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OMISSIS 

 
Dott.ssa  Berretta Floriana 
curriculum seguito: Indirizzo internistico – Malattie dell’Apparato Respiratorio. 
titolo tesi di Dottorato: Caratterizzazione della interazione tra i geni di suscettibilità alla 

berilliosi e berillio. Determinazione del “antigene berillio” e 
meccanismi molecolari di prevenzione del legame Be/HLA quale 
terapia immuno-modulatoria della berilliosi. 

 

"presentazione"  La Dott.ssa Berretta ha prevalentemente sviluppato studi sulla: 

Caratterizzazione della interazione tra i geni di suscettibilità alla berilliosi e berillio. 

Determinazione del “antigene berillio” e meccanismi molecolari di prevenzione del legame 

Be/HLA quale terapia immuno-modulatoria della berilliosi. 

 
Il lavoro è stato eseguito presso l’Università di Roma “Tor Vergata”, Dipartimento di Medicina 
Interna, dove ha sviluppato una linea di ricerca sotto la supervisione del Prof. Cesare Saltini. 
 
 
Una prima parte del lavoro ha permesso una dettagliata analisi strutturale del sito di legame della 
molecola HLA-DPGlu69 e degli effetti del polimorfismo Glu/Lys sulla specificità di legame 
peptidico (Tissue Antigens 2003; 62: 459-71). 
E’ stato poi identificato un marker di suscettibilità all’ipersensibilità al berillio HLA-DR 
Phenylalanin β47 in soggetti che non presentano il marker associato alla berilliosi HLA-DPGlu 
69 (Respir Res. 2005; 6: 94).  
Successivamente è stata analizzata l’interazione berillio/HLA-DP attraverso la capacità del 
berillio di competere con CLIP e con i peptidi CLIP-derivati per il legame con molecole solubili 
HLA-DPGlu69. 
 I risultati preliminari suggeriscono che: 
- i peptidi CLIP-derivati ad alta affinità: CLIP-YY, CLIP-QY, CLIP-RF venivano solo 
marginalmente influenzati dalla presenza del berillio nei saggi di competizione (le affinità erano 
superiori a quelle di CLIP da 11,843 a >21,429 volte). 
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L’effetto di questi peptidi ad alta affinità sulla presentazione del berillio era determinato dalla 
misura di IFN-γ rilasciato dai PBMC stimolati con il berillio prelevati dai soggetti 
ipersensibilizzati al berillio. 
CLIP-YY inibiva la presentazione del berillio e l’attivazione delle cellule T, mentre CLIP-QY e 
CLIP-RF stimolavano marcatamente il rilascio di IFN-γ in risposta al berillio. Anticorpi 
monoclonali anti HLA-DP bloccavano il rilascio di IFN-γ stimolato dal berillio in presenza di 
CLIP-QY (88%) e di CLIP-RF (76%). Effetti simili venivano osservati per CLIP-YY in grado di 
bloccare il rilascio di IFN-γ indotto dal berillio in presenza di CLIP-QY (79%) e di CLIP-RF 
(76%). 
Questi risultati hanno potenziale implicazione per la diagnosi e il trattamento della berilliosi 
attraverso il disegno di (i) peptidi stimolanti la presentazione in grado di incrementare i segnali di 
attivazione delle cellule T e di (ii) peptidi bloccanti che potrebbero essere usati come base per 
una terapia competitiva per bloccare o anergizzare la reazione T-cellulare in vivo.  

 

La Dott.ssa Berretta ha svolto la sua attività di ricerca con dedizione e profitto degni di nota. 

Il suo lavoro, documentato dalle pubblicazioni prodotte, è stato apprezzato ed è valutato come 

eccellente dal Collegio dei Docenti del Dottorato . 

 
 
Il Coordinatore 
Prof. Sandro Mattioli 
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 CHAPTER 1 – BERYLLIOSIS 
 

INTRODUCTION 

The lung is constantly burdened by an extraordinary number of airborne particles 

contained in the seven to ten thousands liters of inhaled air daily. Particles, chemical agents and 

antigens are cleared by the mucociliary escalator or destroyed by the cells of the lung immune 

system; they do cause though a constant state of activation of the lung-compartmentalized 

immune-effector cells (1) and in a fraction of the exposed individuals, exaggerated reactions 

leading to tissue damage and lung dysfunction. 

With the expanding use of metals and chemicals in high-technology industries, 

immunotoxic compounds are now found in the industrial environment as well as in manufactured 

consumer products. Exposure to occupational and/or environmental metal compounds capable of 

interacting with the immune system is responsible for a variety of adverse immune reactions 

including granulomatous inflammations and allergic/atopic IgE-mediated type I immune 

responses (1, 2). In fact, they may either overpower the clearance systems of the lung, as in non 

complicated silicosis, or trigger an exaggerated immune and inflammatory reaction as in 

complicated silicosis, occupational asthma and berylliosis. A number of inorganic compounds 

such as cadmium, beryllium (Be), cobalt, mercury, manganese, titanium, antimony or zinc are 

known to cause acute chemical pneumonitis and bronchitis (1, 2). Zinc, cadmium, copper, 

manganese and aluminum oxide fumes are the cause of a non-fibrosing acute alveolitis (3, 4), 

crystalline silica, fibrous and non fibrous silicates cause fibrogenic pneumoconioses, while non 

fibrogenic pneumoconioses are caused by exposure to iron, barium, tin (5). Exposure to tungsten 

carbide and cobalt complexes is associated with a giant cell or a desquamative interstitial 

pneumonitis and lung fibrosis, also known as hard metal lung disease (1). Chronic granulomatous 
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lung disorders are caused by Be (6), zirconium (7-9), titanium (10) and aluminum (11).  

The discovery of immune response genes in the 1970s has started a widespread search for 

genes modulating individual susceptibility to exaggerated lung immune reactions to silica, 

asbestos, isocyanates, tungsten carbide, cobalt, nickel and Be as well as for genes of 

susceptibility to chronic immune disorders of the lung such as sarcoidosis and idiopathic 

pulmonary fibrosis which are pathologically indistinguishable from berylliosis and asbestosis and 

for which an environmental cause has been postulated.  

 

THE BERYLLIOSIS MODEL 

Due to its unique chemical and physical properties, Be continues to be utilized in a variety 

of high-technology industries, including aerospace, electronics, and nuclear defense (12). As a 

consequence, berylliosis, or chronic beryllium disease (CBD) for US authors, is one of the most 

thoroughly investigated environmental chronic granulomatous disorder of the lung: the causative 

agent is known, both a specific immunologic test and a mineralogical test are available to confirm 

the pathological diagnosis and a disease-associated immune response gene has been identified in 

the human leukocyte antigen (HLA) locus.  

Thus, berylliosis lends itself as a very promising model to analyze gene-environment 

interactions in an attempt to understand the pathogenesis of more common and less understood 

chronic inflammatory disorders of the lung. Further, unlike the majority of immune-mediated 

disorders in which the antigenic T cells are sequestered within an inaccessible target organ, 

berylliosis allows the study of an immune-mediated disease with a known pathogenic antigen and 

accessible target organ.  
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Epidemiology 

Exposure to Be is the cause of a spectrum of reactions. According to the type and level of 

Be exposure, these vary from acute tracheobronchitis, chemical pneumonitis and metal fume 

fever to a chronic granulomatous lung disorder. Be toxicity has been reported since the 1930's. 

Marradi-Fabroni in 1935, first attributed pulmonary toxicity of Be compounds to Be metal and, at 

about the same time, cases of acute chemical pneumonia (13), of dermatitis (14) and of 

granulomatous lung reactions, initially diagnosed as sarcoidosis, (15) were reported. 

Notwithstanding the histopathology characterized by non caseating granulomas, it was hotly 

debated at the time whether the disease was caused by Be toxicity (16, pages 1-2) or by the 

immunologic reaction to the metal (17).  

The acute type of disease was typically due to exposure to concentrations of soluble Be 

ranging from 25 to 600 mg/m3 (18) while the granulomatous could occur after exposure to much 

lower concentrations of insoluble Be, with a variably long latency period. Of the 649 cases 

described by Tepper an co-workers in 1961, the majority of the acute cases (85.9%) came from 

the extraction industry, while the majority of the chronic cases from the fluorescent lamp industry 

(56.2%), metallurgical plants (17.6%), ceramics (6%) and research (0.7%). Strikingly, 11% of the 

chronic cases were associated with bystander or environmental exposures (16, page 24). 

Berylliosis is still observed in association of a number of Be productions. The larger numbers of 

cases have been reported from the extraction, ceramics, metallurgic and nuclear industries; some 

cases have also been observed in a variety of other exposure situations including precious metal 

recovery operations (19, 20), dental shops (21) and subjects wearing dental prostheses containing 

Be alloys (22).  

Consistent with the observations that machinists in metallurgical plants had higher disease 

prevalence (23), Kreiss and co-workers, using job history analysis and historic exposure 
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assessment have shown that disease rates vary in fact with the exposure type and intensity, from 

less than 1% in less exposed workers and clerical workers to more than 10% in more exposed 

machinists (24-27). These findings, demonstrating a dose-response effect to the levels of inhaled 

Be, raise again the question of the role of hypersensitivity in the pathogenesis and the prevalence 

of disease. 

 

Berylliosis diagnosis.  

The histopathologic hallmark of the chronic form of berylliosis is the non necrotizing 

non-caseating granuloma. However, the granulomas of berylliosis are indistinguishable from 

those of sarcoidosis (28), non-caseating tuberculosis, hypersensitivity pneumonitis, Crohn's 

disease (29, 30) and those induced by aluminum (31) and titanium (32). The lung tissue shows a 

characteristic profusion of sarcoid-like non-caseating granulomas, occurring together with 

interstitial mononuclear-cell pneumonitis, which may be the dominant feature in a minority of 

cases, and fibrosis. Granulomatous lesions can also be found in the skin, the liver, the spleen, 

lymph nodes, the myocardium, skeletal muscles, the kidney, bone and salivary glands (33). The 

granulomas are comprised of epithelioid cells and Langhans giant-type cells surrounded by 

lymphocytes interspersed with hyaline material and, rarely, areas of focal necrosis. Some types of 

inclusions, such as Schaumann bodies and asteroid bodies, are typical of granulomatous diseases 

but none can be considered specific or diagnostic of berylliosis (16, 30, 34, 35). As end stage 

fibrosis overtakes inflammation, persistent Shauman bodies in the interstitium may be the only 

clue to previous granulomas formation.  

The classic diagnostic criteria for berylliosis included: a positive history of exposure to Be 

or demonstration of Be in tissue specimens, a chest X-radiograph showing diffuse reticulo-

nodular infiltrates and or hilar adenopathy; abnormal pulmonary function tests and a lung biopsy 
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showing non-caseating granulomas (36). Since then the introduction of lymphocyte testing has 

added a specific etiologic test to this list.  

Current immunologic testing for Be sensitization use in vitro radiometric Be-stimulated 

proliferation tests of blood and lung T cells (blood Be-LPT and lung Be-LPT). Several reports 

claiming test sensitivities in the range of 80 to 100% for the blood Be-LPT (24, 37-39) have not 

been confirmed by the studies of Stokes and Rossman, who determined 38% test sensitivity and 

97% test specificity (40) and by Markhan who describes test sensitivities ranging from 40 to 70% 

with an even lower inter-laboratory reproducibility (41). The test still remains the standard 

diagnostic test for Be hypersensitivity (42) since it adds an etiologic component of the classic 

criteria. The lung Be-LPT, that is performed on mononuclear cells obtained by bronchoalveolar 

lavage (BAL), is thought to be more sensitive and specific (43).  

 

Berylliosis immunopathology.  

In a normal nonsmoking individual, 10-15% of BAL cells are lymphocytes (44). On the 

other hand, dramatic increases in the percentage and number of both BAL macrophages and 

lymphocytes occur in berylliosis (45, 46). Most of the BAL lymphocytes are CD4+ T cells, and 

the majority of Be-specific CD4+ T cells in blood and lung express markers consistent with an 

effector-memory T-cell phenotype (e.g., expression of CD45RO and lost of both CD62L and 

CCR7 expression) (46-48). 

CD4+ T cells play a critical role in the immunopathogenesis of berylliosis (44, 45, 49-51). 

The Be-LPT, the diagnostic test for berylliosis, detects Be-induced proliferation of blood and 

BAL T cells in culture. The development of granulomatous inflammation in the lung of both 

berylliosis and sarcoidosis patients is temporally associated with the accumulation of CD4+ T 

cells in the BAL (46, 52, 53). In addition, T-cell receptor (TCR) expression of these lung cells 
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frequently shows a pattern specific for berylliosis patients and indicative of conventional antigen 

stimulation (54, 55). The importance of T cells is further supported by studies of berylliosis 

patients who have been patch tested with BeSO4. Patch testing resulted in CD4+ T cell infiltration 

of the dermis and subsequent granuloma formation in patients with berylliosis but not control 

subjects (52, 56). Comparing TCR usage by CD4+ T cells infiltrating skin to those clones found 

in BAL, identical oligoclonal T-cell populations were seen, confirming the importance of these 

Be-specific CD4+ T cells in the initiation of the granulomatous response (52).  

Once CD4+ T cells are activated in the lungs of berylliosis patients, these cells clonally 

proliferate and secrete Th1-type cytokines such as interleukine-2 (IL-2), interferon-γ (IFN-γ), and 

tumor necrosis factor-α (TNF-α) (47, 57). Th2-type cytokines are not detectable in the lungs of 

berylliosis patients (47). This polarized Th1-type response results in macrophage activation, 

accumulation, and aggregation and the development of granulomatous inflammation (48, 58). 

The ensuing immune response occurs in a self-perpetuating manner, which appears to be 

compartmentalized to the lung (47, 54, 55). Interleukine-10 (IL-10) is also produced by BAL 

cells after Be stimulation and has minimal inhibitory effects on the ongoing immune response 

occurring in the lungs of berylliosis patients, possibly due to the persistence of the Be antigen 

(59). Thus, in the absence of down-regulation of the immune response by endogenous IL-10 

and/or interleukine-4 (IL-4), the Be-stimulated immune response occurs unabated with the 

eventual development of fibrosis and pulmonary dysfunction. 

Unlike most immune-mediated diseases in which the antigen-specific T cells in the target 

organ are inaccessible, Be-induced disease serves as an ideal system in which to investigate the 

role of different human memory CD4+ T-cell subsets in disease. Using intracellular cytokine 

staining in a subset of berylliosis patients, it has been found that a large frequency of Be-specific 

CD4+ T cells (mean 18%) in the BAL (47). For example, a similar percentage of BAL CD4+ cells 
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expressed IFN-γ (mean ± SEM, 15.3 ± 2.7%) and TNF-α (17.8 ± 3.6%) after Be exposure in 

culture. A lower frequency of Be-specific BAL-CD4+ T cells expressed IL-2 (8.8 ± 1.9%) after 

Be exposure, and these cells represented a subset of the IFN-γ and TNF-α secreting cells. These 

findings reveal a remarkably large number of antigen-specific CD4+ T cells in the target organ of 

berylliosis patients. Be-specific CD8+ T cells were not identified in the BAL. 

Conversely, the frequency of Be-responsive CD4+ T cells in the blood of berylliosis 

patients ranged from undetectable to ~1.0% and directly correlated with the extent of alveolar 

inflammation, as measured by both BAL WBC and lymphocyte counts (48). Greater numbers of 

IFN-γ- and IL-2-producing Be-specific CD4+ T cells were seen in the blood of berylliosis patients 

compared to Be-sensitized subjects (48).  

Interestingly, a lack of correlation between the frequency of Be-specific, cytokine-

producing-CD4+ T cells in blood and/or BAL and Be-induced proliferation has been observed 

(47, 48). These data suggest that antigen-specific T cells may retain their ability to secrete Th1-

type cytokines but lose their ability to proliferate. Despite the fact the majority of Be specific 

CD4+ T cells express an effector-memory T-cell phenotype, a recent study showed that the ability 

of Be-specific CD4+ T cells to proliferate in the presence of Be salts in culture was strongly 

correlated with the fraction expressing a central-memory T-cell phenotype (48). Thus, the 

functional properties of the Be-specific CD4+ T cell in blood are determined by the relative 

proportion of memory T-cell subsets, which is influenced by the degree of target organ 

inflammation. 

Activation of Be-specific CD4+ T cells requires the engagement of the TCR-surface with 

an unknown antigen bound by major histocompatibility complex (MHC) class II molecules on 

the surface of antigen-presenting cells in presence of Be (45). Analysis of TCR expression on 

BAL CD4+ T cells from berylliosis patients has shown the presence of oligoclonal expansions 



8

 
characteristic of T-cell responding to a conventional T-cell antigen (54, 55). These TCRs were 

specific for Be, compartmentalized to the lung and persisted in the lung at high frequency in 

patients with active disease. In certain berylliosis patients, a TCRBV3 motif was identified with a 

related complementarity-determining region 3, expressing an invariant aspartic acid (Asp) at 

position 96 of the β-chain, as well as certain other conserved residues (55-60). These studies 

suggest that T cells bearing this TCR motif were selected and expanded in the lung in response to 

Be (49, 55, 60).  

 

Berylliosis immunogenetics. 

Early epidemiological studies of residents living within 0.25 miles of the Lorain (Ohio) 

extraction plant showed an incidence of 1%, not dissimilar to that of 1.3% of the extraction 

workers in the same plant; this first observation suggested that hypersensitivity played a major 

role in disease incidence. On the contrary, the machinists showed an incidence of 4.9% (61).  

Further, animal studies have shown that the response to Be is genetically determined. 

