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Abstract

Geometric nonlinearities of flexure hinges introduced by large deflections often com-

plicate the analysis of compliant mechanisms containing such members, and there-

fore, Pseudo-Rigid-Body Models (PRBMs) have been well proposed and developed

by Howell [29] to analyze the characteristics of slender beams under large deflection.

These models, however, fail to approximate the characteristics for the deep beams

(short beams) or the other flexure hinges. Lobontiu’s work [46] contributed to the

diverse flexure hinge analysis building on the assumptions of small deflection, which

also limits the application range of these flexure hinges and cannot analyze the stiff-

ness and stress characteristics of these flexure hinges for large deflection.

Therefore, the objective of this thesis is to analyze flexure hinges considering both

the effects of large-deflection and shear force, which guides the design of flexure-

based compliant mechanisms. The main work conducted in the thesis is outlined as

follows.

• Three popular types of flexure hinges : (circular flexure hinges, elliptical flexure

hinges and corner-filleted flexure hinges) are chosen for analysis at first.

• Commercial software (Comsol) based Finite Element Analysis (FEA) method is

then used for correcting the errors produced by the equations proposed by Lobon-

tiu when the chosen flexure hinges suffer from large deformation.

• Three sets of generic design equations for the three types of flexure hinges are

further proposed on the basis of stiffness and stress characteristics from the FEA

results.

• A flexure-based four-bar compliant mechanism is finally studied and modeled

using the proposed generic design equations. The load-displacement relationships

are verified by a numerical example. The results show that a maximum error about

the relationship between moment and rotation deformation is less than 3.4% for

a flexure hinge, and it is lower than 5% for the four-bar compliant mechanism

compared with the FEA results.
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Chapter 1

Introduction

T his chapter simply introduces the concept of flexure-based compliant

mechanisms(FCMs), the advantages of FCMs and their applications

in various fields. Then, the motivation for studying FCMs based on

stiffness and stress characteristics is emphasized. The main contribution

of the thesis is finally exposed together with the outline.

1.1 The Role of Flexure-Based Compliant Mech-

anisms(FCMs)

A traditional rigid mechanism consists of rigid links and joints that are utilized

to connect rigid links and make the mechanism movable. For example, a Vise

Grip pliers is shown in Figure 1.1(a). This mechanism implements a output force

that is larger than the input force since energy is conserved between the input and

output. Recent research efforts have been directed towards mechanical design of

macro, micro and nano manipulation mechanisms and systems. Such traditional

rigid mechanisms, however, exhibit problems such as assembling problem, friction

and lubrication. Among the approaches of solving these problems, the study of us-

ing flexure-based compliant mechanism (FCM), where conventional kinematic pairs

are replaced by flexure hinges [84], instead of traditional rigid mechanism became

popular increasingly in mechanical design of macro, micro and nano manipulation
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(a) Vise Grip Pliers (Rigid body mechanism)

(b) Crimping mechanism (Compliant mecha-

nism)

Figure 1.1: Rigid-body mechanism(a) and Flexure-based compliant mechanism (b)

mechanisms and systems. Such a compliant mechanism that uses flexure hinges as

link joints to implement mechanical functions is called a FCM [9, 34, 72]. Most of

existing designs belong to FCMs. When a FCM is loaded, the major part of the

compliant mechanism undergoes rigid-body movement, with energy and force trans-

mitted through the bending of the hinges [57]. As an example, a counterpart of a

FCM crimping mechanism is shown in Figure 1.1(b). Unlike rigid mechanisms, how-

ever, compliant mechanisms are monolithic and gain at least some of their mobility

from the deflection of flexible members rather than from movable joints only [24].

Such compliant mechanisms promote the performances of mechanisms and extend

their application range.

FCMs have many potential advantages compared to traditional rigid mecha-

nisms [65,87]. These advantages can fall into two categories [10]: Cost reduction and

increased performance. In terms of cost reduction, the advantages are part-count

reduction, reduced assembly time, simplified manufacturing processes. On the other

hand, the superiorities on increased precision, increased reliability, reduced wear, re-



1.2 Motivation 19

duced weight and reduced maintenance also raise the performance of machines.

Due to these advantages, FCMs are currently employed in a wide range of in-

dustrial applications at macroscale systems, microscale systems and nanotechnol-

ogy where precision of motion, reliability, ease of fabrication, compactness [43, 44,

85] are required. In macroscale systems, for instance, displacement/force ampli-

fiers/deamplifiers, positioning devices, and manipulators use such mechanisms to

implement their target functions [19,22,43,52,57]. FCMs, especially, are applied in

microscale systems. For example, FCMs are used to increase the sensitivity of reso-

nant accelerometers [5,20] among the sensor applications. On the other hand, most

of the microsystems have been focusing on three critical assembly components that

determine the accomplishment of microassembly procedure namely the development

of high precision positioning devices [11, 13, 25, 32, 36, 38–41, 58, 61, 71, 81]. In addi-

tion, there are other applications such as compact XY flexure stages [27, 28, 53, 81]

that provide large range of motion, microactuators that form drive systems for

microelectromechanical systems(MEMS), microleverage mechanisms attract the at-

tention of a number of researchers to achieve mechanical or geometric advantages

[3,6,26,33,37,78]. In terms of nanotechnology applications, a typical example is the

ultra-precision manipulation, which consists of sliding/rolling guides and servomo-

tors [85]. Examples of implementation of these mechanisms are numerous and they

can be found in the field of precision engineering, metrology, automotive, aerospace,

bio-medicine, telecommunications, medical, optics and computer industries micro-

manufacturing, X-ray lithography, micro/nano surgery, nano-metrologyas, scanning

tunnel microscopy, atom force microscopy, nanoimprint lithography, and micro/nano

surface metrology and characterization, etc. [14, 46, 55, 60, 63, 64, 82, 84, 86]. Some

typical examples mentioned above are shown in Figure 1.2.

1.2 Motivation

Despite FCMs have been used in the field of robotics and mechatronics for a long

time, the problem of designing a compliant mechanism accurately and conveniently

remains crucial. The key to design a FCM is the design of flexure hinges. It is well-

known that deflection curves for flexible beams can be obtained by solving the exact

form of the Euler-Bernoulli beam equation [2,24], which states that the bending mo-

ment at any point on the beam is proportional to its curvature and can be written as:
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ME = EI
dθ

ds
= EI

d2y

dx2

(1 + (
dy

dx
)2)3/2

(1.1)

where M is the moment, dθ/ds is the rate of change of angular deflection(slope)

along the beam length, y is the transverse deflection, x is the coordinate along the

undeflected axis, E is the Young’s modulus of material and EI is the flexural rigidity

of the beam.

The (dy/dx)2 can be neglected when the beam deflection is very small. In other

words, the nonlinearities introduced due to large deflections are not taken into ac-

count. Certainly, numerous techniques are available considering the nonlinearities

introduced in the beam equation. A classical solution involves the solution of a sec-

ond order nonlinear differential equation using elliptic integrals of the first and the

second class. Though the technique yields a closed form solution which is exact, the

involved derivations are cumbersome and time consuming. Therefore, Howell et al.

proposed a pseudo rigid body model (PRBM) to solve this problem. Large displace-

ment [8,70,74] analysis of flexible beams is performed with the assumptions that the

beam is rigid in shear and uniform in cross section. Based on Howell’s work, many

researchers studied FCMs based upon the PRBM method [2, 24,30,31,65]. Despite

their works, the influence of shear force produced due to the beam geometry is not

taken into account due to the assumptions. Therefore, the PRBM method is limited

to relatively simple geometries, namely slender beams. From what reported above,

there is not a method to design the flexure hinge without any restrictive assumptions

in general. Currently, researchers still ignore the nonlinear influence of changing the

geometry shape of flexure hinges or limiting the deformation range of flexure hinges.

Nevertheless, the geometry dimensions of a flexure hinge maybe influence the entire

design of a FCM, especially in the application of micro and nano-systems. Therefore,

some basic problems are improvable such the following ones:

• The need to simplify the process of design a FCM. Most compliant mecha-

nisms are still composed of flexible of designing a flexure hinge. The definition

about shape and geometry of a flexure hinge is the key to design a perfect .

• The need to extend the application range of FCMs. The influence of shear

force produced during the flexure hinge deformation should be taken into ac-

count. In fact, designers prefer to use linear design equations rather than use
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nonlinear design equations; because the nonlinear equations are too compli-

cated to be used in practice even though the results are more accurate than

those simple ones. Therefore, the application range of FCMs are limited due

to the design assumptions.

In addition, it is noted that the FCMs demonstrate a number of different character-

istics compared with conventional kinematic mechanisms. The established design

criteria for conventional kinematic mechanisms will suffer from shortcomings such

as rotational stiffness of flexure hinges and the maximum stress level (or the yield

strength) of flexure hinges. Stiffness of flexure hinges determines how much flexure

deflection will occur under a given load. Such a system will demonstrate the unique

characteristics in the working range. Further more, studies on strength (or stress) of

flexure hinges are another important issue, strength of flexure hinge that determines

how much stress can occur before the failure. The yield strength (SY ) of a material

is defined in engineering and materials science as the maximum stress (σmax) of ma-

terial can support. The materials with the yield strength (SY )-to-Young’s Modulus(

E ) rate (SY
E ) will allow a larger deflection before material failure. This rate (SY

E )

is one of the most important parameter available when selecting materials for com-

pliant mechanism applications. This thesis studies the FCMs based on both these

characteristics.

1.3 Contribution of the Thesis

At first in this work, three popular types of flexure hinges (circular flexure hinges,

elliptical flexure hinges and corner-filleted flexure hinges) are analyzed based on

the Finite Element Analysis (FEA) method. The analyzed results are then used

for correcting the errors produced by the small deformation design equations when

the chosen flexure hinges suffer from large deformation. Consequently, three sets

of generic design equations for the three types of flexure hinges are proposed on

the basis of stiffness and stress characteristics from the FEA results. Finally, a

flexure-based four-bar compliant mechanism(FFCM) is studied and modeled using

the proposed generic design equations. The load-displacement relationships are ver-

ified by a numerical example.

The benefits of these generic design equations include: (a) high accuracy for large
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deflection flexure hinges, (b) adaptability to the cross-section shape of flexure hinges,

(c) extended application range for the FCMs.

1.4 Thesis Outline

• Chapter 1 simply introduces the concept of FCM, the advantages of FCMs

and their applications in various fields. Then, the motivation for studying

FCMs based on stiffness and stress characteristics is emphasized. The main

contribution of the thesis is finally exposed together with the outline.

• Chapter 2 carries out a literature review concerning flexure hinges. Three

common flexure hinges are chosen as the objects of study for this work. Two

main beam theories, Euler-Bernoulli beam theory and Timoshenko beam the-

ory, are briefly recalled in the part of work. Finally, a useful method, PRBM,

is also stated in the chapter.

• Chapter 3 is dedicated to defining a range of flexure hinge configurations

based on their stiffness characteristics (or, conversely, compliant character-

istics). Three common flexure geometries are introduced here and are charac-

terized by closed-form stiffness equations that are obtained by modifying the

Lobontiu’s [34] small deformation closed-form stiffness equations based on the

finite element analysis(FEA) results. Then the specific expressions are given

for each individual flexure hinge.

• Chapter 4 studies the maximum stress characteristic for the three common

types of flexure hinges by means of the FEA method. For each type of flexure

hinge, there are three correlated parameters, SY /E, h/l and the deflection

rotation θ. At the end, three sets of generic design equations based on stress

characteristics for each type of flexure hinge are proposed.

• Chapter 5 discusses the characteristics of these generic design equations pro-

posed in Chapter 3 and Chapter 4 and analyzes the errors produced by these

equations compared with the FEA results. Meantime, the correctness and ap-
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plicability for these equations are evaluated.

