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Preface

HE present Thesis describes the principal research projects pursued during

my Ph.D. course. Part[[]is dedicated to the main research project, which
consisted in the design, the implementation and the validation of an automated
technique for myocardial identification as a basis for perfusion quantification
in magnetic resonance images. Some of the methods developed for the main
project were successfully applied also to other areas of research. More in par-
ticular, the implemented segmentation methods were adopted for myocardial
identification in cine cardiac magnetic resonance images as a basis for both ven-
tricular modelling and necrotic scars detection. These two projects, to which I
have only partially contributed, are described in Part [[Il Finally, Part [[I]] de-
scribes a project unrelated to the field of cardiac image processing, and consists
in the design and implementation of an automated segmentation technique for
prosthetic components in fluoroscopy. Of note, the side projects presented in

Parts [[I] and [[T]] are described by reporting the relative papers.

The indicated research projects were pursued at the Department of Electronics,
Computer Sciences and Systems of the University of Bologna and at the Cardiac

Imaging Research of the University of Chicago.
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Short Abstract

YOCARDIAL perfusion quantification by means of Contrast-Enhanced Car-

diac Magnetic Resonance images relies on time consuming frame-by-

frame manual tracing of regions of interest. In this Thesis, a novel automated
technique for myocardial segmentation and non-rigid registration as a basis
for perfusion quantification is presented. The proposed technique is based
on three steps: reference frame selection, myocardial segmentation and non-
rigid registration. In the first step, the reference frame in which both endo-
and epicardial segmentation will be performed is chosen. Endocardial segmen-
tation is achieved by means of a statistical region-based level-set technique
followed by a curvature-based regularization motion. Epicardial segmentation
is achieved by means of an edge-based level-set technique followed again by
a regularization motion. To take into account the changes in position, size
and shape of myocardium throughout the sequence due to out of plane res-
piratory motion, a non-rigid registration algorithm is required. The proposed
non-rigid registration scheme consists in a novel multiscale extension of the
normalized cross-correlation algorithm in combination with level-set methods.
The myocardium is then divided into standard segments. Contrast enhance-
ment curves are computed measuring the mean pixel intensity of each segment
over time, and perfusion indices are extracted from each curve. The overall ap-
proach has been tested on synthetic and real datasets. For validation purposes,
the sequences have been manually traced by an experienced interpreter, and
contrast enhancement curves as well as perfusion indices have been computed.
Comparisons between automatically extracted and manually obtained contours
and enhancement curves showed high inter-technique agreement. Comparisons
of perfusion indices computed using both approaches against quantitative coro-
nary angiography and visual interpretation demonstrated that the two tech-
nique have similar diagnostic accuracy. In conclusion, the proposed technique
allows fast, automated and accurate measurement of intra-myocardial contrast
dynamics, and may thus address the strong clinical need for quantitative eval-

uation of myocardial perfusion.






Extented Abstract

Purpose. Cardiac magnetic resonance (CMR) is currently the standard tech-
nique for myocardial functional assessment. Myocardial perfusion analysis
by means of Contrast-Enhanced CMR is performed clinically only by quali-
tative visual assessment. Although quantitative methods have demonstrated
superior diagnostic accuracy, they rely on frame-by-frame manual tracing of
myocardial regions of interest (ROIs). The resulting methodology is tedious,
time-consuming and potentially inaccurate, being strongly operator-dependent.
Accordingly, many automated and semi-automated technique for myocardial
identification in perfusion images have been proposed in literature. However,
only few of them try to compensate for respiratory out of plane motion, which
causes apparent myocardial deformations in the imaging plane. Among these,
to the best of our knowledge, none has successfully undergone an extensive
validation procedure in the clinical environment. The main goal of the present
project was to develop, implement and validate an automated technique for
myocardial identification as a basis for perfusion quantification suitable for

clinical application.

Methods. The proposed technique is based on three major steps: reference
frame selection, myocardial segmentation and non-rigid registration. In the
first step, after the manual input of a seed point inside the left ventricular cav-
ity, the reference frame in which myocardial segmentation will be performed
is automatically chosen. Endocardial segmentation is achieved by means of a
statistical region-based level-set technique followed by a curvature-based reg-
ularization motion. Differently, epicardial segmentation is achieved by means
of an edge-based level-set technique followed again by a regularization motion.
After the myocardial boundaries have been defined in the reference frame,
they have to be shifted and deformed to match the changes in position, size
and shape of heart throughout the sequence. This task is achieved implement-
ing a non-rigid registration method, consisting in a novel multiscale extension
of the normalized cross-correlation algorithm combined with level-set meth-
ods. After the myocardium has been identified into all sequence frames, it is

divided into 16 segments. Contrast enhancement curves are computed mea-
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suring the mean pixel intensity of each segment over time. Perfusion indices
are then extracted from each curve. The presented approach has been applied
to synthetic and real perfusion sequences. As for real acquisitions, 42 patients
have been analyzed both at rest and during vasodilator stress. To ensure the
robustness of the implemented method, the real sequences have been acquired
in two different institutions, using different equipment and different protocols.
To validate the proposed automated technique, the real sequences were manu-
ally traced by an experienced interpreter. The automatically defined contours
were compared to the manually traced ones by means of several error metrics
including Hausdorff Distance and Mean Absolute Distance. Contrast enhance-
ment curves extracted both automatically and manually were compared using
Pearson’s correlation coefficient, linear regression and Bland-Altman analyses.
Perfusion indices were also compared in the same way. Finally, to evaluate the
clinical usefulness of the proposed approach, the diagnostic accuracy of the per-
fusion indices were compared between automated and manual analyses using
quantitative coronary angiography (QCA) and qualitative visual interpretation

as reference standards.

Results. Time required for the automated analysis of a perfusion sequence
is less than one minute. The spatial comparison of the automatically and
manually defined contours resulted in errors comparable to those reported in
literature. Segmental contrast enhancement curves obtained using the auto-
mated approach were in good agreement with those extracted manually. The
same happened for most of the perfusion indices studied. Finally, the diag-
nostic accuracy of these indices were similar between automated and manual

analysis both against QCA and visual inspection.

Conclusions. Despite the extreme dynamic nature of contrast-enhanced im-
age sequences and respiratory motion, fast automated detection of myocar-
dial segments and accurate quantification of tissue contrast is feasible at rest
and during vasodilator stress. The proposed technique allows the detection of
stress-induced perfusion abnormalities and yields a diagnostic accuracy com-
parable to that of conventional manual analysis. Consequently, it represents a

viable candidate for the adoption in the clinical environment.



Chapter 1

Introduction

HE leading cause of death in the world, according to the latest estimates
T provided by the World Health Organization [I][2], is represented by car-
diovascular diseases. In 2008, the mortality due to this group of diseases ex-
ceeded the 30% of the total, and up to the 12.8% was due to ischaemic heart
diseases alone (see Fig. [1.1). This last percentage is strongly related to the
geographic region being analyzed: while in low-income countries it decreases
to 6.1%, in middle- and high-income countries it rises up to 13.7% and 15.6%,
respectively [3]. As a consequence, it becomes evident the importance of sci-
entific research applied to this field, aiming to an improvement of both the
diagnostic process and the clinical treatment of ischaemic heart diseases.

Ischaemic Heart
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Other
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s Cardiovascular
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Respiratory
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Hypertensive Heart
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Figure 1.1: Worldwide mortality estimates for the year 2008, with particular
focus on cardiovascular diseases. Data gathered from the WHO technical report
and summary tables [I][2].

The assessment of patients presenting symptoms related to myocardial is-

chemia is one of the most common and yet challenging clinical tasks. Each
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year, a large amount of patients (approximately 6 millions only in the United
States [4]) presents to emergency departments with chest pain and other symp-
toms related to myocardial ischaemia. However, according to statistics, only
approximately 20% of them are suffering from acute coronary syndrome (ACS).
The initial ECG, which is routinely used as first patient assessment tool, is di-
agnostic in fewer than a half of the patients with ACS [5]. In addition, cardiac
enzymes do not become positive for several hours after coronary occlusion. As
a result, the vast majority of these patients is either admitted to the hospital
or to a chest pain unit, leading to a large wasted expenditure per year (ap-
proximately $12 billion only in the United States [6]). On the other hand,
up to 4% of patients with ACS are being inappropriately discharged from the
emergency department [7]. Overall, almost a half of cardiac mortality due to
myocardial infarction takes place before reaching the catheterization labora-
tory [8]. These findings indicate that, despite the many improvements in the
clinical identification of myocardial ischemia, the need for fast, reliable and
affordable techniques for risk stratification in averting cardiac events is still of

prime importance.

Cardiac perfusion imaging is currently playing the leading role in the field
of non-invasive assessment of myocardial perfusion for the detection of the
presence and severity of myocardial ischaemia and of the underlying coronary
artery disease (CAD). The basic principle consists in acquiring images of the

heart during the inflow of an appropriate intravenous contrast medium (see

Fig. .

| a i b | C | d
time

Figure 1.2: Basic cardiac perfusion image sequence (short-axis view). Initially
the whole heart appears uniformly dark (a); after the contrast medium is in-
travenously injected into the patient’s circulation, the right ventricular cavity,
the left ventricular cavity and the myocardium are sequentially enhanced (b,
¢, d, respectively).

The visualization of the contrast medium dynamics allows the evaluation of
the local myocardial perfusion in the left ventricle (LV), and thus the detection
of potentially ischaemic areas. Aside from CAD detection, perfusion imaging is
able to locate myocardial necrotic tissue (in case of previous myocardial infarc-

tion) and to assess viability, showing myocardial regions which could benefit



from angioplasty and revascularization. Generally speaking, all the main imag-
ing techniques (i.e. Nuclear Imaging, Computed Tomography, Echocardiogra-
phy and Magnetic Resonance Imaging) can be applied to estimate myocardial
perfusion, usually at the additional cost of intravenous injection of an endoge-
nous contrast medium. However, many of them are not routinely applied due

to many reasons.

Figure 1.3: Myocardial perfusion short-axis images obtained with different
modalities: SPECT (a), CT (b), MCE (c). Images respectively from Hendel et
al. [9], Techasith et al. [I0] and Hayat et al. [I1].

Nuclear Imaging is one of the first imaging techniques applied to the eval-
uation of myocardial perfusion (see Fig. a) [12]. It can be performed both
using Single-Photon Emission Computed Tomography (SPECT) or Positron
Emission Tomography (PET): the former is definitely more widespread than
the latter, requiring less expensive technological facilities, albeit PET gener-
ally provides higher imaging accuracy. Due to the specific pharmacokinetics
of the commonly adopted radioactive tracers, which are directly absorbed by
myocardial cells, Nuclear Imaging can estimate perfusion performing a single,
non dynamic acquisition of the heart few minutes after the tracer injection. Al-
though being a well-established technique for myocardial perfusion assessment,
used as gold standard for several decades [12], Nuclear Imaging for cardiac per-
fusion assessment suffers from many limitations. First of all, it is characterized

by a relatively low spatial resolution [I3], hindering the application of quantita-
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tive methods which could improve diagnostic accuracy. Nuclear Imaging is also
limited by different types of artifacts such as attenuation artifacts and motion
artifacts (enhanced by the relatively high acquisition time, which can go up to
20 minutes per single scan). Finally, all the nuclear imaging techniques obvi-
ously require the production and the administration of a radioactive isotope to
the patient, which will be exposed to ionizing radiations. Albeit some of these
issues have being tackled by modern scanners [I3], most of them still hold,
limiting the clinical use of Nuclear Imaging for the assessment of myocardial
perfusion.

Historically, Computed Tomography (CT) has not been deployed for the
estimation of myocardial perfusion due to its relatively low temporal resolution,
unsuitable for contrast medium dynamics imaging. Only recently, thanks to the
advantages in CT technology, cardiac perfusion imaging has become feasible
on this platform (see Fig. b) [14]. However, this methodology is still at an
early stage of development, and at the moment still suffers from a few image
artifacts, namely beam-hardening and motion artifacts [I0]. Both these types
of artifacts determine the appearance hypo-enhanced regions, which could be
mistaken for perfusion defects. In addition, every CT scan obviously involves
the administration of a certain amount of ionizing radiation to the patient.
These factors, at the present time, limit the viability of this modality and
hamper its clinical adoption.

Echography is one of the most widespread imaging modalities applied to
the analysis of both cardiac morphology and functionality. Myocardial Con-
trast Echocardiography (MCE) consists in imaging the myocardium after the
intravenous injection of gas bubbles encapsulated in a solid shell and called
microbubbles (see Fig. ¢). MCE has proven to be very sensitive in detect-
ing coronary stenosis, especially at mild and moderate states [I5]. Moreover,
MCE is a very cost-effective and safe technique. Despite all these advantages,
MCE is not routinely used in clinical practice. This is mainly due to the reluc-
tance in the approval of microbubble-based contrast agents in many Countries,
including the United States [5]. On a more technical note, Echography may
also be limited by the specific anatomy of the patient, being strictly dependent
upon the acoustic window available and the size of the heart. Finally, MCE
images are difficult to be evaluated, due to their relatively low signal-to-noise
ratio. These facts considerably steepen the learning curve for this technique
and limit its acceptance in the clinical environment.

Cardiac Magnetic Resonance Imaging (CMR) is currently the reference
standard technique in assessing cardiac structure and function. The evaluation
of cardiac perfusion with CMR is made possible through the administration
of a Gadolinium-based contrast medium (GBCM), revealing myocardial blood
inflow (see Fig. . To correctly estimate the dynamics of the GBCM bo-
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Figure 1.4: Myocardial perfusion short-axis image obtained with CMR.

lus through cardiac tissue, imaging must start right after its injection and be
performed at a sufficiently high frame rate. Based on these considerations,
this type of imaging protocol takes the name of First-Pass Perfusion CMR
(FP-CMR). Compared to other available imaging modalities used to assess
myocardial perfusion, FP-CMR is characterized by high spatial and tempo-
ral resolution, high sensitivity, relatively good image quality (with substantial
absence of artifacts due to attenuation phenomena or induced by unfavorable
body conditions) and an excellent safety profile [16]. These technical features
are the reason of the growing fortune of FP-CMR, which can nowadays be con-
sidered the gold standard for the evaluation of myocardial perfusion and the
detection of potential ischaemia. In the clinical environment, this detection is
performed relying on the simple visual assessment of the acquired image se-
quences. Clearly, this analysis is strongly operator-dependent, and unable to
identify a variety of diseases such as three-vessel CAD (consisting in a uniform
stenosis of all the three coronary arteries) which induce a balanced ischemia
with no visible defects [I7]. A quantitative analysis, consisting in the extraction
of intensity time curves from different regions of the myocardium (i.e. contrast
enhancement curves), would be able to address these issues. Nonetheless, quan-
titative perfusion evaluation methods are not used in the clinical routine. The
main reason is that the construction of contrast enhancement curves requires
manual drawing of myocardial regions of interest (ROIs) in each frame of the
image sequence [I8][19][20]. This operation is greatly hampered by cardiac
out of plane motion due to diaphragmatic respiration of the patient . While

patients are asked to hold their breath as long as they can during contrast

!The normal contraction/relaxation of the heart is not visible in perfusion image se-
quences thanks to ECG-gating imaging protocols, which allow to scan the heart at the same
phase in each cardiac cycle.
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administration and imaging, most of them is unable to maintain apnea for
the whole scan time (usually from 30 to 60 seconds). Out of plane motion
causes changes in position, size and shape of the myocardium throughout the
sequence, which causes the need for constant repositioning and redrawing of the
ROIs [21]|22][23]. The resulting procedure is tedious, highly time-consuming
and potentially inaccurate, thus unapplied in the clinical practice.

To overcome this issue, several image processing techniques have been pro-
posed and presented in literature, aiming at the automated identification of the
myocardium in all the frames of a FP-CMR image sequence [21][24][25]. This
task is particularly difficult to achieve due to the relatively high noise levels in
the images as well as the extreme changes in brightness from frame to frame
of the different image components (i.e. ventricular cavities and myocardium).
As a consequence, none of the presented approaches has reached widespread
consensus, and the research for an automated method for myocardium identi-
fication in FP-CMR image sequences remains still open.

In Part [[] of this Thesis, a new approach for segmentation and registration
of myocardial regions of interest as a basis for perfusion quantification is pre-
sented. This technique is based on level-set methods for image segmentation
and modified normalized cross-correlation algorithms for non-rigid image reg-
istration. The approach has been tested both on synthetic image datasets and
on real FP-CMR datasets acquired in patients presenting normal perfusion and
CAD. For validation purposes, the implemented technique has been compared
to conventional manual tracing of myocardial ROIs, both in terms of contour
accuracy and of contrast enhancement curves consistency. Perfusion indices
have been extracted using both automated and manual techniques, and their
diagnostic accuracy has been assessed using quantitative coronary angiography
and image visual interpretation as references. The results indicate that my-
ocardial identification in FP-CMR images using this approach is feasible, fast
and accurate compared to manual tracing. This technique could therefore be
transferred in the clinical environment, helping the diffusion and the adoption
of quantitative perfusion assessment methods based on FP-CMR.

¢ ¢ ¢

Part[[]is organized as follows: Chapter [2|describes in detail the FP-CMR imag-
ing modality; Chapter [3] presents a review of the literature regarding myocar-
dial identification techniques on FP-CMR images; Chapter [] introduces the
level-set approach and the basic segmentation techniques based on it; Chapter
describes the methods for myocardial segmentation and registration imple-
mented in the proposed technique; Chapter [6] presents the details involved in
image generation and analysis, for both synthetic and real FP-CMR images;

Chapter [7] reports and discusses the comparison between automatically and
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manually defined myocardial boundaries; finally, Chapter [§] presents the com-
parison between automatically and manually extracted contrast-enhancement
curves and reports the diagnostic accuracy of several perfusion indices com-
puted with these two methods.






Chapter 2

Magnetic Resonance Imaging of

Cardiac Perfusion

AGNETIC Resonance Imaging (MRI) can nowadays be considered the
modality of choice for the evaluation of cardiac morphology and func-
tionality. Its widespread in the clinical environment has been due to the sig-
nificant improvements in MRI technology occurred in the last decade, such as
the design of MRI cardiac coils and the advent of parallel imaging [26]. These
advancements have greatly empowered the capabilities of Cardiac MRI (also
known as CMR), improving both spatial and temporal resolutions and overall
image quality. Today, MRI can provide a deep insight in the heart, being able
to reveal morphological details and to assess ventricular ejection fraction, wall
motion, strain and, of course, tissue perfusion. In particular, tissue perfusion
analysis requires the administration of a Gadolinium-based contrast medium,
which is why this methodology takes the name of Contrast-Enhanced Cardiac
Magnetic Resonance (CE-CMR). Depending on the specific imaging protocol
used, it is possible to investigate different aspects of myocardial perfusion.
More specifically, First-Pass Perfusion CMR (FP-CMR) consists in performing
imaging right after the injection of the contrast medium, and in visualizing the
first inflow of the bolus in the myocardial walls; Late Gadolinium Enhancement
(LGE), on the other hand, consists in imaging the heart minutes after contrast
injection. The former technique allows the detection of CAD, while the latter
reveals necrotic areas affected by previous myocardial infarction.
This Chapter is dedicated to Contrast-Enhanced Cardiac Magnetic Reso-

nance with particular focus on FP-CMR.

2.1 Principles of Contrast-Enhanced CMR

Contrast-Enhanced CMR is an imaging method for myocardial perfusion eval-

uation based on the intravenous administration of a Gadolinium-based contrast
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medium (GBCM). The effects of a GBCM are to shorten the T} relaxation time
of the protons located in its vicinities and to strongly enhance their brightness
in the acquired images [16]. Gadolinium (Gd) is a highly toxic element: as
a consequence, a chelation process is needed to avoid any contact between
the Gadolinium ion and the tissue components and thus to allow its admin-
istration [27]. Of note, the first chelating agent for Gadolinium was DTPA
(diethylene-triamine-pentaacetic acid), which is even today the most adopted
one [28]. Differently from the contrast media used in Nuclear Imaging, Gadolin-
ium compounds currently approved for the use on patients are extracellular,
i.e. there is almost no GBCM uptake from normal myocardial fibers. There-
fore, the only way to gather information about myocardial blood flow is to
perform imaging at a frame rate high enough to visualize the initial inflow
of the contrast medium in the myocardial tissue. This method is accordingly
called First-Pass Perfusion CMR (FP-CMR), and permits to locate areas of
the myocardium potentially supplied by a reduced blood flow, which is usu-
ally caused by underlying CAD. An example of an FP-CMR image sequence is
presented in Fig. [2.1]).

Figure 2.1: First-Pass Perfusion Cardiac Magnetic Resonance image sequence
(from a to f): short-axis view of a normal subject during cardiac stress.

The detection of CAD with FP-CMR is performed in two different phases,
one during cardiac stress and one at rest. Cardiac stress is usually pharmacolog-
ically induced through the administration of a vasodilator such as adenosine,
dipyridamole or regadenoson [16], although some studies have reported that
physical exercise performed right before image acquisition might be a better
method in terms of both induced cardiac conditions and safety of the patient

[I0]. Stress imaging works via coronary steal phenomenon: normal coronary
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arteries dilate more than their diseased counterpart, leading to a difference in
flow in the downstream myocardium and highlighting the perfusion defect in
the territory supplied by the diseased artery (see Fig. . Through the com-
parison of perfusion defects between stress and rest acquisitions, it is possible to
identify and separate stress-induced ischaemic regions from fixed non-perfused
areas. This insight into myocardial blood supply is of prime importance in or-
der to take decisions about potential angioplasty or other treatments for CAD.
To further determine whether a particular fixed defect corresponds to hiber-
nated tissue (due to chronic hypo-perfusion) or to necrotic tissue, it’s possible
to exploit GBCMs particular pharmacokinetic properties. Because of the se-
vere structural alterations which occur after myocardial infarction, contrast
wash-out time for necrotic tissue is substantially higher than for intact (and
thus viable) tissue [28]. This difference in concentration reaches its maximum
after 10-15 minutes after contrast medium injection. The Late Gadolinium En-
hancement (LGE) technique consists in imaging the heart after this time delay,
allowing to assess myocardial viability and to estimate the benefits achievable
through revascularization. Importantly, FP-CMR (at stress and rest) and LGE
can be performed during the same imaging session, providing deep and com-

prehensive insight in myocardial perfusion and vascularization, which are the

basis for cardiac functionality.

Figure 2.2: First-Pass Perfusion Cardiac Magnetic Resonance images in short-
axis view at rest (left) and at stress (right) in a patient with CAD. While
perfusion appears to be normal at rest, stress-induced defects are visible in the
antero-lateral, lateral, inferior and infero-septal segments.

2.2 Diagnostic and Prognostic Performances

Several studies have analyzed the diagnostic performance of these imaging

techniques and have demonstrated that contrast-enhanced CMR consists in
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a powerful tool in evaluating the spectrum of CAD [I6]. Diagnostic accuracy
of FP-CMR against invasive Quantitative Coronary Angiography (QCA) has
been reported by many initial single-center studies. Ishida et al. [29] have
analyzed 84 patients and found sensitivity (SE) 90% and specificity (SP) of
85% for coronary stenosis luminal narrowing equal to 50% or more. Other
studies have reported similar results [I8][30]. These studies were followed by
multi-center studies, providing better insight in the diagnostic capabilities of
FP-CMR. Wolff et al. [31I] performed a Gadolinium dose-ranging multi-center
study on 99 patients and reported an overall SE of 93% and SP of 75%. Gi-
ang et al. [32] found identical diagnostic accuracy in a multi-center study of
94 patients. More recently, the much larger Comparison of Perfusion-cardiac
Magnetic Resonance with Single-Photon Emission Computed Tomography for
the Detection of Coronary Artery Disease (MR-IMPACT) trial was performed
by Schwitter et al. [33]. In this study, 234 patients in 18 different centers were
evaluated, and FP-CMR showed SE of 85% and SP of 67%. Finally, a meta-
analysis of more than 1180 patients from 37 studies analyzed by Nandalur et
al. [34] showed SE of 91% and SP of 81%. Similar findings were reported
in another meta-analysis performed by Hamon et al. [35]. All these results
underline the high diagnostic power of FP-CMR, and explain the reason why
it is gaining more and more attention in the clinical practice.

