisble inlernal preditions,
prmpled pelients b aver-weighl axkemal evidence,
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Crucialy, this stnommal fver-Jweighting of vl information
cormbibed with the negstive symploms of schizoghrenia. Pevious
abservations have simiardy shown thal pebients with negstive
symploms, such = anhedonia o sedthymia, End to exesvely
fors on directly olmervable, exiemal information, rather than
inner expedence (Taybe, 1994) Our msuls futher sugpest thet
thesse nca pacitating festires may be acounted for by an impaied
ability i mske refisble predicdion about ofers behavicw, ren-
dering patients daves o every {external) influence’ (Frith, 1994).
It & noteworthy that over-refance on edenmal evidene @an be
particulardy harmiul in sodal stufons, o which many pasble
intenBom are potenfally congruent with what & cbeerved, so
that it & imposibl b inder the spent's indenbion frm enviran-
mental cuet onk. In such Shoetions, A has been shown that
partidpants End b ompesate foe sensory uncerlsinty by
appesiing o g knowledge (Cibra and Gergely, 2007).
Impovershed mior knowkdge in fie socsl domsin may therefors
resuit in an incapabilty to reduce the inimic uncertsinty of sodal
wodd. This may heve important comequences an how patirts
suffering from negstive symploms perceive other people’s sodal
aftitudes and behaviours. Indesd, 2 pervative and comtant uncer-
tainty may mnder any olnerved, or experenosd, sodsl interactions
fruithesis, and could uimately be responsble for social and mativ-
afona duorders thal are charackedstic of negative symploms
of schimphrenia (Fletcher and Frith, 2009,

It & netewarthy sl 2 lack of prefesnce for TFT in schizaghre-
nia & consstent with previows data In tatis Smulsting human
cooperation in group nkodion, pabens do not exhitit any
pattern of ‘equivalent retslistion’, o ‘sifuistic punishment,
eg. they do not defect when the game pariner has peeviousdy
defected, or they accept untsir offers at a sgnificantly higher
rate than did hesthy contrals (Chung ef al, 2011; Csubdy of af
2011). Interestingly, individusls with schizolypal baits exhibit the
same patiem of perfosmance & patients (van’t Wiout and Sanfey,
2011}, suggesting that poor ex pectations in the sodial domain may
represent a marker of vuherabily to schirophrenia. Moteover,
such abnarmal expectsling may serve = eardy dinial intewention
targels. Indesd, there & growing evidence that comitive therapie
targeting sodal kils improves long-term pegnoss and sgndi-
cantly benefits the patents everyday e (Horan ef al, 2011;
Ventua efal, 2011). We believe accordingly that eardy defedion
of an shnormal use of sodsl-specific knowledge may have a
positive impact on both patients’ social functioning and evoltion
of the condlion. Crifically, a lack of preference for the TFT' made
of interaction predided the severily of negtive but nol pestive
symploms. The further suggest thal poor expedation: n the
social domain may sko be mivant to the formativn of sympbom
prdile, together with being 2 uselul indiester for identification and
management of vulnemble ndividuss.

MNeural underpinnings

Together, thess mafls wugged that diferent neural dysfunctions
may underfine patient’ abnosmal perfrmanes, depending on
their symplom profile and the type of intention comidered.
According to 2 recent model adion understanding B achieved
threugh inbersctions belwesn 2 venlml palhway whes interdion
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pricrs am formed, and 2 dosal netwaork hisrarchically oganizd
according to the bevel st which the cheerved action & repssented
(nematic, motor command, or goal level) Kiner, 2011).
Inention o in the vental palhway are used o predict in
dorsal aress the mest Bosly adion required to achieve the most
Bkely inferdion, given whal & olserved. An emor Sgnal & gener-
ated when #he predidion i net scourste. We suggest that undue
weight given to péor expeclations in pabienls with positive
sympboms may be caused by sbnormal enading of predidion
emor Sgnak in dopamine-rich brain amas (Gradin of &, 2011).
Thies would =zl in the nabily to update interion prioes in beain
ama of the ventral pathway. On the other hand, lack of prefer-
ence for TFT in paBents with negstive symploms suggests
abnosmal biadng influences fom besin regons thal encode
sovial-specific knowledge, such & the medidl prefrontsl corbex
{Cverwalle, 2009). Thes, the medial prefrontsl corbex might
insufficienty bizm adion predition in brain aress within the
dorsal pathwery, resuling in an equal weighting of al posible
adion alematives (e.g mopemBon T previow defection, coaper-
afon if pevious cooperstin, ebe). Such weaskening of social-
spedfic influences & Beely to mduce the scouracy of predidion
enor-dependent mechanims, beading pebients b sl on semary
evidence by default. In fulus wodk, the use of neurdmaging
techriques should alow 5 bo test these ssumption: directly.

Conclusion

W iderntified 5 pecific mentalizing impairments in participants with
schizaphmnia, Rather than being penersbized, thess impaiaments
were contingent upon the scope (hesic verss superondinate) or
the targel (non-sodal verde social) of the ntenBon to be inferned,
and were futher accounted for by sbnormal integration of visusl
information and prior knowlkdge.

In nonsocd tebs, pebents showed speclic difficuftes n
inferfing inentions achieved by a sequence of basic motor acts
(superordinate intention). We found that this poor perfosmance
wizi due bo petients over-relying an mior expectations and diseon -
firming visual evidenes. This abnomnal petten of nemdion
prediced the severily of postive symploms. We suggesded that
this faully interadion may sgmal 2 distwbance in the inferentisl
mechanim diving the integration of sensory evidence into i
beliefs, to produce sccurate inference sbout other peaples inben-
o, Such a disturbance could favour a parandid (over-) inber-
pretation of other peaple’s goak, by hindedng the mvision of
one's prios beliefs, and may utimstely lasd patients to distinguih
abnasmaly betwesn their own and others’ intentions—a confusion
frequently experenced by indhidusls with pasiity symploms.

PaBents shko showed difficulies in infersng social ntentimns.
However, ther paflern of performance wa the exad oppoite
to that olserved in non-socal condibons. While they exhibied
wesker pricr expectBons, they reied stongly on semory evi-
dence to make their decidon. Futhermoss, this pattern of per-
formance peedicted the severdly of negafve symploms. Beied on
the atmence of aaly peference for the TFT maode of inensction,
we hypotheied el socsl Shiston mey not prompl the same
expectstion: in patierts as those typicaly obssrved in heslthy

W, Chambon ef al.

parbcipants, beading to the formation of abnormal (unrefabie) pe-
dictions about others’ social intentions. Such abnormal prediciions
may maul in an incapebilily to mduce the ininge uneerbainty of
socil stustions. We suggest sl mastanl and pervasive
uncertsinty about others socsl stftudes and behavious could
jeoperdie patients’ propensity to sodsl inleractins, and may
ulimately scmunt for some of the incapacitsting festuss
snociated with negative symploms of schimphrens
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Sir, In a recent study (Chambon et al., 2011), we investigated the
ability of patients with schizophrenia to make accurate predictions
about other people's intentions. This ability has long been shown
to be impaired in schizophrenia, and this impairment may be ac-
counted for by an abnormal integration of two different sources of
information: the sensory evidence conveyed by movement kine-
matics, and the observer's expectations about how likely an inten-
tion is. In the task, these two types of information were
systematically varied. Qur results showed that patients with posi-
tive symptoms were prone to over-weight sensory evidence con-
firming their prior expectations and to disregard evidence that
invalidated such priors. We hypothesized that this abnormal inter-
play of prior expectations and current sensory experiences—that
normally guarantee accurate inferences—could result from a dis-
turbance in prediction error signaling, possibly caused by alter-
ations in the dopaminergic circuitry. We speculated that such
aberrant prediction error signals might account for the formation,
as well as for the update, of delusional beliefs as to how biological
agents are most likely to behave.

In their comment, Garrett and Singh suggest that our results
cannot be readily applied in vivo to psychosis “without distinguish-
ing between pre-psychotic and post-psychotic prior experience’.
Specifically, they argue that belief updating should be differentially
impaired according to whether sensory evidence combines with a
belief that has been formed prior to, or during, a psychotic epi-
sode. They argue that, in dinical psychosis, patients do not abnor-
mally under- or over-weight information indistinctly, but that
evidence disconfirming ‘psychotic’ beliefs only is under-weighted,
whereas evidence confirming these beliefs is given too much

credit. During acute psychotic episodes, confirmatory evidence is
over-weighted because such evidence (e.g. ‘the fleeting glance of
a stranger’) readily combines with previous confirmatory observa-
tions (e.g. ‘strangers are wearing blue coats') to progressively in-
flate the veradty of the initial delusional belief (i.e. ‘FBI agents are
watching me').

This comment raises two important points. First, it suggests that
the integration of semsory evidence and prior beliefs somehow
differs according to whether these beliefs are ‘psychotic’ in es-
sence, i.e whether they involve a delusional content, or not.
Second, the formation of delusional beliefs results from a deviation
of this integration process relative to the ‘Bayesian norm'. In
Garrett and Singh's view, this process of delusion formation quali-
tatively differs from the process whereby formed beliefs (both
delusional and non-delusional) are maintained during acute psych-
otic episode. As our task did not contrast delusional versus
non-delusional beliefs, Garrett and Singh argue that our results
pinpoint a disturbance in a non-specific mechanism of belief main-
tenance, but say little about how ordinary beliefs progressively
convert into delusional thoughts.

