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CHAPTER 1

Introduction.

Since the development of quantum mechanics it has been natural to analyze
the connection between classical and quantum mechanical descriptions of physical
systems. In particular one should expect that in some sense when quantum mechan-
ical effects becomes negligible the system will behave like it is dictated by classical
mechanics. One famous relation between classical and quantum theory dates back
to early days of quantum mechanics and it is due to Ehrenfest [Ehr27]. This result
was later developed and put on firm mathematical foundations by Hepp [Hep74].
He proved that matrix elements of bounded functions of quantum observables be-
tween suitable coherents states (that depend on Planck’s constant h) converge to
classical values evolving according to the expected classical equations when h→ 0.
Furthermore he also provides information about the quantum fluctuations of the
system in the classical limit: their dynamics is obtained linearizing quantum evo-
lution equation around the classical solution. His results were later generalized by
Ginibre and Velo [GV79, GV80] to bosonic systems with infinite degrees of free-
dom and scattering theory. Recently Ginibre, Nironi and Velo applied this method
to perform a partially classical limit of the Nelson model [GNV06] where only the
number of relativistic particles goes to infinity while the number of non-relativistic
particles remain fixed. Even more recently some authors used the results of [GV79]
to obtain estimates on the rate of convergence of transition amplitudes of normal
ordered products of creation and annihilation operators in the mean field limit of
bosonic systems; it has first been done by Rodnianski and Schlein [RS09] and then
refined by Chen and Lee [CL11] and by Chen, Lee and Schlein [COS11].

In this work we will analyze the complete classical limit of the Nelson model
with cut off, when both non-relativistic and relativistic particles number goes to
infinity. We will prove convergence of quantum observables to the solutions of
classical equations, and find the evolution of quantum fluctuations around the clas-
sical solution. Furthermore we analyze the convergence of transition amplitudes of
normal ordered products of creation and annihilation operators between different
types of initial states. Below we describe the main setting of the problem and give
a heuristic preview of the results, stripped from most technicalities.

1. Introduction to Fock Space.

Since the theory we want to study is set in a Fock space, we will introduce its
basic notions here. The Fock space and second quantization were introduced by
Vladimir Fock [Foc32] and put on a firm mathematical basis by Cook [Coo51]. Let
H be a Hilbert space, and denote Hn its n-fold tensor product Hn = H ⊗. . .⊗H .
Now on Hn define Sn the symmetrizing operator. In the case where H = L2(R),
SnHn is the subspace of L2(Rn) of all functions invariant under any permutation
of the variables. Set H0 = C, we define the symmetric Fock space over H :

Fs(H ) =

∞⊕
n=0

SnHn .
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6 1. INTRODUCTION.

The basic operators of the Fock space are the annihilation and creation operators.
We will define them only for H = L2(R); formally we introduce the following
operator-valued distributions, defined by their action on Hn:

(a(x)Φ)n(x1, . . . , xn) =
√
n+ 1 Φn+1(x, x1, . . . , xn)

(a∗(x)Φ)n(x1, . . . , xn) =
1√
n

n∑
j=1

δ(x− xj)Φn−1(x1, . . . , x̂j , . . . , xn) ,

where x̂j indicates this variable has been omitted. Then for any f ∈ L2(R) the
annihilation and creation operators are defined as:

a(f) =

∫
dx f(x)a(x)

a∗(f) =

∫
dx f(x)a∗(x) .

Formally a and a∗ satisfy the following commutation relation:

[a(x), a∗(x′)] = δ(x− x′)
[a(x), a(x′)] = [a∗(x), a∗(x′)] = 0 .

For a more rigorous definition of these operators and a list of useful properties the
reader can consult the Appendix. Another useful operator is the number particle
operator

N =

∫
dx a∗(x)a(x) .

This operator “counts the number of particles” of a state in the Fock space, in fact
acting on a vector Φn ∈Hn we have

NΦn = nΦn .

2. The Quantum Theory.

The system we want to study has been introduced in physics and was called
the polaron model; in particular it has been discussed by Gross [Gro62]. In math-
ematical physics it was introduced by Edward Nelson [Nel64], and still is referred
to as the Nelson model. He used it to describe the mathematical existence of a
theory of non-relativistic nucleons interacting with a meson field. However recent
developments in condensed matter theory, especially regarding the so-called optical
lattices, showed this model could be used also to describe systems of bosons trapped
in an electromagnetic field.

We will call H the Hilbert space of the theory, and it is the tensor product of
two symmetric Fock spaces over L2(R3). Define

Hp,n =
{

Φp,n : Φp,n(Xp;Kn) ∈ L2(R3p+3n)
}
,

where Xp = {x1, . . . , xp}, Kn = {k1, . . . , kn} and Φp,n is separately symmetric with
respect to the first p and the last n variables. So we have that

H =

∞⊕
p,n=0

Hp,n .

The vacuum state will be denoted by Ω (namely the unit vector of H0,0). We will
use freely the following properties of the tensor product of Hilbert spaces

Hp,n = Hp,0 ⊗H0,n ,
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and

H =
( ∞⊕
p=0

Hp,0

)
⊗
( ∞⊕
n=0

H0,n

)
=

∞⊕
p=0

Hp ,

with

Hp = Hp,0 ⊗
∞⊕
n=0

H0,n .

We will call ψ#(f) the annihilation and creation operators corresponding to the
p Fock space, a#(f) the ones corresponding to the n Fock space (the # stands
for either nothing or ∗). On Hp we define the following operators: let f ∈
L∞(R3p, L2(R3)), then:

(b(f)Φ)p,n(Xp;Kn) =
√
n+ 1

∫
dk f(Xp; k)Φp,n+1(Xp; k,Kn)

(b∗(f)Φ)p,n(Xp;Kn) =
1√
n

n∑
j=1

f(Xp; kj)Φp,n−1(Xp;Kn \ kj) .

The Hamiltonian operator describing our system, the Nelson model with cut
off, is formally the following:

H =
1

2M

∫
dx (∇ψ)∗(x)∇ψ(x) +

∫
dk ω(k)a∗(k)a(k)

+λ

∫
dxϕ(x)ψ∗(x)ψ(x) ; ω(k) =

√
k2 + µ2,

M > 0, µ ≥ 0 and λ > 0. Furthermore:

ϕ(x) =

∫
dk

(2π)3/2

1

(2ω)1/2
χ(k)

(
a(k)eikx + a∗(k)e−ikx

)
with

χ(k) =

{
1 if |k| ≤ σ
0 if |k| > σ

.

It is the sum of two bilinear terms, representing the free evolution respectively of
a Schrödinger and a Klein Gordon field, and a trilinear Yukawa-type interaction
between them. The cut off χ in the interaction guarantees that the theory is well
defined even for large momenta of the Klein Gordon field. As we will see the closure
of this operator is self-adjoint on a suitable domain. We will call U(t) the evolution
generated by H, U0(t) the evolution generated by the free part H0:

H0 =
1

2M

∫
dx (∇ψ)∗(x)∇ψ(x) +

∫
dk ω(k)a∗(k)a(k) .

Let u and α ∈ L2(R3), then we define the Weyl operators as

C(u, α) = exp
{(
ψ∗(u)− ψ(ū)

)
+
(
a∗(α)− a(ᾱ)

)}
.

These operators, when acting on the vacuum state Ω of the Fock space, generate
the so-called coherent states. Formally the average of ψ#(x) and a#(k) on such
states is:

〈C(u, α)Ω, ψ#(x)C(u, α)Ω〉 = u#(x)

〈C(u, α)Ω, a#(k)C(u, α)Ω〉 = α#(k) .



8 1. INTRODUCTION.

The Weyl operators are treated in greater detail and with mathematical rigour in
the Appendix. We write here a formula to be used later in this introduction:

C(u, α)∗ψ(x)C(u, α) = ψ(x) + u(x)

C(u, α)∗a(k)C(u, α) = a(k) + α(k) .

3. The classical equations.

We use the following convention for the Fourier transform f̂ of f :

f̂(k) =
1

(2π)3/2

∫
dx e−ikxf(x) ;

then the inverse transform f̌ such that ˆ̌f = f =
ˇ̂
f is

f̌(k) =
1

(2π)3/2

∫
dx eikxf(x) .

In the Heisenberg picture the quantum evolution of the fields ψ(t) and a(t) is given
by {

i∂tψ(t) = [ψ(t), H]

i∂ta(t) = [a(t), H]

which can be explicitly written as

(3.1)


i∂tψ = − 1

2M
∆ψ + λϕψ

i∂ta = ωa+ λ
χ√
2ω

(ψ̂∗ψ)
.

Let s be the initial time, we will write ψ(s) = ψ0, a(s) = a0. ψ#
0 and a#

0 are
the usual creation and annihilation operators of the Fock space we defined above,
however when we consider evolution in the Heisenberg picture we will use this
notation to avoid confusion with the time evolved operators ψ#(t) and a#(t) (since
sometimes we omit the explicit dependence on t, as in the equation above).

We will denote by u(x) and α(x) the classical counterparts of ψ and a respec-
tively, in a sense that will be explained in the following section of this introduction.
Classical evolution is then dictated by the following system of equations:

(3.2)

 i∂tu = − 1

2M
∆u+ (2π)−3/2(χ̌ ∗A)u

i∂tα = ωα+ (2π)−3/2(2ω)−1/2χ̌ ∗ |u|2
,

where A = (2ω)−1/2(α+ ᾱ) and for all q

(ωqα)(x) = (2π)−3/2

∫
dξ eiξx(µ2 + |ξ|2)q/2α̂(ξ) .

To be precise α(x) is the classical correspondent of â, the Fourier transform of a.

4. The classical limit.

As we said we want to study the behaviour of the system in the classical limit.
This limit can be thought as a mean field limit, when the number of non-relativistic
particles and excitations of the relativistic field tend to infinity. We expect that in
the limit the wave function describing a nonrelativistic particle is coupled with the
classical field. In order to see that is the case, we need to choose a suitable series
of states to average the quantum fields, such that the number of both particles
increases to infinity. We will use the Weyl operators introduced before. If p and
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n are positive integers, the sequence of operators C(p1/2u, n1/2α) applied to any
fixed state Φ is such that

〈C(p1/2u, n1/2α)Φ, ψ#(f)C(p1/2u, n1/2α)Φ〉 ∼ p1/2

〈C(p1/2u, n1/2α)Φ, a#(f)C(p1/2u, n1/2α)Φ〉 ∼ n1/2 ,

that goes to infinity in a suitable way when the number of particles p and n goes to
infinity (since the annihilation and creation operators behave like the square root
of the number particle operator in Fock spaces). However, in order to obtain a non
trivial limiting equation for (3.1) when p, n → ∞ we need to relate λ to p and n,
according to p = n = λ−2. So the mean field limit is also a weak coupling limit.
From now on we will use λ→ 0 as the parameter to perform the classical limit. We
want to find the classical counterparts of ψ and a, however their average over any
fixed state goes to infinity in the classical limit; on the other hand the averages of
λψ and λα have a finite limit when λ → 0, so we expect such operators to have
classical limits.

In the following we will explain how to find such limit. Let δ∗ > 0, Φ ∈
D((P+N)δ

∗
) a state that does not depend on λ such that ‖Φ‖ = 1; u, α, f ∈ L2(R3).

We call (u(t), α(t)) the solution of (3.2) with initial data (u, α) and define uλ ≡ u/λ,
αλ ≡ α/λ. Then we know that at time zero

〈C(uλ, αλ)Φ, λψ#(f̄#)C(uλ, αλ)Φ〉 = 〈f, u〉# .

What happens if we introduce evolution in time, as dictated by Nelson’s hamilton-
ian? We have to study

〈C(uλ, αλ)Φ, U†(t)λψ#(f̄#)U(t)C(uλ, αλ)Φ〉

in the limit λ→ 0. We use the following equality, valid for all y, z ∈ L2(R3):

U†(t)ψ#(f̄#)U(t) = U†(t)C(y, z)C†(y, z)ψ#(f̄#)C(y, z)C†(y, z)U(t)

= U†(t)C(y, z)
(
ψ#(f̄#) + 〈f, y〉#

)
C†(y, z)U(t) ;

to obtain

〈C(uλ, αλ)Φ, U†(t)λψ#(f̄#)U(t)C(uλ, αλ)Φ〉 − 〈f, y〉#

= λ〈C(uλ, αλ)Φ, U†(t)C(yλ, zλ)ψ#(f̄#)C†(yλ, zλ)U(t)C(uλ, αλ)Φ〉 .

Taking the absolute value and using Schwarz’s inequality we obtain:∣∣〈C(uλ, αλ)Φ, U†(t)λψ#(f̄#)U(t)C(uλ, αλ)Φ〉 − 〈f, y〉#
∣∣

≤ λ
∥∥ψ#(f̄#)C†(yλ, zλ)U(t)C(uλ, αλ)Φ

∥∥ ;

then using standard estimates (proved in appendix) of creation and annihilation
operators we have∣∣〈C(uλ, αλ)Φ, U†(t)λψ#(f̄#)U(t)C(uλ, αλ)Φ〉 − 〈f, y〉#

∣∣
≤ λ ‖f‖2

∥∥∥(P + 1)1/2C†(yλ, zλ)U(t)C(uλ, αλ)Φ
∥∥∥

≤ λ ‖f‖2
∥∥∥(P +N + 1)1/2C†(yλ, zλ)U(t)C(uλ, αλ)Φ

∥∥∥ .
We remark that the left hand side of last inequality is a linear functional of L2(R3)
applied to f ; and that on right hand side f appears only as ‖f‖2. Then by Riesz’s
Lemma we can deduce that∥∥〈C(uλ, αλ)Φ, U†(t)λψ#(·)U(t)C(uλ, αλ)Φ〉 − y#(·)

∥∥
L2(R3)

≤ λ
∥∥∥(P +N + 1)1/2C†(yλ, zλ)U(t)C(uλ, αλ)Φ

∥∥∥ .
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If we can bound, in a suitable way in λ, the norm on the right hand side of this
inequality we are done. However for general y and z we are able only to give an
estimate of the type∥∥∥(P +N + 1)1/2C†(yλ, zλ)U(t)C(uλ, αλ)Φ

∥∥∥ ∼ λ−6
∥∥(P +N + 1)2Φ

∥∥ .
That would lead to a divergent quantity in the limit λ → 0. Only for a particular
choice of (y, z) we are able to obtain a bound convergent in λ. We have to set
(y, z) = (u(t), α(t)) solution of the classical equations. In fact define

W (t, s) = C†(uλ(t), αλ(t))U(t− s)C(uλ(s), αλ(s))eiΛ(t,s) ,

with

Λ(t, s) = − 1

λ2

∫ t

s

dt′
∫

dx (χ̌ ∗A)(t′)ū(t′)u(t′) ;

then we are able to prove estimates of the type∥∥(P +N + 1)δW (t, s)Φ
∥∥2 ≤ K1(t, s)(1 + λ)eλ|t−s|+K2(t,s)∥∥∥(P +N + 1)6δ+3/2Φ

∥∥∥2

;

where K1(t, s) and K2(t, s) are independent of λ and δ is integer. So if we choose
δ∗ ≥ 6 + 3/2, then Φ ∈ D((P +N)6+3/2) and we obtain∥∥〈C(uλ, αλ)Φ, U†(t)λψ#(·)U(t)C(uλ, αλ)Φ〉 − u#(t, ·)

∥∥
L2(R3)

≤ λK1(t, s)(1 + λ)1/2e(λ|t−s|+K2(t,s))/2
∥∥∥(P +N + 1)6+3/2Φ

∥∥∥ −→
λ→0

0 .

An analogous result can be proved with a# and α#(t) instead of ψ# and u#(t). So
we have made clear in what sense the quantum operators λψ# and λa# converge to
the classical solutions u and α: we have the convergence of time evolved transition
amplitudes of such operators (between coherent states), in the L2-norm. Then we
can write

〈U(t)C(uλ, αλ)Φ, λψ#(·)U(t)C(uλ, αλ)Φ〉 L
2(R3)−→
λ→0

u#(t)

〈U(t)C(uλ, αλ)Φ, λa#(·)U(t)C(uλ, αλ)Φ〉 L
2(R3)−→
λ→0

α#(t) .

Now that we know the classical limit of creation and annihilation operators, it
is natural to study the behaviour of the quantum fluctuations around the classical
limit. In order to make clear what we mean by fluctuations we analyse in more
detail the evolution of quantum operators by Heisenberg equation. First of all
observe that if we write H as a function of λψ and λa we have that

H = λ−2h(λψ, λa) ,

with

h(ψ, a) =
1

2M

∫
dx (∇ψ)∗∇ψ +

∫
dk ωa∗a+

∫
dxϕψ∗ψ .

The time evolution of λψ and λa is then dictated by Heisenberg equations

(4.1)

{
i∂tλψ = [λψ,H]

i∂tλa = [λa,H]
.

If we call (u, α) the classical solution, we would like to expand h around (u, α) as
follows:

h(λψ, λa) = h(u, α) + h1(λψ − u, λa− α) + h2(λψ − u, λa− α)

+h3(λψ − u, λa− α) ,
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where h1, h2 and h3 have total degree 1, 2 and 3 respectively in the variables λψ−u,
λa− α and their hermitian conjugates. In particular we have:

h1(ψ, a) =− 1

2M

∫
dx∆uψ∗ +

∫
dk ωαa∗ +

∫
dx
(1

2
|u|2 ϕ

+ (χ̌ ∗A)uψ∗
)

+ h.c. ,

h2(ψ, a) =
1

2M

∫
dx (∇ψ)∗∇ψ +

∫
dk ωa∗a+

[∫
dx
(1

2
(χ̌ ∗A)ψ∗ψ

+ uϕψ∗
)

+ h.c.

]
,

h3(ψ, a) =

∫
dxϕψ∗ψ .

Now we define

hk,ψ(ψ, a) = [ψ, hk(ψ, a)]

hk,a(ψ, a) = [a, hk(ψ, a)]
with k = 1, 2, 3.

Equation (4.1) then could be rewritten as
i∂tu+ i∂t(λψ − u) =h1,ψ + h2,ψ(λψ − u, λa− α)

+ h3,ψ(λψ − u, λa− α)

i∂tα+ i∂t(λa− α) =h1,a + h2,a(λψ − u, λa− α)

+ h3,a(λψ − u, λa− α)

.

Since (u, α) is the classical solution, we obtain

(4.2)

{
i∂t(ψ − uλ) =h2,ψ(ψ − uλ, a− αλ) + λh3,ψ(ψ − uλ, a− αλ)

i∂t(a− αλ) =h2,a(ψ − uλ, a− αλ) + λh3,a(ψ − uλ, a− αλ)
,

where as before
uλ =

1

λ
u

αλ =
1

λ
α

.

We want to study equations (4.2), in particular their limit λ → 0; in fact, since
(u, α) is the classical solution, these limit equations will describe the quantum
fluctuations around the classical solution in the mean field limit. However we have
to define new variables with suitable initial conditions, independent of λ: define
θ(t) and c(t) by{

θ(t) = C(uλ(s), αλ(s))†(ψ(t)− uλ(t))C(uλ(s), αλ(s))

c(t) = C(uλ(s), αλ(s))†(a(t)− αλ(t))C(uλ(s), αλ(s))
,

such that θ(s) = ψ0 and c(s) = a0. So the initial problem (4.1) is now reduced to
finding two families of operators θ(t) and c(t) satisfying the initial conditions{

θ(s) = ψ0

c(s) = a0
,

and equations

(4.3)

{
i∂tθ =h2,ψ(θ, c) + λh3,ψ(θ, c)

i∂tc =h2,a(θ, c) + λh3,a(θ, c)
.

Furthermore we want to take the limit λ→ 0 of (4.3) in a suitable sense.
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It can be seen that formally the solution of (4.3) is given by{
θ(t) =W †(t, s)ψ0W (t, s)

c(t) =W †(t, s)a0W (t, s)
,

where W (t, s) is the unitary two-parameter group introduced before. We said this
solution is formal: in fact, as we will discuss in the main body of the work, W (t, s)
is not differentiable in t or s on a suitable subset of H ; however the operator in the

interaction picture W̃ (t, s) = U†0 (t)W (t, s)U0(s) is differentiable on a dense domain
(U0 is the free evolution group).

Consider now the limit equations of (4.3):

(4.4)

{
i∂tψ2 =h2,ψ(ψ2, a2)

i∂ta2 =h2,a(ψ2, a2)
,

with initial condition as before{
ψ2(s) = ψ0

a2(s) = a0
.

The formal solution of such system is{
ψ2(t) =U†2 (t, s)ψ0U2(t, s)

a2(t) =U2(t, s)a0U2(t, s)
,

where U2(t, s) is a two-parameter unitary group we will define precisely later. Again

is Ũ2(t, s) = U†0 (t)U2(t, s)U0(s) rather than U2(t, s) to be differentiable.
A crucial result we will prove is the convergence in the strong topology of

W̃ (t, s) to Ũ2(t, s):

s- lim
λ→0

W̃ (t, s) = Ũ2(t, s) .

Since U0, W̃ (t, s) and Ũ2(t, s) are unitary operators this implies also the sought
convergence:

s- lim
λ→0

W (t, s) = U2(t, s) ;

and that clarifies in what sense problem (4.3) converges to (4.4) when λ → 0.
Furthermore this strong convergence implies that, for any family of bounded and
suitably regular functions (Ri(ψ), Rj(a)) and for any family of times {ti} and {tj},
i = 1, . . . l, j = l + 1, . . .m:

(4.5)

s- lim
λ→0

C(uλ, αλ)†
l∏
i=1

Ri(ψ(ti)− uλ(ti))

m∏
j=l+1

Rj(a(tj)− αλ(tj))

C(uλ, αλ) =

l∏
i=1

Ri(ψ2(ti))

m∏
j=l+1

Rj(a2(tj)) .

This convergence can be interpreted in terms of correlation functions on coherent
states.

5. Normal ordered products of creation and annihilation operators.

As we just stated in equation (4.5) we could prove a convergence in terms of
correlation functions of bounded functions of creation and annihilation operators.
Then it is natural to ask if we could say something about unbounded functions of
creation and annihilation operators. We focused on the analysis of normal ordered
products of creation and annihilation operators at a fixed time t. We studied the
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average of such products not only between coherent states, but also between fixed
particle states.

Let u0, α0 ∈ L2(R3), with norm one. then for any p, n ∈ N we define

Λ = C(
√
p u0,

√
nα0)Ω ;

Ψ = u
⊗p
0 ⊗ C(

√
nα0)Ω ∈Hp ;

Θ = u
⊗p
0 ⊗ α⊗n0 ∈Hp,n .

By definition Λ is a coherent state; Ψ is a tensor product state of a fixed number p
of non-relativistic particles state and a coherent relativistic particles state; Θ is a
state with p non-relativistic and n relativistic particles. Each state has norm one.
We remark that in the classical limit p and n will go to infinity as λ−2, as discussed
before. The quantum evolution of such states is dictated by U(t) so define:

Λ(t) = U(t)Λ ,

Ψ(t) = U(t)Ψ ,

Θ(t) = U(t)Θ .

Consider now the following transition amplitudes:

ΓΛ(t)(Xq+r;Ki+j) =〈Λ(t),

q∏
a=1

λψ∗(xa)

r∏
b=q+1

λψ(xb)

i∏
c=1

λa∗(kc)

j∏
d=i+1

λa(kd)Λ(t)〉

ΓΨ(t)(Xq+r;Ki+j) =〈Ψ(t),

q∏
a=1

λψ∗(xa)

r∏
b=q+1

λψ(xb)

i∏
c=1

λa∗(kc)

j∏
d=i+1

λa(kd)Ψ(t)〉

ΓΘ(t)(Xq+r;Ki+j) =〈Θ(t),

q∏
a=1

λψ∗(xa)

r∏
b=q+1

λψ(xb)

i∏
c=1

λa∗(kc)

j∏
d=i+1

λa(kd)Θ(t)〉 ;

we are interested in their behavior when λ → 0 (or equivalently p, n → ∞ as
λ−2). We will show that ΓΛ(t), ΓΨ(t) and ΓΘ(t) ∈ L2(R3(q+r+i+j)) and prove their
convergence when λ→ 0 in that space.

The idea is to use the estimates of
∥∥(P +N + 1)δW (t, s)Φ

∥∥ discussed in the

previous section, and the convergence result of W̃ (t, s) towards Ũ2(t, s) to obtain
a better convergence rate in λ. We can manage to write fixed particle states as
particular combinations of coherent states, so we can apply the method to any
initial state.

We will prove the following results:∥∥∥ΓΛ(t) − ū
⊗q
t u⊗rt ᾱ⊗it α

⊗j
t

∥∥∥
2
≤ λ2CΛ(t) ,∥∥∥ΓΨ(t) − δqrū

⊗q
t u⊗rt ᾱ⊗it α

⊗j
t

∥∥∥
2
≤ δqrλ2CΨ(t) ,

where CΛ(t) and CΨ(t) are functions of time independent of λ, δqr equals 1 when q =
r and is zero otherwise, and (ut, αt) is the solution of the classical equations (3.2)
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with initial data u0, α0 ∈ L2(R3). The norm ‖·‖2 is the L2(R3(q+r+i+j)) one. So
we see that not only time ordered products of annihilation and creation operators
converge to products of the classical solutions in L2 when λ→ 0, but also that they
do it with a rate of convergence at least of λ2 (this also enhances the rate of the
convergence stated above of λψ# and λa# to the corresponding solutions of the
classical problem).

The result concerning Θ states is quite unexpected and deserves a comment. If
(ut, αt) is the solution of (3.2) with initial data (u0, α0), we define (ut(θ), αt(θ)) to
be the solution of the same equation but with initial data (u0, e

−iθα0). We remark
that the classical solution depends continuously on initial data in the L2 topology,
so (ut(θ), αt(θ)) converges to (ut, αt) in L2 when θ → 0.

Now we are able to state the result about Θ states:∥∥∥ΓΘ(t) − δqr
∫ 2π

0

dθ

2π
ū
⊗q
t (θ)u⊗rt (θ)ᾱ⊗it (θ)α

⊗j
t (θ)

∥∥∥
2
≤ δqrλ2CΘ(t) .

So the classical limit of product of operators in such case is not purely classical;
we mean that the limit is not simply the expected product of classical solutions,
but some sort of average of such a product over different initial conditions. This
result, as we mentioned, is quite unexpected and could suggest that fixed particle
states are not very useful when dealing with a field theory that does not preserve
the number of such particles.

6. Future developments.

The previous results concern the classical limit of the Nelson model with cut
off. The next question is to study the classical limit of the same model without
cut off. In that case the quantum hamiltonian of the theory is ill defined because
of ultraviolet divergences. The standard procedure to handle that situation is to
introduce a cut off which allows us to subtract to the hamiltonian operator a suit-
able scalar quantity, depending on the cut off in such a way that the renormalized
hamiltonian has a limit when the cut off is removed. This leads to a new hamilton-
ian with however domain of definition different from that of the free hamiltonian.
This is the source of the main difficulties in the treatment of the Nelson model.
See [Gro62, Nel64, Fro74]; also [Amm00] and the references thereof contained
for more recent developments.

Preliminary attempts to deal with the classical limit for the full theory without
cut off show unexpected difficulties. As an example it appears that the U2 evolution
of fluctuations around the classical solution does not exist. The natural continuation
of this thesis is to extend its results to that more singular situation.



CHAPTER 2

The classical Klein-Gordon/Schrödinger system of
equations.

We recall the convention for the Fourier transform f̂ of f :

f̂(k) =
1

(2π)3/2

∫
dx e−ikxf(x) ;

and of the inverse transform f̌ :

f̌(k) =
1

(2π)3/2

∫
dx eikxf(x) .

Furthermore let σ ∈ R+, then we define the function χ ∈ Lp(R3) for all 1 ≤ p ≤ ∞
as following:

χ(x) =

{
1 if |x| ≤ σ
0 if |x| > σ

.

Let α0, u0 ∈ L2(R3), and define U01(t) ≡ exp(i∆t/2), U02(t) ≡ exp(−iωt), with

(ωλα)(x) = (2π)−3/2

∫
dξ eiξx(µ2 + |ξ|2)λ/2α̂(ξ) , µ ≥ 0.

We consider the following system of integral equations:

(E)


u(t) = U01(t)u0 − i(2π)−3/2

∫ t

0

dτ U01(t− τ)u(τ)(χ̌ ∗A(τ))

α(t) = U02(t)α0 − i
(2π)−3/2

√
2

∫ t

0

dτ U02(t− τ)ω−1/2χ̌ ∗ (|u(τ)|2)

where A(t) = ω−1/2(α(t) + ᾱ(t)). We want to prove the existence of a unique
solution of the system in C 0(R, L2(R3)⊗ L2(R3)). We follow the method used by
Bachelot [Bac84] to study more singular potentials.

1. Existence and uniqueness of solution.

Lemma 1.1. Let V ∈ C 0(R, L∞(R3)). Then, for all u0 ∈ L2(R3), ∃!u ∈
C 0(R, L2(R3)) solution of

(1.1) u(t) = U01(t)u0 − i
∫ t

0

dτ U01(t− τ)V (τ)u(τ) .

Furthermore if

uj(t) = U01(t)u0 − i
∫ t

0

dτ U01(t− τ)Vj(τ)uj(τ) with j = 1, 2

we have the following estimate:

(1.2)

‖u1(t)− u2(t)‖2 ≤
∥∥u2; C 0([0, t], L2)

∥∥∫ t

0

dτ ‖(V1 − V2)(τ)‖∞

exp

(∣∣∣∣∫ t

0

dτ ‖V1(τ)‖∞

∣∣∣∣) .

15
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Finally if V is real then ‖u(t)‖2 = ‖u0‖2 for all t (the charge is conserved).

Proof. We start with uniqueness. Let u and u′ be solutions of (1.1), then
u−(·) = (u− u′)(·) satisfies:

u−(t) = −i
∫ t

0

dτ U01(t− τ)V (τ)u−(τ) ,

‖u−(t)‖2 ≤
∫ t

0

dτ ‖V (τ)‖∞ ‖u−(τ)‖2 ,

so applying the Lemma of Gronwall we have u− = 0.
Now we turn to existence. Let u0(t) = U01(t)u0; then for all j ≥ 1 we define

iteratively:

(1.3) uj(t) = u0(t)− i
∫ t

0

dτ U01(t− τ)V (τ)uj−1(τ) .

By definition we have that

un(t) = u0(t) +

n∑
j=1

(−i)j
∫

t≥t1···≥tj≥0

dt1 . . . dtj U01(t− t1)V (t1)

U01(t1 − t2)V (t2) . . . U01(tj−1 − tj)V (tj)u0(tj) ,

so for all n > m:

(un − um)(t) =

n∑
j=m+1

(−i)j
∫

t≥t1···≥tj≥0

dt1 . . . dtj U01(t− t1)V (t1)

U01(t1 − t2)V (t2) . . . U01(tj−1 − tj)V (tj)u0(tj) .

We then obtain the following estimate:

‖(un − um)(t)‖2 ≤
n∑

j=m+1

∫
t≥t1···≥tj≥0

dt1 . . . dtj ‖V (t1)‖∞ . . . ‖V (tj)‖∞

sup
0≤τ≤t

‖u0(τ)‖2

≤
n∑

j=m+1

1

j!

(∫ t

0

dτ ‖V (τ)‖∞

)j
sup

0≤τ≤t
‖u0(τ)‖2 .

So ∃ limj→∞ uj(t) ≡ u(t) in C (I, L2(R3)) for all compact interval I. Taking the
limit of both members of (1.3) we see that u(t) satisfies (1.1).

To prove (1.2) we write:

‖u1(t)− u1(t)‖2 ≤
∫ t

0

dτ
(
‖V1(τ)− V2(τ)‖∞ ‖u2(τ)‖2 + ‖V1(τ)‖∞

‖u1(τ)− u2(τ)‖2
)
.

Equation (1.2) then follows applying the Lemma of Gronwall.
To prove charge conservation we define ũ(t) ≡ U01(−t)u(t). So we have

ũ(t) = u0 − i
∫ t

0

dτ U01(−τ)V (τ)u(τ) ,

then since U01 is continuous, ũ(t) is differentiable in t and

i∂tũ(t) = U01(−t)V (t)u(t) .
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Now we can write:

∂t〈u(t), u(t)〉 = ∂t〈ũ(t), ũ(t)〉 = 2Re〈ũ(t), ∂tũ(t)〉 = 2Im〈ũ(t), i∂tũ(t)〉
= 2Im〈ũ(t), U01(−t)V (t)u(t)〉 = 2Im〈u(t), V (t)u(t)〉 = 0 ,

since V is real. �

Now we can prove the existence of a unique solution of the system (E), this is
done in the following proposition:

Proposition 1. Let u0, α0 ∈ L2(R3). Then ∃!(u(·), α(·)) in C 0(R, L2(R3) ⊗
L2(R3)) solution of the integral system (E).

Proof. First of all we solve for all j = 1, 2, . . . the systems:

(Ej)


uj(t) = u0(t)− i(2π)−3/2

∫ t

0

dτ U01(t− τ)uj(τ)(χ̌ ∗Aj−1(τ))

αj(t) = α0(t)− i (2π)−3/2

√
2

∫ t

0

dτ U02(t− τ)ω−1/2χ̌ ∗ (|uj−1(τ)|2)

with u0(t) ≡ U01(t)u0, α0(t) ≡ U02(t)α0. Observe that if αj ∈ C 0(R, L2(R3)), we
have using Sobolev’s inequality Aj ∈ C 0(R, L3(R3)); so χ̌ ∗ Aj ∈ C 0(R, L∞(R3))

by Young’s inequality. Furthermore if uj ∈ C 0(R, L2(R3)), χ̌ ∗ (|uj−1(τ)|2) ∈
C 0(R, L2(R3)). Using Lemma 1.1 we have a unique solution uj ∈ C 0(R, L2(R3))
of the first equation of (Ej), while the second equation defines αj ∈ C 0(R, L2(R3)).
We want now to prove that ∃ limj→∞(uj , αj) in C 0(I, L2(R3)) for a suitable com-
pact I. Let t ∈ I, and define the map S on C 0(I, L2(R3)⊗ L2(R3)) as

S

(
u(t)

α(t)

)
=


u0(t)− i(2π)−3/2

∫ t

0

dτ U01(t− τ)u(τ)(χ̌ ∗A(τ))

α0(t)− i (2π)−3/2

√
2

∫ t

0

dτ U02(t− τ)ω−1/2χ̌ ∗ (|u(τ)|2)

 ,

so we can write (Ej) as(
uj(t)

αj(t)

)
= S

(
uj−1(t)

αj−1(t)

)
.

