
1

AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, INFORMATICA E
DELLE TELECOMUNICAZIONI

Ciclo XXIV

Settore Concorsuale di afferenza: 09/H1

Settore Scientifico disciplinare: ING-INF/05

Middleware for quality-based context
distribution in mobile systems

Presentata da: Mario Fanelli

Coordinatore Dottorato Relatore

Chiar.mo Prof. Ing. Luca Benini Chiar.mo Prof. Ing. Antonio Corradi

Esame finale anno 2012

2

3

TABLE OF CONTENTS

Abstract.. 9

1. Introduction ... 11

2. Context-aware Services in Future Mobile Systems ... 17

2.1. Context-aware Services .. 17

2.2. Context Definition and Classification... 19

2.2.1. Computing Context .. 20

2.2.2. Physical Context... 20

2.2.3. Time Context .. 21

2.2.4. User Context... 22

2.3. Quality of Context (QoC) ... 22

2.3.1. Definition and Motivations .. 23

2.3.2. Quality of Data ... 27

2.3.3. Quality of Delivery Process ... 28

2.4. Next Generation Mobile Networks ... 29

2.4.1. Heterogeneous Environments .. 30

2.4.2. Hybrid Infrastructure-based/Ad-hoc Communications 32

2.4.3. Opportunistic and Intermittent Connectivity ... 33

2.4.4. Integration with Cloud Architectures ... 34

2.5. Motivations of the Thesis ... 35

3. Context Data Distribution in Mobile Scenarios .. 37

3.1. Main Issues ... 37

3.2. Design Guidelines ... 39

3.3. Context Data Life Cycle ... 42

3.3.1. Context Data Production .. 43

3.3.2. Context Data Storage ... 44

3.3.3. Context Data Aggregation.. 46

4

3.3.4. Context Data Filtering .. 47

3.3.5. Context Data Delivery .. 48

3.4. Context-Aware Systems Related Work .. 49

3.5. Chapter Conclusions ... 52

4. Context Data Distribution Infrastructures: Logical Model and Design Choices 55

4.1. Context Data Distribution Infrastructure Main Layers 55

4.2. Context Data Management Layer ... 56

4.2.1. Context Data Representation.. 57

4.2.2. Context Data Storage ... 60

4.2.3. Context Data Processing .. 62

4.3. Context Data Delivery Layer .. 63

4.3.1. Context Data Dissemination .. 64

4.3.2. Routing Overlay ... 67

4.4. Runtime Adaptation Support Layer .. 69

4.4.1. Context Data Management Layer Adaptation .. 71

4.4.2. Context Data Delivery Layer Adaptation .. 72

4.5. Network Deployments & CDDI Peculiar Aspects ... 73

4.6. Chapter Conclusions ... 78

5. Case Studies... 79

5.1. Thesis Case Studies .. 79

5.1.1. Emergency Response Scenarios ... 80

5.1.2. Smart University Campus Scenarios .. 81

5.1.3. Smart Cities Scenarios ... 83

5.2. Intermediate Conclusions & Contribution Outline ... 85

6. Context Data Distribution in Emergency Response Scenarios 87

6.1. RECOWER CDDI .. 87

6.2. A Proposed Distributed Architecture .. 89

5

6.3. Context Data Management Layer ... 90

6.4. Context Data Delivery Layer .. 92

6.5. Runtime Adaptation Support .. 95

6.5.1. Adaptive QoC-based Context Data Caching .. 95

6.5.2. Adaptive Context Query Flooding ... 96

6.6. Implementation Details ... 99

6.6.1. RECOWER Software Architecture .. 100

6.6.2. QoC-based Context Data Caching ... 101

6.6.3. Adaptive Selection of Broadcast Neighbours .. 102

6.6.4. Optimized Management Data Representation ... 104

6.7. Simulation-based Results .. 105

6.7.1. Quality-based Context Data Caching Evaluation 106

6.7.2. Adaptive Query Flooding Evaluation .. 109

7. Context Data Distribution in Smart University Campus Scenarios 115

7.1. SALES CDDI ... 115

7.2. A Proposed Distributed Architecture .. 117

7.3. Context Data Management Layer ... 119

7.3.1. Data Caching Algorithms ... 120

7.3.2. Adaptive Context-aware Data Caching .. 122

7.4. Context Data Delivery Layer .. 124

7.4.1. Data Retrieval Time Enforcement ... 125

7.4.2. CPU-aware Context Query Processing .. 128

7.5. Runtime Adaptation Support .. 130

7.5.1. Adaptive Context Data Caching... 131

7.5.2. Data and Query Transmission Policies .. 133

7.5.3. Dynamic Adaptation of Query Processing Threshold 136

7.6. Implementation Details ... 139

6

7.6.1. SALES Software Architecture ... 139

7.6.2. Transmission Policies Implementation .. 140

7.6.3. Resource-aware Components ... 143

7.6.4. SALES on the Android platform.. 144

7.7. Experimental Results .. 149

7.7.1. ACDC Data Caching Evaluation ... 150

7.7.2. Data/query Transmission Policies Evaluation ... 156

7.7.3. Query Dropping Evaluation ... 161

7.7.4. Evaluation of SALES on Android Devices .. 164

8. Context Data Distribution in Smart Cities Scenarios .. 169

8.1. Cloud Computing in CDDI ... 169

8.2. Main Issues & Challenges .. 171

8.2.1. Management Issues of the Cloud ... 171

8.2.2. Bridging together the Mobile and the Fixed Infrastructure 173

8.3. Cloud Management Infrastructures .. 174

8.4. Network-aware Placement .. 175

8.4.1. Data Center Network Topologies ... 177

8.4.2. MCRVMP Problem Formulation ... 180

8.4.3. Solving MCRVMP ... 183

8.4.4. MCRVMP Experimental Results ... 188

9. Essential Contributions .. 195

9.1. Main Thesis Findings.. 195

9.2. Future Research Directions ... 198

10. Conclusions ... 201

Bibliography .. 205

Publications ... 215

List of Figures.. 217

7

List of Tables ... 221

Acknowledgments ... 223

9

Abstract

The continuous advancements and enhancements of wireless systems are enabling

new compelling scenarios where mobile services can adapt according to the current

execution context, represented by the computational resources available at the local

device, current physical location, people in physical proximity, and so forth. Such services

called context-aware require the timely delivery of all relevant information describing the

current context, and that introduces several unsolved complexities, spanning from low-

level context data transmission up to context data storage and replication into the mobile

system. In addition, to ensure correct and scalable context provisioning, it is crucial to

integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and

modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and

replicate context data on mobile devices. These challenges call for novel middleware

solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of

delivering relevant context data to mobile devices, while hiding all the issues introduced

by data distribution in heterogeneous and large-scale mobile settings. This dissertation

thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic

approach to the design of such type of middleware solutions. We discuss the main

functions needed by context data distribution in large mobile systems, and we claim the

precise definition and clean respect of quality-based contracts between context consumers

and CDDI to reconfigure main middleware components at runtime. We present the design

and the implementation of our proposals, both in simulation-based and in real-world

scenarios, along with an extensive evaluation that confirms the technical soundness of

proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios,

namely disaster areas, smart campuses, and smart cities, to better remark the wide

technical validity of our analysis and solutions under different network deployments and

quality constraints.

Keywords: Mobile Systems, Context Awareness, Context Data Distribution

Infrastructure, Quality of Context.

11

1. Introduction

The widespread adoption of wireless technologies and mobile devices is pushing

toward the provisioning of Internet-based services in an ‘anytime and anywhere’ manner.

Mobile users assume to be able to access their own full service set while freely roaming

between different physical places, and potentially changing the wireless technology used

to enable service provisioning. Among other typical mobile services, in the last two

decades we witnessed the uprising of a new class of services, usually called context-aware,

capable of adapting their own runtime behaviour according to current working conditions,

such as computational capabilities of the mobile device, people co-located in the physical

surroundings, and so forth [1, 2].

Although both the capacity of the wireless networks and the computational power of

mobile devices are constantly growing, the development of context-aware services in

large-scale mobile settings is still an extremely complex and challenging task. From the

network viewpoint, the provisioning of context information introduces a management

traffic strictly related with the number of roaming mobile devices. In addition, since

device mobility can implicitly lead to frequent context changes, context-aware services

potentially require a continuous delivery of context data to promptly trigger adaptations

based on up-to-date and precise context information. At the same time, both the storage

and the processing of large amounts of context data produced into the mobile system

require extremely distributed and scalable architectures capable of efficiently dealing with

CPU and memory constraints, especially for more limited mobile devices. Finally, such

challenging issues become even more complex when we consider the introduction and the

enforcement of agreed quality levels on context provisioning; above all, the emerging

notion of Quality of Context (QoC) enables context producers and consumers to negotiate

the quality of provisioned context data, as well as of the involved delivery process [3, 4].

To be more clear, in our opinion context provisioning in large-scale mobile systems

has to deal with main issues that we group along three directions:

 Heterogeneity and mobile device resource limitations - Future mobile systems

feature extremely heterogeneous mobile devices, that are battery-powered and with

tight CPU and memory constraints. Apart from local limitations, mobile devices can

exploit heterogeneous wireless infrastructures with scarce bandwidth, that can also

change according to the employed technology. In addition, even if modern devices

12

are equipped with several wireless interfaces, communication opportunities have to

be carefully managed to prevent excessive battery consumption.

 Context data management and delivery scalability - Large-scale mobile systems

feature thousands of sensors that continuously produce new context data, with

different expressiveness, data payload, and production rates, all strictly related with

described context aspects. Sensors can be deployed either on mobile devices or on

wireless fixed infrastructures; although the former case is appealing due to the direct

provisioning of context, it leads to higher device costs. As the system scale grows,

both context data storage and processing introduce a fundamental scalability

bottleneck; similarly, context data distribution, both from fixed infrastructures to

mobile devices, and vice versa, has to be properly tailored depending on available

resources.

 Quality-based context provisioning - Quality constraints, both on the context data

and on the distribution process, have a fundamental role in order to prevent useless

and noisy adaptations. Real-world sensors introduce errors due to physical

limitations, and multiple context producers can create and inject conflicting context

data into the system. Similarly, unreliable wireless infrastructures can result in

partial and imprecise context provisioning due to both transmission delays and

packet droppings.

To address the above issues, several framework and middleware solutions have been

proposed in the research literature. However, to the best of our knowledge, previous works

primarily focused on local issues, such as efficient context representation and notifications

to running services, while typically leaving out the great deal of complexity introduced by

the provisioning of useful context data to roaming mobile devices. Hence, although most

previous efforts presented interesting and valid solutions for the sake of local context

provisioning, this thesis work is motivated by the fact that additional research is needed to

enable scalable and quality-based context data delivery in large-scale mobile systems.

Our dissertation addresses this lack by highlighting the main challenges introduced by

context data delivery in mobile systems, and by proposing new architectural models, as

well as design choices, for Context Data Distribution Infrastructures (CDDIs) with

scalability and quality goals. One of the main thesis claims is that CDDIs have to

opportunistically exploit any mobile device and all connectivity opportunities to reduce

context data distribution overhead, while enforcing quality constraints in context

13

provisioning. With finer degree of details, CDDIs should adopt both heterogeneous

wireless standards, e.g., IEEE 802.11 (WiFi) and Bluetooth (BT), and modes, i.e.,

infrastructure-based and ad-hoc, to increase system scalability at the communication layer.

If correctly handled, the usage of mobile devices as context data carriers can greatly

reduce runtime data traffic over more limited and expensive fixed wireless infrastructures,

by granting mobile devices exchange data through ad-hoc wireless links. This also

alleviates the context data storage burden as the CDDI can exploit the memorization

resources available on the mobile devices. In addition to this major claim, and to make a

very synthetic preposition, the manifold contributions of this thesis can be grouped in the

following main areas:

 The introduction of a new unifying logical model for CDDIs in large-scale mobile

systems - The thesis proposes a high-level logical architecture, by detailing main

modules with associated realization issues and design choices. We thoroughly

evaluate different realization choices, while also analyzing the impact of network

deployments on context data distribution functions. To better assess the validity of

our logical model, we used it to classify the most important research works currently

available in literature [5].

 The design and the implementation of different CDDIs, targeted for three different

and significant case studies - By considering that network deployments greatly

affect the realization of context provisioning mechanisms, we organize part of this

dissertation along three main case studies: context-aware services for emergency

response scenarios, context-aware services for smart university campuses, and

context-aware services for smart cities. In this way, we aim to better highlight how

the main CDDI mechanisms interact and are affected by network deployment. As

the system scale grows, we will introduce and employ different context data

distribution protocols and solutions, in order to keep on ensuring system scalability

and quality-based constraints.

 The implementation of the main CDDIs components, both on network simulators and

on real testbeds - To assess the technical soundness of our proposals, we

implemented the main mechanisms introduced by our CDDIs as software

components. In particular, we provide 1) a simulator-based implementation, useful

to validate distribution protocols in large-scale systems and with different mobility

patterns; and 2) a real-world implementation, useful to test important performance

14

indicators, such as CPU and memory overhead, on real deployments. By jointly

exploiting such implementations, we aim to better evaluate our solutions in large-

scale systems, while always considering the runtime overhead that such solutions

would introduce in real deployments.

 A thorough evaluation of the performance reached by proposed context data

distribution protocols, based on both simulations and on-the-field prototyping - For

each case study, we extensively evaluate the effectiveness and the efficiency of

proposed context data distribution mechanisms. If useful, such evaluation will be

carried out by exploiting both approaches of simulation-based and real testbeds

results.

The thesis is organized along eight main chapters divided in two main parts. Starting

with the first part, Chapter 2 introduces useful background knowledge, by detailing main

context definitions and categorizations, as well as quality constraints in context data

delivery. Chapter 3 presents and discusses both the main issues and the design guidelines

for CDDIs in mobile systems, and introduces important related works in order to better

focus main gaps in the current research literature. Finally, Chapter 4 introduces our novel

CDDI logical model, by also discussing main involved layers, possible design choices, and

network deployments; in addition, it presents important differences with traditional data

distribution mechanisms available in literature, so to better highlight the need of additional

research in this area.

After this first part, primarily focused on modeling CDDI requirements and providing

usable and valid design guidelines, Chapter 5 enacts as glue between the two thesis parts,

and details our main case studies, in order to clarify both the main issues introduced by

adopted network deployment, and the principal solutions introduced to provision context

information.

Then, Chapter 6, Chapter 7, and Chapter 8 analyze the design and the implementation

of real-world CDDIs. Chapter 6 presents our CDDI for emergency response scenarios,

called Reliable and Efficient COntext-aware data dissemination middleWare for

Emergency Response (RECOWER), while Chapter 7 focuses on university smart campuses

to present our CDDI Scalable context-Aware middLeware for mobile EnvironmtS

(SALES). Then, in Chapter 8, we focus on the realization of CDDIs for smart cities

scenarios, by extending our distributed architecture with Cloud-based solutions for the

sake of context processing. We remark that, although the presentation of our solutions is

divided along these three chapters, solutions proposed in one scenario can be also adopted

15

in the other ones; this structure has been adopted for the sake of clarity, in order to present

proposed solutions in the most appropriate scenario.

Finally, Chapter 9 and Chapter 10 end this dissertation by highlighting main thesis

findings and by detailing still open challenges and future research directions, so as to

better remark the main contributions of our work.

17

2. Context-aware Services in Future Mobile Systems

In the last few years, context-awareness, as the provisioning of the current execution

context to the service level, has received an increasing attention, up to becoming a core

feature of next-generation mobile networks. The capacity to gather and timely deliver to

the service level any relevant information describing the provisioning environment, e.g.,

computing resources, current location, and user preferences, enables new compelling

scenarios where services can self-adapt to ensure provisioning and improve user

experience [1].

Much work has been done to introduce a unified definition of context awareness,

capable of considering all the aspects useful to perform service adaptation [1, 2, 5, 6].

Unfortunately, such generalizations usually led to extremely broad definitions, difficult to

apply and to manage in real-world scenarios, with the main outcome that, at the current

stage, there is no widely accepted definition. At the same time, several research works

pointed out the need of provisioning context to mobile devices with agreed quality levels,

useful to ensure correct, timely, and meaningful adaptations. Also this area is

characterized by contradictory and partial definitions, usually related with specific types of

context-aware services [3, 4, 7].

Main goal of this chapter is to introduce all needed background material and to clearly

state all main definitions used in the remainder of this dissertation, as well as addressed

main deployment scenarios. Section 2.1 presents some examples that clarify the great

potential of context-aware services in everyday life. Section 2.2 introduces the definition

of context with its associated categorization, while Section 2.3 details the Quality of

Context (QoC) notion. Section 2.4 presents the main peculiarities of next generation

mobile networks, so to better justify the need of additional research in this area. Finally,

Section 2.5 remarks the main motivations of this thesis work.

2.1. Context-aware Services

Context is a fundamental basic issue but also an intrinsic and hidden concept in our

everyday life [1]. We continuously and implicitly process information coming from our

own physical surroundings to automatically react and adjust our behavior. Even more,

human beings are able to process complex and hidden context information, such as people

mood and emotions, to adapt their own reactions, for instance, by reducing the pitch of the

18

voice, dynamically changing the distance with the interlocutor, and so forth.

Context-aware computing research strives at bringing this awareness to the computing

world. For instance, when applied to mobile systems, context awareness allows novel

scenarios where services can dynamically adapt according to time-varying and

unpredictable conditions, usually consequence of user mobility. To clarify the great

potential of context-aware scenarios, let us introduce few examples.

Every year, thousands of tourists visit the beautiful monuments in our city, Bologna;

of course, tourists do not know the city center, and do not usually have easy ways to

discover the most attractive locations to visit. Different tourists may rate attractions in

different ways, depending on their historical background, and could be interested in

different types of museum, monuments, etc. In this case, a context-aware tourist guide [8]

would be extremely suitable to provide useful descriptions of the monuments, as well as

ratings and comments left by previous tourists. Such a service can exploit both tourists and

monuments profiles, as well as current localization information, to suggest downtown

tours. In a similar way, it could exploit aforementioned context information to recommend

close restaurants matching particular cuisine preferences.

In addition, Bologna features the oldest university in the occidental world. Thousands

of students are currently enrolled in the different degree courses offered by our university;

they usually spend several hours in the university area, close to the city center, where most

of the university buildings are located. In this case, smart campus services could greatly

enhance the social experience of our students, for instance, by recommending social

events of interest, possible friendships with students sharing common interests, and so on

[9, 10]. In addition, our university hosts several exchange students that want to carry on

abroad studies. Those students usually need some time to settle in our city since they do

not know the university area and do not have acquaintances and friends. By using current

localization information, a smart campus service could automatically guide them in

Bologna downtown, so to find university buildings in an easy way. Also, by exploiting

student and place profiles, it could suggest possible friendships with both Italian and other

exchange students, so to ease integration processes with local people, social customs, etc.

All above examples clarify the significance of context-aware services in mobile

computing scenarios. Context can comprehend several and heterogeneous information,

mainly used to characterize involved people and physical places in previous examples. It

comes without saying it that additional context information, related to used computing

devices and resources, are also extremely useful to tailor service provisioning and to avoid

19

user dissatisfaction, e.g., by avoiding the visualization of extremely complex and detailed

web pages on a smartphone with a display of few inches. To settle the required

terminology and clearly define the context information considered in mobile context-

aware scenarios, next section delves into context definition and classification details.

2.2. Context Definition and Classification

Context is now a very wide meaning word, that may also express several and different

senses according to specific scenarios and authors. From a merely practical viewpoint,

context identifies the aspects the designer considers useful to model the environment

where a particular service is deployed and executed; such aspects are usually used at

runtime to trigger appropriate service adaptations. With a more theoretical connotation,

several authors in the past introduced their own context definition.

To the best of our knowledge, the oldest and most referenced context definition for

mobile computing scenarios has been presented in [1], where authors say that “Three

important aspects of context are: where you are, who you are with, and what resources

are nearby. Context encompasses more than just the user’s location, because other things

of interest are also mobile and changing. Context includes lighting, noise level, network

connectivity, communication costs, communication bandwidth, and even the social

situation”. In [2], authors supply a broader definition, saying that “Context is any

information that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user and

an application, including the user and applications themselves”. In [11], authors write that

“elements for the description of this context information fall into five categories:

individually, activity, location, time, and relations”. Finally, [6] defines context as a four-

dimensional space composed by computing context, physical context, time context, and

user context.

Although these definitions may seem different due to adopted viewpoints, they

actually agree upon the main context aspects considered to trigger service adaptations. For

the sake of clarity, in the remainder we adopt the context definition presented in [6] since

capable of covering the main context aspects with a straightforward classification. In

addition, it shares important similarities with the definition of [1], hence we can safely

assume that it is overall well-accepted by the research community. Next subsections

clarify each single context dimension, namely computing context, physical context, time

context, and user context, by also introducing examples of useful runtime adaptations.

20

2.2.1. Computing Context

The computing context dimension deals with all those technical aspects related to

computing capabilities and resources. It has a two-fold aim since it captures both local

device aspects, such as network connectivity and bandwidth, display size and resolution,

etc., and distributed ones, such as printers and servers in physical/logical proximity.

First, the computing context captures all those heterogeneities usually present in

mobile environments. Traditional context aspects, such as display size and network

bandwidth, are already widely used in commercial products. For instance, both Google

and Facebook dynamically adapt to the current characteristics of mobile devices, Web

clients, and connectivity; also, several video streaming services, such as Youtube, adapt

video quality to device capabilities, mainly screen resolution, to save computational

resources. For the sake of battery preservation, in [12], the authors introduce a new

algorithm to reduce LCD backlight, while accounting for image distortion; the proposed

schema considers the peculiarities of the specific LCD adopted by the device, as well as of

displayed images, to reach a good tradeoff between image quality and battery savings.

Focusing on context-aware Web services, in [13] authors present a new conceptual

framework, made by a modeling language and automatic code generation tools, to ease the

design, the implementation, and the deployment of context-triggered adaptation actions.

Second, computing context also takes into account the different resources that a

mobile device encounters while roaming, such as printers, displays, connectivity

opportunities, etc. [1]. In Always Best Connected (ABC) systems [14, 15], mobile devices

melt together signal quality, battery status, pricing, and additional configuration policies,

to select the best connectivity opportunity between available ones; connectivity selection

is usually performed by using computing context aspects. Similarly, services that exploit

close computing resources are attractive to enable impromptu collaborations between

mobile users and devices, with no need of user-initiated reconfigurations. A smart printer

service for university campuses can automatically find and redirect print commands to the

closest printer, so to avoid students roaming in university buildings to find available

printers [1].

2.2.2. Physical Context

The physical context dimension accounts for all those aspects that represent the real

world, and that are usually accessible by means of sensors deployed in the surrounding

environment. Absolute device and user locations are notable basic examples of physical

21

context; other interesting aspects include people speed, traffic condition, noise level,

temperature, and lighting data. Physical models and laws, such as cinematic laws useful to

predict future physical states of the mobile system, belong to this context dimension. We

remark that, due to imprecise sensing techniques and stochastic nature of physical

processes, context aspects belonging to such context dimension are usually very prone to

errors; hence, particular attention has to be paid in triggering service adaptations, for

instance, by applying low-pass filters and forecasting techniques to received context data,

in order to prevent wrong adaptations [3].

For the sake of clarity, let us introduce few examples where the physical context

dimension is considered. First and foremost, traditional navigation systems adopted in

modern cars use current location information, provided by the Global Positioning System

(GPS), to compute route directions to the final destination; they surely represent the most

common example of context-aware service based on physical context. Staying with

vehicular scenarios, [16] proposes a context-aware solution for intelligent traffic lights

that, based on current traffic jamming conditions, adapts red/yellow/green times to

improve road condition. Similarly, many solutions use attributes belonging to this context

dimension to perform environmental monitoring, such as monitoring systems that use

video sensors deployed on vehicles to detect plate numbers of suspicious cars and prevent

collisions with wild animals [17]. Finally, considering more local adaptations, in [18]

authors present an adaptive method to scale LCD backlight according to the lighting

conditions of the surrounding environments, so to preserve device battery.

2.2.3. Time Context

The time context mainly deals with the time dimension, such as time of a day, week,

month, and season of the year, of any action performed into the system. Actions can be

referred either to real-world, e.g., human beings, or computing actors, e.g., software

agents. We remark that these context aspects can be of two main types, namely sporadic

and periodic. Sporadic events are used to model unexpected actions triggered occasionally,

even only once. Instead, periodic events model actions that present themselves in a

repeated and predictable way. Of course, more complex time context events, for instance,

based on event sequence, number of events in a particular time period, and so forth, are

possible and should be properly supported by the system [2]. We also recall that the

implementation of particular primitives is not straightforward in distributed systems as

time synchronization between different devices is usually not enforced.

22

To consider real service scenarios, a sporadic event can be associated to a temporary

network congestion that automatically triggers an adaptation action meant to reduce the

quality of the video streaming provisioned on the mobile device. A periodic event can be

consequence of an activity detection system that, for instance, automatically switches off

the cell phone ringing tone every day, from 11pm to 7am, to avoid waking up users.

Finally, complex time events can take into account, for instance, repeated network

congestion occurrences; in this case, by monitoring congestion frequency and inter-arrival

times, a context-aware service can decide to switch between different connectivity

opportunities for the sake of user satisfaction.

2.2.4. User Context

The user context dimension contains high-level context aspects related to the social

dimension of users, such as user’s profiles describing main interests and cuisine

preferences, people located nearby, current social situation, and so forth [19]. Above all,

let us remark that we are considering distributed mobile systems where users and devices

interact among themselves, hence, as also noticed by [20], each node context contains 1)

an individual dimension, descending from its own egocentric view (e.g., user profile and

preferences); and 2) a social dimension, descending from the awareness of being part of a

whole system (e.g., people in physical proximity and current social situation).

Several systems already adopt this kind of context aspects to perform automatic

recommendation and situation-based adaptation. For instance, in [21], authors exploit co-

localization patterns to infer common interests between users and to recommend new

friendships; social events are described through profiles, later used by the system to

understand if two events, although different, share commonalities in addressed topics.

Similarly, [22] presents a situation-aware service that, by aggregating context information

coming from running services, physical sensors deployed in the environment, and people

profiles, understands if a work meeting is taking place; in that case, the service can

automatically switch off the cell phone ringing tone until the end of the work meeting.

2.3. Quality of Context (QoC)

Aforementioned context aspects are widely used in literature to adapt services at

runtime, so to fit the current execution environment characteristics and to make them

satisfactory for final users. Notwithstanding the huge potential of these scenarios,

important challenges have to be carefully addressed during the real-world realization of

23

context-aware services. Among others, the quality of the context data is fundamental since

erroneous data can misguide service adaptations; at the end, such a reduced usability can

mine the widespread adoption of this class of services since users will be upset by wrong

and unexpected reconfiguration actions.

Above all, it must be noted that some intrinsic errors, associated with sensing

techniques, cannot be avoided; some context aspects, such as lighting condition and

temperature of a room, are acquired by physical sensors that introduce approximations due

to limited sensor resolution. Similarly, context data produced by logical sensors, such as

user profiles fetched by a database, can present partial and incomplete information, as well

as errors when produced by reasoning techniques; hence, even if usually more polished

than physical ones, these context data also need proper management mechanisms to assess

their quality.

Consequently, the notion of Quality of Context (QoC) – defined as the set of

parameters expressing quality requirements and properties on context data (e.g.,

precision, freshness, trustworthiness, …) – is fundamental to control and manage all the

possible context inaccuracies [3, 4]. Several research works analyzed the usage of QoC-

based mechanisms useful, for instance, to solve conflicts between context data produced

by different sensors [23]. Although it is widely recognized that QoC-based management

mechanisms are essential in real-world context-aware scenarios, current research works

present conflicting definitions and objectives, usually tailored for specific services and

types of context data. Hence, the remainder of this section aims to clearly state the notion

of QoC adopted in this dissertation, as well as the main quality attributes considered in

both context data and distribution process.

2.3.1. Definition and Motivations

Similarly to context awareness in itself, QoC is an extremely blurred concept with

several meanings. Some works have already studied both context quality parameters and

their effects on context data distribution; following a temporal order, we now briefly detail

the principal works in this area, starting from the oldest one.

In [3], the authors define QoC as “any information that describes the quality of

information that is used as context information. Thus, QoC refers to information and not

to the process nor the hardware component that possibly provide the information”. This

definition decomposes the quality problem along three main directions, namely 1) the

quality of the physical sensors; 2) the quality of the context data; and 3) the quality of the

24

delivery process; according to authors’ definition, QoC deals with only the second

dimension. More specifically, quality of context data contains the following main

attributes: 1) precision, to describe how exactly the provided context information

represents the reality, so to account for sensor resolution; 2) probability of correctness, to

denote the probability that a context information is correct, and not wrong due to internal

sensor problems; 3) trustworthiness to rank if the context data producer can be trusted; 4)

resolution, to denote the granularity of the information in terms of spatial/temporal

constraints; and 5) up-to-dateness, to account for context information aging. Although

trustworthiness could seem overlapped with probability of correctness, it accounts for a

different aspect: trustworthiness is used by a context producer to rate the quality of the

other entity that originally produced the context information, while probability of

correctness is attached by the context producer itself according to its own local beliefs.

Moving toward more recent definitions, in [7], authors introduce a QoC notion based

on four main parameters: 1) up-to-dateness, to deal with context aging; 2) trustworthiness,

to indicate the belief we have in context correctness; 3) completeness, to account that

context data could be partial; and 4) significance, to express the absolute priority of

context data. Apart from some similarities with the classification proposed in [3], here

authors introduce two new attributes, namely completeness and significance, and present

algorithms to solve context data conflicts at runtime; a conflict resolution policy exploits a

weighted combination of quality parameters, in order to select the data to be saved [23,

24]. In addition, the significance parameter introduces connotations related to the context

data delivery, thus being in contrast with the definition of [3].

Furthermore, [25] exploits a standard ISO vocabulary for measurements to define a

new QoC framework. Authors critically analyze the ISO standard to understand what

attributes can be adopted in real-world context-aware computing systems. First of all, the

authors argue against the usage of the accuracy attribute as a means to rate how close a

measurement is to the real value. In fact, the automatic evaluation of the accuracy by a

context producer is unfeasible since the context producer should know the real value of the

context information itself; of course, since there is no practical way to have such

information, accuracy cannot be ever automatically calculated by the system itself.

Instead, as suggested by the adopted ISO vocabulary, authors consider precision to rank

how the results from measurement sensors are repeatable; for instance, although a

temperature sensor can be inaccurate by reporting higher temperature values, if such

values always present the same error in respect of real values, the precision of the sensor is

25

high. Hence, context data generated from a producer with a good precision exhibit relative

dynamics that closely follow real context values. In addition, authors consider up-to-

dateness, resolution, and trustworthiness with meanings similar to the homonym attributes

proposed by [3], and detail a new algorithm to dynamically evaluate trustworthiness

parameter based on users’ feedbacks.

Finally, in [26], authors focus on the quality of information produced in wireless

sensor networks. They consider the notion of operational context to facilitate the dynamic

binding between applications and sensors; in particular, they exploit the 5WH principle

(why, when, where, what, who, and how) to describe both application requirements and

produced data, and use these attributes to handle context data distribution at runtime. In

addition, they consider spatial and temporal relevancy of produced data, in order to

establish if a piece of information has temporal and spatial properties compatible with

application requirements, and propose two metrics to evaluate such quality parameters.

In conclusion, a widely-accepted QoC definition is still missing. Different authors

focused on specific aspects and presented their own QoC framework. At the same time,

some research works tend to separate the quality attributes associated with the context data

from the ones associated with the context data delivery process [3]; differently from them,

we think it is not always possible to clearly separate these dimensions, hence, we are more

prone toward extended QoC definitions and contracts useful to clearly manage the whole

context delivery process from producers to consumers.

However, at least a common thought can be highlighted in all the aforementioned

works: QoC is not about requiring perfect context data, such as context data with the

highest possible up-to-dateness, but about having and maintaining a correct estimation of

the data quality. In fact, context data without a proper quality characterization are both

dangerous and useless, since service reconfigurations could be completely misled by low

quality data. QoC is also motivated by the following main scenarios [3]:

 QoC agreements - As Quality of Service (QoS) permits service consumers and

producers to negotiate their requirements at acceptable service levels by

considering the network available underneath [27], when several entities

cooperate to the provisioning of context-aware services we need proper quality

contracts to tailor the interactions between context data producers and consumers.

For instance, in many scenarios, the same context data can be produced by

different sources, each one leading to particular QoC attributes; in this case, QoC

is essential to perform an accurate selection of the final context producer to use.

26

Furthermore, whenever a context consumer receives new context data, it can take

more accurate decisions, spanning from using the data, weighting it if partially

incomplete, or completely discharging it due to the extreme low quality. QoC

agreements can be also dynamically negotiated at runtime depending on available

resources; for instance, due to network bandwidth limitation, a context producer

and a context consumer can be forced to use a low data sending rate, thus

experiencing limited context up-to-dateness.

 Adaptation of context data reasoning - A fundamental task of every context-

aware system regards the production of new context data out of low-level

information coming from single sensors. In this case, context data quality is

fundamental, and must be considered during reasoning to assess if generated

context data will be meaningful at all. In addition, it will be necessary to also

determine the quality of the produced context data. Apart from context data

reasoning, also simple filtering techniques, usually meant to filter low quality

data for the sake of scalability and to interpolate historical information to

highlight trends, have to consider data quality information to avoid wrong

droppings and deductions.

 Adaptation of context data distribution - Every context-aware system needs to

memorize and distribute context data to interested mobile nodes. If context

producers and consumers agree on particular QoC objectives, it is possible to

introduce novel adaptive data distribution solutions to increase system scalability

by reducing the runtime management overhead. For instance, if context

consumers can accept context data with low up-to-dateness, we can supply

cached context data to save resources; of course, this adversely affects QoC but,

if correctly managed, does not reduce the quality stipulated with users.

 Reconstruction of the context-aware service behaviour - As context data

automatically trigger services adaptation, the usage of low quality data has a

significant impact on the context-aware users’ experience. If only low quality

data are available, it is important to warn the user to let him better evaluate both

the current situation and the possible dangers introduced by automatic context-

aware reconfigurations and suggestions. In addition, if the context-aware service

presents wrong behaviours, it is important to easily understand the real cause,

e.g., either a traditional programming bug or low quality context data.

27

 Privacy policies - As several context-aware services make use of sensitive

context data, QoC is important to restrict the access to personal and sensitive

information. Access policies can depend on the quality of the context data; for

instance, while a user will not consider the distribution of coarse-grained

localization information as a privacy violation, he will surely want to restrict the

distribution of localization information with spatial resolution in terms of

hundreds of meters. Hence, QoC attributes and constraints are useful to detail and

enforce appropriate privacy policies on context data.

To conclude, QoC-based context data distribution is a core requirement to enable

appropriate runtime system management in real-world scenarios. Also supported by

aforementioned related works and requirements, we remark that there surely exist two

main quality directions to consider: one related with the quality of the data, the other

related with the quality of the context data distribution. Hence, in the remainder, we adopt

a broader QoC notion that, apart from data quality attributes, considers the quality of the

context data distribution (e.g., data delivery time, reliability, …) to ensure the availability

of the context data with the right quality, in the right place, and at the right time [3].

2.3.2. Quality of Data

Each context data instance has to be associated to and described by proper quality

attributes, mainly to evaluate the usefulness of such piece of context information. We

carefully consider the previous works on data QoC [3, 4, 7, 25], but we extend them to

better fit our view. Now, we point out the data QoC framework adopted in the remainder

of this thesis.

In finer details, our QoC-based context data framework considers the following

quality attributes. First of all, context data validity rates the compliance of the context data

with the field of validity of the specific type; for instance, a time context data must

conform to the Gregorian calendar format. Second, context data precision evaluates the

degree of adherence between real and sensed values of a context data. We agree with some

previous works in the area, such as [25], that it is not possible to dynamically evaluate the

precision of each data instance as this supposes to know the real value of the context data;

hence, our notion of precision exploits information coming from the resolution offered by

sensing devices. For instance, focusing on precision, ultra-wide-band-based localization

data are more precise than standard GPS-based ones. Third, context data up-to-dateness

takes care of data aging, so to express how the usefulness of particular data changes over

28

time. Differently from previous approaches, this is not a simple timestamp but rather a

more complex law that can also introduce non-linear functions between the absolute time

elapsed from data generation and the current up-to-dateness value. For instance, the up-to-

dateness quality attribute associated with location information of a fixed resource, e.g.,

GPRS antenna, is not greatly affected by time elapsing, while the same attribute for a

mobile entity, e.g., a mobile device carried by a user, can quickly degrade according to

current mobility patterns. Fourth, context data significance ranks the relative importance

of a context data. This attribute is mainly used by the management infrastructure during

conflict resolution phase and storage replacement to keep the most important data. Finally,

similarly to the work of [3], context data trustworthiness is used to rate the quality of the

other entity that had originally produced the context information, and context data

probability of correctness is attached by the context producer itself at generation time to

rate the local beliefs he has in sensor correctness.

All the above QoC parameters should be taken into account in the QoC agreement

specified at the service level and, at the same time, used by the context data distribution to

measure and achieve the fulfillment of the QoC requirements.

2.3.3. Quality of Delivery Process

QoC has to consider the quality of the distribution process to ensure user satisfaction.

Context data have to be dispatched from producers to consumers according to negotiated

quality levels. For instance, a stale data is both useless, since it will be probably

discharged at the consumer node, and dangerous, since it could lead to wrong adaptations

if used by the consumer. In addition, since context data distribution usually takes place

through best-effort wireless infrastructures that could introduce delays and droppings, thus

leading to additional inaccuracies in the context received by mobile devices, it is also

necessary to negotiate proper priority and reliability levels.

Hence, in our opinion, QoC has to deal also with dynamic aspects related to the

delivery of the context data to single consumers. To support this model, context data have

to be tagged with proper quality parameters that, differently from the ones treated in the

previous section, depend on the consumer requesting them. Let us clarify the meaning of

the last sentence with two examples. A context data instance has an up-to-dateness value

that mainly depends on the time elapsed from data generation; it does not matter which

context consumer requires it, as long as the instance respects the QoC constraints imposed

by the consumer. Hence, the up-to-dateness quality attribute will change only as

29

consequence of time elapsing, and not according to the consumer requesting the data.

Instead, let us consider two different consumers that require context data from the same

producer with different priority levels. For instance, the same context data describing the

people contained in a particular physical place can be required by both friends finder

service and by police for monitoring purpose; of course, the context data sent in answer to

police requests must be dispatched with higher priority. Hence, these quality attributes on

the context data distribution process depend on the consumer requiring them, and are

dynamically determined at runtime according to the context data request.

Even if Buchholz et al. already highlighted the importance of quality attributes on the

distribution process [3], they clearly divided QoC, related to context data only, from QoS,

connected instead to the distribution process. As stated before, we do not agree with this

sharp separation as some quality attributes are actually entangled, thus presenting

correlations between their values. For instance, some data quality parameters are

intrinsically dynamic, as their value depends on the time elapsed from data generation. In

this case, since delivery delays affect these quality parameters, context data matching

consumer QoC requirements at the producer side could not match them when actually

received by the consumer. Hence, the assumption that data QoC parameters do not depend

on the quality parameters of the distribution process is violated [3]. Also, Buchholz et al.

introduce a contradiction since they say that “QoC refers to information and not to the

process nor the hardware component that possibly provide the information”; but the QoC

trustworthiness parameter clearly depends on the process (e.g., the intermediate entities

involved in context data routing) that provides the information to the final consumer.

In conclusion, in the remainder we consider some main QoC parameters related to the

dispatching process, namely 1) data retrieval time, to capture the maximum time limit

between the request of context data and the actual delivery to the consumer; and 2)

priority, to consider differentiated priorities depending on the consumer requesting the

data, so to reconfigure intermediate dispatching processes.

2.4. Next Generation Mobile Networks

Although context-aware solutions have been adopted in different research areas,

context-awareness reaches its maximum usefulness in mobile systems. In fact, context

awareness permits mobile services to dynamically and efficiently adapt both to the current

situation, such as current physical place and social activity, and to the challenging and

highly variable deployment conditions typical of such mobile environments (device

30

resource scarcity, unreliable and intermittent wireless connectivity, …). The significance

of context-aware capabilities in mobile computing is also evidenced by the plethora of

research efforts proposed in the last years in this area [28-37].

Before proceeding further, it is necessary to clearly define our main deployment

scenario. In fact, the realization of real-world context-aware services in mobile systems

requires a deep understanding of many technological details and includes several non-

trivial operations, spanning different layers and also depending on executing platforms.

For instance, different wireless technologies can limit and constraint the possibility of

interactions between mobile nodes, while different operating systems for mobile devices

can introduce peculiar limitations on the usage of connectivity opportunities. In addition,

context delivery can introduce a high management overhead, especially when the system

scales up to thousands of devices. In this case, the availability of specific technologies,

such as ad-hoc communications between mobile devices in physical proximity, can greatly

help the implementation and real-world realization of context distribution mechanisms.

Also, there exist novel routing protocols that opportunistically exploit node encounters to

spread data into the mobile system with a delay tolerant fashion [38]. Although such

routing mechanisms are not common yet as further studies are required to better assess

their runtime performance, we believe that they will soon become fundamental to perform

message routing and data distribution in mobile systems for the sake of wireless

infrastructure offloading. Finally, in the near future, mobile systems will integrate with

Cloud architectures [39], with the main goal of dynamically offloading heavy

computations, such as video and image processing, so to save device battery.

For the sake of clarity, Figure 2.1 reports an example of future mobile system to

highlight the main associated peculiarities, namely heterogeneous devices, heterogeneous

wireless technologies and modes, etc. Starting with lower-level technological details, and

moving toward higher-level routing stacks and Cloud solutions, next subsections detail

what we mean with and expect from future mobile systems.

2.4.1. Heterogeneous Environments

The overwhelming success of mobile devices, wireless communications, and novel

mobile development environments is paving the way to the anytime from everywhere

connectivity view of pervasive computing. Notwithstanding several advantages of the new

scenario, the design and the implementation of a context delivery support are very

complex tasks because of both the high deployment scenario heterogeneity (in terms of

31

client characteristics, employed wireless technologies, etc.) and its inherent resource

scarcity.

First, future mobile systems will feature extremely heterogeneous devices, spanning

from full-fledged laptops to resource-constrained and battery-powered PDAs. A big

challenge is that different mobile development platforms, such as Java 2 Micro Edition,

Windows Mobile, Apple iOS, and Android, implement different features and suggest

different logical architectures for service development. There are already a few good

papers analyzing the main differences of these platforms, and we refer interested readers

to those works for a thorough analysis [40]. Here, we want to underline that all the main

mobile platforms offer poor support of some basic features out of programmer direct

control, such as garbage collection and object serialization, and typically introduce high

dependencies on the mobile operating system. That latter problem affects especially cross

mobile development platforms that, notwithstanding their goal of being independent of the

hardware and software available underneath, often suffer from inconsistent

implementations, especially for low-level and system-dependent libraries, such as wireless

networking APIs.

Second, since most of the devices that participate to context distribution are portable,

battery-powered, and resource-constrained, particular attention should be paid in

monitoring and controlling final overhead, to keep it low with respect to available

resources. Let us note that context delivery is a continuous background process that

introduces long-running management overhead in CPU utilization, memory usage, and

 Mobile Infrastructure

 Fixed Infrastructure

Cloud Architecture

Bluetooth
Ad-Hoc Network

IEEE 802.11
Ad-Hoc Network

WiFi AP
3G BS

Opportunistic
Networking

Figure 2.1. Future Mobile Systems.

32

network bandwidth. From a general viewpoint, interesting context data should be

continuously delivered to mobile devices, so to detect context-based situations and trigger

proper reconfigurations; of course, partial offloading of context processing to fixed

infrastructure is feasible as well, but possible only when there are reliable and not

expensive means to exchange data between mobile and fixed servers. That latter

assumption is not always ensured if we consider mobile devices roaming in a city with 3G

network connectivity only.

To conclude, a context management infrastructure for future mobile systems has to

consider both heterogeneity and resource scarcity to avoid the introduction of unfeasible

management overheads that, in their turn, could lead to the slowdown of context-aware

services wide acceptance [6].

2.4.2. Hybrid Infrastructure-based/Ad-hoc Communications

While mobile users keep asking for novel classes of services that require transferring

huge amounts of data over fixed wireless infrastructures, such as video streaming services,

current wireless communication technologies are suffering this increased bandwidth

pressure, and are struggling to get behind the over increasing traffic demands of next

years. It is important to note that, in December 2009, mobile data traffic surpassed voice

one on a global basis, and is expected to double annually for the next five years [41] [42].

As main consequence, several European and US operators are considering the end of

unlimited data plans to cool this surging demand [43].

Hence, there is a remarkable attention toward hybrid distributed architectures, capable

of jointly exploiting both infrastructure-based and local ad-hoc communications between

mobile devices, to reduce infrastructure traffic and increase system scalability. On the one

hand, mobile devices, usually called relays, can distribute data to neighbours in physical

proximity without additional load on the wireless fixed infrastructure; from the wireless

infrastructure point-of-view, only one initial transmission, useful to transmit the data from

the fixed infrastructure to the relay, is required to deliver the data to the entire one-hop

neighbourhood of the relay. On the other hand, since the coverage of wireless fixed

infrastructures is not always ensured, relays enacting as bridges can extend infrastructure

coverage through multi-hop ad-hoc communications. In addition, ad-hoc communications

enable data exchange between close devices everywhere; in specific deployment

scenarios, such as the ones resulting from natural disasters or terrorist attacks, this type of

communication is essential since wireless infrastructures could have been also damaged.

33

From the technological point-of-view, different wireless standards already allow ad-

hoc communications between mobile devices. The most remarkable ones are surely IEEE

802.11a/b/g (WiFi) and Bluetooth (BT), currently available on a large portion of

commercial mobile phones and PDAs. Although with different transmission ranges and

bandwidth, WiFi and BT interfaces can be adopted to realize hybrid wireless networks. At

the same time, mesh networks, namely hybrid wireless networks where intermediate nodes

act as relays for the sake of infrastructure coverage and throughput, belong to an extremely

active research area that, apart from featuring important standardization efforts (such as

the IEEE 802.11s amendment), is proposing optimized MAC and routing protocols that

can also suggest interesting solutions for hybrid mobile networks.

Unfortunately, hybrid infrastructure/ad-hoc architectures introduce additional

complexities that have to be properly addressed before the real-world production phase.

Nodes acting as relays are usually resource-constrained mobile devices that greatly suffer

from the additional management duties. Hence, proper incentive mechanisms need to be

designed and realized to avoid final users acting selfishly. At the same time, if mobile

devices are directly involved into the routing, we need proper resource reservation and

security mechanisms to ensure service provisioning. Both throughput and fairness over

multi-hop routing paths are hard to ensure, while message confidentiality and integrity are

fundamental in real-world service provisioning. All these additional requirements further

complicate the software stack needed to support hybrid networks in real-world scenarios.

2.4.3. Opportunistic and Intermittent Connectivity

Real-world service provisioning scenarios usually assume connected topologies where

both the sender and the destination are available and willing to communicate at the same

time. This time synchronization greatly limits possible interactions between nodes, and is

usually not ensured in more dynamic mobile networks, such as Mobile Ad-hoc NETworks

(MANETs) and Vehicular Ad-hoc NETworks (VANETs) [44, 45], where nodes

continuously join and leave the system. In addition, apart from 3G cellular networks that

usually ensure always-on city-wide coverage, connectivity with medium-range wireless

networks, such as a wireless network composed by WiFi hotspots deployed in a university

campus, is usually intermittent during user roaming. As main consequence, opportunistic

networks, intended as self-organizing networks able to exploit all the communication

opportunities available in the physical environment, are slowly emerging as one of the

core mechanisms required by future mobile systems.

34

To be more specific, let us introduce a short example based on the context-aware

tourist guide for the Bologna downtown. For the sake of service provisioning, a first

seminal solution is to use WiFi hotspots to periodically offload important context data to

mobile nodes, but this solution limits data availability since context data can be distributed

only when mobile nodes are reachable via those fixed WiFi hotspots. However, mobile

nodes can opportunistically exploit neighbours to carry context data requests into the

system. While roaming, some mobile nodes could get closer to WiFi hotspots, where they

can offload the requests on behalf of peers and store resulting data. With a similar

mechanism, context data can be routed back and delivered to requesting nodes, thus

enabling service provisioning also when there is no fixed infrastructure available.

Unfortunately, such scenarios do not allow the introduction of strict quality guarantees

since node mobility is generally difficult to predict.

Following this main research direction, several academic research works have started

to consider the opportunistic usage of mobile devices to perform data distribution into the

system [38, 46]. Acting as data carriers, mobile nodes can distribute data to close devices

by ad-hoc communications, with no additional overhead on wireless fixed infrastructures.

Also, mobility is a fundamental means to speed-up data distribution into the system, by

exploiting random and intermittent interactions between devices. Hence, although several

challenges still need to be addressed, opportunistic networks will soon become an

important part of traditional provisioning scenarios in mobile systems.

2.4.4. Integration with Cloud Architectures

Cloud technologies enable the dynamic provisioning of computational resources, with

a pay-per-use billing model [39, 47]. At the current stage, different big players, such as

Amazon, Google, and IBM, are adopting such technologies to offer computational

resources to third parties, with the main goal of reducing data center operational costs.

Above all, as Cloud solutions allow the rapid and dynamic scaling of provisioned

resources, they well fit all those scenarios characterized by high fluctuations of demands.

In fact, we do not need to overprovision IT infrastructures according to the worst-case load

scenario but, if required, we only have to ask for additional computational resources to a

Cloud.

Mobile devices suffer severe resource limitations that make it unfeasible to execute

heavy computational tasks, e.g., video stream processing, aboard. Similarly, context data

have to be stored and processed to enable service adaptation; that can introduce a high

35

management load, hence, it may be useful to dynamically offload such computations to a

Cloud reachable through wireless fixed infrastructures. We also remark that the capability

of dynamic resource provisioning well matches mobile systems, where users randomly

join and leave, thus perhaps leading to high load variations along the day. At the same

time, it must be kept in mind that wireless fixed infrastructures may suffer bandwidth

limitations, thus reducing the possibility of data transfer between the mobile infrastructure

and the Cloud. Moreover, data transfer from/to wireless fixed infrastructures may lead to

faster battery depletion. All these issues must be carefully considered to enable a fruitful

integration between context-aware mobile systems and Cloud solutions.

2.5. Motivations of the Thesis

In the past years, much work has been done to enable context awareness and to ease

the diffusion of context-aware services. One of the most cited and important papers on

context-aware services in mobile systems by Schilit et al. is [1]; from that year, several

works discussed the main mechanisms useful to enable context-aware facilities in mobile

systems, as well as local support mechanisms to provision context to the service level. At

the same time, several middleware solutions have been designed to transparently

implement context management and provisioning in the mobile system.

However, at the current research stage, we feel that an in-depth analysis of the context

data distribution, namely the function in charge of distributing context data to interested

entities, is still missing. Previous works mainly focused on the support mechanisms

required to provision context to services from a more local viewpoint, e.g., context

representation, reasoning, and local delivery, without considering the enormous

complexities arising from the deployment of such services in large-scale mobile systems.

One of the main goals of this thesis is to envision, design, implement, and test novel

distribution primitives and mechanisms capable of ensuring context provisioning in a

scalable and reliable way.

In addition, as clarified in previous sections, future mobile scenarios will feature

extremely heterogeneous devices, capable of interacting through different wireless modes

(infrastructure-based/ad-hoc), and with the possibility of opportunistically exploiting both

devices and wireless connectivity opportunities available in the physical proximity.

Previous works analyzed context data distribution in small scale environments, such as

houses and university buildings, where always-on WiFi WLANs can continuously provide

context information to mobile devices with no particular issues. Due to the adopted

36

assumptions, we think they widely miss the need of quality-based context data distribution

schema able to trade off quality constraints with the introduced management overhead.

Hence, the impact of all the peculiarities introduced by future mobile systems on context

distribution primitives is not clear, and deserves additional research to assess main

potentialities and shortcomings.

To conclude, starting from the core assumption that only effective and efficient

context data distribution can pave the way to the deployment of truly context-aware

services, in this thesis we aim to put together current research efforts to derive an original

and holistic view of the existing research on context-aware systems. We present a unified

architectural model and a new taxonomy for context data distribution, by considering and

comparing different distribution primitives in deployment scenarios that jointly exploit

heterogeneous wireless standards and modes. To better assess the technical soundness of

our analysis, we then consider three main deployment scenarios, and we study the main

consequences of network architectures on context-aware service provisioning. Finally, we

conclude the thesis by drawing and identifying important directions of future work.

37

3. Context Data Distribution in Mobile Scenarios

Context-aware capabilities ground on the continuous delivery of important context

data to interested mobile nodes. From a general viewpoint, context data distribution is an

extremely complex function that has to deal with different management phases involved in

context provisioning to the service layer, namely context data representation, storage,

aggregation, distribution, notifications to running services, etc. At the same time, the main

peculiarities of future mobile systems also call for proper management solutions to

efficiently deal with resource constraints, heterogeneous wireless standards and devices,

etc.

To transparently tackle all these issues and to ease the diffusion of context-aware

services, we need proper middleware solutions, called Context Data Distribution

Infrastructure (CDDI) in the remainder, capable of hiding all the main phases involved in

context management [48]. In other words, context-aware services should only have to

produce and publish context data and to declare their interests in receiving them from the

CDDI, while the CDDI takes over distribution responsibility and transparently executes

specific management operations to distribute context data.

In this chapter, we delve into the details of context data distribution infrastructures for

mobile systems. Section 3.1 clarifies the main issues such CDDIs have to address. Section

3.2 presents our main design guidelines for scalable context provisioning in mobile

systems, while Section 3.3 introduces an in-depth discussion of the context data life cycle.