Inhalation of BeO induced marked macrophage and lung T-lymphocytes activation in strain 2 but 

not in strain 13 of guinea pigs (62), and Be-induced lung granulomatous reactions are associated 

with certain but not all H2 genes of mice (63). The finding that lung T cells from individuals with 

berylliosis recognize Be as a specific HLA class II restricted hapten/antigen prompted the search 

for immune response genes associated with Be hypersensitivity.  

In 1993, Richeldi and co-workers (64) in a retrospective study of 33 cases of berylliosis, 

found the HLA-DPB1*0201 allele positively associated with disease i.e., with "disease risk" and 

the allele HLA-DPB1*0401 was negatively associated with disease i.e., with "disease 

protection". Furthermore, sequence analysis identified the polymorphism coding for a lysine to 

glutamic acid (Glu) change at position 69 of the β−chain of the HLA-DP molecule (HLA-
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DPGlu69) as the disease risk locus (64) (see table 1 for data details).  

This finding was confirmed by 8 independent studies where HLA-DPGlu69 was found 

associated with the disease, with a prevalence of 73 to 95% in 270 disease cases versus 30 to 48% 

in 988 exposed controls (table 1) (65-72). The Glu69 marker was also associated with Be-

sensitization without disease in 3 studies (table 1) (68-70). In one study HLA-DPGlu69 was 

associated with disease but not with sensitization (table 1) (67), and in one both with disease and 

sensitization, with a significantly higher Glu69 prevalence in the 33 diseased (phenotype 

frequency 82%, allele frequency 52%) than in the 68 sensitized (phenotype 68%, allele 32%) 

(71).  
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Table 1. Summary results of the previous reported studies on the association between HLA-DPGlu69 and 
berylliosis. 

 
Original study1 N of BEC2 

evaluated 
N of BHwG3 

evaluated 
N of BHnoG4 

evaluated 
HLA-DPGlu69 association in the different 

studies 
    Phenotype frequency 
    BEC BHwG BhnoG P 
Richeldi et al.  
1993 (ref.64) 

44 33 Not tested 27% 97% / 0.0001 

Richeldi et al.  
1997 (ref. 65)  

119 6 2 83% 30% 0% 0.01 BEC vs 
BHwG 

Wang et al. 
1999 (ref. 66) 

75 evaluated for 
Glu69 

frequency;  
34 HLA-typed 

20 evaluated for 
Glu69 frequency 
19 HLA-typed 

2 (included in 
BEC) 

45% 95% / 0.0006 

Saltini et al. 
2001 (ref. 67) 

93 22 23 40% 73% 39% 0.02 BEC vs 
BHwG; 

0.05 BHwG vs 
BhnoG 

Wang et al. 
2001 (ref. 68) 

163 20 25 37% 95% 88% 0.001 respect to 
BEC 

Rossman et al 
2002 (ref. 69)5 

82 25 30 48% 84% 87% 0.002 BEC vs 
BHwG; 

0.003 BhnoG vs 
BEC 

Maier et al.  
2003 (ref. 70) 

94 out of 104 
typed for  
HLA-DP 

48 out of 50 
typed for  
HLA-DP 

115 out of 125 
typed for  
HLA-DP 

38% 86% 85% <0.0001 BHwG vs 
BEC,  

<0.0001 BhnoG vs 
BEC 

McCanlies et al. 
2004 (ref. 71)6 

730 64 90 33% 82% 68% 0.01 BEC vs 
BHwG;and BhnoG 

vs BEC 
Amicosante et al. 
2005m  
(ref. 72)  

86 36 38 48% 86% 55% <0.0001 BEC vs 
BHwG; 

0.008 BHwG vs 
BhnoG 

Notes:  
1. All studies are cited in references section. 
2. BEC: Be-exposed controls.  
3. BHwG: Be-hypersensitive with granuloma proven berylliosis. 
4. BHnoG: Be-hypersensitive without granulomas.  
5. Alleles presenting a Post hoc cell contribution > +1.96 compared with controls at which is associated a high 
probability to be significant. 
6. The study analyzes only the HLA-DPGlu69 marker. 
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Further, a role for HLA-DPGlu69 homozygosity was also hypothesized in the 

determination of disease susceptibility. In seven studies DPGlu69 homozygosity frequencies 

were higher in berylliosis cases, (0 to 30%, CTR 1.3 to 10.9%) but lower than the frequencies 

expected from the Hardy-Weinberg equation (17.6 to 39.1; CTR 3.3 to 8.6%) (see table 2 for 

details). Although in three studies the difference between affected and control populations was 

statistically significant (66, 68, 70), the results of the one study large enough for precise statistical 

analysis (71) indicated that increased homozygosity could be attributed to excess heterozygosity 

i.e., to increased prevalence of the HLA-DPGlu69 gene variant driven by environmental pressure. 

The observation that 3 to 27% of berylliosis-affected subjects do not carry HLA-DPGlu69, 

prompted the search for additional susceptibility markers including other HLA genes and 

cytokines polymorphisms. These questions have represented some of the topics on which the 

work reported in this thesis focused. Thus, these aspects are largely debated in chapter 2 of the 

thesis in which specific data are presented. 
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HLA-DP structure and function in susceptibility to berylliosis 

The HLA-DPGlu69 could be a DNA marker associated with berylliosis due to linkage 

disequilibrium with other nearby immune response genes or it might play a direct role in the disease 

as the antigen-Be receptors for the presentation of Be to lung T cells. The data generated in several 

laboratories strongly suggest that the latter is the likely case.  

Ex vivo and in vitro studies have shown that Be is presented to CD4+ T cells in the context of 

the MHC class II molecules (45, 60, 73). Using T cells from berylliosis patients or Be-specific T cell 

lines and clones derived from blood and lung of different berylliosis patients, both Be-induced 

proliferation and cytokine secretion were nearly completely and selectively inhibited by the addition 

of a monoclonal antibody (MoAb) directed against HLA-DP. As a result, HLA-DP was the primary 

immune response gene involved in Be presentation (47, 60, 73-75). In these studies, only certain 

HLA-DP molecules, all carrying HLA-DPGlu69, were capable of Be presentation, and the 

restricting MHC class II molecules closely matched those implicated in disease susceptibility (Table 

3). 
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Table 3. Amino acid residues of HLA-DPB1 alleles involved in berylliosis susceptibility1. 

  
 Amino acid position 

HLA-DPB1 
allele 

Genetic 
susceptibility 

Ability to 
present Be 

35 36 55 56 57 67 68 69 76 84 85 86 87 

DPB1*0101 No - Y A A A E E E K V D E A V 

DPB1*0401 No - F - - - - - - - M G G P M 

DPB1*0402 Yes2 - F V D E - - - - M G G P M 

DPB1*0501 No - F V E - - - - - - - - - - 

DPB1*0201 Yes + F V D E - - - E M G G P M 

DPB1*0601 Yes + F V D E D - - E M - - - - 

DPB1*1001 Yes + F V D E - - - E - - - - - 

DPB1*1301 Yes + - - - - - - - E M - - - - 

DPB1*1701 Yes + F V D E D - - E M - - - - 

 
 

1. Sequences for the different HLA-DP alleles are presented on the basis of their homology to DPB1*0101, and 
a dash indicates the same amino acid at that position. The bolded amino acid residues indicate the only 
shared amino acids between the presenting HLA-DPB1 alleles.  

 
2. Marginal association only in one immunogenetic study (ref. 69). 
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Further, with the limitation of only a small number of functional studies, the data suggest that 

the critical amino acid residue in the HLA-DP molecules for the Be presentation is the Glu at 

position 69 of the β-chain (60, 73-76). In fact, using fibroblasts expressing mutated HLA-DP2 

molecules, Be recognition dependent solely on the Glu at position 69 of the DP β-chain (38). 

Mutagenesis of other polymorphic amino acid residues such as the Lys and Glu at positions 55 and 

56 of the DPβ-chain had no effects on either Be-induced proliferation or Th1-type cytokine 

expression (76).  

The β69 residue of HLA-DP molecule is the homologue of the residue 71 of the HLA-

DRβ−chain molecule located in the pocket 4 of the peptide-binding groove. Our previous study (77) 

suggests that Be presents an affinity from 40 to 100-fold higher for the HLA-DP molecules 

expressing a Glu at position β69 compared to HLA-DP molecules expressing its counterpart, the 

Lys β69, suggesting a direct interaction between HLA-DPGlu69 molecule and Be.  

Specific aspects of the structure/function relationship of HLA class II molecules and Be in 

the presentation to Be-specific T cells are some of the topics reported in this thesis. Chapter 3 and 4 

of the thesis discuss these questions in detail, data in hand. 
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AIM OF THE THESIS 

 

This thesis summarizes two already published papers and one manuscript submitted for 

publication in the past 3 years, describing the studies in the immunogenetic, functional 

immunogenetic and in vitro model of berylliosis therapy. These studies have represented important 

advances in the field of berylliosis immunogenetics and functional immunogenetics and also in the 

contribution of HLA-DP to immune response.  

Chapter 2 reports immunogenetic studies on berylliosis, more specifically the identification 

of the secondary immune response gene associated with susceptibility to develop Be 

hypersensitivity (Respir Res. 2005; 6:94).  

Chapter 3 reports the studies on the role of peptide binding and T-cell activation of HLA-DP 

polymorphisms and in particular the role of the Glu/Lys polymorphism at position β69 (Tissue 

Antigen. 2003; 62:459-71). 

Finally, in chapter 4, with the background of functional immunogenetic and HLA-DP 

peptide-binding studies, an in vitro model of specific therapy for Be disease is investigated 

(submitted in 2006).  
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CHAPTER 2 - IMMUNOGENETIC STUDIES 

 

IDENTIFICATION OF HLA-DR PHENYLALANIN β47 AS THE SUSCEPTIBILITY 

MARKER OF HYPERSENSITIVITY TO BERYLLIUM IN INDIVIDUALS LACKING THE 

BERYLLIOSIS-ASSOCIATED SUPRATYPIC MARKER HLA-DPGLUβ69. 

 

The data reported in this paragraph have been already published (Respir Res. 2005; 6: 

94) and are fully available at http://respiratory-research.com/content/6/1/94. 

 

Introduction  

The observation that Be disease affects only 1 to 16% of Be-exposed individuals led to the 

hypothesis that genetic susceptibility may play an important role in the pathogenesis of this disease 

(6). In 1993, the HLA-DP supratypic variant characterized by a Glu at position 69 of the HLA-DP 

molecule β−chain (DPGlu69) was identified as a genetic marker of susceptibility to Be 

hypersensitivity (BH), an observation subsequently confirmed by seven independent studies (64-71), 

as already reported in chapter 1. Two independent studies have also identified the HLA-DPGlu69 

marker as the immune response gene responsible for presentation of Be to Be-specific T cells (60, 

73); an immunochemical study has also suggested that the structural basis for Be presentation by the 

HLA-DPGlu69-positive molecules is in its unique ability to bind Be with high affinity possibly in 

the context of a coordination bond formed by the contribution of other electron-donor groups 

present in the fourth pocket of the peptide-binding groove of the HLA-DP molecule (77). Further, 

Ab-inhibition studies have shown that Be-presentation to blood and lung T cells in DPGlu69-

positive subjects is inhibited almost exclusively by anti-HLA-DP Abs (73, 74), strongly indicating 
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HLA-DPGlu69 as the immune response gene used by DPGlu69-positive subjects i.e., about 80% of 

the BH-affected population (64-71).  

In contrast, the HLA gene which might function as the immune response gene in DPGlu69-

negative BH-affected subjects i.e., in the remaining 20% of the BH-affected population, has not yet 

been determined.  

Previous studies have identified the HLA-DRB1 alleles belonging to the *01 group (70) as 

negatively associated with berylliosis, while the HLA-DRB1 variants Ser11 (69), Tyr26 (69), Asn37 

(69), Glu71 (69) and Arg74 (67) and the HLA-DQ variant Gly86 (69) were positively associated 

with BH. Analysis of the role of these markers has, however, been hampered by the small size of the 

populations examined in most studies. In all studies published so far, the putative susceptibility 

markers covered only 40 to 50% of the DPGlu69-negative subjects. In this context, our previous 

study (67) on 45 individuals affected by Be sensitization with or without demonstrable lung 

granulomas, showed that HLA-DRArg74 and Tyr26 were associated with sensitization without lung 

granulomas, and HLA-DPGlu69 with sensitization accompanied by lung granulomas, thereby 

suggesting a different role for Glu69 and these markers (67). However, in the HLA-DPGlu69 

negative subjects reported in the Saltini et al. study population, HLA-DRArg74 and Tyr26 were 

expressed only by 11 out of 19 DPGlu69-negative sensitized subjects 10 of which without and one 

with demonstrable lung granulomas (67). In another study in the field conducted by Rossman et al. 

(69) evaluating 56 BH-affected subjects, 4 out of 7 DPGlu69-negative patients carried either 

DRAsn37, DRGlu71 or DQGly86 (67). Finally, Maier and co-workers (70), in 19 HLA-DP Glu69-

negative BH subjects, found that HLA-DRB1*13 alleles were associated with BH susceptibility; 

however, they were only expressed by 12 of these subjects. 

In order to search for this(these) disease associated immune response gene(s), we re-

evaluated a previously described population (67) after a follow-up of 7 years that allowed us to 
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extend the study to other 29 newly identified BH subjects (14 with biopsy proven lung granulomas 

and 15 with Be-sensitization without lung granulomas) for a total number of 74 BH subjects and 86 

Be-exposed controls. This panel included a sufficiently large number of DPGlu69-negative subjects 

to analyze phenotypic frequencies of all aminoacid variants of the HLA-DPB1, -DQB1, -DRB1, -

DRB3, -DRB4 and -DRB5 genes in BH-affected and Be-exposed controls. 

 

Methods 

Study population. The study population, already described in part in a previous study (67), 

includes 86 Be-exposed healthy controls and 74 subjects affected by Be hypersensitivity, all 

working in the same Be manufacturing plant, 45 of whom (23 Be-sensitized subjects and 22 

berylliosis-affected i.e., Be-sensitized subjects with biopsy proven lung granulomas) have been 

already described in the Saltini et al. report (67). Study subjects are categorized as (i) Be-exposed 

controls, when having negative blood Be-LPT test, (ii) Be-sensitized, when having 2 blood Be-LPT 

positive tests and (iii) berylliosis-affected when having 2 blood Be-LPT-positive tests and/or biopsy 

proven lung granulomas (67). While 4 control subjects were diagnosed with Be sensitization and 3 

with berylliosis during the 7-years follow up, none of the subjects in the previous study progressed 

from sensitization to berylliosis. 

Overall the population in this report included 36 berylliosis (age 40 ± 7 years; 33 Caucasians, 

2 African-Americans and 1 Asian; 32 males and 4 females; mean duration of Be-exposure 11+7 

years) and 38 showed Be-sensitization without lung granulomas detected by trans-bronchial biopsy 

(age 43±9 years; 37 Caucasians and 1 Afro-American; 31 males and 7 females; mean age of Be-

exposure 17+9 years) and 86 Be-exposed controls (age 44 ± 9 years; 81 Caucasians, 2 African-

American, 2 Hispanics, 1 Asian; 71 males and 15 females; mean duration of Be-exposure 16 + 11 

years).  
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High resolution HLA class II typing. High resolution HLA class II typing for the HLA-

DPB1, -DQB1, -DRB1, -DRB3, -DRB4, -DRB5 loci were performed by standard protocols as 

already reported (10). 

Be-lymphocyte proliferation test (Be-LPT). The Be-LPT as measures of the T-lymphocytes 

response against Be in peripheral blood was performed by standard method (79). Briefly, peripheral 

blood mononuclear cells (PBMC) were tested against three doses Be sulfate (BeSO4*4H2O) at 1, 10, 

and 100 μM at 3 and 5 days. T-cell proliferation were evaluated by tritium [3H] labeled thymidine 

(TdR) incorporation and a stimulation index (SI) calculated as the ratio of the radioactivity (counts 

per minute) of Be-exposed cell cultures to the count rate of unstimulated cultures. A test was defined 

as abnormal when two or more stimulation index values of six possible values exceeded the normal 

standard ratio of 3.0 (stimulated to unstimulated) as the cut-off. 

Lymphocyte proliferation to Be salt and MoAb inhibition of lymphocyte activation. T-cell 

proliferation in response to BeSO4 and inhibition by anti-HLA class II MoAbs were performed as 

previously described (74). Briefly, PBMCs obtained from patients with Be hypersensitivity were 

isolated from heparinized whole blood by density centrifugation on Ficoll Hypaque gradient. 

PBMCs (2×105 cells/well) were then cultured in 96-well flat-bottomed microtiter plates in RPMI 

1640 tissue culture medium supplemented with 2 mM L-glutamine, 10% fetal bovine serum, 100 

U/ml penicillin, and 100 μg/ml streptomycin in the presence of Be sulfate (BeSO4*4H2O) at 10-50-

100 μM (all reagents form Sigma Co., St. Louise, MO). Phytohemoagglutinin (PHA, 5 µg/ml, 

Sigma) and Candida albicans (10 µg/ml) were used as positive controls. T-lymphocyte proliferation 

was measured by [3H]TdR incorporation. Cells were pulsed with 1μCi of [3H]TdR (Amersham 

International, Amersham, UK) after 5 days of culture and harvested onto glass fiber filters 18 hours 

later. Proliferation was measured as [3H]TdR incorporation by liquid scintillation spectroscopy and 
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the test was scored as positive in the presence of a greater than twofold proliferation index. Protein 

A-Sepharose purified MoAbs directed against HLA-DR (L243), HLA-DP (B7/21), HLA-DQ (L2), 

HLA class I (W6/32) (60) were used at increasing concentrations (10, 20 and 50 μg/ml) to inhibit 

antigen presentation and lymphocyte proliferation as previously described (45, 60, 74). The 19 kDa 

Mycobacterium tuberculosis (MTB19) protein MoAb (HYT6) (80) was used as control. 