The prognostic capabilities of FP-CMR have been assessed by several stud-
ies. Ingkanisorn et al. [36] evaluated 135 patients presenting to the ED with
chest pain but no elevation of troponin I. They reported SE of 100% and SP of
93% for stress CMR perfusion in detecting adverse cardiac outcomes at 1-year
follow-up. The cost-effectiveness of stress CMR. for the assessment of patients
presenting acute chest pain was analyzed in a prospective, randomized, con-
trolled trial comparing CMR to standard inpatient evaluation [37]. The study
included 110 patients at intermediated or high probability for ACS, but without
ECG or biomarker evidence of infarction. The patients assessed with CMR pre-
sented a significantly lower median hospitalization cost, and 79% were managed
without hospital admission. In either randomized groups, no adverse clinical
outcomes were found at 1-month follow-up, suggesting that CMR, evaluation

was cost-effective in this clinical setting.

2.3 Comparison with Nuclear Imaging

As already mentioned, when compared to other imaging modalities for my-
ocardial perfusion assessment, FP-CMR features high spatial and temporal
resolution, high sensitivity, relatively good image quality (lacking artifacts due
to attenuation phenomena or induced by unfavorable body conditions) and an
excellent safety profile [16]. When compared to SPECT, which is the main
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clinically adopted alternative, FP-CMR presents 3- to 4-fold higher spatial
resolution, allowing superior myocardial tissue visualization and outstanding
endocardial border definition (which is the area usually suffering earlier in case
of infarction). This feature allows the deployment of a variety of quantitative
methods for perfusion measurement, which is more difficult to be achieved in
SPECT. These methods permit the diagnosis of a variety of diseases (such as
three-vessel disease) which produce a uniform reduction in blood flow in the
whole myocardium and thus no visible defects. The higher temporal resolution
of FP-CMR makes contrast dynamics imaging possible, while SPECT produces
one fixed image, thus providing less information about myocardial perfusion.
Contrary to SPECT, FP-CMR is not daunted by attenuation artifacts, and
can handle motion artifacts in a better fashion (thanks to higher sampling fre-
quency). Time required for one complete SPECT perfusion exam is usually
higher than for FP-CMR [I6]. Finally, SPECT imaging involves patient expo-
sure to potentially harmful ionizing radiations, which are absent in FP-CMR.
Overall, FP-CMR has demonstrated higher diagnostic accuracy over SPECT,
as reported by many studies. Among them, Schwitter et al. [33] showed that
FP-CMR presents superior diagnostic performance compared to SPECT using
QCA as reference standard, and reported an area under the ROC curve of 86%
vs 75% for FP-CMR, and SPECT, respectively. PET has higher spatial and
temporal resolution, providing better diagnostic performance than SPECT.
FP-CMR and PET have shown high correlation [38]. However, PET imag-
ing is a very expensive technique, which is not cost-effective in many clinical
scenarios, and still requires the administration of radioactive tracers to the pa-
tient. FP-CMR also suffers from some limitations. The usual list of biomedical
metallic devices for which magnetic resonance imaging is contraindicated still
applies, although an MR-compatible pacemaker model is now FDA approved
and commercially available [39]. The use of GBCMs has been associated with
a serious complication called as nephrogenic systemic fibrosis (NSF) [40]. How-
ever, recent studies have highlighted the fact that NSF is a rare complication
which occurs primarily in patients with strongly compromised renal function
and in those with concurrent acute illnesses [41]. The chances of NSF occur-
rence seem to be substantially lower with newer cyclic-structured Gadolinium
compounds, and pre-scan analysis are now usually performed in high-risk pa-
tients in order to estimate glomerular filtration rate. As a result, new cases of

NSF from GBCM injection have been extremely rare in recent years [16].

2.4 Qualitative vs Quantitative Analysis

First-pass perfusion may be estimated either qualitatively or quantitatively.

The former approach completely relies on visual assessment; the latter is based
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on the definition of myocardial regions of interest (ROIs) in each frame of the
sequence and on the measurement of intensity changes of the ROIs. More
specifically, the changes of the mean intensity of the pixels comprised in each
ROI over time during the contrast bolus in-flow in the tissue are computed (see
Fig. [2.3)). The resulting curve is often called contrast enhancement curve.
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Figure 2.3: Extraction of a contrast enhancement curve from a myocardial
ROL

From these curves it is possible to compute several indices reflecting myocar-
dial perfusion. Most common indices are peak-to-peak amplitude (i.e. intensity
difference between baseline level and maximum peak), rate of contrast enhance-
ment (upslope of the curve during the enhancement phase) and area under the
curve (computed from baseline to maximum peak) [18][42][43]. The obtained
values allow the comparison of perfusion findings not only from different ROIs
of the same patient, but between different patients. To this aim, indices normal-
ization by the respective left ventricular cavity value is performed. Moreover,
ratios between values obtained at stress and at rest are usually computed, in
order to assess myocardial perfusion reserve (formally defined as the ratio of
myocardial blood flow between stress and rest). More complex methods have
also been deployed to measure myocardial blood flow and perfusion reserve,
such as deconvolution models based on data interpolation with a Fermi func-
tion [43]. All these techniques permit a more objective perfusion estimate, and

the detection of a variety of CAD which induce a balanced ischemia with no
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visible defects (such as three-vessel disease).

In the clinical practice, FP-CMR image sequences are usually qualitatively
evaluated by visual assessment alone, due to the extremely heavy time bur-
den required to manually trace ROIs onto all the frames of acquired image
sequences. However, qualitative analysis is strongly operator-dependent and
error-prone. Accordingly, several studies indicate that the diagnostic perfor-
mance of quantitative methods is higher compared to qualitative visual as-
sessment. Patel et al. [I7] have recently directly investigated this issue in
30 patients, and found that quantitative analysis and visual assessment had
respectively an accuracy of 83% vs 80% to detect stenoses greater than 50%,
and 77% vs 67% for stenoses greater than 70% (although the differences were
not always statistically significant). Importantly, the quantitative analysis was
able to correctly detect three-vessel CAD, differently from visual assessment.
Moreover, agreement between observers for quantitative analysis was higher
than for qualitative assessment. All these outcomes suggest the importance of
performing quantitative measurements on FP-CMR images rather than relying

solely on the operator’s eyes.






Chapter 3

State of the Art of Perfusion
Assessment in CMR

HE estimation of local myocardial perfusion is nowadays routinely per-
formed by means of First Pass Perfusion CMR (FP-CMR) in many clin-
ical facilities. The detection of myocardial hypo-enhanced areas is done by
cardiologists and radiologists, which usually rely solely on the visual inspection
of the image sequences to perform their analysis. Quantitative analysis, which
would provide more reliable and efficient results [I7] requires the definition of
myocardial ROIs in each frame of the image sequences. Unfortunately, despite
the presence of commercially available software designed for this purpose, ROIs
definition requires their manual tracing in many different frames of the sequence
to account for respiratory motion. The resulting procedure is cumbersome and
strongly time-consuming, and as a consequence is usually not applied in the
clinical environment. Accordingly, in the last decades many image processing
methods have been presented to semi-automatically or automatically identify
myocardial ROIs on FP-CMR image sequences. The most common approach
is based on the combination of two independent steps: myocardial segmen-
tation and myocardial registration. Myocardial segmentation consists in the
definition of the boundaries of the left ventricular myocardium in a specific
frame. Within the limits of myocardial perfusion image sequences, myocardial
registration consists in the modification (either by simple translation or trans-
lation and deformation) of the sequence frames in order to offset the visible
cardiac motion. Different proposed methods involve a different order in the
application of these two steps, while, on the other hand, some methods apply
hybrid approaches in which the definition of myocardial ROIs is performed at
the same time for all the frames of the analyzed sequence.
In this Chapter, the state of the art in myocardial perfusion assessment by
means of FP-CMR will be presented. First, the methods used in the clinical

environment will be described, then the main automated techniques for my-
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ocardial segmentation and registration already reported in literature will be

presented.

3.1 Perfusion Evaluation in the Clinical Environment

Clinical routine for perfusion evaluation from FP-CMR image sequences is
based on visual assessment. Because of the relatively high noise level of the
images, which can induce the appearance of false hypo-enhanced areas, usu-
ally a persistence of at least three consecutive frames is required to identify
a perfusion defect [29]. Although most of the time the analysis is limited to
the detection of the defects, it is also possible to grade them with a score re-
flecting either their severity or their extension [29][31]. Visual assessment is a
fast and effective way of evaluating perfusion sequences, but strongly relies on
the experience of the interpreters. Moreover, this approach is very limited in
comparing results obtained from different patients and does not allow the de-
tection of perfusion defects uniformly distributed onto the whole myocardium,
such as three-vessel disease and microvascular dysfunction (for instance caused
by diabetes mellitus). At the present time there are several commercially avail-
able software designed to help the physician in the visualization and analysis
of MRI images. The main examples are Cardiac Specialist CX®) (sponsored
by Philips, Best, Netherlands [44]) and Argus Dynamic Signal®(sponsored by
Siemens Healthcare, Erlangen, Germany [45]). Both these software products
feature automated or manual segmentation and registration functions, which,
when unable to achieve optimal results, still offer a valuable help to the opera-
tor in identifying the myocardial ROIs throughout the frames of the examined

sequence.
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Figure 3.1: Screenshot of Cardiac Specialist CX [44].
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Figure 3.2: Screenshot of Argus Dynamic Signal [45].

3.2 Research in Myocardial Segmentation

The automated segmentation of the myocardium (i.e. the identification of the
endocardial and epicardial boundaries of the left ventricle) in perfusion images
is a non trivial task due to the nature of FP-CMR, which is characterized by
relatively low spatial resolution, high noise levels and lack of well-contrasted
boundaries at the left ventricular (LV) cavity - myocardium and myocardium
- right ventricular (RV) cavity interfaces. Moreover, the different image com-
ponents change drastically in brightness throughout the sequence due to the
contrast medium dynamics, thus automated segmentation methods are likely
to successfully identify the myocardium only in a limited amount of frames.
As a consequence, the most common approach involves the selection (either in
a manual or automated fashion) of a reference frame suitable for the specific
myocardial segmentation technique. Finally, the presence of papillary muscles
inside the LV cavity, which exhibit the same intensity values of the myocardium
throughout the sequence but have to be included in the endocardial boundary,
further hinders reliable myocardial segmentation.

Many different segmentation techniques have been proposed in literature.
The first attempts have been done by means of simple image arithmetics, mor-
phologic operators, thresholding and region growing. A combination of these
approaches has been presented also very recently by Weng et al. [46]: their
method consists in the manual selection of four specific sequence frames (de-
picting respectively the pre-contrast phase, the LV cavity enhancement peak,
the RV cavity enhancement peak and the myocardium enhancement) after im-

age registration. The segmentation procedure allows the detection of both LV
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and RV cavities and the myocardium, but is dependent on many empirically
chosen parameters and some strong constraints (i.e. elliptic fitting and my-
ocardial thickness), which might prevent the deployment of this method in the
clinical daily routine.

Santarelli et al. [47] presented an active contour approach featuring non-
linear anisotropic diffusion filtering and a Gradient-Vector-Flow-based snake
model, which relies on the edges of the image to detect boundaries. The re-
quired manual input is a rough selection of the desired endocardial boundary.
This approach suffers from all the limitations of snake models, namely sen-
sitivity to the initialization curve and difficulty in progressing into boundary
concavities, which are extremely common in LV cavities showing papillary mus-
cles.

Shape prior-based techniques have often been adopted for myocardial seg-
mentation: for instance, Gupta et al. [25] implemented an Active Appearance
Models (AAMs) segmentation algorithm. Formally, AAMs establish a compact
parameterisation of the variability of a desired object as learned from a repre-
sentative training set. For myocardial segmentation, this involves the manual
tracing of endo- and epicardial boundaries in a training image dataset. The
modelled object properties are shape and pixel intensity. When applied to
an unseen image, the algorithm synthesizes object instances with all possible
combinations of acquired shape and pixel intensity. All the instances are fitted
into the image allowing changes in position, orientation and scale. Finally, the
best fitting instance is selected applying a least squares-based criterion based
on the minimization of the root mean square error (MSE) between the image
and the instance itself. AAMs require an initialization step which consists in
initial guesses of position, rotation and scale: in the work by Gupta et al. this
information is produced by a previously applied registration algorithm. The
main disadvantage in the application of methods based on shape priors, such
as AAMs, is the requirement of the manual tracing of a training set. Impor-
tantly, the shape and inner proportions of the myocardium can greatly vary in
case of diseases such as hypertrophic or dilated cardiomyopathies, which would
difficultly be addressed by prior-based segmentation approaches.

To date, the most advanced approach for myocardial segmentation in per-
fusion images consists in active contour techniques based on level-set methods.
Li et al. [48]|23] developed a comprehensive approach which combines five
different terms into one energy functional for minimization. The five terms
are a region based term, which incorporates a statistical model of the gray
level distribution (approximately Gaussian) of the different regions; an edge-
based term attracting the contour to the boundaries between different regions;
a shape-prior term forcing the contour to resemble an elliptical shape (allowing
inclusion of papillary muscles inside the endocardial boundary); a smoothness
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term controlling the smoothness of the contour; and a thickness constraint
term penalizing uneven myocardium thickness. The weighting factors, con-
trolling the contribution of each term, are adjusted exploiting an annealing
algorithm. This approach is affected by the common risk in level-set method of
stopping at local minimum; furthermore, the exploitation of a shape prior and
thickness constraint energy functionals might fail in detecting the boundaries
of a diseased myocardium.

3.3 Research in Rigid Myocardial Registration

The automated registration of the myocardium (i.e. the modification of the
sequence frames in order to offset cardiac out of plane motion due to patient
respiration) in perfusion images is a challenging task which has been faced by
the scientific community for more than a decade. The main reasons hampering
its accomplishment are the high degree of motion and apparent deformation
the imaged heart can undergo due to respiratory motion as well as the extreme
changes in brightness of the different image components throughout the im-
age sequence. These reasons, combined to the aforementioned relatively poor
image quality and resolution, have so far impeded the development and imple-
mentation of a standardized technique for myocardial registration.

Registration methods presented in literature can be divided between rigid
and non-rigid registration approaches. One of the first rigid registration al-
gorithms was proposed by Bidaut and Vallée [49]. Their algorithm consisted
basically in defining a ROI around the myocardium in a manually selected ref-
erence frame and then applying translations and rotations to the other frames
minimizing the mean square error (MSE). A similar method was applied by
Dornier et al [50], which restricted the ROI to the myocardium alone, cutting
off the LV cavity. The biggest limitation of these works is that due to the
huge changes in brightness of the image elements during contrast inflow, it is
unlikely that all the sequence frames will be correctly registered to one single
reference.

To overcome this issue, Gupta et al [5I] chose to rigidly register each frame
to the preceding one using cross-correlation as a similarity measure.

Years later, Adluru et al. [2I] proposed a model-based approach to perform
at once the registration of the whole sequence. The idea behind model-based
methods is to exploit the fact that for perfectly registered perfusion images the
intensity curves for each pixel are relatively smooth in time. As a consequence,
a smooth model of the curve can provide a measure of motion by identifying
outliers. The model chosen for pixel intensity variation in time consists in a
two-compartment exponential one, using the enhancement in the RV cavity as

input function. Applying this model to the acquired images allows the creation
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of a "model sequence", in which each pixel undergoes an intensity change in
time following its own computed model curve. Finally, rigid registration is
performed between each pair of images (acquired one and modelled one) using
MSE as similarity measure. Basically the same technique has been adopted
by Weng et al. [46]. There are many problems with this approach. First of
all, curves are naturally noisy due to poor image quality, and correct model
fitting is always a complex and delicate operation. The major pitfall, though, is
that pixel located at the boundary between the background and an enhancing
structure will display a very erratic intensity curve, making extremely hard to
tell to what image component the pixel itself belongs. As a result, the modeled
image sequence will have blurred boundaries, which will worsen the upcoming
registration step.

Milles et al. [24] presented a novel registration approach based on the
application of Independent Component Analysis (ICA). ICA is a blind source
separation method able to decompose measured mixed signals into a set of
statistically independent sources and their corresponding weights. Applying
this technique to a perfusion sequence allows the generation of feature images,
each one corresponding to an extracted independent component (ICs, which
are, as for the work of Milles et al., RV cavity, LV cavity and background), and
the computation of their intensity curve in time. With these data it is possible
to create a modeled sequence to which the acquired sequence is registered by
means of normalized cross-correlation. The whole process is repeated twice
using a multiresolution approach to improve accuracy and computation time.
The same ICA-based registration strategy has been adopted also by Gupta
et al. [25]. Although formally very elegant, this technique is haunted by the
same limitations seen for model-based approaches: computed ICs are likely to

feature blurred boundaries, hampering proper alignment.

3.4 Research in Non-rigid Myocardial Registration

The adoption of rigid registration methods has been usually justified stating
that respiratory motion is likely to cause out of plane cardiac movements of
low entity, not requiring a non-rigid registration procedure. However, many
recent studies have proved that in the clinical environment, especially for elder
patients undergoing stress imaging, respiratory-induced myocardial deforma-
tion can often become of relevant intensity (see Fig. [22]|23]. While it
can be agreed that “the inherent concept behind perfusion imaging is to image
the same location in the heart muscle and to follow the perfusion of a tracer
in it. If the shape of the myocardium varies for a given frame, such a frame
violates this underlying principle of perfusion imaging and as such might be ig-

nored” [24], it is also true that none of the rigid registration methods examined
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features a “deformation scoring” step, allowing the automatic exclusion of the
frames with excessive deformation. As a consequence, the extracted perfusion

values, in those frames, would be corrupted.

Figure 3.3: FP-CMR image sequence frames (from a to f) showing a high level
of respiratory-induced myocardial deformation.

In the last years a couple of non-rigid registration algorithms have been
proposed in literature. Olafsdottir et al. [52] presented a technique based on
Normalized Mutual Information (NMI). NMI is a well-known algorithm often
used for non-rigid registration between intermodality images. Importantly,
however, it relies on a consistent material-intensity mapping over the whole
image domain and does not account for the local intensity change, which is
of crucial importance in FP-CMR. In addition, the evaluation of MI is very
expensive in computational terms.

Wollny et al. [22] proposed a scheme that exploits the quasiperiodicity of
free breathing to decouple movement from intensity changes and thus to sub-
stitute a single registration step with two easier ones. An automated algorithm
detects the breathing cycle from the acquired images. It is then possible to
firstly register frames corresponding to the same breathing phase (which will
display evident changes in intensity but negligible motion), to linearly combine
these registered frames to create synthetic references, and finally to register to
them the remaining frames (thus dealing with considerable motion but similar
intensity distribution). The similarity measure used in the first registration
step is the sum of squared differences, and the one used in the second one is

Normalized Gradient Fields. The reason behind this choice is that the former



30 STATE OF THE ART OF PERFUSION ASSESSMENT IN CMR

deals well with intensity changes but lacks in accounting for shape variations,
while for the latter is viceversa.

One of the most complex and evolved works about myocardial registration
has recently been published by Li et al. [23]. The proposed approach consists in
generating a pseudo-ground truth sequence, which is a copy of the original one
with motion and noise reduced as much as possible and will be used as reference
for the registration process, thus facilitating the task. The rationale is that a
motion- and noiseless sequence satisfies spatiotemporal smoothness constraints:
in the spatial domain, in absence of motion, homogeneous regions remain such
in all the other frames; similarly, in the temporal domain, pixel intensities
evolve smoothly in time. The implementation is based on an expectation-
minimization approach, in which the functional to be minimized depends from
the observed sequence, the pseudo-ground truth and a non-rigid deformation
function. This functional consists of three terms: a data fidelity term, measur-
ing the sum-squared intensity difference between the pseudo ground-truth and
the non-rigidly deformed sequence; a spatial smoothness constraint penalizing
the intensity difference between neighboring pixels of the same tissue type;
and a temporal smoothness constraint penalizing the first order derivative (for
background and pre-contrast periods) and second order derivative (for pixels
undergoing contrast-enhancement, in order to have approximately piece-wise
linear enhancement curves). The registration process is the edge-emphasized
demons algorithm, which is an optical flow-type method. The major pitfall of
this elaborated approach is that, in order to be effective, it relies on a first,
coarse rigid registration step which, as stated by the authors themselves, is
unable to deal with significant elastic deformation. Furthermore, there is the
need of the manual selection of a reference frame and a reliable myocardial

segmentation in order to identify the different image components.

3.5 Hybrid Approaches

Although the vast majority of the techniques reported in literature consist in
registering the image sequence and in segmenting one single frame, there are
a couple of approaches aiming at directly segmenting the myocardium into all
image frames, implicitly accounting for respiratory motion. Stegmann et al.
[53] applied the aforementioned Active Appearance Models (AMMSs) to the
whole sequence. Their approach features the definition of a myocardial shape
including also the RV cavity, a multislice implementation (applying constraints
on the choice of an AAM instance for a single slice based on the instances of the
other slices) and a realistic pixel intensity search space (applying constraints
based on the known dynamics of the contrast medium in ventricular cavities

and in the myocardium). Of course, the already stated limitations for shape
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prior-based methods still hold.

Finally, Mahapatra and Sun [54] proposed a Markov Random Field (MRF)-
based method to integrate segmentation information for the registration. MRFs
have been previously used in order to formulate the elastic registration of nat-
ural and medical images as a discrete labeling problem. Each label defines the
joint occurrence of displacement vectors (used for registration) and segmenta-
tion class (semantically separating the different myocardial components). The
cost function is formulated as a combination of the mutual dependence of regis-
tration and segmentation information at every label. The data penalty includes
image intensity and gradient information similarity measures. This discrete
formulation allows the deployment of a multiresolution graph-cut technique to
reduce the computation time.






Chapter 4

Level-set Techniques

HE level-set approach has been a groundbreaking leap forward in the world
T of image segmentation and, in general, of image processing. Firstly in-
troduced by Stanley Osher and James A. Sethian in 1988 [55], it has been
developed in the following years, initially by the authors themselves who pro-
vided a more detailed mathematical framework [56], and later by a vast number
of researchers. Specifically, level-set techniques are mathematical and compu-
tational techniques describing the evolution of a contour. When compared to
other approaches, they have the advantages of accurately accounting for com-
plex evolution fields, handling implicitly topological merge and splitting events
and working in an arbitrary number of dimensions. The applications of the
level-set approach are innumerable: object detection, computational geometry,
fluid mechanics, computer vision, materials science and so on. Clearly, level-
set techniques have also been exploited and implemented to address a large
variety of issues in the field of biomedical image processing, most of all in the
identification of biological structures and objects.

In this Chapter, the basic concepts behind level-set techniques will be de-
scribed [56]. Initially, the general definition and mathematical framework will
be presented, including a specific paragraph on the main fields able to drive
the contour evolution. Then, the main categories of level-set methods will be
introduced, with specific focus on the ones adopted in the proposed myocardial
segmentation and registration techniques.