• Chapter 6 presents the design procedure for designing of a FCM. By report-

ing this procedure, this chapter introduces in detail the application method of

the generic design equations proposed in the earlier chapters by designing a

four-bar compliant mechanism. Moreover, these generic design equations are

assessed again in order to verify their applicability in FCM design. Finally,

a numerical example of designing a flexure-based four-bar compliant mecha-

nism(FFCM) is presented.

• Chapter 7 summarizes the main contributions of this thesis and reports the

methods used to achieve the presented results.
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(a) X-Y Compliant Flexure

mechanism XY (Ref. [55])

(b) Compliant Scissors for No As-

sembly (Courtesy of the Compli-

ant Mechanisms Research Group,

Brigham Young University)

(c) The micropositioner(Ref.

[58]

(d) Schematic of NIST 1-D

mechanism (Ref. [7])

(e) the flexure-based

ScottCRussell mechanism

(Ref. [85])

(f) Prototype XY θ

stage and capaci-

tance sensor position.

(Ref. [27])

(g) A flexure-based five-bar

mechanism (Ref. [82])

(h) 3-DOF flexure-based five-

bar mechanism (Ref. [84])

Figure 1.2: Flexure-based compliant mechanisms in a wide variety of applications



Chapter 2

Flexure Hinges and Beam Theory

T his chapter carries out a literature review on flexure hinges. Three

common types of flexure hinges are chosen as the objects of study for

this work. Two main beam theories, Euler-Bernoulli beam theory and

Timoshenko beam theory, are recalled briefly in the first part of the

chapter. Lastly, a useful method, the PRBM method, is also mentioned

in the chapter.

2.1 Flexure Hinges

Flexure hinges are the most important components in the FCMs. A flexure hinge

is a mechanical element that provides the relative rotation between adjacent rigid

members through flexing (bending) instead of a conventional rotational joint [46].

Each individual flexure hinge should be accompanied by a complete set of compli-

ances (or, conversely, stiffness) that define its mechanical response to quasi-static

loading [34].

In the last 50 years, many flexible joints have been investigated and developed.

Paro and Weisbord [34] first put forward the compliance-based approach to flexure

hinges by giving the compliance equations and the approximate engineering formulas

for symmetric circular and right circular flexure hinges in 1965. Hereafter, flexure

hinges begun to attract an attention of an incredible number of researchers. Many

new flexure configurations are presented by using the analytical approach and refer-
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ring to the results of Paros and Weisbord. For instance, the elliptical flexure hinges

are presented by Smith el al. in 1997 by means of extrapolating the results from

circular to elliptical [62]. Smith also presented the circular toroidal flexure hinges

following the procedure used in the study of the elliptical flexure hinges. Lobontiu

et al. proposed the exact compliance equations for symmetric corner-filleted flexure

hinges [45,46,49] and introduced a complete form of the compliance-based approach

to flexure hinges by quantifying and characterizing the capacity of rotation, preci-

sion of rotation, and stress levels [43]. With the development of flexure hinges, the

flexure configurations are developed from two-dimensional to three-dimensional, as

well as from simple forms to complex forms such as the cylindrical flexure hinges

and cartwheel flexure hinges. Basically, a flexure hinge can be fabricated in two

different ways [34]:

• Use an independently fabricated member(such as a strip or shim in two-

dimensional applications or a cylinder-like part in three-dimensional appli-

cations) to connect two rigid members, which are designed to undergo relative

rotation.

• Machine a blank piece of material so that a relatively thin portion is obtained,

which will be the flexure hinge. Therefore, the flexure hinge is integral (or

monolithic) with the parts which it connects together.

A variety of flexure hinges have been reported in years, a brief introduction about

the taxonomy of flexure hinges has been discussed based on their functional princi-

ples and associated geometric configurations. At a general level, the flexure hinges

can be divided into two categories: primitive flexure hinges and complex flexure

hinges [75,77], as shown in Figure 2.1.

As concerning primitive flexure hinges, the flexure hinges can be separated into

Flexure hinges

Primitive flexures Complex flexures

   One axis

(Single axis)
Two axes Multiple axes

Figure 2.1: Main classes of flexure hinge
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three categories based on their sensitive axis and geometric configurations. They are

one axis (also called single axis, generally of constant width), two axes and multiple

axes (of revolute geometry), as indicated in Figure 2.1. In general, such a single

axis flexure hinge has a rectangular cross-section with constant width and variable

height. This type of flexure hinges can be further classified based on the forms of

their cross-section. such as notch-type flexure hinges ( Figure 2.2 ) and small length

straight beams ( Figure 2.3 ). Notch-type flexure hinges have been widely utilized

in macro/micro/nano high-precision systems. This type of flexure hinges includes

circular flexure hinges [43,49,80], corner-filleted flexure hinges [45,46,49], ’V’ shape

flexure hinges [50, 83], elliptical flexure hinges [17, 69], right-circular elliptical flex-

ure hinges [17], right-circular corner-filleted flexure hinges [17,18], parabolic flexure

hinges [47, 48] and hyperbolic flexure hinges [47]. The small length straight beams

were widely studied since they own the simplest geometric configuration as well as

all of basically characters of flexure hinges [1, 22, 24, 70, 72, 79]. Flexure hinges with

two axes are sketched in Figure 2.4(a). Compared to a single axis configuration, the

two axes flexure hinges will not only preferentially bend about one axis of minimum

bending compliance, but also bend about the other axis. This second axis is also

called the sensitive axis and lies in the cross-section of minimum thickness, it is most

often perpendicular on the first sensitive axis [34]. Besides, a flexure hinge that be-

longs to the multiple axes category is sketched in Figure 2.4(b). This type of flexure

hinge can be employed in three-dimensional applications, where the direction of the

sensitive axis is not pre-specified.

As for the complex flexure hinges, they are usually the combination of two or more

primitive flexures. They are also widely used in medical instrumentation and MEMS

devices [54]. Up to now, there are several classes of complex flexure hinges, they

are cross-axis flexural pivots [4, 23], which characterized by the connection of two

rigid segments with two long flexible segments arranged in cross-shape configuration;

split-tube flexural pivots incorporated by torsion as the primary mode of deforma-

tion; leaf-type isosceles-trapezoidal flexural (LITF) pivot [75], which consists of two

leaf-type segments and two rigid segments; and cartwheel flexural hinges [56, 76]

that can be considered as the combination of two symmetrical LITF pivots, each of

which has a promising flexure since it can provide a large-deflection stroke and over-

come some shortcomings of the conventional cross-axis pivot, including unavoidable

assembly and relatively low rotational precision [76]. Figure 2.5 shows two typical

complex flexure hinges.

As mentioned earlier, the flexure hinges can be monolithic with the rest of the mech-
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(a) A circular flexure hinge (b) A corner-filleted flexure hinge

(c) An elliptical flexure hinge (d) A right-circular corner-filleted flex-

ure hinge

(e) A right-circular elliptical flexure

hinge

(f) A ’V’ shape flexure hinge

(g) A parabolic flexure hinge (h) A hyperbolic flexure hinge

Figure 2.2: Notch-type flexure hinges

anism. They can be used in a number of applications due to their advantages over

traditional rotational joints. The most notable benefits provided by flexure hinges

are no friction losses, no need for lubrication, no backlash, compactness, capacity

to be utilized in small-scale applications, ease of fabrication and virtually no main-

tenance needed [34]. Therefore, flexure hinges are increasingly popular [17, 44, 76].

The vast majority of the research reported up to now focus on applications that
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Figure 2.3: A small length straight beam

(a) Two axes flexure hinge (b) Multiple axes flexure hinge

Figure 2.4: Two axes flexure and multiple axes flexure hinges

(a) Cross axis flexure

hinge

(b) Cartwheel flexure hinge

Figure 2.5: Complex flexure hinges
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utilize circular flexure hinges and elliptical flexure hinges and corner-filleted flexure

hinges for which the analysis is performed by means of commercial finite element

software. In addition, these types of flexure hinges are the prior objects considered

by researchers since they can be analyzed and modeled more easily than the others

complex flexure hinges.

Despite all the advantages mentioned above, there are some disadvantages associ-

ated with flexure hinges. For example, it is more complicated to model and more

difficult to control the motions of flexure hinges precisely compared to conventional

joints. This could be partly attributed to shear deformations of flexure hinges. Next

section will introduce the basic theory and methods to face these problems.

2.2 Beam Theory

Several theories can be found in the literature representing the kinematic behavior

of beams. There are two main theories, i.e. Euler-Bernoulli beam bending theory

and Timoshenko beam theory, that are used in the design of flexure hinges. Since

the Timoshenko beam theory is of higher order than the Euler-Bernoulli theory, it is

known to be superior in predicting the transient response of the beam. The classical

Euler-Bernoulli beam theory, which neglects the effect of transverse shear strain is

the simplest of the both. However, the Euler-Bernoulli beam theory fails to provide

accurate results when the longitudinal-transverse ratio is relatively large. In such

cases, the superiority of the Timoshenko theory, which is a first shear deformation

theory, is more pronounced for beams with a low aspect ratio. Besides the two basic

beam theories, the refined beam theory, which can exhibit more accurate solutions,

is investigated by some of researchers in [2,21,35,42,51,59,67,73]. This chapter will

only focus on comparing the difference between two theories is presented here.

• Euler - Bernoulli beam bending theory.

In Euler-Bernoulli beam bending theory, shear deformations are neglected, and

plane sections is assumed to remain plane and normal to the longitudinal axis.

Consider a prismatic beam as shown in Figure 2.6 with length L, cross-sectional

area A, second moment of area I, Young’s modulus E, and shear modulus of rigid-

ity G under any transverse loading condition. According to the Euler-Bernoulli

beam theory, the force - displacement relations are given by:
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X

Y

L

A

a

a

a-a

M
q

b

Deformed

Figure 2.6: Euler-Bernoulli Beam

ME = −EI
d2wE

dx2
; VE = −GI

d3wE

dx3
(2.1)

where ME is the bending moment of the Euler-Bernoulli beam; VE is the trans-

verse shearing force of the Euler-Bernoulli beam; wE is the transverse deflection

of the centroid axis of the Euler-Bernoulli beam; EI is the flexural rigidity; and

x is the longitudinal coordinate measured from the left end side of the beam.

Euler-Bernoulli beam theory is a simplification of the linear theory of elasticity,

which provides a means of calculating the load-deflection characteristics of beams.

It covers the case for small deformations of a beam, which is subjected to lateral

loads only. It is thus a special case of Timoshenko beam theory.

• Timoshenko beam bending theory.

In the Timoshenko beam theory, plane sections still remain plane but are no longer

normal to the longitudinal axis [21]. Consider a model as shown in Figure 2.7.

The force-displacement relations are given by:

MT = −EI
d2Ψ

dx2
; VT = −GAKs(Ψ− dwT

dx
) (2.2)

where MT is the bending moment of the Timoshenko beam; VT is the transverse

shear force of the Timoshenko beam; Ψ is the rotation about y-axis; and wT is the

transverse deflection to the centroid axis of the Timoshenko beam. The subscript

T denotes quantities for the Timoshenko beam. The shear correction coefficient

Ks is introduced to account for the difference in the constant state of shear stress

in the Timoshenko beam theory and the parabolic variation of the actual shear
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Figure 2.7: Timoshenko Beam

stress through the beam depth.

The Timoshenko model takes into account shear deformation and rotational inertia

effects, making it suitable for describing the behavior of short beams. But unlike

ordinary beam theory, i.e. Euler-Bernoulli beam theory, there is also a second order

spatial derivative present.

2.3 PRBM

2.3.1 Brief literature review about PRBM

PRBMs have been applied in the analysis and synthesis of flexure hinges and compli-

ant mechanisms for years. Howell and Midha [29] were the first to propose a PRBM

model for solving a slender beam, which undergoes large deformations. Hereafter,

the technique of PRBM was recognized and developed rapidly. Up to now, the

PRBM is not only utilized in the analysis and synthesis of a flexible segment, but

also in the analysis and synthesis of the whole compliant mechanisms, especially for

dynamic analysis. The form of the PRB model was also extended from one revolute-

like single joint to a multiple revolute like joints.

