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RIASSUNTO 

L’allevamento del suino pesante italiano è principalmente orientato verso la produzione di prodotti 

stagionati di alto pregio. Particolarmente importante è la produzione del prosciutto crudo, che è 

strettamente regolata e richiede specifiche caratteristiche della carcassa correlate con le 

caratteristiche della coscia fresca. Inoltre dato che i suini vengono macellati ad un peso di circa 

160kg, il settore dell’allevamento del suino pesante italiano si trova a dover far fronte a numerosi 

problemi di efficienza di produzione che sono correlati a tutti gli aspetti biologici legati a crescita, 

conversione alimentare, deposizione di grasso e così via. E’ ben noto che caratteri produttivi e 

caratteristiche della carcassa sono in parte geneticamente determinate. Perciò come primo step per 

comprendere le basi genetiche di attributi che possono avere un impatto diretto o indiretto nella 

produzione del prosciutto crudo, l’approccio del gene candidato può essere usato per identificare 

marcatori a DNA associati a caratteri di importanza economica. 

In questa tesi abbiamo investigato tre geni candidati per caratteri produttivi e relativi alla carcassa 

(in particolare deposizione di grasso e crescita) in razze suine usate per la produzione del prosciutto 

crudo, utilizzando differenti approcci sperimentali al fine di trovare marcatori molecolari associati 

con questi caratteri. 

I primi due geni, descritti nel capitolo uno e due (TRIB3 e PCSK1 rispettivamente), sono stati scelti 

in base all’importante ruolo che hanno nello sviluppo dell’obesità umana, e poi considerati come 

geni candidati per il deposito di grasso nel suino. 

 

Il capitolo uno riporta il sequenziamento di una porzione del gene TRIB3 suino. Abbiamo 

identificato due polimorfismi (tra cui una mutazione missenso) nel primo esone codificante che 

erano in completo linkage disequilibrium. L’analisi in silico della mutazione missenso ha suggerito 
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che questa mutazione potrebbe avere putativi effetti funzionali. Abbiamo poi dimostrato attraverso 

studi di associazione che questo marcatore genetico era associato con spessore lardo dorsale in suini 

Large White Italiana Duroc Italiana in due differenti disegni sperimentali. Abbiamo analizzato 

anche l’espressione di questo gene, mostrando che TRIB3 è espresso in vari tessuti, incluso grasso e 

muscolo scheletrico. 

 

Nel capitolo due abbiamo riportato il risequenziamento di circa 5.1 Kb del gene PCSK1 suino in 

differenti razze. Diverse SNPs sono state identificate ed utilizzate per la costruzione di aplotipi e per 

l’analisi di relazioni filogenetiche. Questo gene è stato ri-mappato nel cromosoma suino 2, fornendo 

informazioni che posso essere integrate nella versione del genoma suino Sscrofa10.2. L’espressione 

genica è stata valutata  in diversi tessuti ed è stata usata come attributo nelle analisi di associazione. 

E’ stata condotta un’analisi di associazione tra SNP (Single nucleotide polimorphism) di PCSK1 e 

svariati caratteri, tra cui anche quelli produttivi e relativi alla carcassa, in 5 gruppi di suini 

provenienti da tre diversi disegni sperimentali. I risultati hanno indicato che le SNP analizzate erano 

associate a numerosi attributi tra cui spessore lardo dorsale e grasso intermuscolare visibile nella 

razza Duroc Italiana (DI) e performance di crescita nella Large White Italiana (LWI). Comunque gli 

effetti stimati nella LWI erano opposti rispetto agli effetti  ripostati nella razza Duroc. Una 

suggestiva associazione (P<0.10) è stata osservata con l’attività della catepsina B muscolare che è 

un parametro importante della qualità della carne per la produzione del prosciutto crudo. 

 

Nel capitolo tre abbiamo analizzato una SNP nel gene MUC4 chè è già noto essere in stretto linkage 

disequilibrium col locus F4bcR in differenti popolazioni di suini. Questo locus è coinvolto in modo 

dominante nello sviluppo della suscettibilità all’infezione da ETEC (Enterotoxigenic Escherichia 

coli) ed è una delle maggiori cause di mortalità nei suinetti in fase di pre-svezzamento. Questo locus 
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sembra essere anche associato con il tasso di crescita. Dato che questo marcatore molecolare è usato 

per identificare animali suscettibili, abbiamo analizzato questo SNP in razze italiane locali ed 

abbiamo applicato un approccio di selective genotyping nelle tre principali razze commerciali di 

suino pesante (LWI, DI, e Landrace Italiana). Abbiamo osservato un’associazione dell’allele 

suscettibile con un più alto incremento medio giornaliero e spessore lardo dorsale nei suini LWI ed 

un più alto incremento medio giornaliero nella Landrace Italiana. Questo locus è un buon esempio 

della complessità nell’applicare selezione assistita da marcatori nelle razze suine. 
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ABSTRACT 

 

Heavy pig breeding in Italy is mainly oriented for the production of high quality processed products. 

Of particular importance is the dry cured ham production, which is strictly regulated and requires 

specific carcass characteristics correlated with green leg characteristics. Furthermore, as pigs are 

slaughtered at about 160 kg live weight, the Italian pig breeding sector faces severe problems of 

production efficiency that are related to all biological aspects linked to growth, feed conversion, fat 

deposition and so on. It is well known that production and carcass traits are in part genetically 

determined. Therefore, as a first step to understand genetic basis of traits that could have a direct or 

indirect impact on dry cured ham production, a candidate gene approach can be used to identify 

DNA markers associated with parameters of economic importance. 

In this thesis, we investigated three candidate genes for carcass and production traits (particularly fat 

deposition and growth) in pig breeds used for dry cured ham production, using different 

experimental approaches in order to find molecular markers associated with these parameters. 

The first two genes, described in chapter one and two, (TRIB3 and PCSK1 respectively), were 

chosen according to their important role on human obesity development, and considering them as 

candidate genes for fat deposition in pigs. 

Chapter one reports on the sequencing of a portion of the porcine TRIB3 gene. We identified two 

polymorphisms (one was a missense mutation) in the first coding exon which were in complete 

linkage disequilibrium. In silico analysis of the missense mutation suggested that it could have a 

putative functional effects. Then, we demonstrated through association studies, that this gene marker 

was associated with back fat thickness in Italian Large White and Italian Duroc pigs in two different 

experimental designs. We analysed also the expression of this gene in different porcine tissues 

showing that TRIB3 is expressed in several tissues, including  fat and skeletal muscle. 
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In Chapter two we report on the resequencing of about 5.1 kb of the porcine PCSK1 gene in 

different breeds. Several SNPs were identified and used for haplotype construction and analysis of 

phylogenetic relationships. This gene was re-mapped on porcine chromosome 2 providing 

information that could be integrated in the Sscrofa10.2 genome version. Gene expression was 

evaluated in different tissues and used as a trait in association analyses. Association analysis 

between PCSK1 single nucleotide polymorphisms (SNPs) and production, carcass and several other 

traits were conducted on five groups of pigs from three different experimental designs. Results 

indicated that the analysed SNPs were associated with several traits including back fat thickness and 

visible intermuscular fat in Italian Duroc (ID) and growth performances in Italian Large White 

(ILW) and in ILW x Italian Landrace pigs. However, the effects estimated in the ILW were opposite 

to the effects reported in the ID pigs. Suggestive association (P<0.10) was observed with muscle 

cathepsin B activity that is an important meat quality parameter for the production of dry-cured 

hams. 

 

In Chapter three, we analysed a SNP on the MUC4 gene which is already known to be in close 

linkage disequilibrium with the F4bcR locus in different pig populations. This locus is involved in 

the development of susceptibility of ETEC (Enterotoxigenic Escherichia coli) infection in a 

dominant way and it is one of the major cause of mortality in pre-weaned piglets. This locus seems 

also to be associated with growth rate. Since this marker is used as a marker to identify susceptible 

animals, we analysed this SNP in Italian local breeds and applied a selective genotyping approach in 

the three main commercial Italian heavy pig breeds (ILW, ID and Italian Landrace). We observed an 

association of the susceptible allele with higher average daily gain and back fat thickness in ILW 

pigs and higher average daily gain in Italian Landrace. This locus is a good example of the 

complexity of applying marker assisted selection in pig breeding. 
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GENERAL INTRODUCTION 

 

Heavy pig breeding is a particular characteristic of the Italian pig industry. The first big difference but 

not unique, comparing with those of other countries, is the weight of slaughtered animals:160-180 kg 

instead of the common 100-130 kg of live weight of other pig production industries mainly oriented 

for the production of fresh meat. The reason for this weight is that these heavy pigs are destined to 

high quality processed products. The most important production is the dry-cured ham, which is 

safeguard and regulated by its POD (“Denominazione di origine protetta”) status, geographic indicator 

for the quality of product (Reg. CEE 2081/92 substituted by  Reg. CEE 510/2006; General 

Disciplinary of Parma ham; DOP Disciplinary of San Daniele ham). Therefore Italian heavy pig 

production is strictly regulated by rules fixed from Consortia, based on the experience of producers 

and scientific research. The main rules that breeders have to follow to produce POD dry-cured hams 

concern feeding, age and live weight of slaughtering and breeds in order to satisfy specific 

requirements. Dry-cured ham does not require any additive; the production is based only on salt 

addiction and through the monitoring of humidity and ambient temperature. It is clear that in this 

contest meat and carcass characteristics are extremely important. Above all, two main factors are 

considered: salting loss and back fat thickness. Salting loss can be defined as the “measure of the 

water-holding capacity under the salting condition”; Back fat thickness is fundamental to have enough 

fat coverage of the ham, following the rules of Consortia of Parma and San Daniele hams because this 

guarantees a correct seasoning without loosing excessive quantity of water and a conservation of the 

typical organoleptic components of the dry-cured ham (Bosi and Russo, 2004). Other important traits 

are also intramuscular and intermuscolar fat content which can reduce the seasoning loss; however an 

excess of this deposition is not positive, because of the possible “grassinatura” defect know as nut-like 

depots (Ufficio Tecnico ANAS, 2003). 
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In 2008, in Italy were slaughtered about 9.1 million of heavy pigs. The valorization of heavy pig for 

high quality season product is added by the effort to give value not only to POD products but also to 

the whole carcass for the fresh meat circuit, with the birth of the POD Gran Suino Padano label, which 

is produced according with rules for the production of dry-cured hams. Gran Suino Padano 

Consortium has been recognized by the Italian Ministry of Agriculture in 2007 (Piasentier et al., 2009) 

 

CANDIDATE GENE ANALYSIS, A FEW EXAMPLES AND APPLICATIONS IN PIG 

BREEDING 

 

During the last few years, the combination of molecular and quantitative genetics have modified 

traditional selection schemes in livestock.  . 

DNA-based technology and the genetic markers used for selection have accelerated the improvement 

of animal performances. It is well known that carcass traits are controlled by an unknown number of 

quantitative trait loci (QTL) and molecular markers can be used to identify individual genes which 

may have an effect on the regulation of productive and economically important traits. Marked Assisted 

Selection (MAS) was the first applied into selection programs for economically important traits even if 

at present Genomic Selection is substituting this approach. However, the first step is the identification 

of markers associated with production traits. A possible strategy is to analyse candidate genes. 

Candidate genes are genes whose product might be directly or indirectly involved in the biological 

processes that could affect production traits. Variability in these genes could explain a quote of 

variability for the targeted traits. Their biological roles should already be known, together with other 

information like genomic position and expression level, not necessary all in the species of interest. The 

candidate gene approach can be considered as a shortcut to identify markers associated with 

production traits even if sometimes it requires a large amount of time to perform significant analysis 

(Andersson, 2001). 
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Anyway, the candidate gene approach has been successfully applied in pigs. Several markers 

associated with production traits in pigs have been identified using this approach or a combination of 

this approach with QTL mapping. 

To optimize this approach in pigs it could be worth to use information coming from humans. In 

particular many studies in human have already identified genes affecting obesity and fat deposition 

that could be investigated also in pig to identify markers of interested in pig breeding.  

Here, we reports a few examples of the most important genes already shown to affect carcass and meat 

quality traits identified using a candidate gene approach or combining information from QTL mapping 

and other approaches. 

 

RYR1 

Ryanodine receptor 1 (RYR1) is an ion channel involved in regulation of the release of Ca2+ in 

skeletal muscle (Fujii et al., 1991). The polymorphism c.1843C>T is the causative mutation of one of 

the most important meat defect, the PSE (Pale, Soft, Exudative), an acronym that resumes aspects and 

characteristics of defective meat. PSE meat is for a detrimental defect for seasoned products therefore 

animals carrying this mutations have been eliminated from heavy pig breeds that are virtually 

considered free of this mutation. 

 .  

PRKAG3 

5'-AMP-activated protein kinase subunit gamma-3 is an isoform of the regulatory γ-subunit of  AMPK 

(adenosine monofosphate activate protein kinase ). The R225Q mutation determines what it was 

generally referred to as the RN (Rendement Napole)-phenotype (Milan et al., 2000). The RN 

phenotype, the so-called "acid meat", was identified in the Hampshire breed and it is caused by low  
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pH and high post-mortem degradation of muscle glycogen. Therefore this defect should be excluded 

for the production of dry cured hams. For this reason the Hampshire breed is not allowed in the genetic 

lines used for the production of the terminal fattened pigs whose legs are processed by the ham 

Consortia.  

 

MC4R 

This gene codes for the melanocortine 4 receptor, a G transmembrane protein receptor involved in 

regulation of metabolism. In human, mutations in this gene cause the most frequent form of 

monogenic childhood obesity, with more than 90 polymorphisms detected in various cohorts. It is 

inherited as dominant but its penetrance is normally incomplete and variable (Tao et al., 2006; 

Lubrano-Berthelier et al., 2006). In pig, a missense mutation c.1426G>A (Kim et al., 2000) in a 

conserved sequence of the seventh transmembrane region of the receptor is associated with back fat, 

growth rate, feed intake in a variety of commercial and experimental pig lines (for example see: Bruun 

et al., 2006; Piórkowska et al., 2010). 

 

FTO 

FTO codes for 2-oxoglutarate-dependent nucleic acid demethylase that probably plays a role in 

oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA 

(Jia et al., 2008). This gene was associated with body mass index and it is considered the most 

important genetic factor for common obesity in children and adults (Dina et al., 2007). In pigs, 

polymorphisms in this gene have been associated with several carcass and production traits (Fan et al., 

2009; Fontanesi et al., 2009, 2010). In particular, Fontanesi et al. (2009) have shown that a 

polymorphism in this gene is associated with intermuscular fat content in Italian Duroc pigs providing 

a marker that could be used to improve this trait in this heavy pig breed.  
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IGF2 

This gene is imprinted in several species including the pig. (de Chiara et al., 1991; Van Laere et al., 

2003; Vu et al., 1994). A polymorphism in intron 3 of the porcine IGF2 gene is the causative mutation 

of an important QTL localized on porcine chromosome 2 for lean meat and fat (Van Laere et al., 

2003). This mutation has been shown to have an important effect on these traits, on growth rate and 

feed efficiency also in Italian heavy pigs (Fontanesi et al., 2010) with putative indirect effects on sow 

prolificacy (Stinckens A., et al., 2010). 

 

CANDIDATE GENES STUDIED IN THIS THESIS 

During the last few years many other studies have investigated candidate genes in pigs. However, 

considering traits that could be important in heavy pig production it was possible to select and analyse 

three other genes that are introduced below.  

 

TRIB3 

Tribbles homolog 3 (TRIB3) is a pseudokinase which is involved in the control of metabolic 

processes, stress response and cell viability. It has been shown that TRIB3 affects insulin action (Du et 

al., 2003) and suppresses adipocyte differentiation (Takahashi, et al., 2008). A missense mutation in 

the human TRIB3 gene (p.Q84R) is associated with insulin resistance, cardiovascular disease, diabetes 

and obesity (Gong et al.,2009; Prudente et al., 2005; Prudente et al., 2009; Shi et al., 2009). Based on 

these evidences TRIB3 could be considered a candidate gene for fat deposition traits in pigs.  

 

PCSK1 
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The pro hormone convertase 1/3 enzyme (PCSK1) is involved in the maturation of several hormones 

which are important in regulation of central and peripherical metabolism. Several studies have 

demonstrated its involvement in the development of monogenic and polygenic obesity in humans 

(Benzinou et al., 2008; Chang et al., 2010; Farooqi et al., 2007; Jackson et al., 1997; Kilpeläinen et 

al., 2009). For this reason it has been considered as a candidate gene to identify DNA markers 

associated with fat deposition traits in Italian heavy pigs. 

 

MUC4 

MUC4 encodes for a membrane-bound-O-glycoprotein which has a function of protecting and 

lubricating the epithelial surfaces. A SNP localized in exon 7 (DQ848681: g.8227C>G) of this gene is 

in very close linkage disequilibrium with the F4bcR locus (Jørgensen et al., 2004) that is responsible 

for the susceptibility to ETEC (Enterotoxigenc E.coli) infection in pre-weaned pigs (Bijlsma et al., 

1982; Gibbons  et al., 1977; Sellwood et al., 1975)..This gene may also play many other important 

roles in growth, fetal development, epithelial renewal and differentiation, epithelial integrity, 

carcinogenesis, and metastasis (Corfield et al., 2001; Moniaux et al., 2001). This suggests that 

polymorphisms in the MUC4 gene could be associated with other important production traits. In 

addiction a few studies of the F4bcR locus using villous based tests (Edfors-Lilja et al., 1986; Yan et 

al., 2009) have evidenced that the presence F4bcR could be associated with higher growth rate in pigs 

during the fattening period. All these elements suggest MUC4 as a candidate gene for growth in pigs. 
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AIM 

 

The aim of this thesis was to apply a candidate gene approach to identify DNA markers associated 

with carcass and production traits in Italian heavy pigs. Three genes were investigated: TRIB3, PCSK1 

and MUC4. 

Different experimental designs and approaches were used to this purpose: we sequenced parts of these 

genes, identified and analysed polymorphisms, performed expression studies in different pig tissues, 

and used identified markers in association analyses in different populations applying a selective 

genotyping approach or investigating random purebred or crossbred populations. 
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Abstract 

TRIB3 plays an important role in the energy metabolism. This work aimed to study the porcine 

tribbles homolog 3 (TRIB3) gene and to evaluate its association with meat quality and carcass 

traits in pigs. By sequencing a portion of the porcine TRIB3 gene we identified two single 

nucleotide polymorphisms (SNPs) in the first coding exon (one synonymous SNP: c.132T>C; 

and one missense mutation: c.146C>T, p.P49L). The two polymorphisms were in complete 

linkage disequilibrium. In silico analysis of the p.P49L mutation suggested that it could have 

functional effects. Association studies in four groups of pigs (651 animals in total) indicated that 

this gene marker was associated with back fat thickness in Italian Large White and Italian Duroc 

pigs in two different experimental designs (P<0.1 and P<0.05). This polymorphism tended to be 

associated with lactate content of semimembranosus muscle (P<0.1). Among several other 

tissues, TRIB3 is expressed in fat and skeletal muscle. 

 

Keywords: association study; back fat thickness; Italian heavy pigs; missense mutation; SNP; 

TRIB3 

. 
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1 Introduction 

DNA markers in several obesity-related genes have been associated with fat deposition and 

carcass traits in different pig populations. For example, following evidences that the fat mass and 

obesity associated (FTO) gene explains an important quote of the genetic variability of common 

obesity in humans (Dina et al., 2007; Frayling et al., 2007), polymorphisms in the porcine FTO 

gene have been identified and association analyses have shown that this gene might be an 

important source of variability for fat deposition traits in several pig breeds and populations (Fan, 

Du, & Rothschild, 2009; Fontanesi, Scotti, Buttazzoni, Davoli, & Russo, 2009; Fontanesi et al., 

2010). Similar other studies in pigs have successfully investigated candidate genes chosen 

according to their function and role on the target physiological or production traits. 