Importantly, an extensive description of the level-set approach, including
the most important issues related to its implementation, go beyond the aim
of the present Thesis. To deeper delve into these topics, please refer to the
dedicated book of James A. Sethian entitled Level Set Methods [57] and the
PhD Thesis of Xavier Bresson entitled Image Segmentation with Variational
Active Contours [58].
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4.1 General Approach

Let T" be a closed curve defined on a two-dimensional space £ C R? and let
Q; and €, the regions inside and outside of the curve itself, respectively. This
curve can be represented as a zero level-set of an implicit function ¢ : Q@ — R
called level-set function and defined by

¢ <0, V(z,y) € Q;
¢ =0, V(z,y) €T (4.1)
¢ >0, Y(z,y) € Qo

or, more concisely, by I' = ¢=1(0) (see Fig. . The main idea behind the

level-set approach is to represent the evolution in time of the curve I' as the
evolution of the associated level-set function ¢, formally T'(t) = ¢(¢)~1(0).

0

Figure 4.1: Definition of a curve I' as zero level-set of a function ¢.

As a consequence, it is possible to control the propagation of curve acting
exclusively on the associated surface and driving its evolution. To this aim, it
is useful to define few local geometrical quantities, specifically the unit normal
vector and the mean curvature of the level-set curves of the surface ¢. The

unit normal vector to the level-set curves is given by

Vo

n=——- 4.2
Vol 2
since the gradient operator
(09 0¢
vo- (5. 5) (4.3

is always perpendicular to level set curves and points towards higher values
of ¢. Accordingly, n is the outer-pointing unit normal vector.
The mean curvature is defined as

=vn=v- (25 (4.4
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and from a geometrical point of view it represents the inverse of the cur-
vature radius. Positive values for k represent convex regions, while negative
values represent concave ones; high values for || represent regions with a small
curvature radius, while low values represent regions with a high curvature ra-
dius. As an example, Fig. [£.2] shows these two geometrical quantities for two

different points belonging to the zero level-set curve T.

Figure 4.2: Unit normal vector n and curvature « for two points of the curve

r.

The general geometric evolution equation for the level-set function ¢ =
¢(x7yvt) s Q% [0700) — Ris

¢+ V-V =0 (4.5)

where V is the velocity vector field, which is defined in 2 and can be
decomposed as V = V,n + V;t, being t the unit tangent vector to the level-set
curves of ¢. Of note, the components are both functions with domain in :
Vi = Viu(z,y) and Vi = Vi(z,y). By replacing in equation V with its
definition, the evolution equation becomes

¢r + (Vun + Vit) - Vo = 0 (4.6)

Finally, the scalar product can be resolved replacing n with the definition
given in equation (4.2)), and noticing that by definition t L V¢. As a result,
the final expression of the so called level-set evolution equation, along with the
initial condition for ¢, is

o + Vi |[Vo| =0, in Q x (0,¢) (4.7)
¢(I7y70) = ¢07 in Q

where it is evident that, in order to drive the evolution of the surface and

thus of its zero level-set, it is necessary to act on V,.

4.2 Basic Evolution Fields

According to equation (4.7)), the normal component V,, of the velocity vector
plays the role of a pushing/pulling force applied to the surface ¢, acting on
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planes parallel to 2 and for all the values (z,y) € Q. Depending on the choice

of the adopted V,,, different types of evolution can be implemented.

Evolution at constant speed. In this simple case, V,, is replaced by a
constant value F':

As a consequence, all the points of the surface ¢ move along the local unit
normal vector at a constant speed (see Fig. [4.3). The direction of motion
depends on the sign of F'.

Figure 4.3: Evolution at constant speed.

Evolution per curvature. In this case, V,, is equal to the opposite of
mean curvature:

Vi =—k (4.9)

Curvature is a local geometrical quantity: as a consequence, regions of the
surface with small curvature radius move faster than regions with a higher
radius (see Fig. . The direction of evolution is locally defined by the cur-
vature’s sign. Importantly, curvature changes during the motion itself, thus
modifying the evolution field in time. Based on this intuition, it is possible
to enunciate the Grayson’s theorem, which states that “a smooth closed curve
evolving at a speed equal to its curvature will become convex in a finite amount
of time” [59].

Evolution per advection. In this case, V,, is equal to the scalar product

between n and an external vector field:
V,=n-U (4.10)

The vector field U can be defined in order to achieve the desired surface
motion (see Fig. 4.5).
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Figure 4.4: Evolution per curvature.

Figure 4.5: Evolution per advection.

4.3 Edge-Based Level-Set Methods

The presented level-set framework can be applied to the problem of image
segmentation. Through the years, a large number of different techniques have
been proposed to address this issue. These techniques can be divided into two
different categories: edge-based methods and region-based methods. Edge-
based methods are segmentation techniques which rely on the edges present
in the analyzed image in order to perform the segmentation; on the contrary,
region-based methods rely on the pixel intensity distribution of the regions
respectively inside and outside the evolving contour. In this paragraph, the
edge-based approach will be discussed, focusing specifically on the Malladi-
Sethian example, while the region-based techniques will be presented in the
following ones.

Edge-based level-set segmentation methods consist in letting ¢ evolve in
a specific manner and to locally stop the propagation once the zero level-set

arrives to an interface. As a consequence, these methods strongly rely on the
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ability to define the desired boundaries of the image, task usually achieved ma-
nipulating the gradient of the image itself. The level-set approach, on the other
hand, guarantees boundary consistency and smoothness during the evolution

process evolution.

Malladi-Sethian model. One of the most comprehensive formulations
of an edge-based technique is the Malladi-Sethian level-set method, firstly in-
troduced by Malladi and Sethian [56] and treated also by Caselles et al. [60].
It comprises one instance per each of three basic evolution fields presented
in the previous paragraph. One possible formulation of its level-set evolution
equation for a function ¢(x,y,t), comprising of adequate initial and boundary

conditions, is the following:
¢ = gler — p)[Vo[ +vVg- Vo, inQx(0,00)

¢(J3a%0) = ¢07 in © (411)
oz, y,t) = min(do), in 0§ x (0, 00)

where €, p and v are parameters dosing the curvature-based, constant speed-
based and advection-based motion fields, respectively, while g is the edge-
indicator function. The edge-indicator function g : € — R can be defined
as a function which reaches a constant, high value in homogeneous regions of
the image, while it decreases in correspondence of strong variations in image
contrast. The edge-indicator function adopted in the Malladi-Sethian model
has been inherited from the pioneering work of Perona and Malik [61], and its

analytical expression is
1

T 1+ |V(Gy # 1)

where I : 2 — R is the input image and G, is a Gaussian kernel: the

g (4.12)

convolution between G, and I produces a smoothed version of the image,
while the final gradient operator achieves the true edge detection operation.
Overall, the function g is equal to 1 in homogeneous areas and decreases in
presence of contrast variations. Another expression for g, similar to is

1

" THIVIR )

9

in which ( is a parameter controlling edge enhancement. Placing the defi-
nition of g given in in the model equation in allows to explain how
the Malladi-Sethian segmentation method works. The first term on the right
hand side determines an expansion motion, due to the presence of the positive
constant-speed term p, also called balloon term [62]; the coupled curvature-
based motion, controlled by €, keeps a certain amount of boundary smoothness.
Thanks to the presence of g as a factor, this first term is allowed to act on the

local evolution of the contour only in absence of edges. The second term on the
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right hand side consists in an advection term, dosed by the parameter v, which
attracts the contour to the image edges when near them, while it cancels out

in homogeneous regions. An example of the application of the Malladi-Sethian

segmentation technique is shown in Fig. [£.6

]
$'s

Figure 4.6: Example of the Malladi-Sethian segmentation technique.

4.4 Region-Based Level-Set Methods

Region-based level-set segmentation methods consist in letting ¢ evolve in or-
der to separate the image into maximally homogeneous regions with respect
to a certain criterion. This approach to image segmentation has been firstly
proposed by Zhu et al. [63], while its consolidation in the level-set framework
is due to the work by Chan and Vese [64].

Region-based methods are inherently variational methods: the evolution of
the level-set function is aimed at the minimization of an energy functional E,

designed following a specific criterion!. Formally, the aim is to find the level-set

LOf note, it is also formally possible to define an energy functional for most of the edge-
based methods [60]. However, it is impractical to define a specific functional for the presented
Malladi-Sethian model, also due to the presence of the parameters controlling the evolution
terms.
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function ¢ which minimizes E = E(¢):

¢ = argmin E(¢) (4.14)
s

The Euler-Lagrange equation related to equation (4.14) is
oE
29

in which OF/9¢ represents the first variation of the energy functional with

0 (4.15)

respect to ¢. The first variation can be defined as

OF _ . E(¢+1p)— E(9)

0¢p  1-0 l

(4.16)

being ¢ a test function of the same space of ¢. In order to achieve the
necessary energy functional minimization through the evolution of ¢, it can be

adopted a gradient descent approach:

_oF
99

Equation (4.17)) is another version of the level-set evolution equation (4.7)),

in which

b = (4.17)

1 OF

"= 531 98 (4.18)

The most general formulation for the energy functional is the following one:

P(0) = [ Foag)dedy+ 3, [ Fi(o.a.y)dedy +

(4.19)
Y / Fu(é, 2, y)dady
N

in which the first two terms on the right hand side, called region terms,
account for the values assumed by the energy functional respectively inside
and outside the evolving contour, the last term, called contour term, carries an
energy contribution relative to the contour itself and A;, A, and A, are weighting
factors. Relatively to the ¢, it is now useful to introduce two functions: the
Heaviside function H and the Dirac delta function §:

1, in Qi ull
H(x,y) = (1.20)
0, in €,
#0, inT
6(z,y) = |[VH(z,y)| (4.21)

=0, inQUQ,
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Of note, the Dirac delta function is formally a distribution whose integral
over the domain 2 is equal to 1 only on the curve I'. Embedding (4.20) and

into , the energy functional becomes
B(0) = [ Fio.o.)He.g)dody +
+ Ao /Q Fo(¢,2,y)[1 — H(z,y)|dzdy + (4.22)
2 [ Fuo.a)ita)dedy

this is the most commonly used formulation of the energy functional adopted
in region-based level-set methods. The choice of a specific energy functional

determines different segmentation results.

Chan-Vese model. One of the most important region-based technique is

the Chan-Vese level-set method [64]. The proposed energy functional is
E(¢) = )\i/Q I — ¢;|*Hdxdy +
+ o i I —c,|*(1 — H)dzdy + (4.23)
+ u/ ddxdy +v | Hdzxdy
Q Q

where [ is the input image and ¢; and ¢, are the mean intensities measured
in €; and €Q,, respectively, during the evolution. The last two terms are reg-
ularization terms depending on the length of the curve and on the area of the
region inside the curve itself. This regularization process on shape and size
of the contour is needed to obtain a well-posed and well-conditioned problem.
The associated level-set evolution equation , together with appropriate
initial and boundary conditions, is the following:

¢t=|vf¢[;m—u—)\i(l—ci)Q+)\O(I—co)2], in  x (0,00)

¢($a Y, O) = ¢07 in (424)
5§ 0

oo a*ﬁ _0, in 99 x (0,00)

An example of the application of the Chan-Vese segmentation technique is
shown in Fig. [L.7]
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Figure 4.7: Example of the Chan-Vese segmentation technique.
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4.5 Statistical Level-Set Methods

The extremely general formulation of the energy functional E given in
allows the embedding of a priori knowledge about the analyzed image and the
target object. In this regard, one of the most important source of information is
image statistics: the distribution of the gray levels in an image is usually related
to the intrinsic noise introduced by the specific acquisition technique. This is
particularly useful in biomedical image processing, since noise characteristics
are well known for most of the clinically adopted acquisition systems.

Statistical level-set methods are essentially region-based methods which in-
corporate information about the statistical distribution of pixel intensity. Of
note, differently from the other presented approaches, statistical methods are
specifically formulated for digital images, since they are based on pixel inten-
sity distribution.

Maximum Likelihood model. The Maximum Likelihood region-based
statistical technique has been proposed by Sarti et al. [65]. The main idea
behind this technique is to maximize the posterior probability relative to the

gray levels distribution given the position of the evolving contour:

P(I¢) = Pi(I|¢) - Po(I]) (4.25)

where P; and P, are relative respectively to the regions €2; and €2,, assumed
to be statistically independent and uncorrelated. Assuming that pixels located

within each region are also independent and uncorrelated, it follows that

rIg)= [ ») Pe)= ] poI (4.26)

(z,y)€Q; (z,y) €N,

in which p; and p, are the probability density function associated to the
pixel intensity I inside and outside the evolving contour, respectively. If the
contour is not dividing the image into homogeneous regions, at least one be-
tween p; and p, will be characterized by a low profile, necessary to embrace a
large variety of possible gray levels. On the other hand, the more homogeneous
the two regions, the higher the measured P(I|¢). In order to avoid the com-
plexity related to product operations, the functional to be maximized is the
logarithm of P(I|¢) instead of P(I|¢) directly: since the logarithm function is
monotonically increasing, the two functionals have the same optimal ¢. As a

consequence, the products in (4.26)) become sums:

log P=log Pitlog o= >, pl) + >, polD) (1.27)
(z,y)€Q; (z,y)€Q0

Finally, moving from the discrete to the continuous domain, it is possible
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to formulate the final version of the energy functional to be minimized:
E(¢) = )\/Q(?d:rdy +
—/Q [log p(I)| Hdzdy + (4.28)
— /Q [log p(I)](1 — H)dxdy

where the first term is a regularization term. To move forward it is necessary
to embed the known statistical distribution of image pixel. In the work by
Sarti et al., the focus was on echographic images, which are known to follow a
Rayleigh distribution [65]:

1 I?
p(I)rayleigh = ﬁexp - ﬁ (429)

After substituting (4.29)) into (4.28)), it is possible to compute the level-set
evolution equation (4.17)) for the Maximum Likelihood segmentation technique:

A
(bt:V(S(b'[)\n—&-log(ZZCZ)—i—fi—fo], in  x (0, 00)
o(z,y,0) = o, in Q (4.30)

o 09 .
Wafn—o, mn GQX(0,00)

in which the several appearing terms are defined as follows:

A; = / Hdxdy A, :/(1 — H)dzdy (4.31)
Q Q
C; = / I’Hdzdy  C,= / I*(1 — H)dzdy (4.32)
Q Q
A I? -G AJ% - C,
=i T = ot e 4.33
=g fo=""5 (4:33)

An example of the application of the Maximum Likelihood segmentation
technique is shown in Fig.
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Figure 4.8: Example of the Maximum Likelihood segmentation technique with

Rayleigh distribution.






Chapter 5

Myocardial Segmentation and

Registration

s stated in the previous Chapters, the automated quantification of my-
A ocardial perfusion in FP-CMR images remains an open issue, since only
a very limited number of techniques has been presented and none of them has
yet gained the widespread consensus required for its adoption in the clinical
arena. As a consequence, the need for fast and reliable techniques for perfusion
evaluation remains strong.

In this Chapter, a novel approach for automated myocardial segmenta-
tion and non-rigid registration will be presented. Myocardial segmentation is
performed using both edge-based and statistical region-based methods, which
have been presented in Chapter [4] Non-rigid registration is achieved using an
original modification of the well-known normalized cross-correlation algorithm.
Steps of boundary regularization and refinement have also been implemented

in the proposed approach in order to achieve smooth and consistent results.

5.1 Rationale

The design criteria adopted in the formulation of the present technique are the

following ones:
I. Automaticity: maximum reduction of user interaction;
II. Effectiveness: applicability to a clinically realistic patient cohort;
III. Velocity: minimal computational cost;
IV. Robustness: independency from specific imaging protocols and systems.

Most of the methods proposed in literature first perform an overall image

registration process, and then segment the myocardium. The problem with
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this approach is that it usually requires the manual definition of the region
in which the myocardium will be located throughout the sequence. Moreover,
segmentation information can be helpful in achieving a reliable registration
step. Accordingly, we decided to perform the segmentation as first step. Re-
cently, statistical region-based methods have been deployed for the automated
segmentation of the endocardium in CMR images (with no contrast enhance-
ment). Corsi et al. [66] used the Maximum Likelihood method presented in §
M with a Gaussian distribution, which is typical of magnetic resonance images.
We hypothesized that the same method would be useful as well for endocardial
detection in FP-CMR.

In the proposed approach, the frame used for myocardial segmentation is
selected semi-automatically thanks to a specific algorithm. To provide the
highest achievable accuracy in myocardial boundaries identification, we imple-
mented different level-set techniques for endocardial and epicardial detection.
Of note, the endocardial segmentation is performed first, and the resulting
contour is used as initial condition for epicardial segmentation. After myocar-
dial segmentation has been achieved for one frame of the sequence, a non-rigid
registration algorithm alters position, size and shape of the computed bound-
aries in all the remaining frames in order to account for out of plane motion.
This process is performed by means of an original multi-scale extension of the
normalized cross-correlation algorithm coupled with level-set methods. The
final result consists in myocardial boundaries registered in each frame of the
sequence. In summary, the proposed technique is based on three major steps,
which are listed in Fig. [5.1] Each one of these steps will be described in the

following paragraphs.

2 R
Reference Frame Selection

\ v,

( n'

Myocardial Segmentation

Non-rigid Registration

\. w

Figure 5.1: Main steps of the proposed technique.
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5.2 Selection of the Reference Frame

To better describe the steps of the technique, it is useful to model a perfusion
image sequence as a mapping I : Q x [1...n] — A, where Q C N? is the discrete
image domain, n is the number of acquired frames and A C N is the gray
level range. The selection of the frame into which both endo- and epicardial
boundaries will take place is performed in a semi-automated way, since the
only manual input required is the placement of a seed point inside the LV
cavity in a random frame. Then, a time-intensity curve of a small, circular
(radius 2 pixels) fixed region around the seed point is computed, reflecting
cavity enhancement. Although myocardial motion will change the position of
this region with respect to the endocardial boundary, it is likely that the small
fixed region will not fall out of the cavity, hence offering a rather reliable cavity
enhancement curve. The reference frame I, = I(-,r) is defined as the one in

which this cavity enhancement curve reaches the 95% of its maximum value

(see Fig. [5.2).

Cavity Amplitude

Cavity Intensity

Reference Frame time

Figure 5.2: Selection of the reference frame.

This frame usually features optimal left and right ventricular cavities opaci-
fication as well as a certain level of myocardial enhancement, which are all

helpful factors for myocardial segmentation (see Fig. [5.3)).

time
.

Figure 5.3: Selection of the reference frame in a sequence presented as example.
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5.3 Myocardial Segmentation

Myocardial segmentation is performed in the defined reference frame I,., and
consists in two separate phases: endocardial and epicardial boundary detec-
tion. Level-set set techniques are adopted and specifically tailored for each of

them. Fig. shows the main steps in myocardial segmentation.

________________________________________________

Statistical Region-based Endocardial Segmentation

[ Curvature-based Endocardial Segmentation

Edge-based Epicardial Segmentation ]

l

Curvature-based Endocardial Segmentation

e e e e e e e e e e e e e e e e gy,

Figure 5.4: Main steps for myocardial segmentation.

Endocardial segmentation. Endocardial boundary detection is per-
formed using the Maximum Likelihood algorithm presented in § which
is a statistical, region-based level-set method. Corsi et al. [66] adopted this
algorithm for endocardial boundary detection in CMR images (i.e. with no
contrast enhancement). This algorithm takes into account the noise distribu-
tion of MRI images (which, albeit being theoretically Rician, can be considered
Gaussian for a reasonably high SNR [66]), and allows the segmentation of the
image into maximally homogeneous regions. Firstly, following the formalism
presented in ChapterEI, a level-set function ¢4 : Q2 x [0, 00) — R is defined, and
its zero level set 'y = ¢ ' (0) represents the evolving contour. The Maximum
Likelihood algorithm is based on the minimization of the functional :

E(,, bg) = /\/ Sdady +
Q
—/Q [log p(I,)| Hdzdy + (5.1)
- [ ftog ptr )1~ 1)
Q

where H and § are the Heaviside function and the Dirac delta function
defined in (4.20) and (4.21)) respectively and define the partition of € into the
regions inside and outside I'y. The function p(I,.) is the probability density
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distribution associated to the pixel intensity in the reference image, and is said
to be Gaussian:

PDgussion = e [ -3(5 “)] (5.2

where 1 and ¢ are the mean and variance of I, respectively. To obtain the
evolution equation for this specific functional, it is necessary to embed
and into . The result, comprising of adequate initial and boundary
conditions, is the following one:

94 _ 0 {A/{+log(ei>+f¢fo], in 2 x (0, 00)

ot |Vl €o
¢d(xa y70) = ¢d07 in 2 (53)
6 O0pa .
W%—O, m GQX(0,00)

having defined

A = / Hdxdy A, :/(1 — H)dzdy (5.4)
Q Q

B; = / I.Hdxdy B, = / I.(1 — H)dxzdy (5.5)
Q Q

C; = / I? Hdxdy C, = / I*(1 — H)dzdy (5.6)
Q Q

A2I2 — 21, AB + 2B? — AC

fi,o - AC _ B2 (57)
AC — B?

ei70 = T (5.8)

The initial level-set function ¢g4p (with T'yo being its zero level-set) is defined
as the distance function from the seed point used for the selection of the refer-
ence frame. The exit condition of motion is reached once there is no noticeable

change in the value of the functional E. Let @ be the final level-set function.

After this step, the endocardial contour undergoes a regularization motion,
which is necessary to include the papillary muscles inside the contour itself.
This regularization process is achieved using a modified curvature motion (see
§ specifically designed not to allow curvature above a certain level:

%:f[(ﬁ<0)+g<ﬁ<ﬁavg)], in Q x (0,00)
a(w,y,0) = b, in O (5.9)
a(w,y,t) = min b, in 99 x (0, 0)

in which & is the local curvature of ¢q4, Kq.g is the average curvature of I'g

obtained with the previous statistical level-set algorithm, £ is a fixed negative
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parameter (working as a balloon coeflicient) and ¢ is the Perona-Malik edge-
indicator applied to I,.. This equation allows to locally expand the only
portions of I'; characterized by a curvature value either negative or lower than
the average one (when not close to an edge). The exit condition is reached

when the area of the region inside I'y becomes greater than [ - Areag,;;, where

Areap, is the area of the convex hull computed using the initial f‘; contour
and [ a fixed parameter. Let ¢4 be the final level-set function. Fig. shows
the main steps in endocardial segmentation.

Figure 5.5: Example of endocardial segmentation: a) seed point and initial
contour, b) result of the Maximum Likelihood algorithm, c¢) result of the reg-
ularization motion.

Epicardial segmentation. Epicardial boundary detection is performed
using the Malladi-Sethian algorithm, presented in § which is an edge-
based level-set method. This algorithm is adopted to search the image from
the endocardium outwards in order to identify the epicardial boundary. To
this end, a new level-set function ¢, is defined, together with its zero level-set

I, = ¢, (0). The level-set surface is then moved by means of the evolution

equation (4.11)):

0

% = g(ek — p)|Vo,| +vVg - Voy, in Q x (0,00)

dp(,1,0) = bpo = da — dist, in 0 (5.10)
op(z,y,t) = min ¢p, in 99 x (0, c0)

The initial epicardial contour is defined as an expanded version of the com-
puted endocardial contour by means of the parameter dist. The edge-indicator
function g is defined as in . The exit condition is reached when the area of
the region inside I', does not change significantly. Let @ be the final level-set

function.