So if S a contraction map on C 0(I, L2(R3)⊗ L2(R3)) for a suitable I, the Banach
fixed point theorem provides that the limit exists in that space and is the unique
solution of (E). In order to do that we have to calculate the norm of

S

(
u1(t)

α1(t)

)
− S

(
u2(t)

α2(t)

)
=

(
u′1(t)

α′1(t)

)
−

(
u′2(t)

α′2(t)

)
,

where u1, u2, α1, α2 ∈ C 0(I, L2(R3)). Let I = [0, ε]; we use estimate (1.2) of
Lemma 1.1 and conservation of charge to obtain:

sup
t∈I
‖u′1(t)− u′2(t)‖2 ≤ (2π)−3/2

∥∥u2; C 0(I, L2)
∥∥∫ t

0

dτ ‖χ̌ ∗ (A1 −A2)(τ)‖∞ exp

(
(2π)−3/2

∣∣∣∣∫ t

0

dτ ‖χ̌ ∗A1(τ)‖∞

∣∣∣∣)
≤ Cs(2π)−3/2ε ‖χ̌‖3/2 exp

(
Cs(2π)−3/2ε ‖χ̌‖3/2 max

j=1,2

∥∥αj ; C 0(I, L2)
∥∥)

max
j=1,2

∥∥uj ; C 0(I, L2)
∥∥∥∥α1 − α2; C 0(I, L2)

∥∥ .
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We consider now α′1 − α′2:

sup
t∈I
‖α′1(t)− α′2(t)‖2 ≤

(2π)−3/2

√
2

∥∥∥ω−1/2χ̌
∥∥∥

2

∫ t

0

dτ
∥∥∥(|u1|2 − |u2|2)(τ)

∥∥∥
1

≤ (2π)−3/2

√
2

‖χ̌‖2
∫ t

0

dτ
(
‖u1 + u2‖2 ‖u1 − u2‖2

)
(τ)

≤
√

2(2π)−3/2ε ‖χ̌‖2 max
j=1,2

∥∥uj ; C 0(I, L2)
∥∥ ∥∥u1 − u2; C 0(I, L2)

∥∥ .
So choosing ε small enough it follows that S is a strict contraction on C 0(I, L2(R3)⊗
L2(R3)) and so admits a unique fixed point (u(t), α(t)) solution of (E) on that space.
The charge of u(t) is conserved as proved in Lemma 1.1, so for all real t we have
‖u(t)‖2 = ‖u0‖2. Using this fact we can extend the solution to C 0(R, L2(R3) ⊗
L2(R3)). �

Remark 1.1.1. If (u(t), α(t)) is the solution of (E) in C 0(R, L2(R3)⊗L2(R3)),
define (ũ(t), α̃(t)) ≡ (U01(−t)u(t), U02(−t)α(t)).

Then (ũ(t), α̃(t)) ∈ C 1(R, L2(R3)⊗ L2(R3)) and we have that:

i∂tũ(t) = (2π)−3/2U01(−t)
(
χ̌ ∗A(t)

)
u(t) ,

i∂tα̃(t) =
(2π)−3/2

√
2

U02(−t)
(
ω−1/2χ̌ ∗ |u(t)|2

)
.

2. Continuity of solution with respect to initial conditions.

Lemma 2.1. Let (u1(·), α1(·)) and (u2(·), α2(·)) be the solutions of (E) in
C 0(R, L2(R3) ⊗ L2(R3)) corresponding respectively to initial data (u0, α01) and
(u0, α02) both in L2 ⊗L2. Then if α01 →L2 α02, then (u1(·), α1(·))→ (u2(·), α2(·))
in C 0(R, L2(R3)⊗ L2(R3)).

Proof. Let 0 < t ∈ [0, T ] compact. From (E) using equation (1.2) we find the
following estimates:

‖u1(t)− u2(t)‖2 ≤ f(t)

∫ t

0

dτ ‖(α1 − α2)(τ)‖2

‖α1(t)− α2(t)‖2 ≤ ‖α01 − α02‖2 + g(t)

∫ t

0

dτ ‖(u1 − u2)(τ)‖2

;

where both f and g are locally bounded positive functions. Using the first equation,
the second one becomes:

‖α1(t)− α2(t)‖2 ≤ ‖α01 − α02‖2 + g(t)

∫ t

0

dτ f(τ)∫ τ

0

dτ ′ ‖(α1 − α2)(τ ′)‖2

≤ ‖α01 − α02‖2 + C(T )

∫ t

0

dτ ‖(α1 − α2)(τ)‖2 ,

so using Gronwall’s Lemma we obtain:

‖α1(t)− α2(t)‖2 ≤ ‖α01 − α02‖2 e
TC(T ) ,

so we have{ ∥∥u1 − u2; C 0([0, T ], L2)
∥∥

2
≤ C1(T ) ‖α01 − α02‖2∥∥α1 − α2; C 0([0, T ], L2)

∥∥
2
≤ C2(T ) ‖α01 − α02‖2

,

for any compact interval [0, T ]. �



CHAPTER 3

The quantum theory.

To describe the quantum theory we will use standard results on the theory of
operators in Hilbert spaces, that can be found for example in [RS72, RS75].

The space where the quantum theory is defined is the tensor product of two
symmetric Fock spaces, representing the nonrelativistic and relativistic fields. As
in the introduction, for any p, n ∈ N we define

Hp,n =
{

Φp,n : Φp,n(Xp;Kn) ∈ L2(R3p+3n)
}
,

where Xp = {x1, . . . , xp}, Kn = {k1, . . . , kn} and Φp,n is separately symmetric with
respect to the first p and the last n variables. The Hilbert space H of the theory
is taken to be the direct sum of the Hp,n:

H =

∞⊕
p,n=0

Hp,n .

We will use freely the following properties of the tensor product of Hilbert spaces:

Hp,n = Hp,0 ⊗H0,n ,

and

H =
( ∞⊕
p=0

Hp,0

)
⊗
( ∞⊕
n=0

H0,n

)
=

∞⊕
p=0

Hp ,

with

Hp = Hp,0 ⊗
∞⊕
n=0

H0,n .

We call C0(P,N) the space of finite particle vectors; C0(P,N) is dense in H . We
will eventually denote with B(H ) the space of bounded operators of H , and |‖·‖|
its norm. If B is an operator in L2(R3) with domain D, we call dΓp(B) the operator
on
⊕

p Hp,0 that acts on Hp,0 as B⊗1⊗· · ·⊗1+1⊗B⊗1⊗· · ·⊗1+· · ·+1⊗· · ·⊗1⊗B;

a domain of essential self-adjointness for dΓp(B) is the domain DB , the subspace of
C0(P ) of functions Φ = {Φ0,Φ1, . . . ,Φj , . . . } such that for each j either Φj is zero

or in
⊗j

k=1D. The definition of dΓn(B) is perfectly analogous. We denote with Xp

the set of variables {x1, . . . , xp} and accordingly with Kn the set {k1, . . . , kn}; then
introduce the formal operator valued distributions, ψ(x), ψ∗(x), a(k) and a∗(k):

(ψ(x)Φ)p,n(Xp;Kn) =
√
p+ 1Φp+1,n(x, x1, . . . , xp;Kn) ,

(ψ∗(x)Φ)p,n(Xp;Kn) =
1
√
p

p∑
i=1

δ(x− xi)Φp−1,n(Xp \ xi;Kn) ,

(a(k)Φ)p,n(Xp;Kn) =
√
n+ 1Φp,n+1(Xp; k, k1, . . . , kn) ,

(a∗(k)Φ)p,n(Xp;Kn) =
1√
n

n∑
j=1

δ(k − kj)Φp,n−1(Xp;Kn \ kj) .
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It is easy to see that
[ψ(x), ψ∗(x′)] = δ(x− x′)
[ψ(x), ψ(x′)] = [ψ∗(x), ψ∗(x′)] = 0

[a(k), a∗(k′)] = δ(k − k′)
[a(k), a(k′)] = [a∗(k), a∗(k′)] = 0

.

Integrating the distributions with functions we obtain the annihilation and creation
operators. Let f ∈ L2(R3) and define:

(ψ(f)Φ)p,n(Xp;Kn) =
√
p+ 1

∫
dx f(x)Φp+1,n(x, x1, . . . , xp;Kn) ,

(ψ∗(f)Φ)p,n(Xp;Kn) =
1
√
p

p∑
i=1

f(xi)Φp−1,n(Xp \ xi;Kn) ,

(a(f)Φ)p,n(Xp;Kn) =
√
n+ 1

∫
dk f(k)Φp,n+1(Xp; k, k1, . . . , kn) ,

(a∗(f)Φ)p,n(Xp;Kn) =
1√
n

n∑
j=1

f(kj)Φp,n−1(Xp;Kn \ kj) .

In Appendix A we provide a detailed mathematical description of creation and
annihilation operators in Fock space. If Xp,Kn are sets of variables, then

ψ#(Xp) =

p∏
i=1

ψ#(xi) , a
#(Kn) =

n∏
j=1

a#(kj) .

On Hp we also define slightly different relativistic annihilation and creation oper-
ators; consider now f ∈ L∞(R3p, L2(R3)) and define

(b(f)Φ)p,n(Xp;Kn) =
√
n+ 1

∫
dk f(Xp, k)Φp,n+1(Xp; k,Kn) ,

(b∗(f)Φ)p,n(Xp;Kn) =
1√
n

n∑
j=1

f(Xp, kj)Φp,n−1(Xp;Kn \ kj) .

We also define the particle number operators of H , together with their domains of
self-adjointness:

P = dΓp(1)⊗ 1 , D(P ) =

{
Φ ∈H

∣∣∣ ∞∑
p,n=0

p2 ‖Φ‖2p,n <∞

}
,

N = 1⊗ dΓn(1) , D(N) =

{
Φ ∈H

∣∣∣ ∞∑
p,n=0

n2 ‖Φ‖2p,n <∞

}
,

Q = P +N , D(Q) =

{
Φ ∈H

∣∣∣ ∞∑
p,n=0

(p+ n)2 ‖Φ‖2p,n <∞

}
.

1. Nelson’s Hamiltonian (self-adjointness).

Now we can define the free Hamiltonian function of the system:
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Definition (Free Hamiltonian). H0 = (H01 + H02) , with domain of self-
adjointness D(H0) and

H01 =
1

2M

∫
dx (∇ψ)∗(x)∇ψ(x) = dΓp

(
− ∆

2M

)
⊗ 1 , M > 0 ;

H02 =

∫
dk ω(k)a∗(k)a(k) = 1⊗ dΓn

(
ω(·)

)
, ω(k) =

√
k2 + µ2 ,

µ ≥ 0 .

To introduce the interaction we define the operator valued function ϕ(x) =
ϕ−(x) + (ϕ−(x))†, with

ϕ−(x) =

∫
dk

χσ(k)

(2π)3/2(2ω(k))1/2
a(k)eikx ;

and the operators:

H−I = λ

∫
dxϕ−(x)ψ∗(x)ψ(x) , H+

I = (H−I )† ,

HI

∣∣
p

= λ

∫
dxϕ(x)ψ∗(x)ψ(x) = b(f̄) + b∗(f) , λ > 0 ;

f =

p∑
j=1

fj , fj = λf0e
−ik·xj , f0 = (2π)−3/2(2ω)−1/2χσ .

We remark that for all σ ∈ R, f0 ∈ L2(R3) with ωδf0 ∈ L2(R3) for all δ ≥ −1/2,
even when µ = 0.

Definition (Interaction Hamiltonian). HI = H−I +H+
I , defined on D(P 2+N).

Definition (Nelson’s Hamiltonian). H = (H0 +HI) .

We remark that for all Φ ∈ D(H0)∩D(P 2+N) we have that HΦ = (H0+HI)Φ.
Both H0 and, as we will see, H are self-adjoint operators on H , so we associate with
each one a unitary evolution operator using the Theorem of Stone; in particular we
define:

Definition (Evolution operators (Stone’s Theorem)). U0(t) = exp{−itH0}
and U(t) = exp{−itH}.

Prior to prove self-adjointness of H we formulate a useful lemma:

Lemma 1.1. Let f ∈ L∞(R3p, L2(R3)) such that also ω−1/2(k)f(Xp, k) is in

L∞(R3p, L2(R3)). Then, for all Φ ∈ D(H
1/2
02 ) ∩Hp, intended as the domain on

which the RHS is finite, the following estimates hold:

‖b(f)Φ‖2 ≤
∥∥∥ω−1/2f

∥∥∥2

∗

∥∥∥H1/2
02 Φ

∥∥∥2

;

‖b∗(f)Φ‖2 ≤
∥∥∥ω−1/2f

∥∥∥2

∗

∥∥∥H1/2
02 Φ

∥∥∥2

+ ‖f‖2∗ ‖Φ‖
2

;

where ‖·‖∗ is the L∞(R3p, L2(R3))-norm.

Let now f ∈ L∞(R3p, L2(R3)), and Φ ∈ D(N1/2) ∩Hp, then:

‖b(f)Φ‖ ≤ ‖f‖∗
∥∥∥N1/2Φ

∥∥∥ ;

‖b∗(f)Φ‖ ≤ ‖f‖∗
∥∥∥(N + 1)1/2Φ

∥∥∥ .
Proof. These estimates are easily provable by a direct calculation on Hp,n, us-

ing Schwarz’s inequality and the symmetry of Φp,n. See also Lemma 2.1 of [GNV06]
as a reference. �
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Corollary. For all Φ ∈ D(P 2 +N) ∩D(PN1/2) we have that:

‖HIΦ‖ ≤ 2λ ‖f0‖2
∥∥∥P (N + 1)1/2Φ

∥∥∥ ≤ λ ‖f0‖2
∥∥(P 2 +N + 1)Φ

∥∥ .
Proof. We use the second couple of inequalities of the above lemma on Hp,

then sum over all p. �

Let Φp, H0

∣∣
p

and H
∣∣
p

be the projections of Φ ∈H , H0 and H respectively on

Hp. Then we can formulate the following proposition:

Proposition 2 (Self-adjointness of H).

i. H
∣∣
p

is self-adjoint on Hp with domain D(H0

∣∣
p
).

ii. H is self-adjoint on H with domain D(H) defined as following:

D(H) =
{

Φ ∈H :

∞∑
p=0

∥∥∥H∣∣
p
Φp

∥∥∥2

<∞, Φp ∈ D(H0

∣∣
p
)
}
.

iii. On H , we have the following inclusions:

D(H0) ⊇ D(H) ∩D(P 2 +N) ,

D(H) ⊇ D(H0) ∩D(P 2 +N) .

Proof. i. In order to prove the self-adjointness of H
∣∣
p

we will show that HI

∣∣
p

is a Kato perturbation of H0

∣∣
p
. Using Lemma 1.1 for all Φp ∈ D(H0

∣∣
p
) we obtain

‖HIΦp‖2 ≤ 4λ2
∥∥∥ω−1/2f0

∥∥∥2

2

∥∥∥PH1/2
02 Φp

∥∥∥2

+ 2λ2 ‖f0‖22 ‖PΦp‖2 .

But since AB ≤ (1/2ρ2)A2 + (ρ2/2)B2 for all A,B ≥ 0 with ρ > 0 it follows that,
for all ε > 0:

‖HIΦp‖2 ≤ ε2 ‖H02Φp‖2 +
4λ4

ε2

∥∥∥ω−1/2f0

∥∥∥4

2

∥∥P 2Φp
∥∥2

+2λ2 ‖f0‖22 ‖PΦp‖2 ;

so choosing ε < 1 we prove that HI

∣∣
p

is a Kato perturbation since P is a bounded

operator on Hp.
ii. Since H

∣∣
p

is self-adjoint on Hp we can define a self-adjoint operator H on

H as the direct sum

H =

∞⊕
p=0

H
∣∣
p

with the maximal domain such that H
∣∣
p
Φp is defined for all p and the norm ‖HΦ‖

is finite.
iii. To prove the first relation we proceed as following: from the fact that

H0 = H −HI we can write

‖H0Φ‖ ≤ ‖HΦ‖+ ‖HIΦ‖ .
Then using the Corollary of Lemma 1.1 we obtain for all Φ ∈ D(H) ∩D(P 2 +N)

‖H0Φ‖ ≤ ‖HΦ‖+K
∥∥(P 2 +N + 1)Φ

∥∥ ,
with K a positive constant. So whenever both the norms of HΦ and (P 2 + N)Φ
are finite, also the norm of H0Φ is finite and that proves the assertion. The second
relation is proved in analogous fashion, writing H = H0 +HI to obtain

‖HΦ‖ ≤ ‖H0Φ‖+K
∥∥(P 2 +N + 1)Φ

∥∥ ,
for all Φ ∈ D(H0) ∩D(P 2 +N). �
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Proposition 3 (Self-adjointness of H (direct proof)). H0 +HI is essentially
self-adjoint on D(H0) ∩ C0(P,N) ≡ D.

Proof. Only in this proof P and N will be two positive integers and not the
particle number operators. We define the orthogonal projector QP,N as follows:

(QP,NΦ)p,n =

Φp,n if

{
p ≤ P
n ≤ N

0 otherwise.

Using Lemma 2.1 we will prove in the next section we have

b(f̄)QP,N = QP,N−1b(f̄)QP,N
b∗(f)QP,N = QP,N+1b

∗(f)QP,N .

H0 + HI is trivially symmetric. It will be then sufficient to show that (z −
(H0 +HI))D is dense in H for all z ∈ C with Imz 6= 0. Let Ψ ∈H such that

(1.1) 〈Ψ, (z − (H0 +HI))Φ〉 = 0

for all Φ ∈ D. We will prove Ψ = 0. From (1.1) it follows

(1.2) 〈Ψ, H0Φ〉 = z〈Ψ,Φ〉 − 〈Ψ, b(f̄)Φ〉 − 〈Ψ, b∗(f)Φ〉 .

Choose Φ to have the only component different from zero to be Φp,n ∈ Hp,n. A
direct calculation let us rewrite (1.2) as

(1.3)

〈Ψp,n, H0

∣∣
p,n

Φp,n〉 − z〈Ψp,n,Φp,n〉 = n1/2

∫
dXpdKn f̄(Xp, k1)

Ψp,n−1(Xp;Kn−1)Φp,n(Xp; k1 ∪Kn−1)

+(n+ 1)1/2

∫
dXpdKndk f(Xp, k)Ψp,n+1(Xp; k ∪Kn)Φp,n(Xp;Kn) .

From (1.3) it follows∣∣∣∣〈Ψp,n, H0

∣∣∣
p,n

Φp,n〉
∣∣∣∣ ≤ ‖Φp,n‖Hp,n

[
|z|+ pλ ‖f0‖2

(
n1/2 ‖Ψp,n−1‖Hp,n−1

+(n+ 1)1/2 ‖Ψp,n+1‖Hp,n+1

)]
.

Since H0

∣∣
p,n

is self-adjoint Ψp,n ∈ D(H0

∣∣
p,n

). So for all P and N , QP,NΨ ∈ D. We

remark that

〈Ψ, H0QP,NΨ〉 = 〈QP,NΨ, H0QP,NΨ〉
〈Ψ,QP,NΨ〉 = 〈QP,NΨ,QP,NΨ〉
〈Ψ, b(f̄)QP,NΨ〉+ 〈Ψ, b∗(f)QP,NΨ〉 = 〈QP,NΨ, b(f̄)QP,NΨ〉

+〈QP,NΨ, b∗(f)QP,NΨ〉+ 〈(1−QP,N )Ψ, b(f̄)QP,NΨ〉
+〈(1−QP,N )Ψ, b∗(f)QP,NΨ〉 ,

so we obtain

(1.4)

Imz ‖QP,NΨ‖2 = Im

[
〈(1−QP,N )Ψ, b(f̄)QP,NΨ〉

+〈(1−QP,N )Ψ, b∗(f)QP,NΨ〉
]
.

By QP,N−1(1−QP,N ) = 0 we have

〈(1−QP,N )Ψ, b(f̄)QP,NΨ〉 = 〈QP,N−1(1−QP,N )Ψ, b(f̄)QP,NΨ〉 = 0 ;
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also

〈(1−QP,N )Ψ, b∗(f)QP,NΨ〉 = 〈(QP,N+1 −QP,N )Ψ, b∗(f)QP,NΨ〉

=
∑
p≤P

〈b(f̄)Ψp,N+1,QP,NΨ〉 =
∑
p≤P

〈b(f̄)Ψp,N+1,Ψp,N 〉

= (N + 1)1/2
∑
p≤P

∫
dXpdKNdk f(Xp, k)

Ψp,N+1(Xp; k ∪KN )Ψp,N (Xp;KN ) .

Equation (1.4) then becomes:

Imz
∑
p≤P
n≤N

‖Ψp,n‖2Hp,n
= (N + 1)1/2

∑
p≤P

∫
dXpdKNdk f(Xp, k)

Ψp,N+1(Xp; k ∪KN )Ψp,N (Xp;KN ) ,

so we obtain

(1.5)

|Imz|
(N + 1)1/2

∑
p≤P
n≤N

‖Ψp,n‖2Hp,n
≤ λ ‖f0‖2

∑
p≤P

p ‖Ψp,N+1‖Hp,N+1
‖Ψp,N‖Hp,N

≤ λ

2
P ‖f0‖2

(∑
p≤P

‖Ψp,N+1‖2Hp,N+1
+
∑
p≤P

‖Ψp,N‖2Hp,N

)
.

We fix P . If we have∑
p≤P

0≤n<∞

‖Ψp,n‖2Hp,n
≡ S2

P <∞ ,

then ∃N(P ) such that ∀N ≥ N(P )

1

2
S2
P ≤

∑
p≤P

0≤n≤N

‖Ψp,n‖2Hp,n
≤ S2

P .

From (1.5) we would have for all N ≥ N(P )

|Imz|
(N + 1)1/2

S2
P ≤ λP ‖f0‖2

(∑
p≤P

‖Ψp,N+1‖2Hp,N+1
+
∑
p≤P

‖Ψp,N‖2Hp,N

)
,

hence

|Imz|S2
P

∑
N(P )≤N≤N ′

(N + 1)−1/2 ≤ 2λP ‖f0‖2
∑
p≤P

N(P )≤N≤N′+1

‖Ψp,N‖2Hp,N

≤ 2λP ‖f0‖2 S
2
P ,

and that is absurd, since∑
N(P )≤N<∞

(N + 1)−1/2

is divergent, unless Ψ = 0. �
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2. Invariance of domains

In order to prove invariance under evolution of some useful domains we formu-
late the following lemma:

Lemma 2.1 (Ordered products of creation and annihilation operators).
Let F (λ) be the spectral family of the operator P+N , f(P,N) any F -measurable

operator-valued function, with domain D(f); consider now the operator

B =

∫
dXqdYrdKidMj g(Xq, Yr,Ki,Mj)ψ

∗(Xq)ψ(Yr)a
∗(Ki)a(Mj) ,

defined on D(B), with q, r, i, j ∈ N and q + r + i+ j = δ. Then:

i. The following equality holds:

f(P,N)BΨ = Bf(P + q − r,N + i− j)Ψ
for suitable Ψ.

ii. For all g ∈ L2(R3δ) and Φ ∈ D(Qδ) the following estimate holds:

‖BΦ‖ ≤ ‖g‖L2(R3δ)

∥∥∥∥
√
P !(P + q − r)!N !(N + i− j)!

(P − r)!(N − j)!
θ(P − r)θ(N − j)Φ

∥∥∥∥
where θ(ξ) = 1 if ξ ≥ 0 and zero otherwise, with ξ ∈ Z.

Proof. This Lemma is an extension of Lemmas 1.2 and 2.4 of Appendix A,
and the proof is perfectly analogous. �

Proposition 4 (Invariance of D((P 2+N)) and D(H0) under evolution). U0(·)
transforms D(H0) and D(f(P,N)), where f is any F -measurable function (see
Lemma 2.1), into themselves, U(·) transforms D(H) and D((P 2 +N)) into them-
selves; in particular we have:

i. U0(t)Φ ∈ D(H0) for all t ∈ R, Φ ∈ D(H0), and

‖H0U0(t)Φ‖ = ‖H0Φ‖ ;

ii. U0(t)Φ ∈ D(f(P,N)) for all t ∈ R, Φ ∈ D(f(P,N)), and

‖f(P,N)U0(t)Φ‖ = ‖f(P,N)Φ‖ ;

iii. U(t)Φ ∈ D(H) for all t ∈ R, Φ ∈ D(H), and

‖HU(t)Φ‖ = ‖HΦ‖ .
iv. U(t)Φ ∈ D((P 2 +N)δ) for all t ∈ R, Φ ∈ D((P 2 +N)δ), δ ∈ R; and∥∥(P 2 +N + 1)δU(t)Φ

∥∥ ≤ exp(|δ|µδλ ‖f0‖2 |t|)
∥∥(P 2 +N + 1)δΦ

∥∥ ,
with µδ = max(3, 1 + 2|δ|).

Proof.
i. and iii. Both statements are an easy application of Stone’s Theorem.
ii. The proof is straightforward since P and N commute with H0 and U0(t) is

unitary for all t ∈ R.
iv. Let Φ ∈ D(H0

∣∣
p
), 0 < h(N) a bounded operator on Hp such that Ranh(N) ⊂

D(N1/2). Define the differentiable quantity

M(t) ≡ 1

2
‖h(N)U(t)Φ‖2 .

With a bit of manipulation and since H0 commutes with N we obtain

d

dt
M(t) = Im〈h(N)U(t)Φ, a(f)

(
h(N − 1)h(N)−1 − 1

)
h(N)U(t)Φ〉

+ Im〈a(f)
(
h(N)h(N − 1)−1 − 1

)
h(N)U(t)Φ, h(N)U(t)Φ〉.
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So we can bound the derivative of M(t) by∣∣∣∣ d

dt
M(t)

∣∣∣∣ ≤ 2pλ ‖f0‖2

[
|‖
√
N
(
h(N − 1)h(N)−1 − 1

)
‖|

+|‖
√
N
(
h(N)h(N − 1)−1 − 1

)
‖|

]
M(t) .

Let h ∈ C 1, h(·) and |h′(·)| non-increasing; then

|h(N − 1)− h(N)| ≤ |h′(N − 1)| ,

and

K ≡

[
. . .

]
≤ sup
n=0,1,...

√
n |h′(n− 1)|h−1(n)

+ sup
n=0,1,...

√
n |h′(n− 1)|h−1(n− 1) .

We are interested in the case h(n) = (n + j + 1)−δ, with δ ≥ 1/2 (so Ranh(N) ⊂
D(N1/2)) and j ≥ 1. h satisfies the hypothesis above and h′(n) = −δ(n+j+1)−δ−1.
So we have that

|h′(n− 1)|h−1(n) = δ(n+ j)−1
(

1 +
1

n+ j

)δ
≤ δ2δ(n+ j)−1 ,

|h′(n− 1)|h−1(n− 1) = δ(n+ j)−1 .

The function g(x) =
√
x/(x+ j), with x ≥ 0 has a maximum when x = j, so

g(x) ≤ g(j) ≤ 1

2
j−1/2 ,

K ≤ 1

2
δ(1 + 2δ)j−1/2 .

We have then the following differential inequality for M(t):

d

dt
M(t) ≤ pj−1/2λ ‖f0‖2 δ(1 + 2δ)M(t) ,

so the Gronwall Lemma implies

M(t) ≤ epj
−1/2δ(1+2δ)λ‖f0‖2tM(0) .

Set now j = p2, with p ≥ 1:

(2.1)
∥∥(N + p2 + 1)−δU(t)Φ

∥∥ ≤ eδ(1+2δ)λ‖f0‖2t
∥∥(N + p2 + 1)−δΦ

∥∥ ;

for all δ ≥ 1/2 and Φ ∈ D(H0

∣∣
p
). Interpolating between δ = 0 and δ = 1 we extend

the result to 0 ≤ δ ≤ 1:

(2.2)
∥∥(N + p2 + 1)−δU(t)Φ

∥∥ ≤ e3δλ‖f0‖2t
∥∥(N + p2 + 1)−δΦ

∥∥ .
These results extend immediately to all Φ ∈Hp. Now let A = (N + p2 + 1)δ, so we
write equations (2.1) and (2.2) (depending on the value of δ) in compact notation
as ∥∥A−1U(t)AΦ

∥∥ ≤ a(t) ‖Φ‖ ,

for all Φ ∈ D(A). Let Ψ ∈Hp and Φ ∈ D(A); then∣∣〈Ψ, A−1U(t)AΦ〉
∣∣ =

∣∣〈U(−t)A−1Ψ, AΦ〉
∣∣ ≤ a(t) ‖Ψ‖ ‖Φ‖ ,
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so U(−t)A−1Ψ ∈ D(A†) = D(A) since A is self-adjoint, so

〈AU(−t)A−1Ψ,Φ〉 = 〈U(−t)A−1Ψ, AΦ〉 ,∥∥AU(−t)A−1Ψ
∥∥ ≤ a(t) ‖Ψ‖ ,

a(t) = eδµδλ‖f0‖2t ,

µδ = max(3, 1 + 2δ) .

The result on H follows by taking the direct sum of all p. �

3. Weyl operators.

Weyl operators are described in great detail in Appendix A, however we will give
here their definition, and state the properties we will use the most as a proposition,
to help readability. Proofs can be recovered in the Appendix.

Let u and α in L2(R3), then the following operators are skew self-adjoint:

(ψ∗(u)− ψ(ū)) = −
(

(ψ∗(u)− ψ(ū))

)†
(a∗(α)− a(ᾱ)) = −

(
(a∗(α)− a(ᾱ))

)†
.

Definition (Weyl operators). For all u, α ∈ L2(R3) we define the following
unitary operators:

Cp(u) = exp
[
(ψ∗(u)− ψ(ū))

]
defined on

∞⊕
p=0

Hp,0 ;

Cn(α) = exp
[
(a∗(α)− a(ᾱ)

]
defined on

∞⊕
n=0

H0,n ;

C(u, α) = Cp(u)⊗ Cn(α) .

Proposition 5 (Properties of Weyl Operators).

i. C(u, α) is unitary and strongly continuous as a function of u or α in L2(R3).
Furthermore, for any Φ ∈ D(ψ(γ̄)) and Ψ ∈ D(a(γ̄)), with γ ∈ L2(R3),
C(u, α)Φ ∈ D(ψ(γ̄)), C(u, α)Ψ ∈ D(a(γ̄)) and the following identities hold:

C(u, α)†ψ(γ̄)C(u, α)Φ = ψ(γ̄)Φ + 〈γ, u〉2Φ ;

C(u, α)†a(γ̄)C(u, α)Ψ = a(γ̄)Ψ + 〈γ, α〉2Ψ ;

C(u, α)†ψ∗(γ)C(u, α)Φ = ψ∗(γ)Φ + 〈u, γ〉2Φ ;

C(u, α)†a∗(γ)C(u, α)Ψ = a∗(γ)Ψ + 〈α, γ〉2Ψ .

ii. Let u, α : t → u(t), α(t) ∈ C 1(R, L2). Then C(u(t), α(t)) is strongly differen-
tiable in t from D(P 1/2) ∩D(N1/2) to H . The derivative is given by

d

dt
C(u(t), α(t)) = C(u(t), α(t))

[
ψ∗(u̇)− ψ( ˙̄u) + iIm〈u, u̇〉

+a∗(α̇)− a( ˙̄α) + iIm〈α, α̇〉
][

ψ∗(u̇)− ψ( ˙̄u)− iIm〈u, u̇〉+ a∗(α̇)

−a( ˙̄α)− iIm〈α, α̇〉
]
C(u(t), α(t)) .

where u̇, α̇ are the time derivatives respectively of u and α.
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iii. Let u, α ∈ L2(R3). Then for all δ ∈ R, we have the following invariances:

C(u, α)Φ ∈ D(Nδ) ∀Φ ∈ D(Nδ) ,

C(u, α)Φ ∈ D(P δ) ∀Φ ∈ D(P δ) ,

C(u, α)Φ ∈ D(Qδ) ∀Φ ∈ D(Qδ) .

iv. We recall the definition of U01(t) ≡ exp(i∆t/2) and U02(t) ≡ exp(−iωt) given
in the previous chapter. They are unitary operators on L2(R3). Now define

ũ(t) = U†01(t)u(t), α̃(t) = U†02(t)α(t) for all u, α ∈ C 0(R, L2(R3)). Then the
following equality holds ∀Φ ∈H and t ∈ R:

U†0 (t)C(u(t), α(t))U0(t) = C(ũ(t), α̃(t)) .



CHAPTER 4

The quantum fluctuations.

We will now study the time-dependent evolution operator U2 that describes
the quantum fluctuations of the system. We start with some definitions:

Definitions (Q(B), H δ, B(δ′; δ)). Let B ≥ 0 a self-adjoint operator, we
define Q(B) ⊆ H the form domain of B, i.e. Q(B) = D(B1/2). Q(B) is a
Hilbert space with norm

∥∥(B + 1)1/2Φ
∥∥. We denote Q∗(B) the completion of H

in the norm
∥∥(B + 1)−1/2Φ

∥∥. Finally we define the Hilbert spaces H δ, δ ∈ R:

H δ = Q((P +N)δ) for δ ≥ 0, and H δ = Q∗((P +N)|δ|) for δ < 0; H δ is a Hilbert
space in the norm

‖Φ‖δ =
∥∥∥(P +N + 1)δ/2Φ

∥∥∥ .
We will denote B(δ′; δ) the space of bounded operators from H δ′ to H δ.

1. The operator Ṽ (t).

Definition (V (t)). We define the operator V (t) ≡ V−−(t)+V−+(t)+V+−(t)+
V++(t) + V0(t), defined on D(V (t)), where (− is related to annihilation, and + to
creation):

V##(t) =

∫
dxdk v##(t, x, k)ψ#(x)a#(k) ,

V0(t) =

∫
dx (χ̌ ∗A(t))(x)ψ∗(x)ψ(x) = dΓp((χ̌ ∗A(t))(·))⊗ 1 ,

v## ∈ C 0(R, L2(R3 ⊗R3)) and A ∈ C 0(R, L3(R3)) (so χ̌ ∗ A ∈ C 0(R, L∞(R3))).
Let u ∈ C 0(R, L2(R3)), then we can write explicitly the specific v##s of the system:

v#− = f0(k)eik·xu#(t, x) ;

v#+ = f0(k)e−ik·xu#(t, x) .

Lemma 1.1 (Self-adjointness of V (t)). For all t ∈ R, V (t) is essentially self-
adjoint on any core of Q.

Proof. Using estimates in Lemma 2.1 we can apply Lemma 4.2 of Appendix A.
�

We would like to define the evolution operator of the quantum fluctuations as
the evolution group generated by H2 = H0 +V (t); however this could be done with
mathematical rigour only passing to the so-called interaction representation.

Definition (Ṽ (t) (interaction representation)).

Ṽ (t) = U†0 (t)V (t)U0(t) .

Obviously we have D(Ṽ (t)) = U†0 (t)[D(V (t))] for all t ∈ R.

Remark. Ṽ (t) is essentially self-adjoint on D(Q) for all t ∈ R. This is due to

the fact that U0(t)[D(Q)] ⊆ D(Q) and Ṽ (t) = U†0 (t)V (t)U0(t).

29
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Lemma 1.2. For all Φ ∈ D(Ṽ (t)) we have Ṽ (t) = Ṽ−−(t) + Ṽ−+(t) + Ṽ+−(t) +

Ṽ++(t) + Ṽ0(t), with:

Ṽ##(t) =

∫
dxdk ṽ##(t, x, k)ψ#(x)a#(k) ,

ṽ−−(x, k) = U01(t)U02(t)v−−(x, k) ,

ṽ−+(x, k) = U01(t)U†02(t)v−+(x, k) ,

ṽ+−(x, k) = U†01(t)U02(t)v+−(x, k) ,

ṽ++(x, k) = U†01(t)U†02(t)v++(x, k) ,

Ṽ0 = dΓp

(
U†01(t)(χ̌ ∗A(t))(·)U01(t)

)
⊗ 1 .

Furthermore ‖ṽ##(t)‖2 = ‖v##(t)‖2 for all t ∈ R.

Proof. If we set E0(t) = U01(t)U02(t), from the definition of Ṽ−−(t) we obtain

for all Φ ∈ D(Ṽ (t)) (the explicit dependence on variables Xp and Kn is omitted):(
Ṽ−−(t)Φ

)
p,n

=
√

(p+ 1)(n+ 1)〈v−−(·, ·, t), E0(t)Φp+1,n+1(·, ·)〉2 .

Since E0(t) is unitary on L2(R3⊗R3), we obtain the sought result from the relation

〈v−−(·, ·, t), E0(t)Φp+1,n+1(·, ·)〉2 = 〈E†0(t)v−−(·, ·, t),Φp+1,n+1(·, ·)〉2.