The purpose of the PRBM is to provide a simple method of analyzing systems

undergoing large, nonlinear deflections. The PRBM concept is used to model the

flexible members using rigid-body components that have equivalent force-deflection

characteristics. Rigid-link mechanism theory may then be used to analyze compli-
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ant mechanisms. In this way, the PRBM works as a bridge connecting rigid-body

mechanism theory and compliant mechanism theory.

Parametric approximation for the beam tip deflection is critical for higher level

design especially for design synthesis. Several PRBMs have been developed to ap-

proximate tip deflection of flexible beams for various loads. Howell and Midha

proposed a PRBM 1R(revolute) model that comprised two rigid links joined at a

pin joint and a torsion spring along the beam. Here ’R’ represents a revolute or pin

joint. They have found that the position of the pin joint was determined by the

so-called characteristic radius factor ’γ’ which equals 0.85 for force applied on the

end only and 0.7346 for moment applied on the end only. However this model is

not appropriate for the applications where the load varies significantly and applica-

tion where the mechanism undergoes exceptionally large deflection [24, 30, 31]. In

order to approximate tip deflection of initially straight cantilever beams subjected

to combined end force and moment, Saxaena and Kramer [2] modified the PRBM

1R model by introducing two linear springs to restrain the change of characteristic

radius factor ’γ’ for different load modes.

Su et al. [65] proposed a new PRBM 3R model for initially straight cantilever beams

subjected to a combined force and moment by compromising the PRBM 1R model

and the FEA method. The model comprised three R joints, each one accompanied

by a torsion spring. The kinematic and the mechanical parameters are loaded inde-

pendently. Since the analytical inverse and forward kinematics are readily available

for 3R serial chains, the kinematic and mechanical equations are relatively simple.

Since PRBM is simple and accurate, a lot of researchers studied the complex flexure

hinges by using this method. Pei et al. [77] proposed two PRBMs for the anal-

ysis of the moment-angle characteristics of LITF (Leaf-type Isosceles-trapezoidal

Flexural)pivots. They also proposed a PRBM bar model for the cartwheel hinges.

Certainly, this method can also be used in studying compliant mechanisms. Sonmez

and Tutum proposed the combined use of PRBM and the elastic buckling theory to

analyze a new compliant bistable mechanism design [70]. Pendleton and Jensen [68]

represented the wireform mechanisms as rigid-body mechanisms using the PRBM

because the mechanisms are more complex than ordinary springs. Bandopadhya

and Njuguna [12] proposed newly variable parameters PRBM of IPMC actuator for

bending resistance estimation with input voltages. Beléndenz at al. studied the

deflection of a cantilever beam of linear elastic material, under the action of and

external vertical concentrated load at the free end [66]. The flexure hinges studied

by these researchers, however, are limited in a condition that their width must be
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much less than its length, i.e. slender beams.

2.3.2 Beam theory in PRBM

The work of this part will explain the basic PRBM proposed by Howell [24]. Con-

sidered a cantilever beam shown in Figure 2.8. The beam has two segments: one

is a short and flexible segment, and the other is a longer and rigid segment. If the

small segment is significantly shorter and more flexible than the large segment, that

is,

l << L (2.3)

EIl << EIL (2.4)

the small segment is called a short beam , or small-length beam.

For this small-length beam, the effect of the shear force can be ignored based on

Euler Bernoulli beam theory because of l << L. The deflection equations for the

flexible segment with a moment at the end are as follows:

θ0 =
M0l

EI
δy
l

=
1− cosθ0

θ0
δx
l

=
1− sinθ0

θ0

This system of equation can be used to define a simple pseudo-rigid-body model

for small-length flexural pivots. Since the flexible section is much shorter than the

rigid section, the motion of the system may be modeled as two rigid links joined at

a pin joint, called the characteristic pivot. The characteristic pivot is located at the

center of the flexural pivot (Figure 2.8). This is an accurate assumption because the

deflection occurs at the flexible segment and it is small compared to the length of

the rigid segment. For the same reason, nearly any point along the flexible segment

would represent an acceptable position for the characteristic pivot and the center

point is used for convenience. The angle of the PRBM is equal to the beam end angle:

Θ0 = θ0 (2.5)
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Pseudo-rigid-body 
approximation

l/2

Caculated deflection

l
(EI)l

L

Figure 2.8: Error associated with the small-length flexural pivot approximation

To sum up, PRBM is relatively accurate correctly based on the Euler-Bernoulli

beam theory. The errors of results increase with the longitudinal-transverse ratio

of height and length. The Euler-Bernoulli beam theory, however, is simpler than

Timoshenko beam theory regarding to the nonlinear analysis computing. Based

on the considerations, this study will propose a series of equations to obtain the

accurate results by comparing the FEA results and results obtained from the Euler

Bernoulli beam theory results.
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Chapter 3

Stiffness-Based Design of Flexure

Hinges

C hapter 3 is dedicated to defining a range of flexure hinge configura-

tions based on their stiffness characteristics (or, conversely, compliant

characteristics). Three common types flexure geometries are introduced

here and are characterized by closed-form stiffness equations that are

obtained by modifying the Lobontiu’s [34] small deformation closed-

form stiffness equations based on the FEA results. Then the specific

expressions are given for each individual flexure hinge.

As previously described in Chapter 1, the first important design criteria is stiff-

ness (or, its inverse, compliance). The stiffness is subsequently used to fully study

a flexure hinge by defining its capacity of producing the desired limited rotation.

3.1 Stiffness Mathematical Formulas for Small De-

formation

Referring to Lobontiu’s book [34], the majority of the topic on stiffness mathematical

formulas for small deformation focuses on linear elastic materials and systems whose

main properties are:

• The deformations (deflections or angular rotations) are small (infinitesimal).
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• The bodies are elastic and therefore the deformations are proportional to the

applied loads, according to Hooke’s law.

• The bodies are homogeneous (their properties are the same at all locations

within) and isotropic (their properties are identical irrespective of direction).

With a few exceptions, the generic loading for a single-axis, constant-width flexure

hinge such as a circular flexure hinge, an elliptical flexure hinge or a corner-filleted

flexure hinge is visualized in Figure 3.1. Only a bending moment MZ , which has

substantive effects on the flexure operation, is applied at the end of a flexure hinge.

As previously shown in [34], the principal compliance can be calculated by means

of the Catigliano’s second theorem:

CS =
12

Ew

∫ l

0

dx

t(x)3
(3.1)

where the subscript S denotes that the compliance equation is valid under the con-

dition of small deformation range, and E is the elastic modulus, w is the width of a

flexure hinge. t(x) is the governing equation for profile of the flexure hinges.

Z

X

Y

MZ

Figure 3.1: Main free-end loading in a single-axis, constant-width flexure hinge
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(a) Cross-section profile

w

l

(b) 3D graphic

Figure 3.2: A circular flexure hinge

3.1.1 Circular flexure hinges

Circular flexure hinges will be chosen as one of the objects of study in this thesis.

Especially, the symmetric circular flexure hinges are investigated in the work. The

longitudinal section of a symmetric circular flexure hinge is illustrated in Figure 3.2.

Here h is the minimum thickness of the circular flexure hinge, r is the radius of the

circular flexure hinge, w is the width of the circular flexure hinge, H and L are the

thickness and length of the rectangular parts on both the sides of the circular flexure

hinge that are utilized to ensure that the analysis results could not be influenced

by the loading forces. The variable thickness, t(x), can be expressed in terms of the

flexure geometry as:

t(x) = h+ 2[r −
√

x(2r − x)] (3.2)

The closed-form stiffness equation describing the capacity of rotation under the

condition of small deformation range is shown as follows:

KS,C =
Ewh3(2r + h)(4r + h)3

24r[h(4r + h)(6r2 + 4rh+ h2) + 6r(2r + h)2
√
h(4r + h)arctan

√
1 + 4r

h
]

(3.3)

where the subscript S,C denotes the circular flexure hinges stiffness equation is valid

when the flexure hinge works under small deformation operation.
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H

(a) Cross-section profile

w

(b) 3D graphic

Figure 3.3: An elliptical flexure hinge

3.1.2 Elliptical flexure hinges

The flexure hinges of elliptic profile, the symmetric elliptical flexure hinges, as shown

in Figure 3.3, are considered as another one of objects of study in this thesis. where

h is the minimum thickness of the elliptical flexure hinge, a is the major axis of

the elliptical flexure hinge, b is the minor axis of the elliptical flexure hinge, c is

the distance from the point at the minimum thickness to the edge of the elliptical

flexure hinge, i.e. c equals b, l is the length of the elliptical flexure hinge, i.e. l is

equal to 2a, w is the width of the elliptical flexure hinge, H and L are the thickness

and length of the rectangular parts on both the sides of the elliptical flexure hinge

and are utilized to ensure that the analysis results could not be influenced by the

loading forces. The governing equation for the upper profile of the elliptical flexure

hinges is given as follows:

t(x) = h+ 2c

[
1−

√
1− (1− 2x

c
)2

]
(3.4)

Even though Lobontiu also proposed the stiffness equations for elliptical flexure

hinges, they are not accurate. Combining the results of Chen [16], the correct

stiffness equations for elliptical flexure hinges is the following:

KS,E =
Ewh3

6NEl
(3.5)
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(a) Cross-section profile (b) 3D graphic

Figure 3.4: A corner-filleted flexure hinge

where the subscript S,E denotes that the stiffness equation of elliptical flexure

hinges is valid under small deformation assumption. NE is given by,

NE =
2
[√

4( b
h
) + 1

(
6( b

h
)2 + 4( b

h
) + 1

)]
+ 6( b

h
)(2( b

h
) + 1)2arctan

(√
4( b

h
) + 1

)
(2( b

h
) + 1)(4( b

h
) + 1)5/2

(3.6)

3.1.3 Corner-filleted flexure hinges

Corner-filleted flexure hinges are the last one to be investigated in this thesis. A

longitudinally symmetric flexure hinge and its defining geometric parameters are

shown in Figure 3.4, where h is the minimum thickness of the corner-filleted flexure

hinge, r is the fillet radius, l is the length of the corner-filleted flexure hinge, w is the

width of the corner-filleted flexure hinge and the rectangular parts, H and L are the

thickness and length of the rectangular parts on both the sides of the corner-filleted

flexure hinge and are utilized to guarantee that the analysis results could not be

influenced by the loading forces. The governing equation for the upper profile of the

corner-filleted flexure hinges is given as follows:

t(x) =


h+ 2[r −

√
x(2r − x)] x ∈ (0, r)

h x ∈ (r, l − r)

h+ 2

{
r −

√
(l − x)[2r − (l − r)

}
x ∈ (l − r, l)

(3.7)

The situation of closed-form stiffness equation for corner-filleted flexure hinges is

the same as the one for elliptical flexure hinges. The stiffness equation proposed by
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Lobontiu is not correct. The right stiffness equation for corner-filleted is given by:

KS,R =
Ewh3

12(l + rNR)
(3.8)

where the subscript S,R denotes that the stiffness equation of corner-filleted flexure

hinges is valid under small deformation operation. NR can be obtained by:

NR =
2
[√

4( r
h
) + 1

(
6( r

h
)2 + 4( r

h
) + 1

)]
+ 6( r

h
)(2( r

h
) + 1)2arctan

(√
4( r

h
) + 1

)
(2( r

h
) + 1)(4( r

h
) + 1)5/2

(3.9)

3.2 Stiffness Mathematical Formulas for Large De-

flection

As described in Chapter 2, most researchers prefer to neglect the influence of shear

force produced during the flexure hinge deformation because of its complexity. Slen-

der beams or small deformation assumptions made the study focus on research of

FCMs early. Deep-beams /short-beams or large deflection operation, will extend

the application range of FCMs. This thesis proposes a new method that can be

utilized in more generic design for circular flexure hinges, elliptical flexure hinges

and corner-filleted flexure hinges. This method corrects the stiffness mathematical

formulas for small deformation by FEA method. The method is described first here.