The final step of epicardial border detection is again boundary regulariza-
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tion, which is achieved using again the evolution equation ([5.9):

%:f[(f~€<0)+g(f€<,‘$(wg)]7 in Q x (0,00)
(2:4,0) = . in €2 (5.11)
¢;D(£L‘,y7t) = min aﬁ;’ in 80 x (07 OO)

Let (/b\; be the final level-set function.

At the end of myocardial segmentation, both endocardial and epicardial
boundaries (f‘vd and f‘;, respectively) are available in the reference frame I,.
Fig. shows the main steps in epicardial segmentation together with the
final result of myocardial segmentation.

Figure 5.6: Example of epicardial segmentation: a) initial contour, b) result
of the Malladi-Sethian algorithm and regularization motion, c) final result of
myocardial segmentation.

5.4 Non-rigid Registration

To take into account the changes in position, size and shape of the myocardium
throughout the sequence, which might have occurred in the frames both pre-
ceding and following I,., a non-rigid registration technique is required. We im-
plemented a multi-scale extension of the normalized cross-correlation algorithm
followed by a contour adaptation step achieved using again the Malladi-Sethian
level-set algorithm. Fig. shows the main steps for non-rigid registration.

The first step consists in the definition of an Original Template T as a crop
of the reference frame I, around the computed outer myocardial boundary I'.
Then, a series of h — 1 other Templates are defined by resizing the Original
Template by one pixel difference at a time uniformly (see Fig. [5.8]).

The next step involves the computation of the normalized cross-correlation
between the consecutive frame I(-,r + 1) and each Template (both Original

and Resized ones). This operation results in h normalized cross-correlation
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Definition of the Original Template

l

Definition of (h-I) Resized Templates

[ )
[ )
l

[ Computation of h Normalized Cross-Correlations ]
[ )
[ )
[ )

l

Contours Selection

1

Contours Adaptation with Level-Set methods

l

Update of the Original Template

Figure 5.7: Main steps for non-rigid registration.
Original Template Frame |r
Size -1 Size +1 Size 42 Size +3

Figure 5.8: Definition of the Original Template and of the Resized Templates
in the reference frame I,.

matrixes M. The elements my,(u, v) of each matrix My, are defined as follows':

) i [1dir + 1) = Lo [Tl = w,j = v) T 512

\/Zi,j [I(i,jyr +1)— I/u::I2 Ei,j {T}c(i —u,j—v)— ﬁ]z

where ﬁ is the mean pixel intensity of T}, and I/u\v is the mean pixel intensity
of the region of I(-,r + 1). Then, per each matrix My, the highest value is
selected and denoted as C'C. The new position and scale of the myocardial
contours are finally determined by selecting the highest cross-correlation peak
CC}, between the h possible combinations. As final step, both endocardial and

n this paragraph we will consider a discretized version of the domain Q with indices
i, j for both image frames and level-set surfaces. However, for ease of notation, we will not
introduce any obvious formal definition.
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epicardial curves undergo a Malladi-Sethian evolution, as described by ,
which allows a fine non-rigid tuning of the displaced contours (see Fig. .
Figs. and show some results of the proposed non-rigid registration
algorithm.

Frame |
! Highest Cross-Corr

Peak

Normalized
Cross-Corr

Contours
Adaptation

Frame |,

Figure 5.9: Computation of h normalized cross-correlation matrixes, contours
selection and adaptation.

frame t+1

Figure 5.10: Non-rigid registration: on the left, myocardial boundaries in a
sequence frame; on the right, the subsequent frame with the boundaries before
(white, dotted) and after (cyan, solid) non-rigid registration.

The conclusion of the registration process is reached with the update of the
Original Template, which is necessary to account for the changes in brightness

of myocardial components due to contrast medium inflow. This is achieved
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Figure 5.11: Example of the application of the registration algorithm in differ-
ent frames (from a to f — c is the reference frame) of a perfusion sequence: in
each panel, myocardial contours are displayed both before (white, dotted) and
after (cyan, solid) non-rigid registration.

by averaging pixel-by-pixel the Original Template with the counterpart image
crop in the new frame. To limit potential error propagation, the update pro-
cess takes place only for sufficiently high values of the highest CCy. Of note,
in order not to lose the achieved accuracy in myocardial segmentation, the
reference computed contours are not changed through the registration process.
The overall algorithm for the registration of two consecutive frames is hereby
listed:

Registration of frame I(-,r+1) from I(-,r):

1. Definition of the Original Template
To=1(i...i+p,j...5+qr)
and associated level-set contours
Gali...i+pj...j+a), dpli...it+pj...5+0q)

2. Definition of h — 1 Resized Templates
T, =resize(To;p+ k,q + k)
withk=-1---—1,1,.. meZ, h=1l4+m+1
and associated resized contours q?d\jg, (Z,?ji

3. Computation of h Normalized Cross-Correlation Matrixes
My, = normacorr (I(-,r +1),Ty)
CCr = max(y,,) My
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—_—~ —~—

4. Selection of the contours ¢, 5, ¢, &
with k£ = argmax CCy
5. Contours adzfptation with Malladi-Sethian model
6. Original Template Update (if CCy > thresh)
Tee=1G...i+p+k,j...j+q+kr+1)
To = mean (To7 resize(Too; p, q))

in which ¢ and j indicate the position of T} placed in correspondence of the
cross-correlation peak. The method is applied to all the images, registering
each frame with the preceding one, applying the above listed algorithm from
step 2 to 6. Importantly, frames preceding the reference frame are registered

in the opposite direction, from the reference frame towards the first one.

5.5 Comparison with State of the Art

The presented technique is based on the combination of a reference frame
selection algorithm, an automated segmentation method and a non-rigid regis-
tration scheme: in this paragraph these steps will be discussed and compared
to the state of the art presented in $ $ and $

The selection of the reference frame is performed using an extremely simple
algorithm. Albeit the overall technique is been considered automated in this
work, it requires the placement of a seed point somewhere in the LV cavity in
a random frame. However, the user interaction required for this operation is
truly negligible.

The adopted segmentation methodology takes full advantage of the level-set
framework to identify the myocardium. The algorithms have been specifically
tailored for the specific aim of this technique. The statistical level-set approach
is a powerful tool for LV cavity identification, since it is not haunted by the high
noise levels typical of FP-CMR images (actually, it takes advantage of it) and
it is able to deal with extremely complex shapes, which are often seen in CMR,
due to the presence of papillary muscles and of potential cardiomyopathies.
The subsequent regularization approach, which is based only on the curvature,
allows to include the papillary muscles without moving the other portion of the
contour. While very powerful in segmenting objects of given gray level inten-
sity distribution, regardless of their shape, statistical level set methods tend
to fail in detecting epicardial boundaries: this is mainly due to the fact that
the intensity distribution of the myocardium can be very similar to the one
of the surrounding tissue. As a consequence, we implemented an edge-based
level set methods to perform epicardial detection. Edge-based methods can be
tuned to keep a more regular shape (starting from the computed endocardial

one) and be sensitive to the presence of weak edges. As a whole, the proposed
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segmentation technique does not rely on error-prone intensity-based methods
such as thresholding and morphologic operators (cfr. Weng et al. [46]), it
can manage strong convexities and concavities (cfr. Santarelli et al. [47]) and
does not require the definition of shape priors (cfr. Gupta et al. [25]), which
could fail in detecting abnormally shaped myocardial regions. To the best of
our knowledge, at the beginning of the Ph.D. program there was no published
evidence, either on journal papers or on conference proceedings, that a statis-
tical level-set method could have been adopted for endocardial segmentation
in FP-CMR images. During the writing of the present Thesis, we discovered
that the same approach had been independently implemented by Li et al. [48]
[23]. This reinforces our belief about the choice of this method. Despite being
based on the same statistical level-set approach for endocardial segmentation,
however, the two techniques differ in epicardial segmentation and boundary
regularization methods.

The non-rigid registration scheme combines a multiscale version of the nor-
malized cross-correlation algorithm with contours boundaries adaptation by
means of level-set methods. This choice was based on the major advantages
of cross-correlation, that make it particularly well-suited to deal with the pre-
sented issues: mainly, it is capable of dealing with changes in brightness (if
happening homogeneously in the object to be identified) and it can be exe-
cuted at a high computational speed. However, it was necessary to embed two
additional features: multiscale non-rigid registration capabilities, and insensi-
tivity to non-homogeneous changes in brightness. These extra capabilities were
achieved embedding level-set methods, using an array of resized templates and
updating them through time by means of an averaging-based scheme. When
compared to other non-rigid methods, the proposed registration algorithm is
computationally fast (cfr. Olafsdottir et al. [52]), does not rely on any hypoth-
esis about the possible trajectory of the myocardium in time (cfr. Wollny et
al. [22]) and it is capable of dealing directly with considerable deformations
during its one and only application (cfr. Li et al. [23]). It is of prime impor-
tance to point out here that most of the works presented in literature featuring
non-rigid schemes perform registration by deforming and interpolating the ac-
quired frames in order to force the myocardial boundaries in the same position
throughout the whole sequence. This approach is very risky given the nature
of the present problem since the final goal is to detect perfusion defects (i.e.
small dark regions), which could be altered and potentially underestimated if
processed through strong, non uniform image interpolation. Accordingly, the
proposed algorithm acts on the contours computed by segmentation, and leaves

the original frames untouched.



Chapter 6

Image Generation & Analysis

N order evaluate the robustness of the implemented technique and test its
I suitability for a potential clinical adoption, an extensive validation pro-
cedure was designed. Three different image datasets were generated and ana-
lyzed. The first one is a synthetic dataset, miming an FP-CMR image sequence,
while the other two are both real datasets, acquired in proper hospitals. To
ensure independency from the specific protocol details used for image acquisi-
tion, the two real datasets were acquired in different facilities and using different
scanners.

In this Chapter, the protocols for the image datasets generation, synthetic
and real ones, will be described. Moreover, a final paragraph will provide details

about the choice of the main parameters comprised in the adopted technique.

6.1 Synthetic Dataset

The synthetic dataset was generated in MATLAB®(MathWorks, Natick, Mas-
sachussetts, US) using code specifically designed for this purpose. Two circles
are created, featuring same center but different radii, representing the endo-
cardium and the epicardium. Each of the two circles has a uniform pixel
intensity value. Starting from the initial one, 99 other synthetic frames are
created by moving, resizing and changing the pixel intensity value of the two
circles, independently. Motion is performed by rigid translation driven by a
uniformly distributed random, integer variable. Resizing acts using a bilinear
interpolation method and, similarly to motion, is driven by a random integer
variable; more specifically, the circles undergo a resize process of (r1,73) pixels
in the (z,y) direction, where 1 and 79 are independent random variables taking
integer values between -1 and 3. These values have been heuristically chosen
looking at the average myocardial deformation seen in real images. The pixel
intensity value of the circles also changes following uniformly distributed ran-

dom real variables, one per each circle, in order to mime enhancement changes
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in the myocardium and in the cavity. Of note, this condition (random distribu-
tion) creates a sequence harder to be registered when compared to a real one,
characterized by a coherent contrast inflow. Assumed values are in the range
0.2 - 0.8. Finally, for each frame, random Gaussian noise is added (mean 0.1,
standard deviation 0.1) in order to simulate CMR image noise. The resulting
synthetic images are reported in Fig.

Figure 6.1: Synthetic sequence frames, showing the generated changes in posi-
tion, size, shape, pixel intensity and noise levels of the different image compo-
nents.

6.2 Real Datasets

Two real dataset were acquired. They will be denoted as Dataset A and Dataset
B. Overall, the study included 42 patients who underwent contrast-enhanced
CMR imaging. Exclusion criteria were: standard contraindications to CMR
imaging with Gadolinium-based contrast mediums (specifically Gadolinium-
DTPA), and contraindications to vasodilator agents. Patients were asked to
avoid beta-blockers, nitrates and caffeine before their stress CMR study. The
Institutional Review Board approved the study protocol, and all patients pro-

vided informed consent.

Population. Dataset A was acquired at the University of Chicago and in-
cluded 15 adult subjects (age 56+ 15 yrs, 9 males) in whom CAD was ruled out

by the absence of visually apparent perfusion abnormalities or late Gadolin-
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ium enhancement. Dataset B was acquired at the University of Virginia and
included 27 patients (age 64 £ 13 yrs, 20 males). These patients were referred
for coronary angiography on the basis of abnormal SPECT. In these patients,
coronary angiography was performed within 30 days following CMR. Patients
were excluded if they had a recent myocardial infarction, or were older than 85.
Of the 27 patients, 9 patients had history of myocardial infarction, 7 had un-
dergone previous revascularization, 22 had hypertension, 24 had dyslipidemia,

and 7 patients had diabetes mellitus.

Protocols. For Dataset A, stress perfusion imaging was performed starting
1 minute after intravenous injection of a 0.4 mg bolus of A2A-specific vasodila-
tor stress agent regadenoson (Lexiscan®), Astellas Pharma, Deerfield, Illinois,
US). Then, perfusion imaging was repeated 15 minutes after injection of amino-
phylline under resting conditions. For Dataset B, adenosine (Adenoscan®),
Astellas Pharma) was intravenously infused at a rate of 140 ug/kg/min, and
stress imaging was performed starting 2 to 3 min after the initiation of infusion.

Resting images were obtained 10 minutes after stopping adenosine infusion.

FP-CMR imaging. In each patient, short-axis images were acquired one
image per cardiac cycle at three levels of the left ventricle (base, mid, apex;
see Fig. . Patients were instructed to hold their breath as long as possible,
starting just prior to the administration of contrast.

Figure 6.2: Scheme showing the three acquisition planes at basal, mid and
apical level. From each of them one sequence is acquired.

For Dataset A, we used a 1.5T scanner (Philips, Best, Netherlands) with
a phased-array cardiac coil. Images were acquired during 80-90 cardiac cycles
using a hybrid gradient-echo and echo-planar imaging sequence (GRE-EPI),
nonselective 90° saturation pulse followed by a 80 ms delay, voxel size ~2.5
x 2.5 mm, acquisition time 83 ms per slice, slice thickness 10 mm, flip angle
20°, repetition time 5.9 ms, echo time 2.7 ms, EPI factor 5, and SENSE factor
2. Imaging was performed during first pass of a Gd-DTPA bolus (0.075 - 0.10
mmol/kg at 4 - 5 ml/sec), followed by 20 ml saline (4 ml/s).
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For Dataset B, studies were performed on a 1.5T scanner (Siemens Health-
care, Erlangen, Germany) with a 4-channel phased-array radiofrequency coil.
Imaging was performed during 40-50 cardiac cycles using the GRE-EPI se-
quence [I7]: nonselective 90° saturation pulse followed by an 80 ms delay, field
of view 340 to 400%x212 to 360 mm, matrix = 12880, slice thickness 8 mm,
flip angle 25°, repetition time 5.6-6.2 ms, echo time 1.3 ms, echo train length
4, effective spatial resolution ~2.8x2.8 mm with (n = 23) or without (n = 18)
rate 2 parallel imaging (TSENSE) [67]. Imaging was performed twice during
first pass of two Gd-DTPA boluses: first using a low dose of contrast (0.0075
mmol/kg at 4 ml/sec) to measure contrast enhancement in the LV cavity, and
then a standard dose (0.075 at 4 ml/sec) to measure intramyocardial contrast.
Each bolus was followed by 20 ml normal saline (4 ml/s). The double bolus
injection was due to the application of the dual bolus technique, necessary for

the correct estimation of the contrast inflow in the LV cavity [17].

6.3 Automated Analysis Details

The proposed technique was implemented in MATLAB®)(MathWorks, Natick,
Massachussetts, US) using custom designed code.

Both real datasets were analyzed by the implemented technique. Important
parameters for the segmentation (see § are the following ones: dtepqo =
0.1 (discrete time step for the implementation of the statistical endocardial
segmentation algorithm); A = —0.5 (regularization parameter for statistical
endocardial segmentation, see equation ); dtepi = 0.04 (discrete time step
for the implementation of the statistical endocardial segmentation algorithm);
e =25 p=1 v = 6, dist = 2 (parameters for the edge-based epicardial
segmentation algorithm); £ = —2, [ = 1.05 (parameters for both the endo-
and epicardial regularization motions). Registration is completely automated,
but relies on some fixed parameters (see § [f.4): h = 6 (the total number of
Templates, with resize pixel steps ranging from -2 to +3); thresh forwara = 0.95
(threshold for the update of the Original Template during the registration of
frames subsequent to the reference one); threshpackwara = 0.65 (threshold for
the update of the Original Template during the registration of frames precedent
to the reference one); window = £8 px (maximum pixel displacement allowed
to the contours with respect to their position in the reference frame). Albeit
many, not all these parameters are critical for the correct functioning of the
technique. This is demonstrated by the fact that, between the two different
datasets A and B, only the parameter dt.,q4, had to be adjusted (from 0.1 to
0.02) due to the difference in the resolution of the acquired images. However,
it is important to point out that for patients with particularly thick myocardial

walls, it was seldom necessary to act on the parameter dist.
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The synthetic dataset was used to assess the accuracy of the registration al-
gorithm alone. As a consequence, the reference frame selection and myocardial
segmentation steps were not performed: the contours used for the registration
process are the true ones taken from the first frame. The parameters reported
for the registration of the real sequences still hold for the synthetic dataset.






Chapter 7

Geometrical Validation

HEN validating a procedure for object identification, it is common prac-
W tice to compare the obtained contours with reference ones. In literature,
several error metrics have been proposed to perform this comparison. These
indices usually give an insight about the mutual distance and the difference
in image coverage of the two sets of contours, and thus are of help in the
evaluation of the accuracy achievable with a specific technique.

In this Chapter, the comparison between automatically extracted contours
and reference ones will be illustrated. More in detail, contours computed with
the proposed technique will be compared to true ones in the synthetic dataset,
and to manually traced ones in Dataset A. At first the adopted error metrics
will be described, then the results of the comparisons will be displayed and

discussed.

7.1 Performance Metrics

Among the many error metrics which can be adopted to compare contours,
the ones used in the present study are the Hausdorff Distance [68], the Mean
Absolute Distance [69], the Root Mean Square Distance [0], and the Dice
Coefficient [7I]. The first three indices are distance-based, while the last one is
an area-based metric. Let us define two sets of points I'. = {e1, e2,...€,} and

Iy ={ri,re,...7p}. The metrics are defined as following:

I. Hausdorff Distance (HD):

HD(T.,T;) = max { maxd(e;,I';), maxd(r;,Tc) } (7.1)
i j

where d(e;, T';) = min, er, |r; — ], i.e. the minimum Euclidean distance
from a given point to the other set. The Hausdorff Distance measures the

maximum distance between the two sets of points;
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II. Mean Absolute Distance (MAD):

%Z e;, I 12 d(r;,T ] (7.2)

1
MAD(T.,T)) = 3

Differently from the Hausdorff Distance, the Mean Absolute Distance

(MAD) measures the mean distance between the two sets of points;

III. Root Mean Square Distance (RMSD):

RMS(FevFT) - ;{ ;i [d(eiarr)]z +

> [d(rj,re)f} (7.3)

Jj=1

Q| =

The Root Mean Square Distance returns information similarly to MAD;

IV. Dice Coefficient (DC):

2Area(2. N Q)

D Q€7QT =
O, S2r) Area(Qe) + Area($2,)

(7.4)

having defined as ). and 2, the convex regions inside I'. and I',., respec-
tively. The Dice Coefficient (DC) measures the overlapping between the

regions included in the sets of points.

Of note, the unit of all the distance-based metrics (HD, MAD and RMSD)
is pixels, while the area-based one (DC) is dimensionless. The combined use
of these metrics allows to evaluate the local and global differences between the

compared contours.

7.2 Contours Accuracy in the Synthetic Dataset

The synthetic dataset! was used to assess the accuracy of the automated non-
rigid registration algorithm, given the correct contours in the first frame. Some
results are displayed in Fig. [7.1]

The error metrics defined in the last paragraph were applied to all the 100
images. Tab. shows the obtained results.

Notably, the HD shows that, on average, the maximum distance between
registered and reference contours is only slightly bigger than 1 px. The mean

MAD is always lower than 0.5 px, instead.

IFor details about the image generation process please refer to §
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Figure 7.1: Synthetic sequence frames showing the comparison between auto-
matically registered contours (light blue) and true ones (red).

HD MAD RMSD DC
Endo 095+£0.35 024+0.17 0.39+0.19 0.98=£0.01

Epi 140£0.59 0.38+0.20 0.55+0.23 0.98+0.01
Overall 1.18+0.53 0.31£0.20 0474+0.22 0.98+0.01

Table 7.1: Error metrics (mean + standard deviation) for the comparison be-
tween automatically registered contours and true ones in the synthetic dataset.

7.3 Contours Accuracy in Dataset A

The complete automated technique was tested on real perfusion sequences be-
longing to Dataset A. More specifically, 11 FP-CMR sequences (each one be-
longing to a different patient) acquired? at the mid-ventricular level during rest
were analyzed. None of the parameters of the method were changed between
different patients. After automated analysis, manual tracing was performed
onto all image frames by an experienced reader, and the contours were com-
pared between automated and manual analysis by means of the error metrics
presented in § Although the automated technique tries to register all the
sequence frames, some initial frames were not traced by the operator due to
absence of contrast enhancement: these frames were obviously excluded in the
comparison. Overall, the frames used were 556.

2For details about the acquisition protocol and the population please refer to §
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Time required for automated analysis of a complete perfusion sequence was
less than 1 minute on a personal computer, while manual tracing of the same
sequence required at least 10 minutes. Of note, no code optimization or parallel
computing were adopted in the present implementation, although they could
further shorten analysis time. Some results of the comparison between the two
approaches are presented in Fig. [7.2]

The error metrics were used to quantify the difference between contours.
Tab. shows the obtained results.

HD MAD RMSD DC
Endo 293+£1.39 1.134+0.69 1.37+£0.77 0.83£0.12
Epi 262+1.49 0.96+0.69 1.17+0.80 0.90+0.08
Overall 2.78+145 1.04£0.69 1274+0.79 0.87+0.10

Table 7.2: Error metrics (mean + standard deviation) for the comparison be-
tween automatically registered contours and manually traced ones in the ana-
lyzed sequences of Dataset A.

As reported, the overall mean HD is a less then 3 px, while the mean MAD

is around 1 px.
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Figure 7.2: Frames showing the comparison between automatically generated
contours (light blue) and manually traced ones (red). Each column (from a
to ¢) contains frames from different patients, while different rows correspond
to different moments in time during the sequence (from 1 to 5). Notably, the
frames are not adjacent in time, but sampled through the sequence to testify
the changes in pixel intensity due to contrast inflow.
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7.4 Discussion

The synthetic dataset was used as a benchmark to test the performance of the
registration scheme alone. The results show that the maximum measured error
(estimated by HD) is around 1 px, demonstrating the robustness of the method.
Notably, the errors were slightly higher at the epicardial boundary: this is
probably due to the fact that in this dataset the difference in intensity between
the myocardium and the background is statistically inferior to the one between
the cavity and the myocardium, thus worsening the contours adaptation process
in the former case. However, the difference is in the order of a 0.1 px and thus
completely negligible.