Tribbles homolog 3 (TRIB3) is a pseudokinase implicated in the control of metabolic processes, 

stress response and cell viability. TRIB3 affects insulin action by binding to and inhibiting Akt 

phosporylation, that is a key step in insulin signalling (Du et al., 2003). In addition, TRIB3 

suppresses adipocyte differentiation by down regulating PPAR transcriptional activity 

(Takahashi, Ohoka, Hayashi, & Sato, 2008). A missense mutation in the human TRIB3 gene 

(p.Q84R) is associated with insulin resistance, cardiovascular disease, diabetes and obesity (Gong 

et al., 2009; Shi et al., 2009; Prudente et al., 2005; Prudente et al., 2009). 

Based on these evidences TRIB3 could be considered an important candidate gene for fat 

deposition traits in pigs. Moreover, its role in energy metabolism, and particularly on muscle 

glycogen content, could bring consequences also on meat quality traits in pigs. 

Here we investigated the porcine TRIB3 gene and identified polymorphisms (including a 

missense mutation) that were used in association studies with several meat quality, meat 

production and carcass traits in different Italian heavy pig populations. 
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2. Material and methods 
 

2.1. Animals 

The association study was conducted on 4 groups of heavy pigs (3 groups of Italian Large 

White animals and one group of Italian Duroc pigs) individually performance tested at the Test 

Station of the National Pig Breeder Association (ANAS). These animals are structured on triplets 

of siblings from the same litter (two females and one castrated male) and their data are used for 

the genetic evaluation of a boar from the same litter (sib-testing). An Italian Large White group 

was made by 266 pigs of this breed (177 females and 89 castrated males, from 79 different sires), 

not selected by any phenotypic criteria (random group) and already described (Fontanesi et al., 

2008b; a few animals analysed in the previous study were not included here because it was not 

possible to obtain a genotype for the TRIB3 marker). This group of pigs was slaughtered on 6 

different days in 2002. The other two Italian Large White groups were made by 100 animals each 

chosen among 3591 Italian Large White pigs evaluated in the period 1996-1999, according to a 

selective genotyping approach based on two different estimated breeding values (EBVs; see 

below for methods of calculation and details about the traits). One group of 100 pigs (69 females 

and 31 castrated males from 71 different sires) had extreme divergent EBVs (50 with the highest 

and 50 with the lowest EBV) for back fat thickness (BFT). The second group of 100 pigs (69 

females and 31 castrated males from 73 different sires) had extreme divergent EBVs (50 with the 

highest and 50 with the lowest EBV) for lean cuts (LC). While 200 extreme EBVs were 

considered for the two traits (BFT and LC), only 178 different pigs were analysed because 22 

animals presented extreme values for both traits. The group of Italian Duroc pigs was made by 

208 animals (131 females and 77 castrated males, from 105 different sires) slaughtered in the 

years 1995-2003 in 59 different days and unselected by any phenotypic criteria. 
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Another panel of unrelated pigs of different breeds with no phenotypic record, was used for 

allele frequency evaluation (Table 1). 

Blood, hair root and/or muscle samples collected from all these pigs were used for DNA 

extraction carried out with standard protocols. 

 

2.2. Performance, carcass and meat quality traits 

The test period began when animals were 30 – 45 days old and it ended when they reached 

155 ± 5 kg live weight. The nutritive level was quasi ad libitum. Feed intake was recorded daily 

and body weight was measured bimonthly, then daily gain and feed:gain ratio (FGR) were 

calculated. At the end of the test, animals from two batches on trial (the remaining from the older 

and the faster growing from the more recent batch) were mixed at loading and transported to a 

commercial slaughterhouse located 24.5 km from the Test Station. After unloading, pigs were 

immediately stunned by CO2 (concentration 87%) using a dip lift system (Butina, Denmark) and 

bled in a lying position. Within 3 hours after slaughter, BFT at the level of Musculus gluteus 

medius, weight of LC (necks and loins) and weight of hams (only in Italian Large White pigs) 

were collected. Moreover, only for the Italian Duroc pigs visual evaluation of intermuscular fat 

content (VIF) was obtained on leg muscles based on a binary scale (presence/absence). 

In addition, for the group of 266 Italian Large White pigs measures of pH1 (at 2 h post 

mortem) and pHu (at 24 h post mortem) on Musculus semimembranosus were taken by a Crison 

pH-meter equipped with an Ingold Xerolite electrode (Mettler Toledo, Udorf, Switzerland). 

Samples from the same muscle were collected at 30 min post mortem and immediately frozen in 

liquid nitrogen and later freeze-dried for glycolytic potential (GP) determination. This parameter 

was measured according to Monin, Mejenes-Quijano, Talmant, & Sellier (1987) as described in 

Fontanesi et al. (2008b), separately determining lactate content and the sum of glycogen, glucose 
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and glucose-6-phosphate. Glycolytic potential was calculated as the sum of: 2[glycogen + 

glucose + glucose-6-phoshate] + [lactate] according to Monin & Sellier (1985) and expressed as 

mol of lactic acid equivalent per g of fresh muscle. 

 

2.3. Identification and analysis of DNA polymorphisms 

BLASTN queries with a human TRIB3 cDNA (GenBank accession number NM_021158) 

against porcine sequences deposited in DNA databases (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

were used to retrieve pig TRIB3 gene sequences. In silico mapping of the identified porcine 

TRIB3 sequences was obtained using the ENSEMBL BLAT search tool 

(http://www.ensembl.org/Multi/blastview) against the Sscrofa9 genome assembly. PCR primers 

(forward: 5’-CACTGGCAGAGGAAGAGAGG-3’; reverse: 5’-

AATATCAGGACCCCCTCAGC-3’) were designed to amplify a fragment of a 456 bp including 

exon 4. 

Identification of single nucleotide polymorphisms (SNPs) in the porcine TRIB3 gene was 

carried out by sequencing a 456 bp fragment from 40 pigs of different breeds (16 Italian Large 

White, 16 Italian Duroc, 1 Italian Landrace, 4 Belgian Landrace, 1 Hampshire and 2 Meishan). 

PCR was carried out using a T-Gradient (Biometra, Goettingen, Germany) thermal cycler in a 

final volume of 20 µL that included 10 pmol of each primer 1.5 mM MgCl2, 2.5 mM each dNTP, 

1 U AmpliBioTherm Taq DNA polymerase (Fisher Molecular Biology, Trevose, PA, USA). The 

PCR profile was the following: an initial step of denaturation for 5 min at 95 °C; 35 cycles of 30 

s at 95 °C, 30 s at 63 °C and 30 s at 72 °C; the final extension step was for 5 min at 72 °C. 

Sequencing reactions were produced for ExoSAP-IT® (USB Corporation, Cleveland, Ohio, 

USA)-treated PCR products using the same PCR primers and the Big Dye v3.1 kit (Applied 

Biosystems, Foster City, CA, USA). Sequencing products, after purification steps, were loaded 
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on an ABI3100 Avant sequencer (Applied Biosystems). Sequencing electropherograms were 

analysed using CodonCode Aligner (CodonCode Corporation, Dedham, MA, USA). 

A polymorphism identified in the TRIB3 gene was genotyped by PCR-RFLP in all animals 

used for the association studies and for allele frequency evaluation. Briefly, 5 µL of PCR 

products was digested overnight at 37 °C with 3 U of HinfI (Fermentas, Vilnius, Lithuania) 

restriction enzyme in a final volume of 25 µL containing 1X enzyme reaction buffer. PCR-RFLP 

products were resolved on 10% polyacrylamide/bis-acrylamide 29:1 gels and visualized with 1X 

GelRed Nucleid Acid Gel Stain (Biotium Inc., Hayward, CA, USA). PCR-RFLP patterns for this 

polymorphism were: allele c.132T resulted in two fragments of 259 and 197 bp while allele 

c.132C was not cut (a fragment of 456 bp). Pigs used in the association studies were also 

genotyped, as described in Russo et al. (1993), for the RYR1 c.1843C>T mutation, causing the 

pale, soft, exudative defect in the meat (Fujii et al., 1991). All animals resulted with genotype 

c.1843CC. 

 

2.4. In silico functional analysis of the missense mutation 

In silico functional analysis of the novel identified missense mutation was obtained using 

the SIFT (Sorting Intolerant From Tolerant) program (Ng & Henikoff, 2003) and the evolutionary 

analysis of coding SNPs tool of PANTHER (Protein ANalysis THrough Evolutionary 

Relationships; Thomas et al. 2003; Thomas & Kejariwal, 2004), whose predictions have been 

experimentally validated (Brunham et al., 2005). SIFT is a sequence homology-based tool that 

sorts intolerant from tolerant amino acid substitutions and predicts whether an amino acid 

substitution at a particular position in a protein will affect protein function and hence, potentially 

alter the phenotype. Positions with normalized probabilities <0.05 are predicted to be deleterious. 

To evaluate this prediction, SIFT calculates the median conservation value, which measures the 
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diversity of the sequences in the alignment. Conservation is calculated for each position in the 

alignment and the median of these values is obtained. Conservation ranges from log220 = 4.32, 

when a position is completely conserved and only one amino acid is observed, to zero, when all 

20 amino acids are observed at a position. Predictions based on sequence alignments with median 

conservation values higher than 3.25 are less diverse and will have a higher false positive error. 

SIFT analysis was carried out against NCBI non redundant database (Dec. 2008) using default 

options. PANTHER estimates the likelihood of a particular non-synonymous (amino-acid 

changing) coding SNP to cause a functional impact on the protein. It calculates the substitution 

position-specific evolutionary conservation (subPSEC) score based on an alignment of 

evolutionarily related proteins (Thomas et al. 2003; 2006; Thomas & Kejariwal, 2004). The 

probability that a given variant will cause a deleterious effect on protein function is estimated by 

Pdeleterious, such that a subPSEC score of -3 corresponds to a Pdeleterious of 0.5 (Brunham et al., 

2005). The subPSEC score is the negative logarithm of the probability ratio of the wild-type and 

mutant amino acids at a particular position. PANTHER subPSEC scores are continuous values 

from 0 (neutral) to about -10 (most likely to be deleterious). 

 

2.5 RNA isolation and reverse transcription PCR 
 

Isolation of total RNA from back fat, brain, heart, kidney, liver, lung, skeletal muscle, spleen and 

thyroid specimens (about 100 mg), collected after slaughtering from a castrated male pig, was 

carried out using the RNeasy® Lipid Tissue kit (Qiagen, Duesseldorf, Germany) (for back fat and 

brain) or the FastPureTM RNA kit (TaKaRa Bio Inc., Shiga, Japan) (for all other tissues), 

following the manufacturers’ instructions. After RNA extraction, about 1 µg of total RNA for 

each tissue was treated by RNase-Free DNase set (Qiagen) and 40 ng were retrotranscribed with 

Improm II Reverse Transcription system (Promega Corporation, Madison, WI) using oligo(dT) 
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primers and following the manufacturer's protocol. A fragment of 211 bp of the TRIB3 cDNA 

was amplified with the primers designed on exon 4 (forward: 5’-

AGGAGCACATAGGGTCCAAG-3’; reverse: 5’-CACCTCTGGCTGTTTCCACT-3’) using the 

same conditions reported above except that annealing temperature was set at 57 °C. GAPDH 

cDNA amplification, used as reference, was obtained with primer pair GAPDH_437 reported in 

Fontanesi, Colombo, Beretti, & Russo (2008a). TRIB3 and GAPDH amplified cDNA fragments 

were electrophoresed as reported above. All analyses were repeated three times. 

 

2.6. Association studies 

Breeding values for average daily gain (ADG, expressed in g), LC (expressed in kg), BFT 

(expressed in mm), ham weight (HW, expressed in kg), FGR and VIF were predicted by a BLUP-

multiple trait animal model including the fixed factors of age at the beginning of test, body 

weight at slaughter, age at slaughter, day of slaughtering and inbreeding coefficient, besides the 

random factors of animal and litter. 

For the random group of performance tested Italian Large White and Italian Duroc pigs, 

associations between the TRIB3 genotypes and EBVs for the different traits were assessed by the 

GLM procedure of SAS, release 8.02 (SAS Institute Inc., Cary, NC). The model included only 

fixed effects of the marker genotypes, because all other factors contributing to the variability of 

the investigated traits were already corrected in the calculation of EBVs. For the same group of 

Italian Large White pigs, the MIXED procedure (SAS Institute Inc.) was used to evaluate 

associations between the same genotypes and meat quality parameters (pH1, pHu, glycogen and 

lactate content and GP). This model included sire as random effect and the fixed effects of day of 

slaughter and sex besides the genotype at the analysed DNA marker. Additive genetic effect in 

the Italian Large White population was estimated as half of the difference between the EBVs (or 
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between phenotypic traits) of the two homozygous groups. Dominance effect was estimated as 

the difference between the EBV (or between phenotypic traits) of the heterozygous group and the 

average of the two homozygous groups. Differences from zero of the estimates of additive and 

dominance effects were tested by t-test (Russo et al., 2008). 

For the two groups of Italian Large White pigs chosen for selective genotyping based on 

extreme values of EBVs for BFT and LC, respectively, Fisher’s exact test of significance (two-

tailed) of differences in allele frequency between the positive and negative groups was used. 

 

3. Results and discussion 
 

3.1. Identification and analysis of mutations 
 

A few porcine sequences (one expressed sequence tag, FD628621; and two draft sequences of 

chromosome 17 BAC clones, CU856069 and CU606854) including portions of the TRIB3 gene 

were identified by BLASTN analysis (e-value <1e-53). A fragment of 456 bp corresponding to 

exon 4 (the first coding exon) and including parts of intron 3 and intron 4 (according to the 

organization of the human TRIB3 gene, Ensembl ENSG00000101255 release 37, March 2010) 

was selected for further analyses. In silico mapping of this porcine sequence confirmed its 

assignment to porcine chromosome (SSC) 17 (position 36752125-36752540 nucleotides), that in 

the meantime was assembled and partially annotated. As the human TRIB3 gene is located on 

chromosome 20p13-p12.2, this assignment is in agreement with the human-porcine comparative 

mapping data (Lahbib-Mansais et al., 2005; Hart et al., 2007). Resequencing of the 456 bp 

fragment in 40 pigs of different breeds revealed two SNPs, a synonymous polymorphism 

(c.132T>C) and a nonsynonymous mutation (c.146C>T) causing the p.P49L amino acid 

substitution (EMBL accession no. FN677934). This missense mutation is in a quite good 
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conserved position of the TRIB3 protein (Figure 1). In silico evaluation of its effects obtained 

with SIFT indicated that the p.P49L substitution affect protein function with a score of 0.01. 

Median sequence conservation was 3.73 probably due to the low number (n. = 20) of sequences 

available in databases used for the SIFT analysis represented at this position. Therefore this 

prediction, even if highly significant should be considered with caution and may need other 

evidences. Another in silico analysis of the p.P49L amino acid change was obtained with 

PANTHER that produced a subPSEC = -3.82231 and a Pdeleterious = 0.69473, supporting the 

indication obtained with SIFT. 

According to our sequencing results based mainly on Italian Large White and Italian Duroc pigs, 

the two identified polymorphisms resulted in complete linkage disequilibrium within and across 

breeds, therefore a convenient PCR-RFLP protocol was used to genotype the c.132T>C SNP that 

captured information of the two haplotypes we identified in the porcine TRIB3 gene ([T:C] and 

[C:T], considering the two polymorphic sites). Haplotype frequencies obtained by genotyping the 

c.132T>C polymorphism have been analysed in 7 different pig breeds (Table 1). Haplotype [C:T] 

resulted the most frequent in all studied breeds except that in Italian Large White and Belgian 

Landrace. 

 

3.2. Expression of the porcine TRIB3 gene in different tissues 

Few data on the expression of the TRIB3 gene are available in other species (Du et al., 2003) and 

no information has been reported in pigs yet. Therefore, we analysed different porcine tissues to 

have a first overview on TRIB3 gene expression (Figure 2). Expression of this gene was 

evidenced in back fat, brain, heart, liver, skeletal muscle and spleen whereas it was not detected 

in kidney, lung and thyroid. These results could represent a first step in understanding the 
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biological roles of the TRIB3 gene related to its effects on production traits as shown by the 

association studies reported below. 

 

3.3. Association analyses 
 

Table 2 reports the results of association studies carried out in the Italian Large White and Italian 

Duroc populations unselected by any phenotypic criteria. It was interesting to note that in both 

groups of pigs TRIB3 diplotypes were suggestively associated (P<0.1) with BFT. The diplotype 

that was homozygous for the p.49L amino acid ([T:C]) showed higher BFT (positive EBV) in 

both breeds. In addition, mainly for Italian Duroc pigs, the direction of the effects on the EBVs of 

the other traits, even if not significant, was in agreement with the well established correlation 

between those traits. In the Italian Large White pigs, TRIB3 diplotypes showed effects on lactate 

content (P = 0.0673) while its effects on glycolytic potential, even if not significant, showed the 

same tendency of lactate content. For these traits the alternative diplotype ([C:T]/[C:T]) 

homozygous for the p.49P amino acid, showed lower values. Additive and dominance effects for 

traits resulting with P<0.20 are reported in Table 3. Additive effects (P<0.05) were observed for 

BFT in both breeds, for ADG and LC EBVs in the Italian Duroc pigs, and for glycolytic potential 

in Italian Large White animals only. In the latter breed dominance effect (P<0.10) was obtained 

for lactate content. 

The results obtained for BFT were confirmed in the groups of Italian Large White pigs selected 

according to the extreme values of their EBV (Table 4). Haplotype [T:C] (containing the p.49P 

amino acid) was more frequent in pigs with higher BFT EBVs (two tailed Fisher exact tests: 

P<0.05 considering all animals; P<0.01, considering only two-generation unrelated pigs). 

It is interesting to note that other studies have reported several QTL for meat quality, growth and 

carcass traits on SSC17, in regions overlapping (in some cases) the position of the TRIB3 gene 
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(Malek et al., 2001; Pierzchala et al., 2003; Rohrer, Thallman, Shackelford, Wheeler, &, 

Koohmaraie 2006). Moreover, analyses of SSC17 candidate gene markers have confirmed, at 

least in part, the effects observed in these QTL studies (Fan, Glenn, Geiger, Mileham, & 

Rothschild, 2008; Fan et al., 2010; Ramos, Bastiaansen, Plastow, & Rothschild, 2009; Ramos, 

Glenn, Serenius, Stalder, & Rothschild, 2008; Russo et al., 2008). In particular, several gene 

markers have been studied to analyse meat colour and related quality traits and their pleiotropic 

effects on other production traits, but it appears that investigated polymorphisms were not 

associated with BFT (Fan et al., 2008; Ramos et al., 2008). On SSC17, only a missense mutation 

in the cathepsin Z (CTSZ) gene was shown to affect fat deposition in Italian Large White pigs, but 

not in Italian Duroc pigs (Fontanesi et al., submitted; Russo et al., 2008), and this polymorphism 

in other commercial populations was associated with meat colour and growth rate (Ramos et al., 

2009). Therefore the effects of some SSC17 markers could depend on the analysed population, 

suggesting they might be in different phases with the causative mutations. However, TRIB3 

polymorphism might affect BFT as evidenced in Italian heavy pigs analysing two different breeds 

and considering two different experimental designs. 

 

4. Conclusions 

We have identified a missense mutation in the porcine TRIB3 gene that in silico analyses 

indicated to probably exert a functional effect on the biological role of the TRIB3 protein. This 

protein regulates insulin signalling at the level of Akt-2, a key modulator of insulin action in 

target cells, with important effects on energy metabolism and, via the regulatory action on 

adipogenenetic factors, on fat deposition. Gene expression analysis indicated TRIB3 to be 

transcribed in tissues relevant for phenotypic traits whose variability could be explained, at least 

in part, by the polymorphisms in the TRIB3 gene. In particular, this gene is expressed in adipose  
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and skeletal muscle tissues that are directly involved in determining production traits (BFT and 

lactate content) that resulted associated with the TRIB3 genotypes. In addition, the effects on BFT 

seems consistent across breeds, so making TRIB3 a particularly interesting marker for application 

in marker assisted selection programs in Italian heavy pig populations. Based on these evidences, 

it is quite tempting to speculate that the TRIB3 p.P49L substitution could be involved in 

determining  the evidenced effects. However, additional studies are needed to confirm this 

hypothesis. 
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Table 1. Haplotype frequencies at the TRIB3 gene. 