1. Perform FEA by using COMSOL software.

In order to obtain generic stiffness design equations for the three types of

flexure hinges, the ratio h/l and the deformation rotation θ are the key pa-

rameters. Therefore, the ratio h/l and the deformation rotation θ are chose

as in Table 3.1. Here l equals to 2r (r is the radius of cross-section of a cir-

cular flexure hinge as shown in Figure 3.2(a)) for a circular flexure hinge, l

equals to 2a (a is the major axis of an elliptical flexure hinge) for an elliptical

flexure hinge, and l is the length of flexure hinge for a corner-filleted flexure

hinge. Therefore, ten FEA models will be analyzed in the commercial software

COMSOL for each type of flexure hinges.

2. Calculate the stiffness by using FEA and stiffness formulas for small defor-

mation, Eq.3.3,3.5,3.8. The results of FEA will be obtained by the following

equation:

M = KFEAθ (3.10)



3.2 Stiffness Mathematical Formulas for Large Deflection 43

Table 3.1: h/l and θ

h/l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ (radian) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

where the subscript FEA denotes the stiffness obtained by FEA data. M is

a moment applied to the end of the flexure hinges, and θ is the rotational angle.

3. Compare the results obtained by FEA method with the results obtained by

small deformation stiffness equations and find the difference between them. A

correction factor has been defined as:

Γ =
KFEA

KS

(3.11)

where Γ , is the correction factor influenced by shear stress. The target of this

step is to get the design equations without ad hoc assumptions.

4. Fit the Γ mentioned above, and give the dimensionless stiffness equations by

fitting the FEA results from the ones obtained by small deformation stiffness

equations:

KG = ΓKS (3.12)

where the subscription G denotes the stiffness equation is a generic equation. This

generic stiffness equation can be used in the design of deep-beam or a flexure hinge

undergoing large deflections.

3.2.1 Circular flexure hinges

Following the method mentioned above, the comparison graphs for circular flexure

hinges are shown in Figures 3.5 and 3.6.

It can be concluded that the difference between the results obtained from the

FEA and the small deformation stiffness equation increases with the deformation

rotational angle θ and the ratio h/l increasing. This shows that the influence of shear

force increases with the increasing deformation rotational angle θ and the ratio h/l.

According to Eq. 3.11, ten sets of coefficients for ten FEA models are obtained and

shown in Figure 3.7.

Following Step 3, a coefficient fitting equation for circular flexure hinges is obtained
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Figure 3.5: Part A: Comparison of the moment-rotation relationships obtained by

FEA and small deformation stiffness equation for circular flexure hinges
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Figure 3.6: Part B: Comparison of the moment-rotation relationships obtained by

FEA and small deformation stiffness equation for circular flexure hinges

by Eq. 3.13 in order to correct the small deformation stiffness equation for circular

flexure hinges.

ΓN,C =
3∑

i,j=0

µijθ
i

(
h

l

)j

where µij = 0 if i+ j ≥ 4 (3.13)

where, the subscript ΓN,C denotes the coefficients for correcting circular flexure-hinge

stiffness formula for small deformation. µi,j, (i, j = 0, 1, 2, 3) are given in Table 3.4.

The generic stiffness equation of circular flexure hinges obtained by Eq.(3.12) is:

KG,N,C = ΓN,CKS,C (3.14)

where the subscription G meaning is generic, N is for nonlinear, and C denotes

circular flexure hinges.



46 Stiffness-Based Design of Flexure Hinges

Table 3.2: The coefficients of the modified linear/nonlinear coefficient equations

Eq. 3.13 Eq. 3.15

µ00 0.9806483912 ν0 0.9780638940

µ01 -0.7188987234 ν1 -0.742493327

µ02 0.4226894870 ν2 0.4263492700

µ03 -0.1216940062 ν3 -0.113300098

µ10 0.0092610617

µ11 -0.0637867336

µ12 0.0621808885

µ20 -0.0154084738

µ21 -0.1311447262

µ30 -0.0140972474

By inspection of Figure 3.7, which shows the relationship of coefficient versus rota-

tional angle, it can be seen that the influence of the rotational angle on the coef-

ficients is too small to be ignored. A relationship between the coefficient and the

ratio h/l is shown in Figure 3.8.

By fitting the curves shown in Figure 3.8, a linear coefficient equation for correcting

the small deformation stiffness equation is obtained:

ΓL,C =
3∑

k=0

νk

(
h

l

)k

(3.15)

where the subscript L means linear, C is for circular flexure hinges. The modified

coefficient equation is function of the ratio h/l only.

Therefore, the linear generic stiffness design equation is :

KG,L,C = ΓL,CKS,C (3.16)

The subscript G means generic, L is for linear, and C is for circular flexure hinges.

νk, (k = 0, 1, 2, 3) are given in Table 3.4.

3.2.2 Elliptical flexure hinges

The analysis method of elliptical flexure hinges undergoing large deflection is per-

formed following a similar way used in analyzing circular flexure hinges. The com-

parison graphs between results obtained from FEA (Eq.3.10) and small deformation
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Figure 3.7: The Γ - θ relationship for circular flexure hinges

theory equation (Eq.3.5) for elliptical flexure hinges are shown in Figure 3.9 and

Figure 3.10.

According to Eq. 3.11, ten sets of coefficients for ten FEA models are obtained

and shown in Figure 3.11. Following Step 3, a coefficient fitting equation for el-

liptical flexure hinges is given in the following equation for correcting the elliptical

flexure-hinge stiffness equation for small deformation.

ΓN,E =
3∑

i,j=0

µijθ
i

(
h

l

)j

where µij = 0 if i+ j ≥ 4 (3.17)

(3.18)

where, the subscript N is for nonlinear, E means elliptical flexure hinges. µi,j, (i, j =

0, 1, 2, 3) is given in Table 3.3.

The generic stiffness equation of elliptical flexure hinges is obtained by Eq.(3.12)

and lead to:

KG,N,E = ΓN,EKS,E (3.19)

Referring to Figure 3.11, the effec of rotational angle upon the coefficient is too

small to be ignored. Therefore, a relationship between the coefficient and the ratio

h/l is shown in Figure 3.12.
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Figure 3.8: The Γ - h/l relationship for circular flexure hinges

Table 3.3: The coefficients of the modified linear/nonlinear coefficient equations

Eq. 3.17 Eq. 3.20

µ00 0.9900404617 ν0 0.983759894

µ01 -0.5796279622 ν1 -0.564171511

µ02 0.1818647630 ν2 0.12326874

µ03 -0.0043240000 ν3 0.034767849

µ10 0.0093903912

µ11 -0.0591407532

µ12 0.0565284698

µ20 -0.0077330730

µ21 -0.1173331034

µ30 -0.0059145774

By fitting the curves shown in Figure 3.12, a linear modified coefficient equation

for correcting the small deformation stiffness equation can be obtained:

ΓL,E =
3∑

k=0

νk

(
h

l

)k

(3.20)
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Figure 3.9: Part A: Comparison of the moment-rotation relationships obtained by

FEA and small deformation stiffness equation for elliptical flexure hinges
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Figure 3.10: Part B: Comparison of the moment-rotation relationships obtained by

FEA and small deformation stiffness equation for elliptical flexure hinges

where the subscript L denotes that the equation is linear, E is for elliptical flexure

hinges. This modified coefficient equation is just the function of the ratio h/l.

Thus, the linear generic stiffness design equation is :

KG,L,E = ΓL.EKS,E (3.21)

The subscript Gl is for generic, L is for linear, here the meaning of linear denotes

the modified coefficient equation ΓL.E is linear, E is elliptical flexure hinges.

3.2.3 Corner-filleted flexure hinges

Following a similar method as described above, the comparison graphs for corner-

filleted flexure hinges are shown in Figures 3.13 and 3.14. According to Eq. 3.11,

ten sets of coefficients for ten FEA models are obtained and shown in Figure 3.15.
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Figure 3.11: The Γ - θ relationship for elliptical flexure hinges

Following Step 3, a coefficient fitting equation for corner-filleted flexure hinges is pro-

duced in Eq. 3.22 for correcting the corner-filleted flexure hinges stiffness equation

for small deformation.

ΓN,R =
3∑

i,j=0

µijθ
i

(
h

l

)j

where µij = 0 if i+ j ≥ 4 (3.22)

where, the subscript N meaning is for nonlinear, and R denotes the corner-filleted

flexure hinges.

The generic stiffness equation of corner-filleted flexure hinges obtained by Eq.(3.12)

and lead to:

KG,N,R = ΓN,RKS,R (3.23)

where the subscripts G is for generic, N is for nonlinear, and R denotes the corner-

filleted flexure hinges. Looking back at Figure 3.15, the influence of rotational angle

on the coefficient is so tiny that it can be ignored. Therefore, a relationship between

the coefficient and the ratio h/l is shown in Figure 3.16.

Obtaining the fitting equation from the curves shown in Figure 3.16, the linear

modified coefficient equation is shown to be as follows:

ΓL,R =
3∑

k=0

νk

(
h

l

)k

(3.24)
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Figure 3.12: The Γ - h/l relationship for elliptical flexure hinges

Table 3.4: The coefficients of the modified linear/nonlinear coefficient equations

Eq. 3.22 Eq. 3.24

µ00 1.0160649738 ν0 1.0188556500

µ01 -0.6806918859 ν1 -0.713718696

µ02 0.2923808930 ν2 0.3505313250

µ03 -0.0437517603 ν3 -0.081827186

µ10 0.0024102766

µ11 -0.0186960657

µ12 0.0180951590

µ20 0.0095757216

µ21 -0.0952978063

µ30 -0.0037196879

where the subscripts L means linear, R denotes the corner-filleted flexure hinges.

The linear modified equation is function of the ratio h/l only.

Therefore, the linear generic stiffness design equation is :

KG,L,R = ΓL,RKS,R (3.25)
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Figure 3.13: Part A: Comparison of the moment-rotation relationships obtained by

FEA and small deformation stiffness equation for corner-filleted flexure hinges
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Figure 3.14: Part B: Comparison of the moment-rotation relationships obtained by

FEA and small deformation stiffness equation for corner-filleted flexure hinges

The subscripts G means generic, L means linear, The modified coefficient equation

is linear. R denotes the corner-filleted flexure hinges.
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Figure 3.15: The Γ - θ relationship for corner-filleted flexure hinges
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Figure 3.16: The Γ - h/l relationship for corner-filleted flexure hinges
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Chapter 4

Stress-Based Design of Flexure

Hinges

T his chapter studies the maximum stress characteristic for the three

common types of flexure hinges by means of the FEA method. For each

type of flexure hinges, there are three corresponding parameters, SY /E,

h/l and the deflection rotation θ. Finally, three sets of generic design

equations based on stress characteristics for each type of flexure hinges

are proposed.

In FCMs, the flexure hinges are the first components to be failure prone, as they

have the foremost exposure to loading, given their smaller dimensions. As previously

reported, flexure hinges are capable of undergoing large deformations and entering

the plastic domain before fracture occurs. Therefore, stress characteristics are the

one of important design criteria for the design of flexure hinges.

The relationship between material characterized by a certain σ = SY /E, where SY

is the material yield strength, i.e. the bearable maximum stress of material, the

maximum rotation θ bearable by the hinge at the limit of material failure and the

geometry characterized by a maximum ratio h/l designable for the hinge following

design requirements will be discussed in the chapter. Three types of flexure hinges

studied in the chapter will be analyzed following three aspects:

• For a given material characterized by a σ ratio, the maximum rotation bearable

by the hinge at the limit of material failure can be approximated. Beside the
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principal stiffness, the results of the FEA simulations have been used to find an

estimate for the maximum stress/strain that can be borne by the hinge. In engi-

neering, there are main three theories that can be utilized to predict the critical

condition in a body under a complex state of stress. The three theories are the

maximum energy of deformation theory (Von Mises), the maximum shear stress

theory(Tresca) and the maximum total strain energy theory(BeltramiHaigh) [34].