Dataset A was used to compare the contours derived with the automated
technique as a whole with those obtained with conventional manual tracing.
The results of this comparison show that, on average, the distance between the
two sets of contour (provided by MAD), is around 1 px. The reported values
for the error metrics are comparable with those reported in the latest studies.
For instance, Li et al. [23]) analyzed 20 sequences (comprised of 33 to 60 frames
each) acquired in 13 patients. They reported a RMSD of 0.93 px for endocardial
detection, 1.11 px for epicardial detection and 1.04 px overall. However, they
did not perform the non-rigid registration process on automatically selected
contours, but on manually traced ones, thus limiting considerably the possible
sources of error. Furthermore, the comparison between results obtained in
different patient cohorts, and using different imaging protocols, is an unsafe
procedure, which allows to draw only approximative conclusions.

In summary, the measured errors committed by the proposed technique
are comparable with the ones reported in other recently published studies.
Importantly, the order of magnitude of the achieved accuracy is compatible

with the clinical scenario.
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Clinical Validation

N Chapter [7] the presented technique was validated by quantifying the lo-
I cal and global discordance between automatically and manually extracted
contours. Although this is a commonly adopted approach to judge the ac-
curacy of techniques for object identification, it is not the best choice in the
field of FP-CMR. The reason is that, due to the difficulty of correctly identify-
ing anatomical structures through time in perfusion sequences, there is a high
inter-operator variability related to conventional manual tracing. As a result,
it is inappropriate to adopt manually identified contours as unique reference.
This issue is explicitly treated by Wollny et al. [22] when approaching the val-
idation of their registration method: “ These errors in the segmentation would
show up as misregistrations when segmentation based statistics are used that
analyze the myocardial boundary error or false-positive/false-negative pizels.
[...] However, when assessing the performance of the intended task — perfu-
sion analysis through intensity profiles — we confirmed that the influence of
the segmentation differences was quite small, and hence, using intensity profiles
obtained from manually segmented series as a gold standard for this compari-
son is still an effective approach for validation”. In other words, a more sound
entity to be compared between automated and manual analyses is the pixel
intensity variation over time of small regions located inside the myocardium.
These contrast enhancement curves, which are less dependent on the traced
contours, are in fact the real carriers of information regarding local perfusion,
and therefore should be used to assess the accuracy of the technique.

Since the aim of the presented technique is to be adopted in the clinical en-
vironment, any validation process would be incomplete if no information about
the diagnostic accuracy of the technique itself was given. Once contrast en-
hancement curves are extracted, both automatically and manually, perfusion
indices can be computed for both approaches. These perfusion indices offer an
indirect indication about the local myocardial blood flow, and can be adopted

to discriminate between normally and abnormally perfused regions. In our



72 CLINICAL VALIDATION

study, we compared the diagnostic accuracy of automatically and manually
obtained perfusion indices to two different gold standards: qualitative visual
interpretation of the acquired FP-CMR sequences and quantitative coronary
angiography (QCA), which measures the extent of potential coronary steno-
sis. These comparison complete the large validation scheme adopted for the
proposed technique.

In this Chapter, the validation of the proposed technique by means of clin-
ically relevant quantities and methods will be pursued. Specifically, contrast
enhancement curves will be extracted from both real datasets. Dataset A will
be used to investigate whether the automated technique is able to produce
high quality contrast enhancement curves and able to detect hyperemia (i.e.
to recognize differences between stress and rest). Dataset B will be used to com-
pare curves computed automatically with those extracted after manual tracing
of myocardial contours. A set of perfusion indices will be derived from the
curves and compared between automated and manual analyses. Finally, the
diagnostic accuracy of automatically and manually obtained perfusion indices
will be compared using two different gold standards: quantitative coronary
angiography (QCA), which measures the lumen narrowing in presence of coro-
nary stenosis, and qualitative visual interpretation of the acquired FP-CMR
sequences. These comparisons complete the large validation scheme adopted

for the proposed technique and show its reliability.

8.1 Quantification of Contrast Dynamics

Once the automated technique has been applied to an image sequence, the
myocardial ROI, defined as the area between the endocardial and epicardial
boundaries, is identified onto all frames. To allow the assessment of regional
perfusion, the myocardial ROI is then uniformly divided into wedge-shaped
segments following AHA guidelines [72]. According to these guidelines, the
number of segments is 6 for both basal and mid levels, and 4 for the apical
one, for a total of 16 segments (see Fig. left). For anatomically correct
orientation, the user is asked to select the anterior junction between the right
ventricular free wall and the inter-ventricular septum in the reference frame.
Finally, the changes of the mean pixel intensity in each segment are measured
over time, resulting in time intensity curves. These are the so called contrast
enhancement curves, which allow the quantification of the contrast dynamics
and thus the estimation of local perfusion (see Fig. right).

From each myocardial curve it is possible to compute indices in order to al-

low quantitative analysis. The quantities extracted from each curve are shown

in Fig. B2
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Figure 8.1: After the anterior junction of the right ventricular free wall with the
inter-ventricular septum was manually identified (left, orange dot), myocardial
segments were defined, and regional contrast enhancement was plotted over
time for each segment (right). This example shows data obtained in a mid-
ventricular slice during stress.
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Figure 8.2: Definition of the indices extracted from each contrast enhancement
curve.
Indices:

I. Peak-to-Peak Amplitude: distance between the baseline and the average

of the three highest intensity values;

I1. Slope: slope of the contrast enhancement phase. It is computed by means

of a linear regression analysis;

ITI. Area: area between the curve and the baseline during the enhancement

phase;

IV. Plateau Variability: standard deviation of at least 10 frames during the
post-peak flat part of the curve.
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The extraction is performed by manually selecting the beginning and the
end of the contrast enhancement phase (i.e. the upslope part of the curve) and
the plateau portion of the curve. This operation can be performed only once

for all the curves extracted from the same sequence.

8.2 Quality Assessment and Detection of Hyperemia

The quality of the automatically extracted contrast-enhancement curves was
assessed on Dataset A, since it consists in 15 subjects with normal perfusion
(see § imaged both at rest and during vasodilator stress. As a consequence,
the analyzed perfusion sequences were 90. The assessment was performed either
qualitatively, by visually judging the curves themselves, and quantitatively, by
means of the defined indices. More specifically, a Signal-to-Noise Ratio (SNR)
was defined as the ratio between the amplitude and the plateau variability
extracted from each curve, both at rest and at stress. In addition, the computed
indices were also used to test the ability of proposed technique to detect the
expected hyperemic effects of the vasodilator agent. This goal was achieved by
comparing amplitude and slope extracted from each segment between rest and
stress using two-tailed paired student’s t-tests.

Regional contrast enhancement curves clearly depicted the typical pattern
of first-pass perfusion (see Fig. right) in all image sequences obtained at
both rest and stress. The results for SNR, slope and amplitude are reported in

Tab. Bl

SNR Slope Amplitude
Rest 17+£7 6.7+ 2.3 65+ 19
Stress 22438 15.6 5.9 87+ 25

Table 8.1: Results for SNR, slope (s7!) and amplitude (a.u.) at rest and stress
for Dataset A. The difference of both measured slope and amplitude values
between rest and stress is statistically significant (p < 0.000001; paired t-test).

The measured SNR reflects excellent quality of the curves. As expected
in subjects with normal perfusion, during stress, the upslope phase of the
curves was steeper in all myocardial segments in all patients (see Fig. ,
indicating faster contrast inflow rate as part of the normal hyperemic response.
In addition, the stress-induced increase in pixel intensity (i.e. the amplitude
of the curve) was also significantly higher during stress, indicating increased

concentration of contrast per unit myocardial volume.
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Figure 8.3: Example of contrast enhancement curves obtained in the mid-
inferior segment during rest (blue) and stress (red). Note the increase in both
the slope and the amplitude, reflecting the expected effects of stress.

8.3 Segmental Mean Intensity

Contrast enhancement curves were extracted applying the proposed technique
to Dataset B (see § , which consists in 27 patients with suspected CAD
acquired both at rest and stress, and thus comprises a total of 162 perfusion
sequences. To further validate the technique, the sequences were also manually
traced using commercial software (Argus®), Siemens Medical Solutions, Mu-
nich, Germany), and contrast enhancement curves were similarly computed.
Mean pixel intensity in each automatically defined and manually traced seg-
ment was compared frame-by-frame for the resting images and separately for
stress images. All inter-technique comparisons were performed using linear re-
gression analysis with Pearson’s correlation coefficient (R) and Bland-Altman
analysis. Of note, the total number of compared intensity values is 21600 (27
patients x 16 segments x 50 frames) either for rest and stress.

Fig. [8:4 shows an example of FP-CMR images obtained at rest and during
stress in a patient with significant CAD. Both the automatically and manually
generated contrast enhancement curves showed very similar patterns, depicting
a stress-induced perfusion abnormality in the inferior and lateral walls.

Fig. shows the results of the comparisons between frame-by-frame seg-
mental intensity values measured by means of the automated approach and
through manual tracing. Excellent inter-technique agreement was noted both

at rest and stress: R = 0.95, regression lines near unity and virtually zero
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Figure 8.4: Example of FP-CMR images obtained at the apical LV level in a pa-
tient with stenosis greater than 50%. A stress-induced perfusion abnormality is
visible in the inferior and lateral walls (bottom left). At rest, the automatically
generated contrast enhancement curves (top middle) showed the same normal
pattern in all segments. During vasodilation (bottom middle), both the ampli-
tude and slope measured in the two non-affected myocardial segments (anterior
and septal) increased considerably, in contrast to the two affected segments (in-
ferior and lateral), where these indices were reduced. Manual tracing resulted
in virtually identical curves (right).

biases with reasonably narrow limits of agreement (LOA). Separate analyses
for basal, mid-ventricular and apical levels were also performed: the results,
which are reported in Tabs. and show no significant differences from

the overall results.

Bland-Altman Analysis

Rest Stress
Bias LOA Bias LOA
Basal 14 11.2 -0.1 12.6
Mid 1.5 124 0.2 13.2
Apical 1.0 16.4 -0.3 15.7
Overall 1.3 13.1 0.0 13.7

Table 8.2: The results of Bland-Altman analysis both at rest and stress at
different myocardial levels and overall.
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Correlation and Linear Regression Analyses

Rest Stress
R m q R m q
Basal 0.94 0.94 5.0 0.94 0.95 2.6
Mid 0.94 0.97 3.5 0.95 0.94 3.1
Apical 0.94 0.94 5.6 0.95 0.97 1.8
Overall 0.95 0.95 4.6 0.95 0.95 2.4

Table 8.3: The results of correlation and linear regression analyses both at rest
and stress at different myocardial levels and overall. Terms m and q are the
coefficients of the regression line — y = mx + q.

8.4 Perfusion Indices

In § BI] the extraction of some indices from each contrast enhancement curve
was defined. These quantities (a part from plateau variability) provide a quanti-
tative evaluation of local myocardial perfusion, and have already been adopted
in many study presented in literature [I8|[42][43]. In our study, we used the
ones listed below:

Perfusion Indices:

I. Peak-to-Peak Amplitude;

II. Slope;
III. Product of Amplitude and Slope;
IV. Area.

These indices were extracted from each myocardial curve obtained both
automatically and manually, both at rest and stress, in Dataset B. Thanks
to the adopted dual-bolus acquisition technique (§ , in this dataset it was
possible to extract an LV cavity intensity time curve (measured in a small
circular ROI placed in the basal slice and multiplied by 10 to compensate for
differences in contrast medium doses). This allowed to normalize each index
by its respective LV cavity value. Finally, stress to rest ratio was calculated for
each index (both non-normalized and cavity normalized) to reflect perfusion
reserve of the indices.

To pursue the validation effort, we compared perfusion indices derived from
automatically and manually generated contrast-enhancement curves. The re-
sults of this comparison are listed in Tab.
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R m q Bias LOA

] 0.90 0.89 4.8 0.25 12.8

Amp s/cav 0.92 1.05 -0.0013 0.0030  0.030
s/r 0.87 0.88  0.22 0.016 1.08
(s/cav)/(r/cav) 0.75 0.76 0.48 0.070 1.33

s 0.94 0.88 0.46 -0.18 1.72

Slope s/cav 0.94 1.05 -0.0017 0.00029 0.0156
s/r 0.81 0.78 0.57 0.0069 2.16
(s/cav)/(r/cav) 0.72 0.93 0.26 0.14 1.75
s 0.90 0.83 38 -17 205

Amp*Slope s/cav 0.90 0.88 0.00030 0.00000 0.0039
s/r 0.83 0.90 0.32 -0.10 8.04
(s/cav)/(r/cav) 0.72 0.88 0.55 0.21 4.12
s 0.86 0.87 52 24 102

A s/cav 0.86 1.00  0.03 0.028  0.134

rea

s/r 0.45 0.43 0.69 0.030 1.76
(s/cav)/(r/cav) 0.74 0.60  0.70 -0.20 4.70

Table 8.4: Results of the comparisons between perfusion indices derived from
automatically and manually generated contrast enhancement curves: Pearson’s
correlation coefficient (R), linear regression analysis (y = mx + q) and Bland-
Altman analysis (Bias &= LOA). Abbreviations: s — stress; r — rest; cav — cavity
(either at stress or rest).

The analyses report high correlations, small biases and relatively narrow

limits of agreement for most indices, and thus show that perfusion indices

measured by the two techniques are in good agreement.
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8.5 Diagnostic Accuracy against Coronary Angiography

In order to complete the validation process of the automated technique, the
assessment of the diagnostic accuracy of the extracted indices had to be per-
formed. The patients scanned for Dataset B were also analyzed by means of
invasive Quantitative Coronary Angiography (QCA), which allows to estimate
a potential reduction in the coronary artery luminal cross-sectional diameter.
QCA can thus be adopted as a reference technique in comparing the diagnostic
accuracy of automatically and manually extracted perfusion indices.

Comparisons were first done on a segment-by-segment basis. FEach myocar-
dial segment was classified as normal or abnormal based on the presence, loca-
tion and severity of stenosis detected in the relevant coronary artery. Stenosis
greater than 50% luminal narrowing was considered as evidence of significant
CAD. The classification of myocardial segments was performed by an experi-
enced interventional cardiologist, and was used as a reference for receiver oper-
ating characteristic (ROC) analysis. In particular, for each index, area under
ROC curve (AUC) was computed separately per each one of the 16 myocardial
segments and then averaged.

Sensitivity and specificity against QCA reference were calculated on a patient-
by-patient basis. The condition required in order to consider a patient as ab-
normal was to display at least 2 adjacent abnormal segments.

Both segment-based and patient-based analyses were carried out separately
for the manually and automatically generated curves, in order to allow com-
parisons of their diagnostic accuracy. Notably, of the 27 patients included in
Dataset B, 21 were found to have significant stenosis on QCA: 9 had three-
vessel, 5 two-vessel and 7 single-vessel disease. In these 27 patients, there were
215 segments supplied by arteries with stenosis greater than 50%, while the
remaining 217 segments were supplied by arteries with no significant stenosis.

Tab. shows the summary of the ROC analysis for perfusion indices
obtained on a segment-by-segment basis for both the automated and manual
techniques against QCA. For both techniques, the AUC varied among the cal-
culated indices and ranged between upper 0.50s and lower 0.70s (having made
the exclusion of the normalized area), but consistently showed highest values
for the non-normalized values. Importantly, for all indices, normalized and
non-normalized (by either LV cavity or resting value, or both), the AUC val-
ues were almost identical for the manual and the automated techniques, thus
confirming the reliability of the proposed approach.

Tab. shows the summary of the ROC analysis for perfusion indices ob-
tained on a patient-by-patient basis. The calculated sensitivity and specificity
of both techniques also varied among the calculated indices, with the auto-
matically derived stress slope showing the best diagnostic accuracy (sensitivity
90% and specificity of 83%), which was better than the same index obtained
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Segment-based Analysis against QCA

Automated Manual

s 0.70 0.71

s/cav 0.58 0.59

Amp s/r 0.58 0.58
(s/cav)/(r/cav) 0.55 0.55

s 0.71 0.70

s/cav 0.54 0.54

Slope s/t 0.56 0.58
(s/cav)/(r/cav) 0.53 0.57

s 0.72 0.73

* s/cav 0.59 0.60
Amp*Slope 0.59 0.58
(s/cav)/(r/cav) 0.56 0.57

s 0.53 0.53

s/cav 0.58 0.56

Area s/r 0.48 0.44
(s/cav)/(r/cav) 0.50 0.48

Table 8.5: Results of the ROC analysis for perfusion indices obtained by both
the automated and manual techniques using quantitative coronary angiography
as a reference. Data are expressed as area under curve (AUC), calculated on
a segment-by-segment basis. Abbreviations: s — stress; r — rest; cav — cavity
(either at stress or rest).

by manual tracing (sensitivity 86% and specificity 50%).
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Patient-based Analysis against QCA

Automated Manual

SE SP SE SP

s 95 50 90 50

s/cav 90 50 86 50

Amp s/r 76 50 81 50
(s/cav)/(r/cav) 67 33 76 33

] 90 83 86 50

Slope s/cav 67 50 71 33
p s/t 90 67 81 67
(s/cav)/(r/cav) 71 50 76 50

s 86 50 90 50

% s/cav 81 50 76 50
Amp*Slope 95 67 90 67
(s/cav)/(r/cav) 62 83 81 50

s 76 67 86 17

s/cav 81 50 81 50

Area s/t 95 0 86 17

(s/cav)/(r/cav) 90 17 71 33

Table 8.6: Results of the ROC analysis for perfusion indices obtained by both
the automated and manual techniques using quantitative coronary angiography
as a reference. Data are expressed as sensitivity (SE %) and specificity (SP
%), calculated on a patient-by-patient basis.

8.6 Diagnostic Accuracy against Visual Interpretation

The diagnostic accuracy of both the automated and the manual techniques was
also evaluated by comparing both techniques against visual interpretation of
perfusion image sequences. Each myocardial segment was classified as normal
or abnormal based on the presence of visually detectable hypo-enhancement
during early phases of contrast wash-in. This classification was performed by
a cardiologist experienced with CMR perfusion imaging, and was used as a
reference for ROC analysis. For each index, area under ROC curve (AUC) was
averaged for the 16 myocardial segments, similar to the comparisons with QCA
described in §[85] These analyses were carried out separately for the manually
and automatically generated curves to compare their accuracy against visual
interpretation.

Finally, in order to demonstrate the superior diagnostic accuracy of the
quantitative methods (either automated or manual) in comparison to qualita-
tive analysis, K stats values were computed for each index against QCA. K
stats are defined as the ratio between the number of concordant classifications

and the total number of classifications.
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Segment-based Analysis against Visual Interpretation

Automated Manual

S 0.60 0.63

s/cav 0.71 0.75

Amp s/r 0.67 0.70
(s/cav)/(r/cav) 0.65 0.68

S 0.61 0.60

s/cav 0.73 0.73

Slope s/t 0.69 0.67
(s/cav)/(r/cav) 0.71 0.72

S 0.61 0.64

% s/cav 0.73 0.78
Amp*Slope 0.64 0.65
(s/cav)/(r/cav) 0.69 0.74

S 0.63 0.65

s/cav 0.63 0.66

Area s/r 0.56 0.61
(s/cav)/(r/cav) 0.53 0.58

Table 8.7: Results of the ROC analysis for perfusion indices obtained by both
the automated and manual techniques using visual interpretation as a reference.
Data are expressed as area under curve (AUC), calculated on a segment-by-
segment basis. Abbreviations: s — stress; r — rest; cav — cavity (either at stress
or rest).

When using visual interpretation as a reference (see Tab. , AUC values
varied among indices and ranged between lower 0.60s and upper 0.70s, and
consistently showed highest values for cavity-normalized values. As for the
comparisons against QCA, the AUC values were similar for the manual and
the automated techniques.

Tab. shows the K stats for perfusion indices extracted on a segment-
by-segment basis using both automated and manual techniques together with
visual interpretation against QCA. The computed values, again very similar
for the two quantitative analysis, are higher than the one for the qualitative

approach (equal to 0.58) for most indices.
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Segment-based Analysis with K stats

Automated Manual

S 0.73 0.71
s/cav 0.64 0.64
Amp s/r 0.60 0.59
(s/cav)/(r/cav) 0.62 0.60
s 0.74 0.73
s/cav 0.62 0.59
Slope s/r 0.62 0.60
(s/cav)/(r/cav) 0.60 0.62
s 0.74 0.74
% s/cav 0.62 0.62
Amp*Slope s/r 0.60 0.57
(s/cav)/(r/cav) 0.62 0.59
] 0.59 0.60
s/cav 0.63 0.61
Area s/r 0.51 0.48
(s/cav)/(r/cav) 0.54 0.52

Visual Analysis 0.58

Table 8.8: K stats calculated on a segment-by-segment basis for both the au-
tomated and manual techniques, together with visual assessment, using quan-
titative coronary angiography as a reference.

8.7 Discussion

In this Chapter, a detailed validation of the proposed technique was presented.
Differently from what done in Chapter [7} perfusion image sequences acquired
during pharmacological stress were analyzed. Stress testing is known to provide
far less favorable conditions for CMR imaging, since it involves higher heart
rates, allowing less time to image acquisition to be performed. Stress images
are also challenging from the analysis point of view, because breath-holding
under vasodilator agents is often difficult for the patient, resulting in increased
cardiac translation and accentuated changes in the shape of the heart. The
results presented in § demonstrated that the proposed technique is suit-
able not only for analysis of resting perfusion image sequences, but also for
images acquired during peak stress, as reflected by SNR values of the order
of magnitude of 20. This number indicates that the increase in myocardial
pixel intensity caused by the contrast bolus is 20 times the amplitude of the
noise in the contrast-enhancement curves, depicting the excellent quality of
these curves. In addition, we found that curves generated using our algorithm
showed the expected distinctly different patterns between rest and stress in

normally perfused hearts.
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The remaining part of the validation process was performed on Dataset B,
which was acquired at a different institution, using different equipment with
different imaging settings in order to test the robustness of the technique. Of
note, the algorithms worked changing only two internal parameters, as de-
scribed in § [6:3] The reported results achieved through the comparison of
segmental mean intensities between automated and manual analysis, in this
context, are extremely positive. The studied perfusion indices, including their
normalized versions either by corresponding LV cavity values and/or by rest
values, showed high levels of agreement between automated and manual tech-
niques, indicating that the former could be a useful alternative to the tedious
and time-consuming standard methodology. Of note, the lowest levels of agree-
ment were found for the stress to rest ratios of the cavity normalized indices,
probably because of compounding errors originating from multiple divisions.
Moreover, the Area index was the one showing the worst results in the whole
analysis, probably due to its high dependency on the baseline value as well
as on the selection of the contrast enhancement phase, which was performed
manually.

The final step of validation of our technique was the side-by-side comparison
of its diagnostic accuracy with that of the manual technique against reference
methods for the detection of obstructive CAD. The analysis was performed
initially using QCA as a reference, both on a segment-by-segment and on a
patient-by-patient basis. As indicated, the segment-based analysis was accom-
plished performing a separate ROC analysis per each myocardial segment. The
reason behind this choice lies in a consideration relative to the image acquisition
process: it has been reported that the relative distance of myocardial segments
to the receiving coil array causes inhomogeneities in acquisition sensitivity and,
thus, differences in image brightness [73]. Although the acquisition protocol
adopted for Dataset B should take care of this issue and generate normalized
images [43], it is safer to perform a separate ROC analysis for each myocardial
segment. While the diagnostic accuracy of several indices was very good (slope,
for instance), it is possible to argue that the AUC values of some indices ob-
tained by either of the two techniques were not very high. This is not surprising
for two reasons. First, it is well established that one cannot expect a perfect
agreement between severity of coronary lesions, as determined by angiography,
and their manifestation in terms of perfusion [74]. Second, the ROC analysis
was performed on a segment-by-segment basis, which involves a certain level
of uncertainty regarding the correspondence between coronary territories and
myocardial segments. Segment-by-segment or even territory-by-territory anal-
ysis of diagnostic accuracy does not usually yield high levels of accuracy, even
for well-established techniques such as Nuclear myocardial perfusion Imaging

[75]. Since the true clinical value of a diagnostic technique should be tested
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on a patient-by-patient basis, this analysis was performed and its outcome
was presented. However, differently from the segment-based one, the patient-
based analysis was strongly limited by a referral bias, since all the patients
were referred for cardiac catheterization based on abnormal nuclear cardiology
findings, i.e. the group was biased in terms of high prevalence of disease (21
abnormal vs 6 normal patients). Nevertheless, in this cohort, the diagnostic
accuracy of both techniques was similar. The last paragraph compared the
diagnostic accuracy of the quantitative analyses to the one of qualitative one
using QCA as a reference. Importantly, K stats analysis showed that the quan-
titative methods (automated and manual) are characterized by similar accuracy
and yield, in most cases, better results compared to visual interpretation, thus

demonstrating the clinical usefulness of the proposed methodology.



