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Preface

The analysis of R&D ventures and start-up companies is one of the most
di¢ cult investment problem; this is due to the property that much of the
value of new ventures is associated with future cash �ows that are contingent
on intermediate decisions. The real options perspective on these investments
has therefore acquired importance since traditional DCF-based approaches
seem unsuitable to explain the dynamics in the value of R&D investment
strategies. As a result, the recent body of research on the use of option
pricing to R&D investments leads to a considerable literature which captures
many di¤erent features of these investments.

The motivation for this thesis is to:

�provide a survey of the models on investment optimal characteristics
(with respect to R&D investments in particular) and sequential investments
valuation, commonplace in the real option literature;

�provide a few comprehensive models to value new ventures which take
into account di¤erent R&D features;

�provide real examples of multiple compound real options exercise strate-
gies at each stage until the research and development is completed;

�explain, through intuitive explanations, the motivation for modelling
R&D investment with a jump-di¤usion process;

�provide a model which relies on simple mathematics to price options
with a jump-di¤usion process.

�illustrate the mathematical concepts by numerical implementations.
This thesis is structured as follows:

�The �rst part of the thesis (chapter 1) discusses several articles in
the literature related to the option valuation analysis of R&D ventures and
start-up companies. We focus both on the classical reading which deal with
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viii PREFACE

optimal investment characteristics and the articles which study R&D invest-
ments as complex options.

�The second part (chapter 2) deals with the valuation of new ventures
possessing �exibility in the form of multiple real options. For this purpose
the chapter develops a multicompound options approach to value sequential
investments, as R&D projects, when �rms make the intermediate investment
decisions to continue, expand, contract, suspend or abandon the project.

�The third part (chapter 3) deals with the valuation of R&D investments
with a jump-di¤usion process. This process better describes the evolution
of project value and can be applied to a wide array of real-world invest-
ment context. This chapter develops a multicompound options approach to
value sequential investment opportunities where the underlying asset value
is subject to market and technical uncertainty. These features are mod-
elled by assuming that the underlying project value follows a jump-di¤usion
process. By assuming as in Merton (1976) that the technical uncertainty is
completely diversi�able and that the jump distribution is lognormal, closed-
form solutions for simple multicompound and for multicompound exchange
options are obtained.

I thank Ph.D. seminar participants at University of Bologna for helpful
comments. This thesis bene�ts from the participation to "4th Corporate Fi-
nance Workshop" at London School of Economics and seminars at Financial
Markets Group.
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Chapter 1

An overview

1.1 Introduction

An increasing number of academics and corporate practitioners have been
interested in the real options theory in order to accommodate operating �ex-
ibility and other strategic considerations. This new view of investment that
treats opportunities as corporate real options has already enriched modern
corporate �nance. Thus, the real options approach is reaching advanced
textbook status and is rapidly gaining reputation and in�uence. Such an
approach better suits reality by taking into account project optimal char-
acteristics such as multiple real option, withdrawal, sequential investment,
crisis management etc. In that sense real option theory leads to a decision
criterion that adapts to each particular project assessment.

The real option literature has made the argument that traditional dis-
counted cash �ow models do not capture the value of the options embedded
in many corporate actions and that these options need to be not only con-
sidered explicitly and valued, but also that the value of these options can be
substantial. In fact, many investments that would not be justi�able other-
wise will be value enhancing, if the options embedded in them are considered.
A most famous result of the real options literature is the invalidation of the
standard net present value rule; it consists in investing if and only if the sum
of the project discounted bene�ts is higher than the sum of its discounted
costs. Such a criterion does have several weakness. Among many others,
the following facts are often mentioned:

�The NPV method does not take into account potential uncertainty of
future cash �ows;

3



4 CHAPTER 1. AN OVERVIEW

�It uses an explicit calculation for the cost of risk;

�It focuses on present time: the investment decision can only be taken
now or never.

But, reality is often more complex and �exible including, for instance,
optimal components for the project: a �rm may have the opportunity, but
not the obligation, to undertake the project not only at a precise and given
time, but during a whole period of time. In that sense, these characteristics
may be related to that of an American call option, the underlaying asset
being, for example, the cash �ows generated by the project. Sometimes, the
underlying asset may be a package consisting of the project plus the value of
other embedded corporate real options, to later expand production scale, to
abandon the project for its salvage value, etc. The techniques derived from
option pricing can help quantify management�s ability to adapt its future
plans to capitalize on favorable investment opportunities or to respond to
undesirable development in a dynamic environment by cutting losses.

The use of a method based on option theory, such as the real option
theory would improve the optimality of the investment decision. Several
articles appear as benchmark in this �eld. The seminal articles of Brennan
and Schwartz (1985) ; McDonald and Siegel (1986) ; Pindyck (1991) and
Trigeorgis (1996) are often quoted as they present the fundamentals of this
method, using particularly dynamic programming and arbitrage techniques.

The analysis of R&D ventures and start-up companies is one of the most
di¢ cult investment problem:

�A simple NPV calculation used to value these projects would suggest
that they should not to be undertaken;

�New ventures take time-to-build. The development of a drug, for ex-
ample, can take ten or more years to complete;

�Investments have to be made without reaping any of the possible ben-
e�ts of the investment during construction;

�New ventures are subject to several, qualitatively di¤erent sources of
risk: there is substantial uncertainty about the sales, costs and cash �ows
that they will generate;

�There is a signi�cant probability of having to put an end to the ef-
fort for technical or economic reasons. Decision to continue with R&D are
made conditioning on the resolution of systematic as well as unsystematic
uncertainty.
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�Learning by doing also plays an important role in determining the
patterns of returns earned over the life of the project.

The approach taken in the real option literature is to treat the R&D
project as complex options on the variables underlying the value of the
project, which are the expected costs to completion and the estimated cash
�ows after completion. Uncertainty is introduced in the analysis by allowing
these variables to follow stochastic processes through time. Although the
real options theory suggested the use of more suitable technique to value
R&D projects with these features, such investments are hard to value even
with the real options approach. The main reason for this is that there are
multiple sources of uncertainty in R&D investment projects and that they
interact in complicated way. In practice, the bulk of the literature on the
R&D valuation using real option theory have dealt with the development of
numerical simulation algorithms solving optimal stopping time problems.

In the following section we give a brief overview of the literature on the
investment valuation based on option theory; we start from the most popular
articles in the real option literature and we continue with more recent and
complex models on this topic.

We �rst focus on the classical readings which take into account di¤erent
important features of R&D ventures and start-up companies: time-to build,
abandonment, crises, etc. We also review the articles in the real option
literature which studied the R&D process as a contingent claim on the value
of an underlying asset.

In section 3, we overview the models of a higher complexity which de-
part from the traditional Black-Scholes model: compound option, exchange
option, etc. The so-called exotic option allows for richer speci�cations (more
complicated payo¤ function) than more traditional call and put option and
overcomes the lack of �exibility of standard vanilla options; this is closer in
spirit to the real option approach.

In section 4 we give a brief introduction to modelling �nancial derivatives
with jump-di¤usion process. Jump processes are introduced in the real op-
tion literature to study the impact of market crises on investment decisions.
The research-oriented industries, as pharmaceutical, depend heavily on the
impact of market crises.

Section 5 is devoted to game option. To analyze investment decision
in industries with competitive pressure a game-theoretic analysis of options
exercise strategies is essential.

Section 6 concludes.
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1.2 Literature review

In recent years more and more attention has been given to stochastic models
of �nancial markets which start from the traditional Black-Scholes/Merton
model. Since Black and Scholes (1973) provide a framework to value non-
dividend-paying European options, lots of practitioners and academics have
dealt with the option pricing methodology. In many cases, the options are
not on �nancially traded assets, such as stocks or commodities, but are
real options, such as those on projects or other embedded corporate real
options. In this section and throughout this survey, our main concern will
be with investment decisions that have very important characteristics of
R&D ventures and start up companies.

The basic model of irreversible investment (McDonald and Siegel, 1986)
demonstrated a close analogy between a �rm�s option to invest and a �-
nancial call option. McDonald and Siegel studied the optimal timing of
investment in an irreversible project where the bene�ts from the project
and the investment cost follow continuous-time stochastic processes. The
optimal time to invest and an explicit formula for the value of the option
to invest are derived. The rule "invest if bene�ts exceed costs" does not
properly account for the option value of waiting. Simulations show that this
option value can be signi�cant, and that for surprisingly reasonable parame-
ter values it may be optimal to wait until bene�ts are twice the investment
cost. Similarly, Paddock, Siegel and Smith (1988) examined the option to
defer in valuing o¤shore petroleum leases, and Tourinho (1979) in valuing
reserves of natural resources. Ingersoll and Ross (1992) reconsider the de-
cision to wait in light of the bene�cial impact of a potential future interest
rate decline on project value.

As future prices and costs �uctuate, the operating pro�t of a project in
place may turn negative; however, most �rms have some escape routes avail-
able. In Dixit (1989) a �rm�s entry and exit decisions when the output price
follows a random walk are examined. An idle �rm and an active �rm are
viewed as assets that are call options on each other. The solution is a pair of
trigger prices for entry and exit. The entry trigger exceeds the variable cost
plus the interest on the entry cost, and the exit trigger is less than the vari-
able cost minus the interest on the exit cost. These gap produces �hysteresis�.
Numerical solutions are obtained for several parameter values; hysteresis is
found to be signi�cant even with small sunk cost. Myers and Majd (1990)
analyzed the option to permanently abandon a project for its salvage value.
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They use the analogy with �nancial options and value the option to abandon
as an American put option on the value of the underlying project where the
strike price equals the salvage value. The option to abandon a project in
exchange for its salvage (or best alternative use) value is also studied in Mc-
Donald and Siegel (1986). American put option is analyzed in Brennan and
Schwartz (1977), Geske and Johnson (1984), and Barone-Adesi and Whaley
(1987). Instead of abandoning permanently a project management might
exercise the option to temporarily shut down whenever the output price
would not be su¢ cient to cover the variable costs of production. Several
articles suppose that a loss-making project may be temporarily suspended,
and its operation resumed later if and when it becomes pro�table again;
among these we mention the seminal articles of McDonald and Siegel (1985)
and Brennan and Schwartz (1985).

Starting from today�s capacity (after a call option to invest has already
been exercised) a �rm usually has further call option to invest in extending
today�s capacity. Similarly, it often has a put option to reduce today�s ca-
pacity. The put option may sometimes give them an actual cash in�ow from
disinvestment (e.g. proceeds from sale of redundant land or buildings, or
from scrapped machinery). In other case exit may require a costly payment,
which is justi�ed if it allows them to terminate existing operating losses.
Options to expand or contract capacity are further examples of the strate-
gic dimension of R&D ventures and start up companies. Several articles
examine a �rm�s decisions to expand or contract capacity in a more gen-
eral context. Among these we mention the works of Trigeorgis and Mason
(1987), Carr (1988), Pindyck (1988), Trigeorgis (1993), Abel, Dixit, Eberly
and Pindyck (1996) and Dixit and Pindyck (1998).

Carr (1988) obtained a closed form solution to a compound exchange
option integrating work on compound option pricing by Geske (1979) with
work on exchange option pricing by Margrabe (1978). As a result, the gen-
eral valuation formula may be used to value real options, as for example op-
tions to expand or contract capacity and option to switch inputs or outputs
in production. Exercise of this instrument involves delivering one asset in
return for an exchange option. The option received upon delivery may then
be used to make another exchange at a later date. In this case the sequential
expansion/contraction decision can be viewed to be similar to the exercise
of a call/put compound exchange option. In Trigeorgis (1993,1996), option
to expand is similar to a call option to acquire an additional part (x%) by
incurring a follow-on cost IE as exercise price. The investment opportunity
with the option to expand can be viewed as the base-scale project plus a call
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option on future investment, i.e., V +max (xV � IE ; 0) : For example, man-
agement may adopt a more expensive technology to expand production if
and when it becomes desirable. Similarly, management may reduce the scale
of the operations, by c%, thereby saving part of the planned investment out-
lays IC . This �exibility to mitigate loss is analogous to a put option on part
c% of the base-scale project with exercise price equal to the potential cost
savings, giving max (IC � cV; 0) : The option to contract , like the option to
expand, may be particularly valuable in choosing among technologies. Abel,
Dixit, Eberly and Pindyck (1996) show how opportunities for future expan-
sion or contraction can be valued as options, how this valuation relates to
the q-theory of investment, and how these options a¤ect the incentive to
invest. Abel, Dixit, Eberly and Pindyck showed that a �rm that makes an
investment that is partially or totally reversible acquires a put option. This
option has value if future uncertainty involves a su¢ ciently large downside
with a positive probability that the �rm will want to exercise the option.
Recognition of this put option will make the �rm more willing to invest than
it would be under a naive NPV calculation that assumes that the project
continues for its physical time life and omits the possibility of future disin-
vestment. Likewise, a �rm that can expand by making an investment now
or in the future (at a cost) is exercising a call option, namely it is acting
now when it might have waited. This option has value if future uncertainty
has a su¢ ciently large downside that waiting would have been preferable.
Therefore recognition of this call option will make the �rm more willing to
invest than it would be under a naive NPV calculation that assumes that
the project must be started now or never, and ignores the possibility of a
future optimal start-up decision. For many real world investments, both
of these options exist to some degree. Firms typically have at least some
ability to expand their capacity at a time of their choosing, and sometimes
can partially reverse their decisions by selling o¤ capital and recovering part
of their investment. The net e¤ect of these two options will in general be
ambiguous, depending on the degrees of reversibility and expansibility, and
the extent and nature of the uncertainty. In Pindyck (1988), uncertainty
over future market conditions a¤ects investment decisions through the op-
tion that �rms hold, operating options, which determine the value of capital
in place, and options to add more capital, which, when investment is irre-
versible, determine the opportunity cost of investing. By treating capital as
homogeneous and focusing on incremental investment decisions, Pindyck has
tried to clarify the ways in which uncertainty and irreversibility a¤ect the
values of these options, and thereby a¤ect the �rm�s optimal capacity and
its market value. Dixit and Pindyck (1998) develop continuous-time mod-
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els of capacity choice when demand �uctuates stochastically, and the �rm
has limited opportunities to expand or contract. Speci�cally, they consider
costs of investing or disinvesting that vary with time, or with the amount
of capacity already installed. The �rm�s limited opportunities to expand or
contract create call and put options on incremental units of capital; they
show how the values of these options a¤ect the �rm�s investment decisions.

Most articles described above consider a single initial investment deci-
sion. In many situations, however, investment decisions are made sequen-
tially and in particular order. Majd and Pindyck (1987) study investments
with time-to-build. Many investment projects have the following character-
istics: (1) spending decisions and cash outlays occur sequentially over time,
(2) there is a maximum rate at which outlays and construction can proceed,
that is it takes �time-to-build�, and (3) the project yields no cash return until
it is actually completed. Furthermore, the pattern of investment outlays is
usually �exible and can be adjusted as new information arrives. For such
projects traditional discounted cash �ow criteria, which treat the spending
pattern as �xed, are inadequate as a guide for project evaluation. Majd and
Pindyck develops an explicit model of investment projects with these char-
acteristics, and uses option pricing methods to derive optimal decision rules
for investment outlays over the entire construction program. Numerical so-
lutions are used to demonstrate how time-to-build, opportunity cost, and
uncertainty interact in a¤ecting the investment decision. They show that
with moderate levels of uncertainty over the future value of the completed
project, a simple NPV rule could lead to gross over-investment. Also, They
show how the contingent nature of the investment program magni�es the
depressive e¤ect of increased uncertainty on investment spending. Similarly,
Bal-Ilan and Strange (1996) study the e¤ect of investment lags in the sim-
plest possible model of an uncertain, irreversible investment. Their paper
makes two speci�c contributions. First, they present an analytic solution
to the investment problem with lags. Second, they show that conventional
results on the e¤ect of price uncertainty on investment are weakened or re-
versed when there are lags. In particular, it is possible that an increase
in uncertainty hastens the decision to invest. Thus, investment lags o¤set
uncertainty and tend to reduce inertia, contrary to conventional wisdom.
Finally, Grenadier (2000,2002) studied time-to-build options using option-
game approach in continuous time.

Seminal works in the real option literature allowed a �rm to hold and
operate a large number of projects, to add new projects, and perhaps to
retire old ones, etc. Real-life projects are often more complex in that they
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involve a collection of multiple real options, whose value may interact. Mul-
tiple real options are studied by Brennan and Schwartz (1985), Trigeorgis
(1993) and Kulatilaka (1995).

Brennan and Schwartz (1985) determine the combined value of the op-
tions to shut-down and restart a mine, and to abandon it for salvage. They
recognize that partial irreversibility resulting from the costs of switching the
mine�s operating state may create hysteresis or inertia e¤ect, making it opti-
mal in the long term to remain in the same operating state even if short-term
cash-�ow considerations seem to favour early switching. Although hystere-
sis is a form of interaction between early and later decisions, Brennan and
Schwartz do not explicitly address the interactions among individual option
values. In Trigeorgis (1993), managerial �exibility is regarded as a set of real
option, for example the option to defer, abandon, contract, or expand invest-
ment, or switch investment to an alternative use. The real options literature
has tended to focus on individual options, one type of operating option at
time; however, managerial �exibility embedded in investment projects typi-
cally takes the form of a collection of real options. Trigeorgis demonstrates
that interactions among real options present in combination generally make
their individual values non-additive. Although many reader may intuit that
certain options do in fact interact, the nature of such interactions and the
conditions under which they may be small or large, as well as positive or
negative, may not be trial. In particular, Trigeorgis illustrates through a
generic project the size and type of interactions among the options to defer,
abandon, contract, expand and switch use. The combined value of operating
options can have a large impact on the value of the project. However, the
incremental value of an additional option often tends to be lower the greater
the number of other options already present. Neglecting a particular option
while including others may not necessarily cause signi�cant valuation errors.
However, valuing each option individually and summing these separate op-
tion values can substantially overstate the value of a project. Con�guration
of real options that can exhibit precisely the opposite behavior are also iden-
ti�ed. Kulatilaka (1995) examines the impact of interactions among such
options on their optimal exercise schedules. The recent recognition of the
interdependencies of real options should make possible a smoother transition
from a theoretical stage to an application phase.

The focus of all these models is on optimal investment characteristics in
a more general context rather than with respect to R&D ventures. The next
section reviews a number of articles which have studied R&D process as a
contingent claim on the value of the cash �ows on completion of the R&D.
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1.2.1 R&D as real options

Several papers in the economics and �nance literature study dynamic R&D
policies and R&D valuation using real option approach. Myers and Howe
(1997) present a life cycle model of investments in pharmaceutical R&D
programs. Uncertainty is explicitly accounted in the model, which is solved
using Monte Carlo simulation.

Childs and Triantis (1999) develop and numerically implement a model of
dynamic R&D that highlights the interactions across projects. They solve
for and interpret optimal policies for a �rm with multiple R&D projects,
which can run in parallel or sequentially, and calculate the values of the real
options such problems present. Childs and Triantis analyze in detail the
intensity and timing of optimal investment policies.

Schwartz and Moon (2000) have studied R&D investment projects in
the pharmaceutical industry using a real options framework. In this arti-
cles, they numerically solve a continuous-time model to value R&D projects
allowing for three types of uncertainty. There is technical uncertainty as-
sociated with the success of the R&D process itself. There is an exogenous
chance for obsolescence, during and after the development process and there
is uncertainty about the value of the project on completion of the R&D.
Schwartz and Moon solve for optimal investment policies, provide compar-
ative statics regarding the option component of the project�s value, and
compare the project�s value to the NPV rule.

Schwartz (2003) develops and implements a simulation approach to value
patents and patents-protected R&D projects based on the real option ap-
proach. It takes into account uncertainty in the cost to completion of the
project, uncertainty in the cash �ows to be generated from the project, and
the possibility of catastrophic events that could put an end to the e¤ort be-
fore it is completed. This paper di¤ers from Schwartz and Moon (2000) both
in the formulation of the problem and in the solution procedure. In Schwartz
and Moon (2000), once investment in R&D is completed, the owner of the
project receives the value of the approved drug in the form of the single cash
�ow. In that framework calendar time does not enter into the solution of the
problem. In Schwartz (2003), upon the approval the owner starts receiving
cash �ows with timing depending on the duration of the R&D investment.
If a patent is obtained before the completion of the R&D investment, the
duration of the cash �ows will depend critically on the duration of the in-
vestment; that is, it will be path dependent.
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Berk, Green and Naik (2004) also develop a dynamic model of multi-
stage investment project that captures many features of R&D ventures and
start-up companies. Their model assumes di¤erent sources of risk and allow
to study their interaction in determining the value and risk premium of the
venture. Technical uncertainty is modelled di¤erently from Schwartz and
Moon (2000) In Schwartz and Moon, the expected cost to completion of the
project is an exogenous stochastic process with drift and di¤usion coe¢ cients
that depend on its current value and on the current level of investment.
Given this process, optimal investment policies are obtained. Berk, Green
and Naik take as exogenous the technology for randomly advancing through
stages of the project and then derives optimal investment policies. These
will lead to an endogenous process for expected cost to completion.

Errais and Sadowsky (2005) introduce a general discrete time dynamic
framework to value pilot investments that reduce idiosyncratic uncertainty
with respect to the �nal cost of a project. In this model, the pilot phase
requires N stages of investment for completion that they value as a com-
pound perpetual Bermudan option. They work in an incomplete market
setting where market uncertainty is spanned by tradable assets and tech-
nical uncertainty is idiosyncratic to the �rm. The value of the option to
invest as well as the optimal exercise policy are solved by an approximate
dynamic programming algorithm that relies on the independence of the state
variables increments.

The next section will give a brief introduction to the exotic option liter-
ature. Some academics and corporate practitioners provide applications of
these models to value �rm�s investments and �nancial arrangements com-
monplace in the real world.

1.2.2 Exotic Options

Before we start to describe exotic options and their utility for real options
purpose, it is necessary for us to summarize some basic concept of plain
vanilla options. Financial literature classi�es standard options, into two
groups: call options and put options. A call (put) option gives its holder
the right to buy (sell) the corresponding underlying asset at a speci�ed
strike price. If the strike price of a call option is lower (higher) than the
spot price of the underlying asset, it is called an in-the-money call option
(out-of-the-money call option). If the strike price of a call option is equal
to the spot price of the underlying asset, it is called an at-the-money call
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option. Furthermore, vanilla options share a few common characteristics:
one underlying asset; the e¤ective starting time is present; only the price of
the underlying asset at the option�s maturity a¤ects the payo¤ of the option;
whether an option is a call or a put is known when sold; the payo¤ is always
the di¤erence between the underlying asset price and the strike price, and
so on.