Statistical analysis. Statistical analysis was carried out as previously described (67, 81, 82). 

Phenotypic frequency data are expressed as percentages with Odds Ratio (OR) with respect to the 

Be-exposed control group when appropriate. Comparisons between phenotypic frequencies in the 

study groups were done by χ2 test with the Yates correction where necessary. Linkage 

disequilibrium analysis was carried out as previously described (80). Forward and stepwise multiple 

logistic regression multivariate analysis were applied for identifying independent parameter(s) in 

multiple comparisons. Be-stimulated lymphocyte proliferation data are expressed as mean + 

standard deviation of the mean (SD). Comparisons between groups in Be-lymphocyte proliferation 

data were done using the Student’s t test with Welch’s correction when appropriate. All the 

statistical analysis were carried out with the SPSS (SPSS inc., Chicago, IL) and GraphPad Prism 

(GraphPad Software Inc., San Diego, CA) packages. 

 

Results 

The allelic frequencies for HLA-DPB1, DQB1 and DRB1, 3, 4 and 5 in general population 

are reported in the tables 4-7. 

Similarly to the previous study on this population (10) the HLA-DPGlu69 marker was 

carried with higher frequency by berylliosis-affected (31 out of 36, 86%) than subjects with Be-

sensitization without granuloma (21 out of 38, 55%, p=0.008 vs berylliosis-affected) and Be-
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exposed controls (41 out of 86, 48%, p<0.0001 vs berylliosis-affected, p=0.55 vs Be-sensitized).  

The HLA-DPGlu69 was previously proposed as a marker of progression from the 

sensitization state to the lung granulomatous reaction of berylliosis (67, 70). In this study population 

there were no cases of progression from systemic sensitization to lung disease notwithstanding the 

substantial follow-up period of 7.0+3.7 years from the first positive Be-LPT test, while 4 control 

subjects were diagnosed with Be sensitization and 3 with berylliosis during the 7-years follow-up. 

Hence, we could not directly look at the HLA-DPGlu69 association with disease progression. In 

addition, the frequency of the HLA-DPGlu69 homozygosity, another marker associated with disease 

progression (70), was higher in the disease-affected population compared to the sensitized and the 

Be-exposed control population [5 out of 86 healthy exposed controls (5.8%), 3 out of 38 sensitized 

without disease (7.9%; p=0.97 compared to controls) and 8 out of 36 disease-affected (22.2%; 

p=0.06 compared to controls; p=0.10 compared to the sensitized)] although the difference was not 

statistically significant. 
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Table 4. Frequencies of the HLA-DPB1 alleles in the study populations. 
 

 

Be-exposed  
controls 

 

Be-hypersensitives 
(berylliosis + 
Be-sensitized  

without disease) 

Berylliosis  
 
 

Be-sensitized 
without disease 

 
Allele 

 
N alleles  

(172) % 
N alleles  

(148) % 
N alleles 

(72) % 
N alleles  

(76) % 
0101 6 3.5% 6 4.1% 2 2.8% 4 5.3% 
0201 36 20.9% 40 27.0% 25* 34.7% 15 19.7% 
0202 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
0301 15 8.7% 8 5.4% 4 5.6% 4 5.3% 
0401 65 37.8% 41 27.7% 13* 18.1% 28 36.8% 
0402 26 15.1% 13 8.8% 8 11.1% 5 6.6% 
0501 3 1.7% 6 4.1% 1 1.4% 5 6.6% 
0601 1 0.6% 4 2.7% 1 1.4% 3 3.9% 
0901 0 0.0% 2 1.4% 2 2.8% 0 0.0% 
1001 5 2.9% 6 4.1% 4 5.6% 2 2.6% 
1101 3 1.7% 3 2.0% 1 1.4% 2 2.6% 
1301 1 0.6% 4 2.7% 2 2.8% 2 2.6% 
1401 2 1.2% 3 2.0% 3 4.2% 0 0.0% 
1501 2 1.2% 1 0.7% 0 0.0% 1 1.3% 
1601 1 0.6% 3 2.0% 1 1.4% 2 2.6% 
1701 0 0.0% 3 2.0% 3 4.2% 0 0.0% 
1901 1 0.6% 2 1.4% 2 2.8% 0 0.0% 
2001 0 0.0% 2 1.4% 0 0.0% 2 2.6% 
2301 1 0.6% 1 0.7% 0 0.0% 1 1.3% 
3501 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
7701 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
7801 1 0.6% 0 0.0% 0 0.0% 0 0.0% 

 
Notes 
*: Uncorrected p<0.03 and Bonferroni’s corrected p>0.05 vs Be-exposed controls. 
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Table 5. Frequencies of the HLA-DQB1 alleles in the study populations. 
 

 

Be-exposed 
controls 

 

Be-hypersensitives 
(berylliosis + 
Be-sensitized 

without disease) 

Berylliosis  
 
 

Be-sensitized  
without disease 

 
Allele 

 
N alleles 

(172) % 
N alleles 

(148) % 
N alleles 

 (72) % 
N alleles  

(76) % 
0201 24 14.0% 33 22.3% 15 20.8% 18 23.7% 
0202 0 0.0% 2 1.4% 0 0.0% 2 2.6% 
0301 37 21.5% 23 15.5% 11 15.3% 12 15.8% 
0302 19 11.0% 10 6.8% 4 5.6% 6 7.9% 
0303 8 4.7% 8 5.4% 4 5.6% 4 5.3% 
0304 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
0402 4 2.3% 2 1.4% 0 0.0% 2 2.6% 
0501 14 8.1% 17 11.5% 7 9.7% 10 13.2% 
0502 4 2.3% 1 0.7% 0 0.0% 1 1.3% 
0503 5 2.9% 3 2.0% 1 1.4% 2 2.6% 
0601 2 1.2% 0 0.0% 0 0.0% 0 0.0% 
0602 28 16.3% 26 17.6% 13 18.1% 13 17.1% 
0603 14 8.1% 15 10.1% 12 16.7% 3 3.9% 
0604 9 5.2% 6 4.1% 4 5.6% 2 2.6% 
0609 3 1.7% 2 1.4% 1 1.4% 1 1.3% 
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Table 6. Frequencies of the HLA-DRB1 alleles in the study populations. 
 

 

Be-exposed 
controls 

 

Be-hypersensitives 
(berylliosis + 
Be-sensitized  

without disease) 

Berylliosis  
 
 

Be-sensitized  
without disease 

 
Allele 

 
N alleles 

(172) % 
N alleles 

(148) % 
N alleles 

 (72) % 
N alleles  

(76) % 
0101 10 5.8% 15 10.1% 6 8.3% 9 11.8% 
0102 2 1.2% 1 0.7% 0 0.0% 1 1.3% 
0103 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
0301 13 7.6% 24* 16.2% 9 12.5% 15* 19.7% 
0401 18 10.5% 5* 3.4% 3 4.2% 2 2.6% 
0402 1 0.6% 2 1.4% 0 0.0% 2 2.6% 
0404 4 2.3% 4 2.7% 1 1.4% 3 3.9% 
0405 3 1.7% 1 0.7% 0 0.0% 1 1.3% 
0407 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
0408 2 1.2% 0 0.0% 0 0.0% 0 0.0% 
0410 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
0701 17 9.9% 18 12.2% 10 13.9% 8 10.5% 
0801 3 1.7% 2 1.4% 0 0.0% 2 2.6% 
0806 0 0.0% 2 1.4% 2 2.8% 0 0.0% 
0810 0 0.0% 1 0.7% 0 0.0% 1 1.3% 
0901 0 0.0% 1 0.7% 0 0.0% 1 1.3% 
1001 1 0.6% 1 0.7% 1 1.4% 0 0.0% 
1101 14 8.1% 9 6.1% 5 6.9% 4 5.3% 
1102 2 1.2% 2 1.4% 1 1.4% 1 1.3% 
1103 5 2.9% 1 0.7% 1 1.4% 0 0.0% 
1104 3 1.7% 4 2.7% 3 4.2% 1 1.3% 
1201 1 0.6% 2 1.4% 1 1.4% 1 1.3% 
1301 15 8.7% 18 12.2% 14*# 19.4% 4 5.3% 
1302 12 7.0% 8 5.4% 5 6.9% 3 3.9% 
1303 4 2.3% 2 1.4% 0 0.0% 2 2.6% 
1401 5 2.9% 3 2.0% 1 1.4% 2 2.6% 
1406 1 0.6% 0 0.0% 0 0.0% 0 0.0% 
1501 26 15.1% 21 14.2% 9 12.5% 12 15.8% 
1502 3 1.7% 0 0.0% 0 0.0% 0 0.0% 
1601 4 2.3% 1 0.7% 0 0.0% 1 1.3% 

 
Notes 
*: Uncorrected p<0.03 and Bonferroni’s corrected p>0.05 vs Be-exposed controls. 
#: Uncorrected p<0.02 and Bonferroni’s corrected p>0.05 vs Be-sensitized without disease. 
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Table 7. Frequencies of the HLA-DRB3, -DRB4 and -DRB5 alleles in the study populations. 
 

 

Be-exposed 
 controls 

 

Be-hypersensitives 
(berylliosis + 
Be-sensitized 

 without disease) 

Berylliosis  
 
 

Be-sensitized  
without disease 

 
Allele 

 
N DRB3  

alleles (77) % 
N DRB3  

alleles (77) % 
N DRB3  

alleles (40) % 
N DRB3  

alleles (33) % 
3*0101 21 27.3% 29 37.7% 9 22.5% 20*# 60.6% 
3*0201 2 2.6% 0 0.0% 0 0.0% 0 0.0% 
3*0202 42 54.5% 36 46.8% 26 65.0% 10*# 30.3% 
3*0301 12 15.6% 8 10.4% 5 12.5% 3 9.1% 

         

 
N DRB4  

alleles (48)  
N DRB4  

alleles (31)  
N DRB4  

alleles (14)  
N DRB4  

alleles (17)  
4*0101 10 20.8% 7 22.6% 3 21.4% 4 23.5% 
4*0103 38 79.2% 24 77.4% 11 78.6% 13 76.5% 

         

 
N DRB5  

alleles (34)  
N DRB5  

alleles (22)  
N DRB5  
alleles (9)  

N DRB5  
alleles (13)  

5* 0101 28 82.4% 21 95.5% 9 100.0% 12 92.3% 
5* 0102 2 5.9% 0 0.0% 0 0.0% 0 0.0% 
5* 0202 4 11.8% 1 4.5% 0 0.0% 1 7.7% 

 
Notes 
*: Uncorrected p<0.02 and Bonferroni’s corrected p>0.05 vs Be-exposed controls. 
#: Uncorrected p<0.02 and Bonferroni’s corrected p>0.05 vs berylliosis. 
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A total number of 22 BH subjects (17 Be-sensitized and 5 berylliosis-affected) and 45 Be-

exposed controls were HLA-DPGlu69 negative. They did not differ from the DPGlu69-positive 

subjects (neither the BH-affected nor the Be-exposed controls) in terms of gender, ethnicity, age or 

length of Be-exposure (p>0.05, all comparisons). The allelic frequencies for HLA-DPB1, -DQB1 

and -DRB1, 3, 4 and 5 in HLA-DPGlu69-negative subjects are reported in the tables 8-11. 

This subgroup of HLA-DPGlu69-negative subjects was analyzed for the distribution of all 

HLA class II polymorphic aminoacid residues, with the exception of HLA-DPGlu69, by univariate 

analysis. No associations were found between any of the HLA-DP polymorphic residues and BH. 

Strikingly, among the polymorphic residues of the HLA-DRβ-chain coded for by the HLA-DRB1 

locus, residues Ser13, Tyr26, His32, Asn37, Phe47 and Arg74 were associated with Be 

hypersensitivity (Table 12). Similarly, the HLA-DRβ-chain HLA-DRB3 locus polymorphic residues 

Arg11, Tyr26, Asp28, Leu38, Ser60 and Arg74 were found associated to Be hypersensitivity (Table 

12). No polymorphisms associated with Be hypersensitivity were found in the HLA-DRB4 and -

DRB5 loci. Finally, a statistically significant association with Be hypersensitivity in HLA-DPGlu69 

negatives was found for the HLA-DQB1 gene polymorphic residue Leu26 (Table 12). 

However, as a linkage disequilibrium could exist between the HLA-DRB1 gene coded 

residues and other HLA-DRB1, -DRB3 and -DQB1 loci, in order to identify the independently 

associated residue(s) in the HLA-DPGlu69-negative BH subjects, multiple logistic regression 

models were carried out on all the HLA variants above. As a result, only HLA-DRPhe47 (OR 2.956, 

p<0.05) was identified as independently associated with Be hypersensitivity in the HLA-DPGlu69-

negative subgroup, hence suggesting that the other HLA-DRB1, -DRB3 and –DQB1 loci shown in 

table 1 could be associated with Be hypersensitivity due to linkage disequilibrium with HLA-

DRPhe47. Of the 22 HLA-DPGlu69-negative subjects with BH, 21 were HLA-DRPhe47 (16 Be-
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sensitized and 5 berylliosis-affected) and only one, a Be-sensitized individual, was HLA-DPGlu69 

and HLA-DRPhe47-negative. 

Further, in order to identify which of the HLA isotypic molecules associated with Be 

hypersensitivity could function as the restriction elements of Be-stimulated T-cell proliferation in 

HLA-DPGlu69-negative subjects, we analyzed PBMC proliferation in response to BeSO4 in a 

subgroup of 15 BH-affected subjects, using Abs directed against HLA-DR, HLA-DQ and HLA-DP 

as probes. 

In 4 HLA-DPGlu69-negatives subjects, Be-stimulated T-cell proliferation was inhibited by 

anti-HLA-DR MoAbs (range 70-92% inhibition) significantly more than by anti-HLA-DP MoAbs 

(range: 6-29%; p<0.02 compared to anti-HLA-DR) while it was not affected at all by the anti-HLA-

DQ, anti-HLA class I or the anti-MTB19 control MoAbs (Figure 1), suggesting a role for HLA-DR 

molecules in Be presentation in HLA-DPGlu69-negative subjects. All the 4 HLA-DPGlu69-negative 

subjects carried the HLA-DRPhe47 polymorphism.  

In contrast, in the 3 subjects who were HLA-DPGlu69-positive and HLA-DRPhe47-

negative, proliferation was completely inhibited by anti-HLA-DP MoAbs (range 68-100%) but not 

by anti-HLA-DR (range 7-14%, p<0.05 compared to anti-HLA-DP), nor by anti-HLA-DQ, anti-

HLA class I or the anti-MTB19 control MoAbs (Figure 1). Finally, in the 8 subjects carrying both 

HLA-DPGlu69 and HLA-DRPhe47, the proliferative response to BeSO4 was always inhibited by 

anti-HLA-DP MoAbs (range: 63-100%) and variable inhibited by anti-HLA-DR MoAbs (range: 0-

94%), with the inhibition by anti-HLA-DP MoAbs being significantly stronger than anti-HLA-DR 

MoAbs (paired t-test, p<0.01).  
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Table 8. Frequencies of the HLA-DPB1 alleles in the HLA-DPGlu69-negative population. 
 

 

Be-exposed  
controls 

 

Be-hypersensitives 
(berylliosis + Be-sensitized  

without disease) 
Allele N alleles 

 (90) % 
N alleles 

 (44) % 
0101 3 3.3% 2 4.5% 
0301 14 15.6% 5 11.4% 
0401 43 47.8% 19 43.2% 
0402 18 20.0% 7 15.9% 
0501 3 3.3% 4 9.1% 
1101 2 2.2% 2 4.5% 
1401 2 2.2% 1 2.3% 
1501 1 1.1% 1 2.3% 
2001 0 0.0% 2 4.5% 
2301 1 1.1% 1 2.3% 
3501 1 1.1% 0 0.0% 
7701 1 1.1% 0 0.0% 
7801 1 1.1% 0 0.0% 

 
 
 
 
 
 
Table 9. Frequencies of the HLA-DQB1 alleles in the HLA-DPGlu69-negative population. 
 

 

Be-exposed  
controls 

 

Be-hypersensitives 
(berylliosis +Be-sensitized  

without disease) 
Allele 

 
N alleles  

(90) % 
N alleles  

(44) % 
0201 13 14.4% 14 31.8%* 
0202 0 0.0% 1 2.3% 
0301 17 18.9% 4 9.1% 
0302 10 11.1% 1 2.3% 
0303 5 5.6% 2 4.5% 
0402 1 1.1% 1 2.3% 
0501 9 10.0% 4 9.1% 
0502 3 3.3% 0 0.0% 
0503 4 4.4% 2 4.5% 
0602 16 17.8% 9 20.5% 
0603 6 6.7% 3 6.8% 
0604 6 6.7% 3 6.8% 

 
Notes 
*: Uncorrected p<0.05 and Bonferroni’s corrected p>0.05 vs Be-exposed controls. 
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Table 10. Frequencies of the HLA-DRB1 alleles in the HLA-DPGlu69-negative population. 
 