This thesis will use the Von Mises strength theory;

• For a desired maximum rotation θ bearable by the hinge at the limit of material

failure, the material of hinge can be chosen;

• For a desired geometry characterized by a maximum ratio h/l, the maximum ro-

tation θ can be evaluated.

The above-mentioned items will be discussed in the following in more detail for the

three types of flexure hinges.

4.1 Circular Flexure Hinges

Ten circular flexure hinges which are studied in Chapter 3 will be now analyzed,

following the path presented above. As described in the following, the maximum

stress for each studied model can be obtained according to Von Mises theory by a

FEA software. Hence, the relationship between σ, θ and h/l is shown in Figure 4.1.

According to the relationship, the closed-form equations describing the capacity of

rotation for a flexure hinge, the material characteristic and the designable geometric

characteristic are given next.

4.1.1 Capacity of rotation

The coordinates in Figure 4.1 are transformed, i.e. x-axis will denote σ, and y-axis

will denote θ, the new graph is shown in Figure 4.2. for a given material character-

ized by a certain σ and geometric characteristic h/l, the maximum rotation bearable

by the hinge at the limit of material failure can be approximated by the following

empirical relation:
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Figure 4.1: The relationship between σ, θ and h/l for ten circular flexure hinges
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Figure 4.2: The relationship between θ, σ and h/l for ten circular flexure hinges
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Table 4.1: Parameters for rotation design equation of circular flexure hinges

Parameter Value Parameter Value

ξ00 -0.004891814 ξ01 -0.012458952

ξ02 -0.107789386 ξ03 0.5750808338

ξ10 0.1795051891 ξ11 0.4709110597

ξ12 -0.630828220 ξ20 0.5426186030

ξ21 0.3773006620 ξ30 -0.141083131

Table 4.2: Parameters for material characteristic equation of circular flexure hinges

Parameter Value Parameter Value

a00 0.261241061 a01 3.099213114

a02 -3.603327270 a03 2.7856512330

a04 -0.8819542210 a10 0.0011222362

a11 -1.395162109 a12 0.5941891577

a13 0.0240168305 a14 -0.1952204707

θz,max = 1

/
3∑

i,j=0

ξij

(
h

l

)i−1

σj−1 where ξij = 0 if i+ j ≥ 4 (4.1)

where the parameters ξij, (i, j = 0, 1, 2, 3) are shown in Table 4.1.

4.1.2 Material characteristic

According to the relationship shown in Figure 4.1, for a desired maximum rotationθz

and geometric characteristic h/l, the closed-form equation for material characteris-

tic is:

σ = θ

(
h

l

)/
4∑

i,j=0

aijθ
i
z,max

(
h

l

)j

where aij = 0 if i ≥ 2 (4.2)

where the parameters aij, (i, j = 0, 1, 2, 3, 4) are shown in Table 4.2.

4.1.3 Geometric characteristic

The coordinates in Figure 4.1, i.e. x-axis will denote σ, and y-axis will denote h/l,

the new graph is shown in Figure 4.3. For a given material characterized by a
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Figure 4.3: The relationship between h/l, θ and σ for ten circular flexure hinges

certain σ and the desired rotation θ, the maximum designable ratio of h/l can be

approximated by the following empirical relation:

(
h

l

)
max

= χ∗ + 1

/
2∑

i,j=0

χijσ
i−1θj−1

z,max (4.3)

where the parameters χij, (i, j = 0, 1, 2) are shown in Table 4.3.

Table 4.3: Parameters for geometric characteristic equation of circular flexure hinges

Parameter Value Parameter Value

χ00 0.000077164 χ01 0.001055602

χ02 1.989063367 χ10 -0.00347776

χ11 -3.03144059 χ12 -2.36271139

χ20 1.664255871 χ21 2.533156330

χ22 0.236181294 χ∗ -0.06320109
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Figure 4.4: The relationship between σ, θ and h/l for ten elliptical flexure hinges

4.2 Elliptical Flexure Hinges

Ten elliptical flexure hinges which are studied in Chapter 3 will be now analyzed,

following the procedure used for circular flexure hinges. The relationship between

σ, θ and h/l for ten elliptical flexure hinges is shown in Figure 4.4. According to

relationship, the closed-form equations describing the capacity of rotation for a flex-

ure hinge, the material characteristic and the designable geometric characteristic

are given next.

4.2.1 Capacity of rotation

The coordinates in Figure 4.4, i.e. x-axis will denote σ, and y-axis will denote θ, the

new graph is shown in Figure 4.5. For a given material characterized by a certain

σ and geometric characteristic h/l, the maximum rotation bearable by the hinge at

the limit of material failure can be approximated by the following empirical relation:

θz,max = 1

/
3∑

i,j=0

ξij

(
h

l

)i−1

σj−1 where ξij = 0 if i+ j ≥ 4 (4.4)
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Figure 4.5: The relationship between θ, σ and h/l for ten elliptical flexure hinges

where the parameters ξij, (i, j = 0, 1, 2, 3) are shown in Table 4.4.

4.2.2 Material characteristic

According to the relationship shown in Figure 4.4, for a desired maximum rotationθz

and geometric characteristic h/l, the closed-form equation for material characteris-

tic is:

Table 4.4: Parameters for rotation design equation of elliptical flexure hinges

Parameter Value Parameter Value

ξ00 -0.003912317 ξ01 -0.014065652

ξ02 -0.047502868 ξ03 0.3072218785

ξ10 0.1396638150 ξ11 0.3814235019

ξ12 -0.446640615 ξ20 0.4702100794

ξ21 0.3099882352 ξ30 -0.125977059
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Table 4.5: Parameters for material characteristic equation of elliptical flexure hinges

Parameter Value Parameter Value

b00 0.411717398 b01 3.071247682

b02 -2.18858763 b03 0.780857329

b10 -0.04764814 b11 -1.59905558

b12 0.216544677 b20 0.115082225

b21 0.575087469 b30 -0.17321061

Table 4.6: Parameters for geometric characteristic equation of elliptical flexure

hinges

Parameter Value Parameter Value

χ00 0.000086190 χ01 -0.00052103

χ02 2.256250214 χ10 -0.00270067

χ11 -2.86987560 χ12 -2.42279627

χ20 1.343670651 χ21 2.112534561

χ22 0.309589658 χ∗ -0.05527670

σ = 1

/
3∑

i,j=0

bijθ
i−1
z,max

(
h

l

)j−1

where bij = 0 if i+ j ≥ 4 (4.5)

where the parameters bij, (i, j = 0, 1, 2, 3) are shown in Table 4.5.

4.2.3 Geometric characteristic

The coordinates in Figure 4.4, i.e. x-axis will denote σ, and y-axis will denote h/l,

the new graph is shown in Figure 4.6. For a given material characterized by a

certain σ and the desired rotation θ, the maximum designable ratio of h/l can be

approximated by the following empirical relation:

(
h

l

)
max

= χ∗ + 1

/
2∑

i,j=0

χijσ
i−1θj−1

z,max (4.6)

where the parameters χij, (i, j = 0, 1, 2) are shown in Table 4.6.
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Figure 4.6: The relationship between h/l, θ and σ for ten elliptical flexure hinges

4.3 Corner-Filleted Flexure Hinges

Ten corner-filleted flexure hinges which are studied in Chapter 3 will be now an-

alyzed, following the procedure used for circular flexure hinges. The relationship

between σ, θ and h/l for ten corner-filleted flexure hinges is shown in Figure 4.7

According to the relationship, the closed-form equations describing the capacity of

rotation for a flexure hinge, the material characteristic and the designable geometric

characteristics are given in the following.

4.3.1 Capacity of rotation

The coordinates in Figure 4.7, i.e. x-axis will denote σ, and y-axis will denote θ, the

new graph is shown in Figure 4.8. For a given material characterized by a certain

σ and geometric characteristic h/l, the maximum rotation bearable by the hinge at

the limit of material failure can be approximated by the following empirical relation:

θz,max = 1

/
3∑

i,j=0

ξij

(
h

l

)i−1

σj−1 where ξij = 0 if i+ j ≥ 4 (4.7)



66 Stress-Based Design of Flexure Hinges

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

θ [rad]

S
Y
/E

 h/l =0.1 − 1

Figure 4.7: The relationship between σ, θ and h/l for ten corner-filleted flexure

hinges

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

S
Y
/E

θ 
[r

ad
] 

h/l =0.1 − 1

Figure 4.8: The relationship between θ, σ and h/l for ten corner-filleted flexure

hinges



4.3 Corner-Filleted Flexure Hinges 67

Table 4.7: Parameters for rotation design equation of corner-filleted flexure hinges

Parameter Value Parameter Value

ξ00 0.000854695 ξ01 -0.00863043

ξ02 0.046516289 ξ03 0.131309678

ξ10 -0.01469291 ξ11 0.096624025

ξ12 -0.48645218 ξ20 -0.67373034

ξ21 0.687140897 ξ30 -0.07608612

Table 4.8: Parameters for material characteristic equation of corner-filleted flexure

hinges

Parameter Value Parameter Value

c00 0.000095893 c01 -0.00069024

c02 0.000874360 c10 -0.00661849

c11 0.661935750 c12 -0.08068387

c20 -0.00012609 c21 0.008836010

c22 0.523202666

where the parameters ξij, (i, j = 0, 1, 2, 3) are shown in Table 4.7.

4.3.2 Material characteristic

According to the relationship shown in Figure 4.7, for a desired maximum rotationθz

and geometric characteristic h/l, the closed-form equation for material characteris-

tic is:

σ =
2∑

i,j=0

cijθ
i
z,max

(
h

l

)j

(4.8)

where the parameters cij, (i, j = 0, 1, 2) are shown in Table 4.8.

4.3.3 Geometric characteristic

The coordinates in Figure 4.7, i.e. x-axis will denote σ, and y-axis will denote h/l,

the new graph is shown in Figure 4.9.

For a given material characterized by a certain σ and the desired rotation θ, the

maximum designable ratio of h/l can be approximated by the following empirical
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Table 4.9: Parameters for geometric characteristic equation of corner-filleted flexure

hinges

Parameter Value Parameter Value

χ00 0.0000466754 χ01 -0.000038222

χ02 -0.047474963 χ10 -0.001533606

χ11 -0.046694556 χ12 0.0296131351

χ20 0.6481165023 χ21 0.7414768345

χ22 -0.280092045 χ∗ 0.0057545458
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Figure 4.9: The relationship between h/l, θ and σ for ten corner-filleted flexure

hinges

relation:

(
h

l

)
max

= χ∗ + 1

/
2∑

i,j=0

χijσ
i−1θj−1

z,max (4.9)

where the parameters χij, (i, j = 0, 1, 2) are shown in Table 4.9.



Chapter 5

Discussion and Error Analysis

T his chapter discusses the characteristics of the generic design equa-

tions proposed in Chapter 3 and Chapter 4 and analyzes the errors pro-

duced by these equations compared with the FEA results. Meantime,

the correctness and applicability for these equations are evaluated.

Chapter 3 proposes nonlinear and linear modified coefficient equations for the

small deformation stiffness equations of three types of flexure hinges. The generic

stiffness design equations, which combined modified coefficient equations and small

deflection stiffness equations, are proposed in the end. Chapter 4 proposes three

sets of relation equations for material characteristic σ, maximum bearable rotation

θz,max and geometric characteristic h/l, which are three important parameters in

design of flexure hinges. Hereafter, these relation equations will be called as stress

generic design equations. Their application has been discussed in previous part of

Chapter 4.