Plain vanilla options have many limitations resulting from their lack
of �exibility. Exotic options1 di¤er from standard options to this respect.
Each type of exotic options, in fact, overcomes one particular limitation of
plain vanilla options; in this way, exotic options can somehow serve a special
purpose which standard options cannot do conveniently. We will look at this
literature in some detail considering that the exotic options models may be
relevant to the valuation of real investment opportunities. Exotic options,
in fact, allow for richer speci�cations, more complicated payo¤ functions,
than more traditional plain vanilla options which can be applied to a wide
array of real-world investment context. For instance, since the approach
taken in the real option literature is to treat the R&D project as complex
options, the exotic options literature provides the insight for the analysis
of growth options2 through compound options pricing. Furthermore, real
options analysis combines the two elements of compoundness and the option
to exchange in the analysis of sequential investments opportunities which
involves the option to switch between alternative technologies, and so on. In
general, both exotic options and real options instruments are traded between
companies, banks and other �nancial intermediaries and not quoted on an
exchange.

Compound options are options written on other standard options. As
there are two kinds of vanilla options, calls and puts, there are four kinds
of compound options: a call option written on a call option, a call option
written on a put option, a put option written on a call option, and a put
option written on a put option. As a result a compound option has two
expiration dates and two strike prices. Compound options are often used to
hedge di¢ cult investments which are contingent on other conditions. The
buyer of a compound option normally pays an initial up-front premium for
an option which he/she may need later on. The buyer will have to pay an
additional premium only if this option is needed. If the buyer �nds that this

1Exotic options literature is well summarized in Zhang (1997).
2Trigeorgis (1996) highlights that R&D projects are essentially real growth options

because the value of these early projects derives not so much from their expected cash
�ows as from the follow-on opportunities they may create.



14 CHAPTER 1. AN OVERVIEW

option is not necessary, he/she can simply give up the right. Geske (1979)
derives a closed-form formula for a European call on European call, or com-
pound option, and shows that the standard Black and Scholes framework is
a special case such a formula. Rubinstain (1991) generalizes this result to
all four possible combinations: call on a call, put on a call, call on a put
and put on a put, and includes techniques for American options. Gukhal
(2003) derives analytical valuation formulas for compound options when the
underlying asset follows a jump-di¤usion process, applying these results to
value extendible options, American call options on stocks that pay discrete
dividends and American options on assets that pay continuous proportional
dividends. Agliardi and Agliardi (2005) study multicompound options in
the case of time-dependent volatility and interest rate. This assumption
seems more suitable due to the sequential nature of many early projects.
Multicompound options are merely N-fold options of options. Basically
the procedure consists of solving N-nested Black-Scholes partial di¤eren-
tial equations: at the �rst step the underlying option is priced according to
the Black-Scholes method; then, compound options are priced as options on
the securities whose values have already been found in the earlier steps. Roll
(1977), Whaley (1981), Geske and Johnson (1894) and Selby and Hodges
(1987) also study compound options.

Option to exchange one risky asset for another is simultaneously a call
option on asset one and a put on asset two. Margrabe (1978) gives a closed-
form solution for variuous exchange options and shows that the Black and
Scholes call option formula is a special case of the simple exchange option
formula. The exchange option formula can be used to value options, in-
cluding real options, when both the strike price and the underlying asset
are uncertain. McDonald and Siegel (1985) derive the analogous formula
for American perpetual exchange option3. Stulz (1982) examines similar
European options on the minimum or maximum of two risky asset. Options
written on the better or worse performing (the maximum or minimum) of
two or more underlying assets are often called rainbow options. Rainbow
options are useful in many �nancial applications such as pricing foreign cur-
rency debts, compensation plans, and risk-sharing contracts.

As an exchange option a basket option is written on a basket of assets
rather than one single asset. Basket options are also called portfolio options.
The popular basket options are those written on baskets of currencies. As
correlations among various components in a basket largely determine the

3See section 1.2
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characteristic of the basket, basket options are correlation options. They
can be used by portfolio managers to hedge their positions on the basis of
their whole portfolio performance, instead of individual assets within the
portfolio. Or they can be used to speculate based on the same information
about their portfolios. Grannis (1992) explained how options written on
baskets of currencies work. Dembo and Patel (1992) studied synthetic bas-
ket options of stocks. Gentle (1993) and Huynh (1994) also priced basket
options.

Barrier options are probably the oldest of all exotic options. A barrier
option is a derivative product that either becomes worthless, must be exer-
cised, or comes into existence if the underlying asset price reaches a certain
level during a certain period of time. Snyder (1969) discussed "down-and-
out" options. For example, a down-and-out call has similar features to a
vanilla call option, except that it becomes nulli�ed when the asset price
falls below a knock-out level. Because the holder of the option loses some
of the right, the price of such an option is lower than a vanilla call option.
However, if the asset price is always higher than the knock-out level, then
the two options are actually the same. Therefore such a call option is more
attractive than a vanilla call option for people who expect the price to rise.
A knock-in option is a contract that comes into existence if the asset price
crosses a barrier. For example, a "down-and-in" call with a lower barrier Bl
expires worthless unless the asset price reaches the lower barrier from above
prior to or at expiry. If it crosses the lower barrier from above at some time
before expiry, then the option becomes a vanilla option. For closed-form
expressions for prices of various barrier options and numerical methods, we
refer to Reiner and Rubinstein (1991), Kunitono and Ikeda (1992), Carr
(1995), Cheuk and Vorst (1996) Ritchken (1995) and Roberts and Short-
land (1997). Heynen and Kat (1994) examine partial barrier options, that
is, barrier options in which the underlying price is monitored for barrier hits
only during a speci�ed period during option�s life. So called double bar-
rier options are treated in Geman and Yor (1996), Hui (1996) and Pelsser
(2000b).

A lookback option is an option whose payo¤ is determined not only
by the settlement price but also by the maximum or minimum prices of the
underlying asset within the option�s lifetime. There are two kind of lookback
options: �oating-strike and �xed-strike lookback options. Floating-strike
lookback options are true "no regret" options because their payo¤s are the
maximum. Speci�cally, the payo¤ of a �oating-strike lookback call option
is the di¤erence between the settlement price and the minimum price of the
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underlying asset during the option�s lifetime, and the payo¤ of a �oating-
strike lookback put option is the di¤erence between the maximum price and
the settlement price of the underlying asset during the option�s lifetime.
Thus, the payo¤s of these call and put options are the greatest that could
be possibly achieved.

The payo¤ of a �xed-strike lookback call (put) option is the di¤erence
between the maximum price of the underlying asset and the �xed strike price
(the di¤erence between the �xed strike and the minimum price) during the
life of the option. Lookback options can somehow capture investors�fantasy
of buying low and selling high, to minimize regret, as Goldman, Sosin, and
Gatto (1979) argued. However, the no-arbitrage principle guarantees that
these options are expensive to buy. The high premiums of lookback options
prevent them from being widely used. So-called partial lookback options
were examined by Conze and Viswanathan (1991).

Forward-start options are options with up-front premium payments, yet
they start in speci�ed future time with strike prices equal to the starting
underlying asset prices. Thus, forward-start options can be considered as
simple spread options in which the spreads are the di¤erences between the
prices of the same underlying asset at two di¤erent time points compared
to standard simple spread options over the di¤erences of two underlying
assets. Forward-start options normally exist in the interest-rate markets
where investors can use them to bet on interest-rate �uctuations. Forward-
start options are studied by Rubinstein (1991).

Zhang (1993, 1994) introduced Asian options. Asian options are options
with payo¤s determined by some averages of the underlying asset prices
during a speci�ed period of time before the option expiration, they are also
called average-price or average-rate options. Asian options can be used by a
company to reduce its risk in purchasing raw materials; they can also reduce
the risk in selling foreign currency through buying a put whose payo¤ de-
pends on the di¤erence between the exercise price and the average exchange
rate. If the exchange rate drops, the company can get some compensation
from the option for the loss in selling foreign currency. Asian options are
also studied by Rubinstein (1991) and Geman and Yor (1993).

As in the case of standard American option, the owner of a Russian
option has the right to choose the exercise time, � . However, the Russian
option pays the owner either S� , or the maximum stock price achieved up
to the exercise date, whichever is larger, discounted at e�r� : An analysis of
an optimal stopping problem associated with the valuation of the Russian
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option was done in Shepp and Shiryaev (1993, 1994) and Kramkov and
Shiryaev (1994).

The following section contains an application of the compound option
models to venture capitals.

1.3 An example

Traditional tools based on DCF methods fail to capture the value of new
ventures because of their dependence on future events that are uncertain at
the time of the initial decision. The primary value of new ventures lies in the
physical options it creates. These options refer to a future market opportu-
nity resulting from a contingent claim on new product patents, knowledge,
and the competitive position being created. The investment in R&D, for
instance, generates value primarily by creating options for future products
development. Some academics have suggested that R&D investments are
essentially real growth options4 since investment decisions are made sequen-
tially and in a particular order. Staging investment involves �rms either
with some degree of �exibility in proceeding with the investment or when
there is a maximum rate at which outlays or construction can proceed:

�Investing in new oil production capacity take time-to-build. First,
reserves of oil must be obtained. Second, development wells and pipelines
must be built so that the oil can be produced from these reserves.

�An investment in a new drug by a pharmaceutical company begins
with research that (with some probability) leads to a new compound, and
continues with extensive testing until the authority approval is obtained,
and concludes with the construction of a production facility and marketing
of the product.

�Investing in an initial-scale project in a software development requires
to the venture capitalist to continue making investments in up-dating its
technology and marketing its product just to keep up.

The real option literature suggests that sequential high-risk projects such
as pharmaceuticals and new technologies development can be seen as com-
pound options where each stage can be viewed as an option on the value
of the subsequent stage. A compound option is simply an option on an

4See Trigeorgis (1996) for a discussion.
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option; the exercise payo¤ of the compound option involves the value of
the underlying option. Take the example of a European style call on a
call. On the �rst expiration date T1, the �rm has the right to invest
(to buy a new call) by paying the strike price I1. The new call has expi-
ration date T2 (to complete the project) and strike price I2. The procedure
consists of following two steps: �rst, the underlying option is priced accord-
ing to the Black-Scholes method; second, the compound option is priced as
an option on the opportunity to invest whose value has already been found
in the �rst step.

The following sections contain applications to new ventures in which we
take �exibility into account at each stage of the product development, in
practice, R&D managers have the �exibility to defer, contract or expand
expenditures, or alternatively to abandon the R&D after funding ceases.

1.3.1 Value of expansion opportunities

Let us consider the investment decision by a venture capital fund that is
evaluating the project of a single start-up company providing software tools
in the computer industry. We interpret this type of corporate �nance trans-
action as a sequential compound option.5

Suppose the inverse demand function for the product, giving price in
terms of quantity Q is P = Y D (Q), where Y is a stochastic shift variable6.
We will assume throughout that the agent is risk neutral and can borrow
and lend freely at a constant interest rate, r > 0. Moreover, the investment
project, once completed, produces one unit of output per year at zero op-
erating costs. Hence, we assume P follows a stochastic di¤erential equation
of the form:

dP = �Pdt+ �Pdz;

where dz is the increment of the standard Wiener process; � is the instan-
taneous standard deviation of the spot price at time t and � is the trend
rate in the price7. The pro�t �ow is P in perpetuity, and its expected value

5See Agliardi and Agliardi (2005) for a more detailed development of the multicompoud
option formula.

6This assumption is standard in the real options literature; see for example Dixit and
Pindyck (1994).

7Further, it is possible to include both a time-varying variance and time-varying interest
rate. This assumption seems more suitable due to the sequential nature of start-up projects
; see Agliardi and Agliardi (2003) and Amin (1993) for a discussion of this point.
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grows at the trend rate �. We will assume that the price uncertainty is
spanned by capital market, so that contingent claim methods can be used.
Let � denote the risk-adjusted discount rate that applies to P , where � > �.
We will let � denote the di¤erence between � and �, that is, � = ���; thus
we are assuming � > 0: The parameter � has a standard role in this model,
so we refer the interested reader to Dixit and Pindyck (1994) for further
details8.

If future revenues are discounted at �, then the expected present value,
V; of the project when the current price is P is just given by V = P

� . In this
case V , being a constant multiple of P , also follows a geometric Brownian
motion with the same parameters � and �:

The second stage investment

We �nd the value of the option to complete the investment in the second
stage of the project, F (V (P ) ; t), by constructing a risk-free portfolio, deter-
mining its expected rate of return, and equating the expected rate of return
to the risk-free rate of interest. Let I2 be the amount of investment required
for completion of the second-stage. Since the option to complete the project
expires at time T , the value of the option depends on the current time t.
Thus, the risk-less portfolio will consist of one option to invest F and a short
position of n = @F

@V units of the project; as usual its value is � = F �
@F
@V V ,

and and the instantaneous change in this value is d� = dF � @F
@V dV . The

short position in this portfolio will require paying out �V @F
@V dt. Thus, by

using Ito�s Lemma we get the partial di¤erential equation that the option
to invest must satisfy:

@F

@t
= rF � (r � �)V @F

@V
� 1
2
�2V 2

@2F

@V 2
; (1.1)

which must satisfy the boundary condition:

FT = max [VT � I2; 0] : (1.2)

If at time T , the value of the project is greater than I2, the option will be
exercised, otherwise it is unworthy. As is well-known (see Merton,1973) the
solution to (1) subject to the boundary condition (2) is:

8For example, � can be interpreted as the shortfall in the expected rate of return from
holding the option to complete rather than the completed project.
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F (V; t) = V e��(T�t)N1 (d1)� I2e�r(T�t)N1 (d2) ;

with:

d1 =
ln
�
V
I2

�
+
�
r � � + �2

2

�
(T � t)

�
p
T � t

;

d2 =
ln
�
V
I2

�
+
�
r � � � �2

2

�
(T � t)

�
p
T � t

;

and N (:)is the cumulative normal distribution function.

The �rst stage investment

Given F (V; t), we can now back up to the �rst stage of the investment, and
�nd the value of the �rst-stage project, that can be represented functionally
as c = f (F; t) = f (F (V; t) ; t), with exercise price I1, and expiration date
t�, t� � T . Since the option to complete the project is a function of the value
of the �rm and time, this call option can be regarded as an European call
on an European call. By going through the usual step, we can determine
that c will satisfy the following partial di¤erential equation:

@c

@t
= rc� (r � �)V @c

@V
� 1
2
�2V 2

@2c

@V 2
; (1.3)

which must satisfy the boundary condition at t = t�:

ct� = max
�
F
t� � I1; 0

�
: (1.4)

where F
t� is the value of the asset underlying the underlying option after

time t�. Let �V denote the value of the �rm which solves the integral equation
F� � I1 = 0, where � = T � t�. For values of the �rm less then �V the option
to get started the project will remain unexercised, while if the value of the
�rm is greater than �V , the option will be exercised.

Let us de�ne now:

h1 =
ln
�
V
�V

�
+
�
r � � + �2

2

�
(t� � t)

�
p
t� � t

;
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and:

h2 =
ln
�
V
�V

�
+
�
r � � � �2

2

�
(t� � t)

�
p
t� � t

:

In order to solve (3) and (4) ; we make the following substitutions:

c (V; t) = e�r(t
��t)~c (u; z) ; (1.5)

where:

u = � ln
�
V
�V

�
�
�
r � � � �

2

2

�
(t� � t) ; (1.6)

and:

z =
1

2
�2 (t� � t) : (1.7)

In term of the new independent variables the fundamental equation for c
becomes:

@~c

@z
=
@2~c

@u2
; �1 < u < +1; z � 0: (1.8)

The partial di¤erential equation (8) subject to the initial value condition
~c (u; 0), has a unique solution which we use to write c as follows:

c (V; t) = e�r(t
��t)

+1Z
�1

~c (�; 0)
1

2
p
�z
e�(u��)

2=4zd�:

Substituting the solution for F (V; t) into this expression and changing the
variable u with h2, gives the following identity:

c (V; t) =

e�r(t
��t)

8<:
0Z

�1

1

2
p
�z
e�(h2+�=

p
2z)

2
=2V e��(T�t

�)N1 (d1 (t
�)) d�+
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�
0Z

�1

1

2
p
�z
e�(h2+�=

p
2z)

2
=2I2e

�r(T�t�)N1 (d2 (t
�)) d�+

�
0Z

�1

1

2
p
�z
e�(h2+�=

p
2z)

2
=2I1d�

9=; : (1.9)

The third term in (8) can be written in the form:

�I1e�r(t
��t)N1 (h2 (t)) :

In order to solve the remaining integrals, let us set x = h1 + �=
p
2z in the

integral of the �rst term in (6) and x = h2 + �=
p
2z in the second term in

(8); moreover, let us set:

� (t) =

r
t� � t
T � t ;

as in Geske (1979). The �rst term can be written in the form:

V e��(T�t)
h1Z

�1

1p
2�
e�

x2

2 N1

 
d1 (t)� �xp
1� �2

!
dx;

and the second term in the form:

�e�r(T�t)I2
h2Z

�1

1p
2�
e�

x2

2 N1

 
d2 (t)� �xp
1� �2

!
dx:

The solutions to these integrals can be found by using the fact that:

hZ
�1

1p
2�
e�

x2

2 N

 
d� �xp
1� �2

!
dx;

can be written in the form:
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hZ
�1

dZ
�1

1

2�
p
1� �2

e
�
 
(x2+y2�2xy�)

(2�2�2)

!
dxdy;

which is the bivariate cumulative normal distribution N (h; d; �) with � as
the correlation coe¢ cient. Thus, we obtain:

c (V; t) = (1.10)

V e��(T�t)N2 (h1 (t) ; d1 (t) ; � (t))� I2e�r(T�t)N2 (h2 (t) ; d2 (t) ; � (t))+

�I1e�r(t
��t)N1 (h2 (t)) ;

where the his, the dis and the � are as de�ned previously.
The formula (7) captures the value of the investment opportunity in a

computer software. Venture capitalists need to compute c (V; t) in order to
evaluate whether initially invest in such start-up �rm.

1.3.2 Value with abandonment option

Many start-up companies rely upon venture capitalists to begin operations.
Typically, after the initial injection of funds, addition funding is provided
as the �rm reaches certain performance targets. The payment of the �rst
funding round is comparable to an initial option premium. Further payments
are contingent claims: the right but not the obligation to continue �nancially
supporting the project. If at any point, the venture capitalist ceases to pay,
the project is assumed to end. Therefore, the venture capitalist can be
thought of injecting funds that not only keep the project alive but also
retain the right to pay the remaining payments in the future.

Computer software and Internet start-ups need two or more rounds of
�nancing to be implemented9. However, venture capitalist has an alterna-
tive option to permanent abandonment the project if the operating project
becomes negative; in practice, after the initial injection of funds, it gets
a project in place and an option to abandon to save the follow-on expen-
ditures. This possibility has limited applicability in most real investment
projects because of the high cost of abandonment. In such cases, it would

9We refer the reader to Briginshaw (2002) for Internet valuation.
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not make sense to abandon, unless the cash �ows on the project are even
more negative. To keep the analysis simple, we will ignore the fact that the
abandonment may create costs and will consider the second stage invest-
ment being analogous to the exercise of �nancial put option on the business
value with strike price equals the salvage value from abandonment10.

Let F1 (V; t; &1) denote the value of a European call/put option with
exercise price I1 and expiration date T111. The binary option operator &1 =
�1, when the option is a call/put. Let us now de�ne inductively a call/put
option, with value F2 (F1 (V; t; &1) ; t; &2), on the call/put option whose value
is F1, with exercise price I2 and expiration date T2, where we assume T2 �
T1, and &2 = �1, when the compound option is a call/put.

The value of the investment opportunity F1 (V; t; &1) is:

F1 (V; t; &1) = &1V e
��(T1�t)N1 (&1a1 (t))� &1I1e�r(T1�t)N1 (&1b1 (t)) ; (1.11)

b1 (t) =
ln
�
V
I1

�
+
�
r � � � �2

2

�
(T1 � t)

�
p
T1 � t

; (1.12)

and:

a1 (t) = b1 (t) + �
p
T1 � t: (1.13)

In this case, &1 = �1 and F1 (V; t) is the value of the option to permanent
abandonment.

We can now back up to the �rst stage of the investment and �nd the value
of the installment option. Let us rewrite the partial di¤erential equation that
the value of the project must satisfy as:

@Fk
@t

= rFk � (r � �)V
@Fk
@V

� 1
2
�2V 2

@2Fk
@V 2

; t � Tk; k = 1; 2; T1 � T2:
(1.14)

A formula for the value of F2 (V; t; &1; &2) of a European compound option
can be derived by solving the partial di¤erential equation (14) subject to
the boundary condition at t = T2 :

10See Myers and Majd (1990) for abandonment option.
11See also Zhang (1998 pp. 607-617) for more details.
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F2 (F1 (V; T2; &1) ; T2; &1; &2) =

max (&2F1 (V; T2; &1)� &2I2; 0) ; (1.15)

where F1 (V; T2; &1) stands for the price of the underlying option. Let V �2
denote the value of V such that F1 (V; T2; &1)� I2 = 0. Then for V greater
than V �2 the compound option will be exercised, while for values less than
V �2 it will remain unexercised. Let us de�ne now:

b2 (t) =
ln
�
V
V �2

�
+
�
r � � � �2

2

�
(T2 � t)

�
p
T2 � t

; (1.16)

and:

a2 (t) = b2 (t) + �
p
T2 � t; (1.17)

moreover, we set:

�12 (t) =

r
T2 � t
T1 � t

: (1.18)

Following the steps (5)� (9) ; we �nd the value of the compound option
F2 (V; t; &1; &2):

F2 (V; t; &1; &2) = (1.19)

&2&1V e
��(T1�t)N2 (&2&1a2 (t) ; &1a1 (t) ; &2�12 (t))+

�&2&1I1e�r(T1�t)N2 (&2&1b2 (t) ; &1b1 (t) ; &2�12 (t))

�&2I2e�r(T2�t)N1 (&2b2 (t)) ;

where the ais, the bis and the correlation coe¢ cient, �12; are as de�ned
previously. In this case, &1 = �1, &2 = +1 and F2 (V; t) is the value of the
project with the opportunity to abandon the investment.
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1.3.3 Value with temporary suspension

Venture capital is a typical multi-stage investment. In practice, the full-scale
business can be viewed as an initial injection of funds plus additional fund-
ing, only when the research or management goal of earlier stage is achieved.
Due to this feature, the real options literature emphasizes that start-up
ventures are analogous to the exercising of multicompound options, as the
progress towards completion usually requires a sequence of successful invest-
ments, each of which opens the possibility to undertake the next phase of
expenditures.

