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1. INTRODUCTION 

 

1.1 Protein dynamics and the energy landscape.  

The study of the internal dynamics of proteins in relation to their structural and 

functional complexity represents nowadays a lively and promising field of research 

(Vinson, 2009; Henzler-Wildman, 2007). The interest in this topic is becoming more 

and more intense due to its implication in the understanding of many physiological and 

biochemical processes, as protein folding and unfolding (Onuchic, 1997), enzyme 

catalysis (Eisenmesser, 2002), and protein-protein interactions involved in the 

transmission of signals through intracellular and intercellular pathways (Smock, 2009). 

Furthermore, it is expected that a deep elucidation of protein dynamics will result in 

important pharmaceutical and biotechnological applications, as the development of new 

strategies for the design of drugs (Lee, 2009) and of artificial proteins (Koder, 2009). 

Protein dynamics encompass a wide range of times, from femtoseconds to 

seconds, including in principle fast simple motions, as atom vibrations, as well as slow 

movements of large protein domains (Frauenfelder, 1998; Henzler-Wildman, 2007; 

Frauenfelder, 2009).  

The concept of energy landscape of a protein, i.e. the potential energy of the 

system as function of all its atomic coordinates, offers a very useful representation of 

the structural and dynamical complexity of a protein (Frauenfelder, H1998; 

Frauenfelder, 2000).  Since for a protein formed by N atoms, the energy landscape is 

defined in an hyperspace with 3N-6 dimensions, only a computer can appreciate its full 

complexity. Some insight can be gained however  by considering one-dimensional cross 

sections through the energy landscape, as those reported in Figure 1.1. Fig.1.1A 

illustrates the energy landscape of ammonia and in particular the dependence of the 

potential energy of the molecule as a function of the distance between the nitrogen atom 

and the plane passing through its hydrogen atoms. Fig.1.1B presents a pictorial 

representation of a hypothetical one-dimensional cross section of the energy landscape 

of a protein. Both energy landscapes are characterized by minima (well defined 

conformational substates) separated by energy barriers. The most evident difference 

between these two examples consists in the huge number of minima and the variety of 

energy barriers which characterize the case of the protein, while for ammonia the small 

number  of  atoms gives rise to a  much simpler  energy landscape with just two minima  
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Figure 1.1 

Pictorial representations of energy landscapes. A. The energy landscape of ammonia; the 
conformational coordinate refers to the distance between the nitrogen atom from the plane 
passing through the three hydrogen atoms. B. An extremely simplified one-dimensional cross 
section through the energy landscape of a protein. C. A schematic representation of the 
hierarchical organization of the protein energy landscape. Adapted from Frauenfelder, 1998 and 
Cordone, 2005.  
 

 

separated by an energy barrier. Whereas for ammonia the energy landscape of Fig1.1A 

provides an acceptable representation of its dynamics, in the case of the protein the 

landscape of Fig.1.1B is oversimplistic, as the fractal organization of the energy 

landscape is not adequately represented. This concept is better illustrated in Fig.1.1C. 

Due to the extremely large number of atoms in a protein, the energy landscape has a 

hierarchic organization, where different tiers of substates can be individuated. Substates 

are grouped together in the same tier on the basis of the height of the energy barriers 

between them. With reference to Fig.1.1C, starting from the top profile, if one could 
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look at higher resolution into a conformational minimum, a new complex energy 

landscape would appear (a new tier) characterized by lower energy barriers, and so on 

going to the next tier. Since each tier includes a large number of minima, essentially 

isoenergetic, at the appropriate temperature the protein is supposed to fluctuate among 

the conformational substates of that tier over a characteristic time scale. In general small 

amplitude internal movements are fast, while large scale movements of protein 

domains, often requiring a sequence of collective structural rearrangements take place 

over much longer time scales. In this way, the fractal organization of the protein 

landscape gives rise to complex dynamics (from atoms vibration to protein unfolding) 

encompassing a vast time scale.  

A large part of the experimental and theoretical studies aimed at understanding the 

constitutive properties of the protein energy landscape have focused on myoglobin 

(Frauenfelder, 2001), starting from the pioneering work of Austin and colleagues 

(Austin, 1975), who studied the rebinding kinetics of carbonmonoxyde to the heme 

group of carboxymyoglobin after photodissociation over a large temperature range (40-

350K). From the multiphasic kinetics observed at cryogenic temperatures four rebinding 

processes were inferred, which, on the basis of the impressive structural information 

gained in the subsequent decades, could be interpreted in terms of the CO pathways 

inside the cavities which surround the heme group (see Frauenfelder, 2010). Most 

importantly, the seminal work of Austin and co-workers showed that rebinding at 

cryogenic temperature was strongly non-exponential in time. It was suggested that at 

cryogenic temperature the distributions of rate constants reflected an ensemble of  

structural conformations of the protein, and distribution of energy barriers between 

conformational substates were introduced (Austin, 1975). This static heterogeneity 

could not be observed at room temperature, since it was averaged on the time scale of 

the rebinding process by the fast fluctuations of the protein among conformational 

substates, giving rise to exponential kinetics.   