We fully agree with Garrett and Singh that the formation of
delusional beliefs calls for specific investigations, as it is still unclear
whether it entails specific computational processes. For example,
delusional beliefs might arise as a consequence of either misas-
sessed prior probabilities (e.g. delusion-related priors may be ab-
normally inflated in patients), or misaggregated components of the
Bayes' rule (i.e. priors and likelihood may not combine according
to this rule), or both (McKay, 2012). However, the fact that such
processes spedifically account for the emergence of delusional
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beliefs does not predude their participation in the abnormal main-
tenance of beliefs. Indeed, both delusion formation and abnormal
persistence of beliefs may just be explained by a single neurophy-
siopathological mechanism. Aberrant prediction error signalling in
the context of dopamine dysregulation has been proposed as a
probable candidate (Corlett et al., 2009; Fletcher and Frith, 2009).
In a nutshell, prediction error is defined as the discrepancy be-
tween what is expected and what is actually experienced. Such
errors signal the need to update one's beliefs about the world.
Under physiological conditions, individuals update beliefs in an
approximately Bayesian fashion, whereas pathological prediction
error signals may yield significant dewviations from normative
Bayesian inference (Friston, 2010; McKay, 2012). It has been sug-
gested that aberrant coding of prediction error in deluded patients
may abnormally over-weight random events. Delusions would
thus arise as a means of explaining, or accommodating, these
odd, and abnormally salient experiences (Kapur, 2003; Corlett
et al., 2009). Interestingly, the persistence of delusion, as well
as the abnormal inflexibility of otherwise non-delusional beliefs,
can be explained through the same mechanism. Indeed, in
Bayesian hierarchical networks, persistent delusional beliefs are
more likely as one goes up towards more abstract hierarchical
levels, which depend less on external inputs and more on previous
stage representations (Friston, 2010). Thus, misbeliefs can persist
because of persistent abnormal prediction error throughout the
whole hierarchy. A belief induced by the coincdental hypersali-
ence of an event would thus be progressively reinforced and en-
riched as aberrant prediction error randomly occurs (Corlett et al.,
2009). When the psychotic equilibrium is reached, persistent error
signals would continuously reconsolidate this initial explanation, up
to a point where the belief in this explanation becomes absolutely
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impervious to contradictory evidence, and ultimately creates the
framework within which all perceptual experiences are interpreted.

In sum, we agree with Garrett and Singh that delusional beliefs
may arise as a consequence of multiple deviations from normative
Bayesian updating. However, we do not think there is a need to
postulate a separate mechanism to explain why, at the same time,
non-delusional (pre-psychotic) beliefs may prove highly inflexible
and abnormally persist in the face of contradictory evidence.
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Abstract

An important challenge of embodied theories is to explain the comprehension of abstract sentences.
The aim of the present study was to scrutinize the role of the motor cortex in this process. We
developed a new paradigm to study the abstract-concrete dimension by combining action-related and
non-action-related verbs with nouns of graspable and non-graspable objects. Using these verb-noun
combinations we performed a Transcranial Magnetic Stimulation (TMS) on the left primary motor
cortex while participants performed a sentence sensibility task. Single-TMS pulses were delivered 250
ms after verb or noun presentation in each of four combinations of Abstract and Concrete verbs and
nouns. To evaluate corticospinal excitability we registered the electromyographic activity of the right
first dorsal interosseous muscle. As to verb-noun integration, analysis of motor evoked potentials
(MEPs) after TMS pulse during noun presentation revealed greater peak-to-peak amplitude in
sentences containing Abstract rather than Concrete Verbs. Response times were also collected and
showed that compatible (Concrete-Concrete and Abstract-Abstract) combinations were processed
faster than mixed ones; moreover in combinations containing concrete verbs, participants were faster
when the pulse was delivered on the first word (verb) than on the second one (noun). Results support
previous findings showing precocious activation of hand-related areas after concrete verbs processing.
The prolonged or delayed activation of the same areas by abstract verbs will be discussed in the
framework of recent embodied theories based on multiple types of representation, particularly theories
emphasizing the role of different acquisition mechanisms for concrete and abstract words (Borghi &
Cimatti, 2009;2012).

Keywords: embodied cognition, primary motor cortex, language grounding, abstract and
concrete sentences.
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1. INTRODUCTION

The ability to understand and use abstract words is an important part of the human capacity to
interact with the environment and with others. While many studies have been devoted to this
important topic, the issue of how abstract concepts and words are represented is still unsolved
(for a recent review, see Pecher et al., 2011). It is well known that abstract words are
remembered and recognized more slowly than concrete ones (Schwanenflugel, 1991). Their
processing can engage mental imagery, but at a lower rate and with a greater variability
compared to concrete words (Paivio, et al., 1968; Paivio, 1991). It is also well established that
abstract words are acquired later than concrete and generally highly imaginable words (Bird et
al., 2001). Finally, the double dissociations found between the understanding of abstract and
concrete words (Shallice & Warrington, 1975; Warrington, 1975) further suggest that, even if
the domain of ‘abstract concepts’ is not homogeneous, there must be some common features

that link its variegated members.

In recent years many neuroimaging and meta-analyses have investigated the differing
neural correlates involved in abstract and concrete concepts (for a recent quantitative meta-
analysis see Wang et al., 2010). On one hand this concern is due to a genuine interest in the
specific topic, on the other hand this interest is strongly related to the theoretical implications
of this issue for embodied and grounded theories of cognition (for a review on different kinds
of embodied views, see Goldman & De Vignemont, 2009). Embodied theories vary in their
details, but most of them maintain that all concepts and words activate a simulation
mechanism that recruits the same action, perception and emotional networks activated during

actual experience with their referents (e.g. Barsalou, 1999; 2003; Glenberg & Robertson,
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2000; Zwaan, 2004). Notice that different versions of the notion of simulation have been
proposed (for reviews, see Borghi, in press; Decety & Grezes, 2006). The term “simulation”
as we intend it here involves two aspects: it implies the re-enactment of past experiences
(Barsalou, 1999) and it is predictive. It refers to a process that is embodied, unconscious, not
deliberate, and it is aimed at action preparation (Gallese, 2009). In contrast with other views
(e.g., Decety & Ingvar, 1990) simulating does not imply a deliberate reactivation of previously
performed actions, and it does not consist in a posteriori forms of motor imagery. While
empirical evidence on simulation is compelling with respect to concrete concepts and words,
the challenge these theories face with is to clarify whether abstract concepts and words are
also represented via embodied simulations. Mental metaphors could represent a potential
solution, as they import the image-schemas derived from the source domain of sensorimotor
experience (Lakoff, 1987; Gibbs & Steen, 1999). Compelling evidence has been collected in
favor of this approach (e.g., Casasanto, 2009), but it is hard to foresee how it can be

generalized to all varieties of abstract words.

Recently, some scholars have addressed the issue by getting to the root of the problem:
embodied accounts of language have focused largely on language grounded in bodily
experiences but have neglected that language also plays a role in shaping our experience
(Borghi & Cimatti, 2009; 2012; Borghi & Pecher, 2011). In their proposal (Words as Tools,
WAT) Borghi and Cimatti (2009; 2012), similarly to other authors (Dove, 2009, 2010;
Louwerse & Jeauniaux, 2009; Barsalou et al., 2008; Simmons et al., 2008), try to integrate
linguistic and modal approaches. The unique quality of the WAT proposal maintains that the

linguistic system does not simply involve a form of superficial processing and that words
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cannot be conceived of as mere signals of something. Words are also tools that allow us to
operate in the world (Clark, 2007; Mirolli & Parisi, 2011; Tylén et al., 2010). The WAT
proposal has direct implications for the explanation of abstract word meanings. Indeed, Borghi
and Cimatti (2009; 2012) proposed that, probably due to their different acquisition
mechanisms, abstract word meanings rely on the social experience of language. With concrete
words, such as “phone”, the word’s referent can be indicated and tagged using linguistic
labels. With abstract words, instead, there is not a specific referent to be indicated. In this case,
the word, such as “freedom”, plays a major role, as it helps assemble a set of diverse
sensorimotor experiences (e.g., we put together different experiences of freedom once we have
learned the word “freedom”). In support of this proposal, Borghi et al. (2011) have shown that
the acquisition modality of novel concrete and abstract words (manipulation of their referents
vs. simply visualization of scenes with interacting objects) has an impact on their
representation: in a verification task participants responded faster to abstract words when
using the microphone, and to concrete words when using the keyboard. The results indicate
that concrete words evoke more manual information, whereas abstract words evoke more
linguistic information; importantly, the advantage of the microphone with abstract words was
more pronounced when the meaning of the word was linguistically explained, and it was not
present when the linguistic information contrasted the perceptual information. These results
clearly show the similarities but also the differences between embodied accounts (Barsalou et
al., 2008; Borghi & Cimatti, 2009; 2012; Simmons et al., 2008; for recent brain imaging
evidence consistent with this view see Rodriguez-Ferreiro, et al., 2010) and Paivio’s dual
coding theory (e.g, Paivio, 1986; Binder et al., 2005; Desai et al., 2010). Both accounts share

the idea that multiple types of representation underlie knowledge, but embodied proposals
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differ from Paivio’s view as they hypothesize that not only concrete, but also abstract words

are grounded in perception and action.

The aim of the present study is to test the WAT proposal (Borghi & Cimatti, 2009; 2010;
2012) through scrutinizing the possible modulation of the left primary motor cortex (M1)
activity during abstract and concrete sentence processing. We used an innovative paradigm
recently developed by Scorolli et al. (2011), in which the same Concrete Verb (CV) was
combined with a Concrete Noun (CN) and with an Abstract Noun (AN), the same Abstract
Verb (AV) was combined with the nouns previously used. One of the advantages of this
design is the possibility to study abstractness along a continuum - that is, to study
combinations in which abstract and concrete verbs and nouns are put together. This paradigm
was adapted to the use of single-pulse transcranial magnetic stimulation (TMS) technique,
with the aim to explore the modulation of M1 activity during the processing of action-related
and non-action-related verbs, combined with nouns of graspable and non-graspable objects.