Instead of abandoning, venture capitalist may choose to keep its project
alive by maintaining its initial installment and renouncing to future invest-
ments (i.e. advertising and upgrading expenditures). For our purpose, we
will consider that the project may be temporarily and costlessly suspended
and that this opportunity can be seen as a sequence of three or more operat-
ing call/put options; that is, when a venture capitalist exercises its option to
get started the project, it gets a project in place and a chain of interrelated
options, to temporarily and costlessly shut-down or to continue funding. If
it exercises the option to suspend, it gets the option to invest again or to
continue suspending, and so on.

Let examine the opportunity to temporarily shut-down in more detail
through a three-stage model, generalizing the well-known Geske�s expression
to the case of a call on a put on a call. As before, we can work backwards
to determine the value of the operating option in each stage of the project.

Let F (V; t; &1) denote the value of a European option with exercise price
I1 and expiration date T1. An analytic expression for F (V; t; &1) is given by
(11):

F1 (V; t; &1) = &1V e
��(T1�t)N1 (&1a1 (t))� &1I1e�r(T1�t)N1 (&1b1 (t)) ;

where a1 (t) equals (13) ; b1 (t) equals (12) andN (:) is the cumulative normal
distribution function. In this case, &1 = +1 and F1 (V; t) is the value of the
option to restart the project.

Let us �nd now the value of the put option, F2; to temporarily shut-down
in the second stage, for its salvage value I2 and expiration date T2; where
T2 � T1. In the section 3:2 the value of the European compound option, F2
is found to be:

F2 (V; t; &1; &2) = (1.20)
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&2&1V e
��(T1�t)N2 (&2&1a2 (t) ; &1a1 (t) ; &2�12 (t))+

�&2&1I1e�r(T1�t)N2 (&2&1b2 (t) ; &1b1 (t) ; &2�12 (t))

�&2I2e�r(T2�t)N1 (&2b2 (t)) :

In this case &1 = +1, &2 = �1, and (20) is a put on a call. Once we know
the value of the option to costlessly shut-down and restart a project, we
can now back up to the �rst stage of the investment and �nd the value of
the compound option F3 to get-started the funding; this option has exercise
price, I3, and expiration date T3, T3 � T2 � T1. Because F3 is a function of
V and t, the usual riskless hedging argument yields the partial di¤erential
equations (14) where in this case k = 3; the boundary condition at t = T3
is:

F3 (F2 (V; T3; &1; &2) ; T3; &1; &2; &3) =

max (&3F2 (V; T3; &1; &2)� &3I3; 0) ; (1.21)

Let us set V �3 the value of V such that F2 (V; T3; &1; &2) � I3 = 0. Then
for V greater than V �3 the 3

rd� compound option will be exercised, while
for values less than V �3 it will remain unexercised. Let us de�ne now:

b3 (t) =
ln
�
V
V �3

�
+
�
r � � � �2

2

�
(T3 � t)

�
p
T3 � t

; (1.22)

and:

a3 (t) = b3 (t) + �
p
T3 � t: (1.23)

Finally, let � (t) denote the 3-dimension symmetric correlation matrix:

� (t) =

24 1 &2�12 &3&2�13
&2�12 1 &3�23
&3&2�13 &3�23 1

35 ; (1.24)

with entries �ij (t) =
q

Tj�t
Ti�t , for 1 � i < j � 3. The solution of the Black-

Scholes partial di¤erential equation (14) is written in the form:
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F3 (V; t) = e
�r(T3�t)

+1Z
�1

~c (�; 0)
1

2
p
�z
e�(u��)

2=4zd�:

Substituting the expression for F2 into this solution and changing the
variable u with &3&2&1b3, yields the following identity:

F3 (V; t; &1; &2; &3) =

e�r(T3�t)

8<:&3&2&1V e��(T1�T3)
0Z

�1

1

2
p
�z
e�(&3&2&1b3+�=

p
2z)

2
=2�

N2 (&2&1a2 (T3) ; &1a1 (T3) ; &2�12 (T3)) d�+

�&3&2&1I1e�r(T1�T3)
0Z

�1

1

2
p
�z
e�(&3&2&1b3+�=

p
2z)

2
=2

N2 (&2&1b2 (T3) ; &1b1 (T3) ; &2�12 (T3)) d�+

�&3&2I2e�r(T2�T3)
0Z

�1

1

2
p
�z
e�(&3&2&1b3+�=

p
2z)

2
=2N1 (&2&1b2 (T3))

�&3I3
0Z

�1

1

2
p
�z
e�(&3&2&1b3+�=

p
2z)

2
=2d�

9=; : (1.25)

The last term in the expression of F3 (V; t; &1; &2; &3) can be written in the
form:

�&3I3e�r(T3�t)N1 (&3&2&1b3 (t)) :

In order to write the third term in a form that resembles the one in Geske
(1979), let us change to variables x = &3&2&1b3 (t) + �=

p
2z:

�&3&2I2e�r(T2�t)
&3&2&1b3(t)Z
�1

1p
2�
e�

x2

2 N1

 
&2&1b2 (t)� x&3�23p

1� &3�223

!
dx;
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thus, we obtain:

�&3&2I2e�r(T2�t)N2 (&3&2&1b3 (t) ; &2&1b2 (t) ; &3�23 (t)) :

Let us now set the other terms in (25) in the required form. Changing to
variables x = &3&2&1a3 (t) + �=

p
2z in the integral of the �rst term above

and x = &3&2&1b3 (t) + �=
p
2z in the second term; �nally, we replace

�12 (T3) with a function of t, according to the following rule:

�12 (T3) =
(�12 (t)� �13 (t) �23 (t))q�
1� �213 (t)

� �
1� �223 (t)

� : (1.26)

The second term can be written in the form:

�I1e�r(T1�t)
&3&2&1b3(t)Z
�1

1p
2�
e�

x2

2 �

N2

 
&2&1b2(t)�x&3�23(t)q

(1��223(t))
; &1b1(t)�x&3&2�13(t)q

(1��213(t))
; &2

(�12(t)��13(t)�23(t))q
(1��213(t))(1��223(t))

!
;

and �rst term:

&3&2&1V e
��(T1�t)

&3&2&1a3(t)Z
�1

1p
2�
e�

x2

2 � (1.27)

N2

 
&2&1a2(t)�x&3�23(t)q

(1��223(t))
; &1a1(t)�x&3&2�13(t)q

(1��213(t))
; &2

(�12(t)��13(t)�23(t))q
(1��213(t))(1��223(t))

!
:

Let N3 (&3&2&1b3; &2&1b2; &1b1; � (t)) denote the 3� dimension multinor-
mal cumulative distribution function, with upper limits of integration &1b1;
&2&1b2 and &3&2&1b3 and correlation matrix � (t) de�ned in (24) :

Now we remind that:
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kZ
�1

1p
2�
e�

x2

2 N2

0@ h� �hkxq
1� �2hk

;
d� �dkxq
1� �2dk

;
(�dh � �dk�hk)q�
1� �2dk

� �
1� �2hk

�
1A dx;

can be written in the form:

N3 (k; h; d; �) =
1

(2�)
3
2
p
j�j

kZ
�1

hZ
�1

dZ
�1

e�
1
2(X

0��1X)dX;

� (t) =

24 1 �dh �dk
�dh 1 �hk
�dk �hk 1

35 ; X =

24 xy
z

35 ;
and N3 (k; h; d; �hk; �dk; �dh) is the trivariate cumulative normal distribution.

Finally, we succeed in writing (27) and (28) in terms of the trivariate
cumulative function according to the following generalized rule:

&3&2&1b3Z
�1

1p
2�
e�

x2

2

N2

0@ &2&1b2 � x&3�23q�
1� �2

23

� ;
&1b1 � x&3&2�13q�

1� �213
� ; &2

(�12 � �13�23)q�
1� �213

� �
1� �223

�
1A dx =

= N3 (&3&2&1b3; &2&1b2; &1b1; � (t)) :

The value of the compound option, F3 (V; t; &1; &2; &3) ; is:

F3 (V; t; &1; &2; &3) =

&3&2&1V e
��(T1�t)N3 (&3&2&1a3 (t) ; &2&1a2 (t) ; &1a1 (t) ; � (t))+

�&3&2&1I1e�r(T1�t)N3 (&3&2&1b3 (t) ; &2&1b2 (t) ; &1b1 (t) ; � (t))+
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�&3&2I2e�r(T2�t)N2 (&3&2&1b3 (t) ; &2&1b2 (t) ; &3�23 (t))+

�&3I3e�r(T3�t)N1 (&3&2&1b3 (t)) : (1.28)

Unlike most compound options in the �nancial market, it is perfectly
possible for the �rm to suspend investment at a certain time T2, and resume
it later; so, in the case, &1 = +1, &2 = �1, &3 = +1 and F3 (V; t) is a call on
a put on a call.

1.4 Real option modelling with jump processes

1.4.1 Introduction

This section reviews some models with jumps12 and jump-di¤usion processes
in particular. These processes have become increasingly popular for mod-
elling market �uctuations, both for option pricing and for real option valu-
ation.

Empirical evidence con�rms the systematic mispricing of the Black-
Scholes call option pricing model. A number of explanations for the sys-
tematic price bias have been suggested13. Among these is the presence of
jumps in price. Di¤usion models cannot properly capture sudden, discon-
tinuous moves in price. This well-known fact leads to the argument that
using continuous or discontinuous models has important consequences for
the representation of the risk.

Merton (1976) have suggested that incorporating jumps in option val-
uation models may explain some of the large empirical biases exhibited by
the Black-Scholes model. According to the Merton speci�cation, the ar-
rival of normal information leads to price changes which can be modeled
12Financial models with jumps fall into two categories. In the �rst category, called

jump-di¤usion models, the "normal" evolution of prices is given by a di¤usion process,
punctuated by jumps at random intervals. Here the jumps represent rare events, as
crashes and large drawdowns. The second category consists of models with in�nite number
of jumps in every interval, which are called infinite activity models. In these models
Brownian component is not needed since the dynamics of jumps is already rich enough
that such models give a more realistic description of the price process at various time
scales. The interested reader can see Cont and Tankov (2004) for the necessary tools for
understanding these models and the concepts behind them.
For our purpose we deal with the reasons which motivate the use of jump processes for

modelling real options and R&D investments in particular.
13See for example Geske and Roll (1984).
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as a lognormal di¤usion, while the arrival of abnormal information gives
rise to lognormally distributed jumps in the security return, which can be
modelled as a Poisson process. If the underlying security follows a mixed
jump-di¤usion process, then the resultant equilibrium option price will sys-
tematically di¤er from the Black-Scholes equilibrium option price.

Real option studies are usually written in a continuous time framework
for the underlying dynamics. However, the existence of crises and shocks on
investment market generates discontinuities. The impact of these crises on
the decision process is then an important feature to consider. The assump-
tion of jump-di¤usion process better describe the evolution of asset value
due to the risky nature of many early investments. Of course new ventures
are subject to several, qualitatively di¤erent sources of risk. There is the
uncertainty associated with the market factors outside the control of the
�rm, that causes marginal changes in the asset value. This is related to the
demand for the product and production costs and is modeled by a standard
geometric Brownian motion. There is the exogenous risk associated with
the actions of a competitor, and �nally, there is the technical uncertainty
which is idiosyncratic to the �rm. The technical risk which represents the
discontinuous arrival of new information has more than a marginal e¤ect on
the asset value. This component is modelled by a jump process re�ecting
the non-marginal impact of information.

Let us consider the following examples:

�The policy process is particular relevant for the �rm engaged in R&D
and other new ventures. Governments can not only deploy measures to
reduce the uncertainty facing potential investors, they can also create un-
certainty through the prospect of policy changes. It is commonly believed
that expectations of shifts of policy can have powerful e¤ects on decisions
to invest in these early projects. However, policy uncertainty is not likely
to be well captured by a Brownian motion process; it is more likely to be a
Poisson jump.

�R&D in pharmaceuticals and biotechnologies frequently involves up-
ward jumps or downward jumps, for example drugs can turn into mega-
selling blockbuster products or su¤er clinical trial failures and withdrawal
from the markets. Hence, real R&D investment appraisal should rely on a
model focusing on these aspects, rather on standard Brownian motion.

�The opportunities for a �rm to continuously expand its technology
represents a critical component of the software providing industry�s invest-
ment decisions. The �rms�ability to later expand capacity is clearly more
valuable for more volatile business with higher returns on project, such as
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computer software or biotechnology, than it is for traditional business, as
real estate or automobile production. Nevertheless, when the new software
product comes together with technological innovations, there is also consid-
erable uncertainty with respect to the actions of a competitor or changes in
environment before or soon after technological improvements. For example,
a software product may fail because of technological advances in hardware.

The current valuation of investments based on option methodology as-
sumes a continuous cash-�ow generation process which is inadequate when
these types of risk jointly determine the value of a new venture.

1.4.2 Merton�s approach

Merton (1976) extended the Black-Scholes model to include situations when
the underlying asset returns are discontinuous. As in many economic mod-
els, the discontinuity is modeled with a Poisson process. The Poisson dis-
tributed event is the arrival of an important piece of information about the
underlying instrument. The arrivals of information are assumed to be inde-
pendently and identically distributed. The probability of an event during a
time interval of length h (h can be as small as possible) can be written as

Prob: [the event does not occur in the time interval (t; t+ h)] = 1��h+O (h) ;

P rob: [the event occurs in the time interval (t; t+ h)] = �h+O (h) ;

P rob: [the event occurs more than once in the time interval (t; t+ h)] = O (h) ;

where O (h) represents a function of h which goes to zero faster than h:
With the above description of the Poisson distribution, Merton (1976)

assumed the following stochastic process for the underlying asset:

dS

S
= (�� �k) dt+ �dZ + (Y � 1) dq; (1.29)
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where � is the instantaneous expected return on the underlying asset; � is
the instantaneous standard deviation of the return, conditional on no arrivals
of important new information14; dz is the standard Brownian motion; dq is
the independent Poisson process with rate �t (the mean number of jumps
per unit time); (Y � 1) is the proportional change in the stock price if the
Poisson event occurs and k � E [Y � 1], where E is the expectation operator
over the random variable Y ; dq and dz are assumed to be independent
[so that E (dzdq) = 0].

Merton�s approach proposes to ignore risk premia for jumps. He assumes
that nonsystematic risk (jump component) is completely diversi�able, that
is, the �rm will not demand any additional return over the risk free rate
for being exposed to this source of risk. This fact will allow us to specify
a unique equivalent risk-neutral measure by setting the market price of risk
of q to zero. A contingent claim F on the stock price must satisfy:

@F

@�
= rF � (r � �k)S@F

@S
� 1
2
�2S2

@2F

@S2
� �E fF (SY; t)� F (S; t)g ;

where � is the time time to expiration and r is the risk-less interest rate.
With the Poisson distribution assumption of information arrivals and the
underlying asset return distribution process (19) Merton obtained a pricing
expression for the European call option with strike price K; as follows:

F (S; �) =

1X
n=0

e��� (��)n

n!

n
En

h
W
�
SXne

��k� ; � ;K; �2; r
�io

; (1.30)

where Xn has the same distribution as the product of n independently and
identically distributed variables Y , and X0 = 1; En represents the expec-
tation operator over the distribution of Xn and W is the standard Black-
Scholes formula for a European call option.

Merton noted a special case of no little interest when the random variable
Y has a log-normal distribution. Let �2 denote the variance of log Y , and
let  � log (1 + k) : In that case, the Black-Scholes model for normally
distributed stock prices with a constant variance might be adjusted, where
the adjusted interest rate is:

14Further, it is possible to include both a time-varying variance and time-varying interest
rate; see Agliardi and Agliardi (2003) and Amin (1993) for a discussion of this point.
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rn = r � �k +
n

�
:

Merton�s solution is written as the adjusted Poisson distribution function
times the adjusted Black-Scholes option price W (S) :

F (S; �) =

1X
n=0

e��
��
�
���
�n

n!
fW [S; � ;K;�n; rn]g ; (1.31)

where:

�n =

r
�2 + �2

�n
�

�
;

and:
��= � (1 + k) :

Merton also showed an adjusted �delta� for the mixed di¤usion-jump
process model, that is the number of shares that should be bought per each
call option sold that would create a riskless hedge, which is the change in
the option price per change in the stock price. He argued that there is
a delta which eliminates all systematic risk (assuming the jumps are not
systematic), which is the �rst derivative of equation (21) :

N� =
1X
n=0

e��
��
�
���
�n

n!
f� [d (n)]g ;

where:

d (n) =
log
�
S
E

�
+
�
rn +

�2

2

�
� + n�2

2p
�2� + n�2

;

and � (:) is the cumulative distribution function of a standard normal dis-
tribution.

Of course, when � = 0; (21) reduces to the Black-Scholes formula.
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1.4.3 Further reading

Gukhal (2003) derives analytical valuation formulas for compound options
when the underlying asset follows a jump-di¤usion process, applying these
results to value extendible options, American call options on stocks that
pay discrete dividends and American options on assets that pay continuous
proportional dividends.

As before, Gukhal considers a frictionless continuous time economy where
information arrives both continuously and discontinuously. This is modeled
by a mixed di¤usion-jump process (19) : Consider a compound call option
written on the European call CE (K;T ) with expiration date T1 and strike
price K1; where T1 < T: Let CC [CE (K;T ) ;K1; T1] denote this compound
option. This compound option is exercised at time T1 when the value of
the underlying asset, CE (S1;K; T1; T ), exceeds the strike price K1: When
CE (S1;K; T1; T ) < K1, it is not optimal to exercise the compound option
and hence expires worthless. The asset price at which one is indi¤erent
between exercising and not exercising is speci�ed by the following relation:

CE (S
�
1 ;K; T1; T ) = K1:

When it is optimal to exercise the compound at time T1, the option holder
pays K1 and receives the European call CE (K;T1; T ) : This European call
can in turn be exercised at time T when ST exceed K and expires worthless
otherwise. Hence, the cash�ows to the compound option are an out�ow of
K1 at time T1 when S1 > S�1 , a net cash�ow at time T of ST � K when
S1 > S

�
1 and ST > K; and none in the other states.

The value of the compound option is the expected present value of these
cash�ows and is given by:

CC [CE (K;T ) ;K1; 0; T1] =

E0

h
e�rT (ST �K) 1fST>Kg1fS1>S�1g

i
+ E0

h
e�rT1 (�K1) 1fS1>S�1g

i
=

E0

h
e�rTCE (S1;K; T1; T ) 1fS1>S�1g

i
� E0

h
e�rT1K11fS1>S�1g

i
; (1.32)

where CE (S1;K; T1; T ) is given in Merton (1976) :
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To examine option pricing when the asset price dynamics include the
possibility of non-local changes, Gukhal conditions the expectations on the
number of jumps in the intervals [0; T1] ; and (0; T1], denoted by n1 and n2;
respectively. The �rst expectation in (22) can then be written as:

E0

h
e�rTCE (S1;K; T1; T ) 1fS1>S�1g

i
=

E0

( 1X
n1=0

"
e�rT1ET1

 1X
n2=0

h
e�r(T�T1) (ST �K) 1fST>Kg j n2

i
prob (n2)

!
�

1fS1>S�1g j n1
i
prob (n1)g :

The evaluation of this expectation requires the joint density of two Poisson
weighted sums of correlated normals. Thus, it is useful to work with the

logarithmic return, xt = ln
�
St
S0

�
; rather than the price.

With Y log-normally distributed, Gukhal obtained a pricing expression
for a European compound call option:

1X
n1=0

e��T1(�T1)
n1

n1!
K1e

�rT1N [a2] +

1X
n1=0

1X
n2=0

e��T1(�T1)
n1

n1!

e���(��)
n2

n2!
fS0N2 [a1; b1; �1T ] +

�Ke�rTN2 [a2; b2; �1T ]
	
;

where:

a1 =
ln (S0=S

�
1) +

�
�JD1 + �

2
JD1=2

�
T1

�JD1
p
T1

;

a2 = a1 � �JD1
p
T1;

b1 =
ln (S0=K) +

�
�JD1 + �

2
JD=2

�
T

�JD
p
T

;
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b2 = b1 � �JD
p
T ;

and:

�1T =
cov (xT1 ; xT )p
var (xT1) var (xT )

;

where �1T is the correlation coe¢ cient between xT1 and xT .

Ball and Torous (1985) note that the Black-Scholes call option pric-
ing model exhibits systematic empirical biases and that Merton call option
pricing model, which explicitly admits jumps in the underlying security re-
turn process, may potentially eliminate these biases. They provide statisti-
cal evidence consistent with the existence of lognormally distributed jumps
in a majority of the daily returns of a sample of NYSE listed common
stocks. However, they �nd no operationally signi�cant di¤erences between
the Black-Scholes and Merton model prices of the call options written on
the sampled common stocks.

Amin (1993) develops a simple, discrete time model to value options
when the underlying process follows a jump-di¤usion process. Multivari-
ate jumps are superimposed on the binomial model of Cox-Ross-Rubinstein
(1979) to obtain a model with a limiting jump di¤usion process. This model
incorporates the early exercise feature of American options as well as arbi-
trary jump distributions. It yields an e¢ cient computational procedure that
can be implemented in practice.

Cont and Tankov (2004) provide an overview of theoretical, numeri-
cal and empirical research on the use of jump processes in �nancial mod-
elling. The goals of the book are to explain the motivation for using Lévy
processes15 in �nancial modelling and to provide real examples of uses of
jump processes in option pricing and risk management.
15A Lévy process is a process with stationary and independent increments which is based

on a more general distribution than the normal distribution. In order to represent skewness
and excess kurtosis, the distribution in a Lévy process has to be in�nitely divisible. For
every such in�nitely divisible distribution, there is a stochastic process X = fXt; t � 0g
called Lévy process, which starts at zero and has stationary and independent increments
such that the distribution of an increment over [s; s+ t] ; s; t � 0:; i.e Xt+s � Xs has
(� (u))t as its characteristic function.
Generally a Lévy process may consist of three independent components, namely a linear

drift, a Brownian di¤usion and a pure jump. The latter is characterized by the density of
jumps, which is called the Lévy density. Let f (x) denote this density: The Lévy density
has the same mathematical requirements as a probability density except that it does not
need to be integrable and must be zero at the origin. In relation a Lévy density is expressed



1.4. REAL OPTION MODELLING WITH JUMP PROCESSES 39

Finally, Cox and Ross (1976), Naik and Lee (1990) and Bates (1996)
deal with jump processes in modelling �nancial derivatives.