Then, Section 3.4 discusses related work on context-aware systems, so to better point out

the current state-of-the-art. Finally, Section 3.5 ends this chapter by drawing intermediate

conclusions.

3.1. Main Issues

Real-world CDDIs for large-scale mobile systems have to transparently address

several issues related to the delivery of huge amounts of context data to resource-

constrained mobile devices. From a general viewpoint, we categorize the main involved

issues along three main directions, namely heterogeneous and resource-constrained

devices, context data management and delivery scalability, and quality-based context

provisioning.

Future mobile systems feature resource-constrained mobile devices that require

38

continuous access to their context while roaming. These devices are mainly battery-

powered, and with strict CPU/memory constraints that will not allow the execution of

complex CDDIs. Similarly, most of the context reasoning algorithms will introduce

prohibitive costs, thus requiring the offloading of such computation to fixed servers. Apart

from device limitations, wireless networking introduces additional constraints that have to

be carefully considered during CDDI design. Next generation mobile devices will feature

numerous wireless interfaces, thus enabling different connectivity opportunities and data

transfer facilities with differentiated tradeoffs between bandwidth, energy consumption,

etc. While 3G/4G cellular network interfaces are extremely suitable for voice service

provisioning due to the ensured coverage, WiFi and BT interfaces enable ad-hoc

communications between mobile devices in physical proximity. However, even if

available, all these interfaces cannot be always powered on due to excessive battery

consumption. In conclusion, CDDIs for future mobile systems have to consider such

resource constraints: they must be resource-aware in respect of device local resources and

communication opportunities to properly handle context provisioning.

Moreover, when we consider large-scale networks made by thousands of devices, for

instance city-wide services, both the memorization and the delivery of context data

introduce important CDDI scalability bottlenecks. Such systems feature thousands and

thousands of sensors that continuously pump new context data. Context data production

rates strictly depend on the described context aspects: while temperature and pressure

sensors can produce new data with a period in the order of seconds, we expect that logical

sensors associated with user profiles will produce new data with a period in the order of

days. Although sensors can be directly deployed on mobile devices, if the limited

resources do not allow the processing of the raw context data on the devices themselves,

the usefulness of having these data suddenly drops since they must be offloaded to fixed

infrastructures. At the end, the storage of all these data introduces a high overhead, that

becomes even worse if the CDDI has to offer access to historical data. Similarly, the

distribution of such context data from/to the mobile nodes introduces not negligible

bandwidth overhead. The usage of 3G/4G networks for the sake of context data

distribution would be probably prohibitive due to the limited bandwidth; it must be

considered that the primary goal of cellular networks is to offer voice services, hence, data

traffic over such infrastructures should be kept as small as possible to avoid excessive

interferences with important core services.

Last but not least, as introduced in Section 2.3, QoC attributes, both on the context

39

data and on the distribution process, play an important role to prevent useless and noisy

adaptations. Real sensors come with sensing errors that can lead to wrong adaptations;

even worse, the CDDI can distribute context data referring to the same aspect with

contradictory values, thus introducing an ambiguity that must be solved through quality-

based approaches. At the same time, the usage of unreliable wireless infrastructures can

lead to additional errors in the context provisioned to mobile nodes; both packet droppings

and long transmission delays caused by temporary network congestions can lead to the

usage of wrong and/or stale context information. All these issues become even more

difficult to address if we consider distributed architectures that jointly use infrastructure-

based and ad-hoc communications. In this case, the enforcement of particular quality

constraints, such as maximum data retrieval time, can involve complex resource

reservation and negotiation protocols, spanning multi-hop routing paths based on

intermediate mobile devices; at the same time, such routing paths can also include hops

based on heterogeneous technologies, thus making the prediction of path stability and

transferring times more difficult [49]. Hence, quality-based context provisioning in large-

scale mobile systems, perhaps based on heterogeneous wireless standards and modes, is

not easy to enforce from the CDDI viewpoint; instead, it introduces a great deal of

complexity since the impact of these quality constraints on the distributed context

distribution function could lead to not trivial reconfigurations.

3.2. Design Guidelines

While a lot of research has been done as regards the design, the realization, and the

deployment of context-aware middleware solutions, most of the previous works focused

on rather small-scale deployments, with the main goal of studying the local middleware

infrastructure useful to support context provisioning to service level. Instead, in the very

last years, an increasing number of systems is requiring context provisioning in large-scale

wireless systems; to mention few examples, VANETs and smart cities feature different

context-aware services, such as accident prevention and environmental monitoring, that

require to distribute huge amounts of context data with city-wide scope [17, 50]. As

discussed in Section 3.1, here the context data distribution becomes a fundamental

concern, requiring innovative solutions to efficiently deal with all the peculiarities of such

large-scale scenarios.

Hence, to effectively support such context-aware services, starting with low-level

issues connected to mobile deployment scenarios, and moving to more high-level and

40

complex ones associated with context data management, we claim the significance of six

fundamental design guidelines: 1) adaptation to mobile and heterogeneous environments;

2) efficient context data life cycle management; 3) context data production/consumption

decoupling; 4) context data visibility scopes enforcement; 5) cooperative context data

delivery; and 6) QoC-based context data distribution.

The CDDI should support mobile heterogeneous wireless scenarios. Mobile nodes

executing context-aware services move in and out, even randomly, thus introducing

variations in context needs; hence, the context data distribution has to promptly adapt to

mobility, in order to distribute only currently needed context data. At the same time, the

CDDI should deal with heterogeneous systems, including nodes with different

computational capabilities, wireless interfaces belonging to different standards, and

different wireless modalities. While the usage of heterogeneous wireless standards enables

multiple transmissions happen at the same time with limited interferences, the usage of

heterogeneous wireless modes lets the CDDI trade off context availability and

management overhead: fixed wireless infrastructures offer reliable context access but

introduce tight limitations on available resources, while ad-hoc communications let close

peers exchange data without additional overhead on deployed wireless infrastructures. In

conclusion, to exploit all the possibilities offered by future mobile systems, the CDDI has

to adapt to currently available resources to increase system scalability, while preventing

saturation conditions.

The CDDI should efficiently manage the whole context data life cycle, starting from

data generation to removal [51]. In particular, it has to implement efficient context data

aggregation and filtering techniques, by also taking care of final context data removal

when necessary. Aggregation techniques are useful to reason about raw/fine-grained

context data, so to obtain more high-level and concise information. Instead, filtering

techniques enable to shape context data distribution, so to reduce the management

overhead according to service needs. Both these techniques should be supported in a

distributed manner so, for instance, to filter the distribution of a data as close as possible to

the node that had generated it. Moreover, the CDDI should offer some guarantees of

availability by influencing the degree of replication of the data into the system. Hence, the

CDDI has to automatically manage context data during the whole life cycle, by offering

efficient aggregation and filtering techniques, and by memorizing context data at multiple

places for the sake of reliability.

The CDDI should transparently route produced context data to all the interested

41

consumers connected to the mobile system. To increase system scalability and context data

availability, context data production and consumption should be possible at different times

(time decoupling), and producers and consumers do not have to know each other (space

decoupling); hence, communication should be asynchronous and anonymous among

producers and consumers, similarly to what already happens for traditional pub/sub

systems [52]. In fact, both space and time decoupling favour the asynchronous execution

of context-aware entities, that can inject and retrieve context data according to their own

needs.

The CDDI should introduce and enforce differentiated visibility scopes for context

data. Context data usually have a limited visibility scope that depends on physical/logical

locality principles. For instance, physical context of a place is likely to be required only by

nodes in the same place (physical locality); similarly, context data associated with a

particular event are likely to be required only by its participants (logical locality). Hence,

context data intrinsically have visibility scopes that the context data distribution should

enforce to avoid useless management overhead. To effectively avoid context data storage

and distribution bottlenecks, the CDDI should adopt decentralized and hierarchical storage

architectures that exploit both physical and logical locality principles on context data to

make them available as close as possible to interested consumers.

The CDDI should realize cooperative context delivery mechanisms to increase both

context availability and system scalability. Mobile nodes should cooperate among

themselves to store and distribute the context data associated with the physical place

where they are currently in; by doing so, newly arrived mobile nodes can retrieve

interesting context data from neighbours through ad-hoc links, without any requests

forwarded to the fixed infrastructure. Cooperative context distribution is also useful to

refine context data; for instance, several devices, equipped with temperature sensors, can

exchange readings to merge them by means of aggregation operators, such as average,

median, etc., so to have a better assessment of the context data quality [53]. In addition,

the CDDI should also introduce opportunistic network facilities to let mobile devices route

context requests on behalf of others.

The CDDI should introduce and enforce QoC constraints to enable correct system

management. QoC constraints on context data, used to specify the quality of received

context information, are useful to setup proper filtering operators [3]. In addition, as real-

world wireless systems present frequent topology changes, limited delivery guarantees,

and intermittent disconnections, QoC constraints on context data distribution allow

42

enforcing data delivery with particular timeliness and reliability guarantees. Finally, since

the CDDI can be deployed in distributed architectures where several servers, each one

with its own local context data repository, process and route context data, we have to

consider that context data could be available in multiple and conflicting copies into the

system [54]. Therefore, as context data consistency is costly to handle in large-scale

systems, it is advisable to avoid strong consistency by preferring best-effort approaches

driven by QoC constraints.

From aforementioned design guidelines, it comes without saying it that context data

management is an extremely complex task, requiring several mechanisms from both a

local and a distributed viewpoint. Hence, for the sake of clarity, next section introduces an

in-depth presentation of context data life cycle, by highlighting and discussing the main

involved phases; in this way, we aim to better justify the main mechanisms a CDDI for

mobile systems has to introduce.

3.3. Context Data Life Cycle

One of the main management duties of a CDDI is to handle the whole context data

life cycle, from context data production to removal. From a general viewpoint, context

data life cycle is made by different phases, that can be also executed repeatedly to refine

context information, and sometimes with no strict temporal order.

After the initial sensing of the raw data, new context data are introduced into the

system. These new data can be delivered to context-aware services, and can be stored by

the CDDI to ensure persistency and later access; they can be filtered according to QoC

constraints, as well as other filtering operators based on context data value, to reduce the

number of stored and distributed data; they can be aggregated with pre-existing context

data to produce high-level context information, such as merging together temperature and

pressure data to understand if the weather is rainy; finally, they can be distributed to

interested mobile devices to enable service adaptations.

Although some life cycle phases present intrinsic strict temporal orders (e.g., context

data production must be the first one), other intermediate phases can mix them together.

For instance, the aggregation/filtering steps and their temporal order depend both on the

needs of mobile services and on the availability of resources; the CDDI can store either

raw context data or their aggregated/filtered counterparts, hence, storage phase has no

strict temporal ordering with other phases; and so forth. At the same time, context data can

go through some phases multiple times: a cyclic phase needs to be triggered in different

43

time instants since its usefulness and produced results change during time. For instance,

context data aggregation is performed in a time-triggered manner to infer new context data

based on the knowledge accumulated so far; similarly, context data delivery has to be

performed multiple times if the set of interested mobile nodes changes.

With aforementioned observations in mind, we decided to adopt a context data life

cycle model based on five main phases, namely context data production, context data

storage, context data aggregation, context data filtering, and context data delivery. Figure

3.1 shows a general overview of the main phases involved in context data life cycle; the

following subsections better detail each one of them.

3.3.1. Context Data Production

Context data production is the initial phase through which all the context data have to

pass. This phase comprehends both the real access to the sensors in charge of producing

the raw data, and an elaboration phase aimed to represent the context data according to

specific representation techniques [55]. Before the real injection into the system,

additional elaborations can be performed at the producer side, for instance, to apply low-

pass filters, evaluate quality attributes, etc.

Following the definitions introduced in [48], sensors are usually categorized in three

main categories: physical, virtual, and logical. Physical sensors include the many

hardware sensors available today to capture physical data, such as temperature, pressure,

humidity, lighting condition, etc. Virtual sensors acquire raw context data from software

services; for instance, a virtual sensor can publish the current user situation by looking at

his calendar, keyboard and mouse activities, as well as running services on his laptop.

Similarly, a virtual sensor can fetch user profiles available on the Internet, such as the ones

Context Data
Aggregation Context Data

Production

Cyclic phase

Context Data
Storage

Context Data
Filtering

Context Data
Delivery

Physical Sensors

Virtual Sensors

Logical Sensors

Figure 3.1. Context Data Life Cycle Overview.

44

adopted by traditional social networking services, to better describe user interests. Finally,

logical sensors combine context data coming from other sensors to produce high-level and

more polished context data. For instance, user localization detected by means of GPS

sensors is not always reliable since the user could have left the mobile phone in his car,

hence, for the sake of precision, it is advisable to make use and merge together

information coming from different sensors, such as an GPS readings, video reporting the

user in specific places, Web browsing and login activities. Of course, logical sensors

include aggregation operators and capabilities to produce new context data.

After sensing, context data are represented by means of a proper representation

technique, such as key-value pairs, XML-based documents, ontology-based solutions, etc.

[55]. The different approaches, with associated pros and cons, will be better analyzed in

Section 4.2.1. For now, we note that it is a producer duty to describe injected context data

with additional management attributes, such as the ones used for lifetime and quality

management. In addition, as sensors could be deployed on resource-constrained mobile

devices that connect with fixed infrastructures through bandwidth-limited connections, the

producer itself can apply filtering operators to raw context data so, for instance, to slow

down data injection into the system. Finally, if suitable due to battery constraints, data

prediction techniques can be used to forecast future values and schedule raw data

samplings only when remarkable changes are expected.

3.3.2. Context Data Storage

In the context data storage phase, context data are stored into the distributed CDDI

architecture to ensure context data availability and persistency. This phase can be omitted

as not all the context data have to be stored; for instance, some context data should be

provisioned only to the local device due to privacy reason, hence, they are not distributed

at all. When required, the context data storage phase takes care of storing data into the

system, by triggering all the required management mechanisms and coordination

protocols. Storing context data is not as simple as it may appear since the system scale

requires proper additional management mechanisms, such as context data caching and

replication, to ensure system scalability. For the sake of clarity, let us briefly clarify that

data copy into the system can happen by means of either caching or replication techniques

[56, 57]: caching techniques reactively maintain data in response to requests, and usually

keep them until deleted by local replacement operations, mainly due to memory saturation

[58, 59]; instead, replication techniques proactively copy local data to remote nodes, and

45

keep them until explicitly deleted [60, 61].

As mentioned in Section 3.2, a CDDI should be able to exploit cooperative context

data distribution mechanisms. In view of this guideline, context data can be either cached

or replicated into the system. If each mobile node has a small context data repository

shared with close neighbours by ad-hoc links, the CDDI can effectively reduce the

management traffic toward the fixed infrastructure, so to foster scalability. However, both

caching and replication techniques introduce additional management issues to be

considered and properly managed. Especially if applied to mobile systems, those

techniques have to adopt explicit mechanisms to handle the context data stored on mobile

nodes in physical proximity, in order to avoid that they memorize the same set of data; in

fact, if data repositories in the same physical area share a large set of common data, the

CDDI will store a reduced number of different data, thus potentially leading to a higher

number of requests forwarded to the fixed infrastructure.

Apart from the adoption of caching/replication techniques, a fundamental point is that

the CDDI has to organize the data storage to bring context data closer to the interested

nodes, so to reduce data retrieval times and runtime overhead. Toward this direction, both

physical and logical locality principles offer good hints to organize the context data

storage. A straightforward application of the physical locality principle is to store context

data produced by sensors deployed on a particular physical environment only on the nodes

currently within that physical environment; for instance, temperature and pressure

readings associated with a room are probably considered interesting only by the nodes in

the room, or close to it, and such interest usually decreases with the distance from the

production point. In other words, the higher the distance from the production point, the

lower the interest usually expressed by the mobile nodes; hence, the CDDI should adopt

hierarchical storage architectures to match such principle, so to keep the data as close as

possible to their production point. Similarly, the logical locality principle suggests to tailor

context data storage depending on the interests expressed by the nodes. For instance,

consider a physical place, e.g., a university lab, that is usually crowded of Computer

Science students; although some context data, such as data associated with a meeting of

the Network Research Group currently taking place on the other side of the building, are

produced far away, they should be stored and made available into the lab to simplify the

distribution to incoming students. Hence, the usage of the logical locality principle should

also affect the storage architecture adopted by the CDDI.

Finally, service requirements can also greatly affect the complexity of the CDDI

46

storage architecture. Let us consider a simple context-aware service that performs high-

level reasoning on the people usually co-located in a particular physical place. In this case,

the service needs historical data about user presence, as well as profiles and additional

information on the people carrying those devices. Similarly, if the service wants to foresee

the number of attendees of a particular event, it has to reason on what happened in the past

editions of such event. Hence, both these examples require context data history facilities,

and this introduces additional complexities and management overhead to the CDDI

storage architecture.

3.3.3. Context Data Aggregation

Physical sensors usually provide raw data associated with physical phenomena, such

as temperature, pressure, acceleration, localization, etc. Virtual sensors enable access to

more high-level context data, such as place and user profiles, usually fetched by database.

Finally, logical sensors aggregate context data, coming from different and heterogeneous

sensors, to produce new context data out of raw sensor readings.

Context data aggregation is a fundamental mechanism in real-world CDDI. Due to the

huge amount of possible context directions, it is practically impossible to statically and

manually define all the interesting context aspects that can be considered in a large-scale

system. At the same time, many context data cannot be statically defined as they are

consequence of particular runtime situations, such as people in physical proximity; such

context data claim for continuous updates that must be carried on automatically by the

system. Hence, context data aggregation phases are fundamental to capture additional

knowledge about the system; Artificial Intelligence (AI) provides techniques, as well as

standard logic-based representations and inference engines, that can simplify the usage of

such techniques.

Differently from filtering operators, whose main goal is to tailor context data

distribution for the sake of scalability, aggregation operators do not selectively drop input

context data, but instead produce and inject completely new data as output. Hence, by

using a metaphor, filtering operators are mainly adapters useful to connect two pipes with

different sizes (e.g., with different flow rates), while aggregation operators are put in

parallel and combine flows from different pipes to generate a completely new flow.

Since aggregation operators need access to multiple context data to properly work,

one of the main CDDI issues is to ensure the availability of all the required data in the

context data storage used by the aggregation operator. In addition, proper CDDI

47

mechanisms are required to evaluate both management and QoC attributes of new

generated data. For instance, a very simple example regards the evaluation of the data

lifetime attribute that, by adopting a pessimistic approach, can be set to the lowest value

carried by initial context data instances; more complex approaches are instead required to

evaluate QoC parameters, such as up-to-dateness, where the usage of simple merging

functions (minimum/maximum, average, etc.) is more difficult to justify.

Finally, let us remark that context aggregation operators usually require access to the

history of input context data to better guide the aggregation process. In fact, historical

values can be used to predict future values and highlight trends in input values. All this

additional information is useful to avoid the injection of new context data that, by

considering only the latest, perhaps erroneous, context data input, can present significant

errors.

3.3.4. Context Data Filtering

Sensor sampling, and subsequent context data production, can happen extremely

frequently, with periods in terms of seconds. At the same time, the provisioning of all

these data to mobile devices is not always feasible since it can saturate available resources,

both in terms of CPU and memory, and in terms of wireless bandwidth. The usefulness

itself of delivering similar or slightly different context data is questionable too; context-

aware services usually trigger adaptation actions in response to sensible changes (for

instance, in terms of localization and people in the current room) rather than in response to

small context changes, perhaps not perceived by final end users. Hence, the CDDI has to

introduce proper filtering operators, useful to tailor context data production according to

service needs, while striking to reach a balance between context completeness and runtime

overhead due to context data processing and transmission at the mobile node.

In finer details, context data filtering operators are fundamental in real-world CDDIs

for large-scale systems, but they must be carefully handled to reach and enforce negotiated

QoC. In fact, such operators produce partial and imprecise context views at the context-

aware service that, in its turn, by reasoning according to the received context data can

trigger incorrect adaptations. QoC contracts have a fundamental role in this direction as

they enable the correct configuration of the involved filtering phases. Not all the context-

aware services will weigh the access to particular context data in the same way; for

instance, a smart printer service for university campus is interested only in sensible

location changes, such as entering and leaving a room, while a context-aware guide

48

requires extremely accurate localization information, as well as spatial orientation of the

user; similarly, accident prevention services for VANETs require a very precise

characterization of the current physical neighbourhood to detect potential dangerous

situations, while buddy finder services can surely tolerate coarse-grained localization data

and perhaps erroneous friend suggestions with no important consequences.

Finally, similarly to what usually happen with video streaming services, the CDDI has

to monitor the runtime behaviour of the system to assess whether negotiated QoC levels

can be enforced. An initial negotiation phase lets producers and consumers agree about

QoC objectives on context data, in order to setup filtering operators; then, at runtime, if

the CDDI cannot ensure required QoC levels, for instance, due to the saturation of a link

or intermediate node overloads, it has to notify running context-aware services in order to

make them aware of the reduced QoC.

3.3.5. Context Data Delivery

The context data delivery phase takes care of automatically delivering injected context

data to all those entities that have expressed any form of interest in them. Different forms

of interaction between the CDDI and the mobile nodes, e.g., either push- or pull-based, are

available, with different tradeoffs between management overhead and perceived QoC.

During this phase, it is overwhelming important to consider both context data interests

expressed by the mobile node and QoC objectives. The CDDI has to automatically drop

context data that will not respect QoC objectives at the destination node, so to prevent

useless overhead; out-of-QoC context data droppings should also happen as close as

possible to the producer node, in order to prevent the triggering of intermediate filtering

and aggregation operators that, in their turn, will lead to useless management overhead.

Let us remark that solutions adopted to address this phase has a great impact on

previous ones, that ground upon it to inject new data into the system (context data

production), and to retrieve context data to aggregate and filter according to context-aware

service needs (context data aggregation and filtering phases). Without delving into deeper

details, which will be clarified in Chapter 4, the usage of distributed solutions to address

this phase, an inescapable choice in large-scale settings, automatically calls for distributed

ones also for previous phases: for instance, if context-aware services define complex

context filtering operators, the CDDI can distribute single operators to different servers for

the sake of load balancing; similarly, complex aggregation operators can exploit

intermediate, already aggregated, context data to reduce final CDDI overhead.

49

Finally, this phase presents some significant differences from previous ones. First,

solutions adopted here must be distributed: while production, aggregation, and filtering

phases refer to more local computations, the distribution phase in large-scale systems must

be distributed between different nodes, also spanning different and heterogeneous

networks, such as fixed nodes in different local area networks, mobile devices reachable

by wireless infrastructures, etc. Second, being closely related with underlying network

deployments and topologies, it is widely affected by them: adopted coordination protocols,

as well as data distribution mechanisms to perform the context delivery (e.g., pub/sub

architectures, multicast primitives, etc.) [52, 62], cannot be easily ported to different

deployment architectures. Finally, from the CDDI viewpoint, this is the very last phase

where the CDDI has control over the context data; after it, context data have been

transmitted to mobile devices, that autonomously process and use them according to their

will.

3.4. Context-Aware Systems Related Work

After an in-depth presentation of the context data life cycle, in this section we present

a selection of the most important CDDIs for mobile systems. For each solution, we supply

a short introduction and we clarify the main peculiarities introduced by authors. For the

sake of readability, the following presentation has no pretence of being exhaustive;

interested readers can refer to the few survey works, including ours, existing in literature

[5, 6, 48, 63, 64] for an in-depth analysis of existing context-aware systems. At the same

time, we note that additional references will be provided in the following chapters, when

we will analyze single case studies. Now, we present related works in increasing time

order, from the oldest to the newest ones, to better remark the evolution of this research

area by presenting the main directions still under investigation as the last ones.

Starting from oldest works, they mainly focused on innovative frameworks and

software mechanisms to provision context information to running services. Context

Toolkit is one of the most significant works on context awareness [36]. It mainly considers

the deployment of context-aware services from a local viewpoint, by introducing proper

software mechanisms to locally handle context information. Context Toolkit is based on

the concept of widget, i.e., a reusable component in charge of context data production and

consumption. Apart from widgets that directly access sensors, it is possible to define meta-

widgets, namely widgets that aggregate different context data to produce higher level

context information. Similarly, MobiPADS focuses on context provisioning and

50

notification to running services [28]. It introduces the concept of Mobilet, namely an entity

that provides a service and that can be migrated at runtime between different

environments. Each Mobilet is implemented as a traditional client/server application, and

can be dynamically migrated to allow both computation offloading and code migration.

Mobilets can be chained to implement more complex services. One of the most important

peculiarities of this work is that services are associated with proper profiles that detail

context-based reconfigurations; MobiPADS takes care of the provisioning of context data

associated with the local mobile device, such as battery status, to enable Mobilets runtime

adaptation. Finally, CARISMA also focuses on context-aware service adaptation and

associated mechanisms [37]. Similarly to MobiPADS, in CARISMA context-aware

services supply proper profiles that can be modified at runtime by means of reflection

mechanisms. Since each service provides a local profile, perhaps by detailing actions to

trigger as consequence of specific context situations, conflicts can arise: for instance, if the

device is going out of battery, one service can require turning off the wireless interface,

while another one tries to keep it on for the sake of service provisioning. To solve such

problem, CARISMA adopts a micro-economic approach, where each service rates each

possible alternative profile; the profile that maximizes the satisfaction of all the local

services is finally selected.

From aforementioned related works, we conclude that initial research efforts mainly

focused on the usage of context information at runtime, as well as effective and efficient

software mechanisms to locally handle and provision context data. They focused on rather

small scale deployments, where both context data availability and distribution do not

present particular issues. Differently, more recent works started recognizing the main

issues associated with context data distribution when 1) it is not possible to assume direct

interactions between mobile devices and sensor nodes; and 2) the system grows by

including several mobile devices running multiple context-aware services.

EgoSpaces focuses on the usage of tuple spaces to perform context data distribution

between close mobile devices connected through ad-hoc links [31]. It exploits the notion

of mobile agent, i.e., a mobile entity that contains a private tuple store and that can

migrate. Each agent can operate over multiple views that include context data coming

from agents in the physical proximity of the device. To limit the scope, each view is

defined through metadata constraints defined on both data and resources. Although this

work seems more related to software engineering in general, it also considers context data

delivery mechanisms: it highlights the importance of asynchronous interaction between

51

context data producers and consumers, and uses tuple spaces to support such model.

Pervaho, instead, distributes context data to mobile nodes by using a publish/subscribe-

oriented interface [32]. The authors exploit a Location-based Publish/Subscribe System

(LPSS) to impose localization-based constraints: each publication and each subscription

has a visibility scope, and a publication is delivered to an active subscription only if

publisher and subscriber lie in the intersection of these two scopes. In this way, Pervaho

implements location-based filtering, thus enforcing the physical locality principle in

context delivery. From a rather implementation viewpoint, the LPSS is realized by means

of a fixed server, reachable through a wireless fixed infrastructure, that executes a

centralized JMS publish/subscribe server [65].

Moving to systems designed for larger scenarios, SOLAR exploits a peer-to-peer

fixed infrastructure built by different physical servers, called Planets, to deliver context

data to roaming mobile nodes [33]. This solution exploits the Context Fusion Network

(CFN) that provides data processing facilities, both aggregation and filtering operators.

Complex context data processing tasks are expressed through operator graphs, defined in

terms of producers, consumers, and real operators. Context services can finely tailor

received context data by supplying proper policies to the CFN: for instance, filtering

techniques based on context data content are natively supported by the platform. In

addition, authors introduce an adaptive mechanism that, by monitoring the queue of the

context data to be delivered to a mobile device, automatically adapts context delivery rates

to prevent overload conditions. Hence, we can safely argue that SOLAR exploits QoC

requirements detailed by the service level to adapt context data delivery at runtime. By

always considering large-scale settings, HiCon is a conceptual framework useful to

manage large amounts of context data in extremely decentralized scenarios [30]. It

exploits both physical and logical locality principles to reduce the amount of context data

transmitted into the distributed system. In addition, HiCon adopts a three-level tree-like

architecture where each node performs partial context data aggregation and filtering before

transmitting context data to peers and/or to the level above. In brief, in HiCon authors

focus on the implementation of complex context processing operations in a distributed

manner, in order to reduce the runtime traffic and increase system scalability.

While these last works clearly point out the increased research efforts on context

delivery infrastructures for large mobile settings, we conclude this section by presenting

two very recent works that highlight an increasing attention toward delivery infrastructures

able to dynamically self-adapt. COSINE is a software framework aimed to provision

52

context data in completely decentralized ad-hoc networks [66]. It exploits an XML-based

context data model, and consumers use XPath queries to subscribe to a particular

producer; when different producers are available, COSINE ranks them according to QoC

parameters, and sends the subscription to the best one with no need of service intervention.

Also, the adopted approach has an interesting outcome when a context subscription needs

data from multiple sources: if there exists an aggregator service that already collects all the

required data, the subscription is directly routed to it; otherwise, the initial subscription is

automatically split in a set of fine-grained subscriptions, one for each required context

producer. Finally, MobEyes addresses data harvesting in urban monitoring scenarios by

exploiting vehicular networks [17]. Context data are initially produced by sensors, either

deployed on vehicles or on fixed infrastructures. Then, vehicles store collected data and

distribute them into the system to ensure availability: every time two vehicles come into

contact, they exchange data by flooding, meaning that each vehicle downloads all the

unknown data from the other one. Data retrieval is based on mobile software agents that

carry consumer requests and travel the network to harvest as much interesting data as

possible. Also, MobEyes exploits bio-inspired algorithms able to mark already harvested

regions, in order to ensure efficient and fast data harvesting by driving agents toward

information-productive regions.

To conclude, we can assess that local context data management issues, such as

representation and notification to running services, have been already widely addressed in

the past. At the current research stage, there is an increasing attention toward efficient

mechanisms for context data delivery in large-scale settings. In addition, when the system

scale is very large, such as a city, adaptive delivery mechanisms, mainly driven by QoC

constraints, are extremely important as they permit to trade off context quality and runtime

management overhead. Hence, also due to the novelty of these efforts, additional research

is required toward comprehensive CDDIs for large-scale scenarios that, by transparently

managing runtime resources and QoC constraints, are able to optimize the delivery

process, so to support efficient context provisioning while granting system scalability.

3.5. Chapter Conclusions

In this chapter, we discussed the main issues introduced by the design of a CDDI for

large-scale mobile settings. To ensure scalable and quality-based delivery, we decided to

adopt few important design guidelines; some of them are strictly related with low level

data transmission, e.g., joint usage of heterogeneous wireless standards and modes, while

53

others focus on the management of the context data into the distributed architecture, e.g.,

context data production/consumption decoupling and locality principles. We remark that

one of our guidelines, namely QoC-based context data distribution, is also the means to

enable runtime resource management and data distribution adaptation, with the main goal

of increasing system scalability.

Then, we considered the whole life cycle of the context data. The CDDI has to offer a

complex software stack to effectively handle context production, storage, aggregation,

filtering, and distribution. Such software stack is even more complex when we deal with

large-scale mobile settings, where mobile devices can randomly join and leave the system,

thus potentially triggering continuous reconfigurations of the CDDI.

Finally, we introduced the state-of-the-art on modern context-aware systems. We

presented several works, starting from oldest to the newest ones, to better highlight current

research directions in this area. At the end of our analysis, we concluded that, although

CDDIs for small deployments have been largely investigated in the past, additional work

is required to fully adopt context-aware capabilities in large-scale systems. At the same

time, to the best of our knowledge, an in-depth analysis of the possible design choices

available at the CDDI level is still missing. In the next chapter, we will further analyze

modern CDDIs and we will propose a new CDDI logical model useful to better understand

all the main involved components, as well as associated responsibilities.

55

4. Context Data Distribution Infrastructures: Logical Model and

Design Choices

CDDIs for large-scale wireless systems have to deal with different and heterogeneous

management duties, spanning from data storage to delivery to mobile nodes, under strict

resource constraints and unpredictable mobility. At the same time, the adopted distributed

architecture widely affects the context data distribution, by introducing peculiar aspects,

e.g., intermittent connectivity and limited context access, that further complicate the

design of such solutions.

While previous chapters focused on background knowledge and related work, this

chapter starts discussing the original contributions of this thesis. From our analysis, we

derived a new logical CDDI model, with associated main layers and design choices. For

each possible solution, we will discuss the main tradeoffs between feasibility and quality-

based context provisioning. Finally, after a brief presentation of possible network

deployments, we will discuss principal similarities and differences with pre-existing data

distribution approaches in literature; that will strengthen our guidelines and design choices

by highlighting the peculiar needs of context data distribution in mobile systems.

The chapter is organized as follows. Section 4.1 presents our CDDI logical

architecture. Then, Section 4.2, Section 4.3, and Section 4.4 better analyze CDDI main

layers, with the main goal of highlighting fundamental requirements, possible solutions,

and inter-dependencies with adopted network deployment. In Section 4.5, we present main

deployment solutions and we discuss what we believe are the main commonalities and

differences between CDDI and pre-existing data distribution approaches. Finally, Section

4.6 ends this chapter with intermediate conclusions.

4.1. Context Data Distribution Infrastructure Main Layers

Both the heterogeneity and the complexity of the design guidelines presented in

Section 3.2 claim for complex context data distribution solutions that transparently

distribute context data to all the interested entities, while monitoring currently available

resources and ensuring QoC constraints [3]. Since the wider the system scale, the higher

the overhead introduced by context distribution, novel decentralized solutions are required

to implement the context distribution function in large-scale wireless systems.

Above all, context data distribution systems are data-centric architectures that

56

encompass three main actors: context data producers (sources), context data consumers

(sinks), and context data distribution function (see Figure 4.1). Context producers access

back-end sensors and inject new context data into the system. Context consumers express

their own context needs by using either context data queries (pull-based interaction) or

subscriptions (push-based interaction); context data matching is the satisfaction of

consumer requests, both query and subscription, to achieve a correct fulfillment of both

types. Finally, the context data distribution function distributes context data by mediating

the interactions between context data producers and consumers; for instance, it

automatically notifies subscribed consumers upon context data matching. In the

remainder, we use the expressions “context producers” and “context sources”, and

“context consumers” and “context sinks”, interchangeably.

With a closer view to the organization, the only main phases executed directly by the

service level are expressing context data needs and producing context data, that involves

both sensor access and subsequent context data injection into the system. Then, the context

data distribution function takes care of the other main phases, namely storage, aggregation,

filtering, and delivery. Given the central role of the distribution function, its own

efficiency is fundamental to ensure scalability. Directly stemming from our main

guidelines, we adopt the internal architecture detailed in Figure 4.1: it contains two

horizontal layers – Context Data Management and Context Data Delivery, starting from

the uppermost to the lowest one – and one vertical cross-layer – Runtime Adaptation

Support – better clarified in the following sections.

4.2. Context Data Management Layer

The Context Data Management Layer takes care of local context data handling, by

defining context data representation, by storing context data, and by expressing processing

Context Data Distribution

Context Data Delivery Layer

Context Data Sources Context Data Sinks

Context Data Management Layer

R
un

tim
e

A
da

pt
at

io
n

S

up
p

or
t

Processing

Dissemination

Routing Overlay

Storage Representation

Figure 4.1. Context Data Distribution System Logical Architecture.

57

needs and operations. Context data representation includes all different techniques,

spanning from simple and flat name-value pairs to ontology, proposed to represent context

data at the CDDI level [55, 67]. Context data storage includes all the techniques to both

cache and replicate context data into the distributed CDDI architecture, by also taking care

of past context history. Context data processing includes 1) complex aggregation

techniques (such as simple data matching, first-order logic aggregation, semantic-based

techniques, …) to produce new knowledge from pre-existing context data; 2) simple

filtering techniques to adapt context data distribution to currently available resources and

QoC requirements, so to foster system scalability [48]; and 3) all the primitives useful to

ensure context data security during the distribution process. Let us note that local context-

aware services interact directly with this layer through their own sinks, which take proper

management decisions according to expressed context needs. Local context needs are

usually expressed by means of context data filters that also include data QoC constraints.

QoC constraints, for instance based on data up-to-dateness, are 1) locally used to filter the

context data supplied to the final services; and 2) remotely used to avoid the distribution of

out-of-QoC data that will not be used by requesting node.

In the remainder, we discuss the main facilities of the context data management layer,

by also detailing the main possible approaches with associated pros and cons. For the sake

of clarity, Figure 4.2 briefly highlights the different solutions that can be adopted at each

facility of this layer.

4.2.1. Context Data Representation

Several models have been proposed to represent context information; they differ in

expressiveness, processing overhead, and memorization cost. Focusing on expressiveness,

we divide context data models in general and domain-specific. General models, concerned

with the generic problem of knowledge representation, offer a wide design space to enable

the representation of any known service domain. Domain-specific models, instead,

represent only data belonging to a specific vertical domain, and do not enable the

specification of generic data; thanks to the reduced scope, these models usually specify

complex data manipulation operations. Hybrid solutions, based on the usage of two or

even more models, either general or domain-specific, are also feasible, but may require

additional mapping functions to convert data from different models.

General models offer different degrees of formalism and expressiveness. Since model

expressiveness relates to offered data operations, more complex models tend to supply

58

additional data operations, like aggregation operators to derive new context data and

quality operators to specify and manage QoC constraints. With an increasing order of

complexity, context data representation can adopt one of the following models [55, 68]:

key-value models, markup scheme models, object oriented models, logic-based models,

and ontology-based models.

Key-value models represent the simplest structure for modeling context by exploiting

pairs of two items: a key (attribute name) and its value. Simplicity is the main reason for

this approach popularity. Unfortunately, these approaches lack capabilities for structuring

context data, and do not provide mechanisms to check data validity.

Markup scheme models use XML-based representations to model a hierarchical data

structure consisting of markup tags, attributes, and contents. These approaches solve some

of the limitations of key-value models; for instance, they support data validation by means

of XML-schemas, and structured data definition via nested XML.

Object oriented models take advantage of the benefits of object-oriented approaches,

typically encapsulation and reusability: each class defines a new context data type with

associated access functions. Type-checking and data validity can be ensured during both

compilation and runtime execution, while QoC elements can be easily mapped as other

objects. In addition, these models ease interactions between services and context data,

since the usage of the same abstractions provided by object-oriented programming

languages simplifies the deployment of context handling code.

Logic-based models exploit the high expressiveness of logic formalism: context

Storage

Decentralized Architecture

Centralized Architecture

Caching approaches

Replication approaches

Representation

Markup Scheme Models

Key-Value Models

Object Oriented Models

Logic-based Models

Ontology-based Models

General models

Domain-specific models

No model

Processing

Logic reasoning

Probabilistic reasoning

Time-based

Change-based

Context Data Aggregation

Context Data Security

Context Data Filtering

Figure 4.2. Taxonomy for the Classification of the Context Data Management Layer.

59

contains facts, expressions, and rules, and new knowledge can be derived by inference.

Traditionally, these models focus on inference mechanisms and provide also proper

formalisms to specify inference rules. Unfortunately, they do not usually offer simple

functionalities to deal with data validity; validation can be ensured, but associated rules

are not straightforward and depend on the adopted type of logic.

Ontology-based models use ontologies to represent context, and take advantage of the

capability of expressing even complex relationships. Data validity is usually expressed by

imposing ontology constraints. By focusing on relationships between entities, ontologies

are very suitable for mapping everyday knowledge within a data structure easily usable

and manageable. In addition, the wide adoption of ontologies enables the reuse of previous

works through the creation of common and shared domain vocabularies. Although

ontology approaches seem very competitive, mobile environments usually avoid them

since required computing resources, in terms of CPU and memory, are not acceptable for

resource-constrained mobile devices.

As stated before, general models offer a great degree of freedom to represent everyday

knowledge. Differently, domain-specific models are less flexible and, by focusing on a

particular domain, introduce particular constraints on the data and on the relationships

between them. On the bright side, this restricted flexibility enables the definition of more

complex automatic aggregation operators. For instance, spatial data models are widely

adopted by localization systems to represent both real-world objects location and

relationships among them [69], such as containment and intersection; in the literature,

there are also some standardization efforts that clearly define data and spatial query

format, and such level of standardization has greatly simplified the definition and the

implementation of automatic data management tools. In this case, data validity is easier to

ensure, and automatic tools are usually available to specify validation rules.

In conclusion, the adopted context data model mainly depends on the supported

scenarios and on the aggregation operations to perform. Although almost all the above

models offer means to represent QoC metadata, to the best of our knowledge, there are no

mature tools to declare and enforce constraints on them at runtime. In fact, the huge design

space associated with generic models, as well as the different semantics associated with

represented data, do not simplify the definition of completely generic QoC frameworks.

Hence, a CDDI usually has to introduce specific solutions to handle metadata for QoC

treatment, thus implicitly narrowing the set of context data that can be really handled.

60

4.2.2. Context Data Storage

Context Data Storage takes care of memorizing data into the distributed CDDI

architecture, by also triggering proper coordination and caching/replication protocols if

required. As clarified in Section 3.2, the CDDI storage architecture should exploit both

physical and logical locality principles to drive context data memorization, so to store data

as close as possible to the mobile nodes that will probably require them. From a general

viewpoint, context data storage approaches can be categorized in centralized architectures

and decentralized architectures.

Centralized context data storage approaches come with limited scalability and

reliability. However, on the bright side, they ease management issues since 1) multiple

copies of the same context data cannot exist; and 2) all the context data produced into the

system can be easily retrieved by querying the single storage node. Of course, such

approaches also simplify the realization of aggregation operators that need access to

different context data for the sake of reasoning. Unfortunately, considering the tight

limitations on the system scale, very few solutions can adopt this kind of approach.

Moving toward more realistic and decentralized approaches, they make use of

different nodes to store context data into the system. In addition, they can adopt either

caching or replication mechanisms that, by carefully storing context data copies into the

distributed storage, can increase system scalability and context availability. Although

these solutions offer higher scalability and reliability, they lead to increased management

overhead; first and foremost, consistency management is an important problem that must

be carefully addressed by the CDDI, so to avoid the usage of erroneous or extremely stale

data [54]. In the following, we better analyze the introduction and the usage of locality

principles to guide both caching and replication mechanisms; for the sake of clarity, we

recall that caching mechanisms memorize context data only as consequence of node

requests.

Starting with the physical locality principle, it suggests storing context data as close as

possible to the associated production point. Since we are dealing with mobile systems, a

core CDDI goal is to avoid, if reasonable, mobile nodes spreading context data into the

system. Unfortunately, the real-world implementation of such guideline grounds on the

provisioning of localization data, either absolute (e.g., obtained by GPS sensors) or

relative (e.g., based on fixed anchor points). Localization information must be used to tag

context data at production; then, at runtime, context data should be kept as close as

61

possible to their initial production location, notwithstanding node mobility. This could turn

into an extremely hard task according to the adopted network deployment. If the network

deployment assumes a fixed infrastructure, and the CDDI can rely on fixed servers to

perform context data storage, a simple mapping function between physical places and

servers in charge of handling data produced in them completely meets our goal. In fact, the

CDDI can automatically store data coming from particular physical places on a

predetermined set of servers, and then it can route context requests only to them, thus

exploiting the physical locality principle to reduce the runtime overhead. Instead, if the

network deployment is a MANET, the potential lack of fixed nodes useful to store the

context data greatly complicates the realization of storage architectures guided by the

physical locality principle. In the worst-case scenario, namely nodes randomly roaming

and proactive replication techniques, the CDDI should continuously migrate context data

between mobile devices, thus introducing a high management overhead, also difficult to

predict due to the strict dependence with mobility patterns. In all the aforementioned

cases, if the CDDI exploits reactive caching techniques, it can only anticipate the removal

of context data that are far away from their own production points since, by definition,

data transfer only happens as consequence of node requests [57].

As regards the usage of the logical locality principle in context data storage, more

challenging issues arise. In fact, the logical locality principle suggests storing the data as

close as possible to physical places that exhibit, during particular time hours and days, a

skewed interest toward a particular set of context data. Differently from the physical

locality principle, here the CDDI has to profile and automatically detect, at runtime, such

skewed context data interests, so to detail proper data memorization profiles used by

caching/replication techniques. Although the manual definition of such profiles is feasible

as well, it does not scale well with system size, and it can require continuous human

intervention if context interests dynamically change. In addition, similarly to what we

discussed before, storing context data close to a particular physical place is not always

straightforward, and strictly depends on the adopted network deployment. In this case, an

ad-hoc network deployment introduces also challenging issues for the automatic detection

of skewed access patterns, step that usually needs access to the history of the context data

requests emitted by multiple nodes.

Finally, let us remark that context data storage is also in charge of handling context

data history, namely the possibility of maintaining all relevant past events and retrieving

the history of a particular context data. Of course, context data history imposes

62

requirements on memory resources; depending on data size and on production rates, it

could be difficult to maintain the whole history, especially when no fixed servers are

available. However, despite required resources, context data history could be fundamental

for the correct provisioning of specific services; hence, several real-world CDDIs have to

offer such function.

4.2.3. Context Data Processing

Context Data Processing offers all those operations needed to locally shape retrieved

context data according to service needs. Usual context data processing covers three main

context management aspects: aggregation, filtering, and security. By following this order,

we now discuss the possible implementation choices, and we introduce more details about

the processing function.

The Context Data Aggregation function provides all the merging operations useful to

derive new knowledge from pre-existing context data. Specific operations strictly depend

on the adopted context data model and, since context data can be stale and affected by

errors, they must be deeply concerned with QoC. The available aggregation techniques

can be classified in logic and probabilistic reasoning depending on whether the context

data are considered either correct or correct with a specified probability (typically smaller

than 1); in addition, hybrid solutions, that combine those two techniques, are also possible.

Probabilistic reasoning techniques can usually derive the correctness of composed context

data from the correctness of single involved context data. At the current stage, AI provides

techniques, and standard logic-based representations and inference engines, that can

simplify the usage of aggregation operators; hence, since real-world CDDIs usually

require dynamic data aggregation, they adopt either logic- or ontology-based models that

are simpler to manage and integrate with those engines.

The Context Data Filtering function strives to increase system scalability by carefully

controlling the amount of transmitted context data. These techniques are fundamental

since some context aspects change very often, and their associated sources can produce

data with extremely high rates. At the same time, context provisioning to services has to

be managed according to granted QoC; if services can accept reduced QoC, and that

produces less management overhead, context data distribution can use these techniques for

the sake of scalability. Filtering operators usually enforce either time-based (new data are

not transmitted until a particular time limit is not reached) or change-based constraints

(new data are not transmitted if they do not significantly differ from the last transmitted

63

one). Of course, context-aware services can also define complex filtering operations, made

by multiple time-/change-based operators arranged either in parallel or in sequence: for

instance, a context-aware service can subscribe for localization change notifications only

if the current node position differs from the previous one for, at least, 10 meters (change-

based condition), and the last notification has been received more than 10 seconds ago

(time-based condition). Notwithstanding the significance of these techniques, they

introduce challenging implementation issues that must be properly addressed by the

CDDI. In a large-scale network, filters should be not only used locally at the destination

node, but also propagated into the distributed architecture to stop the propagation of

useless data as soon as possible: the allocation of such filters under multiple criteria, such

as minimization of the network traffic, maximization of the sharing of filter operators

between different users, and so forth, can lead to very complex optimization problems.

Finally, the Context Data Security function includes all mechanisms to grant privacy,

integrity, and availability of data (e.g., to overcome Denial of Service attacks). Real

deployment scenarios deeply ask for them because context data could contain sensible

information. For instance, while temperature data exchanged in clear text may be not

perceived by users as a privacy violation, other context data containing user localization

may require appropriate mechanisms to ensure privacy. Although security issues have

been already tackled and solved in literature, and efficient solutions to address security

problems, e.g., by exploiting access control and encryption mechanisms, are available and

usable, we remark that an important part of the privacy loss problem related to the usage

of localization data is still open: in particular, indirect inferences of users identity/relations

performed on those data represent a real problem that is currently mining the diffusion of

these systems [70, 71].

4.3. Context Data Delivery Layer

The Context Data Delivery Layer realizes all the required coordination and

dissemination protocols to carry published context data to interested context-aware

services. Several solutions are possible, with an important impact on final scalability and

context availability. Among different duties, this layer organizes the nodes that take part to

the context data distribution, called brokers, to build a particular overlay structure useful to

drive both context data and subscriptions routing at runtime. Also, it exploits QoC

constraints on the data distribution process to tailor context delivery. Finally, we remark

that, of course, the specific context delivery solution must map onto the integrated wireless

64

communication platform available underneath, and this can limit feasible solutions.

Hence, from a rather general viewpoint, this layer addresses both context data routing

schema and overlay structure construction and maintenance. Following this order, now we

discuss the main solutions that can be adopted at this layer, with associated pros and cons.

For the sake of clarity, Figure 4.3 shows a brief overview of the possible design choices,

better discussed in the following subsections.

4.3.1. Context Data Dissemination

Context Data Dissemination enables data flow between sources and sinks. Hence, it is

a core function in enabling context access with great impact on context availability and

system scalability. A borderline condition is when no dissemination support is needed at

all, since sinks directly access sources; we name this category sensor direct access. Apart

from this strategy, dissemination solutions belong to three different categories, namely

flooding-based, selection-based, and gossip-based. The first two categories characterize

deterministic approaches where, except during system reconfigurations, a sink always

receives matching data produced by sources belonging to the same context data

distribution system. Instead, the last category includes probabilistic approaches where a

sink can miss some matching data. Systems adopting a hybrid approach that mixes these

three main solutions are also possible. Given dissemination crucial role, here we present

an in-depth discussion of the associated taxonomy (see Figure 4.3), and we better detail

flooding-/selection-/gossip-based categories by introducing additional elements that can

help in analyzing real systems.

Sensor direct access approaches may induce low data availability and clash with

time/space decoupling because sinks have to communicate directly with sources to access

Dissemination

Routing Overlay

Flooding-based

Selection-based

Gossip-based

Data flooding

Subscription flooding

Context-oblivious

Context-aware

System wide scope

Limited scope

Centralized Architecture

Decentralized Architecture
Hierarchical distributed

Flat distributed

Sensor direct access

Figure 4.3. Taxonomy for the Classification of the Context Data Delivery Layer.

65

data; however, as main benefit, they usually result in low complexity. Although seminal

works on context-awareness completely relied on this approach, CDDIs for large-scale

systems can adopt it only during the initial production phase; after, context data have to be

stored and made available into the system according to context-aware service needs, by

granting access with no additional constraints on source/sink interactions.

Flooding-based algorithms realize context data dissemination via flooding operations,

in other words operations that reach all the nodes contained in a particular scope (such as

the entire network, the one-hop neighbourhood in an ad-hoc network, ...). They operate

either by flooding context data (data flooding) or by flooding context data subscriptions

(subscription flooding). In data flooding, each node broadcasts known context data to

spread them inside the entire system, by letting receiver nodes locally select interesting

data. Instead, in subscription flooding, each node broadcasts its context data subscriptions

to all nodes to build dissemination structure. This schema propagates subscriptions to all

network nodes and assumes that each node memorizes subscriptions from all other nodes

to perform local matching on produced data. This can reduce bandwidth overhead by

disseminating only needed data; however, this solution requires very large routing tables,

and that limits scalability.

Selection-based algorithms are typically organized in two phases. In the first one, they

deterministically build dissemination backbones by using context data subscriptions; in the

second one, data dissemination takes place only over the backbones, and is limited by

granting that context data reach only interested nodes. To build backbones, nodes must

exchange control information, thus introducing additional management traffic. Selection-

based approaches can offer two different visibility scopes to each subscription: system

wide scope and limited scope. In the first case, the dissemination process ensures that each

subscription is visible in the whole distributed system, so to grant that all the matching

data will be retrieved. In the second case, the dissemination process limits subscription

visibility to a subset of nodes, for instance the two-hop neighbourhood in an ad-hoc

network, so to ensure locality principles and foster scalability; however, due to the limited

visibility, it is possible that some matching data will not be found.

Finally, gossip-based algorithms disseminate data in a probabilistic manner by letting

each node resend the data to a randomly-selected set of neighbours. Since these

approaches do not need complex routing infrastructures to be constructed and maintained,

but rather simple local views of the network to choose the neighbours to which gossip data

to, gossip-based protocols well fit fast-changing and instable networks, such as MANETs

66

[72]. It is worth noting that, if correctly tuned, these techniques can ensure high reliability

and low latency despite their own simplicity; however, at the same time, they exhibit a

runtime behaviour that strictly depends on node density and mobility, and this could lead

to unstable performance. We classify gossip-based protocols in context-oblivious and

context-aware approaches [73, 74].

Context-oblivious protocols rely on random retransmission probabilities and do not

consider any external context information to tailor their behaviour [75]. Between them,

pure probabilistic gossip protocols simply resend each received data with a retransmission

probability, that can be also different for each node [76, 77]. In counter-based gossip,

instead, every time a node receives a new data, it waits a random delay to overhear

possible retransmissions by neighbours: at the end of the delay, the node resends the data

if and only if it has overheard a number of total retransmissions lower than a threshold [78,

79]. An important finding about context-oblivious approaches is that probabilistic gossip

with equal retransmission probability at every node has a threshold behavior: the

percentage of nodes that will receive the data suddenly increases when approaching a

specific threshold that depends on node density [75, 79]. Hence, main benefit of these

approaches is that they involve neither heavy computation nor state on traversed nodes

that simply select randomly in the neighbourhood; unfortunately, they can waste wireless

bandwidth uselessly by gossiping unneeded data, and do not allow the introduction and the

enforcement of quality guarantees due to extremely variable runtime performance.

Context-aware protocols select neighbours by using some external context data

potentially belonging to very different context dimensions. For instance, some approaches

use physical context (e.g., distance between nodes, local node density, etc.) to position

replicas far away [80]; other approaches use social similarity, such as membership to the

same university class (user context), to select neighbours to gossip data to. In summary,

context-aware approaches reduce the number of useless gossiped data, but they require

heavier coordination to exchange and process context data used to make gossip decisions.

At the same time, gossip decisions strictly depend on the context data to gossip, and this

introduces additional complexities in the CDDI, that has to somehow know the important

context aspects to be considered during gossip decisions. Finally, the increased dynamicity

makes the runtime behaviour of such protocols not very predictable, thus mining the

introduction of quality constraints into the context distribution process.