Chapter 9

Conclusion

HE study was aimed at the design, the implementation and the validation
T of a novel approach for myocardial identification as a basis for perfusion
quantification from CMR images. The proposed technique features statistical
region-based and edge-based level-set techniques as well as a non-rigid regis-
tration scheme. The achieved results demonstrate that the technique is able
to deal with the extreme dynamic nature of FP-CMR image sequences and
rapid respiratory motion, allowing the extraction of high-quality contrast en-
hancement curves both at rest and during vasodilator stress. Importantly, we
found high levels of agreement between automatically and manually obtained
perfusion indices as well as similar diagnostic accuracy against QCA reference

and visual interpretation.

In summary, our technique provides a fast, automated and user-friendly alter-
native to the prevailing manual methodology for measurement of myocardial
contrast enhancement, which has been delaying the dissemination of quantita-

tive evaluation of myocardial perfusion from CMR images.
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Abstract

Purpose. We present the development and testing of a semi-automated tool
to support the diagnosis of left ventricle (LV) dysfunctions from cardiac mag-

netic resonance (CMR).

Methods. CMR short-axis images of 15 human LVs were processed to detect
endocardial and epicardial contours and compute LV volume, wall mass, and
regional wall motion. Results were compared to the ones from manual tracing
by an expert cardiologist. Moreover, nearest neighbour tracking and finite el-
ement theory were merged to calculate local myocardial strains. The method
was tested on a virtual phantom, whose strains were also computed by a com-
mercial finite element solver, on a healthy LV and on two ischemic LVs with

different severity of the pathology.

Results. Automated analysis of CMR data was feasible in 13/15 patients:
computed LV volumes and wall mass well correlated with manually extracted
data. The detection of regional wall motion abnormalities showed good sensi-
tivity (77.8%), specificity (85.1%) and accuracy (82%). On the virtual phan-
tom, computed local strains differed by less than 14% from the results of com-
mercial finite element solver. Strains calculation on the healthy LV showed uni-
form and synchronized circumferential strains, with peak shortening of about
20% at end systole, and progressively higher systolic wall thickening going from
base to apex. In the two pathological LVs, synchronicity and homogeneity were

partially lost, anomalies being more evident for the more severely injured LV.

Conclusions. Preliminary testing confirmed the validity of our approach,
which allowed for the fast analysis of LV function, even though future improve-

ments are possible.
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10.1 Introduction

Ischaemic cardiomyopathy is responsible for up to 65 per cent of the preva-
lence of heart failure (HF) [76]. Despite appropriate medical management, my-
ocardial infarction initiates a remodelling process that potentially entails left
ventricle (LV) dilation and mitral valve (MV) insufficiency, often proportional
to the extent of damaged myocardium. To compensate for reduced ventric-
ular function, the LV dilates to increase stroke volume through two distinct
phases governed by mechanical, genetic and neurohormonal factors [77]: early
remodelling, characterized by infarct expansion with wall thinning and LV di-
lation with subsequent increase in wall stress, and late remodelling, in which
increased wall stress induces cardiomyocytes hypertrophy. Unfortunately, re-
modelling leads to alterations in the LV architecture towards a spherical form,
further increasing wall stress, resulting in a vicious cycle leading to HF.

Imaging techniques play a pivotal role in LV function assessment in sup-
porting clinical decision-making. Among them, cardiac magnetic resonance
(CMR) imaging is a non-invasive technique currently considered the standard
reference in the clinical evaluation of the LV.

Conventional two-dimensional cine images are normally used to asses LV
volume, function, mass and regional dysfunction [78]|[T9]. However, their anal-
ysis requires slice- by-slice, phase-by-phase endo- and epicardial boundaries
detection. Even with commercial software, it requires extensive manual cor-
rections, thus resulting in a poorly automated, time consuming and subjective
analysis technique. Different techniques for CMR LV semi-automated and au-
tomated border detection have been described [80], but they suffer from differ-
ent limitations: a large number of manually segmented images required to build
a model database or to train the model [8I], analysis limited to end-diastolic
(ED) and end-systolic (ES) phases only, no continuous temporal segmentation
and computational complexity [82].

Tagged-CMR is widely adopted to calculate two-dimensional wall strains
by tracking the two- dimensional motion of myocardial points (defined by tags
crossing) over time; it permits rapid imaging and visualization, as well as au-
tomation [83]. However, this technique does not capture real three-dimensional
strains and does not allow for the analysis of the complete cardiac cycle, since
the tags (i) can become less distinct, and thus more difficult to track, owing
to out-of-plane motion of the tissue, and (ii) fade after a few time- frames, so
that the analysis cannot be extended to the entire cardiac cycle. Moreover,
only a few slices are acquired via tagged-CMR as additional sequences to the
conventional examination. The assessment of three- dimensional myocardial
motion using MR tagging techniques using multiple orthogonal image planes
[84][85][86] or fully three-dimensional MR tagged imaging [87] is still part of

the research arena and is primarily limited by the need for lengthy image ac-
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quisition protocols and for tedious post-processing procedures.

The availability of a reliable technique for automated endocardial and epi-
cardial contour detection and regional wall strain calculation throughout the
cardiac cycle on conventional cine CMR images would overcome these limita-
tions, providing an exhaustive quantitative analysis of the LV.

Within the framework of the virtual pathological heart of the virtual phys-
iological human (VPH2) project, we aim at developing two decision support
tools for cardiologists and cardiac surgeons, based on LV patient-specific mod-
elling, the functional assessment tool (FAT) and the functional predictive tool
(FPT). FAT quantitatively analyses LV, by semi-automated endocardial and
epicardial detection, andMV function from CMR images, thus help- ing defin-
ing the severity and extent of disease in patients with LV dysfunction,with or
without mitral regurgitation. FPT is used for an easy and fast simulation of
post-operative scenarios subsequent to different surgical procedures.

The present paper is focused on the development, testing and validation of
the LV-related capabilities of the FAT: (i) semi-automated detection of endo-
cardial and epicardial contours for volumetric and wall motion (WM) analysis;
(ii) quantification of LV volume, mass and regional WM; and (iii) computation
of local strains in the myocardium. FAT contour detection was verified on a
small population of subjects (n = 13), while its capability to correctly com-
pute local LV wall strains was tested on a virtual phantom and on three real

ventricles characterized by different clinical scenarios.

10.2 Methods

Cardiac magnetic resonance imaging

A group of 15 patients with previous myocardial infarction and regional WM
abnormalities was considered. CMR studies were performed using a 1.5 T
scanner (Signa Hdx®), GE Healthcare, Milwaukee, WI, USA). An eight-element
cardiac phased-array receiver surface coil with breath-holding in expiration and
ECG-gating were used for signal reception. Three standard cine long-axis slices
and a stack (from 8 to 12) of contiguous cine short-axis slices from the atrio-
ventricular ring to the apex were acquired using a steady-state free-precession
pulse sequence (30 phases, slice thickness 8 mm with no overlap and no gap,
field of view = 40 cm, reconstruction matrix 256 x256, repetition time = 3.5

ms, echo time = 1.5 ms, flip angle 45°).

Algorithms for contours detection

The semi-automated detection of LV contours was based on region-based im-

age noise distribution (for LV endocardial detection) and on edge-based image
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gradient (for LV epicardial detection).

Endocardial border detection. The endocardial border detection is based
on the formulation proposed by Chan & Vese [64] and on embedding in the
segmentation model the a priori knowledge of the statistical distribution of
grey levels in medical images [88]. In particular, concerning CMR, we note that
image pixels are modelled as Gaussian distributed random variables. Then the
proposed method drives the curve evolution to achieve a maximum-likelihood
segmentation of the target, with respect to the statistical distribution law of
image pixels.

Let us consider an image I as a real positive function defined in a domain
Q C R%. The gray levels are assumed to be uncorrelated and independently
distributed. They are thus characterized by their respective probability density.
Now, we define a closed curve C partitioning the image domain in an ‘inside’
; and an ‘outside’ {2, and denote with P; =[], ) () the probability of the
random field inside the curve and with P, = HQC(C) p(I) the probability outside
the curve. Without any a priori knowledge about the shape of the object to be
detected, we look for the curve C' that maximizes the likelihood function given
by the product of the inner and the outer probability [89]: P[I|C] = P;P..

Since the log function is strictly increasing, the maximum value of P[I|C],
if it exists, will occur at the same points as the maximum value of [(I,C) =
log(P[I|C]). This function is the ‘log likelihood’ and in many cases it is easier
to work with it than with the likelihood function. Indeed, the product structure
of the probability function is transformed in a summation or integral structure
of the log likelihood. Passing to the continuous limit, we replace the sum with
the integral and, to perform a maximum-likelihood segmentation of the target,
we need to maximize the functional I with respect to variation of the curve C.

By considering the Gaussian noise distribution:

p(l)zzlmexpl—;<l(;”>2] (10.1)

where 1 and o are the average and variance of I, respectively, the corre-

sponding log-likelihood is derived as in Chesnaud et al. [90]. Then, following
the model proposed by Chan & Vese [64] and embedding in the segmentation
model the a priori knowledge of statistical distribution of grey levels in CMR
images [65], the final associated flow results!:

99 . (Vo e
70 _ e G - 10.2
ot |V [edw<|v¢|> +log<66> + fi fe] (10.2)
where
A; z/ dxdy A, z/ dxdy (10.3)
Q;(C) Q.(C)

1The following equation has been rewritten to improve legibility.



96 LEFT VENTRICULAR MODELLING: A QUANTITATIVE FUNCTIONAL
ASSESSMENT TOOL BASED ON CMR IMAGING

B; :/ Idxdy B, :/ Idzdy (10.4)
Q:(0) Q(C)
C; = / Pdrxdy  C. = I?dxdy (10.5)
Q:(0) Q.(C)
A%1?2 —2IAB +2B? — AC
fie = C— B2 (10.6)
AC — B?
Cie = —3 (10.7)

and ¢(z,y,0) is the initial function with the property that its zero-level
set corresponds to the position of the initial front. Typically, it is defined by
o(x,y,0) = £d, where d is the signed distance function from each point to the

initial front [57], and
M% =0 (10.8)
|V¢| On

are the boundary conditions.

The evolution process will stop when the region probability terms of the
inside regions do equal the terms of outside regions, up to regularization of
boundaries (see Fig. a).

To define the initial function, we require the manual placement of a single
point inside the LV cavity. From a mathematical point of view, we defined
a curve C, centred in the manual selected point, as the zero-level set of an

implicit real function ¢ taking values on the image domain €:

C={(z,y) € Q: ¢(x,y) =0} (10.9)

This initial circumference C' undergoes the evolution described in equation
in order to maximize the functional [.

Following this step, the boundary regularization was achieved using a curvature-
based motion not allowing curvature above the mean Euclidean curvature value
of the detected contour and designed to automatically include the papillary
muscles in the LV cavity (see Fig. b).

Epicardial border detection. To identify the epicardial boundary (see Fig.
10.1} c), we drove the evolution of an initial contour applying the well-known
Malladi—Sethian model for active contour evolution, which requires adequate
boundary conditions.
The model includes a dependence of the speed on the curvature, a propa-
gation expansion speed and an advection speed based on the image gradient:
¢

i vVg-Vo—g(Ak —1)|V| (10.10)

where k is the mean curvature, g is the edge indicator, v and X\ are weighting

coefficients.
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The edge indicator ¢ is a non-increasing function of the gradient of the

2
1 <|VI>
«

The parameter o depends on the characteristics of the noise in the image:

initial image [61]:

g= (10.11)

« controls the sensitivity to edges and therefore it was empirically set to 20 to
select the contrast of the objects we want to consider in the image during the
motion of the embedding. The parameter v is used to limit the regularization
of the contour controlled by the parameter \: these parameters were set equal

to 10 and 6, respectively.

Figure 10.1: Schematization of the border detection procedure: (a) after ini-
tialization of one point inside the LV cavity, the algorithm based on the region-
based image noise distribution iterates expanding the cavity position; (b) a
second step algorithm, based on curvature-based motion, is then applied to
regularize the contour and thus include papillary muscles and ventricular tra-
beculations inside the LV cavity, thus producing the final position of the en-
docardial contour; (¢) the Malladi-Sethian model for active contour evolution
is then applied starting from the detected endocardium (in red) in order to
determine the epicardial position (in white).

The contour evolution will have a steady-state solution when the geometry
dependent and expansion terms balance the advection term [57]. At the end
of this step, the epicardial boundary was also regularized applying a modified

curvature motion.

Algorithms initialization. For endocardial detection, the region-based ap-
proach was applied from basal to apical slices for each frame. In the basal
slice, after initialization of the algorithm’s parameters (radius of the initial
circle, and per cent of radius decrement from one slice to the next one), the op-
erator selected one point inside the LV cavity. Then, automatically, the applied
algorithm expanded the initial circle according to the videointensity probabil-
ity distribution followed by the regularizing expansion to include the papillary
muscles, when present. Then, the algorithm processed the other slices, using
the detected contour on the current slice (s) as initialization for the next (s+1)

slice, after reducing it by the per cent set by the operator.
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For epicardial detection, this approach required a robust initialization on
the first frame f. Then, for the next frame f + 1, the initialization was ob-
tained by applying the ‘erode’ morphological operation applied to the resulting
epicardial contour on the frame f.

For each slice and frames, the detected contours were then superimposed

to the original image, to allow for possible corrections, if needed.

Left ventricle volume and mass quantification

The LV volume was automatically computed by sum- ming the LV area in each
slice (measured as pixel counts inside the endocardial contour) multiplied by the
pixel spatial resolution and by the slice thickness (from the DICOM header).
In the same way, the LV mass was computed as the difference between the LV
epicardial and LV endocardial volumes, and multiplied by 1.05 to be expressed

in grams.
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Figure 10.2: (a) Schematization of the definition of the six sectors for wall
motion (WM) interpretation: ant, anterior; asp, antero-septal; sep, septal; inf,
inferior; pst, posterior; lat, lateral (see text for more details). (b) Example
of the regional WM curves obtained by the endocardial detection throughout
the cardiac cycle in one slice at mid LV level. The grey dotted line in each
graph represents the 50% threshold applied to regional area change values to
automatically detect WM abnormalities. In this example, the septal sector
(sep) was automatically interpreted as abnormal.

For the automated interpretation of regional WM, the ED frame was used
to define the standard segmentation scheme for the LV short-axis view in each
slice (see Fig. [10.2] b). In the slice at the mid-ventricular position, the ED
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centroid of the LV cavity was calculated as centre of mass of the binary image
representing the detected LV cavity, in which all pixels in the cavity appear
‘on’ (i.e. have value 1) and have been attributed with a unit mass, and used
as the origin of segmentation.

An additional point was then manually placed at the junction between
the right ventricular free wall and the interventricular septum. Starting from
that point, the LV cavity was divided into six 60° wedge-shaped segments,
corresponding to those used for visual assessment and grading of WM. For each
segment, regional fractional area (RFA) in per cent of regional ED area was
automatically calculated throughout the cardiac cycle using a fixed-coordinate
reference system. From these six curves in each slice, RFA change (RFAC)
was computed as the difference between the maximum and minimum value of
RFA, expressed in per cent of the regional ED area. For each segment, these
values were used to automatically interpret WM as normal (RFAC > 50%) or
abnormal (RFAC < 50%) (see Fig. [10.2] a).

Validation of left ventricle volume and mass quantification

For validation purposes, data calculated through our semi-automated pro-
cedure were compared with the manual measurements performed by an ex-
pert cardiologist. The latter analyzed CMR data using commercial software
(MASS®v. 6.1,Medis, Leiden, Netherlands) installed on the MRI workstation
and proceeded into the conventional analysis of these images by manual tracing
LV endo- and epicardial contours. Then, LV ED and ES volumes (EDV and
ESV, respectively) and mass were measured using standard volumetric tech-
niques. The same number of slices included for the reference value assessment
by the expert were included in these computations, to avoid bias owing to the
inclusion of a different number of slices.

Moreover, dynamic images were reviewed and regional WM was interpreted
in three slices selected at apical, mid and basal levels. In each of these slices,
the six regional segments (anterior, lateral, antero-lateral, septal, inferior and
posterior) were qualitatively graded as normal or abnormal, thus providing the
‘gold standard’ for WM interpretation.

The results obtained from the automated analysis were then compared with
the reference values by (i) linear regression and Bland—Altman analyses for LV
volumes and mass; (ii) levels of agreement between the cardiologist WM grades
and the automated classification of regional WM.

Sensitivity, specificity and accuracy for the automated interpretation of WM

were also computed.
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Calculation of left ventricle local strains and left ventricle

torsion

Local strains in the LV myocardium were calculated through the following

steps:

L

II.

A slice-based reconstruction method [91] was used to obtain smooth,
three-dimensional endocardial and epicardial surfaces, discretized into
three-node triangular elements, from the sampled previously detected con-
tours (see Fig. a and b);

In the ED frame, endocardial and epicardial surfaces were divided into six
longitudinal sections and three circumferential sections, for a total of 18
sectors (see Fig. c). For each sector, its eight vertices were identified
and the corresponding local principal curvatures calculated as in Vieira

& Shimada [92];

@) )

Figure 10.3: (a) Points obtained by sampling the endocardial (blue) and epi-
cardial (green) contours. (b) Three-dimensional smooth endocardial and epi-
cardial surfaces. (c) Sketch of LV segments.

I11.

The eight vertices of each sector were tracked throughout the subsequent
time-points by means of a nearest neighbour search, assuming that the
position of a given point P on the LV surface and the surface’s local
shape in P change continuously throughout the cardiac cycle, and thus
undergo small changes in a sufficiently short time-frame. Briefly, at the
time-point ¢, the position of P on the triangulated surface S; is x¢. At
t 4+ 1, the triangulated surface Siy; is deformed, and P has moved to
its new position x¢41,estimated as the position of the node in Sy;; that

minimizes the following function:
2
¢>(Xt+1,xt7X0) = a1(|Xt+1,i - Xt|2) + ag [(K,LM - Ktl) +

, (10.12)
+ (Kt2+1,i - K7?) } + a3 (|x¢41,i — Xol?)

where X¢41; is the position of the ith node on the surface Si;1, x¢ and
xo are the known positions of P at ¢ and at ED, K! and K? are the
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curvature tensor principal components and al, a2, a3 are three positive

scalar coefficients defined as:
ar+az =1 (1013)

and
0, t <12
as = (10.14)
(1/9)(t —12), t>12
In the first term of ¢, |x¢41,; — X¢| is the displacement needed to move P
from its initial position x¢ to its new one. The second term accounts for
the change in local shape experienced by the surface, where (Ktl 10 Ktl)
and (Kt i K f) are the concomitant changes in local principal. In both
terms, quadratic quantities are considered; thus, their convex linear com-
bination is minimized if both terms are minimized. The coefficients a; and
as were set to 0.2 and 0.8, respectively, accordingly with a preliminary sen-
sitivity analysis. The third term of the function is active only for ¢ > 12,
i.e. for the diastolic time-points, and enforces the return of the tracked
point P to its initial position. The nearest neighbours search provided
the time-dependent position of the eight vertices of each of the 18 sec-
tors of the LV myocardium and, thus, the corresponding time-dependent

displacements;

A continuos displacement field was reconstructed within each sector by
treating the latter as an eight-node isoparametric hexahedral finite el-
ement. A local system of coordinates s = (s1, s2, s3) was defined, with
s; € [—0.5;0.5] and with s1, s, s3 aligned, respectively, along the local cir-
cumferential, radial and axial directions of the LV in a cylindrical reference
system with the z-axis on the LV long axis. Coordinates and displace-
ments of each point within the sector were estimated by interpolating the
coordinates and the displacements of the eight vertices via linear shape

functions:

8
= Z Ny(s) - x; (10.15)

8
s) =Y _ Ni(s)- Uj (10.16)
i=1
The strain tensor was computed as
E=_-(C-1I)
(FTF - 1)
(10.17)
(H+D)"(H+1I) -1

H+H" + H'H)

N RN RN~
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where C is the right Cauchy-Green strain tensor, F is the deformation
gradient tensor, defined as F = 0x/0X, i.e. the derivative of the current
position x as regard to the initial position X, and H is the displacement
gradient tensor, defined as H = du/9X, i.e. the derivative of the dis-
placement u as regards to the initial position X. H was computed as:

_du_0u 05 g 0N
09X Os aXi_l ' Os

1=

J-! (10.18)

where J is the Jacobian matrix that maps the global coordinates onto the
local ones, i.e. x = 0X/0s.

In particular, the strain tensor E was assessed at the centre of each sector

(s1 =52 =53 =0);

V. For the six vertexes at the basal end of the endocardial surface, and for the
six vertexes at its apical end, the time-dependent average rotation angle
0o+ was computed. In an orthonormal reference system =z, y, z centred in
the LV centre of mass, with the z-axis aligned with the long-axis, 6,.,; was
defined as:

6
1 —1 %) ~1 %:(0)
Oror(t) = = tan~! —tan~! 10.19
t( ) 6 ; |: an l‘l(t) an Z‘,(O) ( )
Positive values of 0,,:(t) corresponded to a counter-clockwise rotation as

seen from the LV apex. The ventricle torsion was computed as:

torsion(t) = 0°Pi° () — gbesal(¢) (10.20)

rot rot

Validation of local strains calculation

The validation of the method for strains calculation consisted of two steps.

First, we tested its capability to compute strains on objects with simple
geometry undergoing simple deformation processes. For this purpose, a virtual
phantom, consisting in an ideal, axial-symmetric ventricle was defined and
discretized into tetrahedral elements (see Fig. [10.4] a). By means of a com-
mercial finite-element solver (ABAQUS®), Simulia Inc., Dessault Systémes,
Vélizy-Villacoublay, France), we simulated its inflation and deflation under the
effect of a cyclic, time-dependent inner pressure. The phantom was divided
into 18 sectors. The corresponding strains were computed by nearest neigh-
bour tracking of the sectors’ vertices, and compared with the values computed
by the commercial solver for the tetrahedral elements located at the centre of
each sector.