The correctness and applicability of these generic stiffness and stress design equa-

tions are very important in the reality applications. This chapter will discuss these

problems for these proposed equations compared to their corresponding FEA results.
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5.1 Evaluation of Stiffness Generic Design Equa-

tions

According to the work presented in Chapter 3, the nonlinear modified coefficient

equations are more accurate than the linear modified coefficient equations. However,

linear modified coefficient equations are more simple and easier to be used in the

design of flexure hinges than the nonlinear modified coefficient equations. This

section will discuss both the forms of generic stiffness design equations for each type

of flexure hinges.

5.1.1 Circular flexure hinges

• Generic stiffness design equation with nonlinear modified coefficient equation.

According to Eq. 3.14, the comparison between the FEA results of the reality

analysis models and the fitting results calculated by Eq. 3.14 is shown in Figure

5.1a. It can be seen from this figure that the fitting results are close to FEA

results. In order to verify the fitting results, the errors for the proposed equation

are analyzed according to the relation:

error =
θG − θFEA

θFEA

× 100% (5.1)

where θG is the rotation obtained by the proposed equation, and θFEA is the

rotation obtained by FEA method. The error analysis results are shown in Figure

5.1 b. The maximum error is 0.0778%.

• Generic stiffness design equation with linear modified coefficient equation.

Linear modified coefficient equation is proposed in order to simplify the design

equation and be easily used in design of flexure hinges. It can be seen that the

linear modified equation Eq.3.16 is function of the geometric characteristic h/l

only. The comparison between the FEA results of the reality analysis models and

the fitting results calculated by Eq. 3.16 is shown in Figure 5.2(a). From this

figure, it can be seen that the fitting results are close to FEA results. In order to

verify the fitting results, the results of the errors analysis compared to the FEA

results are shown in Figure 5.2(b). The maximum error is 2.2909%. It can be seen

that the generic stiffness design equation with linear modified coefficient equation

does not have the same precision as the design equation with nonlinear modified
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Figure 5.1: Comparison results and fitting errors for the generic stiffness design

equation with nonlinear modified coefficient equation for circular flexure hinges
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Figure 5.2: Comparison results and fitting errors for the generic stiffness design

equation with linear modified coefficient equation for circular flexure hinges

coefficient equation but it is more accurate than the former studies.

5.1.2 Elliptical flexure hinges

• Generic stiffness design equation with nonlinear modified coefficient equation.

According to the analysis method used in the evaluation of circular generic design

equations, the comparison between the FEA results obtained by FEA method and

those calculated by Eq. 3.19 is shown in Figure 5.3(a). It’s easy to see from this

figure, the fitting results are close to the FEA results. Further more, the errors

analysis for fitting results is done following the error equation mentioned above
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Figure 5.3: Comparison results and fitting errors for the generic stiffness design

equation with nonlinear modified coefficient equation for elliptical flexure hinges

and the results are shown in Figure 5.3(b). The maximum error is 0.1509%.

• Generic stiffness design equation with linear modified coefficient equation.

As described in the study of circular flexure hinges, a linear modified coefficient

equation is proposed in order to simplify the design equation and be easily used in

design of flexure hinges. It can be noted that the linear modified equation Eq.3.21

is a function of the geometric characteristic h/l only. The comparison result

between the FEA results of the FEA models and the fitting results calculated by

Eq. 3.21, it is shown in Figure 5.4(a). From this figure, it can be seen that the

fitting results are close to the FEA results. In order to verify the fitting results,

the results of the error analysis compared to the FEA results are shown in Figure

5.4(b). The maximum error is 2.8223%. Therefore, the error can be acceptable

in engineering practice. It also states that the precision of the generic design

equation with linear modified coefficient equation for elliptical flexure hinges is

more accurate than the results proposed in the previous studies.

5.1.3 Corner-filleted flexure hinges

• Generic stiffness design equation with nonlinear modified coefficient equation.

The same error analysis method has been used in the analysis for the generic de-

sign equation with nonlinear modified coefficient equation of corner-filleted flexure

hinges. The generic design equation is proposed in Chapter 3. A comparison be-
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Figure 5.4: Comparison results and fitting errors for the generic stiffness design

equation with linear modified coefficient equation for elliptical flexure hinges
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Figure 5.5: Comparison results and fitting errors for the generic stiffness design equa-

tion with nonlinear modified coefficient equation for corner-filleted flexure hinges

tween the results obtained by FEA method and the ones calculated by Eq. 3.24

is shown in Figure 5.5(a) at first. It can be seen that the fitting results are close

to FEA results. The error compared with the results obtained by FEA method is

shown in Figure 5.5(b). The maximum error is 0.105%.

• Generic stiffness design equation with linear modified coefficient equation.

The work of evaluating the generic design equation with linear modified coefficient

equation for corner-filleted flexure hinges is also presented here. The comparison

between the results respectively calculated by Eq. 3.26 and obtained by FEA

method is presented in Figure 5.6(a). From this figure, it can be noted that
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Figure 5.6: Comparison results and fitting errors for the generic stiffness design

equation with linear modified coefficient equation for corner-filleted flexure hinges

the fitting results are close to the FEA results. In order to verify the fitting

results, the results of errors analysis compared to those of the FEA are shown

in Figure 5.6. The corresponding maximum error is 1.5799%. Thus it can be

seen the generic stiffness design equation with linear modified coefficient equation

for corner-filleted flexure hinges provide more accurate results than the former

studies.

To sum up, both sets of stiffness design equations are precise. The nonlinear dimen-

sionless stiffness design equations are more accurate than the linear dimensionless

stiffness design equations. However, the errors produced by linear dimensionless

stiffness design equations can be accepted, and the form of the equation is more

simple and easier to be applied in applications of compliant mechanisms.

Concerning the three types of flexure hinges, the corner-filleted flexure hinges have

the smallest stiffness of the three flexure hinges when they have identical geomet-

ric characteristic h/l, and are undergoing identical desired rotation. The circular

flexure hinges have the largest stiffness under the same conditions.

5.2 Evaluation of Stress Generic Design Equations

As described in Chapter 4, the relation equations for material characteristic σ, max-

imum bearable rotation θz,max and geometric characteristic h/l are fitted according

to FEA results obtained in stress analysis. The meaning of the stress generic design

equations have been presented in Chapter 4. This section will discuss the accuracy
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Figure 5.7: Comparison results and fitting errors for the θz,max design equation for

circular flexure hinges

of these equations for each type of flexure hinges.

5.2.1 Circular flexure hinge

• Error analysis for the maximum bearable rotation θz,max design equation.

Eq.4.1 is the fitting equation for obtaining the bearable maximum rotation by the

hinge at the limit of material failure. The comparison result between fitting equa-

tion results and FEA real results is shown in Figure 5.7(a). The corresponding

errors for the equation mentioned above are calculated according to:

error =
θG,max − θFEA,max

θFEA,max

× 100% (5.2)

where, the θG,max is calculated by Eq. 4.1. The θFEA,max is obtained by FEA

method. The errors are shown in Figure 5.7(b). The maximum error of fitting

results is obtained during the analysis, and it is 0.8954%.

• Error analysis for the material characteristic σ design equation.

Eq.4.2 is obtained by fitting the FEA results of these circular flexure-hinge sim-

ulation models. The comparison between fitting equation results and FEA real

results is shown in Figure 5.8(a)a. Its corresponding errors can be computed by

error =
σG − σFEA

σFEA

× 100% (5.3)
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Figure 5.8: Comparison results and fitting errors for the σ design equation for

circular flexure hinges

where, σG is calculated by Eq.4.2, and σFEA is obtained by FEA method. the

corresponding result is shown in Figure 5.8(b). The maximum error of fitting

equation is 2.7405%.

• Error analysis for the geometric characteristic h/l design equation.

Eq.4.3 is a fitting equation according to FEA results in order to obtain the max-

imum designable ratio h/l of a circular flexure hinge. The comparison between

fitting equation results and FEA real results is shown in Figure 5.9(a). The errors

can be calculated by the following relation:

error =
(h
l
)G − (h

l
)FEA

(h
l
)FEA

× 100% (5.4)

where, (h
l
)G is computed by Eq. 4.3, (h

l
)FEA is obtained by FEA method. the

analysis result for the fitting equation is shown in Figure 5.9(b). The maximum

error of fitting equation is 2.228%.

5.2.2 Elliptical flexure hinge

• Error analysis for the maximum bearable rotation θz,max design equation.

According to the procedure described in evaluation of circular flexure hinges.

Eq. 4.4 is assessed here. The comparison between FEA results and the fitting

equation results are shown in Figure 5.10(a) at first. Their corresponding errors
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Figure 5.9: Comparison results and fitting errors for the h/l design equation for

circular flexure hinges
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Figure 5.10: Comparison results and fitting errors for the θz,max design equation for

elliptical flexure hinges

are expressed in Figure 5.10(b). The maximum error of fitting result is obtained

during the analysis, and it is 0.8383%.

• Error analysis for the material characteristic σ design equation.

Eq.4.5 is obtained by fitting the FEA results of these elliptical flexure hinges

simulation models. The comparison between fitting equation results and FEA

real results is shown in Figure 5.11(b). The error analysis results are shown in

Figure 5.11(b). The maximum error of fitting equation is 2.157%.

• Error analysis for the geometric characteristic h/l design equation.
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Figure 5.11: Comparison results and fitting errors for the σ design equation for

elliptical flexure hinges
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Figure 5.12: Comparison results and fitting errors for the h/l design equation for

elliptical flexure hinges

Eq.4.6 is a fitting equation found according to FEA results in order to obtain

the maximum designable ratio h/l of an elliptical flexure hinge. The comparison

between fitting equation results and FEA real results is shown in Figure 5.12(a).

The error analysis results for the fitting equation are shown in Figure 5.12(b).

The maximum error of fitting equation is 1.5976%.

5.2.3 Corner-filleted flexure hinge

• Error analysis for the maximum bearable rotation θz,max design equation.

Eq.4.7 is the fitting equation for obtaining the bearable maximum rotation by the
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hinge at the limit of material failure. The comparison between fitting equation

results and FEA real results is shown in Figure 5.13(a). The error analysis results

for the equation mentioned above are shown in Figure 5.13(b). The maximum

error of fitting result is obtained during the analysis, is 0.6665%.
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Figure 5.13: Comparison results and fitting errors for the θz,max design equation for

corner-filleted flexure hinges

• Error analysis for the material characteristic σ design equation.

Eq.4.8 is the obtained by fitting the FEA result of these corner-filleted flexure

hinges simulation models. The comparison between fitting equation results and

FEA real results is shown in Figure 5.14(a). The error analysis results are shown

in Figure 5.14(b). The maximum error of fitting equation is 2.2278%.

• Error analysis for the geometric characteristic h/l design equation.

Eq.4.9 is a fitting equation found according to FEA results in order to obtain the

maximum designable ratio h/l of a corner-filleted flexure hinge. The comparison

between fitting equation results and FEA real results is shown in Figure 5.15(a).

The error analysis results for the fitting equation are shown in Figure 5.15(b).

The maximum error of fitting equation is 1.1528%.

From what reported above, the generic stress design equations of the three types of

flexure hinges are accurate.
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Figure 5.14: Comparison results and fitting errors for the σ design equation for

corner-filleted flexure hinges
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Figure 5.15: Comparison results and fitting errors for the h/l design equation for

corner-filleted flexure hinges



Chapter 6

Flexure-Based Compliant

Mechanisms

T his chapter briefly presents the design procedure for designing a FCM.

By reporting this procedure, this chapter introduces in detail the appli-

cation method of the generic design equations proposed in the previous

chapters by designing a four-bar compliant mechanism. Moreover, these

generic design equations are assessed again in order to verify their ap-

plicability in FCM design. Finally, a numerical example of designing a

flexure-based four-bar compliant mechanism(FFCM) is presented.