Resting on the predictions of the WAT proposal, we hypothesized that the processing of
language is different within the motor cortex for concrete and abstract language content. On
the basis of the assumption that the mode and age of acquisition of concrete and abstract
words differ, we expected to also find clues for different roots of processing. Specifically, our
predictions are:

I. Given that according to embodied theories both concrete and abstract words are
grounded in the motor system, we predict that concrete and abstract words differentially
recruit neurons of the hand areas in M1 (detectable on the modulation of motor evoked

potentials, MEPs, analyses).
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I. If concrete words, and concrete verbs in particular, evoke motor information more
directly than abstract words, we predict:

Ila. an earlier activation of hand representation areas in concrete verb processing over
abstract verb processing, detectable on MEPs collected after a pulse delivered on the first
word, and a later modulation due to abstract verb processing, detectable on MEPs collected
after a pulse delivered on the second word;

Ilb. faster sentence processing when the pulse is delivered on concrete verbs than on
abstract verbs (detectable on response times, RTs, analyses).

These effects should be present only when the sentences are sensible, otherwise no
simulation should occur, or the simulation should be interrupted when the first word (verb) has

to be combined with the second one (the noun).

2. RESULTS

Our dependent variables were reaction times (RTs) and motor evoked potentials (MEPS).
It is worth noting that, due to the fact that we used sentences instead of single words and that
for each sentence we stimulated either the verb or the noun, results from these two
measurements cannot be completely matched. To clarify: I. MEPs recorded after the
stimulation on the first word (verb) provide information concerning the first part of sentence
processing (the processing of a verb that has later to be integrated with a specific noun); I1I.

MEPs recorded after stimulation on the second word (noun) provide us with information on
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the integration between the verb and the noun (whole sentence processing) ; Ill. RTs provide

information on the whole sentence processing.

3.1 Analyses on MEPs

One participant was eliminated from analyses as, due to reported high levels of anxiety,
we stopped the experimental session before finishing the overall experiment. As predicted in
the Sham condition we did not record any MEPs, so we will not further discuss the non-active
condition. Peak-to-peak amplitude (mV) of each MEP was computed by an automatic Excel
script prior to normalization by means of a logarithmic transformation [logl0 (mean MEPs
amplitude value)]. MEP amplitudes inferior to 0.05 mV were excluded from analyses. One
participant was excluded from further analyses due to the high percentage of unrecorded
MEPs (25.45 %). We eliminated MEPs for which participants gave an incorrect response on
the sentence sensibility task.

Normalized MEPs recorded after TMS stimulation on the first word (verb) were
submitted to a t-test, with Verb (Concrete vs. Abstract) working as the within participant
variable. MEPs peak-to-peak amplitudes recorded from the right FDI muscle during TMS
delivery did not differ in the case of Concrete Verbs or Abstract Verbs (p = 0.19).

Normalized MEPs recorded from the right FDI muscle after the stimulation on the second
word (noun) provided information on the verb and noun integration. This allowed for a 2
(\Verb: Concrete vs. Abstract) X 2 (Noun: Concrete vs. Abstract) ANOVA, with all variables
manipulated within participants. We eliminated MEPs for which participants gave an incorrect
response on the sentence sensibility task. We found a significant main effect of the Verb, F (1,

13) = 13.21, MSe = 0.002, p <.005: in case of active pulse, peak-to-peak MEPs amplitude was
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greater for sentences containing Abstract Verbs (M = 2.71) than for sentences containing
Concrete Verbs (M = 2.67, see Fig. 1).

The last result obtained when the pulse was delivered on 2™ word (the noun) shows that
the primary motor cortex activity is specifically modulated by the processing of Abstract
Verbs. Overall, this result gives an additional hint as to the recruitment of the motor system
during Abstract Verbs processing.. To understand if this recruitment occurs later or lasts
longer than with Concrete Verbs, we contrasted the kind of verb and the timings of TMS
delivery. As we found no effect of the kind of noun, we were entitled to perform a 2
(Stimulated Word: 1% word vs. 2" word) X 2 (Verb: Concrete vs. Abstract) ANOVA. We
found a significant interaction between the Pulse and the Verb, F (1, 27) = 13.78, MSe =
0.001, p <.001: abstract verbs obtained greater peak-to-peak MEPs amplitude when the pulse
was delivered 650 ms (400+250), M = 2.71, rather than 250 ms, M = 2.67, after the verb
presentation, post hoc LSD: p < .005. Symmetrically we found that concrete verbs obtained
greater peak-to-peak MEPs amplitude for the first timing of TMS delivery, M = 2.69, than for
the second one (650 ms), M = 2.67, post hoc LSD: p = .055. Interestingly the activation of the
motor system for concrete verb after a precocious pulse did not differ from the one obtained

for abstract verb after a delayed pulse (M =2.69 vs. M = 2.71, p = .07).
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Figure 1. Normalized MEPs recorded after the TMS stimulation on the 2" word. Peak-to-
peak MEPs amplitude was greater for sentences containing Abstract Verbs than for sentences
containing Concrete Verbs.

2.2 Analyses on MEPs after a pulse on 2" word for both sensible and non-sensible
sentences

As we found no effect of the kind of noun (abstract vs. concrete), in order to disambiguate
the role of the kind of pulse (precocious, 250 ms, vs. delayed, 650 ms) and the kind of
subsequent noun (determining a sensible vs. non-sensible combination) on the verb, in a
further analysis we considered also the MEPs recorded from the FDI during non-sensible
sentence processing (see Kocha et al., 2010). Normalized MEPs (after a pulse on 2™ word)
were submitted to a 2 (Sentence: Sensible vs. Non-sensible) X 2 (Verb: Concrete vs. Abstract)
X 2 (Noun: Concrete vs. Abstract) ANOVA. We conducted the analysis with participants as a
random factor. We found a significant interaction between the Sentence and the Verb, F (1,
13) = 27.47, MSe = 0.001, p < .001: sensible sentences containing abstract verbs obtained
greater peak-to-peak MEPs amplitude, M = 2.71, than sensible sentences containing concrete

verbs, M = 2.67, post hoc LSD: p < .0005, see Fig. 2. Crucially, in the case of meaningless
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context we found an opposite pattern, that is greater peak-to-peak MEPs amplitude with Non-
sensible Sentences containing Concrete (M = 2.69) rather than Abstract Verbs (M = 2.67, post
hoc LSD: p < .05). Finally we found a three way interaction between the Sentence, the Verb
and the Noun, F (1, 13) = 11.24, MSe = 0.001, p < .005: sensible sentences containing abstract
verbs followed by abstract nouns obtained greater MEPs, M = 2.73, than sensible sentences
formed by an abstract verbs plus a concrete noun, M = 2.69, post hoc LSD: p <.05; we did not
find an analogous modulation for non-sensible sentences (p = .44).

MEPs pulse 2nd word: SENTENCE X VERB
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[logiQ] I CONCRETE VERB
255
25
245

SENSIBLE SENTENCES NON-SENSIBLE SENTENCES

Figure 2. The interaction between the kind of Sentence and the Verb: Sensible sentences
containing Abstract Verbs obtained greater MEPs amplitudes than Sensible sentences
containing Concrete Verbs. We found an opposite pattern for Non-sensible sentences.

2.3 Analyses on accuracy and RTs
One participant was excluded from behavioral analyses due to the high percentage of

unrecorded data (35.6%) because of difficulties with the response device. Percentages of
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errors were submitted to a 2 (Pulse: Active vs. Sham) X 2 (Verb: Concrete vs. Abstract) X 2
(Noun: Concrete vs. Abstract) X 2 (Stimulated Word: 1% word vs. 2" word) ANOVA; we
manipulated all variables within participants. Results showed a main effect of the Verb:
participants made more errors with sentences containing Abstract Verbs (M = 0.59%)
compared to sentences containing Concrete Verbs (M = 0.37%), F (1, 12) = 18.97, MSe =
0.141, p < .001. Analyses also showed a significant interaction between the Verb and the
Noun, F (1, 12) = 19.71, MSe = 0.286, p < .001, basically due to the high number of errors in
Abstract Verbs followed by Concrete Nouns (M = 0.81%) condition, that significantly differed
from Abstract Verbs followed by Abstract Nouns (M = 0.38%, post hoc LSD: p < .001 ),
Concrete Verbs followed by Concrete Nouns (M = 0.26%, post hoc LSD: p < .001 ) and
Concrete Verbs followed by Abstract Nouns (M = 0.48%, post hoc LSD: p < .01 ) conditions.
Finally we found an interaction between the Pulse, the Stimulated Word and the Verb, F (1,
12) = 7.44, MSe = 0.060, p < .05: in the Active Pulse condition with Sentences containing
Abstract Verbs participants made more errors (M = 0.78%) when the pulse was delivered on
the second word than on the first one (M = 0.56%, post hoc LSD: p < .01; the effect was not
replicated for the control-sham condition, p =.12); we found no effect of the Stimulated Word
Sentences containing Concrete Verbs (post hoc LSD: p = .28; control-sham condition, p =
58).