 

Breeds No. of pigs Haplotype frequenciesb 

[C:T] [T:C] 

Italian Large White 266 a 0.457 0.543 

Italian Duroc 207 a 0.725 0.275 

Italian Landrace 29 0.845 0.155 

Belgian Landrace 14 0.321 0.679 

Hampshire 10 1.000 0.000 

Pietrain 9 0.944 0.056 

Meishan 12 0.708 0.292 

 

a The animals used for allele frequency evaluation in the Italian Large White and Italian Duroc 
breeds are those of the random groups of pigs used in the association study. 

bHaplotypes are considered according to the genotyping results of the c.132T>C SNP. 
Haplotypes are defined with the two linked SNPs: c.132T>C and c.146C>T. 
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Table 2. Association analysis between the TRIB3 diplotypes (haplotype combinations) estimated 
breeding values (EBVs) and phenotypic measures for meat quality parameters in Italian Large 
White and Italian Duroc pigs. Least square means are reported with their standard errors in 
parenthesis. 

 
Breeds Traitsa Haplotype combinationsb Pc 

[C:T]/[C:T]  [C:T]/[T:C] [T:C]/[T:C] 

Italian Large White  No. = 56 No. = 131 No. = 79  

 ADG (g) 32.786 (3.576) 33.298 (2.338) 33.772 (3.010) 0.978 

 BFT (mm) -3.045 (0.505) -1.982 (0.330) -1.537 (0.425) 0.070 

 FGR -0.153 (0.021) -0.152 (0.013) -0.146 (0.017) 0.936 

 HW (kg) 0.544 (0.081) 0.562 (0.053) 0.646 (0.069) 0.543 

 LC (kg) 2.199 (0.248) 1.981 (0.162) 1.881 (0.209) 0.612 

 pH1 5.948 (0.033) 5.921 (0.023) 5.922 (0.030) 0.761 

 pH2 5.652 (0.028) 5.651 (0.020) 5.672 (0.026) 0.761 

 lactate 53.269 (2.063) 58.867 (1.387) 56.121 (1.821) 0.067 

 glycogen 47.784 (3.127) 47.871 (2.253) 51.370 (2.848) 0.528 

 GP 100.550 (3.142) 106.710 (2.246) 107.870 (2.854) 0.145 

Italian Duroc  No. = 106 No. = 88 No. = 13  

 ADG (g) 34.897 (2.894) 30.534 (3.191) 19.616 (8.303) 0.182 

 BFT (mm) -2.715 (0.356) -2.102 (0.393) -0.500 (1.022) 0.098 

 FGR -0.1813 (0.015) -0.164 (0.017) -0.102 (0.044) 0.211 

 LC (kg) 2.376 (0.199) 1.989 (0.219) 1.219 (0.571) 0.109 

 
aADG = average daily gain EBV; LC = lean cuts EBV; BFT = back fat thickness EBV; HW = 
ham weight EBV; FGR = feed:gain ratio EBV; GP = glycolytic potential. Lactate, glycogen and 
GP are expressed as mol of lactic acid equivalent per g of fresh muscle. 
bHaplotypes are considered according to the genotyping results of the c.132T>C SNP. 
Haplotypes are defined with the two linked SNPs: c.132T>C and c.146C>T. 
cP<0.10 are underlined. 
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Table 3. Additive and dominance effects (with standard errors in parenthesis) obtained for the 
TRIB3 marker. Results are reported only for association analyses with P<0.20. 
 
Breeds Traitsa Additive Pb Dominance Pb 
Italian Large White BFT (mm) 0.754 (0.330) 0.023 0.308 (0.467) 0.510 
 lactate 1.4260 (1.360) 0.296 4.172 (1.915) 0.031 
 GP 3.658 (2.016) 0.071 2.501 (2.756) 0.365 
Italian Duroc ADG (g) 7.641 (4.396) 0.084 3.278 (5.432) 0.547 
 BFT (mm) -1.107 (0.541) 0.042 -0.495 (0.669) 0.460 
 LC (kg) 0.577 (0.302) 0.057 0.192 (0.373) 0.608 
 

aADG = average daily gain EBV; LC = lean cuts EBV; BFT = back fat thickness EBV; GP = 
glycolytic potential. Lactate and GP are expressed as mol of lactic acid equivalent per g of fresh 
muscle. 
bP<0.10 are underlined. 
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Table 4. Haplotype frequencies and probability from Fisher’s two-tailed exact test (P) of equal 
frequency in the negative (Ne) vs positive (Po) groups of pigs selected according to the extreme 
and divergent estimated breeding values (EBVs) for back fat thickness (BFT) and lean cuts (LC). 

 

Traits a Groups No. of pigs f Haplotype 
[C:T] 

Haplotype 
[T:C] 

P g 

BFT Ne b 50 0.610 0.390 
0.016 

 Po b 50 0.430 0.570 

 u Nec 36 0.653 0.347 
0.007 

 u Poc 35 0.414 0.586 

LC Ne d 50 0.470 0.530 
0.252 

 Po d 50 0.380 0.620 

 u Ne e 42 0.464 0.536 
0.616 

 u Po e 31 0.525 0.475 

 

a BFT = back fat thickness; LC = lean cuts. 

b Animals with negative EBV (Ne) and positive (Po) EBV of the groups of pigs selected 
according to the extreme and divergent EBV for BFT. 

c Unrelated (u) pigs at the second generation with negative EBV (Ne) and positive (Po) EBV of 
the groups of pigs selected according to the extreme and divergent EBV for BFT. These animals 
were among the 50 + 50 animals included in the rows above. 

d Animals with negative EBV (Ne) and positive (Po) EBV of the groups of pigs selected 
according to the extreme and divergent EBV for LC. 

e Unrelated (u) pigs at the second generation with negative EBV (Ne) and positive (Po) EBV of 
the groups of pigs selected according to the extreme and divergent EBV for LC. These animals 
were among the 50 + 50 animals included in the rows above. 

f Number of pigs of each group. 

g Significant results are underlined. The tests compare the allele frequencies of the groups 
adjacent to the P value. 
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Figure 1. Alignment of the TRIB3 protein in different species around the p.P49L substitution. 

Protein sequences of other species available in databases were: Bos taurus, NP_001069571; 
Equus caballus, XP_001499331; Homo sapiens, NP_066981; Macaca mulatta, XP_001111877; 
Canis familiaris, XP_542943; Mus musculus, NP_780302. Dots indicate the presence of the same 
amino acid of the first Sus scrofa sequence. Numbers indicate amino acid positions. 

 
                       3        4        5 
                       9        9        9 
    Sus scrofa p.49P   QPRPTPCPLPLSPPPAPTH 
    Sus scrofa p.49L   .........L......... 
    Bos taurus         ...LPS...T.N.....V. 
    Equus caballus     ...LP....A.......VR 
    Homo sapiens       ...LP..L......T..DR 
    Macaca mulatta     ...LP..L......T..DR 
    Canis familiaris   .SKLP...P........AR 
    Mus musculus       E.G.L.SL..P.....SDL 
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Figure 2. Expression of the TRIB3 gene in different tissues. GAPDH transcript amplification was 
included as control. 1 = back fat; 2 = brain; 3 = spleen; 4 = liver; 5 = heart; 6 = kidney; 7 = 
thyroid; 8 = lung; 9 = skeletal muscle; 10 = control genomic DNA; 11 = negative control. 
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Abstract 

 

The  proprotein convertase subtilisin/kexin type 1 (PCSK1) gene encodes the prohormone 

convertase 1/3 enzyme that processes prohormones into functional hormones that, in turn, 

regulate central and peripheral energy metabolism. Rare and common mutations in the human 

PCSK1 gene cause severe monogenic or confer risk of obesity. We herein investigated the 

porcine PCSK1 gene with the aim to identify polymorphisms associated with fat deposition and 

production traits in Italian heavy pigs. By resequencing about 5.1 kb of this gene in 21 pigs of 

different breeds we discovered 14 polymorphisms that were organized in 9 haplotypes, clearly 

distributed in two clades of putative European and Asian origin. Then we re-mapped this gene on 

porcine chromosome 2 and analysed its expression in several tissues including gastric oxyntic 

mucosa of weanling pigs in which PCSK1 processes the pre-pro-ghrelin into ghrelin, that in turn 

is involved in the control of feed intake and energy metabolism. Association analyses between 

PCSK1 single nucleotide polymorphisms (SNPs) and production, carcass and several other traits 

were conducted on five groups of pigs from three different experimental designs, for a total of 

1221 animals. Results indicated that the analysed SNPs were associated (P<0.01 or P<0.05) with 

several traits including back fat thickness and visible intermuscular fat in Italian Duroc (ID) and 

growth performances in Italian Large White (ILW) and in ILW x Italian Landrace pigs. However, 

the effects estimated in the ILW were opposite to the effects reported in the ID pigs. Suggestive 

association (P<0.10) was observed with muscle cathepsin B activity, opening, if confirmed, 

potential applications to reduce the excessive softness defect of the green hams that is of 

particular concern for the processing industry. The results obtained supported the need to further 

investigate the PCSK1 gene to fully exploit the value of its variability and apply this information 

in pig breeding programs. 
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Running title: PCSK1 and association with pig production traits 

Keywords association study; heavy pigs; PCSK1; production traits; SNP 

 

Implications 

Polymorphisms in the porcine PCSK1 gene are associated with several economic traits including 

obesity related traits, like back fat thickness and visible intermuscular fat, and cathepsin B 

activity. Exploitation of PCSK1 variants in pig breeding programs is promising, providing that 

breed specific effects are considered and further investigated. 

 

Introduction 

Fat deposition is a key issue in pig breeding as it affects production efficiency, consumer 

acceptance of pork, pork quality and suitability of pork for processing (Russo and Nanni Costa, 

1995). A large number of studies have reported QTL for different fat deposition traits in pigs (Hu 

and Reecy, 2007; Rothschild et al., 2007). Furthermore, analyses of candidate genes for fat 

deposition derived from studies in humans and mice have allowed the identification of several 

gene polymorphisms associated with fatness in different pig lines and breeds. Mutations in 

several human genes have shown important roles in determining or conferring risks of obesity 

and obesity-related traits (like diabetes, cardiovascular diseases, etc.). Polymorphisms in the 

homologous pig genes have been associated with fatness and several other production and carcass 

traits. For example, among these genes it is worth to mention a missense mutation in the 

melanocortin 4 receptor (MC4R) gene that is associated with feed intake and backfat thickness in 

several pig lines/breeds (Kim et al., 2000; Houston et al., 2004; Bruun et al., 2006; Fan et al., 

2009c). More recently, polymorphisms in the FTO (Fan et al., 2009a; Fontanesi et al., 2009; 

Fontanesi et al., 2010b), CTSK (Fontanesi et al., 2010c), TBC1D1 (Fontanesi et al., 2011a), 
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TCF7L2 (Du et al., 2009) and TRIB3 (Fontanesi et al., 2010a) genes among several others (Fan et 

al., 2009b; Switonski et al., 2010) are associated with fat deposition traits in different pig breeds. 

Another interesting candidate gene is the proprotein convertase subtilisin/kexin type 1 

(PCSK1) gene. This gene encodes the prohormone convertase 1/3 enzyme that belongs to the 

subtilisin-like proprotein convertase family. PCSK1 is mainly expressed in neuroendocrine cells 

and its main function is to process prohormones into functional hormones that, in turn, regulate 

central and peripheral energy metabolism. In particular, this enzyme cleaves proinsulin, 

proopiomelanocortin, prorenin, proenkephalin, prodynorphin, prosomatostatin and progastrin 

generating their corresponding bioactive peptides (Steiner et al., 1996; Muller and Lindberg, 

1999; Zhu et al., 2002; Scamuffa et al., 2006). In addition, PCSK1 is required for processing the 

pre-pro-ghrelin into ghrelin in the gastric mucosa (Zhu et al., 2006). Ghrelin is involved in the 

control of feed intake and energy metabolism. This polypeptide is secreted from the stomach and 

circulates in the bloodstream under fasting conditions, transmitting a hunger signal from the 

periphery to the central nervous system (Koijma and Kangawa, 2005). In pigs, forced weaning 

practises of most modern production systems cause a period of voluntary feed deprivation and 

weight loss (Forbes, 1995) that represents an interesting model to evaluate the endocrine 

adaptation to the food deprivation response that involves the PCSK1-ghrelin control and 

regulation (Salfen et al., 2003). 

As a proof of the important role of PCSK1 for the endocrine system, rare mutations in the 

human PCSK1 gene cause severe monogenic obesity (Jackson et al., 1997; Farooqi et al., 2007). 

Common nonsynonymous variants in this gene confer risk of obesity in different human cohorts 

(Benzinou et al., 2008; Kilpeläinen et al., 2009; Chang et al., 2010; Heni et al., 2010; Qi et al., 

2010). Similar effects have been observed in mice in which a missense mutation leads to obesity, 

abnormal proinsulin processing and multiple endocrinological defects (Lloyd et al., 2006). 



Chapter two 
 

53 
 

On the basis of these lines of evidence reported in humans and mice, we selected the 

porcine PCSK1 gene as a candidate gene for fat deposition and production traits in pigs. We re-

mapped and re-sequenced this gene, identified polymorphisms, elaborated sequence information, 

analysed gene expression and showed that the porcine PCSK1 gene is associated with fat 

deposition and several other production traits in different Italian heavy pig breeds/lines 

Materials and methods 

Animals 

All procedures involving animals followed Italian and European Union regulations for 

animal care and slaughtering or, if requested by the Italian legislation, were approved by the 

Ethical Commission of the University of Bologna for animal experiments. 

The association study was conducted on five groups (1-5) of pigs from three different 

experimental approaches (a, b, and c), as defined and listed below, for a total of 1221 animals. 

The first four groups (1-4) included performance tested pigs grown at the Test Station of the 

National Pig Breeder Association (ANAS). Performance test was conducted on triplets of siblings 

from the same litter (two females and one castrated male). Data were used for the genetic 

evaluation of a male from the same litter (sib-testing). 

Experimental design “a”. Of these four groups of animals, two were not selected by any 

phenotypic or genotypic criteria (random groups).  

1-a) One of them was made up of 271 Italian Large White pigs (180 females and 91 

castrated males, from 78 different sires; Fontanesi et al., 2008b). Pigs of this group were 

slaughtered over 6 different days in 2002. 

2-a) The other random group was made up by 197 Italian Duroc pigs (128 females and 69 

castrated males, from 91 different sires) slaughtered at 33 different days in the years 1995-2003. 
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Experimental design “b”. Two other groups came from the most extreme and divergent 

estimated breeding values (EBVs) for: 3-b) back fat thickness (BFT; Italian Large White); and 4-

b) visible intermuscular fat (VIF; Italian Duroc) among performance tested pigs. 

3-b) Italian Large White pigs were all females (no. = 560) with no common parents, 

selected among ~12,000 performance tested pigs of this breed in the period 1995-2007 (280 with 

the lowest BFT EBV, mean and s.d = –9.40 ± 1.60 mm; and 280 with the highest BFT EBV, 

mean and s.d =+8.00 ± 5.95 mm). 

4-b) The group of Italian Duroc consisted of 100 pigs (58 females and 42 castrated males 

from 62 different sires) selected among 1225 pigs of that breed (evaluated in same period 1996-

1999; Fontanesi et al., 2009, 2011b): 50 with the most negative (-2.35 ± 0.27) and 50 with the 

most positive VIF EBV (+2.17 ± 0.34). Details about traits and method of EBV calculation are 

reported below. 

Experimental design “c”.  5-c) The fifth group was made up by 93 weaning pigs (Italian 

Large White x Italian Landrace; 22 females and 71 castrated males) for which growth 

performances and feed intake were recorded during a trial of tryptophan supplementation in the 

diet with or without oral challenge with Escherichia coli K88 (Bosi et al., 2004; Trevisi et al., 

2009; Trevisi et al., 2010). This latter group of pigs was also used for quantitative PCSK1 gene 

expression analysis in the gastric oxyntic mucosa, considering the particular physiological state in 

this stressing period in which animals are voluntary feed deprived. 

Another group of 21 unrelated pigs of different breeds for which no phenotypic data were 

available was used for sequence analysis (sequencing panel; see below). Additional pigs of 

different breeds (20 Italian Landrace, 22 Belgian Landrace, 18 Hampshire, 30 Casertana, and 12 

Meishan) were used for allele frequency analysis of three tag SNPs. Phenotypic data were not 
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available for these pigs. A castrated male pig of ~160 kg live weight was used for collection of 

different tissues for qualitative PCSK1 gene expression analysis. 

Genomic DNA was extracted from muscle, blood or hair roots using standard protocols. 

 

Traits 

Performance testing started when pigs were 30-45 days old and ended when animals 

reached 155 ± 5 kg live weight. The nutritive level was quasi ad libitum. Feed intake was 

recorded daily and body weight was measured bimonthly, then daily gain and feed:gain ratio 

were calculated. At the end of test, selected animals from two contiguous batches on trial were 

mixed at loading and transported to a commercial slaughterhouse located at 24.5 km away from 

the Test-Station. After unloading, pigs were immediately stunned and bled in a lying position. 

Within 3 hours post mortem at the slaughterhouse, back fat thickness at the level of Musculus 

gluteus medius, weight of lean cuts (necks and loins), and weight of hams were measured. Only 

for the Italian Duroc pigs visual evaluation of intermuscular fat content (VIF) was obtained on 

leg muscles based on a binary scale (presence/absence). These phenotypic traits were available 

for performance tested pigs from the random groups and for the Italian Duroc used in the 

selective genotyping experiment. Only for the 271 Italian Large White pigs of the random group, 

measures of pH1 (at 2 h post mortem), pHu (at 24 h post mortem), glycolytic potential (GP), 

including glycogen and lactate content (30 min post mortem) and cathepsin B activity (Catb) (24 

h post mortem) were obtained on Musculus semimembranosus as previously described (Fontanesi 

et al., 2008b; Russo et al., 2008). For the Italian Large White of the selective genotyping 

experiment, only BFT measures were available. 

Weaning Italian Large White x Italian Landrace pigs were raised in single boxes at the 

experimental farm of the University of Bologna. Body weight and feed intake were measured 
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daily for two weeks starting at weaning (21-24 days) and the values were averaged for the first 

and second week, respectively (Trevisi et al., 2009; Trevisi et al., 2010). 

 

Sequencing and identification of polymorphisms 

When we started this study, no complete porcine PCSK1 gene sequence was available in 

DNA databases. Therefore BLASTN queries (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with a 

porcine PCSK1 cDNA sequence (GenBank accession number NM_214038) against porcine 

sequences (including trace records) deposited in DNA databases were used to retrieve pig PCSK1 

genomic sequences corresponding to all recognized exons (according to the comparative 

information available in human) and parts of intronic regions (data not shown). PCR primers 

were designed with PRIMER3 (http://fokker.wi.mit.edu/primer3/input.htm) in intronic regions 

(except for the last gene region)  to amplify 14 fragments encompassing exonic sequences (Table 

S1) from 21 pigs of the sequencing panel (Table 1). PCR was carried out using a PTC-100 (MJ 

Research, Watertown, MA, USA) thermal cycler in a final volume of 20 µL that included 10 

pmol of each primer 2.0 mM MgCl2, 2.5 mM each dNTP, 1 U AmpliBioTherm Taq DNA 

polymerase (Fisher Molecular Biology, Trevose, PA, USA). The PCR profile was the following: 

an initial step at 95 °C for 5 min; 35 cycles of 30 s at 95 °C, 30 s at the appropriate annealing 

temperature (Table S1) and 30 s at 72 °C; the final extension step was for 5 min at 72 °C. 