Second, we assessed the method’s capability to compute strains in the pres-
ence of more complex motion patterns, characterized by non-uniform expan-
sion and deflation, and by torsion.We analyzed a normal subject (SUBJECT1),
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Figure 10.4: Virtual phantom model: (a) phantom ventricle geometry dis-
cretized into tetrahedral elements; (b) comparison between the local strains
of the virtual phantom computed with our code and the output provided by
the finite-element solver. Given the axial-symmetry of the phantom, the finite-
element solution consists in a single plot for the basal, mid and apical level
of the phantom, respectively. (b) Navy blue, sectl; red, sect2; green, sect3;
purple, sect4; sky blue, sect5; orange, sect6; red crosses, FEM.

with EDV and ejection fraction (EF) equal to 130 ml and 72 per cent, and two
patients affected by late ischaemic pathology: SUBJECT2 (EDV = 117 ml,
EF = 44%, antero-lateral infarction), and SUBJECT3 (EDV = 378 ml, EF =
16%, anterior and inferior-lateral infarction). For each subject, we computed

time-dependent basal and apical rotation angles, torsion and regional.

10.3 Results

FAT validation

Of the 15 patients, two were excluded for artifacts in the images that precluded
correct performance of the algorithm without heavy manual correction. The
semi-automated analysis was then feasible in 13/15 (87%) patients.

The time required to process a single frame (ED or ES) from base to apex,
for both endo- and epicardial contours detection, was approximately 1 min
using a standard PC. An example of the detected contours for ED and ES
frames at three levels of the LV is shown in Fig. [10.5}

Good correlations were found with the reference values for LV EDV (y =
0.992+5.1, R? = 0.99), and ESV (y = x+4.34, R? = 0.99), as well as with their
derived parameters SV (y = 0.98x — 0.24, R? = 0.97) and EF (y = x + 1.56,
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Figure 10.5: Examples of (a) the detected endocardial (in red) and epicardial
contours in a slice at mid-ventricular level, in the same frames throughout the
cardiac cycle and (b) in a slice at basal and apical levels at end-diastole and
end-systole. At basal levels, manual correction was often needed, as shown in
this example by the misplacing of the epicardial contour.

R? = 0.98). For LV mass, a good correlation was found (ED, y = 1.07z +5.41,
R? =0.81; ES, y = 0.972 + 12.86, R? = 0.74). Bland-Altman analysis resulted
in minimal bias and narrow limits of agreement in LV ED and ES volumes,
and derived parameters. Conversely, a significant overestimation and wider
limits of agreement were found for LV mass. In particular, the bias expressed
as error%/mean of the gold standard values resulted less than 10 per cent in
all parameters, except ED LV mass (see Tab. . Fig. visualizes the
results obtained in LV volumes and mass, considering ED and ES measurements
together.

Bias Bias* 95% LOA

EDV -25ml  -14 -17.7+12.7 ml
ESV -42ml  -4.1 -15.3+6.8 ml
SV 1.7 ml 2.1 -7.6+11.0 ml
EF % 1.5% 3.2 -3.2+6.2% ml

ED LV Mass -152¢g -11.2 -449+146¢g
ES LV Mass -87¢g -5.8 -41.3+238 g

Table 10.1: Regression analysis results. EDV, end-diastolic volume; ESV, end-
systolic volume; SV, stroke volume; EF, ejection fraction. Bias* = Bias as
error%/ mean of the gold standard values.

As regards the automated detection of LV WM, the time needed to process
a single slice (30 frames), for endocardial contour detection, and for regional
WM analysis, was approximately 1 min. The gold standard interpretation
resulted in 135 segments evaluated as normal, and 99 as abnormal.

Fig. [10.2]shows an example of the regional WM curves, as well as the scheme
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Figure 10.6: Linear correlation and Bland—Altman analysis of the results of (a,
¢) LV volumes and (b, d) mass (with end-diastolic, squares, and end-systolic,
triangles, measurements considered together) obtained by manual tracing of
CMR images (gold standard) and through application of the developed endo-
cardial and epicardial border detection algorithm.

used for their quantification. Of the analyzed 234 segments (13 patients x 6
sectors x 3 slices), 77 were automatically classified as true positive, 115 as true
negative, 20 as false positive and 22 as false negative, based on the selected
50 per cent threshold. These counts resulted in 77.8 per cent sensitivity, 85.1

per cent specificity and 82 per cent accuracy in the automated interpretation
of WM.

Left ventricle local strains

Analysis of the virtual phantom. Fig. shows the good agreement
between the local strains of the virtual phantom computed with our method
and the finite-element solution, the maximum difference being equal to 14 per
cent.

Analysis of the real ventricles. For normal SUBJECT1, the measured re-
gional strain curves (see Fig. [10.7) provided uniform strain patterns over all
myocardial segments; in the systolic phase, all sectors contracted circumfer-

entially and thickened radially. Circumferential shortening increased from the
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Figure 10.7: Three-dimensional reconstruction of LV endocardial and epicardial
surfaces at ED for SUBJECT1. (b) Radial (E,,) and circumferential strain
(Ecc) curves for the six sectors of the basal, mid and apex regions. (b) Navy
blue, sectl; red, sect2; green, sect3; purple, sect4; sky blue, sect5; orange, sect6.

basal region to the apex: peak absolute values ranged from 15 to 21 per cent
for the sectors of the basal and mid region, and from 19 to 26 per cent for
the apical sectors. Similarly, the observed thickening was progressively more
relevant going from the ventricular base to the apex: plots showed maximum
values of 51-70%, 69-100% and 72-125% for the sectors in the basal, mid and
apical region, respectively. Apical and basal maximal systolic rotations and
maximal torsion were 7.8°, 22.8° and 10.2°, respectively (see Fig. top
panel).

In the pathological subjects, the normal waveform of time-dependent strains,
coherence between sectors at the same level, and trends characterizing the
changes from the basal to the apical region, were lost.

For SUBJECT? (see Fig. top panel), in the basal region, circumferen-
tial shortenings showed a slower dynamics, with maximal values ranging from
12 to 20 per cent. In the mid and apical regions, progressively more irregu-
lar patterns and lower maximal values(from 5% to 12% and from 3% to 5%,
respectively) were computed. As regards radial thickening, four of the basal
sectors showed values from 40 to 80 per cent, whereas much lower values (13%
and 22%) were observed in the remaining two sectors. In the mid and api-

cal regions, maximum thickening ranged from 36 to 120 per cent and from 2
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Figure 10.8: (a) Three-dimensional reconstruction of LV endocardial and epi-
cardial surfaces at ED for SUBJECT?2 and 3. (b) Radial (E,,) and circumferen-
tial strain (E..) curves for the six sectors of the basal, mid and apex regions.(b)
Navy blue, sectl; red, sect2; green, sect3; purple, sect4; sky blue, sect5; orange,

sect6.
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to 88 per cent, respectively. Apical and basal maximal systolic rotations and
maximal torsion were 2.6°, 23.1° and 4.9°, respectively (see Fig. mid
panel).

SUBJECT3 showed even more abnormal circumferential shortenings and
radial thickenings (see Fig. bottom panel). None of the 18 sectors short-
ened by more than 8 per cent, thus indicating very poor contraction of the
myocardium. Maximal thickening values ranged from 5 to 38 per cent, from 0
to 38 per cent and from 3 to 50 per cent in the basal, mid and apical sectors,
respectively. Moreover, two sectors in the mid and apical regions experienced
thinning. Apical and basal maximal systolic rotations and maximal torsion
were 1.7°, 20.7° and 2.1°, respectively (see Fig. mid panel).

rotation (°)

-4 SUBJECT1

rotation (*)
L= S R = A =]
AY
A\
)
/

—4 SUBJECT?2

rotation (°)
L= S A

—4 SUBJECT3

Figure 10.9: LV rotation profiles for SUBJECT 1, 2 and 3. Blue, green and red
solid lines indicate basal, mid and apical rotation, respectively. Violet dashed
line indicates LV torsion.

For each of the three subjects, the computation of strains, rotation angles
and torsion required about 60 min on a standard desktop PC with single CPU
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(Intel core2@1.86 Ghz).

10.4 Discussion

In this paper, we presented a new tool for LV analysis from CMR imaging,
characterized by two novel aspects when compared with previous approaches

The former consists in the automation of a relevant part of the procedure
needed to recognize endocardial and epicardial contours.

The latter consists in the calculation of myocardial local strains through a
Lagrangian approach, i.e. by actually tracking different portions of the my-
ocardium in space throughout its deformation process.

In this study, on a small population of subjects, we tested the features
of the software that allows for LV endo- and epicardial borders detection for
volumetric and WM analysis. Moreover, we tested the capability to correctly
compute local LV wall strains on a virtual phantom and applied it to three LVs

characterized by different clinical scenarios.

Automated detection of contours for analysis of volumetric

and wall motion analysis

CMR imaging provides accurate measurements of LV volumes, EF and mass,
nevertheless, the quantification of volumes is based on time-consuming man-
ual tracing of endocardial and epicardial boundaries in multiple slices. The
subjective nature of this procedure limits the reproducibility of volume mea-
surements and consequently of the set of derived parameters. The proposed
combined automated endocardial and epicardial border detection procedure
overcomes these limitations by allowing manual intervention just to optimize
the auto- mated detected contours. Despite this advantage, the proposed ap-
proach was not completely reliable in several LV basal slices, owing to the
presence of the aorta. In this case, manual tracing was performed in order to
provide a reliable contour. The technique could be easily applied to all frames
in the cardiac cycle, on a different number of slices of fixed thickness for each

frame.

Analysis of left ventricle strains and torsion

For validation purposes, we first applied our method for strain estimation on
a simplified virtual phantom. The computed strain curves well agreed with
the ones yielded by a commercial finite-element solver throughout the whole
cardiac cycle, confirming that our method fullfils the minimum requirement of

being accurate in presence of simple motion patterns. The application of the
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method on three real subjects showed its capability to capture more complex
motion and strain patterns.

In the healthy subject, physiologically meaningful strain curves were found:
consistently with previous findings [94][95] almost uniform circumferential shorten-
ing and increasing thickening were assessed from LV base to apex. Moreover,
LV torsion was consistent with data from tagged MRI and Doppler tissue imag-
ing [96], both in terms of time-course and maximal values.

In the ischaemic patients, we found a decrease in peak systolic circum-
ferential and radial strains, in agreement with the expected loss of contraction
proper- ties following infarction, as well as in peak systolic torsion, consistently
with previous findings [97]. More- over, regional inhomogeneity and dyssyn-
chrony of the strain pattern were detected. These abnormalities were more
evident in SUBJECTS3, consistently with his much lower EF.

Thus, in these preliminary tests, the calculation of rotations, LV torsion
and local strains based on nearest neighbour search appeared able to provide
realistic results.

However, the method suffers from some limitations. First, even though the
metrics adopted in the nearest neighbour algorithm include a term aimed at
enforcing the return of the tracked points to their initial position, computed
time-dependent strains showed residual values around 5 per cent at the end
of the cardiac cycle. This issue is reported also in other recent studies [98];
possible causes include the natural aperiodicity of LV deformation owing to
heart-rate variability, and the inherent limitations of CMR acquisitions.

Second, in order to compute strains within each of the 18 LV wall sectors,
we treated each of them as a first-order isoparametric hexahedral element.
However, it does not allow for capturing the non-negligible curvature of the
endocardial and epicardial surfaces of the sectors. To this aim, we plan to

move to the use of higher order elements.

10.5 Conclusion

In the reported preliminary testing, the FAT tool resulted effective in comput-
ing LV volumes, myocardial strains and torsion from conventional cine short-
axis CMR images. Obtained results were in agreement with manual ground
truth values, and with reported literature. Although not fully automated, our
method required minimal user interaction, thus improving repeatability. FAT
capability in capturing regional functional features may be of use in the in-
terpretation of the remodelling process following myocardial infarction; this
information could be useful in the clinical decision-making process and poten-

tially used as input for patient-specific LV modelling tools.
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Abstract

Purpose. Late gadolinium enhancement cardiac magnetic resonance imaging
(LGE-CMRI) is the technique of choice to detect myocardial scars and assess
myocardial viability. In clinical practice, this analysis is performed qualita-
tively or by manually tracing the enhanced area in each acquired slice. The
purpose of this study was to test and validate a technique for automated local-

ization and quantification of scar extent.

Methods. CMRI data in patients with previous myocardial infarction were
analyzed using custom software from which the myocardium was automati-
cally identified from steady-state free precession images and registered on LGE-
CMRI data. Scar tissue was defined as myocardium with signal intensity >
80% of its maximum and quantified on each slice. Scar location and extent

were assessed and compared with expert analysis.

Conclusions. Preliminary results showed that automatic localization of scar

from LGE-CMRI is feasible and scar quantification is accurate and reliable.



11.1. INTRODUCTION 113

11.1 Introduction

As indicated in the ACCF/ACR/AHA /NASCI/SCMR 2010 expert consensus
document on cardiovascular magnetic resonance [99], late gadolinium enhance-
ment cardiac magnetic resonance imaging (LGE-CMRI) should be used for
identifying the location and extent of myocardial necrosis in individuals sus-
pected of having or diagnosed of chronic or acute ischemic heart disease. This
imaging technique provides a noninvasive mechanism to predict recovery of
function after revascularization being able to identify sub-endocardial or trans-
mural infarctions. In particular, the presence and the transmurality of scar
can be quantified and viable myocardium defined as dysfunctional and non-
scarred tissue. Several studies showed the transmural extent of scars predicts
the likelihood of recovery of regional function, and when greater than 20% of
the myocardium is hibernating, improvement of ejection fraction is likely [100].
LGE-CMRI may also show non-transmural scars that fail to recover function
after adequate revascularization. Overall, LGE CMRI has a negative predictive
value of ~90% of no functional recovery in segments with transmural infarc-
tion greater than 50% and a positive predictive value of ~80% of recovery in
segments without infarction [100].

In addition, recent studies showed LGE-CMRI may be a valuable tool for
predicting major adverse cardiac events and cardiac mortality [I0T].

In clinical practice, scar assessment is performed qualitatively, or based on
time-consuming manual tracing of the enhanced area in each acquired slice
[102]. This qualitative analysis can be subjective, which limits direct compari-
son of results between sequential studies and might hinder its clinical applica-
tion.

Therefore, the purpose of this study was to test and validate a technique
for automated endocardial and epicardial border detection and quantification

of scar location and extent.

11.2 Methods

CMR imaging and population

CMRI data were acquired (1.5T, Avanto®), Siemens Healthcare, Erlangen, Ger-
many) at the Southampton University Hospital NHS Trust, UK, in 5 patients
(3 males; age 59 & 19 years) with previous myocardial infarction.

Scout images were acquired first, for identification of the cardiac axes. Dy-
namic image loops were then acquired perpendicular to the LV long-axis in
contiguous slices from the mitral valve to the LV apex using a steady-state free
precession (SSFP) imaging protocol (TR = 30 ms, TE = 1.1 ms, flip angle:

70°, slice thickness = 6 mm, spacing between slices = 10 mm, initial matrix
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size: 192x156 pixel). Temporal resolution was 20 frames per cardiac cycle.

LGE-CMRI data was acquired after Gadolinium injection (TR = 700 ms,
TE = 1.4 ms, IT = 220 ms, flip angle: 10°, slice thickness = 4 mm, no gap,
initial matrix size: 256x200 pixel).

Image analysis

Custom software based on image noise distribution (for endocardial detection)
and image gradient (for epicardial detection) was applied; the myocardium was
automatically detected from SSFP images, and registered on LGE-CMRI data.

The first step of the analysis is the manual selection of one point inside the
LV cavity followed by the application of a fast region-based global segmentation
of the most apical slice of the end diastolic (ED) frame on the SSFP sequence
(see Fig. A). This global segmentation allows partitioning the acquired
slice into maximally homogeneous regions taking into account the local noise
patterns [66] (see Fig. B). The final result (see Fig. C) is limited
to the region of interest around the initial point (see Fig. D) and used
as initial condition for a local segmentation obtained applying the same statis-
tical model (see Fig. E). Endocardial detection is refined by applying a
boundary regularization achieved using curvature motion [103] that does not
allow curvature above certain level and was designed to automatically include
the papillary muscles in the LV cavity (see Fig. E).

o
2
w
=
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o
o

Figure 11.1: Endocardial segmentation: a point is selected inside the LV cavity
in the most apical slice of the ED frame (A); global segmentation is performed
(B) then the final zero level set (C) is limited to the region of interest around the
initial point (D) and used as initial condition for the endocardium detection
achieved in two steps: local statistical level set (E, white contour) and the
edge-based level set (E, green contour).

To identify the epicardial boundary we then used the classical edge-based
level-set model [57] to search the image from the endocardium outwards. The
equation that drives the evolution is the well-known Malladi-Sethian model for
active contour evolution including a dependence of the speed on the curvature,
a propagation expansion speed and an advection speed based on the image
gradient. At the end of this step, the epicardium boundary is also regularized
with a modified curvature motion (see Fig. .
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Figure 11.2: Final epicardial segmentation (B) obtained applying the classical
edge-based level-set model to search the image from the endocardium outwards

(A).

To obtain the segmentation of a frame, endo and epicardial segmentation
was automatically repeated on each slice using as initial condition the centre
of mass of the endocardial contour of the previous slice. For the segmentation
of the next frames, the previously manually selected initial point was used and
its position optimized considering the gray levels of the image.

The detected surface corresponding to the instant of time in which LGE
CMRI data was acquired, is then registered on the LGE-CMRI data, consid-
ering the different acquisition parameters (see Fig. [11.3).

Figure 11.3: Example of scar detection in one slice of the LGE-CMRI data.

The tissue inside myocardium was studied and scar tissue defined as my-
ocardium with signal intensity > 80% of its maximum and quantified on each
slice.
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An expert cardiologist provided the “gold standard” for scar location and
extent on each acquired slice of the LGE-CMRI acquisition.

Scar location was assessed according to the standard segmentation model
and compared with expert analysis; comparison of scar extent with “gold stan-
dard” was performed by linear regression and Bland-Altman analyses.

11.3 Results

Time required for automated analysis in one slice was only few seconds, for a
total of 5-6 minutes for scar localization and quantification on a standard PC.

An example of the detected contours in one frame is shown in Fig. [11.4]
together with the corresponding 3D reconstruction.

Figure 11.4: Endocardial and epicardial contours obtained in one frame from
apex (top left) to base (bottom right) together with the corresponding 3D
surface reconstruction.

Endo- and epicardial boundaries were judged accurate in all image se-
quences. Examples of the automatically detected contours (right panels) and
the corresponding manually traced ones (left panels) are shown in Fig,.

Cardiologist detected 7 scars (4 mid antero-septal; 2 mid and apical lateral,
1 apical posterior) for a total of 73 slices. Automated analysis evidenced 7
scars and located them in the correct position.

An example of a detected scar in one patient in the lateral segment is shown
in Fig.

A very good correlation (R = 0.96, y = x + 0.06), non-significant bias
(0.07 em?, 2.5% of the mean reference value) and narrow limits of agreement
(0.61 em?) were found between scar area extent manually and automatically
quantified. An example of the manually traced scar (left) and the automatically
detected one (right) in one slice, in two patients, is reported in Fig.
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Figure 11.5: Examples of the automatically detected contours (right panels)
and the corresponding manually traced ones (left panels).
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Figure 11.6: Example of scar detection from LGE-CMRI data in one patient:
in red the endocardium, in green the epicardium and in yellow the detected
scar.

Figure 11.7: Comparison between scar contours manually traced (left) and
automatically detected (right) in two slices belonging to two patients.
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11.4 Discussion

In this study, we have presented a quantitative technique for segmenting my-
ocardial scar in LGE-CMRI images, using myocardium information derived
from SSFP data. We have applied this technique to images exhibiting visually
distinct patterns of myocardial scar. A clear correspondence between the ex-
tent of myocardial hyper enhancement automatically quantified in LGE-CMRI
images and the manually traced extent of myocardial scarring has been found.

Time required for the automated scar quantification could be further speeded
up performing the analysis directly in the 3D space. Considering this improve-
ment and following a comprehensive validation, this method could be suitable
for clinical implementation. Importantly, the results of this analysis involve
not only scar location and extent but also ventricular function being available
dynamic endocardial and epicardial surfaces from which volumes, stroke vol-
ume, ejection fraction, mass, systolic and diastolic parameters could be easily
derived and quantified.
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Abstract

Purpose. A new method for prosthetic component segmentation from fluoro-

scopic images is presented.

Methods. The hybrid approach we propose combines diffusion filtering, re-
gion growing and level set techniques without exploiting any a-priori knowledge
of the analyzed geometry. The method was evaluated on a synthetic dataset
including 270 images of knee and hip prosthesis merged to real fluoroscopic
data simulating different conditions of blurring and illumination gradient. The
performance of the method was assessed by comparing estimated contours to

references using different metrics.

Results. Results showed that the segmentation procedure is fast, accurate, in-
dependent on the operator as well as on the specific geometrical characteristics
of the prosthetic component, and able to compensate for amount of blurring
and illumination gradient. Importantly, the method allows a strong reduction
of required user interaction time when compared to traditional segmentation

techniques.

Conclusions. Its effectiveness and robustness in different image conditions,
together with simplicity and fast implementation, make this prosthetic com-
ponent segmentation procedure promising and suitable for multiple clinical
applications including assessment of in wvivo joint kinematics in a variety of

cases.
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12.1 Introduction

3D video-fluoroscopy (3DF) was proven to be a reliable and accurate method
to study n vivo joint kinematics [I04][105][I06][107]. This technique is aimed
at reconstructing the 3D pose of objects of known 3D geometry from one or
more 2D fluoroscopic projections. Different algorithms have been proposed for
this estimation [104][I08|[109], but the appropriate segmentation of the target
object in the 2D image is always a critical step [II0][I1I]. The identification of
the external contours of the object in the 2D projection drives the 3D alignment;
additional internal and/or spurious contours can affect the final estimation of
the 3D pose (e.g. introducing local minima, altering the sensitivity of the
alignment algorithm).

For the segmentation of the 2D contour to be exploited for 3DF alignment,
simple thresholding [I04][I12] or Canny edge detector [I13] are typically ap-
plied to the whole image or to a smaller region of interest [104][114][IT15]. These
methods rely on threshold values and the obtained results are usually not opti-
mal. Consequently, a time consuming manual procedure is needed to delete the
undesired contours belonging to other anatomical structures. This makes the
segmentation procedure cumbersome and strongly operator dependent, thus
hindering the application of 3DF for routine clinical functional assessment of
human joints. Accordingly, an automated and reliable method for 2D fluoro-
scopic images segmentation could significantly improve the robustness of 3DF
procedure and its applicability in the clinical practice.

The design of an automated segmentation technique has been hampered by
several disturbing phenomena affecting fluoroscopic images: 1) quantum noise
[116], 2) illumination gradient or vignetting, 3) presence of dark cemented re-
gions close to prosthesis border, 4) cluttering of other prosthetic components or
of the contralateral limb, and 5) image blurring, mainly affecting the contours
orthogonal to the direction of motion of the acquired anatomical structure. Dif-
ferent segmentation methods are reported in literature. Domokos et al. [117]
proposed a template matching method for radiographic hip prosthesis segmen-
tation. However, the performance of the method was affected by the presence
of illumination gradient. Varshney et al. [I18] proposed a method based on a
level-set implementation for multi-view segmentation to recover the 3D shape of
bones and prostheses in postoperative joints. The performance of the method
was promising, but strongly dependent on the number of input projections.
Moreover, a good estimate of the general shape was obtained, but large errors
could still occur locally, especially at sharp edges. Accordingly, the design of
an automatic segmentation procedure should overcome the limitations of these
methods, allowing the accurate extraction of prostheses boundaries.

In addition, albeit translational motion blur is a very common type of im-

age distortion in 3DF and can negatively affect the segmentation result [119],
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its detection and compensation to improve prostheses segmentation has not
been deeply analyzed so far in this context. Therefore, a robust segmentation
technique should also address this issue.