Before performing analyses on response times all incorrect responses were eliminated
(3.57 %). Response times (ms) were submitted to a 2 (Pulse: Active vs. Sham) X 2 (Verb:
Concrete vs. Abstract) X 2 (Noun: Concrete vs. Abstract) X 2 (kind of Stimulated Word: 1%
word vs. 2" word) ANOVA, with all variables within participants. Results showed a main

effect of the kind of Noun, F (1, 12) = 5.05, MSe = 3966.197, p < .05: sentences containing
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Abstract Nouns (M = 556.32 ms) were processed faster than sentences containing Concrete
Nouns (M = 575.94 ms). This result appears to be due to the very slow response times
obtained with Abstract Verbs plus Concrete Nouns combinations. Indeed, due to our particular
paradigm, we collapsed verb and noun RTs focusing on sentences. As a result Concrete Noun
processing turned out to be slower than Abstract Noun processing because the timing reflected
not only the process of noun comprehension, but also the process of previous verb
comprehension, as well as a possible delay caused by the switching cost. We will not discuss

this result as it is partially explained by the interaction between Verbs and Nouns: analyses

showed a significant interaction between the Verb and the Noun, F (1, 12) = 36.86, MSe

1740.424, p < .0001, as participants were faster with congruent combinations (AA: M

546.29 ms; CC: M = 550.84 ms) than with the mixed ones (AC: M = 601.04 ms; CA: M

566.34 ms, post hoc LSD: p < .05). The advantage of congruent over mixed combinations
replicates results found by Scorolli et al (2011) in a behavioral task employing the same
paradigm. Additionally, post hoc LSD showed that participants employed the slowest response
times with Abstract Verbs combined with Concrete Nouns: the modality switching (from
concrete to abstract, or vice-versa) determines a delay; this delay is larger in case of sentences
containing Abstract rather than Concrete Verbs. Most crucially we also found a three way
interaction between the Pulse, the Stimulated Word and the Verb, F (1, 12) = 4.77, MSe =
3012.27, p < .05: when the pulse was delivered on the 1% word (verb), sentences containing
Concrete Verbs (M = 538.55 ms) were processed faster than sentences containing Abstract
Verbs (M = 576.11 ms, post hoc LSD: p < .05); in the control-sham condition we found no
effect of the Verb (p = .64). The time latencies for sentences containing concrete verbs (M =

561.46 ms) and sentences containing abstract verbs (M = 565.65 ms) did not differ when the
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pulse was delivered on the 2" word (noun, p = .10); not effect of the kind verb was found for
the sham condition (p = .16). This result clearly argues in favor of a greater activation of the
motor system during Concrete Verbs processing in case of TMS pulse.

To better understand our results we performed two further separated analyses focusing on
the Sham Condition and on the Active pulse condition: for both the analyses, response times
(ms) were submitted to a 2 (Verb: Concrete vs. Abstract) X 2 (Noun: Concrete vs. Abstract) X
2 (Stimulated Word: 1st word vs. 2nd word) ANOVA, with all variables manipulated within
participants. In the Sham Condition analysis we found only a significant interaction between
the Verb and the Noun, F (1, 12) = 15.28, MSe = 2476.217, p < .005: participants were faster
with congruent combinations (AA: M = 551.06 ms; CC: M = 554.52 ms) than with the mixed
ones (AC: M = 601.85 ms; CA: M = 579.93 ms). The interaction between the Verb and the
Noun was significant also in the separated analysis on Active Stimulation Condition, F (1, 12)
= 6.50, MSe = 4121.074, p < .05: participants were faster with congruent combinations (AA:
M =541.52 ms; CC: M =547.26 ms) than with the mixed ones (AC: M = 600.24 ms; CA: M
= 552.75 ms). Most crucially in this analysis we also found a significant interaction between
the Verb and the kind of Stimulated Word, F (1, 12) = 4.90, MSe = 1477.771, p < .05:
sentences containing Concrete Verbs were processed faster when the pulse was delivered on
the 1% word (verb, M = 538.55 ms) than on the 2" (noun, M = 561.46 ms, post hoc LSD: p <
.05, see Fig. 3); conversely with sentences containing Abstract Verbs we found no effect of the

Stimulated Word (p = .35).
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Figure 3. The interaction between the Verb and the kind of Stimulated Word: sentences
containing Concrete Verbs were processed faster when the pulse was delivered on the 1st
word than on the 2nd; with sentences containing abstract verbs no effect was found.

3. DISCUSSION

An important challenge of embodied theories is to explain the comprehension of abstract
sentences. We performed a transcranial magnetic stimulation (TMS) study to explore the role
of the left primary motor cortex during the processing of action-related and non-action-related
verbs with nouns of graspable and non-graspable objects. Participants performed a sentence
sensibility task. Single TMS pulses were delivered 250 ms after verbs vs. nouns presentation.

The first important result, supporting embodied theories, is that both concrete and abstract
words modulate the activity of the motor system, as indicated by analyses on MEPs and
suggested by results on RTs, even though this modulation involves different temporal
windows. In addition, as predicted, our results suggest that concrete words activate the hand-

related motor system in a more direct and straightforward way, while abstract words activate it
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in a different fashion. Both results are in line with a subset of embodied and grounded theories
on abstract concepts and words processing. Indeed, they do not support embodied theories
according to which concrete and abstract words do not differ in processing and representation.
Rather, they support multiple representation views, and particularly the WAT proposal. We
will now discuss the results that led us to this conclusion.

1. Precocious simulation with concrete verbs. In a previous study Pulvermiller et al.
(2005) found a specific and precocious (150 ms) facilitatory effect of TMS subthreshold
stimulation of the motor cortex on the action words processing. In their study, participants
were presented with single words referring to leg (e.g., to kick) or hand-arm actions (e.g., to
pick) and were asked to perform a lexical decision task. Leg words recognition was faster
when TMS targeted the leg area than when TMS was delivered over upper limb
representation; symmetrical results were obtained for hand-arm verbs. The results showed that
the activation of motor and premotor areas modulates the processing of specific kinds of
words, semantically related to the arm or the leg. Our study extends their results showing the
temporal evolution of the language and action systems linkage in case of whole sentence
processing (for a study on single verb processing using different temporal windows see Papeo
et al., 2009; see also Liuzza et al 2011 for a study on positive and negative abstract and
concrete sentences), using a language comprehension task (for a recent study on the functional
anatomy of the language comprehension network see Turken et al., 2011). Analyses of MEPs
after the pulse only on the first word do not allow us to draw any conclusion on Concrete
Verbs processing. However the separate analysis we performed to contrast the kind of verb
and the timings of TMS delivery showed that abstract verbs elicited greater peak-to-peak

MEPs amplitude with a delayed pulse (650 ms) than with a precocious one (250 ms); crucially
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concrete verbs presented an opposite pattern (sse also Candidi, Leone-Fernandez, Barber,
Carreira and Aglioti, 2010).

Moreover our data on non-sensible sentences (pulse on the second word) are very
informative. Indeed, we found that in case of meaningless context, that is when the whole
sentence processing is broken as it is impossible to integrate the noun with the previous verb,
motor activation is stronger for verbs referring to physical actions performed with the hand
(greater peak-to-peak amplitudes with concrete than abstract verbs). It seems that when
participants have to evaluate the sensibility of a sentence, as in the present task, they do not
process the single words sequentially; rather the meaning emerges from the combination of
words in sentences (see Pulvermiller, 2011), consistently with recent findings on single words
formed by different morphological components (Rueschemeyer, Brass and Friederici, 2007).
If the integration cannot be accomplished due to semantic constraints the comprehension
process stops at the verb level. Together with the results on MEPs for sensible sentences, these
results on both meaningless vs. meaningful sentences help us rule out a possible alternative
explanation, that motor activity may increase merely as a function of task difficulty (e.g.,
Davis and Johnsrude, 2003; Fridriksson, et al., 2008). Analysis on the sentence sensibility
judgment task (response latencies) showed consistent findings, as we found an advantage for
sentences containing concrete rather than abstract verbs only when the pulse was delivered on
the 1% word. Interestingly this effect seems to be very precocious, as the first pulse was
delivered just 250 ms after the word presentation.

2. Verb-noun integration: late simulation with abstract verbs. As we presented verb-noun
combinations, instead of single words, it is crucial to understand how the integration process

of verbs and nouns takes place.
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2a. Our results show that MEPs peak to peak amplitudes after a ‘delayed’ pulse (pulse on
the second word, the noun) were greater with sentences containing abstract verbs than
sentences containing concrete verbs. This result favors the hypothesis that abstract words
(verbs) also activate the motor system (specifically, in our study, the motor system related to
manual action; see Jirak et al, 2010), but this activation is delayed with abstract words than
with concrete words, as suggested by separate analysis contrasting the kind of verb and the
timings of TMS delivery, regardless of the noun (as it did not modulate the MEPS). The role of
the precocious or delayed pulse and the context is disambiguated by further analysis we
performed on both sensible and non-sensible sentences: crucially, this greater delayed
involvement of the motor system in the case of sentences containing abstract verbs disappears
with non sensible sentences (for which presumably the noun is not integrated with the verb).
This suggests that simulation related to the semantic meaning of the sentence only occurs
when the content makes sense and that this process leads to activation of the motor system.

We propose two possible explanations for this effect, relying on two different embodied
views: (a) the motor simulation is also evoked by sentences containing abstract verbs, but this
simulation occurs later than with sentences containing concrete verbs. This interpretation is
consistent with a recent embodied theory that, similarly to WAT, proposes that multiple kinds
of representation underlie knowledge, the Language and Situated Simulation Theory, LASS
(Barsalou et al., 2008). According to LASS linguistic forms and situated simulations interact
continuously, but while the linguistic system is mainly involved during precocious superficial
linguistic processing, a deeper conceptual processing would be necessary for the operation of
the simulation system (e.g., sensorimotor system activation; for consistent results, see also

Louwerse & Connell, 2011). This proposal can account for the delayed activation of sentences
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containing abstract as opposed to concrete verbs, but LASS would predict a modulation of
MEPs by the kind of noun. We found greater activation of the motor system for abstract verbs
than concrete ones in MEPs after a pulse on the noun (400+250 ms). From 250 ms after the
noun onset participants should have already processed the noun (Pulvermdller et al., 2005); so
LASS would predict greater MEPs for graspable than for non-graspable objects combined
with abstract verbs. Instead, we did not find any modulation of the noun; moreover, in the
analyses of both sensible and non-sensible sentence we found an opposite pattern.