More recently, some papers in the �nance literature study Lévy processes
in real options pricing. Barrieu and Bellamy (2005) analyze the impact of
market crises on investment decision via real option theory. The investment
project, modelled by its pro�ts/costs ratio, is characterized by a mixed dif-
fusion process, whose jumps represent the consequences of crises on the
investment �eld. This paper is dedicated to the analysis of the exercising
time properties in an unstable framework. The modelling of the underlying
dynamics involves a mixed-di¤usion, made up of Brownian motion and Pois-
son process. The jumps are negative as to represent troubles and di¢ culties
occurring in the underlying market.

This paper focus on a single investor evolving in a universe, de�ned as a
�ltered probability space (
;F ; (Ft) ;P) : He has to decide whether he will
undertake a given investment project and, if so, when it is optimal to invest.
An in�nite time horizon for the investment is considered. The investment
opportunity at time t = 0 is given by:

C0 = sup
�2�

E
�
exp (���) (S� � 1)+

�
;

where E is the expectation with respect to the prior probability measure
P, � is the set of the (Ft)�stopping times, (St; t � 0) is the process of

as � (dx) = f (x) dx.
A Lévy process can be completely speci�ed by its moment generating function

E
�
euXt

�
= e�(u)t: � is the Lévy exponent. The equivalent description is in terms of

the characteristic exponent, �; de�nable from the representation E
h
ei�X(t)

i
= e��(�)t;

where i =
p
�i and hence � (u) = � (�iu) : For example, if the jump component is a

compound Poisson process, then the Lévy exponent is

� (u) = u2 +
�2

2
u2 +

Z +1

�1
(eyu � 1) f (dy) ;

and f (dy) satis�es Z
Rf0g

min f1; jyjg f (dy) < +1:

The cumulant characteristic function � (u) is often called the characteristic exponent,
which satis�es the following L�evy �Khintchine formula;

� (u) = iu � �2

2
u2 +

Z +1

�1

�
eyui � 1� yui1fjyj<1g

�
� (dy) ;

where the triplet of the Lévy characteristics is given by
�
; �2; �

�
:
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the pro�ts/costs ratio and 1 is the strike price. The pro�ts/costs ratio is
characterized by the following dynamics

�
dSt = St� [�dt+ �dWt + 'dMt]

S0 = s0
;

where (Wt; t � 0) is a standard (P, (Ft))�Brownian motion and (Mt; t � 0)
is the compensated martingale associated with a (P, (Ft))�Poisson process
N: The Poisson process is assumed to have a constant intensity � and the
considered �ltration is de�ned by Ft = � (Ws;Ms; 0 � s � t) :

Equivalently, the process (St; t � 0) may be written in the form St =
s0 exp (Xt) where (Xt; t � 0) is a Lévy process with the Lévy exponent 	

E (exp (�Xt)) = exp (t	(�)) ;

with

	(�) = �2
�2

2
+ �

�
�� �'� �

2

2

�
� �

�
1� (1 + ')�

�
;

Hence

E (exp (iX1)) = exp

�
i�

�
�� �'� �

2

2

�
� �2�

2

2
+ �

�
ei� ln(1+') � 1

��
= exp (�� (�)) :

Therefore, the Lévy measure associated with the characteristic exponent �
is expressed in terms of the Dirac measure � as: � (dx) = ��ln(1+') (dx) :
Furthermore, Barrieu and Bellamy assume: (1) 0 < s0 < 1, that is, delaying
the project realization is only relevant in the case the pro�ts/costs ratio
is less than one; (2) � > 0 and (3) 0 > ' > �1: The last assumption
states that the jump size is negative. This hypothesis together with the
identity: St = s0 (1 + ')

Nt � e(���')t � e(�Wt� 1
2
�2t) ensure that the process

S remains strictly positive. Finally, they impose the integrability condition:
� > sup (�; 0) :

There exists an optimal frontier L�' such that:

sup
�2�

E
�
exp (���) (S� � 1)+

�
= E

�
exp

�
���L�'

��
S�L�' � 1

�+�
;
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where �L is the �rst hitting time of the boundary L by the process S,
de�ned as �L = inf ft � 0;St � Lg : After having analyzed the implications
of di¤erent modelling choices, Barrieu and Bellamy study the real option
associated with the investment project. Mordecki (2002) also studies optimal
stopping and perpetual options for Lévy processes.

The focus of this chapter up to this point is on optimal investment char-
acteristics with respect to single �rm�s investment decisions. However, the
impact of competitive pressure is an important feature to take into account
when dealing with R&D investments.

1.5 Real option and game theory

1.5.1 Introduction

A feature that the vast majority of the real option articles have in common
is the lack of strategic interaction across option holders. In this context,
investment strategies are formulated in isolation, without regard to the po-
tential impact of other �rm�s exercise strategies. The standard real options
framework, (Dixit and Pindick,1994) ; has been based on the assumption
that an investment opportunity in a monopoly is exclusive so, since increas-
ing uncertainty increases the value of the option, the optimal timing choice
leads to delay investment. However, the complexity of reality suggests that
strategic relationships between the economic agents, may play an important
role. Investigating investment decisions when �rst movers can preempt and
enjoy an advantage, leads to more general models involving strategic di-
mensions and game theory; in this context, results di¤er from those viewed
in monopoly and lead to Stackelberg leader-follower framework, where the
commitment of an irreversible investment and the threat of a �rst mover may
cancel the strategic e¤ect resulting from single-agent framework. Under im-
perfect competition the investment timing strategy of an incumbent �rm is
coupled to the timing tactics of the rivals and leads to hasten, rather than
delay, the cost of investment. All those considerations make the optimal
timing choice a very complex problem.

Strategic consideration, particularly with regard to R&D activities are
recently being treated in the real options literature. The timing and value
of many early investments depend critically on competitive interaction. For
example, the payo¤ from R&D projects may be substantial if the �rm has
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monopolistic access to the technology research, but can become signi�cantly
modi�ed if competitors have similar access. That is the case of two or more
�rms engaged in a patent race in the pharmaceutical industry; the only
non-negative cash �ow is received by the winning �rm at the end of the
race. In a few instances when related options are held by a small number
of �rms with an advantage to the �rst mover, each �rm�s ability to delay is
undermined by the fear of preemption. Thus, many models of competitive
strategy using real options have focused on the trade-o¤ between �exibility
and commitment in capacity investments.

A large economics literature studies strategic exercise games applying
these to a wide array of real-world investment contexts, where the pay-
o¤s from a �rm�s investments are fundamentally a¤ected by the investment
strategies of its competitors. Several articles appear as benchmark in this
�eld. The seminal articles of Smit and Trigeorgis (1997, 2006), Baldurs-
son (1998), Grenadier (1996, 2002), Lambrecht and Perraudin (2003) and
Miltersen and Schwartz (2004) illustrate the use of real option and game
theory principles to analyze prototypical investment opportunities involving
important competitive/strategic decisions under uncertainty.

1.5.2 Grenadier�s model

Grenadier (2002) develops an equilibrium framework for strategic options
exercise games. The author provides a tractable approach for deriving equi-
librium investment strategies in continuous time Cournot-Nash framework.
In this model each �rm from the n-�rms oligopoly holds a sequence of in-
vestment opportunities that are like call options over a production project
of capacity addiction. The �rst assumption is that all �rms are equal, with
technology to produce a single, homogeneous good. The output is in�ni-
tively divisible and the unity price of the product is P (t) : At time t, �rm i
produces qi (t) units of output at price P (t) = D [X (t) ; Q (t)], where D is
the inverse demand function, X (t) is an exogenous shock process to demand
and Q (t) is the industry supply process. The model assumes throughout
that investors are risk neutral and can borrow and lend freely at a constant
safe interest rate r > 0. Firm i has no variable costs of production. At
any instant the pro�t �ow for �rm i is given by �i [X (t) ; qi (t) ; Q�i (t)] �
qi (t)�D [X (t) ; qi (t) +Q�i (t)] given the current state of the industry. Firms
choose output as their strategy variable. At any point in time, each �rm
can invest in additional capacity to increase its output by an in�nitesi-
mal increment dqi � dQ

n . The cost of increasing output is K per unit of
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output. The shock X (t), follows a time-homogeneous di¤usion process of
the form dX = � (X) dt + � (X) dz, where dz is a Wiener process16. Let
V i [X; qi; Q�i; qi (t) ; Q�i (t)] denote the value of �rm i. Given the initial val-
ues of the state variable [x; qi; Q�i] and strategies for all �rms, qi; i = 1; ::; n;
V i can be written as the discounted expectation of future cash �ows:

V i [X; qi; Q�i; qi (t) ; Q�i (t)] =

Ex;q

�Z 1

0
e�rt�i [X (t) ; qi (t) ; Q�i (t)] dt�

Z 1

0
e�rtKdqi (t)

�
;

where the expectation operator is conditional on the initial values [X; qi; Q�i].
The strategies q� (t) constitute a Counot-Nash equilibrium if

V i
�
X; qi; Q�i; q

�
i (t) ; Q

�
�i (t)

�
= sup
fqi(t):t>0g

V i
�
X; qi; Q�i; qi (t) ; Q

�
�i (t)

�
; 8i:

Firms choose quantities q�i (t) (i = 1; ::; n) maximizing their payo¤s and con-
sidering the competitors best response Q��i: Grenadier focuses on the case of
symmetric Nash equilibrium q�i (t) = q

�
j (t) for all i; j. Therefore, the optimal

output for n-�rms oligopoly symmetric Nash equilibrium is q�i (t) =
Q�(t)
n :

Each �rm faces a dynamic programming problem of determining its op-
timal investment strategy, taking into account its competitors�investment
strategies. The derivation of �rm�s value can be obtained by applying the
option pricing approach. In more speci�c terms, each �rm holds a sequence
of options on the marginal �ow of pro�ts, fully recognizing that the exercise
of investment options by its competitor will impact its own payo¤ from ex-
ercise. Let us begin by considering �rm i0s optimal investment strategies,
where �rm i takes all competitor�s strategies as given. Thus, while �rm i
controls the evolution of the process qi (t), it recognizes that the evolution
of the process Q�i (t), which is beyond �rm i�s control, helps determine the
payo¤ from the exercise of its investment options. Given these properties,
the optimal exercise policies of all of these options will take the form of
trigger strategies: the option to add capacity is exercised by �rm i when
the demand shock X (t) reaches a threshold level that is a function of the
current state of the industry.

Grenadier summarizes the equilibrium investment strategies in proposi-
tion 1, with a di¤erential equation and three boundary conditions. The �rst

16 If �(X) = � �X and �(X) = � �X; we get the known geometric Brownian motion.



44 CHAPTER 1. AN OVERVIEW

and second boundary conditions are the value-matching and smooth-pasting
conditions, which are very known in continuous-time real options framework.
However, the third condition is the strategic one, requiring that each �rm
i is maximizing its value V i given the competitor�s strategies. The third
condition is a value-matching at the competitors�threshold �X�i (qi; Q�i) ;
which is equal to �X i (qi; Q�i) ; due to the symmetric equilibrium. The third
condition is also like a �xed-point search over the best response maps. How-
ever, this condition will not be necessary with the Grenadier�s Proposition 2,
extending the myopic optimality concept to oligopolies. Proposition 2 tells
that the myopic �rm threshold is equal to the �rm�s strategic threshold.
Proposition 3 establishes the symmetric Nash equilibrium: each �rm will
exercise its investment option whenever X(t) rises to the trigger X�(Q). Let
the value of the myopic �rm�s marginal output be denoted by mi(X; qi; Q�i)

with mi(X; qi; Q�i) =
@M i

@qi (X; qi; Q�i); where M
i(X; qi; Q�i) is the value of

the myopic �rm. Finally, given the symmetry X�
i (qi; Q�i) = X

�(Q) because

qi =
Q
n and Q�i =

(n�1)
n Q.

If m(X;Q) denote the value of a myopic �rm�s marginal investment, the
following di¤erential equation and two boundary conditions determine both
X�(Q) and m(X;Q):

1

2
�(X)2mXX + �(X)mX � r �m+D(X;Q) +

Q

n
DQ(X;Q) = 0;

subject to a value-matching condition at X�(Q):

m[X�(Q); Q] = K;

and a smooth-pasting condition:

@m

@X
[X�(Q); Q] = 0:

Grenadier�s section 3 investigates the impact of an increasing competi-
tion on the value of the option to invest. The author demonstrates that the
presence of competition drastically erodes the value of the option to wait.
While for reasonable parameter values a monopolist may not invest until
the NPV is double the cost of investment, with competition the traditional
NPV rule becomes approximately correct, even for industries with only a
few competitors.
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1.5.3 Further reading

Several articles integrated real options and game-theoretic framework in a
more general context. Baldursson (1998) studied an oligopoly where �rms
facing a stochastic inverse demand curve use capacity as strategic variable.
Capacity may be adjusted continuously over time with linear cost. The
analysis uses the technique of a �ctitious social planner and the theory of
irreversible investment under uncertainty. Examples indicate that qualita-
tively the price process will be similar in oligopoly and competitive equilib-
rium. When �rms are nonidentical, e.g. in initial size, and even if they are
alike in other respects, substantial time may pass until they are all the same
size. Much of that time, one �rm may dominate the market.

Mason and Weeds (2001) examine irreversible investment in a project
with uncertain return, when there is an advantage to being the �rst to
invest and externalities to investing when others also do so. Preemption de-
creases and may even eliminate the option values created by irreversibility
and uncertainty. Externalities introduce ine¢ ciencies in investment deci-
sions. Preemption and externalities combined can hasten, rather than delay,
investment, contrary to the usual outcome.

Lambrecht and Perraudin (2003) introduces incomplete information and
preemption into an equilibrium model of �rms facing real investment de-
cisions. The optimal investment strategy may lie anywhere between the
zero-NPV trigger level and the optimal strategy of a monopolist, depending
on the distribution of competitors�costs and the implied fear of preemption.
The model implies that the equity returns of �rms which hold real options
and are subject to preemption will contain jumps and positive skewness.

Lambrecht (2004) analyzes the timing of mergers motivated by economies
of scale. He shows that �rms have an incentive to merge in periods of eco-
nomic expansion. Relaxing the assumption that �rms are price takers, he
�nds that market power strengthens the �rms�incentive to merge and speeds
up merger activity. Finally, comparing mergers with hostile takeovers Lam-
brecht shows that the way merger synergies are divided not only in�uences
the acquirer�s and acquiree�s returns from merging, but also the timing of
the restructuring.

Ziegler (2004) shows how to combine game theory and option pricing in
order to analyze dynamic multi-person decision problems in continuous time
and under uncertainty. The basic intuition of the method is to separate the
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problem of the valuation of payo¤s from the analysis of strategic interac-
tions. Whereas the former is to be handled using option pricing, the latter
can be addressed by game theory. The text shows how both instruments can
be combined and how game theory can be applied to complex problems of
corporate �nance and �nancial intermediation. Besides providing theoreti-
cal foundations and serving as a guide to stochastic game theory modelling
in continuous time, the text contains numerous applications to the theory of
corporate and �nancial intermediation, such as the design of debt contracts,
capital structure choice, the structure of banking deposit contracts, and the
incentive e¤ects of deposit insurance. By combining arbitrage-free valua-
tion techniques with strategic analysis, the game theory analysis of options
actually provides the link between markets and organizations.

A new stream in this literature combines real options with game theory
to analyze the competitive interactions of R&D ventures. Smit and Trige-
orgis (1997) integrated real options with industrial organization framework
to model competitive advantage in strategic R&D investments by analyzing
two stage games where the option value of R&D depends on endogenous
competitive reactions. The models illustrate the trade-o¤ between the �ex-
ibility value and the strategic commitment value of R&D using numerical
example and provide di¤erent investment strategies based on Fudenberg and
Tirole (1984) framework. Smit and Trigeorgis (2006), therefore, analyze the
impact of uncertainty, incomplete information and learning on R&D value
with endogenous market structure and quantities in the product market.
Contrary to standard option valuation, the value of an R&D investment
opportunity may no longer increase monotonically with option parameters
because strategic preemption may cause value discontinuities. They analyze
how the sign and magnitude of this e¤ect on R&D value depends on the
existence of learning e¤ects in production, technical R&D uncertainty and
the degree of incomplete information, and cooperation via joint research
ventures. Kulatilaka and Perrotti (1998) analyze strategic growth opportu-
nities involving by adopting a costs reducing technology under uncertainty
and imperfect competition. The model shows that contrary to the result
found in the real options literature, the e¤ect of uncertainty on the value
of the strategic growth options is ambiguous. Lambrecht (1999) derives the
optimal investment thresholds for two investors who compete to obtain a
patent that gives its holder an option to invest in a following project, which
consists of the commercialisation of the invention. Huisman (2000) studies
a dynamic duopoly in which �rms compete in the adoption of new technolo-
gies. The model assumes that both �rms have the possibility to adopt a
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current technology or wait a better technology that arrives at an unknown
point of time in the future. Mason andWeeds (2001) examine the irreversible
adoption of technology whose returns are uncertain, when there is the �rst-
mover advantage and a network advantage to adopting when others also do
so. Abel and Eberly (2004) develop a model in which the opportunity for
a �rm to upgrade its technology to the frontier (at a cost) leads to growth
options in the value of the �rm; that is, a �rm�s value is the sum of value
generated by its current technology plus the value of the option to upgrade.
Miltersen and Schwartz (2004) develop a model to analyze patent-protected
R&D investment projects when there is multiple sources of uncertainty in
R&D stages and imperfect competition in the development and marketing of
the resulting product. Garlappi (2004) analyzes the impact of competition
on the risk premia of R&D ventures engaged in a multi-stage patent race
with technical and market uncertainty. R&D competition causes substan-
tial rent dissipation, excess R&D spending and higher and more volatile risk
premia. On the other side, competition dramatically reduces the completion
time and the failure rate of research within the industry.

More recently, a number of articles studies new derivatives securities
called game options, or Israeli options. These are contracts which enable
both their buyer and seller to stop them at any time and then the buyer
can exercise the right to buy (call option) or to sell (put option) a speci�ed
security for certain agreed price. If the contract is terminated by the seller
he must pay certain penalty to the buyer. More precisely, the contract may
be speci�ed in terms of two stochastic processes (Lt)

t2[0;T ]
; (Ut)

t2[0;T ]
with

Lt � Ut for t 2 [0; T ) and LT = UT :

If A terminates the contract at time t before it is exercised by B, he has
to pay B the amount Ut. If B exercises the option before it is terminated
by A; he is paid Lt. An example is a put option of game type with constant
penalty � > 0: If S1 denotes the price process of the underlying and K the
strike price, then Lt =

�
K � S1t

�+ and Ut = �K � S1t
�+
+ �1ft<Tg:

Kifer (2000) introduced the Israeli option and examined the pricing of
such contracts using game theory, determining the value of a Dynkin game,
under a slightly modi�ed general Black Scholes non-arbitrage framework.
Kifer shows that the valuation can be reduced to evaluating a stochastic
saddle point problem associated with a Dynkin game. Game options can
be sold cheaper than usual American options and their introduction could
diversify �nancial markets.
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Kallsen & Kühn (2003) expanded the above approach for incomplete
markets by use of indi¤erence arguments, again by determining the value of
a Dynkin game and adjusting the measure.

1.6 Final remark

This thesis deals with the modeling of R&D projects and start up compa-
nies by a multicompound options approach and develops two frameworks
of multi-stage investment projects that captures many features of new ven-
tures.

In the �rst part we focus on the valuation of new ventures possessing
�exibility in the form of multiple real options: to continue, expand, con-
tract, suspend or abandon the project at each step. To this purpose, we
obtain both a formula for multicompound call-put option written compound
call-put option, and a formula for multicompound call-put option to switch
investment to an alternative use.

Recently, a number of papers have studied R&D process as a contin-
gent claim on the value of an underlying asset, which is interpreted as the
present value of the cash �ows on completion of the R&D stages. There are
two paper that are closest to this one. The �rst one is Agliardi and Agliardi
(2005) which obtained the pricing formula for a multicompound call option
useful to sequential investments valuation. Although there are no impor-
tant di¤erences both in the formulation of the problem and in the solution
procedure between Agliardi and Agliardi (2005) and chapter 2, we include
situations in which the project can be abandoned, suspended, expanded or
reduced in order to capitalize on favorable future opportunities.

The second paper that is closely related to chapter 2 is Trigeorgis (1993)
which provides the valuation results for a generic project, when particular
real options are valued in the presence of others and illustrates option con-
�gurations where interactions can be small or large, as well as negative or
positive. This model di¤ers from chapter 2 both in the technique and in the
function: Trigeorgis, in fact, presents a numerical valuation approach for a
generic project�s multiple real options.

The second part of this thesis proposes a model of R&D investments
which relies on the multicompound options valuation and allows for di¤erent
sources of uncertainty. In the process, the venture is subject to two types of
risk: (1) uncertainty associated the potential future cash �ows the project
will produce if completed; this is represented by a standard di¤usion process,
punctuated by (2) jumps at random intervals. This risk pertains to the



1.6. FINAL REMARK 49

successful completion of the venture itself and is represented by a Poisson
process. There are three papers that are closest to chapter 3.

The �rst one is Gukhal (2003) which derives an analytical valuation
formula for compound options when the underlying asset follows a jump-
di¤usion process. This is applied to value extendible options, American
call options on stocks that pay discrete dividends and American options on
assets that pay continuous proportional dividends. Our model starts from
the result obtained in Gukhal (2003) and analyzes sequential investment
opportunities: R&D ventures and start-up companies; these are analogous
to the exercise of an European-style multicompound option because each
stage in the investment process is viewed as an option on the value of a
subsequent stage. The formula is shown to generalize previous works in real
option pricing.