For the sake of clarity, Table 4.1 briefly summarizes the main characteristics of the

dissemination protocols presented before. As main performance indicators, we consider

67

1) coupling between sources and sinks; 2) state introduced on each mobile node;

3) expected network load; and 4) guarantees on context data delivery. By classifying each

dissemination protocol in respect of such indicators, we hope to offer an easy-to-digest

overview of available design choices.

4.3.2. Routing Overlay

Routing Overlay takes care of organizing the broker nodes, namely the nodes in

charge of real context data routing, into the mobile system. Different architectures can be

classified as centralized and decentralized. The centralized approach includes any possible

concentrated deployment (i.e., both single host and clustered), while we classify

decentralized architectures into two main subcategories: flat distributed and hierarchical

distributed. These latter two architectural choices can help in satisfying the physical

Table 4.1. Dissemination Protocols Comparison.

Category
Sub-

category
Pros Cons

S
en

so
r

D
ir

ec
t

A

cc
es

s

-

 No state on mobile nodes
 Low network overhead
 Sink always receive interesting data
 Dissemination reaches only interested

nodes

 Strong coupling between sources/sinks

F
lo

od
in

g-
b

as
ed

D
at

a
fl

oo
d

in
g Low state on mobile nodes

 Loose coupling between sources/sinks
 Sink always receive interesting data

 High network overhead
 Dissemination can reach not-interested

nodes

S
u

b
sc

ri
p

ti
on

fl

oo
d

in
g Loose coupling between sources/sinks

 Sink always receive interesting data
 Dissemination reaches only interested

nodes

 High state on mobile nodes
 High network overhead

S
el

ec
ti

on
-b

as
ed

S
ys

te
m

w

id
e

sc
op

e

 Loose coupling between sources/sinks
 Sink always receive interesting data
 Dissemination reaches only interested

nodes

 Medium state on mobile nodes
 Medium network overhead

L
im

it
ed

sc

op
e Loose coupling between sources/sinks

 Dissemination reaches only interested
nodes

 Sink could miss interesting data
 Medium state on mobile nodes
 Low network overhead

G
os

si
p

-b
as

ed

C
on

te
xt

-
ob

li
vi

ou
s

 Low state on mobile nodes
 Loose coupling between sources/sinks
 Low network overhead

 Sink could miss interesting data
 Dissemination can reach not-interested

nodes

C
on

te
xt

-
aw

ar
e

 Low network overhead
 Loose coupling between sources/sinks

 Medium state on mobile nodes
 Sink could miss interesting data
 Dissemination can reach not-interested

nodes

68

locality principle, for instance, by ensuring that each broker handles only close and easily

reachable physical places, and can enhance scalability even if they introduce additional

management overhead.

Of course, similarly to what already happened for the dissemination function, the

routing overlay approach depends on the adopted network deployment; at the same time,

given a particular network deployment, some routing overlay approaches are more suitable

according to the adopted dissemination approach. For instance, ad-hoc network

deployments are extremely decentralized with possible network partitions and node

departures, hence they clash with the realization of centralized overlays. Consequently, in

the remainder we consider every single type of routing overlay and, for each one of them,

we introduce additional considerations on the adopted network deployment.

The usage of a routing overlay made by a single central broker is appealing due to the

guarantees on context data distribution: in fact, due to its centralized nature, the matching

process between context data and subscriptions can be efficiently and effectively carried

out by contacting the single broker. Unfortunately, this approach comes with low

scalability and low reliability, hence, it is suitable only for small-scale deployments, where

the context data distribution function serves a small number of sources and sinks. In

addition, the feasibility of this approach strictly depends on the adopted network

deployment. When fixed wireless infrastructures are used at the network deployment, this

approach can be easily supported with a single physical server. In addition, selection-

based dissemination protocols with system wide query visibility scope take great

advantage from this overlay organization: obtaining system wide query visibility is as

simple as routing the context subscription to the unique broker. Instead, when mobile ad-

hoc networks are adopted as network deployment, this approach is difficult to apply due to

the lack of a static and always available node.

Decentralized approaches, either flat or hierarchical, exploit multiple brokers for the

sake of scalability and reliability. They have the advantage that the routing overlay itself

can be exploited to enforce locality principles on the context data dissemination.

Unfortunately, decentralized routing overlays trade off system scalability and reliability

with context availability since the usage of multiple brokers can introduce partial context

views; hence, additional management protocols are required to build and maintain a

consistent view over available context data. In addition, hierarchical architectures can be

preferred to flat ones since they better match the organization of context data with strict

physical locality principles, and better drive context subscription routing into the

69

distributed architecture. Unfortunately, some hierarchical architectures, such as tree-based

overlays, can lead to uneven load distribution.

For the sake of clarity, Table 4.2 shows a brief comparison between the possible

design choices at the routing overlay. To conclude, the final routing overlay strictly

depends on both choices of network deployment and dissemination facility. On the one

hand, ad-hoc networks claim for distributed routing overlays (both flat and hierarchical),

while fixed wireless infrastructures can exploit all the routing overlay approaches. On the

other hand, ad-hoc networks match flooding-/gossip-based approaches since they do not

require the maintenance of heavy routing information, while fixed wireless infrastructures

prefer selection-based approaches to avoid useless context data distribution and ensure

context availability.

4.4. Runtime Adaptation Support Layer

Runtime Adaptation Support enables the dynamic management and tailoring of the

other CDDI layers according to current runtime conditions (e.g., available resources,

deployment environment, and QoC requirements) with a typical cross-layer perspective. It

uses QoC constraints, both on the context data and on the distribution process, to assess

the feasibility of possible runtime reconfigurations. For instance, a conflict may arise if the

CDDI imposes tight filter operators to reduce exchanged data, and these filters lead to the

violation of negotiated QoC. As inappropriate decisions could lead to both system

performance and QoC degradation, thus possibly introducing noisy side-effects in context-

aware services provisioning, runtime adaptations have to be carefully validated by the

CDDI before real enforcement into the system. Finally, although not many solutions have

investigated the dynamic adaptation of context data distribution so far, we think this is a

Table 4.2. Routing Overlays Comparison.

Category Sub-category Pros Cons

C
en

tr
al

iz
ed

A

rc
hi

te
ct

ur
e

-

 Context data access is always
ensured

 No management overhead for routing
overlay maintenance

 Limited scalability and reliability
 Locality principles difficult to apply

D
ec

en
tr

al
iz

ed

A
rc

hi
te

ct
ur

e

Flat
distributed
architecture

 Increased scalability and reliability
 Locality principles easy to apply

 Context data access could not be
always ensured

 Additional management overhead for
routing overlay maintenance

Hierarchical
distributed
architecture

 Increased scalability and reliability
 Locality principles easy to apply

 Context data access could not be
always ensured

 Additional management overhead for
routing overlay maintenance

70

core component in CDDIs for large-scale wireless systems: in fact, it allows the realization

of interesting scenarios where the CDDI can adapt context data distribution according to

node mobility, available computational resources, QoC objectives, and so forth [3].

Our taxonomy, shown in Figure 4.4, highlights a crucial aspect, namely service level

can affect the adaptation process by influencing the decisions of the runtime adaptation

support with different levels of control. In particular, we classify it as 1) unaware, 2)

partially-aware, and 3) totally-aware. In unaware adaptation, the service level neither

reaches nor influences runtime adaptation support strategies. In partially-aware adaptation,

the service level supplies profiles describing the required kind of service, while the

runtime adaptation support modifies CDDI facilities to meet those requests. Finally, in

totally-aware adaptation, the runtime adaptation support does not perform any action on its

own, while the service level completely drives reconfigurations.

To better clarify how the runtime adaptation support works, Figure 4.5 summarizes

the main inputs and reconfiguration policies. The support elaborates both context data

inputs (computing, physical, time, and user context) and QoC parameters in order to

produce specific reconfiguration commands for both context data management and

delivery layers. To be more clear, adaptations can follow five main directions. First,

computing context: the runtime adaptation support triggers and executes management

functions aimed to overcome changes in the execution environment, such as wireless AP

handoff and wireless technology modifications. Second, physical context: the runtime

adaptation support modifies data distribution according to physical constraints, such as by

exploiting localization information to avoid unneeded data forwarding. Third, time

context: the runtime adaptation support modifies data distribution according to specific

events or time-of-the-day, for instance, by suspending context data distribution functions

during night. Fourth, user context: the runtime adaptation support tailors data distribution

to user preferences, for instance, by choosing low-cost connections even if they offer

lower bandwidth. Fifth, QoC parameters: the runtime adaptation support dynamically

modifies context data dissemination, for instance, by applying proper filtering criteria and

differentiated data priorities according to required QoC.

Runtime Adaptation
Support

Unaware

Partially-aware

Totally-aware

Figure 4.4. Taxonomy for the Classification of the Runtime Adaptation Support.

71

We remark that the runtime adaptation support should consider all these aspects since

reconfigurations can depend from complex conditions, spanning different context aspects

and QoC parameters. After the elaboration of these inputs, the runtime adaptation support

can command suitable management actions at all different layers. In the following

subsections, we highlight the main possible reconfiguration actions performed at each

layer.

4.4.1. Context Data Management Layer Adaptation

As regards the context data management layer, common reconfigurations deal with

the storage and the filter facility.

Starting from storage reconfigurations, the CDDI can exploit the wealth of context

information coming from mobile nodes, namely mobility patterns, current localization

information and user profiles, to reconfigure the local storage facilities at each mobile

node. In the cooperative context data distribution view, each mobile node shares a local

repository of context data with peers; of course, a coordinated management of such

repositories is fundamental to increase their own usefulness, by preventing both the

memorization of useless data and an excessive number of replicas of the same context

data. To be clearer, each mobile node can reconfigure local context data repositories to

anticipate the removal of context data that are of scarce interests both for it and for current

neighbours; for instance, while roaming, context data far away from their own production

points should be removed first. Similarly, if the CDDI dynamically adapts to available

resources, it could be the case that a mobile device has to remove many context data due

to memory shortage; in this case, an eviction policy, also based on user interests, can be

used to keep the elements considered more interesting by the owner of the device.

As regards filtering reconfigurations, they are used to finely tune received context

data. QoC notion encourages the introduction of mechanisms suited for data quality, in

User Context

Service Level

Context Data
Delivery Layer

Context Data
Management Layer

Runtime Adaptation Support

Partially-aware Totally-aware Unaware

No

interactions
Policy

Configuration

commands IN
P

U
T

QoC Parameters

Physical

Context

Computing

Context

Time Context

Figure 4.5. Detailed View of the Runtime Adaptation Support.

72

particular, filtering operators to enforce quality attributes in suitable ranges. These filters

can be adapted at runtime, according to available computational resources both at the

mobile node and at the brokers involved into the context data routing. For instance, an

interesting adaptation is the runtime merge and split of different routing paths that deliver

context data coming from the same source, but with differentiated quality constraints: in

this case, the merge of these flows in a unique one, respecting distribution with the tightest

QoC constraints, can reduce the runtime traffic of the CDDI. Similarly, since very tight

QoC constraints can lead to frequent data exchanges that, in their turn, introduce too much

overhead on device resources, the runtime adaptation support could automatically enlarge

such QoC constraints to better trade off quality with resource consumption [81].

4.4.2. Context Data Delivery Layer Adaptation

As for context data delivery layer, common reconfigurations mainly adapt

dissemination algorithms according to current runtime conditions. Such reconfiguration

operations can be extremely varied, spanning from the fine tuning of dissemination

protocol parameters, to the dynamic switch of different dissemination algorithms.

Starting with the fine tuning of dissemination protocol parameters, the most

interesting solutions are those that realize the context data distribution in a completely

decentralized way, mainly flooding-/gossip-based supports for MANET, since those

systems need to adapt and to optimize distribution to overcome resource-constrained

mobile devices limitations. For instance, gossip-based protocols are usually characterized

by two main parameters: 1) a fan-out parameter, describing the number of neighbours that

will be hit by a gossip operation; and 2) a gossip period, representing the period of time

between two consecutive gossip operations. Data spreading into the mobile network is

greatly affected by these parameters, as well as by node mobility patterns. Hence, the

runtime adaptation support can reduce the period between two different gossip operations

to increase propagation speed for sensible data; instead, it can enlarge it due to bandwidth

saturation.

Moving to more complex reconfigurations, the runtime adaptation support can

dynamically switch different dissemination algorithms to better fit the current execution

environment. For instance, MANETs are usually characterized by mobility patters not

easy to predict. Such mobility patterns have a great impact on the effectiveness of the

different dissemination protocols, since they can implicitly hinder or favour data

propagation into the network; for instance, in data flooding approaches, the more chaotic

73

the node mobility, the higher the number of different nodes encountered in a limited time

span, hence, the higher the propagation speed [82]. Although random mobility patterns

simplify data spreading with flooding-/gossip-based dissemination protocols, they make

the usage of selection-based protocols almost impossible, due to the high number of

routing path reconfigurations and related management overhead. Hence, the runtime

adaptation support can dynamically switch different dissemination protocols according to

node mobility: if nodes move by building almost stable groups, namely with a low relative

mobility, selection-based approaches are feasible; instead, if the relative mobility is high,

it could be appropriate to completely change the dissemination algorithm, by favouring the

adoption of flooding-based techniques.

4.5. Network Deployments & CDDI Peculiar Aspects

In this dissertation, we focus on the realization of CDDI solutions for large-scale

wireless mobile systems. As the adopted network deployment can either favour or hinder

context data distribution, here we start by analyzing possible network deployments. Then,

since past research works have already addressed the general problem of data distribution,

by proposing different solutions to counteract scarce resources and unstable connectivity,

we compare our CDDI view with pre-existing data distribution approaches.

Broadly speaking, we consider three categories of network deployments: 1) fixed, that

extends the traditional wired Internet by wireless Access Points (APs); 2) ad-hoc, where

mobile devices communicate directly with no need of fixed infrastructures; and 3) hybrid,

that combines the two previous approaches. In fixed network deployments, the context

data distribution function exploits some service reachable through the wireless

infrastructure: this grants high context data availability, but also imposes tight constraints

on provisioning scenarios as the system is unable to work without infrastructure. In ad-hoc

network deployments, the context data distribution function must be implemented in a

decentralized way, while ad-hoc links support data transmissions between mobile nodes.

These approaches well fit all those scenarios that cannot rely on a fixed wireless

infrastructure, but make context availability difficult to ensure; also, all the data

management mechanisms need more complex solutions due to possible network partitions.

Finally, hybrid network deployment approaches strive to obtain the best from previous

ones, with fixed infrastructures that ensure data availability for those nodes able to

communicate through them, and ad-hoc communications that may reduce infrastructure

overhead and permit to reach nodes unreachable otherwise.

74

Here we consider three emerging network models, namely Mobile Ad-hoc NETwork

(MANET), Vehicular Ad-hoc Network (VANET), and Delay Tolerant Network (DTN), as

typical ad-hoc-based network deployments. A MANET is a collection of mobile nodes

that use wireless ad-hoc links to communicate; nodes are free to move randomly, thus

possibly leading to frequently link breakage and topology changes [44, 45]. A VANET is

a MANET whose mobile nodes are vehicles [45, 83, 84]. In these scenarios, nodes have

higher speed, but the relative mobility between them is usually low due to limitations

introduced by roads and traffic regulations. While MANETs/VANETs usually assume that

the path between the source and the destination exists when a message needs to be routed,

DTNs accept longer latency and do not assume that the whole source-destination path

exists at the same time [38, 85]. A message is routed on a hop-by-hop basis and by

following a store-and-forward paradigm, where each node forwards the message to the

neighbour that has the highest probability to bring the message close to destination [86].

After this brief presentation of the possible network deployments, we present five

main emerging areas very close to context data distribution, namely 1) data distribution

facilities for distributed simulations; 2) mobile databases in MANET; 3) multicast and

group communication protocols in MANET; 4) pub/sub solutions in mobile environments;

and 5) content-centric networking in MANET. Then, we explain why we consider them

not suitable to handle context data distribution in large-scale mobile systems.

Starting with brief research area descriptions, distributed simulations need efficient

data distribution mechanisms to signal important events between simulated entities that

interact among themselves; traditional solutions exploit region-/grid-based approaches to

efficiently disseminate events [87]. Mobile database solutions enhance data availability

over MANET settings by overcoming possible node disconnections and network

partitions. Existing solutions copy data at different mobile nodes by using either caching

or replication techniques [56-61]. Multicast and group communication protocols in

MANET well fit the context data delivery facility: they allow to create different groups

and to distribute data to all the interested entities that have previously joined a group; this

model is suitable for distributing context data produced by a context data source to a group

of context data sinks. Also, the context data distribution model may seem close to a pure

pub/sub model because it is based on sources, sinks, and distribution function [52]. Many

solutions for pub/sub in mobile environments have been already proposed in literature, and

there exist several context-aware systems that adopt pub/sub systems to perform context

distribution [29, 32]. Finally, content-centric networking is emerging as a new

75

fundamental communication paradigm [88]. Here, contents are univocally identified by an

URI used during lookup, and caching at different network stack layers is used to enhance

network performance. Different works already proposed content-centric routing over pure

P2P MANETs [89, 90], thus assessing the feasibility of this paradigm over such network

deployment.

Even if these areas are close to context data distribution, some important differences

arise. This section aims to better explain the original need for context data distribution

infrastructures for mobile systems; we use our design guidelines to better compare systems

belonging to different categories.

Starting with context data production/consumption decoupling, cooperative message

(context data) distribution, and adaptation to mobile and heterogeneous environments,

these three design guidelines relate to mobile systems in general, hence, they are common

to context data distribution and to almost all the research areas presented above. In fact,

mobile systems, where nodes freely join and leave the system, make strong coupling

between communication entities absolutely unsuitable. Consequently, context data

production/consumption decoupling is intrinsic due to the mobile nature of the system, and

several solutions belonging to close research fields, such as pub/sub systems, can ensure

this requirement [52]. Similarly, the usage of intermediate mobile nodes to cooperatively

store messages has been used by several pub/sub implementations for MANETs; in fact,

intermediate nodes temporarily store messages and periodically relay them to neighbours,

so to cooperatively distribute them. At the same time, the capability of adapting to

mobility and heterogeneity is associated with mobile systems in general, because these

systems group several mobile devices, spanning from mobile phones and PDAs to full-

fledged laptops, with highly different resources; hence, adaptation to heterogeneity is

essential and several solutions in the above research areas already support it. At the end,

we remark that only data distribution facilities for distributed simulations do not account

for adaptation to mobile and heterogeneous environments, as they are mainly used in static

and fixed infrastructure environments where powerful servers, connected by high speed

links, exchange data to synchronize simulation execution.

If the aforementioned design guidelines are mainly connected with mobile systems in

general, and do not allow to clearly differentiate context data distribution from other data

distribution approaches, the remaining guidelines carefully suggest that context data

distribution, despite some similarities, cannot be fully addressed by other approaches.

Starting with context data life cycle management, all these approaches do not

76

explicitly handle data life cycle. Mobile databases and pub/sub systems offer seminal

solutions to deal with data/message removal, and they do not offer more complex

operations, such as data/message aggregation. Similarly, data distribution facilities for

distributed simulations and content-centric networks are focused on simple event/content

delivery, and do not explicitly consider processing functions. Of course, as long as the

system merely delivers data driven by additional and external routing information, the

final payload could also adopt complex representation techniques, e.g., first-order logic;

however, if the system cannot inspect payloads, different management operations, for

instance QoC-based filtering, cannot be implemented. Similarly to QoC-based data

filtering, aggregation functions could be obtained by external services running on top the

data delivery infrastructure; however, this limits possible operations and final system

efficiency.

As regards the enforcement of the context data visibility scopes, data distribution

facilities for distributed simulations enforce physical locality into the simulation, e.g., they

share events only between entities in the physical proximity, and exploit such principle to

optimize the placement of the different simulation components. Mobile database

approaches do not usually enforce locality principles, and try to spread data in the whole

system to increase availability; this is against the locality principles of the context data

distribution. Similarly, both multicast and group communication protocols in MANET and

mobile pub/sub architectures strive to build system-wide communication primitives that

do not usually enable the enforcement of context data visibility scopes. Of course,

differentiated visibility scopes can be mimicked depending on the specific system, e.g., by

using the partitioning capabilities usually offered by pub/sub systems to increase overlay

scalability [91]; however, these solutions are system-dependent and can lead to increased

management overhead. At the same time, it is worth stressing that some pub/sub systems,

called location-aware in literature [32], can constrain the message/subscription matching

depending on the current location, so to enforce limited visibility scopes associated with

physical locality principles. Finally, as regards content-centric networks, such approaches

dynamically cache and move contents according to the requests currently emitted in the

network; hence, they well fit the logical locality principle.

In consideration of QoC-based context data distribution, to the best of our knowledge,

all the five research areas highlighted before miss this requirement. Events in distributed

simulations do not have any notion of event quality; also, focusing on the delivery process,

events are dispatched a soon as possible to prevent the slowdown of running simulation,

77

with no differentiation in routing delays. Mobile databases do not usually consider quality

constraints, neither on the data nor on the distribution process. Even if QoC constraints on

context data can be mimicked by local filtering operators, they do not tailor the distributed

data delivery process, thus possibly introducing unneeded overhead for replicating out-of-

QoC data. In addition, since replication techniques aim to ensure system-wide data

consistency, they work effectively only with low change rates, and this is against the fact

that context data can rapidly change according to the represented physical phenomenon

[56]. Similarly, multicast and group communication protocols tend to ensure consistency

between produced and received data: this is against both production/consumption

decoupling and QoC-based data filtering. In addition, they strive to deliver data as soon as

possible, while leaving out the tailoring of the distributed data distribution process: hence,

QoC constraints on the distribution process are usually not supported. Pub/sub solutions

do not usually consider quality-based delivery [92]. On the one side, QoC constraints on

data can be obtained via message filtering; however, the usage of these filters to tailor the

distributed message routing depends on the specific implementation. In addition, context

data distribution has to deal with both uncertain data and subscriptions, while the

subscriptions made to pub/sub systems consider only perfect subscription/data matches.

On the other side, QoC constraints on the distribution process have to be directly

supported by the implementation itself as they affect the dispatching process. To the best

of our knowledge, previous research on these systems mainly focused on reliable message

delivery notwithstanding node mobility, by means of explicit sign-in/sign-off application-

level mechanisms and caching proxy servers on the fixed infrastructure [93-96]; these

solutions do not consider other quality objectives, such as message delivery time. Finally,

content-centric networks enable the distribution of the same content in multiple versions,

but they do not usually have any notion of content quality (only content trustworthiness).

At the same time, from the delivery process viewpoint, they do not have any means to

enforce specific retrieval times and/or priority, thus making impossible the enforcement

and the runtime usage of such QoC quality attributes.

To conclude, although context data distribution exhibits some similarities with

different research works in literature, none of these approaches fulfills all the context data

distribution design guidelines, especially 1) context data life cycle management; 2)

locality principles; and 3) QoC-based constraints both on context data and on distribution

process. With these observations in mind, we claim that context data distribution for

context-aware systems is different from all other traditional data distribution architectures.

78

4.6. Chapter Conclusions

In this chapter, we presented a logical CDDI model and we investigated the main

design choices at each layer. Although it is possible to imagine several in-between

solutions, our classification is meant to capture the principal design opportunities. Of

course, designers can use hybrid or multiple solutions at a particular CDDI facility to

reach different goals, e.g., increasing system scalability or ease of development of local

context-aware services. To the best of our knowledge, all the pre-existing context

provisioning infrastructures for mobile systems present design choices that can be easily

captured by our proposed taxonomies [5]. After, we considered the principal network

deployments that can be found in traditional mobile systems. We recalled that general data

distribution mechanisms have been already devised and designed in close research areas;

although such efforts may seem close to CDDIs, we also explained why we think they do

not well fit all the main CDDI requirements. In next chapter, we discuss the three case

studies considered in this thesis, and we briefly detail the main contributions presented in

the second part of the dissertation.

79

5. Case Studies

Context data distribution infrastructures for mobile environments are greatly affected

by both system size and adopted deployment architecture. On the one hand, as the system

grows up to large-scale networks, innovative solutions are required to address both the

storage and the distribution of huge amounts of context data. On the other hand, the

adopted deployment architecture greatly affects context data availability, as well as

context data storage and distribution mechanisms, thus requiring novel solutions for the

sake of context provisioning.

The aim of this chapter is twofold. First, in Section 5.1, we introduce three significant

case studies of context-aware services for mobile environments, so as to better remark the

wide range of different network deployments and quality requirements this thesis

addresses. We anticipate that the remainder of the thesis will be organized along these

three case studies, since they are good representatives of deployment architectures in real-

world scenarios. Then, Section 5.2 better stresses what it is still lacking in today state-of-

the-art scenarios, and supplies a brief overview over the main contributions presented in

the remainder of this thesis. Let us recall that, although specific solutions are presented in

particular scenarios, they can be also applied to other ones.

5.1. Thesis Case Studies

In this section, we detail three significant case studies of very different context-aware

services in mobile environments (Table 5.1 offers a brief overview, by highlighting

network deployments and main characteristics of each case study). We focus on these

scenarios since they feature both extremely different network deployments, ranging from

impromptu MANETs to hybrid networks with 3G/4G connectivity, and different quality

requirements, spanning from reliable to best-effort context delivery. In addition, each

scenario exemplifies a class of context-aware services with a similar network deployment,

and represents a set of problems to be addressed and solved in real-world scenarios. By

considering these different scenarios all together, one of the goals of this thesis is to reach

a better and comprehensive understanding of context data distribution infrastructures for

mobile systems.

The first case study regards context-aware services for emergency response scenarios;

these scenarios pose several challenging issues due to both unreliable network

80

deployments and safe critical services. The second case study considers context-aware

services for smart university campuses; here, context data distribution can also rely on

fixed wireless infrastructures, and context-aware services are usually not safe critical.

Finally, the third case study considers extremely large systems by addressing context-

aware services for smart cities. This last scenario is also very challenging as it requires

both extremely high computational resources, to process all involved context data, and

high bandwidth connections, to transmit the context data between the mobile and the fixed

infrastructure. In the following subsections, we better detail our case studies; for each one,

first we introduce few compelling examples of context-aware services, then we clarify the

adopted network deployment.

5.1.1. Emergency Response Scenarios

Disaster area scenarios are usually consequence of an unexpected and sudden disaster,

such as earthquake, terroristic attack, etc. In such scenarios, we usually find different

rescue teams (doctors, policemen, firemen, …) that coordinate among themselves to

ensure a timely and organized reaction. These forces exploit a hierarchical organization in

which some leaders tell everybody where, when, and how to work.

The disaster area is usually divided in four principal areas [97]: an incident site, a

casualties treatment area, a transport zone, and an hospital zone. The incident site is the

area where the disaster actually happened; in this area, rescue teams randomly roam to

find and carry injured people to a safe place. Once rescued from the incident site, people

are usually brought to the casualties treatment area, a safe area where they receive the first

extended medical aid. After this, and only when necessary, people are transported to

hospitals. Since hospitals are usually not close to the disaster area, the transport zone

contains all those transport units, such as ambulances and helicopters, used to transport

injured people.

Between above areas, the incident site is definitely the most challenging and unsafe

one: rescue teams randomly walk inside it to find humans in almost unknown place, such

Table 5.1. Thesis Case Studies.

Case Study Network Deployment Scale Quality Requirements

Emergency Response
Scenario

MANET Hundreds of nodes
Tight time requirements due

to safe-critical services

Smart University
Campus Scenario

Wireless infrastructure &
MANET

Hundreds of nodes Best effort delivery

Smart Cities Scenario
Wireless infrastructure &

MANET
Thousands of nodes

Different scenarios, from best
effort to reliable

81

as a building on fire, and do not know the state and the position of injured people. Hence,

we will specifically focus on the incident site area, also because here context-aware

services can assist the different rescue teams by providing a correct and timely

characterization of the current situation. In fact, rescue teams equipped with mobile

devices can be assisted by many different context-aware services to 1) automatically

obtain rescue operations state, such as the number of still missing people and their

positions; 2) distribute involved rescue teams on different sites (floors, houses, etc.) to

maximize the coverage area of the rescue operations; 3) prevent the usage of unsafe paths

that can put rescue teams on risk; and 4) collect medical records from injured people to

anticipate medical needs, such as a particular type of blood for transfusion [98].

Unfortunately, when we consider the real-world implementation of such services,

several challenging issues need to be carefully addressed. Starting from the network

deployment, these scenarios do not usually assume the existence of fixed wireless

infrastructures, as they could have been damaged by the disaster itself. Hence, the final

network deployment is usually a MANET, built by the mobile devices carried by rescue

team members. Although physical sensors could be deployed either on the mobile devices

themselves (e.g., PDAs with temperature sensors) or in pre-existing Wireless Sensor

Networks (WSNs) in the incident area, the mobile devices contained into the MANET

have to take over all the context distribution responsibilities, spanning from storage to

delivery. However, due to the adopted network deployment, intermittent connectivity and

network partitions are possible, and can greatly affect context availability. In addition,

different quality constraints are fundamental to differentiate high priority from low priority

tasks. For instance, consider different rescue teams, e.g., teams of doctors and firemen,

trying to gain access to the medical records associated with injured people; while doctors

require these data only to monitor people in the casualties treatment area, firemen require

them to know if someone still alive is trapped under the rubble in the incident area. Hence,

a CDDI for such scenarios has to introduce and enforce differentiated quality levels to

favour the routing of data associated with high-priority tasks, such as the ones carried out

by firemen.

5.1.2. Smart University Campus Scenarios

Modern university campuses are currently requiring novel context-aware services to

enhance students’ and professors’ life and experience while in the campus. Such services

have been already devised in the past, spanning different social aspects and context

82

dimensions [71, 99]; for the sake of completeness, we now briefly introduce two examples

of such context-aware services, namely a context-aware printer and a context-aware event

notification service.

As presented in [1], the context-aware printer service is useful to ease interactions

between the students and the physical surroundings. As students, especially freshmen, do

not know well the main university buildings, this service suggests close printers by

melting together context information coming from user location and place profiles

describing available physical/logical resources. When a student needs to print a document,

e.g., few slides associated with the next classroom, this context-aware service can discover

and show all the available printers, ordered by increasing distance from the current user

location, so to facilitate and support prompt user decision; after the user opted for one

printer, the service automatically and proactively configures the print command to reach

the selected printer.

The context-aware event notification, instead, is useful to recommend interesting new

events, such as workshops, conferences, seminars, etc., to interested students. The service

exploits user mobility, as well as additional information coming from social networks, to

refine a user-specific profile that selects interesting events for the user. At the same time,

co-location information between users is fundamental to identify social groups, and can

enrich user and place profiles to prevent wrong recommendations. When a new event is

introduced, the service matches it with user profiles to trigger automatic recommendations.

Main goal of this service is to easily promote new events into the university campus, thus

fostering wide participation. In addition, this service can help students toward final course

exams: it can be used to disseminate study group events, while the service automatically

takes over the responsibility of finding interested students.

Both these services can greatly enhance everyday life into the campus. Here, it is

feasible to assume the presence of a fixed wireless infrastructure that helps in distributing

important context data to final mobile devices. Even more, we can exploit direct ad-hoc

links between mobile devices to distribute important context data, thus implementing

hybrid network deployments for the sake of context availability and system scalability.

Differently from emergency response scenarios, we can assume context data always

available through the fixed infrastructure. However, scalability bottlenecks still stand:

first, considering that wireless fixed infrastructures deployed in a university campus are

usually exploited to provision traditional Internet connectivity, the context provisioning

traffic has to be kept as low as possible; second, university campuses present very high

83

node densities, and this further complicates the context distribution process, that can also

require a high amount of bandwidth. At the same time, it is worth noting that context-

aware services executed in such environments are not safe critical. Although QoC

constraints are useful to manage the distribution process, the CDDI has additional degrees

of freedom that can be exploited to finely trade off context quality and distribution

overhead. Imperfect and incomplete context views will degrade user experience, but they

can be temporarily introduced to deal with overload situations. Hence, by using

information coming from both system monitoring and QoC constraints, the CDDI can

introduce runtime adaptation mechanisms useful to better limit the introduced

management overhead.

5.1.3. Smart Cities Scenarios

In the last years, a new set of city-wide context-aware services is vigorously

emerging, thus producing the so-called smart city vision. These scenarios feature city-wide

context data sensing and collection, with the main goal of introducing innovative context-

aware services meant to reduce city energy consumption, improve citizenship safety,

enhance traffic scheduling, and so forth. In this area, we focus on context-aware services

for the Bologna downtown: for the sake of clarity, let us briefly introduce few examples.

For the sake of citizenship safety, a context-aware service deployed in Bologna

downtown can collect context data coming from multiple sensors and merge them to

identify potentially dangerous situations. Video streaming coming from surveillance

camera, localization information, and electrocardiogram measurements from local body

sensor area networks can be used to detect unsafe situations, such as a person having a

sudden heart attack on the street. We expect the smart city to trigger warning messages

useful to make persons walking nearby aware of the current dangerous situation: in this

case, someone can efficiently intervene to do a first cardiac massage. At the same time,

due to the sensitivity of involved tasks, it could be worth triggering ambulance

intervention as soon as possible, and alert close paramedics to further increase the

possibility of saving a human life.

At the same time, Bologna suffers of traffic jams that can produce long travelling

times and high fuel consumption/air pollution. A context-aware service for traffic

scheduling regulation can automatically manage these large flows of cars to prevent the

gathering of vehicles in the same physical area, so to proactively avoid situations that can

lead to traffic jams. In this case, video streaming from cameras deployed on the highways,

84

as well as cars localization and speed data, can be processed to detect traffic jams

formation. After that, the context-aware traffic scheduling service can force cars to follow

different paths, by also adapting traffic lights timings to prevent the usage of few roads at

all.

Aforementioned examples clearly highlight the great potential of smart cities.

However, the real-world implementation of such solutions is very challenging, not only

for context data transmission issues, but also for context data processing ones. Although

we assume the usage of hybrid network deployments, based on the joint usage of both

infrastructure-based and ad-hoc communications, the scale of such system requires novel

solutions to correctly handle context data processing and distribution. In fact, smart cities

contain thousands of sensors that continuously produce new context data: the storage, the

aggregation, and the filtering of such massive amounts of context data cannot be carried

out by centralized solutions, hence extremely decentralized solutions are required to

address these steps. At the same time, such scenarios present highly variable resource

demands, mainly connected to time-of-the-day and location: as people have repeatable

patterns during the week, the CDDI can actually predict such resource requirements to

plan proper reactions. To effectively handle the last two points, namely large set of context

data to be processed and time-varying resource demands, as also stated in Section 2.4.4,

we claim the need of Cloud computing architectures [39, 47, 100]. Cloud solutions usually

exploit large data centers to offer data crunching facilities, extremely useful to process

context data produced by the smart city; at the same time, heavy computations can be

carried out by requiring additional hardware/software resources if required. In addition, we

have to consider that cellular networks ensure limited bandwidth and may introduce

economical costs. This hinders data transfer between the mobile and the fixed

infrastructure; hence, the usage of mobile devices to perform initial context data

processing is fundamental to avoid the introduction of high traffic from/to fixed wireless

infrastructures. Finally, focusing on QoC management, smart cities feature several

services that can span from safe critical ones, such as accident prevention and citizenship

safety monitoring, to completely best-effort ones, such as automatic recommendation of

interesting events in the physical surroundings. Hence, a CDDI for such scenarios has to

provide and enforce a wide set of QoC requirements, by also carefully handling the

interactions with heterogeneous wireless networks that could be not under the direct

control of the CDDI itself.

85

5.2. Intermediate Conclusions & Contribution Outline

In view of the first chapters, we can now better remark the main goals of this thesis

work. In Section 3.4, we introduced a selection of context-aware systems currently

available in literature. These valid works addressed different and heterogeneous issues,

spanning from local context provisioning mechanisms to principles and architectures for

context management. However, to the best of our knowledge, they did not consider the

real-world implementation of such scenarios in large-scale deployments as a first

objective. Heterogeneous wireless networks, as well as wireless modes, introduce

interesting opportunities and issues; above all, hybrid network deployments suggest

cooperative context distribution schemas where part of the distribution process and load is

offloaded to and operated by the mobile network through ad-hoc links. Apart from the

effects induced by the network deployment on the CDDI, we also think that quality-based

context provisioning has been widely neglected in the past. Although one of the oldest

work on QoC was published in 2003 [3], since then only few works in literature, such as

SOLAR [33], considered QoC constraints as fundamental drivers to manage the

distribution process. Hence, we feel that additional research work is required to effectively

consider QoC constraints at runtime, so to also self-adapt the CDDI according to available

resources.

We conclude this chapter by anticipating and highlighting the main contributions of

this thesis along our three case studies. In a very synthetic overview, since emergency

response scenarios stress the problem of context data availability and retrieval in

completely decentralized networks, in Chapter 6, we present 1) a quality-based context

data caching approach, which uses quality constraints to dynamically reconfigure caching

facilities; and 2) an adaptive query flooding approach, that enforces maximum data

retrieval time, while reducing the number of exchanged messages. Moving to smart

university campus scenarios, in Chapter 7, we extend our context data routing protocols in

hybrid deployments and we introduce 1) an adaptive context data caching approach, that

strives to detect current access patterns to adapt the ranking function; 2) an adaptive

data/query batching approach, which exploits delay tolerance to enable batching solutions;

and 3) an adaptive query drop approach, that dynamically adapts the number of processed

queries to limit the introduced CPU load. Finally, in Chapter 8, we focus on the integration

of Cloud solutions to perform context data storage and processing: we present a new

network-aware VM placement algorithm for Cloud systems, whose main goal is to

86

increase system stability under time-varying traffic demands, for instance, consequence of

context data flows that dynamically change due to a sudden gathering of people in a

particular physical area. For the sake of clarity, Table 5.2 briefly summarizes our main

contributions for each case study.

Finally, let us recall that this chapter ends the theoretical part of this thesis work. The

following chapters focus on the practical contributions of our work, by presenting

algorithms and protocols design, as well as extensive experimental results for the sake of

performance evaluation.

Table 5.2. Outline of Practical Thesis Contributions.

Case Study Main Practical Contributions

Emergency Response
Scenario

Quality-based Context Data Caching
Adaptive Query Flooding

Smart University
Campus Scenario

Adaptive Context Data Caching
Adaptive Data/Query Batching
Adaptive Query Drop Policy

Smart Cities Scenario Network-aware VM Placement for Cloud Systems

87

6. Context Data Distribution in Emergency Response Scenarios

This chapter focuses on the realization of context-aware services in disaster area

scenarios. In Section 6.1, we present an in-depth discussion of the main issues, as well as

of the design guidelines, adopted by our CDDI. After a brief introduction of the distributed

architecture, given in Section 6.2, we follow the logical CDDI architecture presented in

Section 4.1 and we introduce the main solutions adopted by RECOWER at each logical

layer in Section 6.3, Section 6.4, and Section 6.5. Above all, we focus on the usage of

differentiated QoC levels to reconfigure both context data storage and delivery. Finally,

Section 6.6 presents implementation details of RECOWER, while Section 6.7 discusses

experimental results, obtained through simulations, showing that self-adaptive

mechanisms, guided and constrained by required QoC levels, can effectively and

efficiently optimize the data distribution.

6.1. RECOWER CDDI

Context-aware services in disaster area scenarios are extremely significant [98].

However, the realization of real-world CDDIs for such scenarios presents still open and

challenging issues, associated with both the delivery and the storage of context data. In

fact, these systems need high bandwidth and reliable wireless links, all properties that

clash with traditional bandwidth-constrained and unreliable ad-hoc wireless technologies;

also, since all devices are usually located in the same physical area, they form a local

wireless network where transmission collisions are usual rather than unexpected. In

addition, these systems have to handle huge amounts of context data by using a distributed

data repository based on available mobile devices. As MANETs are likely to lead to

network partitions, the system has to explicitly deal with context data availability, by

introducing proper caching/replication techniques. In conclusion, since emergency

response scenarios usually exploit a MANET as network deployment, we claim the

significance of the following main design guidelines.

First, such a CDDI should integrate with and use any wireless technology available to

injured people devices. Among different technologies, a CDDI for disaster area scenarios

should support, at least, both WiFi and BT, as the most widespread ad-hoc wireless

technologies. In this way, the CDDI can increase both the final available bandwidth, by

improving system scalability, and the communication opportunities, by reducing the

88

probability of network partitions. Toward the integration of heterogeneous wireless

technologies, the CDDI should adapt both context distribution and management protocols

depending on available resources; for instance, it should automatically reduce context data

delivery rates to avoid wireless channel saturation.

Second, the CDDI should realize a distributed data repository. Since traditional

mobile devices usually have limited storage capabilities, we cannot assume a centralized

solution in which one node collects and supplies access to all the data available into the

disaster area. Consequently, the context data must be spread over the whole system and, at

the same time, data caching/replication techniques should take place to increase data

availability and to reduce the average path length required to access context data [56].

Third, the CDDI should exploit both the physical and the logical locality principles to

carefully store context data copies into the system. Both these principles are useful to

optimize available resources, but they must be carefully applied since they reduce the

number of data copies, thus potentially leading to reduced context availability. In addition,

from an implementation viewpoint, the CDDI should exploit localization data to impose

geographical distribution bounds. When a localization support is not available, e.g., when

the mobile devices are in indoor disaster areas, the CDDI should be able to exploit other

techniques, for instance based on hop count, to reduce distribution scopes.

Finally, the CDDI should be both QoC-based and context-aware in itself. Since we

have limited resources and an amount of context data that could saturate the whole

bandwidth, the CDDI has to introduce, enforce, and use QoC constraints to differentiate

context data storage and delivery. For instance, to ensure QoC data retrieval time, i.e., the

time period between context request and real data delivery to the mobile node, the CDDI

should dynamically adapt to distribute first the data closer to delivery deadline. Also, since

these environments are densely populated, with several devices using the same wireless

channel, the CDDI can exploit context-awareness to optimize the distribution process. For

instance, as long as the QoC data retrieval time is ensured, each node can introduce

routing delays to coordinate with neighbours and to understand which data have been

already distributed; in such cases, the CDDI can prevent further distributions, thus

avoiding the introduction of useless overhead. Additionally, data caching/replication

techniques should be managed to increase data diversity between near nodes, so to keep

local more data and to increase the probability of retrieving required data in near peers.

This also results in reduced context data retrieval times since mobile nodes have higher

chances of finding required context data on close neighbours.

89

Following these guidelines, we designed our CDDI for disaster area scenarios, namely

Reliable and Efficient COntext-aware data dissemination middleWare for Emergency

Response (RECOWER) [101]. In the remainder, after a brief introduction of the

RECOWER distributed architecture, we detail the fundamental mechanisms and solutions

adopted at the different CDDI layers to improve distribution scalability and reliability.

6.2. A Proposed Distributed Architecture

RECOWER adopts a simple distributed architecture due to the constraints imposed by

the deployment. We remove any assumption about the existence of fixed wireless

infrastructures; hence, the RECOWER distributed architecture is a MANET built by

mobile devices carried by rescue team members. WSNs can be used during the context

data production phase but, since they offer short communication ranges and limited

battery, important context data (e.g., temperature readings and localization data associated

with people trapped under the rubble) are always offloaded to mobile devices. In this way,

RECOWER CDDI has full control over such data, and can either cache or replicate them

for the sake of context availability. For the sake of clarity, Figure 6.1 shows an example of

the traditional distributed architecture adopted by RECOWER.

In our vision, each mobile node executes a local RECOWER instance, and hosts

multiple and heterogeneous wireless interfaces. Hence, our CDDI uses a Peer-to-Peer

(P2P) heterogeneous MANET that integrates both WiFi and BT. To enforce the physical

locality principle, while avoiding the strong assumption of localization data provisioning,

RECOWER does not exploit MANET multi-hop routing protocols at the network layer,

MANET

WSN

C
on

te
xt

 D
at

a

F
lo

w

Figure 6.1. Example of a Traditional RECOWER Deployment.

90

and manages data routing at the application layer on a hop-by-hop basis between

neighbours, in order to have a rough estimation of the distance. Finally, as most of the

routing protocols for MANET do [102], RECOWER assumes a beaconing mechanism to

handle node mobility: in other words, each mobile node periodically emits a broadcast

beacon to signal its presence to its own one-hop neighbours.

6.3. Context Data Management Layer

RECOWER addresses context data distribution in completely decentralized

MANETs. Of course, this introduces challenging issues for the realization of both context

data storage and processing facilities, since node mobility can lead to remarkable changes

in system settings. This makes the implementation of distributed algorithms and

coordination protocols very hard, as each mobile node can experience high variation rates

in its own one-hop neighbourhood. Due to the adopted network deployment, RECOWER

context data management uses highly localized solutions to ensure context data

provisioning to service level with timeliness constraints and high reliability.

Starting with context data representation, RECOWER adopts an object-oriented

approach, where each context data instance is an object that offers access to its own

attribute values through proper methods. Apart from the attributes describing real context

aspects, each context data instance is associated with additional management parameters.

Source ID (SID) is the unique identifier associated with the context source that produced

this data. Version Number (VN) is an increasing number, attached by the source, used by

mobile nodes to distinguish older data instances from newer ones. Foreseen Lifetime (FL)

is the maximum data lifetime estimated by the source at generation, while Remaining

Lifetime (RL), initially equal to FL, is dynamically decremented to account for time

elapsing; when RL is zero, the data is no longer valid, and it is removed by context data

repositories. Finally, to enable QoC-based data management, RECOWER tags each

context data with proper quality metadata. In the remainder, we assume that each data

instance has a QoC up-to-dateness parameter equal to the ratio between RL and FL (hence,

in [0; 1]), useful to express the probability that the associated data instance is the latest one

produced by the source.

As regards context data storage, RECOWER mobile devices memorize all the data

produced by dynamically discovered WSNs (see Figure 6.1); at the same time, also on-

board sensors produce new context data to be shared into the system. The memorization

overhead is not trivial to be addressed due to resource scarcity, and the realization of

91

history mechanisms, in charge of providing historical values of context data, introduces

additional issues due to both storage requirement and clock synchronization. On the one

hand, resource consumption is not a fundamental objective when human lives are at stake;

hence, although context data storage is limited by device capabilities, RECOWER does

not strive to optimize the usage of memorization resources. On the other hand, instead,

context availability is fundamental since some data can contain safe critical information,

e.g., localization and temperature information of the incident area. Hence, RECOWER

adopts caching mechanisms to store multiple copies of the same data, in order to increase

final context availability. In the remainder, each RECOWER node has a limited data

repository, with maximum size DMAX, that stores context data instances, either locally

produced or received by remote nodes in response to locally issued queries. When the

repository is full, we evict the Least Recently Used (LRU) element.

Moving to the context data processing facility, it is completely implemented by means

of local solutions. RECOWER CDDI offers context data aggregation and filtering

operators, but all the associated algorithms are executed in a local fashion by assuming to

have needed context data available in the local storage. This introduces an increased

overhead on the mobile device, but it is feasible for the following main reasons. First, as

stated before, in emergency response scenarios both battery draining and CPU/memory

usage are not important objectives to deal with. Second, distributed context processing

solutions are unfeasible due to the fast changing network conditions: they will probably

result in high network overhead and, at the same time, both the convergence and the

reliability of such processing operators are difficult to ensure. Since RECOWER has to

provide context data to the service level as soon as possible, it is better to locally elaborate

them, rather than to wait the convergence of external routing protocols and distributed

mechanisms. Due to the introduced overhead, that design choice limits the maximum

number of processing operators executed, at the same time, on the mobile device; hence, it

trades off scalability and reliability of executed context processing operators.

Finally, let us remark that context data confidentiality, integrity, and availability are

fundamental in such scenarios due to the safe-critical nature of executed context-aware

services. We did not consider the security issues introduced by RECOWER CDDI since

out-of-scope in respect of the main objectives of this thesis work. However, we remark

that a real-world implementation of such CDDI definitely needs security mechanisms to

avoid malicious users inject wrong context data that could lead to extremely dangerous

situations, e.g., by hijacking rescue teams along unsafe paths. Interested readers are

92

referred to [103] for an in-depth investigation of trust management schemas in MANETs.

6.4. Context Data Delivery Layer

Similarly to what happened for the context data management layer, RECOWER

context data delivery layer is also widely affected by the adopted network deployment.

The fast changing nature of MANETs does not fit well the building and the maintenance

of complex routing infrastructures that, although suitable for more static scenarios, can

lead here to excessive management overhead and unstable runtime performance.

In further details, at the dissemination facility, we adopted a subscription flooding

approach to prevent the distribution of context data not explicitly required by mobile

nodes. Hence, when a context-aware service requires particular context data, RECOWER

builds a subscription, i.e., a query in the remainder, and distributes it to neighbours. At the

routing overlay facility, we used a decentralized and flat solution to avoid the introduction

of additional management overhead due to cluster formation and maintenance [104]. Since

each mobile node memorizes and shares local context data with neighbours, the delivery

layer distributes context queries to all the current nodes into the one-hop vicinity.

RECOWER context routing is based on two main entities, namely context data and

context queries. While the former ones represent the real context information, the latter

ones are used to build temporary distribution paths that drive context data routing into the

distributed architecture. We recall that each context data has always, at least, its up-to-date

version memorized at the creator node to ensure availability; additional distributions

happen only if matching queries exist, otherwise data will be not distributed. Each query

carries a data filter used to select matching data depending on context requirements; in

particular, the data filter is specified by the sink at the query creator node, and is made by

a set of simple constraints on context data attributes (e.g., membership conditions, range

conditions, etc.) arranged through AND/OR functions. In addition, RECOWER context

data distribution follows two main management directions. First, it considers both data up-

to-dateness and retrieval time to adapt data/query distribution; while the former is used to

tailor data/query matching, the latter is useful to modify routing delays, for instance, to

favour the routing of important data close to retrieval time expiration. Second, it controls

employed resources and runtime overhead; query replication increases reliability, but

replication degree and number of transmissions have to be carefully managed to avoid the

introduction of scalability bottlenecks. Now, we present main management parameters, as

well as mapping processes, used by RECOWER to reach these high-level objectives.

93

Starting with query transmission, we remark that RECOWER adopts a one-hop

broadcast-based approach to distribute context queries. In this way, each node can

distribute a query to its own entire neighbourhood with the lowest possible transmission

overhead. Data distribution, instead, adopts a unicast-based approach where each node

sends data only to the node that had relayed the query for the following two main reasons.

First, if a node broadcasts a context data instance, that could trigger caching mechanisms

and replacement policies on all the reachable neighbours: as consequence, this can both

reduce cache diversity and introduce trashing behaviour. Second, this transmission policy

permits to better control the number of data transmissions: since context queries are

distributed in broadcast, more nodes in the same physical area could store a particular

context query, hence data broadcasting could trigger a very high number of

retransmissions.

For the sake of clarity, Figure 6.2 shows a context data distribution example. Two

nodes linked by a continuous line can communicate directly since into the transmission

range of each other. In Figure 6.2 (a), A starts distributing a query QA: the first

transmission hits its neighbours, i.e., B, C, and D. By assuming that B, C, and D do not

have a positive match for QA, all of them schedule a new query distribution after a random

delay lower than a fixed Query Routing Delay (QRD). As clarified in the following, this

random delay lets each node monitor query transmissions and self-adapt according to

current network load conditions. After another query distribution round (Figure 6.2 (b)),

all the nodes have a stored copy of query QA (Figure 6.2 (c)). Assuming that E has some

data matching QA, it schedules a data distribution after a random delay less than a fixed

Data Routing Delay (DRD). Differently from QRD, this delay strives to prevent wireless

Figure 6.2. RECOWER Context Data Distribution Process.

E A

(d) D

B

C

Data

A E

D

B

C

(c)

(e)

A

D

E

B

C

Data

A E

D

B

C

(QA)

(a)

A E

D

B

C

(b)

(QA)

(QA)

(QA)

94

collisions between queries and data, so as to avoid the well-know wireless storm problem

[105]. Finally, E relays the data to the node from which it received QA the first time (i.e.,

B in Figure 6.2 (d)), that, in its turn, sends them to the previous node in the query

distribution path (i.e., A in Figure 6.2 (e)) after another random delay lower than DRD.

In RECOWER, each context-aware service supplies proper QoC constraints in order

to drive context data distribution. Focusing on the context data delivery layer, QoC data

retrieval time is fundamental to properly set the routing delays presented in Figure 6.2.

Also, an automatic mapping function is required to obtain low-level query parameters

from the high-level QoC data retrieval time. Before we detail the mapping process, let us

recall that, to enforce QoC constraints and manage query aging, each RECOWER query

has six main management parameters. Time To Live (TTL) is the maximum number of

hops a query can traverse; it is decremented at each traversed node, and does not allow

further distributions when zero. Maximum Query Response (MQR) is the maximum

number of data instances collected by this query; it is used to prevent excessive data

distributions, for instance, when we look for context data that could have been produced

by several sources in the same physical area. QRD and DRD, as introduced above, are the

two maximum delays each node can introduce respectively during query/data distribution.

Already Collected Data (ACD) is the list of the keys associated with the already routed

data, and is fundamental to prevent retransmissions of already collected data instances.

Finally, Query LifeTime (QLT) expresses a deadline after which the query is expired and

removed by the system.

As regards the mapping between the high-level QoC data retrieval and the low-level

query parameters, we consider the following process. Query TTL is a service-level

parameter that depends on the required distribution scope. QLT is equal to the data

retrieval time; since all the data routed with more delay than data retrieval time are out-of-

QoC, RECOWER removes associated queries to avoid unneeded overhead. Finally, once

selected a proper TTL, we consider that each node in the distribution path introduces a

maximum delay of DRD in data distribution, and a maximum delay of QRD in query

distribution. Hence, the ratio between the data retrieval time and the query TTL is the

maximum delay each node can introduce. This value is equally split between DRD and

QRD, and the final random data (respectively, query) delay applied during distribution is

selected by a uniform distribution in the range [α; β] × DRD (respectively, QRD), with 0 ≤

α < β ≤ 1.