The second possible explanation (b) of this result supports the WAT proposal (Borghi and
Cimatti, 2009; 2012). Due to their acquisition modality, concrete words evoke more manual
information, while abstract words elicit more verbal information (Borghi et al., 2011). We can
account for these results through arguing that concrete verbs activate precociously motor areas
related to the hand, while abstract verbs activate precociously motor areas related to the
mouth, as data on acquisition modality suggest (Borghi et al., 2011). The early activation of
motor areas related to the mouth would have a delayed effect on motor areas related to the
hand, due to their topological contiguity. The reason why MEPs modulation should be similar
for both a direct effect (hand) and an indirect effect (mouth) might not seem straightforward.
However, one could speculate that, in the temporal window of 250 ms, we might detect the
hand related curve in its decreasing phase, while in the temporal window of 650 ms we might
detect the curve describing the effect of the mouth on the hand areas during its increasing
phase. On this basis, the signal that we detect at 650 ms could be a compound of mouth
induced activation (abstract verbs) plus the activation determined by noun processing, that -
resting in our measures - we cannot estimate, but that is reasonably different from zero (null

activation). This interpretation is consistent with a study on visual, motor and abstract words
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by Kellenbach et al (2002): measuring event related potentials (ERPS). They found greater
anterior positivity (lateral sites) activation with abstract words than with motor words starting
from 300 ms; the effect lasted until 500 ms (centro-anterior sites). Later the effect became left
lateralized (550-750 ms). Further results in line with our perspective have been found by Desai
et al. (2010) with fMRI. Participants were presented with sentences of the form
“I/You/We/They <verb > the <noun >’ (e.g., “I throw the ball”) and had to evaluate their
sensibility by pressing a key; they had to respond only to non sensible sentences. The
sentences included either a motor (e.g., “grasp”), visual (e.g., “read”) or an abstract verb (e.g.,
“explain”, “allow”) combined with concrete and abstract nouns (e.g., “ball” vs. “method”).
The results showed that abstract sentences, differently from motor and visual ones, strongly
activated the superior/anterior temporal and inferior frontal areas. In line with WAT, this study
on sentence processing suggests that the meaning of abstract words may be represented
primarily through verbal associations with other words. The difference between Paivio’s view
and embodied multiple representation views such as WAT is that, according to the last, both
sensorimotor and linguistic information are crucial for both concrete and abstract words, even
if the distribution of the two information sources is different. In our study the analysis on
MEPs when the pulse was delivered on the second word indicates that also abstract verbs
activated the manual motor system, even if it is unclear from the present study whether this
activation of the manual system is the cascade effect of the involvement of the mouth areas
(see below).

2b. Beyond the analysis on MEPs, the second main result on verb-noun integration is
from reaction times analyses. We found an interaction between the Verb and the kind of pulse:

sentences containing concrete verbs were processed faster than sentences containing abstract
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verbs when the TMS pulse was delivered on the presentation of the verb. We did not find any
difference when the pulse was delivered on the noun. Consistently with our interpretation of
MEPs, reaction times were faster when the hand related motor areas were directly involved
(concrete verbs). The supposed indirect activation of hand areas by abstract verbs affected the
MEPs but it did not last long enough, and probably was not strong enough, to affect response
times. Finally, the interaction between the Verb and the kind of Noun is consistent with a
recent cross-linguistic study (Scorolli et al., 2011) in which we found the same advantage a.
for compatible combinations, and, b. within the mixed combination, when the concrete word
preceded the abstract word, regardless of its grammatical class (see Paivio, 1965).

Overall our results seem to indicate that while sentences containing concrete verbs imply
a direct precocious activation of the hand related motor system, the activation of the same
system is delayed in the case of sentences containing abstract verbs. The processing of abstract
verbs could precociously engage mouth related motor areas, that later affect the contiguous
areas (hand areas).

However, the present evidence does not allow for disambiguation between two alternative
explanations: (1) abstract words have a weaker grounding in the sensorimotor system; (2)
abstract words are processed in an alternative route, maybe in the premotor cortex, with
involvement from mouth related motor areas. Integrating these results with those recently
obtained in a study on novel words acquisition (Borghi et al., 2011) we lean towards the
second hypothesis.

As hypothesized by the WAT proposal, mouth areas could be crucial for abstract word
processing. In thinking about the acquisition of a concrete word, such as “pencil”: the

acquisition simply requires a person to use the label while indicating the right referent. The
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acquisition of a concept-word like “democracy”, instead, implies the presence of somebody
explaining the word meaning, using language. This experience is still a bodily experience but
the contribution of the social dimension is more relevant to acquisition. In addition, in this
experience language is not only the counter part of an external referent but is a tool that allows
us to acquire more complex meanings, a powerful means of collecting a variety of bodily and

situational experiences.

4. EXPERIMENTAL METHOD

4.1 Participants

16 students (7 men and 9 women; mean age = 27.44 years; s.d. = 1.93) attending the
University of Bologna took part in the study. All were native Italian speakers, right-handed
and all had normal or corrected-to-normal vision. Before starting the experimental session, the
experimenters assessed their general health status with a brief interview: none of them were
reported evidence for neither neurological or psychiatric diseases, nor contraindications
related to single-pulse TMS procedure. Then participants were provided with a detailed
explanation about the procedure, contraindications and risks of the experiment (Wessermann,
1998). To begin the experiment participants had to confirm their voluntary participation by
written consent. The study was approved by the local ethics committee (Department of
Psychology, University of Bologna). All participants received compensation for their

participation.
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4.2 Transcranial Magnetic Stimulation and EMG recording

As an index of corticospinal excitability, we recorded motor-evoked potential (MEPS).
MEPs induced by TMS were recorded from the right first dorsal interosseus muscle (FDI, in
the region of the index finger) by means of a Biopac Student Lab MP36 electromyograph
(Biopac Systems, Inc, U.S.A.). EMG signals were band-pass filtered (20 Hz-2.5 kHz,
sampling rate fixed at 10 kHz), digitized and stored on a computer for off-line analysis. Pairs
of silver/silver chloride surface electrodes were placed over the muscle belly (active electrode)
and over the associated joint or tendon of the muscle (reference electrode). A circular ground
electrode with a diameter of 30 mm was placed on the internal bone of the right elbow. Single-
pulse TMS was applied to the left M1, using a Magstim Rapid 2 stimulator (Magstim,
Whitland, Dyfed, U.K.) connected to a figure-of-eight coil (70 mm in diameter). The coil was
moved over the left hemisphere to determine the optimal position from which maximal
amplitude MEPs were elicited in the FDI muscle. The optimal scalp position for the induction
of MEPs with the maximum amplitude in the right FDI muscle was individuated for each
participant. The coil rested tangential to the scalp with the handle pointing backwards and
laterally at a 45° angle away from the midline. The target site was marked with a drawing pen
on a cap applied on participants’ head, and the coil was maintained in position by the
experimenters. The intensity of magnetic pulses was set at 120% of the resting motor
threshold (rMT), which is the minimum intensity of output required to produce MEPs with
amplitude of at least 50 uV in the FDI muscle with 50% of probability (Rossini et al., 1994).
The absence of voluntary contraction was continuously verified visually and, prior to the

recording session, through auditory monitoring of the EMG signal.
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4.3 Linguistic materials

Stimulus materials consisted of word pairs composed of a transitive verb and a concept
noun. We used 28 quadruplets, thus 112 sensible sentences. Each quadruplet was constructed
by pairing a concrete verb (e.g. to grasp) with a concrete noun (e.g. a flower) or an abstract
noun (e.g. a concept); and by pairing an abstract verb (e.g. to describe) with the previously
used concrete and abstract noun. We defined Concrete Nouns as nouns referring to graspable
objects and Concrete Verbs as verbs referring to physical actions (Taylor, 1977; Vendler,
1957) performed with the hand. We defined Abstract Nouns as nouns that do not refer to
graspable objects and Abstract Verbs as verbs expressing mental processes, with no reference
to a physical object (Taylor, 1977; Vendler, 1957). To select the 28 critical quadruples from
48 ones, we asked twenty Italian students to judge the familiarity of each sentence and with
what degree of probability they would use each sentence. We then selected the quadruples
with highest scores in both ratings and with lowest scores in the standard deviations (for a
detailed description of the materials’ selection see Scorolli et al., 2011).

In order to further test if the selected pairs differed in written frequency of use we utilized
the research engine “Google”: we checked the number of occurrences of each verb-noun pair,
by using quotations marks (Page et al., 1998; Griffiths et al., 2007; Sha, 2010). The obtained
frequencies were submitted to a 2 (Noun: Concrete vs. Abstract) X 2 (Verb: Concrete vs.
Abstract) ANOVA. Crucially, we did not find any significant effect (all ps > .41). The
establishment of control on written frequency allowed us to exclude that processing
differences rest on different degrees of association between the words pairs used in the
quadruples. Finally we selected 112 non-sensible sentences, that is sentences in which the

actions described by the abstract (e.g. to suspect) or concrete (e.g. to eat) verbs were not
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suitable for the abstract (e.g. the freedom) or concrete (e.g. a pen) nouns that followed the verb
(non-sensible sentences). Due to the particular kind of paradigm it was impossible to balance
sentences for word length and number of syllables. However, this should not represent a

problem, given that our main hypotheses pertain to the interactions.

4.4 Procedure

The experiment was programmed using the EPrime (Psychology Software Tools, Inc,
U.S.A) software to control sequence and duration of the presentation of the linguistic material,
and to trigger TMS and EMG recording. Participants were asked to perform a sentence
sensibility task: they were required to judge if sentences made sense or not. Participants
focused on a fixation cross; after 1000 ms a verb appeared on the screen; after 500 ms the verb
was substituted by a noun. The cut-off was set at 2500 ms from the noun onset. On conclusion
of this cycle there was a pause; then the next trial began. Each trial lasted 8000 ms from start
to finish, i.e. long enough to prevent interaction between consecutive TMS-pulses (Robertson
et al., 2003). Participants were instructed to use the left foot — homolateral side with respect to
TMS stimulation site — to respond. They were randomly assigned to one of two groups.
Participants in the first group were asked to respond “yes” (= the combination makes sense)
pressing the right pedal and “no” (= the combination doesn’t make sense) pressing the left
pedal; participants in the other group were assigned the opposite mapping. Participants were
instructed to keep their right arm/hand and head motionless and muscle relaxation was
monitored throughout the entire experiment to check for involuntary movements.