6.1 Design of a Flexure-Based Compliant Mech-

anism

Howell [24] proposed that a compliant mechanism could be transformed into a rigid

body mechanism with springs at the link points, i.e. PRBM technique is used in

analysis and synthesis of compliant mechanisms. A PRBM is a rigid counterpart

of a compliant mechanism which contains not only the rigid linkages and kinematic

pairs, but includes appropriate discrete springs for modeling the compliance of flex-

ible members. This thesis will use PRBM technology to design a FCM. The flexure

hinges used as joints will be transformed into revolute pairs plus springs.
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Target: Design a Flexure-basced Compliant Mechanism

PRB methodKnown requirements

Geometry properties of  the
desired mechanism:
Mechanism dimensions

Stiffness of each flexure hinges
used for linking the rigid parts 
and providing the desired 
motion of the mechanism:
Stiffnesses

Finish design and build the model of the designed 
flexure-based compliant mechanism

Flexure hinges design equations

Choose material :
material properties

Geometry properties of 
the designed flexure hinges:

form and dimensions

Figure 6.1: Design flow chart for designing a FCM

The design procedure for designing a FCM is described by the flow chart reported

in Figure 6.1. There are two important technologies which are used in the design

procedure. The first one is PRBM mentioned above. The second one is the flexure

hinge design equations which are used in design of flexure hinges. The generic design

equations obtained in Chapters 3 and 4 can be recalled here. The dotted line in

Figure 6.1 means that the mechanism dimensions can act as a reference condition

for flexure hinges design. For a FCM, the stiffness of rigid parts must be assumed.

The key point in the procedure of designing a FCM is to design the flexure hinges
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Design a flexure hinge

Known: the maximum rotation θz,max

Choose material for the flexure hinge:
material properties is obtained.

Choose the form of flexure hinge 
according to the value of h/l

a circular flexure hinge an elliptical flexure hinge a corner-filleted flexure hinge

Obtain the geometry dimensions of flexure hinge

Finish Design: build the designed flexure hinge

Suppose the design conditions
 are the desired rotation and stiffness

Material charactoristic generic design equations

Geometry charactoristic h/l generic 
design equations

Stiffness generic design equations with linear/nonlinear modified coefficient equations

Figure 6.2: Design flow chart for designing a flexure hinge

of the mechanism. The related design procedure for designing a flexure hinge is

presented in Figure 6.2. In addition, the method using the generic design equations

is also described in the flow chart of Figure 6.2.
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6.2 Analysis and Evaluation for the Generic De-

sign Equations in FFCMs

6.2.1 Flexure-based four-bar compliant mechanisms(FFCMs)

FFCMs are utilized widely in various applications. In order to demonstrate the

use of the proposed design equations and verify their applicability and precision,

a flexure-based four-bar compliant mechanism(FFCM) is studied here (Figure 6.3).

In Figure 6.3, links 1, 2, 3, 4 are the rigid parts of the FFCM, link 1 is chosen as

the base of the mechanism. The flexible parts, hinges 1, 2, 3, 4, are the connecting

joints to make the mechanism movable by using theirs elastic deformation instead of

traditional revolute pairs. In addition, the horizontal axis of hinge 1 is perpendicular

to the end plane of link 1 or link 2, respectively. The horizontal axis of hinge 2 is

perpendicular to the end plane of link 2 or link 3, also it lies in the direction of the

horizontal axis of hinge 1. The horizontal axis of hinge 3 is perpendicular to the end

plane of link 3 or link 4, respectively. The horizontal axis of hinge 4 is perpendicular

to the end plane of link4 or link 1, as well it lies in the horizontal axis of hinge 3.

Following the procedure presented above, the study of the FFCM will start from

Basic Link 1

Link 2

Link 3

Link 4

Hinge 1

Hinge 2

Hinge 3

Hinge 4

Figure 6.3: A FFCM

its PRBM according to the work by Howell et al. who presented closed-form equa-

tions describing force-displacement relationship for FFCMs by means of PRBM.

The equivalent PRBM of the FFCM as mentioned above is shown in Figure 6.4. In
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this chapter, the coordinate system is defined as follows. The origin of the global

coordinate system XY is chosen at the geometric center point of hinge 1, i.e. the

point O in the Figure 6.4. The X axis is designed along the link 1. In Figure 6.4,

Ki, (i = 1, 2, 3, 4) is the stiffness of hinge i, ri, (i = 1, 2, 3, 4) describes the length of

link i, θi, (i = 1, 2, 3, 4) is the angle between each adjacent links.

As concerning such a FFCM, the moment-rotation relationship is studied in order

r1

δ

β

λ

Figure 6.4: The equivalent pseudo rigid body model for the FFCM

to analyze and evaluate a FFCM. The relationship equation is proposed in [24] as

shown in Eq.6.1.

M + T1 + T2 − (T2 + T3)h32 + (T3 + T4)h42 = 0 (6.1)

where, M is the moment applied to the link 2 as shown in Figure 6.4. Ti, (i =

1, 2, 3, 4) is the torque provided by the flexure hinges, hinges 1, 2,3,4, which can be

obtained by using Eq.6.6.

T1 = −K1Ψ1 (6.2)

T2 = −K2Ψ2 (6.3)

T3 = −K3Ψ3 (6.4)

T4 = −K4Ψ4 (6.5)

(6.6)

where, Ki, (i = 1, 2, 3, 4), is the stiffness of hinge i. In particular, as for a slen-

der beam with geometric dimensions, h (height), l(length) and w(width), which are
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defined in [24], the stiffness is calculated by K = EI/l. Here, E is the Young’s

modulus of material, I is the moment of inertia of the slender beam that can be

calculated by I = wh3/12. Also, Ψi, (i = 1, 2, 3, 4) is the deformation rotation of

hinge i. These deformation rotation can be calculated according to Eq.6.10.

Ψ1 = θ2 − θ20 (6.7)

Ψ2 = (θ2 − θ20)− (θ3 − θ30) (6.8)

Ψ3 = (θ4 − θ40)− (θ3 − θ30) (6.9)

Ψ4 = θ4 − θ40 (6.10)

where, θi, (i = 1, 2, 3, 4) is the angle as shown in Figure 6.4, θi0, i = 1, 2, 3, 4 is the

initial angle of θi. The relation equations for these angles are presented here, as

shown in Eqs.6.11, 6.12 and 6.13.

δ =
√

r21 + r22 − 2r1r2 cos θ2, β = acos
r21+δ2−r22

2r1δ

ϕ = acos
r23+δ2−r24

2r3δ
, λ = acos

r24+δ2−r23
2r4δ

(6.11)

θ3 = ϕ− β (6.12)

θ4 = π − λ− β (6.13)

where θ3 and θ4 define the position of links r3 and r4 with respect to the frame.

Finally, in Eq.6.1, h32 and h42 can be calculated following Eq.6.16.

h32 =
r2sin(θ4 − θ2)

r3sin(θ3 − θ4)
(6.14)

h42 =
r2sin(θ3 − θ2)

r4sin(θ3 − θ4)
(6.15)

(6.16)

In the design of a FFCM, an optimal design method is presented here for designing

the configuration of the FFCM. With reference to Figure 6.4, for given links length

r1, r2, r3and r4, the uninflected configuration of the FFCM is described by θ2 = θ20

(which is the FFCM rest configuration). The desired moment-rotation (or, torque-

angle) profile is the relation between the angle θ2 and the input torque, M (i.e.

a pure moment acting on the rocker arm r2 )(Figures 6.4). Here, the following

quadratic torque-angle profile is considered:

Td(θ2) = A2θ
2
2 + A1θ2 (6.17)
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where A1, A2, and θ2 will be defined according to the design requirements. Given

Eqs. 6.17 and 6.1, the parameters that characterize the considered FFCM will be

obtained by means of the following optimization process. Here, the following cost

function is used:

J =

∫ θ2max

θ2min

[T (θ2)− Td(θ2)]
2 dθ2 (6.18)

where θ2min,max are the FFCM limiting angular positions. By defining the vector Λ =

[θ20, r1, r2, r3, r4, K1, K2, K3, K4] containing the characteristic FFCM parameters,

the design optimization process consists of finding the optimal value of Λ, which

minimizes the cost function:

min
Λ

J : Λmin < Λ < Λmax (6.19)

where Λmin and Λmax are suitable bounds of the FFCM geometric parameters, which

are necessary to avoid unfeasible architectural solutions. The proposed optimization

process has been implemented in MATLAB, and solved numerically by means of the

lsqnonlin algorithm, which requires an initial guess for the parameter vector θ20 .

6.2.2 Analysis and evaluation of the generic design equa-

tions

This section will combine FEA method to analyze and to evaluate the proposed

generic design equations when used to design a FFCM. The procedure is presented

by referring to both the procedure of designing a FCM and the procedure of designing

a flexure hinge presented in the previous section of this chapter.

• Define the configuration of the desired FFCM.

The configuration of the desired FFCM is presented in Table.6.1. The analysis

and the use of the generic design equations will be discussed.

• Design the flexure hinges.

Based on the conditions obtained in the previous step, design the flexure hinges

following the procedure described in the earlier part of this chapter. In stiffness

generic design equations, at first, four slender beams are designed in order to ver-

ify the optimal method used for obtaining the configuration of the desired FFCM.

Second, four corner-filleted flexure hinges, two sets of four circular flexure hinges

and two sets of four elliptical flexure hinges are designed based on the correspond-

ing generic design equations. In the same way, in order to check the reliability of
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Table 6.1: Configuration of the desired FFCM

r1 200mm K1 44.97Nmm

r2 100mm K2 44.97Nmm

r3 110mm K3 44.97Nmm

r4 125mm K4 44.97Nmm

θ20
π

3
∆θ2

π

6

the stiffness and stress generic design equations, four corner-filleted flexure hinges,

four circular flexure hinges and four elliptical flexure hinges are sized on the basis

of the corresponding equations.

• Build models.

According to the geometric dimensions of these designed flexure hinges, which

are obtained in the last step, seven FFCM models are built in the commercial

software SOLIDWORKS.

• Analyzing these models by means of FEA method.

The commercial FEA software COMSOL is used in simulating these models. At

first, the model is input into COMSOL workspace. Second, the material pa-

rameters, such as Young’s modulus E and Poisson’s ratio µ (Young’s modulus

E = 1.135e3MPa and Poisson’s ratio µ = 0.33 ) are chose for these FEA models.

Third, the boundary conditions are set up. According to the defined condition

before, link 1 is the basic link and fixed. Hence, the boundary constrain of link 1

is chose as fixed. In addition, a couple of forces are loaded on arc part of link 2

as shown in Figure 6.5. The couple of forces are loaded here in order to produce

a pure moment loaded on link 2 as shown in Figure 6.4.

The next, as for FEA method, the mesh generated for the analysis model plays a

key role on the precision of analysis results. Therefore, refined mesh is needed for

the analysis as shown in Figure 6.6. At the end, the analysis is run and obtained

from the FEA result.
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Basic Link 1

Link 2

Link 3

Link 4

Hinge 1

Hinge 2

Hinge 3

Hinge 4

F F

M

Figure 6.5: A couple of forces loaded on FCM

Figure 6.6: Refined mesh for a FFCM



90 Flexure-Based Compliant Mechanisms

• Postprocessing of results.

As mentioned above, the moment-rotation relationship of link 2 is an evaluation

criteria for verifying the applicability and precision of the generic design equa-

tions. Therefore, the results obtained in FEA method need to be processed in the

commercial software MATLAB. The computing process has been programmed,

which is easier to be used.

• Error analysis and Evaluation.

Analyze the results obtained in the last step, calculate the error for these seven

moment-rotation profiles obtained by FEAmethod compared to the desired moment-

rotation profile. In the end, evaluate the applicability and precision of these pro-

posed generic design equations by comparing their results with those obtained by

the small deformation design equations.

A FFCM with four slender beams analysis model

The aim of designing a FFCM with four slender beams is to test the accuracy of

this testing procedure. According to Table 6.1, the stiffness of four flexure hinges

has identical value. Therefore, four identical slender beams are designed referring

to K = EI/l. Its form and geometric dimensions are shown in Table 6.2.