Finally, let us remind that RECOWER manages also memorization resources

95

employed by context queries. Even if each node can potentially store a large amount of

context queries, RECOWER aims to limit them to avoid overload situations: in fact, the

memorization of many context queries can trigger several data distributions that, in their

turn, contribute to increase wireless network load. Consequently, each RECOWER

instance has a limited query repository, with a maximum size of QMAX, to store queries

received by neighbours. If necessary, a replacement policy is used to identify the query to

evict; here, the query replacement policy evicts the query closest to its own QLT, since it

is the one that has more chance of not respecting its associated deadline.

6.5. Runtime Adaptation Support

RECOWER exploits QoC constraints to optimize the main mechanisms introduced in

Section 6.3 and Section 6.4. According to our classification presented in Section 4.4, we

adopted a partially-aware approach: each context-aware service provides high-level QoC

constraints, while RECOWER reconfigures associated distribution mechanisms to

optimize runtime performance. In particular, to increase both context data availability and

distribution reliability, RECOWER adapts 1) context data replacement at the context data

management layer; and 2) queries distribution at the context data delivery layer.

Nevertheless, to ease the development of context-aware services, RECOWER defines a

standard set of differentiated quality classes. Each Quality Class (QC) introduces 1)

quality constraints on received context data; and 2) maximum data retrieval time during

routing. The QC of each service is statically defined at deployment time according to its

safe criticality.

In the remainder, we present the runtime adaptation support of RECOWER. Since this

is a vertical module that crosscuts different aspects (see Figure 2.1), this section is

organized in two main subsections: the first one, Section 6.5.1, introduces how

RECOWER adapts context data caching according to QoC requirements; then, the second

one, Section 6.5.2, introduces how it adapts context query distribution to reduce the

number of distributed messages.

6.5.1. Adaptive QoC-based Context Data Caching

At deployment time, each context-aware service is associated with a QC that defines

quality constraints on received context data; our CDDI uses them at runtime to tailor the

context data/query matching process, so to route only data that will be used by receiving

sinks. For the sake of management, quality classes are arranged in a hierarchy that defines

96

containment relations between higher and lower quality classes. If M(QCi) is the set of

data accepted by a user belonging to QCi, and QCi is a quality class higher than QCj, the

relation M(QCi) ك M(QCj) has to be always true. For instance, firemen and doctors have

two different quality classes, respectively QC1 and QC2. Firemen need context data with a

up-to-dateness parameter higher than 0.7, while doctors accept data with every possible

up-to-dateness (M(QC1) ك M(QC2)). All the produced context data have an initial up-to-

dateness value of 1.0; decreasing values are assigned while time passes according to a

particular function, for instance, a linear function. Hence, at the beginning, all context data

match both firemen and doctors quality constraints; instead, when the up-to-dateness value

decreases to less than 0.7 due to time elapsing, the context data will no longer match

firemen quality constraints.

As the usefulness of caching a context data instance degrades when its quality

attributes tend to be out-of-QoC for all the nodes in physical proximity, RECOWER

exploits quality classes to maintain only the data with probability of being reclaimed in the

future. It considers that nodes belonging to low quality classes, namely quality classes

with loose constraints, can cache context data with very poor quality. Those cached data

are completely useless if the node caching them is surrounded by mobile nodes with

higher quality classes; in fact, all the queries will not find positive match due to poor data

quality. At the end, such situation wastes precious storage resources; hence, RECOWER

strives to anticipate the removal of low quality data, in order to keep context data that,

according to their own quality attributes, can be required in the future by close neighbours.

To conclude, QoC-based context data caching has to consider quality classes of close

physical neighbours. The data repositories hosted on mobile nodes with low quality

classes have to be dynamically adjusted according to the current neighbourhood; in

particular, if required, RECOWER will adapt data caches to store context data with high

quality attributes. The specific mechanisms used by our CDDI to select the quality-based

constraints on data, as well as implementation details, will be presented in Section 6.6.2.

6.5.2. Adaptive Context Query Flooding

Context query flooding is an expensive phase that, apart from requiring high network

resources, deeply affects distribution process reliability; in fact, broadcast messages in

WiFi networks are less reliable than unicast ones due to the absence of the RTS/CTS

mechanism. Hence, the context query distribution phase adopted by RECOWER has been

optimized following two main directions, so as to avoid useless query distributions and to

97

limit excessive routing overhead. Let us give some concrete examples. First, in Figure

6.2 (b), two of the three distributions performed by node B, C, and D are useless; since E

is the only one that had not already received the query, one of these distributions is enough

to ensure query distribution coverage. Hence, RECOWER aims to avoid useless query

distributions that will hit only nodes that had already received the associated query.

Second, although broadcast-based context query distribution is appealing due to

distribution paths replication and reliability, it wastes a lot of network resources and can

easily saturate the memory available for query memorization on mobile devices (limited

by the QMAX parameter). This, in its turn, will result in query replacement and consequent

routing path breaks. To avoid such problems, RECOWER tailors the broadcast-based

query distribution to hit only a subset of the current neighbours.

With a finer degree of detail, to avoid useless query distributions, RECOWER tries to

identify whether all the current neighbours had already received the query. Toward that

goal, each query has an Already Disseminated Nodes List (ADNL) parameter that contains

all the identifiers associated with the nodes that had already received the query (in the

remainder, QADNL is the ADNL parameter of the query Q).

For the sake of clarity, Figure 6.3 shows a context data distribution example to clarify

how our solution can prevent useless query distributions. At runtime, each node

periodically emits a beacon message to signal its presence to its own one-hop neighbours

(Figure 6.3 (a)). Hence, each node has a local Routing Table (RT) containing all the

communication end-points associated with current one-hop neighbours. Of course,

depending on both beaconing periods and node mobility, some inconsistencies can arise: a

node can have both incomplete view (e.g., a node that is just arrived and that had not

emitted any beacon yet) and not up-to-date view (e.g., a node that is not into the

transmission range anymore) of the current neighbourhood.

When A wants to distribute the query Q (Figure 6.3 (b)) with a TTL of 2, it computes

the difference between the current list of neighbours (contained in RTA) and the QADNL.

QADNL is initially empty, hence, the difference is {B, C, D}, meaning that some neighbours

had not already received the query. Node A adjusts the ADNL to contain {A, B, C, D},

and then broadcasts Q. After having received the query, B, C, and D try to match it with

locally stored data. Assuming that none of them can supply a response, and since the

associated query TTL is higher than 0, they schedule a next distribution after a random

delay lower than the associated QRD. If C is the first node that distributes Q again (Figure

6.3 (c)), it calculates the difference between RTC and QADNL (RTC / QADNL = {E}), updates

98

the ADNL by appending E (QADNL = {A, B, C, D, E}), and broadcasts the query. This

query distribution will hit A, B, D, and E since into the transmission range of C. As nodes

A, B, and D already have a local copy of Q, they simply update the local copy of the query

ADNL by appending the ADNL carried into the received query (Figure 6.3 (d)); in this

way, they try to reach a potentially up-to-date vision of the nodes that had already received

the query. Instead, E receives the query for the first time, and tries to perform data

matching. When B and D (Figure 6.3 (e)) try to distribute Q again, the difference between

the associated RT and the query ADNL is empty; hence, all the current neighbours had

already received the query, and the two query distributions are suppressed (see red arrows

in Figure 6.3 (e)).

Instead, to control query replication in the same physical neighbourhood, RECOWER

reduces the query distribution scope by imposing that a single broadcast message is

actually processed by only a subset of the current neighbours. In other words, by always

using a single broadcast query distribution, our CDDI imposes which neighbours have to

consider the received query Q. Toward this goal, RECOWER exploits the query ADNL

parameter as well. When a query Q has to be distributed, the sender node selects the set of

neighbours to which the query will be actually sent and, before the real transmission,

inserts their identifiers into QADNL. When a node receives Q, it checks that its own

(a)

A E

D

B

C
RTA = {B, C, D}
RTB = {A, C, E}
RTC = {A, B, D, E}
RTD = {A, C, E}
RTE = {B, C, D}

B

A E C

Q

(b)

A: RTA/QADNL = {B, C, D}
 QADNL = {}
 → QADNL = {A, B, C, D}

D

A: QADNL = {A, B, C, D}
 → QADNL = {A, B, C, D, E}

B: QADNL = {A, B, C, D}
 → QADNL = {A, B, C, D, E}

C: QADNL = {A, B, C, D, E}

D: QADNL = {A, B, C, D}
 → QADNL = {A, B, C, D, E}

E: QADNL = {A, B, C, D, E}

E

A

D

C

(d)

B

E

D

B A: QADNL = {A, B, C, D}

B: QADNL = {A, B, C, D}

C: RTC/QADNL = {E}
 QADNL = {A, B, C, D}
 → QADNL = {A, B, C, D, E}

D: QADNL = {A, B, C, D}

E
A

C

(c)

A: QADNL = {A, B, C, D, E}

B: QADNL = {A, B, C, D, E}
 RTB/QADNL = {}

C: QADNL = {A, B, C, D, E}

D: QADNL = {A, B, C, D, E}
 RTD/QADNL = {}

E: QADNL = {A, B, C, D, E}

E

B

(e)

A

D

C

Figure 6.3. RECOWER Adaptive Query Flooding.

99

identifier is into the QADNL. If the test is positive, the receiving node considers the query;

otherwise, it discharges the query since it is not into the set of neighbours selected by the

sender node. At the same time, even if the query is not to be processed by the receiving

node, we 1) update the local query ADNL (if available) to improve the efficiency of the

query distribution suppression; and 2) match it with locally memorized data to spread

them and to increase context availability.

Figure 6.4 shows a simple example. Node A has to distribute Q with a TTL of 2.

Using its local RTA, it detects three neighbours that had not already received the query,

namely B, C, and D. Before distributing the query, it uses a selection process (detailed in

Section 6.6.3), and decides to distribute the query only to B and C. It updates QADNL by

inserting its own identifier and {B, C}, and then broadcasts Q (see Figure 6.4 (a)). Due to

the broadcast nature of the wireless channel, B, C, and D receive Q (see gray circles in

Figure 6.4 (b)), and try to match Q with locally memorized data. After this phase, each

node tests if its own identifier is into the QADNL. Due to test results, only B and C (dotted

circles in Figure 6.4 (b)) consider the query, and schedule further distributions due to the

TTL higher than 0, while D silently drops the query and does not perform any distribution.

To conclude, by using query ADNL parameter, each sender node can control which

neighbours will actually consider a broadcast query. Of course, this solution introduces

computational overhead on all the one-hop neighbours (due to data/query match and

ADNL test), but lets us to select and distribute a query only to a subset of the physical

neighbours by using a unique broadcast transmission.

6.6. Implementation Details

This section introduces the main implementation details of RECOWER. We anticipate

that RECOWER has been fully implemented on a network simulator, namely NS2, to

better study the effects of our policies in large-scale mobile systems. Section 6.6.1

introduces the software architecture of our CDDI; then, from Section 6.6.2 to Section

Figure 6.4. RECOWER Query Distribution Suppression.

B

A E C

Q

(a)

A: RTA/QADNL = {B, C, D}
 QADNL = {}
 → QADNL = {A, B, C }

E
A

D

C

(b)

B

E

B: QADNL ∩ B = B
 → Process and distribute Q

C: QADNL ∩ C = C
 → Process and distribute Q

D: QADNL ∩ D =
 → Discard Q

D

100

6.6.4, we delve into details to present the main self-adaptive mechanisms introduced by

RECOWER, namely QoC-based context data caching and adaptive selection of broadcast

neighbours.

6.6.1. RECOWER Software Architecture

Figure 6.5 presents the local software architecture adopted by the RECOWER CDDI.

Following the logical model presented in Section 4.1, we organize it in two main layers: a

Context Data Management Layer and a Context Data Delivery Layer.

The Context Data Management Layer implements all the high-level functionalities

related to context data production and access. Every context aspect is mapped to a

particular context type that describes the layout of its own data: since RECOWER exploits

an object oriented context model [55], the type definition describes the fields involved in

each data instance. All current context types are stored and available by means of a local

Context Data Type Storage. Finally, each context data type is associated with a proper

Context Data Module that contains 1) a Source to realize data injection; 2) a Sink to enable

data retrieval; and 3) a Context Data Cache to store locally cached context data.

The Context Data Delivery Layer implements all the low-level functionalities related

to context data routing and wireless communications. The Communication Module offers

technology-independent send/receive operations while proper adapters, i.e., the WiFi and

the BT Adapter, map them to the real low-level technology-dependent ones. Each adapter

implements a Neighbourhood Sampling module that supplies access to the current

available one-hop neighbours. Finally, the Adaptive Routing Manager realizes context

data routing. It receives context data requests both from local and remote context modules,

and passes context queries to the proper module that, in its turn, handles the matching

phase with locally stored data.

Figure 6.5. RECOWER Software Architecture.

 Context Data Module

Adaptive Routing Manager

Communication Module

BT Adapter

WiFi Adapter

Context Data
Type Storage

Source Sink

Neighbourhood
Sampling

Neighbourhood
Sampling

Context Data
Cache

C
ontext D

ata
M

anagem
ent

Layer

C
ontext D

ata
D

e
livery

Layer

101

6.6.2. QoC-based Context Data Caching

As presented in Section 6.5.1, RECOWER context data caching is adapted at runtime

depending on data quality attributes and QoC constraints of close neighbours [106]. With

this goal in mind, our CDDI exploits a three phase algorithm where each mobile node 1)

monitors close neighbours to know their own quality classes; 2) merges collected quality

classes to obtain a final quality class, namely a cache quality class; and 3) reconfigures all

local caches to keep only data respecting the cache quality class constraints. In this

section, we better present the main phases involved during cache reconfigurations at

runtime.

In the first phase, each mobile node collects the user quality classes associated with

close neighbours. The neighbourhood considered during cache reconfigurations could also

span multiple hops, but there are two strong contraindications against this solution. First,

since query TTL assumes different values according to the desired service retrieval scope,

an upper bound to the neighbourhood that can route queries to a particular node is

impossible to find. Second, due to high node mobility and density, a consistent view over

multi-hop neighbourhood is difficult to reach with a low overhead. Hence, we decided to

limit the influencing neighbourhood to one-hop nodes, in order to better trade off

management overhead with performance gain. Finally, to enable the collection of the

quality classes associated with neighbours, RECOWER piggybacks them in the mobility

beacons periodically emitted by each mobile device.

In the second phase, RECOWER merges quality classes collected by neighbours to

obtain the final cache quality class that, in its turn, will determine the quality constraints

used to anticipate the removal of data with low quality. By exploiting the hierarchical

organization of the different quality classes explained in Section 6.5.1, different merging

policies, such as MIN and MAX, can be adopted. However, MIN can easily impose the

lowest quality class, thus leading to frequent replacements and data with poor quality.

Instead, MAX can easily impose the highest quality class, thus leading to empty caches

and suboptimal resource usage. Hence, RECOWER adopts the subsequent approach. If

QCSENDER is the class associated with the node that is currently reconfiguring its own local

caches, RECOWER examines all the quality levels from the highest one to QCSENDER. For

each quality class, a local accumulator is incremented with the number of neighbours that

belong to that class. When the accumulator becomes higher than a threshold λ, obtained by

scaling neighbourhood size, the associated class is used as final cache quality class. Let us

102

note that the final cache quality class could also be equal to QCSENDER if the accumulator

never reaches the threshold λ. With this approach, RECOWER will never choose a cache

quality class lower than QCSENDER, hence, a node will never cache data that do not respect

its own quality level.

Finally, in the third and last phase, each node reconfigures its local cache with the

selected cache quality class. Associated quality constraints are used in a two-fold manner.

First, they define the cache admission policy: hence, from now on, if the cache is full, data

that do not respect them will never be cached. Second, they choose the element to evict

when necessary. If we have to remove an element, we first select all the elements that do

not respect current cache quality class, and then we choose the element to evict by a

traditional LRU policy; if all the data respect current cache quality class, we then select

the element with the lowest quality, by also scaling and weighting quality attributes in

different ways, according to their relative significance. During reconfigurations, until there

is free space, we temporary keep previous context data even if out-of-QoC, in order to

further increase context data availability.

To conclude, every time a mobile node finds itself in an area populated by nodes

having higher quality classes, the adopted merge operation forces it to cache context data

with higher quality. Hence, our QoC-based caching algorithm effectively tailors context

caching at runtime, so to improve the overall quality of the data in the physical area.

6.6.3. Adaptive Selection of Broadcast Neighbours

The adaptive query flooding is based on a selection phase useful to identify the

neighbours that will receive the query [107]. In the current implementation, neighbour

selection is driven by query storage load factors (i.e., the memory available on neighbours)

and data repositories diversity (i.e., the parameter that measures the diversity between the

local data repositories and the ones deployed on one-hop neighbours). To avoid additional

messages, the management information needed by the adaptive distribution process is

piggybacked into mobility beacons. When a node sends its own beacon message, it

piggybacks three parameters (see Figure 6.6 for the associated pseudo code): 1) a Local

Query Load Factor (LQLF); 2) a Data Key List (DKL); and 3) a Data Repositories

Diversity Factor (DRDF). The LQLF is the ratio between the number of locally stored

queries and QMAX: hence, it is in the range [0; 1], and higher values indicate overloaded

situations. The DKL is the list of the keys of locally memorized data, and it is used to

evaluate diversity with close context data repositories. Finally, the DRDF is the average

103

diversity between the data repositories at the sender node and the repositories available in

its own one-hop neighbours (see Figure 6.6); its value is in [0; 1], and higher values are

better since associated with higher data repositories diversity.

When a node has to broadcast a query, first it selects the cardinality of the set of

neighbours that will receive it. As showed in the function selectLogicalNeighbors in

Figure 6.6, it calculates an averageLQLF as the average of the LQLFs collected by the

nodes that had not already received the query (the node that had already received the query

are not considered since they will be not affected by the current distribution). If this value

is lower than a particular threshold γ, all the current neighbours will receive and process

the query. Otherwise, RECOWER finds the cardinality of the final neighbours set through

a linear function (as showed in Figure 6.6), and selects involved nodes by exploiting

collected DRDFs. As limited research scopes increase the probability of missing important

data, RECOWER sends the query to the neighbours with the highest DRDF values, so to

hit the ones that, by having high data repository diversity with their own neighbours, can

Variables
 localNodeID: logical id associated with the current node
 N: the current set of physical neighbors
 Q: the current set of stored queries
 R: repository of local context data
 R[i]: ith data in the local repository; i 0] א; DMAX)
 MgmtInformation[n]: map of the management information

<LQLF, DKL, DRDF> for node n

Function
 storeQuery(Query q): memorizes q into the local support and

schedules further distributions if required
 piggybackOnMobilityBeacon(Message m): piggybacks

message m in the next mobility beacon sent to all one-hop
neighbors

 scheduleSendData(Data d, NodeID n): send data d to node n
in a random delay less than DRD

 lookupLocalQueryCopy(Query q): checks if q is already
known. If yes, returns the local copy of the query

 broadcastQuery(Query q): broadcast q to the current one-hop
neighborhood

Messages
 STATUS<LQLF, DKL, DRDF>: message containing the

management information required by the adaptive data
distribution solution

Invoked every beacon period
void sendMgmtInformation ()
1: Build m = STATUS<|Q|/QMAX, buildLocalDKL(),

calculateDRDF()>;
2: piggybackOnMobilityBeacon(m);

float calculateDRDF()
1: float localDRDF ൌ 0.0;
2: List<DataKey> localDKL = buildLocalDKL();
3: for all n א N; do

4: localDRDFൌ ቀ1 െ
|୪୭ୡୟ୪DKL ת M୫୲I୬୭୰୫ୟ୲୧୭୬ሾ୬ሿ.DKL|

|୪୭ୡୟ୪DKL M୫୲I୬୭୰୫ୟ୲୧୭୬ሾ୬ሿ.DKL|
ቁ;

5: return localDRDF/ |N|;

List<DataKey> buildLocalDKL()
1: List<DataKey> l;
2: for all d א R; do
3: l.add(d.key);
4: return l;

List<NodeID> calculateUnreachedNeighbors(Query q)
1: List<NodeID> unreachedNeighbors = {};
2: for all n א N; do
3: if (n ב qADNL); then
4: unreachedNeighbors = unreachedNeighbors n;
5: return unreachedNeighbors;

Distribute query q
void distributeQuery(Query q)
1: List<NodeID> feasibleNeighbors =

calculateUnreachedNeighbors(q);
2: if (feasibleNeighbors.isEmpty()); then
3: return;
4: List<NodeID> logicalNeighbors =
 selectLogicalNeighbors(feasibleNeighbors);
5: if (logicalNeighbors.isEmpty()); then
6: return;
7: qADNL = qADNL logicalNeighbors;
8: broadcastQuery(q);

Received query q from node n
void receiveQuery(NodeID n, Query q)
1: for all d א R; do
2: if (q.match(d)); then
3: scheduleSendData(d, n);
4: Query lqc = lookupLocalQueryCopy(q);
5: if (lqc != NULL); then
ேܿݍ݈ :6 ൌ ேܿݍ݈ ;ேݍ
7: return;
8: if (!qADNL.contains(localNodeID)); then
9: return;
10: if (!q.isSatisfied ()); then
11: storeQuery(q);

List<NodeID> selectLogicalNeighbors(List<NodeID>

feasibleNeighbors)
1: float averageLQLF ൌ 0.0;
2: for all n א feasibleNeighbors; do
3: averageLQLFൌ MgmtInformationሾnሿ. LQLF;
4: averageLQLF /= |feasibleNeighbors|;
5: int logicalNeighborhoodCardinality;
6: if (averageLQLF ൏ γሻ; ܖ܍ܐܜ
7: logicalNeighborhoodCardinality = |feasibleNeighbors|;
8: else
9: logicalNeighborhoodCardinality =

 ቀ
ଵି|ୣୟୱ୧ୠ୪ୣNୣ୧୦ୠ୭୰ୱ|

ଵିఊ
ቁ ൈ averageLQLF + ቀ

|ୣୟୱ୧ୠ୪ୣNୣ୧୦ୠ୭୰ୱ|ିఊ

ଵିఊ
ቁ;

10: if (logicalNeighborhoodCardinality != |feasibleNeighbors|); then
11: List<NodeID> limitedFeasibleNeighbors;
12: Order feasibleNeighbors according to associated DRDFs;
13: limitedFeasibleNeighbors.copyHighestElements(

feasibleNeighbors, logicalNeighborhoodCardinality);
14: return limitedFeasibleNeighbors;
15: else
16: return feasibleNeighbors;

Received msg STATUS<LQLF, DKL, DRDF> from node n
void receivedMgmtInformation (n, LQLF, DKL, DRDF)
1: MgmtInformation[n] = <LQLF, DKL, DRDF>;

Figure 6.6. Adaptive Query Flooding Pseudo-code.

104

reach a wider set of context data.

6.6.4. Optimized Management Data Representation

We optimize the representation of all those management data useful to implement

aforementioned self-adaptive mechanisms, so to reduce the runtime management

overhead. Toward this goal, we exploited Bloom filters [108, 109]; for the sake of

completeness, we now briefly introduce the main properties of this data structure.

A Bloom filter is a space-efficient probabilistic data structure that supports

membership queries on a set A={a1, a2, …, an} of n keys. Each filter consists of a vector of

m bits, initially all set to 0. Each key of the original set passes through k independent hash

functions {h1,h2,….,hk} with output in [0; m-1]. The filter associated with the keyset is

obtained by setting to 1 all bits at positions h1(a), h2(a), ..., hk(a) for each element aA.

Given a generic key b, we check all the bits in h1(b), h2(b), ..., hk(b) and, if any of them is

0, then certainly b is not in the original set. Otherwise, we assume that b is in the set,

although it may not be the case because Bloom filters may present false positives.

However, if we assume that adopted hash functions have a uniform distribution, the false

positive ratio is roughly equal to 0.6185/: thus, given an upper bound to |A|, we can

reduce false positives by increasing filter length.

Due to the aforementioned good properties, RECOWER uses the probabilistic

membership test of Bloom filters to optimize the representation of both query ADNL and

DKL. First, since query ADNL is modified by only inserting elements, and it is used to

only perform membership tests, it can be easily implemented with a Bloom filter. In

addition, the append operation required when a node receives an already known query is

equal to a simple bit-wise OR between the already known ADNL and the ADNL carried

by the received query. This is one of the most appealing properties of a Bloom filter: the

filter associated with the union of two different sets is equal to the bitwise OR of two

different filters, each one associated with each set [109]. Second, the DKL is mainly used

to evaluate repositories diversity. Unfortunately, since an inverse mapping from a Bloom

filter to original keys is impossible, we need to estimate DRDF in a probabilistic manner.

Even if the literature offers probabilistic bounds to address the problem of intersection

estimation between two Bloom filters, they depend on employed hash functions and on

properties of the original data keyset. To reduce the computational load, we adopted a

coarse-grained solution in which the diversity between two repositories is approximated

by the diversity of the two associated Bloom filters. Consequently, RECOWER calculates

105

the diversity between two different repositories by using the formula (6.2) instead of the

formula (6.1) (see Figure 6.6).

ቆ 1 െ
|localDKL ת MgmtInformationሾnሿ. DKL|
|localDKL MgmtInformationሾnሿ. DKL|

ቇ ሺ6.1ሻ

ቆ
∑ ሺlocalDKLሾiሿ MgmtInformationሾnሿ. DKLሾiሿሻ%2୧ୀ୫ିଵ
୧ୀ

m
ቇ ሺ6.2ሻ

 In other words, it compares bit-by-bit the two Bloom filters by considering a positive

unitary increment when the compared bits differ. Finally, the obtained value is divided by

the filter length to normalize it. If the filters are completely different, i.e., they do not share

two equal bits at the same position, the final diversity is 1; otherwise, if two filters are

exactly equal, the diversity is 0. Of course, this estimation is suboptimal since there is no

direct one-to-one relation between two equal bits into the Bloom filters and the number of

elements into the intersection.

6.7. Simulation-based Results

To assess the technical soundness of our proposals, we implemented RECOWER and

all the aforementioned mechanisms in the network simulator NS-2.34. We considered an

area of 350x350m with 50 nodes, wireless ad-hoc links based on IEEE 802.11g

technology (bandwidth of 54 Mbps) with a transmission range of 100m, and Two Ray

Ground as propagation model. Also, each node emits a mobility beacon every 10 seconds

to signal its presence to one-hop neighbours.

As regards mobility modeling, few works in literature proposed complex solutions for

disaster area scenarios [97, 110]. However, they dealt with the whole disaster area: if we

focus on the incident area, to the best of our knowledge all the research works in literature

model node movement with a Random WayPoint (RWP) model. Hence, since RECOWER

concerns context-aware services into the incident area, we adopted RWP with the

following parameters: uniform speed in [1; 2] meters/second (pedestrian velocity) and a

uniform distributed pause in [0; 10] seconds before selecting the next waypoint. Each node

selects the next waypoint before reaching area borders (no node departures and arrivals);

this border rule resembles real scenarios where the same fireman carries an injured person

out of the incident area, and then comes back to find other humans. Finally, simulations

last 900 seconds, and all reported results are average values over 33 test executions to

obtain a good confidence; standard deviation is also showed to evaluate results dispersion.

In the remainder, we present the experimental results obtained in such settings. For

106

the sake of clarity, we divided them in two main subsections: Section 6.7.1 is focused on

local context data management, while Section 6.7.2 presents results concerning adaptive

query distribution.

6.7.1. Quality-based Context Data Caching Evaluation

To test the quality-based context data caching approach, we need to model both

context data and query production. As regards context data production, we fairly divided a

set of 1000 context data sources between all the mobile nodes, hence, each node produces

20 context data. If not stated differently, in the following we use a DMAX parameter of 30:

20 elements are reserved to store the last version of locally produced data, while the other

10 elements are occupied by data received by neighbours according to locally issued

queries. Each context data instance has an application payload of 3KB, so as to simulate

challenging scenarios where the context data may contain compressed images about the

incident area or complex context data. In addition, each context data source periodically

produces a new context data instance; if not stated otherwise, each instance has a FL

parameter of 300 seconds, thus representing quite stable context aspects. Finally, as stated

before, each data instance has an up-to-dateness quality attribute equal to the ratio between

RL and FL parameters (hence, it is in [0; 1] and values closer to 1 are better).

As regards query production, we divided mobile nodes in 2 different quality classes:

the first one, QC1, contains 25 nodes, and accepts only data with up-to-dateness higher

than 0.7; the second one, QC2, contains the remaining 25 nodes, and accepts all possible

up-to-dateness values. Each mobile node emits a fixed number of queries for each second,

by uniformly selecting one context data source over the 1000 available. This represents the

worst case scenario since context data caching usefulness is largely reduced; at the same

time, we believe that this models a large set of realistic workloads in such scenarios (for

instance, access to the localization information of a single first responder, retrieval of

health information associated with a single person, etc.). All the queries are flooded

without any of the optimizations previously presented and with a data retrieval time of 2

seconds. Finally, α and β parameters, used to calculate the final random routing delay

applied at each mobile node, are respectively 0.7 and 0.9.

Before discussing the results, we want to remark that we are evaluating a worst case

scenario since: 1) each node emits requests with a uniform distribution, thus reducing the

probability of finding data on near neighbours; 2) context data are stored in a decentralized

MANET, and partitions can significantly reduce context data availability; and 3) since

107

context data are distributed only as consequence of matching queries, many queries have

to reach the data creator node before obtaining a positive response.

In the first set of experiments, we compare our QoC-based caching algorithm with a

simple LRU under uniform access patterns. In the remainder, the threshold λ used to find

the final cache quality class is equal to the number of neighbours divided by 3. By using a

request rate of 0.5 reqs/s and a query TTL in {1, 2, 3}, Figure 6.7 (a), Figure 6.7 (b), and

Figure 6.7 (c) respectively represent the average retrieval time, the percentage of satisfied

queries, and the average up-to-dateness of retrieved data; for the sake of clarity, results are

divided according to the different quality classes, since associated quality constraints

greatly affect final experienced performance. To draw some conclusions, although the two

approaches lead to very similar average retrieval times (see Figure 6.7 (a)), the quality-

based approach always ensures higher percentages of satisfied queries than simple LRU

(see Figure 6.7 (b)). In fact, our quality-based approach tends to keep higher quality data,

i.e., data matching both QC1 and QC2 constraints, thus finally leading to a higher number

of satisfied queries for both classes. It is worth noting that this increased reliability is

negligible when query TTL is 3, as that value is associated with a network-wide

distribution scope: in fact, if each hop covers 100 meters, a query distributed with a TTL

of 3 can potentially reach any point in the network, thus finding the mobile node that hosts

the wanted context data source. Finally, focusing on Figure 6.7 (c), let us remark that, of

course, QC1 clients find context data always with up-to-dateness higher than 0.7 due to

associated constraints. At the same time, our quality-based approach improves average up-

to-dateness of the data found by QC2 clients. Surprisingly, it slightly reduces up-to-

dateness of the data found by QC1 clients, but this is mainly due to the increased number

of satisfied queries from context data cached on close peers, that usually have reduced

quality attributes.

In the second set of experiments, we modify DMAX to test how this parameter affects

algorithm performance. By using above parameters and a TTL of 2, Figure 6.8 (a), Figure

600

700

800

900

1000

1100

1 2 3

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Query TTL
QC1/LRU QC2/Quality-based
QC2/LRU QC2/Quality-based

(a)

0

0,2

0,4

0,6

0,8

1

1 2 3

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Query TTL
QC1/LRU QC1/Quality-based
QC2/LRU QC2/Quality-based

(b)

0

0,2

0,4

0,6

0,8

1

1 2 3

A
ve

ra
g

e
 D

a
ta

U

p
-t

o
-d

a
te

n
e

s
s

Query TTL
QC1/LRU QC1/Quality-based
QC2/LRU QC2/Quality-based

(c)

Figure 6.7. LRU vs. Quality-based Caching with Uniform Access Patterns and Different Query TTL.

108

6.8 (b), and Figure 6.8 (c) show respectively the average retrieval time, the percentage of

satisfied queries, and the average up-to-dateness for each quality class when DMAX is equal

to {30, 50, 70}. From Figure 6.8 (a), we remark that, of course, higher DMAX values lead to

reduced average retrieval times: in fact, bigger repositories lead to more copies of the

same context data instance into the network, thus increasing the probability of finding

matching data closer to the query sender node. Also, from Figure 6.8 (b), we note that

higher DMAX values increase the percentage of satisfied queries, since each node can reach

a wider set of data cached in the physical proximity. It is worth noting that aforementioned

variations are more visible for QC2 clients since they also accept context data with very

low quality; instead, QC1 clients require high quality data, hence, they are less sensible to

DMAX values since not all the cached data will match their own quality constraints. Finally,

in line with the results of Figure 6.7 (c), Figure 6.8 (c) shows that our quality-based

approach leads to matching data with higher up-to-dateness values.

In the last set of experiments, we evaluate the two caching algorithms with different

data FL parameters, so to better assess their performance with more dynamic context data.

Figure 6.9 (a), Figure 6.9 (b), and Figure 6.9 (c) show the same set of results used in

previous experiments, with a data FL parameter in {900, 450, 300, 225, 180} seconds. As

we noted in previous experiments, the quality-based approach performs better than simple

LRU. Figure 6.9 (a) shows that short lived data tend to increase average data retrieval

times; in fact, in that case, mobile nodes proactively delete context data due to RL

600

700

800

900

1000

30 50 70

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

DMAX

QC1/LRU QC2/Quality-based
QC2/LRU QC2/Quality-based

(a)

0,6

0,7

0,8

0,9

1

30 50 70

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

DMAX

QC1/LRU QC1/Quality-based
QC2/LRU QC2/Quality-based

(b)

0,6

0,7

0,8

0,9

1

30 50 70

A
ve

ra
g

e
 D

a
ta

U

p
-t

o
-d

a
te

n
e

s
s

DMAX

QC1/LRU QC1/Quality-based
QC2/LRU QC2/Quality-based

(c)

Figure 6.8. LRU vs. Quality-based Caching with Uniform Access Patterns and Different DMAX.

600

700

800

900

1000

900 450 300 225 180A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Data FL

QC1/LRU QC2/Quality-based
QC2/LRU QC2/Quality-based

(a)

0,6

0,65

0,7

0,75

900 450 300 225 180

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Data FL

QC1/LRU QC1/Quality-based
QC2/LRU QC2/Quality-based

(b)

0,6

0,7

0,8

0,9

1

900 450 300 225 180

A
ve

ra
g

e
 D

a
ta

U

p
-t

o
-d

a
te

n
e

s
s

Data FL

QC1/LRU QC1/Quality-based
QC2/LRU QC2/Quality-based

(c)

Figure 6.9. LRU vs. Quality-based Caching with Uniform Access Patterns and Different Data FL.

109

expiration (see Section 6.3), and end up with not exploiting all the maximum cache size.

At the same time, from Figure 6.9 (b), we note that the percentage of satisfied queries

reduces with short lived data. This is more visible for QC1 clients due to tighter quality

constraints that, in their turns, lead to more frequent accesses to real context sources.

Finally, Figure 6.9 (c) shows that short lived data lead to lower up-to-dateness values,

especially for QC2 clients. In fact, short lived data have fast decreasing up-to-dateness

values, hence, queries that match context data cached on close mobile nodes have higher

chances of finding data with reduced quality.

In conclusion, from above results we conclude that the quality-based approach usually

performs better than simple LRU in terms of percentage of satisfied queries and average

up-to-dateness. In addition, it only requires the dissemination of the quality class of each

mobile node; that is easily accomplished by piggybacking node quality class in its own

mobility beacon. Hence, considering the very low network overhead introduced by our

approach, we think that it is a feasible and viable choice to increase the quality of the

context data cached in a physical area, so as to better exploit precious storage resources.

6.7.2. Adaptive Query Flooding Evaluation

RECOWER context query distribution is fundamental to build context data

distribution paths, and can greatly affect context data availability. In this section, we test

our adaptive query flooding protocol [107], and we compare it with a traditional flooding

approach. NS2 simulations have the same parameters adopted in previous section. In

particular, the WiFi channel exploits IEEE 802.11g parameters with a total available

bandwidth of 54 Mbps. Each mobile node has a DMAX of 30 and hosts 20 different context

data sources, that produce a single context data instance at the beginning of the simulation

with an FL parameter of 900 seconds and a payload of 3KB. As for quality-based

distribution, we use a data retrieval time of 2 seconds and no constraints on data up-to-

dateness, and each mobile node periodically emits a new query by using a uniform

distribution to select the source. Finally, if not stated differently, simulations use α and β

parameters respectively equal to 0.7 and 0.9, and the threshold γ, used by our adaptive

query flooding to reduce query replication, is set to 0.5.

In the remainder, we compare our Adaptive Flooding (AF) algorithm with Naïve

Flooding (NF) under different request rates and TTL values. In NF, each node simply

broadcasts a query depending on the associated TTL, while always introducing proper

random query/data routing delays. Of course, in both NF and AF, if the received query is

110

already known, the node does not broadcast it again to avoid the introduction of additional

traffic; although infinite loops are not possible due to the limited TTL, if a node broadcasts

again the same query, it will probably hit the same set of neighbours, thus introducing

useless overhead.

In the first set of experiments, we focus on an ideal situation where QMAX is infinite,

namely each mobile node stores all the received queries with no replacement. As the ratio

between the number of stored queries and QMAX is used by AF to reduce query replication,

this test condition setups a worst-case scenario for AF since it will never explicitly reduce

query distribution scope. Hence, differently from NF, AF will only prevent the distribution

of a query when all the current physical neighbours had already received the query. Figure

6.10 (a), Figure 6.10 (b), and Figure 6.10 (c) show respectively average retrieval times,

percentage of satisfied requests, and percentage of dropped packets with request rate in

{0.5, 1, 2} reqs/s and different flooding algorithms. To draw important conclusions, if the

network load is low (for instance, when the TTL is 1), NF and AF performs very similarly.

Instead, when the network load increases due to both higher TTL values and higher

request rates, AF always performs better than NF: in fact, it ensures lower retrieval times,

higher percentages of satisfied queries, and lower dropped packets. All these positive

effects are mainly connected with the reduced number of distributed queries that, in its

turn, reduces the probability of message collision and network congestion. Finally, with a

request rate of 2 reqs/s, the usage of a query TTL equal to 3 surprisingly reduces satisfied

queries; that is clearly in contrast with the bigger query distribution scopes ensured by

such TTL parameter. Considering that we do not have memory limitations, this effect is

due to the increased number of dropped packets: in fact, several queries are dropped due to

message collisions (we recall that broadcast messages are more collision-prone than

unicast ones as they do not exploit the RTS/CTS mechanism), thus preventing the building

of distribution paths into the MANET.

In the second set of experiments, we consider more realistic scenarios where the

700

800

900

1000

1100

1200

1 2 3A
ve

ra
g

e
 R

e
tr

ie
va

l
T

Im
e

 (
m

s
)

TTL

NF - 0.5 reqs/s AF - 0.5 reqs/s NF - 1 reqs/s

AF - 1 reqs/s NF - 2 reqs/s AF - 2 reqs/s

(a)

0%

20%

40%

60%

80%

100%

1 2 3

P
er

ce
n

ta
g

e
o

f
S

at
is

fi
ed

Q

u
e

ri
e

s
 (

%
)

TTL

NF - 0.5 reqs/s AF - 0.5 reqs/s NF - 1 reqs/s

AF - 1 reqs/s NF - 2 reqs/s AF - 2 reqs/s

(b)

0%

5%

10%

15%

20%

1 2 3

P
er

ce
n

ta
g

e
o

f
D

ro
p

p
ed

P

a
c

k
e

ts
 (

%
)

TTL

NF - 0.5 reqs/s AF - 0.5 reqs/s NF - 1 reqs/s

AF - 1 reqs/s NF - 2 reqs/s AF - 2 reqs/s

(c)

Figure 6.10. Comparison between Naïve and Adaptive Flooding.

111

number of queries that can be stored on each mobile device is limited by a QMAX parameter

equal to 50. By exploiting the same parameters of previous experiments, Figure 6.11 (a),

Figure 6.11 (b), and Figure 6.11 (c) represent the same set of results for the new scenario

with query storage limitation. Of course, similarly to Figure 6.10, when the final network

load is limited due to low TTL and/or request rate values, NF and AF perform very

similarly. Instead, when the network load increases, AF performs better than NF in all the

considered test scenarios. As each node has a QMAX parameter of 50, differences between

NF and AF start to become visible when the expected number of stored queries at each

mobile node is higher than 25, i.e., when the averageLQLF is higher than the γ parameter

of these experiments. Although Figure 6.11 (a) and Figure 6.11 (b) suggest that NF and

AF significantly differ only with TTL equal to 3 and request rates in {1, 2} reqs/s, Figure

6.11 (c) shows that AF always ensures reduced dropped packets starting with TTL equal to

2. This does not have a direct impact on the percentage of satisfied queries due to high

path replication.

From above results, we conclude that AF always outperforms NF in all situations

(also when there are no memory limitations). Hence, in the remainder, we focus on AF

evaluation only, to better study the influence of data retrieval time and QMAX parameter

over the performance indicators considered before.

In the third set of experiments, we evaluate the effect of the QoC data retrieval time

on AF query distribution protocol. In fact, higher data retrieval times result in higher

maximum routing delays applied at each mobile node; that, in its turn, may increase the

randomness of applied routing delays, thus favouring query distribution suppression.

Figure 6.12 (a), Figure 6.12 (b), and Figure 6.12 (c) represent final performance results

with data retrieval time in {2000, 3000, 4000} ms, obtained by using a request rate of 2

reqs/s and a QMAX of 50. Let us remark that we considered such parameters since they lead

to realistic scenarios, where the number of queries to be stored at each mobile node can be

higher than QMAX. Starting from Figure 6.12 (a), of course, higher QoC data retrieval

0

500

1000

1500

1 2 3A
ve

ra
g

e
 R

e
tr

ie
va

l
T

Im
e

 (
m

s
)

TTL

NF - 0.5 reqs/s AF - 0.5 reqs/s NF - 1 reqs/s
AF - 1 reqs/s NF - 2 reqs/s AF - 2 reqs/s

(a)

0%

20%

40%

60%

80%

100%

1 2 3

P
er

ce
n

ta
g

e
o

f
S

at
is

fi
ed

Q

u
e

ri
e

s
 (

%
)

TTL

NF - 0.5 reqs/s AF - 0.5 reqs/s NF - 1 reqs/s
AF - 1 reqs/s NF - 2 reqs/s AF - 2 reqs/s

(b)

0%

5%

10%

15%

20%

1 2 3

P
er

ce
n

ta
g

e
o

f
D

ro
p

p
ed

P

a
c

k
e

ts
 (

%
)

TTL

NF - 0.5 reqs/s AF - 0.5 reqs/s NF - 1 reqs/s
AF - 1 reqs/s NF - 2 reqs/s AF - 2 reqs/s

(c)

Figure 6.11. Comparison between Naïve and Adaptive Flooding with Memory Limitations.

112

times lead to higher average retrieval times due to bigger routing delays applied at each

mobile node. At the same time, from Figure 6.12 (b), we remark that, apart from the case

of TTL equal to 1, higher retrieval times reduce the percentage of satisfied queries. In fact,

higher data retrieval times increase the number of queries potentially stored on each

mobile node, and that increases averageLQLF (as presented in Figure 6.6) and reduces

context query replication into the MANET. From Figure 6.12 (c), we note that higher QoC

data retrieval times lead to reduced packet droppings, but that is mainly due to reduced

network traffic consequence of query storage limitations. Hence, we remark that, before a

real production phase, it is important to correctly estimate the number of queries emitted

by each mobile node, as well as node density and average query lifetime, to correctly

choose the QMAX parameter; a wrong estimation of this value can significantly reduce the

reliability of the context data distribution process.

Finally, in the last set of experiments, we investigate the effects of the QMAX

parameter on context query distribution reliability. By using a request rate of 2 reqs/s and

a data retrieval time of 4000 ms, Figure 6.13 (a), Figure 6.13 (b), and Figure 6.13 (c)

respectively show the average retrieval times, the percentage of failed requests, and the

percentage of dropped packets for TTL in {1, 2, 3} and QMAX value in {50, 100, 150, No

limit}. Focusing on Figure 6.13 (b), we remark that, if TTL is 2, higher QMAX values result

in higher reliability. Instead, when TTL is 3, the scenario with no QMAX limitation results

in the worst reliability; in fact, as also confirmed by Figure 6.13 (c), that scenario is

0

500

1000

1500

2000

2500

1 2 3

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

TTL

QLT = 2000 QLT = 3000 QLT = 4000

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3

P
er

ce
n

ta
g

e
o

f
S

at
is

fi
ed

Q

u
e

ri
e

s
 (

%
)

TTL

QLT = 2000 QLT = 3000 QLT = 4000

(b)

0%

2%

4%

6%

8%

10%

1 2 3

P
er

ce
n

ta
g

e
o

f
D

ro
p

p
ed

P

a
c

k
e

ts
 (

%
)

TTL

QLT = 2000 QLT = 3000 QLT = 4000

(c)

Figure 6.12. Effects of QoC Data Retrieval Time on Adaptive Flooding.

0

500

1000

1500

2000

2500

1 2 3

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

TTL
QMAX = 50 QMAX = 100

QMAX = 150 No QMAX Limit

(a)

0%

20%

40%

60%

80%

1 2 3

P
er

ce
n

ta
g

e
o

f
S

at
is

fi
ed

Q

u
e

ri
e

s
 (

%
)

TTL
QMAX = 50 QMAX = 100

QMAX = 150 No QMAX Limit

(b)

0%

5%

10%

15%

20%

1 2 3

P
er

ce
n

ta
g

e
o

f
D

ro
p

p
ed

P

a
c

k
e

ts
 (

%
)

TTL

QMAX = 50 QMAX = 100
QMAX = 150 No QMAX Limit

(c)

Figure 6.13. Effects of QMAX on Adaptive Flooding.

113

associated with the higher percentage of dropped packets. Hence, while reasonable QMAX

values can increase distribution process reliability, excessive query replication can mine it

due to the increased network congestion; in fact, from Figure 6.13 (c), we note that the

percentage of dropped packets is proportional to the QMAX value.

To conclude, the adaptive flooding solution always outperforms the naïve one. The

reduced number of distributed queries saves network bandwidth, and positively affects

both the scalability and the reliability of the context data distribution. Even if this solution

can lead to reduced research scopes due to avoided query distributions, both the small

number of collisions and the usage of routing paths with high data repositories diversity

make our solution valid for supporting context data distribution.

115

7. Context Data Distribution in Smart University Campus Scenarios

After the presentation of the RECOWER CDDI, mainly based on ad-hoc

communications, this chapter considers the realization of context-aware services in hybrid

network deployments, in which we have both infrastructure-based and ad-hoc wireless

communications. In particular, here we focus on the design, the implementation, and the

deployment of context-aware services for smart university campuses. In Section 7.1, we

open this chapter by better stating both the main issues and the design guidelines

considered by our CDDI, named SALES, for smart university campuses. Then, in Section

7.2, we present the hierarchical distributed architecture, while Section 7.3, Section 7.4, and

Section 7.5 detail the main solutions adopted at the different CDDI logical layers. Finally,

Section 7.6 thoroughly presents the implementation details of our SALES real-world

prototype, and Section 7.7 concludes the chapter by reporting extensive experimental

results useful to better assess the technical soundness of our proposals in real-world

deployments.

7.1. SALES CDDI

Context-aware services for smart university campuses are receiving a lot of attention

in the last years. At the current stage, there are already different universities offering

context-aware services to their own students: to mention few, both ActiveCampus and

SmartCampus exploit context-aware capabilities to offer innovative services into the

university campus [9, 10]. Such services can greatly enhance the social experience into the

campus, for instance, by suggesting possible friendships and study groups. Although in

these scenarios the CDDI can rely on fixed wireless infrastructures for the sake of context

provisioning, challenging issues have to be addressed both at the context data delivery and

at the context data management layer.

Starting with the delivery layer, such systems can introduce high network traffic to

deliver context data. Let us note that, differently from RECOWER, reliability is not a first

concern as campus services do not present risks for human lives; of course, both service

interruptions and packet droppings into the context distribution process can degrade the

final user experience, but they can be tolerated and controlled to reach better tradeoffs

between scalability and quality. Instead, similarly to what happened in RECOWER

scenarios, here we can experience very high node densities: a university classroom, where

116

several students use their own devices to run context-aware services, is a clear and

frequent deployment with high node density that we can find in smart university

campuses. Extremely crowded areas are challenging from the scalability viewpoint, since

wireless bandwidth is shared by all mobile nodes and consequent wireless collisions and

congestions can easily degrade final service quality. In addition, fixed wireless

infrastructures should be carefully used since they are usually exploited to provision other

kinds of services, such as Internet connectivity, video streaming services, and so forth, to

roaming users, and should be not overloaded by context data distribution. Moving to the

context data management layer, these systems have to handle large amounts of context

data: differently from disaster area scenarios, where context data are used to quickly detect

dangerous situations, here context-aware services can require heavy context processing

operators. Even if the storage of such data can be considered not a first concern due to the

availability of powerful fixed servers, both context data aggregation and filtering operators

can introduce high management overhead.

Hence, to support context provisioning in such scenarios, the CDDI should exploit

some fundamental guidelines. Although some of them are similar to the ones we already

discussed in RECOWER (see Section 6.1), here the availability of both a fixed

infrastructure and physical servers possibly changes how we actually apply them.

First, considering the delivery layer, we mainly confirm the design guidelines

presented in RECOWER. Such a CDDI should exploit heterogeneous wireless technology

for the sake of scalability and system coverage. In addition, it should integrate

heterogeneous wireless modes, i.e., infrastructure-based and ad-hoc communications, so to

effectively reduce the management overhead on fixed infrastructures by favouring

cooperative context distribution among close neighbours.

Second, as regards the context data management layer, the CDDI should exploit a

distributed data repository based on both mobile and fixed nodes. Context data should be

cached and replicated into the distributed architecture with the main goal of reducing

access times and network overhead. Even if the storage of all the context data is probably

feasible by only exploiting fixed servers, the CDDI should memorize context data on

mobile nodes, so that they can share them with close neighbours by ad-hoc links.

Third, the CDDI should exploit physical and logical locality principles to tailor

context data memorization and distribution. Differently from disaster area scenarios, in

this case the CDDI can assume the availability of anchor nodes, e.g., WiFi APs deployed

into the university campus, that can supply relative localization information useful to

117

enforce the physical locality principle. Also, the availability of full-fledged physical

servers enables the realization of complex algorithms that, by monitoring context data

requests, can identify logical localities between mobile nodes and, accordingly,

reconfigure the distribution process at runtime.

Finally, the CDDI should adapt to available resources and QoC constraints: mobile

devices have limited resources in terms of CPU, memory, and network connectivity;

hence, a CDDI should respect the minimum intrusion principle by guaranteeing the

introduction of limited and controlled overhead [63]. We remark that, since offered

context-aware services are not safe-critical, mobile users would probably tolerate

inconsistencies in context view and slightly quality degradations, but not fast battery

depletion and heavy computational load. In addition, similarly to what we discussed in

RECOWER, also here the CDDI should introduce and enforce different quality

constraints, for instance, to support different user roles (e.g., students and professors); at

the same time, it should self-adapt and manage its internal behaviour according to

available resources. For instance, a CDDI should automatically and dynamically

reconfigure its internal facilities, such as differentiated context data routing and

decentralized caching, by also finely tuning memory and computing resources (number of

processes, communication data rate, …) depending on current working conditions

(available bandwidth, number of context exchanges, …), number and class of clients, and

agreed quality contracts [111].

Following above guidelines, we designed our CDDI for smart university campuses,

called Scalable context-Aware middleware for mobiLe Environments (SALES) [112]. In

the remainder, by following a presentation order similar to the one adopted in Chapter 6,

we introduce additional details and design choices associated with SALES at the different

layers.

7.2. A Proposed Distributed Architecture

To ease the enforcement of the physical locality principle, we decided to adopt the

three-level tree-like distributed hierarchical architecture showed in Figure 7.1 (a grey line

between two nodes means that they can exchange messages directly). SALES CDDI spans

all the involved devices, both fixed and mobile, and exploits mobile devices as temporary

data carriers to perform context data routing and caching.

For the sake of infrastructure management, we distinguish four main types of nodes

with different responsibilities. In particular, by considering the different hierarchical levels

118

from the uppermost to the lowest one, we consider:

Central Node (CN) - The tree root is a logical centralized and fixed entity useful to

ensure context data persistency and availability of system-wide visible data. Hence, this

node enables the context data distribution with the widest possible distribution scope.

Since the number of received requests could be high, the CN can be realized by means of

clustered architectures to enhance scalability and reliability. Finally, it can be accessed

only by the nodes belonging to the level below, that usually communicate with it through

high-performance fixed network connections.

Base Node (BN) - A BN is connected to and manages access network elements of

heterogeneous wireless fixed infrastructures (e.g., WiFi APs, 3G/4G cellular base stations,

…), and takes care of context data/query routing to/from the mobile nodes available at the

level below. Each BN defines a reduced distribution scope, and can communicate only

with the CN, its own neighbours, and served mobile nodes. Finally, since a BN is a full-

fledged physical server, we expect it to memorize context data in order to reduce the

requests relayed to the CN.

Coordinator User Node (CUN) - Mobile nodes are organized in clusters to build

smaller distribution scopes. In each cluster, we dynamically elect a cluster-head, namely a

CUN, useful to better control the context data distribution and to bridge together ad-hoc

and infrastructure-based networks. CUNs exchange context data with close mobile devices

through ad-hoc links, thus reducing the number of requests relayed to upper levels.

Finally, each CUN executes proper mobility management protocols to associate with the

BN in charge of the current physical place, so to connect to SALES fixed infrastructure.