Sequencing reactions were produced for ExoSAP-IT® (USB Corporation, Cleveland, Ohio, 

USA)-treated PCR products using the same PCR primers and the Big Dye v3.1 kit (Applied 

Biosystems, Foster City, CA, USA). Sequencing products were electrophoresed on an ABI3100 

Avant sequencer (Applied Biosystems). Using CodonCode Aligner (CodonCode Corporation, 

Dedham, MA, USA) all sequence  chromatograms were aligned and visually inspected to identify 

polymorphisms. 
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Sequence analyses 

Phases including all detected polymorphisms in the sequenced panel were reconstructed 

with PHASE program v. 2.1.1 (Stephens et al., 2001). Nucleotide diversity (), haplotype 

diversity and Tajima’s D were estimated using DNASP v. 4.10.9 (Rozas et al., 2003). Tajima’s D 

measures whether the observed frequencies of segregating mutations are compatible with the 

frequencies expected under a standard neutral model. Positive selection or the presence of weakly 

deleterious mutations as well as population growth tend to give an excess of low frequency 

variants, resulting in negative test values. Balancing selection or population contraction may 

cause an excess of intermediate-variants and positive D values. Significance of the D tests was 

determined by coalescent simulations (Rozas et al., 2003). Phylogenetic analysis of the identified 

haplotypes of the PCSK1 gene was conducted with MEGA4 software v. 4.0.2 (Tamura et al. 

2007) with Kimura’s two parameter model and Neighbour Joining (NJ) tree. Standard errors were 

obtained from 1,000 bootstrap replicates. The HAPLOVIEW program v.4.1 was used to 

determine the presence and length of haplotype blocks (using the four gamete rule option), and 

potential tag SNPs (Barrett et al., 2005). 

 

Genotyping of SNPs 

Three PCSK1 SNPs were analysed by PCR-RFLP. DNA extracted as reported above was 

amplified as previously described (Table S1). Digestion was carried out overnight at 37 or 65 °C 

in a final volume of 25 µl containing 1X enzyme reaction buffer, 5 µl of PCR product and either 

2 U of AluI (MBI Fermentas, Vilnius, Lithuania) for SNP g.5182A>T or 2 U of TaiI (MBI 

Fermentas) for SNP g.1736C>T or either 2 U of TaaI (MBI Fermentas) for SNP g.1966C>A 

(reference sequence GenBank/EMBL HE599222). Digested DNA fragments were 

electrophoresed on 1X TBE 10% polyacrylamide/bis-acrylamide 29:1 gels and stained with 



Chapter two 
 

58 
 

ethidium bromide or 1X GelRed Nucleid Acid Gel Stain (Biotium Inc., Hayward, CA, USA). To 

evaluate precision of the three genotyping protocols, sequenced animals were genotyped. Both 

sequencing and PCR-RFLP analyses showed the same results. 

 

Gene expression 

Qualitative gene expression analysis: Isolation of total RNA from back fat, brain, heart, 

kidney, liver, lung, skeletal muscle, spleen, thyroid, and gastric oxyntic mucosa (collected from a 

weaning pig) specimens (50-100 mg) was carried out using the RNeasy® Lipid Tissue kit 

(Qiagen, Duesseldorf, Germany) (for backfat and brain), the RNeasy® Midi kit (Qiagen) (for 

gastric oxyntic mucosa) or the FastPureTM RNA kit (TaKaRa Bio Inc., Shiga, Japan) (for all other 

tissues), following the manufacturers’ instructions. The purity and concentration of the total RNA 

extracted were checked using the Nanodrop ND 1000 spectrophotometer (Nanodrop 

Technologies Inc., Wilmington, DE, USA) and RNA integrity was controlled by agarose gel 

electrophoresis analysis. Then, about 1 µg of total RNA for each tissue was treated by RNase-

Free DNase set (Qiagen) and 40 ng were retrotranscribed with Improm II Reverse Transcription 

system (Promega Corporation, Madison, WI) using oligo(dT) primers and following the 

manufacturer's protocol. A fragment of 122 bp of the PCSK1 cDNA was amplified with the 

primers designed on the 3’-untranslated region (3’-UTR) of the PCSK1 cDNA (GenBank 

accession number NM_214038; Table S1) using the same PCR cycling conditions as reported 

above. GAPDH cDNA amplification, used as reference, was obtained with primer pair 

GAPDH_437 reported in Fontanesi et al. (2008a). PCSK1 and GAPDH amplified cDNA 

fragments were electrophoresed as reported above. All analyses were repeated three times. 

Quantitative gene expression analysis (qPCR): This analysis was carried out on gastric 

oxyntic mucosa RNA extracted as described above from specimens collected from the weaning 

pigs. Total RNA was evaluated and RNase-Free DNase treated as reported above. After these 
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steps, 1 g of total RNA was reverse transcribed using the ImProm-II Reverse Transcription 

System (Promega). External PCR primers were used to amplify a fragment which served as the 

external homologous DNA standard of a known copy number (Table S1). This product was 

purified using the QIAquick PCR Purification Kit (Qiagen). The DNA quality and concentration 

were evaluated by the Nanodrop ND 1000 spectrophotometer (Nanodrop Technologies Inc.) and 

agarose gel electrophoresis. Then the fragment was serially diluted in 1:10 steps and a standard 

curve was created to perform an absolute quantitative analysis using internal primers (Table S1). 

The quantification reactions were performed in a Light Cycler instrument (Roche, Mannheim, 

Germany). The amplification was carried out in a 10 µL volume containing 2 µL of cDNA, 8 

pmol of each primer, and 5 µL of SYBR® Premix Ex Taq™ II (Perfect Real Time; Takara Bio 

Inc., Japan). The fast protocol was 40 cycles at 95°C for 5 s and 62 °C for 20 s. The detection of 

the fluorescent product was set at the last step of each cycle. The specificity of each amplification 

was determined by melting curve analysis and electrophoresis on 1.2% agarose gels stained as 

previously reported. All amplifications were repeated three times and data were expressed as 

gene transcript copies /µl  cDNA. 

 

Radiation hybrid mapping 

The INRA-Minnesota 7000 rads radiation hybrid (RH) panel (IMpRH panel; Yerle et al., 

1998) consisting of 118 rodent-porcine hybrid cell lines was screened by means of PCR using 

primer pair indicated in Table S1. No PCR fragment was obtained from the control rodent 

genomic DNA. The PCR reactions were visualized on 10% polyacrylamide/bis-acrylamide 29:1 

or 2% agarose gels. The results of RH PCR products were analysed with the IMpRH mapping 

tool accessible through the http://imprh.toulouse.inra.fr/ web address (Milan et al., 2000). 
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Association analyses 

EBVs for average daily gain (ADG, expressed in g), lean cuts (LC, expressed in kg), back 

fat thickness (BFT, expressed in mm) and feed:gain ratio (FGR) were calculated for both random 

groups of sib-tested Italian heavy pigs (1-a and 2-a). EBV for ham weight (expressed in kg, HW) 

was calculated for Italian Large White pigs only (1-a). EBV for visible intermuscular fat (VIF) 

was calculated for Italian Duroc pigs only (2-a). EBVs for BFT and VIF were calculated for the 

two groups of pigs (Italian Large White and Italian Duroc, respectively) used in the selective 

genotyping analysis (3-b and 4-b). EBVs were calculated using a BLUP-Multiple Trait-Animal 

Model with different models for each trait. Depending on the trait, models included the fixed 

effects of sex, batch on trial, inbreeding coefficient of the animal, interaction of sex by age at 

slaughtering, date of slaughtering and the random effects of litter and animal. Random Residuals 

(RRs) were calculated for all considered traits in the random groups (1-a and 2-a) of performance 

tested Italian Large White and in all Italian Duroc pigs (ADG, LC, BFT, FGR and HW in Italian 

Large White; ADG, LC, BFT, FGR, HW, and VIF in Italian Duroc). RRs were obtained by using 

liner fixed models including the same factors used for each trait in the Best Linear Unbiased 

Prediction (BLUP)-Multiple Trait Animal Model (Fontanesi et al., 2010d). 

Association analyses were carried out independently for the two random groups of sib-

tested Italian pigs (1-a, Italian Large White; and 2-a, Italian Duroc). Associations between the 

two polymorphic PCSK1 SNPs (g.1736C>T and g.5182A>T) and EBVs or RRs were assessed by 

using the general linear model (GLM) procedure of SAS, release 9.2 (SAS Institute Inc. Cary, 

NC, USA). The models included only the fixed effects of individual marker genotypes. All other 

factors contributing to variability of the investigated traits were already considered in the 

calculation of EBV or RR. For meat quality traits in the performance tested Italian Large White 

pigs (1-a), the procedure MIXED of SAS was applied to a model that included date of 

slaughtering, sex and PCSK1 genotype for g.1736C>T and g.5182A>T SNPs. EBV and RR 
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distribution (and their residuals) for BFT, ADG, LC, and FGR traits in the sub-group of Italian 

Duroc animals pigs with the extreme values of EBVs for VIF (4-b), did not differ from the 

normal distribution (Shapiro-Wilk test for these traits was P > 0.15). Therefore, to test the 

association between the genotypes at the PCSK1 gene and the calculated EBVs and RRs for BFT, 

ADG, LC and FGR, this sub-group of pigs (100 animals) was merged with the sub-group of pigs 

of the same breed not pre-selected by any phenotypic or genotypic criteria (197 animals), thus 

forming a group of 297 Italian Duroc pigs (2-a + 4-b). Association between VIF and PCSK1 

genotypes was carried out using only the 197 Italian Duroc pigs not pre-selected in which VIF 

EBVs were normally distributed (2-a). In addition, haplotypes between the two PCSK1 

genotyped SNPs were inferred using the PHASE program v. 2.0 (Stephens et al., 2001). 

Evaluation of the haplotype substitution effect on EBVs and RRs was obtained separately for the 

same two performance tested Italian heavy pig groups (1-a and 2-a) using the PROC REG of 

SAS with a model including the number (0, 1, 2) of the haplotypes identified. As discussed in 

Russo et al. (2008), to overcome the effects of multiple tests on nominal comparison-wise error 

rate P-values, significant threshold (independently for the single marker analysis and for the 

haplotype analyses across the two random populations) was identified using the Proportion of 

False Positive (PFP) approach (Fernando et al., 2004). PFP thresholds were calculated as 

described in Bagnato et al. (2008). As reported below, the excess of significant tests caused an 

almost coincidence of P-nominal value and PPFP for single marker tests and a higher PPFP than 

the P-nominal value in haplotype association analysis, similarly as reported by Tal-Stein et al. 

(2010). Therefore in both cases we adopted P-nominal value = 0.05 as the threshold for 

significant association and P-nominal value = 0.10 as the threshold to indicate suggestive 

association. In addition, additive genetic and dominance effects of the two PCSK1 SNPs were 

estimated for the two random performance tested pig populations as it follows: additive effect, a 

= 1/2(BB-AA); dominance effect, d = AB-1/2(AA+BB). Estimates of the effects were tested by t-

test for significant deviation from zero. Ratio between the absolute values of d and a (|d/a|) were 
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used to indicate possible gene effects: |d/a|<0.2, additive; 0.2<|d/a|<0.8, partial dominance; 

0.8<|d/a|<1.2, dominance; |d/a|>1.2, overdominance (Stuber et al., 1987). 

For the two groups of pigs chosen for selective genotyping based on extreme values of 

EBVs for BFT (3-b, Italian Large White) and VIF (4-b, Italian Duroc), respectively, Fisher’s 

exact test of significance (two-tailed) or Chi square test (where appropriate) of differences in 

allele frequency between the positive and negative groups were used. 

For the weaning Italian Large White x Italian Landrace pigs (5-c), association between 

PCSK1 gene expression in gastric oxyntic mucosa, growth performances and feed intake, and 

PCSK1 SNPs was analyzed using the PROC GLM procedure of SAS with a factor design, 

including the PCSK1 g.1736C>T or the g.5182A>T SNPs, the diet, the susceptibility to E. coli 

K88, the trial, and the litter within the trial. In the case of the g.5182A>T polymorphism, only 

two pigs carried the AA genotype, therefore this genotypic class was excluded from the analysis.  

In these two later studies (extreme divergent groups and weaning pigs), results with P-

nominal value ≤ 0.05 were considered significant. Other P-nominal values 0.05 < P <0.10 were 

considered as suggestive for associations. 

 

Results 

Gene expression analyses 

As information of the range of tissues in which PCSK1 is expressed was not available in 

pigs, we first tested its expression in 10 different tissues (Fig. S1). PCSK1 expression was evident 

in most of the analysed tissues with some differences in signal intensity, except in liver and 

spleen in which we did not obtain any amplified fragment. As expected from reports in other 

species (i.e. Gagnon et al., 2009) and according to the fundamental function of PCSK1 in 
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processing key-gut/intestine prohormones (Zhu et al., 2006), gastric oxyntic mucosa showed a 

qualitatively higher level of PCSK1gene expression compared to the other tissues (Fig. S1). 

Therefore qPCR was used to precisely evaluate the level of expression of this gene in weaning 

pigs and to evaluate its association with PCSK1 SNPs (see below). Considering the data obtained 

in the analysed pigs, gastric oxyntic mucosa contained on average 996  65 PCSK1 gene 

transcript copies per µl of cDNA. 

 

Radiation hybrid mapping of the porcine PCSK1 gene 

The porcine PCSK1 gene has been already assigned to porcine chromosome (SSC) 2 by RH 

analysis (Shimogiri et al., 2006). In addition, a partial sequence with several gaps and assembling 

problems of the PCSK1 gene has been included in the Sscrofa 9.2 version of SSC2, between 

nucleotides 92,001,906 and 92,024,579 (Ensembl entry: ENSSSCG00000014169). This is in 

agreement with comparative mapping between SSC2 and human chromosome (HSA) 5 in which 

this gene is localized (GRCh37: position 95.73-95.77 Mb), as indicated by several studies (Rink 

et al., 2006; Hamasima et al., 2008). However, this gene has not been included in the Sscrofa10.2 

version of SSC2 as BLAST analysis with the porcine PCSK1 cDNA sequence (NM_214038.1) 

did not reveal any significant match with any region in this updated SSC2 version, but only with 

an un-assembled scaffold (LOCUS NW_003540493, chrU_scaffold4254; data not shown). 

Therefore we confirmed the previous assignments to SSC2 by RH mapping using the IMpRH 

panel. The retention fraction of the amplified PCSK1 fragment was 22% and the closest marker 

obtained by two-point analysis was S0226 (distance = 39 cR; LOD = 10.31), already placed on 

the RH map of SSC2 (Hawken et al., 1999). This microsatellite is the same that resulted the 

closest marker in the two-point analysis reported by Shimogiri et al. (2006), confirming the 

previous evidences. Multipoint mapping localized the PCSK1 gene between microsatellites 
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SW1602 and SW1320 (74.8 cM and 76.9 cM, respectively, in the linkage map of the USDA 

database, http://www.marc.usda.gov/genome/swine/swine.html). 

 

Polymorphisms, sequence statistics and haplotype diversity 

As the porcine PCSK1gene sequence available on Sscrofa9.2 did not include sequence 

information from a few coding exons and a few others have been assembled in reverse 

complement position compared to most of the correctly defined Ensembl exons, we retrieved the 

lacking exons and defined the problematic ones mining trace records and aligning cDNA and 

genomic sequences. The resulting assembled sequence (EMBL accession no. HE599222) was 

compared to the sequence available in Sscrofa10.2 genome version that independently confirmed 

the correct assembly. Then, we resequenced 5,180 bp in 21 pigs of different breeds, 

encompassing almost all coding sequence (CDS; 2,062 bp, only a few bp of the last coding exon 

were not included) and parts of intronic and 5’-untranslated region (3,118 bp) (EMBL accession 

number HE599222). On the whole, we identified one indel (in a poly T stretch in intron 4) and 13 

SNPs, 4 of which were synonymous polymorphisms in coding regions (one SNP every ~515 bp 

of CDS), whereas all others polymorphisms were in introns (one every ~312 bp of non coding 

sequences) (Table 1). In silico prediction of the effects of the identified polymorphisms did not 

report any strong signal of potential functional roles for the different variants (data not shown). 

Computation of nucleotide diversity () for sequenced regions (Table 2) indicated a quite 

low level of variability in the Western pig breeds (ranging from 0.011% to 0.040%) compared to 

the Meishan (0.090%). Tajima’s D (DT) values were not significant in any breed (P>0.10) 

probably due to the low number of sequenced animals. However, it is interesting to note a 

positive value in Italian Large White (+1.680), whereas in Italian Duroc and Hampshire this 

parameter was negative (-1.278 and -1.337) (Table 2). 
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Haplotypes were inferred using all SNPs but excluding the indel for the difficulties in 

determining the genotypes of the animals from sequences data. Inferred haplotypes (n. = 9) with 

their occurrence in the sequenced pig panel are reported as a note to Table 1. Haplotype (H) 3 

was the most frequent (17 out of 42 sequences) and it was almost fixed in Italian Duroc (12/14). 

Haplotype 1 was the second most frequent in the sequenced panel (24%), it was in all Western 

breeds and was the most frequent in Hampshire (5/6). Haplotype 6 was the most frequent in 

Italian Large White (4/10) but was observed also in one Meishan pig. Other Meishan sequences 

included haplotypes 7 and 8. Haplotype 9 was identified in one Hampshire pig. Neighbor-Joining 

tree of the haplotypes (Fig. S2) clearly indicated differences between two groups of haplotypes. 

One included the most divergent haplotypes (H8 and H9) that might be of Asian origin, 

considering that H8 was identified in one Meishan. However, H9 identified in a Western pig 

(Hampshire) might be derived by introgression of Asian haplotypes into Western originated 

breeds. Signs of putative introgression of Asian haplotypes in European breeds could be seen also 

for H7 that was shared by Meishan, Italian Large White, Belgian Landrace, and Italian Duroc. 

Figure 1 reports the linkage disequilibrium patterns (r2) between polymorphism pairs across 

the porcine PCSK1gene. Two main haplotype blocks can be observed from the obtained data. The 

largest one, that includes the 3’ part of the gene, spans ~30 kb (without including several 

unknown not sequenced intronic regions of the Sscrofa10.2 chrU_scaffold4254). Using the 

aggressive tagging algorithm of HAPLOVIEW (Barrett et al., 2005), 9 SNPs tests captured all 

variability (13 considered polymorphisms; mean max r2 = 1.00). 

Three tag SNPs detected by sequencing (g.1696C>A, g.1737T>C, and g.5182A>T) were 

chosen for genotyping as they could be easily analysed by PCR-RFLP and were among the 

tagged SNPs identified as reported above. Allele frequencies of these three SNPs in a larger 

number of pigs of the same breeds used for SNP discovery, including also 30 Casertana pigs, are 

reported in Table S2. Results confirmed those obtained from the sequencing panel for the same 
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polymorphic sites. For example, allele C of the g.1737T>C SNP was contained only in H9 

identified in a Hampshire pig. This SNP resulted polymorphic only in the Hampshire breed 

(Table S2). For this reason it was not considered for further genotyping and association studies. 