Jump-di¤usion process is introduced in chapter 2 to model crises and
shocks in the investment market. The value of the multicompound option,
in our model, relies on knowing exactly the number of Poisson jumps, n,
occurring in each stage during the life of the option. Clearly, its actual
value is just the weighted sum of the prices of the option where each weight
equals the joint probability that N Poisson random variables will take on
the value n in each stage.

The second paper that is closely related to chapter 3 Errais and Sad-
owsky (2005). This article di¤ers from chapter 3 both in the technique
and the treatment of uncertainty. They introduce a general discrete time
dynamic framework to value pilot investments; the pilot phase requires N
stages of investment for completion that they value as a compound perpetual
Bermudan option. In this model, both tradable market uncertainty and idio-
syncratic technical uncertainty a¤ect the value of the project�s commercial
phase, with the di¤usion coe¢ cients that drive idiosyncratic shocks being a
function of the amount invested in the product�s development stage. The
setting in the two models are also di¤erent. Errais and Sadowsky work in
an incomplete market setting; instead, we adopt the Merton�s approach and
we assume that technical uncertainty is completely diversi�able. This fact
will allow us to specify a unique equivalent risk-neutral measure by setting
the market price of risk of q17 to zero.

The last paper that is closely related to chapter 3 is Berk, Green and
Naik (2004) which also develops a dynamic model of multi-stage investment
project that captures many features of R&D ventures and start-up compa-
nies. The valuation method in this paper di¤ers from ours, however. They

17The technical uncertainty driven by Poisson process.
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also take as exogenous the process describing the cash �ows the project will
generate, and value these cash �ows and the R&D project simultaneously.
By deriving the value of the underlying cash �ows rather than specifying it
exogenously, they are able to focus on the relative systematic risk of R&D
and the underlying cash �ows and explain the dynamics of the risk premium
of the R&D. While their formulation is more fundamental in this respect, it
makes it harder to employ in practice.
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Chapter 2

2.1 Introduction

1Traditional tools based on DCF methods fail to capture the value of new
ventures because of their dependence on future events that are uncertain at
the time of the initial decision. The primary value of new ventures lies in the
physical options it creates. These options refer to a future market opportu-
nity resulting from a contingent claim on new product patents, knowledge,
and the competitive position being created. The investment in R&D, for
instance, generates value primarily by creating options for future product
development. As several researchers have noted R&D investments are essen-
tially real growth options since investment decisions are made sequentially
and in a particular order. Staging investment involves �rms either with
some degree of �exibility in proceeding with the investment or when there is
a maximum rate at which outlays or construction can proceed. Very often,
�rms engage R&D projects to get started a multi-stage process that may
eventually reach a commercial phase of launching the new product. For
example, the drug development process might follow various stages. The
likelihood of passing each stage will depend on the nature of the diseases.
A potentially more useful valuation method is real option analysis, which
takes �exibility into account at each stage of the development process: R&D
management, in fact, has the �exibility to defer, contract or expand expen-
ditures, or alternatively to abandon the R&D project after funding ceases.

Computer software are very similar to R&D projects because of the large
investments they require. In particular, investing in a software development

1This chapter builds on the working paper DSE n. 554 (2006), University of Bologna
and was presented at a recent DSE seminar.
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requires to the venture capitalist to continue making investments in up-
dating its technology and marketing its product just to keep up. Computer
software is a pro�table and dynamic industry, creating market openings
for competitors and potential entrants. This feature makes the risk of the
business much greater than risk faced by start-ups in other industries, and
then makes the valuation problem more easy if we use the real options
methodology.

Using real option approach, venture capitals such as pharmaceuticals and
new technologies development would be seen as compound options, as the
progress towards completion usually requires a sequence of successful invest-
ments, each of which opens the possibility to undertake the next operating
phase. Each stage can be viewed as an option on the value of subsequent
stage and valued as compound option. A compound option is simply an
option on an option. The exercise payo¤ of a compound option involves the
value of another option. A compound option then has two expiration dates
and two strike price. Take the example of a European style call on a call.
On the �rst expiration date T1, the holder has the right to buy a new call
by paying the strike price I1. The new call has expiration date T2 and strike
price I2.

Compound options have been extensively used in corporate �nance to
hedge di¢ cult investments which are contingent on other conditions. Geske
(1979) suggested that when a company has common stock and coupon bonds
outstanding, the �rm�s stock can be viewed as a call option on a call option.
Rubinstein (1992) generalized this result to all four possible combinations:
call on a call, put on a call, call on a put and put on a put. Carr (1988)
obtained a closed form solution to a compound exchange option integrating
work on compound option pricing by Geske (1979) with work on exchange
option pricing by Margrabe (1978). As a result, the general valuation for-
mula may be used to value real options, as for example options to expand
capacity and option to switch inputs or outputs in production. Exercise of
this instrument involves delivering one asset in return for an exchange op-
tion. The option received upon delivery may then be used to make another
exchange at a later date. Gukhal (2003) derives analytical valuation formu-
las for compound options when the underlying asset follows a jump-di¤usion
process, applying these results to value extendible options, American call op-
tions on stocks that pay discrete dividends and American options on assets
that pay continuous proportional dividends. Agliardi and Agliardi (2005)
obtained a closed-form solution for the price of a multicompound call option,
i.e. N-fold options of options, in the case of time-varying variance and time-
varying interest rate. In this paper, an explicit pricing formula is proved
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that generalizes the well-known Geske�s expression for compound options,
solving N nested Black-Scholes di¤erential equations and using some proper-
ties of multivariate normal integrals. Roll (1977), Whaley (1981), Geske and
Johnson (1894) and Selby and Hodges (1987) also study compound options.

The objective of this paper is to study the multicompound option ap-
proach to value sequential investment opportunities taking into account mul-
tiple real options: as the option to permanently abandon, temporarily shut-
down, expand and contract the project. Unlike most compound options in
the �nancial market, it is perfectly possible for the �rm to suspend invest-
ment at a certain �xed time and resume it later, so the �rst contribution of
this paper is to derive a closed-form solution for the price of a multicom-
pound call and put option; this result generalizes the solution of Agliardi
and Agliardi (2005) : The second contribution is to derive an analytical for-
mula for the price of a multicompound exchange call and put option that
integrates the �rst result with the work on compound exchange options by
Carr (1988). This formula is useful to value sequential expansion and con-
traction option as the opportunity to upgrade a software or the option to
switch to a lower technology.

The structure of our paper is as follows. Section 2 reviews the articles in
the literature related to ours. This is followed by a description of the eco-
nomic model in section 3. Section 4 derives an analytical valuation formula
for the price of a multicompound call/put option. Section 5 derives the val-
uation formula for the price of a multicompound exchange call/put option.
In section 6 we illustrate our model by providing numerical results for a two
stages investment project which relies on compound options pricing. We
focus on the situations in which �rms may take the intermediate decision to
suspend the project continuously. Section 7 concludes the paper.

2.2 Literature Review

A number of existing research contribution has previously analyzed various
aspects of optimal sequential investment behavior for �rm facing multistage
projects. In the real options setting, the value of these investments is the
value of the follow-on opportunities they may create. In this sense, �rms
undertake these projects not so much for their own returns, but rather to
get started a pilot that may eventually reach an operating stage. Take the
example of developing a new drug in the pharmaceutical industry. Investing
in a new drug by pharmaceutical company is a multistage process, beginning
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with research that leads with some probability to a new compound; such
a project continues with testing and concludes with the construction of a
production facility and the marketing of the product. Thus, in order to draw
the analogy with the valuation and exercising of �nancial option, an R&D
venture by pharmaceutical company can be compared to multicompound
option involving sequential decisions to exercise the options to invest only
when the R&D outcomes are successful. Although the preceding analysis
suggested the use of more suitable technique when we attempt to value
new ventures, such investments are hard to value even with the real options
approach. The main reason for this is that there are multiple sources of
uncertainty in R&D investments and that they interact in complicated way.
In practice, the bulk of the literature have dealt with the development of
numerical simulation methods based on optimal stopping time problems.

Majd and Pindyck (1987) study investments with time-to-build when in-
vestment projects have the following characteristics: (1) spending decisions
and cash outlays occur sequentially over time, (2) there is a maximum rate at
which outlays and construction can proceed, that is it takes �time-to-build�,
and (3) the project yields no cash return until it is actually completed.
Furthermore, the pattern of investment outlays is usually �exible and can
be adjusted as new information arrives. Majd and Pindyck develops an
explicit model of investment projects with these characteristics, and uses
option pricing methods to derive optimal decision rules for investment out-
lays over the entire construction program. Numerical solutions are used to
demonstrate how time-to-build, opportunity cost, and uncertainty interact
in a¤ecting the investment decision. Similarly, Bar-Ilan and Strange (1996)
study the e¤ect of investment lags in a model of an uncertain, irreversible
investment. Finally, Grenadier (1996,2000a) studied time-to-build options
using option-game approach in continuous time.

The real option literature have studied the R&D process as a contingent
claim on the value of the underlying cash �ows on completion of the R&D
project. Childs and Triantis (1999) develop and numerically implement a
model of dynamic R&D investment that highlights the interactions across
projects. Schwartz and Moon (2000) have also studied R&D investment
projects in the pharmaceutical industry using a real options framework. In
this articles, they numerically solve a continuous-time model to value R&D
projects allowing for three types of uncertainty: technical uncertainty asso-
ciated with the success of the R&D process itself, an exogenous chance for
obsolescence and uncertainty about the value of the project on completion
of the R&D stages. Schwartz (2003) develops and implements a simula-
tion approach to value patents-protected R&D projects based on the real
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option approach. It takes into account uncertainty in the cost to comple-
tion of the project, uncertainty in the cash �ows to be generated from the
project, and the possibility of catastrophic events that could put an end to
the e¤ort before it is completed. Berk, Green and Naik (2004) develop a dy-
namic model of multi-stage investment project that captures many features
of R&D ventures and start-up companies. Their model assumes di¤erent
sources of risk and allow to study their interaction in determining the value
and risk premium of the venture. Closed-form solutions for important cases
are obtained. Errais and Sadowsky (2005) introduce a general discrete time
dynamic framework to value pilot investments that reduce idiosyncratic un-
certainty with respect to the �nal cost of a project. In this model, the pilot
phase requires N stages of investment for completion that they value as a
compound perpetual Bermudan option.

More recently, a number of articles consider strategic interaction features
across R&D options holders. Garlappi (2004) analyzes the impact of compe-
tition on the risk premium of R&D ventures engaged in a multi-stage patent
race with technical and market uncertainty. R&D competition causes sub-
stantial rent dissipation, excess R&D spending and higher and more volatile
risk premium. On the other side, competition dramatically reduces the com-
pletion time and the failure rate of research within the industry. Finally,
Miltersen and Schwartz (2004) develop a model to analyze patent-protected
R&D investment projects when there is multiple sources of uncertainty in
R&D stages and imperfect competition in the development and marketing
of the resulting product.

2.2.1 Flexibility of Multiple Compound Real Options

Most work in real options has focused on valuing individual options. How-
ever, many real investments often involve a collection of various options,
which need to be valued together because their combined value may di¤er
from the sum of their separate values. As it is well known, the operating
�exibility and strategic value aspect of intangible investment projects cannot
be properly captured by traditional tools, because of their discretionary na-
ture. As new information arrives and uncertainty about market conditions
and future cash �ows is resolved, �rms may have valuable �exibility to alter
its initial operating strategy in order to capitalize on favorable future oppor-
tunities. For example, management may be able to permanently abandon
or temporarily shut-down and restart; to expand or contract capacity.
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Many start-up companies rely upon venture capitalists to begin oper-
ations. Typically, after the initial injection of funds, addition funding is
provided as the �rm reaches certain performance targets. The payment of
the �rst funding round is comparable to an initial option premium. Further
payments are contingent claims: the right but not the obligation to continue
�nancially supporting the project. If at any point, the venture capitalist
ceases to pay, the project is assumed to end. Therefore, the venture capi-
talist can be thought of injecting funds that not only keep the project alive
but also retain the right to pay the remaining payments in the future.

Computer software and Internet start-ups need two or more rounds of
�nancing to be implemented. However, venture capitalist has an alterna-
tive option to permanent abandonment the project if the operating project
becomes negative; in practice, after the initial injection of funds, it gets
a project in place and an option to abandon to save the follow-on expen-
ditures. This possibility has limited applicability in most real investment
projects because of the high cost of abandonment. In such cases, it would
not make sense to abandon, unless the cash �ows on the project are even
more negative. To keep the analysis simple, we will ignore the fact that the
abandonment may create costs and will consider the following stage invest-
ment being analogous to the exercise of �nancial put option on the business
value with strike price equals the salvage value from abandonment2.

Instead of abandoning, venture capitalist may choose to keep its project
alive by maintaining its initial installment and renouncing to future invest-
ments (i.e. advertising and upgrading expenditures). For our purpose, we
will consider that the project may be temporarily and costlessly suspended
and that this opportunity can be seen as a sequence of three or more operat-
ing call/put options; that is, when a venture capitalist exercises its option to
get started the project, it gets a project in place and a chain of interrelated
options, to temporarily and costlessly shut-down or to continue funding. If
it exercises the option to suspend, it gets the option to invest again or to
continue suspending, and so on.

Starting from today�s capacity (after a call option to invest has already
been exercised) a �rm usually have further call options to invest in extend-
ing today�s capacity. Similarly, it often has a put option to reduce today�s
capacity. The put option may sometimes give them an actual cash in�ow
from disinvestment. In the real options literature the opportunities to ex-
pand or contract capacity, to switch to a new technology,etc., are usually
valued as a compound exchange option.

2See Myers and Majd (1990) for abandonment option.
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Multiple real options are mostly studied by Brennan and Schwartz (1985)
and Trigeorgis (1993). Real-life projects are often more complex in that
they involve a collection of multiple real options, whose value may interact.
Brennan and Schwartz (1985) determine the combined value of the options
to shut-down and restart a mine, and to abandon it for salvage. Trigeorgis
(1993) focuses explicitly on the nature of real option interactions, pointing
out that the presence of subsequent options can increase the value of the
e¤ective underlying asset for earlier options, while the exercise of prior real
options may alter the underlying asset itself, and hence the value of subse-
quent options on it. Thus, the combined value of a collection of real options
may di¤er from the sum of separate option values. In Pindyck (1988), un-
certainty over future market conditions a¤ects investment decisions through
the option that �rms hold, operating options, which determine the value of
capital in place, and options to add more capital, which, when investment is
irreversible, determine the opportunity cost of investing. In Dixit (1989) a
�rm�s entry and exit decisions when the output price follows a random walk
are examined. An idle �rm and an active �rm are viewed as assets that are
call options on each other. The solution is a pair of trigger prices for entry
and exit. Kulatilaka (1995) examines the impact of interactions among such
options on their optimal exercise schedules. Abel, Dixit, Eberly and Pindyck
(1996) show how opportunities for future expansion or contraction can be
valued as options. They showed that a �rm that makes an investment that
is partially or totally reversible acquires a put option. This option has value
if future uncertainty involves a su¢ ciently large downside with a positive
probability that the �rm will want to exercise the option. Likewise, a �rm
that can expand by making an investment now or in the future (at a cost) is
exercising a call option, namely it is acting now when it might have waited.
This option has value if future uncertainty has a su¢ ciently large downside
that waiting would have been preferable.

This paper deals with the modeling sequential investments by a mul-
ticompound options approach and develops two frameworks of multi-stage
projects that captures many features of new ventures. Particularly, we focus
on the valuation of new ventures possessing �exibility in the form of multiple
real options: to continue, expand, contract, suspend or abandon the project
at each step. There are two paper that are closest to this one. The �rst one
is Agliardi and Agliardi (2005) which obtained the pricing formula for a mul-
ticompound call option useful to sequential investments valuation. Although
there are no important di¤erences both in the formulation of the problem
and in the solution procedure between Agliardi and Agliardi (2005) and
our model, we add �exibility in each step by allowing the multicompound
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call/put option to be written on further compound call/put options. The
second paper that is closely related to chapter 2 is Trigeorgis (1993) which
illustrates through a generic project the size and type of interactions among
the option to defer, abandon, contract, expand and switch use. This model
di¤ers from ours both in the technique and in the function. Indeed, Trigeor-
gis presents a numerical valuation approach for a generic project�s multiple
real options.

2.3 Model and Assumptions

Let us consider the investment decision by a venture capital fund that is
evaluating the project of start-up company providing software tools in the
Internet industry. We assume that the commercial phase of the project can
not be launched before a pilot phase consisting on N -stages of investment
is completed. Let I be the amount of investment required for completion
of any pilot stage. Furthermore, to make the analysis easier we will assume
that the project is patent-protected.3

Suppose the inverse demand function for the software, giving price in
terms of quantity Q is P = Y D (Q), where Y is a stochastic shift variable.
The risk free rate in our setting will be denoted by r (t). Moreover, the
investment project, once completed, produces one unit of output per year
at zero operating costs. We assume the price for the software, P , follows a
stochastic di¤erential equation of the form:

dP = � (t)Pdt+ � (t)Pdz;

where dz is the increment of the standard Wiener process; � (t) is the instan-
taneous standard deviation of the spot price at time t and � (t) is the trend
rate in the price. The assumption of time-dependent volatility and interest
rate seems more suitable due to the sequential nature of start-up projects
(see Agliardi and Agliardi, 2003). Let V the expected present value of the
project when the current price is P , in this case V , being a constant multiple
of P , also follows a geometric Brownian motion with the same parameters
� (t) and � (t).

3This assumption, widely used in the real options literature, will allow us to avoid
competitive interactions across R&D options holders.
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2.3.1 Value of the Option to Continuously Shut - Down

Unlike most compound options in the �nancial market, it is perfectly pos-
sible for the �rm to suspend investment on the pilot at a certain time Tk,
k = 1; ::; N , if, for instance, market conditions are not favorable, and resume
investment at a later point in time.

Let F1 (V; t; &1) denote the value of a European call/put option with
exercise price I1 and expiration date T1. Let us now de�ne inductively a
sequence of call/put options, with value Fk, on the call/put option whose
value is Fk�1, with exercise price Ik and expiration date Tk, k = 1; ::; N ,
where we assume T1 � T2 � ::: � TN .

Because all the calls and puts are function of the value of the �rm V and
the time t, the following partial di¤erential equation holds for Fk:

@Fk
@t

= r (t)Fk � r (t)V
@Fk
@V

� 1
2
�2 (t)V 2

@2Fk
@V 2

; t � Tk; k = 1; ::; N;

T1 � T2 � ::: � TN :The boundary condition is:

Fk (Fk�1 (V; Tk; &1; ::; &k�1) ; Tk; &1; ::; &k) =

max (&kFk�1 (V; Tk; &1; ::; &k�1)� &kIk; 0) ;

where Fk�1 (V; Tk; &1; ::; &k�1) stands for the price of the underlying com-
pound option and the binary option operator &k = �1, k = 1; ::; N when the
kth-compound option is a call/put and the operator &k�1 = �1, when the
(k � 1)th-underlying compound option is a call/put. Naturally, if k = 1 the
well-known pricing formulae for simple options are obtained.

In order to solve the partial di¤erential equations above subject to their
boundary conditions we need to use the following notation: let V �k denote
the value of V such that Fk�1 (V; Tk; &1; ::; &k�1) � Ik = 0 if k > 1, and
V �1 = I1. Let us de�ne now:

bk (t) =

ln
�
V
V �k

�
+

TkR
t

r (�)� �2(�)
2 d� 

TkR
t

�2 (�) d�

! 1
2

; (2.1)
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and:

ak (t) = bk (t) +

0@ TkZ
t

�2 (�) d�

1A
1
2

; (2.2)

moreover, we set:

�ij (t) =

0BBB@
TjR
t

�2 (�) d�

TiR
t

�2 (�) d�

1CCCA
1
2

; for 1 � i < j � k; t � Tk: (2.3)

For any k, 1 � k � N , let �(N)k (t) denote the k-dimension symmetric
correlation matrix with typical element �ij (t) = �N�k+i;N�k+j (t) if i < j.

Since we want to derive a valuation formula for the price of N -fold mul-
ticompound call/put option, that is for FN (V; t; &1; ::; &N ), 0 � t � TN ,
let V �N denote the value of V such that FN�1 (V; TN ; &1; ::; &N�1) � IN = 0.
Then, for V greater than V �N the N

th-compound call option will be exercised,
otherwise the project will be temporarily suspended.

As usual, it is desirable to transform the partial di¤erential equation
for FN into the di¤usion equation. First, we adopt the following change of
variables:

FN (V; t) = e
�
TNR
t
r(�)d�

~FN (u; z) ;

where:

u = � ln
�
V

V �N

�
�

TNZ
t

r (�)� �
2 (�)

2
d� ;

and:

z =
1

2

TNZ
t

�2 (�) d� :
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In term of the new independent variables the fundamental equation for FN
becomes:

@ ~FN
@z

=
@2 ~FN
@u2

; �1 < u < +1; z � 0:

The partial di¤erential equation above subject to the initial value condition
~FN (u; 0), has a unique solution which we use to write FN as follows:

FN (V; t) = e
�
TNR
t
r(�)d�

+1Z
�1

~FN (�; 0)
1

2
p
�z
e�(u��)

2=4zd�:

Substituting the solution for FN�1 into this expression and changing the
variable u with &N ::&1bN (t), gives the following identity:

FN (V; t; &1; ::; &N ) = &N ::&1V e
�
TNR
t
r(�)d�

0Z
�1

1

2
p
�z
e�(&N ::&1bN+�=

p
2z)

2
=2�

NN�1
�
&N�1::&1aN�1 (TN ) ; ::; &1a1 (TN ) ; �

(N�1)
N�1 (TN )

�
d�+

�
N�1X
j=1

&N ::&jIje
�
TjR
t
r(�)d�

0Z
�1

1

2
p
�z
e�(&N ::&1bN+�=

p
2z)

2
=2�

NN�j
�
&N�1::&1bN�1 (TN ) ; ::; &jbj (TN ) ; �

(N�1)
N�j (TN )

�
d�+

�&NINe
�
TNR
t
r(�)d�

0Z
�1

1

2
p
�z
e�(&N ::&1bN+�=

p
2z)

2
=2d�; (2.4)

where Nk (&k::&1bk; ::; &1b1; �k) denotes the k-dimension multinormal cumu-
lative distribution function with upper limits of integration &1b1; ::; &k::&1bk
and �(N�1)k (TN ) denotes the k-dimension modi�ed symmetric correlation
matrix:
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�
(N�1)
k (TN ) =

266664
1 &2�12 � � � &N�1::&2�1;N�1

&2�12 1
...