We proceed in the same manner for Ṽ−+(t). From these results we obtain the ones

on Ṽ++(t) and Ṽ+−(t) using the definition of adjoint operator. Finally we can check
directly that

(exp(itH0)V0(t) exp(−itH0)Φ)p,n(Xp;Kn) =

p∑
j=1

exp{−it∆j/2M}

(χ̌ ∗A(t))(xj) exp{it∆j/2M}Φp,n(Xp;Kn) .

�

Lemma 1.3. Let Ṽ (t) be defined as above, with u ∈ C 0(R, L2(R3)) and (χ̌∗A) ∈
C 0(R, L∞(R3)). Then ∀δ ∈ R, Ṽ (t) belongs to B(δ + 2; δ); furthermore is norm
continuous as a function of t. We have in fact the following estimates:∥∥∥Ṽ−−Φ

∥∥∥2

δ
≤1

2
Cδ ‖v−−(t)‖22 〈Φ, (Q+ 1)δ+2Φ〉 ;∥∥∥Ṽ−+Φ

∥∥∥2

δ
≤‖v−+(t)‖22

(1

2
〈Φ, (Q+ 1)δ+2Φ〉+ 〈Φ, (Q+ 1)δ+1Φ〉

)
;∥∥∥Ṽ+−Φ

∥∥∥2

δ
≤‖v+−(t)‖22

(1

2
〈Φ, (Q+ 1)δ+2Φ〉+ 〈Φ, (Q+ 1)δ+1Φ〉

)
;∥∥∥Ṽ++Φ

∥∥∥2

δ
≤C−δ ‖v++(t)‖22

(1

2
〈Φ, (Q+ 1)δ+2Φ〉+ 2〈Φ, (Q+ 1)δ+1Φ〉

+ 〈Φ, (Q+ 1)δΦ〉
)

;∥∥∥Ṽ0Φ
∥∥∥2

δ
≤‖(χ̌ ∗A(t))‖2∞ 〈Φ, (Q+ 1)δ+2Φ〉 ,

where Cδ = 1 if δ ≥ 0, Cδ = 3|δ| otherwise.

Proof. Throughout the proof let Φ ∈ H δ+2. We start proving the bound-

edness of Ṽ−−; for the sake of simplicity we will perform calculations in the norm
|‖·‖|δ defined as:

|‖·‖|δ =
∥∥∥(Q+ 3)δ/2·

∥∥∥ ;
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such norm is clearly equivalent to ‖·‖δ for all δ ∈ R. Using Lemma 2.1 we obtain:∥∥∥(Q+ 3)δ/2Ṽ−−Φ
∥∥∥2

=
∥∥∥Ṽ−−(Q+ 1)δ/2Φ

∥∥∥2

≤ ‖ṽ−−‖22
∥∥∥P 1/2N1/2(Q+ 1)δ/2Φ

∥∥∥2

≤ 1

2
‖v−−(t)‖22 〈Φ, (Q+ 1)δ+2Φ〉 ;

the sought result following from the inequality (Q+ 1)δ ≤ Cδ(Q+ 3)δ with

Cδ =

{
3|δ| if δ < 0 ,

1 if δ ≥ 0 ;

Consider now Ṽ−+; again using Lemma 2.1 we have:∥∥∥(Q+ 1)δ/2Ṽ−+Φ
∥∥∥2

=
∥∥∥Ṽ−+(Q+ 1)δ/2Φ

∥∥∥2

≤ ‖ṽ−+‖22
(∥∥∥P 1/2N1/2(Q+ 1)δ/2Φ

∥∥∥2

+
∥∥∥P 1/2(Q+ 1)δ/2Φ

∥∥∥2)
≤ ‖v−+(t)‖22

(1

2
〈Φ, (Q+ 1)δ+2Φ〉+ 〈Φ, (Q+ 1)δ+1Φ〉

)
.

In the same fashion we obtain:∥∥∥(Q+ 1)δ/2Ṽ+−Φ
∥∥∥2

≤ ‖v+−(t)‖22
(1

2
〈Φ, (Q+ 1)δ+2Φ〉

+〈Φ, (Q+ 1)δ+1Φ〉
)
.

Again using Lemma 2.1 we have for Ṽ++(t):∥∥∥(Q+ 1)δ/2Ṽ++Φ
∥∥∥2

≤ ‖v++(t)‖22
(
〈Φ, PN(Q+ 3)δΦ〉

+〈Φ, P (Q+ 3)δΦ〉+ 〈Φ, N(Q+ 3)δΦ〉

+〈Φ, (Q+ 3)δΦ〉
)

;

so, since (Q+ 3)δ ≤ C−δ(Q+ 1)δ, we can write∥∥∥Ṽ++Φ
∥∥∥2

δ
≤ C−δ ‖v++(t)‖22

(1

2
〈Φ, (Q+ 1)δ+2Φ〉

+〈Φ, (Q+ 1)δ+1Φ〉+ 〈Φ, (Q+ 1)δ+1Φ〉

+〈Φ, (Q+ 1)δΦ〉
)
.

Finally the estimate for Ṽ0(t) is trivial, since it commutes with Q:∥∥∥Ṽ0Φ
∥∥∥
δ

=
∥∥∥Ṽ0(Q+ 1)δ/2Φ

∥∥∥ ≤ ‖χ̌ ∗A(t)‖∞
∥∥∥P (Q+ 1)δ/2Φ

∥∥∥
≤ ‖χ̌ ∗A(t)‖∞ ‖Φ‖δ+2 .

�

2. The evolution with cut off Ũ2;µ(t, s).

To construct the evolution operator Ũ2(t, s) generated by Ṽ (t), we will use the
Dyson series. However in order to do that we have to introduce a cut off in the
total number of particles: let σ1 ∈ C 1(R+), positive and decreasing, σ1(s) = 1 if
s ≤ 1, σ1(s) = 0 if s ≥ 2; define σµ the operator σ1(Q/µ) in H . Then we set

Ṽµ(t) = σµṼ (t)σµ, for all µ ≥ 1.

Lemma 2.1. Let Ṽµ(t) be defined as above, then:
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i. Ṽµ(t) satisfies Lemma 1.3, with uniform bound in µ. Furthermore Ṽµ(t) is in
B(δ; δ) for all δ ∈ R and is norm continuous as a function of t.

ii. For all δ in R, Ṽµ(t)→ Ṽ (t) when µ goes to infinity, in norm on B(δ+2+ε; δ),
ε > 0, and strongly in B(δ + 2; δ), uniformly in t on bounded intervals.

Proof. To prove i. observe that σµ belongs to B(δ; δ′) for all δ and δ′ and

‖σµΦ‖2δ′ ≤ C(µ) ‖Φ‖δ, with

C(µ) = sup
p+n≤2µ

[
σ2

1

(p+ n

µ

)
(p+ n+ 1)δ

′−δ
]
.

Obviously if δ′ ≤ δ, C(µ) ≤ 1 for all µ ≥ 1, and we have a uniform bound in µ.
Point i. follows from that using Lemma 1.3.

Concerning point ii. the strong convergence of Ṽµ(t) to Ṽ (t) in B(δ + 2; δ)

follows from the obvious strong convergence on C0(P,N), since Ṽµ(t) is bounded in
B(δ + 2; δ) uniformly in µ. Norm convergence on B(δ + 2 + ε; δ) follows from the
fact that (1− σµ)(Q+ 1)−ε goes to zero in norm as an operator in H ; as a matter
of fact we have∥∥(1− σµ)(Q+ 1)−εΦ

∥∥2
=
∑
p,n

(1− σ1(p+nµ ))2

(p+ n+ 1)2ε
‖Φ‖2p,n

≤
∑

p+n≥µ

(p+ n+ 1)−2ε ‖Φ‖2p,n ≤ (µ+ 1)−2ε ‖Φ‖2

i.e. ∥∥(1− σµ)(Q+ 1)−ε
∥∥ ≤ (µ+ 1)−2ε → 0 ,

when µ goes to infinity. �

Definition (Ũ2(t, s)). The unitary group Ũ2;µ(t, s) is defined by means of a
Dyson series:

Ũ2;µ(t, s) =

∞∑
m=0

(−i)m
∫ t

s

dt1

∫ t1

s

dt2 · · ·
∫ tm−1

s

dtm Ṽµ(t1) . . . Ṽµ(tm) .

Using previous Lemma we see that the series converge in norm on B(δ; δ) and

Ũ2;µ(t, s) is continuous and differentiable in norm with respect to t on B(δ; δ) for

all real δ. We list below some useful properties of the family Ũ2;µ(t, s), whose proof

is immediate since Ṽµ ∈ B(δ; δ) for all δ ∈ R:

Lemma 2.2.

i. Ũ2;µ(s, s) = 1, Ũ2;µ(t, r)Ũ2;µ(r, s) = Ũ2;µ(t, s) for all r, s, t ∈ R.

ii. Ũ†2;µ(t, s) = Ũ2:µ(s, t), and Ũ2;µ(t, s) are unitary in H .

iii. Ũ2;µ(t, s) is norm differentiable on B(δ; δ) for all real δ, and

i
d

dt
Ũ2;µ(t, s) = Ṽµ(t)Ũ2;µ(t, s) ;

i
d

ds
Ũ2;µ(t, s) = −Ũ2;µ(t, s)Ṽµ(s) .

The operators Ũ2;µ(t, s) also satisfy the following crucial boundedness property:

Lemma 2.3. Let u ∈ C 0(R, L2) and χ̌ ∗ A ∈ C 0(R, L∞). Then the operator

Ũ2;µ(t, s) is bounded on H δ uniformly in µ for all real δ. More precisely:

(2.1)
∥∥∥Ũ2;µ(t, s)

∥∥∥
B(δ;δ)

≤ exp

{
|δ|
2

(
ln 3 +

√
2ρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)} ,

with ρδ = max(4, 3|δ|/2 + 1).
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Proof. Let Φ ∈H , 0 < h(Q) a bounded operator on H such that Ranh(Q) ⊂
D(Q). Define the differentiable quantity

M(t) ≡ 1

2

∥∥∥h(Q)Ũ2;µ(t, s)Φ
∥∥∥2

.

With a bit of manipulation we obtain

d

dt
M(t) = Im〈h(Q)Ũ2;µ(t, s)Φ, Ṽ−−;µ(t)

(
h(Q− 2)h(Q)−1

− 1
)
h(Q)Ũ2;µ(t, s)Φ〉+ Im〈Ṽ−−;µ(t)

(
h(Q)h(Q− 2)−1

− 1
)
h(Q)Ũ2;µ(t, s)Φ, h(Q)Ũ2;µ(t, s)Φ〉.

So we can bound the derivative of M(t) by∣∣∣∣ d

dt
M(t)

∣∣∣∣ ≤ 1√
2
‖v−−‖2

[
|‖(Q+ 1)

(
h(Q− 2)h(Q)−1 − 1

)
‖|

+|‖(Q+ 1)
(
h(Q)h(Q− 2)−1 − 1

)
‖|

]
M(t) .

Let h ∈ C 1, h(·) and |h′(·)| non-increasing; then

|h(Q− 2)− h(Q)| ≤ 2 |h′(Q− 2)| ,

and

K ≡

[
. . .

]
≤ 2 sup

p,n=0,1,...
(p+ n+ 1) |h′(p+ n− 2)|h−1(p+ n)

+2 sup
p,n=0,1,...

(p+ n+ 1) |h′(p+ n− 2)|h−1(p+ n− 2) .

We are interested in the case h(p + n) = (p + n + 3)−δ, with δ ≥ 1 (in order
to fulfill the condition Ranh(Q) ⊂ D(Q)). h satisfies the hypothesis above and
h′(p+ n) = −δ(p+ n+ 3)−δ−1. So we have that

K ≤ 2 sup
p,n=0,1,...

(
δ
(p+ n+ 3

p+ n+ 1

)δ
+ δ
)

= 2δ(3δ + 1)

We have then the following differential inequality for M(t):

d

dt
M(t) ≤

√
2 ‖v−−‖2 δ(3

δ + 1)M(t) ,

so the Gronwall’s Lemma implies∥∥∥(P +N + 3)−δŨ2;µ(t, s)Φ
∥∥∥ ≤ e√2δ(3δ+1)|∫ ts dτ ‖v−−(τ)‖2|∥∥(P +N + 3)−δΦ

∥∥
for all δ ≥ 1. We then obtain by interpolation the result for 0 ≤ δ ≤ 1:∥∥∥(P +N + 3)−δŨ2;µ(t, s)Φ

∥∥∥ ≤ e4
√

2δ|∫ ts dτ ‖v−−(τ)‖2|∥∥(P +N + 3)−δΦ
∥∥ .

Finally by duality we extend the result to all δ ∈ R. �
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3. The unitary evolution Ũ2(t, s).

We are ready to define the fluctuations evolution operator in interaction repre-

sentation Ũ2(t, s). We will do that in the following Proposition that also describes
its key properties.

Proposition 6 (Quantum fluctuations evolution operator). Let Ṽ (t) defined
as above, with u ∈ C 0(R, L2(R3)), χ̌ ∗ A ∈ C 0(R, L∞(R3)). Then exists a family

of operators Ũ2(t, s) satisfying the following properties:

i. for all δ ∈ R, Ũ2(t, s) is bounded and strongly continuous with respect to t and
s on H δ and satisfies

(3.1)
∥∥∥Ũ2(t, s)

∥∥∥
B(δ;δ)

≤ exp

{
|δ|
2

(
ln 3 +

√
2ρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)} ,

with ρδ = max(4, 3|δ|/2 + 1).

ii. Ũ2(t, s) is unitary in H .

iii. Ũ2(s, s) = 1, Ũ2(t, r)Ũ2(r, s) = Ũ2(t, s) for all r, s and t in R.

iv. For all δ ∈ R, Ũ2(t, s) is strongly differentiable from H δ+2 to H δ; in particular
is strongly differentiable from D(Q) to H . Furthermore:

i
d

dt
Ũ2(t, s) = Ṽ (t)Ũ2(t, s) ;

i
d

ds
Ũ2(t, s) = −Ũ2(t, s)Ṽ (s) .

v. For all Ψ ∈ D(Q) and Φ ∈H

i∂t〈Ψ, Ũ2(t, s)Φ〉 = 〈Ṽ (t)Ψ, Ũ2(t, s)Φ〉 .

vi. Let U2(t, s) = U0(t)Ũ2(t, s)U−1
0 (s); for all Ψ ∈ D(Q) ∩D(H0), Φ ∈H

i∂t

〈
Ψ, U2(t, s)Φ

〉
=
〈(
H0 + V (t)

)
Ψ, U2(t, s)Φ

〉
.

Proof. i. For all couples of positive integers µ and ν, write

Ũ2;µ(t, s)− Ũ2;ν(t, s) = −i
∫ t

s

dτ Ũ2;ν(t, τ)(Ṽµ(τ)− Ṽν(τ))Ũ2;µ(τ, s),

as a Riemann integral in norm on B(δ; δ) for all δ. Then, using point i. of
Lemma 2.1 and equation (2.1) we obtain∥∥∥Ũ2;µ(t, s)− Ũ2;ν(t, s)

∥∥∥
B(δ+2+ε;δ)

≤ |t− s| eγ|
∫ t
s

dτ ‖v−−(τ)‖2|

· sup
τ∈[s,t]

∥∥∥Ṽµ(τ)− Ṽν(τ)
∥∥∥

B(δ+2+ε;δ)
,

where γ depends on δ and ε. Utilizing then point ii of Lemma 2.1, we see that

for all δ ∈ R, Ũ2;µ(t, s) converges in norm on B(δ + 2 + ε; δ) when µ → ∞
uniformly in t and s on every compact interval. The resulting limit Ũ2(t, s)
is continuous in the norm of B(δ + 2 + ε; δ) with respect to t and s. The
norm convergence just proved and the estimate (2.1), uniform in µ, imply the

strong convergence of Ũ2;µ(t, s) to Ũ2(t, s) on B(δ; δ) uniformly in t and s on

every compact interval. Consequently Ũ2(t, s) satisfies the estimate (3.1) and
is strongly continuous in t and s.

ii. The result follows from the unitarity of Ũ2;µ(t, s) on H and from the strong

convergence of Ũ2;µ(t, s) and its adjoint Ũ2;µ(s, t).
iii. The result is an immediate consequence of the corresponding properties of

Ũ2;µ(t, s).
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iv. We prove the result regarding the derivative with respect to t, the other being

analogous. Write Ũ2;µ(t, s)Φ, with Φ ∈ H δ+2, as a strong Riemann integral
on H δ:

Ũ2;µ(t, s)Φ = Φ− i
∫ t

s

dτ Ṽµ(τ)Ũ2;µ(τ, s)Φ .

Using point ii. of Lemma 2.1 and the strong convergence proved above we can
go to the limit µ → ∞ in previous equation. The result then following from
Lemma 1.3 and from point i. of this Lemma.

v. To prove this point remember that for all f and g continuous functions from
R to C the following identity holds:

(3.2) i
d

dt
f = g ⇔ f(t)− f(s) = −i

∫ t

s

dt′ g(t′) .

Consider now both Ψ and Θ in D(Q), then using previous point:

i∂t〈Ψ, Ũ2(t, s)Θ〉 = 〈Ṽ (t)Ψ, Ũ2(t, s)Θ〉 ,

i.e. using (3.2)

(3.3) 〈Ψ, Ũ2(t, s)Θ〉 − 〈Ψ,Θ〉 = −i
∫ t

s

dt′ 〈Ṽ (t′)Ψ, Ũ2(t′, s)Θ〉 .

Consider now {Φj} ∈ D(Q) such that H − limj Φj = Φ ∈ H , that is allowed
since D(Q) is dense in H . For all Φj equation (3.3) holds, furthermore both

Ṽ (t)Ψ and Ũ2(t, s)Φj are uniformly bounded in t, so we use the dominated
convergence theorem to go to the limit j → ∞, then again equation (3.2) to
obtain the desired result.

vi. With the aid of previous point, we calculate explicitly, for Ψ ∈ D(Q)∩D(H0),
Φ ∈H the derivative:

i∂t

〈
Ψ, U2(t, s)Φ

〉
= lim
h→0

i

{〈U−1
0 (t+ h)− U−1

0 (t)

h
Ψ, Ũ2(t+ h, s)

· U−1
0 (s)Φ

〉
−
〈
U−1

0 (t)Ψ,
Ũ2(t+ h, s)− Ũ2(t, s)

h

· U−1
0 (s)Φ

〉}
=
〈
H0U

−1
0 (t)Ψ, Ũ2(t, s)U−1

0 (s)Φ
〉

+
〈
Ṽ (t)U−1

0 (t)Ψ, Ũ2(t, s)U−1
0 (s)Φ

〉
,

where the second term of the right hand side of the equality makes sense because
D(Q)∩D(H0) is invariant under the action of U−1

0 (t) since Q and H0 commute.
The result follows immediately.

�

We want to emphasize that, even if U2(t, s) defined above is formally generated
by H0 + V (t), i.e. formally satisfies the equation

i
d

dt
U2(t, s) =

(
H0 + V (t)

)
U2(t, s) ,

we can only assert that U2 is weakly differentiable in the sense make explicit in
point vi. of the previous Proposition. We are not able to determine any strong
differentiability property for U2, and we need to use the interaction representation
in order to take strong derivatives. However we have the following uniqueness result
regarding U2:
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Lemma 3.1 (Uniqueness of U2(t, s)). Let s ∈ R, Φ(·) ∈ CW (R,H ) with Φ(s) ≡
Φ, such that

i∂t
∣∣〈Ψ,Φ(t)

〉∣∣ =
∣∣〈(H0 + V (t)

)
Ψ,Φ(t)

〉∣∣ ,
for all Ψ ∈ D(Q) ∩D(H0) and Φ ∈H . Then Φ(t) = U2(t, s)Φ.

Proof. Define Φ̃(t) ≡ U−1
0 (t)Φ(t). Let Ψ ∈ D(Q) ∩D(H0) and Φ ∈H , then

we obtain, using the previous Proposition:

(3.4) 〈Ψ, Φ̃(t)〉 − 〈Ψ, U−1
0 (s)Φ〉 = −i

∫ t

s

dt′ 〈Ṽ (t′)Ψ, Φ̃(t′)〉 .

Now consider Ψ ∈ D(Q) and a sequence Ψj ∈ D(Q)∩D(H0) such that Ψj → Ψ in
D(Q), then equation (3.4) holds for all Ψ ∈ D(P+N), using dominated convergence
theorem. Then we obtain

i∂t〈Ũ2(t, s)Ψ, Φ̃(t)〉 = 0 ,

i.e. 〈Ψ, Ũ−1
2 (t, s)Φ̃(t)〉 = 〈Ψ, U−1

0 (s)Φ〉 for all t ∈ R, and that proves our assertion.
�



CHAPTER 5

The convergence of W̃ (t, s) to Ũ2(t, s).

1. W (t, s) and W̃ (t, s).

Definition (W (t, s)). We define the unitary evolution of the quantum system
between coherent states as

W (t, s) = C†(uλ(t), αλ(t))U(t− s)C(uλ(s), αλ(s))eiΛ(t,s) ,

where Λ(t, s) is a phase function, and (u(·), α(·)) is the C 0(R, L2(R3) ⊗ L2(R3))
unique solution of the classical system of equations (E) corresponding to initial data
(u(s), α(s)) ∈ L2(R3)⊗ L2(R3).

Remark. Here we just made an abuse of notation. If we want to be pre-
cise, we take (u(·), α̌(·)) to be the C 0(R, L2(R3) ⊗ L2(R3)) unique solution of
the classical system of equations (E) corresponding to initial data (u(s), α̌(s)) ∈
L2(R3) ⊗ L2(R3); then (u(·), α(·)) is the Fourier transform (in α) of the solution
of (E).

However throughout the rest of the paper we will continue to call (u(·), α(·))
the solution of (E).

Definition (W̃ (t, s)). In the interaction picture, we will write W̃ (t, s) =

U†0 (t)W (t, s)U0(s), so using the last point of Proposition 5 we can write it as fol-
lowing:

W̃ (t, s) = C†(ũλ(t), α̃λ(t))U†0 (t)U(t− s)U0(s)C(ũλ(s), α̃λ(s))eiΛ(t,s) ;

observe that by Remark 1.1.1 (ũ(·), α̃(·)) ∈ C 1(R, L2(R3)⊗ L2(R3)), and

i∂tũ(t) = (2π)−3/2U01(−t)
(
χ̌ ∗A(t)

)
u(t)

i∂tα̃(t) =
(2π)−3/2

√
2

U02(−t)
(
ω−1/2χ(̂ūu)(t)

)
.

We remark again that the solution α(t) we are considering is the Fourier transform

of the one we considered in Chapter 2, and here ω(k) =
√
k2 + µ2.

Definitions (Z(t), D , Dδ).

Z(t) = C†(ũλ(t), α̃λ(t))U†0 (t)U(t)eiΛ(t,0) ;

so we can write W̃ (t, s) = Z(t)Z†(s). Define also the domains

D = {Ψ ∈ D(Q)|C(ũλ(s), α̃λ(s))Ψ ∈ D(H0)} ,

Dδ = {Ψ ∈H δ|C(ũλ(s), α̃λ(s))Ψ ∈ D(H0)} .

Now, using Propositions 4 and 5 we can formulate the following remark:

Remark 1.0.1. W̃ (t, s) is unitary on H and such that W̃ †(t, s) = W̃ (s, t).

37
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2. Differentiability of W̃ (t, s).

Proposition 7 (Differentiability of W̃ ). W̃ (t, s) is strongly differentiable in t

from D to H ; W̃ †(t, s) is strongly differentiable in t from D(P 2 +N) to H . More
precisely if

Λ(t, s) = − 1

λ2

∫ t

s

dt′
∫

dx (χ̌ ∗A(t′))ū(t′)u(t′) ,

then for all Ψ ∈ D , Θ ∈ D(P 2 +N)

i
d

dt
W̃ (t, s)Ψ =

(
U†0 (t)HIU0(t) + Ṽ (t)

)
W̃ (t, s)Ψ ;(2.1)

i
d

dt
W̃ †(t, s)Θ = −W̃ †(t, s)

(
U†0 (t)HIU0(t) + Ṽ (t)

)
Θ .(2.2)

Proof. In order to prove the proposition, we formulate the following lemmas:

Lemma 2.1. Z(t) is strongly differentiable from D(H0)∩D(P 2 +N) to H . In
particular for all Ψ ∈ D(H0) ∩D(P 2 +N) we have

i∂tZ(t)Ψ =
(
U†0 (t)HIU0(t) + Ṽ (t)

)
Z(t)Ψ .

Proof. We write

i

h

(
Z(t+ h)− Z(h)

)
Ψ =

i

h

(
C†(ũλ(t+ h), α̃λ(t+ h))− C†(ũλ(t), α̃λ(t))

)
U†0 (t)U(t)eiΛ(t,0)Ψ

+ C†(ũλ(t+ h), α̃λ(t+ h))
i

h

(
U†0 (t+ h)− U†0 (t)

)
U(t)eiΛ(t,0)Ψ

+ C†(ũλ(t+ h), α̃λ(t+ h))U†0 (t+ h)

i

h

(
U(t+ h)− U(t)

)
eiΛ(t,0)Ψ

+ C†(ũλ(t+ h), α̃λ(t+ h))U†0 (t+ h)U(t+ h)

i

h

(
eiΛ(t+h,0) − eiΛ(t,0)

)
Ψ

≡
(
J1 + J2 + J3 + J4

)
Ψ .

J1Ψ converges strongly to:

J1Ψ −→
h→0

C†(ũλ(t), α̃λ(t))
(
−ψ∗(i ˙̃uλ) + ψ(i ˙̃̄uλ)− Im〈ũλ, ˙̃uλ〉

−a∗(i ˙̃αλ) + a(i ˙̃̄αλ)− Im〈α̃λ, ˙̃αλ〉
)
U†0 (t)U(t)eiΛ(t,0)Ψ ,

since C(u, α) is strongly differentiable on H 1 ⊃ D(P 2 +N) and D(P 2 +N) is left
unvaried by U0 and U . Consider now J2Ψ, it converges to:

J2Ψ −→
h→0

C†(ũλ(t), α̃λ(t))U†0 (t)H0U(t)eiΛ(t,0)Ψ ,

since C† is continuous and U(t)Ψ ∈ D(H0)∩D(P 2 +N) if Ψ ∈ D(H0)∩D(P 2 +N).
With J3 and J4 we proceed in an analogous fashion. We have the following limits:

J3Ψ −→
h→0

C†(ũλ(t), α̃λ(t))U†0 (t)HU(t)eiΛ(t,0)Ψ ,

J4Ψ −→
h→0

C†(ũλ(t), α̃λ(t))U†0 (t)
(
− d

dt
Λ(t, 0)

)
U(t)eiΛ(t,0)Ψ .
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So we can write, for all Ψ ∈ D(H0) ∩D(P 2 +N):

i
d

dt
Z(t)Ψ =C†(ũλ(t), α̃λ(t))U†0 (t)

{
U0(t)

(
−ψ∗(i ˙̃uλ) + ψ(i ˙̃̄uλ)

− Im〈ũλ, ˙̃uλ〉 − a∗(i ˙̃αλ) + a(i ˙̃̄αλ)− Im〈α̃λ, ˙̃αλ〉
)
U†0 (t)

+HI −
d

dt
Λ(t, 0)

}
U(t)eiΛ(t,0)Ψ

=U†0 (t)C†(uλ(t), αλ(t))
{
− 1

λ

(
ψ∗((χ̌ ∗A)u) + ψ((χ̌ ∗A)ū)

)
− 1

λ2
Im〈u, (χ̌ ∗A)u〉 − 1

λ

(
a∗((2ω)−1/2χ(̂ūu))

+ a((2ω)−1/2χ(̂ūu))
)
− 1

λ2
Im〈α, (2ω)−1/2χ(̂ūu)〉

+ C(uλ(t), αλ(t))HIC
†(uλ(t), αλ(t))

− d

dt
Λ(t, 0)

}
U0(t)Z(t)Ψ .

The result then follows immediately using Lemma 8.2 of Appendix A. �

Lemma 2.2. Z†(t) is strongly differentiable from D(P 2 +N) to H , and for all
Θ ∈ D(P 2 +N) we have:

i
d

dt
Z†(t)Θ = −Z†(t)

(
U†0 (t)HIU0(t) + Ṽ (t)

)
Θ .

Proof. Let B ≡ U†0 (t)HIU0(t) + Ṽ (t). From previous Lemma and the results
of Chapters 3 and 4 we know that:

i. For all Ψ ∈ D(H0) ∩D(P 2 +N) we have i∂tZ(t)Ψ = BZ(t)Ψ;
ii. ‖BΘ‖ ≤ C

∥∥(P 2 +N)Θ
∥∥ for all Θ ∈ D(P 2 +N), C being a constant and

〈Θ1, BΘ2〉 = 〈BΘ1,Θ2〉 for all Θj ∈ D(P 2 +N);

iii. Z(t)[D(H0) ∩ D(P 2 + N)] ⊆ D(P 2 + N), and both Z(t) and Z†(t) strongly
continuous in t.

So we can write for all Θ ∈ D(P 2 +N):

i∂t〈Z†(t)Θ,Ψ〉 = 〈Z†(t)BΘ,Ψ〉 ,

so integrating both members we find

i
(
〈Z†(t)Θ,Ψ〉 − 〈Z†(0)Θ,Ψ〉

)
=

∫ t

0

dτ 〈Z†(τ)BΘ,Ψ〉 ,

but since Z†(τ)BΘ is continuous in τ for all Θ ∈ D(P 2 +N) we infer

i
d

dt
Z†(t)Θ = −Z†(t)BΘ .

�

The proof of the Proposition follows recalling that W̃ (t, s) = Z(t)Z†(s). �

Remark 2.2.1. W̃ (t, s) maps Dδ into H δ/2.

Proof. By Proposition 5 Weyl operators map H δ into itself. By Proposition 4
U0 maps H δ into itself, and U maps H δ ⊂ D((P 2 +N)δ/4) into D(P 2 +N)δ/4 ⊂
H δ/2. �
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3. Strong convergence of W̃ (t, s) to Ũ2(t, s).

Theorem 1 (Strong limit of W̃ (t, s)). Let W̃ (t, s) and Ũ2(t, s) defined as above.
Then the following strong limit exists

s− lim
λ→0

W̃ (t, s) = Ũ2(t, s) ,

uniformly in t, s on compact intervals.

Proof. We will prove the existence of the limit on Dδ∗ with δ∗ ≥ 4, dense

in H . W̃ is strongly differentiable on such domain and W̃ [Dδ∗ ] ⊆H δ∗/2 (Propo-

sition 2.1 and Remark 2.2.1); while Ũ2 is strongly differentiable on H δ∗/2, when
δ∗ ≥ 4. Then we can write the following inequalities for all Φ ∈ Dδ∗ , every term
being well-defined and the integrals making sense as strong Riemann integrals on
H : ∥∥∥(W̃ (t, s)− Ũ2(t, s)

)
Φ
∥∥∥2

= 2 Re
〈

Φ,
(

1− Ũ†2 (t, s)W̃ (t, s)
)

Φ
〉

= −2 Re
〈

Φ,

∫ t

s

dτ
d

dτ
Ũ†2 (τ, s)W̃ (τ, s)Φ

〉
= 2 Im

∫ t

s

dτ
〈
HIU0(τ)Ũ2(τ, s)Φ, U0(τ)W̃ (τ, s)Φ

〉
≤ 2 ‖Φ‖

∣∣∣∣∫ t

s

dτ
∥∥∥HIU0(τ)Ũ2(τ, s)Φ

∥∥∥∣∣∣∣
≤ 2λ ‖f0‖2 ‖Φ‖

∣∣∣∣∫ t

s

dτ
∥∥∥Ũ2(τ, s)Φ

∥∥∥
H 4

∣∣∣∣
≤ 2λ ‖f0‖2

∣∣∣∣∫ t

s

dτ exp

{
2

(
ln 3 + 10

√
2

∣∣∣∣∫ τ

s

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣ ‖Φ‖ ‖Φ‖δ∗
that tends to zero when λ→ 0, uniformly in t and s on compact intervals. �

Corollary. Let W (t, s) and U2(t, s) defined as above. Then also the following
strong limit exists

s− lim
λ→0

W (t, s) = U2(t, s) ,

uniformly in t, s on compact intervals.



CHAPTER 6

A crucial bound of ‖W (t, s)Φ‖δ.

1. The cut off evolution W̃µ(t, s).

From now on we will use the notation H̃I(t) = U†0 (t)HIU0(t). We also define
the orthogonal projectors P≤µ and N≤µ as following:

(P≤µΦ)p,n =

{
Φp,n if p ≤ µ

0 if p > µ

(N≤µΦ)p,n =

{
Φp,n if n ≤ µ

0 if n > µ

Definition (W̃µ(t, s)). We define Rµ = P≤µN≤µ, so Xµ(t) ≡ Rµ
(
H̃I(t) +

Ṽ (t)
)
Rµ is bounded in H . Then by means of a Dyson series we obtain:

W̃µ(t, s) =

∞∑
m=0

(−i)m
∫ t

s

dt1

∫ t1

s

dt2 · · ·
∫ tm−1

s

dtmXµ(t1) · · ·Xµ(tm) .

The family W̃µ(t, s) satisfies the following Lemma, since it is defined by a Dyson
series:

Lemma 1.1.

i. W̃µ(s, s) = 1, W̃µ(t, r)W̃µ(r, s) = W̃µ(t, s) for all r, s, t ∈ R.

ii. W̃ †µ(t, s) = W̃µ(s, t), and W̃µ(t, s) are unitary in H .

iii. W̃µ(t, s) is strongly differentiable on H and

i
d

dt
W̃µ(t, s) = Xµ(t)W̃µ(t, s) ;

i
d

ds
W̃µ(t, s) = −W̃µ(t, s)Xµ(s) .

Furthermore we can prove that W̃µ(t, s) maps H δ into itself:

Lemma 1.2. Let Φ ∈H 2δ, δ ∈ R, µ ≥ 1. Then∥∥∥W̃µ(t, s)Φ
∥∥∥

2δ
≤ exp

{
√
µλ |δ| νδ ‖f0‖2 |t− s|+ |δ|

(
ln 3

+ρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)} ‖Φ‖2δ ,
with νδ = max(5/2, 2|δ| + 1/2), ρδ = max(4, 3|δ| + 1).

Proof. Define, for all Φ ∈H ,

M(t, s) =
1

2

∥∥∥(Q+ 3)−δW̃µ(t, s)Φ
∥∥∥2

,

41
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with δ ≥ 1, differentiable in t and s. Set (Q+ 3)−δ ≡ h(Q), we have that

d

dt
M(t, s) =Im〈h(Q)W̃µ(t, s)Φ,RµH̃−I (t)Rµ(

h(Q− 1)h(Q)−1 − 1
)
h(Q)W̃µ(t, s)Φ〉

+Im〈RµH̃−I (t)Rµ
(
h(Q)h(Q− 1)−1 − 1

)
h(Q)W̃µ(t, s)Φ, h(Q)W̃µ(t, s)Φ〉

+Im〈h(Q)W̃µ(t, s)Φ, Ṽ−−;µ(t)
(
h(Q− 2)h(Q)−1

−1
)
h(Q)W̃µ(t, s)Φ〉

+Im〈Ṽ−−;µ(t)
(
h(Q)h(Q− 2)−1

−1
)
h(Q)W̃µ(t, s)Φ, h(Q)W̃µ(t, s)Φ〉

The last two terms of the right hand side of the equality are bounded in Lemma 2.3.
So we obtain:∣∣∣∣ d

dt
M(t, s)

∣∣∣∣ ≤ 2λ ‖f0‖2
[
|‖RµP

√
N

(
h(Q)h(Q− 1)−1 − 1

)
‖|

+ |‖RµP
√
N

(
h(Q− 1)h(Q)−1 − 1

)
‖|
]
M(t, s)

+
√

2 ‖v−−‖2 δ(3
δ + 1)M(t, s) .