Following the analysis method mentioned above, the moment-rotation profile based

on the FEA results is plotted in blue line in Figure 6.7 with the green line as the

desired moment-rotation relationship. It can be seen that the blue line is very

close to the green line. Such a result implies that the moment-rotation profile of

the designed FFCM is as the desired profile. Therefore, the testing procedure is

correct. It can be convinced in analysis and evaluation of the proposed generic

design equations.

Discussion about generality for the generic design equations

The aim of proposing stiffness generic design equations is to eliminate the limitations

of small deformation design equations and to ensure their accuracy and applicability

in analysis and synthesis of FFCMs. Therefore, the geometric characteristic h/l to

be for each type of flexure hinges. As for a FFCM with four corner-filleted flexure
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Table 6.2: Geometries of a flexure hinge(slender beam)

w

l

h

h 1mm

l 10mm

w 5mm
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Figure 6.7: The moment-rotation relationship of link 2

hinges, the ratio h/l = 0.1 will not be discussed here as the results are similar to

those of a FECM with four slender beams.

• A FFCM with four corner-filleted flexure hinges analysis model.

Four identical corner-filleted flexure hinges with the ratio h/l = 0.3 are de-
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signed by the proposed stiffness design equations of corner-filleted flexure

hinges and shown in Table 6.3

Using the FEA method as aforementioned, the relationship between moment

Table 6.3: Geometries of a corner-filleted flexure hinge

w

l

h

r

h 0.61646mm

l 2.05487mm

r 0.205487mm

w 5mm

and rotation angle of link 2 is obtained. Figure 6.8 shows two moment-rotation

relationships. The red line is obtained based on the FEA method, the green

line is the desired one.

It can be seen that the red line is very close to green line. i.e. the moment-

rotation profile of the designed FFCM is the desired profile. Therefore, the

corner-filleted generic design equations are accurate enough for design pur-

poses. The accuracy and applicability of the corner-filleted generic design

equations are considered as verified.

• Model of a FFCM with four circular flexure hinges.

Two sets of four identical circular flexure hinges with the ratio h/l = 0.1 and

h/l = 0.3 are designed by the proposed stiffness design equations of circular

flexure hinges and shown in Table 6.4.

Following the analysis method mentioned above, the moment-rotation profile

based on FEA results is plotted as the blue line with stars and the black line

with stars as shown in Figure 6.9, where the blue line with stars denotes the

moment-rotation relationship of the analysis model with h/l = 0.1, and the

black line with stars describes the moment-rotation relationship of the analysis

model with h/l = 0.3. The green line with squares in the figure is the desired

moment-rotation relationship. It can be seen that both the line with stars are
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Figure 6.8: The moment-rotation profile of FFCM with four corner-filleted flexure

hinges

Table 6.4: Geometries of a circular flexure hinge

w

l

h

R

h/l=0.1 h/l=0.3

h 0.5185mm h 0.41107mm

l 5.185mm l 1.37024mm

R 2.5925mm R 0.68512mm

w 5mm w 5mm

very close to the line with squares. Such a result shows that the moment-

rotation profiles of the designed FFCMs act as the desired profile. Therefore,

this fact proves that the circular generic design equations can be generally

utilized in analysis and synthesis of FFCMs. Especially, the result precision

can be guarantee.
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FEA Data: Model:E w=5,h=0.41107,l=1.37024

Figure 6.9: The moment-rotation relationship of link 2

• Model a FFCM with four elliptical flexure hinges.

Two sets of four identical elliptical flexure hinges with the ratio h/l = 0.1 and

h/l = 0.3 are designed by the proposed stiffness design equations of elliptical

flexure hinges and shown in Table 6.5. In the table, b is the semi-axis of the

profile of an elliptical flexure hinge.

Following the analysis method mentioned above, the moment-rotation profile

based on FEA results is plotted as the green line with stars and the black line

with triangles as shown in Figure 6.10, where the green line with stars denotes

the moment-rotation relationship of the analysis model with h/l = 0.1, and

the black line with triangles describes the moment-rotation relationship of the

analysis model with h/l = 0.3. The green line with squares in the figure is the

desired moment-rotation relationship. It can be seen that both the green line

with stars and black line with triangles are very close to the green line with

squares. Such a result shows that the moment-rotation profiles of the designed

FFCMs act as the desired profile. Therefore, this fact proves that the elliptical

generic design equations can be generally utilized in analysis and synthesis of
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Table 6.5: Geometries of an elliptical flexure hinge

w

l

h

a

b

h/l=0.1 h/l=0.3

h 0.575923mm h 0.44196mm

l 5.75923mm l 1.480652mm

a 2.87961mm a 0.74326mm

b 1.727769mm b 0.44196mm

w 5mm w 5mm

FFCMs. Especially, the result precision can be guaranteed.
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Desired data
FEA Data: Model−F w=5,h=0.575923,2a=5.75923,b=1.727769
FEA Data: Model−G w=5,h=0.44196,2a=1.480652,b=0.44196

Figure 6.10: The moment-rotation relationship of link 2

To sum up the above discussion, the stiffness generic design equations proposed in

the thesis can be used in the analysis and synthesis of FFCMs with a careful con-
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sideration for shear force produced in the flexure hinge. In addition, the accuracy

of analysis and synthesis results can be guaranteed.

In the discussion about stiffness design equations, the stress influence is not be

considered in analysis and synthesis of FFCMs. In practice, however, the designed

FFCM perhaps cannot be implemented because the mechanism can fail when the

stress produced in the deformation exceeds the yield strength of the material. Hence,

the geometric characteristic h/l and material characteristic σ must be selected rea-

sonably. The stress generic design equations are easier to be used in finding the

material and the ratio h/l for a flexure hinge design. For a given maximum rotation,

the material for flexure hinges can be chosen by using the material characteristic

design equations. Then, according to the given maximum rotation and the selected

material, the geometric characteristic can be obtained by utilizing the geometric

characteristic design equations. The error analysis have been done in Chapter 5.

Comparison with the small deformation design equations

At the first, three FFCMs are designed by following the procedure of designing a

FFCM and a flexure hinge. They are respectively the FFCM with four corner-filleted

flexure hinges, the FFCM with three circular flexure hinges and one corner-filleted

flexure hinge (i.e. hinge 2, because the deflection angle is so large that the corner-

filleted flexure hinge can be used here only. The configuration of hinge 2 used in the

other two models is the same as the model of FFCM with four corner-filleted flexure

hinge.) and the FFCM with three elliptical flexure hinges and one corner-filleted

flexure hinge (this one has the same situation as the previously described.). The

proposed generic design equations are used in the case. The geometric dimensions

of these designed flexure hinges are shown in Table 6.6. Thereinto, θmax is defined

using three values for each type of flexure hinges according to the position of the

hinge in the FFCM.

Three FFCMs are then designed by following the procedure of designing a FFCM

and a flexure hinge, they are respective FFCM with four corner-filleted flexure

hinges, FFCM with three circular flexure hinges and one corner-filleted flexure hinge,

and FFCM with three elliptical flexure hinges and one corner-filleted flexure hinge.

The small deformation design equations described in chapter 3 are used in this case.

The geometric dimensions of these designed flexure hinges are shown in Table 6.7.

Thereinto, θmax coincides with the last one.
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Table 6.6: Designed flexure hinges (Generic design equations)

Corner-filleted flexure hinges

hinge4 hinge 1,hinge3 hinge2

h 1.06336mm 1.21046mm 1.1.46827mm

l 3.34535mm 5.28856 10.17395mm

r 0.334535mm 0.528856 1.017395mm

w 5mm 5mm 5mm
h
l

0.31786 0.22888 0.14432

θmax 18 ◦ 25 ◦ 40 ◦

Circular flexure hinges

hinge4 hinge 1,hinge3 hinge2

h 1.12113mm 0.79642mm

l 23.81mm 3.70212

w 5mm 5mm
h
l

0.04709 0.21512

θmax 25 ◦ 13 ◦

Elliptical flexure hinges

hinge4 hinge 1,hinge3 hinge2

h 0.79491mm 1.08129mm

l 2.46745mm 12.333mm

b 0.7402mm 3.6999mm

w 5mm 5mm
h
l

0.32216 0.08767

θmax 13 ◦ 25 ◦

Finally, the moment-rotation relationship for the analysis models (Tables 6.6 and

6.7) are obtained by following the procedure presented in the section. The compar-

ison results for these moment-rotation relationships are show in Figure 6.11.

In Figure 6.11, the green line with squares describes the desired moment-rotation

relationship. The black, green and blue lines with triangles describe the moment-

rotation relationship for the FFCM with four corner-filleted flexure hinges (Model

1), the FFCM with three circular flexure hinges and one corner-filleted flexure hinge

(Model 2) and the FFCM with three elliptical flexure hinges and one corner-filleted

flexure hinge (Model 3), respectively, which are designed by using the generic design

equations. The black, green and blue lines with stars describe the moment-rotation
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Table 6.7: Designed flexure hinges (Small deflection design equatiosns)

Corner-filleted flexure hinges

hinge4 hinge 1,hinge3 hinge2

h 0.96571mm 1.13091mm 1.41054mm

l 3.03816mm 4.941 9.7739mm

r 0.303816mm 0.4941 0.97739mm

w 5mm 5mm 5mm
h
l

0.31786 0.22888 0.14432

θ 18 ◦ 25 ◦ 40 ◦

Circular flexure hinges

hinge4 hinge 1,hinge3 hinge2

h 1.08930mm 0.72860mm

l 23.1341mm 3.38686

w 5mm 5mm
h
D

0.04709 0.21512

θ 25 ◦ 13 ◦

Elliptical flexure hinges

hinge4 hinge 1,hinge3 hinge2

h 0.71805mm 1.04571mm

l 2.22886mm 11.9272mm

b 0.6687mm 3.5782mm

w 5mm 5mm
h
l

0.32216 0.08767

θ 13 ◦ 25 ◦

relationship for the FFCM with four corner-filleted flexure hinges (Model 4), the

FFCM with three circular flexure hinges and one corner-filleted flexure hinge (Model

5) and the FFCM with three elliptical flexure hinges and one corner-filleted flexure

hinge (Model 6), respectively, which are designed by using the small deformation de-

sign equations. From this figure, it can be seen that the relationship for these models

designed by generic design equations are more close to the desired relationship than

the ones designed by small deformation design equations. The error analysis dia-

gram is shown in Figure 6.12.

The maximum error for the relationships referring to the generic design equations is

5%, while the maximum error for the ones referring to the small design equations is
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Figure 6.11: Comparison for the obtained moment-rotation relationship
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Figure 6.12: Error analysis diagram

20%. Therefore, the generic design equations are better than the small deformation



100 Flexure-Based Compliant Mechanisms

design equations.



Chapter 7

Conclusions

This thesis has presented a design method for flexure-based compliant mechanisms

on the basis of their stiffness and stress characteristics. In particular, the effects of

large-deflections and shear induced deformations have been addressed.

Within this scenario, three sets of design equations have been proposed for the first

time, concerning three types of flexures, namely corner-filleted, circular and elliptical

flexures.

As for the flexure stiffness, the proposed equations, are either function of both hinge

rotational deformation and height to length ratio or function of the sole height to

length ratio. In the first case, a more accurate model is achieved. In the second

case, the model is more convenient for design purposes but less accurate.

As for the flexure stress, another set of design equations have been derived. For

each kind of geometry, once the flexure material is chosen, these relations can be

conveniently used for predicting the maximum achievable rotation before failure.

At last, as a case study, a flexure-based four bar compliant mechanism (FFCM)

has been synthesized and simulated by means of finite element analysis. Numerical

results confirm that the proposed design equations outperform previously published

results when modeling thick cross-section hinges undergoing large deflections.

In conclusion, both the stiffness and the stress equations presented in this thesis

might contribute to the fields of compliant mechanisms by conveniently simplifying

their conceptual design and synthesis.
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