Response times and errors were recorded using EPrime; the timer started from the noun

presentation. The experiment consisted of four blocks of 112 items each (56 sensible sentences
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and 56 non-sensible sentences). For each block participants were alternatively delivered a
TMS (2 blocks) or a sham (2 blocks) stimulation, randomly delivered 250 ms after the onset of
the first word (verb) or of the second word (noun). The choice of the temporal window was
motivated by electrophysiological evidence showing that starting from 250 ms motor words
elicited greater negativity than both visual and abstract words (Kellenbach, Wijers, Hovius,
Mulder, & Mulder, 2002). The order of the two stimulation conditions was counterbalanced
across subjects. To mimic the TMS conditions (Robertson et al.,, 2003), in the sham
stimulation conditions the same intensity of magnetic pulse was used, but a cylinder made of
insulating material was located between the coil and the scalp surface. Each sentence was
presented twice, so we collected 14 observations for each experimental condition. 224 motor
evoked potentials (MEPS) were obtained from each participant, one magnetic stimulus being
applied for each item (the pulses delivered during the two sham-blocks did not elicit MEPS).
The four kinds of sentences were presented in random order within each block, with a short
pause after 28 items.

At the end of the experiment participants were debriefed. Since none of them was
previously exposed to TMS, they reported that they had attributed the differences in the
peripheral effects intensity in the sham and TMS conditions to different pressures applied on

the scalp by the two experimenters.
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Figure 4. The figure shows the experimental paradigm. The coil was moved over the left
hemisphere to determine the FDI representation in the primary motor cortex.
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INVESTIGATING THE NEURAL DYNAMICS OF HUMAN SOCIAL CONFORMITY
SCIENTIFIC PROJECT

Prior expectations refer to the set of information on which individuals rely to make decisions
in noisy or uncertain situations. These expectations are derived from prior knowledge that may
originate from the past experience of the person (through expertise or learning of statistical
regularities), from her intuitive theories, as well as from contextual information surrounding
an action scene [1]. During my PhD, | participated in a series of studies that investigated how
different types of prior information (i.e. biomechanical versus probabilistic priors) alter the
perception and the prediction of goal-directed actions [2,3]. In a theoretical paper, | proposed
that biomechanical priors (a class of priors based on a sensori-motor estimation of action
costs)reduce the space of behavioral alternatives one may perform in a given situation and
thereby directly influence the social learning of new skills and favor the emergence of stable
behavioral traditions in a population [4]. Furthermore, using the technique of evolutionary
individual-based modeling, we demonstrated that stable behavioral patterns can emerge at the
population level via both high-fidelity and low-fidelity social learning mechanisms, as long as
the latter are coupled with a highly constrained behavioral repertoire (e.g., constrained by
biomechanical priors) [5]. The two-year project presented here naturally follows from these
previous studies and extends on them by proposing to investigate another form of priors,
namely expectations generated by social environments.

Two kinds of social conformity

Changing one’s behavior to adopt the behavior exhibited by a majority of peers is a form of
social influence that has been termed social conformity [6,7]. The modification of an
individual’s judgment under the pressure of a group was first demonstrated by Asch in a series
of seminal experiments [8,9]. In these experiments participants were asked to estimate and
make judgments about the relative lengths of line segments. Although these tasks were
perceptually simple, participants frequently gave the wrong answers when a group of peers
was also giving the wrong answer. Following Asch’s work, social psychologists agreed on a
dual explanation of conformity split into informational conformity and normative conformity
[10,11]. It has been proposed that the influence of these two types of conformity differs
according to the number of sources in the influence group and the amount of uncertainty
during decision-making [12,13].

Informational conformity helps an individual to pick up nonsocial information from
behaviors displayed by other group members, and is guided by the need to maximize
performance (e.g., being accurate in discriminating sensory stimuli). Informational conformity
is particularly salient in private contexts — i.e., when the individual’s decisions are unseen by
the group. In such contexts, the probability of an individual showing conformity is positively
correlated with the amount of subjective uncertainty; the more uncertain a subject is the more
likely she/he is to pick up information from the group in order to reduce the level of
uncertainty. Furthermore, the effect of group size on the probability of conforming decreases
with increasing group size: a minimum number of influence sources is assumed to be
sufficient to reduce the individual’s uncertainty [12,13].
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In contrast, normative conformity occurs when an individual picks up social information
from the behavior displayed by other group members. Normative conformity biases are most
often expressed in public contexts — i.e., when the individual’s decisions are seen by the
group. Such biases occur when individuals adapt their behavior to the group’s expectations in
order to maximize their own social outcomes (e.g., maintaining social cohesion or avoiding
social exclusion). For this reason, the probability of conforming in a normative context
depends less on subjective uncertainty or the reliability of the information provided by the
group and more on social approval. Furthermore, the effect of the group size on the probability
of conforming increases as a function of the group size: increasing the number of people
giving feedback increases the weight of social information [12,13].

The neuroscience of social conformity

We intend to study whether informational and normative biases engage distinct cerebral
processes during the treatment of social information which, in turn, differentially influence
perceptual decisions.

The existing neuroscientific literature suggests that social information can be processed
similar to any other type of rewarding stimulus [14,15]. For example, it has been shown that
when the individual and group opinions conflict, the brain generates neural signals in the
anterior cingulate cortex (a region in the posterior medial frontal cortex) and the ventral
striatum that share common features with the prediction error signal carried by the
dopaminergic system and observed during reinforcement learning [16,17]. Detection of
conflicting social feedback appears to be processed by an individual as the detection of an
erroneous action outcome and the the magnitude of subsequent behavioral adjustments is
correlated with the magnitude of the ‘error signal’. Furthermore, the strength of this
‘prediction error’ signal is correlated with the amplitude of the conflict, and is predictive of the
individual’s propensity to change future decisions to conform to the group [18]. Together,
these results indicate that the encoding of social priors as a specific class of reward generates a
top-down signal in frontal regions that influences complex decisions. Moreover, the likelihood
of adjusting decisions to match those of the influence group is increased when the target
stimuli are initially judged as uncertain. This suggests that the influence of social priors may
be particularly strong when an individual has to make decisions in uncertain situations — i.e.,
when the available information does not sufficiently constrain the number of potential
alternatives.

Berns et al. (2005) [19] used neuroimaging to demonstrate that, in a simple mental
rotation task, when perceptual judgments conflicting with the group were followed by
conformity, a functional change occurred in an occipital-parietal network known to be
involved in mental rotation. This result suggests that — just as for other types of prior
information [20,21] — social information processed in frontal regions of the brain generates
prior expectations that bias low-level perceptual decisions operating in sensory cortices.

It is important to point out that all the above-mentioned studies differed in terms of the
social context or the amount of subjective uncertainty. For example, Berns et al. (2005) were
the only ones who simulated realistic individual-to-group interactions in which participants’
responses were fully visible to other group members. Thus, unlike the other studies, their task
context was appropriate for the emergence of a normative conformity bias (see above).

315



Whether or not this was crucial for the observed results is unclear, however, given that neither
the context nor the amount of subjective uncertainty was systematically varied.

Without systematically varying context and perceptual uncertainty two fundamental
questions in the social conformity realm will remain unanswered. First, how does the brain
process social information according to i) the informational (private) and normative (public)
context in which the decision is taken, ii) the number of sources in the influence group that
provide feedback, and iii) the perceptual uncertainty during decision-making? Second, do
these factors have a direct impact on brain mechanisms responsible for high-level and low-
level decision-making? The aim of the research proposed here is to address these questions.

EXPERIMENTAL OUTLINE
EEG EXPERIMENT

Obijectives. Using behavioral and neuroimaging methods, the aim of the present project
is to investigate whether, and how, expectations about information provided by a group
of peers influence the neural mechanisms of perceptual decision-making. We will use a
protocol in which the participants’ propensity to conform to group opinion (i.e., the weighting
of social priors) will be manipulated within an ecological context of social influence. In this
protocol, healthy adults are required to categorize facial expressions after having received
computer-generated feedback simulating the responses of three bogus influence sources (see
fig.1). The experiment will be composed of two separate tasks performed by a group of twenty
healthy volunteers. In the informational conformity task participants will receive social
feedback from three influence sources but will not directly confront these sources. This
‘private’ context should favor conformity to social feedback for informational motives. In the
normative conformity task participants will receive the same social feedback from the three
influence sources. In this task, however, they will direct confront the sources and will
simultaneously perform the task with them. This ‘public’ context should favor conformity to
social feedback for normative motives.

In each task we will vary i) the amount of perceptual uncertainty elicited by the target
stimuli (ambiguous versus unambiguous faces) as well as ii) the distribution of social feedback
(0, 1, 2 or 3 sources conflicting with the perceptual evidence elicited by the target stimulus).
While participants perform the task we will use EGG to measure four well-known event-
related potentials (ERPs). The feedback-related negativity (Ngg) reflects the prediction error
signal that occurs during the monitoring of erroneous action outcome and predicts behavioral
adjustment [22]. The feedback-related positivity (Prg) is modulated by negative feedback that
provides information relevant to the task goal [23]. The early posterior negativity (EPN) and
the late positive potentials (LPP) are involved in the perceptual processing of facial
expressions [24]. Neg and Pgg reflect modulations of neural signal in the medial frontal region,
and will be used to predict changes in decisional strategy. EPN and LPP assess modulations of
neural signal in sensory and associative cortices, and will be used to predict changes in
perceptual decision-making.