Simple User Node (SUN) - Each mobile node, that is not a CUN, plays the role of a

BN1

CN

BN3

BN2

CUN11

CUN21 CUN31

CUN32

SUN111 SUN112

SUN211

SUN311
SUN321

SUN322

Legend:
CN – Central Node CUN – Coordinator User Node
BN – Base Node SUN – Simple User Node

Figure 7.1. SALES Distributed Architecture.

119

SUN. Similarly to CUNs, SUNs enact as context source/sink into the system by injecting

and requiring context data. They communicate with close mobile devices, either SUNs or

CUNs, through ad-hoc links. To access SALES CDDI, each SUN has to associate with a

reachable CUN; hence, proper mobility management protocols are also executed to let

SUNs discover and associate with one of the CUNs available in the physical proximity.

In conclusion, the adopted distributed architecture connects and bridges together a

fixed and a mobile infrastructure to increase system scalability. An extremely appealing

and difficult to achieve goal is to handle most of the context distribution process through

ad-hoc links; however, this clashes with both the limited network resources and the limited

visibility scopes ensured by ad-hoc communications. Hence, the intervention of the fixed

infrastructure is required to both ensure context data availability and perform context

processing operations.

7.3. Context Data Management Layer

Our SALES CDDI addresses context data distribution in hybrid network deployments.

As stated before, the availability of a fixed infrastructure simplifies the design and the

realization of particular management facilities; in addition, it enables hybrid solutions

where the mobile and the fixed infrastructures cooperate together toward the common goal

of context data distribution. In the remainder, we discuss the main solutions adopted by

SALES at each facility contained into the context data management layer (see Section 4.2

for an in-depth presentation of this layer).

Starting with context data representation, similarly to RECOWER, SALES adopts an

object-oriented approach [55]. Leaving out the attributes used to describe type-specific

context aspects, each context data instance has five management parameters. Source ID

(SID), Version Number (VN), Foreseen Lifetime (FL), and Remaining Lifetime (RL)

parameters are the same ones introduced in RECOWER CDDI (see Section 6.3); in

addition, Hierarchical Level Tag (HLT) parameter is useful to limit instance visibility into

the SALES distributed architecture, for instance, to keep context data only on the mobile

infrastructure. Finally, as regards QoC-based data management, SALES can tag each

context data instance with additional quality metadata, such as precision and resolution.

Focusing on context data storage, SALES memorizes context data both on mobile

devices and on fixed servers. Although the memorization overhead can be very high, the

fixed infrastructure can be effectively used to offload context data; at the same time,

context data caching on the mobile infrastructure is appealing since it can reduce context

120

retrieval times and improve system scalability. Similarly to RECOWER, SALES adopts

distributed data caching solutions: each mobile node has a local repository of context data,

with a maximum size DMAX, shared with close neighbours. However, here we aim to better

inspect main requirements and solutions, and compare multiple different caching

algorithms to find good tradeoffs for data caching at both infrastructure and mobile trunks.

Mobile nodes can freely roam, and can experience different access patterns according to

the current physical location; hence, they must be able to quickly adapt, so as to improve

cache usefulness under time-varying access patterns. The main management operation that

differentiates caching policies is the replacement algorithm, namely the function that,

when the cache is full, selects the data instance to delete to make room for the incoming

data. For the sake of completeness, in Section 7.3.1, we briefly discuss the most important

caching approaches in literature, by also clarifying their main shortcomings; then, in

Section 7.3.2, we present our solution, called Adaptive Context-aware Data Caching

(ACDC), that exploits information coming from access patterns and data instance

replication into the physical neighbourhood to select the element to evict.

Finally, moving to the context data processing facility, SALES CDDI only offers very

simple solutions to perform context data aggregation and filtering. We remark that the

availability of a fixed infrastructure simplifies the introduction of aggregation and filtering

operators: in fact, heavy computations can be dynamically offloaded to BNs that, by

having full access to context data instances, can perform needed computations and send

results back to mobile nodes. Also, SALES does not currently address context data

confidentiality, integrity, and availability, although they are fundamental in real-world

deployment scenarios. Let us remark that we did not consider such aspects since out-of-

scope in respect of this thesis work.

7.3.1. Data Caching Algorithms

Above all, First In-First Out (FIFO), Least Frequently Used (LFU), and Least

Recently Used (LRU) are common caching algorithms based on very simple replacement

policies, so to reduce cache management overhead. FIFO orders data according to their

insertion: when a data instance has to be inserted and the cache is full, the oldest element

is deleted. Since cache accesses do not result in data reordering, FIFO implementation is

very fast, but it does not make any effort to keep most accessed data. LFU exploits data

access frequencies: for any data, it stores a counter of performed accesses, and most

accessed data are maintained into the cache; since cached data are ordered according to

121

frequency counter values, accesses lead to dynamic data reordering. The main LFU

advantage is that it maintains a cumulative view of the history of accesses: if the access

pattern is static and biased, LFU adapts itself to grant the maximum number of local hits.

However, since it does not quickly adapt to time-varying accesses patterns due to history

effects, it can end up by storing data not useful anymore, thus leading to reduced

performance. Finally, LRU dynamically reorders cached data according to most recent

access times; if the cache is full, the least recently used data is deleted. Data are

dynamically reordered: if a data is accessed, it is moved to the head of the cache, while the

tail points to the first data to remove. LRU is simple and adapts to data accesses:

unfortunately, it can cache instances that are unlikely to be accessed again (e.g., instances

accessed only once and never accessed again).

FIFO, LFU, and LRU are very suitable for mobile scenarios as they introduce a

limited overhead that, at the same time, allows good scalability when the cache size

increases. However, in our main scenario, caching algorithms do not have strict execution

deadlines, and can also introduce longer access and replacement times. We think it is more

convenient to spend longer time during cache accesses and replacements than wasting

network bandwidth for additional data distributions due to cache misuse. Consequently,

we are interested in more complex cache replacement policies capable of increasing cache

usefulness.

Following that direction, different collaborative data caching approaches in MANETs

have been proposed in literature. In [113], authors present a collaborative cluster-based

data caching approach. Each mobile node divides its own cache in a private and a shared

area to store data of interest to, respectively, the node itself and other cluster members; the

cluster-head selects the data to be moved from the private to the shared area, while LRU is

used as replacement policy in each area. A close work proposes a collaborative caching

framework where each node can cache either data or paths towards the data [114]; the

decision of caching either data or data paths is based on the hop distance from the data: for

close data, data path caching is preferred to reduce the total number of replicas in physical

proximity. In addition, [114] employs LFU to select the element to evict when either the

data cache or the data path cache is full. Zone Cooperative (ZC) caching builds one-hop

clusters in which cooperative data caching is used: ZC uses a replacement policy based on

performed accesses, hop distance from source, data lifetime and size, to select the element

to evict [115]. Hence, to increase cache diversity between close mobile nodes, it uses a

replacement policy based on hop count. Finally, Group-based Cooperative Caching

122

(GroCoCa) is a data caching solution for wireless broadcast environments. GroCoCa aims

to group nodes with similar context interests and mobility patters, and exploits those

clusters to perform cooperative caching [58]. This approach is definitely an interesting

one, but it requires the availability of GPS localization system to properly drive cluster

formation.

To conclude, although the aforementioned caching approaches are extremely valid

solutions, none of them satisfies our three main requirements. First, since context data

have a limited lifetime, caching approaches for CDDIs have to consider it to prevent the

storage of soon-to-expire data. Second, since mobile nodes can experience time-varying

access patterns consequence of physical/logical locality with close neighbours, caching

approaches for CDDIs have to quickly adapt, so as to prevent the storage of data not useful

anymore. Finally, traditional proposals do not usually exploit visibility of data cached on

neighbours; for instance, they can inefficiently eliminate a data instance with only one

copy to maintain another one with several replicas in the physical proximity. Hence, to

address all those requirements, we designed our novel ACDC caching algorithm.

7.3.2. Adaptive Context-aware Data Caching

ACDC has both a local and a distributed nature, and we claim the need of both

perspectives. About the local part (local ranking), ACDC strives to adaptively tailor data

ranking depending on current access pattern, so to better fit current situation and reduce

relayed queries. ACDC maintains a limited history (H) of data access times, and combines

1) the access frequency in the limited time-frame represented by H, and 2) data remaining

lifetime, to quickly self-adapt cache when access patterns change. As regards the

distributed part (remote ranking), ACDC aims at increasing the probability of retrieving

needed data in a neighbour node. In particular, to increment the number of data cached in

the same physical locality, ACDC controls the number of data replicas, and adopts

reactive replication to store useful context data on underutilized neighbours. Finally,

ACDC melts together local and remote rankings to associate each data with a final utility

value used to select, when necessary, the element to remove.

With finer details, and starting from local ranking, we foresee two borderline types of

significant access patterns: uniform and preferential accesses. In uniform access patterns,

each data has almost the same probability of being reclaimed in the future while, in

preferential ones, some data are more requested than others. Both these access patterns

strictly relate with locality principles: if there is strong locality, either physical or logical,

123

between nodes in the same area, queries will match similar data, thus resulting in

preferential accesses; otherwise, nodes tend to emit queries with different set of matching

data, thus resulting in uniform accesses. Different access patterns modify the utility of

cached data, hence, it is important to estimate the current access distribution: since

uniform accesses do not allow future accesses forecasting, it is advisable to maintain data

with higher probability of being asked before their expiration, namely data with longer

lifetime. On the opposite, as preferential accesses allow a more accurate forecasting of

future accesses, it is advisable to preserve data with higher probability of being required,

namely more frequently used data.

Toward data access pattern estimation, ACDC calculates the linear correlation (named

correlation index in the remainder) between 1) the time spent by the data into the cache

according to H; and 2) the number of accesses registered in H. For uniform access

patterns, the history of the accesses registered by H will be quite random and will not

highlight any relationship between the two above indicators, thus leading to lower linear

correlation values. Instead, for preferential access patterns, the two indicators will present

a higher linear correlation, due to the fact that context data kept in cache for longer period

will be also the ones with higher number of accesses. The correlation index is evaluated

over H, and we have to consider that H length is useful to trade off accuracy with

adaptation promptness. In fact, while roaming, a mobile node reaches different locations

with different neighbours and potentially different interests. Since long histories tend to

melt together access patterns belonging to different situations, they hinder the usefulness

of forecasting and also slow down adaptation mechanisms; hence, ACDC uses a short

history H to quickly adapt to the current situation. Once evaluated the correlation index,

ACDC uses it as weighting factor for the local ranking: for uniform access patterns, it

favours data with longer lifetime while, for preferential ones, it favours data more

frequently accessed in H.

Focusing on remote ranking, we remark the importance of controlling the number of

data copies in the neighbourhood, so to increase the total number of different data

available in the physical area. In ACDC, each node periodically disseminates to its one-

hop neighbourhood lightweight summaries of its cache; in particular, each neighbour

cache summary contains the number of cached data, maximum cache size, and a compact

representation of cached data. Thanks to those summaries, each node can locally estimate

a remote rank based on the number of replicas stored in the neighbourhood: the higher the

number of replicas of one data, the higher the probability that a copy will be removed.

124

To select the data to remove, ACDC melts together local and remote rank values and

computes a utility value for each cached data. In addition, ACDC reactively replicates data

with high utility value: in fact, it could be the case that the node has to remove an

important data due to space constraints; hence, ACDC strives to replicate it on a neighbour

node, to keep it available for future requests. However, greedy replication can introduce

interferences with near nodes. If a node greedily replicates its data in one neighbour,

neighbour cache will be no longer related to past queries, thus increasing the probability of

not retrieving useful data into the cache. Hence, to select the neighbour to replicate the

data on it, ACDC considers only neighbours with a small ratio between the current cached

data and the maximum cache size, so to avoid excessive neighbour perturbation.

7.4. Context Data Delivery Layer

The context data delivery layer of SALES shares similarities with the one of

RECOWER, but extends it to support hybrid scenarios with fixed wireless infrastructures.

SALES adopts a subscription flooding approach that exploits an incremental search into

the distributed hierarchical architecture, with the main goal of retrieving required context

data as close as possible to the query sender node in order to reduce management

overhead. Following our guidelines, SALES first tries to find data on lower hierarchy

levels; then, in case of not positive response, it incrementally routes the query to the upper

levels.

SALES context data routing is also based on context queries. Context data are

distributed only as consequence of matching context queries, that trigger distributions

from remote data repositories toward the query creator node. Context queries build

temporary routing paths into the distributed architecture that, if required, can also reach

the fixed infrastructure. Since each node can communicate only with its father node,

neighbours, and served nodes, SALES context data distribution can exploit different

dissemination scopes of increasing sizes to enforce physical locality principle.

For the sake of clarity, we now present a brief example of context data distribution in

SALES. By default, both data and queries are distributed along the vertical path between

the data/query creator node and the CN (SUN211 propagates the new produced data up to

the CN, step 1 in Figure 7.2, solid red arrows). This vertical distribution is useful to both

increase data/query visibility (up to the whole distributed system) and trigger the matching

phase with data/queries available on intermediate nodes. However, to increase the

probability of finding context data in lower hierarchical levels, so to reduce the traffic on

125

the fixed infrastructure, context queries are also horizontally distributed at the same

hierarchical level. For instance, in Figure 7.2 (step 2, dashed arrows), SUN311 obtains the

required data from SUN211; it emits a query that, through SUN212, reaches SUN211. This

horizontal distribution is justified when the requesting node is looking for context data

strictly related with the current physical place, such as place profiles, since they are likely

to be available on neighbours in physical proximity. Then, SALES performs data routing

on a hop-by-hop basis by always involving single steps into the distributed architecture.

When a positive data/query match occurs on a node, SALES generates a context response

and routes it back to the node that had relayed the query (in Figure 7.2 (step 3), this leads

to a final data path SUN211-SUN212-SUN311).

SALES exploits QoC parameters to adapt the routing process. In particular, as

clarified in Section 7.4.1, it exploits QoC data retrieval time to reconfigure the maximum

routing delays at each intermediate node. In addition, since resource management is

fundamental as mobile users would not accept fast battery depletion and heavy

management overhead, SALES automatically adapts query processing rates to limit CPU

load; Section 7.4.2 presents how our CDDI automatically drops context queries that would

lead to heavy CPU management load.

7.4.1. Data Retrieval Time Enforcement

Between different quality attributes, context-aware services can specify a QoC data

retrieval time, namely the maximum time between context query emission and context

data delivery to the mobile node. By exploiting this attribute, SALES can adapt at runtime

to introduce appropriate routing delays depending on current available resources, while

BN1

CN

BN3

BN2

CUN11

CUN21 CUN31

CUN32

SUN111 SUN112

SUN211
SUN311

SUN321
SUN322

Legend:
CN – Central Node CUN – Coordinator User Node
BN – Base Node SUN – Simple User Node

(1)

(1)

(1)

SUN212

(2) (2)

(3) (3)

Figure 7.2. Example of SALES Context Data Distribution.

126

always enforcing service QoC constraints. These routing delays are fundamental in

relieving a congested network, so to prevent wireless storm issues [105]. In addition, as

better detailed in Section 7.5.2, they enable the introduction of batching techniques,

namely all those solutions that aim to reduce the number of physical transmissions by

grouping many short messages in a big one.

To implement the proposed quality-based context distribution process, each context

query contains seven management parameters; here, for the sake of clarity, we also recall

the query parameters presented in RECOWER, and we extend them to consider hybrid

network deployments. Horizontal Time To Live (HTTL) is the maximum number of nodes

traversed at the same hierarchy level, and is useful to limit query visibility on both the

mobile and the fixed infrastructure. Maximum Query Response (MQR) is the maximum

number of data instances collected by this query, and is mainly used to prevent excessive

data retransmissions by anticipating query removal. Query Routing Delay (QRD) and Data

Routing Delay (DRD) represent the delays each node can apply to query/data before

routing them to the next hop; as presented in Section 7.5.2, they are fundamental to enable

batching techniques in SALES. Already Collected Data (ACD) contains the list of the keys

associated with already routed data, and is fundamental to prevent useless data

retransmissions during collection. Query Level Mask (QLM) limits the vertical visibility of

the context query, for instance, to keep it only on the mobile infrastructure and up to CUN

nodes; that allows to better trade off introduced management overhead, especially when

the fixed infrastructure is overloaded. Finally, Query LifeTime (QLT) is the maximum

absolute lifetime of the query, and is used to mark query expiration and removal.

If a mobile node, either CUN or SUN, seeks for specific context data, it builds and

emits a proper context query matching them. The query contains the data filter used to

select matching data; similarly to what we did in RECOWER, the data filter is represented

by a set of constraints on data attributes, arranged by AND/OR functions. Before query

distribution, proper management parameters have to be chosen to ensure agreed data

retrieval time. To simplify context-aware services development, SALES automatically

maps the required data retrieval time to the associated query parameters. In the following,

we present the general mapping process between data retrieval time and query parameters.

For now, we assume HTTL defined either by the service level or by the quality contract

associated with the sender node.

Above all, SALES has to compute both QRD and DRD, namely two parameters that,

together with HTTL, deeply influence the whole routing process. The incremental context

127

data search does not distribute data/queries immediately, but introduces local routing

delays to manage the distribution process and to avoid useless distributions when context

data are supplied by neighbours belonging to the same hierarchical level. Since it is

impossible to know which nodes cache matching context data, all the subsequent

considerations are based on the worst-case scenario where the query has to reach the CN

before finding matching data.

In finer details, the evaluation of DRD and QRD is based on several considerations.

First, each node involved into the routing process introduces a maximum delay of QRD in

query distribution and a maximum delay of DRD in data distribution: hence, a maximum

total delay of (QRD + DRD) for each additional hop in the routing process. Second, before

relaying the query to the upper level, each node belonging to the vertical path between the

query creator node and the CN waits a total time of (HTTL × (QRD + DRD)) to let close

peers route possibly matching data. If query HTTL is zero, no horizontal distribution is

performed; hence, the query is simply relayed to the upper level after a total delay of QRD

(to consider these different contributions, H is a binary variable equal to 1 if query HTTL

is bigger than zero, 0 otherwise). Third, to always ensure agreed data retrieval time, we

have to consider that, in the worst-case scenario, SUNs experience longer routing times

than CUNs since farther from the CN. Hence, both DRD and QRD evaluation must

depend on the level in the hierarchy of the node that emits the query (S is a binary variable

equal to 1 if the node is a SUN, 0 otherwise). Finally, all the delays obtained through a

simple mathematical mapping do not consider unwanted, unforeseen and not measurable

delays due to operating system multi-tasking, limited bandwidth, and so forth. Obtained

delays are ideal and, in the following, we use the subscript M for DRD and QRD to

suggest that they both represent maximum (M) nominal times. Putting all together,

formula (7.1) represents the worst-case time needed to propagate the query up to the CN.

After query distribution, matching context data have to be vertically routed to the query

sender node. Formula (7.2) is the worst-case time required for data distribution from the

CN to the query sender node; of course, it considers that SUNs experience longer delays

than CUNs due to higher distance from tree root.

To conclude, directly descending from SALES context data/query distribution (see

Figure 7.2), the maximum data retrieval time and HTTL/QRD/DRD are related by the

subsequent formulas (7.1)-(7.3):

128

Query distribution time ൌ ሺBN Levelሻ H ൈ HTTL ൈ ሺQRDM DRDMሻ ሺ1 ‐ Hሻ ൈ QRDM

 ሺCUN Levelሻ H ൈ HTTL ൈ ሺQRDM DRDMሻ ሺ1 ‐ Hሻ ൈ QRDM

 ሺSUN Levelሻ S ൈ ሺH ൈ HTTL ൈ ሺQRDM DRDMሻ ሺ1 ‐ Hሻ ൈ QRDMሻ

ሺ7.1ሻ

Data distribution time ൌ ሺ2 Sሻ ൈ DRDM ሺ7.2ሻ

Data Retrieval Time ൌ Query distribution time Data distribution time ሺ7.3ሻ

Hence, given a particular data retrieval time, SALES can apply above formulas to find

DRDM and QRDM. However, formulas (7.1)-(7.3) form an undetermined system with

infinite solutions. To find a feasible solution, we relate DRDM and QRDM with the

additional constraint expressed in formula (7.4):

DRDM ൌ γ ൈ QRDM ሺ7.4ሻ

where γ ≥ 1 to favourite data routing adaptation. In fact, data transmissions are usually

more frequent than query ones, and higher γ values increase the possibility of adapting

context data routing, for instance, to avoid retransmitting the same context data in a small

time frame or delaying such transmission if the wireless channel is very busy. Finally, to

have a time margin useful to recover unforeseen runtime delays, SALES introduces a

weighting factor α (α < 1). Hence, the final DRD and QRD, carried by a query, are

obtained from DRDM and QRDM by means of formulas (7.5)-(7.6):

DRD ൌ α ൈ DRDM ሺ7.5ሻ

QRD ൌ α ൈ QRDM ሺ7.6ሻ

Formulas (7.1)-(7.6) let SALES automatically derive a suitable pair of DRD and QRD

delays that ensure agreed data retrieval time. The weighting factor α can be either

statically or dynamically defined, so to account for delays introduced by real-world

systems. We note that the correct sizing of such parameter is not straightforward as it

actually depends on runtime conditions, such as mobile node load status. Hence, since the

dynamic evaluation of α is not easy to be addressed with low management overhead, we

assume α statically set depending on system scale and predictions over the expected

maximum system load.

7.4.2. CPU-aware Context Query Processing

SALES context routing relies upon context queries to efficiently route context data

into the system. Considering that mobile devices have limited resources in terms of CPU,

memory, and battery, SALES introduces additional mechanisms to control and keep the

introduced management overhead as low as possible. Above all, context query processing

is the first responsible of the CPU load introduced on mobile nodes: in fact, queries have

129

to be matched with locally stored data and, if permitted by associated parameters,

distributed again to peers and/or father nodes. In addition, they can trigger data

distributions, so further increasing local CPU load.

Hence, to control the CPU overhead introduced by SALES, we need to limit the

number of processed queries for time period. Unfortunately, by better analyzing SALES

context distribution process, we remark that the number of queries processed by a mobile

node depends on three main factors: 1) node density; 2) hierarchy level; and 3) data access

patterns. In fact, if the mobile node is in a high density area, it will probably receive more

queries than if it would have been in a low density one. In addition, if the mobile node is a

CUN in charge of routing data/queries on behalf of served SUNs, it will probably

experience increased CPU load due to additional management duties. Finally, if the

mobile node already stores required data, it can answer right away, thus experiencing a

reduced CPU load; otherwise, it has to distribute the query to neighbours, and, perhaps, to

upper level, thus experiencing a higher CPU load.

Consequently, the precise estimation of the CPU load introduced by SALES at

runtime would require a complex model based on several time-varying and unpredictable

aspects. Monitoring and processing all such aspects would probably introduce an

unfeasible overhead on resource-constrained mobile devices. Hence, we adopted a more

lightweight solution that, even if less precise, can run on traditional mobile devices with

contained overhead.

From a general viewpoint, a first solution, called “naïve query drop” in the remainder,

exploits a sliding window over last processed queries and a rigid threshold to reduce the

number of queries processed in a particular time period. Given a static threshold PQMAX,

this policy ensures that a maximum of PQMAX queries are processed in each period, e.g.,

each second. Toward this goal, each node has a limited history of timestamps, called HTS,

representing the times associated with the last received and processed queries (see formula

(7.7)).

HTS ൌ ሼTSሺ1ሻ, TSሺ2ሻ, …, TSሺiሻሽ, TSሺ1ሻ … TSሺiሻ, i PQMAX ሺ7.7ሻ

When a new query arrives, this policy first defines a new history HTS′ from HTS, as

presented below in (7.8)-(7.11).

z ൌ minሺi1, PQMAXሻ ሺ7.8ሻ

HTSԢ ൌ ሼTSԢሺ1ሻ, TSԢሺ2ሻ, …, TSԢ ሺzሻሽ ሺ7.9ሻ

TSԢሺzሻ ൌ Now ሺ7.10ሻ

130

TSԢሺjሻ ൌ TSሺj1ሻ, 1 j z‐1 ሺ7.11ሻ

totalQueries ൌ ሺTS’ሺzሻ ‐ TS’ሺ1ሻሻ ൈ PQMAX ሺ7.12ሻ

Then, it checks if HTS′ respects PQMAX: it considers the time period between the first

and the last element, computes the maximum number of queries that can be processed in

this period respecting PQMAX (see formula (7.12)), and checks that this value is not lower

than the number of elements contained in HTS′. In that case, the new query is accepted and

the history HTS′ is assumed to be the new HTS; otherwise, the query is dropped and HTS is

not updated. Hence, HTS is progressively shifted to keep TSs of the last PQMAX processed

queries.

Although this policy is effective in reducing the queries processed in a time period, it

has few important shortcomings. First, since it does not consider any external feedback

associated with the real CPU load, it can lead to CPU misuse. Second, PQMAX needs to be

known a-priori, but this is a strong assumption in heterogeneous environments where

devices can have different PQMAX values. Third, fixing a rigid threshold on processed

queries makes sense only if we can correctly estimate the CPU load introduced by each

processed query but, as explained before, that is not possible due to the many intertwined

aspects that influence the distribution process. Finally, it assumes that PQMAX is static, but

this could be not the case if data access patterns change over time.

To overcome such limitations, SALES introduces an adaptive policy, called “adaptive

query drop”, that dynamically adjusts PQMAX depending on feedbacks coming from both

CPU load and context data distribution process. Since this policy introduces runtime

adaptation features, it will be presented in Section 7.5, devoted to the Runtime Adaptation

Support.

7.5. Runtime Adaptation Support

SALES adapts its own runtime behaviour according to working conditions.

Adaptation mechanisms affect both the context data management and the delivery layer,

with the main goal of reducing introduced overhead for the sake of system scalability. This

section presents finer details associated with SALES adaptive mechanisms: in Section

7.5.1, we discuss data caching adaptation; then, in Section 7.5.2, we introduce the different

transmission policies offered by our CDDI, with a specific focus on the adaptive variant;

finally, in Section 7.5.3, we introduce details on the adaptive query drop policy, useful to

control CDDI CPU load.

131

7.5.1. Adaptive Context Data Caching

As presented in Section 7.3.2, ACDC exploits a replacement algorithm made by both

a local and a remote ranking component. Here, we focus first on local ranking by

presenting how ACDC evaluates the correlation index and uses it to calculate local score;

then, we present remote ranking by introducing details on the estimation of data instance

replication; finally, we clarify how ACDC merges such indicators to find the utility values

used by replacement. For the sake of clarity, Figure 7.3 shows ACDC pseudo-code.

Let us focus on local ranking. Starting with the linear correlation index, ACDC

exploits the Pearson product-moment correlation coefficient [116]. Each time a new query

is received (function receiveQuery in Figure 7.3), all cached data are matched with query

filter. For each positive data/query match, the function recordAccessDescriptor updates

the limited history H with the new access descriptor; then, scheduleSendData generates

and sends the new context data response. The evaluation of the Pearson coefficient is

periodically triggered and is based on two vectors, namely X and Y, used to store the

values to be correlated. In particular, when the correlation index needs to be updated,

ACDC computes Xi and Yi (i א [0; CacheMaxSize-1]) for all the data in the cache as

follows: Xi is the period between the newest and the oldest access descriptor in H

Variables
 C: local cache repository
 C[i]: ith data in the local cache
 C_CurrentSize: local cache current size
 C_MaxSize: local cache maximum size
 N: set of node current neighbors
 N_size: size of the node current neighbors
 H: accesses history
 H_CurrentSize: current history length
 H_MaxSize: maximum history length
 NeighCacheSummary: map of repository status for N
 NeighCacheSummary[n]: repository status for the node n
 correlationIndex: current correlation index value

Functions
 piggybackOnMobilityBeacon(m): piggyback message m in the

next mobility beacon sent to all 1-hop neighbors
 scheduleSendData(d,n): schedule to send data d to node n
 storeQuery(q): store a query q in local repository

Messages
 REPOSITORY_STATUS<C_CurrentSize, C_MaxSize, f>:

message contained repository status
 QUERY <q>: message used to distribute query q

Received msg QUERY<q> from node n.
receiveQuery(n, q)
1: for all d א C do
2: if (q.match(d)) then
3: recordAccessDescriptor(d);
4: scheduleSendData(d, n);
5: if (!q.isValid())
6: break;
7: if (q.isValid()) then
8: storeQuery(q);

recordAccessDescriptor (d)
1: if (H_CurrentSize >= H_MaxSize) then
2: H.removeOldestElement();
3: H_CurrentSize--;
4: H.add(Now, d);
5: H_CurrentSize++;

Invocked every beacon period
sendNeighCacheSummary()
1: Build an empty Bloom filter f
2: Build m = REPOSITORY_STATUS< C_CurrentSize, C_MaxSize, f >
3: for all d א C do
4: f.add(d.key);
5: piggybackOnMobilityBeacon(m)

Received msg REPOSITORY_STATUS<C_CurrentSize, C_MaxSize, f>

from node n
receivedNeighCacheSummary (n, C_CurrentSize, C_MaxSize, f)
1: NeighCacheSummary[n] = < C_CurrentSize, C_MaxSize, f >

Reclaimed when a new data arrives with cache full.
evictLessValuableData()
2: for all d א C do
3: d.rank = 0.4 × localRank(d) + 0.6 × remoteRank(d)
4: dataToEvict = the data with the minimum rank
5: lessLoadedNode = null;
6: if (dataToEvict.rank > 0.5 && remoteRank(d) >= 0.7) then
7: for all n א N do
8: cacheLoadFactor = n.C_CurrentSize/n.C_MaxSize;
9: if (cacheLoadFactor< 0.5 && cacheLoadFactor<

 lessLoadedNode.cacheLoadFactor &&
 !NeighCacheSummary[n].f.contains(d.key)) then

10: lessLoadedNode = n;
11: if (lessLoadedNode != null) then
12: scheduleSendData(dataToEvict, lessLoadedNode);

localRank (d)
1: lifetimeComponent = d.RL/d.FL;
2: accessRatioComponent = d.accessInH/maxAccessesInH;
3: return correlationIndex × accessRatioComponent + (1-

correlationIndex) × lifetimeComponent;

remoteRank (d)
4: count = 0;
5: for all n א N do
6: if (NeighCacheSummary[n].f.contains(d.key)) then
7: count++;
8: return 1 - count/N_size;

Figure 7.3 Pseudo-code of the ACDC Replacement Policy.

132

associated with the current data instance, while Yi is the cumulative number of accesses to

the data in H. ACDC uses these two vectors to obtain the Pearson coefficient by using the

formula (7.13) (Xഥ and Yഥ respectively represent the average value of X and Y):

ݔ݁݀݊ܫ݊ݏݎܽ݁ܲ ൌ
∑ ሺ ܺ െ തܺሻ ൈ ሺ ܻ െ തܻሻ
ୀଵ

ට∑ ሺ ܺ െ തܺሻ
ୀଵ

ଶ
 ൈ ට∑ ሺ ܻ െ തܻሻ

ୀଵ
ଶ ሺ7.13ሻ

ݔ݁݀݊ܫ݊݅ݐ݈ܽ݁ݎݎܿ ൌ ሺܲ݁ܽݔ݁݀݊ܫ݊ݏݎ 0ሻ ? ݔ݁݀݊ܫ݊ݏݎܽ݁ܲ 0 ሺ7.14ሻ

By construction, the Pearson coefficient is in [-1; 1]: the more X and Y are linearly

correlated, the closer to one (in absolute value) the coefficient becomes. The sign allows to

distinguish whether the two variables are either positively or negatively correlated, namely

whether an increment on one variable results either in an increment or in a decrement of

the other one. During preferential access patterns, X and Y are positively correlated,

hence, in that case the Pearson coefficient tends to 1. Instead, during uniform access

patterns, X and Y are weakly correlated, and the Pearson coefficient tends to 0. In our

case, only positive values of the Pearson coefficient are useful; negative ones are related to

access patterns variation and data replacement, and do not allow efficient forecasting. In

conclusion, the final correlation index considered by ACDC to compute the local rank,

called correlationIndex in Figure 7.3 and obtained by formula (7.14), is equal to the

Pearson coefficient if positive, or 0 otherwise.

In particular, for each data, ACDC local rank merges together its lifetimeComponent,

i.e., the ratio between data RL and FL, and its accessRatioComponent, i.e., the ratio

between the accesses a specific data has in history H and the maximum data accesses

value for all data, as expressed by formula (7.15):

ሺ1‐ correlationIndexሻ ൈ lifetimeComponent correlationIndex ൈ accessRatioComponent ሺ7.15ሻ

That combination permits to weight more data instances either with longer lifetime for

equally distributed access periods, or more frequently accessed during preferential access

periods.

Considering remote ranking, ACDC disseminates neighbour cache summaries by

piggybacking them in mobility beacons periodically sent by SALES to manage node

mobility. The function receivedNeighCacheSummary (see Figure 7.3) is invoked when a

new cache summary is received, and the NeighCacheSummary stores repository statuses

for neighbours, indexed by node identifier. The function sendNeighCacheSummary creates

the summary associated with the local repository and adds it to the mobility beacon sent to

one-hop neighbours. Then, the remote rank is calculated as expressed in formula (7.16):

133

1 െ
 Number of Neighbours already Storing the Data

Total Number Of Neighbours
ሺ7.16ሻ

Finally, ACDC combines the local and remote rank in a final utility value used to

order cached data. As it is advisable to save less replicated data, the local rank (function

localRank) and the remote rank (function remoteRank) are combined with different

weights (respectively 0.4 and 0.6). That reduces local ranking effects; in case of similar

local values, the remote rank allows to decide the data instance to save.

After data removal, the function evictLessValuableData can decide to perform

reactive replication. The replication process is triggered every time that a locally cached

data with a utility value higher than 0.5 has to be removed. To prevent high replication

degree, the process takes place only if the data instance is cached by less than 30% of

neighbours. If this is the case, the node selects the less loaded neighbour that does not

already store the data and with a ratio between current and maximum size lower than 0.5

(see Figure 7.3), and replicates the data there. In this way, if that data instance is queried in

the future, it will be likely found in the neighbourhood.

7.5.2. Data and Query Transmission Policies

As clarified in Section 7.4.1, SALES introduces proper data/query routing delays

(DRD/QRD) to enable context distribution process adaptation; among several advantages,

our CDDI exploits them to implement batching techniques. Broadly speaking, a batching

technique aims to queue multiple data/query to send them in a unique message, so as to

avoid multiple channel accesses and reduce management overhead consequence of packet

headers. Although batching techniques are useful to increase system scalability, queuing

delays have to be carefully controlled to avoid excessive QoC degradation, for instance,

consequence of the delivery of context data not related anymore with the current situation.

Hence, SALES introduces several batching techniques with different tradeoffs between

delivery timeliness and management overhead. In particular, it implements an adaptive

solution that dynamically adjusts the data retrieval time according to the current situation:

if the wireless network is far away from congestion, it anticipates data/query distributions

to offer better quality; instead, if the wireless network is close to congestion, it ensures

only necessary quality requirements. Now, we better detail the different data/query

transmission policies offered by our SALES CDDI, starting with the simpler one.

During context data/query routing, each node exploits query parameters to schedule

further distributions. Both DRD and QRD identify precise time instants in which the

134

associated data/query has to be distributed, in order to respect the overall QoC data

retrieval time. Hence, a first simple distribution policy, named “no batching”, transmits

data/queries as soon as their own distribution time (respectively imposed by DRD/QRD) is

reached. However, this policy performs one transmission, hence one wireless channel

access, for each data/query to be transmitted, thus potentially leading to a high number of

conflicts in wireless channel accesses that, in their turn, trigger MAC backoff mechanisms.

To reduce wireless channel contention, data/query distributions have to be scheduled

in time periods; in particular, we define distribution period as the interval in which a

data/query can be transmitted without compromising agreed data retrieval time. If

data/queries have to be transmitted in periods, and not precise time instants, SALES can

select the final transmission times to batch more data/queries in the same message.

Following this direction, two additional policies, called “naïve batching” and “adaptive

batching”, strive to reduce wireless channel accesses. Main difference between them is

that adaptive batching adapts distribution periods depending on wireless channel

congestion: during not congested situations, tighter distribution periods are used to ensure

lower retrieval times; instead, during congested periods, larger distribution periods let

SALES batch more data to reduce wireless network accesses.

In finer details, considering the mapping introduced in Section 7.4.1, DRD and QRD

are lower bounds that must be respected to avoid early distributions, while DRDM and

QRDM are upper bounds that must be respected to ensure agreed data retrieval time in an

ideal situation, namely no delays due to local processing and data transmission. Hence, in

the naïve batching, SALES automatically selects data and query transmission time

respectively within the [DRD; DRDM] and [QRD; QRDM] distribution periods. Naïve

batching adopts DRDM/QRDM as distribution upper bounds to trigger the real data/query

exchange. Any time a data/query distribution reaches its own transmission upper bound,

SALES finds all the data/query distributions for the same destination, and whose

distribution period contains the upper bound of the current processed distribution. Then, it

batches and transmits them together in a unique message, thus reducing the total number

of wireless channel accesses.

Let us show now benefits and shortcomings of the naïve approach with a simple

example (see Figure 7.4). For the sake of simplicity, we consider the distribution of two

different queries only, namely Q1 and Q2, that present overlapping [QRD; QRDM] periods.

Without batching (Figure 7.4 (a)), each query distribution requires one wireless channel

access. With naïve batching active (Figure 7.4 (b)), when Q2 upper bound is reached,

135

SALES detects that also Q1 can be distributed; hence, it transmits a unique message with

Q2 and Q1, thus saving one wireless access.

Although the naïve batching can reduce the number of wireless accesses, it presents

two main limitations. First, it uses distribution period upper bounds to trigger data/query

distribution: this, in its turn, introduces delays longer than necessary, and makes it more

difficult to enforce agreed data retrieval time. Second, naïve batching is static: it does not

monitor the current wireless network congestion, and does not adapt to time-dependent

load conditions.

To solve these issues, adaptive batching introduces ADRD/AQRD (A stands for

adaptive) as distribution time upper bounds (lower than DRDM/QRDM upper bounds), and

automatically re-adjusts them by using θ, a time-dependent factor used to quantify

network congestion status. θ is in [0; 1], and values closer to 1 point out a more congested

network. Hence, the more the network is congested, the more the θ value is close to 1 and

ADRD/AQRD are close to DRDM/QRDM (bigger batches and fewer wireless channel

accesses), and vice versa for low θ values as shown in formulas (7.17)-(7.18).

ADRD ൌ DRD ሺDRDM – DRDሻ ൈ θ ሺ7.17ሻ

AQRD ൌ QRD ሺQRDM – QRDሻ ൈ θ ሺ7.18ሻ

Figure 7.4 (c) shows an associated example. Due to the adaptive approach, Q2 has a

distribution period upper bound equal to AQRD2 (lower than QRDM). When AQRD2 is

reached, Q2 is distributed and Q1 is automatically included in the same batch; SALES

performs one final distribution, but with a reduced distribution time.

To estimate the current θ value, we exploit a distributed monitoring schema that

contains two main phases: 1) local load information monitoring; and 2) load information

distribution.

Starting from local load information monitoring, each mobile node locally estimates

its own average usage of wireless channels. Each node computes a local wireless network

Time

Time

(b)

QRD

Q1

Q2

(c)

QRDM QRD

Q1

Q2

QRDM QRDM QRD AQRD2

Naïve batching Adaptive batching
QRDM QRD QRDM QRD QRD QRDM

Time

Time Time

Time

AQRD1

One query distribution Two different query distributions One query distribution

(a)

Q1

Q2

No batching

Figure 7.4. Query Distribution Example with Different Distribution Policies.

136

load factor, whose value is in [0; 1], to quantify the local usage of the wireless channel.

Value evaluation is based on 1) an estimation of the bandwidth available on the wireless

channel and 2) the outbound traffic sent by the local wireless network interface. SALES

periodically estimates the bandwidth available on a particular wireless interface by a

traditional active probing technique [117]. To keep the monitoring overhead as low as

possible, only CUNs perform active probing, and periodically distribute estimated values

to served SUNs. Even if this estimation is suboptimal due to the spatial reuse of the

wireless channel, i.e., a SUN could experience wireless channel conditions different from

its own CUN, it gives us a good approximation and drastically reduces the runtime

monitoring overhead. Then, each node periodically executes a function to update the local

wireless network load factor. First, it sets the last load factor as the ratio between the

number of bytes sent in the previous period and the maximum number of bytes available

on the air, equal to the product between the wireless medium available bandwidth and the

time period. Then, it evaluates the current local load factor as the average of the current

and the previous load factor; the average is based on equal weights, so to be able to follow

fast network dynamics.

As regards load information distribution, SALES periodically distributes the

estimated local load factors to let each mobile node estimate the channel usage in its own

one-hop ad-hoc neighbourhood. Hence, each node periodically distributes its local

network load factor in the neighbourhood, and collects load factors received from

neighbours. Of course, each mobile node sends the local load factor only to the one-hop

neighbours since, due to the spatial reuse of the wireless channel, it tends to interfere only

with them.

Finally, each node merges the collected load factors to find a θ value able to capture

the wireless channel usage in its own one-hop ad-hoc neighbourhood. Due to the adopted

load factor evaluation, the final θ is equal to the sum between the local and the received

load factors. This is roughly equal to the ratio between the sum of all the transmitted bytes

in the one-hop ad-hoc neighbourhood and the total number of bytes that could have been

transmitted in the last monitoring period. Hence, the more loaded the wireless channel, the

higher the θ value will be, thus favouring the batching of an increased number of

data/queries in order to reduce the number of wireless channel accesses.

7.5.3. Dynamic Adaptation of Query Processing Threshold

SALES proactively drops context queries to control introduced CPU load.

137

Unfortunately, the naïve drop policy has two main limitations: 1) it does not consider

feedbacks coming from the real CPU load; and 2) it does not adapt to time-varying access

patterns. Hence, we propose an adaptive drop policy that, by exploiting two main inputs,

namely CPU load and dropped query statistics, dynamically adapts the query drop

threshold. In fact, current CPU load lets us to understand if the CDDI is respecting the

given maximum CPU threshold. At the same time, monitoring the number of processed

and dropped queries lets us to understand if query processing rate should be adapted to

increase context availability. Our adaptive proposal combines these two main inputs to

dynamically reconfigure the query processing rate, so to correctly trade off introduced

CPU load with context data availability.

Main goal of our adaptive drop policy is to ensure that the CDDI does not introduce a

CPU load higher than a specified threshold, namely MaxCPULoad, while minimizing

dropped queries. Since the adaptation process is triggered periodically, PQMAX value is

stable between two subsequent adaptations; to remark that PQMAX varies, PQMAX(k) is the

value of PQMAX between the k-th and (k+1)-th adaptations.

The component that takes care of adapting PQMAX(k) includes three main stages for

the sake of reusability. The first one supplies useful load indicators, the second one

decides if PQMAX(k) has to be adapted or not, while the third one calculates and applies the

adaptation step ΔPQMAX(k). If an adaptation is required, PQMAX(k+1) is computed from

PQMAX(k) according to formula (7.19).

PQMAXሺk1ሻ ൌ PQMAXሺkሻ ΔPQMAXሺkሻ ሺ7.19ሻ

Starting with the first stage, it works on a time discrete base by publishing new load

indicators every monitoring period, i.e., every T seconds. It supplies three main indicators:

1) average CPU load (ACPU(k)); 2) number of processed queries (PQ(k)); and 3) number

of dropped queries (DQ(k)). ACPU(k) gives a feedback on the real CPU load introduced

by the CDDI. Since CPU load readings are usually affected by noise, we introduce a low-

pass filter: we sample CPU load with a period TCPU < T, while the final ACPU(k) is the

average of the CPU load readings sampled in the previous monitoring period. PQ(k) and

DQ(k) keep track, respectively, of the total number of processed queries and of dropped

ones in the last monitoring period. All these values are required to prevent unneeded

adaptations if the CDDI is not receiving queries at all.

Then, every monitoring period, new values of ACPU(k), PQ(k), and DQ(k) are made

available to the second stage that decides if PQMAX(k) has to be adapted. This stage

triggers PQMAX(k) adaptation in two cases: 1) if ACPU(k) is higher than MaxCPULoad, in

138

order to reduce PQMAX(k); and 2) if ACPU(k) is lower than MaxCPULoad and DQ(k) is

higher than 0, in order to increase PQMAX(k) and reduce dropped queries. However, to

prevent bouncing effects with PQMAX(k) going above and below a particular value without

stabilizing, PQMAX(k) is adapted only if the current CPU load is not a transient event, such

as a temporary CPU load spike. Toward this goal, we use a time series forecasting

technique to predict next CPU load values. Due to its good price/performance ratio, we

adopted a first-order Grey filter [118]: such a filter tries to extract signal trend from noisy

values, and bases its prediction upon a limited history of sampled ACPU(k) values.

History length trades off smoothness and promptness in following fast changing signals.

The Grey filter gives us the predicted value of the average CPU load at the end of the next

monitoring period. If this value is significantly different from MaxCPULoad, we trigger

PQMAX(k) adaptation; otherwise, this is probably a transient load spike and no adaptation

takes place.

Finally, the third stage, if triggered, computes and applies ΔPQMAX(k). The evaluation

of this adaptation step follows two main design rules. First, ΔPQMAX(k) has to be scaled in

respect to PQMAX(k) to avoid overreactions. Second, ΔPQMAX(k) has to assume higher

values if the CDDI is introducing a CPU load higher than MaxCPULoad (or lower than

MaxCPULoad with dropped queries) for long time periods to speed up the response.

Consequently, if CLM is the number of subsequent CPU load misuse periods, and

LoadRatio(k) is a value in [0; 1] representing if ACPU(k) is close to MaxCPULoad,

ΔPQMAX(k) is retrieved as in formula (7.20):

ΔPQMAXሺkሻ ൌ
 PQMAXሺ୩ሻ

ଶ
 ൈ LoadRatioሺkሻଵ/CLM ሺ7.20ሻ

CPULoadNumሺkሻ ൌ minሺACPUሺkሻ, MaxCPULoadሻ ሺ7.21ሻ

CPULoadDenሺkሻ ൌ maxሺACPUሺkሻ, MaxCPULoadሻ ሺ7.22ሻ

LoadRatioሺkሻ ൌ 1 െ
 CPUL୭ୟୢN୳୫ሺ୩ሻ

CPUL୭ୟୢDୣ୬ሺ୩ሻ
 ሺ7.23ሻ

LoadRatio(k) is close to 0 if the CDDI respects the MaxCPULoad constraint (see

formulas (7.21)-(7.23)). Hence, the lower the difference between ACPU(k) and

MaxCPULoad, the lower ΔPQMAX(k). Then, we raise LoadRatio(k) to the power of

1/CLM to make ΔPQMAX(k) higher as CPU load misuse continues. Finally, since

(LoadRatio(k))1/CLM is in [0; 1], we multiply it by PQMAX(k)/2 in order to scale the

adaptation action in [0; PQMAX(k)/2], thus keeping it contained with respect to current

PQMAX(k) value.

139

7.6. Implementation Details

SALES has been implemented and deployed on a real testbed to test the impact of our

solutions in real-world systems. In fact, although NS2-based simulations are very useful to

study specific data distribution protocols in large-scale mobile networks, they neither

model nor consider both CPU and memory overhead introduced on mobile devices. By

pursuing our research both on simulations and on real deployments, we aim to reach a

more complete view on distribution primitives for context delivery in mobile systems.

With finer details, the real prototype of SALES is completely implemented in Java,

and executes on a traditional Java Virtual Machine (JVM) compliant with the 1.6

specifications. In the remainder of this section, we first detail the main components of

SALES prototype. Then, we introduce important implementation details: we present the

realization of the different transmission policies, and we clarify additional implementation

peculiarities used by SALES to limit employed resources on mobile devices. Finally, we

introduce the porting of our SALES CDDI on the Android platform, in order to better test

the feasibility of our assumptions on real mobile solutions.

7.6.1. SALES Software Architecture

Each node involved into the distributed architecture presented in Figure 7.1 executes a

local software instance of the SALES CDDI. Figure 7.5 highlights the main components

involved into the CDDI architecture. For the sake of clarity and reusability, SALES

exploits two different layers to clearly separate high level context data management issues,

from low level data delivery ones. Starting with the upper layer, we now present the main

software components included in SALES:

Facility Layer - The facility layer includes all the high-level components useful to

handle context data injection and retrieval. From a general viewpoint, it supports context

type definition, context data storage, and context data local processing. The Context Data

System Coordination Adaptive System Communication

Communication Primitives

Channel Status Estimator

BT Adapter WiFi Adapter

Routing Manager Mobility Manager

Remote Context
Queries Queue

Local Context
Queries Queue

JVM

Context Data Type Storage
Context Data Module

Context Source Context Sink

Localization Manager

M
ech

an
ism

s
L

ayer
F

acility
L

ayer

Figure 7.5. SALES Software Architecture.

140

Type Storage is a local registry useful to store the context data type definitions; each

definition is an XML-like file that describes 1) the main attributes contained in each

instance of this particular type; and 2) the caching parameters, mainly replacement policy

and repository size, used by the different SALES nodes. Each context data type is

associated with a Context Data Module that enables the real context data injection and

retrieval. The general component is then specialized according to each context data type,

by also implementing specific routing and caching behaviours as described in the type

definition. It also consists of two main sub-modules: the Context Source sub-module

enables context data generation and injection into the system, while the Context Sink

allows context data retrieval through context queries.

Mechanism Layer - The mechanism layer implements all the low-level mechanisms

useful for inter-nodes communication and hierarchy formation. The adapters, one for each

wireless technology, offer technology-independent APIs to the other software components.

Currently, SALES includes both a Bluetooth Adapter and a WiFi Adapter to enable the

real communication on the associated technology. On top of them, the Channel Status

Estimator periodically ascertains the available bandwidth on the different wireless

interfaces, while the Communication Primitives offers one-way and request/response

primitives. The Adaptive System Communication wraps the Communication Primitives

module to introduce a message-based communication API that, besides hiding wireless

technology details, controls and enforces message sending rate; in addition, it offers

mechanisms to query the state of the adapters (e.g., available bandwidth, pending

messages to send, etc.). By using these APIs, System Coordination takes care of handling

mobility and context routing. The Mobility Manager realizes mobility management

protocols to maintain the SALES tree-like architecture; it includes all the main

mechanisms to perform the discovery of available father nodes, as well as association

procedures. In addition, the Localization Manager provides localization information useful

to adapt both the mobility management protocols and the context distribution process.

Finally, the Routing Manager is the main module involved in context data routing: it

stores both local and remote context queries, triggers the matching between queries and

data, and relays subsequent context responses when required.

7.6.2. Transmission Policies Implementation

In Section 7.5.2, we presented the three transmission policies offered by SALES,

namely no batching, naïve batching, and adaptive batching. This section clarifies how the

141

main components of our CDDI interact at runtime depending on query parameters and

adopted transmission techniques, in order to enforce maximum QoC data retrieval time.

Starting from physical message transmission, the different communication adapters

take care of sending/receiving messages on the associated wireless technology. To avoid

additional overhead, SALES always exchanges messages asynchronously, with no explicit

acknowledgment from destination. In addition, each adapter always enforces an outbound

data rate below the available bandwidth, that is periodically probed by the Channel Status

Estimator (step 1 in Figure 7.6). To avoid strong coupling between receive and local

dispatch operations, the System Communication module has a queue, that contains

received messages, and a group of dispatching threads (MD). When a new message is

received by an adapter, it is appended into the System Communication queue (step 2),

while MD threads realize the final dispatch to the local manager subscribed for the

particular type of message. Here, we focus only on messages used to distribute data/query;

they are always dispatched to the Routing Manager (step 3).

Routing Manager receives data instances/queries from local sources and sinks, and

queries/responses sent by a remote node from the Adaptive System Communication.

Query and response dispatching is implemented by proper query (QD) and response (RD)

dispatcher threads that take care of sending query/response messages (step 4-5 in Figure

7.6). QD and RD threads execution is controlled through task descriptors, that are

respectively queued in the Query Distribution Task Queue and in the Response

Distribution Task Queue. When a new query is received, it is first matched with locally

cached data to generate possible responses. If a context query matches a context data, a

proper RD task is queued into the Response Distribution Task Queue (step 6). At the same

time, if query parameters require an additional distribution, the query is stored in either the

Local Context Queries Queue (if it belongs to a local sink) or the Remote Context Queries

System Coordination

Routing Manager

Adaptive System Communication

System
Communication

(3)

(4)

Data/query
match

 MD

Response Distribution
Task Queue

(5)
RD

Schedule
query

distribution

Query Distribution
Task Queue

QD

(7) Local Context
Queries Queue

Remote Context
Queries Queue

(1)

(2)

BT Adapter

WiFi Adapter

Channel Status
Estimator

(6)

Figure 7.6. SALES Routing Details.

142

Queue (if it belongs to a remote sink), and a proper QD task is scheduled (step 7). Finally,

every time a context response is received, the Routing Manager matches contained context

data instances with stored queries. If a data instance matches a local query, it is simply

inserted into the local context data cache; instead, if a data instance matches a remote

query, a new RD task is scheduled (step 6) to send the data toward the node that had

relayed the query. Due to local processing delays, it could be the case that the context

distribution task refers to an already expired query; in that case, the task descriptor is

silently dropped.

The aforementioned working schema is followed when the no batching transmission

policy is adopted. RD and QD executions are automatically triggered by task descriptors

expiration, scheduled after a delay equal to DRD/ QRD according to query parameters.