 

 

Association analyses 

Results of the association analyses in the random groups of Italian Large White and Italian 

Duroc pigs (1-a and 2-a) between the two PCSK1 SNPs of interest (g.1696C>A and g.5182A>T) 

and meat production, carcass traits, growth performances and meat quality traits are reported in 

Table 3. An excess of tests with P-nominal value <0.10 is evident (33 out of 54 tests), therefore 

P-nominal value of 0.05 corresponded to the PPFP significant threshold of 0.05. Both EBVs and 

RRs were considered in this analysis for ADG, BFT, FGR, HW, LC and VIF: for most traits for 

which association analyses with EBV produced P-nominal value <0.10, results obtained using 

RR confirmed in most case the same significance levels. In particular, for g.5182A>T in the 

Italian Duroc population, 4 out of 5 significant EBVs resulted in a corresponding RR below P-

nominal value of 0.10. Also HW RR (not available as EBV) showed a P-nominal value far below 

0.10 (Table 3). For the other genotyped SNP (g.1696C>A), 5 significantly or suggestively 

associated trait/EBVs had two corresponding suggestively associated RR based values (ADG and 

LC) plus HW RR with P < 0.05. In Italian Large White pigs, the g.1696C>A genotypes with 

significant effects on ADG EBV (P < 0.01), FGR EBV (P < 0.05) and LC EBV (P < 0.02), were 

also suggestively associated, close to the suggestive threshold or significantly associated with the 

corresponding RR values (ADG RR, P < 010; FGR RR, P = 0.107; LC RR, P < 0.05). This 

polymorphic site was also suggestively associated with lactate content (Table 3). Effect on LC 

was also reported for the other marker (g.5182A>T) in both EBV (P < 0.01) and RR (P < 0.02). 

The genotypes of this SNP were suggestively associated or significantly associated with several 

meat quality parameters (pH1, lactate content and cathepsin B activity: P <0.10; glycogen 
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content: P < 0.05). In the Italian Large White population, BFT did not result to be significantly 

associated with g.1696C>A or g.5182A>T genotypes. 

By observing the effects of the two genotyped SNPs on the significantly or suggestively 

associated traits in the two considered breeds it appears an opposite effect (with some difference 

in additive or dominance effects) in Italian Large White as compared to Italian Duroc (Tables 3 

and S3). For example, genotype CC of the g.1696C>A showed a positive effect in the Italian 

Large White whereas it was the less favourable in Italian Duroc for ADG (Tables 3 and S3). And 

this was evident for most traits analysed in both breeds. The same was true for the g.5182A>T 

SNP. For example, genotype AA was associated with lower ADG in Italian Large White whereas 

in Italian Duroc TT was the less favourable genotype (Tables 3 and S3). 

Results of single marker analysis were confirmed using haplotypes of these two genotyped 

SNPs (Table S4). All four possible haplotypes were inferred in both pig breeds. One of which 

([g.1696A:g.5182T], indicated as [A:T]) was carried by few animals and was excluded from the 

association analyses (Table S4). The most frequent haplotype in Italian Large White was [A:A] 

(~46%), whereas in Italian Duroc it was [C:T] (~52%) (Table S4). Considering the 63 tests 

reported in Table S4, more than 50% (33 out of 63) of the test showed a P < 0.10. This excess of 

tests in this bin class produced a PPFD = 0.05 that corresponded to a P-nominal value of ~0.10. 

Therefore, also for haplotype analyses we took the P-nominal value of 0.05 as the threshold for 

significance and the P-nominal value of 0.10 as the threshold for suggestive association. 

Haplotype substitution effects were highly significant for ADG EBV (P < 0.001) and significant 

for ADG RR (P < 0.05) for haplotype [A:A] in both breeds, but, as expected from the results of 

the analysis of the two separated SNPs, in the opposite direction (Table S4). For haplotype [C:T], 

substitution effect for 11 out of 21 trait/breed combinations were significant in the Italian Duroc 

pigs. Haplotype [C:A] showed significant substitution effect in Italian Duroc only (Table S4). 

Significant results were for BFT and VIF for both EBV and RR in opposite direction as 
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compared to the effects of haplotype [C:T] on the same traits (Table S4). This result confirmed 

the role of the g.5182A>T SNP in affecting BFT and VIF in Italian Duroc breed. 

An independent confirmation of the effect of this PCSK1 polymorphic site in affecting VIF 

was provided by the selective genotyping experiment in which two extreme and divergent groups 

for VIF EBV were genotyped (4-b; Table S5). Significant differences in allele frequencies 

between the two tails were reported considering all 50 + 50 pigs (P < 0.05). Suggestive 

differences (P < 0.10) were maintained considering only two-generation unrelated pigs (Table 

S5). Allele T was the most frequent in the positive group (VIF with higher value, that means 

higher content of VIF) confirming the effect of this allele from the previous analysis (Tables 3 

and S4). As expected, no significant allele frequency difference was reported for the g.1696C>A 

SNP (Table S5). Results for the selective genotyping experiment for BFT in the Italian Large 

White breed (3-b) confirmed the lack of effects of the g.1696C>A and g.5182A>T SNPs on this 

trait (Table S5).  

To further evaluate the effects of PCSK1, we genotyped the g.1696C>A and g.5182A>T 

SNP in 93 weaning Italian Large White x Italian Landrace pigs (5-c) for which growth 

performances, feed intake and mRNA PCSK1 level in gastric oxyntic mucosa were measured 

(Table 4). Significant association (P < 0.05) between the g.1696C>A genotypes and daily feed 

intake during the second week of trial was identified confirming the suggestive association (P < 

0.10) with daily gain on the same period. Animals with genotype AA showed increased feed 

intake and growth rate, confirming, to some extent, the effect of this SNP on growth traits, 

already found in the performance tested Italian Large White and Italian Duroc pigs (Table 3). 

However, the direction of the effect seems similar to that reported in Italian Duroc in which 

animals with the same AA genotype had a higher ADG. No significant effects were evidenced for 

the g.5182A>T SNP on growth performance. Both genotyped SNP were not associated with 

PCSK1 gene expression level in the analysed tissue. 
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Discussion 

PCSK1 also known as PC1 or PC3 belongs to a family of serine proteinases that is 

responsible for processing secretory precursor proteins into their active forms, making this 

enzyme a key regulator of the secretory pathway in mammals. Several reports in humans have 

indicated that polymorphisms in this genes cause severe early-onset obesity or are associated with 

common obesity (e.g.: Jackson et al., 1997; Benzinou et al., 2008). Therefore, this gene is an 

interesting candidate to explain a quote of variability of fat deposition and other obesity-related 

traits in pigs. 

Mapping of the porcine PCSK1 gene confirmed its position on SSC2. A few studies have 

reported QTL for growth rate at different stages in the chromosome region overlapping the 

positions of the microsatellites that bracket PCSK1 using a Berkshire x Yorkshire population 

(Malek et al. 2001; Thomsen et al., 2004) and a Wild Boar x Pietrain reference family (Lee et al., 

2003). To our knowledge, no fat deposition QTL with a peak in this region have been reported, 

even if 95% confidence intervals are usually very large. However, statistical analysis of SSC2 

QTL seems quite complicated by the complex pattern of effects in different populations and by 

the large effects of the p-arm region (Fontanesi et al., 2010d, 2011b). In addition, other reports 

have localized another important QTL region for back fat thickness and, possibly, lean cut 

content, around 30-50 cM (Lee et al., 2003; Liu et al., 2007; Tortereau et al., 2011). 

The results of the association analyses indicated that two polymorphic sites in intronic 

regions of the porcine PCSK1 gene (g.1696C>A and g.5182A>T) are associated with several 

meat production, growth efficiency, carcass and meat quality traits in Italian Large White, Italian 

Duroc and in a commercial cross (Tables 3, 4, S3, S4 and S5). The findings obtained in the 

Italian Large White and Italian Duroc random groups (1-a and 2-a) for fat deposition traits have 

been confirmed by the results obtained in the selective genotyping experiment (3-b and 4-b) set 

up for VIF (Italian Duroc) and BFT (Italian Large White). The results obtained in the weaning 

Italian Large White x Italian Landrace pigs confirmed the effects of the most polymorphic marker 
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(g.1696C>A) in this population for growth performances observed also in the random groups of 

the two performance tested breeds. 

PCSK1 is required for processing of pre-pro-ghrelin into ghrelin in the gastric mucosa (Zhu 

et al., 2006), that, in turn, plays a key role in the control of feed intake and energy metabolism 

(Wren et al., 2001). Thus it was tempting to assume an association between the analysed 

polymorphisms and the level of expression of the PCSK1 gene in the key tissue for ghrelin 

production (gastric oxyntic mucosa). This was tested in weaning pigs (5-c) in which feed intake is 

in general limited by the weaning stress. However the analysed polymorphisms were not 

associated with PCSK1 mRNA level in this tissue. The complex interacting factors related to the 

particular condition that the piglets are suffering after the chease of suckling could act masking 

differences in PCSK1 gene expression, if any. 

Interesting results have been obtained for a few meat quality traits. In particular the 

g.5182A>T SNP was associated with glycogen content, and suggestively associated with pH1, 

lactate content and cathepsin B activity in Italian Large White pigs (1-a). As PCSK1 is expressed 

in skeletal muscle, even if at moderate level according to our raw qualitative analysis (Fig. S1), 

and considering that the encoded enzyme has proteolytic functions, it could be possible that 

PCSK1 is involved directly in some biological processes determining variability on these traits. 

Quantitative analysis of PCSK1 mRNA expression in this tissue and its relationship with PCSK1 

variability could provide additional information to clarify this question. Moreover, it is also worth 

to point out that the g.5182A>T SNP is the first marker reported to have a possible effect on 

cathepsin B activity of the muscle. This trait is important for the production of dry-cured hams as 

an excessive cathepsin B activity is associated with excessive softness and other defects of the 

meat that are of particular concerns for the processing industry (Russo et al., 2000; Virgili and 

Schivazappa, 2002). If this result is confirmed, it could provide important applications in this 
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sector by using marker assisted selection based on this SNP or, eventually, other PCSK1 

polymorphisms. 

In the association analysis carried out in the two random groups of the performance tested 

Italian Large White and Italian Duroc pigs (1-a and 2-a) we used both EBVs and RRs for traits 

that are currently included in the national genetic evaluation (http://www.anas.it) of these breeds. 

It is worth to mention that these traits have high heritability ( > 0.30) and that have high genetic 

correlations (Ciobanu et al., 2011; Clutter, 2011). Several studies, mainly in dairy cattle, have 

evaluated the properties of EBV in association studies suggesting a lower, or at best equivalent, 

power in using EBV as compared to raw or adjusted phenotypic measurements (e.g. Israel and 

Weller, 2002; Thomsen et al., 2001). Other simulation studies have reported that using EBVs 

could produce a higher level of type I errors compared to other approaches (Ekine et al., 2010), 

even if evaluation for the level of type II errors are not reported. In general, tests that used EBVs 

gave lower P values than those based on RRs (Tables 3 and S4), confirming, to some extent a 

possible overestimation of the effects and higher rate of false positives in these analyses. 

However, this possible bias seems reduced for traits with high heritability, but additional studies 

should be carried out to evaluate this issue. The combined use of RRs could, at least in part, 

prevent this problem and might indicate results that should be considered with caution (Fontanesi 

et al., 2010d). The use of RRs produced 12 out of 20 tests with P-nominal value < 0.10 (60%) 

and the use of EBVs produced 17 out of 24 tests with P-nominal value below this threshold 

(71%), considering the single marker tests (Table 3). In the association analysis with haplotypes 

20/30 and 13/33 tests for EBVs and RRs, respectively, had P-nominal value < 0.10. In single 

marker and haplotype analyses RR were at least suggestively significant only when EBV were 

below the 0.10 suggestive threshold, but the contrary was not true as it can be easily deduced 

from what indicated above. However, even if we consider the few differences between EBV and 

RR it is clear that the analysed markers are associated with several production traits in both 
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Italian Large White and Italian Duroc pigs. Effects within breeds were consistent with the genetic 

correlation among recorded traits (Ciobanu et al., 2011; Clutter, 2011). However, comparing the 

results in these two breeds, the effects of both polymorphisms (and their haplotypes) was clearly 

in the opposite direction for all traits available in both groups (Tables 3, S3 and S4). This means 

that these PCSK1 markers are in different phases with (a) close causative mutation(s) affecting 

the analysed traits. By re-sequencing more than 5.1 kb of the porcine PCSK1 gene in 21 pigs of 

different breeds (for a total of about 1.09 Mb) we did not identify any putative causative 

mutation. Therefore it could be possible that not identified regulatory mutations in this gene or in 

other close genes could be involved in determining the observed phenotypic effects. 

Another striking difference between Italian Duroc and Italian Large White comes from the 

opposite values obtained calculating DT in the sequenced panel (Table 2). Even if not significant, 

the negative DT value in the Italian Duroc might indicate a tendency towards directional selection 

whereas the positive DT value in the Italian Large White might indicate a tendency towards 

balancing selection. Confirmation of these values in a larger sample of pigs is needed before any 

conclusion but, in any case, it is tempting to match these preliminary indications with the results 

of the association study in which PCSK1 SNPs have opposite effects in the same two breeds. The 

explanation of one of these two genetic aspects could provide useful information to understand 

the other. For this reason it is also important to consider that haplotype heterogeneity at his locus 

has been only in part considered in our study. A larger number of haplotypes than those actually 

used in the association studies have been identified (Tables 1 and 2, Fig. S2), suggesting that we 

might have missed information that are worth of further exploitation. 

Results obtained in this study will guide further investigations to solve the case of different 

effects in different breeds enlarging the analysis of haplotype blocks by identifying and adding 

additional polymorphisms in the PCSK1 gene or in close regions and evaluating them in 

additional pig populations. Other functional studies could provide other data that may 

complement the results we already obtained. 



Chapter two 
 

73 
 

 

Acknowledgements 

We thank Dr. M. Yerle (INRA) for providing the INRA-Minnesota 7000 rads RH panel and 

ANAS for providing samples and data. This work was supported by University of Bologna 

(FAGenomicH project) and MiPAAF (Selmol project) funds. 

 

References 

Bagnato A, Schiavini F, Rossoni A, Maltecca C, Dolezal M, Medugorac I, Sölkner J, Russo V, 

Fontanesi L, Friedman A, Soller M and Lipkin E 2008. Quantitative trait loci affecting milk 

yield and protein percentage in a three-country Brown Swiss population. Journal of Dairy 

Science 91, 767-783. 

Barrett JC, Fry B, Maller J and Daly MJ 2005. Haploview: analysis and visualization of LD and 

haplotype maps. Bioinformatics 21, 263-265. 

Benzinou M, Creemers JW, Choquet H, Lobbens S, Dina C, Durand E, Guerardel A, Boutin P, 

Jouret B, Heude B, Balkau B, Tichet J, Marre M, Potoczna N, Horber F, Le Stunff C, 

Czernichow S, Sandbaek A, Lauritzen T, Borch-Johnsen K, Andersen G, Kiess W, Körner 

A, Kovacs P, Jacobson P, Carlsson LM, Walley AJ, Jørgensen T, Hansen T, Pedersen O, 

Meyre D and Froguel P 2008. Common nonsynonymous variants in PCSK1 confer risk of 

obesity. Nature Genetics 40, 943-945. 

Bosi P, Gremokolini C, Trevisi P, Mazzoni M, Bonilauri P, Sarli G and Casini L 2004. Oral 

challenge with E. coli K88 as a tool to assess growth and health performance in feeding 

trials of weaned pigs. Journées Recherche Porcine 36, 125-132.  



Chapter two 
 

74 
 

Bruun CS, Jørgensen CB, Nielsen VH, Andersson L and Fredholm M 2006. Evaluation of the 

porcine melanocortin 4 receptor (MC4R) gene as a positional candidate for a fatness QTL in 

a cross between Landrace and Hampshire. Animal Genetics 37, 359-362. 

Chang YC, Chiu YF, Shih KC, Lin MW, Sheu WH, Donlon T, Curb JD, Jou YS, Chang TJ, Li 

HY and Chuang LM 2010. Common PCSK1 haplotypes are associated with obesity in the 

Chinese population. Obesity (Silver Spring) 18, 1404-1409. 

Ciobanu DC, Lonergan SM and Huff-Lonergan EJ 2011. Genetics of meat quality and carcass 

traits, in: Rothschild MF, Ruvinsky A (Eds.), The Genetics of the Pig. CAB International, 

New York, pp. 355-389. 

Clutter AC 2011. Genetics of performance traits, in: Rothschild MF, Ruvinsky A (Eds.), The 

Genetics of the Pig. CAB International, New York, pp. 325-354. 

Du ZQ, Fan B, Zhao X, Amoako R and Rothschild MF 2009. Association analyses between type 

2 diabetes genes and obesity traits in pigs. Obesity (Silver Spring) 17, 323-329. 

Ekine C, Rowe S, Bishop S and de Koning D-J 2010. What is the best phenotype for genome-

wide association studies in data with defined pedigree? Proceedings of the 9th World 

Congress of Genetics Applied to Livestock Production, 1-6 August, Leipzig, Germany. 

Communication no. 263. 

Fan B, Du ZQ and Rothschild MF 2009a. The fat mass and obesity-associated (FTO) gene is 

associated with intramuscular fat content and growth rate in the pig. Animal Biotechnology 

20, 58-70. 

Fan B, Onteru SK, Nikkilä MT, Stalder KJ and Rothschild MF 2009b. Identification of genetic 

markers associated with fatness and leg weakness traits in the pig. Animal Genetics 40, 

967-970. 



Chapter two 
 

75 
 

Fan B, Onteru SK, Plastow GS and Rothschild MF 2009c. Detailed characterization of the 

porcine MC4R gene in relation to fatness and growth. Animal Genetics 40, 401-409. 

Farooqi IS, Volders K, Stanhope R, Heuschkel R, White A, Lank E, Keogh J, O'Rahilly S and 

Creemers JW 2007. Hyperphagia and early-onset obesity due to a novel homozygous 

missense mutation in prohormone convertase 1/3. Journal of Clinical Endocrinology and 

Metabolism 92, 3369-3373. 

Fernando RL, Nettleton D, Southey BR, Dekkers JC, Rothschild MF and Soller M 2004. 

Controlling the proportion of false positives in multiple dependent tests. Genetics 166, 611-

619. 

Fontanesi L, Colombo M, Beretti F and Russo V 2008a. Evaluation of post mortem stability of 

porcine skeletal muscle RNA. Meat Science 80, 1345-1351. 

Fontanesi L, Davoli R, Nanni Costa L, Beretti F, Scotti E, Tazzoli M, Tassone F, Colombo M, 

Buttazzoni L and Russo V 2008b. Investigation of candidate genes for glycolytic potential 

of porcine skeletal muscle: association with meat quality and production traits in Italian 

Large White pigs. Meat Science 80, 780-787. 

Fontanesi L, Scotti E, Buttazzoni L, Davoli R and Russo V 2009. The porcine fat mass and 

obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. 

Animal Genetics 40, 90-93. 

Fontanesi L, Colombo M, Scotti E, Buttazzoni L, Bertolini F, Dall'Olio S, Davoli R and Russo V 

2010a. The porcine tribbles homolog 3 (TRIB3) gene: Identification of a missense mutation 

and association analysis with meat quality and production traits in Italian heavy pigs. Meat 

Science 86, 806-813. 



Chapter two 
 

76 
 

Fontanesi L, Scotti E, Buttazzoni L, Dall'Olio S, Bagnato A, Lo Fiego DP, Davoli R and Russo V 

2010b. Confirmed association between a single nucleotide polymorphism in the FTO gene 

and obesity-related traits in heavy pigs. Molecular Biology Reports 37, 461-466. 

Fontanesi L, Scotti E, Buttazzoni L, Dall'Olio S, Davoli R and Russo V 2010c. A single 

nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back 

fat thickness and production traits in Italian Duroc pigs. Molecular Biology Reports 37, 

491-495. 

Fontanesi L, Speroni C, Buttazzoni L, Scotti E, Dall'Olio S, Nanni Costa L, Davoli R and Russo 

V 2010d. The IGF2 intron3-g.3072G>A polymorphism is not the only Sus scrofa 

chromosome 2p mutation affecting meat production and carcass traits in pigs: evidences 

from the effects of a cathepsin D (CTSD) gene polymorphism. Journal of Animal Science 

88, 2235-2245. 