Hypotheses. We hypothesize that social information provided by a group can affect
perceptual decision making by changing neural activity in frontal areas and by exerting
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backward influences on sensory areas in which perceptual decisions are processed. We
expect this effect to be modulated by perceptual uncertainty, the distribution of social
feedback, as well as the informational and normative context of the task. More specifically, we
expect social information to be processed as a rewarding stimulus when the need for social
approval overtakes the need to maximize performance (hormative context), in particular when
feedback from the three sources reaches consensus and conflicts with perceptual evidence
provided by unambiguous faces. This could result in a change in high-level decisional
processes operating in medial frontal regions (evident as an increase in Ngg amplitude) without
any alteration in low-level perceptual decisional processes (shown by no modulation of EPN
or LPP). In contrast, we expect social information to be processed just like any other type of
information when perceptual uncertainty is high (ambiguous faces) and when maximizing
performance overtakes the need for social approval (informational context), and this,
independently of whether social feedback reaches consensus. This could result in a change in
high-level decisional processes (shown by an increase in Prg amplitude) as well as a change in
low-level decisional processes operating in sensory cortices (shown by a modulation of EPN
or LPP).

Participants. Participants will be tested at the ‘Laboratoire de Psychologie de la
Perception’ at the Paris Descartes University (Paris, France). The same twenty healthy
volunteers will perform both informational and normative conformity. All participants will
complete the self-monitoring scale of interpersonal influence [25], the Hare Psychopathy
Checklist-Revised [26], and the State-Trait Anxiety Inventory [27].

Methods. Informational and normative tasks will be separated by a minimum of two
weeks. Taking into account the constraints associated with EEG (long preparation time, the
influence of fatigue on EEG signals, etc.), we will run each task in two identical testing
sessions lasting approximately 45 min each and separated by 24 hours. In each 45 min session
we will present 350 computer-generated male faces extracted from the free database
developed by [28]. Subjects will be required to judge whether the face is friendly or
threatening.

General procedure. A typical trial consists of two presentations of the same face stimulus:
one before and one after the social feedback (see [18] for a similar procedure). A first screen
will present a single face stimulus for 1000ms during that the participant is required to
carefully observe (first presentation = observation phase). Then three pictures will appear at
the center of the screen representing the influence sources. In the next screen the participant
sees the decisions of the influence sources for the face presented on the first screen. After
1000ms the social feedback is followed by a black screen for between 200 and 800ms. The
next screen then presents the face stimulus that was previously observed and judged by the
influence sources (second presentation = decision phase) and participants will have 1000ms to
make their own decision by pressing one of two computer keys corresponding to ‘friendly’
(green key) and ‘threatening’ (red key). After their decision they will be required to indicate
their level of confidence on a 5 point scale by moving a cursor to the desired value. An
intertrial interval will then be presented for a variable duration of 1500 to 3000ms.

Manipulating the informational and normative context. For the informational conformity
task, participants will be informed that they will participate in the pilot rating of a new face
stimuli database. The experimenter will clearly explain to participants that their responses will
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remain strictly private and anonymous (private context, see fig.1a). Participants will be told
that, before answering, they will see a screen showing the decisions of three other participants
who have already performed the task. After seeing the group’s decision, the participants will
be required to give his/her own decision about the same stimulus.

The normative conformity task is identical to the informational conformity task, except
that we will simulate realistic on-line interactions between the participant and the three
influence sources (public context, see fig.1b). Prior to running the experiment, participants
will meet the three sources (members of the lab). The participant and the three confederates
will be informed that they will simultaneously perform the task, in different rooms, connected
by a computer network. We will inform the participant that the three confederates will make
their decisions after the first exposure to the stimulus, while she/he will make her/his decisions
after the second exposure. A webcam attached to the computer screen will capture the
participant’s and the three confederates behaviors, such that they can keep an eye on each
others all along the task. Finally, we will inform the participant that each of her/his perceptual
decisions will be communicated to the other members under the form of a colored pattern.
Participants will be naive to the real purpose of the tasks.
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Figure 1a,b,c. Figure 1a represents a typical trial in the informational conformity task. In the example, the face is ambiguous (-1 value) but 2
out of 3 influence sources perceived it as threatening (rectangle predominantly coloured in red). Because the participant’s initial percept is
uncertain, she/he is expected to conform to the group majority (social information is used to reduce perceptual uncertainty and maximize
performance) with a moderate to high level of confidence. Figure 1b represents a typical trial in the normative conformity task. Here, the face
is unambiguously threatening (+2 value) but 2 out of 3 influence sources perceived it as friendly (rectangle predominantly coloured in green).
Although the participant’s initial percept is unambiguous, she/he is expected to conform to the group majority, but with a low level of
confidence (social information overwhelms the perceptual evidence and is used to maximize social outcomes). In this task, the icons will
display pre-recorded video clips of the three sources as if they were performing the run. Figure 1c represents the baseline condition for both
tasks. Here, the feedback is not social as it does not give any information about the group’s decisions. For both tasks, ERP components will be
recorded during the third (Ngg and Peg) and the fifth screen (EPN and LPP).
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Manipulating perceptual uncertainty (see fig.2). The face stimuli will be distributed along
a continuum, from friendly to threatening. During the tasks, we will manipulate the level of
perceptual uncertainty by presenting unambiguous and ambiguous faces. Faces located at
extremes of the continuum are ‘unambiguous’ (-2; +2) and elicit low perceptual uncertainty,
faces located around the center are more ‘ambiguous’ (-1; +1) and elicit higher perceptual
uncertainty. Of note is that faces labelled as ‘ambiguous’ do not have unclear expressions (for
the pre-testing of face stimuli see [28]). Simply, their expressions are less salient. Thus,
perceptual uncertainty of ‘ambiguous’ faces is not total but just greater than perceptual
uncertainty of ‘unambiguous’ faces.

possible distributions of social

unambiguous
feedback (3 sources)

friendly m threatening
J [
2 [

ambiguous

L2

0y
e

110 2

0 3

non social feedback (baseline)

| m—

Figure 2. The left part of the figure represents an example of face stimuli. Faces located at the extremities of the continuum (-2; +2) are
labelled ‘unambiguous faces’. Those located around the center are labelled ‘ambiguous faces’. The right part of the figure represents the
possible distributions of social feedback. The fully coloured rectangles represent group consensus, meaning that the three influence sources
made the same decision about the stimulus (green = ‘friendly; red = ‘threatening’). Intermediate feedback configurations are represented by
rectangles coloured with % of one colour and and ! of the other (2 ‘friendly’ and 1 ‘threatening’ or 2 ‘threatening’ responses and 1
‘friendly”). Finally, non social feedback in the baseline condition is represented by two superimposed green and red rectangles. These
configurations do not provide any information about the decisions of the influence sources.

Manipulating the distribution of social feedback (see fig.2). Social feedback will be
provided by three influence sources, represented in each trial by three personal photographs or
three stills taken from video clips and located at the center of the second screen. The social
feedback represents the decisions of the three sources on face presented at the beginning of
the trial (‘friendly’ or ‘threatening’) and appears on the third screen in the form of a horizontal
rectangle colored in red or/and green (green = ‘friendly’ decisions, red = ‘threatening’
decisions). Fully coloured rectangles represent group consensus, meaning that the three
influence sources made the same decision. Intermediate feedback configurations are
represented by rectangles coloured with % of one colour and and % of the other (2 ‘friendly’
and 1 ‘threatening’ or 2 ‘threatening’ responses and 1 ‘friendly’). Group consensus and the
intermediate feedback configurations will be randomized and fully counterbalanced across
conditions. This will allow us to manipulate the conflict magnitude generated by social
feedback (i.e., the effect of group consensus and disagreement on the participants’ decisions).
Baseline condition trials will consist of showing two superimposed green and red rectangles
which model uninformative, non social feedback as no information about the influence
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sources’ decisions can be inferred from them. Both the ambiguity of face stimuli and the
meaning of social feedback will be pre-tested.

EEG acquisition. Several ERP components will be examined. The feedback error-related
negativity (Ngg) and the feedback error-related positivity (Prg) reflect the transmission of
reinforcement signals from the mesencephalic dopamine system to the medial frontal cortex
(i.e., rostral cingulate zone of the anterior cingulate cortex) [22]. The Ngg is involved in error
monitoring and has been shown to be modulated by negative feedback following active-
choices, especially when participants’ expectations about the outcome of their choice conflict
with the current feedback [29]. The Pgg has been shown to be modulated by negative feedback
providing information relevant for the task goal [23]. These ERPs could be reliable predictors
of a change in decisional strategy operating in medial frontal cortex after the processing of
negative feedback. The Ngg and Prg will by measured during the presentation of social
feedback (see fig.1a,b,c).

We will also measure the early posterior negativity (EPN) and the late positive potentials
(LPP). EPN and LPP have been shown to be modulated by the early and late processing of
emotional stimuli such as friendly and threatening faces [24]. They have been localized in the
centro-parietal and temporo-occipital regions, respectively. The EPN and LPP components
will be examined during the second exposure to the face stimulus (decision phase) (see
fig.1a,b). Task-related modulation of the EPN and LPP could predict that the processing of
social feedback in the medial frontal zone exerts a backward influence on perceptual decisions
operating in sensory and associative cortices.

Analyses. For both tasks 70 trials per conditions will be collected (2 stimulus levels
[unambiguous vs. ambiguous] x 5 levels of feedback [baseline + 2 possible consensus + 2
possible intermediate distributions]) (see fig.2). We will compute hit and false alarm (FA)
rates for each stimulus level — i.e., for both ‘ambiguous’ and ‘unambiguous’ faces. The hit rate
is the proportion of ‘friendly’ responses when the stimulus was indeed friendly, or the
proportion of ‘threatening’ responses when the stimulus was indeed threatening. The false
alarm rate is the proportion of ‘friendly’ responses when the stimulus was threatening, or the
proportion of ‘threatening’ responses when the stimulus was friendly. Hit and false alarm rates
will be used to compute d’ and c indices from Signal Detection Theory [30]. The d’ is a
measure of the subject’s sensitivity (perceptual discrimination) and ¢ is a measure of the
subject’s bias (decisional strategy).