 

Be-exposed  
Controls 

 

Be-hypersensitives 
(berylliosis + Be-sensitized  

without disease) 
Allele 

 
N alleles  

(90) % 
N alleles  

(44) % 
0101 8 8.9% 4 9.1% 
0103 1 1.1% 0 0.0% 
0301 7 7.8% 12 27.3%* 
0401 11 12.2% 2 4.5% 
0402 0 0.0% 1 2.3% 
0404 4 4.4% 0 0.0% 
0405 1 1.1% 0 0.0% 
0408 1 1.1% 0 0.0% 
0410 1 1.1% 0 0.0% 
0701 11 12.2% 5 11.4% 
0801 0 0.0% 1 2.3% 
1101 5 5.6% 1 2.3% 
1102 1 1.1% 1 2.3% 
1103 2 2.2% 0 0.0% 
1104 1 1.1% 0 0.0% 
1301 6 6.7% 5 11.4% 
1302 6 6.7% 2 4.5% 
1401 4 4.4% 2 4.5% 
1406 1 1.1% 0 0.0% 
1501 15 16.7% 8 18.2% 
1502 1 1.1% 0 0.0% 
1601 3 3.3% 0 0.0% 

 
Notes 
*: Uncorrected p<0.01 and Bonferroni’s corrected p>0.05 vs Be-exposed controls. 
 
 
 
 
 
 
 

 



 31

Table 11. Frequencies of the HLA-DRB3, -DRB4 and -DRB5 alleles in the HLA-DPGlu69-negative population. 
 
 

 
Notes 
*: Uncorrected p<0.02 and Bonferroni’s corrected p>0.05 vs Be-exposed controls 
 

 

Be-exposed  
controls 

 

Be-hypersensitives 
(berylliosis + Be-sensitized  

without disease) 
Allele N DRB3  

alleles (33) % 
N DRB3  

alleles (22) % 
3* 0101 9 27.3% 14 63.6%* 
3* 0201 2 6.1% 0 0.0% 
3* 0202 16 48.5% 6 27.3% 
3* 0301 6 18.2% 2 9.1% 

 33 100.0% 22 100.0% 
     

 
N DRB4  

alleles (29)  
N DRB4  
alleles (8)  

4* 0101 6 20.7% 3 37.5% 
4* 0103 23 79.3% 5 62.5% 

 29 100.0% 8 100.0% 
     

 
N DRB5  

alleles (19)  
N DRB5  
alleles (8)  

5* 0101 16 84.2% 8 100.0% 
5* 0202 3 15.8% 0 0.0% 
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Table 12. Phenotypic frequencies of the polymorphisms found associated with Be-hypersensitivity in HLA-
DPGlu69-negative subjects. 
 

 Be-exposed controls 
(n=45) 

Be-hypersensitives 
(n=22) 

 
 

 

HLA-DRB1 
polymorphisms1 

N positive subjects 
(%) 

N positive subjects 
(%) 

OR2 p3 

Ser13 28 (62.2%) 20 (90.9) 6.07 0.015 
Tyr26 7 (15.6%) 10 (45.5%) 4.52 0.009 

His32 21 (46.7%) 17 (77.3%) 3.89 0.017 
Asn37 17 (37.8%) 16 (72.7%) 4.39 0.007 
Phe47 30 (66.7%) 21 (95.5%) 10.50 0.011 
Arg74 7 (15.6%) 10 (45.5%) 4.52 0.009 
     

HLA-DQB1 
polymorphism4 

    

Leu26 32 (71.1%) 21 (95.5%) 8.53 0.021 
     

HLA-DRB3 
polymorphisms5 

N=30 N=17   

Arg11 8 (26.7%) 12 (70.6%) 6.60 0.008 
Tyr26 8 (26.7%) 12 (70.6%) 6.60 0.008 
Asp28 8 (26.7%) 12 (70.6%) 6.60 0.008 
Leu38 8 (26.7%) 12 (70.6%) 6.60 0.008 
Ser60 8 (26.7%) 12 (70.6%) 6.60 0.008 
Arg74 8 (26.7%) 12 (70.6%) 6.60 0.008 

 
Notes: 

1. HLA-DRB1 polymorphisms found associated with Be-hypersensitivity in HLA-DPGlu69-negative 
subjects among the overall HLA-DRB1 polymorphic variants analyzed at positions: 9, 10, 11, 12, 13, 16, 
26, 28, 30, 32, 37, 38, 47, 57, 58, 60, 67, 70, 71, 73, 74, 77, 85, 86. 

2. Odds ratio with respect to Be-exposed controls. 
3. p value (χ2 analysis) with respect to Be-exposed controls. 
4. HLA-DQB1 polymorphisms found associated with Be-hypersensitivity in HLA-DPGlu69-negative 

subjects among the overall HLA-DQB1 polymorphic variants analyzed at positions: 9, 13, 14, 23, 26, 28, 
30, 37, 38, 45, 46, 47, 52, 53, 55, 56, 57, 66, 67, 70, 71, 74, 75, 77, 84, 85, 86, 87, 89, 90.  

5. HLA-DRB3 polymorphisms found associated with Be-hypersensitivity in HLA-DPGlu69-negative 
subjects among the overall HLA-DRB3 polymorphic variants analyzed at positions: 8, 11, 26, 28, 30, 37, 
38, 39, 51, 57, 58, 60, 67, 74, 77, 86. No polymorphisms were found associated to Be hypersensitivity in 
HLA-DPGlu69-negatives in the HLA-DRB4 and -DRB5 loci and HLA-DP locus. 
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Figure 1. Inhibition of Be (BeSO4)-induced proliferation, by MoAbs directed against HLA-DR, HLA-DP, 
HLA-DQ, HLA class I and the 19 kDa M. tuberculosis protein in PBMCs from BH subjects carrying or not the 
HLA-DPGlu69 and the HLA-DRPhe47 markers. They were 4 HLA-DPGlu69-negative/HLA-DRPhe47-positive (3 
sensitized and 1 berylliosis-affected), 3 HLA-DPGlu69-positive/HLA-DRPhe47-negative (0 sensitized and 3 
berylliosis-affected) and 8 HLA-DPGlu69-positive/HLA-DRPhe47-positive (3 sensitized and 5 berylliosis-
affected). On the ordinate is shown the percentage of inhibition (with respect to the MoAb-untreated cells) of T-
cell proliferation obtained by co-culturing the PBMCs from berylliosis patients with BeSO4 in the presence of 
each MoAb reported on the abscissa (anti-HLA-DR: DR, anti-HLA-DP: DP, anti-HLA-DQ: DQ, anti-HLA class 
I: C.I, anti-19 kDa M. tuberculosis: Mtb). 
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Interim discussion 

Similarly to our previous report (67) and consistently with the more recent study by 

McCanlies et al. (71), the re-evaluation of this patient population shows a higher prevalence of 

HLA-DPGlu69 among the subjects with lung granulomas compared to the Be-sensitized without 

lung involvement (86% vs 55%, p=0.008). However, not having identified any case of disease 

progression from Be sensitization to lung disease during the 7-years follow-up, we could not 

formally assess the association of the HLA-DPGlu69 marker with progression from sensitization to 

disease. Although the knowledge that HLA-DPGlu69 is the primary immune response gene of Be 

hypersensitivity (60, 73, 77) makes it attractive to hypothesize that the gene might induce a stronger 

immune reaction hence inducing granuloma formation. This hypothesis is suggested by Maier et al. 

(70) in which 11 out of 12 subjects progressed from sensitization to disease status were HLA-

DPGlu69-positives (70), as well as in more recent publication in which Be-sensitized subjects 

progress to berylliosis at a rate of 6-8% per year (83). However, it could be also considered that all 

these data could be inferred by the possibility of misdiagnosis in the identification of the Be-induced 

granuloma.  

The finding that a sizeable fraction of BH-affected subjects, varying from 3 to 27% in 

published reports (64-71), do not carry HLA-DPGlu69 has indicated that other HLA molecules may 

provide the restriction element of Be-stimulated T-cell proliferation and may be implicated in the 

pathogenesis of susceptibility to BH. 

In this regard, with all the limitations imposed by the need of performing specific antigen-

presentation studies using specific reagents such as HLA-DRPhe47 restricted antigen-presenting 

cells and/or HLA-DRPhe47-engineered transfectants as already made for HLA-DPGlu69 (60), the 

T-cell studies using isotype-specific inhibition of BeSO4-stimulated T-cell proliferation with anti-

HLA isotype specific Abs in HLA-typed subjects support the notion that HLA-DR genes are 
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implicated in Be presentation in HLA-DPGlu69-negative subjects. A role for HLA-DRPhe47 in Be 

presentation is conceivable, and the data presented suggest it.  

In fact, multiple analysis has indicated that the HLA-DR aminoacid variants Ser13, Tyr26, 

His32, Asn37, Arg74 are indirectly associated with Be hypersensitivity due to linkage 

disequilibrium with Phe47. It is worth noticing that this analysis accounts for the association of 

HLA-DRArg74 and HLA-DRTyr26 with Be sensitization found in a previous study (67). These 

markers were identified for their positive and negative association of HLA-DR alleles with disease 

or sensitization using univariate analysis in the overall population analyzed (67), while in this re-

evaluation of the same study population after 7-years of follow-up including more subjects with Be-

sensitization and disease we could use multiple logistic regression multivariate analysis on HLA-

DPGlu69-negative subjects only. The fact that the alleles of the HLA-DRB1*03 group (alleles 

found associated with Be sensitization and not disease in the previous evaluation of this study 

population) (67) carrying almost exclusively the HLA-DRArg74 and HLA-DRTyr26 are also 

carrying HLA-DRPhe47 support the notion of the linkage disequilibrium between them. Further, 

only a fraction of HLA-DPGlu69-negative carry only HLA-DRArg74 and –DRTyr26 (10 out of 22; 

45.5%) while all except one (21 out of 22, 95.5%) carry HLA-DRPhe47 suggesting that more than 

an allele or set of them are involved in the Be-presentation to T cells determining Be-susceptibility.  

Consistent with the T-cell Ab-inhibition study, multiple regression analysis also indicates 

that the association between the HLA-DQ marker Leu26 and Be hypersensitivity is attributable to 

linkage disequilibrium between HLA-DR and HLA-DQ loci (84). It is well known that the HLA-

DQLeu26 residue is expressed by all the HLA-DQB1*02 alleles and most of *03 and *06 alleles 

that are in linkage with the HLA-DRB1*03, 11, 12, 13 or 15 alleles which, in turn, express HLA-

DRPhe47. Similar to our data, Maier and co-workers (70) obtained evidence for an association of 

HLA-DQB1*06, a Leu26 expressing group of alleles, with Be hypersensitivity in HLA-DPGlu69-
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negative subjects. They too attributed the increased frequency of this HLA-DQ marker to linkage 

disequilibrium with HLA-DR and in particular to HLA-DR*13 alleles, a group of alleles expressing 

Phe47 (70).  

The data of this study take the above observations (67, 70) a step further by suggesting that 

the HLA-DR gene, possibly the HLA-DRPhe47 supratypic variant, ought to play a functional role in 

Be presentation, as this (Tyr/Phe 47) polymorphism is known to be important for peptide binding 

and presentation to T cells (85, 86). Interestingly, HLA-DRPhe47 has been also implicated in 

susceptibility to the histopathological alike of berylliosis, sarcoidosis, in a very large case control 

population study (81).  

In conclusion, both the HLA typing and the in vitro T-cell data in this study indicate a role 

for HLA-DR genes in determining susceptibility to Be hypersensitivity among individuals not 

expressing the HLA-DPGlu69 variant. The typing data point to the HLA-DRPhe47 supratypic 

variant as the susceptibility gene in this sub-population, and analysis of the molecule’s structure 

suggests that HLA-DRPhe47 could bind Be and present it to T cells, using a different mechanism 

from what used by HLA-DPGlu69. Together, HLA-DPGlu69 and  HLA-DRPhe47 could account 

for susceptibility in almost 100% of the affected population. 
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CHAPTER 3 

HLA-DP POLYMORPHISMS AND PEPTIDE BINDING 

 

DETAILED ANALYSIS OF THE EFFECTS OF GLU/LYS β69 HLA-DP 

POLYMORPHISM ON PEPTIDE-BINDING SPECIFICITY. 

 

The data presented in this paragraph have been already published (Tissue Antigens 

2003; 62: 459-71) and are fully available at http://www.blackwell-

synergy.com/doi/full/10.1046/j.1399-0039.2003.00131.x 

 

Introduction 

HLA-DPB1 mismatches at position β69 were shown to play a critical role in helper T-cell 

recognition (87). Specifically, the change of Glu (E) to Lys (K) at residue β69 prevents the 

recognition of several HLA-DPw2 alloreactive CD4+ cytotoxic T lymphocytes, demonstrating the 

requirement for a negatively charged residue at this position for allostimulation of these T-cell 

clones (88) and a similar substitution alters the characteristics of the Ab-binding epitope in the 

peptide-binding groove (88, 89). Importantly, the HLA-DP2 (HLA-DPA1*0301/HLA-

DPB1*02012) molecule, carrying the βGlu69 residue, can bind metals such as Be (77) and cobalt 

(90) and is able to present Be to Be-specific T cells (60). All these data suggest that the HLA-DPβ69 

residue plays a crucial role in HLA-DP-restricted immune responses. 

To gain further insight into the functional role of this residue, and, in particular, to evaluate 

the importance of HLA-DPβ69 in peptide binding, we tested a panel of invariant chain (Ii) derived 
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peptide (CLIP) variants in competition-binding assays on HLA-DP molecules carrying the two most 

frequent aminoacids (E and K) found at position β69. In particular, peptide-binding and competition 

tests were performed on soluble HLA-DP2 (as prototype of Glu69-positive allele) and HLA-

DP2K69 molecules generated in Drosophila melanogaster (D. melanogaster) and also on cell-

surface-expressed molecules using B-lymphocyte cell lines (B-LCLs) expressing the HLA-

DPB1*02012 and HLA-DPB1*02012-K69 alleles.  

In the first instance, we assessed the binding frame of the CLIP peptide to the soluble HLA-

DP molecules. Then, we used molecular modeling to predict a detailed structural model of HLA-

DP2 complexed with CLIP. As K is the aminoacid most frequently found in position β69, the model 

was then compared with a mutated HLA-DP2K69 molecule carrying K instead of E. This mutation 

generates a sequence equivalent to that of the naturally occurring allele HLA-DPB1*0402. 

Secondly, we analyzed the peptide selection rules of HLA-DP2 and –DP2K69 by using mutated 

CLIP peptides at the relative positions interacting with pocket 4 and 6 (the two pockets mostly 

affected by the conformational changes induced by the E to K mutation at position β69) in 

competition assays. The experimental results were then used for assessing the best molecular 

modeling approach for predicting the aminoacid selection rules of HLA-DP pocket 4 and 6. 

 

Methods 

Antibodies and peptides. The anti HLA-DP monomorphic MoAb B7/21 (91), that is able to 

recognize only the assembled HLA-DP molecules (91), was purified from culture supernatants as 

described (92). Tetanus toxoid 947-967 derived peptide (FNNFTVSFWLRVPKVSASHLE) (93), 

CLIP 89-101 (SKMRMATPLLMQA) (94) and all its mutants at position P4 (A 94) and P6 (P 96) 

were purchased with free aminoacid termini from Advanced Biotech (Bergamo, Italy). Full-length 
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CLIP 86-114 (KPVSKMRMATPLLMQALPMGALPQGPMQN), CLIP 85-101 

PKPVSKMRMATPLLMQA) and truncated CLIP peptides biotinylated at the amino or C terminus 

were purchased from Sigma-Genosys (Cambridge, UK). All synthetic peptides were purified by 

reverse-phase chromatography (RPC) to >90% purity. Sequence and purity were confirmed by mass 

spectrometry and analytical RPC. 

Lymphoblastoid cell lines. Lymphoblastoid cell line 45.EM1 was derived from 45.1, a 

mutant haploid for HLA (remaining haplotype A2, B5, DR1, DQw1, DPw2 (DPA1*0301, 

DPB1*02012), by ICR191 irradiation and subsequently selected by resistance to lysis by a HLA-

DPw2-allospecific CTL clone. This cell line is HLA-DPw2 negative, expressing normal levels of 

DPA mRNA but is not able to transcribe DPB1. 45.EM1 transfectants expressing wild-type 

DPB1*02012 allele and the site-directed mutant DPB1*02012-K69 allele were obtained as 

previously described (88). 

Production of soluble HLA-DP molecules. HLA-DP2 and HLA-DP2K69 molecules were 

produced in soluble form in D. melanogaster Schneider-2 (S2) cells as previously described with 

minor modifications (77). Briefly, constructs containing the soluble form of the HLA-DPA1*0103, 

HLA-DPB1*02012 and its mutated form (Lys for Glu) at position 69 of the β-chain (HLA-

DPB1*02012K69) were used as source for inserting the cDNA of the HLA-DP molecules in front of 

the Fos (alpha chain) and Jun (beta chains) zipper domains fused (95) by overlap extension PCR as 

described (96), yielding hybrid cDNAs. Hybrid HLA-DPβ chain cDNAs were digested with 

appropriate restriction enzymes and reinserted into pRmHA-3 insect cell expression vector; while 

HLA-DPα−chain cDNA after digestion with appropriate restriction enzymes was reinserted into 

pRmHA-3 insect cell expression vector modified with an oligonucleotide containing a 5' in frame 

Bgl II site, followed by the coding sequence for six histidine residues, a stop codon, and a Sal I 
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cloning site (77, 97). D. melanogaster (S2) cells (2x106 cells/ml in 100 mm Petri dish) were 

transfected with 9.5 μg of cDNA constructs for HLA-DP α− and β−chains in pRMHa-3 

(DPA1*0103/DPB1*02012 or DPA1*0103/DPB1*02012-K69 with leucine zipper tails) together 

with a plasmid containing a Hygromycin resistance gene, pCoHygro (Invitrogen, Carlsbad, CA), 

using the calcium phosphate technique (77, 97). Resistant cells were selected using 300 μg/ml 

hygromicin-B in Schneider’s medium containing 10% FCS, 2 mM l-glutamine and antibiotics. For 

large scale protein purification from culture supernatants, stable S2 transfectants were expanded up 

to 3-4 liters in serum free Insect X-Press medium (BioWhittaker, Walkersville, MD). Protein 

synthesis was induced with 1 mM copper sulphate. Soluble HLA-DP2 and HLA-DP2K69 molecules 

were purified to homogeneity with two affinity chromatography steps using a Ni-NTA (Qiagen, 

Hilden, Germany) column and an anti-HLA-DP (B7/21) affinity column followed by neutralization 

in the presence of an excess of tetanus toxoid peptide (tt 947-967) specific for both the HLA-DP 

molecules in order to stabilize the HLA class II αβ heterodimer. Purified soluble HLA-DP 

complexes were stored at -80°C in the presence of a mixture of protease inhibitors. Prior to use in 

binding tests, purified HLA-DP molecules were characterized by SDS-PAGE, western blotting with 

specific MoAbs, size exclusion chromatography and ELISA, as already described (77). 