We have then

K ≡

[
. . .

]
≤ δµ√µ

(
(2µ+ 3)δ

(2µ+ 2)δ
+

(2µ+ 3)δ−1

(2µ+ 3)δ

)
= δ

µ
√
µ

µ+ 1
(2δ−2 + 2−1)

≤ δ√µ
(

2δ +
1

2

)
.

Applying now Gronwall’s Lemma we have∥∥∥(Q+ 3)−δW̃µ(t, s)Φ
∥∥∥ ≤ exp

{
√
µδ
(
2δ +

1

2

)
λ ‖f0‖2 (t− s)

+
1√
2
δ(3δ + 1)

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣} ∥∥(Q+ 3)−δΦ
∥∥2

,

for all δ ≥ 1. Interpolating between δ = 0 and δ = 1 we obtain for all δ ≥ 0:∥∥∥(Q+ 3)−δW̃µ(t, s)Φ
∥∥∥ ≤ exp

{
√
µδνδλ ‖f0‖2 (t− s)

+
1√
2
δρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣} ∥∥(Q+ 3)−δΦ
∥∥2

,

with νδ = max(5/2, 2|δ| + 1/2), ρδ = max(4, 3|δ| + 1). By duality we extend the
result to all δ ∈ R. �

2. A preliminary (not so good) bound of
∥∥∥W̃ (t, s)Φ

∥∥∥
δ
.

We prove here a Lemma about exp{iϕ(f)}, as defined in Appendix A.
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Lemma 2.1. Let b ≥ 1/2. Then for all m = 1, 2, . . . and Ψ ∈ D(Nm) we have

‖(N + b)m exp{iϕ(f)}Ψ‖ ≤ 6m/2

∥∥∥∥∥∥
m−1∏
j=0

(N + b+ ‖f‖22 + j)Ψ

∥∥∥∥∥∥
≤ 6m/2(1 + 2(m− 1))m(1 + 2 ‖f‖22)m ‖(N + b)mΨ‖ .

Proof. Recalling that N = dΓ(1), we can use Lemma 5.7 of Appendix A to
write:

exp{−iϕ(f)}(N + b) exp{iϕ(f)} = N + b+ ‖f‖22 + a(if) + a∗(if) ;

and such equality holds on D(N). So if m = 1, Ψ ∈ D(Nm):

‖(N + b) exp{iϕ(f)}Ψ‖2 =
∥∥∥(N + b+ ‖f‖22)Ψ + a(if)Ψ + a∗(if)Ψ

∥∥∥2

≤ 3
(∥∥∥(N + b+ ‖f‖22)Ψ

∥∥∥2

+
∥∥a(if)Ψ

∥∥2
+ ‖a∗(if)Ψ‖2

)
≤ 3〈Ψ,

(
(N + b+ ‖f‖22)2 + 2 ‖f‖22N + ‖f‖22

)
Ψ〉 .

Now if b ≥ 1/2 we have 2 ‖f‖22N + ‖f‖22 ≤ (N + b+ ‖f‖22)2.
Suppose the result is verified for m, and verify it for m+ 1. Let

hm(N) =

m−1∏
j=0

(N + b+ ‖f‖22 + j) .

Then ∥∥(N + b)m+1 exp{iϕ(f)}Ψ
∥∥2 ≤

∥∥∥hm(N)(N + b+ ‖f‖22 + a+ a∗)Ψ
∥∥∥2

=
∥∥∥((N + b+ ‖f‖22)hm(N) + ahm(N − 1) + a∗hm(N + 1)

)
Ψ
∥∥∥2

≤ 3〈Ψ, hm(N + 1)2
(

(N + b+ ‖f‖22)2 + 2N ‖f‖22 + ‖f‖22
)

Ψ〉 .

�

Lemma 2.2. C(u, α) maps H 2δ into itself for any positive δ. In particular, let
u, α ∈ L2, δ ≥ 0, Φ ∈H 2δ; then

(2.1) ‖C(u, α)Φ‖2δ ≤ Kδ(u, α) ‖Φ‖2δ ,

with

Kδ(u, α) = 6δ/2(1 + 2(d− − 1))
d−(d+−δ)
d+−d− (1 + 2(d+ − 1))

d+(δ−δ−)

d+−d−(
1 + 2 ‖u‖22 + 2 ‖α‖22

)δ
,

where

d− = max
m∈N
{m ≤ δ}

d+ = min
m∈N
{m ≥ δ} .

Proof. The result is a direct consequence of Lemma 2.1 when δ is an integer.
By interpolation we extend it to all real δ: let δ ∈ R, and define the integers d−
and d+ as above; then interpolating between d− and d+ we obtain

‖C(u, α)Φ‖2δ ≤ Kδ(u, α) ‖Φ‖2δ ,
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with

Kδ(u, α) = 6
d−(d+−δ)
2(d+−d−) (1 + 2(d− − 1))

d−(d+−δ)
d+−d−

(
1 + 2 ‖u‖22 + 2 ‖α‖22

) d−(d+−δ)
d+−d−

6
d+(δ−d−)

2(d+−d−) (1 + 2(d+ − 1))
d+(δ−d−)

d+−d−
(
1 + 2 ‖u‖22 + 2 ‖α‖22

) d+(δ−d−)

d+−d−

= 6δ/2(1 + 2(d− − 1))
d−(d+−δ)
d+−d− (1 + 2(d+ − 1))

d+(δ−d−)

d+−d−(
1 + 2 ‖u‖22 + 2 ‖α‖22

)δ
.

�

Remark 2.2.1. Let Φ ∈H 4δ, with positive integer δ and λ ≤ 1; then∥∥∥W̃ (t, s)Φ
∥∥∥

2δ
≤ Kδ(t, s)λ

−6δ exp
{
|δ|µδλ ‖f0‖2 |t− s|

}
‖Φ‖4δ ,

with µδ = max(3, 1 + 2|δ|) and

Kδ(t, s) = Kδ(u(t), α(t))K2δ(u(s), α(s)) .

Proof. We can pass (Q + 1)δ to the right of U0 since it commutes with H0,
and to the right of C using Lemma 2.2. So we have∥∥∥W̃ (t, s)Φ

∥∥∥
2δ
≤ Kδ(t)λ

−2δ ‖U(t− s)C(uλ(s), αλ(s))Φ‖2δ ,

where

Kδ(t) = Kδ(u(t), α(t)) ,

since

Kδ(uλ(t), αλ(t)) ≤ λ−2δKδ(u(t), α(t))

when λ ≤ 1. Using the fact that P 2 +N ≥ Q we can write:∥∥∥W̃ (t, s)Φ
∥∥∥

2δ
≤ Kδ(t)λ

−2δ
∥∥(P 2 +N + 1)δU(t− s)C(uλ(s), αλ(s))U0(s)Φ

∥∥ ,
and use Proposition 4 to obtain∥∥∥W̃ (t, s)Φ

∥∥∥
2δ
≤ Kδ(t)λ

−2δ exp
{
|δ|µδλ ‖f0‖2 |t− s|

}
‖C(uλ(s), αλ(s))U0(s)Φ‖4δ ;

since P 2 +N ≤ Q2. Now using again Lemma 2.2 we obtain the sought result with

Kδ(t, s) = Kδ(t)K2δ(s) .

�

3. The good bound of
∥∥∥W̃ (t, s)Φ

∥∥∥
δ
.

The bound we just proved in Remark 2.2.1 is divergent when λ → 0, as λ−6δ.
So it is not suitable to be applied in the classical limit. However using it and the

one regarding the cut off operator W̃µ proved in Lemma 1.2 we can obtain a bound

of W̃ that behaves well when λ→ 0.

Proposition 8. For all positive δ exists a δ∗ > δ such that W̃ (t, s) maps H δ∗

into H δ.
In particular let Φ ∈H δ∗ . Then for all λ ≤ 1, δ∗ = max(4, 6δ + 3):∥∥∥W̃ (t, s)Φ

∥∥∥2

δ
≤
(
K1(t, s) + λK2(t, s)

)
eλC1|t−s|+K3(t,s) ‖Φ‖2δ∗ ,

where C1 is a positive constant depending on δ; Kj(t, s), j = 1, 2, 3, positive func-
tions depending also on δ.
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Proof. Let Φ ∈ H δ∗ , with δ∗ ≥ 4. Due to the properties of W̃ (t, s) and

W̃µ(t, s) all the steps of the following proof are well defined, and the integrals make
sense as strong Riemann integrals on H . We evaluate separately each term of the
right hand side of the identity

〈W̃ (t, s)Φ, (Q+ 1)δW̃ (t, s)Φ〉 = 〈W̃µ(t, s)Φ, (Q+ 1)δ

W̃µ(t, s)Φ〉+ 〈W̃ (t, s)Φ, (Q+ 1)δ
(
W̃ (t, s)− W̃µ(t, s)

)
Φ〉

+〈
(
W̃ (t, s)− W̃µ(t, s)

)
Φ, (Q+ 1)δW̃µ(t, s)Φ〉 .

The estimate for the first one is provided by Lemma 1.2. Consider now the second
term: ∣∣∣〈W̃ (t, s)Φ, (Q+ 1)δ

(
W̃ (t, s)− W̃µ(t, s)

)
Φ〉
∣∣∣ =

∣∣∣〈W̃ †(t, s)
(Q+ 1)δW̃ (t, s)Φ,

∫ t

s

dτ W̃ †(τ, s)
(
Rµ
(
H̃I(τ)+

Ṽ (τ)
)
Rµ − H̃I(τ)− Ṽ (τ)

)
W̃µ(τ, s)Φ〉

∣∣∣
≤ Kδ(t, s)λ

−6δ exp
{
δµδλ ‖f0‖2 |t− s|

}∣∣∣∣∫ t

s

dτ ‖Φ‖4δ∥∥∥(Rµ(H̃I(τ) + Ṽ (τ)
)
Rµ − H̃I(τ)− Ṽ (τ)

)
W̃µ(τ, s)Φ

∥∥∥∣∣∣∣;
where in the inequality we used Remark 2.2.1. To evaluate the last norm we use
the commutation properties defined in Lemma 2.2 of Part I to move Rµ to the left,

the usual estimates of HI and Ṽ and then the fact that for every j we have

(1− Rµ) ≤ (Q+ 1)2j

√
µ4j

≤ (Q+ 1)2j

√
µ− 1

4j

to obtain:∣∣∣〈W̃ (t, s)Φ, (Q+ 1)δ
(
W̃ (t, s)− W̃µ(t, s)

)
Φ〉
∣∣∣ ≤ Kδ(t, s)

exp
{
δµδλ ‖f0‖2 |t− s|

}∣∣∣∣∫ t

s

dτ

(
‖f0‖2

( 1

λ
√
µ− 1

)6δ−1

+
(
8 ‖v−−(τ)‖2 + 2 ‖χ̌ ∗A(τ)‖∞

)( 1

λ
√
µ− 1

)6δ
)∣∣∣∣

‖Φ‖4δ
∥∥∥W̃µ(τ, s)Φ

∥∥∥
6δ+3

.

Now we use Lemma 1.2 to write∣∣∣〈W̃ (t, s)Φ, (Q+ 1)δ
(
W̃ (t, s)− W̃µ(t, s)

)
Φ〉
∣∣∣ ≤ Kδ(t, s)

exp
{
δµδλ ‖f0‖2 |t− s|

}∣∣∣∣∫ t

s

dτ

(
‖f0‖2

( 1

λ
√
µ− 1

)6δ−1

+
(
8 ‖v−−(τ)‖2 + 2 ‖χ̌ ∗A(τ)‖∞

)( 1

λ
√
µ− 1

)6δ
)

exp

{
√
µλ(3δ + 3/2)ν3δ+3/2 ‖f0‖2 |τ − s|

+(3δ + 3/2)

(
ln 3 + ρ3δ+3/2

∣∣∣∣∫ τ

s

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣
‖Φ‖4δ ‖Φ‖6δ+3 .
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The last term is easier to estimate, we have to use again Lemma 1.2 and the

standard estimates for HI and Ṽ , and obtain:∣∣∣〈(W̃ (t, s)− W̃µ(t, s)
)

Φ, (Q+ 1)δW̃µ(t, s)Φ〉
∣∣∣

≤ exp

{
√
µλδνδ ‖f0‖2 |t− s|

+δ

(
ln 3 + ρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)}∣∣∣∣∫ t

s

dτ
(
λ ‖f0‖2 + 4 ‖v−−(τ)‖2 + ‖χ̌ ∗A(τ)‖∞

)
exp

{
√
µλ2ν2 ‖f0‖2 |τ − s|+ 2

(
ln 3 + ρ2

∣∣∣∣∫ τ

s

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣
‖Φ‖2δ ‖Φ‖H 4 ;

where we denoted the norm of H 4 with ‖·‖H 4 to avoid confusion with the L4-norm.
Now we can choose µ = 1 + 1/λ2, and finally obtain the sought result:∥∥∥W̃ (t, s)Φ

∥∥∥2

δ
≤ Kδ(t, s) exp

{
δµδλ ‖f0‖2 |t− s|

}∣∣∣∣∫ t

s

dτ

(
‖f0‖2 + 8 ‖v−−(τ)‖2

+2 ‖χ̌ ∗A(τ)‖∞

)
exp

{√
1 + λ2(3δ + 3/2)ν3δ+3/2 ‖f0‖2 |τ − s|

+(3δ + 3/2)

(
ln 3 + ρ3δ+3/2

∣∣∣∣∫ τ

s

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣
‖Φ‖4δ ‖Φ‖6δ+3

+ exp

{√
1 + λ2δνδ ‖f0‖2 |t− s|+ δ

(
ln 3 + ρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)}∣∣∣∣∫ t

s

dτ
(
λ ‖f0‖2 + 4 ‖v−−(τ)‖2 + ‖χ̌ ∗A(τ)‖∞

)
exp

{√
1 + λ22ν2 ‖f0‖2 |τ − s|+ 2

(
ln 3 + ρ2

∣∣∣∣∫ τ

s

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣
‖Φ‖2δ ‖Φ‖H 4

+ exp

{√
1 + λ2δνδ/2 ‖f0‖2 |t− s|+ δ

(
ln 3 + ρδ/2

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)}
‖Φ‖2δ ,

with δ∗ = max(4, 6δ + 3). �

In order to obtain the good estimate in λ, we have to restrict to a subspace
of H smaller than expected. We could a priori expect, since D((P 2 + N)δ) and

not H δ is invariant for W̃ , to bound the δ-norm of W̃Φ with the 2δ-norm of Φ;
however this leads to the (divergent) bound of previous section. In fact we need an
even smaller subspace if we want the estimate to remain finite in the limit λ→ 0.

Corollary. Also W (t, s) maps H δ∗ into H δ. The same estimate as for

W̃ (t, s) holds:

‖W (t, s)Φ‖2δ ≤
(
K1(t, s) + λK2(t, s)

)
eλC1|t−s|+K3(t,s) ‖Φ‖2δ∗ .

Proof. This corollary is a direct consequence of the fact that U0 commutes
with every function of P and N . �



CHAPTER 7

The classical limit of creation and annihilation
operators.

1. The evolution of quantum fields of fluctuations.

The Ũ2-evolution does not preserve the number of particles, however the evolu-
tion of quantum fields applied to the vacuum remains a state with only one particle.
Using this fact we will be able to improve the convergence of creation and annihi-
lation operators in the classical limit, in a sense we will explain below.

Definition (The projector on the one particle subspace of H ). We define
P0N1 + P1N0 to be the orthogonal projector onto H0,1 ⊕H1,0

Proposition 9 (Ũ2-evolution of quantum fields). Let g = {gi}4i=1 be four
L2(R3) functions, and consider the field ϕ(g) = ψ∗(g1) + ψ(g2) + a∗(g3) + a(g4).
Then

Ũ†2 (t, s)ϕ(g)Ũ2(t, s)Ω = (P0N1 + P1N0)Ũ†2 (t, s)ϕ(g)Ũ2(t, s)Ω .

So Ũ†2 (t, s)ϕ(g)Ũ2(t, s)Ω belongs to the subspace of H with only one particle.

Proof. Let Θ ∈ (H0,1 ⊕H1,0)⊥, and define:

X(t) = sup
g1∈L2

1

‖g1‖2

∣∣∣〈Θ, Ũ†2 (t, s)ψ∗(g1)Ũ2(t, s)Ω〉
∣∣∣

+ sup
g2∈L2

1

‖g2‖2

∣∣∣〈Θ, Ũ†2 (t, s)ψ(g2)Ũ2(t, s)Ω〉
∣∣∣

+ sup
g3∈L2

1

‖g3‖2

∣∣∣〈Θ, Ũ†2 (t, s)a∗(g3)Ũ2(t, s)Ω〉
∣∣∣

+ sup
g4∈L2

1

‖g4‖2

∣∣∣〈Θ, Ũ†2 (t, s)a(g4)Ũ2(t, s)Ω〉
∣∣∣ .

First of all observe that X(s) = 0. So if we prove that exists a positive finite
constant C such that

(1.1) X(t) ≤ C
∫ t

s

dτ X(τ) ,

we can use Gronwall’s Lemma to assert X(t) = 0 for all t ≥ s. But if X(t) = 0
then ∣∣∣〈Θ, Ũ†2 (t, s)ϕ(g)Ũ2(t, s)Ω〉

∣∣∣ ≤ sup
i∈{1,2,3,4}

‖gi‖2X(t) = 0 ;

for all Θ ∈ (H0,1 ⊕H1,0)⊥, so Ũ†2 (t, s)ϕ(g)Ũ2(t, s)Ω ∈ H0,1 ⊕H1,0. We need to
show (1.1); we will prove such relation only for the first term of X(t), since for the
others is very similar; define then

X1(t) = sup
g1∈L2

1

‖g1‖2

∣∣∣〈Θ, Ũ†2 (t, s)ψ∗(g1)Ũ2(t, s)Ω〉
∣∣∣ .
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Using the differentiability properties of Ũ2, we have

i∂t〈Θ, Ũ†2 (t, s)ψ∗(g1)Ũ2(t, s)Ω〉 = 〈Θ, Ũ†2 (t, s)[ψ∗(g1), Ṽ (t)]Ũ2(t, s)Ω〉 .
Performing the commutation, integrating and taking the absolute value we obtain∣∣∣〈Θ, Ũ†2 (t, s)ψ∗(g1)Ũ2(t, s)Ω〉

∣∣∣ ≤ ∫ t

s

dτ
∣∣∣〈Θ, Ũ†2 (τ, s)

(
a(g1−)

+a∗(g1+) + ψ∗(g10)
)
Ũ2(τ, s)Ω〉

∣∣∣ ,
with

g1−(t, ·) =

∫
dx g1(x)ṽ−−(t, x, ·) ,

g1+(t, ·) =

∫
dx g1(x)ṽ−+(t, x, ·) ,

g10(t, ·) = U†01(t)(χ̌ ∗A(t))(·)U01(t)g1(·) .

Multiply now both members by ‖g1‖−1
2 , and calculate the supremum in g1:

X1(t) ≤
∫ t

s

dτ sup
g1∈L2

1

‖g1‖2

∣∣∣〈Θ, Ũ†2 (τ, s)a(g1−)Ũ2(τ, s)Ω〉
∣∣∣

+

∫ t

s

dτ sup
g1∈L2

1

‖g1‖2

∣∣∣〈Θ, Ũ†2 (τ, s)a∗(g1+)Ũ2(τ, s)Ω〉
∣∣∣

+

∫ t

s

dτ sup
g1∈L2

1

‖g1‖2

∣∣∣〈Θ, Ũ†2 (τ, s)ψ∗(g10)Ũ2(τ, s)Ω〉
∣∣∣ .

Now we change the supremum function obtaining:

X1(t) ≤
∫ t

s

dτ sup
g1−∈L2

‖g1−‖2
‖g1‖2

1

‖g1−‖2

∣∣∣〈Θ, Ũ†2 (τ, s)a(g1−)Ũ2(τ, s)Ω〉
∣∣∣

+

∫ t

s

dτ sup
g1+∈L2

‖g1+‖2
‖g1‖2

1

‖g1+‖2

∣∣∣〈Θ, Ũ†2 (τ, s)a∗(g1+)Ũ2(τ, s)Ω〉
∣∣∣

+

∫ t

s

dτ sup
g10∈L2

‖g10‖2
‖g1‖2

1

‖g10‖2

∣∣∣〈Θ, Ũ†2 (τ, s)ψ∗(g10)Ũ2(τ, s)Ω〉
∣∣∣ .

Using the following estimates

‖g1−(t)‖2 ≤ ‖f0‖2 ‖u(t)‖2 ‖g1‖2 ,

‖g1+(t)‖2 ≤ ‖f0‖2 ‖u(t)‖2 ‖g1‖2 ,

‖g10(t)‖2 ≤ ‖χ̌ ∗A(t)‖∞ ‖g1‖2 .

we obtain the sought result

X1(t) ≤ C
∫ t

s

dτ X(τ) ,

C = sup
τ∈[s,t]

(
2 ‖f0‖2 ‖u(τ)‖2 + ‖χ̌ ∗A(τ)‖∞

)
.

�

2. The general case: convergence as λ.

Using only the bound of Proposition 8 we can obtain a first result of convergence
of the creation and annihilation operators towards the classical solutions when
λ → 0. Obviously since ψ# and a# are operators on H , while u# and α# are
functions in L2(R3), we should expect that the average of the former between
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suitable states will converge to the latter in some sense. Consider a set of λ-
dependent states constructed by means of Weyl operators, defined as follows.

Definition. Let Φ ∈ H δ, with δ ≥ 1, such that ‖Φ‖ = 1; (u, α) ∈ L2(R3) ⊗
L2(R3). Then

{C(uλ, αλ)Φ ≡ C(u/λ, α/λ)Φ , 0 < λ ≤ 1}
is a λ-dependent set of vectors in H δ.

From this definition we immediately see that if we choose δ ≥ 2 and f ∈ L2(R3),
we can study the well-defined averages

〈λψ#(f̄#)(t)〉CΦ = 〈C(uλ, αλ)Φ, U†(t)λψ#(f̄#)U(t)C(uλ, αλ)Φ〉

〈λa#(f̄#)(t)〉CΦ = 〈C(uλ, αλ)Φ, U†(t)λa#(f̄#)U(t)C(uλ, αλ)Φ〉 .

The reason we consider λψ# and λa# instead of ψ# and a# as the quantum op-
erators to have classical limit is discussed in Section 4 of Chapter 1; however it is
evident that at time zero the averages above would diverge, when λ → 0, if we
substitute λψ# and λa# with ψ# and a#.

Lemma 2.1. Let Φ ∈ H δ, δ ≥ 9, f ∈ L2(R3). Furthermore let (u(·), α(·)) ∈
C 0(R, L2(R3) ⊗ L2(R3)) be the solution of (E) with initial conditions (u, α) ∈
L2(R3)⊗ L2(R3). Then

〈λψ#(f̄#)(t)〉CΦ → 〈f#, u#(t)〉2
〈λa#(f̄#)(t)〉CΦ → 〈f#, α#(t)〉2

when λ→ 0. More precisely we have the following bounds:∣∣〈λψ#(f̄#)(t)〉CΦ − 〈f#, u#(t)〉2
∣∣ ≤λ ‖f‖2 (K1(t, 0) + λK2(t, 0)

)1/2

e(λC1|t|+K3(t,0))/2 ‖Φ‖H 9∣∣〈λa#(f̄#)(t)〉CΦ − 〈f#, α#(t)〉2
∣∣ ≤λ ‖f‖2 (K1(t, 0) + λK2(t, 0)

)1/2

e(λC1|t|+K3(t,0))/2 ‖Φ‖H 9 ,

where the constants are defined in Proposition 8.

Proof. We prove the result for 〈λψ#(f̄#)(t)〉CΦ, the other case being perfectly
analogous. Using Proposition 5 we can write

〈λψ#(f̄#)(t)〉CΦ = 〈W (t, 0)Φ, λψ#(f̄#)W (t, 0)Φ〉+ 〈f#, u#(t)〉2 .
Then we have that∣∣〈λψ#(f̄#)(t)〉CΦ − 〈f#, u#(t)〉2

∣∣ ≤ λ ∥∥ψ#(f̄#)W (t, 0)Φ
∥∥

≤ λ ‖f‖2 ‖W (t, 0)Φ‖H 1 ,

using the Corollary of Proposition 8 we obtain the result. �

Definition. We define formally the following complex-valued functions of R3:

〈λψ#(t, ·)〉CΦ = 〈C(uλ, αλ)Φ, U†(t)λψ#(·)U(t)C(uλ, αλ)Φ〉

〈λa#(t, ·)〉CΦ = 〈C(uλ, αλ)Φ, U†(t)λa#(·)U(t)C(uλ, αλ)Φ〉 .

By this definition we have formally the following relations:

〈λψ#(f̄#)(t)〉CΦ =

∫
dx f̄#(x)〈λψ#(t, x)〉CΦ

〈λa#(f̄#)(t)〉CΦ =

∫
dk f̄#(k)〈λa#(t, k)〉CΦ .
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Lemma 2.2. 〈λψ#(f̄#)(t)〉CΦ and 〈λa#(f̄#)(t)〉CΦ (as functionals of f#) are
bounded antilinear functionals of L2(R3).

Proof. Linearity follows from the linearity of ψ#(·) and a#(·) on suitable
domains as proved in Appendix A. Boundedness follows from usual estimates: let
Φ ∈H δ, with δ ≥ 2, then exists a constant C independent of f such that:∣∣〈λψ#(f̄#)(t)〉CΦ

∣∣ ≤ λ ‖f‖2 ‖U(t)C(uλ, αλ)Φ‖H 1 ≤ C ‖f‖2 .

The case of 〈λa#(f̄#)(t)〉CΦ being analogous. �

Corollary. 〈λψ#(t)〉CΦ and 〈λa#(t)〉CΦ are in L2(R3).

Proof. Consider 〈λψ#(t)〉CΦ, the other case is identical. We use Riesz’s
Lemma and the result above to infer that exists a function g ∈ L2(R3) such that

〈f#, g〉2 = 〈λψ#(f̄#)(t)〉CΦ .

Then accordingly to the formal definition of 〈λψ#(t)〉CΦ we set g ≡ 〈λψ#(t)〉CΦ.
�

Proposition 10. Let Φ ∈ H δ, δ ≥ 9; (u(·), α(·)) ∈ C 0(R, L2(R3) ⊗ L2(R3))
be the solution of (E) with initial conditions (u, α) ∈ L2(R3) ⊗ L2(R3). Then
〈λψ#(t)〉CΦ →L2(R3) u

#(t), 〈λa#(t)〉CΦ →L2(R3) α
#(t) when λ → 0. More pre-

cisely we have the following bounds:∥∥〈λψ#(t)〉CΦ − u#(t)
∥∥2

2
≤λ
(
K1(t, 0) + λK2(t, 0)

)
eλC1|t|+K3(t,0) ‖Φ‖H 9∥∥〈λa#(t)〉CΦ − α#(t)

∥∥2

2
≤λ
(
K1(t, 0) + λK2(t, 0)

)
eλC1|t|+K3(t,0) ‖Φ‖H 9

where the constants are defined in Proposition 8.

Proof. A straightforward consequence of Lemma 2.1 and the Corollary of
Lemma 2.2. �

3. Coherent states: convergence as λ2.

Using the evolution of quantum fluctuations, in particular the result proved in
this chapter, we can improve the bound obtained in the proposition above. However
the result applies only to a particular set of states called coherent, namely the states
we obtain applying Weyl operators to the vacuum.

Definition 3.1 (Classical limit coherent states Λ). Let (u, α) ∈ L2(R3) ⊗
L2(R3), Ω the vacuum state of H (see Section 2 of Chapter 1). Then

{Λ ≡ C(uλ, αλ)Ω , 0 < λ ≤ 1}
is a set of λ-dependent states in H δ for all positive δ.

We will proceed as in the previous section. So we will define the following
quantities:

Definition. Let f ∈ L2(R3), then we define

〈λψ#(f̄#)(t)〉Λ = 〈Λ, U†(t)λψ#(f̄#)U(t)Λ〉

〈λa#(f̄#)(t)〉Λ = 〈Λ, U†(t)λa#(f̄#)U(t)Λ〉 .
Using the results of previous section we can also define the following functions of
L2(R3):

〈λψ#(t, ·)〉Λ = 〈Λ, U†(t)λψ#(·)U(t)Λ〉

〈λa#(t, ·)〉Λ = 〈Λ, U†(t)λa#(·)U(t)Λ〉 .
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Proposition 11. Let (u(·), α(·)) ∈ C 0(R, L2(R3) ⊗ L2(R3)) be the solution
of (E) with initial conditions (u, α) ∈ L2(R3)⊗L2(R3). Then we have two positive
constants K1 and K2 such that:∥∥〈λψ#(t)〉Λ − u#(t)

∥∥
2
≤λ2K1 |t| eK2|t|∥∥〈λa#(t)〉Λ − α#(t)

∥∥
2
≤λ2K1 |t| eK2|t| .

Proof. To prove the proposition we proceed as in the previous section, in
particular it will be sufficient to prove the following lemma:

Lemma 3.1. Let f ∈ L2(R3), then we have the following bounds:∣∣〈λψ#(f̄#)(t)〉Λ − 〈f#, u#(t)〉2
∣∣ ≤λ2 ‖f‖2K1 |t| eK2|t|∣∣〈λa#(f̄#)(t)〉Λ − 〈f#, α#(t)〉2
∣∣ ≤λ2 ‖f‖2K1 |t| eK2|t|

with C and K positive constants.

Proof. As usual we prove the result for 〈λψ#(f̄#)(t)〉Λ, the other case being
perfectly analogous. Using Proposition 5 we can write∣∣〈λψ#(f̄#)(t)〉Λ − 〈f#, u#(t)〉2

∣∣ = λ
∣∣〈W (t, 0)Ω, ψ#(f̄#)W (t, 0)Ω〉

∣∣
= λ

∣∣∣〈W̃ (t, 0)Ω, U†0 (t)ψ#(f̄#)U0(t)W̃ (t, 0)Ω〉
∣∣∣ .

Using Lemma 6.1 of Appendix A we then obtain:∣∣〈λψ#(f̄#)(t)〉Λ − 〈f#, u#(t)〉2
∣∣ = λ

∣∣∣〈W̃ (t, 0)Ω, ψ#(
¯̃
f#)W̃ (t, 0)Ω〉

∣∣∣ .
Now using the equality

〈W̃ (t, 0)Ω, ψ#(
¯̃
f#)W̃ (t, 0)Ω〉 = 〈Ũ2(t, 0)Ω, ψ#(

¯̃
f#)Ũ2(t, 0)Ω〉

+〈(W̃ (t, 0)− Ũ2(t, 0))Ω, ψ#(
¯̃
f#)Ũ2(t, 0)Ω〉

+〈W̃ (t, 0)Ω, ψ#(
¯̃
f#)(W̃ (t, 0)− Ũ2(t, 0))Ω〉

we obtain∣∣〈λψ#(f̄#)(t)〉Λ − 〈f#, u#(t)〉2
∣∣ ≤ λ(∣∣∣〈Ũ2(t, 0)Ω, ψ#(

¯̃
f#)Ũ2(t, 0)Ω〉

∣∣∣
+
∣∣∣〈(W̃ (t, 0)− Ũ2(t, 0))Ω, ψ#(

¯̃
f#)Ũ2(t, 0)Ω〉

∣∣∣
+
∣∣∣〈W̃ (t, 0)Ω, ψ#(

¯̃
f#)(W̃ (t, 0)− Ũ2(t, 0))Ω〉

∣∣∣)
≡ λ

(
X1 +X2 +X3

)
.

By Proposition 9 we have that X1 = 0. Then we bound X2 as follows:

X2 =

∣∣∣∣〈∫ t

0

dτ
d

dτ
W̃ †(τ, 0)Ũ2(τ, 0)Ω, W̃ †(t, 0)ψ#(

¯̃
f#)Ũ2(t, 0)Ω〉

∣∣∣∣
≤
∣∣∣∣∫ t

0

dτ
∥∥∥H̃I(τ)Ũ2(τ, 0)Ω

∥∥∥∥∥∥ψ#(
¯̃
f)Ũ2(t, 0)Ω

∥∥∥∣∣∣∣
≤ λ ‖f‖2 ‖f0‖2

∣∣∣∣∫ t

0

dτ
∥∥∥Ũ2(τ, 0)Ω

∥∥∥
H 4

∥∥∥Ũ2(t, 0)Ω
∥∥∥

H 1

∣∣∣∣ .
Using Proposition 6 we obtain

X2 ≤ λ ‖f‖2 ‖f0‖2 exp

{
1

2

(
ln 3 + 4

√
2

∣∣∣∣∫ t

0

dτ ‖v−−(τ)‖2

∣∣∣∣)}∣∣∣∣∫ t

0

dτ exp

{
2

(
ln 3 + 10

√
2

∣∣∣∣∫ τ

0

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣ .
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To bound X3 we use a similar method:

X3 =

∣∣∣∣〈W̃ †(t, 0)
(
ψ#(

¯̃
f#)

)†
W̃ (t, 0)Ω,

∫ t

0

dτ W̃ †(τ, 0)H̃I(τ)Ũ2(τ, 0)Ω〉
∣∣∣∣

≤ λ ‖f‖2 ‖f0‖2
∥∥∥W̃ (t, 0)Ω

∥∥∥
H 1

∣∣∣∣∫ t

0

dτ
∥∥∥Ũ2(τ, 0)Ω

∥∥∥
H 4

∣∣∣∣ ,
then using Propositions 6 and 8 we obtain

X3 ≤ λ ‖f‖2 ‖f0‖2
(
K1(t, 0) + λK2(t, 0)

)1/2

e(λC1|t|+K3(t,0))/2∣∣∣∣∫ t

0

dτ exp

{
2

(
ln 3 + 10

√
2

∣∣∣∣∫ τ

0

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣ .
�

�

4. The classical limit of creation and annihilation operators.

In this section we will sum up in a theorem the results we proved above.

Theorem 2. Let Φ ∈ H δ, with δ ≥ 9, (u, α) ∈ L2(R3) ⊗ L2(R3). We call
(u(t, x), α(t, k)) ∈ C 0(R, L2(R3) ⊗ L2(R3)) the solution of (E) with initial condi-
tions (u, α) ∈ L2(R3)⊗ L2(R3). Then the following statements are valid:

i. The following limits exist in L2(R3) when λ→ 0:

〈λψ(t, ·)〉CΦ
L2(R3)−→
λ→0

u(t, ·)

〈λψ∗(t, ·)〉CΦ
L2(R3)−→
λ→0

ū(t, ·)

〈λa(t, ·)〉CΦ
L2(R3)−→
λ→0

α(t, ·)

〈λa∗(t, ·)〉CΦ
L2(R3)−→
λ→0

ᾱ(t, ·) .

ii. There are two positive constants K1 and K2 such that

‖〈λψ(t, ·)〉CΦ − u(t, ·)‖2 ≤ λK1 |t| eK2|t| ‖Φ‖2δ
‖〈λψ∗(t, ·)〉CΦ − ū(t, ·)‖2 ≤ λK1 |t| eK2|t| ‖Φ‖2δ
‖〈λa(t, ·)〉CΦ − α(t, ·)‖2 ≤ λK1 |t| eK2|t| ‖Φ‖2δ
‖〈λa∗(t, ·)〉CΦ − ᾱ(t, ·)‖2 ≤ λK1 |t| eK2|t| ‖Φ‖2δ .

iii. If Φ = Ω, the vacuum state of H , then

‖〈λψ(t, ·)〉CΩ − u(t, ·)‖2 ≤ λ
2K1 |t| eK2|t|

‖〈λψ∗(t, ·)〉CΩ − ū(t, ·)‖2 ≤ λ
2K1 |t| eK2|t|

‖〈λa(t, ·)〉CΩ − α(t, ·)‖2 ≤ λ
2K1 |t| eK2|t|

‖〈λa∗(t, ·)〉CΩ − ᾱ(t, ·)‖2 ≤ λ
2K1 |t| eK2|t| .