Fontanesi L, Colombo M, Tognazzi L, Scotti E, Buttazzoni L, Dall’Olio S, Davoli R and Russo 

V 2011a. The porcine TBC1D1 gene: mapping, SNP identification, and association study 

with meat, carcass and production traits in Italian heavy pigs. Molecular Biology Reports 

38, 1425-1431. 

Fontanesi L, Scotti E, Speroni C, Buttazzoni L and Russo V 2011b. A selective genotyping 

approach identifies single nucleotide polymorphisms in porcine chromosome 2 genes 

associated with production and carcass traits in Italian heavy pigs. Italian Journal of Animal 

Science 10, e15. 

Forbes JM 1995. Voluntary Food Intake and Diet Selection in Farm Animals, edn 2. Ed JM 

Forbes. Wallingford, Oxon, UK: CAB International. 



Chapter two 
 

77 
 

Gagnon J, Mayne J, Mbikay M, Woulfe J and Chrétien M 2009. Expression of PCSK1 (PC1/3), 

PCSK2 (PC2) and PCSK3 (furin) in mouse small intestine. Regulatory Peptides 152, 54-60. 

Hamasima N, Mikawa A, Suzuki H, Suzuki K, Uenishi H and Awata T 2008. A new 4016-

marker radiation hybrid map for porcine-human genome analysis. Mammalian Genome 19, 

51-60. 

Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, 

Schook LB and Alexander LJ 1999. A first-generation porcine whole-genome radiation 

hybrid map. Mammalian Genome 10, 824-830. 

Heni M, Haupt A, Schäfer SA, Ketterer C, Thamer C, Machicao F, Stefan N, Staiger H, Häring 

HU and Fritsche A  2010. Association of obesity risk SNPs in PCSK1 with insulin 

sensitivity and proinsulin conversion. BMC Medical Genetics 11, 86. 

Houston RD, Cameron ND and Rance KA 2004. A melanocortin-4 receptor (MC4R) 

polymorphism is associated with performance traits in divergently selected Large White pig 

populations. Animal Genetics 35, 386-390. 

Hu ZL and Reecy JM 2007. Animal QTLdb: beyond a repository. A public platform for QTL 

comparisons and integration with diverse types of structural genomic information. 

Mammalian Genome 18, 1-4. 

Israel C and Weller JI 2002. Estimation of quantitative trait loci effects in dairy cattle 

populations. Journal of Dairy Science 85, 1285-1297. 

Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC 

and O'Rahilly S 1997. Obesity and impaired prohormone processing associated with 

mutations in the human prohormone convertase 1 gene. Nature Genetics 16, 303-306. 



Chapter two 
 

78 
 

Kilpeläinen TO, Bingham SA, Khaw KT, Wareham NJ and Loos RJ 2009. Association of 

variants in the PCSK1 gene with obesity in the EPIC-Norfolk study. Human Molecular 

Genetics 18, 3496-3501. 

Kim KS, Larsen N, Short T, Plastow G and Rothschild MF 2000. A missense variant of the 

porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed 

intake traits. Mammalian Genome 11, 131-135. 

Kojima M and Kangawa K 2005. Ghrelin: structure and function. Physiological Reviews 85, 495-

522. 

Lee SS, Chen Y, Moran C, Cepica S, Reiner G, Bartenschlager H, Moser G and Geldermann H 

2003. Linkage and QTL mapping for Sus scrofa chromosome 2. Journal of Animal 

Breeding and Genetics 120 (Suppl. 1), 11-19. 

Liu G, Jennen DG, Tholen E, Juengst H, Kleinwächter T, Hölker M, Tesfaye D, Un G, 

Schreinemachers HJ, Murani E, Ponsuksili S, Kim JJ, Schellander K and Wimmers K. 

2007. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a 

Duroc-Pietrain resource population. Animal Genetics 38, 241-252. 

Lloyd DJ, Bohan S and Gekakis N 2006. Obesity, hyperphagia and increased metabolic 

efficiency in Pc1 mutant mice. Human Molecular Genetics 15, 1884-1893. 

Malek M, Dekkers JC, Lee HK, Baas TJ and Rothschild MF 2001. A molecular genome scan 

analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth 

and body composition. Mammalian Genome 12, 630-606. 

Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, 

Alexander L, Beattie C, Schook L, Yerle M and Gellin J 2000. IMpRH server: an RH 

mapping server available on the Web. Bioinformatics 16, 558-559. 



Chapter two 
 

79 
 

Muller L and Lindberg I 1999. The cell biology of the prohormone convertases PC1 and PC2. 

Progress in Nucleic Acid Research and Molecular Biology 63, 69-108. 

Qi Q, Li H, Loos RJ, Liu C, Hu FB, Wu H, Yu Z and Lin X 2010. Association of PCSK1 rs6234 

with obesity and related traits in a Chinese Han population. PLoS One 5, e10590. 

Rink A, Eyer K, Roelofs B, Priest KJ, Sharkey-Brockmeier KJ, Lekhong S, Karajusuf EK, Bang 

J, Yerle M, Milan D, Liu WS and Beattie CW 2006. Radiation hybrid map of the porcine 

genome comprising 2035 EST loci. Mammalian Genome 17, 878-885. 

Rothschild MF, Hu ZL and Jiang Z 2007. Advances in QTL mapping in pigs. International 

Journal of Biological Sciences 3, 192-197. 

Rozas J, Sanchez-DelBarrio JC, Messeguer X and Rozas R 2003. DnaSP, DNA polymorphism 

analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497. 

Russo V, Buttazzoni L, Baiocco C, Davoli R, Nanni Costa L, Schivazappa C and Virgili R 2000. 

Heritability of muscular cathepsin B activity in Italian Large White pigs. Journal of Animal 

Breeding and Genetics 117, 37-42. 

Russo V., Fontanesi L., Scotti E., Beretti F., Davoli R., Nanni Costa L., Virgili R. and Buttazzoni 

L. 2008. Single nucleotide polymorphisms in several porcine cathepsin genes are associated 

with growth, carcass, and production traits in Italian Large White pigs. Journal of Animal 

Science 86, 3300-3314. 

Russo V and Nanni Costa L 1995. Suitability of pig meat for salting and the production of quality 

processed products. Pig News & Information 16, 7N-26N. 

Salfen BE, Carroll JA and Keisler DH 2003. Endocrine responses to short-term feed deprivation 

in weanling pigs. Journal of Endocrinology 178, 541-551. 



Chapter two 
 

80 
 

Scamuffa N, Calvo F, Chrétien M, Seidah NG and Khatib AM 2006. Proprotein convertases: 

lessons from knockouts. FASEB Journal 20, 1954-1963. 

Shimogiri T, Kiuchi S, Hiraiwa H, Hayashi T, Takano Y, Maeda Y and Yasue H 2006. 

Assignment of 117 genes from HSA5 to the porcine IMpRH map and generation of a dense 

human-pig comparative map. Animal Genetics 37, 503-508. 

Steiner DF, Rouillé Y, Gong Q, Martin S, Carroll R and Chan SJ 1996. The role of prohormone 

convertases in insulin biosynthesis: evidence for inherited defects in their action in man and 

experimental animals. Diabetes and Metabolism 22, 94-104. 

Stephens M, Smith NJ and Donnelly P 2001. A new statistical method for haplotype 

reconstruction from population data. American Journal of Human Genetics 68, 978-989. 

Stuber CW, Edwards MD and Wendel JF 1987. Molecular-marker facilitated investigations of 

quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop 

Science 27, 639-648. 

Switonski M, Stachowiak M, Cieslak J, Bartz M and Grzes M 2010. Genetics of fat tissue 

accumulation in pigs: a comparative approach. Journal of Applied Genetics 51, 153-168. 

Tal-Stein R, Fontanesi L, Dolezal M, Scotti E, Bagnato A, Russo V, Canavesi F, Friedmann A, 

Soller M, Lipkin E 2010. A genome scan for QTL affecting milk somatic cell count in 

Israeli and Italian Holstein cows by means selective DNA pooling with multiple marker 

mapping. Journal of Dairy Science 93, 4913-4927. 

Tamura K, Dudley J, Nei M and Kumar S 2007. MEGA4: Molecular Evolutionary Genetics 

Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596-1599. 

Thomsen H, Reinsch N, Xu N, Looft C, Grupe S, Kühn C, Brockmann GA, Schwerin M, Leyhe-

Horn B, Hiendleder S, Erhardt G, Medjugorac I, Russ I, Förster M, Brenig B, Reinhardt F, 



Chapter two 
 

81 
 

Reents R, Blümel J, Averdunk G and Kalm E 2001. Comparison of estimated breeding 

values, daughter yield deviations and de-regressed proofs within a whole genome scan for 

QTL. Journal of Animal Breeding and Genetics 118, 357-370. 

Thomsen H, Lee HK, Rothschild MF, Malek M and Dekkers JC 2004. Characterization of 

quantitative trait loci for growth and meat quality in a cross between commercial breeds of 

swine. Journal of Animal Science 82, 2213-2228. 

Tortereau F, Gilbert H, Heuven HC, Bidanel JP, Groenen MA and Riquet J 2011. Number and 

mode of inheritance of QTL influencing backfat thickness on SSC2p in Sino-European pig 

pedigrees. Genetics Selection Evolution 43, 11. 

Trevisi P, Melchior D, Mazzoni M, Casini L, De Filippi S, Minieri L,  Lalatta-Costerbosa G and 

Bosi P 2009. A tryptophan-enriched diet improves feed intake and growth performance of 

susceptible weanling pigs orally challenged with E. coli K88. Journal of Animal Science 87, 

148-156. 

Trevisi P, Corrent E, Messori S, Casini L and Bosi P 2010. Healthy newly weaned pigs require 

more tryptophan to maximize feed intake if they are susceptible to Escherichia coli K88. 

Livestock Science 134, 236-238. 

Virgili R and Schivazappa C 2002. Muscle traits for long matured dried meats. Meat Science 62, 

331-343. 

Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, 

Stanley SA, Ghatei MA and Bloom SR 2001. Ghrelin causes hyperphagia and obesity in 

rats. Diabetes 50,  2540-2547. 

Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, 

Beattie C, Schook L, Milan D and Gellin J 1998. Construction of a whole-genome radiation 



Chapter two 
 

82 
 

hybrid panel for high-resolution gene mapping in pigs. Cytogenetics and Cell Genetics 82, 

182-188. 

Zhu X, Zhou A, Dey A, Norrbom C, Carroll R, Zhang C, Laurent V, Lindberg I, Ugleholdt R, 

Holst JJ and Steiner DF 2002. Disruption of PC1/3 expression in mice causes dwarfism and 

multiple neuroendocrine peptide processing defects. Proceedings of the National Academy 

of Science of the USA 99, 10293-10298. 

Zhu X, Cao Y, Voogd K and Steiner DF 2006. On the processing of proghrelin to ghrelin. Journal 

of Biological Chemistry 281, 38867-38870. 



Chapter two 
 

83 
 

Table 1. Polymorphisms identified in the porcine PCSK1 gene. 

Polymorphism 
no. 

Polymorphism (EMBL/GenBank 
HE599222)1 

Position on Sscrofa10 
chrU_scaffold4254 

Gene region2 

1 g.1199G>T 7407 Intron 3 

2 g.1200G>A 7408 Intron 3 

3 g.1696C>A3 9508 Intron 4 

4 g.1737T>C4 9549 Intron 4 

5 g.1959T(18_21) 10831 Intron 4 

6 g.2550T>C 16332 Exon 6 

7 g.2705C>T 16424 Intron 6 

8 g.3676C>G 21009 Intron 8 

9 g.4114T>C 23609 Intron 9 

10 g.5181A>T3 35312 Intron 11 

11 g.5459T>C 35590 Intron 12 

12 g.6270T>C 39896 Exon 14 

13 g.6390T>C 40016 Exon 14 

14 g.6459T>C 40085 Exon 14 

 

1Haplotypes (H1-9) inferred from the sequencing panel were (in parenthesis are reported the number of 
haplotype copies observed in the analysed breeds: ILW = Italian Large White; IL = Italian Landrace; ID = 
Italian Duroc; BL = Belgian Landrace; H = Hampshire; M = Meishan; SNP order is as reported in the 
table excluding the indel, polymorphism no. 5): H1, GGCTTCCTATTTT (5 H, 2 ILW, 1 BL, 1 ID, 1 IL); 
H2, GGCTTCGTATTTT (2 IL); H3, GGCTTCCTTTTTT (12 ID, 3 ILW, 2 IL); H4, TACTCCGTATTTT 
(1 IL); H5, GGATTCCTATTTT (1 ILW); H6, GAATTCCTATTTT (4 ILW, 1 BL, 1 ID, 1 M); H7, 
GGCTTTCTATTTT (2 M); H8, GGCTTCGCACCCC (1 M); H9, GGCCTCGCATCCT (1 H). 

2 According to the structure of the human PCSK1 gene (Ensembl ENSG00000175426). 

3 SNPs genotyped and used for association studies. 

4 SNP genotyped but not useful for association studies because not polymorphic in the analysed 
populations. 
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Table 2. PCSK1 gene statistics in the sequenced panel. Statistics were calculated at the breed level and 
considering together all sequenced animals. 

 

Breeds/groups No. of 
sequences1 

S h hD (s.d.)  % (s.d.) DT 

Italian Duroc 14 3 3 0.275 (0.148) 0.011 (0.007) -1.278 

Italian Large White 10 3 4 0.778 (0.091) 0.030 (0.004) +1.680 

Italian Landrace 6 5 4 0.867 (0.129) 0.040 (0.012) -0.315 

Hampshire 6 5 2 0.333 (0.215) 0.032 (0.021) -1.337 

Meishan 4 9 3 0.833 (0.222) 0.090 (0.032) -0.492 

All2 42 13 9 0.763 (0.045) 0.037 (0.007) -1.135 

 

S = segregating SNP sites; h = number of haplotypes; hD = haplotype diversity (standard deviation);  = 
nucleotide diversity (standard deviation); DT = Tajima’s D. 

1Two sequences for each animal. 

2Including the sequenced Belgian Landrace pig. 
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Table 3. Association analysis between the g.1696C>A and g.5182A>T PCSK1 SNP genotypes and 
estimated breeding values (EBV) and random residuals (RR) for meat production and carcass traits in 
Italian Large White (ILW) and Italian Duroc (ID) pigs and phenotypic measures for meat quality 
parameters in ILW pigs. Least square means are reported with their standard errors in parenthesis. Only 
results with P <0.10 are reported. 

 

Breed1/SNP Trait2 Genotype3 P4,5 

11 12 22 

ILW/g.1696C>A ADG/EBV (g) 40.370 (2.614)       29.453 (2.818) 28.918 (2.835) 0.0035 

 FGR/EBV -0.176 (0.015) -0.145 (0.016)  -0.119 (0.017) 0.041 

 LC/EBV (kg) 2.405 (0.183) 1.740 (0.197) 1.766 (0.198)  0.019 

 ADG/RR (g) 11.317 (7.775)  -7.622 (8.433) -12.490 (8.433) 0.087 

 LC/RR (kg) 0.597 (0.265) -0.507 (0.288) -0.266 (0.288) 0.012 

 Lactate (µ mol/g) 53.843 (1.615) 58.189 (1.686) 58.839 (1.736) 0.072 

ILW/g.5182A>T ADG/EBV (g) 29.946 (1.822) 43.298 (3.448) 45.100 (8.231) 0.0012 

 FGR/EBV -0.137 (0.011)       -0.184 (0.020)      -0.188 (0.048) 0.090 

 HW/EBV (kg) 0.543 (0.042)      0.666 (0.080)     0.920 (0.191)     0.081 

 LC/EBV (kg) 1.788 (0.127) 2.623 (0.241) 2.597 (0.575) 0.0057 

 LC/RR (kg) -0.303 (0.186) 0.860 (0.351) 0.663 (0.839)  0.011 

 pH1 5.916 (0.019) 5.988 (0.034) 5.831 (0.076) 0.070 

 Lactate (µ mol/g) 58.038 (1.148)      53.229 (2.107)      52.600 (4.901) 0.097 

 Glycogen (µ mol/g) 46.937 (1.929)      51.824 (3.300)      64.008 (6.882) 0.029 

 CatB (nmol/min/g) 1.1502 (0.019)      1.204 (0.033)      1.0451 (0.071) 0.083 

ID/g.1696C>A ADG/EBV (g) 26.024 (1.858) 35.944 (4.905) 57.714 (7.866) 0.0002 

 BFT/EBV (mm) -1.615 (0.256) -1.681 (0.675) -4.057 (1.082) 0.091 

 FGR/EBV -0.142 (0.010) -0.187 (0.027) -0.261 (0.043) 0.011 

 LC/EBV (kg) 1.757 (0.128) 1.891 (0.338) 4.221 (0.542) 0.00007 

 VIF/EBV -0.134 (0.087) 0.030 (0.228) -1.153 (0.366) 0.018 

 ADG/RR (g) -0.354 (4.343) 25.867 (11.468) 9.960 (18.390) 0.097 

 HW/RR (kg) 0.001 (0.066) 0.078 (0.175) 0.782 (0.280) 0.026 
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 LC/RR (kg) 0.003 (0.155) -0.197 (0.410) 1.401 (0.658) 0.097 

ID/g.5182A>T ADG/EBV (g) 33.870 (3.497) 33.821 (2.412) 17.867 (3.061) 0.00009 

 BFT/EBV (mm) -2.588 (0.482) -2.068 (0.332) -0.627 (0.422) 0.004 

 FGR/EBV -0.172 (0.019) -0.176 (0.013) -0.111 (0.017)       0.005 

 LC/EBV (kg) 2.399 (0.246) 2.069 (0.170) 1.221 (0.215) 0.0007 

 VIF/EBV -0.616 (0.163) -0.243 (0.113)  0.232 (0.143)       0.0005 

 ADG/RR (g) 3.770 (8.394) 13.152 (5.790) -8.429 (7.349) 0.071 

 BFT/RR (mm) -0.614 (0.616) -0.130 (0.425)   1.037 (0.539) 0.099 

 FGR/RR -0.018 (0.034) -0.048 (0.024) 0.048 (0.030) 0.045 

 HW/RR (kg) 0.008 (0.127) 0.208 (0.088) -0.146 (0.112) 0.042 

 VIF/RR -0.060 (0.054) 0.029 (0.037) 0.124 (0.0470) 0.036 

 

1 ILW = Italian Large White (random group); ID = Italian Duroc (random group + selective genotyping 
group, excluding for visible intermuscular fat). 

2 ADG = average daily gain; BFT = backfat thickness; FGR = feed:gain ratio; HW = ham weight; LC = 
lean cuts; VIF = visible intermuscular fat; pH1 = pH measured at 2 h post mortem on M. 
semimembranosus; pH2 = pH measured at 24 h post mortem on the same muscle; GP = glycolytic 
potential; Catb = cathepsin B activity; EBV = Estimated Breeding Value; RR = Random Residual. 

3 Allele 1 is C for g.1696C>A and A for g.5182A>T. The number of animals for each genotypic class was: 
ILW/g.1696C>A: CC, n = 100; CA, n = 85; AA, n = 86; ILW/g.5182A>T: AA, n = 204; AT, n = 57; TT, 
n = 10; ID/g.1696C>A: CC, n = 247; CA, n = 36; AA, n = 14 (for VIF: CC, n = 163; CA, n = 21; AA, n = 
13); ID/g.5182A>T: AA, n = 67; AT, n = 142; TT, n = 88 (for VIF: AA, n = 57; AT, n = 97; TT, n = 43). 

 

4 Underlined when P<0.05. Of the 54 tests, only results with P<0.10 are reported. A complete list is 
available from the Authors. 
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Table 4. Effect of the g.1696C>A and g.5182A>T PCSK1 genotypes on growth, feed intake and PCSK1 
mRNA expression level in oxyntic mucosa of weaning pigs. Least square means for each genotypic class 
are reported with their standard errors in parenthesis. 