...
. . . &N�1�N�2;N�1

&N�1::&2�1;N�1 � � � &N�1�N�2;N�1 1

377775 ;
(2.5)

with the entries �ij (TN ) = �N�1�k+i;N�1�k+j (TN ), i < j, de�ned as above.
The third term can be easily written in the form:

�&NINe
�
TNR
t
r(�)d�

N1 (&N ::&1bN (t)) :

In order to solve the remaining integrals, let us set x = &N ::&1aN (t)+�=
p
2z

in the integral of the �rst term above and x = &N ::&1bN (t) + �=
p
2z in the

second; further, we replace any element �ij (TN ) in the matrix �
(N�1)
k (TN )

with a function of t, according to the following rule:

�ij (TN ) =

�
�ij (t)� �iN (t) �jN (t)

�r�
1� �2iN (t)

� �
1� �2jN (t)

� ; (2.6)

for 1 � i < j � N; t � TN : The �rst term can be written in the form:

&N ::&1V

&N ::&1aN (t)Z
�1

1p
2�
e�

x2

2 �

NN�1(&N�1::&1aN�1 (t)� x&N�N�1;N (t) =
r�

1� �2N�1;N (t)
�
; ::

::; &1a1 (t)� x&N ::&2�1;N (t) =
r�

1� �21;N (t)
�
; ~�

(N�1)
N�1 (t))dx;

and the second term:

�
N�1X
j=1

&N ::&jIje
�
TjR
t
r(�)d�

&N ::&1bN (t)Z
�1

1p
2�
e�

x2

2 �
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NN�j(&N�1::&1bN�1 (t)� x&N�N�1;N (t) =
r�

1� �2N�1;N (t)
�
; ::

::; &jbj (t)� x&N ::&j+1�j;N (t) =
r�

1� �2j;N (t)
�
; ~�

(N�1)
N�j (t))dx;

Lemma 1 (generalized) Let �(N)k (t) denote the k-dimension correlation

matrix with entries &j�ij (t) for i < j and let ~�
(N�1)
k be the matrix obtained

from �
(N�1)
k replacing any element �ij with�

�ij � �iN�jN
�
=
q
(1� �2iN )(1� �2jN )

for 1 � i < j � N . Moreover, let &k = �1, k = 1; ::; N , if the kth-
compound option is a call/put and &k�1 = �1 if the (k � 1)th-underlying
compound option is a call/put. Then, the following identity holds:

&N ::&1bNZ
�1

1p
2�
e�

x2

2 �

Nk

 
&N�1::&1bN�1�x&N�N�1;Nq

(1��2N�1;N)
; ::;

&N�kbN�k�x&N ::&N�k+1�N�k;Nq
(1��2N�k;N)

; ~�
(N�1)
k

!
dx =

= Nk+1
�
&N ::&1bN ; ::; &N�kbN�k; �

N
k+1

�
:

Proof. by induction.

Applying this argument to the �rst and the second terms, we have the
following result for the value of a multicompound call/put option.

Proposition 2 The value of the multicompound call/put option FN with
maturity TN and strike price IN written on a compound call/put option
FN�1 with maturity TN�1 and strike price IN�1 is given by:

FN (V; t; &1; ::; &N ) = &N ::&1V NN

�
&N ::&1aN (t) ; ::; &1a1 (t) ; �

(N)
N (t)

�
+
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�
NX
j=1

&N ::&jIje
�
TjR
t
r(�)d�

NN+1�j
�
&N ::&1bN (t) ; ::; &jbj (t) ; �

(N)
N+1�j (t)

�
;

0 � t � TN ;

where the ais, the bis and the �ijs are as de�ned previously.

Remark 3 It can be proved that

@V Fk (V; t; &1; ::; &k) = Nk(&k::&1ak (t) ; :::; &1a1 (t) ; �
(k)
k (t));

thus uniqueness of V �k is guaranteed for every k; 1 � k � N:

Note that in the particular case when &k = +1, k = 1; ::; N the formula
above reduces to Agliardi and Agliardi (2005) : This proposition is the main
result of the paper and forms the basis for the valuation of sequential in-
vestment opportunities, as for example R&D ventures, computer software
updating,.. including the possibility of multiple real options.

2.4 An extension

When future returns are uncertain, these features yield two options. First,
venture capitalists sometimes engage the pilot either to make further invest-
ments or to enter other markets in the future. On the other hand, when
a �rm gets started a project or installs a new technology that it may later
abandon, it acquires a put option. Once again, the opportunities for fu-
ture expansion or contraction are examples of the strategic dimension of the
Internet start-up venture. The �rms�ability to later contract or expand ca-
pacity is clearly more valuable for more volatile business with higher returns
on project, such as computer software or biotechnology, than it is for tradi-
tional business, as real estate or automobile production. Next, we recast the
main assumptions allowing the �rm to face the opportunity to continuously
switch to more or less updated technologies. The sequential technological
expansion/contraction decision can be viewed to be similar to the exercise
of a multicompound exchange option.

As before, we assume the inverse demand function for the software, giv-
ing price in terms of quantity Q is P = Y D (Q), where Y is a stochastic
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shift variable. Once again, the variable costs of production are assumed to
be zero. Let Vi, i = 1; ::; N , the price of i�th underlying asset which we could
interpret as the value of the operating project with current technology. As
before, we assume that the underlying risky assets pay no dividends, and
that they follow standard di¤usion processes as:

dVi = �i (t)Vidt+ �i (t)Vidzi; i = 1; ::; N;

where dzi; i = 1; ::; N , are Wiener processes. They are correlated:

E [dzi; dzj ] = �ijdt; i; j = 1; ::; N; i 6= j;

with �ij = �ji, �ii = 1, i; j = 1; ::; N , and �ij is the correlation coe¢ cient
between Vi and Vj . Let F (V; t) the function F (V1; V2; ::; VN ; t), according to
the generalized Ito lemma we can determine that F will satisfy the following
partial di¤erential equation:

@F

@t
+
1

2

NX
i=1

NX
j=1

�ij�i (t)�j (t)ViVj
@2F

@Vi@Vj
+ r (t)

NX
i=1

Vi
@F

@Vi
� r (t)F = 0;

0 � Vi, i = 1; ::; N , 0 � t � T .

2.4.1 The mathematical problem and solution

Let F (V1; V2; t; &1) denote the value of a European call/put option to ex-
change asset one for asset two which can be exercised at T1. This option is
simultaneously a call/put option on asset two with exercise price V1 and a
put/call option on asset one with exercise price V2. Taking V1 as numeraire,
the option to exchange asset one for asset two is a call/put option on asset
two with exercise price equal to unity and interest rate equal to zero. The
option sells for:

F (V1; V2; t; &1) =V1 =W1 (V; t; &1) ;
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where &1 = �1 if is a call/put and V = V2=V1. An analytic expression for
W1 (V; t) was found in Margrabe (1978).

Let us now de�ne inductively a sequence of call/put option, with value
Wk, on the call/put option whose value is Wk�1, with exercise price qk4 and
expiration date Tk, k = 1; ::; N , T1 � T2 � ::: � TN . Because all the calls
and puts are function of the value of the �rm V and the time t, the following
partial di¤erential equation holds for Wk:

@Wk

@t
+
1

2
�2 (t)V 2

@2Wk

@V 2
= 0; t � Tk; k = 1; ::; N;

T1 � T2 � ::: � TN : The boundary conditions can be written in the form:

Wk (Wk�1 (V; Tk; &1; ::; &k�1) ; Tk; &1; ::; &k) =

max (&kWk�1 (V; Tk; &1; ::; &k�1)� &kqk; 0) ;

where &k = �1, k = 1; ::; N , if the kth-compound option is a call/put and
&k�1 = �1, if the (k � 1)th-underlying compound option is a call/put. Nat-
urally, if k = 1 the well-known pricing formula for simple exchange option
is obtained.

In order to solve the partial di¤erential equations above subject to their
boundary conditions we need to use the following notation: let V �k denote
the value of V such that Wk�1 (V; Tk; &1; ::; &k�1) � qk = 0 if k > 1, and
V �1 = q1. Let us de�ne now:

b�k (t) =

ln
�
V
V �k

�
�

TkR
t

�2(�)
2 d� 

TkR
t

�2 (�) d�

! 1
2

; (2.7)

and:

a�k (t) = b�k (t) +

0@ TkZ
t

�2 (�) d�

1A
1
2

; (2.8)

4As in Carr (1988) the exchange ratio q is taken to be constant or, at most, a deter-
ministic function of time.
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moreover, we set �ij (t) as in (3). For any k, 1 � k � N , let �(N)k (t)
denote the k-dimension symmetric correlation matrix with typical element
�ij (t) = �N�k+i;N�k+j (t) if i < j.

Since we want to derive a valuation formula for the price of N -fold mul-
ticompound call/put option to exchange asset one for asset two, that is for
WN (V; t; &1; ::; &N ), 0 � t � TN , let V �N denote the value of V such that
WN�1 (V; TN ; &1; ::; &N�1) � qN = 0. Then, for V greater than V �N the N th-
compound call option will be exercised, that is, the �rm will update to a
superior, new technology, otherwise it will contract it.

As usual, it is desirable to transform the partial di¤erential equation for
WN into the di¤usion equation. First, we adopt the following change of
variables:

WN (V; t) = ~WN (u; z) ;

where:

u = � ln
�
V

V �N

�
�

TNZ
t

�2 (�)

2
d� ;

and:

z =
1

2

TNZ
t

�2 (�) d�:

In term of the new independent variables the fundamental equation for FN
becomes:

@ ~WN

@z
=
@2 ~WN

@u2
; �1 < u < +1; z � 0:

The partial di¤erential equation above subject to the initial value condition
~WN (u; 0), has a unique solution which we use to write WN as follows:

WN (V; t) =

+1Z
�1

~WN (�; 0)
1

2
p
�z
e�(u��)

2=4zd�:
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Substituting the solution for WN�1 into this expression and changing the
variable u with &N ::&1b�N (t), gives the following identity:

WN (V; t; &1; ::; &N ) = &N ::&1V

0Z
�1

1

2
p
�z
e�(&N ::&1b�N+�=

p
2z)

2
=2�
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�
&N�1::&1a�N�1 (TN ) ; ::; &1a�1 (TN ) ; �

(N�1)
N�1 (TN )

�
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�
N�1X
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&N ::&jqj
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�z
e�(&N ::&1b�N+�=

p
2z)

2
=2�

NN�j
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&N�1::&1b�N�1 (TN ) ; ::; &jb�j (TN ) ; �

(N�1)
N�j (TN )

�
d�+

�&NqN
0Z

�1

1
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p
�z
e�(&N ::&1b�N+�=

p
2z)

2
=2d�; (2.9)

where Nk (&k::&1bk; ::; &1b1; �k) denotes the k-dimension multinormal cumu-
lative distribution function with upper limits of integration &1b�1; ::; &k::&1b�k
and �(N�1)k (TN ) denotes the k-dimension modi�ed symmetric correlation
matrix with typical element �ij (TN ) = �N�1�k+i;N�1�k+j (TN ) for i < j, as
de�ned in (5). The third term can be easily written in the form:

�&NqNN1 (&N ::&1b�N (t)) :

In order to solve the remaining integrals, let us set x = &N ::&1a�N (t)+�=
p
2z

in the integral of the �rst term above and x = &N ::&1b�N (t) + �=
p
2z in the

second; further, we replace any element �ij (TN ) in the matrix �
(N�1)
k (TN )

with a function of t, according to (6).
The �rst term can be written in the form:

&N ::&1V

&N ::&1a�N (t)Z
�1

1p
2�
e�

x2

2
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NN�1(&N�1::&1a�N�1 (t)� x&N�N�1;N (t) =
r�

1� �2N�1;N (t)
�
; ::

::; &1a�1 (t)� x&N ::&2�1;N (t) =
r�

1� �21;N (t)
�
; ~�

(N�1)
N�1 (t))dx;

and the second term:

�
N�1X
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&N ::&jqj

&N ::&1b�N (t)Z
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2�
e�

x2

2

NN�j(&N�1::&1b�N�1 (t)� x&N�N�1;N (t) =
r�

1� �2N�1;N (t)
�
; ::

::; &jb�j (t)� x&N ::&j+1�j;N (t) =
r�

1� �2j;N (t)
�
; ~�

(N�1)
N�j (t))dx:

Again, in light of the identity obtained before, we �nally obtain the following
result for the value of a sequential exchange option.

Proposition 4 LetWN the value of the multicompound call/put option with
maturity TN and strike price qN written on a compound call/put option
WN�1 with maturity TN�1 and strike price qN�1 , whose value is given by:

WN (V; t; &1; ::; &N ) = &N ::&1V NN

�
&N ::&1a�N (t) ; ::; &1a�1 (t) ; �

(N)
N (t)

�
+

�
NX
j=1

&N ::&jqjNN+1�j
�
&N ::&1b�N (t) ; ::; &jb�j ; �

(N)
N+1�j (t)

�
;

0 � t � TN :

The value of a multicompound call/put option to switch use is:

FN (V1; V2; t; &1; ::; &N ) = &N ::&1V2NN

�
&N ::&1a�N (t) ; ::; &1a�1 (t) ; �

(N)
N (t)

�
+

�V1
NX
j=1

&N ::&jqjNN+1�j
�
&N ::&1b�N (t) ; ::; &jb�j ; �

(N)
N+1�j (t)

�
;

0 � t � TN :

where the ais, the bis and the �ijs are as de�ned previously.
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Note that in the particular case when &k = +1, k = 1; ::; N the formula
above reduces to Carr (1988) :

2.5 Implementation of the approach

In this section, we illustrate our model by providing numerical results for
a two stage investment project which relies on compound options pricing.
The compound option has two strike prices and two expiration dates. This
is a simpli�cation of reality since multi-stage projects, as R&D projects
and start up companies require N phases to completion of the investment5.
For our purpose we consider a simple sequential investment with multiple
real options: a �rm can make only the intermediate decision to suspend
the project at the �rst exercise date; conversely it will continue investing.
This decision is followed by a subsequent decision either to permanently
abandonment or to continue, which concludes the process. When the project
is successfully completed, it will generate a stream of stochastic cash �ows
that is given by a standard di¤usion process.

A typical new product introduction takes time to build. For instance, the
development of a new drug by a pharmaceutical company takes, on average,
10 years to complete. That is, the research and development phase, which
takes T years, would give management the right to start the project and
continue making investment outlays to �nd a new molecule that lead to a
new drug. The R&D process, in fact, can be seen as N rounds of investments
in which brand-new molecules are continuously investigated and tested at a
cost.

In the case under consideration we deal with a generic sequential in-
vestment project: the construction of the project requires two investment
outlays at speci�c dates during the development phase. For instance, a �rst
outlay of I1, followed by a subsequent outlay, I2; which complete the project.
The �rm does not earn any cash �ows from the project until it is complete;
indeed, the project generates cash �ows during the operating stage that fol-
lows the last investment outlay, I2. Due to our simpli�cation we assume
that a �rm can make only the intermediate investment outlay I1; to launch
a pilot at T1; this fact gives the �rm an option to complete the next stage
of investment. After a new product is ready to be introduced on a market,
within the period T , management may decide to invest I2 for marketing it.

5See the discussion of chapter 1.
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For our purpose the project possesses �exibility in the form of multiple real
options: the �rm can decide either to temporarily stop the project at T1 or
to continue investing; next, management can decide either to abandon it at
T , or to continue with the investment construction.

These possibilities of stopping midstream make this investment analo-
gous to the exercise of compound option strategies:

(1)Management suspends the project at the �rst exercise date, T1, which
permits to save the exercise price I1; and continues the construction at the
second exercise date, T; by paying the exercise price I2; this decision is
analogous to the exercise a put on a call;

(2) Management continues the construction of the project at T1, by pay-
ing I1; and decides to abandon it at T; which permits to save I2; this decision
is analogous to the exercise of a call on a put;

(3) Management suspends the project at the �rst exercise date, T1; and
decides to abandon it at T: This decision is analogous to the exercise of a
put on a put;

(4) Management continues the construction of the project at T1, and
continues the construction at T ; this decision is analogous to the exercise of
a call on a call.

For the base case we consider the following values of inputs:
(a) The initial project value is V0 = 100; which is simply the present value

of expected cash �ows from immediately undertaking the project, including
the initial cost to get it started and not including the subsequent investment
outlays I1 and I2, or embedded real options;

(b) Compound option values can be determined by discounting project�s
future payo¤s at the risk-less interest rate, r = 0:16;

(c) The dividend yield is � = 0:057;
(d) The cash �ow volatility parameter is assumed to be � = 0:28: Con-

6 In general, any contingent claim on an asset (traded or not) can be priced in a world
with systematic risk by replacing the actual growth rate, �; with a certainty-equivalent
rate, �̂ � ��risk premium; this is equivalent to a risk-neutral valuation where the actual
drift, �, would be replaced by the risk-neutral equivalent drift �̂ = r � �, where � is the
shortfall in the expected rate of return from holding the option to complete rather than
the completed project. See Trigeorgis (1996) for an overview.

7Note that the dividend yield is assumed to be zero in section 2.3.
8For comparison purpose we assume the same parameter values used in Shaw (1998) :

Di¤erent value of the volatility parameter can be used depending on the project under con-
sideration. For example, in Schwartz (2004) volatility parameter value for R&D projects
is obtained as the average implied volatility for traded call option of nine pharmaceutical
companies. This is around 0:35:



82 CHAPTER 2.

trarily to the assumption in section 2.3, the risk-free rate of interest r and
the volatility � are constant;

(e) If at any time market conditions deteriorate, construction can be tem-
porarily and costlessly stopped at T1 = 0:25 (or permanently abandoned) ;
and restarted later. Conversely �rms will continue investing until T = 1: At
that date management can both salvage a portion of the investment, I2; by
abandoning the project or launch the product into the market;

(f) The strike on the intermediate date is given by I1 = 10; �nally, the
cost for launching and marketing is I2 = 100:

2.5.1 Numerical results

Our model is implemented computing the formula derived in section 2:3:1
with Mathematica. This procedure make use of the standard Black-Scholes
formula for the critical call and put prices computation at the �rst exercise
date and also uses the bivariate normal distribution for treating two cor-
related random processes. Let us denote the compound options values by
F2:

Table I displays the values of F2 corresponding to the exercise of a put
on a call.

Table I
put on call

I1 = 10; I1 = 15; I1 = 20;

T1 = 0:25; 2:4314 5:8681 10:1208

T1 = 0:5; 3:38011 6:64592 10:4943

T1 = 0:75; 4:15786 7:33643 10:9436

Base case parameters are: V = 100, I1 = 10, I2 =
100, � = 0:2, r = 0:1, � = 0:05, T1 = 0:25, T = 1:

Numerical evidence demonstrates that increasing value of the �rst in-
vestment outlay, I1; will increase the value of the compound option F2. For
example, if T1 = 0:25; then an increase in I1 from 10 to 20 will increase the
value of the compound option from 2:4314 to 10:1208: That is, increasing
the exercise price of a put to temporarily shut down permits the �rm to save
20 instead of 10. Finally, an increase in the intermediate exercise date, T1;
will increase the value of a put on a call. In fact, if I1 = 10; an increase in
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T1 from 0:25 to 0:75 will increase the value of F2 from 2:4314 to 4:15786:
This is a standard option pricing result.

It is interesting to note that the value of options in the presence of
others may di¤er from its value in isolation9. For instance, for the base case
parameters values:

�the price of the put at T1, without considering subsequent real options
is equal to 0: abandonment strategy is worthless. Instead of abandoning,
�rm may choose to keep its project alive and renounce to investment I1:
this strategy is worth and its value is shown in Table I. This is because
the exercise of an individual put, to abandon early, eliminates the whole
portfolio of gross project value plus the value of any future options.

�the value of the call at T , not including the possibility to suspend
the construction midstream, is 9:9409. This result does not consider that
the exercise of a prior real option may alter the underlying asset value,
and hence, the value of subsequent options on it. In this case, in fact, the
exercise of the option to temporarily shut-down would increase the value of
the project, increasing the value of the call option on it.

Finally, with respect to the strategy (1) ; an option-based approach which
focus on valuing the project as a sum of two individual options (a put and
a call) use to undervalue it.

Table II displays the compound option values, F2; corresponding to the
exercise of a call on a put.

Table II
call on put

I1 = 10; I1 = 15; I1 = 20;

T1 = 0:25; 0:364158 0:0558511 0:00571632

T1 = 0:5; 0.969139 0:347942 0:104005

T1 = 0:75; 1:59221 0:783484 0:340136

Base case parameters are: V = 100, I1 = 10, I2 =
100, � = 0:2, r = 0:1, � = 0:05, T1 = 0:25, T = 1:

Numerical evidence demonstrates that increasing value of the �rst in-
vestment outlay, I1; will decrease the value the compound option F2. For
example, if T1 = 0:25; then an increase in I1 from 10 to 20 will decrease

9Trigeorgis (1993) provides the valuation results for a generic project, when particular
real options are valued in the presence of others and illustrates option con�gurations where
interactions can be small or large, as well as negative or positive.
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the value of the compound option from 0:364158 to 0:00571632: Instead, an
increase in the intermediate exercise date, T1; will increase the value of a
call on a put. In fact, if I1 = 10; an increase in T1 from 0:25 to 0:75 will
increase the value of F2 from 0:364158 to 1:59221:

Note that for the base case parameters values:
�the price of the call at the intermediate date T1; without considering

subsequent real options is 89:0047. Clearly, this result relies on the option
price in isolation and comes from the discounted cash �ows of the project if
it would be completed at T1. Of course, the value of the prior call is lower
when followed by a subsequent option because in this case its value depends
on the value of another option. This is shown in table II.

�the value of the put to permanently abandon the project at T , not
including the prior real option, is 5:3017; of course, this price comes solely
from the salvage of I2: It can be proved that the exercise of the call option
to continue investing, would increase the value of the project, causing the
value of the subsequent put option to decrease.

Finally, with respect to the strategy (2) ; the value of the project viewed
as sum of separate options is far from the true value when interdependences10

(compound options) are considered.
Table III displays the compound option values, F2; corresponding to the

exercise of a put on a put.