When one of the two batching policies is enabled, RD and QD threads execute a

different set of operations toward the goal of batching more data instances/queries in the

same message. First of all, the Routing Manager has a local map, indexed by destination

node and called InformationToDistribute in the remainder, on which data instances/queries

to be sent are queued. Every time the Routing Manager schedules a data instance/query

distribution, it actually creates two task descriptors in the appropriate queue: one is

associated with the lower bound of the distribution period, while the other marks the upper

bound. Hence, the first one, executed after a delay of DRD/QRD, signals the need of

distributing a data instance/query to a particular destination; main goal of this task is to

queue the associated data instance/query in the local InformationToDistribute map, in

order to keep track of the data/queries that can be distributed. Instead, the second one,

executed after a delay of either DRDM/QRDM (in case of naïve batching) or ADRD/AQRD

(in case of adaptive batching), triggers the real transmission; every time a task descriptor

of such kind expires, the associated thread collects all the data instances/queries for the

same destination from the InformationToDistribute map, and batches them in a unique

message. Of course, if a data instance/query is distributed before the expiration of its own

second task descriptor due to batching, the Routing Manager automatically cancels that

task descriptor since not useful anymore.

Hence, when we enable batching techniques, we use the InformationToDistribute map

as synchronization means to understand which data instances/queries have to be

distributed. By using this solution, on the one side, SALES does not need to iterate over all

the current descriptors, thus experiencing reduced CPU load. On the other side, this

solution increases the memory overhead due to the additional InformationToDistribute

143

map. However, since current mobile devices usually have CPU limitations tighter than

memory ones, we decided to adopt such solution.

7.6.3. Resource-aware Components

To limit employed resources, SALES provides a set of configuration parameters that

specify both processing and memory resources available to components showed in Figure

7.6. Processing resource configuration parameters mainly include the number of threads

for each thread pool and the maximum number of requests processed per second. Instead,

memory resource configuration parameters mainly concern maximum queue lengths. For

the sake of clarity, since all the queues in Figure 7.6 can contain either thread task

descriptors or messages, in the remainder we use the generic term “element” for queue

management policies description.

Starting with processing resources, as presented in Section 7.5.3, SALES adopts an

adaptive threshold to limit the maximum CPU load associated with query processing.

Toward this direction, the Routing Manager component proactively discharges query

received by neighbours. However, the usage of such a dropping policy does not allow the

fine control of the management overhead introduced by threads contained in both the

Adaptive System Communication and in the single Communications Adapters. In fact,

even if the query is locally discarded by the Routing Manager, the Adaptive System

Communication always introduces an additional overhead consequence of message

receive and decoding operations. Hence, SALES associates each thread pool with a

maximum number of threads and a maximum execution rate for each one of them. When

the number of received messages is higher than the total processing rate of the Adaptive

System Communication (we remark that this component also handles messages related to

mobility management), pending requests will experience queuing delays that, for instance,

increase the probability of not respecting QoC data retrieval time. To maximize satisfied

requests, SALES reactively recovers queuing delays by dynamically changing the

DRD/QRD parameters carried by a context query: every time a QD thread processes a

query whose initial message suffered of queuing delays in the Adaptive System

Communication, it considers the number of hops contained in the worst-case distribution

scenario, and reduces DRD/QRD by considering the ratio between the delay and the total

number of hops, so to recover the time unnecessary spent in the queue.

Moving to memory management, SALES limits the length of all the data structures

involved in Figure 7.6. All the queues involved in both the Adaptive System

144

Communication and in the Communication Adapters have a maximum length, statically

imposed by SALES configuration file; when a queue is full, different policies can be

adopted to select the element to remove. At default, SALES applies a traditional First In-

First Out (FIFO) policy; apart from that, the queues containing the task descriptors into the

Routing Manager can also apply priority-based policies, so as to favour the routing of

context data associated with high priority clients. Similar limitations have to be imposed to

the context query tables contained into the Routing Manager. In fact, the storage of

context queries not only introduces increased memory overhead, but also leads to

additional context data distributions, thus finally increasing CPU and bandwidth overhead.

Finally, as also presented in Section 7.5.1, each Context Data Module has a local data

repository useful to store important context data, whose maximum size DMAX is limited

according to available memory.

7.6.4. SALES on the Android platform

To better assess the feasibility of our SALES CDDI in real-world systems, we decided

to port it on Android since one of the most widespread platforms for mobile devices. In

this section, for the sake of completeness, we first introduce a brief overview of the

Android platform; then, we present how the main limitations introduced by this platform

impact on the realization of SALES distribution primitives.

Android is a software stack for mobile devices which includes an operating system, a

middleware layer, and a set of support services. The Android Software Development Kit

(SDK) is based on Java, and offers all the tools necessary to develop applications on such

platform. The software stack is based on a Linux kernel and offers usual system services,

such as process and memory management, networking support, etc. On top of the Linux

kernel, we find both the Android runtime, that provides most of the functionalities

available in Java, and a set of C/C++ utility libraries, that implement efficient media

libraries for codecs, SQLite for relational databases, and so forth. Each Android

application executes in its own process, with its own instance of the Dalvik Virtual

Machine (DVM).

In finer details, the Application Framework includes the main Android components: a

set of Views to manage the user interface, Content Providers to store and share data

between applications, a Resource Manager to provide access to non-code resources (e.g.,

strings, images, etc.), a Preference Manager to store configuration parameters of

applications, and an Activity Manager to handle application lifecycle. Android introduces

145

an application model that clearly separates presentation logic from data storage and

background services; in particular, it distinguishes four main component types [119]:

 Activities - An activity represents a single screen user interface. Each application

can be composed by several activities, independent from each other. Activity

lifecycle is handled by the Activity Manager: an activity is started when it

becomes visible, paused or stopped if another activity becomes visible, and

destroyed if no longer used.

 Services - A service is a background component that performs long-running

operations. Differently from activities, services do not directly interact with users;

instead, they receive commands from either activities or other services. While the

lifecycle of an activity is strictly related with its own visibility on device screen,

services are supposed to execute without interruption. In general, a service is

killed by the Application Framework only in critical conditions, such as device

running out of memory.

 Content Providers - A content provider is in charge of managing a shared set of

application data irrespective of their location. Data can be located on the local file

system, on a SQLite database, or even on the web. Content providers can be

queried by applications running on the local device through proper SQL-like

commands; similarly, new data can be dynamically added and removed, while

having a common storage available for all running applications.

 Broadcast Receivers - A broadcast receiver is a component that responds to

system-wide announcements, originated either from the system or from other

applications. In Android, broadcast receivers are fundamental to implement

asynchronous and anonymous communication mechanisms, where senders and

receives do not have to know each other. Such mechanisms are usually used to

dynamically start and stop services, in order to reduce mobile device overhead.

Apart from those main components, the DVM includes all the main libraries and

classes available on a traditional JVM. However, the two VMs are not completely aligned:

on the one side, DVM does not realize some libraries available on standard JVM, such as

advanced data structures for concurrent programming; on the other side, DVM adds new

packages that do not adhere to some accepted standards in the Java world, such as for

Bluetooth, where Android does not follow the JSR-82 proposal [120], but introduces its

own new android.bluetooth.* package.

146

In view of the Android application model, we designed our SALES CDDI client, by

clearly separating user interactions from background services and context data storage. In

particular, we introduced three main components, namely CDDI Context Data Provider,

CDDI Service, and CDDI Configuration Activity, better detailed in the following. For the

sake of clarity, Figure 7.7 shows the logical architecture of the CDDI client, by also

remarking how the main SALES components are mapped in the Android application

model.

CDDI Context Data Provider interacts with local context-aware applications to enable

context data injection and retrieval, thus enacting as a bridge between CDDI and running

applications. All the local context data type definitions are available to external

applications through a standard URL. In addition, each Context Data Module is wrapped

in a Content Provider that takes care of saving data instances in a local SQLite database,

and relays not satisfied queries to the CDDI Service, so to point out local context needs

that are currently not satisfied.

CDDI Service contains all the low-level mechanisms involved in both maintenance of

the system distributed architecture and in context data distribution process. Apart from the

main components already presented in Section 7.6.1, here, we also introduce a Wireless

Card Dynamic Configuration module in charge of dynamically reconfiguring available

network interfaces according to the current execution context. In fact, in real-world

scenarios, SALES has to explicitly deal with wireless network interfaces, by dynamically

changing configuration parameters to reach high-level goals: for instance, since SUNs do

 CDDI Context Data Provider

CDDI Configuration
Activity

 CDDI Service

System Coordination Adaptive System Communication

Communication Primitives

Channel Status
Estimator

BT Adapter WiFi Adapter

DVM

Context Data
Type Storage

Context Data Module

Context Source Context Sink

Routing Manager Mobility Manager

Wireless Card
Dynamic Configuration

Users

Context-aware
Local Applications

Figure 7.7. SALES Android-based Client.

147

not need a connection to the wireless fixed infrastructure, it can dynamically switch off

network interfaces to save battery lifetime.

Finally, CDDI Configuration Activity allows users to modify configuration

parameters. To store and modify such information, this component is built upon the

default Android Preference Manager, that permits to define configuration views via simple

XML documents. As specified in the previous section, SALES lets users to limit the

amount of allocated resources, such as CPU, memory, and bandwidth, to avoid an

intolerable overhead.

Moving to finer implementation details, Android imposes important constraints in two

main areas: wireless networks configuration and memory management. Before proceeding

further, we remark that all the following considerations assume an unmodified Android

version 2.2. We omitted complex workarounds to these problems since we are interested

in evaluating the feasibility of CDDIs based on a standard Android distribution, rather

than in introducing complex solutions difficult to be deployed, maintained and used by

normal users.

Starting from wireless networks configuration, Android does not allow the usage of

WiFi cards in ad-hoc mode. Hence, an Android phone can only connect to WiFi

infrastructure-based networks, thus hindering the context distribution process on SALES

mobile infrastructure. A partial workaround is available if we use the Android WiFi

tethering facility; in this mode, a mobile device enacts as an AP, while others connect to it

as they would have done with a real AP. Unfortunately, this solution has an important

shortcoming: since devices do not form an ad-hoc network, all the transmissions have to

pass through the node acting as the AP that, in its turn, relays them to the real destination.

Of course, that reduces network performance.

Focusing on BT connections, Android uses the android.bluetooth.* package that

exploits Broadcast Receivers to signal BT-related events, e.g., start and stop of the

discovery process, new mobile devices discovered, and so forth. However, provided APIs

are extremely limited, and do not enable fine and direct control of both discovery and

connection process. Above all, Android requires direct user confirmation to set the device

in discoverable mode, even if the discovery phase has been triggered by the CDDI

Service. In addition, for the sake of battery lifetime, Android limits the length of discovery

time to no longer than 300 seconds; after that, it is necessary to prompt again the user to

make the device discoverable again. Moreover, during the first connection between two

devices, Android requires a manual pairing process that also needs explicit user

148

intervention. Finally, Android APIs offer only connection-oriented Radio Frequency

COMMunication (RFCOMM) links that, by construction, introduce higher management

overhead in respect of simple Logical Link Control and Adaptation Protocol (L2CAP)

links [121]. Hence, all these constraints, even if perfectly reasonable when battery

preservation and user privacy are the main goals, widely limit opportunistic exploitation

and transparent management of ad-hoc BT links.

By considering all these limitations together, the Wireless Card Dynamic

Configuration has very limited degrees of freedom on a traditional Android version 2.2

installation. Android APIs do not allow dynamic configuration of the wireless network

interfaces by Java code, and the user has to be explicitly involved into the wireless

connection configuration and setup process for both WiFi and BT. These constraints really

clash with the main requirements of dynamically and transparently reconfiguring the

different wireless cards at the SALES CDDI client. We believe a limited control on

wireless interfaces, for instance via a standard Android manager, would greatly ease the

realization of real-world network middleware supports with minimal user intervention.

Moving to memory management, there is a fundamental difference between Dalvik

Garbage Collector (GC) and traditional Java GC mechanisms. Above all, to preserve

battery lifetime and reduce computational overhead, Dalvik GC applies lazy collection

policies and does not perform dynamic heap memory relocation. Hence, especially when

Java objects have variable sizes, the Dalvik heap can suffer of high fragmentation, thus

perhaps leading to high heap space waste. Apart from a careful reuse of Java objects, if the

application uses large byte arrays, for instance due to data serialization, the programmer

should introduce additional mechanisms in charge of splitting them in smaller and fixed-

sized chunks; in this way, subsequent memory allocations can be satisfied by using pre-

existing heap chunks freed in the meantime, thus not adding to heap fragmentation.

To conclude, at the current stage, the deployment of real-world CDDIs for the

Android platform introduces particular issues that have to be carefully handled. Similarly

to SALES, many research works assume to dynamically reconfigure wireless network

interfaces, by also using WiFi ad-hoc links to create MANETs for service delivery. All

these assumptions do not fit well the Android mobile platform, which imposes tight

constraints on wireless network cards reconfigurations from Java code. At the same time,

CPU and memory limitations of traditional mobile devices can require a better tailoring of

the main solutions introduced by SALES. In Section 7.7.4, we present experimental results

about our real Android-based client, so as to better remark possible performance

149

limitations due to resource-constrained mobile devices.

7.7. Experimental Results

SALES has been implemented and deployed in 1) NS2 simulations, in order to

validate our protocols in large-scale mobile systems; and 2) a real wireless testbed, in

order to test the feasibility of the main mechanisms introduced in this chapter on real

mobile devices. Although our work on SALES mainly focused on real-world deployments,

in Section 7.7.1 we exploit simulations to test our ACDC caching protocol; we opted for

this choice since NS2 simulations let us to better evaluate the technical soundness of our

proposal in large-scale systems, where several mobile devices share context data among

themselves while roaming. Instead, in Section 7.7.2, Section 7.7.3, and Section 7.7.4, we

consider the real-world implementation of SALES, so to better highlight system

management overhead and the real feasibility of our proposals on real mobile devices. Let

us now anticipate important details about NS2 simulation parameters and real-world

implementation.

Starting with NS2 simulations, if not stated differently, we consider a simulation area

of 350x350m with 50 nodes, randomly roaming according to RWP model (uniform speed

in [1; 2] meters/second and a uniform distributed pause in [0; 10] seconds). Each node has

two wireless interfaces, both based on IEEE 802.11g technology (bandwidth of 54 Mbps)

and with a transmission range of 100m. Each node emits a mobility beacon with a period

of 10 seconds to signal its presence, and dynamically discovers and associates with

available BNs. The simulation area is covered by 5 APs, each one connected to a different

BN, respectively placed in [175; 175], [100; 100], [250; 250], [250; 100], and [100; 250];

due to adopted transmission ranges, the area is almost entirely covered by fixed

connectivity. Finally, all simulations last 15 minutes (900 seconds), and reported results

are average values over 33 runs with different RWP instances. Additional details about

context data production and retrieval will be clarified in Section 7.7.1.

Moving to the real implementation (used in Section 7.7.2, Section 7.7.3, and Section

7.7.4), SALES fixed infrastructure is composed by one CN and two BNs, all of them

running on Linux-based boxes with 3GHz CPU and 2GB RAM. The BNs offer

infrastructure-based connectivity to mobile devices by means of traditional IEEE 802.11g

Cisco APs. Instead, as regards the mobile infrastructure, we have used a mix of laptops

and mobile phones, arranged with different configurations clarified in each one of the

following tests. Each laptop has an Intel Core Duo 2 T6500 and 4 GB RAM, while each

150

mobile phone is an LG-P500, based on Android version 2.2 and equipped with both a

WiFi and a BT interface. Moving to the software architecture, SALES is fully

implemented in Java. Hence, it needs either a traditional JVM 1.6 when executed on

laptops, or a Dalvik VM when deployed on Android phones. As stated before, the two

implementations present some significant differences due to the unavailability of standard

Java 1.6 classes on Android 2.2 platform.

In the remainder, we present experimental results about the main mechanisms

introduced in this chapter. We start with NS2 simulations to validate ACDC data caching;

then, we use the SALES real implementation to test both data/query transmission

techniques and query dropping policies. Finally, we present novel results to compare key

performance metrics according to whether we use SALES CUN/SUN J2SE-based

implementation on full-fledged laptops or Android-based implementation on resource-

constrained mobile phones.

7.7.1. ACDC Data Caching Evaluation

In SALES, context data caching is fundamental to enable efficient and effective

wireless infrastructure offloading. Mobile devices share cached data with neighbours by

ad-hoc links, thus perhaps reducing the final traffic to/from the wireless fixed

infrastructure. For the sake of technical evaluation, the NS2 implementation of SALES

considers only BNs and CUNs; that allows us to better evaluate infrastructure offloading

capabilities, while leaving out possible side-effects introduced by mobile nodes clustering.

Focusing on context data production and retrieval, we consider 1000 sources, all

deployed on the fixed infrastructure and equally divided among BNs. Each data instance

has a payload of 3KB, so as to simulate worst-case scenarios where context data contain

images or serialized user/place profiles. Each context source periodically produces a new

data with a FL parameter (see Section 7.3) equal to the generation period; if not stated

otherwise, both generation periods and data FLs are equal to 180 seconds, in order to test

the more challenging case of short lived data. Each CUN can cache a maximum number of

context data instances equal to 30. If needed, data replacement is carried out through one

of the following policies: LRU, LFU, ACDC_OL, and ACDC. While LRU and LFU are

the traditional replacement policies as clarified in Section 7.3.1, ACDC is our novel

proposal presented in Section 7.3.2. In addition, for the sake of completeness, we also

consider a simplified version of ACDC, which exploits “Only Local” (OL) rank, to better

understand the effects of local and remote ranking in our full ACDC proposal.

151

As regards context query production, each CUN periodically emits a new context

query directed to a specific source, that is selected by one of the following two policies.

The first one follows a uniform distribution: the CUN randomly selects the source between

[0; 999], hence, all sources have the same probability of being accessed. The second one is

a localization-based preferential distribution: we superimpose a 10x10 virtual grid over the

simulation area and, for each cell, called virtual cell in the remainder, we use a different

Gaussian distribution to choose the final source to query; the average of the Gaussian

distribution depends on the cell in which the node is currently in, and neighbouring cells

have overlapping distributions to mimic localization-based accesses. We used these two

distributions since the first one mimics a worst-case scenario where data caching on the

mobile infrastructure is not effectively exploited, while the second one models a wide set

of realistic scenarios where CUNs in physical proximity share common interests and

access the same sources.

Finally, let us clarify the main performance indicators we considered. First, we

compare the average retrieval time experienced by a CUN to access the context data

instance belonging to the requested source, namely the time between query emission and

data delivery to sender node. Second, we consider the percentage of satisfied queries, so to

better stress the impact on the reliability of the distribution process. Finally, to evaluate

infrastructure offloading, we consider three traffic indicators, namely 1) the cumulative

traffic sent from the fixed to the mobile infrastructure (TIF→MF); 2) the cumulative traffic

sent from the mobile to the fixed infrastructure (TMF→IF); and 3) the cumulative traffic sent

on ad-hoc links (TAD-HOC).

In the first set of experiments, we start by comparing ACDC and the other caching

policies with uniform access patterns and different HTTL values. Figure 7.8 (a) and Figure

7.8 (b) show respectively the average retrieval time and the percentage of satisfied

requests with caching policies in {LRU, LFU, ACDC_OL, ACDC} and HTTL in {1, 2,

0

200

400

600

800

1000

1200

1 2 3

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Query HTTL

LRU LFU ACDC_OL ACDC

(a)

90%

91%

92%

93%

94%

95%

96%

97%

1 2 3

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Query HTTL

LRU LFU ACDC_OL ACDC

(b)

Figure 7.8. Average Retrieval Time (a) and Percentage of Satisfied Queries (b)
under Uniform Access Patterns.

152

3}. At the same time, for the sake of clarity, Figure 7.9 (a), Figure 7.9 (b), and Figure 7.9

(c) show the cumulative TIF→MF, TMF→IF, and TAD-HOC for considered test configurations.

We have to note that, in all experiments, our ACDC approach reduces the traffic to/from

the fixed infrastructure due to the remote ranking that, in its turn, leads to increased data

diversity between repositories in physical proximity. However, it is important to note that

the reliability of the distribution process is only slightly improved (see Figure 7.8 (b)): that

is due to the fact that, although routing fails on the mobile infrastructure, the CUN can

retrieve needed data from the fixed infrastructure, thus increasing the total TIF→MF and

TMF→IF. Finally, it is interesting to compare ACDC_OL and ACDC. The latter always

outperforms the former due to higher repository diversity, thus leading to lower TIF→MF

and TMF→IF; unfortunately, at the same time, ACDC leads to increased TAD-HOC since the

higher data repository diversity also increases the probability that each query reaches a

wider set of context data.

In the second set of experiments, we considered more realistic localization-based

preferential access patterns; the Gaussian distribution exploited in each cell has a Standard

Deviation (S.D.) of 26, so as to prevent that most of the queries find a positive response

directly from the local cache deployed at the sender node. Here, we expect better

performance since CUNs in physical proximity require the same set of data, thus leading

0,00E+00

1,00E+07

2,00E+07

3,00E+07

4,00E+07

5,00E+07

1 2 3

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query HTTL

LRU LFU ACDC_OL ACDC

(a)

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

7,00E+06

1 2 3

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query HTTL

LRU LFU ACDC_OL ACDC

(b)

0,00E+00

5,00E+08

1,00E+09

1,50E+09

2,00E+09

1 2 3

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query HTTL

LRU LFU ACDC_OL ACDC

(c)

Figure 7.9. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) according to Different Caching Algorithms and
Query HTTL, under Uniform Access Patterns.

0

200

400

600

800

1000

1 2 3A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Query HTTL

LRU LFU ACDC_OL ACDC

(a)

0,93

0,94

0,95

0,96

0,97

0,98

1 2 3

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Query HTTL

LRU LFU ACDC_OL ACDC

(b)

Figure 7.10. Average Retrieval Time (a) and Percentage of Satisfied Queries (b)
under Localization-based Preferential Access Patterns.

153

to better infrastructure offloading. Similarly to previous experiments, Figure 7.10

represents average retrieval times and percentage of satisfied requests, while Figure 7.11

shows cumulative TIF→MF, TMF→IF, and TAD-HOC at the end of the simulation. In respect of

uniform access patterns (see Figure 7.8 (a)), here we experience lower average retrieval

times and higher reliability due to the higher similarity of emitted context queries. First of

all, it is interesting to note that LFU leads to the worst performance since that caching

approach tends to integrate the whole history of accesses, hence, it does not adapt well

when access patterns change due to CUNs roaming between different virtual cells of the

simulation area. Also, similarly to what we found in previous experiments, ACDC is the

best caching solution between considered ones, while ACDC_OL is the second best one.

Focusing on Figure 7.11, we remark that, in respect of Figure 7.9, both TIF→MF and TMF→IF

are smaller, thus further increasing infrastructure offloading. Unfortunately, TAD-HOC

increases as a higher number of close CUNs cache matching data, thus triggering a higher

number of responses.

From above results, we conclude that both ACDC_OL and ACDC outperform other

caching approaches. In both uniform and localization-based preferential access patterns,

they increase infrastructure offloading; in addition, ACDC usually performs better due to

increased data repository diversity, but also leads to higher traffic on ad-hoc links due to

the increased number of triggered responses. In all the previous experiments, we exploited

a fixed data FL of 180 seconds and a query generator S.D. of 26; now, we want to evaluate

the effects of such parameters on infrastructure offloading. Let us also remark that, for the

sake of conciseness, in the remainder we only consider localization-based preferential

access patterns as they are more realistic and allow real offloading through caching.

In the third set of experiments, we considered data with longer FLs to test the

performance of the different caching approaches with long lived context data. In fact, short

lived data can either hinder or help context data caching: on the one side, since data are

0,00E+00

5,00E+06

1,00E+07

1,50E+07

2,00E+07

2,50E+07

3,00E+07

1 2 3

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query HTTL

LRU LFU ACDC_OL ACDC
(a)

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

1 2 3

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query HTTL

LRU LFU ACDC_OL ACDC

(b)

0,00E+00

5,00E+08

1,00E+09

1,50E+09

2,00E+09

2,50E+09

1 2 3

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query HTTL

LRU LFU ACDC_OL ACDC

(c)

Figure 7.11. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) according to Different Caching Algorithms and
Query HTTL, under Localization-based Preferential Access Patterns.

154

automatically removed due to RL expiration, we periodically need to pull again the data

from the BNs; on the other hand, especially for those approaches, e.g., LFU, that keep

track of data accesses through history mechanisms, data removal due to RL expiration

could be beneficial as it allows to flush context data and associated history, thus allowing

faster context data cache adaptations. Figure 7.12 shows the average retrieval times and

the percentage of satisfied queries with data RL in {900, 300, 180} seconds, while Figure

7.13 shows the cumulative TIF→MF, TMF→IF, and TAD-HOC for the current test configuration.

Starting with Figure 7.12, we note that LFU ensures the worst performance, especially for

long lived data; again, this is due to the fact that LFU accumulates all the access history,

thus hindering the fast adaption of caches. We remark that, if data FL is 900 seconds,

context data never expire during the simulation, and are removed only for data

replacement due to memory saturation. By analyzing Figure 7.13, we note that ACDC_OL

and ACDC are always the ones that ensure lower TIF→MF and TMF→IF, thus further

increasing infrastructure offloading. Of course, the higher the data FL value, the lower the

traffic with the infrastructure will be, since context data will be probably kept alive on

CUNs and fetched from them. Also here, we note that LFU history effects lead to higher

traffic with the fixed infrastructure.

In the fourth set of experiments, we consider S.D. values in {13, 26, 52, 104} for the

Gaussian distribution used to select the interesting source in each virtual cell. Of course,

0

100

200

300

400

500

600

700

900 300 180A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Data FL

LRU LFU ACDC_OL ACDC

(a)

0,945

0,95

0,955

0,96

0,965

0,97

0,975

0,98

0,985

900 300 180

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Data FL

LRU LFU ACDC_OL ACDC

(b)

Figure 7.12. Effect of Different Data RL Values on
Average Retrieval Time (a) and Percentage of Satisfied Queries (b).

0,00E+00

5,00E+06

1,00E+07

1,50E+07

2,00E+07

2,50E+07

3,00E+07

900 300 180

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Data FL

LRU LFU ACDC_OL ACDC

(a)

0,00E+00

5,00E+05

1,00E+06

1,50E+06

2,00E+06

2,50E+06

3,00E+06

3,50E+06

4,00E+06

900 300 180

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Data FL

LRU LFU ACDC_OL ACDC

(b)

0,00E+00

2,00E+08

4,00E+08

6,00E+08

8,00E+08

1,00E+09

1,20E+09

1,40E+09

1,60E+09

900 300 180

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Data FL

LRU LFU ACDC_OL ACDC

(c)

Figure 7.13. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) with Different Data RL.

155

higher S.D. values reduce caching usefulness since each cell will be associated with a

wider set of interesting context data sources. Figure 7.14 and Figure 7.15 present the same

performance indicators used in previous tests. Similarly to what happened before, LFU is

the worst caching algorithm as it leads to higher retrieval times and lower percentage of

satisfied requests. With higher S.D. values, average retrieval times tend to increase as

context data will be probably cached in farther nodes (see Figure 7.14 (a)). With an S.D.

value of 104, LRU and LFU perform very similarly since LFU suffers reduced history

effects. However, in all the considered configuration tests, our proposals, namely both

ACDC_OL and ACDC, are the better ones. From Figure 7.15, we confirm that our two

proposals lead to reduced traffic to/from the infrastructure, thus improving the final

offloading. Also, ACDC always performs better than ACDC_OL in terms of TIF→MF and

TMF→IF, although it leads to slightly higher TAD-HOC traffic due to increased data repository

diversity. Finally, in general, we remark that higher S.D. values lead to 1) increased

TIF→MF and TMF→IF since more context data instances need to be fetched from the fixed

infrastructure; and 2) reduced TAD-HOC since each query will trigger a reduced number of

context responses due to the larger set of context data stored on CUNs in physical

proximity.

Hence, we conclude that, in all the considered test configurations, both ACDC_OL

and ACDC continue to outperform LRU and LFU. In addition, ACDC usually performs

better than ACDC_OL in terms of infrastructure offloading, since it is able to increase data

repository diversity between close CUNs. Unfortunately, it also increases traffic on ad-hoc

links since each query can trigger a higher number of responses. However, since our main

objective is to improve infrastructure offloading for the sake of scalability, and

considering that ad-hoc links do not usually introduce economical costs for the

infrastructure provider, we claim that ACDC is a feasible solution to efficiently and

effectively offload the wireless fixed infrastructure.

0

100

200

300

400

500

600

700

13 26 52 104

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Query Generator S.D.

LRU LFU ACDC_OL ACDC
(a)

0,95

0,955

0,96

0,965

0,97

0,975

0,98

0,985

13 26 52 104

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Query Generator S.D.

LRU LFU ACDC_OL ACDC
(b)

Figure 7.14. Effect of Different Query Generator S.D. Values on
Average Retrieval Time (a) and Percentage of Satisfied Queries (b).

156

7.7.2. Data/query Transmission Policies Evaluation

In this section, we present experimental results about the different transmission

policies, e.g., no batching, naïve batching, and adaptive batching, offered by SALES

CDDI. As stated before, from now on, we consider our real-world implementation of

SALES to test the feasibility of such mechanisms and the introduced management

overhead on real mobile devices. Considering that obtained results truly depend on

adopted communication primitives, let us remark that SALES adopts UDP as transport

protocol. Messages do not receive explicit acknowledgements from destination, hence,

message droppings due to packet collision, socket buffer overflow, and so forth, are

possible.

In addition, we configured SALES system-level resources as follows (see Section

7.6.3). To emulate SUNs/CUNs over cellular phones or PDAs, each CUN/SUN has 3 MD,

1 RD, and 1 QD threads, each one executing (if not explicitly stated) at most 50 reqs/s.

Instead, both the CN and the BNs have 10 MD, 3 RD, and 3 QD threads, each one executing

at most 60 reqs/s. All the involved queues have a maximum size of 100 elements on

CUNs/SUNs, and of 200 elements on CN/BNs. The mapping between the maximum QoC

data retrieval time and the query parameters exploits an α parameter of 0.8 and a γ

parameter of 2. An average bandwidth of 6 Mbps is available on ad-hoc links, while

wireless network load factors are exchanged every 10 seconds. Finally, as we did before,

all the showed experimental results are average over 33 test executions to obtain a good

confidence; standard deviation is also presented.

Focusing on context data production and consumption, similarly to previous

experiments, we exploit a context data type with a payload size of about 3 KB. To

simulate the worst-case scenario, namely the longest possible distribution path, we have

deployed 1000 context sources on the CN, and each source continuously produces data

instances with a FL parameter uniformly distributed in [150; 300] seconds. For the sake of

0,00E+00

5,00E+06

1,00E+07

1,50E+07

2,00E+07

2,50E+07

3,00E+07

3,50E+07

13 26 52 104

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query Generator S.D.

LRU LFU ACDC_OL ACDC

(a)

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

13 26 52 104

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query Generator S.D.

LRU LFU ACDC_OL ACDC

(b)

0,00E+00

2,00E+08

4,00E+08

6,00E+08

8,00E+08

1,00E+09

1,20E+09

1,40E+09

1,60E+09

13 26 52 104

T
o

ta
l T

ra
ff

ic
 (

B
yt

es
)

Query Generator S.D.

LRU LFU ACDC_OL ACDC

(c)

Figure 7.15. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) with Different Query Generator S.D.

157

repeatability, and since we are now interested in evaluating only the effect of the different

transmission policies on wireless links, BNs, CUNs, and SUNs do not cache any data:

hence, all the queries have to reach the CN to find a positive response. Finally, in the

following, each emitted query is directed to a particular context source, randomly selected

at the query creator node with a uniform distribution. We remark that this choice has been

made to avoid overlapping queries that, in their turns, could reduce the total number of

data transmissions; by doing in this way, we can manually estimate the expected network

traffic load.

In the first set of experiments (see Figure 7.16), we have compared the three

data/query transmission policies presented in Section 7.5.2. Toward this goal, and to

neatly separate the effect of our policies, all the nodes involved in this set of experiments

have 1) a local processing rate, namely MD, RD, and QD execution rate, equal to twice the

request rate; 2) the query dropping policy disabled; and 3) the reactive routing delays

adaptation disabled. To consider very challenging scenarios, we decided to adopt request

rates in {50, 55, 60, 65, 70} reqs/s, and a data retrieval time of 2 seconds. Although such

request rates could seem very high and unrealistic, we remark that they are reasonable if

we consider that our SUN actually simulates a set of mobile nodes attached to the same

CUN. In densely populated environments, such as a university classroom, we can find

hundreds of mobile devices in the same physical place, whose wireless transmissions

always interfere among them; hence, proposed workloads are feasible since, from the

wireless network viewpoint, they actually mimic scenarios where each mobile device

emits less than 1 reqs/s. Finally, we imposed 1) query HTTL equal to 0 (no query

horizontal distribution is performed); and 2) access to the latest version of the context data

(each query has to reach the context source on the CN). The SUN111 executes our test

code, and requests a fixed number of reqs/s for a long test of 5 minutes.

Depending on the adopted transmission technique, Figure 7.16 (a) and Figure 7.16 (b)

1650

1700

1750

1800

1850

1900

1950

50 55 60 65 70A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

s
 (

m
s

)

Number of requests/sec

No batching Naïve batching Adaptive batching

(a)

0%

2%

4%

6%

8%

10%

50 55 60 65 70

P
er

ce
n

ta
g

e
o

f
F

ai
le

d

R
e

q
u

e
s

ts
 (

%
)

Number of requests/sec

No batching Naïve batching Adaptive batching
(b)

Figure 7.16. Average Retrieval Time (a) and Percentage of Failed Requests (b)
with Different Transmission Policies.

158

show respectively the average retrieval time, namely the time interval between query

generation and response arrival, and the percentage of failed requests for different request

rates. Except for request rate of 70 reqs/s, as regards context retrieval times, we remark

that 1) no batching policy outperforms both naïve and adaptive batching since they use

larger delays to trigger real transmissions; and 2) adaptive batching outperforms naïve

batching due to the inherently lower transmission delays, obtained by means of the θ

parameter. Instead, with a request rate of 70 reqs/s, the adaptive batching performs very

close to the no batching. In fact, the increased wireless congestion of the no batching

policy frequently triggers MAC backoff mechanism that, in its turn, results in increased

delays during wireless channel access, hence higher total retrieval times. Finally, while the

adaptive batching features quite similar retrieval times with different request rates, the no

batching is very sensible to this parameter due to the increased wireless congestion.

Figure 7.16 (b) shows the percentage of failed requests. We consider a failure either a

request without a response (hence, consequence of a message drop) or a request with a late

response (hence, received after the data retrieval time). No batching is the best choice

when request rate is in {50, 55} reqs/s: the lower transmission delays can balance

unforeseen delays, thus leading to a lower number of late responses. Instead, from 60

reqs/s, the adaptive batching outperforms no batching. In fact, no batching policy increases

wireless channel congestion: this, in its turn, leads to increased late responses and message

droppings. In addition, to better clarify obtained results, we used a background process to

periodically ping the CUN from the SUN; we found out that, with a request rate of 70

reqs/s, ping times reach more than 300 ms, and that explains the sharp increase of late

responses. Finally, except for request rate of 70 reqs/s, the naïve batching is always the

worst policy as higher routing delays can likely lead to failures due to late responses.

From above results, we remark that 1) the no batching ensures the lowest retrieval

times and the highest reliability for low request rates; 2) the naïve batching outperforms no

batching in reliability only for very high request rates, but it usually leads to a high

number of failures due to late responses; and 3) adaptive batching performs very close to

the no batching for low request rates, and outperforms it with high request rates. In

particular, adaptive batching has both self-optimization (it automatically finds a tradeoff

between timeliness and reliability) and self-configuration (it automatically reconfigures all

the required SALES components) capabilities in respect of wireless channel congestion.

In the second set of experiments, we used the above configuration test to analyze the

effect of the α parameter, used to evaluate distribution period lower bounds, on the three

159

transmission policies. By using an α in {0.7, 0.8, 0.9}, Figure 7.17 and Figure 7.18 show

respectively the average retrieval times and the percentage of failed requests for different

request rates. First, by comparing Figure 7.17 (a), Figure 7.17 (b), and Figure 7.17 (c), we

note that the lower the α parameter, the lower the retrieval times; in fact, lower α values

lead to lower DRD and QRD, thus possibly anticipating data/query transmissions. In

addition, by comparing Figure 7.18 (a), Figure 7.18 (b), and Figure 7.18 (c), we remark

that the lower the α parameter, the lower the percentage of failed requests; in fact, lower α

values anticipate query/data transmission, thus giving more chances to recover unforeseen

delays introduced by system congestion. When batching is enabled, lower α values

increase also the probability of data/query batching, thus further reducing wireless channel

accesses and network congestion. From these results, we conclude that α parameter is

useful to trade off reliability and data retrieval time. On the one side, lower α values are

appealing since able to reduce the percentage of failed responses. Unfortunately, on the

other side, lower α values anticipate context data distribution, thus hindering the usage of

routing delays at each single node to prevent system congestion.

In the last set of experiments, we focused on the adaptive batching technique to test its

behaviour under time-varying workloads. By limiting the processing rate of mobile nodes

to 50 reqs/s, we execute a test of 35 minutes divided in 7 different timeslots: each timeslot

is 5 minutes (300 seconds) long, and employs a static request rate to stress SALES. The

adopted request rates are respectively (10, 30, 50, 70, 50, 30, 10) reqs/s. Figure 7.19 shows

0%

1%

2%

3%

4%

5%

6%

50 55 60 65 70

P
er

ce
n

ta
g

e
o

f
F

ai
le

d

R
e

q
u

e
s

ts
 (

%
)

Number of requests/sec

No batching Naïve batching Adaptive batching

(a)

0%

2%

4%

6%

8%

10%

50 55 60 65 70

P
er

ce
n

ta
g

e
o

f
F

ai
le

d

R
e

q
u

e
s

ts
 (

%
)

Number of requests/sec

No batching Naïve batching Adaptive batching

(b)

0%

10%

20%

30%

40%

50%

60%

50 55 60 65 70

P
er

ce
n

ta
g

e
o

f
F

ai
le

d

R
e

q
u

e
s

ts
 (

%
)

Number of requests/sec

No batching Naïve batching Adaptive batching

(c)

Figure 7.18. Percentage of Failed Requests with α in {0.7 (a), 0.8 (b), 0.9 (c)}.

1450

1550

1650

1750

1850

50 55 60 65 70

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

s
 (

m
s

)

Number of requests/sec

No batching Naïve batching Adaptive batching

(a)

1450

1550

1650

1750

1850

1950

50 55 60 65 70

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

s
 (

m
s

)

Number of requests/sec

No batching Naïve batching Adaptive batching

(b)

1450

1550

1650

1750

1850

1950

50 55 60 65 70

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
es

 (
m

s)

Number of requests/sec

No batching Naïve batching Adaptive batching

(c)

Figure 7.17. Average Retrieval Times with α in {0.7 (a), 0.8 (b), 0.9 (c)}.

160

both the percentage of failed requests and the θ values for each second; for the sake of

readability, we applied a smoothing filter in which each point is averaged with the

previous four ones. Starting from the percentage of failed requests, SALES ensures very

few failures when the request rate is lower than the processing one (first, second, sixth,

and seventh timeslot). If the request rate is equal to the processing rate (third and fifth

timeslot), we experience a percentage of failed requests around 30%. Finally, when the

request rate is remarkably higher than the processing one (fourth timeslot), the percentage

of failed requests becomes high and close to 50%. Considering the processing rate of 50

reqs/s, we would analytically expect an upper bound to the percentage of failed requests

close to 30%: however, as also presented in the next section, the query drop policy

discharges additional queries due to false positives, and the overall overload leads to

increased late responses. In addition, let us note that the θ values carefully approximate

and promptly follow real wireless network load. On the one hand, considering that each

query and data is respectively around 1.5 and 4.5 KB long (the Java serialization

introduces additional overhead to the real payload), and that ad-hoc links offer a 6 Mbps

bandwidth, the estimated θ values are very close to the real ones: for instance, with 30

reqs/s, θ is close to 0.28, while the real value is around 0.24. On the other hand, θ

promptly approximates the load every time the request rate changes. Some seconds are

required to θ to adapt to the current load: this inertia is due to the distributed monitoring

schema adopted for network load computation. In addition, we remark that, in the fourth

timeslot and in contrast with the higher request rate, θ assumes lower values since many

failed requests do not result in context data routing.

To conclude, by considering above results, we remark that the adaptive policy is able

to effectively trade off average retrieval times with context distribution reliability. From

the management viewpoint, the adaptive batching requires to distribute only lightweight

wireless network load factors, periodically piggybacked on mobility beacons;

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0%

20%

40%

60%

80%

100%

0 300 600 900 1200 1500 1800 2100

θ
V

a
lu

e
s

P

er
ce

n
ta

g
e

o
f

F
ai

le
d

 R
eq

u
es

ts
 (

%
)

in
 t

h
e

 L
a

s
t

S
e

c
o

n
d

Seconds elapsed from start

Percentage of failed requests θ value

Figure 7.19. Percentage of Failed Requests and θ Values with Time-varying Workloads.

161

unfortunately, at the same time, it may lead to increased CPU overhead due to the higher

number of scheduled task descriptors. By comparing the CPU load experienced when the

adaptive batching policy is enabled with the one caused by no batching policy, we found

that, in all the previous experiments, adaptive batching leads to an increased CPU

overhead always smaller than 0.5%. Hence, considering the associated benefits, we think

that the adaptive batching schema is always viable and feasible.

7.7.3. Query Dropping Evaluation

Query dropping is fundamental to control and limit the introduced CPU load, so as to

better fit the current execution environment. Here, we present experimental results related

with the different query dropping policies, namely naïve and adaptive query dropping, by

also comparing them with the case when no query dropping is enabled.

In the following experiments, we always deployed 1000 context data sources on the

CN, and we enabled context data repositories of 120 elements on intermediate nodes. Each

node stores context data passing through it and, when the repository is full, a traditional

LFU policy is applied to select the element to remove. We used LFU as replacement

policy since, during preferential access patterns, it better fits the Gaussian distribution

adopted by the traffic generator, thus reducing the requests relayed to upper levels and

better highlighting the different CPU loads associated with different access patterns.

Finally, considering that we use the unique SUN to simulate multiple clients, it has the

local context data repository disabled: hence, all the queries are distributed, at least, up to

the CUN.

All the experimental results presented in this section are obtained from a general test

of 720 seconds, divided in 6 time slots of 120 seconds each, and with any slot with a

different access pattern to simulate different scenarios. The SUN selects a target context

data source, among the 1000 available on the CN, by using a uniform distribution in time

slots {1, 3, 5} and a Gaussian distribution in time slots {2, 4, 6}. In addition, to simulate

data access patterns with different degrees of preference, the Gaussian-based distributions

of time slots {2, 4, 6} adopt respectively a standard deviation (S.D.) of {15, 30, 45}. We

remark that Gaussian distributions simulate scenarios where mobile nodes in physical

proximity require similar context data, such as localization-dependant access patterns; in

this case, it is likely that context queries retrieve response from data repositories of close

mobile nodes. Finally, all reported results are average values over 10 executions.

In the first set of experiments, we executed the above test with query drop disabled to

162

show that different access patterns lead to different CPU loads. In particular, we have used

the SUN to emit {5, 10, 15} reqs/s, and we monitored the CPU load introduced on the

CUN each second. For the sake of readability, we report average values of CPU load

values over the last samples. Figure 7.20 (a) shows the CPU load during the test for

different request rates. Of course, the higher the request rate, the higher the CPU load

experienced by the CUN. In addition, it is worth remarking that CPU load depends on

access patterns. When accesses are uniformly distributed, the CUN experiences higher

CPU loads because it has to relay most of the queries to the BN. Instead, when accesses

are distributed according to a Gaussian distribution, many queries find response from the

CUN data repository, thus avoiding further query distributions. The lowest CPU load is

associated with the second time slot where almost all the data are found on the CUN

(Gaussian distribution with a S.D. of 15). In this test, no query drops occur because, as

anticipated, both CUN and SUN drop policies have been disabled.

From Figure 7.20 (a), we remark that it is impossible to find a precise PQMAX value

given a specific maximum CPU load. However, considering that the CDDI is a

background service executed on mobile device, we can reasonably assume that it can

introduce a maximum CPU load of 5%. Hence, from these initial tests, we conclude that a

query processing rate of 10 reqs/s is appropriate to ensure a good number of satisfied

queries, while keeping the final CPU load below 5%.

In the second set of experiments, we have enabled the naïve drop policy on the CUN

with a static PQMAX equal to 10 to possibly keep the CPU load close to 5%. Figure 7.20

(b) and Figure 7.20 (c) represent respectively the average CPU load at the CUN and the

percentage of satisfied queries for each second. Starting with Figure 7.20 (b), we note that

all the main observations made for the experiments of Figure 7.20 (a) still apply. In

addition, when query request rate is equal to 15 reqs/s, the CPU load does not remarkably

increase since the CUN proactively drops queries in excess. Of course, it is possible to

0

2

4

6

8

10

0 120 240 360 480 600 720

C
P

U
 L

o
ad

 (
%

)

Time Elapsed From Start (secs)

5 reqs/s 10 reqs/s
15 reqs/s

(a)

0

2

4

6

8

0 120 240 360 480 600 720

C
P

U
 L

o
ad

 (
%

)

Time Elapsed From Start (secs)

5 reqs/s 10 reqs/s
15 reqs/s

(b)

0

20

40

60

80

100

0 120 240 360 480 600 720

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Time Elapsed From Start (secs)

5 reqs/s 10 reqs/s
15 reqs/s

(c)

Figure 7.20. CPU Load with Naïve Query Drop Disabled (a) and Enabled (b), and
Percentage of Satisfied Queries (c).

163

highlight a slightly higher CPU load due to the overhead introduced by query receive and

dispatching. At the same time, in Figure 7.20 (c), when the request rate is higher than

PQMAX, we obtain a percentage of satisfied queries that approximates the difference

between the number of queries emitted by the SUN and the number of queries processed

by the CUN. In fact, all the queries emitted by the SUN pass through the CUN that

proactively discards them according to its own PQMAX. In addition, the naïve drop policy

also leads to false positives when approaching PQMAX: when query request rate is equal to

10 reqs/s, the adopted drop condition leads to a percentage of satisfied requests close to

80%. Finally, from Figure 7.20 (b) and Figure 7.20 (c), we conclude that the naïve drop

policy leads to unjustified query drops since unable to adapt to data access patterns. In

fact, although the average CPU load is below 5% during Gaussian-based accesses (see

Figure 7.20 (b)), the CUN keeps dropping a high number of queries (see Fig. Figure 7.20

(c)). Hence, the CDDI should automatically increment PQMAX during these periods to

reduce dropped queries.

In the third set of experiments, we enabled our adaptive drop policy with a maximum

CPU load of 5% and a monitoring period of 10 seconds. We recall that, due to the adopted

monitoring period, PQMAX(k) is adapted only every 10 seconds; this, of course, reduces the

reactivity of the system in following fast changing CPU loads, but increases the stability of

PQMAX(k). By using the same traffic patterns introduced above and a request rates in {5,

10, 15} reqs/s, Figure 7.21 (a), Figure 7.21 (b), and Figure 7.21 (c) show respectively the

CPU load, the percentage of satisfied queries for each second, and the values assumed by

PQMAX(k) during the whole test. Let us briefly note that, when query request rate is 5

reqs/s, the CPU load is always below 5% (see Figure 7.21 (a)). Hence, no queries are

dropped (see Figure 7.21 (b)), while PQMAX(k) is almost stable and close to 8 reqs/s (see

Figure 7.21 (c)).

Instead, when query request rate is 10 reqs/s, our adaptive drop policy starts to adjust

2

4

6

8

0 120 240 360 480 600 720

C
P

U
 L

o
ad

 (
%

)

Time Elapsed From Start (secs)

5 reqs/s 10 reqs/s
15 reqs/s

(a)

0

20

40

60

80

100

0 120 240 360 480 600 720

P
er

ce
n

ta
g

e
o

f
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Time Elapsed From Start (secs)

5 reqs/s 10 reqs/s
15 reqs/s

(b)

2

4

6

8

10

12

14

0 120 240 360 480 600 720

P
Q

M
A

X

Time Elapsed From Start (secs)

5 reqs/s 10 reqs/s
15 reqs/s

(c)

Figure 7.21. CPU Load (a), Percentage of Satisfied Queries (b), and PQMAX Values (c)
with Adaptive Drop Policy Enabled.

164

PQMAX(k). Starting from Figure 7.21 (a), we can note that, at the beginning of the test, the

CPU load is higher than 5%. Hence, our adaptive drop policy reacts by reducing PQMAX(k)

(see Figure 7.21 (c)). This, in its turn, leads to a lower percentage of satisfied requests in

Figure 7.21 (b). In the second time period, the data access pattern becomes Gaussian-

based: hence, our adaptive drop policy increases PQMAX(k) to reduce the failed requests.

The same trend repeats every time the data access pattern changes. The main effect is that,

differently from Figure 7.20 (c), the percentage of satisfied queries in Figure 7.21 (b) is

time-dependent. It increases during Gaussian-based access patterns due to the reduced

CPU load introduced by each query; of course, the highest value is reached at the end of

the second time slot as it employs the lower standard deviation. In addition, in this test,

during uniform access patterns, PQMAX(k) is about 4 reqs/s. This could seem in contrast

with the results presented in Figure 7.20 (a), where a CPU load of 5% is associated to a

hypothetic request rate of 7.5 reqs/s. However, this is an unfair comparison since, in this

case, the CUN exhibits a higher load due to additional query decoding and dispatching.

Finally, when the SUN emits queries with a request rate of 15 reqs/s, our adaptive

policy reacts similarly. However, in Figure 7.21 (c), PQMAX(k) tends to assume very low

values for both uniform- and Gaussian-based access patterns. This is consequence of the

fact that the CPU load introduced by the CDDI tends to be always higher than 5%. In

other words, even if our adaptive drop policy reduces the processed queries, the CDDI

keeps introducing a steady CPU load associated with message decoding and dispatching.

However, as showed in Figure 7.21 (a), the adaptive drop policy enforces the final CPU

load of 5%, hence, it achieves our main goal.

7.7.4. Evaluation of SALES on Android Devices

To better assess the feasibility of SALES CDDI on real-world resource-constrained

mobile devices, as mentioned before, we ported our solution on the Android platform. In

this section, we present experimental results from our real deployment, and we better

highlight the management overhead introduced on mobile phones due to context data

distribution.

In the following tests, we disabled intermediate repositories on all the mobile nodes,

so to simulate the worst case scenario, namely all the queries have to be distributed up to

the CN before retrieving context data. At the same time, as we have thoroughly evaluated

SALES batching techniques in Section 7.7.2, here we consider data/queries distributed

according to the no batching policy, in order to avoid additional failed requests due to

165

higher routing delays. Finally, all the experimental results report average values obtained

over 10 executions.

We focused our following tests on three different distributed architectures, good

representatives of the configurations that can be found in real deployments. The first one,

“Laptop/WiFi”, is a limited deployment CN-BN-CUN where the CUN is a laptop and

connects to the BN through WiFi; it represents the best case scenario due to 1) shorter

distance between the client and the CN; and 2) usage of a full-fledged laptop. The second

one, “MobilePhone/WiFi”, is similar to the previous one, but the CUN is an Android

mobile phone: due to tighter resource constraints, we expect lower performance with

respect to the first configuration. Finally, the third one, “MobilePhone/WiFi -

MobilePhone/BT”, extends the previous one to reach a full CN-BN-CUN-SUN

configuration: both the CUN and the SUN are mobile phones that connect in ad-hoc

through a BT link. We remark that we did not test WiFi ad-hoc links between mobile

phones due to Android limitations.

The first set of experiments compares two key performance metrics: the average

retrieval time and the percentage of failed requests (see Figure 7.22 (a) and Figure 7.22

(b)). We have considered request rates in {2, 4, 6, 8} reqs/s and, for each case, we show

the average value and the standard deviation over a 5-minutes long test. The queries are

always emitted by the CUN in the first two configurations, and by the SUN in the last one;

in addition, the emitting node imposes a data retrieval time of 2 seconds. Since SALES

estimates a worst-case distribution scenario made only by the nodes in the vertical path

between the creator node and the CN, i.e., 2 hops when queries are emitted by the CUN

and 3 hops when they are emitted by the SUN, it will impose DRDM = QRDM = 500 ms in

the first case, and 333 ms in the second case. Then, since SALES applies an α factor equal

to 0.7 to consider unforeseen delays introduced by local processing, the final DRD/QRD

will be respectively equal to 350 and 233 ms: in conclusion, the routing process will try to

1400

1600

1800

2000

2 4 6 8

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

(m
s)

Number of Requests/s
Laptop/WiFi

MobilePhone/WiFi

MobilePhone/WiFi - MobilePhone/BT

(a)

0%

10%

20%

30%

40%

2 4 6 8

P
er

ce
n

ta
g

e
o

f
F

ai
le

d
 Q

u
er

ie
s

(%
)

Number of Requests/s

Laptop/WiFi
MobilePhone/WiFi
MobilePhone/WiFi - MobilePhone/BT

(b)

0%

1%

2%

3%

4%

1300

1800

2300

2800

3300

3800

2000 3000 4000

P
ercen

tag
e o

f
F

ailed
 Q

u
eries (%

)

A
ve

ra
g

e
 R

e
tr

ie
va

l
T

im
e

 (
m

s
)

Data retrieval time

Average Retrieval Time

Percentage of Failed Queries

(c)

Figure 7.22. Average Retrieval Times (a) and Percentage of Failed Queries with
Different Request Rates (b), and with Different Delivery Deadlines (c).

166

deliver data in 1400 ms, thus having 600 ms to cope with unexpected delays due to

wireless channel congestion or local resources overload.

From obtained experimental results, the “Laptop/WiFi” case is the best one: it ensures

the lowest average retrieval times and exhibits no failed requests; in fact, the usage of a

full-fledged laptop with a standard JVM 1.6 makes the request rates of these tests

negligible. Instead, the other two configurations experience increased average retrieval

times and some failed responses since mobile phones introduce higher routing delays due

to computational resource scarcity. In addition, the scarce memory reserved for an

Android application, limited to a maximum of 24MB on the LG-P500, results in frequent

GC collections, thus introducing additional delays (as also better detailed in our third

experiment). Finally, the “MobilePhone/WiFi - MobilePhone/BT” scenario has the worst

performance due to the higher number of transmissions and hops involved in the routing

process; the surge of failed responses is also due to the fact that the CUN, by acting as

router, suffers an increased memory pressure due to data/queries serialization.