Traditional semi-automatic methods such as active contours [120], level-set
[57] or region growing [I21], when used alone, are unable to generate optimal
results. On the other hand, a hybrid approach, combining the strong points
of these methods without exploiting any a-priori knowledge of the analyzed
geometry, can be used to develop a robust segmentation procedure to be applied
in 3DF dynamic conditions, reducing user interaction.

The aim of the present work is to present a hybrid approach for the segmen-
tation of fluoroscopic images of prosthetic components and to test its perfor-
mance on both in silico and in vivo images. The proposed method is meant to
make the segmentation procedure fast, robust (limiting operator dependency)
and accurate (addressing the different sources of error), being independent on
the specific geometrical characteristics of the prosthetic component and com-

pensating for translational blurring.

12.2 Methods

Segmentation Method

The design criteria of the proposed hybrid approach were the following ones:
velocity (reduced user interaction time), specificity (efficient discrimination be-
tween prosthesis edge and cemented parts or high density bony tissue), robust-
ness (ability to deal with blurred images, low contrast and illumination gra-
dient, independently from the operator), flexibility (applicability to different
prosthetic models), accuracy (ability to detect contour points which are less
likely to be part of the prosthesis boundary). The proposed technique consists
of the following steps:

A. Seeding: a manual seeding is performed, choosing an internal point ap-
proximately at the center of the prosthesis component (see Fig. Panel
a). The image is then automatically cropped to a square, the side of which
is a power of 2 pixels wide (S¢rop). This was necessary for the following

region growing operation;

B. Diffusion filtering: to reduce the effect of Poisson quantum noise [116]
and illumination gradient typical of fluoroscopic images, an edge preserving

anisotropic diffusion filter was designed and applied to the image [120] (see
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Fig. Panel b):
I, = gk|VI|+ Vg - VI, in  x (0, 00)

oI .
e 0, in 99 x (0, 00) (12.1)
1(0) = I, in 0

where [ is the image, € is the image domain, x is the Euclidean curvature,
g is the well-known edge indicator introduced by Perona and Malik [61].
The diffusion is weighted by the edge indicator ¢: it is fast in the low
gradient areas, and it slows down and stops in correspondence of the edges.
Equation was approximated applying a finite-difference scheme and
solved iteratively for at least a minimum number of steps (Ny;;). The exit
condition is reached when the relative variation of the mean of the difference

between images during the filtering iterations is less than T'r;;

Figure 12.1: Segmentation technique (steps A to E). a) Initial image with seed
points (stars) manually positioned; b) Image after cropping and anisotropic
filtering; c¢) Image’s edge indicator after thresholding; d) Contour obtained by
region growing followed by Malladi-Sethian level-set algorithm.

C. Binary masking: a binary mask (gmask) is computed thresholding the
edge indicator g applied to the filtered image. This operation is carried out

in order to obtain a uniform and closed white region inside the prosthesis

area:
0, ¢gi;<T-
grmesk = Jid Jmaz Gith T € {0,1) (12.2)
1, 9i.j 2 T'gmaz
Gmaz = MAX gj ; with 4,7 € (12.3)
i,

with 7' = 0.9. To refine the spurious contours inside the prosthesis area a
fill-holes procedure is finally applied to gmask- The result of this step is a
binary image, white in the uniform gray level area, and black in proximity
of the edges (see Fig. Panel c);

D. Region growing: the resulting image is elaborated with a region growing

algorithm [I2I]. In the present implementation, the process starts from
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the seed point specified at step A. To prevent eventual overflow outside
the prosthesis region, an 8-connected neighborhood criteria was used for
the classification. The result is a binary image, white inside the seeded
prosthesis, and black outside. The contour is extrapolated as an iso-curve
between black and white pixels. This contour is usually a closed and shrunk
version of the actual prosthesis contour. In case that the final contour is

not closed, the user can easily repeat step C and D manually modifying the
threshold T

E. Contour refining: a refining operation is carried out with a Malladi-
Sethian level-set algorithm [57], based on equation in which the im-
plicit surface to be evolved is a distance function of the contour points (see
Fig. Panel d). The metric of the evolution is weighted by the edge
indicator g applied to the original image I. The procedure is iterated, and
automatically stopped when the area inside the contour does not change
of more than a fixed number of pixels (N,,.), experimentally determined,
between two following iterations.

In case of image blurring, the computed contour (MS-C) is more likely to

underestimate the real one, remaining in the inside of the prosthesis;

F. Blur detection & compensation: the level-set contour obtained in the

previous step undergoes an advection motion driven by a synthetic field
M = (M., M,) defined as follows:

M, = scosf
(12.4)
M, = ssinf
5 = sign[(G cos ) + (Gysin0)] (12.5)

where G, and G, are the components of the gradient of the level-set func-
tion, and @ is an angle varying with a defined step in the range 0°-160°.
For each value of 6, the advection motion performs a directional stretch-
ing of the previously computed contour (see Fig. Panel a), leaving
undeformed the portions orthogonal to the field and preserving the over-
all shape details (see Fig. [12.2] Panel b). This motion is carried on for
a limited amount of iterations, in order to achieve a deformation roughly
2-pixel-wide per side, which is enough to detect even a very small blurring.
The variance of pixel intensity gives a simple estimate of the presence of
blur [122]. Accordingly, for each deformation direction, the variance of pixel
intensity between the original contour and the deformed one is calculated.
The deformation direction with the minimal variance is the one in which

blurring is more likely to have occurred; the corresponding angle is labeled
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0. For blur compensation, the contour computed at step E undergoes an
advection motion in the direction defined by 6. At each deformation step
of two-pixel-width, the surface between the present contour and the one at
the previous step is defined as 3. The mean pixel intensity of the portion
of g included in ¥ is calculated at each step: the exit condition is reached

when the mean pixel intensity at a certain step exceeds the one at the previ-

ous step by at least 10%. This is assumed as the outer blur contour (OB-C)
(see Fig. Panel c¢). The final contour of the prosthesis is defined as
the curve equidistant from OB-C and MS-C (see Fig. |12.2] Panel d). In
absence of blur, the exit condition is reached at the first deformation step,
thus the final contour coincides with MS-C,

Figure 12.2: Blur detection and compensation (step F'). a) Contour as obtained
at step E; b) Blur direction extraction obtained deforming iteratively the initial
contour (red) in different directions (white); ¢) Image’s edge indicator used for
the estimate of blurred area size (blue contour) performed deforming the initial
contour (red) in the previously extracted direction; d) Prosthesis final contour
(yellow) obtained as central line between the blue and red contours.

G. Unreliable contour point suppression: since the final usefulness of
prosthesis segmentation is towards 3D alignment, and given the robustness
of 3D /2D registration algorithms, few reliable contour points are preferred
to many less reliable ones. Therefore, contour point suppression was imple-
mented to improve contour accuracy. To this end, the gradient (grad(I)) of
the image is computed and convolved with a smoothing Gaussian function,
obtaining grad® (I). 5% of the points of the contour is suppressed, choosing
those with the lowest value of the corresponding pixel in grad®(I). Then,
any additional point of the contour is suppressed if the value of the corre-

sponding pixel in grad®(I) is lower than a certain threshold (7).

Of note, the segmentation up to step F always generates closed contours, while
step G always generates open contours.

The operator intervention is required at step A, in the seeding of a point
internal to the prosthesis component, and potentially at step C, to modify the
threshold T
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Synthetic Image Dataset

The dataset was composed of 1024x1024 images coded with 4096 gray levels
in the range [0-1], corresponding to standard fluoroscopic images.

Projections of CAD models of knee (femoral and tibial components) and
hip prosthesis femoral components (data from Simtk Grand challenge compe-
tition [123]) were generated, virtually aligning the geometric models over real
fluoroscopic images of intact joints.

Based on Lambert-Beer law, DRRs [124] were generated and fused with the
real images simulating different conditions of blurring and illumination gradi-
ent. The fusion was carried out using the following procedure: 1) the model
was positioned in 10 physiological poses aligned to the underlying image; 2) flat
shaded binary projections were generated. The iso-lines at the edge between
black and white pixels were extracted and used as reference contours; 3) binary
images were then blurred in a random direction, with blur amplitude of 0, 5
and 10 pixels; 4) Poisson quantum noise was added to the image according to
Chan et al. [116]; 5) a radial illumination gradient was added to the image
simulating the vignetting effect; the intensity of the gradient was varied con-
sidering three levels corresponding to 0, 5 and 10% of the real image gray level
range; 6) the resulting image was finally merged to the real fluoroscopic image
to simulate the texture caused by soft tissues. The resulting dataset included

270 perturbed images.

Performance Evaluation

The proposed hybrid segmentation procedure was applied to the synthetic im-
age dataset. The influence of illumination gradient, blur correction and pros-
thesis component geometry on the final segmentation was analyzed.

All segmentations were performed setting the following values:

Step A) Serop = 512 px; Step B) Nyyy = 50, Triue = 1%; Step E) Npp = 4;
Step F) 6 in [0° - 160°] with step 20°; Step G) Ty = 0.002.

In order to evaluate the robustness of the procedure, one experienced and
three un-experienced operators performed the segmentation, and one of the
un-experienced operators repeated the segmentation procedure 3 times.

The performance of the segmentation procedure up to step F (closed con-

tours) was evaluated computing the following parameters:

I. the Area Ratio coefficient A,

r
A (R E)= =2 (12.6)
I'r
where I'p and I'g are the areas inside the reference contour R and esti-
mated contour F, respectively. This parameter allows to quantify whether

the area in F is smaller or larger than the area in R;
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II. the Mean Absolute Deviation (MAD) [69]

MAD(R,E) Z d(r,E) + — Z d(e, R) (12.7)

" rer ¢ ecE
where N, and N, are the number of points of the contours R and F
respectively, and d is the Euclidean distance. This parameter allows to

quantify the average error between contours;

ITI. the Hausdorff distance (H) [125]
H(R,E) = max{H., He} (12.8)

where H,. and H,, are the maximum of the minimum Euclidean distance
between the single point » € R or e € E and the set of points of F or R,
respectively (see Fig. left). This parameter is a linear measurement
of the maximum discrepancy among the contours and constitutes the error

upper limit.

The performance of the segmentation procedure after step G (open contours)
was evaluated computing the following parameters which take into account

only the distances between the single point e € F and the set of points of R:
I. the Open Hausdorff distance (see Fig. right)

H(R,E) = H,, (12.9)
II. the Open Mean Absolute Deviation (oMAD)

oM AD(R,E) Zd (e, R) (12.10)
e eckE

The Kolmogorov-Smirnov test was used to investigate whether the param-
eter distributions were normal.

Kruskal-Wallis tests were performed (o = 0.05) to evaluate the influence
on the estimated parameters of illumination gradient, blur amplitude, pros-
thesis model, as well as inter- and intra-operator intervention. Then, Mann-
Whitney U test with Bonferroni correction was performed to ascertain possible
between-group significant differences among the groups themselves. Finally,
the Mann-Whitney U test (o« = 0.05) was performed to estimate the effect of
blur compensation (step F) and unreliable contour point suppression (step G).
All statistical analyses were performed with NCSS®)(NCSS, Kaysville, Utah,
Us).

In order to verify the feasibility of applying the segmentation procedure

(comprised of the blur compensation algorithm) to in wvivo 3DF prosthesis
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Figure 12.3: Outline of the Hausdorft distance for closed (left) and open (right)
curves. H,. is not a suitable measure of the distance between open curves
because it overestimates the actual distance.

datasets, images of a prosthetic knee of one subject performing a step up/down
(30) task were analyzed using the same internal parameters of the in silico eval-
uations. Segmentation results and analysis time were qualitatively compared to
the ones obtained using the standard approach based on Canny edge detector
followed by manual contour suppression, which is needed to exclude detected

spurious contours not belonging to the prosthesis.

12.3 Results

Custom software for segmentation was implemented in MATLAB®)(MathWorks,
Natick, Massachussetts, US).

The computational time was ~25 s per image (Intel Core i7-2720QM 2.20
GHz, RAM 8.00 GB), of which ~10 s for seeding (step A) and thresholding
(step C-D), ~10 s for diffusion filtering (step B), ~2-3 s for contour refining
(step E) and ~1-2 s for blur detection and compensation (step F). Code par-
allelization was implemented and tested on 4 cores, allowing a reduction of the
computational time for steps B, E, F, which required 4 s overall. The proposed
method could efficiently segment prosthesis components, preserving sharp and
round edges, and compensate for image blur. Some examples are shown in Fig.
2.4

The Kolmogorov-Smirnov test showed that the parameters were not nor-
mally distributed (p > 0.1).

The illumination gradient did not result in any significant difference in
values of parameters A,, M AD and H. Thus, the performance of the segmen-

tation method was independent from the illumination gradient.
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Figure 12.4: Examples showing the reference contour (white) and the automat-
ically computed one (yellow). a) Femoral component without blur; b) Femoral
component with blur = 10 px; ¢) Tibial component without blur; d) Tibial
component with blur = 10 px. In all images the illumination gradient was
10%.

Before blur detection and compensation (steps A-E), the amplitude of blur
superimposed to the image was inversely proportional to A, and directly pro-
portional to MAD and H. Blur correction (step F) always significantly im-
proved A,., MAD and H. In particular, it halved the value of M AD for any
blur amplitude, and drove the value of A, closer to 1. These trends were
consistent for different prosthesis components. Quantitative representation of
the statistical relationships among parameters, blur, blur compensation, and
prosthesis component is reported in Fig.

The Kruskal-Wallis test highlighted no significant difference among inter-
and intra-operator intervention, supporting the robustness of the procedure.

The unreliable contour point suppression (step G) produced a systematic
and significant (max p < 0.001) reduction of oM AD and oH in any operative
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Figure 12.5: Box and whisker plot of the Area Ratio (A4,), Mean Absolute
Deviation (M AD), and Hausdorff distance (H) without (step E) and with
(step F) blur detection and compensation with respect to different levels of
blur and different prosthesis models obtained by one un-experienced operator.
The Kolmogorov-Smirnov test highlighted that blur decreased the accuracy of
the segmentation (increasing H and M AD) with a smaller area with respect to
the reference contour (A, < 1). Blur correction and compensation significantly
reduced this effect (* Mann-Whitney U-test, p < 0.01).
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condition, according to Mann-Whitney U test.

Preliminary results on the in vivo dataset demonstrated that, even without
tweaking the internal parameters, the proposed segmentation algorithm man-
aged to analyze real fluoroscopic images. Both our method and the Canny edge
detector showed a good sensitivity to the prostheses contour also with blurred
images, although better results were obtained with the automated method es-
pecially in cemented parts. In terms of specificity, the proposed technique
outclassed the Canny edge detector, always managing to avoid the detection of
bony and soft tissues’ boundaries. The analysis time for our method was ~25
s per image as for in silico analysis, while for the Canny edge detector a trial
and error approach was necessary to tune the needed parameters balancing
sensitivity and specificity, and a long manual selection procedure was needed
to exclude the remaining wrong contours, resulting in ~1-2 min of user inter-
action per image. As an example, Fig. [12.6] shows the segmentation results
of both our segmentation algorithm and the Canny edge detector before and

after the wrong contours suppression.

12.4 Discussion

The appropriate segmentation of prosthetic components in the 2D fluoroscopic
images is a critical step [110] in the implementation of 3DF for the accurate
3D kinematics of human joints. Mahfouz et al. [126] proposed a contour
matching method not requiring manual contour suppression; however, infor-
mation related to spurious contours interferes with a proper alignment. There-
fore, other contour based approaches [104][114] imply a time-consuming and
operator-dependent segmentation procedure, hindering the application of 3DF
for routine clinical functional assessment of human joints.

In order to overcome this limitation, and to improve the robustness of 3DF
procedure and its applicability in the clinical practice, a promising method for
automatic prosthesis segmentation from 3DF data was designed and imple-
mented.

In a work by Oprea et al. [127], the prosthesis segmentation performance
of classical adaptive region segmentation approaches (Fuzzy C-means) resulted
in 2-11% classification errors, unfitted to the 3DF context. On the other side,
the level-set approach proposed by Varshney et al. [II8] was proven to be
efficient for 3D prostheses segmentation. However, this approach, purely based
on level-set, might fail in accurately detecting the prostheses’ sharp edges which
are fundamental for a proper 3DF pose estimation.

To fully exploit the level-set potentialities and to provide a blur compen-
sation method, in the present work the level-set approach was combined to

anisotropic diffusion filtering and region growing. The diffusion filtering step
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Figure 12.6: in vivo examples showing the application of both the proposed
technique and Canny edge-detector presented both in the full frame (a and b)
and cropped (c and d, respectively). The yellow contour represents the result
of the automated technique, while the green and red ones show the results
of the Canny filter before and after manual contour suppression, respectively.
The red arrows point at cemented and blurred areas, in which the proposed

technique outperforms the Canny edge-detector.
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produces a homogenization of the gray levels of the image without altering the
edges (which are therefore reinforced). This allows an initial compensation for
illumination gradient and noise. To achieve a fast and conservative initial seg-
mentation of the prosthesis, thresholding and region growing steps have been
implemented. Then, a Malladi-Sethian level-set refinement step allows local
expansion of the computed boundary so to compensate for remaining noise
and artifacts. The reason to use a region growing step coupled with a level-set
approach (rather than the latter alone) is twofold: firstly, due to the big size
of typical fluoroscopic images, the level-set approach alone would require too
much time to find the desired contour; secondly, since it is starting its evolution
close to the final boundary, the Malladi-Sethian model can be tuned to force
mild motion, which allows to detect edges even in case of low image contrast.
The following fast and fully automated step regarding blur detection succeeds
in compensating for motion blur when it is present, preserving the computed
contour otherwise.

Blur has been deeply studied in image processing, and many different ap-
proaches have been previously proposed to measure the amount of blurring of
an image [128][129][130]. However, to the best of our knowledge, none of these
methods has ever been explicitly applied to prosthetic component segmenta-
tion. Among them, the method based on the variance of gray levels of the
image has been reported to be a fast, simple yet accurate and robust indicator
of presence and entity of blur [I22]. Differently from the typical approaches
for blur detection, which process the whole image, our technique has the ad-
vantage of having a rough a-priori knowledge of the position of the prosthetic
component boundary. Thus we limited the variance measurement only in a
narrow band area around the computed contour MS-C. As for the detection
of the outer boundary OB-C, the deformation force field applied to the initial
contour MS-C has been designed to preserve the shape details, especially sharp
edges, obtained with the previous steps of the technique.

Unreliable contour point suppression is included as a final step of the pro-
posed method considering the forthcoming 3D alignment procedure. Previous
studies [T104][112] on implant models detection from X-ray images showed that
errors in segmentation lead to important errors in 3D/2D registration algo-
rithms. Therefore, the possibility to automatically delete unreliable contour
points could optimize pose estimation.

Our approach addresses typical issues limiting segmentation techniques in
3DF. Mahfouz et al. [I1I] used semi-automated segmentation methods based
on snakes and on Canny edge detector. However the initial contour for the
snake evolution had to be specified manually, and it was shown that the re-
sulting contours vary significantly when noise was added. The segmentation

method proposed by Domokos et al. [I17] was affected by illumination varia-
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tions typical of fluoroscopic images. Differently, our method was proven to be
robust to noise and illumination gradients.

Our technique was applied to many implanted joints, including, but not lim-
ited to, hips and knee joints, since it does not require any a-priori information
on model shapes and it could be of great interest for many clinical applications
[I31]. While the typical approach of manually selecting the prosthesis contours
after applying edge detectors to the image (Canny filter) requires ~1-2 min
completely born by the user, the computational time of the new method is
~25 s (of which only ~10 s of user interaction) and it can be easily and greatly
improved with code parallelization.

The limitations of the technique obviously include manual interaction. The
seed point is used for image cropping and as starting point for the region
growing algorithm. However, its position does not affect the outcome of the
segmentation technique as shown by the results of the repeated analyses per-
formed by different operators. As for the choice of the threshold in step C, the
default value was found to be good enough in most cases. In addition, also
un-experienced operators were able to easily set a threshold value leading to
a good final segmentation in the remaining cases. An additional limitation is
that this method is designed to compensate only for translational motion blur
and not for other types of blur (such as out of focus blur and rotational motion
blur). However, linear motion is the most common source of blur in 3DF; low
entity focus or rotational blur can be roughly approximated to translational
motion blur, and thus be still detected by our algorithm. Moreover, different
deformation fields might be investigated in order to simulate other kinds of
blurring.

This method was also applied to in vivo 3DF images. The preliminary
tests, obtained using the same internal algorithm parameters specified for the
in silico evaluations, were satisfactory and promising also on cemented parts. In
addition, in the perspective of the analysis of an image sequence acquired during
the execution of a specific exercise, given the very high temporal resolution
achievable in 3DF, it could be feasible to reduce the manual interaction only
to the first frame. This would allow an analysis of a whole 3DF sequence in
few seconds. Moreover, the automation of the segmentation procedure would
allow to better exploit high frequency fluoroscopic acquisition in favor of the
2D /3D alignment procedure.

In conclusion, a hybrid segmentation approach for 3D fluoroscopy has been
presented and tested on both synthetic and real images. The obtained results
show that the proposed technique succeeds in compensating for blurring and
illumination gradient, in reducing user interaction and elaboration time, and in

providing reliable prostheses contours, as required in the clinical environment.



Conclusion

His dissertation described the principal research projects pursued during

my Ph.D. course in Bioengineering at the University of Bologna. Notably,

the research activity has been performed at the Department of Electronics,
Computer Sciences and Systems of the University of Bologna and, for a period

of four months, at the Cardiac Imaging Research of the University of Chicago.

In Part [[] it has been reported the main research project, consisting in the the
design, the implementation and the validation of an automated technique for
myocardial identification as a basis for perfusion quantification in magnetic
resonance images. Statistical level-set methods, known to be effective on other
types of images, have been successfully implemented for myocardial segmen-
tation in contrast-enhanced magnetic resonance images. Non-rigid inter-frame
registration has been achieved by means of an innovative extension of the nor-
malized cross-correlation algorithm in combination with level-set methods. The
automated technique has been extensively tested on synthetic and real datasets.
The wide range of comparisons between automated analysis and conventional
manual tracing, which were performed also using quantitative coronary angiog-
raphy and qualitative image interpretation as references, has demonstrated the
robustness and reliability of the developed technique. As a consequence, this
technique might substitute time-consuming manual tracing procedures, and
thus address the strong clinical need for quantitative evaluation of myocardial
perfusion. Of note, at the present time the proposed technique is being suc-
cessfully used at the Cardiac Imaging Research of the University of Chicago for
research purposes. Given the promising results, the developed methods could
be applied to other segmentation/tracking problems in the field of biomedical

image processing.

In Part [[T] two side projects have been presented, relative to myocardial mod-
elling using cine cardiac magnetic resonance images and necrotic scars detection
using late Gadolinium enhancement images. In both cases, the segmentation
methods implemented in the main project have been capable of providing a fast

and reliable myocardial identification despite the different imaging protocol.
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In Part [[T]] an unrelated research project has been described, consisting in
the development and testing of a hybrid segmentation approach for prosthetic
components in fluoroscopy. The proposed approach comprises different image
processing methods such as anisotropic diffusion filtering, region growing and
level-set techniques, and features a blur compensation mechanism. This ap-
proach has been tested on synthetic and real images, and the achieved results
show that it might be adopted as a viable alternative to conventional Canny
filtering and manual contour suppression procedures. Future work includes a
larger validation scheme, in order to further assess the robustness and accuracy
of the developed approach.
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