Peptide-binding and competition assays using HLA-DP soluble molecules. Prior to peptide-

binding assays, 5 µg of HLA-DP molecules were incubated twice for 30 min at 37°C with 100 

volumes excess of 20 mM sodium acetate/100 mM NaCl buffer pH 5.0 and concentrated to the 

original volume by ultrafiltration using a Microcon-10 concentrator (Millipore, Milano, Italy). This 

treatment was able to remove the tetanus toxoid 947-967 stabilizing peptide from the HLA-DP 

groove used during the purification of HLA-DP molecules, as assessed by the lost of the stability of 

the HLA-DP dimer after incubation at room temperature in SDS-PAGE buffer (data not shown).  
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Direct peptide-binding assays were performed as already described with minor modifications 

(98) by incubating soluble HLA-DP molecules (0.3 μg), with increasing concentrations of 

biotinylated peptide (0.15-150 μM) at pH 5.0 in 50 μl of 20 mM sodium acetate/100 mM NaCl 

buffer, PMSF and NaN3, O/N at 37°C. Similarly, competition assays were performed by using 0.3 

μg of soluble HLA-DP molecules incubated O/N at 37°C with biotinylated-CLIP peptide (10 µM) at 

pH 5.0 in 50 μl of 20 mM sodium acetate/100 mM NaCl buffer in the presence of non-biotinylated 

competitor peptide (0.3 μM-300 μM), PMSF and NaN3. To block binding and competition assays, 

50 μl of 2X PBS containing 3% BSA was added to each reaction tube. 

The amount of biotinylated-CLIP peptide bound on the HLA-DP molecules at the end of 

direct binding or competition assays was determined as already described (98) by incubating for 1 hr 

the reaction mixture in duplicate on 96-well plates (Nunc) coated overnight at 4°C with 50 µl of 50 

µg/ml of the HLA-DP specific MoAb B7/21 in PBS, pH 7.4 and blocked with 360 μl of 3% nonfat 

dry milk in PBS followed by 360 μl of 3% BSA in PBS for 30 min each. The plates were then 

washed five times with 10 mM Tris/l40 mM NaCI/0.05% NaN,/0.05% Tween-20, pH 8 (TBST) 

followed by Streptavidin-alkaline phosphatase (Boehringer Mannheim, Indianapolis, IN) incubation 

for 60 min at room temperature, followed by an additional series of five TBST washes. Alkaline 

phosphatase substrate (100 μl of p-nitrophenylphosphate, Sigma) was added, and the absorbance 

was read at 405 nm after incubation for 100 min. In each experiment, the background given by the 

same amount of biotinylated peptide in the absence of soluble HLA-DP molecules was subtracted 

from the binding and competition data.  

The concentrations of competitor peptide required to compete the binding of biotinylated-

CLIP peptide to 50% of maximum (IC50) were calculated by using the least squares fit methods of 

the titration data using GraphPadPrism software (GraphPad Software Inc, San Diego, CA) and 
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normalized to 1 μM of biotinylated-CLIP peptide. 

Peptide-binding assays using B-LCL. 5x105 B-LCLs were incubated at 37ºC for 4h with 

biotinylated-CLIP (20 μM) and different amounts (1-100 μM) of non-biotinylated peptides, in 

RPMI 1% STF, at pH 5-6. Then, 0.5 μg/100μl of Streptavidina-R-phycoerythrin (PE) (Caltag, 

Burlingame, CA) was added and incubated for 30 min at 4ºC; the cells were washed off using PBS 

1% STF after each incubation. Stained cells were analyzed by flow cytometry on a FACScan 

analyzer (Becton Dickison, San Jose, CA), excluding dead cells from the analysis by staining with 

propidium iodide.  

Since transfectant B-LCLs used in these experiments express HLA-DQ and -DR molecules 

other than HLA-DP and CLIP peptide binds not only to HLA-DP but also to HLA-DR and -DQ, the 

parental cell line 45.EM1 expressing the same HLA-DR and -DQ alleles, but not HLA-DP, was 

always used as negative control and the fluorescence intensity subtracted from the total fluorescence 

obtained in each experiment. Moreover, control cells incubated in the absence of peptide under the 

same conditions were taken as background.  

Relative binding of biotinylated CLIP to HLA-DP molecules was calculated by the following 

formula: 100x (MCF from LCLs incubated with biotinylated CLIP- MCF from LCLs incubated with 

both biotinylated and non-biotinylated CLIP / MCF from LCLs incubated with biotinylated CLIP), 

where MCF is mean channel fluorescence.  

Molecular modeling of HLA-DP and prediction of HLA-DP binding rules for pocket 4 and 6. 

Sequence and domain structure information of HLA-DP2 molecule were obtained from the Swiss-

Prot database. Sequences corresponding to the extracellular parts of α and β chain, respectively, 

were individually submitted to the Swiss-Model Protein Modeling Server 

(http://www.expasy.ch/swissmod/) via the “first approach mode”. Both resulting models were 
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subsequently re-submitted via the “combine mode” allowing the Swiss-Model Protein Modelling 

Server to choose the best crystal structure template available for modeling the HLA-DP2 molecule. 

The resulting three-dimensional model of the extracellular domain of HLA-DP2 was modeled on the 

crystal structure of the HLA-DR4 molecule (99). Further processing was carried out using 

InsightII/Discover (Accelrys, San Diego, CA). The coordinates of the CLIP peptide in the HLA-

DR3 crystal structure (100) were superimposed onto the HLA-DP2 model. Optimization of the 

model was performed using the conjugate gradients method and the consistent-valence (cvff) 

forcefield. The effects of solvent were simulated using a distance-dependent dielectric constant 4.0 x 

r. Position β69 (E) was then changed to K generating the HLA-DP2K69 model after similar 

optimization.  

The CLIP residues in pocket P4 and P6, Ala (A) and Pro (P) respectively, were modified 

with different aminoacid residues and the corresponding models again optimized for all protein 

residues within 10Å of the CLIP peptide and the peptide itself. Each of these models was subjected 

to a molecular dynamics simulation at 600°C for 5000 iterations (plus 200 iterations for temperature 

equilibration). Conformations selected as possible low-energy configurations were again optimized. 

Intermolecular coulombic and van der Waals energies were calculated between the protein and the 

CLIP peptide using the Docking module of Insight II with a cutoff of 100A. 

 

Results 

Characterization of the CLIP-binding frame of HLA-DP2 and DP2K69 molecules. The Ii protein 

was shown to bind to all MHC class II molecules through the portion named CLIP as a standard 

peptide with a medium/low affinity (101, 102, 100). No detailed data are available, however, about 

the binding frame of CLIP to HLA-DP molecules although the fragment 89-101 had been already 
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used in competition tests (98, 77).  

In order to precisely determine the binding frame used by Ii in the binding of CLIP to HLA-

DP2 and -DP2K69 molecules we used a panel of truncated CLIP peptides spanning the entire CLIP 

sequence (aa 86-114 of human Ii).  

Figure 2 shows direct binding data for the different truncated biotinylated-CLIP peptides to 

HLA-DP2 and HLA-DP2K69 variant as a percentage of the maximum binding observed for full 

length CLIP 86-114. In particular, only the biotinylated peptides that included the complete 

sequence of aa 91-99 of Ii demonstrated a significant dose-dependent binding to both HLA-DP 

molecules, suggesting that the minimum peptide-binding core is composed of 9aa. Interestingly, as 

it has been reported for other MHC class II molecules, peptide aminoacids at relative positions P-1 

and P-2, and, in less extent, at positions P10 and P11 determined an increment of the peptide affinity 

to the HLA-DP molecule, thus suggesting a stabilizing role for these portions of the peptide 

extending outside the HLA-DP2 binding groove.  
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Figure 2. CLIP-binding frame of the HLA-DP2 and HLA-DP2K69 molecules. Increasing concentrations 
(0.15-150 μM) of truncated biotinylated-CLIP peptides (aminoacid sequence shown on the right, §: biotin) were 
tested for direct binding to HLA-DP2 (black bars) and HLA-DP2K69 (grey bars) molecules and reported on the 
abscissa. The data are expressed as a percentage of the maximum binding obtained with 150μM of full-length 
CLIP peptide. The grey area on the aligned CLIP sequences indicates the principal binding frame of CLIP to 
HLA-DP2 in agreement with the plotted data on the left. 



 46

HLA-DP2 and HLA–DP2K69 molecular models. In order to predict the possible structural 

interaction between CLIP and HLA-DP molecules, HLA-DP2 and HLA–DP2K69 molecular models 

carrying the CLIP peptide in the binding groove were obtained by homology modeling using the 

crystal structure of HLA-DR4 (99) for the αβ HLA-DP dimer coordinates and HLA-DR3 (100) for 

CLIP coordinates inside the groove, as for HLA-DR3 (100) present the same binding core for CLIP 

as that assessed for the HLA-DP2 and DP2K69 molecules. Figure 3 panel A shows the surface 

analysis of the binding regions (top view) of the HLA-DP2 molecule interacting with the CLIP 

peptide (shown in stick). As expected from the homology with HLA-DR4, the binding sites 

presented four major contact sites with the peptide accommodated in the groove. These four pockets 

interacted with the peptide aminoacid residues P1 (M91 in CLIP), P4 (A94 in CLIP), P6 (P96 in 

CLIP) and P9 (M99 in CLIP).  

Due to the deletion of two aminoacids in the region comprised between the aminoacids 22-

27 of HLA-DR β chain, position HLA-DPβ69 is homologous to HLA-DRβ71. As already described 

for DRβ71, DPβ69 is located in the HLA-DP models in the α−helix of the β-chain and the 

aminoacid residue is directly involved in the formation of pocket 4. Interestingly, by mutating Glu 

(in HLA-DP2) to Lys (in HLA-DP2K69) in the position β69 important changes were observed in 

the shape and charge distribution not only of pocket 4 but also of the nearby pocket 6 (figure 3 panel 

B, surface analysis of the binding regions, top view, of the two molecules after removing the CLIP 

peptide). In a deeper and more negatively charged pocket 4 and a different charge distribution in 

pocket 6 with particular, HLA-DP2 displayed respect to HLA-DP2K69. Moreover, some structural 

differences between the two molecules could also be observed in α1β1 domains outside the binding 

groove (figure 3 panel C, superimposition of HLA-DP2 and HLA-DP2K69 molecules, surface 

analysis; top view). 
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The structural changes observed between the HLA-DP2 and –DP2K69 models did not 

appear to be due to a different conformation of the CLIP peptide inside the groove of the two 

models, since this showed an essentially similar structure in both models and Ala94 at position P4 

did not even penetrate into the pocket (figure 3 panel D, superimposition of CLIP peptide from 

HLA-DP2 and HLA-DP2K69 molecular models; front view). Therefore, the differences in pocket 4 

structure are probably directly due to the HLA-DP aminoacid residues involved in the pocket itself 

and not to a different interaction of these aminoacids with the Ala residue present in CLIP at this 

position. 
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Figure 3. Molecular model analysis of the HLA-DP2 and DP2K69 molecules.   
Panel A: top view of the surface analysis of the peptide-binding region of the HLA-DP2 molecule (in light blue) 
interacting with the CLIP peptide (shown in CPK color in stick stile). Aminoacid residues interacting with the 
main HLA-DP2 pockets are indicated. Panel B: surface analysis of the HLA-DP2 and -DP2K69 binding grooves 
after removing the CLIP peptide from the models. The main peptide-interacting pockets are indicated with 
arrows. The partial surface charge distribution is shown color-scaled from red (negatively charged) to blue 
(positively charged) as indicated on the right. Panel C: top view of the surface analysis of HLA-DP2 molecule (red 
transparent surface) with super-imposed the HLA-DP2K69 surface analysis (blue filled surface). Panel D: frontal 
view of the superimposed CLIP peptides from HLA-DP2 (red) and HLA-DP2K69 (bleu) molecular models. 
Aminoacid residues interacting with the main HLA-DP pockets are indicated. 



 49

 
Competition tests between CLIP and CLIP variants. In order to define the role of the 

polymorphism E/K at position β69 of the HLA-DP in determining peptide-binding rules we 

characterized the binding affinities of CLIP peptides modified at relative positions P4 and P6 in 

competition tests on soluble HLA-DP2 and –DP2K69 molecules using a fixed amount of 

biotinylated-CLIP (able to give 90% of the maximum binding at pH 5.0 and 60% of the maximum 

binding at pH 7.5; data not shown).  

Figure 4 (panel A) shows the IC50 values obtained in the competition tests at pH 5.0 using 

HLA-DP2 soluble molecules for the mutated CLIP peptide at relative peptide position P4. In 

particular, with respect to the wild type residue (Ala –A-) present in CLIP at this position, HLA-

DP2 had an increased affinity for CLIPs carrying polar (Gln –Q- and Asn –N-) or positive-charged 

(Arg –R- and K) residues, non-polar aromatic residues (Trp –W-, Phe –F-, Tyr –Y-, and His –H-) or 

residues carrying S–groups (Cys –C- and Met –M-). Non-polar aliphatic residues such as Val (V) 

and Leu (L), and to a lesser extent Ile (I), Pro (P) and the polar residues Thr (T) and Ser (S), were 

disfavored with respect to A at position P4. Other residues (Asp –D-, E and Gly –G-) showed no 

significant advantage or disadvantage.  

Similarly, as shown in figure 4 (panel B), the IC50 values for the mutated CLIP peptides and 

the soluble HLA-DP2K69 molecules indicated that pocket 4 of HLA-DP2K69 presented a less 

general aminoacid selectivity than HLA-DP2. In particular, an increased affinity with respect to A 

was observed for CLIP variants presenting aromatic residues (F, W, Y, P and H) and charged or 

polar residues independently of the charge (Q, R, N, D, K and possibly M and E). Interestingly, in 

contrast to HLA-DP2, non-polar aliphatic residues like L and I were favored with respect to A at 

position P4. Other residues (V, S, C, T and G) were slightly disfavored. 

Figure 4 panels C and D show similar IC50 values obtained in the competition tests using 
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HLA-DP2 and HLA-DP2K69 soluble molecules for the CLIP peptides mutated at relative peptide 

position P6. With respect to the wild type residue (P) present in CLIP at this position, HLA-DP2 

showed an increased affinity for mutated CLIPs with aromatic residues (Y, W, F and H). Positively 

charged residues (K and R), the polar residue Q and, among the non-polar aliphatic residues, we also 

demonstrated an increase of affinity, although less than that for non-polar aromatic residues. 

Negatively charged residues (E and possibly D), polar residues like T and S, residues carrying S–

groups (M and C) and non-polar aliphatic residues (L, V and A), G and perhaps N are disfavored 

with respect to P at position P6 of HLA-DP2. Pocket 6 of HLA-DP2K69 also had an increased 

affinity with respect to P for mutated CLIPs presenting non-polar aromatic residues (F, Y, W and 

H), but the affinity for charged residues was partially independent of the charge (R, K, E, but not D) 

although positively charged residues seemed to be favored. Polar residues like N, Q (and D) did not 

present any advantage in binding affinity with respect to the wild type aminoacid P. Smaller polar 

and non–polar aliphatic residues like A (and G), L, T, I, S, V and residues carrying an S–group (C 

and M) were disfavored, with the smaller side-chains apparently most affected. 

The HLA-DP2 and –DP2K69 peptide-binding data were further confirmed by the analysis of 

a subset of the tested peptides in peptide-binding studies using cell bound HLA-DP molecules 

expressed by EBV transformed B-cell lines 45.EM1 transfected with wild-type 

(45.EM1/DPB1*02012) or site-directed mutant (45.EM1/DPB1*02012-K69) alleles. CLIP peptide 

mutants carrying K, V, I, C or F at P4 and A, R, W, E or G at P6 were used. A general correlation 

was observed between the binding data using soluble HLA-DP molecules and HLA-DP molecules 

expressed at the cell surface of B-LCLs (overall correlation coefficient between IC50 with soluble 

molecules and EC50 determined with B-cell lines 0.71, p<0.03). 
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Figure 4. Competition tests between CLIP and mutated CLIPs at P4 and P6 on HLA-DP soluble 

molecules. The IC50 results (as μM values on the abscissa of each panel) for all the peptides evaluated are 
reported by molecule and position. Panel A, HLA-DP2 P4 affinities; panel B, HLA-DP2K69 P4 affinities; panel 
C, HLA-DP2 P6 affinities; panel D, HLA-DP2K69 P6 affinities. The ordinate is drawn through the point of 
equimolar competition with the biotinylated-CLIP peptide (1 μM). Thus, bars extending to the left of the vertical 
axis represent CLIP mutated peptides that bind with higher affinity than biotinylated CLIP; bars extending to 
the right represent CLIP mutated peptides that bind with lower affinity than biotinylated CLIP. Each aminoacid 
mutation of CLIP peptide tested is reported at basis of the bar. wt: wild type peptide (i.e. non-mutated CLIP). 
The data shown are the mean value obtained in three independent experiments. 
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Molecular modeling of the interaction between HLA-DP molecules and mutated CLIPs: 

prediction of peptide selection rules. The modeling of HLA-DP2 and -DP2K69 molecules had 

enable to identify differences in the peptide-binding groove of the two molecules. On the basis of 

the data from peptide-binding experiments, we tried to define if molecular modeling could be 

successfully used for predicting the peptide selection rules of HLA-DP. In order to achieve this, we 

introduced all the possible aminoacid mutations at P4 (A) and P6 (P) of the CLIP peptide in the two 

HLA-DP/CLIP models generated and determined the energies (in terms of van der Waals and 

Coulombic energies) of the interaction between the HLA-DP molecules and the peptides. 