 
 

Trait1 g.1696C>A genotypes g.5182A>T genotypes 

 CC (n. 22) CA (n. 54) AA (n. 17) P3 AA (n. 66) AT (n. 25) TT (n. 2) P 

DG-1W (g) 41.1 (20.9) 23.8 (10.2) 27.9 (21.4) 0.765 29.4 (9.6) 24.9 (17.0) n.e.2 0.735 

DFI-1W (g) 130.0 (14.3) 123.3 (7.0) 141.4 (14.7) 0.546 132.5 (6.6) 113.3 (11.6) n.e. 0.348 

DG-2W (g) 228.8 (17.8) 273.5 (8.7) 295.3 (18.3) 0.084 269.3 (8.6) 268.7 (15.2) n.e. 0.284 

DFI-2W (g) 83.4 (28.0) 149.3 (13.6) 168.1 (28.4) 0.038 128.9 (13.2) 173.8 (23.1) n.e. 0.966 

PCSK1 expression 1267 (219) 1248 (108) 1057 (226) 0.749 1135 (99.2) 1415 (170.5) n.e. 0.395 

 
1 DG-1W = Daily live weight gain during the first week; DFI-1W = Daily feed intake during the 
first week; DG-2W = Daily live weight gain during the second week; DFI-2W = Daily feed 
intake during the second week; PCSK1 expression = PCSK1 mRNA quantification in gastric 
oxyntic mucosa (expressed in copies/µl  cDNA). 
2 n.e.= not estimated. 
3 Significant results are underlined. 
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Figure 1. Linkage disequilibrium  (r2) plot at the porcine PCSK1 gene. SNP were positioned on the  
Sscrofa10 chrU_scaffold4254 containing the porcine PCSK1 gene. The polyT indel was not included in 
the analysis.  
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Supplementary material 1 

 2 

Table S1. PCR primers, amplified PCSK1 gene regions and analysis of the amplified fragments. 3 

 4 

Primer 
pair 

Primer forward (5’-3’) Primer reverse (5’-3’) Annealing 
temp.1 

Amplified region (bp) 2 Use3 

1 TCCACTCAGCCGGGAGAC GCTCAAGAGAGTGCAACCTG 58 Part of 5’-flanking region, exon 1, 
part of intron 1 (459) 

Sequencing 

2 CCTCTGAAATGTGTGAAACAGAA TGGTTTGAAGACAAATGCAAA 61 Part of intron 1, exon 2, part of 
intron 2 (356) 

Sequencing 

3 GGAGCTAGTTAAAGGGAAGATGA GCAACAACCCTTCCTCACAT 63 Part of intron 2, exon 3, part of 
intron 3 (357) 

Sequencing 

4 TGCATCAAGCAAATCCTGAG TTTATGTGCACTGGCAGGAG 60 Part of intron 3, exon 4, part of 
intron 4 (311) 

Sequencing, PCR-RFLP 
(TaaI and TaiI) 4 

5 GCAAGCTTTCCGGTTATCAG CATTTGAGGGAAGCATTTCA 60 Part of intron 4, exon 5, part of 
intron 5 (393) 

Sequencing 

6 CTTGGGCCCTTCATCTGATA TGCAGCAAATTTTGAAAGGA 58 Part of intron 5, exon 6, part of 
intron 6 (354) 

Sequencing 

7 ACAGGCATGTGGGACATACA CCCCCATATTTAAACAGTCAAG 58 Part of intron 6, exon 7, part of 
intron 7 (324) 

Sequencing 

8 GCTGGAGTACCTGGAGTGGA CCCCAACTGAGACATCAAGC 58 Part of intron 7, exon 8, part of 
intron 8 (426) 

Sequencing 
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9 CTGTGGTTTGGAGGAGGAAG TGCAATGTTAACAGGAAGAGAGG 61 Part of intron 8, exon 9, part of 
intron 9 (354) 

Sequencing 

10 TCTCTGAATGAAAATGCTTGTTTT ACTCTGGCAAATGCCATCTC 59 Part of intron 9, exon 10, part of 
intron 10 (407) 

Sequencing 

11 CCTAATCCTGAACTGGGTTCT ACCCTTAAAAATTTAAACACATGG 59 Part of intron 10, exon 11, part of 
intron 11 (300) 

Sequencing 

12 CCAAGGGGACAGAACTTGAA CTCATTTCTCCCAGTTTCCA 58 Part of intron 11, exon 12, part of 
intron 12 (357) 

Sequencing, PCR-RFLP 
(AluI) 4, RH mapping 

13 GCTTTTTGGAAGGAGTTTGTTT CTAACTGCTGAGCCACGATG 58 Part of intron 12, exon 13, part of 
intron 13 (425) 

Sequencing 

14 TAATAACGGCTTGCCTCCTC CCCTGTGCTTGTAAGGCTTC 60 Part of intron 13, part of exon 14 
(356) 

Sequencing 

GE_15 GATGGGAAAACTGTGGAAGG CAGCATACCAGGGGGATAGG 57 Part of exon 7 and 8 (177) External primers for 
qPCR analysis 

GE_16 GTCAAACAGGGGAGACAAGG CTGATGGAGATGGTGTAGATGC 62 Exon 8 (80) Internal primers for 
qPCR analysis; 
qualitative gene 
expression analysis 

 5 

1 Annealing temperature (°C). 6 

2 Amplified fragment size does not include primers. 7 

3 Analyses carried out with the amplified fragments. 8 

4 PCR-RFLP patterns were: g.1696C>A analysed with TaaI, allele C = 351 bp, allele A = 244 + 127 bp; g.1737T>C analysed with TaiI, allele T = 351 9 
bp, allele C = 285 + 66 bp; g.5182A>T analysed with AluI, allele A = 337 + 60 bp, allele T = 397 bp. 10 
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Table S2. Allele frequencies of three genotyped PCSK1 SNPs (g.1696C>A, g.1737T>C, and g.5182A>T) in 11 
different pig breeds. Only the frequency of the first allele is included in the table. 12 

 13 

Breeds No. of pigs g.1696C g.1737T g.5182A 

Italian Duroc1 297 0.892 1.0002 0.465 

Italian Large White1 271 0.526 1.0002 0.858 

Italian Landrace 20 0.900 1.000 0.975 

Hampshire 18 0.972 0.889 0.972 

Belgian Landrace 22 0.977 1.000 0.519 

Casertana 30 0.800 n.t.3 0.833 

Meishan 12 0.667 1.000 1.000 

 14 

1 Allele frequencies are reported for pigs used for association analysis of Table 3. 15 

2 Based on the analysis of 100 animals for the two breeds. 16 

3 Not tested. 17 

 18 

 19 

20 
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Table S3 Additive (a) and dominance (d) effects (with standard errors in parenthesis: s.e.) obtained 21 
for the PCSK1 SNP analysed  in the Italian Large White (ILW) and Italian Duroc (ID) pigs. Results 22 
are reported for association analyses (see Table 3) with P < 0.10. 23 
 24 

 25 

Breed/SNP1 Trait2 Additive effect (s.e.) P Dominance effect (s.e) P |d/a|3 

ILW/g.1696C>A ADG/EBV (g) -5.726 (1.928) 0.003 -5.190 (3.415) 0.130 0.906 

 FGR/EBV 0.028 (0.011) 0.012 0.002 (0.020) 0.903 0.085 

 LC/EBV (kg) -0.319 (0.135)  0.018 -0.346 (0.239) 0.148 1.083 

 ADG/RR (g) -11.903 (5.735) 0.039 -7.036 (10.198) 0.491 0.591 

 LC/RR (kg) -0.431 (0.196) 0.028 -0.672 (0.348) 0.055 1.559 

 Lactate (µ mol/g) 2.498 (1.194) 0.038 1.848 (1.999) 0.356 0.740 

ILW/g.5182A>T ADG/EBV (g) 7.577 (4.215) 0.073 5.775 (5.446) 0.290 0.763 

 FGR/EBV -0.026 (0.025) 0.304 -0.021 (0.032) 0.507 0.808 

 HW/EBV (kg) 0.189 (0.098) 0.055 -0.066 (0.127) 0.604 0.349 

 LC/EBV (kg) 0.405 (0.294) 0.171 0.430 (0.380) 0.259 1.063 

 LC/RR (kg) 0.483 (0.430) 0.262 0.680 (0.555) 0.222 1.407 

 pH1  -0.042 (0.039) 0.275 0.114 (0.051) 0.025 2.714 

 Lactate (µ mol/g)  -2.719 (2.508) 0.280 -2.090 (3.261) 0.522 0.769 

 Glycogen (µ mol/g) 8.535 (3.469) 0.015 -3.649 (4.617) 0.430 0.428 

 CatB (nmol/min/g) -0.053 (0.036) 0.145 0.107 (0.048) 0.026 2.019 

ID/g.1696C>A ADG/EBV (g) 15.845 (4.041) 0.0001 -5.925 (6.355) 0.352 0.374 

 BFT/EBV (mm) -1.221 (0.556) 0.029 1.156 (0.874) 0.187 0.947 

 FGR/EBV -0.059 (0.022)   0.007 0.014 (0.034) 0.679 0.241 

 LC/EBV (kg) 1.232 (0.278)  0.00003 -1.098 (0.438)      0.013 0.891 

 VIF/EBV -0.510 (0.188) 0.007 0.6736 (0.296)      0.024 1.322 

 ADG/RR (g)  5.157 (9.448) 0.586 21.064 (14.859) 0.157 4.085 

 HW/RR (kg) 0.390 (0.144)  0.007 -0.313 (0.226) 0.167 0.803 

 LC/RR (kg) 0.699 (0.338) 0.039 -0.899 (0.532)  0.092 1.286 
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ID/g.5182A>T ADG/EBV (g) -8.001 (2.324) 0.0007 7.953 (3.349) 0.018 0.994 

 BFT/EBV (mm) 0.981 (0.320) 0.002 -0.461 (0.461) 0.319 0.470 

 FGR/EBV 0.031 (0.013) 0.015 -0.035 (0.018) 0.054 1.139 

 LC/EBV (kg) -0.589 (0.163) 0.0004 0.259 (0.236) 0.273 0.440 

 VIF/EBV 0.424 (0.108) 0.0001 -0.051 (0.156) 0.744 0.120 

 ADG/RR (g) -6.099 (5.578)  0.275 15.481 (8.040)   0.055 2.538 

 BFT/RR (mm) 0.825 (0.409)  0.044 -0.342 (0.590) 0.563 0.415 

 FGR/RR 0.171 (0.171) 0.148 0.294 (0.294) 0.058 1.715 

 HW/RR (kg) -0.077 (0.085) 0.365 0.277 (0.122) 0.0239 3.605 

 VIF/RR 0.092 (0.036) 0.011 -0.004 (0.052) 0.946 0.038 

 26 

1 ILW = Italian Large White (random group); ID = Italian Duroc (random group + selective genotyping 27 
group, excluding for visible intermuscular fat). 28 

2 ADG = average daily gain; BFT = backfat thickness; FGR = feed:gain ratio; HW = ham weight; LC = lean 29 
cuts; VIF = visible intermuscular fat; EBV = Estimated Breeding Value; RR = Random Residual. 30 

3 The ratio |d/a| was considered to indicate possible gene effects (Stuber et al., 1987): |d/a|<0.2, additive; 31 
0.2<|d/a|<0.8, partial dominance; 0.8<|d/a|<1.2, dominance; |d/a|>1.2, overdominance. 32 

 33 
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Table S4. Estimated regression coefficients and standard errors (SE) of the haplotype substitution effect for estimated breeding values (EBV) and random 34 
residuals (RR) of production traits in the Italian Large White (ILW) and Italian Duroc (ID) pigs. 35 

 36 

Breed1 Trait2 Haplotype [A:A] 3 Haplotype [C:A] 3 Haplotype [C:T] 3 

Regression 
coefficient (SE) 

P4 Regression 
coefficient (SE) 

P4 Regression 
coefficient (SE) 

P4 

ILW ADG/EBV (g) -6.504 (1.934) 0.0009 2.409 (2.116) 0.256 10.604 (3.217) 0.001 

 BFT/EBV (mm) -0.075 (0.281) 0.791 0.378 (0.301) 0.211 -0.537 (0.467) 0.251 

 FGR/EBV 0.031 (0.011) 0.006 -0.018 (0.012) 0.138 -0.036 (0.019) 0.056 

 HW/EBV (kg) -0.055 (0.045) 0.224 -0.009 (0.049) 0.845 0.171 (0.074) 0.022 

 LC/EBV (kg) -0.367 (0.135) 0.007 0.120 (0.147) 0.415 0.630 (0.225) 0.005 

 ADG/RR (g) -12.105 (5.755) 0.036 7.233 (6.219) 0.246 16.461 (9.598) 0.087 

 BFT/RR (mm) -0.201 (0.374) 0.591 0.471 (0.401) 0.241 -0.362 (0.622) 0.561 

 FGR/RR 0.047 (0.024) 0.047 -0.038 (0.026) 0.138 -0.045 (0.040) 0.254 

 HW/RR (kg) -0.074 (0.096) 0.443 -0.016 (0.103) 0.880 0.247 (0.159) 0.122 

 LC/RR (kg) -0.488 (0.197) 0.014 0.159 (0.214) 0.460 0.874 (0.328) 0.008 

ID ADG/EBV (g) 14.609  (3.666) <0.0001 3.244 (2.485) 0.193 -9.851 (2.355) <0.0001 

 BFT/EBV (mm) -0.879 (0.507) 0.084 -0.786 (0.334) 0.019 1.140 (0.321) 0.0005 

 FGR/EBV -0.060 (0.020) 0.003 -0.013 (0.013) 0.332 0.039 (0.013) 0.003 
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 LC/EBV (kg) 0.912 (0.256) 0.0004 0.285 (0.172) 0.099 -0.687 (0.163) <0.0001 

 VIF/EBV -0.327 (0.172) 0.058 -0.351 (0.113) 0.002 1.025 (0.412) 0.013 

 ADG/RR (g) 18.591 (8.657) 0.033 0.118 (5.778) 0.984 -6.660 (5.604) 0.236 

 BFT/RR (mm) -0.091 (0.646) 0.888 -0.960 (0.424) 0.024 1.025 (0.412) 0.013 

 FGR/RR -0.072 (0.035) 0.042 -0.012 (0.024) 0.608 0.037 (0.023) 0.103 

 HW/RR (kg) 0.334 (0.132) 0.012 -0.049 (0.088) 0.576 -0.096 (0.086) 0.263 

 LC/RR (kg) 0.567 (0.308) 0.067 0.076 (0.205) 0.709 -0.265 (0.199) 0.184 

 VIF/RR -0.039 (0.055) 0.476 -0.083 (0.036) 0.024 0.081 (0.035) 0.022 

 37 

1 ILW = Italian Large White; ID = Italian Duroc. 38 

2 ADG = average daily gain; BFT = backfat thickness; FGR = feed:gain ratio; HW = ham weight; LC = lean cuts; VIF = visible intermuscular fat; EBV = 39 
Estimated Breeding Value; RR = Random Residual. 40 

3 Haplotypes are indicated as follows: [A:A] = g.1696A and g.5182A; [C:A] = g.1696C and g.5182A; [C:T] = g.1696C and g.5182T. The number of the [A:A], 41 
[C:A], and [C:T] haplotype copies were: 249, 218, and 70 in ILW; 57, 223, and 309 in ID. Haplotype [A:T] was inferred only in 7 (ILW) and 6 (ID) copies and 42 
was not considered in this analysis. 43 

4Underlined when P<0.05. 44 
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Table S5. Allele frequencies for the polymorphisms at the PCSK1 locus and probability from Fisher’s 
two-tailed exact test or Chi square test (P) of equal frequency in the negative (Ne) vs positive (Po) groups 
of pigs selected according to the extreme and divergent estimated breeding values (EBVs) for two traits. 

 

Breed/Trait1 Groups 
No. of 
pigs5 

Allele frequencies 
P6 

No. of 
pigs5 

Allele frequencies 
P6 

g.1696C g.1696A g.5182A g.5182T 

ILW/BFT EBV u Ne2 269 0.556 0.444 
0.566 

276 0.844 0.156 
0.173 

 u Po2 274 0.538 0.462 279 0.873 0.127 

ID/VIF EBV Ne3 50 0.950 0.050 
0.283 

50 0.400 0.600 
0.034 

 Po3 50 0.900 0.100 50 0.250 0.750 

 u Ne4 29 0.931 0.069 
0.749 

29 0.431 0.569 
0.089 

 u Po4 33 0.909 0.091 33 0.273 0.727 

 

1 ILW = Italian Large White; ID = Italian Duroc; BFT = back fat thickness; VIF = visible intermuscular 
fat; EBV = estimated breeding value. 

2  Unrelated (u) pigs at the second generation with negative EBV (Ne) and positive (Po) EBV of the groups 
of pigs selected according to the extreme and divergent EBV for BFT. 

3 Animals with negative EBV (Ne) and positive (Po) EBV of the groups of pigs selected according to the 
extreme and divergent EBV for VIF. 

4 Unrelated (u) pigs at the second generation with negative EBV (Ne) and positive (Po) EBV of the groups 
of pigs selected according to the extreme and divergent EBV for VIF. These animals were among the 50 + 
50 animals included in the rows above. 

5 Number of pigs of each group. A few ILW pigs of the selected extreme tails (560 + 560) for BFT EBV 
have not been genotyped. 

6 Significant results are underlined. The tests compare the allele frequencies of the groups adjacent to the P 
value. 
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Figure S1. Expression of the porcine PCSK1 gene in different tissues. GAPDH transcript 
amplification was included as control. 1 = brain; 2 = fat; 3 = spleen; 4 = heart; 5 = liver; 6 = 
kidney; 7 = thyroid; 8 = lung; 9 = skeletal muscle; 10 = gastric oxyntic mucosa. 
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Figure S2. Neighbour-Joining tree obtained with the porcine PCSK1 haplotypes. Haplotypes are defined 
as a note to Table 1. The frequency in the bootstrap resampling is reported at each node. 
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ABSTRACT 

Susceptibility to enterotoxigenic Escherichia coli (ETEC) K88 strains that express F4ab 

and F4ac fimbriae is inherited as a dominant autosomal locus (F4bcR), with the alternative 

recessive allele determining resistance. The susceptible allele appeared also to be associated with 

a favorable growth rate even if with discordant results. A single nucleotide polymorphism (SNP) 

in exon 7 of the mucin 4 (MUC4) gene (DQ848681: g.8227C>G), shown to be in close linkage 

disequilibrium with the F4bcR locus in different pig populations, has been used as a marker to 

identify susceptible animals, substituting invasive villous adhesion tests. We herein analysed this 

SNP in Italian local breeds and applied a selective genotyping approach in Italian Large White, 

Italian Landrace and Italian Duroc comparing allele frequency distribution in groups of pigs with 

extreme and divergent estimated breeding values (EBV) for average daily gain (ADG) and 

backfat thickness (BFT) to evaluate if this marker is associated with these traits in performance 

tested pigs. Allele C (associated with susceptibility to ETEC) was associated with higher ADG 

and BFT in Italian Large White pigs (P=6.66E-04 and P=0.012, respectively) and higher ADG in 

Italian Landrace (7.23E-12). This polymorphism was poorly informative in Italian Duroc pigs. 

Antagonistic associations of the MUC4 g.8227C>G alleles on susceptibility to ETEC and growth 

evidence the complexity of applying marker assisted selection in pig breeding. 

 

 

Running head: MUC4 SNP and  production traits in pigs 

Key words: MUC4, Italian heavy pigs, polymorphism, growth rate, selective genotypying 
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INTRODUCTION 

Enterotoxigenic Escherichia coli (ETEC) K88 strains that express F4ab and F4ac fimbriae 

represent the main cause of diarrhea and death of piglets before or just after weaning. 