Table III
put on put

I1 = 10; I1 = 15; I1 = 20;

T1 = 0:25; 4:68042 9:25438 14:0865

T1 = 0:5; 5:05548 9:2016 13:725

T1 = 0:75; 5:45405 9:30039 13:5121

Base case parameters are: V = 100, I1 = 10, I2 =
100, � = 0:2, r = 0:1, � = 0:05, T1 = 0:25, T = 1:

Numerical evidence demonstrates that increasing values of the �rst in-
vestment outlay, I1; will increase the value the compound option F2. For
example, if T1 = 0:25; then an increase in I1 from 10 to 20 will increase the
value of the compound option from 4:68042 to 14:0865: This is due to the
investment outlay salvage. Instead, an increase in the intermediate exercise

10See Trigeorgis (1993) for further details.
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date, T1; both increases and decreases the value of a put on a put. In fact,
if I1 = 10; an increase in T1 from 0:25 to 0:75 will increase the value of the
compound option from 4:68042 to 5:45405: Instead, if I1 = 20; an increase
in T1 from 0:25 to 0:75 will decrease F2 from 14:0865 to 13:5121:

As before, the value of the compound option to temporarily suspend
the project is higher than the value of the put to abandon it; of course,
increasing �exibility causes both the value of the project to increase and the
value of the subsequent put option to decrease.

Finally, by comparison, it is interesting to note that the value of the
option to temporarily shut-down is higher when it is followed by another
put (to permanently abandon the project). For example, with the base case
parameter values, the price of a put on a put is 4:68042; instead, the price
of a put on a call is 2:4314:

Table IV displays the compound option values, F2; corresponding to the
exercise of a call on a call.

Table IV
call on call

I1 = 10; I1 = 15; I1 = 20;

T1 = 0:25; 2:44416 0:998576 0:368981

T1 = 0:5; 3:62277 2:12127 1:20231

T1 = 0:75; 4:62502 3:14854 2:10064

Base case parameters are: V = 100, I1 = 10, I2 =
100, � = 0:2, r = 0:1, � = 0:05, T1 = 0:25, T = 1:

Numerical evidence demonstrates that increasing values of the �rst in-
vestment outlay, I1; will decrease the value of the compound option F2. In-
stead, postponing the intermediate exercise date, T1; causes the value of the
option to rise, as is traditional in option pricing. For example, if T1 = 0:25;
then an increase in I1 from 10 to 20 will decrease the value of the compound
option from 2:44416 to 0:368981: Finally, if I1 = 10; an increase in T1 from
0:25 to 0:75 will increase the value of the compound option from 2:44416 to
4:62502:

We recall that the value of the compound option to continue the project
at T1 is lower than the value of a call in isolation; the reason is because
the real options under consideration are written on di¤erent assets: (1) the
value of a subsequent call option with strike price I2 and maturity T , and
(2) the discounted cash �ows of the gross project if it would be completed at
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T1, respectively. Thus, strategy (4) leads to a project valuation which is far
from the value obtained by pricing two option separately and then adding
their results.

Finally, note that the possibility to launch a pilot at T1; causes both the
value of the project and the value of the subsequent call option to increase.

2.6 Final remarks

New ventures have the property that much of the value of the investment
is associated with future cash �ows that are contingent on intermediate
decisions. This fact makes the valuation of venture capitals and start-up
companies one of the most di¢ cult investment problem. The real options
approach has therefore acquired importance since traditional DCF-based
approaches seem unsuitable to explain the dynamics in the value of these
investment projects. As a result, the recent body of research on the use
of option pricing leads to a considerable literature which captures many
di¤erent features of these strategic investments.

This paper deals with sequential investment opportunities, as R&D in-
vestments, pilot projects, etc., and provides a valuation method when these
ventures possess �exibility in the form of multiple real options. To do it, the
paper develops a real options approach where the completion of the project
requires N�rounds of investment that are analogous to the exercise prices
of a multicompound call/put option.

The main conclusions of the paper are discussed below.
First, we obtain a closed-form solution for multicompound option which

is simultaneously a call and a put. This result is useful in situations when
�rms make the intermediate investment decisions to continue, suspend or
abandon the project. In doing so, we generalize the setting in Agliardi and
Agliardi (2005)

Second, we obtain a closed-form solution for multicompound exchange
options which is simultaneously a call and a put. In doing so, we extend the
work of Carr (1988) to real options problem when �rms make the interme-
diate investment decisions to continue expand (upgrade/switch technology)
or contract the scale of the project.

Third, we show through numerical implementation, that the value of an
option in the presence of others may di¤er from its value in isolation. First,
recall that the value of a prior real option would be altered if followed by a
subsequent real option because it would be written on the value of another
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option. Second, the e¤ective underlying asset for the latter option would be
altered conditional on prior exercise of an earlier option.
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Chapter 3

3.1 Introduction

1As several researchers have noted R&D ventures are essentially real growth
options. The value of these early projects derives not so much from their
expected cash �ows as from the follow-on opportunities they may create.
For example, basic R&D option is the option that gives the �rm the right
to make positive NPV investments if and when the R&D project is suc-
cessfully completed. Although traditional tools fail to capture the value of
these investments, because of their dependence on future events that are
uncertain at the time of the initial decision, �rms engage the pilot to get
started a multi-stage process that may eventually reach a commercial phase
of launching the new product. Take the example of developing a new drug.
Investing in R&D in the pharmaceutical industry, begins with research that
leads with some probability to a new compound; such a project continues
with testing and concludes with the construction of a production facility
and the marketing of the product. Because many early investments can be
seen as chains of interrelated projects, the earlier of which is prerequisite
for those to follow, they can be evaluated as multicompound options which
involve sequential decisions to exercise the options to invest only when the
R&D outcomes are successful. Compound options have been extensively
used in corporate �nance to evaluate investment opportunities. For ex-
ample, Geske (1979) suggested that when a company has common stock
and coupon bonds outstanding, the �rm�s stock can be viewed as a call
option on a call option. Carr (1988) analyzed sequential compound op-
tions, which involve options to acquire subsequent options to exchange an

1This chapter builds on the working paper DSE n. 569 (2006), University of Bologna
and was presented at a recent DSE seminar.
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underlying risky asset for another risky asset. Gukhal (2003) derives ana-
lytical valuation formulas for compound options when the underlying asset
follows a jump-di¤usion process. Agliardi and Agliardi (2005) study multi-
compound call options in the case of time-dependent volatility and interest
rate. This assumption seems more suitable due to the sequential nature of
many early projects. Multicompound options are merely N-fold options of
options. Basically the procedure consists of solving N-nested Black-Scholes
partial di¤erential equations: at the �rst step the underlying option is priced
according to the Black-Scholes method; then, compound options are priced
as options on the securities whose values have already been found in the
earlier steps. Roll (1977), Whaley (1981), Geske and Johnson (1894) and
Selby and Hodges (1987) also study compound options.

The objective of this paper is to study the multicompound options ap-
proach to value sequential investment opportunities, as research and devel-
opment and similar investment projects, when the underlying asset follows
a jump-di¤usion process. Empirical evidence con�rms the systematic mis-
pricing of the Black-Scholes call option pricing model2. A number of expla-
nations for the systematic price bias have been suggested3. Among these is
the presence of jumps in price. Di¤usion models cannot properly capture
sudden, discontinuous moves in price. This well-known fact leads to the
argument that using continuous or discontinuous models has important con-
sequences for the representation of the risk. Merton (1976) have suggested
that incorporating jumps in option valuation models may explain some of
the large empirical biases exhibited by the Black-Scholes model. According
to Merton, the arrival of normal information leads to price changes which
can be modelled as a lognormal di¤usion, while the arrival of abnormal in-
formation gives rise to lognormally distributed jumps in the security return,
which can be modelled as a Poisson process. If the underlying project value
follows a mixed jump-di¤usion process the price of the multicompound op-
tion will systematically di¤er from the multicompound option price. Jump
models for option pricing are also Cox and Ross (1976), Ball and Torous
(1985), Naik and Lee (1990), Amin (1993) and Bates (1996).

More recently, some papers in the �nance literature study Lévy processes
in real options pricing. For example, Barrieu and Bellamy (2005) analyze
the impact of market crises on investment decision via real option theory.
The investment project, modelled by its pro�ts/costs ratio, is characterized

2Ball and Torous (1995) provide statistical evidence consistent with the existence of
lognormally distributed jumps in a majority of the daily returns of a sample of NYSE
listed common stocks.

3See for example Geske and Roll (1984).
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by a mixed di¤usion process, whose jumps represent the consequences of
crises on the investment �eld. This paper is dedicated to the analysis of
the exercising time properties in an unstable framework. The modelling of
the underlying dynamics involves a mixed-di¤usion, made up of Brownian
motion and Poisson process. The jumps are negative as to represent trou-
bles and di¢ culties occurring in the underlying market. Finally, Cont and
Tankov (2004) provide an overview of theoretical, numerical and empirical
research on the use of jump processes in �nancial modelling.

Real option studies are usually written in a continuous framework for
the underlying dynamics. However, the existence of crises and shocks on
investment markets generates discontinuities. The impact of these crises on
the decision process is then an important feature to consider. The assump-
tion of jump-di¤usion process better describe the evolution of asset value
due to the risky nature of many early investments. Of course new ventures
are subject to several, qualitatively di¤erent sources of risk. There is the
uncertainty associated with the market factors outside the control of the
�rm, that causes marginal changes in the asset value. This is related to the
demand for the product and production costs and is modelled by a standard
geometric Brownian motion. There is the exogenous risk associated with
the actions of a competitor, and �nally, there is the technical uncertainty
which is idiosyncratic to the �rm. The technical risk which represents the
discontinuous arrival of new information has more than a marginal e¤ect
on the asset value. This component is modelled by a jump process re�ect-
ing the non-marginal impact of information. Let us consider the following
cases. The policy process is particular relevant for the �rm engaged in R&D
and other new ventures. Governments can not only deploy measures to
reduce the uncertainty facing potential investors, they can also create un-
certainty through the prospect of policy change. It is commonly believed
that expectations of shifts of policy can have powerful e¤ects on decisions to
invest in these early projects. However, policy uncertainty is not likely to be
well captured by a Brownian motion process; it is more likely to be a Pois-
son jump. R&D in pharmaceuticals and biotechnologies frequently involves
upward jumps or downward jumps, for example drugs can turn into mega-
selling blockbuster products or alternatively, su¤er clinical trial failures and
withdrawal from the markets. Hence R&D investments valuation should rely
on a model focusing on these aspects, rather on standard Brownian motion.
The current valuation of investments based on option methodology assumes
a continuous cash-�ow generation process which is inadequate when these
types of risk jointly determine the value of a new venture. However, in many
cases, closed-form solutions for valuing options with jump processes are not
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available. The main contribution of this paper is to derive a pricing for-
mula for multicompound options when the jump distribution is lognormal;
in doing so, we integrate work on multicompound options4 by Agliardi and
Agliardi (2005) with that on compound options5 by Gukhal (2003).

The paper is organized as follows. Section 2 reviews the literature on
real options and its application to the valuation of R&D ventures and start-
up companies. This is followed by a description of the economic model in
Section 3. Section 4 derives a closed-form solution for multicompound op-
tions in which the equation for the underlying process is replaced by a more
general mixed di¤usion-jump process. An extension to pricing sequential
expansion options is presented in section 5. In section 6 we illustrate our
model by providing numerical results for two di¤erent type of compound
options. First, consider Geske�s (1979) compound option formula in which
the underlying asset follows a standard geometric Brownian motion; next,
we consider the compound option formula where the underlying asset price
follows a mixed jump-di¤usion process. For the last case we assume that
the proportional jump size has a lognormal distribution. Section 7 concludes
the paper.

3.2 Literature review
4 In this paper the multicompound option cN is expressed in the form:
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A number of existing research contribution has previously analyzed various
aspects of optimal sequential investment behavior for �rm facing multi-stage
projects. Staging investment involves �rms either with some degree of �ex-
ibility in proceeding with investment or when there is a maximum rate at
which outlays or construction can proceed, that is, it takes time-to-build.
The real option literature have studied the R&D process as a contingent
claim on the value of the underlying cash �ows on completion of the R&D
project. Majd and Pindyck (1987) develop a continuous investment model
with time-to-build. They solve an investment problem in which the project
requires a �xed total investment to complete, with a maximum instanta-
neous rate of investment. Pindyck (1993) also takes into account market and
technical uncertainty. Myers and Howe (1997) present a life cycle model of
investments in pharmaceutical R&D programs; the problem is solved using
Monte Carlo simulation. Childs and Triantis (1999) develop and numeri-
cally implement a model of dynamic R&D investment that highlights the
interactions across projects. Schwartz and Moon (2000) have also studied
R&D investment projects in the pharmaceutical industry using a real op-
tions framework. In this articles, they numerically solve a continuous-time
model to value R&D projects allowing for three types of uncertainty: tech-
nical uncertainty associated with the success of the R&D process itself, an
exogenous chance for obsolescence and uncertainty about the value of the
project on completion of the R&D stages. Schwartz (2003) develops and
implements a simulation approach to value patents-protected R&D projects
based on the real option approach. It takes into account uncertainty in
the cost to completion of the project, uncertainty in the cash �ows to be
generated from the project, and the possibility of catastrophic events that
could put an end to the e¤ort before it is completed. Errais and Sadowsky
(2005) introduce a general discrete time dynamic framework to value pilot
investments that reduce idiosyncratic uncertainty with respect to the �nal
cost of a project. In this model, the pilot phase requires N stages of invest-
ment for completion that they value as a compound perpetual Bermudan
option. Although the preceding articles suggested the use of more suitable
technique when we attempt to value intangible project that are linked to the
future opportunities they create, such investments are hard to value, even
with the real options approach. The main reason for this is that there are
multiple sources of uncertainty in R&D investment projects and that they
interact in complicated way. In practice, the bulk of the literature on the
R&D valuation have dealt with the development of numerical simulation
methods based on optimal stopping time problems. Berk, Green and Naik
(2004) develop a dynamic model of multi-stage investment project that cap-
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tures many features of R&D ventures and start-up companies. Their model
assumes di¤erent sources of risk and allow to study their interaction in de-
termining the value and risk premium of the venture. Closed-form solutions
for important cases are obtained. More recently, a number of articles con-
sider strategic interaction features across R&D options holders. Garlappi
(2004) analyzes the impact of competition on the risk premium of R&D
ventures engaged in a multi-stage patent race with technical and market
uncertainty. R&D competition causes substantial rent dissipation, excess
R&D spending and higher and more volatile risk premium. On the other
side, competition dramatically reduces the completion time and the failure
rate of research within the industry. Miltersen and Schwartz (2004) develop
a model to analyze patent-protected R&D investment projects when there is
multiple sources of uncertainty in R&D stages and imperfect competition in
the development and marketing of the resulting product. Grenadier (2002)
adds a time-to-build features in a model of option exercise games.

Our study di¤ers from those mentioned above in several crucial respects.
We provide a model which relies on simple mathematics to price options with
jump-di¤usion process. We emphasize that sequential investments oppor-
tunities, as for example R&D projects, can be valued in a continuous-time
framework based on the Black-Scholes model.

3.3 Model and assumptions

Let us consider the investment decision by a venture capital fund that is
evaluating a single R&D project. We assume that the commercial phase
of the project cannot be launched before a pilot phase consisting on N�
stages of investment is completed. The risk free rate in our setting will be
denoted by r. Let I be the amount of investment required for completion
of any R&D stage. When the R&D is successfully completed, the project
will generate a stream of stochastic cash �ows, which we model as a mixed
di¤usion-jump process:

dVt = (�� �k)Vtdt+ �Vtdzt + (Y � 1)Vtdqt; (3.1)

where � is the instantaneous expected return on the underlying asset; � is
the instantaneous standard deviation of the return, conditional on no arrivals
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of important new information6; dz is the standard Brownian motion; dq is
the independent Poisson process with rate �t; (Y � 1) is the proportional
change in the asset value due to a jump and k � E [Y � 1]; dq and dz are
assumed to be independent.

The total uncertainty in the underlying project is posited to be the com-
position of two type of risk: the systematic risk and the technical risk. The
former is generally related to economic fundamentals that causes marginal
changes in the asset value. This is associated with demand for the product
and production costs and is modelled by a standard geometric Brownian
motion. The technical risk which represents the discontinuous arrival of
new information has more than a marginal e¤ect on the asset value. This
component is modelled by a jump process re�ecting the non-marginal im-
pact of information. Usually, such information is speci�c to the �rm: for
example, a new drug may be rendered unnecessary by a superior treatment
option, the entry by a new competitor who take out a patent for a drug that
is targeted to cure the same disease, the possibility of political and techni-
cal unpredictable information that will cause V to jump. Assume that the
logarithmic jump amplitude, ln (Y ), is normally distributed with mean (�J)
and variance

�
�2J
�
; then, the version of Ito�s lemma for a di¤usion-jump

stochastic process is:

dxt =

�
�� �k � 1

2
�2
�
dt+ �dzt + ln (Y ) dqt:

As in Merton (1976) we assume that technical uncertainty is completely
diversi�able, that is, the �rm will not demand any additional return over
the risk free rate for being exposed to this source of risk. This fact will allow
us to specify a unique equivalent risk-neutral measure by setting the market
price of risk of q to zero. Although, it may be too strong an assumption
for industries where �rms may place an important premium on idiosyncratic
risk, this assumption seems unlikely to change results signi�cantly (see Errais
and Sadowsky, (2005) for further details). In the particular case when the
expected change in the asset price is zero, given that the Poisson event occurs
(i:e:; k = 0) 7, by following standard arguments in the �nancial mathematics
literature we can construct the risk-neutral pricing measure under which we

6Further, it is possible to include both a time-varying variance and time-varying interest
rate; see Agliardi and Agliardi (2003) and Amin (1993) for a discussion of this point.

7See Merton (1976, pp. 135-136) for a discussion of this point.
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will work for the remaining of the paper8. The process for the underlying
asset value under Q is given by:

dVt = rVtdt+ �Vtd~zt + (Y � 1)Vtdqt: (3.2)

In the real options setting, investment opportunities may be viewed as op-
tions; thus, the pricing formula for multicompound option can be applied to
evaluate the N-stages pilot we described earlier. In more speci�c terms, let
F (V; t) denote the value of a European call option with exercise price I1 and
expiration date T1. Let us now de�ne inductively a sequence of call options,
with value Fk, on the call option whose value is Fk�1, with exercise price Ik
and expiration date Tk, k = 1; ::; N , where we assume T1 � T2 � ::: � TN .
Because all the calls are function of the value of the �rm V and the time t,
the following partial integro-di¤erential equation holds for Fk:

@Fk
@t

= rFk � rV
@Fk
@V

� 1
2
�2V 2

@2Fk
@V 2

� �E fFk (V Y; t)� Fk (V; t)g ;

t � Tk; k = 1; ::; N; T1 � T2 � :: � TN . The boundary condition is:

Fk (Fk�1 (V; Tk) ; Tk) = max (Fk�1 (V; Tk)� Ik; 0) ;

where Fk�1 (V; Tk) stands for the price of the underlying compound option.
Naturally, if k = 1 the well-known pricing formula for simple option is
obtained:

1X
n=0

e��T1 (�T1)
n

n!

�
V N1 (a1)� I1e�rT1N1 (b1)

�
;

with:

a1 =
ln
�
V
I1

�
+
�
r + �2

2

�
T1

�
p
T1

; b1 = a1 � �
p
T1;

where t = 0 and �2 = �2 + n�2J
T1
, conditional on the number of jumps n.

8We refer the reader to Musiela and Rutkowsky (1998) for additional details.
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3.4 Derivation of the valuation formula

We want to determine the value of the investment opportunity Fk (V; t) in
each stage Tk, k = 1; ::; N , of the pilot conditioning on the discontinuous
arrival of new information. To simplify notation, we assume that t equals
zero. Let V �k denote the value of V such that Fk�1 (V; Tk)� Ik = 0 if k > 1

and V �1 = I1. Moreover, let us set sk =
NP
i=k

ni the total number of jumps in

the interval [0; Tk] ; k = 1; ::; N; T1 � T2 � :: � TN .
Let us de�ne now:

bk =
ln
�
V
V �k

�
+
�
r � �2

2

�
Tk

�
p
Tk

; (3.3)

and:
ak = bk + �

p
Tk; (3.4)

where �2Tk = �2Tk + sk�2J ; k = 1; ::; N . Moreover, let:

�ij =

r
Tj
Ti
; for 1 � i < j � N; (3.5)

the correlation between the logarithmic returns xTj and xTi conditioning on

the number of jumps sj and Si = si�sj : For any k; 1 � k � N , let �(N)k de-
note a k-dimension symmetric correlation matrix with typical element �ij =
�N�k+i;N�k+j . Let Nk(bk; :::; b1; �k) denote the k-dimension multinormal
cumulative distribution function, with upper limits of integration b1; :::; bk
and correlation matrix �k. Finally, let

P1
nk=0

e���nk
nk!

::
P1
n1=0

e���n1
n1!

denote
the joint probability function of k independent Poisson processes with rate
�. We mean the discontinuous arrivals of new information are assumed to
be independent of each other9. Our aim is to derive a valuation formula for
the N -fold multicompound option. Let V �N denote the value of V such that
FN�1 (V; TN ) � IN = 0. Then, for V greater than V �N the N th- compound
call option will be exercised, while for values less than V �N it will remain
unexercised.