Figure 5 panel A shows the correlations between the Δ energies of the HLA-DP/mutated 

CLIP and the HLA-DP/wild-type CLIP complexes and the IC50’s experimentally determined for the 

same mutations. The observed coefficients of correlation varied widely between the different HLA-

DP molecules and the pocket evaluated (range: 0.17-0.74). Van der Waals energies seemed to play 

the most relevant role among total energy results of the interaction (data not shown). In order to 

minimize the effects of the interaction between the HLA-DP molecule and the CLIP peptide at 

positions not involved in the analysis, we re-performed the molecular modeling evaluation using the 

single aminoacids inside the pocket of interest and fixed the coordinates of the peptide backbone and 

other side-chains and excluded these atoms from the energy calculations. Figure 5 panel B shows 

the results of the correlations between the Δ energies of the HLA-DP/mutated aminoacid and the 

HLA-DP/wild-type aminoacid complexes and the IC50s experimentally determined for the peptides 

carrying the same mutations. Good and homogeneous coefficients of correlation (range: 0.64-0.80) 

were observed between Δ total energies and IC50 for both molecules and in both the analyzed 

pockets. Once again, the most relevant role in the total energies was played by the van der Waals 

energies. 
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Figure 5. Correlation between predicted binding affinity (Δ energies in KJ/mol) and IC50 (μM) for all the 

aminoacid residues in P4 and P6 of CLIP with respect to HLA-DP2 and DP2K69. Panel A shows the correlation 
with the experimental IC50 and the data for total energies obtained by modeling the complete peptide in the 
groove. Panel B shows the correlation with the experimental IC50 and the data for total energies obtained by 
modeling only the single aminoacid in the groove. Each aminoacid is represented in a single letter code. The 
correlation coefficient (r) and the linear regression line are reported for each plot. 



 54

Interim discussion  

The polymorphism E/K at position 69 of the HLA-DPβ chain plays a critical role in HLA-

DP-restricted immune responses (64, 65, 67). In this study we define peptide selection rules of 

HLA-DP molecules carrying E at position β69, using HLA-DP2 as the prototype, together with the 

selection rules of its mutated counterpart i.e., HLA-DPK69 corresponding to the naturally occurring 

allele HLA-DPB1*0402. For this purpose, we used variants of the peptide CLIP in competition 

peptide-binding assays using soluble or cell membrane-bound HLA-DP molecules. The CLIP 

peptide is known to bind all HLA class II molecules with low to medium affinity. This peptide 

carries two M residues at positions 91 and 99 which interact with pockets 1 and 9, respectively, of 

the HLA class II molecule (100-102). Interestingly, the aminoacid residues carried by the CLIP 

peptide at positions P4 and P6 (A 94 and P 96), the pockets whose conformation and electrostatic 

properties are dependent upon residue 69, do not lock into pockets 4 and 6 of the HLA peptide-

binding groove. This confers low stability upon the CLIP-MHC complexes thereby allowing CLIP 

to be released in the endosomal compartment and antigenic peptides to be subsequently loaded (100-

104). For its ability of forming low stability complexes, CLIP is particularly suitable for assessing 

both positive and negative effects of aminoacid substitutions at position P4 and P6 when defining 

the peptide-binding rules of the HLA-DP2 molecule and of its mutated form HLA–DP2K69. 

Molecular modeling has been widely used to predict the structure of MHC class I and class II 

molecules with unknown crystal structure (105, 106), and frequently the validity of the results 

obtained with this approach was later confirmed, as with the characterization of the CLIP’s structure 

inside the HLA-DR3 groove (100, 105). Based upon the homology with HLA-DR4 molecule, the 

peptide-binding site of both HLA-DP alleles used in this study exhibits four major contact sites for 

bound peptides. The side-chains of the CLIP peptide aminoacid residues P1 (M 91), P4 (A 94), P6 
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(P 96) and P9 (M 99) fit naturally into these pockets, suggesting that the HLA-DP groove can 

accommodate nonameric peptide core sequences. This hypothesis has been confirmed by the results 

of this study where the CLIP fragment 91-99 showed significant binding to HLA DP2 and HLA–

DP2K69 molecules, as already suggested by observations with naturally bound peptides eluted from 

HLA-DP2 (98) and HLA-DP4 (107). In this context, the scanning of all putative CLIP-binding 

frames for the HLA-DP molecules using molecular modeling suggests that the 91-99 CLIP fragment 

generates the most stable HLA-DP/CLIP complex with the lowest total free energy (data not 

shown). Finally, the direct binding study with the truncated CLIP peptides suggested a stabilizing 

role in the HLA-DP/CLIP complex for the aminoacids of CLIP extending outside the groove at N-

terminal and in less extent at the C-terminal. Although further peptide-binding and structural studies 

are needed to clear assess this point, these data are in agreement with similar observation reported 

for other peptides and MHC class II molecules (108) suggesting that the N-terminal P -1 and P -2 as 

well the C-terminal P10 and P11 extended residues of the bound peptide interact with conserved 

position in the MHC class II molecule increasing the stability of the MHC/peptide complex. 

The molecular model of the HLA-DP2 molecule predicts that the β-chain’s residue 69 is 

directly involved in the formation of pocket 4, in agreement with other molecular models already 

used for describing the properties of HLA-DP molecules (90, 98, 107). Moreover, here we reported 

that the single E (in HLA-DP2) to K (in HLA-DP2K69) aminoacid substitution at position β69 of 

the HLA-DP molecule introduces significant changes in the shape and charge distribution of both 

pocket 4 and the nearby pocket 6. In particular, HLA-DP2 displays a deeper and more negatively 

charged pocket 4 compared to HLA-DP2K69. Further, HLA-DP2 also shows a different charge 

distribution in pocket 6. The molecular model predicted changes in charge distribution between the 

two models of HLA-DP molecules determining a change in peptide selectivity in both pockets as 
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demonstrated by our peptide-binding results. Finally, consistently with the critical role that the 

HLA-DP β69 polymorphism plays in allorecognition (87, 88), differences in the α1β1 domains that 

are outside the binding groove were also predicted by molecular modeling in HLA-DP2 compared 

to HLA-DP2K69.  

In agreement with the predictions of molecular modeling, the competition tests using CLIP 

mutants demonstrated that pocket 4 of HLA-DP2 has high affinity for positive polar residues like Q, 

R, K and N or non-polar aromatic residues (F, W, Y and H) and residues carrying the S–groups such 

as C and M, but reduced affinity for large non-polar aliphatic residues. Similarly, pocket 6 of HLA-

DP2 showed high affinity for aromatic residues (Y, W, F and H) but reduced affinity for very small 

side-chains such as A and G.  

Pocket 4 of the HLA-DP2K69 molecule shows lower selectivity than HLA-DP2 in that only 

aromatic residues present high affinity to it. Interestingly, in addition to altering the binding 

characteristics of pocket 4, K at position β69 also contributes to aminoacid selectivity of pocket 6. 

In fact, in addition to select for aromatic residues (F, W, Y and H) as in HLA-DP2, the K69 residue 

of HLA-DP2K69 favors the binding of large residues endowed with the capacity to form H-bonds 

(such as R) with residue Qα60. The observation that mutations within pocket 4 of HLA-DP2 affect 

peptide-binding properties of pocket 6 on the same molecule is not unique. Similar findings were 

reported for HLA-DR1*0401 and HLA-DR1*0402 (109). In HLA-DRβ*0401, the Kβ71 residue, 

that’s homologous to the Kβ69 residue of HLA-DP2K69, contributes to increased binding affinity 

for peptides carrying a R in P6 position, while the Qβ71 residue of DRB1*0402 rejects peptides 

with an R in P6 position (109-111). 

Overall, our data are in agreement with previous observations on peptide selectivity for P4 

and P6 of HLA-DP2 (98) and of HLA-DP4 (107), and extend them at the quantitative level. In 
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particular, Chicz and colleagues predicted the general properties of the HLA-DP2 pockets from the 

analysis of naturally processed peptides eluted from HLA-DP2 which showed that T, S and Q were 

prevalent in P4 and Y, F and W in P6 (98). Also in agreement with our data, they also found that an 

S to A change in P4 did not significantly alter the peptide’s IC50, while an F or Y to A change in P6 

significantly decreased binding affinity (98).  

With regard to HLA-DPB1*0402, the natural equivalent of the molecule here reported as 

HLA-DP2K69, Castelli and co-workers analyzed peptide-binding specificity by using critical 

aminoacid substitutions on a high affinity peptide (107). Similar to the data reported here, the P4 

pocket of HLA-DP0402 showed reduced aminoacid selectivity, with aromatic residues being most 

favored (107). In agreement with our data, Castelli and colleagues also indicated aromatic residues 

such as F, W and Y as most favored for selection by pocket 6 of the HLA-DP4 molecule, whereas 

residues A, E, N, K and T were less tolerated (107). Since they did not evaluate the role of large 

hydrophobic residues in peptide binding to the P6 pocket (107), a full and critical comparison is not 

feasible.  

In addition to using molecular modeling to make structural predictions, we used it to predict 

peptide selection rules by HLA-DP molecules. Actual peptide-binding affinities were determined by 

competition assays. The comparison between the predicted affinity expressed as total energy of 

interaction between the HLA molecule and the CLIP variants carrying mutations at positions P4 and 

P6, and the measured affinity, expressed as IC50, showed that van der Waals forces are most critical 

in defining actual peptide-binding affinity. Although further studies are needed to increase the 

power of molecular modeling in predicting the binding pocket selectivity, the data reported here 

suggest that this approach can help with determining the role of aminoacid substitutions in anchor 

positions 4 and 6 in modifying binding affinity of peptides to HLA allelic variants, therefore 

indicating it as the technique of choice for in silico vaccine design (112).  
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Together with the available information (113), the results of this study, suggest that 

aminoacid binding by the HLA-DP groove is controlled by a very limited number of key aminoacid 

combinations. Thus, the binding results presented in this paper constitute a promising way of 

selecting peptides for vaccination. Peptide-based vaccination typically uses HLA-DR-restricted 

peptides selected for their ability to bind multiple HLA-DR allelic variants and to be immunogenic 

for the largest fraction of the population are used (112) and a number of studies have been carried 

out to identify such peptides in microbial and tumor antigens and allergens (107, 111, 112, 114). It is 

worth noticing that HLA-DP-restricted immunodominant peptides have been shown to elicit T-cell 

response as strong as the typical HLA-DR-restricted T-cell reactions (60, 115-119). In the context of 

the knowledge that HLA-DP carries a rather limited number of supertypes in the general population, 

one might expect that peptides known to bind by the two most frequent HLA-DP alleles i.e., HLA-

DP2 and HLA-DP4, might have the same impact upon a population as peptide selected for the 

ability to bind eight or more HLA-DR allelic variants (120). Thus identifying specific HLA-DP 

restricted peptides might be important for the design of new synthetic vaccines to complement 

panels of HLA-DR-restricted peptides in multi-epitopic strategies aiming at reducing the risk of 

pathogen evasion. 
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CHAPTER 4   (SUBMITTED) 

IN VITRO MODULATION OF BERYLLIUM STIMULATED T-CELL 

ACTIVATION USING HLA-DPGLU69 POCKET 4 SPECIFIC  

CLIP-DERIVED PEPTIDES 

 

Introduction 

As pointed out in the previous chapters, in berylliosis the immune response genes, primary 

the HLA-DPGlu69 and, to a lesser extent, the HLA-DRPhe47, are responsible for antigen 

presentation of Be to T cells in affected subjects (60, 73) driving higher T-cell stimulation (121). 

The granulomatous reaction to Be is thought to be initiated by the exaggerated release in the 

alveolar milieu of TNF-α by alveolar macrophages caused both by direct Be stimulation (74) and by 

Be-stimulated HLA-restricted T-cell activation (75). That is maintained by the accumulation of 

effector-memory CD4+ T cells responding to Be as a specific antigen/hapten (45-47). Previous 

studies have shown that Be binds to the HLA-DPGlu69 molecule with higher affinity (77) due to the 

properties of the HLA-DP pocket 4 carrying Glu electron-donor residues at the polymorphic 

position 69 and Gln, Glu, Arg and Tyr in their invariant and respective positions 13, 14, 27 and 28 

on the β−chain. As these residues are in sufficiently close proximity (from 3.1 to 6.4 Å in the HLA-

DP2 molecular model) (122), they can directly coordinate the positively charged Be2+. Furthermore, 

as HLA-DPGlu69 pocket 4 preferentially binds electron-donor aminoacids such as Arg, Asn, Gln, 

His, Lys, Trp and Tyr (122, 123), it is reasonable to hypothesize that the aminoacid residue of HLA-

DPGlu69-pocket 4-bound peptides can also contribute to Be binding. 

This study was designed to clarify the role of peptides binding to the HLA-DP groove’s 

pocket 4 in Be binding and to identify peptides with higher affinity for pocket 4 that might either 
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displace or mask Be, hence making it unavailable for antigen presentation and T-cell stimulation. 

Methods 

Study population. 13 individuals with Be hypersensitivity were enrolled in the study after 

informed consent approved by the Cleveland Clinic IRB. They were 11 males and 2 female, all 

Caucasians, with a mean age 39+6 years and an average time of employment of 9+6 years. 10 out of 

13 were HLA-DPGlu69-positive (Table 13) and were used to determine the effect of high affinity 

peptides upon Be presentation. As control, 5 normal unexposed subjects, 4 male and 1 female, all 

Caucasians, with a mean age 31 +3 years were enrolled.  

HLA typing. HLA class II typing was carried out in all patients and controls as previously 

described (8, 14). 

Reagents. Antibodies and peptides. MoAbs directed against HLA-DR (L243) (15), HLA-DP 

(B7/21) (74), HLA-DQ (L2) (74), HLA-class I (W6/32) (74) and the 19 kDa Mycobacterium 

tuberculosis protein (HYT6) (74) were purified from culture supernatants. CLIP peptide and its 

variants used in the study (table 14) either with free aminoacid termini or in biotinylated form were 

obtained at >90% from Advanced Biotech (Bergamo, Italy). Peptides were designed on the basis of 

our previous study reported in chapter 3 (122) which aimed to obtain peptides presenting different 

affinities for pocket 4 and 6 of HLA-DPGlu69 molecules. In particular, one peptide with reduced 

affinity (CLIP-AA) and three peptides with increased affinity (CLIP-QY, CLIP-RF and CLIP-YY) 

for HLA-DPGlu69 were used. Soluble HLA-DP2 and -DP2K69 molecules were produced in soluble 

form in D. melanogaster (S2) cells as described (77, 122).  
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Table 13. Be hypersensitivity status and HLA class II typing of the study population. 

 

# Patient 
ID 

status HLA-class II typing HLA-
DPGlu69 

   HLA-DR HLA-DP HLA-DQ  

1 M.L. Berylliosis *01; *11 *0201; *0401 *02; *06 Positive 

2 H.P. Berylliosis *01 ; *03 *0101 ; *0901 *02; *05 Positive 

3 D.W. Berylliosis *07 *0401 ; *1701 *02 Positive 

4 A.C. Berylliosis *01 *0201 ; *0301 *05 Positive 

5 M.H. Berylliosis *03 ; *04 *0201 ; *0401 *02; *03 Positive 

6 W.Q. Be-sensitized *01; *13 *0401; *0402 *03; *05 Negative 

7 S.E. Be-sensitized *04; *11 *0401 *03 Negative 

8 J.C. Be-sensitized *15; *16 *0401; *1001 *02; *03 Positive 

9 M.L. Be-sensitized *13 *0402; *1901 *06 Positive 

10 R.S. Berylliosis *01 *0301; *1001 *05 Positive 

11 E.D. Be-sensitized *07; *15 *0601; *1401 *02; *03 Positive 

12 D.W. Be-sensitized *03; *04 *0401 *02; *03 Negative 

13 T.C. Be-sensitized *04; *13 *0201; *0401 *03; *06 Positive 
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Table 14. Characteristics of the peptides designed for the study.  