A 2 x 5 repeated-measures ANOVA will then be performed on ¢’ and c, with the within-
subject factors ‘Perceptual uncertainty’ and ‘Social feedback’. The confidence levels will be
further analyzed using receiver operating characteristic (ROC) curves [31]. A sensitivity index
to ‘ambiguous’ and ‘unambiguous’ faces will be determined using A’, the area under the
curve. The group’s mean amplitude of the Ngg, Prg, EPN and LPP will be compared across
each experimental condition.

Predictions. For the informational conformity task, the effect of social feedback should
increase conformal decisions, as assessed by a decrease in d’. For example, participants should
make fewer accurate decisions for threatening faces if those faces have been judged by the
group as ‘friendly’. This effect is expected to be restricted to faces eliciting perceptual
uncertainty, and is expected to be independent of whether the feedback reaches consensus or
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not. Such a decrease in d’ might be correlated with an increase in Prg amplitude during the
processing of social feedback. If so, it would suggest that in an informational context social
feedback is not processed as conflicting information generating a prediction error signal, but
rather as relevant information that participants can use to improve their performance — i.e.,
information that would be integrated into the decision process in order to reduce uncertainty.
Finally, the decrease in d’ might also be associated with an increase in EPN and LPP
amplitudes recorded during the presentation of ambiguous faces after the feedback. This
would reveal that, under condition of uncertainty, social feedback processed in medial frontal
cortex generates expectations that bias perceptual decisions operating in sensory and
associative cortices.

For the normative conformity task, a similar effect of social feedback on decisions is
expected for faces that elicit perceptual uncertainty. However, social feedback should also
have an effect on the decisions made on unambiguous faces, especially when associated with a
consensus that conflicts with perceptual evidence. This change in decisional strategy should be
revealed by a switch in the ¢ index. For example, participants will likely categorize as
‘threatening’ unambiguous friendly faces that have been judged by the three sources as
‘threatening’. We expect this switch in decisional strategy to be associated with an increase in
the Ngg amplitude during the feedback delivery. If so, this would show that in a normative
context social feedback that conflicts with perceptual evidence is processed in the medial
frontal cortex as an erroneous action outcome or as a rewarding stimulus, both of which
motivate behavioral adjustment. We do not expect to observed modulations of EPN and LPP
amplitudes, suggesting that this change in decisional strategy does not affect lower level,
perceptual decisional processes.

rTMS EXPERIMENT
COLLABORATION WITH THE INSERM UNIT 1028 — LYON, FRANCE

Obijectives. In order to confirm the causal role of those brain structures examined in our
social conformity tasks we will adapt the informational and normative conformity tasks to an
on-line repetitive transcranial magnetic stimulation (rTMS) protocol.

Recently, it was shown that TMS-induced transient inhibition of the posterior medial
frontal cortex (pMFC) attenuated social conformity [32]. However, nothing is known about
whether pMFC disruption differentially affects conformity in an informational or normative
context. Since we expect informational and normative contexts to modulate the effect of social
feedback and perceptual uncertainty on decision-making our aim will be to test whether pMFC
downregulation differentially affects behavioral performance in informational and normative
contexts.

To do this we will collaborate with Dr. Alessandro Farné and Dr. Karen Reilly at the
Lyon Neuroscience Research Center (INSERM U1028 - CNRS UMR5292). This will give us
the opportunity to interact with two acknowledged TMS specialists and to take use a state-of-
the-art TMS platform.

Methods. A group of 20 healthy adults will be tested in both the informational and
normative conformity tasks described above. During the tasks, we will use on-line, trial-by-
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trial rTMS [33] to transiently inhibit the right pMFC. On each TMS trial we will apply 5Hz
rTMS over the target site for 1 sec after the first exposure to the face stimulus but before
delivery of the social feedback (see fig.1). To control for any non-specific effects of rTMS, in
addition to stimulating over the right pMFC we will also stimulate the right parietal cortex
(precuneus). The stimulation sites will be chosen on the basis of anatomical MRIs acquired at
the CERMEP platform in Lyon, as well as on the basis of brain coordinates used in a previous
rTMS study [32]. Half of the trials will be with rTMS, the other half will be without TMS.
Behavioral performances will thus be compared between trials with rTMS and trials without
rTMS trials.

Predictions. We predict that transient inhibition of pMFC will reduce the number of
conformal decisions. In particular, rTMS should affect decision-making by attenuating the
perception of the conflict that a social feedback generates when it contradicts perceptual
evidence. As such, the decrease in conformal decisions is expected to be particularly marked
in the normative conformity task, in which participants are normally expected to follow the
group decision even when it conflicts with perceptual evidence. By contrast, this effect should
not be observed in the informational conformity task, since conformal decisions are motivated
by the need to gain relevant information from social feedback in order to reduce perceptual
uncertainty.

RELEVANCE OF THE PROJECT TO THE GOALS OF THE FOUNDATION

The results of the present project will provide the first insight into the cerebral bases of
informational and normative conformity, and issues which is of particular importance to
several scientific domains.

First, social conformity participates in the transmission of information between
individuals and thereby significantly influences the evolution of human culture. Thus,
exploring the neural dynamics of informational and normative conformity is of central
importance for understanding what makes human cultural evolution possible. But culture also
shapes brain, and it could be that some cultural traits have an influence on how individuals
code and evaluate social information. A future development of this work would thus consist of
testing whether brain mechanisms associated with the propensity to conform are sensitive to
cultural variants (e.g. cultural variants that differently promote affective and intellectual
autonomy or conservatism). Second, conformity regulates interactions between members of a
group by generating shared expectations, and those who violate these expectations are exposed
to social exclusion. A fine-grained understanding of brain mechanisms underlying conformity
would contribute to better targeting of personality traits that are potentially predictive of anti-
social and pro-social behaviors (e.g. psychopathic personality traits or sensitivity to
interpersonal influences). For example, psychopathic patients exhibit dysregulation of the
medial prefrontal cortex, a region that is known to be involved in the coding of social
information as a rewarding stimulus [14-18]. At least partially, anti-social and pro-social
behaviors could result from the incapacity to evaluate the value of social information. Testing
the present tasks with populations exhibiting such personality traits is one of the promising
potential extensions of this work.
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This interdisciplinary project fits the goals of the Fyssen Foundation in several ways.
First, at a theoretical level, it relies on various approaches to social conformity developed in
neuroscience, social psychology, and cognitive anthropology. Second, at the experimental
level, the project uses various methods originating in different fields such as experimental
psychology and functional neuroimaging. Finally, I have been involved in interdisciplinary
approaches to cognition since my undergraduate studies. | completed degrees in Philosophy,
Cognitive Science and Clinical Neuropsychology, and | learned to test hypotheses using a
wide range of methods. For these reasons | think that my project, as well as my profile,
naturally fit Fyssen’s interests.
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distinction.

Lyon Il University, France

2005-2007: Master degree in Cognitive Sciences. Specialization:

Neuropsychology, graduated with distinction.

Research

in

Dissertation title: Role of encoding source on the production of familiarity and recollection
judgements: A study in patients with schizophrenia.

Mentor: Pr. Nicolas Franck.
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2002-2004: BA in Psychology, graduated with distinction.

Grenoble Il University, France

1999-2001: BAin Philosophy.

RESEARCH EXPERIENCES

« ImpAct » — INSERM, U1028 — Lyon, France
September, 2010-present: Visitor PhD student at the INSERM U864 of Lyon, France.

Mentor: Dr. Alessandro Farne, Dr. Karen T. Reilly

Dipartimento di Psicologia — Universita di Bologna, Bologna, Italia

May, 2008-June, 2011: Research Assistant/PhD student. European project ROSSI - Emergence
of Communication in RObots through Sensorimotor and Social Interaction.

Mentor: Pr. Anna M. Borghi.
Institut des Sciences Cognitives — Centre de Neuroscience Cognitive, CNRS UMR5229 —
Lyon, France

September, 2007-April, 2008: Research Assistant. Evaluation of the impact of cognitive
orthotic on mnesic and executive functionning of schizophrenic patients.

Mentors: Pr. Nicolas Franck ; Pr. Emmanuel Stip (Montréal University, Canada).

September, 2007-present: Associate investigator on the RECOS project - COgnitive
REmediation program adapted for Schizophrenic patients.

Mentors: Pr. Nicolas Franck. ; Pr. Hélene Verdoux (Bordeaux Il University, INSERM U657)

WORKING EXPERIENCES IN CLINICAL NEUROPSYCHOLOGY

Hopitaux Universitaire de Genéve, Genéve, Switzerland
June, 2005 - September, 2006: Neuropsychologist trainee. Unit of dementia’s detection.

Centre Hospitalier le Vinatier, Lyon, France
September, 2007 — April 2008: Neuropsychologist. Adult Psychiatry Unit.
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FOREIGN LANGUAGES

French: native
English: fluent
Italian: fluent

EXPERIMENTAL TECHNICS

During these last 4 years, the different projects | was involded in allowed me to master
different skills such as:

TMS stimulation using Magstim 200 and Magstim Rapid? stimulators.

Surface electrodes recording using SPIKE 2/CED and Biopac Student Lab MP36 data
collection interfaces.

Stereotaxic neuronavigation system interfaced with the SoftTaxic (EMS) software.

COMPUTER AND SOFTWARE SKILLS

Statistical Analysis : Statistica
Running and Preparing Experiments : Presentation, E-Prime2

Manipulating Videos, Images and Sounds : Adobe Premiere Pro 2.0 ; Reason 3.0

GRANTS

2010 — Marco Polo doctoral mobility fellowship of the University of Bologna (3500€)

2008 — Hospital Program of Clinical Research (PHRC). Scientific collaborator and co-writer of
the RECOS project — COgnitive REmediation program adapted for Schizophrenic patients
(220k€).
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