With this theorem we clarify in what sense (u(t), α(t)) are the classical coun-
terparts of (λψ(t), λa(t)). We remark that if we did not have used, in the definition
of W (t, s), the solution of classical equations (E) then we could not have found a
λ-convergent bound of ‖W (t, s)Φ‖δ and calculate the limit λ→ 0. Furthermore we
see that the analysis of quantum fluctuations enables us to improve the result of
convergence we would have obtained using only the properties of quantum evolution
W (t, s).



CHAPTER 8

Normal ordered products of operators.

The method we used in the previous chapter can be used to calculate the
classical limit of averages of normal ordered products of creation and annihilation
operators. The limit of such averages can be calculated not only between coherent
states, but also between fixed particle states. We will state a theorem with the
general result, however it will be proved in appendix; here we will discuss in detail
two simpler cases.

1. The set of states to calculate the classical limit.

We will consider three different kind of states to calculate transition amplitudes.
We call Ωp the vacuum state of

⊕
p Hp,0, Ωn the one of

⊕
n H0,n.

Definition (Λ, Ψ, Θ). Let u0, α0 ∈ L2(R3) such that ‖u0‖2 = ‖α0‖2 = 1.
Then we define, for any p̃, ñ ∈ N the following set of states:

{Λ = C(
√
p̃ u0,

√
ñ α0)Ω , 1 ≤ p̃, ñ <∞}

{Ψ = u
⊗p̃
0 ⊗ Cn(

√
ñ α0)Ωn ∈Hp̃ , 1 ≤ p̃, ñ <∞}

{Θ = u
⊗p̃
0 ⊗ α⊗ñ0 ∈Hp̃,ñ , 1 ≤ p̃, ñ <∞} .

Λ is the coherent state we already defined, Ψ is a tensor product of a state with
fixed number of particles and a coherent one, finally Θ is a state with fixed number
of particles. We want to evolve such states with the quantum evolution U(·), so we
introduce the notation:

Λ(t) = U(t)Λ ,

Ψ(t) = U(t)Ψ ,

Θ(t) = U(t)Θ .

From now on, we fix p̃ and ñ as following: p̃ = ñ = λ−2, so the Weyl operators
above become C(u0/λ, α0/λ) and C(α0/λ). In the case of fixed particle states the
limit λ→ 0 corresponds to the limit when the number of particles becomes infinite.
The reason we introduced here the parameters p̃ and ñ is that it is more natural to
write a fixed particle state having p̃ or ñ components than λ−2.

Definition (α0(θ), (uθ(t), αθ(t))). Let α0 ∈ L2(R3), we define

α0(θ) ≡ exp(−iθ)α0 .

Furthermore we call (uθ(t), αθ(t)) ∈ C 0(R, L2(R3) ⊗ L2(R3)) the solution of (E)
with initial condition (u0, α0(θ)) ∈ L2(R3)⊗ L2(R3) (while (u(t), α(t)) is the solu-
tion associated to (u0, α0)).

We will formulate here three lemmas that relate coherent states to states with
fixed number of particles. We adapted these results to be suitable for our set of
vectors Ψ and Θ. The basic formula used to prove the first and third of such lemmas
in literature is:

exp
(
(a∗(f)− a(f̄))

)
= e−‖f‖

2
2/2 exp(a∗(f)) exp(−a(f̄)) .

53



54 8. NORMAL ORDERED PRODUCTS OF OPERATORS.

However this equality makes sense only applied to vectors that permits us to write
such exponentials as power series. The properties of exponentials as series and
their associated vectors are studied in Appendix D. The second result is proved
using sharp estimates of Laguerre polynomials recently obtained in a work by
Krasikov [Kra05].

By definition of creation operators we can write the following identities:

Ψ =
ψ∗(u0)p̃√

p̃!
⊗ Cn(

√
ñα0)Ω =

ψ∗(u0)λ
−2√

(λ−2)!
⊗ Cn(α0/λ)Ω ,

Θ =
ψ∗(u0)p̃√

p̃!

a∗(α0)ñ√
ñ!

Ω =
ψ∗(u0)λ

−2√
(λ−2)!

a∗(α0)λ
−2√

(λ−2)!
Ω .

Definition (dx function).

dx ≡
√
x!

e−x/2xx/2
∼ x1/4 .

Lemma 1.1. Let u0, α0 ∈ L2(R3), such that ‖u0‖2 = ‖α0‖2 = 1. Then we
obtain the following identities:

Ψ = dp̃ Pp̃ C(
√
p̃u0,
√
ñα0)Ω = dλ−2Pλ−2C(u0/λ, α0/λ)Ω

Θ = dp̃ dñ Pp̃
∫ 2π

0

dθ

2π
eiñθC(

√
p̃u0,
√
ñα0(θ))Ω

= d2
λ−2Pλ−2

∫ 2π

0

dθ

2π
eiλ
−2θC(u0/λ, α0(θ)/λ)Ω ,

where Pp is the orthogonal projector on Hp.

Proof. The first relation is a rewriting of equation (4.2) of [COS11], the
second utilizes both the one just cited and Lemma 4.1 of [RS09]. �

Lemma 1.2. Let u0, α0 ∈ L2(R3) such that ‖u0‖2 = ‖α0‖2 = 1. Then there are
two constants KΨ and KΘ independent of λ and θ such that:∥∥∥(P + 1)−1/2C†(u0/λ, α0/λ)Ψ

∥∥∥ ≤ KΨd
−1
λ−2 ,∥∥∥(P + 1)−1/2(N + 1)−1/2C†(u0/λ, α0(θ)/λ)Θ

∥∥∥ ≤ KΘd
−2
λ−2 .

Proof. This result is stated in Lemma 7.1 of [COS11] and proved in [CL11].
�

Lemma 1.3. Consider Ψ,Θ defined as above, then for all θ ∈ R

(P0N1 + P1N0)C†(u0/λ, α0/λ)Ψ = 0

(P0N1 + P1N0)C†(u0/λ, α0(θ)/λ)Θ = 0 .

Proof. The part about P1 of the Ψ case is proved in[COS11], page 13, as
well as the result for Θ. Obviously also N1C

†(u0/λ, α0/λ)Ψ = 0. �

2. Definition of the transition amplitudes.

Definition (Transition amplitudes). Let q, r, i, j ∈ N, δ = q + r + i + j,
g ∈ L2(R3(q+r))⊗ L2(R3(i+j)) ≡ L2(R3δ) and

B =

∫
dXqdYrdKidMj ḡ(Xq, Yr,Ki,Mj)ψ

∗(Xq)ψ(Yr)a
∗(Ki)a(Mj) .
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Then we define the following transition amplitudes:

〈B〉Λ(t) ≡ λδ〈Λ(t), BΛ(t)〉 = λδ〈Λ, U†(t)BU(t)Λ〉

〈B〉Ψ(t) ≡ λδ〈Ψ(t), BΨ(t)〉 = λδ〈Ψ, U†(t)BU(t)Ψ〉

〈B〉Θ(t) ≡ λδ〈Θ(t), BΘ(t)〉 = λδ〈Θ, U†(t)BU(t)Θ〉 .

Furthermore we define the following complex-valued functions of R3δ:

〈ψ∗(q)ψ(r)a∗(i)a(j)〉Λ(t) ≡ λδ〈Λ(t), ψ∗(Xq)ψ(Yr)a
∗(Ki)a(Mj)Λ(t)〉

〈ψ∗(q)ψ(r)a∗(i)a(j)〉Ψ(t) ≡ λδ〈Ψ(t), ψ∗(Xq)ψ(Yr)a
∗(Ki)a(Mj)Ψ(t)〉

〈ψ∗(q)ψ(r)a∗(i)a(j)〉Θ(t) ≡ λδ〈Θ(t), ψ∗(Xq)ψ(Yr)a
∗(Ki)a(Mj)Θ(t)〉 .

We remark that λδ is necessary if we want these transition amplitudes to remain
finite even at t = 0 in the limit λ → 0 (λψ and λa rather than ψ and a are the
quantum operators that have classical limit). Formally we have that

〈B〉Λ(t) = 〈g, 〈ψ∗(q)ψ(r)a∗(i)a(j)〉Λ(t)〉L2(R3δ)

〈B〉Ψ(t) = 〈g, 〈ψ∗(q)ψ(r)a∗(i)a(j)〉Ψ(t)〉L2(R3δ)

〈B〉Θ(t) = 〈g, 〈ψ∗(q)ψ(r)a∗(i)a(j)〉Θ(t)〉L2(R3δ) .

Now we will prove such relation is not only formal, because 〈ψ∗(q)ψ(r)a∗(i)a(j)〉 is
in L2(R3δ) for all states.

Lemma 2.1. Λ, Ψ and Θ are in H δ for all positive δ.

Proof. The proof is trivial for fixed particle states. We know that C(u, α)
map H δ into itself (Proposition 5) and Ω is obviously in H δ for all positive δ.
Using the results of Appendix A we also know that C(α) maps D(Nδ) into itself
and Ωn is obviously in D(Nδ) for all δ. �

Lemma 2.2. For all positive δ and real t there is a finite constant C such that
for all g ∈ L2(R3δ)

〈B〉Λ(t) ≤ C
∥∥g;L2(R3δ)

∥∥
〈B〉Ψ(t) ≤ C

∥∥g;L2(R3δ)
∥∥

〈B〉Θ(t) ≤ C
∥∥g;L2(R3δ)

∥∥ .
Proof. We proof the result for Λ, the other cases being identical. Using

Lemma 2.1 of Chapter 3 we obtain:

|〈B〉Λ(t)| ≤ λδ
∥∥g;L2(R3δ)

∥∥ ‖Λ‖ ∥∥∥∥
√
P !(P + q − r)!N !(N + i− j)!

(P − r)!(N − j)!

θ(P − q)θ(N − i)U(t)Λ

∥∥∥∥ .
Using now the fact that Q ≤ P 2 +N , we have that

|〈B〉Λ(t)| ≤ λδ
∥∥g;L2(R3δ)

∥∥ ‖Λ‖∥∥∥(P 2 +N + q + i)δ/2U(t)Λ
∥∥∥ .

Proposition 4 then leads to

|〈B〉Λ(t)| ≤ C
∥∥g;L2(R3δ)

∥∥ ‖Λ‖ ‖Λ‖2δ .
Now ‖Λ‖2δ is finite by Lemma 2.1, so we obtain the sought result. �

Proposition 12. 〈ψ∗(q)ψ(r)a∗(i)a(j)〉X(t) ∈ L2(R3δ), for X ∈ {Λ,Ψ,Θ}.
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Proof. Again we prove the result only for Λ. 〈B〉Λ(t) defines a linear func-
tional on L2(R3δ), as a direct consequence of Lemma 2.2, since the bound is in-
dependent of g. The applying Riesz’s Lemma we know that there is a function
h ∈ L2(R3δ) such that 〈B〉Λ(t) = 〈g, h〉L2(R3δ). Then using the formal result stated
above we infer h ≡ 〈ψ∗(q)ψ(r)a∗(i)a(j)〉Λ(t). �

3. The general result.

We state here the theorem summing up the results we found about the classical
limit of the transition amplitudes defined above. However we will give its proof,
that is rather intricate, in Appendix E. We also formulate a lemma that will be
useful in the proof of the theorem as well as in the next section.

Definition. Let w1, w2, w3, w4 ∈ C 0(R, L2(R3)), then we define

w
⊗q
1 w⊗r2 w⊗i3 w

⊗j
4 (t) ≡

q∏
a=1

w1(t, xa)

r∏
b=1

w2(t, yb)

i∏
c=1

w3(t, kc)

j∏
d=1

w4(t,md).

Theorem 3. Let u0, α0 ∈ L2(R3) such that ‖u0‖2 = ‖α0‖2 = 1; Λ,Φ,Θ,
(u(t), α(t)), (uθ(t), αθ(t)) defined as above. Then the following statements are valid
for all q, r, i, j ∈ N, δ = q + r + i+ j:

i. The following limits exist in L2(R3δ) when λ→ 0:

〈ψ∗(q)ψ(r)a∗(i)a(j)〉Λ(t)
L2(R3δ)−→
λ→0

ū⊗qu⊗r ᾱ⊗iα⊗j (t)

〈ψ∗(q)ψ(r)a∗(i)a(j)〉Ψ(t)
L2(R3δ)−→
λ→0

δqrū
⊗qu⊗r ᾱ⊗iα⊗j (t)

〈ψ∗(q)ψ(r)a∗(i)a(j)〉Θ(t)
L2(R3δ)−→
λ→0

δqr

∫ 2π

0

dθ

2π
ū
⊗q
θ u⊗rθ ᾱ⊗iθ α

⊗j
θ (t) ,

δqr being the function equal to 1 when q = r, 0 otherwise.
ii. For all X ∈ {Λ,Ψ,Θ} there are two positive constants K1(X) and K2(X) that

depend on p, q, i, j such that

‖〈ψ∗(q)ψ(r)a∗(i)a(j)〉Λ(t)− ū⊗qu⊗r ᾱ⊗iα⊗j (t)‖L2(R3δ)

≤ λ2K1(Λ) |t| eK2(Λ)|t|

‖〈ψ∗(q)ψ(r)a∗(i)a(j)〉Ψ(t)− δqrū⊗qu⊗r ᾱ⊗iα⊗j (t)‖L2(R3δ)

≤ δqrλ2K1(Ψ) |t| eK2(Ψ)|t|

‖〈ψ∗(q)ψ(r)a∗(i)a(j)〉Θ(t)− δqr
∫ 2π

0

dθ

2π
ū
⊗q
θ u⊗rθ ᾱ⊗iθ α

⊗j
θ (t)‖L2(R3δ)

≤ δqrλ2K1(Θ) |t| eK2(Θ)|t| .

Lemma 3.1. Let B as above, then for all g ∈ L2(R3δ) and Φ ∈H δ the following
identity holds:

C†(u, α)BC(u, α)Φ =

∫
dXqdYrdKidMj ḡ(Xq, Yr,Ki,Mj)

q∏
a=1

(ψ∗(xa) + ū(xa))

r∏
b=1

(ψ(yb) + u(yb))

i∏
c=1

(a∗(kc) + ᾱ(kc))

j∏
d=1

(a(md) + α(md))Φ .
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Proof. Let δ1 = q + r, δ2 = i+ j. We call Sep(L2(R3δ)) the set of functions
that are product of functions in L2(R3). So if g ∈ Sep(L2(R3δ)) we can write:

g(Xq, Yr,Ki,Mj) =

q∏
a=1

ga(xa)

r∏
b=1

gq+b(yb)

i∏
c=1

gδ1+c(kc)

j∏
d=1

gδ1+i+d(md) .

For all g ∈ Sep(L2(R3δ)) the result holds. As a matter of fact in that case

C†(u, α)BC(u, α)Φ = C†(u, α)ψ∗(ḡ1)C(u, α) . . . C†(u, α)ψ(ḡq+1)C(u, α)

. . . C†(u, α)a∗(ḡδ1+1)C(u, α) . . . C†(u, α)a(ḡδ1+i+1)C(u, α) . . .Φ

= (ψ∗(ḡ1) + 〈u, ḡ1〉2) . . . (ψ(ḡq+1) + 〈gq+1, u〉2)

. . . (a∗(ḡδ1+1) + 〈α, ḡδ1+1〉2) . . . (a(ḡδ1+i+1) + 〈gδ1+i+1, α〉2) . . .Φ

because we can apply Proposition 5 to every term since ψ# and a# map H δ into
H δ−1. The result then holds also for finite linear combinations of functions in
Sep(L2(R3δ)). Then since L2(R3δ) admits a basis of functions in Sep(L2(R3δ)), we
can extend the result to all g ∈ L2(R3δ) with a density argument. �

4. Two examples: 〈ψ∗(x1)ψ(x2)〉Ψ(t) and 〈a∗(k1)a(k2)〉Θ(t).

We want to explain the procedure that leads to the results of Theorem 3. In
order to do that we will study two simple examples, respectively concerning Ψ and
Θ vectors. We do not discuss Λ vectors here since we did it in Chapter 7.

Definition (〈ψ∗(x1)ψ(x2)〉Ψ(t) and 〈a∗(k1)a(k2)〉Θ(t)). We recall that

〈ψ∗(x1)ψ(x2)〉Ψ(t) = λ2〈Ψ, U†(t)ψ∗(x1)ψ(x2)U(t)Ψ〉

〈a∗(k1)a(k2)〉Θ(t) = λ2〈Θ, U†(t)a∗(k1)a(k2)U(t)Θ〉 .

We define for all g ∈ L2(R6):

〈g〉Ψ(t) = λ2〈Ψ, U†(t)
∫

dx1dx2 ḡ(x1, x2)ψ∗(x1)ψ(x2)U(t)Ψ〉

〈g〉Θ(t) = λ2〈Θ, U†(t)
∫

dk1dk2 ḡ(k1, k2)a∗(k1)a(k2)U(t)Θ〉 .

Lemma 4.1. There are two positive constants K1 and K2 such that∣∣〈g〉Ψ(t)− 〈g(x1, x2), ū(t, x1)u(t, x2)〉L2(R6)

∣∣ ≤ λ2
∥∥g;L2(R6)

∥∥K1 |t| eK2|t|

Proof. Using Lemma 1.1 and setting m = λ−2 we can write:

〈g〉Ψ(t) = m−1dm〈Ψ, C(
√
mu0,

√
mα0)W †(t, 0)XW (t, 0)Ω〉 ,

where

X ≡ C†(
√
mu(t),

√
mα(t))

∫
dx1dx2 ḡ(x1, x2)ψ∗(x1)ψ(x2)

C(
√
mu(t),

√
mα(t))

By Lemma 3.1 we obtain:

X =

∫
dx1dx2 ḡ(x1, x2)ψ∗(x1)ψ(x2) +

√
m

∫
dx1dx2 ḡ(x1, x2)

(
ū(t, x1)

ψ(x2) + ψ∗(x1)u(t, x2)
)

+m

∫
dx1dx2 ḡ(x1, x2)ū(t, x1)u(t, x2)

≡ X1 +X2 +X3 .
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First of all consider X3:

m−1dm〈Ψ, C(
√
mu0,

√
mα0)W †(t, 0)X3W (t, 0)Ω〉

=

∫
dx1dx2 ḡ(x1, x2)ū(t, x1)u(t, x2)〈Ψ, dmC(

√
mu0,

√
mα0)Ω〉 .

So since Ψ = PmΨ we obtain:

m−1dm〈Ψ, C(
√
mu0,

√
mα0)W †(t, 0)X3W (t, 0)Ω〉 = 〈g, ū(t)u(t)〉L2(R6).

Then we can write:∣∣〈g〉Ψ(t)− 〈g, ū(t)u(t)〉L2(R6)

∣∣ ≤ m−1dm
∣∣〈Ψ, C(

√
mu0,

√
mα0)W †(t, 0)

(X1 +X2)W (t, 0)Ω〉
∣∣ ≤ Y1 + Y2 ,

and we rewrite Y1 and Y2 to obtain:

Y1 = m−1
∣∣∣〈dm(P + 1)−1/2C†(

√
mu0,

√
mα0)Ψ,

√
(P + 1)W †(t, 0)

X1W (t, 0)Ω
〉∣∣∣ ;

Y2 = m−1/2dm

∣∣∣〈C†(√mu0,
√
mα0)Ψ, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉

∣∣∣ ;

where ϕ(g̃) is the field defined in Proposition 9, with

g̃1(x) = U†01(t)

∫
dx′ ḡ(x, x′)u(t, x′) ,

g̃2(x) = U01(t)

∫
dx′ ḡ(x′, x)ū(t, x′) ,

g̃3 = g̃4 = 0 .

We remark that by Schwarz’s inequality we have ‖g̃j‖2 ≤
∥∥g;L2(R6)

∥∥ ‖u(t)‖2 for
j = 1, 2.

Consider Y1: then using Schwarz’s inequality and Lemma 1.2 we can write

Y1 ≤ m−1KΨ

∥∥W †(t, 0)X1W (t, 0)Ω
∥∥

H 1 .

To bound the last norm we use two times the Corollary of Proposition 8, so we
obtain (m = λ−2)

Y1 ≤ λ2KΨ

∥∥g;L2(R6)
∥∥(K1(δ = 1, 0, t) + λK2(δ = 1, 0, t)

)
eλC1(δ=1)|t|+K3(δ=1,0,t)

(
K1(δ = 19/2, t, 0) + λK2(δ = 19/2, t, 0)

)
eλC1(δ=19/2)|t|+K3(δ=19/2,t,0) ,

where the constants are the ones introduced in Proposition 8 and we made explicit
the dependence on δ.

Consider now Y2: define Φ ≡ C†(
√
mu0,

√
mα0)Ψ. Then we can write

〈Φ, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉 = 〈Φ, Ũ†2 (t, 0)ϕ(g̃)Ũ2(t, 0)Ω〉

+〈Φ, (W̃ †(t, 0)− Ũ†2 (t, 0))ϕ(g̃)W̃ (t, 0)Ω〉

+〈Φ, Ũ†2 (t, 0)ϕ(g̃)(W̃ (t, 0)− Ũ2(t, 0))Ω〉 ≡ Z1 + Z2 + Z3 .

Z1 = 0 using Proposition 9 and Lemma 1.3. We study then Z2, using Schwarz’s
inequality and Lemma 1.2 we obtain:

|Z2| ≤ d−1
m KΨ

∥∥∥(W̃ †(t, 0)− Ũ†2 (t, 0))ϕ(g̃)W̃ (t, 0)Ω
∥∥∥

H 1
≤ d−1

m KΨ∣∣∣∣∫ t

0

dτ
∥∥∥W̃ †(τ, 0)H̃I Ũ2(τ, 0)Ũ†2 (t, 0)ϕ(g̃)W̃ (t, 0)Ω

∥∥∥
H 1

∣∣∣∣ .
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Then we use: Proposition 8; Lemma 2.1 of Chapter 3 to move (P +N)δ to the right
of HI ; the usual estimate of HI (that gives the factor m−1/2); Proposition 6 two
times; again Lemma 2.1 of Chapter 3 to move (P + N)δ to the right of ϕ(g̃); the
usual estimate for ϕ(g̃) (that gives

∥∥g;L2(R6)
∥∥); Proposition 8 to finally obtain

|Z2| ≤ m−1/2d−1
m

∥∥g;L2(R6)
∥∥KΨC |t| eK|t| ,

where C and K are positive constants.
To bound |Z3| we proceed in the same way, and we obtain

|Z3| ≤ m−1/2d−1
m

∥∥g;L2(R6)
∥∥KΨC

′ |t| eK
′|t| .

with again C ′ and K ′ positive constants. �

Lemma 4.2. There are two positive constants K3 and K4 such that∣∣∣∣〈g〉Θ(t)− 〈g(k1, k2),

∫ 2π

0

dθ

2π
ᾱθ(t, k1)αθ(t, k2)〉L2(R6)

∣∣∣∣ ≤ λ2
∥∥g;L2(R6)

∥∥
K3 |t| eK4|t|

Proof. Using Lemma 1.1 and setting m = λ−2 we can write:

〈g〉Θ(t) = m−1d2
m

∫ 2π

0

dθ

2π
eimθ〈Θ, C(

√
mu0,

√
mα0(θ))W †θ (t, 0)X

Wθ(t, 0)Ω〉 ,

where

X ≡ C†(
√
muθ(t),

√
mαθ(t))

∫
dk1dk2 ḡ(k1, k2)a∗(k1)a(k2)

C(
√
muθ(t),

√
mαθ(t))

andWθ(t, s) is the operatorW with classical solution (uθ(t), αθ(t)). Using Lemma 3.1
we obtain:

X =

∫
dk1dk2 ḡ(k1, k2)a∗(k1)a(k2) +

√
m

∫
dk1dk2 ḡ(k1, k2)

(
ᾱθ(t, k1)

a(k2) + a∗(k1)αθ(t, k2)
)

+m

∫
dk1dk2 ḡ(k1, k2)ᾱθ(t, k1)αθ(t, k2)

≡ X1 +X2 +X3 .

First of all consider X3:

m−1d2
m

∫ 2π

0

dθ

2π
eimθ〈Θ, C(

√
mu0,

√
mα0(θ))W †θ (t, 0)X3Wθ(t, 0)Ω〉

=

∫
dk1dk2 ḡ(k1, k2)

∫ 2π

0

dθ

2π
ᾱθ(t, k1)αθ(t, k2)

〈Θ, d2
me

imθC(
√
mu0,

√
mα0(θ))Ω〉 .

In the transition amplitude on the right hand side we proceed as following:

〈Θ, d2
me

imθC(
√
mu0,

√
mα0(θ))Ω〉 = 〈 (ψ

∗(α0))m√
m!

Ωp,

dmPmCp(
√
mu0)Ωp〉

〈 (a
∗(α0))m√
m!

Ωn, dme
imθNmCn(

√
mα0(θ))Ωn〉

= 〈 (a
∗(α0(θ)))m√

m!
Ωn, dmNmCn(

√
mα0(θ))Ωn〉 = 1 .
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Here we used two times the relation in equation (4.2) of [COS11] (the same holds
for ψ and Ωp):

dmNmCn(
√
mα)Ωn =

(a∗(α))m√
m!

Ωn .

So we finally obtain for X3:

m−1d2
m

∫ 2π

0

dθ

2π
eimθ〈Θ, C(

√
mu0,

√
mα0(θ))W †θ (t, 0)X3Wθ(t, 0)Ω〉

=

∫
dk1dk2 ḡ(k1, k2)

∫ 2π

0

dθ

2π
ᾱθ(t, k1)αθ(t, k2) .

Then we can write:∣∣∣∣〈g〉Θ(t)− 〈g,
∫ 2π

0

dθ

2π
ᾱθ(t)αθ(t)〉L2(R6)

∣∣∣∣ ≤ m−1d2
m

∫ 2π

0

dθ

2π∣∣∣〈Θ, C(
√
mu0,

√
mα0(θ))W †θ (t, 0)(X1 +X2)Wθ(t, 0)Ω〉

∣∣∣ ≤ Y1 + Y2 ,

and we rewrite Y1 and Y2 to obtain:

Y1 = m−1

∫ 2π

0

dθ

2π

∣∣∣〈d2
m(P + 1)−1/2(N + 1)−1/2C†(

√
mu0,

√
mα0(θ))Θ,√

(P + 1)(N + 1)W †θ (t, 0)X1Wθ(t, 0)Ω
〉∣∣∣ ;

Y2 = m−1/2d2
m

∫ 2π

0

dθ

2π

∣∣∣〈C†(√mu0,
√
mα0(θ))Θ, W̃ †θ (t, 0)ϕ(g̃)

W̃θ(t, 0)Ω〉
∣∣∣ ;

where ϕ(g̃) is the field defined in Proposition 9, with

g̃1 = g̃2 = 0 ,

g̃3(k) = U†02(t)

∫
dk′ ḡ(k, k′)αθ(t, k

′) ,

g̃4(k) = U02(t)

∫
dk′ ḡ(k′, k)ᾱθ(t, k

′) .

We remark that by Schwarz’s inequality we have ‖g̃j‖2 ≤
∥∥g;L2(R6)

∥∥ ‖αθ(t)‖2 for
j = 3, 4.

Consider Y1: then using Schwarz’s inequality and Lemma 1.2 we can write

Y1 ≤ m−1KΘ

∫ 2π

0

dθ

2π

∥∥∥W †θ (t, 0)X1Wθ(t, 0)Ω
∥∥∥

H 2
.

To bound the last norm we use two times the Corollary of Proposition 8, so we
obtain (m = λ−2)

Y1 ≤ λ2KΘ

∫ 2π

0

dθ

2π

∥∥g;L2(R6)
∥∥(K1(δ = 2, 0, t) + λK2(δ = 2, 0, t)

)
eλC1(δ=2)|t|+K3(δ=2,0,t)

(
K1(δ = 31/2, t, 0) + λK2(δ = 31/2, t, 0)

)
eλC1(δ=31/2)|t|+K3(δ=31/2,t,0) ,

where the constants are the ones introduced in Proposition 8 and we made explicit
the dependence on δ. The dependence in θ of the constants is in the form of norms
‖χ̌ ∗Aθ(t)‖∞ and ‖αθ(t)‖2, and by Lemma 2.1 of Chapter 2 we know the solution
of the classical equation is continuous in L2(R3) with respect to a change of initial
α-data. So we can integrate in θ on a finite interval, and the global constants are
finite.
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Consider now Y2: define Φ ≡ C†(
√
mu0,

√
mα0(θ))Θ and Ũ2,θ the operator

with αθ(t) replacing α(t). Then we can write

〈Φ, W̃ †θ (t, 0)ϕ(g̃)W̃θ(t, 0)Ω〉 = 〈Φ, Ũ†2,θ(t, 0)ϕ(g̃)Ũ2,θ(t, 0)Ω〉

+〈Φ, (W̃ †θ (t, 0)− Ũ†2,θ(t, 0))ϕ(g̃)W̃θ(t, 0)Ω〉

+〈Φ, Ũ†2,θ(t, 0)ϕ(g̃)(W̃θ(t, 0)− Ũ2,θ(t, 0))Ω〉 ≡ Z1 + Z2 + Z3 .

Z1 = 0 using Proposition 9 and Lemma 1.3. We study then Z2, using Schwarz’s
inequality and Lemma 1.2 we obtain:

|Z2| ≤ d−2
m KΘ

∥∥∥(W̃ †θ (t, 0)− Ũ†2,θ(t, 0))ϕ(g̃)W̃θ(t, 0)Ω
∥∥∥

H 2
≤ d−2

m KΘ∣∣∣∣∫ t

0

dτ
∥∥∥W̃ †θ (τ, 0)H̃I Ũ2,θ(τ, 0)Ũ†2,θ(t, 0)ϕ(g̃)W̃θ(t, 0)Ω

∥∥∥
H 2

∣∣∣∣ .
Then we use: Proposition 8; Lemma 2.1 of Chapter 3 to move (P +N)δ to the right
of HI ; the usual estimate of HI (that gives the factor m−1/2); Proposition 6 two
times; again Lemma 2.1 of Chapter 3 to move (P + N)δ to the right of ϕ(g̃); the
usual estimate for ϕ(g̃) (that gives

∥∥g;L2(R6)
∥∥); Proposition 8 to finally obtain

|Z2| ≤ m−1/2d−2
m

∥∥g;L2(R6)
∥∥KΘC(θ) |t| eK(θ)|t| ,

where C(θ) and K(θ) are positive and continuous in θ since the latter appears only
in ‖χ̌ ∗Aθ(t′)‖∞ and ‖αθ(t′)‖2, for some t′ ∈ [0, t].

To bound |Z3| we proceed in the same way, and we obtain

|Z3| ≤ m−1/2d−2
m

∥∥g;L2(R6)
∥∥KΘC

′(θ) |t| eK
′(θ)|t| .

with again C ′(θ) and K ′(θ) positive and continuous in θ. �

Proposition 13. Let u0, α0 ∈ L2(R3) such that ‖u0‖2 = ‖α0‖2 = 1; Φ,Θ,
(u(t), α(t)), (uθ(t), αθ(t)) defined as above. Then there are four positive constants
Kj, j = 1, 2, 3, 4, such that

|〈ψ∗(x1)ψ(x2)〉Ψ(t)− ū(t, x1)u(t, x2)‖L2(R6) ≤ λ2K1 |t| eK2|t|

‖〈a∗(k1)a(k2)〉Θ(t)−
∫ 2π

0

dθ

2π
ᾱθ(t, k1)αθ(t, k2)‖L2(R6) ≤ λ2K3 |t| eK4|t| .

Proof. The result is a direct consequence of the bounds proved in Lemmas 4.1
and 4.2. �





APPENDIX A

Mathematical aspects of second quantization.

1. Annihilation and creation operators.

Let H be a (symmetric) Fock space over L2(Rd), such that

H =

∞⊕
n=0

Hn ,

with H0 = C, and

Hn = {Φn : Φn(x1, . . . , xn) ∈ L2(Rnd), totally symmetric} .
So a vector Φ ∈H will be of the form Φ = (Φ0,Φ1, . . . ,Φn, . . . ), with Φj ∈Hj for
each j = 0, 1, . . . ; denote with Ω the Fock vacuum, i.e. Ω = (1, 0, . . . , 0, . . . ) and
with C0(N) the subset of H of vectors with finite number of particles: that is the
set of vectors (Φ0,Φ1, . . . ) for which Φn = 0 for all but finitely many n. The Fock
space is a Hilbert space equipped with the norm

‖Φ‖ =
( ∞∑
n=0

‖Φn‖2Hn

)1/2

.

We will now define annihilation and creation operators a(f) and a∗(f): let
f ∈ L2(Rd) and define Xn the set of variables {x1, . . . , xn}, then:

(a(f)Φ)n(Xn) =
√
n+ 1

∫
dx0 f(x0)Φn+1(x0, Xn)

≡
√
n+ 1〈f̄ ,Φn+1〉H1

(Xn) ,

with domain

D(a(f)) =

{
Φ :

∑
n≥0

(n+ 1)

∫
dXn

∣∣∣∣∫ dx0 f(x0)Φn+1(x0, Xn)

∣∣∣∣2 <∞}
and

(a∗(f)Φ)n(Xn) =
1√
n

n∑
j=1

f(xj)Φn−1(Xn \ xj) ≡
√
nSn(f ⊗ Φn−1)(Xn)

where Sn is the symmetrizing operator on Hn, with domain

D(a∗(f)) =

{
Φ :

∑
n≥1

1

n

∫
dXn

∣∣∣∣∣∣
n∑
j=1

f(xj)Φn−1(Xn \ xj)

∣∣∣∣∣∣
2

<∞
}
.

Define Pj the orthogonal projector on H :

Pj(Φ0,Φ1, . . . ,Φn, . . . ) ≡ (Φ0,Φ1, . . . ,Φj , 0, . . . , 0, . . . ) .

Finally let

a#
0 (f) ≡ a#(f)

∣∣∣
C0(N)

,

where # stands for either nothing or ∗.
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Lemma 1.1. a#
0 (f) = a#(f).

Proof. a) a#(f) is closed.
In order to prove that let Φ(j) ∈ D(a(f)) such that

Φ(j) −→ Φ ,

a(f)Φ(j) −→ Θ ;

we have that (a(f)Φ(j))n → Θn in Hn, so by definition

√
n+ 1

∫
dx0 f(x0)Φ

(j)
n+1(x0, Xn) −→

j→∞
Θn in L2(Xn).

Now, since Φ
(j)
n → Φn in L2(Xn) for all n we have that in L2(Xn)∫

dx0 f(x0)Φ
(j)
n+1(x0, Xn)→

∫
dx0 f(x0)Φn+1(x0, Xn) .

In order to prove this last convergence we estimate:∫
dXn

∣∣∣∣∫ dx0 f(x0)
(
Φ

(j)
n+1(x0, Xn)− Φn+1(x0, Xn)

)∣∣∣∣2
≤ ‖f‖22

∥∥∥Φ
(j)
n+1 − Φn+1;L2(Xn+1)

∥∥∥→ 0 .

Now
√
n+ 1

∫
dx0 f(x0)Φn+1(x0, Xn) = Θn ;

and since
∑
‖Θn‖2Hn

<∞ we have that Φ ∈ D(a(f)) and a(f)Φ = Θ.

Consider now Φ(j) ∈ D(a∗(f)) such that

Φ(j) −→ Φ ,

a∗(f)Φ(j) −→ Θ .