In our second set of experiments, we aimed to clarify main causes of failed queries.

By using the “MobilePhone/WiFi” test scenario and a fixed request rate of 8 reqs/s, Figure

7.22 (c) shows both the average retrieval times and the number of failed queries when the

mobile phone requires data with a data retrieval time in {2000, 3000, 4000} ms. We

remark that the percentage of failed queries decreases with higher data retrieval time

values. Such behaviour is related with SALES routing delay mechanism: in fact, if data

retrieval time is equal to 2000 ms, SALES has 600 ms to cope with unforeseen delays;

instead, with a data retrieval time of 4000 ms, it has 1200 ms of remaining time. Hence,

the CDDI can better recover unpredictable delays introduced by Dalvik GC and scarce

computational resources, thus reducing the number of failed queries.

Finally, we have better observed the CDDI heap size via Android “adb shell dumpsys

meminfo” command. We remark that the current implementation does not employ any

particular optimization to address the heap fragmentation problem (see Section 7.6.4), so

as to produce a worst case scenario where programmers do not consider Android

peculiarities. In the “MobilePhone/WiFi” test scenario, we have monitored the Dalvik

heap for a 20 minutes long test by using request rates in {2, 4, 6, 8} reqs/s. Figure 7.23

shows the heap size sampled once every second. Of course, the higher the request rate, the

higher the heap size because of more frequent object allocations and increased heap

fragmentation. We remark that the heap size of Figure 7.23 is the total heap size perceived

by Android; this differs from the allocated heap (smaller and not shown in figure) that is

167

the fraction of the heap used to store referenced objects that cannot be released. For a

particular request rate, the allocated heap size is almost constant during the whole test due

to automatic GC mechanisms. Instead, although the request rate is constant, the memory

dedicated to our CDDI client goes up over time. That represents a usual accumulation

effect of many GC implementations: in our case, these effects are worsened by the heap

fragmentation problem. Hence, that core issue must be taken into account before a

production phase, also because, if the application reaches 24 MB, the Android runtime

will automatically kill it to avoid slowing other external applications.

7500

8000

8500

9000

0 300 600 900 1200

D
a

lv
ik

 H
e

a
p

 M
e

m
o

ry
 (

K
B

)

Time elapsed from the start (sec)

2 reqs/s 4 reqs/s 6 reqs/s 8 reqs/s

Figure 7.23. Dalvik Heap Memory during a 20 Minutes Long Test.

169

8. Context Data Distribution in Smart Cities Scenarios

Our SALES CDDI strives to effectively address the deployment of context-aware

services in large-scale scenarios. It employs novel solutions, mainly based on the joint

usage of heterogeneous wireless modes, cooperative context data repositories, and quality-

based constraints, to improve system scalability and reliability. However, when we have to

scale to very large deployments, such as the ones that we can find in smart cities scenarios,

the design of suitable CDDIs introduces additional challenging issues that have to be

properly addressed; amongst others, huge amounts of context data produced into the

system have to be processed according to context-aware service needs.

This chapter focuses on the realization of large-scale context-aware systems, and

introduces both fundamental issues and main directions in this research area. We extend

our distributed architecture to include Cloud computing solutions, in charge of storing and

processing the context data produced into the mobile system. We remark that this chapter

does not share the common structure of the previous two ones; in particular, here we leave

out the already discussed and well detailed issues related to context data distribution and

management in mobile environments, in order to have more space for an in-depth

discussion about Cloud computing and the advantages associated to their usage in smart

cities scenarios.

The rest of this chapter is organized as follows. In Section 8.1, we detail the usage of

Cloud computing solutions for CDDIs. In Section 8.2, we present the main challenges and

management issues introduced by Cloud computing architectures. Then, since Cloud

architectures need complex management infrastructures to efficiently deal with modern

data center, in Section 8.3 we detail our Cloud management infrastructure, by presenting

the core Virtual Machine (VM) placement problem. Finally, Section 8.4 presents an in-

depth discussion about our original contributions, concerning network-aware VM

placement, by introducing a new optimization problem, as well as heuristics to solve it.

8.1. Cloud Computing in CDDI

Large-scale city-wide scenarios feature thousands of sensors that continuously push

new context data into the mobile system. State-of-the-art mobile devices are equipped with

several onboard sensors, such as camera, GPS, and accelerometers, that continuously

produce new data useful to characterize the current situation. In the smart city vision,

170

physical environments will be also equipped with sensors, e.g., temperature/humidity

sensors and cameras, feeding new information directly into the fixed infrastructure.

Consequently, to efficiently manage the storage and the processing of such large amounts

of context data, we decided to adopt Cloud computing solutions [39, 47, 100].

Cloud solutions allow the rapid provisioning of scalable and reliable services, by

means of distributed and virtualized hardware/software resources. The intrinsic scalability

of such architectures, coupled with the possibility of provisioning computing resources

only when required, makes them very suitable to store and process data coming from

large-scale mobile systems. Modern Cloud solutions also exploit multiple data centers

spread all over the world, thus enabling the dynamic provisioning of computing resources

close to particular physical locations. Hence, they offer the computing power useful to

realize new compelling context-aware scenarios in large-scale mobile settings, with the

possibility of provisioning such resources closer to the point-of-attachments of the

wireless infrastructures.

In our vision, the CDDI dynamically asks for computing resources to the Cloud,

releasing them when no longer needed. The dynamic scaling of resources lets the CDDI

require new computing resources when the context data to be processed increase; in fact,

several conditions, such as time of the day and scheduled events (e.g., workshops and

conferences), result in large fluctuations of the amount of context data pushed into the

system. At the same time, the CDDI can dynamically reallocate computing resources

between different services, for instance, to favour the processing of time critical data, and

can automatically control the Cloud deployment to both release resources and possibly

turn off not required physical servers, so as to eventually reduce the power consumption

and the operational costs of the data center. All these interesting properties enable the

rapid and efficient provisioning of context-aware services.

Although such vision is appealing as the CDDI can exploit the Cloud to effectively

address context data storage and processing, Cloud solutions require complex management

infrastructures to enable the dynamic and rapid provisioning of computing resources. The

CDDI has to be aware of the increased complexities introduced by Cloud management, by

carefully driving the reconfigurations associated with resource provisioning. Hence, in this

chapter, we will focus on Cloud management aspects, with the main goal of highlighting

how the CDDI should constraint and drive runtime Cloud reconfigurations.

171

8.2. Main Issues & Challenges

Cloud management is still a challenging task due to the novelty of models,

technologies, and tools [122]. Currently, many industrial efforts have realized specific

implementations capable of providing primitive Service Level Agreements (SLAs), such

as number of CPUs, memory, and disk space allocated to each VM. Unfortunately, more

advanced management operations, such as dynamic and automatic service scaling and

reconfiguration facilities, useful to match the highly variable resource demands of large-

scale context-aware services are still quite missing.

In general, Cloud solutions exploit virtualization techniques for the sake of VM

consolidation, namely the provisioning of multiple VMs on the same physical host. A

Cloud management infrastructure with the goal of VM consolidation must implement a

proper placement function to detail final VM-to-host mappings. Since VMs will host real

services used to process context data, VM placement is fundamental and can greatly affect

the performance of executed services. Similarly, the dynamic scaling of such services is

not straightforward, and can require tight interactions between the service and the Cloud

management levels. Finally, it must be noted that, similarly to what happened in the

SALES scenario, the transfer of important context data from the mobile to the fixed

infrastructure, and vice versa, is an important issue due to tight bandwidth limitations of

traditional fixed wireless infrastructures. Accordingly, in Section 8.2.1 and Section 8.2.2,

we will detail the fundamental issues that have to be addressed in applying Cloud

computing solutions to CDDIs.

8.2.1. Management Issues of the Cloud

A first and foremost Cloud management issue is to decide the placement of each VM

in the data center, including decisions about co-locating more VMs on the same physical

host. More formally, given a set of physical hosts equipped with finite resources and a set

of VMs with resource requirements, the Cloud placement function has to find proper VM-

to-host mappings that optimize a particular cost function. VM placement usually deals

with conflicting goals, combined through different weighting factors according to how the

Cloud provider ranks them; for instance, common cost functions minimize the number of

turned on physical hosts, so as to reduce the operational costs of the data center, while

keeping spare capacities to prevent frequent resource shortages. The Cloud placement

function has to also consider multiple resource constraints, coming from limitations of

physical hosts, to avoid placement solutions that would violate user SLAs. Hence, a

172

placement function must address two main directions: 1) an objective function, to rate how

good a VM placement solution is; and 2) resource constraints, to avoid unfeasible VM

consolidation solutions.

Starting with the objective function, Cloud providers usually tend to consolidate VMs

on as few physical hosts as possible to reduce the power consumption of the data center,

so to finally increase their economical revenue. Other different and heterogeneous goals

can be defined. Load balancing between physical hosts is important to prevent that

overload situations can easily lead to resource shortage; in addition, for the sake of

reliability, a Cloud provider can introduce anti co-location goals, detailing sets of VMs

that should not be placed on the same physical host, to prevent that a single host failure

affects the availability of whole running services. With a slightly different perspective,

when Cloud solutions are used to support CDDIs in mobile scenarios, we need VM

placement solutions that allow the easy provisioning of additional computational

resources, with no need of VM relocations, namely VM migrations useful to free resources

in order to accommodate incoming requests.

Then, the Cloud placement function has to model and enforce resource constraints to

reach meaningful solutions. Physical hosts have limited CPU, memory, and I/O capacities

that have to be carefully considered to avoid low performance and resource saturation. In

general, resource constraints are expressed with a host-level granularity; however,

additional and more complex constraints can be associated with the whole data center. For

instance, from a networking viewpoint, both the network topology of the data center and

the adopted routing schema greatly affect the real bandwidth available between physical

hosts [123]; that complicates the placement problem since a particular solution, even if

feasible from a host-level perspective, can result in link saturations. In addition, network

traffic between co-located VMs is carried out locally, by means of in-memory message

passing mechanisms; on the one side, this saves precious network resources but, on the

other one, it increases CPU and memory overhead, with final runtime effects difficult to

estimate and dependent on both hypervisors and device drivers. Since context data

processing services usually introduce high network traffic, the Cloud placement function

has to carefully consider such increased CPU/memory overhead to prevent physical host

saturation.

Finally, placement optimization is based on the assumption that VMs present

repeatable patterns on particular time scales, e.g., time of the day, period of the year, and

so on. Hence, a pre-filtering phase is usually introduced to select an important, though

173

reduced, subset of VMs that present repeatable patterns along resource requirements. By

exploiting such property and historical data, the Cloud placement function can better

decide the VMs to consolidate, thus reducing the possibility of reaching unfeasible

placements due to time-varying resource requirements. We remark that, if we consider the

usage of Cloud architectures for context processing, such characteristic of predictability is

often valid: produced context data usually depend on the people gathered in a particular

physical place, and this is intrinsically associated with both the specific hour and the day

of the week.

Hence, although the adoption of Cloud computing architectures for CDDIs

complicates both the design and the deployment of such systems, we claim the feasibility

of such solutions to increase system scalability, while ensuring an effective and efficient

usage of the Cloud physical resources.

8.2.2. Bridging together the Mobile and the Fixed Infrastructure

Although the adoption of Cloud computing solutions presents clear advantages, the

real-world realization of such solutions has a fundamental issue, mainly related to the

transfer of the context data between the mobile and the fixed infrastructure. Context-aware

services need to exchange huge amounts of data, coming from sensors either deployed on

mobile nodes or on fixed infrastructures. All these data have to be transferred through

bandwidth-constrained wireless infrastructures, thus introducing a high traffic due to the

system scale.

Apart from our SALES CDDI [124], several academic works considered the

opportunistic usage of mobile devices as data carriers, so to distribute data to close devices

through ad-hoc links. Few works investigated cooperative content sharing services based

on the joint usage of infrastructure-based and ad-hoc communications [46, 125]; similarly,

hybrid architectures, such as the one adopted by HiCon [30], have been recently proposed

for cooperative context data distribution in large-scale mobile systems. Even if these

relevant efforts are now producing interesting results, we claim the need of more

sophisticated techniques capable of orchestrating the context data distribution into the

whole system.

Above all, it is worth remarking that, in city-wide scenarios, the usage of cellular

infrastructures for the continuous upload and download of context data would probably

lead to prohibitive network traffic and economical costs [41]. The context data distribution

has to be carried out principally by ad-hoc links between mobile devices. In addition,

174

differently from SALES scenario, here we need routing protocols that, in a delay tolerant

fashion [38, 126, 127], progressively transfer the context data close to specific collection

points, such as WiFi hotspots that allow not expensive data offloading. In other words,

while SALES focuses more on synchronous data retrieval operations, where context

queries are distributed to collect interesting context data as soon as possible, in this case

context distribution operations can present less tight deadlines, and we can exploit these

relaxed time constraints to better coordinate mobile nodes in the whole system.

Hence, an interesting research direction is the usage of Cloud architectures to process

important data associated with mobile nodes, e.g., mobility traces, context data associated

with device owner, and so forth, to effectively reconfigure the context distribution process

at runtime. Collected data about mobile devices can be processed into the Cloud, by

exploiting similar mechanisms to the ones adopted for context data processing. Then,

suitable reconfiguration commands can be sent to mobile devices to properly reconfigure

the context data distribution mechanisms.

8.3. Cloud Management Infrastructures

A Cloud management infrastructure is a complex software stack solution that requires

a deep understanding of several and heterogeneous aspects, spanning from monitoring

schema to virtualization technologies and networking architectures. Currently, several

commercial products already offer comprehensive management infrastructures, and some

of them, such as Amazon EC2 [128], offer primitive mechanisms to perform dynamic

resource provisioning and automatic service scaling into the Cloud data center. For the

sake of readability, we leave out detailed descriptions about general management

infrastructure for Cloud computing, and we focus only on the main phases useful to

understand the remainder of this chapter (see Figure 8.1).

First, the Cloud management infrastructure has to gather a wide set of indicators,

including VM load metrics, power consumption of physical hosts and network elements,

and so forth. Since data centers usually include physical elements belonging to different

vendors, it is important to integrate with and use different monitoring protocols. Second,

the Cloud management infrastructure has to decide the optimal VM placement solution.

This decision is very complex from a computational viewpoint, since it usually includes

the resolution of multi-criteria optimization problems with a large solution space, that can

be limited by user SLAs, host computational resources, power consumption, etc. Finally, if

a better VM placement is found, the Cloud management infrastructure has to dynamically

175

reconfigure the data center, by also detailing a suitable plan of VM relocation operations,

and by taking over hypervisor and network path reconfigurations.

To deal with such complexity, a Cloud management infrastructure usually adopts a

three-stage architecture: the first stage collects monitoring data from the Cloud; the second

one exploits collected data to calculate a new and more suitable VM placement, if

available; finally, if this is the case, the third stage calculates the VM relocation plan and

applies suggested changes to the Cloud data center. Hence, a Cloud management

infrastructure (see Figure 8.1) consists of a Monitoring Component, a Placement

Computation Manager, and a Placement Actuator, arranged in a pipeline where each stage

uses, as input, the output of the previous one. The Monitoring Component gathers both

system and service level information about used resources, and makes them available to

the next stage. The Placement Computation Manager exploits both monitoring information

and user SLAs to check whether a better VM placement exists; as showed in Figure 8.1, it

contains additional sub-modules to consider specific resource dimensions, such as

networking and power. Finally, if a better placement exists, the Placement Actuator takes

care of executing the VM migration plan and reconfiguration operations.

Between aforementioned components, our work primarily focused on the Placement

Computation Manager, namely the component in charge of detailing the single VM-to-

host associations. Between different aspects, we considered the introduction of network-

aware constraints and optimization goals into the VM placement problem; Section 8.4

presents our work in this research area.

8.4. Network-aware Placement

All the VMs hosted in the same Cloud data center intrinsically share network

Monitoring Component

Placement
Actuator

Placement Computation Manager

 Power Consumption

 Data Center Network

Cloud
Data Center

Figure 8.1. Logical Architecture of a Cloud Management Infrastructure.

176

resources. Even if Virtual LANs (VLANs) are usually adopted to create and separate

logical networks, mainly for security reasons, both network links and switching elements

are shared between all VMs. Hence, traffic demands of different Cloud customers interfere

among themselves, and this can lead to reduced service performance. In addition, both the

modeling and the introduction of network constraints are complex tasks to be addressed.

In the past years, different works considered network-aware VM placement for Cloud

data center. Network resource constraints are usually considered with a host-level

granularity, by enforcing that the aggregate traffic from/to a physical host is lower than the

maximum capacity of the network interface. However, this is a very simplistic assumption

since Cloud data center usually adopts complex hierarchical topologies where pairs of

hosts experience different time-varying bandwidth, depending on routing schema and

conflicting traffic. In [123], authors considered the problem of VM placement with the

goal of reducing the aggregate traffic into the data center. Since the proposed placement

problem is NP-hard, authors propose a new heuristic, based on clustering algorithms, to

solve real-world instances in reasonable time. While this work assumes that inter-VMs

traffic demands are static and well-defined, another important work consolidates together

VMs with uncorrelated traffic demands [129]: it introduces network constraints with a

host-level granularity, and places together VMs by ensuring that local network capacity is

violated with a probability lower than a specific threshold. Since traffic demands are

expressed through stochastic variables, the proposed VM placement problem is a

stochastic bin packing problem. Then, in [130], authors consider the placement of

applications made by a computation and a storage part, with the main goal of reducing

aggregated network traffic. However, similarly to [123], authors do not consider

constraints on single links, thus potentially leading to unfeasible placement solutions; in

addition, since traffic demands are only between the computation and the storage part of

each application, the resulting problem is not as hard as the one in [123]. Finally, in [131],

authors consider Cloud data centers with server and storage virtualization facilities, and

strive to increase load balancing at multiple layers, including servers, switches, and

storage. They propose a new placement algorithm that considers multiple resource

dimensions from these layers; since the proposed algorithm is a multi-dimensional

knapsack problem, it is largely inspired by the famous Toyoda method [132].

Although these are extremely valid works, we think that additional research has to be

done in this area. First, Cloud data centers feature non-trivial network topologies that

connect physical hosts through multiple paths for the sake of scalability and reliability

177

[133-135]. Second, since dynamic multi-path routing protocols are usually introduced to

exploit the full available bandwidth between hosts, traffic demands routed along particular

network paths change at runtime. Finally, Cloud data centers host heterogeneous services

that can lead to extremely different runtime traffic patterns, with a high variability due to

either unpredicted request spikes or service-dependant operations, e.g., database

replication.

Consequently, to address these issues, we propose a new network-aware VM

placement problem, namely Min Cut Ratio-aware VM Placement (MCRVMP). MCRVMP

targets virtualized data centers and takes into account constraints on both local physical

resources (CPU and memory) and network related ones. As regards the latter, it considers

both complex network topologies and dynamic routing protocols, and exploits the notion

of network graph cuts to express associated constraints. Most important, starting from the

realistic assumption that inter-VMs traffic demands are time-varying, MCRVMP strives to

minimize the maximum load ratio over all the network cuts, so as to find VM placement

solutions that, by having spare capacity on each network cut, have higher probability of

absorbing unpredicted traffic variations.

In the following subsections, we present additional details about our network-aware

placement component. In Section 8.4.1, for the sake of clarity, we introduce common data

center network topologies. Then, in Section 8.4.2, we present our new network-aware VM

placement problem while, in Section 8.4.3, we detail our heuristics to solve it. Finally, in

Section 8.4.4, we introduce experimental results to support the technical soundness of our

MCRVMP proposal.

8.4.1. Data Center Network Topologies

Modern Cloud data centers feature heterogeneous services that can lead to very

different communication patters, from one-to-one to all-to-all traffic matrices. In addition,

network topology greatly affects the maximum achievable bandwidth with specific traffic

patterns. To accommodate this wide range of service requirements, a plethora of solutions

has been presented in the research literature for specific classes of services [133-136].

Broadly speaking, most of the network topologies for data centers share a three-tier

architecture [136]. The lowest access tier contains the real physical hosts that directly

connect to access switches. The intermediate aggregation tier contains aggregation

switches that connect together access switches, so to allow more localized network

communications among hosts. Finally, the highest core tier contains core switches that

178

connect aggregation switches; this tier also includes the gateways for the traffic with the

outside of the Cloud data center. Despite the multitude of proposals, we remark that three

main topologies are emerging as standard-de-facto solutions: Tree, Fat-tree, and VL2 (see

Figure 8.2).

Tree-based networks are appealing due to their simplicity of wiring and reduced costs

[136]. Unfortunately, such topologies suffer of very low reliability and scalability

bottlenecks. In fact, a single link failure completely disconnects the network in two sub-

trees. In addition, moving toward the tree root, such topologies are usually oversubscribed,

meaning that, in the worst case scenario, the aggregate traffic coming from one side of the

tree cannot be transferred to the other one due to limited link bandwidth. We also recall

that tree-based topologies are usually the result of adopted routing protocols; in fact, even

if the physical network topology is a graph, the usage of both VLANs and spanning tree

routing algorithms leads to tree-like logical networks.

Fat-tree is a three-tier topology extensively based on bipartite graphs. Basic building

block of this topology is the so-called pod (see dotted areas in Figure 8.2), namely a

collection of access and aggregation switches connected in a complete bipartite graph.

Each pod is connected to all the core switches, but links are evenly spread between the

aggregation switches contained into the same pod; hence, this leads to a new (not

complete) bipartite graph between aggregation and core switches. Fat-tree topology

assumes that all the switches have the same number of ports, and this greatly limits

topology scaling. If N is the number of port per switch (Figure 8.2 shows an example

topology for N equal to 4), the resulting Fat-tree has N pods, each one containing N
ଶ

aggregation switches and N
ଶ
 access switches. Each pod connects to N

మ

ସ
 servers and to N

మ

ସ
 core

switches. The main advantage of this topology is the availability of multiple paths between

each pair of hosts: in fact, N
మ

ସ
 disjoint paths can be used to route the traffic between two

physical hosts; unfortunately, Fat-trees are extremely expensive due to the very high

Tree Fat-tree VL2

Figure 8.2. Common Data Center Network Topologies.

179

number of switching elements and links.

Finally, VL2 is also a three-tier architecture sharing important similarities with Fat-

tree [133]. Main difference is that VL2 adopts a complete bipartite graph between core and

aggregation switches, and not between aggregation and access switches. VL2 exploits a

new routing schema, called Valiant Load Balancing, that forces packets received at the

access switches to be forwarded up to the core layer. Hence, even if two hosts are

connected to different access switches that, in their turn, connect to the same aggregation

switch, packets between them are always forwarded first to a randomly selected core

switch, and then back to the real destination. This routing schema is based on the fact that,

if traffic patterns are unpredictable, the best load balancing between available links is

obtained by randomly selecting a core switch as intermediate destination [133].

Our MCRVMP strives to minimize the maximum cut load ratio, in order to potentially

support time-varying traffic demands with reduced packet droppings and no additional

VM relocations. General network graphs can present an exponential number of cuts, but

several of them are not useful in MCRVMP problem formulation. Above all, we are

interested in network cuts that partition the set of hosts in two non-empty and connected

subsets, as they are bottlenecks for the traffic demands between VMs placed on different

sides of the cut. In the remainder, we call them critical cuts; a critical cut with a load ratio

close to 1 implies that all the traffic demands carried through it have a little degree of

variability before leading to dropped packets.

Starting from simple tree-based networks, we have a critical cut for each network link.

The removal of one link partitions the network and leads to two different and connected

subsets of hosts. Hence, associated MCRVMP constraints can be easily expressed. Instead,

both Fat-tree and VL2 topologies present several bipartite graphs that lead to a higher

number of network cuts, thus making the cuts analysis more complex. However, as better

explained in the following, in the case of MCRVMP, we can reduce Fat-tree and VL2

topologies into equivalent tree networks. Now, we give the main guidelines behind our

topology transformations; we decided to omit additional algorithm details as they can be

easily derived.

Let us focus on the Fat-tree topology in Figure 8.3 (a). The Fat-tree contains

homogeneous links with equal capacity C. For each pod, under the assumption of dynamic

routing, we can study only a limited number of cuts: in particular, for each access switch,

we can define a network cut (see NC1 and NC2) containing all the uplinks toward the

aggregation tier; then, we can define an additional cut (see NC3) by removing all the

2

180

uplinks going out of the pod. By iterating these rules on all the pods, we can find the

important network cuts for a Fat-tree topology (see Figure 8.3 (a)). In other words, we can

transform all the switches in the boxes highlighted in Figure 8.3 (b) with virtual switches,

one for each box; then, all the links crossed by a network cut can be represented by a

virtual link with equivalent capacity. Hence, the Fat-tree topology of Figure 8.3 (a) can be

transformed into the equivalent tree of Figure 8.3 (c). Similarly, for a VL2 topology, we

introduce a cut for each access switch by removing all the uplinks. Then, depending on the

actual wiring, we identify bipartite graphs of access and aggregation switches: for each

one of them, we introduce an additional cut containing all the links between it and the core

tier. Of course, for both Fat-tree and VL2 topologies, we consider the network cuts

associated with the links between physical hosts and access switches (not showed in

Figure 8.3 for the sake of readability).

Once the critical network cuts have been identified, each one of them can be replaced,

for the sake of MCRVMP, by a single link with equivalent capacity. Applying this

transformation to the highlighted network cuts in Figure 8.3 exemplifies how Fat-tree and

VL2 topologies can be reduced to an equivalent tree. After, MCRVMP is solved on the

equivalent tree: focusing on the critical cuts, both the obtained placement solution and the

network cut values apply for the initial network topology. Thanks to this property, in the

remainder we consider only tree-based networks, and all the presented heuristics apply

also to Fat-tree and VL2 topologies.

8.4.2. MCRVMP Problem Formulation

MCRVMP considers that traffic demands are usually time-varying since several

factors, i.e., specific time-of-the-day, periodic tasks, etc., can deeply affect real network

traffic demands. Hence, it tries to find placement solutions resilient to traffic variations in

Figure 8.3. Fat-tree and VL2 Transformation in Equivalent Tree.

Fat-tree Equivalent Tree

NC2

NC3

(a) (b) (c)

4C

2C 2C 2C

4C

NC1 2C

181

deployed services, by minimizing the maximum load ratio over all the network cuts. In a

more formal way, MCRVMP finds a VM-to-host placement that, while respecting resource

constraints on host CPU, host memory, and network cuts, minimizes the maximum network

cut load.

In finer details, MCRVMP regards the placement of VMs on physical hosts belonging

to a virtualized data center. We consider a set of n host H={hi}i=1,…,n and a set of m VMs

={vmj}j=1,…,m. Each host hi is described by resource capacities ۃCPUCAP,MEMCAPۄ, while

each VM vmj has resource requirements ۃCPUREQ,MEMREQۄ. We use a traffic matrix T to

represent the average traffic rate between each pair of VMs; the element tij is the traffic

rate from vmi to vmj. Finally, X is an m×n matrix of binary variables used to represent

placement information; hence, the element xij is 1 if vmi is placed on host hj, 0 otherwise.

The data center network topology is a tree (in case of Fat-tree or VL2, graph

transformations presented in Section 8.4.1 are applied first). Hence, any critical network

cut contains only one link, and has a total capacity equal to the capacity of the single

contained link. Moreover, each network cut partitions the set of hosts H in two disjoint

subsets, H1 and H2; for the sake of clarity, H1 always contains the hosts of the sub-tree

originating from the link endpoint farther from the original tree root. In a valid placement

solution, the aggregate traffic flowing from VMs placed in H1 to VMs placed in H2 must

be lower than the cut capacity (the same applies to the traffic from H2 to H1). Finally, a

Cut Load Ratio (CLR) vector contains all the cut load ratio values. For each cut, CLR has

two elements: the first one is the ratio between the traffic flowing from H1 to H2 divided

by the cut capacity; the second one is similar, but considers the traffic flowing from H2 to

H1. Hence, CLR size is two times the total number of cuts: the entries for H1 to H2-traffic

are stored in the first half of the vector and all the others in the second part.

To express critical network cuts, we introduce a cut matrix C where each row

represents a network cut and each column a host; the element cdi is 1 if hi belongs to H1

when the dth cut is considered. Hence, C matrix represents topology information, and has

to be generated off-line by computing all the critical network cuts. This step is simple for a

tree topology: it only requires to remove one link each time and to express the C row

associated with the two host partitions H1 and H2. For instance, Figure 8.4 shows the cut

matrix C associated with a simple binary tree (the cuts associated with host-to-access

switch links are not shown for the sake of readability); the label of each row represents the

link contained into the network cut, namely the link removed to generate the associated

182

cut. By using the cut matrix C, the total traffic rate from H1 to H2 (respectively, from H2 to

H1) over the dth cut is the dth-element of the diagonal of the matrix [C × XT × T × X × (1-

C)T] (respectively, [(1-C) × XT × T × X × CT]). This accounts only for the traffic between

VMs; the traffic from/to the gateway, situated at the tree root, is also added according to

the VMs placed in H1 (not shown in the following model for the sake of readability).

Hence, MCRVMP is formally expressed through the following integer quadratic

programming model:

min ൬ max
ୡ אଵ…ଶ ൈ Nౙ౫౪

CLRୡ൰ ሺ8.1ሻ

vm୧. CPUREQ ൈ x୧୨ h୨. CPUCAP j
୧

 ሺ8.2ሻ

vm୧.MEMREQ ൈ x୧୨ h୨.MEMCAP j
୧

ሺ8.3ሻ

CLRୡ ൌ

ە
ۖ
۔

ۖ
ۓ
ሾC ൈ XT ൈ T ൈ X ൈ ሺ1 െ CሻTሿୡୡ

CAPୡ
, c א ሼ1, … , NCUTሽ

ሾሺ1 െ Cሻ ൈ XT ൈ T ൈ X ൈ CTሿୡୡ
CAPୡ

c , א ሼNCUT 1,… , 2 ൈ NCUTሽ

ሺ8.4ሻ

CLRୡ c 1 א ሼ1, … , 2 ൈ NCUTሽ ሺ8.5ሻ

x୧୨ ൌ i 1
୨

 ሺ8.6ሻ

x୧୨ א ሼ0, 1ሽ i, j ሺ8.7ሻ

Formulas (8.2) and (8.3) enforce CPU and memory capacities at each single host.

Formulas (8.4) express the aggregate traffic flowing on each network cut. Formulas (8.5)

enforce feasible solutions from the network point-of-view. Formulas (8.6) avoid the same

VM to be placed on different hosts, while formulas (8.7) define xij as binary variables.

Formula (8.1) expresses MCRVMP goal, namely to minimize the maximum cut load ratio.

Finally, we remark that the MCRVMP problem formulation presented here is not

meant to be applied on-line, namely to serve new VM requests in a data center that already

l9

l0 l1

l3 l2 l5 l4

l13 l12 l11 l10 l8 l6

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

C =

l7

l0

l1

l2

l3

l4

l5

h0 h1 h2 h3 h4 h5 h6 h7

h0 h1 h2 h3 h4 h5 h6 h7

Figure 8.4. Cut Matrix C for a Simple Binary Tree.

183

contains placed VMs. In fact, here we focus on finding the optimal MCRVMP solution,

while leaving out VM relocation costs; those have to be considered in on-line formulations

of our optimization problem, in order to prevent frequent and expensive VM migration

operations.

8.4.3. Solving MCRVMP

MCRVMP is an NP-hard problem that can be optimally solved only for very small

and unrealistic problem instances. Hence, to make it suitable for real-world Cloud

scenarios, we designed two placement algorithms, called 2-Phase Connected Component-

based Recursive Split (2PCCRS) and Greedy Heuristic (GH), with different tradeoffs

between solution quality and execution time.

Both our placement algorithms take advantage of the fact that Cloud scenarios feature

Connected Components (CCs) of VMs that exchange data only between themselves or

with the external gateway, such as the case where multiple VMs of the same customer run

a three-tier web application. Hence, it is reasonable to cluster VMs in CCs so that, by

considering a CC as a single VM to be placed, we can reduce problem complexity. In

addition, as tree networks suggest the use of recursive algorithms where intermediate

placement sub-problems partially fix VM-to-host assignments, 2PCCRS uses this property

to further reduce the solution space; this leads to a reduced applicability since 2PCCRS

can be applied only if the network topology is (or can be transformed into) a tree. In the

following subsections, we clearly detail our two placement algorithms.

8.4.3.1. 2PCCRS Placement Algorithm
Our first placement algorithm, 2PCCRS, uses mathematical programming techniques

to solve the MCRVMP problem, and has two main properties. First, it adopts a two-phase

approach: the first phase places CCs to sub-trees, while the second phase expands them to

place actual VMs on physical hosts. Second, it is recursive: in both phases, it exploits the

tree network structure to define and solve smaller problem instances on one-level trees.

That allows 2PCCRS to deal with MCRVMP complexity, by reducing the number of

VMs, hosts, and network cuts at each placement step.

With a closer view to algorithm details, the first phase places CCs to force associated

VMs to be mapped in specific sub-trees. 2PCCRS processes the matrix T to cluster VMs

in CCs, stored into the set CC={ccd}d=1,…,t. Each ccd is associated with a resource

requirement vector ۃCPUTOT, MEMTOT, INTOT, OUTTOTۄ that expresses aggregated CPU

and memory requirements, and total download/upload traffic from/to the gateway. Since

184

CCs do not exchange traffic among them, during this phase we have to only model traffic

demands between each CC and the gateway. According to the recursive approach,

2PCCRS starts from the tree root, and solves an initial placement problem on a one-level

tree by considering a set of virtual hosts VH={vhz}z=1,…,q, one for each child node the real

tree root has. Each virtual host represents the total capacity available in the sub-tree rooted

at the real node, hence, associated resource capacities are equal to the sum of all child

nodes capacities. Every time a one-level placement problem is solved, the set of CCs is

partitioned among available virtual hosts. Then, 2PCCRS recursively solves sub-problems

associated with the one-level trees where {vhz}z=1,…,q are roots, and this process repeats

until we solve all the placement sub-problems associated with real access switches. At the

end of this phase, we have CCs placed on particular node of the initial topology; in the

second phase, VMs of such CCs have to be placed in the sub-tree rooted at the specific

intermediate node.

For the sake of clarity, let us consider the simple example of Figure 8.5. We have a

full binary tree made by 8 hosts and a total of 16 VMs to place. From T processing,

2PCCRS identifies CC={cc0, cc1, cc2}, respectively containing 9, 5, and 2 VMs. 2PCCRS

starts by considering the sub-problem P1 (step a), and tries to place the CCs on the VHs.

Due to resource constraints, only cc1 and cc2 are placed; in addition, they are placed on

different virtual hosts to reduce the cut load ratio. Then, 2PCCRS solves both sub-problem

P2 and sub-problem P3, associated with the aggregation switches of the real topology.

However, cc1 is bigger than the capacity of considered VHs, hence, it is not moved from

the tree root of P2 (step b). Instead, cc2 can be placed in one VH, hence, it is pushed

toward one of the real access switches (step c). At this point, the first phase terminates by

supplying CC-to-network switch relationships; for instance, due to obtained results, all the

 P3

 P1

(a) (b) (c)

 P2

cc0, cc1, cc2 cc0

cc1 cc1 cc2 cc2

cc0

h0 h1 h2 h3 h4 h5 h6 h7 h0 h1 h2 h3 h4 h5 h6 h7 h0 h1 h2 h3 h4 h5 h6 h7

Figure 8.5. 2PCCRS Placement Computation Example – First Phase.

185

VMs belonging to cc2 will be placed between h6 and h7.

Once clarified this general process, we note that the placement problems solved by

2PCCRS during the first phase differ from MCRVMP as detailed in Section 8.4.2. In fact,

due to resource constraints, it could be impossible to place all the involved CCs at each

step: hence, ∑ xୢ ൌ d 1 has to be relaxed in ∑ xୢ d 1 to have feasible results.

However, such relaxation is not useful since the solution with all the CCs not placed is

feasible and ensures the minimum worst case cut load ratio, namely 0. Hence, we associate

each ccd with a penalty traffic equal to the average inter-VM traffic demand between

contained ones. If a ccd is not placed, we add its penalty traffic, as well as its traffic

to/from the gateway, to all network cuts; in this way, if possible, a ccd will be always

placed to reduce the maximum cut load ratio. More formally, the placement sub-problem

solved at each step is represented by the following integer linear mathematical model

(formula (8.8)-(8.17)):

min ൬ max
ୡ אଵ…ଶ ൈ Nౙ౫౪

CLRୡ൰ ሺ8.8ሻ

ccୢ. CPUTOT ൈ xୢ vh. CPUCAP z
ୢ

 ሺ8.9ሻ

ccୢ.MEMTOT ൈ xୢ vh.MEMCAP z
ୢ

ሺ8.10ሻ

isCCPlacedୢ ൌxୢ d

 ሺ8.11ሻ

penaltyT ൌ ሺ1 െ isCCPlacedୢሻ
ୢ

 ൈ ccୢ. penaltyTraffic ሺ8.12ሻ

isBelowCutୢୡ ൌ xୢ
 ୧୬ Hభሺୡሻ

,d c ሺ8.13ሻ

CLRୡ

ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
∑ ሾccୢ. INTOT ൈ ሺ1 െ isCCPlacedୢ isBelowCutୢୡሻሿୢ penaltyT

CAPୡ

c , א ሼ1, … , NCUTሽ

∑ ሾccୢ. OUTTOT ൈ ሺ1 െ isCCPlacedୢ isBelowCutୢୡሻሿୢ penaltyT
CAPୡ

c , א ሼNCUT 1,… , 2 ൈ NCUTሽ

ሺ8.14ሻ

CLRୡ c 1 א ሼ1, … , 2 ൈ NCUTሽ ሺ8.15ሻ

xୢ d 1

 ሺ8.16ሻ

xୢ א ሼ0, 1ሽ d, z ሺ8.17ሻ

In the second phase, 2PCCRS splits CCs to place real VMs. This phase adopts a

recursive approach similar to the one of the previous phase, but it solves real MCRVMP

186

problem instances. At each step, it considers all the VMs associated with CCs that have

been placed during the first phase in the considered tree root. VH capacities are adjusted

according to the CCs placed in the sub-tree rooted at the current vhz; this means 1)

subtracting the aggregate CPU and memory requirements associated with placed CCs; and

2) adding traffic demands to/from the gateway to consider the aggregate traffic demands

coming from placed CCs. In all the subsequent steps, each sub-problem considers a set of

VMs made by both VMs inherited from the father node and VMs belonging to CCs placed

at the current vhz during the first 2PCCRS phase. By following a recursive approach,

2PCCRS keeps solving intermediate sub-problems up to the leaves, where we finally have

VM-to-host associations.

For the sake of clarity, Figure 8.6 presents an example of the second 2PCCRS phase,

consequence of the initial placement performed in Figure 8.5. At the first placement sub-

problem P1 (step a), 2PCCRS has to place all the VMs associated with cc0, previously

associated with the tree root. It considers that cc1 and cc2 are placed in sub-trees,

respectively rooted at the first and at the second aggregation switch, by 1) subtracting their

aggregate resource consumptions from VH capacities; and 2) by adding traffic demands

to/from the gateway, so to mimic the real traffic introduced by cc1 and cc2. Due to resource

constraints, 3 VMs, namely vm0, vm1, and vm2, are placed on vh1, while the remaining

ones on vh2. At the second sub-problem P2 (step (b)), 2PCCRS has to place a set of VMs

equal to the union of VMs coming from P1, namely {vm0, vm1, vm2}, and associated with

cc1, placed during the first step; hence, P2 will place {vm0, vm1, vm2, vm9, vm10, vm11,

vm12, vm13}. A similar reasoning is applied to solve all the sub-problems rooted at the

other network switches; at the end, the placement sub-problems associated with the access

switches will give the VM-to-host associations.

Focusing on 2PCCRS complexity, there are few important things to highlight. First,

(a)

h0 h1 h2 h3 h4 h5 h6 h7

 P1 vm0, vm1, vm2, vm3, vm4,
vm5, vm6, vm7, vm8

cc1

cc2

h0 h1 h2 h3 h4 h5 h6 h7

 P2vm0, vm1, vm2, vm9, vm10,
vm11, vm12, vm13

cc2

(b)

Figure 8.6. 2PCCRS Placement Computation Example – Second Phase.

187

since CCs do not have traffic demands between themselves, the placement sub-problems

of the first phase are integer linear (not quadratic) programming problems; also, the

number of CCs is usually much smaller than the one of VMs. Second, thanks to the first

phase, the second phase of 2PCCRS usually has to solve small problem instances. For

instance, if we consider the placement sub-problem associated with the tree root, 2PCCRS

does not initially consider all the VMs associated with CCs that, during the first phase,

have been placed in VHs rooted at aggregation and access switches.

8.4.3.2. GH Placement Algorithm
Our second placement algorithm, GH, completely leaves out mathematical

programming techniques and greedily places VMs on available hosts. Differently from

2PCCRS, where intermediate sub-problems fix VMs to be placed in sub-trees, GH places

each VM individually, thus having more freedom during placement computation. In brief,

GH consists of two main phases: the first one ranks all the traffic demands, while the

second one exploits them to place VMs on available hosts.

Let us anticipate some notations that we use in the remainder. Since VMs are

iteratively placed, it is possible that a placed VM has traffic demands from/to VMs not

placed yet. A traffic demand of such kind is called floating in respect of all network cuts,

since we cannot establish a-priori which cuts it will influence. If a traffic demand has both

end-points placed, we define it committed because it is possible to clearly understand

which cuts it affects. Finally, during placement computation, a traffic demand is

committed by a VM-to-host placement if its status changes from floating to committed due

to current placement operation.

In the first phase, GH extracts the CCs out of the traffic matrix T. After, it ranks them

to find the ones more difficult to split from the point of view of MCRVMP objective

function. Toward this goal, it orders all the traffic demands by decreasing values, and

associates each ccd with an accumulator whose value is the sum of the relative positions

occupied by the traffic demands belonging to ccd in the ranked list. Intuitively, the higher

the accumulator value, the higher the number of big flows contained into ccd, hence, the

bigger the variations of the cut load values during ccd splitting will be. Finally, GH orders

CCs by decreasing accumulator values, and then, following this order, extracts the traffic

demands; for each CC, demands are considered in decreasing order.

In the second phase, GH iteratively processes the ranked traffic demands. For each

traffic demand, it initially selects the VM to place. If both the VMs involved in the traffic

demand have been already placed, it skips to the next demand; if only one of them has

188

been placed, it considers the remaining one; finally, if both VMs are not placed yet, it

considers the one that, after the current placement operation, would commit the higher

number of demands. Then, GH filters all the hosts to consider only the ones having

enough resource capacities to accommodate the current VM. It iteratively tries to place the

VM on each feasible host, while evaluating all the network cut values. At the end, the VM

is placed on the host that will lead to the minimum value of the maximum cut load value.

GH iterates above steps until all the VMs are placed.

However, the evaluation of network cut load values is possible only after a full VM

placement has been determined, and not while the placement is ongoing; in fact, once

committed, floating demands can greatly affect network cut load values. To approximate

final cut load values in an ongoing manner, we merge floating and committed traffic

demands. Let us focus on a particular network cut within a partial placement: in the best

case, all the floating traffic demands will be routed to hosts belonging to the same

partition, thus leading to a final total traffic over the cut equal to the already committed

demands; instead, in the worst case, all the floating traffic demands will be routed to hosts

belonging to the other partition, thus leading to a final traffic equal to the sum of

committed and floating demands. The latter situation is likely to happen when the floating

traffic demands originate from a partition with residual capacities close to zero; in fact, in

that case, subsequent VMs would be likely placed on the opposite partition, thus routing

floating traffic demands over the cut.

Hence, during ongoing VM placement, we estimate the final traffic over the network

cut as a weighted sum of committed and floating demands. We differentiate traffic

demands flowing from one partition to the other, and vice versa. For each direction, the

aggregate traffic routed in the partial placement contains committed flows, with weighting

factor 1 since they will surely appear in the final solution, and floating ones, with a

weighting factor proportional to the worst case ratio of residual capacities. Finally, the

obtained value, divided by the cut capacity, is the final cut load value considered by GH.

8.4.4. MCRVMP Experimental Results

We evaluated our placement algorithms along two main directions. First, in Section

8.4.4.1, we focus on MCRVMP-based placement computation by comparing random,

optimal, 2PCCRS, and GH solutions. Then, in Section 8.4.4.2, we validate the technical

soundness of proposed placement algorithms by NS2-based simulations: we generate

synthetic traffic demands and we show that obtained placement solutions are indeed able

189

to tolerate time-varying traffic demands.

8.4.4.1. Comparisons between Placement Algorithms
Here, we compare our two heuristics, 2PCCRS and GH, by focusing on placement

quality and solving time. To better assess our proposals, we consider two additional

algorithms. The first one, called Random (RND), randomly generates VM-to-host

assignments; it is useful to compare MCRVMP-based placements with a network-

oblivious one. The second one, called Optimal (OPT), uses a mixed integer programming

solver to solve the entire MCRVMP problem; hence, it finds the optimal solution, i.e., the

VM placement that minimizes the maximum cut load ratio. Due to the associated

complexity, experimental results for the OPT algorithm are available only for extremely

small problem instances.

All the following experimental results are associated with a data center made by a

pool of homogeneous hosts having the same capacity for CPU and memory resources. In

addition, all VMs have equal CPU and memory requirements; hence, due to capacity

constraints, each host in the pool can accommodate the same number of VMs. The data

center network is always a fully balanced tree with link capacity of 1 Gbps. We execute

our heuristics on a physical server with CPU Intel Core 2 Duo E7600 @ 3.06GHz and 4

GB RAM, and we exploit IBM ILOG CPLEX as mixed integer mathematical solver to

compute OPT solutions and solve the intermediate steps of 2PCCRS. ILOG is always

configured with pre-solve and parallel mode enabled; due to hardware limitations, it

exploits a maximum of 2 threads during solving. Finally, all the reported experimental

results are average values of 10 different executions; in addition, we report standard

deviation values to better assess the confidence of our results.

One crucial aspect is the modeling of the traffic matrix T. We have to produce CCs

but, at the same time, we need to test our heuristics with different T as the total number of

considered traffic demands greatly affects problem complexity. Hence, we generate T

taking into account three main parameters: 1) CCs size; 2) traffic patterns between VMs of

the same CC; and 3) rate of the traffic demand, in terms of Mbps. For the sake of

readability, we focused our evaluation on one challenging and realistic case study. For

CCs size, we consider them distributed according to a uniform distribution. Then, traffic

demands between VMs in the same CC are randomly generated with a probability lower

than 1, and with rate following a Gaussian distribution (mean = 5 Mbps, standard

deviation = 0.5 Mbps). Also, each CC has a VM with both upload and download traffic

demands to the gateway, with rates generated according to another Gaussian distribution

190

(mean = 2 Mbps, standard deviation = 0.2 Mbps).

In the first set of experiments, we focused on small problem instances in order to be

able to compare our heuristics with the OPT algorithm. The adopted network topology is a

three-level binary tree; 24 VMs have to be placed on 8 physical hosts, under different

traffic matrices. Here, we consider CC sizes according to a uniform distribution in [1; 8];

inter-VMs traffic demands are randomly generated with a probability in {0.5, 0.75}.

Figure 8.7 (a), Figure 8.7 (b), and Figure 8.7 (c) respectively show the maximum cut load

value, the average cut load, and the placement computation time. Focusing on the first

graph (see Figure 8.7 (a)), both 2PCRRS and GH reach maximum cut load values very

close to the OPT algorithm, while RND is the worst one as it does not consider traffic

demands. In Figure 8.7 (b), we note that, to minimize the maximum cut load ratio, OPT

produces an average link load higher than the ones produced by 2PCCRS or GH. Hence, at

the end, our heuristics usually carry less traffic into the data center than OPT, but they lead

to higher maximum cut load ratios. Finally, we evaluated placement computation time:

RND, 2PCCRS and GH have execution times close to zero for these little problem

instances; OPT, instead, as it can be seen in Figure 8.7 (c), presents extremely high

computation times. We also note that computation time increases as the number of

communicating pairs increases. Those times confirm that OPT is not feasible for real-

world Cloud scenarios; in addition, OPT exhibits placement computation times with very

high standard deviation values. Hence, for specific problem instances, namely the ones

with several small CCs, the solver is able to reach the optimal solution quickly, while

instances with dense traffic matrix T are extremely complex to solve. In brief, OPT

computation time is not only very long, but also difficult to predict.

In the second set of experiments, we focused on a wider network deployment by using

a fully balanced quaternary tree with 64 hosts. In this case, we increment the number of

VMs (from 2x to 20x the number of hosts), to compare heuristics scalability; as regards

traffic matrix, CC sizes follow a uniform distribution in [1; 16], while associated traffic

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,5 0,75

M
ax

im
u

m
C

u
t

L
o

ad
 R

at
io

Probability of communicating pair

RND OPT 2PCCRS GH

(a)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,5 0,75

A
ve

ra
g

e

C
u

t
L

o
ad

 R
at

io

Probability of communicating pair

RND OPT 2PCCRS GH

(b)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

0,5 0,75P
la

c
e

m
e

n
t

S
o

lv
in

g
 T

im
e

 (
s

e
c

s
)

Probability of communicating pair

OPT

(c)

Figure 8.7. Placement Algorithms Results for a Small Data Center of 8 Hosts.

191

pairs are generated with a probability of 0.75. Figure 8.8 (a), Figure 8.8 (b), and Figure

8.8 (c) respectively show the same set of results used in the previous case for this new

scenario. RND algorithm is not showed since it was able to reach feasible placements

(with maximum cut load ratios higher than 0.9) only for the simpler case of 128 VMs;

apart from that, it always reached unfeasible placements due to cut values higher than 1,

hence, we decided neither to consider nor to show these results. Focusing on Figure 8.8 (a)

and Figure 8.8 (b), we remark that 2PCCRS and GH reach similar results for smaller

number of VMs; then, starting from 640 VMs, 2PCCRS always performs significantly

better than GH. From Figure 8.8 (b), we note that 2PCCRS also favours lower average

link loads. Although 2PCCRS leads to better VM placement solutions, it has high

computation times. In Figure 8.8 (c), GH presents placement computation times that

increase almost linearly with the number of VMs (in the worst case, it computes the

placement in about 50 seconds). Instead, 2PCCRS computation time is higher due to the

usage of mathematical programming techniques With aforementioned numbers of VMs,

solving time increases remarkably, as each 2PCCRS placement step actually tries to find

the optimal solution; at the same time, the solver typically finds very good results in the

very first optimization steps, and then it only obtains limited improvements when run for

longer time spans. In our experiments, we limit maximum placement computation time to

1800 seconds because we found that this total solving time ensures a good tradeoff

between solution quality and placement computation time. Similarly to the previous

scenario, the execution times of the solver are not predictable and depend on the specific

problem instance; the case with 384 VMs was actually the one with longest solving time.

In the last set of experiments, we tried to evaluate the scalability of our heuristics as

the data center grows. We fixed a number of VMs per host equal to 10, and we scaled the

data center topology from 64 to 343 hosts by considering fully balanced trees; hence, we

considered from 640 to 3430 VMs. As regards traffic matrices, we used the same

0

0,1

0,2

0,3

0,4

0,5

M
a

x
im

u
m

C
u

t
L

o
ad

 R
at

io

Number of VMs

2PCCRS GH
(a)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

A
ve

ra
g

e

C
u

t
L

o
ad

 R
at

io

Number of VMs

2PCCRS GH
(b)

0
200
400
600
800

1000
1200
1400
1600
1800

P
la

c
e

m
e

n
t

S
o

lv
in

g
 T

im
e

 (
s

e
c

s
)

Number of VMs

2PCCRS GH
(c)

Figure 8.8. Placement Algorithms Results for a Data Center of 64 Hosts.

192

parameters of the previous experiments. Figure 8.9 (a) shows the maximum cut load

values achieved by our heuristics: we can see that 2PCCRS performs better than GH. In

addition, Figure 8.9 (b) shows the total placement computation times of the two heuristics.

While GH is faster than 2PCCRS for small data center sizes, it is much more sensible to

topology scaling; this is mainly due to the fact that, at each placement step, GH considers

all the hosts and all the network cuts. For instance, in the worst case, GH considers 343

hosts and 56 cuts at each VM to place; instead, at each one-level tree to solve, 2PCCRS

considers only 7 network cuts and 7 virtual hosts. Even if we limit the solving time to

1800 seconds, 2PCCRS can reach very good solutions.

 We conclude that both 2PCCRS and GH can reasonably solve MCRVMP with

different tradeoffs between solution quality and placement computation time. 2PCCRS

always reaches lower maximum cut load ratios, and scales better with topology size, while

GH is significantly faster for small data center topologies.

8.4.4.2. Placement Validation with NS2 Simulations
We used NS2 to better assess the resilience of MCRVMP-based placement solutions

under time-varying traffic demands. Due to space constraints, we focus on the case of 64

hosts and 128 VMs (see Figure 8.8). We selected that specific case since 2PCCRS and GH

have different maximum cut load ratios (see Figure 8.8 (a)), but similar average cut load

ratios (see Figure 8.8 (b)); in this way, we aim to find performance indicators that mainly

depend on the maximum cut load ratios. Then, for each placement solution, we remove

traffic demands between VMs co-located on the same host; each remaining demand is

mapped in NS2 through an UDP source/sink pair. For each placement solution, we run 10

simulations with different seeds, thus having a total of 100 runs for each case study; in the

remainder, we show average values and standard deviations of all the considered

simulations. Finally, each NS2 simulation lasts 3600 seconds.