 

Name 
 

Sequence Details and use in the study 

Bt-CLIP Bt-PKPPKPVSKMRMATPLLMQA Ii 82-101, reference biotinylated CLIP peptide 
Bt-CLIP-AA Bt-PKPPKPVSKMRMATALLMQA reference biotinylated-CLIP-AA peptide 
Bt-CLIP-RF Bt-PKPPKPVSKMRMRTFLLMQA reference biotinylated-CLIP-RF peptide 
Bt-CLIP-QY Bt-PKPPKPVSKMRMQTYLLMQA reference biotinylated-CLIP-QY peptide 
Bt-CLIP-YY Bt-PKPPKPVSKMRMYTYLLMQA reference biotinylated-CLIP-YY peptide 
   
CLIP           SKMRMATPLLMQA CLIP peptide 
CLIP-AA           SKMRMATALLMQA Mutated (P6: Pro->Ala) CLIP peptide with reduced 

affinity for HLA-DPGlu69 molecules 
CLIP-RF           SKMRMRTFLLMQA Mutated (P4: Ala->Arg; P6 Pro->Phe) CLIP peptide 

with higher affinity for HLA-DP DPGlu69 molecules 
CLIP-QY           SKMRMQTYLLMQA Mutated (P4: Ala->Gln; P6 Pro->Tyr) CLIP peptide 

with higher affinity for HLA-DPGlu69 molecules 
CLIP-YY           SKMRMYTYLLMQA Mutated (P4: Ala->Tyr; P6 Pro->Tyr) CLIP peptide 

with higher affinity for HLA-DPGlu69 molecules 
TT30    FNNFTVSFWLRVPKVSASHLE Tetanus toxoid 947-967; HLA-DP stabilizing peptide 

Note: Bt: Biotin 
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Be-peptide competition tests. Competition assays using HLA-DP soluble molecules were 

performed as previously described (77, 122). In a nutshell, 0.5 μg of soluble HLA-DP were 

incubated overnight with biotinylated peptide in the presence of increasing amounts of the 

appropriate non-biotinylated competitor peptide, of CLIP peptide or of BeSO4 at 0.3 μM-300 μM in 

20 mM sodium acetate/150 mM NaCl pH 5.0 or 20 mM phosphate buffer/150 mM NaCl pH 7.5, 

containing 1 mM PMSF. To terminate the assays, 50 ml of 2X PBS containing 3% BSA were added 

to each reaction tube.  

The amount of biotinylated peptide bound on the HLA-DP molecules at the end of the 

competition assays was determined as already described (77, 122) by ELISA assay using the HLA-

DP-specific MoAb B7/21 as capture agent. IC50 values, i.e., the concentrations of the competitor 

peptide or of Be required to compete for 50% of maximum binding of the biotinylated peptide were 

calculated by using the least squares fit methods of the titration data with the GraphPadPrism 

software (GraphPad Software Inc, San Diego, CA). 

Lymphocyte proliferation blocking assays. PBMCs were isolated from heparinized whole 

blood by density centrifugation on Ficoll Hypaque gradient. PBMCs (0.5×105 cells/well) were then 

plated in 96-well round-bottomed microtiter plates in RPMI 1640 tissue culture medium [2 mM L-

glutamine, 10% fetal bovine serum, 100 U/ml penicillin, and 100 mg/ml streptomycin in the 

presence of Be sulfate (BeSO4*4H2O) at 2, 10 and 50 μM (all reagents form Sigma Co., St. Louise, 

MO)] as previously described (72). Purified MoAbs were used at increasing concentrations (10, 20 

and 50 μg/ml) to inhibit lymphocyte proliferation and cytokine production as previously described 

(72, 45).  

Free aminoacid termini peptides designed for competing with Be in antigen presentation to 

Be-specific T lymphocytes were used at increasing concentrations (0.4, 2, 10, 50, 250 μM).  
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The levels of IFN-γ released in the culture supernatants of Be-stimulated PBMCs were 

measured in triplicate on supernatants collected after 5 days and frozen at -80°C with commercially 

available solid-phase, two-site ELISA kits (Pierce-Endogen, Woburn, MA) and the results were 

expressed as the means of triplicate cultures.  

Statistical analysis. All the data are expressed as mean + standard deviation of the mean 

(SD). Comparisons between groups are made by Student’s t test.  

 

Results 

 Competition assays in the HLA-DP2 and -DP2K69 soluble molecule system. The interaction 

between the HLA-DPGlu69 molecule, Be and competing peptides was evaluated at pH 5.0 in order 

to mimic the acidic microenvironment in which peptides are loaded onto HLA class II molecules. 

Be/HLA-DP interactions were analyzed by the ability of Be to compete with the CLIP and CLIP-

derived peptides. As previously shown (77), BeSO4 (0.3-300 μM) was capable of competing with 

biotinylated CLIP (10 μM) for the binding to soluble HLA-DPGlu69 molecules, as BeSO4 displaced 

biotinylated CLIP from soluble  HLA-DPGlu69 (IC50% 0.07 μM of BeSO4; non-biotinylated CLIP 

IC50% 1.09 μM; Figure 6, panel A) but not from the HLA-DP2Lys69 molecule (not shown). 

Similarly, the CLIP-derived low affinity peptide CLIP-AA (50 μM), could not compete out Be 

(IC50% <0.001 μM of BeSO4; non-biotinylated CLIPAA IC50% 0.83 μM; Figure 6, panel B). To 

the contrary, the binding of CLIP-derived high affinity peptides CLIP-YY (IC50% 829 μM of 

BeSO4; non-biotinylated CLIP-YY IC50% 0.78 μM; Figure 6, panel C), CLIP-QY (IC50% 1,236 

μM of BeSO4; non-biotinylated CLIP-QY IC50% 1.01 μM; Figure 6, panel D), CLIP-RF (IC50% 

>1,500 μM of BeSO4; non-biotinylated CLIP-RF IC50% 0.97 μM; Figure 6, panel E) were only 

marginally influenced by the presence of Be in the competition assay for soluble  HLA-DPGlu69 
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molecules with affinities varying from 11,843- to >21,429-fold that of CLIPs. All experiments with 

soluble  HLA-DPGlu69 were replicated with soluble HLA-DP2Lys69 molecules: in no instance Be 

was capable to bind with affinity higher than that of any of the CLIPs and CLIP-derived peptides. 

 Competition assays in the T-cell system. The effect of high affinity peptides upon Be binding 

was biologically determinated by measuring T-cell IFN-γ release upon Be-presentation in the 

absence/presence of the high affinity peptides CLIP-YY, CLIP-QY and CLIP-RF, using CLIP and 

CLIP-AA as lower affinity controls. All ten HLA-DPGlu69-expressing berylliosis-affected subjects 

evaluated responded to BeSO4 with IFN-γ release (no stimulus, 10.8+7.2 IFN-γ pg/ml; BeSO4 2 μM 

59.14+11.32 IFN-γ pg/ml, BeSO4 10 μM 138.30+13.9 IFN-γ pg/ml, BeSO4 50 μM 107.24+45.6 

IFN-γ pg/ml).  

For each of the subjects carrying the HLA-DPGlu69 susceptibility marker, the effect of 

peptides upon antigen presentation was measured at the optimal BeSO4 concentration in the 

presence of five different peptide concentrations (0.4, 2, 10, 50 and 250 μM). As expected from the 

peptide-binding data, CLIP exerted minimal inhibition at very high doses, while CLIP-AA did not 

exert any inhibitory activity even at the highest doses (Figure 6).  

Strikingly, the high affinity peptide CLIP-YY did inhibit antigen presentation and T-cell 

activation, as measured by IFN-γ release, at doses below the molar concentration of the stimulant 

(Figure 6).  

 It is interesting to observe that the high affinity peptides CLIP-QY and CLIP-RF markedly 

enhanced the IFN-γ response to Be at doses that were equimolar with the stimulant (Figure 6).  

 To determine whether the potentiating effect of the high affinity peptides CLIP-KF and 

CLIP-RF upon Be IFN-γ release was caused by enhanced Be binding to antigen-presenting cells or 

by a non-specific superantigenic or mitogenic effect of the peptides themselves, the same tests were 
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repeated with PBMCs from 5 Be-unexposed normal donors. In these subjects, IFN-γ release was not 

induced by BeSO4 alone, neither by BeSO4 with the addition of either CLIP, CLIP-AA, CLIP-YY, 

CLIP-QY and CLIP-RF, nor by the peptide alone (data not shown).  

Finally, to confirm the specificity of CLIP-QY and CLIP-RF augmentation of Be antigen 

presentation by HLA-DPGlu69, we used HLA-DP-specific MoAb B7/21 inhibition as previously 

described (72, 74). In addition we tested the ability to the CLIP-YY peptide to block the 

augmentation of Be presentation by the CLIP-QY and CLIP-RF peptides.  

 As expected, B7/21 inhibited IFN-γ release, induced by Be in the presence of CLIP-QY 

(88%) and CLIP-RF (76%). Minimal or no inhibition was observed with anti-HLA-DR (Be/CLIP-

QY: 9%; Be/CLIP-RF: 5%, p=0.012 compared to HLA-DP), anti-HLA-DQ (Be/CLIP-QY: 1%; 

Be/CLIP-RF: 0%, p=0.006 compared to HLA-DP), anti-HLA class I (Be/CLIP-QY: 3%; Be/CLIP-

RF: 4%, p=0.009 compared to HLA-DP) or the anti-MTB (Be/CLIP-QY: 0%; Be/CLIP-RF:0%, 

p=0.005 compared to HLA-DP) MoAbs (Figure 7).  

 Furthermore, the CLIP-YY peptide inhibited IFN-γ release by Be stimulation in the presence 

of CLIP-QY and CLIP-RF at almost equimolar concentration (Figure 7).  
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Figure 6. Analysis of the ability of CLIP-derived high affinity peptides to compete for sluble HLA-

DPGlu69 molecules with Be in vitro. Shown are the peptide/BeSO4 competition curves generated with CLIP, 
CLIP-AA CLIP-YY, CLIP-QY and CLIP-RF. Peptide affinities for HLA-DPGlu69, relative to CLIP, were 11,843 
for CLIP-YY, 17,657 for CLIP-QY and >21, 429 CLIP-RF. Data point represent the mean (+SD) of three 
separate experiments. In each graph, BeSO4 competitions are represented using triangles with continuous line, 
while CLIP (or CLIP-derived) peptide competitions are represented using circles with dashed line. 
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Figure 7. Analysis of the ability of CLIP derived high affinity peptides to interact with T-cell 
activation by Be antigen presentation in the context of the HLA-DPGlu69 molecule using fresh PBMCs 
from berylliosis-affected individuals. The inhibition or enhancement curves obtained with the CLIP, 
CLIP-AA, CLIP-YY, CLIP-QY and CLIP-RF peptides are shown. Each bar represents the mean (+SD) 
of  the triplicates generated from each of five study subjects at the optimal BeSO4 concentration. 
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Figure 8 Analysis of the specificity of the enhancement of Be-stimulated T-cell activation in the presence 
of the high affinity peptides CLIP-QY and CLIP-RF. In panel A are shown the inhibition of Be-stimulated IFN-γ 
release obtained with the anti-HLA-DR, -DP, -DQ, -class I and M. tuberculosis 19kDa protein specific MoAbs in 
presence of the augmentatory peptides CLIP-QY and CLIP-RF (at optimal concentration of Be and peptide). In 
panel B are shown the inhibition curves of IFN-γ release obtained with different concentration of CLIP-YY 
peptide at the optimal or suboptimal concentration of BeSO4 (10μM), CLIP-QY and CLIP-RF (10μM). Each bar 
represents the mean (+SD) of the triplicates generated from each of study subject at the optimal concentration. 
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Interim discussion  

Structure/function studies have indicated residue Glu69 of the HLA-DP molecule as the key 

site of Be binding and have suggested that Be might bind to HLA-DPGlu69 molecules by 

interacting with the Glu residue at position 69 of the β−chain (3, 4, 13, 20). This residue could 

coordinate the bivalent Be cation together with the electron-donor residues Asnα60, Hisβ9, Glnβ13, 

Gluβ14, Tyrβ28, Argβ27 and Argβ75 which all line HLA-DP pocket 4. In a molecular model 

simulation of Be-binding, the most stable Be/HLA-DPGlu69 complex is obtained from coordinating 

of Be by residues Glnβ13, Gluβ14, Argβ27 and Gluβ69 in pocket 4. However, neither computer 

modeling or peptide competition assays could precisely determined whether Be binds directly, and 

exclusively, with the above aminoacid residues in the HLA-DP pocket 4. Thus, the possibility that 

groove-bound peptides expressing aminoacids carrying electron-donor groups in pocket 4 may 

participate in the coordination of the Be2+ ion by the Glu residue at position 69 within pocket 4, and 

it has not been ruled out in the stabilization of the Be/HLA-DPGlu69 complex.  

In fact, this possibility is suggested by the observation that the CLIP-RF peptide, which 

carries an Ala to Arg (a stronger electron-donor group) residue substitution in pocket 4, can strongly 

augment Be presentation and T-cell activation, likely through increased binding affinity of Be for 

the HLA-DPGlu69 pocket 4 and through increased stability of the complex.  

In this context, what was discovered by means of CLIP-YY peptides bring further support to 

this hypothesis, as CLIP-YY carry an Ala to Tyr substitution in pocket 4 endowing the modified 

peptide with higher affinity for pocket 4 while expressing lower electron-donor capability. It is 

important to remark that the CLIP-YY peptide can completely block Be presentation and T-cell 

activation at doses that are 100-fold lower than those recognized from CLIP even in presence of 

peptides with similar affinity for pocket 4 (122), but much higher electron-donor ability. This 
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indicates that the inhibition of Be presentation by CLIP-YY is likely caused by the displacement of 

a bound peptide participating in the coordination of Be within the pocket. 

Current concepts of metal binding to HLA molecules in the determination of metal 

hypersensitivity are that metal binding may be favored by peptides with high affinity both for the 

metal and the HLA peptide-binding groove (124, 125). For Be it is reasonable to hypothesize that 

electron-donor-carrying peptides with high affinity for HLA-DP pocket 4 may cooperate with the 

existing non polymorphic aminoacid residues pocket 4 in increasing the coordination stability 

between HLA-DPGlu69 and Be. This concept is in agreement with the recent report that the Be 

bound to ferritin is able to induce high T-cell proliferation in BH subjects at much lower 

concentration than Be alone (126).  

These findings have potential implication both for the diagnosis and the treatment of 

berylliosis. With the background of the knowledge that in addition to HLA-DP, HLA-DR variant 

molecules may determine Be activation of T cells (72, 76) albeit generating weaker and less 

persistent T-cell responses (121). The extension of these studies to Be binding both to HLA-DP and 

HLA-DR might allow the design of presentation-enhancing peptides capable of increasing T-cell 

activation signals in diagnostic tests.  

With regard to berylliosis treatment, that today relies upon the use of corticosteroids and, 

eventually, lung transplantation, the data suggest that blocking peptides could be designed. They 

could be tried for their potential ability to block or energize T-cell reaction in vivo, as the glatiramer 

acetate (named also copaxone or cop-1) in multiple sclerosis (127), and Fel d1 and PLA on the cat 

and bee venom allergy (128 ). 
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CHAPTER 5 – DISCUSSION 

 

The studies presented in chapters 2-4 represent an advance in the understanding of the 

functional immunogenetic of berylliosis and, in particular, of the link between MHC class II 

molecules and pathogenic CD4+ T cells in the initiation and perpetuation of the disease. The 

understanding of the interaction mechanisms may be of great relevance to understand pathogenesis, 

epidemiology and prevention strategies of a large number of disorders related to the industrial 

environment.  

In fact, with the expanding use of metals and chemicals in high-technology industries, 

immunotoxic compounds are now found in the industrial environment as well as in manufactured 

consumer products. Occupational and/or environmental exposure to metal compounds interacting 

with the immune system is responsible for a variety of adverse immune reactions including 

granulomatous inflammations and allergic/atopic IgE-mediated type I immune responses (1, 2).  

 

MODELS FOR METAL PRESENTATION TO CD4+ T CELLS 

Since the first observation by Sinigaglia and co-workers in 1985 that nickel was recognized 

by CD4+ T cells of nickel-allergic individuals as a specific antigen/hapten presented by MHC class 

II molecules (129), different models of interaction between metals and the immune response genes 

were proposed (130). Metals might interact with HLA molecules by three different mechanisms: (i) 

direct binding to the HLA molecule, (ii) binding to the HLA molecule in association with a peptide 

and (iii) generation of a cryptic peptide capable of binding to the HLA molecule. 
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1. Direct binding 

A model of direct interaction between immune response genes and metals has been proposed 

for cobalt and gold (Figure 9A). In this model, the metal directly interacts with the HLA molecule 

and is recognized by the TCR on T-cell surfaces. Potolicchio et al. (90) proposed this interaction 

model between cobalt and HLA-DP, where the metal directly binds to HLA-DPβ-chain polymorphic 

residue(s), such as Lys and Glu residues at positions 55-56 and/or 69. 

2. Peptide-mediated binding  

Another mechanism of interaction between HLA molecules and metals has been proposed 

for nickel. This metal binds at the same time both to the HLA backbone, by the non-polymorphic 

His residue at position 81 of the HLA-DRβ-chain, and to an unknown peptide which is bound in the 

HLA molecule’s groove.(Figure 9B) (125).  

3. Cryptic peptide 

Finally, in addition to the direct or indirect binding to HLA molecules, metals may also 

generate cryptic peptides which could be presented and recognized as neo-antigens. In fact, divalent 

cations may change the protease cleavage patterns of proteins (22). As a consequence, changing the 

conformation of proteins and exposing them to proteolytic enzymes, metals may generate a set of 

uniquely cleaved peptides recognized as nonself by T cells. A similar mechanism was proposed for 

mercury salts in generating autoimmunity (Figure 9C) (130). 
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Figure 9. Models of metal presentation to CD4+ T cells in the context of MHC class II molecules. Three 
models of metal presentation have been hypothesized. Panel A shows the schematic model for the direct binding 
of a metal (e.g., cobalt and gold) to the MHC class II molecule. Panel B depicts the model of interaction suggested 
for nickel where the metal binds to the antigenic peptide and the MHC class II molecule. Panel C shows cryptic 
peptides presented as neoantigens by MHC class II molecule as a result of metal-induced enzymatic cleavage 
patterns of proteins as suggested for mercury. 
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FUNCTIONAL IMMUNOGENETICS OF BE HYPERSENSITIVITY  

Since the first description of the association of certain HLA-DP molecules and berylliosis in 

1993 (64), eight other studies (65-72) confirmed the importance of HLA-DP in the genetic 

susceptibility of Be-induced diseases. In fact, ~80% of subjects with Be hypersensitivity express an 

HLA-DP allele with the Glu at position 69 of the β chain (HLA-DPGlu69). Whether homozygosity 

for Glu69-containing alleles confers a greater risk of disease development in Be-exposed individuals 

remains a matter of controversy (66, 69, 70). Recent studies have shown that HLA-DPGlu69 is a 

risk factor for the development of Be sensitization and not simply a marker of progression from 

sensitization to disease (68-71). Conversely, Saltini et al. (67) identified no association between 

Glu69-containing DPB1 alleles and Be sensitization. In addition, rare HLA-DP alleles carrying 

Glu69 (i.e., non HLA-DPB1*0201 alleles), more than the HLA-DPGlu69 itself, were associated 

with berylliosis in some studies (66, 68, 69). 