So

(a∗(f)Φ(j))n =
√
nSn(f ⊗ Φ

(j)
n−1) −→ Θn ∈Hn .

Since Φ
(j)
n → Φn in L2(Xn) for all n,

Sn(f ⊗ Φ
(j)
n−1) −→ Sn(f ⊗ Φn−1) ∈ L2(Xn) ,

then
√
nSn(f ⊗ Φn−1) = Θ. Since

∑
‖Θn‖2Hn

<∞ we have that Φ ∈ D(a∗(f))

and a∗(f)Φ = Θ.

b) a#
0 (f) ⊃ a#(f).

Let Φ ∈ D(a(f)), a(f)Φ = Θ. Define Φ(j) ≡ PjΦ; obviously Φ(j) → Φ when
j →∞. Then

a(f)PjΦ = a0(f)PjΦ = Pj−1a0(f)PjΦ .

So we have that

(
a(f)(Φ− PjΦ)

)
n

=


0 if n+ 1 ≤ j
√
n+ 1

∫
dx0 f(x0)Φn+1(x0, Xn) if n+ 1 > j

and

‖a(f)Φ− a0(f)PjΦ‖2 =
∑
n≥j

‖Θn‖2Hn
−→
j→∞

0 .
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The case of creation operator is similar: let Φ ∈ D(a∗(f)), a∗(f)Φ = Θ. Again
Φ(j) ≡ PjΦ with Φ(j) → Φ when j →∞. Then we have that

a∗(f)PjΦ = a∗0(f)PjΦ

and (
a∗(f)(Φ− PjΦ)

)
n
(Xn) =

{
0 if n− 1 ≤ j
(a∗(f)Φ)n if n ≥ j + 2

.

Again

‖a∗(f)Φ− a∗0(f)PjΦ‖2 =
∑
n≥j

‖Θn‖2Hn
−→
j→∞

0 .

�

Let A and B be two operators on H with domain D(A) and D(B), we will
call the sum A+B the operator defined on D(A) ∩D(B) as

(A+B)Φ = AΦ +BΦ, ∀Φ ∈ D(A) ∩D(B).

Corollary. Let f, g ∈ L2(Rd), then

(a#
0 (f) + a#

0 (g)) = (a#(f) + a#(g)) = a#(f + g) .

We also remark that a#
(0)(λf) = λa#

(0)(f) for all λ ∈ C.

Proof. Obviously we have D(a#(f)) ∩D(a#(g)) ⊂ D(a#(f + g)), and

a#(f)Φ + a#(g)Φ = (a#(f) + a#(g))Φ = a#(f + g)Φ

for all Φ ∈ D(a#(f)) ∩D(a#(g)) ⊃ C0(N). So we have that

a#
0 (f + g) = (a#

0 (f) + a#
0 (g)) ⊂ (a#(f) + a#(g)) ⊂ a#(f + g) .

If we now consider closures we obtain

a#
0 (f + g) = (a#

0 (f) + a#
0 (g)) ⊂ (a#(f) + a#(g)) ⊂ a#(f + g) .

�

Now let h : N −→ C. We define the operator h(N) on H by
(h(N)Φ)n = h(n)Φn

D(h(N)) = {Φ :

∞∑
n=0

|h(n)|2 ‖Φn‖2Hn
<∞}

By direct inspection we see that:

1) h(N)C0(N) ⊂ C0(N)
2) a0(f)h(N) = h(N + 1)a0(f)

a∗0(f)h(N) = h(N − 1)a∗0(f)
3) h(N) is a closed operator.

Lemma 1.2. Let h(N) as above. Then:

i. If Φ ∈ D(a(f)) ∩D(h(N)) and a(f)Φ ∈ D(h(N + 1)), then h(N)Φ ∈ D(a(f))
and

a(f)h(N)Φ = h(N + 1)a(f)Φ .

ii. If Φ ∈ D(a∗(f))∩D(h(N)) and a∗(f)Φ ∈ D(h(N−1)), then h(N)Φ ∈ D(a∗(f))
and

a∗(f)h(N)Φ = h(N − 1)a∗(f)Φ .

Remark. If h(N) is a bounded operator, the hypotheses on the domains of
h(N) and h(N ± 1) are superfluous.
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Proof. i. Let Φ ∈H . Then PjΦ −→ Φ.
From Φ ∈ D(a(f)) it follows that a0(f)PjΦ = Pj−1a(f)Φ −→ a(f)Φ.
From Φ ∈ D(h(N)) it follows that h(N)PjΦ −→ h(N)Φ.
From a(f)Φ ∈ D(h(N + 1)) it follows that h(N + 1)Pj−1a(f)Φ −→ h(N +
1)a(f)Φ.
Since h(N +1)Pj−1a(f)Φ = h(N +1)a0(f)PjΦ = a0(f)h(N)PjΦ also the right
hand side of previous equality converges. Now the proof is completed using the
fact that a(f) is closed.

ii. The proof is analogous to the point above.
�

For every operator A, we will denote its adjoint by A†. From the definition of
a(f̄) and a∗(f) it is quite clear that they are, in some sense, one the adjoint of the
other. In fact, that is the case, as proved in the following lemma:

Lemma 1.3. Let f ∈ L2(Rd), then:

a0(f̄)† = a(f̄)† = a∗(f)

a∗0(f)† = a∗(f)† = a(f̄) .

Proof. 1) Let Θ,Φ ∈ C0(N), then 〈Θ, a(f̄)Φ〉 = 〈a∗0(f)Θ,Φ〉.
The proof is by means of a direct calculation on Hn.

2) Let Φ ∈ C0(N) and Θ ∈ D(a∗(f)), then 〈Θ, a0(f̄)Φ〉 = 〈a∗(f)Θ,Φ〉, i.e.

a0(f̄)† ⊃ a∗(f) .

Let j so that PjΦ = Φ. Then

〈Θ, a0(f̄)Φ〉 = 〈Θ, a0(f̄)PjΦ〉 = 〈Θ, Pj−1a0(f̄)Φ〉 = 〈Pj−1Θ, a0(f̄)Φ〉
= 〈a∗0(f)Pj−1Θ,Φ〉 = 〈Pja∗(f)Θ,Φ〉 = 〈a∗(f)Θ, PjΦ〉 = 〈a∗(f)Θ,Φ〉

3) Let Φ ∈ D(a(f̄)) and Θ ∈ C0(N), then 〈Θ, a(f̄)Φ〉 = 〈a∗0(f)Θ,Φ〉, i.e.

a∗0(f)† ⊃ a(f̄) .

The proof is analogous to the one above (point 2).
4) a0(f̄)† ⊂ a∗(f).

Let Θ,Θ∗ such that

〈Θ, a0(f̄)Φ〉 = 〈Θ∗,Φ〉 ,

for all Φ ∈ C0(N). Choose now Φ = (0, . . . , 0,Φn, 0, . . . ), so

a0(f̄)Φ = (0, . . . , 0,
√
n

∫
dx1 f̄(x1)Φn(x1, Xn−1), 0, . . . ) .

The equation above then becomes

√
n〈Θn−1(Xn−1f(x1)),Φn(x1, Xn−1)〉 = 〈Θ∗n,Ψn〉 ,

so Θ∗n =
√
nSnf ⊗Θn−1 that implies Θ ∈ D(a∗(f)) and Θ∗ = a∗(f)Θ.

5) a∗0(f)† ⊂ a(f̄).
The proof is analogous to point 4.

We see that points 2 and 4 imply a0(f̄)† = a∗(f); 3 and 5 imply that a∗0(f)† =

a(f̄). We have concluded the proof since by Lemma 1.1 and the fact that (A )† =

A† we can write a0(f̄)† = (a0(f̄) )† = a(f̄)† (and the same for a∗0(f)†). �
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2. Domains of a#(f).

Now we will define another useful category of operators on the Fock space. Let
X be any self-adjoint operator on L2(Rd) with domain of essential self-adjointness
D. Let DX = {Φ ∈ C0(N) : Φn ∈

⊗n
k=1D for each n}. Then we define the second

quantization of X, that we will call dΓ(X), on DX ∩Hn as

dΓ(X)
∣∣∣
DX∩Hn

= X ⊗ 1⊗ · · ·⊗ 1 + 1⊗X ⊗ · · ·⊗ 1 + . . .+ 1⊗ 1⊗ · · ·⊗X .

Using properties of tensor products of operators in Hilbert spaces it can be proved
that dΓ(X) is essentially self adjoint on DX . A first useful example of an operator
constructed in that way is

N = dΓ(1) .

It is called number operator since its eigenstates are vectors with the only non-
zero component in some Hn: let Φ = (0, . . . , 0,Φn, 0, . . . ), then NΦ = nΦ. Since
D1 = C0(N), we know that N is essentially self-adjoint on C0(N). Furthermore we
have the following couple of lemmas, whose proof is trivial:

Lemma 2.1. Let

D(N) =
{

Φ :

∞∑
n=0

n2 ‖Φn‖2Hn
<∞

}
,

then N is self-adjoint on D(N).

Lemma 2.2. For all δ ∈ R+, let

D(Nδ) =
{

Φ :

∞∑
n=0

n2δ ‖Φn‖2Hn
<∞

}
,

then Nδ is self-adjoint on D(Nδ).

We remark that the operator h(N) defined above could also be defined using
the spectral theorem as a function of N , and this justifies the notation used. The
number operator N is also related to a#(f): for every f ∈ L2(Rd) we have that
D(a#(f)) ⊃ D(N1/2). This is proved using the following estimates:

Lemma 2.3. Let f ∈ L2(Rd), then for all Φ ∈ D(N1/2) the following inequali-
ties hold:

‖a(f)Φ‖ ≤ ‖f‖2
∥∥∥N1/2Φ

∥∥∥
‖a∗(f)Φ‖ ≤ ‖f‖2

∥∥∥(N + 1)1/2Φ
∥∥∥ .

Proof. Using the definition of (a(f)Φ)n and Schwarz’s inequality we obtain
that

‖(a(f)Φ)n‖2Hn
≤ (n+ 1) ‖f‖22 ‖Φn+1‖2Hn+1

,

so summing over all n we obtain the sought inequality.
Using the definition of (a∗(f)Φ)n and triangle inequality we can write

‖(a∗(f)Φ)n‖2Hn
= n ‖Sn(f ⊗ Φn−1)‖2Hn

≤ n ‖f‖22 ‖Φn−1‖2Hn−1
;

the sought inequality again is obtained summing over all n. �

More in general we can prove directly that if Φ ∈ D(Nλ/2) with λ ≥ 1, then
a#(f)Φ ∈ D(N (λ−1)/2) for all f ∈ L2(Rd). Then

An,m =

n∏
l=1

a∗(fl)

m∏
k=1

a(ḡk)
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is applicable to every Φ ∈ D(Nλ/2) if λ ≥ n + m. Defining for any integer a the
function θ(N − a) as

(θ(N − a)Φ)n =

{
Φn if n− a ≥ 0

0 if n− a < 0
,

we have the following estimate:

Lemma 2.4. Let fl ∈ L2(Rd) for all l = 1, . . . , n, gk ∈ L2(Rd) for all k =
1, . . . ,m and

µn,m =

n∏
l=1

‖fl‖2
m∏
k=1

‖gk‖2 .

Then for all Φ ∈ D(Nλ/2):

‖An,mΦ‖ ≤ µn,m
∥∥∥∥( N !

(N −m)!

)1/2( (N −m+ n)!

(N −m)!

)1/2

θ(N −m)Φ

∥∥∥∥ .
Proof. Let Φ ∈ D(Nλ/2), Ψ ∈ D(Nn/2), furthermore define F (Zn) ≡

∏n
l=1 f(zl),

G(Ym) ≡
∏m
l=1 g(yl). So we can write

〈Ψ, An,mΦ〉 = 〈
n∏
l=1

a(f̄l)Ψ,

m∏
k=1

a(ḡk)Φ〉 =
∑
j≥0

∫
dZndYm F (Zn)Ḡ(Ym)

[(j + n)!(j +m)!]1/2

j!

∫
dXj Ψn+j(Zn, Xj)Φm+j(Ym, Xj) ,

so

|〈Ψ, An,mΦ〉| ≤ µn,m
∑
j≥0

[(j + n)!(j +m)!]1/2

j!
‖Ψn+j‖Hn+j

‖Φm+j‖Hm+j

≤ µn,m ‖θ(N − n)Ψ‖
∥∥∥∥ (N !(N −m+ n)!)1/2

(N −m)!
θ(N −m)Φ

∥∥∥∥ .
The inequality above can be extended to all Ψ ∈ H . So we have completed the
proof since Φ ∈ D(Nλ/2) and

N !

(N −m)!
≤ Nm ,

(N −m+ n)!

(N −m)!
≤ (N −m+ n)n ≤ (N + n)n .

�

3. Canonical Commutation Relations (CCR).

a and a∗ satisfy well-known commutation relations that are called canonical.
Precisely, we would like to give a rigorous meaning to the following statements:

[a(f), a(g)] = [a∗(f), a∗(g)] = 0

[a(f̄), a∗(g)] = 〈f, g〉L2(Rd) ,

where [A,B] = AB −BA. If Φ ∈ C0(N), a direct calculation leads to CCR:

(a(f)a(g)− a(g)a(f))Φ = 0(CCR1)

(a∗(f)a∗(g)− a∗(g)a∗(f))Φ = 0(CCR2)

(a(f̄)a∗(g)− a∗(g)a(f̄))Φ = 〈f, g〉L2(Rd)Φ .(CCR3)



4. THE FIELD OPERATOR (SELF-ADJOINTNESS). 69

In bilinear form we write for all Θ,Φ ∈ C0(N):

〈a∗(f̄)Θ, a(g)Φ〉 − 〈a∗(ḡ)Θ, a(f)Φ〉 = 0

(CCR1′)

〈a(f̄)Θ, a∗(g)Φ〉 − 〈a(ḡ)Θ, a∗(f)Φ〉 = 0

(CCR2′)

〈a∗(f)Θ, a∗(g)Φ〉 − 〈a(ḡ)Θ, a(f̄)Φ〉 = 〈f, g〉L2(Rd)〈Θ,Φ〉 .
(CCR3′)

Now if we consider (CCR3′) with f = g and Θ = Φ ∈ C0(N) we get:

‖a∗(f)Θ‖2 =
∥∥a(f̄)Θ

∥∥2
+ ‖f‖2L2(Rd) ‖Θ‖

2
.

Then let Φ ∈ D(a(f̄)). Rewrite equation above with Θ = Φj ≡ PjΦ:

(3.1) ‖a∗(f)Φj‖2 =
∥∥a(f̄)Φj

∥∥2
+ ‖f‖2L2(Rd) ‖Φj‖

2
.

a(f̄) is closed, so{
Φj −→ Φ

a(f̄)Φj −→ a(f̄)Φ
,

then (3.1) implies a∗(f)Φj is convergent. Now also a∗(f) is closed, so Φ ∈ D(a∗(f))
and a∗(f)Φj −→ a∗(f)Φ. This argument leads to

D(a(f̄)) ⊆ D(a∗(f)) .

Repeating the argument with a(f̄) and a∗(f) exchanged we obtain

D(a∗(f)) ⊆ D(a(f̄)) .

Remark. For all f ∈ L2(Rd), D(a∗(f)) = D(a(f̄)).

Using the above remark on domains we have that:

• (CCR1′) holds for Θ,Φ ∈ D(a(f)) ∩D(a(g)),
• (CCR2′) holds for Θ,Φ ∈ D(a(f̄)) ∩D(a(ḡ)),
• (CCR3′) holds for Θ,Φ ∈ D(a(f̄)) ∩D(a(ḡ)).

Furthermore if Φ ∈ D(N) from (CCR1′), (CCR2′) and (CCR3′) we can write, using
a limiting procedure,

〈Θ, (a(f)a(g)− a(g)a(f))Φ〉 = 0

〈Θ, (a∗(f)a∗(g)− a∗(g)a∗(f)Φ〉 = 0

〈Θ, (a(f̄)a∗(g)− a∗(g)a(f̄))Φ〉 = 〈f, g〉L2(Rd)〈Θ,Φ〉

for all Θ ∈H . So (CCR1), (CCR2) and (CCR3) hold for all Φ ∈ D(N).

4. The field operator (self-adjointness).

We want to study the field operator of the Fock space.

Lemma 4.1 (direct proof). For all f ∈ L2(Rd), (a(f̄) + a∗(f)) = (a0(f̄) +

a∗0(f)) is self-adjoint. [a(f̄) + a∗(f) is defined on D(a(f̄)) = D(a∗(f))]

Proof. (a0(f̄) + a∗0(f)) is essentially self-adjoint on C0(N) if and only if

Ran((a0(f̄) + a∗0(f)) − λ) is dense in H , for all λ such that Imλ 6= 0. That is

equivalent to say that Ran((a0(f̄)+a∗0(f)) −λ)⊥ = {0}. Now, let Θ ∈ Ran((a0(f̄)+

a∗0(f)) − λ)⊥, then for all Φ ∈ C0(N):

(4.1) 〈Θ, ((a0(f̄) + a∗0(f)) − λ)Φ〉 = 0 .



70 A. MATHEMATICAL ASPECTS OF SECOND QUANTIZATION.

We remark that on C0(N) we have (a0(f̄) + a∗0(f)) = a0(f̄) + a∗0(f). Choose now

Φ =

n∑
j=0

QjΘ ,

where Qj is the orthogonal projector on Hj , such that

Qj(Θ0,Θ1, . . . , ) = (0, . . . , 0,Θj , 0, . . . ) .

Then equation (4.1) becomes:

λ

n∑
j=0

‖QjΘ‖2 = 〈Θ, a0(f̄)

n∑
j=1

QjΘ〉+ 〈Θ, a∗0(f)

n∑
j=0

QjΘ〉

=

n∑
j=1

〈Qj−1Θ, a0(f̄)QjΘ〉+

n∑
j=0

〈Qj+1Θ, a∗0(f)QjΘ〉 .

Now if we consider the imaginary part we obtain:

2iImλ

n∑
j=0

‖QjΘ‖2 =

n∑
j=1

〈Qj−1Θ, a0(f̄)QjΘ〉 −
n∑
j=0

〈a∗0(f)QjΘ, Qj+1Θ〉

+

n∑
j=0

〈Qj+1Θ, a∗0(f)QjΘ〉 −
n∑
j=1

〈a0(f̄)QjΘ, Qj−1Θ〉

= −〈QnΘ, a0(f̄)Qn+1Θ〉+ 〈a0(f̄)Qn+1Θ, QnΘ〉
so

|Imλ|Sn ≡ |Imλ|
n∑
j=0

‖QjΘ‖2 ≤ ‖QnΘ‖ ‖a0(f)Qn+1Θ‖

≤ ‖QnΘ‖ (n+ 1)1/2 ‖f‖2 ‖Qn+1Θ‖

≤ 1

2
(n+ 1)1/2 ‖f‖2

(
‖QnΘ‖2 + ‖Qn+1Θ‖2

)
.

However since

S ≡
∞∑
j=0

‖QjΘ‖ <∞ ,

a n̄ exists such that for all n ≥ n̄,
n∑
j=0

‖QjΘ‖2 ≥
S

2
.

So for all n ≥ n̄
S |Imλ|

(n+ 1)1/2
≤ ‖f‖2

(
‖QnΘ‖2 + ‖Qn+1Θ‖2

)
,

that implies Θ cannot have finite norm, unless Θ = 0.

So (a0(f̄) + a∗0(f))† = (a0(f̄) + a∗0(f)) . On the other hand (a(f̄) + a∗(f) is
symmetric):

((a0(f̄) + a∗0(f)) )† ⊇ ((a(f̄) + a∗(f)) )† ⊇ (a(f̄) + a∗(f))

⊇ (a0(f̄) + a∗0(f))

so (a(f̄) + a∗(f)) = (a(f̄) + a∗(f))†. �

A general method to prove self-adjointness of (a(f̄) + a∗(f)) is given by the
following lemma:
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Lemma 4.2 (Self-adjointness criterion). Let N be a self-adjoint operator such
that N ≥ 1, and A0 symmetric with domain D0 ⊂ D(N), core of N . Furthermore
let

‖A0Θ‖ ≤ a ‖NΘ‖ ∀Θ ∈ D0(4.2)

|〈A0Θ, NΘ〉 − 〈NΘ, A0Θ〉| ≤ b〈Θ, NΘ〉 ∀Θ ∈ D0 .(4.3)

Then:

1) A = A0 has domain D(A) ⊃ D(N) and

‖AΘ‖ ≤ a ‖NΘ‖ ∀Θ ∈ D(N)(4.2′)

|〈AΘ, NΘ〉 − 〈NΘ, AΘ〉| ≤ b〈Θ, NΘ〉 ∀Θ ∈ D(N) .(4.3′)

2) A0 is essentially self-adjoint ( i.e. A0 = A = A†), and for all D1 ⊂ D(N) core

of N , if we call A1 ≡ A
∣∣
D1

we have A1 = A.

Proof. 1): Let Θ ∈ D(N) and {Θj} ∈ D0 such that Θj −→ Θ and NΘj −→
NΘ. From (4.2) it follows that the suite A0Θj converges, then Θ ∈ D(A0 ) and

A0Θj −→ A0 Θ. Obviously from (4.2) and (4.3) follow (4.2′) and (4.3′).
2): To prove A is self-adjoint it will be sufficient to show that for at least one

ρ ∈ R \ {0} the equation

(4.4) A†Φ = iρΦ with Φ ∈ D(A†)

does not have a solution different from 0. Let Φ ∈ D(A†) and Θ = N−1Φ ∈ D(N).
Then: ∣∣2iIm〈Θ, A†Φ〉∣∣ =

∣∣〈Θ, A†Φ〉 − 〈A†Φ,Θ〉∣∣ = |〈AΘ,Φ〉 − 〈Φ, AΘ〉|
= |〈AΘ, NΘ〉 − 〈NΘ, AΘ〉| ≤ b〈Θ, NΘ〉 .

Now if Φ satisfies (4.4), the inequality above leads to

2 |ρ| 〈Θ, NΘ〉 ≤ b〈Θ, NΘ〉 ,
so 2 |ρ| ≤ b. Therefore for all |ρ| > b/2 equation (4.4) does not have solution Φ 6= 0,
and thus A† = A. Let now D1 ⊂ D(N) is a core of N , (D1, A1) satisfy the same

assumptions of (D0, A0). Then A1 is self-adjoint, and

A0 ⊃ A1 , A1 ⊃ A0 ⇒ A0 = A1 = A .

�

Definition. ϕ(f) ≡ (a(f̄) + a∗(f)) = (a0(f̄) + a∗0(f)) .

We remark that if we want to use a(f̄)+a∗(f) instead of ϕ(f) we have to apply
it to a vector Φ ∈ D(a(f)):

ϕ(f)Φ = a(f̄)Φ + a∗(f)Φ .

In particular the equality above is true ∀Φ ∈ D(N1/2). Observe also that ϕ(λf) =
λϕ(f) for all λ ∈ R.

5. Invariance of domains under the action of exp(iϕ(f)t).

Now we are able to formulate some important results about the invariance of
useful domains under the action of eiϕ(f).

• Stone’s theorem provides us with a fundamental information: ∀Φ ∈ D(ϕ(f)),

Θ(t) ≡ exp(iϕ(f)t)Φ ∈ C 1(R,H ) ,

Θ(t) ∈ D(ϕ(f)) and

−i d

dt
Θ(t) = ϕ(f)Θ(t) .
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• Let h(N) be a bounded function such that Ranh(N) ⊂ D(N1/2) (we
remark that D(N1/2) ⊂ D(ϕ(f)) and on D(N1/2) ϕ(f) = a(f̄) + a∗(f)).
Define M(t) = ‖h(N)Θ(t)‖. Then we have:

1

2

d

dt
M(t)2 = −Im〈h(N)Θ, h(N)ϕ(f)Θ〉 = −Im〈ϕ(f)h(N)2Θ,Θ〉

= −Im〈(a(f̄) + a∗(f))h(N)2Θ,Θ〉

= −Im〈
(
h(N + 1)a(f̄) + h(N − 1)a∗(f)

−h(N)(a(f̄) + a∗(f))
)
h(N)Θ,Θ〉

= Im〈h(N)Θ,
(
a(f̄)(h(N)− h(N − 1))

+a∗(f)(h(N)− h(N + 1))
)

Θ〉 .

So we can estimate:

(∗)

∣∣∣∣12 d

dt
M(t)2

∣∣∣∣ ≤M(t) ‖f‖2
{∥∥∥N1/2(h(N)− h(N − 1))Θ

∥∥∥
+
∥∥∥(N + 1)1/2(h(N)− h(N + 1))Θ

∥∥∥} ,
that could be continued to

(∗∗)

∣∣∣∣12 d

dt
M(t)2

∣∣∣∣ ≤M(t)2 ‖f‖2

{
sup
n≥1

∣∣∣√n(h(n− 1)h(n)−1 − 1
)∣∣∣

+ sup
n≥1

∣∣∣√n(1− h(n)h(n− 1)−1
)∣∣∣} .

In order to pass from (∗) to (∗∗) we have to put some restrictions on the
choice of h(N).

• We make a suitable choice of h(N): h(N) = (N+j+1)−δ, j ≥ 1. In order
to have Ranh(N) ⊂ D(N1/2) we have to restrict ourselves to δ ≥ 1/2.
The general result for all δ will be recovered at the end by interpolation
of the results for δ = 1/2 (or better δ = 1) and δ = 0 (unitarity of
exp(iϕ(f)t)), or by introduction and subsequent elimination of a cut off
in (∗). For the moment we will continue with δ ≥ 1/2. However the
following calculations are valid for all δ > 0.

(h(n−1)h(n)−1−1) = (1+(n+j)−1)δ−1 ≤ δ

n+ j


1 if δ ≤ 1(j + 2

j + 1

)δ−1

if δ ≥ 1

(1−h(n)h(n−1)−1) = 1−(1−(n+j+1)−1)δ ≤ δ

n+ j + 1


1 if δ ≥ 1(j + 2

j + 1

)1−δ
if δ ≤ 1

We remark that

sup
n≥1

n1/2(n+ j)−1 ≤ 1

2
j−1/2 .

The term between braces in the right hand side of (∗∗) is then bounded
by:{
. . . . . .

}
≤ δ
(

sup
n≥1

n1/2

n+ j

(j + 2

j + 1

)δ−1

+ sup
n≥1

n1/2

n+ j + 1

)
≤ 2δ

sup
n≥1

n1/2

n+ j

(j + 2

j + 1

)δ−1

≤ δj−1/2
(j + 2

j + 1

)δ−1

if δ ≥ 1.
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. . . . . .

}
≤ δ
(

sup
n≥1

n1/2

n+ j
+ sup
n≥1

n1/2

n+ j + 1

(j + 2

j + 1

)1−δ
)

≤ δj−1/2
(j + 2

j + 1

)1−δ
if δ ≤ 1.

Summing up we can write for all δ ≥ 0:{
. . . . . .

}
≤ δj−1/2

(j + 2

j + 1

)|δ−1|
≤ δj−1/2

(3

2

)|δ−1|
.

So recalling (∗) and (∗∗) we obtain with h(N) = (N + j + 1)−δ, j ≥ 1,
δ ≥ 1/2:∣∣∣∣ d

dt

∥∥(N + j + 1)−δΘ(t)
∥∥∣∣∣∣ ≤ δj−1/2

(3

2

)|δ−1|
‖f‖2∥∥(N + j + 1)−δΘ(t)
∥∥ ;

then we can write∥∥(N + j + 1)−δ exp(iϕ(f)t)Φ
∥∥ ≤ exp

{
δj−1/2

(3

2

)|δ−1|
‖f‖2 |t|

}
∥∥(N + j + 1)−δΦ

∥∥ ,
for all Φ ∈ D(ϕ(f)) and then ∀Φ ∈H .

To obtain the result for all δ > 0 it would be sufficient to interpolate
between δ = 1 and δ = 0:

(5.1)
∥∥(N + j + 1)−δ exp(iϕ(f)t)Φ

∥∥ ≤ exp(µ |t|)
∥∥(N + j + 1)−δΦ

∥∥
with

µ = δj−1/2 ‖f‖2
(3

2

)max{0,(δ−1)}

for all 0 ≤ δ, Φ ∈H .
• We would like to obtain the differential inequality of the previous point

with δ positive but not restricted to δ ≥ 1/2. In order to do that we
introduce

h(N) = e−εNh1(N) with h1(N) = (N + j + 1)−δ ,

where δ is positive, condition Ranh(N) ⊂ D(N1/2) being satisfied. In-
equality (∗) then becomes:∣∣∣∣ d

dt

∥∥e−εNh1(N)Θ(t)
∥∥∣∣∣∣ ≤ ‖f‖2(∥∥∥N1/2e−ε(N−1)

(
(1 + (N + j)−1)δ

−e−ε
)
h1(N)Θ(t)

∥∥∥+
∥∥∥(N + 1)1/2e−ε(N+1)

(
eε

−(1− (N + j + 2)−1)δ
)
h1(N)Θ(t)

∥∥∥)
≤
((2

e

)1/2

ε1/2 + sup
n≥1

n1/2
((

1 + (n+ j)−1
)δ − 1

)
+ sup
n≥1

n1/2
(

1−
(
1− (n+ j + 1)−1

)δ)) ‖f‖2 ‖h1(N)Θ(t)‖
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since supn≥1 n
1/2e−εn ≤ (2εe)−1/2. Integrating we obtain:∥∥e−εNh1(N)Θ(t)
∥∥ ≤ ∥∥e−εNh1(N)Φ

∥∥+

{(2

e

)1/2

ε1/2

+ sup
n≥1

n1/2
((

1 + (n+ j)−1
)δ − 1

)
+ sup
n≥1

n1/2
(

1−
(
1− (n+ j + 1)−1

)δ)}
‖f‖2

∫ t

0

dt′ ‖h1(N)Θ(t′)‖ .

Taking the limit ε −→ 0 on both sides of the inequality, we obtain a
linear inequality identical to the one obtained in the case δ ≥ 1/2 but in
integral form. The rest of the calculation can be completed using previous
estimates. We remark that the inequality obtained by interpolation when
0 < δ < 1 is better than the one obtained here by direct calculation.

• Let A = (N + j + 1)δ, then inequality (5.1) can be rewritten as∥∥∥A−1eiϕ(f)tAΨ
∥∥∥ ≤ a(t) ‖Ψ‖ ∀Ψ ∈ D(A) .

Now if Φ ∈H :∣∣∣〈Φ, A−1eiϕ(f)tAΨ〉
∣∣∣ =

∣∣∣〈e−iϕ(f)tA−1Φ, AΨ〉
∣∣∣ ≤ a(t) ‖Φ‖ ‖Ψ‖ ,

so e−iϕ(f)tA−1Φ ∈ D(A†) = D(A) since A = A† and∥∥∥Ae−iϕ(f)tA−1Φ
∥∥∥ ≤ a(t) ‖Φ‖ .

So we just proved the following lemma:

Lemma 5.1. Let δ ≥ 0, then for all j ≥ 1 we have

1)
∥∥(N + j + 1)−δ exp(iϕ(f)t)Φ

∥∥ ≤ exp(µδ |t|)
∥∥(N + j + 1)−δΦ

∥∥ for all Φ ∈ H ,
where

µδ = δj−1/2 ‖f‖2
(3

2

)max{0,(δ−1)}
.

2) ∀Φ ∈ D(Nδ), exp(iϕ(f)t)Φ ∈ D(Nδ) and∥∥(N + j + 1)δ exp(iϕ(f)t)Φ
∥∥ ≤ exp(µδ |t|)

∥∥(N + j + 1)δΦ
∥∥ .

This lemma has a lot of useful applications, for example we can prove regularity
results like the one following:

Lemma 5.2. Let B an operator such that for some δ ≥ 0 satisfies:

(1) D(Nδ) ⊂ D(B),
(2) ‖BΦ‖ ≤ b

∥∥(N + 2)δΦ
∥∥ for all Φ ∈ D(Nδ).

Define then Θ(t) = exp(iϕ(f)t)Θ0. Then the function t −→ BΘ(t) is continuous
for all Θ0 ∈ D(Nδ) and differentiable for all Θ0 ∈ D(Nδ+1/2), the derivative being
equal to the formal one.

Proof. Using Lemma 5.1 and

Θ(t)−Θ(t0) =
(

exp(iϕ(f)(t− t0))− 1
)

exp(iϕ(f)t0)Θ0

it will be sufficient to prove continuity and differentiability at t = 0.
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Continuity. Let Θ0 ∈ D(N2δ). We estimate

‖B(Θ(t)−Θ0)‖2 ≤ b2
∥∥(N + 2)δ(Θ(t)−Θ0)

∥∥2

≤ b2
∥∥(N + 2)2δ(Θ(t)−Θ0)

∥∥ ‖Θ(t)−Θ0‖
and since∥∥(N + 2)2δ(Θ(t)−Θ0)

∥∥ ≤ (1 + exp(µδ |t|))
∥∥(N + 2)2δΘ0

∥∥ ,
we obtain ‖B(Θ(t)−Θ0)‖ −→ 0 when t → 0. Since Graph(N2δ) is dense in
Graph(Nδ), a 2ε-argument let us extend the result to Θ0 ∈ D(Nδ). �

Differentiability. We expect that

d

dt
BΘ(t) = iBϕ(f)Θ(t) .

Let Θ0 ∈ D(N2δ+1/2). If we define χ(t) = (Θ(t)−Θ0)/t we get

(∗)
‖B(χ(t)− iϕ(f)Θ0)‖2 ≤ b2

(∥∥(N + 2)2δχ(t)
∥∥

+
∥∥(N + 2)2δϕ(f)Θ0

∥∥) ‖χ(t)− iϕ(f)Θ0‖ .

Using formula

χ(t) =
1

t

∫ t

0

dt′ (iϕ(f)) exp(iϕ(f)t′)Θ0 ,

we can bound∥∥(N + 2)2δχ(t)
∥∥ ≤ ‖f‖2 sup

0≤t′≤t

∥∥∥(N + 3)2δ+1/2 exp(iϕ(f)t′)Θ0

∥∥∥
≤ ‖f‖2 exp(µ2δ+1/2 |t|)

∥∥∥(N + 3)2δ+1/2Θ0

∥∥∥ .
So the braket (. . . ) on the right hand side of (∗) has the estimate:(

. . .
)
≤ ‖f‖2

(
1 + exp(µ2δ+1/2 |t|)

)∥∥∥(N + 3)2δ+1/2Θ0

∥∥∥ .
Then we can conclude that ‖B(χ(t)− iϕ(f)Θ0)‖ −→ 0 when t→ 0. The extension
of the domain of Θ0 to D(Nδ+1/2) is performed with an argument identical to the
one used in continuity. �

�

Lemma 5.3. Let Φ ∈ D(a(ḡ)) = D(a∗(g)), then exp(iϕ(f)t)Φ ∈ D(a(ḡ)) and

exp(−iϕ(f)t)a(ḡ) exp(iϕ(f)t)Φ = a(ḡ)Φ + it〈g, f〉L2Φ(5.2)

exp(−iϕ(f)t)a∗(g) exp(iϕ(f)t)Φ = a∗(g)Φ− it〈f, g〉L2Φ(5.3)

Proof. We restrict to (5.2), the proof of (5.3) being identical. Let Θ ∈
D(N1/2) and Φ ∈ D(N). Using Lemma 5.2 with B = a(ḡ), δ = 1/2 we obtain:

d

dt
〈exp(iϕ(f)t)Θ, a(ḡ) exp(iϕ(f)t)Φ〉 = 〈iϕ(f) exp(iϕ(f)t)Θ, a(ḡ) exp(iϕ(f)t)Φ〉

+〈exp(iϕ(f)t)Θ, a(ḡ)iϕ(f) exp(iϕ(f)t)Φ〉

On D(N1/2) we have ϕ(f) = a(f̄) + a∗(f), so

d

dt
〈exp(iϕ(f)t)Θ, a(ḡ) exp(iϕ(f)t)Φ〉 = i〈exp(iϕ(f)t)Θ, [a(ḡ), a(f̄)

+a∗(f)] exp(iϕ(f)t)Φ〉 = i〈g, f〉L2〈Θ,Φ〉 .