9See Kocherlakota and Kocherlakota (1992) for a more detailed development of the
bivariate Poisson distribution.
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The value of the multicompound option is the expected present value of
the resulting cash �ows on the completed project :

EQ0
�
e�rT1 (V � I1) 1"1 ::1"N

�
+

NX
j=2

EQ0
�
e�rTj (�Ij) 1"j ::1"N

�
; (3.6)

where "k = fVk � V �k g ; k = 1; ::; N: The �rst term in (3:6) can be written
in the form:

EQ0

n
e�rTNEQTN

�
::
�
e�r�1 (V � I1) 1"1

	
::
�
1"N

o
; (3.7)

�k = Tk � Tk+1. To examine option pricing when the asset price dynamics
include the possibility of non-local changes, we condition the expectation to
the number of jumps between any points in time:

EQ0

( 1X
nN=0

"
::

( 1X
n1=0

�
e�r�1 (V � I1) 1"1 j n1

�
prob (n1)

)
::1"N j nN

#
prob (nN )

)
:

(3.8)

The evaluation of the expectation requires the calculation of the joint prob-
ability function of N independent Poisson processes with rate �t :

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

EQ0

n
e�rTNEQTN

�
::
�
e�r�1 (V � I1) 1"1

	
::
�
1"N j n1; ::; nN

o
: (3.9)

To evaluate the �rst expectation we will work with the logarithmic return
xTk , rather than V . Conditioning on the number of jumps, sk, lnxTk �
N
�
�; �2Tk

�
where �Tk =

�
r � �2

2

�
Tk and �2Tk = �2Tk + sk�

2
J . The price

of the multicompound option at time 0 equals:
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1X
nn=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

e�rTN

8<:
bNZ

�1

N�(y)
�
g (y)NN�1

�
âN�1; ::; â1; �̂

(N�1)
N�1

�
dy+

�

�
bNZ

�1

N�(y)
�
I1e

�r(T1�TN )NN�1
�
b̂N�1; ::; b̂1; �̂

(N�1)
N�1

��
dy

9=; ; (3.10)

where âk = ak (g (y) ; V �k ; Tk; TN ), b̂k = bk (g (y) ; V
�
k ; Tk; TN ) for k = 1; ::; N�

1; and the entries of �̂(N�1)k are �N�1�k+i;N�1�k+j ; where we de�ne �ij =
��ijq
1��2ij

; for i < j: Note that the critical values V �k above which the kth-

multicompound option will be exercised, are determined recursively and
their existence and uniqueness are guaranteed in view of the expression of
Fk�1 (see Remark 3):

The function g : R! R is given by the formula:

g (y) = V0 exp

��
r � �

2

2

�
TN + �

p
TN � y

�
; (3.11)

where y has a standard Gaussian probability law under Q: Straightforward
calculations yield:

âk =
ln
�
V0
V �k

�
+
�
r + �2

2

�
(Tk � TN ) +

�
r � �2

2

�
TN

�
p
Tk � TN

+ y

r
TN

Tk � TN
; (3.12)

b̂k =
ln
�
V
V �k

�
+
�
r � �2

2

�
Tk

�
p
Tk � TN

+ y

r
TN

Tk � TN
; for k = 1; ::; N � 1: (3.13)

The second integral in (3:10) can be expressed in terms of the N� dimension
multinormal cumulative distribution function by applying the following
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Lemma 5 Let 1 � k < N , and let �̂(N�1)k be the matrix obtained from

�
(N�1)
k replacing any element �ij with

��ijq
1��2ij

, by setting

�k =
ln
�
V
V �k

�
+
�
r � �2

2

�
Tk

�
p
Tk � TN

;

where � and � are real numbers, the following identity holds:

bNZ
�1

N�(y)Nk

�
�N�1 + y�N�1;N ; ::; �N�k;N + y�N�k;N ; �̂

(N�1)
k

�
dy =

Nk+1(bN ; :::; bN�k; �
(N)
k+1):

Proof. by induction after solving the following equation bkq
1��2k;N

= �k and

��k;Nq
1��2k;N

= �k;N ; k = 1; ::; N � 1, for bk and �k;N .

Finally, we succeed in writing the �rst integral in (3:10) in terms of the
cumulative function of the multivariate normal distribution using Lemma 1,
after making the following substitution x = y � �

p
TN ; thus we get:

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

h
V0NN

�
aN ; ::; a1; �

(N)
N

�
� I1e�rT1NN

�
bN ; ::; b1; �

(N)
N

�i
:

The second expectation in (3:6) can be evaluate to give:

�
1X

nN=0

e��TN (�TN )
nN

nN !
::

1X
nj=0

e���j (�� j)
nj

nj !
�

8<:
NX
j=2

Ije
�rTjNN+1�j

�
bN ; ::; bj ; �

(N)
N+1�j

�9=; ; j = 2; ::; N:
Hence, we have the following result for the value of a multicompound call
option:
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Proposition 6 The value of the multicompound call option FN with matu-
rity TN and strike price IN written on a compound call option FN�1 with
maturity TN�1 and strike price IN�1 is given by:

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!

h
V0NN

�
aN ; ::; a1; �

(N)
N

�i
+

�
1X

nN=0

e��TN (�TN )
nN

nN !
::

1X
nj=0

e���j (�� j)
nj

nj !
�

24 NX
j=1

Ije
�rTjNN+1�j

�
bN ; ::; bj ; �

(N)
N+1�j

�35 ; j = 1; ::; N ;

where the ais, the bis and the �ijs are as de�ned previously.

Remark 7 It can be proved that @V Fk = Nk(ak; :::; a1; �
(k)
k ): Thus unique-

ness of V �k is guaranteed for every k; 1 � k � N:

In the particular case when � = 0, the formula reduces to Agliardi and
Agliardi (2005) : Note that the value of the compound option in the square
brackets is conditional on knowing exactly the number of Poisson jumps
occurring during the life of the option. Clearly, the actual value of the
multicompound option, FN , is just the weighted sum of the prices of the
option where each weight equals the joint probability thatN Poisson random
variables with characteristic parameters �t, will take on the value n:

This proposition is the main result of the paper and forms the basis for
the valuation of sequential investment opportunities, as for example R&D
ventures, including the possibility of jumps in the underlying asset value.

3.5 An extension

In Carr [9] sequential exchange opportunities are valued using the techniques
of modern option-pricing theory. The vehicle for analysis is the concept
of compound exchange option. Accordingly, the real option literature has
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suggested that sequential expansion opportunities can be viewed as com-
pound exchange options. Trigeorgis (1996) highlighted that many new busi-
ness ventures, as R&D and start-up projects, can be seen as the base-scale
projects plus an option to make additional investments. For example, the
opportunities for a �rm to continuously expand its technology represents
a critical component of the software providing industry�s investment deci-
sions. The �rms�ability to later expand capacity is clearly more valuable
for more volatile business with higher returns on project, such as computer
software or biotechnology, than it is for traditional business, as real estate or
automobile production. Nevertheless, the value of these early investments is
generally subject to considerable uncertainty, because of their dependence
on future events that are uncertain at the time the base-scale takes place.
Market factors outside the control of the �rm change continuously and have
considerable e¤ect on the value of these investment opportunities. Moreover,
when the new software product comes together with technological innova-
tions, there is also considerable uncertainty with respect to the actions of
a competitor or changes in environment before or soon after technological
improvements. For example, a software product may fail because of techno-
logical advances in hardware.

In this section we attempt to evaluate sequential technology adoptions
as in Carr (1988). As before, we could relax the assumption of a pure di¤u-
sion process for the underlying asset value, to illustrate the case where new
technology competitors arrive randomly according to an exogenous Poisson
distribution. A pricing-formula for multicompound exchange option with
jump-di¤usion process is obtained.

3.5.1 The mathematical problem and solution

Since this problem and its solution are extensions of the multicompound
call option formula, I will use the same notation and assumptions as much
as possible. We consider the valuation of a European sequential exchange
option Fk (V1; V2; t) which can be exercised at Tk, where T1 � T2 � ::: � TN .
Assume that the prices of both assets follow the same stochastic di¤erential
equation (1). Let '12 denote the correlation coe¢ cient between the Wiener
processes dz1 and dz2; dqi and dzi are assumed to be independent as well
dqi and dqj ; i; j = 1; 2. As suggested by Margrabe (1978), the valuation
problem can be reduced to that of a one-asset option if we treat V1 as
numeraire. Accordingly, we de�ne a new random variable V = V2

V1
, which is
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again lognormal. The option sells for Fk (V1; V2; t) =V1 =Wk (V; t) : The risk-
free rate in this market is zero. The functional governing the multicompound
exchange option�s value Wk (Wk�1 (V; Tk) ; Tk) is known at expiration to be
max (Wk�1 (V; Tk)� qk; 0) where qk is the exchange ratio of the option10.
This problem is analogous to that of section 4 if we treat qk as the exercise
price of the option. Our aim is to derive a valuation formula for the N -fold
multicompound exchange option, that is for WN (V; t), 0 � t � TN : Let V �N
denote the value of V such that WN�1 (V; TN ) � qN = 0 and V �1 = q1. To
simplify notation we will assume again t = 0. Let us de�ne now:

b�k =
ln
�
V
V �k

�
� �2

2 Tk

�
p
Tk

; (3.14)

and:
a�k = b�k + �

p
Tk; (3.15)

where �2 = �21 � 2'12�1�2 + �22; Finally, we set �ij as in (3:5).
The current value of the multicompound exchange option WN follows

by:

EQ0 [(V � q1) 1"1 ::1"N ] +
NX
j=2

EQ0
�
(�qj) 1"j ::1"N

�
: (3.16)

The derivation of the pricing formula is standard. We assume that the ran-
dom variable Y has the same log-normal distribution as we described before.
In this case the logarithmic return xTk will have a normal distribution with

mean equals �Tk =
�
r � �2

2

�
Tk and variance equals �2Tk = �2Tk + sk�

2
J .

The evaluation of the �rst expectation in (3:16) requires the calculation of
the joint probability function of N independent Poisson processes with rate
�t: Solving as in (3:7)� (3:9) ; we obtain:

1X
nn=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

10As in Carr (1988) the exchange ratio q is taken to be constant or, at most, a deter-
ministic function of time.
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8<:
bNZ

�1

N�(y)
�
~g (y)NN�1

�
~aN�1; ::; ~a1; �̂

(N�1)
N�1

��
dy+

�
bNZ

�1

N�(y)
�
q1NN�1

�
~bN�1; ::;~b1; �̂

(N�1)
N�1

��
dy

9=; ; (3.17)

where ~g (y) equals (3:11), ~ak equals (3:12) and ~bk equals (3:13) if r = 0: The
calculation of the second integral in (3:16) is straightforward. Finally, in
light of Lemma 1, we obtain the following:

Proposition 8 The value of the sequential exchange option FN with matu-
rity TN and strike price qN written on a exchange option FN�1 with maturity
TN�1 and strike price qN�1 is given by:

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!

h
V02NN

�
a�N ; ::; a�1; �

(N)
N

�i
+

�
1X

nN=0

e��TN (�TN )
nN

nN !
::

1X
nj=0

e���j (�� j)
nj

nj !
�

24V01 NX
j=1

qjNN+1�j
�
b�N ; ::; b�j ; �

(N)
N+1�j

�35 ; j = 1; ::; N ;

where the a�is, the b�is and the �ijs are as de�ned previously.

Of course, when � = 0, the formula reduces Carr (2005) :

3.6 Numerical Results

In this section, we illustrate our model by providing numerical results for
two di¤erent type of compound options. First, consider Geske�s (1979) com-
pound option formula in which the underlying asset dynamics is modelled
by a standard geometric Brownian motion. Next, we consider the compound
option formula derived in section 4, where the underlying asset price follows
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a mixed jump-di¤usion process. We assume for the latter process that the
proportional jump size has a lognormal distribution. For comparison pur-
poses we consider a simple compound option with two strike prices and two
expiration dates.

Our model is implemented as follows. Consider a European compound
call option written on a European call option. The corresponding values
computed using Geske�s closed-form solution are reported in Table I under
the heading di¤usion11. This model makes use of the standard Black-Scholes
formula for the critical prices computation at the �rst exercise date, T112,
and also uses the bivariate normal distribution for treating two correlated
random processes. Conversely, the implementation of the compound option
formula with jump-di¤usion process makes use of the Merton formula for
determining the critical prices at the �rst exercise date and also uses the
bivariate discrete distribution, in addition to the bivariate normal distrib-
ution, for treating two uncorrelated Poisson processes. In the computation
of this formula we further truncate the sums neglecting higher order terms
of the Poisson distribution, where we require that the error committed in
this way is lower than an arbitrary taken value. The results of the model
using the jump-di¤usion compound option formula are reported in Table I
under the heading jump-di¤usion. Further, we can indicate these two types
of compound options by F2

�
�2
�
and F2

�
�2; �; �2J

�
, respectively.

As in Shaw (1998) we assume that the compound option has expiration
date T1 = 0:25 and strike prices X1 = f5; 7:5; 10g; the call option has
expiration date T2 = 1 and strike price X2 = 100. The risk-free rate of
interest is �xed at r = 0:10, and the dividend yield13 is � = 0:05, in annual
terms. The annual variance of the di¤usion component is �2 = 0:04; and the
variance of the asset price return due to each jump occurrence is �2J = 0:04:
The initial asset value is V0 = 100:

Table I displays the di¤erence between the compound option F2 (0:04)
and the compound option F2

�
0:04; �; �2J

�
corresponding to di¤erent values

of the mean number of abnormal information arrivals.
Notice that for moderately large value of �; signi�cant di¤erences pre-

vail between the Geske value of the compound option F2 (0:04) ; and the

11See Shaw (1998) for the corresponding computations.
12Contrarily to the assumption in section 3, we assume that the �rst exercise date is T1

and the second exercise date is T2; with T1 < T2.
13See Dixit and Pindyck (1994) and Trigeorgis (1996) for a detailed discussion . Here, �

is the shortfall in the expected rate of return from holding the option to complete rather
than the completed project. Note that the dividend yield is assumed to be zero in section
3.
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value of the jump-di¤usion compound call option F2
�
0:04; �; �2J

�
: Further,

the actual value of the compound call option F2
�
0:04; �; �2J

�
gets monoton-

ically close to the value computed by using Geske�s formula, F2 (0:04) ; for
� su¢ ciently small.

TABLE I

VALUE OF THE SEQUENTIAL INVESTMENT OPPORTUNITIES
F2
�
0:04; �; �2J

�
AND F2 (0:04) :

V = 100, X2 = 100, � = 0:2, r = 0:1, � = 0:05, T1 = 0:25, T2 = 1;
Diffusion

X1 = 5; X1 = 7:5; X1 = 10;
5:30918 3:6633 2:44416

V = 100, X2 = 100, � = 0:2, �J = 0:2, r = 0:1, � = 0:05, T1 = 0:25,
T2 = 1;

Jump�Diffusion
X1 = 5; X1 = 7:5; X1 = 10;

�

1:0 7:90894 5:98219 4:41552

1:0� 10�1 5:58408 3:89883 2:6387

1:0� 10�2 5:33678 3:68685 2:46356

1:0� 10�3 5:31194 3:66565 2:4461

1:0� 10�4 5:30946 3:66353 2:44435

1:0� 10�5 5:30921 3:66332 2:44418

1:0� 10�6 5:30918 3:6633 2:44416

1:0� 10�7 5:30918 3:6633 2:44416

We graphically summarize this result in Figure 1 where the compound
option values, F2

�
�2; �; �2J

�
; are represented as a function of the mean num-

ber of abnormal information arrivals, �.

Table II displays the compound option values F2
�
0:04; �; �2J

�
corre-

sponding to di¤erent values of the parameter �; and increasing values of
the standard deviation, �J : In particular, numerical evidence demonstrates
that increasing values of �J will increase the value the compound option
F2
�
0:04; �; �2J

�
. For example, if � = 1:0 � 10�1 and X1 = 5; then an in-

crease in �J from 0:2 to 0:3 will increase the value of the compound option
from 5:58408 to 5:83585: Finally, the actual value of the compound option
F2
�
0:04; �; �2J

�
gets monotonically close to F2 (0:04) for � su¢ ciently small

and �J su¢ ciently large.



3.6. NUMERICAL RESULTS 113

0.2 0.4 0.6 0.8

6.5

7

7.5

Figure 3.1: Compound option value, F2
�
�2; �; �2J

�
; as a function of the mean

number of abnormal information arrivals, �; per unit time. Parameter values:
V0 = 100, X2 = 100, X1 = 5, � = 0:2, �J = 0:2, r = 0:1, � = 0:05,
T1 = 0:25, T2 = 1.

TABLE II

VALUE OF THE SEQUENTIAL INVESTMENT OPPORTUNITY
F2
�
0:04; �; �2J

�
FOR DIFFERENT VALUES OF �2J :

V = 100, X1 = 5, X2 = 100, � = 0:2, r = 0:1, � = 0:05, T1 = 0:25,
T2 = 1

X1 = 5; X1 = 7:5; X1 = 10;
� �J
1:0 0:2 7:90894 5:98219 4:41552

1:0� 10�1 0:3 5:83585 4:11133 2:8121

1:0� 10�2 0:4 5:3896 3:73093 2:49933

1:0� 10�3 0:5 5:32009 3:67244 2:4516

1:0� 10�4 0:6 5:31056 3:66445 2:4451

1:0� 10�5 0:7 5:30935 3:66332 2:44418

1:0� 10�6 0:8 5:3092 3:66331 2:44417

1:0� 10�7 0:9 5:30918 3:6633 2:44416

Notice that this result is in part similar to numerical evidence in Ball
and Tourus (1985) where the Merton value of the call option gets arbitrarily
close to the Black-Scholes call option value for � su¢ ciently small and �2J
su¢ ciently large, although not monotonically.
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We have shown the e¤ect of changing the parameters � and �J ; while
keeping all the other parameters constants. The comparative static ex-
periment in Table III is di¤erent from that in Table I and II. Table III
demonstrates that the value of the sequential investment option is sensitive
to changes in the parameters r; �; �; T1; T2 and V . Responses of the jump-
di¤usion compound option price to changes in the values of the parameters
are essentially maintained with respect to ones in Geske (1979).

For the base case in table below, we set V = 100, X1 = 5, X2 = 100,
� = 0:2, �J = 0:2, � = 1, r = 0:1, � = 0:05, T1 = 0:25 and T2 = 1: Table II
displays the compound option price F2 corresponding to these values of the
parameters: 7:90894.

(1) Increases in the interest rate r rise the value of the investment op-
portunity; the sensitivity analysis shows that if r increases to 0:15 the value
of the option will increase to 10:0383:

TABLE III

VALUE OF THE SEQUENTIAL INVESTMENT OPPORTUNITY F2 FOR A
WIDE RANGE OF THE PARAMETERS

T1 = :25 T1 =
:375

T1 = :5 T2 = 1:5 T2 = 2 T2 = 3

r
0:1 7:90894 8:23688 8:59035 10:7385 13:1214 16:8632
0:15 10:0383 10:3217 10:6422 13:8643 17:1101 22:2905
0:2 12:2563 12.5083 12:7996 17:067 21:1544 27:6681

�
0:225 8:60684 8:93657 9:29443 11:5371 13:9925 17:826
0:25 9:32774 9:65873 10:0206 12:3681 14:9021 18:8338
0:3 10:8258 11:1582 11:5273 14:1066 16:8101 20:9511

�
0:075 6:64528 7.01039 7:3868 8:75235 10:4469 12:886
0:1 5:53617 5:93507 6:32969 7:02418 8:14707 9:56381
0:15 3:74455 4:19154 4:60508 4:28441 4:56537 4:60318

V
90 3:26294 3:71819 4:13237 5:46279 7:58267 11:1439
110 14:3177 14:5112 14:7556 17:2002 19:5669 23:2261

Note : Entries are calculated using equation for F2 in the text. Base case parame-
ters are V = 100, X1 = 5, X2 = 100, � = 0:2, �J = 0:2, � = 1, r = 0:1, � = 0:05,
T1 = 0:25, T2 = 1:

(2) Increases in � rise the value of the option; for example an increase
of the standard deviation from 0:2 to 0:225 will increase the value of the
sequential investment from 7:90894 to 8:60684:
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(3) Postponing the exercise dates of the investments causes the value
of the option to rise, as is traditional in option pricing; indeed if r = 0:1
and the maturity date of the �rst stage investment, T1; is delayed from 0:25
to 0:375 of a year, the value of the option will increase from 7:90894 to
8:23688: Moreover, if the maturity date of the second stage investment, T2;
is postponed from 1 to 2 years, the value of the option will increase from
7:90894 to 13:1214:

(4) The value of the option decreases as � increases. In Table III, F2 re-
duces from 7:90894 to 6:64528 as � goes from 0:05 to 0:075 (when T1 = 0:25).

(5) The option value is also sensitive to change in V from 100 to 110.
This sensitivity results in an increase of the option price from 7:90894 to
14:3177:

3.7 Final remarks

R&D and similar investment projects have the property that much of the
value of the investment is associated with future cash �ows that are contin-
gent on intermediate decisions. Due to this property the analysis of R&D
ventures and start-up companies is one of the most di¢ cult investment prob-
lem. Starting from the well known di¢ culty of traditional DCF methods to
capture the value of new ventures, the real options literature provides ad-
vanced models which focus on di¤erent R&D characteristics.

This paper deals with compoundness of R&D investment project and
analyses the impact of di¤erent sources of uncertainty on its valuation. To
do it, the paper develops a real options approach where the R&D process
requires N�rounds of investment that are analogous to the exercise prices of
a multicompound option. Furthermore, the paper assumes that the under-
lying asset is subject both to market and technical uncertainty: the former
is generally related to economic fundamentals and always driving the value
of a project, while the latter is idiosyncratic to the �rm and associated with
the success of the venture itself. These sources of risk are modelled through
the assumption that the underlying asset follows a jump-di¤usion process.

The paper is organized as follows:
First, we obtain a closed-form solution for multicompound option which

allows for di¤erent sources of uncertainty. In the process, the R&D ven-
ture is subject to two types of risk: (1) uncertainty associated the potential
future cash �ows the project will produce if completed; this is represented
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by a standard di¤usion process, punctuated by (2) jumps at random inter-
vals. By assuming that the jump risk is completely diversi�able and that
the distribution of jump size is lognormal, a European-style multicompond
option which extends the work of Agliardi and Agliardi (2005) can be priced
according to the risk-neutral valuation method.

Second, we obtain a closed-form solution for multicompound exchange
options with a jump-di¤usion process which extends the work of Carr (1988)
to real options problem when crises and shocks create discontinuities on the
investments process.

Third, we show through numerical implementation, that the resultant
equilibrium option price will systematically di¤er from that obtained in
Geske (1979) ; particularly, comparative statics results con�rm that increas-
ing value of the parameters in the jump component will increase the value
of the compound option and leads to an R&D investment appraisal which
does not use to undervalue it.

A �nal remark needs to be mentioned. The existing research contri-
butions in the real options �eld has previously analyzed various aspects of
optimal sequential investment behavior for �rm facing multi-stage projects.
The focus of these articles is on optimal investment characteristics with
respect to single �rm�s investment decisions. However, the impact of com-
petitive pressure is an important feature to take into account when dealing
with R&D investments. Hence, a multi-stage investments appraisal should
rely on a game-theoretic analysis of R&D projects exercise strategies. We
leave it for further research.
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