Susceptibility or resistance to ETEC is determined by the presence or absence of receptors for 

these fimbriae on the brush border of pig intestinal epithelium.1 Susceptibility (presence of 

receptors) is inherited as a dominant autosomal locus (F4bcR) with the alternative recessive allele 

(absence of receptors) determining resistance.2-4 The F4bcR locus has been mapped on porcine 

chromosome 13, in a region where the mucin 4 (MUC4) gene is located 5-8. MUC4 encodes for a 

membrane-bound-O-glycoprotein that is widely expressed on the surface of gastrointestinal 

epithelial cells in which has a function of protecting and lubricating the epithelial surfaces. 

Therefore MUC4 has been considered a strong positional and functional candidate gene for the 

F4bcR locus. A single nucleotide polymorphism (DQ848681: g.8227C>G) in exon 7 of this gene 

(known as XbaI polymorphism), shown to be in very close linkage disequilibrium with the F4bcR 

locus in different pig populations, has been used as a marker to identify susceptible animals, 

substituting invasive villous adhesion tests.9-12 Allele C is associated with the absence of the 

receptors (resistant) whereas allele G is associated with the presence of the receptors 

(susceptible), even if MUC4 does not seem the causative gene for the F4bcR locus.13,14 

Mucins play also many other important roles in growth, fetal development, epithelial 

renewal and differentiation, epithelial integrity, carcinogenesis, and metastasis15,16 suggesting that 

polymorphisms in the MUC4 gene could be associated with other important production traits. 

Interestingly, a few studies of the F4bcR locus using villous based tests17,18  have evidenced that 

the presence of F4ab and F4ac receptors could be associated with higher growth rate in pigs 

during the fattening period, even if this effect was not reported by Baker et al.19. Contrasting 

results about possible effects on growth efficiency were reported for the pre-weaning period.17,18 

However, the suggested antagonistic effects of F4bcR alleles on susceptibility to ETEC and 
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growth after weaning could result in complex interactions between natural and artificial selection, 

that might influence allele frequencies at this locus in different pig populations.18 

We herein analysed the MUC4 g.8227C>G SNP in Italian Large White, Italian Landrace 

and Italian Duroc as well as Italian local breeds and, using a selective genotyping approach, we 

showed that this marker is associated with growth rate and backfat thickness in Italian heavy pigs.   

 

MATERIALS AND METHODS 

Animals and traits 

The association study was conducted using a selective genotyping approach with animals of 

three heavy pig breeds (Italian Large White, Italian Landrace and Italian Duroc) chosen 

according to the extreme and divergent estimated breeding values (EBVs) for average daily gain 

(ADG; all breeds) or for back fat thickness (Italian Large White only; see Table 1). Details of 

EBV calculation are reported below. All these animals were performance tested at the Test 

Station of the National Pig Breeder Association (ANAS) during the period 1996-2007. These 

pigs are those included in triplets of the same litter (two females and one castrated male) that are 

used for the evaluation of a candidate boar from the same litter (sib-test). Performance tested pigs 

start the evaluation period at 30 to 45 days of age and they end it at 155 ± 5 kg live weight. The 

nutritive level was quasi ad libitum. During the test period, body weight was measured 

bimonthly, then daily gain was calculated. At the end of test, animals were transported to a 

commercial abattoir where they were slaughtered. Backfat thickness was measured on the 

carcasses at the level of Musculus gluteus medius. 

The Italian Large White pigs were all females (one female per triplet, and at least two-

generation unrelated) chosen according to their ADG-EBV (200 with most negative and 200 with 

most positive EBV) or their BFT-EBV (280 with most negative and 280 with most positive EBV) 

within a performance tested population of ~12,000 pigs of this breed (Table 1). The Italian 

Landrace (141 females and 59 castrated males) were chosen according to their ADG-EBV (100 



Chapter three 
 

104 
 

with most negative and 100 with most positive EBV) within a performance tested population of 

~5,000 pigs of this breed (Table 1). The Italian Duroc (134 females and 66 castrated males) were 

chosen according to their ADG-EBV (100 with most negative and 100 with most positive EBV) 

within a performance tested population of ~7,000 pigs of this breed (Table 1). 

In addition, minimum related pigs of four Italian local breeds (Calabrese, Casertana, Cinta 

Senese and Nero Siciliano), for which no phenotypic traits were available, were used for allele 

frequency analysis (Table 2). 

 

Genotyping 

Genomic DNA was extracted from blood using a standard protocol. After quality control, a 

few animals of the selective genotyping panels were excluded from genotyping or genotyping 

failed (Table 3). Genotyping of the MUC4 g.8227C>G SNP was carried out by PCR-RFLP as 

carried out by Jørgensen et al.9.  Briefly, PCR was carried out using a PTC-100 (MJ Research, 

Watertown, MA, USA) thermal cycler in a total volume of 20 µl that included 10 ng of genomic 

DNA, 10 pmol of each primer (forward 5’-GTGCCTTGGGTGAGAGGTTA-3, reverse 5’-

CACTCTGCCGTTCTCTTTCC-3’), 2.0 mM MgCl2, 2.5 mM each dNTP, 1 U of 

AmpliBioTherm DNA polymerase (Fisher Molecular Biology, Trevose, PA, USA). The 

amplification profile was the following: an initial step of denaturation for 5 min at 95 °C; 35 

cycles of 30 s at 95°C, 30 s at 61.5 °C and 30 s at 72 °C; the final extension step was for 5 min at 

72 °C. Then, 3-5 µl of the PCR product was used for digestion with 3 U of XbaI (MBI Fermentas, 

Vilnius, Lithuania). PCR-RFLP products were resolved on 10% polyacrylamide/ bis-acrylamide 

29:1 gels and visualized with 1× GelRed  Nucleic Acid Gel Stain (Biotium Inc., Hayward, CA, 

USA). Allele C resulted in an undigested product of 367 bp whereas allele G pattern was 

composed by two fragments of 151 bp and 216 bp. 
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Statistical analysis 

Estimated breeding values for ADG  (expressed in g) and BFT (expressed in mm) were 

predicted by a BLUP-multiple trait animal model including the fixed factors of age at the 

beginning of test, body weight at slaughter, age at slaughter, day of slaughtering and inbreeding 

coefficient, besides the random factors of animal and litter. Means and measures of variability of 

the considered EBVs are reported in Table 1. Chi square or two tailed Fisher’s exact tests (where 

appropriate) of significance of allele frequency differences between the two extreme tails of 

genotyped pigs was calculated for each trait/breed combination considering all animals or only 

animals without common parents (for the Italian Landrace and Italian Duroc). 

 

RESULTS AND DISCUSSION 

Allele frequencies of the MUC4 g.8227C>G SNP in Italian pig breeds including several 

local pig breeds are reported in Table 2. Allele G, indicated as susceptible to ETEC infection, has 

been identified in all breeds except in Cinta Senese. However, its frequency is low in all other 

local breeds and in the Italian Duroc breed, ranging from 0.05 in this latter breed to 0.28 in Nero 

Siciliano. This might indirectly support the higher rusticity of these breeds compared to other 

commercial breeds and could be, at least for the local breeds, derived by an adaptation to the 

extensive management operated in marginal conditions in which disease resistance is an 

important requisite. The frequency of the G allele was close to 0.50 in Italian Large White and 

Italian Landrace. These results for the Italian Duroc and Large White populations match, to some 

extent, those of the other reports that investigated allele frequencies for this marker in different 

pig breeds, including Danish and Swiss Duroc (0.06) Yorkshire (0.58), Swiss Large White (0.51) 

and Swiss Landrace (0.51), whereas were quite different for the Italian Landrace compared to the 

Danish Landrace population (0.96).9,13   
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Association analysis was carried out using a selective genotyping and comparing the 

distribution of the two MUC4 g.8227C>G alleles in the extreme and divergent tails for the 

considered traits in three Italian heavy pig breeds (Table 2). In Italian Large White, allele G was 

more frequent in the tails with positive ADG-EBV (P=6.66E-04) and negative BFT-EBV (i.e. 

lower BFT; P=0.012), in agreement with the correlation between these two traits. The same 

highly significant difference in allele frequencies between the two tails for ADG-EBV was 

obtained in the Italian Landrace. Again, allele G was more frequent in the positive ADG-EBV 

group, both considering all selected animals (P<1.0E-20) or only two generation unrelated pigs 

(P=7.23E-12). In Italian Landrace, the two alleles in the two different tails were at opposite 

frequency, strongly indicating that the MUC4 g.8227C>G SNP is associated with ADG in this 

breed and confirming the results obtained in the Italian Large White pigs. In Italian Duroc, allele 

G was observed at very low frequency, preventing any possibility to evidence difference between 

the two extreme ADG-EBV tails. 

Results we obtained genotyping a marker in close linkage disequilibrium with the F4bcR 

locus are in agreement with results reported by Edfors-Lilja et al.17 and Yan et al.18, who 

investigated this locus using villous based tests to evidence the presence/absence of F4ab and 

F4ac receptors in Swedish Yorkshire x Swedish Landrace crosses and in a White Duroc x 

Erhulian intercross F2 population, respectively. In both studies pigs with indicated F4 receptors 

grew faster than pigs without receptors during the fattening period. Yan et al. 18 showed that 

animals with F4ab and F4ac receptors grew faster also during the pre-weaning period. The 

contrary was true in one of the two pig sets reported by Edfors-Lilja et al.17 in which the 

incidence of diarrhoea was twice as high as in a second set of pigs in which there was no 

difference on growth rate between the piglets with or without receptors. A lower growth rate in 

the piglets with the receptors was also reported by Bosi et al.20 but in this study animals were 

orally challenged with K88 E. coli. In untreated controls this difference disappeared. Similar 

evidences were reported in another challenging experiment where growth rate in pre-weaned 
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challenged pigs was lower than that of control piglets not differentiated according to their 

potential sensitivity or resistance to K88 E. coli.21 Therefore, it could be possible that the 

contrasting results obtained by Edfors-Lilja et al.17 and Yan et al.18 during the suckling period 

might be derived by differences of diarrhoea incidence in the different experiments that largely 

influenced piglets growth early in life. It is worth to mention that all Italian heavy pigs we 

genotyped in this study were performance tested after weaning (from 30-45 days to a final weight 

of about 155 kg). For this reason we could not evaluate if there were differences between the two 

piglet life periods. In our animals, EBV for ADG does not directly include information about the 

pre-weaning period even if pre-selection of animals for the Test station takes into account health 

information. Summing up and considering the way in which Italian heavy pigs are performance 

tested, as the MUC4 allele in close linkage disequilibrium with the F4bcR susceptible allele is 

also associated with higher growth rate, the susceptible allele is maintained in the population as a 

result of the selection for the pigs that have a favourable growth rate. On the other hand natural 

selection against susceptible genotypes (that might be in part eliminated during the pre-weaning 

period as animals die more frequently than those carrying the resistant genotype) could 

counterbalance in some way their positive effects on ADG. Therefore balanced natural and 

artificial selection might maintain the susceptible allele in the Italian Large White and Italian 

Landrace populations, as also suggested by Yan et al.18 in other pig populations. 

In addition, our study is the first that has reported an effect of the MUC4 polymorphism that 

marks the F4bcR locus on BFT. This might essentially be due to the correlation between ADG 

and BFT as already mentioned above. Indeed, the significant allele frequency difference for BTF 

in Italian Large White was not as high as that reported for ADG. It will be interesting to confirm 

this issue in the Italian Landrace population for which the selective genotyping approach of study 

was carried out for ADG only. Comparing the results obtained for ADG in the Italian Large 

White and Italian Landrace breeds, the latter showed the largest difference in allele frequency 

suggesting a very strong association between allele G and higher growth rate. As the MUC4 
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g.8227C>G SNP seems only a marker in close linkage disequilibrium with F4bcR locus,13,14 it 

remains to demonstrate if the same F4bcR causative mutation has pleiotropic effects on growth 

performances or if the effects on growth are due to another mutation in close linkage 

disequilibrium with that that should cause ETEC susceptibility. The difference observed between 

these two breeds could be interesting for this perspective, as at present, the mutation determining 

the F4bcR locus has not yet been identified. To this aim, haplotype analysis across populations 

has been already used to better define a region containing the F4bcR.13,14,22 Targeted haplotype 

analysis in Italian heavy pigs, using SNPs already reported in this chromosome region,22,23 

including polymorphisms detected in other mucin genes,24,25  coupled with villous based tests to 

evidence the presence/absence of F4ab and F4ac receptors, should provide additional information 

to disentangle this question that has important practical applications. 

The MUC4 g.8227C>G marker is at present used in marker assisted selection plans to 

eradicate or reduce the frequency of the susceptible allele of the F4bcR locus in commercial pig 

populations.9 Considering its antagonistic associations on susceptibility to ETEC and growth its 

implementation in marker assisted selection plans could produce a lower improvement on growth 

rate in these populations that might be counterbalanced by the economic gain derived by the 

higher number of weaned piglets. This locus is a good example that shows the complexity of 

applying marker assisted selection in pig breeding. 
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Table 1. Mean ± standard deviation (s.d.), minimum (Min.) and maximum (Max.) values for 
estimated breeding values (EBVs) in the two extreme tails for the four groups of Italian heavy 
pigs used in this study. 

 

Breed/Trait1 Tail2 No. of pigs EBV Mean ± s.d. Min. EBV Max. EBV 
ILW/ADG (g) negative 200 –30.67 ± 15.41 –92.00 –8.00 
 positive 200 +82.11 ± 13.93 +69.00 +132.00 
ILW/BFT (mm)  negative 280 –9.40 ± 1.60 –15.40 –7.40 
 positive 280 +8.00 ± 5.95 +2.50 +14.40 
IL/ADG (g)  negative 1003 –36.17 ± 11.98 –70.00 –21.00 
 positive 1003 +110.83 ± 10.06 +96.00 +139.00 
ID/ADG (g) negative 1003 –27.50 ± 13.05 –105.00 –15.00 
 positive 1003 +91.00 ± 7.65g +80.00 +136.00 

 

1ILW = Italian Large White; IL = Italian Landrace; ID = Italian Duroc; ADG = average daily 
gain; BFT = backfat thickness. 
2Extreme divergent tails selected according to the lower (negative) or higher (positive) EBVs. 
3IL/ADG negative tail: 73 females and 27 castrated males;  IL/ADG positive tail: 68 females, 32 
castrated males; ID/ADG negative tail: 67 females and 33 castrated males; ID/ADG positive tail: 
67 females and 33 castrated males. 
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Table 2. Allele frequencies of the MUC4 g.8227C>G polymorphism in different Italian pig 
breeds. 

Breed No. of pigs Allele frequency 
C G 

Italian Large White1 541 0.507 0.493 
Italian Landrace2 65 0.540 0.460 
Italian Duroc3 48 0.917 0.083 
Calabrese 15 0.830 0.170 
Casertana 27 0.910 0.090 
Cinta Senese 22 1.000 0.000 
Nero Siciliano 30 0.720 0.280 
 
1Two generation unrelated pigs of the selective genotyping study using backfat thickness 
estimated breeding value.  
2Two generation unrelated pigs of the selective genotyping study using average daily gain 
estimated breeding value. 
3Two generation unrelated pigs of the selective genotyping study using average daily gain 
estimated breeding value. 
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Table 3. Differences of allele frequencies of the MUC4 g.8227C>G polymorphism between the 
two extreme and divergent tails chosen using a selective genotyping approach based on estimated 
breeding values for production traits in Italian heavy pigs. 

 

Breed/trait1 Tail2 No. of pigs3 Allele frequencies P4 
C G 

ILW/ADG negative 186 0.524 0.476 6.66E-04  positive 184 0.399 0.601 
ILW/BFT negative 273 0.474 0.526 0.012  positive 268 0.550 0.450 
IL/ADG (all)5 negative 93 0.740 0.260 <1.0E-20  positive 95 0.080 0.920 
IL/ADG (unr)6 negative 45 0.733 0.267 7.23E-12  positive 20 0.100 0.900 
ID/ADG (all)5 negative 92 0.960 0.040 0.590  positive 87 0.940 0.060 
ID/ADG (unr)6 negative 29 0.910 0.090 1.00  positive 19 0.920 0.080 
 
1ILW = Italian Large White; IL = Italian Landrace; ID = Italian Duroc; ADG = average daily 
gain; BFT = backfat thickness. 
2Extreme divergent tails selected according to the lower (negative) or higher (positive) EBVs. 
3After DNA quality control of extracted genomic DNA, a few animals of the selective genotyping 
panels (Table 1) were excluded from genotyping or genotyping failed. 
4Chi square or two tailed Fisher’s exact tests (where appropriate) of significance of allele 
frequency differences between the two extreme tails of the genotyped pigs. Tests refer to the 
comparisons between the negative and positive tails adjacent to the P value. 
5Considering all selected pigs for the two tails. 
6Considering only two-generation unrelated pigs for the two tails. 
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GENERAL CONCLUSIONS 

 

In this thesis we conducted experiments of SNP association with carcass traits in Italian heavy 

pigs using different approaches to find DNA markers which could be useful to monitor and 

improve carcass characteristics and performance traits in pigs devoted to the production of POD 

dry-cured hams. Both selective genotyping approach and genotyping in random populations were 

used to confirm results. 

For TRIB3 gene, the in silico analysis, using different tools agrees with the fact that p.P49L could 

be a mutation of functional relevance. This mutation has an effect on fat deposition (measured as 

EBV for back fat thickness) in both breeds that were taken into account in this experiment: Italian 

Large White and Italian Duroc. This association is confirmed both using a selective genotyping 

approach as well as using an independent group of randomly chosen animals. First data on TRIB3 

gene expression can be the starting point to further investigate the biological role of this gene.    

The PCSK1 gene was first investigated in this thesis for association with production traits in pigs. 

Two intronic mutations were used in the association study showing significant effects on fat 

deposition and carcass traits in Italian Large White and Italian Duroc breeds but in different 

directions for the two breeds. Of particular interest is the association of the g.5182A>T SNP with  

cathepsin B activity. If this association will be confirmed, it will be the first marker to be 

associated with this parameter that is correlated with excessive softness and other characteristics 

that are a problem for dry cured ham production. 

For the MUC4 polymorphism investigated in this study, the analysis of allele frequencies in local 

breeds indirectly confirmed the relation of the “resistant” allele of F4bcR locus with a higher 

rusticity. This also support the low “susceptible” allele frequency in the Italian Duroc population, 

that is considered, to some extent, most rustic commercial breed used in dry-cured ham 
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production. The less rustic breed which have a high frequency of the “susceptible” allele are 

Italian large White and Italian Landrace. In these breed it was particular interesting to note a very 

strong association with the putative susceptible-linked allele with higher average daily gain. This 

locus is a good example of the complexity of applying marker assisted selection in pig breeding. 

  

Selective genotyping approach is a very useful approach to reduce the number of genotyped 

animals maintaining a high power in detecting associations between production traits and gene 

markers. It implies only the selection of the extremely high and low scoring animals from the 

continuous distribution of a quantitative trait. However, its efficiency is maximized for the 

particular trait for which tails have been chosen.  

The use of candidate gene approach confirm its effectiveness to detect new molecular markers 

associated with production traits in pigs. In all three genes investigated we reported convincing 

association with production traits. However, further studies should be carried out to further 

confirm the effects of the analysed polymorphisms in other populations. Production traits in pigs 

are in general controlled by a large but unknown number of quantitative trait loci; for this reason 

the dissection of economically important traits would require a high number of genetic markers in 

order to develop high density and high throughput assays for the association studies. Recently 

new sequencing technologies, so called “next generation sequencing” allowed tremendous 

improvements on marker discovery. This, because they can generate large amounts of sequence 

data cutting down time and costs. Based on information coming from this new technology, 

Illumina produced a custom chip that can analyse more that 60,000 porcine SNP. This tool will 

complement a candidate gene approach and might be the basic source of information to apply to 

evaluate the potential and limits of the genomic selection in pigs.  