Integrating in t we obtain (5.2) when Φ ∈ D(N). To extend it to the general
case we do as following: given Φ ∈ D(a(ḡ)), let Φj ∈ D(N) such that Φj −→ Φ
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and a(ḡ)Φj −→ a(ḡ)Φ. From (5.2) with Φj it follows that a(ḡ) exp(iϕ(f)t)Φj
converges. Then, since a(ḡ) is closed, exp(iϕ(f)t)Φ ∈ D(a(ḡ)) and (5.2) holds for
all Φ ∈ D(a(ḡ)). �

We are now able to prove Weyl’s formula.

Lemma 5.4 (Weyl’s formula.). We have:

exp(iϕ(f)) exp(iϕ(g)) = exp(iϕ(f + g)) exp(−iIm〈f, g〉L2) .

Proof. We call U(tf) ≡ exp(iϕ(f)t) = exp(iϕ(ft)). For all Φ ∈ D(N1/2) we
set Θ(t) ≡ U(tf)U(tg)U(−t(f + g))Φ. Formally we calculate the derivative of Θ
using Leibniz’s rule:

−i d

dt
Θ(t) =

(
U(tf)ϕ(f)U(tg)U(−t(f + g))

+U(tf)U(tg)ϕ(g)U(−t(f + g))

−U(tf)U(tg)ϕ(f + g)U(−t(f + g))

)
Φ

= U(tf)U(tg)

(
ϕ(g) + ϕ(f)− ϕ(f + g)

+it
(
〈f, g〉L2 − 〈g, f〉L2

))
U(−t(f + g))Φ ,

last equality is obtained using Lemma 5.3. We remark that we deal at any point of
this chain of equalities with vectors in D(N1/2). Since on such vectors ϕ(f + g) =
ϕ(f) + ϕ(g), we obtain:

−i d

dt
Θ(t) = i2itIm〈f, g〉L2Θ ,

so

Θ(t) = exp(−it2Im〈f, g〉L2)

and therefore when t = 1 the Weyl’s formula. The effective calculation consists in
justifying the formal derivative above:

h−1
(

Θ(t+ h)−Θ(t)
)

= h−1
(
U((t+ h)f)U((t+ h)g)U(−(t+ h)(f + g))

−U(tf)U(tg)U(−t(f + g))
)

Φ

= U((t+ h)f)U((t+ h)g)
U(−(t+ h)(f + g)− U(−t(f + g)))

h
Φ

+U((t+ h)f)
U((t+ h)g)− U(tg)

h
U(−t(f + g))Φ

+
U((t+ h)f)− U(tf)

h
U(tg)U(−t(f + g))Φ

Using Lemma 5.2, the limit of each term on the right hand side of the equality
above exists when h→ 0, so we obtain the formal result. �

To transform with exp(iϕ(f)) bilinear operators more general than N , the
following lemmas will be useful. We will use the following notation: let u an
operator from D ⊂ L2 in L2, then if Ψn(Xn) =

∏n
k=1 wk(xk), for all j = 1, . . . , n

we define ujΨn(Xn) = w1(x1) · · · (uwj)(xj) · · ·wn(xn). By linearity, and eventually
continuity, we extend the definition of ujΨn to all Ψn ∈Hn.
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Lemma 5.5. Let u be a bounded operator in L2, u† its adjoint, {ej} an or-

thonormal basis of L2. Then, ∀Φ ∈ D(N1/2), we have:∥∥∥(dΓ(u†u))1/2Φ
∥∥∥2

= 〈Φ,dΓ(u†u)Φ〉 =
∑
j

∥∥∥a(u†ej)Φ
∥∥∥2

≤
∥∥u;L2 → L2

∥∥∥∥∥N1/2Φ
∥∥∥2

.

Proof.∥∥∥(dΓ(u†u))1/2Φ
∥∥∥2

=
∑
n≥1

〈Φn, (u†1u1 + . . .+ u†nun)Φn〉 =
∑
n≥1

n〈Φn, u†1u1Φn〉

=
∑
n≥0

(n+ 1) ‖u1Φn+1‖2Hn+1
=
∑
n≥0

(n+ 1)

∫
dXn

∑
j

|〈ej , u1Φn+1〉1(Xn)|2

=
∑
n≥0

(n+ 1)

∫
dXn

∑
j

∣∣〈u†ej ,Φn+1〉1(Xn)
∣∣2

=
∑
n≥0

∫
dXn

∑
j

∣∣∣(a(u†ej)Φ)n(Xn)
∣∣∣2 =

∑
j

∑
n

∥∥∥(a(u†ej)Φ)n

∥∥∥2

Hn

.

We could exchange
∑
n

∫ ∑
j because they all have positive terms. �

Lemma 5.6. Let v be a bounded operator in L2, {ej} an orthonormal basis of

L2, Θ ∈H , Φ ∈ D(N1/2). Then∑
j

〈Θ, a(vej)Φ〉〈ej , g〉L2 = 〈Θ, a(vg)Φ〉 =
∑
n

〈Θn, 〈g, v†1Φn+1〉1〉n(n+1)1/2

and we have the following bound:∣∣∣∣∣∑
n

〈Θn, 〈g, v†1Φn+1〉H1
〉Hn

(n+ 1)1/2

∣∣∣∣∣ ≤ ‖g‖2 ‖Θ‖ ∥∥∥(dΓ(vv†))1/2Φ
∥∥∥ .

Proof. We remark that

〈Θ, a(vej)Φ〉 =
∑
n

〈Θn, 〈vej ,Φn+1〉1〉Hn(n+ 1)1/2 .

We bound the following double sum in absolute value:∑
j,n

∣∣∣〈Θn, 〈vej ,Φn+1〉H1
〉Hn

(n+ 1)1/2〈ej , g〉L2

∣∣∣ ≤∑
n

(n+ 1)1/2

〈|Θn| ,
∑
j

|〈ej , v†Φn+1〉H1
| |〈ej , g〉L2 |〉Hn

≤
∑
n

(n+ 1)1/2〈|Θn| ,
∥∥∥v†1Φn+1

∥∥∥
H1

〉Hn
‖g‖2

≤ ‖g‖2 ‖Θ‖
∥∥∥(dΓ(vv†))1/2Φ

∥∥∥
≤ ‖g‖2

∥∥v;L2 → L2
∥∥ ‖Θ‖ ∥∥∥N1/2Φ

∥∥∥ .
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We now continue with the calculation of the series:∑
j

〈Θn, 〈vej ,Φn+1〉H1〉Hn〈ej , g〉L2(n+ 1)1/2

=
∑
j

〈Θn, 〈ej , v†1Φn+1〉H1
〉Hn
〈ej , g〉L2(n+ 1)1/2

= 〈Θn, 〈g, v†1Φn+1〉H1〉Hn(n+ 1)1/2

= 〈Θn, 〈vg,Φn+1〉H1
〉Hn

(n+ 1)1/2

= 〈Θn, (a(vg)Φ)n〉Hn

Then summing over n and exchanging
∑
j and

∑
n we complete the proof. �

Lemma 5.7. Let u be a bounded operator in L2. Then ∀Φ ∈ D(N1/2) we have:∥∥∥(dΓ(u†u))1/2 exp(iϕ(f))Φ
∥∥∥2

=
∥∥∥(dΓ(u†u))1/2Φ

∥∥∥2

+ ‖uf‖22 ‖Φ‖
2

+〈Φ,
(
a(u†uif) + a∗(u†uif)

)
Φ〉

≤ 2
(∥∥∥(dΓ(u†u))1/2Φ

∥∥∥2

+ ‖uf‖22 ‖Φ‖
2
)

In particular since dΓ(u†u) and
(
a(u†uif)+a∗(u†uif)

)
are symmetric we can write

exp(−iϕ(f))dΓ(u†u) exp(iϕ(f))Φ = dΓ(u†u)Φ + ‖uf‖22 Φ

+a(u†uif)Φ + a∗(u†uif)Φ ;

for all Φ ∈ D(N).

Proof. From Lemma 5.5 we obtain∥∥∥(dΓ(u†u))1/2 exp(iϕ(f))Φ
∥∥∥2

=
∑
j

∥∥∥a(u†ej) exp(iϕ(f))Φ
∥∥∥2

.

We can continue using Lemma 5.3 and obtain∥∥∥(dΓ(u†u))1/2 exp(iϕ(f))Φ
∥∥∥2

=
∑
j

∥∥∥a(u†ej)Φ + i〈ej , uf〉L2Φ
∥∥∥2

=
∥∥∥(dΓ(u†u))1/2Φ

∥∥∥2

+ ‖uf‖22 ‖Φ‖
2

+2Im
∑
j

〈Φ, a(u†ej)Φ〉〈ej , uf〉L2 .

Lemma 5.6 leads to the first equality in the statement. The following inequality
is obtained from the

∑
j above or using Schwarz’s inequality and Lemma 5.5 or

recalling the calculation done in the proof of Lemma 5.6. �

Lemma 5.8. Let u = multiplication by ωλ (ω = ω(k) = |k|, λ ≥ 0). Let
f ∈ L2(Rd) with ωλf ∈ L2(Rd). If Φ ∈ D((dΓ(ω2λ))1/2), then exp(iϕ(f))Φ ∈
D((dΓ(ω2λ))1/2) and∥∥∥(dΓ(ω2λ))1/2 exp(iϕ(f))Φ

∥∥∥2

≤ 2
(∥∥∥(dΓ(ω2λ))1/2Φ

∥∥∥2

+
∥∥ωλf∥∥2

2
‖Φ‖2

)
.
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Proof. We apply Lemma 5.7 with u = uσ = ωλχω≤σ, so u is a multiplication
by ωλ with cut off. For all M ≥ 1 we have

M∑
n=1

〈(exp(iϕ(f))Φ)n,
( n∑
j=1

ω2λ
j χωj≤σ

)
(exp(iϕ(f))Φ)n〉Hn

=

M∑
n=1

∥∥∥(dΓ(ω2λχω≤σ))1/2 exp(iϕ(f))Φ
∥∥∥2

≤ 2
(∥∥∥(dΓ(ω2λχω≤σ))1/2Φ

∥∥∥2

+
∥∥ωλχω≤σf∥∥2

2
‖Φ‖2

)
≤ 2
(∥∥∥(dΓ(ω2λ))1/2Φ

∥∥∥2

+
∥∥ωλf∥∥2

2
‖Φ‖2

)
.

The result follows taking the limit σ → ∞ in the left hand side of the inequality
(monotone convergence theorem) and then taking the limit M →∞. �

In the work we need regularity results of the exponential of the field as we
change the function that appears inside the field operator. To be more precise we
set

U(f) ≡ exp(iϕ(f))

and study its regularity as a function of f ∈ L2(Rd).

Lemma 5.9. 1) U(f) is strongly continuous as a function of f .
2) Let f ∈ C 1(I, L2). Then, ∀Φ ∈ D(N1/2), U(f(·))Φ is differentiable and

d

dt
U(f(t))Φ =

(
iϕ(ḟ(t)) + iIm〈ḟ(t), f(t)〉

)
U(f(t))Φ

U(f(t))
(
iϕ(ḟ(t))− iIm〈ḟ(t), f(t)〉

)
Φ

Proof. The following basic formula is obtained from Weyl’s formula (Lemma 5.4):

(∗)

U(f)− U(g) = (U(f)U(−g)− 1)U(g) = (U(f − g)eiIm〈f,g〉L2 − 1)U(g)

= U(f − g)(eiIm〈f,g〉L2 − 1)U(g) + (U(f − g)− 1)U(g)

= U(g)U(f − g)(e−iIm〈f,g〉L2 − 1) + U(g)(U(f − g)− 1)

Another important formula is the following: ∀Φ ∈ D(N1/2) we have

(∗∗) (U(f)− 1)Φ =

∫ 1

0

dsU(sf)iϕ(f)Φ .

1) Use (∗∗) in (∗) with Φ ∈ D(N1/2) to obtain:

‖(U(f)− U(g))Φ‖ ≤ |Im〈f, g〉L2 | ‖Φ‖+ ‖ϕ(f − g)Φ‖

≤ |Im〈f, g〉L2 | ‖Φ‖+ 2 ‖f − g‖2
∥∥∥(N + 1)1/2Φ

∥∥∥
and this goes to zero if f →L2 g. The elimination of condition Φ ∈ D(N1/2) is
done by standard methods.

2) We set, for brevity, F ≡ F (h, t) ≡ f(t+ h)− f(t). We write

U(f(t+ h))− U(f(t))

h
= U(f(t))U(F )

(e−iIm〈f(t+h),f(t)〉L2 − 1

h

)
+U(f(t))

(U(F )− 1

h

)
.
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Now we have that

lim
h→0

e−iIm〈f(t+h),f(t)〉L2 − 1

h
= −iIm〈ḟ(t), f(t)〉

and, ∀Φ ∈ D(N1/2),

U(F (h, t))− 1

h
Φ =

∫ 1

0

dsU(sF (h, t))iϕ
(F (h, t)

h

)
Φ −→
h→0

iϕ(ḟ)Φ .

Then we obtain the second formula of the derivative. To obtain the first we
follow the same procedure.

�

6. Interaction picture.

We will study now how the annihilation and creation operators, and then
also exp(iϕ(f)), modify under the action of a class of unitary operators. Con-
sider an operator v from D ⊂ L2 in L2, self adjoint. Define u0(t) ≡ exp(−itv),
U0(t) ≡ exp(−itdΓ(v)). We remark that, under suitable domain conditions, dΓ(v)
commutes with Nδ for all δ, so if Φ ∈ D(Nδ), then U0(t)Φ ∈ D(Nδ).

Lemma 6.1. Let Φ ∈ D(N1/2), f ∈ L2(Rd). Define f̃ ≡ u†0(t)f , then

U†0 (t)a(f̄)U0(t)Φ = a(
¯̃
f)Φ

U†0 (t)a∗(f)U0(t)Φ = a∗(f̃)Φ

Proof. The proof is done by means of a direct calculation on Hn.

(U†0 (t)a(f̄)U0(t)Φ)n(Xn) = (n+ 1)1/2 exp(it

n∑
j=1

vj)

∫
dx f̄(x)

exp(−it
n∑
j=1

vj) exp(−itvx)Φn+1(x,Xn)

= (n+ 1)1/2

∫
dx f̄(x) exp(−itvx)Φn+1(x,Xn)

= (n+ 1)1/2〈f, u0(t)Φn+1〉H1
(Xn)

= (n+ 1)1/2〈u†0(t)f,Φn+1〉H1
(Xn) .

Now that we proved the one about a(f̄), the other is obtained by taking the adjoint:
let Θ,Φ ∈ D(N1/2), then

〈U†0 (t)a∗(f)U0(t)Θ,Φ〉 = 〈Θ, U†0 (t)a(f̄)U0(t)Φ〉 = 〈Θ, a(
¯̃
f)Φ〉

= 〈a∗(f̃)Θ,Φ〉 .
The equality between the first and the last term then can be extended to all Φ ∈H ,
and that completes the proof. �

Lemma 6.2. Let f ∈ C 0(I, L2). Then

U†0 (t) exp(iλϕ(f(t)))U0(t) = exp(iλϕ(f̃(t))) .

Proof. The proof is an application of Stone’s theorem. Let Φ ∈ D(N1/2),

and define W (λ) ≡ U†0 (t) exp(iλϕ(f(t)))U0(t). Then W (λ) is differentiable on

D(N1/2), and W (λ)Φ ∈ D(N1/2), furthermore using Lemma 6.1 (on D(N1/2) we
have ϕ(f) = a(f̄) + a∗(f)) we obtain:

d

dλ
W (λ)Φ = i

(
a(

¯̃
f(t)) + a∗(f̃(t))

)
W (λ)Φ .
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Then by Stone’s theorem W (λ) = exp
(
iλ
[
a(

¯̃
f(t)) + a∗(f̃(t))

] )
. �

7. From exp(iϕ(f)) to C(α).

In order to be in agreement with the literature on the classical limit of field
theories we have to change the notation we used above. Let f = −iα. Then we
have

ϕ(f) ≡ (a(f̄) + a∗(f)) = i(a(ᾱ)− a∗(α)) ,

U(f) ≡ exp(iϕ(f)) = exp
(
(a∗(α)− a(ᾱ))

)
.

Formulas of Lemma 5.3 become: ∀Φ ∈ D(a(ḡ))

C(α)†a(ḡ)C(α)Φ = a(ḡ)Φ + 〈g, α〉L2Φ

C(α)†a∗(g)C(α)Φ = a∗(g)Φ + 〈α, g〉L2Φ .

The derivative of Lemma 5.9 becomes: ∀Φ ∈ D(N1/2)

d

dt
C(α)Φ =

(
a∗(α̇)− a( ˙̄α)− iIm〈α, α̇〉

)
C(α)Φ

C(α)
(
a∗(α̇)− a( ˙̄α) + iIm〈α, α̇〉

)
Φ .

8. The case of H = Fs(L
2(R3))⊗Fs(L

2(R3)).

To apply the results of this appendix to the system we studied we have to
extend them to the case of a tensor product of Fock spaces. Let H = Fs(L

2(R3))⊗
Fs(L

2(R3)), then we will have two types of annihilation and creation operators,
namely ψ#(f) and a#(f) that satisfy all lemmas above, and two number operators
P and N . If we want to be precise we have this abuse of notation:

ψ#(f) ≡ ψ#(f)⊗ 1 , a#(f) ≡ 1⊗ a#(f)

P ≡ P ⊗ 1 , N ≡ 1⊗N .

We have also Weyl operators C(u) ≡ C(u) ⊗ 1, C(α) ≡ 1 ⊗ C(α), C(u, α) =
C(u)C(α). The results above can be applied suitably for C(u), C(α), C(u, α).

Let B ≥ 0 a self-adjoint operator, we define Q(B) ⊆H the form domain of B,
i.e. Q(B) = D(B1/2). Q(B) is a Hilbert space with norm

∥∥(B + 1)1/2Φ
∥∥.

We denote Q∗(B) the completion of H in the norm
∥∥(B + 1)−1/2Φ

∥∥. Finally

we define the Hilbert spaces H δ, δ ∈ R: H δ = Q((P + N)δ) for δ ≥ 0, and
H δ = Q∗((P +N)|δ|) for δ < 0; H δ is a Hilbert space in the norm

‖Φ‖δ =
∥∥∥(P +N + 1)δ/2Φ

∥∥∥ .
For any p, n ∈ N we also define

Hp,n =
{

Φp,n : Φp,n(Xp;Kn) ∈ L2(R3p+3n)
}
,

where Xp = {x1, . . . , xp}, Kn = {k1, . . . , kn} and Φp,n is separately symmetric with
respect to the first p and the last n variables. H is then the direct sum of the Hp,n:

H =

∞⊕
p,n=0

Hp,n .

We will use the following properties of the tensor product of Hilbert spaces

Hp,n = Hp,0 ⊗H0,n ,
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and

H =
( ∞⊕
p=0

Hp,0

)
⊗
( ∞⊕
n=0

H0,n

)
=

∞⊕
p=0

Hp ,

with

Hp = Hp,0 ⊗
∞⊕
n=0

H0,n .

We want to extend some results on the invariance of domains under the action
of C(u, α) we proved above to H δ. When the proof is almost identical to the one
already done above, we will omit it. In particular we modify Lemma 5.1 to read as:

Lemma 8.1. C(u, α) maps H 2δ into itself for all δ ∈ R. In particular we have
for all Φ ∈H 2δ, j ≥ 1∥∥(P +N + j + 1)δC(u, α)Φ

∥∥ ≤ exp(ρδ)
∥∥(P +N + j + 1)δΦ

∥∥ ,
with ρδ ∼ δ(‖u‖2 + ‖α‖2).

We did not calculate the constant ρδ explicitly since we are interested only in
the invariance of the domains.

Finally we want to study the behaviour of a particular class of trilinear opera-
tors of H , when they are transformed by C(u, α). Consider the following operator
on L2(R3)⊗D(N1/2): let f(·) ∈ L∞(R3, L2(R3)), define

ϕ(x) ≡ a(f̄(x)) + a∗(f(x)) .

Then we consider the operator dΓp(ϕ), defined on D(P ) ⊗ D(N1/2). On Hp,0 ⊗
D(N1/2) it acts as

dΓp(ϕ)
∣∣∣
Hp,0⊗D(N1/2)

=

p∑
j=1

ϕ(xj) .

Furthermore define another operator on L2(R3) ⊗
⊕

n≥0 H0,n: let α ∈ L2(R3),

f(·) ∈ L∞(R3, L2(R3)), then

〈f, α〉(x) ≡ 2Re〈f(x), α〉L2(R3) .

Using Lemma 5.3 on Hp,0 ⊗D(N1/2), we have that

C∗(α)dΓp(ϕ)C(α)
∣∣∣
Hp,0⊗D(N1/2)

=
(

dΓp(ϕ) + dΓp(〈f, α〉)
)∣∣∣

Hp,0⊗D(N1/2)
.

Finally applying the last formula of Lemma 5.7 on D(P 2 +N) to

C∗(u)
(

dΓp(ϕ) + dΓp(〈f, α〉)
)
C(u)

we prove the following lemma (we write it in the language of second quantization
for clarity):

Lemma 8.2. Let Φ ∈ D(P 2 +N), f ∈ L∞(R3, L2(R3)) then:

C∗(u, α)

∫
dxdk

(
f̄(x, k)a(k) + f(x, k)a∗(k)

)
ψ∗(x)ψ(x)C(u, α)Φ

=

∫
dxdk

(
f̄(x, k)(a(k) + α(k)) + f(x, k)(a∗(k) + ᾱ(k))

)
(ψ∗(x) + ū(x))(ψ(x) + u(x))Φ .



APPENDIX B

Direct sum of operators on Hilbert spaces.

1. Direct sum of domains.

• Let Hn be a Hilbert space for all n, then we define

H =

∞⊕
n=1

Hn .

Pn is the orthogonal projector on Hn and

P≤n = {projector on
n⊕
j=1

Hj} =

n∑
j=1

Pj .

• If Dn ⊂Hn, then
∞⊕
n=1

Dn = {x ∈H , Pnx ∈ Dn for all n}

⊕
fin

Dn = {x ∈H , Pnx = 0 ∀n ≥ n0(x) and Pnx ∈ Dn when 6= 0}.

• It is clear that(⊕
fin

Dn

)
⊃
∞⊕
n=1

Dn

for every x ∈
⊕∞

n=1Dn can be approximated as well as we want by∑N
n=1 Pnx. Then(⊕
fin

Dn

)
=
( ∞⊕
n=1

Dn

)
.

• We remark that if

S ≡
∞⊕
n=1

Dn =

∞⊕
n=1

D′n ,

taking the Pn-projection of a generic x ∈ S we obtain Dn = D′n for all n.

Lemma 1.1.(⊕
fin

Dn

)
=
( ∞⊕
n=1

Dn

)
=

∞⊕
n=1

Dn .

Proof. Let x ∈
⊕
Dn . Then Pnx ∈ Dn . For all εn, ∃yn ∈ Dn such that

‖Pnx− yn‖n < εn. Since ‖yn‖2n ≤ 2 ‖Pnx‖2n+2 ‖Pnx− yn‖2n,
∑∞
n=1 ‖yn‖

2
n <∞, so

y = (y1, . . . , yn, . . . ) ∈
⊕

nDn. It follows that ‖x− y‖2 ≤
∑
n ε

2
n that can become

suitably small. Then( ∞⊕
n=1

Dn

)
⊃
∞⊕
n=1

Dn .

83
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Let now x ∈
(⊕

Dn

)
. For all ε, ∃y with Pny ∈ Dn such that ‖x− y‖ < ε. It

follows that ‖Pnx− Pny‖ < ε. Hence Pnx ∈ Dn , and x ∈
⊕

nDn . Then( ∞⊕
n=1

Dn

)
⊂
∞⊕
n=1

Dn .

�

Corollary 1.1. If Dn = Hn then(⊕
fin

Dn

)
=
( ∞⊕
n=1

Dn

)
= H .

2. Direct sum of operators.

• Let An be linear operator on Hn defined on D(An). Define

D(A) = {x ∈H : Pnx ∈ D(An),

∞∑
n=1

‖AnPnx‖2n <∞}

Ax =

∞∑
n=1

AnPnx = lim
N→∞

N∑
n=1

AnPnx , ∀x ∈ D(A) .

We will use the notation A =
⊕
An. Define also

Afin ≡ A
∣∣∣⊕

fin D(An)
.

• Observe that, by definition, {x, y} ∈ G (A) ⊂ H ⊕ H if and only if
x ∈

⊕
nD(An), y ∈

⊕
n Ran(An) and Pny = AnPnx for all n. Since

H ⊕H =
⊕

n(Hn ⊕Hn) we can write

G (A) =
⊕
n

G (An)

and we have

G (Afin) =
⊕
fin

G (An) .

We remark that ker(A) =
⊕

n ker(An) and Ran(A) =
⊕

n Ran(An).

Lemma 2.1.

G (Afin) =
(⊕

fin

G (An)
)

= G (A) =
( ∞⊕
n=1

G (An)
)

=

∞⊕
n=1

G (An) .

Proof. A direct consequence of Lemma 1.1 �

• If D(An) = Hn by Corollary 1.1
(⊕

finD(An)
)

= H and since

D(A) ⊃
⊕

finD(An) it follows that D(A) = H .

Corollary 2.1. If all An are closable, then A is closable and

G (A ) =

∞⊕
n=1

G (An ) , A =

∞⊕
n=1

An , Afin = A .
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Proof. If An is closable then G (An) = G (An ). Hence by Lemma 2.1

G (A) =
⊕

n G (An ), then

G (A) = G (
⊕
n

An ) , A =
⊕
n

An .

�

Lemma 2.2. Let An be densely defined for all n. Since A =
⊕

nAn, then
A† =

⊕
nA
†
n.

Proof. Let τ be the operator on H ⊕H such that τ{x, y} = {−y, x}. If
τn is the operator τ defined on Hn ⊕Hn and Mn a linear subspace ⊂ Hn ⊕Hn,
setting H ⊕H =

⊕
n(Hn ⊕Hn) we obtain

τ
(⊕

n

Mn

)
=
⊕
n

τnMn .

Also, by direct inspection, it is obvious that(⊕
n

Mn

)⊥
=
⊕
n

M⊥n .

Because G (B†) = (τG (B))⊥ = τ(G (B))⊥, taking the orthogonal complement of

G (A) =
⊕
n

G (An)

we obtain

G (A)⊥ =
⊕
n

G (An)⊥ ;

then

G (A†) = τ(G (A))⊥ =
⊕
n

τn(G (An))⊥ =
⊕
n

G (A†n) .

�

Lemma 2.3. Let A =
⊕

nAn with D(An) ⊂Hn, D(A) ⊂H =
⊕

n Hn. Then
A is continuous if and only if An is continuous for all n and sup ‖An‖n < ∞. If
that is the case then ‖A‖ = supn ‖An‖n.

Proof. We recall that

‖x‖2 =

∞∑
n=1

‖Pnx‖2n

‖Ax‖2 =

∞∑
n=1

‖AnPnx‖2n .

Let A continuous. From
∑
n ‖AnPnx‖

2
n ≤ ‖A‖

2∑
n ‖Pnx‖

2
2 setting x = Pmx we

have ‖Am‖ ≤ ‖A‖ and supn ‖An‖n ≤ ‖A‖. On the other hand:∑
n

‖AnPnx‖2n ≤ sup
m
‖Am‖2m

∑
n

‖Pnx‖2n ,

then ‖A‖2 ≤ supn ‖An‖
2
n, so ‖A‖ = supn ‖An‖n.

Let now An continuous for all n and supn ‖An‖n < ∞. Then ‖Ax‖2 ≤
supn ‖An‖

2
n ‖x‖

2
hence A is continuous and we can use the reasoning above. �





APPENDIX C

Scale of spaces and interpolation.

The spaces H δ defined here are different from the ones defined in Chapter 4.
The latter are the form domains of (powers of) the operator under consideration,
the former are the domains of definition of the same operator. As a matter of fact
to translate the results obtained here to the spaces of Chapter 4 you have to call
H 2δ every space that here is H δ.

1. Scale of spaces.

• Let H be a Hilbert space with scalar product 〈 · , · 〉 and norm ‖ · ‖. Then
let N be a self-adjoint operator in H , N ≥ 1; δ ∈ R.

If δ > 0, we define H δ = D(Nδ) the pre-Hilbert space with respect
to the scalar product

〈x, y〉δ = 〈Nδx,Nδy〉 .

Hδ is complete since N is closed and N ≥ 1, so it is a Hilbert space. If
δ = 0, we set H 0 = H .

If δ < 0, let H δ be the completion of H with respect to the norm

‖x‖δ =
∥∥Nδx

∥∥ .
H δ is a Hilbert space by construction.

• Let now δ1 ≤ δ2. We introduce the following family of identity operators
iδ1,δ2x = x from a subspace of H δ2 in H δ1 . Their domains and ranges
are:

D(iδ1,δ2) =

{
D(Nδ2) = H δ2 if δ2 ≥ 0

H ⊂H δ2 if δ2 < 0

Ran(iδ1,δ2) =

{
D(Nδ2) ⊂ D(Nδ1) = H δ1 if δ1 ≥ 0

D(Nδ2) ⊂H ⊂H δ1 if δ1 < 0
.

With this notation we have

‖iδ1,δ2x‖δ1 ≤ ‖x‖δ2 ∀x ∈ D(iδ1,δ2)(∗)
iδ1,δ2iδ2,δ3 = iδ1,δ3 if δ1 ≤ δ2 ≤ δ3 .(∗∗)

Furthermore

〈x, y〉δ = 〈Nδi0,δx,N
δi0,δy〉0 for δ ≥ 0, ∀x, y ∈H δ

〈iδ,0x, iδ,0y〉δ = 〈Nδx,Nδy〉0 for δ < 0, ∀x, y ∈H 0 .

Consider now iδ1,δ2 with δ1 < δ2 < 0. Then D(iδ1,δ2) = H with
H dense in H δ2 . Equation (∗) implies that iδ1,δ2 can be extended in a
unique way to a continuous application i′δ1,δ2 with D(i′δ1,δ2) = H δ2 and

values in H δ1 . i′δ1,δ2 verifies

(∗′)
∥∥i′δ1,δ2x∥∥δ1 ≤ ‖x‖δ2 ∀x ∈H δ2 .
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We can now prove i′δ1,δ2 is injective. Let i′δ1,δ2x = 0 with x ∈H δ2 . Then

exists {xn}n∈N ∈ H ⊂ H δ2 such that xn → x when n → ∞ in H δ2

and i′δ1,δ2xn → 0 in H δ1 . So
∥∥Nδ1x

∥∥
0
→ 0,

∥∥Nδ2xn
∥∥

0
→ ‖x‖δ2 and∥∥Nδ2xn −Nδ1xm

∥∥
0
→ 0 when n,m → ∞. If we define yn = Nδ1xn we

can rewrite: ‖yn‖0 → 0,
∥∥Nδ2−δ1yn

∥∥→ ‖x‖δ2 and∥∥Nδ2−δ1yn −Nδ2−δ1ym
∥∥

0
→ 0 .

Since Nδ2−δ1 is a closed operator, H −limNδ2−δ1yn = 0 so x = 0.
Furthermore equation (∗∗) can be extended to i′, since from {xn}n∈N

such that xn → x in H 0 it follows that iδ′,δxn converges in H δ′ for all
δ′ < δ:

(∗∗′) i′δ1,δ2i
′
δ2,δ3 = i′δ1,δ3 .

• Let δ > 0. There is a natural isometry between H −δ and (H δ)∗, where
the latter is the vector space of antilinear continuous functionals on H δ.
To a fixed y ∈H 0, the application

H δ 3 x −→ 〈i0,δx, y〉0
defines an element of (H δ)∗ by

〈i0,δx, y〉0 = 〈x, i∗0,δy〉H δ,(H δ)∗

where i∗0,δ is linear and continuous from H to (H δ)∗. Furthermore since

NδD(Nδ) = H :

∥∥i∗0,δy∥∥(H δ)∗
= sup
x∈H δ

∣∣∣〈x, i∗0,δy〉H δ,(H δ)∗

∣∣∣
‖x‖δ

= sup
x∈H δ

∣∣〈Nδi0,δx,N
−δy〉0

∣∣
‖Nδio,δx‖0

=
∥∥N−δy∥∥

0
.

Then it follows that i∗0,δ is injective from H in (H δ)∗ and to Ran(i∗0,δ)
can be given a structure of pre-Hilbert space with scalar product

〈i∗0,δx, i∗0,δy〉(H δ)∗ = 〈N−δx,N−δy〉0 .

Ran(i∗0,δ) is dense in (H δ)∗, since 〈x, i∗0,δy〉H δ,(H δ)∗ = 0 for all y ∈ H 0

implies x = 0. Because

〈i−δ,0x, i−δ,0y〉−δ = 〈N−δx,N−δy〉0 ∀x, y ∈H ,

i∗0,δi
−1
−δ,0 preserves the scalar product between Ran(i−δ,0) (dense in H −δ)

and Ran(i∗0,δ) (dense in (H δ)∗). This isometry is extended in a unique

way to an isometry between H −δ and (H δ)∗, so they can be identified.
• All isometries i, i′, i∗ are treated as the identity operator (being coherent

between one another).

2. Operators on the scale of spaces. Interpolation.

• We will call D0 = C0(N) the set of vectors Φ such that ∃a = a(Φ) implying
d ‖PλΦ‖ = 0 for λ > a(Φ), where Pλ is the spectral family of projectors
of N .

• Let δ > 0. T0 a linear operator defined on D0 with T0D0 ⊂ D(Nδ) and
∃cδ ≥ 0 such that

(†) ‖T0Φ‖δ ≤ cδ ‖Φ‖δ ∀Φ ∈ D0 .

The biggest admissible domain of definition for T0 is D = D(Nδ) and in
that case we suppose T0D(Nδ) ⊂ D(Nδ) and (†) for all Φ ∈ D.
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Let now δ ≤ 0. T0 linear operator defined on D0 and ∃cδ such that (†)
holds. In this case the biggest admissible domain of definition for T0 is
D = H , and that (†) holds for all Φ ∈ D.

It is evident that (†) is equivalent to

(†′)
∥∥NδT0N

−δΦ
∥∥ ≤ cδ ‖Φ‖ ∀Φ ∈ D0 .

• Under the preceding assumptions it is clear that, for all δ ∈ R, T0 has a
unique continuous extension Tδ to all of H δ that satisfies

‖TδΦ‖δ ≤ cδ ‖Φ‖δ ∀Φ ∈H δ .

If δ < 0, Tδ is defined on a set bigger than H .
If δ > 0, Tδ is defined on D(Nδ) ⊂ H with values in D(Nδ), and so

we can write∥∥NδTδΦ
∥∥ ≤ cδ ‖Φ‖ ∀Φ ∈ D(Nδ) .

• If (†) holds for δ1 and δ2, δ1 < δ2 then Tδ2 ⊂ Tδ1 . To prove this assertion,
let Φ ∈H δ2 and {Φj} ∈ D0 such that H δ2−Φj → Φ. Since the topology
of H δ2 is stronger than that of H δ1 , we have H δ1−Φj → Φ. Then from
H δ2−T0Φj → Tδ2Φ and H δ1−T0Φj → Tδ1Φ it follows that Tδ2Φ = Tδ1Φ.