Each source produces a constant traffic rate according to the demand contained in the

0

0,1

0,2

0,3

0,4

0,5

64 125 216 343

M
a

x
im

u
m

C
u

t
L

o
ad

 R
at

io

Number of hosts

2PCCRS GH
(a)

0

2000

4000

6000

8000

10000

64 125 216 343

P
la

c
e

m
e

n
t

S
o

lv
ig

n
 T

im
e

(s
ec

s)

Number of hosts

2PCCRS GH
(b)

Figure 8.9. Placement Algorithms Results for Different Data Center Sizes.

193

traffic matrix, by emitting UDP packets of 60KB each. Then, after DLOW seconds, the

source increases the traffic rate to R times the nominal value, and this increased demand

lasts for DHIGH seconds. This process repeats for the whole simulation, thus having normal

and high traffic rates interleaved by DLOW and DHIGH times. DLOW (respectively, DHIGH)

values are produced by a Gaussian distribution with mean of 200 seconds and standard

deviation of 20 seconds (respectively, 100 seconds and 10 seconds for DHIGH).

Figure 8.10 (a) and Figure 8.10 (b) respectively show the percentage of dropped

packets and the average packet delivery delay for R in {1, 3, 5, 7}. Both 2PCCRS- and

GH-based placements can absorb traffic demands up to three times the nominal values

with no dropped packets. When R is 5, GH-based placements start experiencing dropped

packets. In fact, from Figure 8.8 (a), we note that such solutions have a maximum cut load

ratio close to 0.3; hence, when R is 5, the worst case cut (and the ones with similar load

values) will be likely to be congested. Similarly, 2PCCRS-based placements experience

dropped packets when R is 7. Finally, Figure 8.10 (b) shows that 2PCCRS-based

placements have average packet delivery delays lower than GH-based ones, due to the less

loaded network cuts.

To conclude, statistically speaking and considering that average cut load ratios are

similar between 2PCCRS- and GH-based VM placements, performance improvements of

2PCCRS over GH are mainly consequence of the reduced maximum cut load ratio; hence,

MCRVMP-based placements increase the capability of absorbing time-varying traffic

demands.

0%

1%

2%

3%

1 3 5 7

P
er

ce
n

ta
g

e
o

f
D

ro
p

p
ed

 P
ac

ke
ts

 (
%

)

Ratio between high and low
traffic demands (R)

2PCCRS GH

(a)

0

2

4

6

8

10

1 3 5 7

A
ve

ra
g

e
 P

a
c

k
e

t
D

e
li

ve
ry

 D
e

la
y

(m
s

)

Ratio between high and low
traffic demands (R)

2PCCRS GH

(b)

Figure 8.10. Percentage of Dropped Packets (a), and Average Packet Delivery Delay (b)
in NS2 Simulations.

195

9. Essential Contributions

In the previous chapters, we presented our work on CDDIs for large-scale mobile

systems. Our case studies showed the applicability of our logical model in three different

and significant deployment scenarios; also, we thoroughly evaluated our proposed

solutions by means of both real deployments and network simulations. Let us anticipate, as

a first general conclusion, that CDDIs for mobile systems present a great deal of

complexity when both scalability and quality-based constraints need to be achieved, but

quality-based constraints can enable runtime system management to dynamically adapt

involved data distribution functions.

In this chapter, we remark and detail all main technical achievements and the future

research directions highlighted by this thesis. In Section 9.1, by exploiting the

experimental results showed in the previous chapters, we present a short summary of our

main findings. Then, in Section 9.2, we draw our current research work and we present

future research directions to the work presented in this dissertation.

9.1. Main Thesis Findings

CDDIs for mobile systems have to seamlessly integrate and interoperate with

heterogeneous networks and mobile devices, toward the correct delivery of the context

data into the mobile system. CDDIs complexity depends on both adopted network

deployment and quality levels to guarantee. Although context-aware services are

interesting from the industrial viewpoint, since they can attract more mobile users through

extended service offerings, at the current stage we can find only a rather limited diffusion

and we think this lack stems from the fact that clear models and definitions of CDDIs for

large-scale mobile systems are still missing. Hence, our main contributions can be of use

toward a better understanding of the area along the following directions.

Above all, we have analyzed the main mechanisms involved in CDDIs for mobile

systems, by detailing and presenting a comprehensive logical model with associated

design guidelines and choices. To better assess the technical soundness of our CDDI

logical model, we have considered a large set of pre-existing context provisioning

infrastructures in mobile systems; our survey work, to be published in the ACM

Computing Surveys journal [5], supports the validity of our logical model and draws

important tradeoffs between network deployments, context data distribution functions, and

196

quality constraints. We remark that, for the sake of readability, in this dissertation we have

omitted our in-depth categorization of pre-existing infrastructures for context distribution;

interested readers can refer to our survey work [5].

Then, we have focused on the real-world usage of our design guidelines by means of

three significant case studies (presented in Chapter 6, Chapter 7, and Chapter 8). We have

shown that the adaptation of the context data distribution function, properly guided and

constrained by quality contracts, is fundamental to foster system scalability. The first

RECOWER project focuses on important quality-based constraints and how to exploit

them toward the main goal of increasing the number of successfully routed data. Our work

has followed two principal research directions. In the first one (see Section 6.5.1), we have

investigated the usage of quality constraints to dynamically reconfigure context data

caching on mobile devices. Our approach, based on the introduction of differentiated

quality classes, can increase context data availability and average data up-to-dateness; at

the same time, it introduces an extremely contained management overhead, required to

exchange quality classes between mobile nodes in physical proximity. In the second one

(see Section 6.5.2), by using query/data routing delays, we have proposed an adaptive

query flooding protocol with the main goal of reducing context query replication into the

MANET. Our protocol, based on the exchange of lightweight management data, can

effectively reduce the number of distributed queries and message collisions, thus

increasing final context distribution reliability.

Instead, SALES considers the enforcement of our quality constraints in hybrid

network deployments, where a fixed infrastructure can be used to store and supply access

to context data. This second project exemplifies how the physical locality principle is

useful to partition the context data into the distributed architecture, toward the main goal

of keeping context data as close as possible to potentially interested consumers. In this

case, our work followed three main directions. In the first one (see Section 7.5.1), we have

considered the caching of relevant context data, in order to reduce the number of requests

relayed to the fixed infrastructure. We have proposed an adaptive caching approach that,

by considering access patterns and context data cached in physical surroundings, can

effectively reduce the total number of requests sent to the fixed infrastructure. In the

second one (see Section 7.5.2), we have extended the use of the routing delays to

introduce batching techniques, so as to reduce the total number of wireless channel

accesses. Our adaptive batching approach effectively reduces wireless contention, by only

requiring the exchange of small load indicators of wireless network interfaces,

197

piggybacked in node beacons. Finally, in our third direction (see Section 7.5.3), we have

considered that mobile devices present tight CPU limitations, and we have proposed an

adaptive query drop policy that dynamically enforces maximum CPU usage limitations.

The proposed adaptive query drop approach can quickly adapt to time-varying access

patterns, thus increasing final context data availability. We recall that SALES evaluations

have been also conducted through a real wireless testbed; at the same time, we have also

realized an Android-based implementation of our solutions, to account for routing delays

and management overhead introduced by real-world mobile devices.

Finally, we moved to large-scale settings where we adopted Cloud-based solutions to

handle the huge amounts of context data produced by mobile infrastructures. As the

CDDI can dynamically ask for additional computational resources, while releasing them

when no longer needed, we focused mainly on the management aspects of the Cloud

infrastructure. We have introduced a new network-aware VM placement problem (see

Section 8.4.2), as well as heuristics to solve real-world problem instances in reasonable

times. Our simulation results show that our placement solutions can effectively absorb

time-varying traffic demands, thus increasing the stability of the VM placement solution.

Finally, we remark that, although we focused more on Cloud management, as highlighted

also in the next section, we are pursuing new research directions that will include Cloud-

driven runtime adaptations of the distribution function.

With our real case studies, we have also tested the validity of our CDDI logical model

and design choices. Obtained experimental results have confirmed that our solutions and

design guidelines, such as joint exploitation of heterogeneous wireless standards and

modes at the network deployment, distributed data caching, and so forth, can effectively

increase system scalability under quality-based constraints. From the context data

management viewpoint, both data caching and replication mechanisms are useful to

exploit and enforce locality principles, with the main goal of avoiding heavy context data

exchange from/to the fixed infrastructure. All these mechanisms should use local (e.g.,

access frequencies) and distributed (e.g., number of copies in the physical area) attributes

to trade off context data availability with introduced overhead. Moreover, as showed

through our Android-based implementation, all such mechanisms have to be resource-

aware to prevent excessive overhead on resource-constrained mobile devices.

To conclude, in this thesis work we strived to reach a balance between CDDI

models/architectures/design choices and their own applicability in real-world settings. By

pursuing these directions together, we aimed to better support the validity of our

198

theoretical work, and to foster the widespread adoption of such data distribution

mechanisms in the research community. Let us remark that our CDDIs have been

downloaded by several research groups around the world; we hope that the availability of

such prototypes, coupled with the possibility of easily modifying our data distribution

protocols, can push toward more complete and systemic research works in this research

area. We feel that this dissertation can become a seed to nourish a fruitful development in

quality of context-aware system diffusion.

9.2. Future Research Directions

Although this work has focused on a selection of few and important research

directions, several other directions still deserve further investigation. Focusing on the

specific context distribution function, we think that several mechanisms needed in

distributed, scalable, and QoC-based CDDIs are still widely unexplored. Here, some

current principal research directions we intend to pursue are:

QoC Frameworks Definition - Although several research works already considered

QoC [3, 4, 7, 23-25, 124], the intrinsic ambiguity of this concept has not promoted a

general and widely accepted definition. To the best of our knowledge, general QoC

frameworks, capable of helping service designers to understand QoC representation,

sensing, and runtime usage, are still missing. Although some QoC parameters, e.g., data

up-to-dateness, can be easily applied to all context data, different context aspects may

require more complex efforts. Data-specific parameters are difficult to standardize, since

strictly related with represented context aspects; on the bright side, they can enable finer

and more useful adaptations. For instance, considering localization as part of physical

context, many solutions in literature, such as MiddleWhere [69], use a quality attribute

called resolution. Such attribute captures the expected maximum difference between real

and sensed localization data; as localization errors strictly depend on the adopted

localization technique, many solutions agree upon the usage of the maximum possible

error, ensured from the localization technology, to quantify resolution. However, for other

context aspects (computing, physical, time, and user), such a general agreement on data-

specific parameters is difficult to achieve. For instance, if we consider co-located users as

part of the user context, there is no widely accepted quality attribute useful to characterize

possible differences between real and sensed values. In addition, since different systems

can adopt different sensing strategies (e.g., based on APs associations, on received

beacons between devices, …) and different aggregation techniques (e.g., history-based,

199

probabilistic, ...) to estimate co-localized people, it is almost impossible to agree on a

single quality attribute, similarly to what happened for localization. Hence, while general

QoC parameters are available in literature, additional research is required to define data-

specific QoC parameters.

Context Data Aggregation and Filtering Operators - At the context data management

layer, two functions, namely aggregation and filtering, deserve also additional research

work. In our opinion, aggregation techniques currently lack of efficient methods to handle

QoC data attributes. Such attributes are fundamental to prevent the injection of erroneous

aggregated context data; at the same time, the design of aggregation algorithms, useful to

quantify QoC parameters of derived context data, is also challenging and, to the best of

our knowledge, not well investigated into the research literature. Hence, further studies

should aim at defining proper aggregation algorithms able to combine context data and

QoC parameters. Moving to filtering techniques, they are used to foster system scalability

by suppressing not important data transmissions. Of course, they affect perceived QoC

since, by limiting exchanged data, context-aware services have more chances to use stale

and invalid context information. Change-based techniques, namely those ones that

suppress data transmissions until the latest transmitted value bears some similarity

constraints with the current data value, are appealing as they ensure an upper bound to the

maximum error between current and received context data values. Also, when context data

assume predictable values, we can use filtering operators and history-based integration

techniques to let mobile devices locally estimate current context data values, thus avoiding

expensive context data transmissions. Although few research works have already tried to

address the problem of context data forecasting with the main goal of reducing network

data traffic, for instance, by exploiting Kalman filters forecasting [111], we think that

additional research is required to make such approaches able to scale to thousands of

sensors and mobile nodes. In fact, forecasting techniques usually introduce increased CPU

and memory overhead on resource-constrained mobile devices; hence, although valid

works already exist in literature, additional research should study the relationships

between QoC degradation and the cost of filtering techniques.

Adaptive Context Data Dissemination - As presented in both Section 4.4.2 and our

survey work [5], at the current stage several CDDI solutions exploit a context data

distribution schema that only relies on one specific approach, i.e., flooding-/selection-

/gossip-based. At the expense of more complex implementations, hybrid solutions, based

on the joint usage of different dissemination algorithms, can lead to increased runtime

200

performance. For instance, if we consider a network deployment that can rely on a fixed

wireless infrastructure, the CDDI can exploit 1) a selection-based approach to ensure

context access; and 2) a flooding-/gossip-based approach to replicate data, so as to reduce

context access time and distribution reliability. Instead, if the network deployment is a

MANET, the CDDI can use 1) a selection-based approach with tight physical constraints

(for instance, in the two-hops neighborhood) to disseminate only required data; and 2) a

gossip-based approach to enable context data visibility in far away areas. Above all,

flooding- and gossip-based dissemination algorithms are very promising. Even if flooding-

based schemas present scalability issues, they are suitable if flooding is constrained by

locality principles; in small-scale distribution, data flooding algorithms can address

distribution with high availability, null state on mobile nodes, and reduced response times.

Gossip-based approaches trade off scalability with delivery guarantees; the control of the

probabilistic nature of gossip-based protocols is an interesting research direction. As

regards this specific point, we remark that valid results have been obtained in the close

DTN research area. For instance, both HiBOp and Habit show that user social state and

relationships are good hints to drive gossip decisions [127, 137]; similarly, CAR

demonstrates that low-level time context information, namely inter-contact times and

frequencies of contacts, leads to good solutions as well [126]. Although these protocols are

extremely valid when applied to DTNs, we think that additional research is required to

apply them at the context data distribution function, where 1) communications are usually

from one producer to multiple consumers; and 2) the interests of the context data

consumers can present a high degree of variability due to mobility. Finally, toward the

main goal of adopting and adapting different dissemination algorithms at runtime,

additional research works should be directed toward the definition of meaningful attributes

useful to 1) drive the selection of the proper dissemination algorithms; and 2) adapt their

runtime behaviour to maximize system scalability.

Since above adaptive solutions can introduce heavy management overhead, to

elaborate mobility traces and context requests gathered from thousands of mobile nodes,

here we remark the significance of Cloud architectures as real enablers of such scenarios.

In fact, as detailed in Chapter 8, the CDDI can temporarily offload monitoring data from

mobile devices to a Cloud, while paying such computational resources on a pay-per-use

basis. The high computational power ensured by a Cloud will enable the processing of

such data in a reasonable time, thus allowing subsequent adaptations of context data

distribution protocols in order to improve systems scalability under quality constraints.

201

10. Conclusions

The widespread adoption of mobile devices and wireless communications is pushing

toward the realization of novel context-aware services characterized by the capability of

adapting at runtime according to current conditions. Several services require context-

aware capabilities to ensure correct service provisioning; such context information can

also span multiple aspects, ranging from local computational capabilities to social context

information.

Although we know that the research in electronic devices and wireless communication

is making giant steps, by proposing ever increasing powerful mobile devices and high-

bandwidth wireless networks, we think that the real-world realization of context-aware

services in large-scale settings is still an extremely complex task. Several factors,

including low-level wireless transmissions and bandwidth management, efficient context

data storage and processing, and so forth, have to be considered to support quality-based

context provisioning in large-scale settings. In addition, the heterogeneity of both mobile

devices and involved wireless communications, that exhibit largely different

computational power and bandwidth, further complicates the realization of portable

CDDIs. All these complexities must be faced by introducing quality-based and resource-

aware CDDI, namely CDDIs capable of granting agreed quality levels while avoid

excessive resource consumptions.

In this thesis, we have thoroughly investigated the design and the realization of

CDDIs for large-scale mobile systems. We have highlighted different design choices, by

considering associated advantages and shortcomings. One of our main claims is that the

CDDI has to be able to dynamically adapt to system scalability, while introducing and

enforcing quality constraints to enable correct context provisioning on mobile devices.

Finally, obtained experimental results have supported the technical soundness of our main

claims, while also highlighting further research directions to be investigated.

Considering the main outcomes of this thesis, all the software components of our

CDDIs have been implemented in both network simulations and real prototypes. The

usage of both these two implementation strategies has allowed to achieve a more complete

understanding of context data distribution primitives, since it enables to investigate both

the scalability in large-scale mobile systems and the overhead introduced on real-world

mobile devices. We recall that all the software components and prototypes developed

202

during this thesis work can be freely downloaded by the research community; this is a way

to foster the building of a research community spanning different research groups all

around the world, so as to promote additional and systemic research in this area.

In addition, this thesis work has been realized by mixing together both academic and

industrial research. On the one side, the design and the implementation of the RECOWER

CDDI has been largely carried out at the PARADISE Research Lab, SITE, University of

Ottawa, Canada, under the supervision of Prof. Azzedine Boukerche; on the other one, the

design and the implementation of Cloud-based solutions have been investigated during an

internship at the IBM Haifa Research Lab, Haifa, Israel, under the supervision of Dr. Ofer

Biran and Prof. Danny Raz. Due to those international collaborations, we have established

new important connections with external research groups, in order to foster joint

collaborations in this research area. In addition, by mixing together academic and

industrial research, we have better investigated the possibility of applying our academic

and more theoretical research in industrial applications.

The future research directions highlighted by this thesis are manifold. Apart from the

more theoretical ones, strictly related with the context data distribution function and

discussed in Section 9.2, additional work needs to be done toward the standardization of

proper APIs and communication protocols between mobile devices and CDDIs. In fact,

the introduction of a common set of communication APIs between CDDI and mobile

devices will let service developers focus only on high-level context data requests and

usage, while leaving out all the technicalities involved in context data storage, processing,

and distribution. At the end, that will build a common ground useful to ease the

development of context-aware services, thus fostering their widespread adoption in our

society.

In addition, we remark that several industrial efforts and EU funded initiatives, such

as IBM Smarter Cities initiative and EU FuturICT project, are currently investigating

efficient mechanisms and solutions to build context-aware services in large-scale mobile

systems. Such research efforts span the whole software stack of a context-aware system,

and present compelling context-aware services that not only sense and reason about the

current context situation, but also modify it through proper distributed actuation actions.

We think the results of this thesis work can be of extreme interest for all the industries

currently entering the area of middleware supports for smart environments, such as the

IBM Smarter Cities initiative, since this dissertation largely treated the specific context

data distribution function, by introducing main design guidelines and choices. In addition,

203

from an industrial viewpoint, additional research should be led along proper incentive

mechanisms to foster and support the collaborative context data sharing view of proposed

CDDIs. Although both ad-hoc wireless communications and context data storage on

mobile devices can effectively reduce the data traffic pressure on limited fixed wireless

infrastructures, they also result in both higher device overhead and fast battery depletion.

Those side-effects can be accepted by mobile users only if counterbalanced by proper

incentives, such as discounts for voice calls, free data traffic, extended service offerings,

and so on. The design and the realization of such incentive mechanisms are fundamental to

prevent and counteract selfish behaviours, with mobile users only care about their own

device batteries, thus hindering the collaborative context sharing perspective.

To conclude, we think that the work presented in this dissertation has a general and

large applicability to all main classes of context-aware services in future mobile systems.

Due to the several outcomes mentioned before, and supported by the publication record

obtained from this thesis work, we are very convinced that this thesis can foster future

standardization activities in this area and can have an impact and an influence on the

design and the realization of CDDIs for next generation mobile systems.

205

Bibliography

[1] B. N. Schilit, et al., "Context-Aware Computing Applications," in Workshop on
Mobile Computing Systems and Applications (WMCSA’94), 1994, pp. 85-90.

[2] A. K. Dey and G. D. Abowd, "Towards a Better Understanding of Context and
Context-Awareness," in Workshop on the What, Who, Where, When, and How of
Context-Awareness within CHI’00, 2000, pp. 1-12.

[3] T. Buchholz, et al., "Quality of Context: What It Is and Why We Need It.," in
Workshop HP OpenView, 2003, pp. 1-14.

[4] M. Krause and I. Hochstatter, "Challenges in Modelling and Using Quality of
Context (QoC)," presented at the International Conference on Mobility Aware
Technologies and Applications (MATA’05), 2005.

[5] P. Bellavista, et al., "A Survey of Context Data Distribution for Mobile Ubiquitous
Systems " accepted in ACM Computing Surveys (CSUR), vol. 45, pp. 1-49, 2013.

[6] G. Chen and D. Kotz, "A Survey of Context-Aware Mobile Computing Research,"
Dept. of Computer Science, Dartmouth College2000.

[7] A. Manzoor, et al., "On the Evaluation of Quality of Context," presented at the
Third European Conference on Smart Sensing and Context, 2008.

[8] K. Cheverst, et al., "Developing a context-aware electronic tourist guide: some
issues and experiences," in SIGCHI conference on Human factors in computing
systems (CHI '00), 2000, pp. 17-24.

[9] W. G. Griswold. ActiveCampus Project. Available: http://activecampus.ucsd.edu/

[10] Q. Jones. SmartCampus Project. Available: http://smartcampus.njit.edu/

[11] A. Zimmermann, et al., "An operational definition of context," in 6th International
and Interdisciplinary Conference on Modeling and using Context (CONTEXT07),
2007, pp. 558-571.

[12] A. Bartolini, et al., "Visual Quality Analysis For Dynamic Backlight Scaling In
LCD Systems," in Design, Automation and Test in Europe (DATE’09), 2009, pp.
1428-1433.

[13] S. Ceri, et al., "Model-driven development of context-aware Web applications,"
ACM Transactions on Internet Technologies, vol. 7, pp. 1-33, February 2007 2007.

[14] E. Gustafsson and A. Jonsson, "Always Best Connected," IEEE Wireless
Communications, vol. 10, pp. 49-55, 2003.

[15] P. Bellavista, et al., "Differentiated Management Strategies for Multi-hop Multi-
Path Heterogeneous Connectivity in Mobile Environments," IEEE Transactions on

206

Network and Service Management (IEEE TNSM), vol. 8, pp. 190-204, 2011.

[16] C. Gorgorin, et al., "Adaptive Traffic Lights using Car-to-Car Communication," in
IEEE Vehicular Technology Conference (VTC’07-Spring), 2007, pp. 21-25.

[17] U. Lee, et al., "Bio-inspired multi-agent data harvesting in a proactive urban
monitoring environment," Elsevier Ad Hoc Networks, vol. 7, pp. 725-741, 2009.

[18] J.-M. Kim, et al., " Illuminant Adaptive Color Reproduction Based on Lightness
Adaptation and Flare for Mobile Phone," in IEEE International Conference on
Image Processing, 2006, pp. 1513-1516.

[19] B. Adams, et al., "Sensing and using social context," ACM Transactions on
Multimedia Computing, Communications and Applications, vol. 5, pp. 1-27, 2008.

[20] P. Eugster, et al., "Middleware Support for Context-Aware Applications," in
Middleware for Network Eccentric and Mobile Applications, B. Garbinato, et al.,
Eds., ed: Eds. Springer Press, 2009, pp. 305-322.

[21] A. Gupta, et al., "Automatic identification of informal social groups and places for
geo-social recommendations," International Journal of Mobile Network Design
and Innovation (IJMNDI), vol. 2, pp. 159-171, 2007.

[22] J. Wang, et al., "A sensor-fusion approach for meeting detection," in Workshop on
Context Awareness at the Second International Conference on Mobile Systems,
Applications, and Services, 2004.

[23] A. Manzoor, et al., "Using quality of context to resolve conflicts in context-aware
systems," presented at the First International Conference on Quality of Context
(QuaCon'09), 2009.

[24] A. Manzoor, et al., "Quality Aware Context Information Aggregation System for
Pervasive Environments," in First International Conference on Advanced
Information Networking and Applications Workshops, 2009, pp. 266-271.

[25] R. Neisse, et al., "Trustworthiness and Quality of Context Information," in Ninth
International Conference for Young Computer Scientists (ICYCS’08), 2008, pp.
1925-1931.

[26] C. Bisdikian, et al., "A letter soup for the quality of information in sensor
networks," presented at the IEEE International Conference on Pervasive
Computing and Communications (PERCOM), 2009.

[27] A. S. Tanenbaum, Computer Networks: Prentice Hall, 2002.

[28] A. T. S. Chan and S. N. Chuang, "Mobipads: A reflective middleware for context-
aware mobile computing," IEEE Transactions on Software Engineering, vol. 29,
pp. 1072-1085, 2003.

[29] A. Ranganathan and R. H. Campbell, "A middleware for context-aware agents in
ubiquitous computing environments," in ACM/IFIP/USENIX International
Conference on Middleware (Middleware’03), 2003, pp. 143-161.

207

[30] K. Cho, et al., "HiCon: a hierarchical context monitoring and composition
framework for next-generation context-aware services," IEEE Network, vol. 22, pp.
34-42., 2008.

[31] C. Julien and G.-C. Roman, "EgoSpaces: facilitating rapid development of context-
aware mobile applications," IEEE Transactions on Software Engineering, vol. 32,
pp. 281-298, 2006.

[32] P. Eugster, et al., "Design and Implementation of the Pervaho Middleware for
Mobile Context-Aware Applications," presented at the International MCETECH
Conference on e-Technologies, 2008.

[33] G. Chen, et al., "Data-centric middleware for context-aware pervasive computing,"
Elsevier Pervasive and Mobile Computing, vol. 4, pp. 216-253, 2008.

[34] T. Hofer, et al., "Context-Awareness on Mobile Devices - the Hydrogen
Approach," presented at the 36th Annual Hawaii International Conference on
System Sciences, 2003.

[35] O. Riva, et al., "Context-Aware Migratory Services in Ad Hoc Networks," IEEE
Transactions on Mobile Computing, vol. 6, pp. 1313-1328, 2007.

[36] A. K. Dey and G. D. Abowd, "The Context Toolkit: Aiding the Development of
Context-Aware Applications," presented at the Workshop on Software Engineering
for Wearable and Pervasive Computing, 2000.

[37] L. Capra, et al., "CARISMA: context-aware reflective middleware system for
mobile applications," IEEE Transactions on Software Engineering, vol. 29, pp.
929-945, 2003.

[38] L. Pelusi, et al. (2006) Opportunistic networking: Data forwarding in disconnected
mobile ad hoc networks. IEEE Communications Magazine. 134-141.

[39] M. Armbrust, et al., "Above the Clouds: A Berkeley View of Cloud Computing,"
EECS Department, University of California, Berkeley2009.

[40] T.-M. Grønli, et al., "Android vs Windows Mobile vs Java ME: a comparative
study of mobile development environments," in International Conference on
PErvasive Technologies Related to Assistive Environments (PETRA’10), 2010, pp.
1-8.

[41] (2011). Global Mobile Data Traffic Forecast Update, 2009-2014. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/
white_paper_c11-520862.html

[42] K. Egan and J. Duvall. (2010). Mobile data traffic surpasses voice. 2010.
Available: http://www.ericsson.com/thecompany/press/releases/2010/03/1396928

[43] G. Bensinger. (2010). Wireless Data: The End of All-You-Can-Eat? Available:
http://www.businessweek.com/magazine/content/10_28/b4186034470110.htm

[44] M. Conti and S. Giordano. (2007) Multihop Ad Hoc Networking: The Theory.

208

IEEE Communications Magazine. 78-86.

[45] M. Conti and S. Giordano. (2007) Multihop Ad Hoc Networking: The Reality.
IEEE Communications Magazine. 88-95.

[46] J. Whitbeck, et al., "Relieving the wireless infrastructure: When opportunistic
networks meet guaranteed delays," in IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2011, pp. 1-10.

[47] A. Lenk, et al., "What's inside the Cloud? An architectural map of the Cloud
landscape," in 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, 2009, pp. 23-31.

[48] M. B. S. D. F. Rosenberg, "A Survey on Context-aware systems," International
Journal of Ad Hoc and Ubiquitous Computing, vol. 2, pp. 263-277, 2007.

[49] P. Bellavista, et al., "Context-Aware Middleware for Reliable Multi-hop Multi-
path Connectivity," in 6th IFIP WG 10.2 international workshop on Software
Technologies for Embedded and Ubiquitous Systems (SEUS '08), 2008, pp. 66-78.

[50] IBM Smarter Planet. Available:
http://www.ibm.com/smarterplanet/us/en/?ca=v_smarterplanet

[51] H. Chang, et al., "Context Life Cycle Management Scheme in Ubiquitous
Computing Environments," in International Conference on Mobile Data
Management (MDM’07), 2007, pp. 315-319.

[52] P. T. Eugster, et al., "The many facets of publish/subscribe," ACM Computing
Surveys, vol. 35, pp. 114-131, 2003.

[53] J. Mantyjarvi, et al., "Collaborative context determination to support mobile
terminal applications," IEEE Wireless Communications, vol. 9, pp. 39- 45, 2002.

[54] T. Hara and S. K. Madria, "Consistency Management Strategies for Data
Replication in Mobile Ad Hoc Networks," IEEE Transactions on Mobile
Computing, vol. 8, pp. 950-967, 2009.

[55] T. Strang and C. L. Popien, "A context modeling survey," in Workshop on
Advanced Context Modelling, Reasoning and Management within UbiComp’04,
2004, pp. 1-8.

[56] A. Derhab and N. Badache, "Data replication protocols for mobile ad-hoc
networks: a survey and taxonomy," IEEE Communications Surveys & Tutorials,
vol. 11, pp. 35-51, 2009.

[57] P. Padmanabhan, et al., "A survey of data replication techniques for mobile ad hoc
network databases," The VLDB Journal, vol. 17, pp. 1143-1164, 2008.

[58] C.-Y. Chow, et al., "GroCoca: Group-Based Peer-To-Peer Cooperative Caching In
Mobile Environment," IEEE Journal on Selected Areas in Communications, vol.
25, pp. 179-191, 2007.

209

[59] L. Yin and G. Cao, "Supporting Cooperative Caching In Ad Hoc Networks," IEEE
Transactions on Mobile Computing, vol. 5, pp. 77-89, 2006.

[60] T. Hara, "Effective replica allocation in ad hoc networks for improving data
accessibility," in 20th Joint Conference of the IEEE Computer and Communication
Societies (INFOCOM’01), 2001, pp. 1568–1576.

[61] A. Shaheen and L. Gruenwald, "Group based replication for mobile ad hoc
databases (GBRMAD)," University of Oklahoma2010.

[62] M. Hosseini, et al., "A Survey of Application-Layer Multicast Protocols," IEEE
Communications Surveys Tutorials, vol. 9, pp. 58 -74, 2007.

[63] A. Gaddah and T. Kunz, "A Survey of Middleware Paradigms for Mobile
Computing," Dept. of Systems and Computing Engineering, Carleton
University2003.

[64] J. Hightower and G. Boriello, "A Survey and Taxonomy of Location Systems for
Ubiquitous Computing," IEEE Computer, vol. 34, pp. 57-66 2001.

[65] D. A. Chappell and R. Monson-Haefel, Java Message Service: O'Reilly Media,
2000.

[66] L. Juszczyk, et al., "Adaptive Query Routing on Distributed Context - The
COSINE Framework," presented at the 10th International Conference on Mobile
Data Management: Systems, Services and Middleware (MDM '09), 2009.

[67] C. Bolchini, et al., "A data-oriented survey of context models," SIGMOD Record,
vol. 36, pp. 19-26, 2007.

[68] C. Bettini, et al., "A survey of context modelling and reasoning techniques,"
Elsevier Pervasive and Mobile Computing, vol. 6, pp. 161-180, 2010.

[69] A. Ranganathan, et al., "MiddleWhere: a middleware for location awareness in
ubiquitous computing applications," presented at the 5th ACM/IFIP/USENIX
International Conference on Middleware (Middleware’05), 2004.

[70] U. Hengartner and P. Steenkiste, "Access control to people location information,"
ACM Transactions on Information and System Security (TISSEC), vol. 8, pp. 424-
456, 2005.

[71] Q. Jones and S. A. Grandhi. (2005) P3 Systems: Putting the place back into social
networks. IEEE Internet Computing. 38-46.

[72] R. Friedman, et al., "Gossiping on MANETs: the beauty and the beast," SIGOPS
Operating Systems Review, vol. 41, pp. 67-74, 2007.

[73] R. Friedman, et al., "Gossip-Based Dissemination," in Middleware for Network
Eccentric and Mobile Applications, B. Garbinato, et al., Eds., ed: Eds. Springer
Press, 2009, pp. 169-190.

[74] A.-M. Kermarrec and M. v. Steen, "Gossiping in distributed systems," ACM

210

SIGOPS Operating Systems Review, vol. 41, pp. 2-7, 2007.

[75] Y. Sasson, et al., "Probabilistic Broadcast for Flooding in Wireless Mobile Ad hoc
Networks," in IEEE Wireless Communications and Networking Conference
(WCNC’03), 2003, pp. 1124-1130.

[76] V. Drabkin, et al., "RAPID: Reliable Probabilistic Dissemination in Wireless Ad-
Hoc Networks," in 26th IEEE Symposium on Reliable Distributed Systems, 2007,
pp. 13-22.

[77] S. Tilak, et al., "Non-uniform Information Dissemination for Sensor Networks," in
11th IEEE Conference on Network Protocols (ICNP’03), 2003, pp. 295-304.

[78] A. Cartigny and D. Simplot, "Borden Node Retransmission Based Probabilistic
Broadcast Protocols in Ad-Hoc Networks," in Telecommunication System, 2003,
pp. 189-204.

[79] Z. Haas, et al., "Gossip-based Ad Hoc Routing," in 21st Joint Conference of the
IEEE Computer and Communication Societies (INFOCOM’02), 2002, pp. 1707-
1716.

[80] H. Miranda, et al., "An Algorithm for Dissemination and Retrieval of Information
in Wireless Ad Hoc Networks," John Wiley and Sons, Concurrency and
Computation: Practice & Experience, vol. 21, pp. 889-904, 2009.

[81] N. Roy, et al., "An energy-efficient quality adaptive framework for multi-modal
sensor context recognition," presented at the IEEE International Conference on
Pervasive Computing and Communications (PERCOM), 2011.

[82] T. Hara, "Quantifying Impact of Mobility on Data Availability in Mobile Ad Hoc
Networks," IEEE Transactions on Mobile Computing, vol. 9, pp. 241-258, 2010.

[83] A. Senart, et al., "Vehicular Networks and Applications," in Middleware for
Network Eccentric and Mobile Applications, B. Garbinato, et al., Eds., ed: Eds.
Springer Press, 2009, pp. 369-382.

[84] H. Hartenstein and K. Laberteaux, "Introduction," in VANET Vehicular
Applications and Inter-Networking Technologies, ed: John Wiley & Sons, 2010.

[85] Z. Zhang, "Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: Overview and challenges," IEEE Communications Surveys &
Tutorials, vol. 8, pp. 24-37, 2006.

[86] K. Fall, "A Delay-tolerant Network Architecture for Challenged Internets," in
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM’03), 2003, pp. 27-34.

[87] K. Pan, et al., "Implementation of Data Distribution Management services in a
Service Oriented HLA RTI," presented at the Proceedings of the 2009 Simulation
Conference (WSC), 2009.

[88] V. Jacobson. Content-Centric Networking Resources. Available:

211

http://www.ccnx.org/documentation/content-centric-networking-resources-2/

[89] M. Varvello, et al., "On The Design Of Content-Centric MANETs," presented at
the Eighth International Conference on Wireless On-Demand Network Systems
And Services (WONS).

[90] S. Y. Oh, et al., "Content Centric Networking in Tactical And Emergency
MANETs," presented at the IFIP Wireless Days, 2010.

[91] OMG. Data Distribution Service for Real-Time Systems Specification. Available:
http://www.omg.org/docs/formal/04-12-02.pdf

[92] S. P. Mahambre, et al. (2007) A Taxonomy of QoS-Aware, Adaptive Event-
Dissemination Middleware. IEEE Internet Computing. 35-44.

[93] G. Cugola and E. D. Nitto, "Using a Publish/Subscribe Middleware to Support
Mobile Computing," in Workshop on Middleware for Mobile Computing
(MMC’01) within Middleware’01, 2001, pp. 1-5.

[94] G. Cugola, et al., "The JEDI event-based infrastructure and its application to the
development of the OPSS WFMS," IEEE Transactions on Software Engineering,
vol. 27, pp. 827-850, 2001.

[95] G. Muhl, et al. (2004) Disseminating information to mobile clients using publish-
subscribe. IEEE Internet Computing. 46- 53.

[96] P. Sutton, et al., "Supporting Disconnectedness-Transparent Information Delivery
for Mobile and Invisible Computing," in IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’01), 2001, pp. 277-285.

[97] N. Aschenbruck, et al., "Modelling mobility in disaster area scenarios," in 10th
ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile
Systems (MsWIM'07), 2007, pp. 4-12.

[98] T. Catarci, et al. (2008) Pervasive Software Environments for Supporting Disaster
Responses. IEEE Internet Computing. 26-37.

[99] Q. Jones, et al., "People-to-People-to-Geographical-Places: The P3 Framework for
Location-Based Community Systems," Comput. Supported Coop. Work, vol. 13,
pp. 249-282, 2004.

[100] R. Buyya, et al., "Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility," Elsevier Future Generation
Computer Systems, vol. 25, pp. 599-616, 2009.

[101] M. Fanelli. (2010). RECOWER CDDI. Available:
http://lia.deis.unibo.it/Research/RECOWER/

[102] "Middleware for Network Eccentric and Mobile Applications," B. Garbinato, et al.,
Eds., ed, 2009, p. 454.

[103] J.-H. Cho, et al., "A Survey on Trust Management for Mobile Ad Hoc Networks,"

212

IEEE Communications Surveys & Tutorials, vol. 13, pp. 562-583, 2011.

[104] A. B. McDonald and T. F. Znati, "A mobility-based framework for adaptive
clustering in wireless ad hoc networks," IEEE Journal on Selected Areas in
Communications, vol. 17, pp. 1466-1487, 1999.

[105] Y.-C. Tseng, et al., "The Broadcast Storm Problem in a Mobile Ad Hoc Network,"
Springer Wireless Network, vol. 8, pp. 153-167, 2002.

[106] M. Fanelli, et al., "QoC-based Context Data Caching for Disaster Area Scenarios,"
presented at the IEEE International Conference on Communications (ICC '11),
Kyoto, Japan, 2011.

[107] M. Fanelli, et al., "Self-Adaptive and Time-Constrained Data Distribution Paths for
Emergency Response Scenarios," presented at the 8th ACM Symposium on
Mobility Management and Wireless Access (MOBIWAC’10), Bodrum, Turkey,
2010.

[108] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors,"
Communications of the ACM, vol. 13, pp. 422-426, 1970.

[109] A. Broder and M. Mitzenmacher, "Network Applications of Bloom Filters: A
Survey," Internet Mathematics, vol. 1, pp. 485-509, 2005.

[110] M. Y. S. Uddin, et al., "A Post-Disaster Mobility Model For Delay Tolerant
Networking," in 2009 IEEE Winter Simulation Conference, 2009, pp. 2785-2796.

[111] W. Kang, et al., "PRIDE: A Data Abstraction Layer for Large-Scale 2-tier Sensor
Networks," in 6th IEEE Communications Society Conference on Sensor, Mesh and
Ad-hoc Communications and Networks (SECON 2009), 2009, pp. 1-9.

[112] M. Fanelli. (2010). SALES CDDI. Available:
http://lia.deis.unibo.it/Research/SALES/

[113] A. M.F.Caetano, et al., "A collaborative cache approach for mobile ad hoc
networks," presented at the 14th IEEE Symposium on Computers and
Communications (ISCC), 2009.

[114] Y.-H. Wang, et al., "A distributed data caching framework for mobile ad hoc
networks," presented at the International Conference On Communications And
Mobile Computing, 2006.

[115] N. Chand, et al., "Efficient Cooperative Caching in Ad Hoc Networks," presented
at the First International Conference on Communication System Software and
Middleware (COMSWARE), 2006.

[116] (2011). Pearson product-moment correlation coefficient. Available:
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

[117] A. Johnsson, et al., "An Analysis of Active End-to-end Bandwidth Measurements
in Wireless Networks," presented at the 4th IEEE/IFIP Workshop on End-to-End
Monitoring Techniques and Services, 2006.

213

[118] E. Kayacan, et al., "Grey system theory-based models in time series prediction,"
Elsevier Expert Systems with Applications, vol. 37, pp. 1784-1789, 2010.

[119] R. Meier, Professional Android 2 Application Development: John Wiley and Sons,
2010.

[120] (2011). JSR-82 Bluetooth API. Available:
http://java.sun.com/javame/reference/apis/jsr082/

[121] S. Zammit and D. Catania, "Video Streaming over Bluetooth," presented at the
WICT'08., 2008.

[122] C. Hyser, et al., "Autonomic Virtual Machine Placement in the Data Center,"
HPL-2007-189, 2007.

[123] X. Meng, et al., "Improving the scalability of data center networks with traffic-
aware virtual machine placement," presented at the 29th conference on Information
Communications (INFOCOM'10), 2010.

[124] A. Corradi, et al., "Adaptive Context Data Distribution with Guaranteed Quality
for Mobile Environments," presented at the IEEE Int. Symp. on Wireless Pervasive
Computing (ISWPC’10), 2010.

[125] B. Han, et al., "Cellular traffic offloading through opportunistic communications: a
case study " presented at the 5th ACM workshop on Challenged networks
(CHANTS '10), 2010.

[126] M. Musolesi and C. Mascolo, "CAR: Context-aware Adaptive Routing for Delay
Tolerant Mobile Networks," IEEE Transactions on Mobile Computing, vol. 8, pp.
246-260, 2009.

[127] C. Boldrini, et al., "Exploiting users’ social relations to forward data in
opportunistic networks: The HiBOp solution," Elsevier Pervasive and Mobile
Computing, vol. 4, pp. 633-657, 2008.

[128] Amazon. (2012). Amazon Elastic Compute Cloud (Amazon EC2). Available:
http://aws.amazon.com/ec2/

[129] M. Wang, et al., "Consolidating Virtual Machines with Dynamic Bandwidth
Demand in Data Centers," presented at the IEEE INFOCOM 2011 MINI-
CONFERENCE, 2011.

[130] M. Korupolu, et al., "Coupled Placement in Modern Data Centers," presented at
the IEEE International Parallel and Distributed Processing Symposium (IPDPS)
2009.

[131] A.Singh, et al., "Server-storage virtualization: integration and load balancing in
data centers," presented at the ACM/IEEE Conference on Supercomputing (SC
'08), 2008.

[132] Y. Toyoda, "A simplified algorithm for obtaining approximate solutions to zero-
one programming problems," Management Science, vol. 21, pp. 1417-1427, 1975.

214

[133] A. Greenberg, et al., "VL2: a scalable and flexible data center network," presented
at the ACM SIGCOMM 2009 conference on Data communication (SIGCOMM
'09), 2009.

[134] M. Al-Fares, et al., "A scalable, commodity data center network architecture,"
presented at the ACM SIGCOMM 2008 conference on Data communication
(SIGCOMM '08), 2008.

[135] C. Guo, et al., "BCube: a high performance, server-centric network architecture for
modular data centers," SIGCOMM Comput. Commun. Rev., vol. 39, pp. 63-74,
2009.

[136] Cisco data center infrastructure 2.5.

[137] A. J. Mashhadi, et al., "Habit: Leveraging Human Mobility and Social Network for
Efficient Content Dissemination in MANETs," presented at the 10th IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM’09), 2009.

215

Publications

 A Survey of Context Data Distribution for Mobile Ubiquitous Systems, P.

Bellavista, A. Corradi, M. Fanelli, L. Foschini, Accepted in ACM Computing

Surveys (CSUR), ACM Press, expected to appear in Vol. 45, No. 1, Mar 2013,

pages 1-49.

 A Stable Network-Aware VM Placement for Cloud Systems, O. Biran, A.

Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, E. Silvera, Proceedings of the

IEEE CCGrid’12 conference, Ottawa, Canada, May, 2012, IEEE Computer

Society Press.

 Context Data Distribution in Mobile Systems: a Case Study on Android-based

Phones, A. Corradi, M. Fanelli, L. Foschini, M. Cinque, Proceedings of the IEEE

International Conference on Communications (ICC’12), Ottawa, Canada, June,

2012, IEEE Computer Society Press.

 Resource-Awareness in Context Data Distribution for Mobile Environments,

M. Fanelli, L. Foschini, A. Corradi, A. Boukerche, Proceedings of the IEEE Global

Communications Conference (GLOBECOM’11), Houston, Texas, USA, Dec. 5-9,

2011, IEEE Computer Society Press.

 QoC-based Context Data Caching for Disaster Area Scenarios, M. Fanelli, L.

Foschini, A. Corradi, A. Boukerche, Proceedings of the IEEE International

Conference on Communications (ICC’11), Kyoto, Japan, July, 2011, IEEE

Computer Society Press.

 Increasing Cloud Power Efficiency through Consolidation Techniques, A.

Corradi, M. Fanelli, L. Foschini, Proceedings of the IEEE Workshop on

Management of Cloud Systems (MoCS 2011), Kerkyra (Corfu), Greece, June 28,

2011, IEEE Computer Society Press.

216

 Counteracting wireless congestion in data distribution with adaptive batching

techniques, M. Fanelli, L. Foschini, A. Corradi, A. Boukerche, Proceedings of the

IEEE Global Communications Conference (GLOBECOM’10), Miami, Florida,

USA, Dec. 6-10, 2010, IEEE Computer Society Press.

 Self-Adaptive and Time-Constrained Data Distribution Paths for Emergency

Response Scenarios, M. Fanelli, L. Foschini, A. Corradi, A. Boukerche,

Proceedings of the 8th ACM Symposium on Mobility Management and Wireless

Access (MOBIWAC’10), Bodrum, Turkey, Oct. 17-21, 2010, ACM Press.

 Towards Efficient and Reliable Context Data Distribution in Disaster Area

Scenarios, M. Fanelli, L. Foschini, A. Corradi, A. Boukerche, Short paper in the

Proceedings of the 35th IEEE Conference on Local Computer Networks (LCN’10),

Denver, Colorado, USA, Oct. 11-14, 2010, IEEE Computer Society Press.

 Adaptive Context Data Distribution with Guaranteed Quality for Mobile

Environments, A. Corradi, M. Fanelli, L. Foschini, Proceedings of the IEEE

International Symposium on Wireless Pervasive Computing (ISWPC’10), Modena,

Italy, May 5-7, 2010, IEEE Computer Society Press.

 Towards Adaptive and Scalable Context-Aware Middleware, A. Corradi, M.

Fanelli, L. Foschini, Invited article in International Journal of Adaptive, Resilient

and Autonomic Systems (IJARAS), Vol. 1, 2010, IGI-Global Press.

 Implementing a Scalable Context-Aware Middleware, A. Corradi, M. Fanelli,

L. Foschini, Proceedings of the 14th IEEE International Symposium on Computers

and Communications (ISCC’09), Sousse, Tunisia, Jul. 5-8, 2009, IEEE Computer

Society Press.

217

List of Figures

Figure 2.1. Future Mobile Systems. ... 31

Figure 3.1. Context Data Life Cycle Overview. ... 43

Figure 4.1. Context Data Distribution System Logical Architecture. 56

Figure 4.2. Taxonomy for the Classification of the Context Data Management Layer. 58

Figure 4.3. Taxonomy for the Classification of the Context Data Delivery Layer. 64

Figure 4.4. Taxonomy for the Classification of the Runtime Adaptation Support. 70

Figure 4.5. Detailed View of the Runtime Adaptation Support. .. 71

Figure 6.1. Example of a Traditional RECOWER Deployment. 89

Figure 6.2. RECOWER Context Data Distribution Process. ... 93

Figure 6.3. RECOWER Adaptive Query Flooding. ... 98

Figure 6.4. RECOWER Query Distribution Suppression. ... 99

Figure 6.5. RECOWER Software Architecture. ... 100

Figure 6.6. Adaptive Query Flooding Pseudo-code. .. 103

Figure 6.7. LRU vs. Quality-based Caching with Uniform Access Patterns and Different

Query TTL. .. 107

Figure 6.8. LRU vs. Quality-based Caching with Uniform Access Patterns and Different

DMAX. ... 108

Figure 6.9. LRU vs. Quality-based Caching with Uniform Access Patterns and Different

Data FL. ... 108

Figure 6.10. Comparison between Naïve and Adaptive Flooding. 110

Figure 6.11. Comparison between Naïve and Adaptive Flooding with Memory

Limitations. .. 111

Figure 6.12. Effects of QoC Data Retrieval Time on Adaptive Flooding. 112

Figure 6.13. Effects of QMAX on Adaptive Flooding. ... 112

Figure 7.1. SALES Distributed Architecture. .. 118

Figure 7.2. Example of SALES Context Data Distribution. .. 125

Figure 7.3 Pseudo-code of the ACDC Replacement Policy. .. 131

Figure 7.4. Query Distribution Example with Different Distribution Policies. 135

Figure 7.5. SALES Software Architecture. .. 139

Figure 7.6. SALES Routing Details. .. 141

218

Figure 7.7. SALES Android-based Client. ... 146

Figure 7.8. Average Retrieval Time (a) and Percentage of Satisfied Queries (b) under

Uniform Access Patterns. .. 151

Figure 7.9. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) according to Different Caching

Algorithms and Query HTTL, under Uniform Access Patterns. 152

Figure 7.10. Average Retrieval Time (a) and Percentage of Satisfied Queries (b) under

Localization-based Preferential Access Patterns. .. 152

Figure 7.11. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) according to Different Caching

Algorithms and Query HTTL, under Localization-based Preferential Access Patterns.

 ... 153

Figure 7.12. Effect of Different Data RL Values on Average Retrieval Time (a) and

Percentage of Satisfied Queries (b). .. 154

Figure 7.13. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) with Different Data RL. 154

Figure 7.14. Effect of Different Query Generator S.D. Values on Average Retrieval Time

(a) and Percentage of Satisfied Queries (b). .. 155

Figure 7.15. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) with Different Query Generator S.D.

 ... 156

Figure 7.16. Average Retrieval Time (a) and Percentage of Failed Requests (b) with

Different Transmission Policies. ... 157

Figure 7.17. Average Retrieval Times with α in {0.7 (a), 0.8 (b), 0.9 (c)}. 159

Figure 7.18. Percentage of Failed Requests with α in {0.7 (a), 0.8 (b), 0.9 (c)}. 159

Figure 7.19. Percentage of Failed Requests and θ Values with Time-varying Workloads.

 ... 160

Figure 7.20. CPU Load with Naïve Query Drop Disabled (a) and Enabled (b), and

Percentage of Satisfied Queries (c). .. 162

Figure 7.21. CPU Load (a), Percentage of Satisfied Queries (b), and PQMAX Values (c)

with Adaptive Drop Policy Enabled. ... 163

Figure 7.22. Average Retrieval Times (a) and Percentage of Failed Queries with Different

Request Rates (b), and with Different Delivery Deadlines (c). 165

Figure 7.23. Dalvik Heap Memory during a 20 Minutes Long Test. 167

Figure 8.1. Logical Architecture of a Cloud Management Infrastructure. 175

Figure 8.2. Common Data Center Network Topologies. .. 178

Figure 8.3. Fat-tree and VL2 Transformation in Equivalent Tree.................................... 180

Figure 8.4. Cut Matrix C for a Simple Binary Tree. .. 182

219

Figure 8.5. 2PCCRS Placement Computation Example – First Phase. 184

Figure 8.6. 2PCCRS Placement Computation Example – Second Phase. 186

Figure 8.7. Placement Algorithms Results for a Small Data Center of 8 Hosts. 190

Figure 8.8. Placement Algorithms Results for a Data Center of 64 Hosts. 191

Figure 8.9. Placement Algorithms Results for Different Data Center Sizes. 192

Figure 8.10. Percentage of Dropped Packets (a), and Average Packet Delivery Delay (b) in

NS2 Simulations. ... 193

221

List of Tables

Table 4.1. Dissemination Protocols Comparison. .. 67

Table 4.2. Routing Overlays Comparison. ... 69

Table 5.1. Thesis Case Studies. .. 80

Table 5.2. Outline of Practical Thesis Contributions. .. 86

223

Acknowledgments

First of all, I would like to thank my advisor Prof. Antonio Corradi and Dr. Luca

Foschini for their precious guide during my thesis years. They have followed my work

with constant patience, and by providing continuous encouragements. Also, a special

thank goes to Prof. Paolo Bellavista for the several advices and discussions, and to

Prof. Eugenio Faldella for his moral and human support.

I would like to thank Prof. Azzedine Boukerche for his technical guidance during my

abroad stay in Canada; he taught me a lot of important things on the research world.

Special thanks go to both Dr. Ofer Biran and Prof. Danny Raz, for their fundamental

technical guide during my stay in Israel; their continuous advices and support helped me

in getting the best out of my internship at IBM Haifa Research Lab. Finally, I want to truly

thank all the external reviewers of my PhD thesis, in particular, Prof. Azzedine Boukerche,

Prof. Patrick Eugster, and Prof. Archan Misra, for their useful and important advices about

my work.

A special thank goes to my friends Giuseppe, Primiano, Andrea, Luca, and Alessio,

who shared with me hard and fun periods during my PhD; I think I will never forget all the

nerdy discussions of our lunches/dinners. Also, I want to thank my Canadian friends,

especially Michael and Julie, Robson and Priscila, Richard, Daniel and Fernanda, Kent,

Cristiano, Leandro, and Haifa, for all the fun we had in Ottawa.

Finally, I would like to thank all my family, for their continuous human support and

for their great faith in me and my decisions: thank you Mum, Dad, Francesca, and Andrea,

for being there every time I needed.