Approximately 20% of BH subjects do not possess an HLA-DPGlu69-containing allele 

which suggests the importance of other MHC class II molecules in the genetic susceptibility to Be-

induced diseases (67, 70). In this context, the study presented in this thesis suggests that a Phe at 

position 47 of the HLA-DRβ−chain (HLA-DRPhe47) is associated with Be hypersensitivity in 

HLA-DPGlu69-negative subjects (72). Similarly, an association with Be hypersensitivity has been 

noted for HLA-DR*13 alleles in another series of HLA-DPGlu69-negative subjects (70). HLA-

DR*13 alleles possess both a Phe at position 47 and a Glu at position 71 of the DRβ-chain (which 

corresponds to position 69 of HLA-DP). The role of these genetic susceptibility alleles in the 

immunopathogenesis of Be-induced diseases is believed to occur through the presentation of a 

critical epitope by the associated MHC class II molecule to disease-relevant CD4+ T cells. In most 

instances, this mechanism for association in most immune-mediated diseases is poorly defined due 
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to the unknown initiating autoantigen(s). Conversely, berylliosis provided a unique opportunity to 

investigate whether the association of MHC class II molecules and disease susceptibility occurs at 

the level of antigen presentation. 

Ex vivo and in vitro studies have shown that Be is presented to CD4+ T cells in the context of 

the MHC class II molecules (45, 60, 73). Using Be-specific T-cell lines and clones derived from 

bloods and lungs of different berylliosis patients, both Be-induced proliferation and cytokine 

secretion were nearly completely and selectively inhibited by the addition of a MoAb directed 

against HLA-DP, which indicates that HLA-DP was the primary MHC class II molecule involved in 

Be presentation (60, 73-75, 78). In these studies, only certain HLA-DP molecules, all carrying HLA-

DPGlu69, were capable of Be presentation, and these molecules closely matched those implicated in 

disease susceptibility. Together, these data indicate that the HLA contribution to disease 

susceptibility is related to the ability of certain HLA-DP molecules to bind and present Be to T cells.  

In subjects without an HLA-DPGlu69-containing allele, the study here presented, together 

with other recent studies, have shown that HLA-DR assumes the predominant role in Be 

presentation (73, 76). Thus, a hierarchy of Be presentation to CD4+ T cells has been established with 

HLA-DP assuming the predominant role, with a minor role for HLA-DR and no role for HLA-DQ. 

Functional studies confirming genetic susceptibility studies, have proved that HLA-DP is the 

primary immune response gene for Be presentation to pathogenic CD4+ T cells.  

The HLA-DP gene comprises 107 HLA-DPB1 protein alleles of which 36 alleles carry the 

HLA-DPGlu69 (IMGT/HLA database Release 2.9.0, 08-Apr-2005). Only a few of these alleles are 

present in different human populations with an allelic frequency greater than 5%, and most of them 

being very rare alleles. As discussed above, immunogenetic data have suggested that some other 

residues and/or different HLA-DP alleles should be preferentially associated with berylliosis more 

than HLA-DPGlu69 itself. From a functional point of view, these HLA-DP alleles and/or 
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combination of polymorphic residues should be able to present Be more efficiently than HLA-

DPGlu69 alone. However, with the limitation of only a small number of functional studies 

addressing this problem, the data suggest that the critical aminoacid residue in the HLA-DP 

molecule is the Glu at position 69 of the β-chain (60, 73, 76). For example, using fibroblasts 

expressing mutated HLA-DP2 molecules, Be recognition was solely dependent on the Glu at 

position 69 of the DPβ-chain (76). Mutagenesis of other polymorphic amino acid residues such as 

the Lys and Glu at positions 55 and 56 of the DPβ-chain had no effects on either Be-induced 

proliferation or Th1-type cytokine expression (76). In this context, it is worth noting that other 

polymorphic residues such as Val36, Asp55 and Glu56, of the HLA-DPβ-chain frequently coexist in 

disease-associated HLA-DP alleles with the exception of a few, very rare alleles. Modeling of the 

HLA-DP molecule also supports the key role of the HLA-DPGlu69 residue in peptide binding with 

respect to the other HLA-DP polymorphisms found in association with berylliosis. The β69 residue 

of HLA-DP molecules is located in the pocket 4 of the peptide-binding groove. The presence of 

either a Glu or Lys at this position determines critical changes in the shape and charge distribution 

of the HLA-DP pocket 4 and of the nearby pocket 6. These changes in both shape and charge play a 

fundamental role in determining peptide-binding selectivity in HLA-DP (107, 122, 123). 

Conversely, other HLA-DP polymorphisms seem less critical than residue 69 for peptide binding 

(121).  

Whether Glu69 homozygosity plays a role in the genetic susceptibility to berylliosis and/or 

the progression from Be sensitization to berylliosis remains an unanswered question. Due to the low 

number of berylliosis cases and Be-exposed controls, this remains a matter of controversy. Only the 

study by McCanlies et al. (71) tackled the question of HLA-DPGlu69 homozygosity with 

appropriate population numerosity and appropriate statistical tools. In their study, the increase of the 
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HLA-DPGlu69 frequency in the berylliosis-patient population was associated with a significant 

increase in homozygosity. However, this increase was significantly lower than expected in 

accordance with the Hardy-Weinberg law suggesting an excess of heterozygosity in berylliosis 

cases. In other words, the inheritance of just one HLA-DPGlu69-containing allele conferred a high 

risk of berylliosis, as expected when environmental pressures exert a pathologic influence through a 

genetically determined pathway (121). This concept is supported by information available regarding 

the HLA-DP molecule surface density and the number of MHC class II/peptides necessary for the 

induction of an immune response. In fact, Lanzavecchia and Viola showed that the number of TCRs 

needing to be engaged in order to initiate an immune response varies from 1,500 to 8,000 (131). The 

number of HLA-DP molecules on naive monocytes has been estimated to be greater than 100,000 

per cell, and greater than 400,000 per cell on IFN−γ activated monocytes (89). Thus, it is unlikely 

that HLA-DPGlu69 homozygosity plays a critical role in driving T-cell responses to a low 

molecular weight, high affinity hapten such as Be.  
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MODELS OF BERYLLIUM PRESENTATION IN THE CONTEXT OF HLA-

DPGLU69 MOLECULES.  

Previous studies have shown that HLA-DPGlu69 is capable of binding Be with an affinity of 

40-100-fold higher than that of its polymorphic counterpart, HLA-DPLys69 (77). It is possible that 

Be binds directly to HLA-DPGlu69 molecules due to the unique properties of the HLA-DP pocket 4 

(122). In fact, in addition to the Glu69 residue, other electron-donor groups are present in the HLA-

DP pocket 4 or in its proximity (e.g., Asnα60, Hisβ9, Glnβ13, Gluβ14, Tyrβ28, Argβ27 and 

Argβ75). They could directly bind Be as they are within close proximity (from 3.1 to 6.4 Å in the 

HLA-DP2 molecular model (122, 113) to coordinate the positively charged Be2+ ion. Molecular 

modeling could help in simulating Be binding and determine the most stable Be2+/HLA-DPGlu69 

complex in the pocket 4, which is obtained from the coordination of Be by residues Glnβ13, 

Gluβ14, Argβ27 and Gluβ69 (Figure 10, panel A). However, computer modeling or peptide 

competition assays could not precisely determine whether Be binds directly, and exclusively, with 

the above aminoacid residues in the HLA-DP pocket 4. Thus, it is possible that groove-bound 

peptides expressing aminoacids which carry electron-donor groups may participate in the 

coordination of the Be2+ ion with the Glu residue at position 69 within the pocket 4. This possibility 

is suggested by our observation that CLIP-RF or CLIP-QY peptides, which carries an Ala to Arg or 

a Ala to Gln (both strong electron-donor groups) residue substitution in pocket 4, can strongly 

augment Be presentation and T-cell activation; likely this is due to increased Be-binding affinity for 

the HLA-DPGlu69 pocket 4 and to increased stability of the complex (Figure 10 panel B). This is in 

line with the recent observation that Be bound to ferritin induces greater T-cell proliferation in 

berylliosis patients at much lower concentrations than BeSO4 alone (42).  

Conversely, peptides binding with high affinity a peptide presented by HLA-DPGlu69 
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pocket 4 molecule, could block the Be induced T-cell response. In this context, discoveries about the 

CLIP-YY peptide bring further support to this hypothesis. In fact, CLIP-YY carries an Ala to Tyr 

substitution in P4 endowing the modified peptide with higher affinity for pocket 4 while expressing 

lower electron-donor capability. It is worth noting that the CLIP-YY peptide can completely block 

Be presentation and T-cell activation at doses that are 100-fold lower than those recognized from 

CLIP even in presence of peptides with similar affinity for pocket 4 (122), but much higher electron-

donor ability. This indicates that the inhibition of Be presentation by CLIP-YY is likely caused by 

the displacement of a bound peptide participating to Be coordination within pocket 4 (figure 10 

panel C). 

 

HLA-DR RESTRICTION OF BERYLLIUM PRESENTATION 

The most recent immunogenetic and functional studies in the field of berylliosis have 

focused on the fraction of Be-sensitized and berylliosis subjects who do not carry an HLA-

DPGlu69-containing allele including the studies presented in this thesis (70, 72, 76). Taking 

together all of the available information to address the question of which HLA-DR polymorphic 

residues are critical for Be presentation to pathogenic CD4+ T cells, we might depict several 

scenarios. First, HLA-DRGlu71 is playing a role in presentation of Be in HLA-DR*13 molecules 

(76). However, this Glu at position 71 is rare in other HLA-DR alleles and was present in only 7 out 

of 22 HLA-DPGlu69-negatives subjects in one study (72) and 8 out of 19 in another one (70). 

Second, HLA-DR-restricted Be-induced T-cell stimulation can occur in subjects who do not express 

HLA-DR*13 alleles suggesting the importance of other HLA-DR polymorphisms in addition to 

DRGlu71 (72). Finally, HLA-DRPhe47, present in 21 out of 22 HLA-DPGlu69-negatives BH 

subjects, could represent only a marker of susceptibility playing no direct role in Be presentation 

through HLA-DR, although this residue has been shown to be critical in peptide binding (85, 86). In 
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this context, it is worth noting that residues β71 and β47 are mapping in HLA-DR pocket 4 and the 

nearby pocket 7 (72). As opposed to HLA-DP where only Glu69 is playing a critical role in the 

pocket 4 conformation, the pocket 4 of HLA-DR is giving allelic specificity with many different 

possible conformations (189, 122). By using available HLA-DR crystal structures and molecular 

models to analyze the pockets 4 and 7 in HLA-DR alleles carrying HLA-DRPhe47 and/or HLA-

DRGlu71 with respect to their counterparts (48), it appears that the H-bond network more than the 

single amino acid residues could play a critical role in Be binding. Thus, it is likely that more than 

one combination of residues in HLA-DR pockets 4 and 7 area could play a role in Be presentation. 

The role of HLA-DRPhe47 could be just to leave H-bonds available for interaction, while its 

counterpart Tyr47 could engage some of them (48). Once HLA-DRPhe47 is present, other residues 

in the area and/or bound peptide residues could play a direct role in coordinating Be, and changing 

one of these residues could have the same inhibitory effects on T-cell activation as seen with the 

mutation of the Glu at position 71 of HLA-DR13 to an Arg (76). 
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Figure 10. Panel A. Analysis of the HLA-DPGlu69 molecule and Be interaction in pocket 4 of HLA-DP2 
molecule. The figure shown the most stable HLA-DPGlu69/Be complex model among all the possible interactions 
models evaluated between HLA-DP-groove electron-donor groups and Be as ion. Specifically, the peptide-binding 
pocket 4 of HLA-DP2 is capable to coordinate Be by using its residues Glnβ13, Gluβ14, Argβ27 and Gluβ69. The 
HLA-DPα-chain backbone is reported in grey colored ribbon style, while the HLA-DPβ-chain backbone is 
reported in light blue colored ribbon. Aminoacids reported in stick style and colored by atom (C: grey; O: red; 
N: blue; H: white). Be is shown as van der Walls radius and colored in green. 
Panel B. Analysis of the HLA-DPGlu69 molecule and CLIP-RF interaction in pocket 4 of HLA-DP2 molecule. 
The figure shown the Arg94 of the CLIP-RF peptide buried in pocket 4 of HLA-DP2. This aminoacid does not 
form H-bond with the Gluβ14 or Glnβ13 and together with Argβ27 and Gluβ69, that are interacting with H-
bond, are representing an electron-donor environment that could determine Be coordination. CLIP-RF backbone 
is shown in green. The HLA-DP surface is shown in semi-trasparence and electron-donor aminoacids in pocket 4 
are shown in stick style colored by atom (C: grey; O: red; N: blue; H: white). H-bonds are shown in green. 
Panel C. Analysis of the HLA-DPGlu69 molecule and CLIP-YY interaction in pocket 4 of HLA-DP2 molecule. 
The figure shown the Tyr94 of the CLIP-YY peptide deeply buried in pocket 4 of HLA-DP2 interacting by H-
bond with the Gluβ14. In this way both these electron-donors aminoacids are unavailable for interacting with Be 
and the Glnβ13 becomes too far from Argβ27 and Gluβ69 for coordinating Be. Argβ27 and Gluβ69 are 
interacting with H-bond. CLIP-YY backbone is shown in green. The HLA-DP surface is shown in semi-
trasparence and electron-donor aminoacids in pocket 4 are shown in stick style colored by atom (C: grey; O: red; 
N: blue; H: white). H-bonds are shown in green. 
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Figure 11. Analysis of the H-bond network in the pocket 7, the peptide binding 
pocket where the HLA-DR residue β47 is mapping, of HLA-DR molecules carrying HLA-
DRPhe47 (panel A: HLA-DR3 and panel B: HLA-DR15) or its counterpart Tyr47 (panel C: 
HLA-DR1 and panel D: HLA-DR4). Molecular modeling of the PDB entry crystal structures 
(HLA-DR3: 1A6A; HLA-DR15: 1BX2; HLA-DR1: 1AQD; HLA-DR4: 2SEB) have been evaluated 
with the SwissPDB viewer v3.7b2 software (free available at http://ca.expasy.org/spdbv/). 
The HLA-DRα-chain backbone is reported in red colored ribbon style, while the HLA-DRβ-
chain backbone is reported in grey colored ribbon. Aminoacids are colored in CPK style (C: 
light blue; O: red; N: blue) and residue names are reported in red. H-bonds were computed 
with the SwissPDB viewer (H-bond detection threshold: 1.20–2.76 A when Hydrogen is 
present and 2.19–3.30 A when hydrogen is absent) and are shown as green dashed lines. All 
the aminoacids presenting electron-donor groups in the pocket 7, of HLA-DR1, -DR3, -DR4 
and -DR15, putatively capable of coordinating Be are shown (residues α69, β28, β61, β70 and β71). In 
the HLA-DR3 crystal structure (panel A) with the presence of Phe47 only one of the two terminal oxygens of 
Aspβ28 is engaged in a H-bond network with Lys71, leaving four other contacts points for coordinating Be 
(specifically residues αAsn69, βAsp28, βTrp61, βGln70). A similar pattern is present in HLA-DR15 (panel B) 
where, with the presence of Phe47, no H-bonds are present leaving 5 electron-donor groups available for Be 
coordination (specifically one electron-donor group for each residue αAsn69, βTrp61, βGln70 and two electron-
donor groups for βAsp28). When Tyr47, the HLA-DRPhe47 counterpart, is present in HLA-DR molecules as in 
HLA-DR1 (panel C) and HLADR4 (panel D), the H-bond network of pocket 7 results dramatically modified. 
Specifically, Tyr47 engages in a H-bond network with residues Asp28 and Arg71 in HLA-DR1 (panel C) or 
Asp28 and Lys71 in HLA-DR4 (Panel D). As a consequence there is reduced availability of electron donor groups 
capable to coordinate Be. 
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IMPLICATIONS FOR THE FUTURE: THE SPECIFIC IMMUNOTHERAPY OF 

BERYLLIOSIS.  

The present treatment of berylliosis relies upon the use of corticosteroids and, eventually, 

lung transplantation (2, 17). The new advances in the field of berylliosis could figure out some 

possible more specific alternative treatments based on block of Be processing and/or of HLA class 

II/Be-complex formation or the block of responding T cells.  

Scavengers that could let the rapid elimination of Be from the lung milieu could help in 

blocking Be-uptake and processing. Humanized MoAbs direct to HLA-DP could be successfully 

used to block Be-presentation as for in vitro models (60, 72-76). Similarly, taking the multiple 

sclerosis, treated with glatimer acetate, as a model (65), we could hypothesize a potential block of 

both Be presentation and Be-specific T-cell anergization by using high-affinity peptides for HLA-

DP and -DR at the site of the inflammation, as we presented for CLIP-YY peptide in the in vitro 

model of “berylliosis therapy”. 

Most of the information for all these approaches are now in hand. The new era of the specific 

immunological treatment of berylliosis is just one step further as much as we believe that studies in 

Be-induced disease will teach us important lessons for common autoimmune diseases.
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