Proposition 14 (Interpolation). If T0 satisfies (†) for δ1 and δ2 with δ1 < δ2,
then for all δ such that δ1 ≤ δ ≤ δ2 and for all Φ ∈ D0 we have that∥∥NδT0Φ

∥∥ ≤ cδ ∥∥NδΦ
∥∥

with

cδ = c
δ2−δ
δ2−δ1
δ1

c
δ−δ1
δ2−δ1
δ2

.

Proof. We will use Hadamard three-lines theorem:

Lemma (Hadamard three-lines theorem). Let f(z) = f(x+ iy) a function with
values in a Banach space, bounded and continuous in the closed strip δ1 ≤ x ≤ δ2,
−∞ < y < +∞, analytic on its interior. Suppose that

‖f(δ1 + iy)‖ ≤ cδ1 , ‖f(δ2 + iy)‖ ≤ cδ2 .

Then, ∀z in the closed strip defined above

‖f(z)‖ ≤ c
δ2−δ
δ2−δ1
δ1

c
δ−δ1
δ2−δ1
δ2

.

Here f is defined as following:

(††) f(z) = NzT0N
−zΦ with Φ ∈ D0 .

Observe that (z = x+ iy)

‖NzΦ‖2 =

∫
|λz|2 d ‖PλΦ‖2 =

∫
λ2xd ‖PλΦ‖2 ,

for all Φ ∈ D(Nx), hence N iy is a unitary operator. We will show that f(z), as
defined by (††), satisfies the hypotheses of Hadamard’s theorem.

a) f(z) is well defined and bounded on the closed strip.
Write

(† † †) f(z) = Nz−δ2(Nδ2T0N
−δ2)N−z+δ2Φ .

Nz−δ2Φ ∈ D0 because Φ ∈ D0 so∥∥N−z+δ2Φ
∥∥2

=

∫ µ(Φ)

1

λ2(δ2−x)d ‖PλΦ‖2 , ∀x, y ∈ R
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where

µ(Φ) = sup{λ : λ ∈ Supp ‖P (·)Φ‖2} .
Hence for all δ1 ≤ x ≤ δ2∥∥Nδ2T0N

−δ2N−z+δ2Φ
∥∥2 ≤ cδ2

∫ µ(Φ)

1

λ2(δ2−δ1)d ‖PλΦ‖2 .

On the other hand Nz−δ2 is a bounded operator when z is in the closed
strip: ∥∥Nz−δ2Ψ

∥∥2
=

∫ ∞
1

λ2(x−δ2)d ‖PλΨ‖2 ≤ ‖Ψ‖2 .

From the inequalities above and († † †) it follows that f is bounded on the closed
strip. Furthermore for j = 1, 2

f(δj + iy) = Nδj+iyT0N
−δj−iyΦ

hence

‖f(δj + iy)‖ =
∥∥NδjT0N

−δjN−iyΦ
∥∥ ≤ cδj ∥∥N−iyΦ

∥∥ = cδj ‖Φ‖ .
b) f(z) is continuous on the closed strip.

We will use f(z) in the form written in († † †). N−z+δ2Φ is continuous in
z ∈ C:∥∥∥(N−z+δ2 −N−z

′+δ2)Φ
∥∥∥2

=

∫ µ(Φ)

1

λ2δ2
∣∣∣λ−z − λ−z′ ∣∣∣2 d ‖PλΦ‖2

that goes to zero when z′ → z by Lebesgue’s theorem. On the other hand∥∥∥(Nz−δ2 −Nz′−δ2)Ψ
∥∥∥2

=

∫ ∞
1

λ2(Rez−δ2)
∣∣∣1− λz′−z∣∣∣2 d ‖PλΨ‖2

for all Ψ ∈H , that goes to zero when z′ → z in the closed strip by Lebesgue’s
theorem. Hence from († † †) it follows the continuity of f(z).

c) f(z) is analytic on the open strip.
We recall that strong analyticity is equivalent to weak analyticity. Observe

that

〈Ψ, N−z+δ2Φ〉 =

∫ µ(Φ)

1

λ−z+δ2d〈Ψ, P (λ)Φ〉, ∀Φ ∈ D0, ∀Ψ ∈H

is analytic for z ∈ C. Analogously

〈Ψ, Nz−δ2Θ〉 =

∫ ∞
1

λz−δ2d〈Ψ, P (λ)Θ〉, ∀Ψ,Θ ∈H

is analytic for Rez < δ2. Naming z − δ2 = z̃ and N−δ2T0N
δ2 = T̃0, we write

using († † †)
1

h
(f(z + h)− f(z)) =

1

h
(N z̃+hT̃0N

−z̃−hΦ−N z̃T̃0N
−z̃Φ)

=
1

h
(N z̃+h −N z̃)T̃0N

−z̃Φ +N z̃+hT̃0
1

h
(N−z̃−h −N−z̃)Φ

and both terms of the right hand side converge, when h→ 0, in H as a conse-
quence of the above analyticities.

�



APPENDIX D

Exponentials of operators written as power series.

1. Preliminaries.

Definition (f(δ,N)).

f(δ,N) =
[ (N + δ)!

N !

]1/2
,

N, δ ∈ N and 0! = 1.

Lemma 1.1. ∀ε > 0, we have that

sup
N≥0

f(δ,N)e−εN ≤ eε(δ!)1/2(1− e−2ε)−δ/2 .

Proof.

sup
N≥0

f(δ,N)e−εN =
{

sup
N≥0

uN

}1/2

with uN = (N + 1)(N + 2) · · · (N + δ)e−2εN . The fraction

uN
uN−1

=
N + δ

N
e−2ε = (1 + δ/N)e−2ε

with N ≥ 1 is decreasing in N .
Suppose that exists N0 ≥ 1 such that

uN0

uN0−1
≥ 1 >

uN0+1

uN0

.

When 1 ≤ N ≤ N0 we have

uN
uN−1

≥ uN0

uN0−1
≥ 1

and when N0 < N we have

1 >
uN0+1

uN0

>
uN+1

uN
.

uN0
> uN0−1 > · · · > u0

uN0
> uN0+1 > · · · > u0 ;

so supN uN = uN0 .
If for all 1 ≤ N , uN/uN−1 < 1 then supN uN = u0. Let γ = e2ε − 1, so that

uN
uN−1

=
1 + δ/N

1 + γ
.

If δ/γ ≥ 1 then ∃N0 ≥ 1 such that 1 ≤ N0 ≤ δ/γ < N0 + 1. If δ/γ < 1 we are in
the situation uN < . . . < u0 for all N . In every case we have

sup
N≥0

uN = uN0
with N0 = [δ/γ] ([ ] stands for the integer part).
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So we can bound

uN0
= ([δ/γ] + 1) · · · ([δ/γ] + δ)e−2ε[δ/γ] = δ!

(
+δ

δ

)
e−2ε[δ/γ]

≤ δ! (1 + x)[δ/γ]+δ

xδ
e−2ε[δ/γ] ∀x ≥ 0 .

uN0
≤ δ!e−2ε[ δγ ] inf

x>0

( (1 + x)1+[ δγ ]/δ

x

)δ
≤ δ!e2εe−2ε δγ inf

x>0

( (1 + x)1+1/γ

x

)δ
= δ!e2εe−2ε δγ

( (1 + γ)1+1/γ

γ

)δ
= δ!e2ε(1− e−2ε)−δ .

�

2. Exponentials of creation and annihilation operators as series.

If A is an operator on a symmetric Fock space over L2(R3). We define formally

expA =

∞∑
m=0

Am

m!
.

Rigorously, for all Φ ∈
⋃∞
m=0D(Am), so that

∃ lim
l→∞

l∑
m=0

AmΦ/m! ,

we define

(expA)Φ =

∞∑
m=0

Am

m!
Φ .

The set defined above is the natural domain of definition for expA, however it is
useful to work with the subset{

Φ :

∞∑
m=0

‖AmΦ‖
m!

<∞
}
≡ D(expA) .

Consider now the case A = a∗(f1) + a(f2), f1, f2 ∈ L2(R3).

Lemma 2.1. ∀ε > 0, D(exp εN) ⊂ D(expA) and for all Φ ∈ D(exp εN)

‖exp(a∗(f1) + a(f2))Φ‖ ≤ eε
∞∑
m=0

1√
m!

(‖f1‖2 + ‖f2‖2)m(1− e−2ε)−m/2

‖(exp εN)Φ‖ .

Proof. We estimate

‖(a∗(f1) + a(f2))mΦ‖ ≤
m−1∏
j=0

∥∥f(j)(a∗(f1) + a(f2))f(j + 1)−1
∥∥ ‖f(m)Φ‖ ,

where f(j) = f(j,N). However

f(j,N)a∗(f1)f(j + 1, N)−1 = a∗(f1)f(j,N + 1)f(j + 1, N)−1

= a∗(f1)(N + 1)−1/2

f(j,N)a(f2)f(j + 1, N)−1 = a(f2)f(j,N − 1)f(j + 1, N)−1

= a(f2)
[ N

(j +N)(j +N + 1)

]1/2
,
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and ∥∥∥a∗(f1)(N + 1)−1/2
∥∥∥ ≤ ‖f1‖2∥∥∥∥a(f2)

[ N

(j +N)(j +N + 1)

]1/2∥∥∥∥ ≤ ‖f2‖2 .

So we have that
∞∑
m=0

1

m!
‖(a∗(f1) + a(f2))mΦ‖ ≤

∞∑
m=0

1

m!
(‖f1‖2 + ‖f2‖2)m∥∥f(m,N)e−εN

∥∥∥∥eεNΦ
∥∥

hence the result using Lemma 1.1. �

It is clear that if A = a∗(f1) + a(f2) and Φ ∈ D(exp εN), then exists

d

dx
(expAx)Φ = A(expAx)Φ = (expAx)AΦ .

The calculation is easily done using the series. This leads to the following lemma:

Lemma 2.2. Let A = a∗(f1) + a(f2), B = a∗(g1) + a(g2), fj , gj ∈ L2(R3) if
j = 1, 2, then for all ε > 0, Φ ∈ D(exp εN):

exp(A+B)Φ = (expA)(expB) exp(−[A,B]/2)Φ .

Proof. First of all we remark that [A,B] is a number, then commutes with A
and B.

d

dx

{
exp(−[A,B]x2/2) exp(−(A+B)x) exp(Ax) exp(Bx)Φ− Φ

}
= exp(−[A,B]x2/2) exp(−(A+B)x)

{
−B − [A,B]x

}
exp(Ax) exp(Bx)Φ

+ exp(−[A,B]x2/2) exp(−(A+B)x) exp(Ax)B exp(−Ax)

exp(Ax) exp(Bx)Φ = 0

and we used Lemma 5.3 of Appendix A on the second term of the right hand side
of the above equality. The result follows immediately. �

Remark. If f2 = −f̄1, iA is essentially self-adjoint. Then we can define the

unitary operator exp(A ) by Stone’s theorem. For all Φ ∈ D(expA), (exp(A ))Φ =
(expA)Φ, where the latter is the exponential defined above using the series.

Corollary. If f2 = 0, g1 = 0, g2 = −f̄1, then for all ε > 0, Φ ∈ D(exp εN):

exp
(
(a∗(f1)− a(f̄1))

)
Φ = e−‖f1‖22/2 exp(a∗(f1)) exp(−a(f̄1))Φ .





APPENDIX E

Proof of Theorem 3.

We will prove the theorem for vectors Λ and Ψ. For vectors Θ the proof is
very similar to the case Ψ, with a little bit of care to deal with θ dependence and
integration. However since θ appears only in ‖αθ(t)‖2 for some finite t, and the
solution of (E) is continuous in L2(R3) with respect to a change of initial data in
L2(R3), then ‖αθ(t)‖2 is continuous in θ, and integration on a finite θ-interval is
well-defined.

1. General remarks.

We recall the definition of operator B and transition amplitudes 〈B〉X(t), with
X ∈ {Λ,Ψ}.

Definition. Let q, r, i, j ∈ N, δ = q+r+i+j, g ∈ L2(R3(q+r))⊗L2(R3(i+j)) ≡
L2(R3δ). Then

B =

∫
dXqdYrdKidMj ḡ(Xq, Yr,Ki,Mj)ψ

∗(Xq)ψ(Yr)a
∗(Ki)a(Mj) .

Also we define the following transition amplitudes:

〈B〉Λ(t) ≡ λδ〈Λ(t), BΛ(t)〉 = λδ〈Λ, U†(t)BU(t)Λ〉

〈B〉Ψ(t) ≡ λδ〈Ψ(t), BΨ(t)〉 = λδ〈Ψ, U†(t)BU(t)Ψ〉 .

Since, as we proved in Proposition 12, 〈ψ∗(q)ψ(r)a∗(i)a(j)〉X(t) ∈ L2(R3δ), for
X ∈ {Λ,Ψ}, it would be sufficient to bound

∣∣〈B〉X(t)− 〈g, ū⊗qu⊗r ᾱ⊗iα⊗j 〉L2(R3δ)

∣∣,
then the results of the theorem follows immediately applying Riesz’s Lemma.

Definition (B(d)). Let B be defined as above, 0 ≤ d ≤ δ. We establish the
following correspondence:

ψ(x)←→ 1

λ
ut(x) ,

ψ∗(x)←→ 1

λ
ūt(x) ,

a(k)←→ 1

λ
αt(k) ,

a∗(k)←→ 1

λ
ᾱt(k) .

We will call B(d) the operator obtained substituting in any possible way d creation
or annihilation operators of B with functions, following the correspondence above.

B(d) is the sum of
(
δ
d

)
operators of type B, but with δ−d creation or annihilation

operators. So we can formulate the following Lemma:

Lemma 1.1. Let B(d) as above. Then for any 0 ≤ d ≤ δ exists a function Cd(t),
depending on ‖u(t)‖2 and ‖α(t)‖2, such that for all Φ ∈H δ we have the following
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inequality:∥∥∥B(d)Φ
∥∥∥ ≤ λ−dCd(t)∥∥g;L2(R3δ)

∥∥ ∥∥∥(P +N + q + i)δ/2Φ
∥∥∥

≤ λ−d(q + i)δ/2Cd(t)
∥∥g;L2(R3δ)

∥∥ ‖Φ‖δ .
Proof. The proof utilizes Lemma 2.1 of Chapter 3, and the fact that for any

r and j such that q + r + i+ j ≤ δ

(1.1)

√
P !(P + q − r)!N !(N + i− j)!

(P − r)!(N − j)!
θ(P − r)θ(N − j) ≤ (P +N + q + i)δ/2 .

Let’s see it in detail for B(1), the other cases being similar. We have that

B(1) =
1

λ

(∫
dXqdYrdKidMj ū(t, x1)g(Xq, Yr,Ki,Mj)ψ

∗(Xq \ x1)

ψ(Yr)a
∗(Ki)a(Mj) + . . .

)
.

Consider the first term, written explicitly. Using Lemma 2.1 of Chapter 3 and
equation (1.1) we obtain, for all Φ ∈H δ

∥∥∥B(1)Φ
∥∥∥ ≤ 1

λ

∥∥∥∥∫ dx1 ū(t, x1)g(x1, ·);L2(R3(δ−1))

∥∥∥∥∥∥∥(P +N + q + i)δ/2Φ
∥∥∥

+ . . . ;

where the L2-norm is intended on the 3δ− 3 variables of g excluded x1. Using now
Schwarz’s inequality and the fact that (P +N + q+ i)δ/2 ≤ (q+ i)δ/2(P +N +1)δ/2

we obtain∥∥∥B(1)Φ
∥∥∥ ≤ 1

λ
(q + i)δ/2 ‖u(t)‖2

∥∥g;L2(R3δ)
∥∥ ‖Φ‖δ + . . . .

So Cd(t) would be in general the sum of products of the L2-norms of u(t) and α(t),
and

C1(t) = (q + r) ‖u(t)‖2 + (i+ j) ‖α(t)‖2 .

�

Lemma 1.2. For all Φ ∈H δ the following identity holds:

B′Φ ≡ C†(u(t)/λ, α(t)/λ)BC(u(t)/λ, α(t)/λ)Φ =

δ∑
d=0

B(d)Φ .

Proof. The result is a restatement of Lemma 3.1 of Chapter 8. �

Lemma 1.3. Let ϕ(g) defined as in Proposition 9. Then for all Φ ∈ H δ the
following equality holds:

B(δ−1)Φ = λ−δ+1ϕ(g)Φ ,
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with

g1(x) =

q∑
α=1

∫
d(Xq \ xα)dYrdKidMj g(. . . , xα−1, x, xα+1, . . . , Yr,Ki,Mj)

ū
⊗q−1

t (Xq \ xα)u⊗rt (Yr)ᾱ
⊗i
t (Ki)α

⊗j
t (Mj) ,

g2(x) =

r∑
α=1

∫
dXqd(Yr \ yα)dKidMj g(Xq, . . . , yα−1, y, yα+1, . . . ,Ki,Mj)

ū
⊗q
t (Xq)u

⊗r−1

t (Yr \ yα)ᾱ⊗it (Ki)α
⊗j
t (Kj) ,

g3(k) =

i∑
α=1

∫
dXqdXrd(Ki \ kα)dMj g(Xq, Yr, . . . , kα−1, k, kα+1, . . . ,Mj)

ū
⊗q
t (Xq)u

⊗r
t (Yr)ᾱ

⊗i−1

t (Ki \ kα)α
⊗j
t (Mj) ,

g4(k) =

j∑
α=1

∫
dXqdYrdKid(Mj \mα) g(Xq, Yr,Ki, . . . ,mα−1, k,mα+1, . . . )

ū
⊗q
t (Xq)u

⊗r
t (Yr)ᾱ

⊗i
t (Ki)α

⊗j−1

t (Mj \mα) .

Proof. By definition of B(δ−1). We restricted the result to H δ since for our
purposes B(δ−1) will be applied only to such vectors. �

2. The proof for Λ vectors.

Proposition 15. Two constants Kj(Λ) with j = 1, 2 exist such that for all
g ∈ L2(R3δ)∣∣〈B〉Λ(t)− 〈g, ū⊗qu⊗r ᾱ⊗iα⊗j (t)〉L2(R3δ)

∣∣ ≤ λ2
∥∥g;L2(R3δ)

∥∥K1(Λ) |t| eK2(Λ)|t| .

Proof. Write explicitly 〈B〉Λ(t) = λδ〈Λ(t), BΛ(t)〉:

〈B〉Λ(t) = λδ〈Λ, U∗(t)BU(t)C(u0/λ, α0/λ)Ω〉 ;

that could be reformulated to show a dependence on W (t, s):

〈B〉Λ(t) = λδ〈Λ, C(u0/λ, α0/λ)W †(t, 0)B′W (t, 0)Ω〉

= λδ〈Ω,W †(t, 0)B′W (t, 0)Ω〉 ,

where B′ = C∗(ut/λ, αt/λ)BC(ut/λ, αt/λ). Then by Lemma 1.2 we obtain

〈B〉Λ(t)−〈g, ū⊗qu⊗r ᾱ⊗iα⊗j (t)〉L2(R3δ) =

δ−1∑
d=0

λδ〈Ω,W †(t, 0)B(d)W (t, 0)Ω〉.

Using Lemma 1.1 for 0 ≤ d ≤ δ − 2 we obtain

∣∣〈B〉Λ(t)− 〈g, ū⊗qu⊗r ᾱ⊗iα⊗j (t)〉L2(R3δ)

∣∣ ≤ δ−2∑
d=0

λδ−d(q + i)δ/2Cd(t)∥∥g;L2(R3δ)
∥∥ ‖W (t, 0)Ω‖δ + λδ

∣∣∣〈Ω,W †(t, 0)B(δ−1)W (t, 0)Ω〉
∣∣∣ .

We are interested in the region where λ < 1, so λa ≤ λ2 for any a ≥ 2, and we
know that ‖Ω‖δ = 1 for any δ. So we can apply the Corollary of Proposition 8 and
the considerations above to write∣∣〈B〉Λ(t)− 〈g, ū⊗qu⊗r ᾱ⊗iα⊗j (t)〉L2(R3δ)

∣∣ ≤ λ2 ‖g‖2K1 |t| eK2|t|

+λδ
∣∣∣〈Ω,W †(t, 0)B(δ−1)W (t, 0)Ω〉

∣∣∣ ,
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with

K1 |t| eK2|t| ≥
δ−2∑
d=0

(q + i)δ/2Cd(t)

· sup
λ<1

[(
K1(t, 0) + λK2(t, 0)

)
eλC1|t|+K3(t,0)

]1/2

;

the calligraphic functions and constants are the ones defined in Proposition 8.
We have to use a different approach to estimate the last term of the inequality

above, namely

X ≡ λδ
∣∣∣〈Ω,W †(t, 0)B(δ−1)W (t, 0)Ω〉

∣∣∣ ;

because the procedure just described would lead to a bound by λ instead of λ2.
Using Lemma 1.3 we obtain

X = λ
∣∣〈Ω,W †(t, 0)ϕ(g)W (t, 0)Ω〉

∣∣ .
Now we pass to the interaction representation since we will need to differentiate, so

X = λ
∣∣∣〈Ω, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉

∣∣∣ ,
with

g̃1(x) =U†01(t)g1(x) ,

g̃2(x) =U01(t)g2(x) ,

g̃3(k) =U†02(t)g3(k) ,

g̃4(k) =U02(t)g4(x) .

Then, using the following identity

〈Ω, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉 = 〈Ω, Ũ†2 (t, 0)ϕ(g̃)Ũ2(t, 0)Ω〉

+〈Ω, (W̃ †(t, 0)− Ũ†2 (t, 0))ϕ(g̃)W̃ (t, 0)Ω〉

+〈Ω, Ũ†2 (t, 0)ϕ(g̃)(W̃ (t, 0)− Ũ2(t, 0))Ω〉 ,

and Proposition 9 we obtain

X ≤λ
(∣∣∣〈Ω, (W̃ †(t, 0)− Ũ†2 (t, 0))ϕ(g̃)W̃ (t, 0)Ω〉

∣∣∣
+
∣∣∣〈Ω, Ũ†2 (t, 0)ϕ(g̃)(W̃ (t, 0)− Ũ2(t, 0))Ω〉

∣∣∣) ≡ λ(X1 +X2) .

We define ‖g‖2 = ‖g1‖2 + ‖g2‖2 + ‖g3‖2 + ‖g4‖2. To bound X1 we proceed as

follows, every term being well defined due to the properties of W̃ (t, s) and Ũ2(t, s),
and the integrals making sense as strong Riemann integrals on H :

X1 =
∣∣∣〈(1− W̃ †(t, 0)Ũ2(t, 0)

)
Ω, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉

∣∣∣
≤
∣∣∣∣∫ t

0

dτ
∥∥∥W̃ †(τ, 0)U†0 (τ)HIU0(τ)Ũ2(τ, 0)Ω

∥∥∥∣∣∣∣ ∥∥∥W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω
∥∥∥

≤ λ ‖f0‖2 ‖g̃‖2
∥∥∥W̃ (t, 0)Ω

∥∥∥
H 1

∣∣∣∣∫ t

0

dτ
∥∥∥Ũ2(τ, 0)Ω

∥∥∥
H 4

∣∣∣∣;
where we used the standard estimates for HI and ϕ(g̃). We remark that ‖g̃‖2 =

‖g‖2 ≤ Cδ−1(t)
∥∥g;L2(R3δ)

∥∥, with Cδ−1(t) defined in Lemma 1.1. Now using
Proposition 6, Proposition 8 and the fact that ‖Ω‖δ = 1 for any real δ, we obtain

X1 ≤ λ ‖g‖2K
′
1 |t| eK

′
2|t| ,
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with

K ′1 |t| eK
′
2|t| ≥ ‖f0‖2 Cδ−1(t) sup

λ<1

[(
K1(δ = 1, t, 0) + λK2(δ = 1, t, 0)

)
eλC1(δ=1)|t|+K3(δ=1,t,0)

]1/2∣∣∣∣∫ t

0

dτ exp

{
2
(

ln 3 + 10
√

2∣∣∣∣∫ τ

0

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣ .
To bound X2 we proceed in an analogous fashion:

X2 =
∣∣∣〈W̃ †(t, 0)ϕ†(¯̃g)Ũ2(t, 0)Ω,

(
1− W̃ †(t, 0)Ũ2(t, 0)

)
Ω〉
∣∣∣

≤
∥∥∥ϕ†(¯̃g)Ũ2(t, 0)Ω

∥∥∥ ∣∣∣∣∫ t

0

dτ
∥∥∥HIU0(τ)Ũ2(τ, 0)Ω

∥∥∥∣∣∣∣
≤ λK ′′1 |t| eK

′′
2 |t| ‖g‖2 ,

with

K ′′1 |t| eK
′′
2 |t| ≥ ‖f0‖2 Cδ−1(t) exp

{
1

2

(
ln 3 + 4

√
2

∣∣∣∣∫ t

0

dτ ‖v−−(τ)‖2

∣∣∣∣)}∣∣∣∣∫ t

0

dτ exp

{
2
(

ln 3 + 10
√

2

∣∣∣∣∫ τ

0

dτ ′ ‖v−−(τ ′)‖2

∣∣∣∣)}∣∣∣∣ .
�

3. The proof for Ψ vectors.

To improve readability we make the following definitions:

Definitions (KW (δ, t, s), KU (δ, t, s)).

KW (δ, t, s) =
(
K1(δ, t, s) + λK2(δ, t, s)

)
eλC1(δ)|t−s|+K3(δ,t,s)

where the functions and constants on the right hand side are defined in Proposi-
tion 8, with δ-dependence made explicit.

KU (δ, t, s) = exp

{
|δ|
2

(
ln 3 +

√
2ρδ

∣∣∣∣∫ t

s

dτ ‖v−−(τ)‖2

∣∣∣∣)} ,

with ρδ = max(4, 3|δ|/2 + 1).

Proposition 16. Two constants Kj(Ψ) with j = 1, 2 exist such that for all
g ∈ L2(R3δ)∣∣〈B〉Ψ(t)− δqr〈g, ū⊗qu⊗r ᾱ⊗iα⊗j (t)〉L2(R3δ)

∣∣ ≤ δqrλ2
∥∥g;L2(R3δ)

∥∥K1(Ψ) |t|

eK2(Ψ)|t| .

Proof. This proof is quite similar to the one of Proposition 15 above, so we
will emphasize mostly the differences between the two. Write:

〈B〉Ψ(t) = λδ〈Ψ, U†(t)BU(t)
ψ∗(u0)λ

−2

√
λ−2!

C(α0/λ)Ω〉 .

Observe that when q 6= r we have 〈B〉Ψ(t) = 0 since P commutes with H and B
doesn’t preserve the number of non-relativistic particles. So we will set q = r for
the rest of the proof. Using Lemma 1.2 and Lemma 1.1 of Chapter 8 we can write:

〈B〉Ψ(t) = λδdλ−2〈Ψ, C(u0/λ, α0/λ)W †(t, 0)B′W (t, 0)Ω〉

= λδdλ−2〈 1√
P + 1

C†(u0/λ, α0/λ)Ψ,
√
P + 1W †(t, 0)B′W (t, 0)Ω〉 .
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So we can write:

〈B〉Ψ(t)− 〈g, ū⊗qu⊗q ᾱ⊗iα⊗j (t)〉L2(R3δ) =

δ−1∑
d=0

λδ−ddλ−2

〈 1√
P + 1

C†(u0/λ, α0/λ)Ψ,
√
P + 1W †(t, 0)B(d)W (t, 0)Ω〉.

Using Lemma 1.2 of Chapter 8 for 0 ≤ d ≤ δ − 2 we obtain∣∣〈B〉Ψ(t)− 〈g, ū⊗qu⊗q ᾱ⊗iα⊗j (t)〉L2(R3δ)

∣∣
≤

δ−2∑
d=0

λδ−dKΨ

∥∥∥√P + 1W †(t, 0)B(d)W (t, 0)Ω
∥∥∥

+λδdλ−2

∣∣∣〈C†(u0/λ, α0/λ)Ψ,W †(t, 0)B(δ−1)W (t, 0)Ω〉
∣∣∣ .

We are interested in the region where λ < 1, so λa ≤ λ2 for any a ≥ 2, and we know
that ‖Ω‖δ = 1 for any δ. We can apply two times the Corollary of Proposition 8,
Lemma 2.1 of Chapter 3 and Lemma 1.1:∥∥∥√P + 1W †(t, 0)B(d)W (t, 0)Ω

∥∥∥ ≤ KW (1, t, 0)∥∥∥B(d)(Q+ 1 + q)3W (t, 0)Ω
∥∥∥ ≤ (q + i)δ/2q1/2Cd(t)KW (1, t, 0)∥∥g;L2(R3δ)

∥∥ ‖W (t, 0)Ω‖δ+6 ≤ (q + i)δ/2q1/2Cd(t)KW (1, t, 0)

KW (δ + 6, t, 0)
∥∥g;L2(R3δ)

∥∥ .
So we can write:∣∣〈B〉Ψ(t)− 〈g, ū⊗qu⊗q ᾱ⊗iα⊗j (t)〉L2(R3δ)

∣∣ ≤ λ2K1 |t| eK2|t|
∥∥g;L2(R3δ)

∥∥
+λδdλ−2

∣∣∣〈C†(u0/λ, α0/λ)Ψ,W †(t, 0)B(δ−1)W (t, 0)Ω〉
∣∣∣ ,

with

K1 |t| eK2|t| ≥
δ−2∑
d=0

(q + i)δ/2q1/2Cd(t)KW (1, t, 0)KW (δ + 6, t, 0) .

We have to use a different approach to estimate the last term of the inequality
above, namely

X ≡ λδdλ−2

∣∣∣〈C†(u0/λ, α0/λ)Ψ,W †(t, 0)B(δ−1)W (t, 0)Ω〉
∣∣∣ .

By Lemma 1.3:

X = λdλ−2

∣∣〈C†(u0/λ, α0/λ)Ψ,W †(t, 0)ϕ(g)W (t, 0)Ω〉
∣∣ .

Now we pass to the interaction representation since we will need to differentiate,
obtaining

X = λdλ−2

∣∣∣〈C†(u0/λ, α0/λ)Ψ, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉
∣∣∣ ,

with

g̃1(x) =U†01(t)g1(x) ,

g̃2(x) =U01(t)g2(x) ,

g̃3(k) =U†02(t)g3(k) ,

g̃4(k) =U02(t)g4(x) ;
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since U0(0) = 1. We will use the following identity:

〈Φ, W̃ †(t, 0)ϕ(g̃)W̃ (t, 0)Ω〉 = 〈Φ, Ũ†2 (t, 0)ϕ(g̃)Ũ2(t, 0)Ω〉

+〈Φ, (W̃ †(t, 0)− Ũ†2 (t, 0))ϕ(g̃)W̃ (t, 0)Ω〉

+〈Φ, Ũ†2 (t, 0)ϕ(g̃)(W̃ (t, 0)− Ũ2(t, 0))Ω〉 ;

with Φ = C†(u0/λ, α0/λ)Ψ. Using Lemma 1.3 and Proposition 9 we obtain

X ≤λdλ−2

(∣∣∣〈Φ, (W̃ †(t, 0)− Ũ†2 (t, 0))ϕ(g̃)W̃ (t, 0)Ω〉
∣∣∣

+
∣∣∣〈Φ, Ũ†2 (t, 0)ϕ(g̃)(W̃ (t, 0)− Ũ2(t, 0))Ω〉

∣∣∣) ≡ λdλ−2(X1 +X2) .

We define ‖g‖2 = ‖g1‖2 + ‖g2‖2 + ‖g3‖2 + ‖g4‖2. To bound X1 we proceed as

follows, every term being well defined due to the properties of W̃ (t, s) and Ũ2(t, s),
and the integrals making sense as strong Riemann integrals on H :

X1 ≤

∣∣∣∣∣
∫ t

0

dτ

∣∣∣∣〈 1√
P + 1

Φ, (P + 1)1/2 d

dτ

(
W̃ †(τ, 0)Ũ2(τ, 0)

)
Ũ†2 (t, 0)

ϕ(g̃)W̃ (t, 0)Ω
〉∣∣∣∣
∣∣∣∣∣

≤ KΨd
−1
λ−2

∣∣∣∣∫ t

0

dτ
∥∥∥W̃ †(τ, 0)U∗0 (τ)HIU0(τ)Ũ2(τ, 0)

Ũ†2 (t, 0)ϕ(g̃)W̃ (t, 0)Ω
∥∥∥

H 1

∣∣∣∣ .
We remark that ‖g̃‖2 = ‖g‖2 ≤ Cδ−1(t)

∥∥g;L2(R3δ)
∥∥, with Cδ−1(t) defined in

Lemma 1.1. Now using Proposition 8 three times, the fact that U0 commutes
with P and N , the usual estimates for HI and ϕ(g̃), Lemma 2.1 of Chapter 3,
Proposition 6 and the fact that ‖Ω‖δ = 1 for any real δ, we obtain

X1 ≤ λd−1
λ−2K

′
1 |t| eK

′
2|t|
∥∥g;L2(R3δ)

∥∥ ,
with

K ′1 |t| eK
′
2|t| ≥ KΨ211 ‖f‖0 Cδ−1(t)KU (13, t, 0)KW (14, t, 0)∣∣∣∣∫ t

0

dτ KW (1, τ, 0)KU (13, τ, 0)

∣∣∣∣ ;

For the sake of completeness we will write explicitly the most relevant steps:

X1 ≤KΨλd
−1
λ−229/2 ‖f‖0

∣∣∣∣∫ t

0

dτ KW (1, τ, 0)
∥∥∥(P +N + 1)13/2Ũ2(τ, 0)

Ũ†2 (t, 0)ϕ(g̃)W̃ (t, 0)Ω
∥∥∥∣∣∣∣

≤KΨλd
−1
λ−229/2 ‖f‖0

∣∣∣∣∫ t

0

dτ KW (1, τ, 0)KU (13, τ, 0)KU (13, t, 0)∥∥∥(Q+ 1)13/2ϕ(g̃)W̃ (t, 0)Ω
∥∥∥∣∣∣∣
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≤KΨλd
−1
λ−2211 ‖f‖0 Cδ−1(t)

∥∥g;L2(R3δ)
∥∥ ∣∣∣∣∫ t

0

dτ KW (1, τ, 0)

KU (13, τ, 0)KU (13, t, 0)
∥∥∥(Q+ 1)7W̃ (t, 0)Ω

∥∥∥∣∣∣∣
≤KΨλd

−1
λ−2211 ‖f‖0 Cδ−1(t)

∥∥g;L2(R3δ)
∥∥KU (13, t, 0)KW (14, t, 0)∣∣∣∣∫ t

0

dτ KW (1, τ, 0)KU (13, τ, 0)

∣∣∣∣ .
To bound X2 we proceed in an analogous fashion:

X2 ≤

∣∣∣∣∣
∫ t

0

dτ

∣∣∣∣〈 1√
P + 1

Φ, (P + 1)1/2Ũ∗2 (t, 0)ϕ(g̃)W̃ (t, 0)

d

dτ

(
W̃ ∗(τ, 0)Ũ2(τ, 0)

)
Ω
〉∣∣∣∣
∣∣∣∣∣ .

A calculation perfectly analogous to the one performed above for X1 leads to:

X2 ≤ λd−1
λ−2K

′′
1 |t| eK

′′
2 |t|
∥∥g;L2(R3δ)

∥∥ ,
with

K ′′1 |t| eK
′′
2 |t| ≥ KΨ247 ‖f0‖2KU (1, t, 0)KW (2, t, 0)

∣∣∣∣∫ t

0

dτ KW (15, τ, 0)

KU (97, τ, 0)

∣∣∣∣ .
�
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