Two hierarchical tiers of the myoglobin energy landscape have been clearly 

identified (Frauenfelder, 2010), which are formed by the so called taxonomical and 

statistical substates. This hierarchical organization (depicted in Fig. 1.2 A and B) is 

reflected in the infrared spectrum of carboxymyoglobin (Fig.1.2C): three sub-bands of 

the CO stretching vibration are resolved, corresponding to three different environments 

experienced by the CO molecule bound to the heme (Frauenfelder, 2001), i.e. it has 

been  suggested  by x-ray  diffraction  studies  that  the  three  taxonomic  substates  
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Figure 1.2 
Hierarchy of the myoglobin energy landscape for the rebinding of CO to the heme. A. Tree 
graph of the tassonomic conformational substates and low level statistical substates. B. Pictorial 
representation of the energy landscape of the tassonomic substates A0, A1 and A3; the roughness 
of the energy potential curves corresponds to the organization of the low level statistical 
substates in each taxonomic level. C. Infrared absorption spectrum of carboxymyoglobin in the 
CO stretching region. The three taxonomic substates, corresponding to the three sub-bands 
peaking at 1967, 1947 and 1929 cm-1, are indicated as A0, A1 and A3. Adapted from 
Frauenfelder, 2001.  
 

 

correspond to distinct conformations of myoglobin in the surroundings of the 

carbonmonoxyde molecule (Vojtechovsky, 1999). The lower tier statistical substates, 

schematically represented by the roughness of the taxonomic wells in Fig.1.2B, are 

thought to arise from structural fluctuations of the three taxonomic substates, and cause 

the broadening of the three sub-bands in the CO stretching spectrum (Fig.1.2C). 

Experimental evidence for the presence of additional tiers in the hierarchy has been 

obtained (Thorn-Leeson, 1995; Young, 1991) and time-resolved x-ray diffraction 

(Schotte, 2004) and scattering (Cho, 2010) studies are defining in some detail the 

structural basis of the hierarchical organization of myoglobin conformational substates.  
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1.2 The slaving of protein dynamics to solvent fluctuations. 

The physics of glass forming liquids has provided deep insights into several 

aspects of protein dynamics. Indeed, many properties of proteins and glasses appear to 

be similar. An important example is given by the so called dynamical transition 

(Frauenfelder, 2009; Doster, 2010). When a protein/solvent system is slowly warmed 

starting from cryogenic temperatures, the mean-square displacements of its atoms, 

which increase linearly with absolute temperature (T) at low T, undergo a much steeper, 

non linear increase above a temperature (indicated by Td in Fig.1.3A) around 200 K.  

This abrupt increase in protein dynamics (the dynamical transition) was characterized 

initially by neutron scattering on myoglobin (Doster, 1989), and then investigated by a 

number of different experimental approaches also in other protein systems (Doster, 

2010). A key point to interpret the dynamical transition in terms of protein/solvent 

dynamical coupling is that Td strongly depends on the hydration level of the system 

(Fig.1.3B-C) (Ferrand, 1993; Tsai, 2000; for a review see Fenimore, 2004) and is 

affected by the chemical nature of co-solvents (the latter item will be further discussed 

in chapter 1.3 in relation with the dynamics of proteins incorporated into dehydrated 

glassy matrices). The dependence of Td upon the hydration level seems to be crucial, 

since in extremely dried samples (see for example the data indicated as dry in Fig 1.3B) 

the transition is not observed even at room T. 

An important common feature of protein and glasses appears to be the occurrence 

of two types of equilibrium fluctuations, known as α and β fluctuations (Lunkenheimer, 

2000; Doster, 2010). In glasses α and β relaxations have been characterized mainly by 

dielectric spectroscopy on the basis of the temperature dependence of the relaxation rate 

coefficient: while β processes follow an Arrhenius behavior, in the case of α relaxations 

the temperature dependence is adequately described by the Vogel-Tammann-Fulcher 

(VTF) equation. In glasses, α relaxations  are interpreted as arising from the cooperative 

movement of many particles, whereas β relaxations are thought to be related to 

“rattling” movement of individual particles in the transient cage formed by their 

neighbours.  

 The α and β processes have been observed in proteins by dielectric spectroscopy 

(Frauenfelder, 2009), as well as by specific heat spectroscopy (Doster, 2010).  The 

temperature dependence of α and β dielectric relaxations, measured in myoglobin in 

50:50 (wt/wt) water-glycerol matrices, is shown in Figure 1.4A. The α relaxations 

(obeying  the  VTF  equation)  stop  immediately  below  the  dynamical  transition  
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Figure 1.3 

The dynamical transition observed in different proteins at various hydration levels. Mean square 
displacements, <x2>, have been measured as a function of temperature by using different 
experimental techniques. A. <x2> of 57Fe in myoglobin crystals measured by Mossbauer 
spectroscopy. The dashed line represents the vibrational contribution to <x2>(T), extrapolated 
also for T higher than 200 K. For more details see Parak, 1982. B. <x2> of  the hydrogen atoms 
in bacteriorhodopsin, measured by neutron scattering at 2% w/w (open square) and 35% w/w 
hydration (circles) (from Ferrand, 1993). C. <x2> of the hydrogen atoms of lysozime, measured 
by neutron scattering in different solvents. Water: lysozime 70% and water 30%; 50% : 
lysozime 50% and glycerol 50%; 20% : lysozime 20% and glycerol 80%; dry: dry lysozime. For 
more details see Tsai, 2000. Adapted from Fenimore, 2004. 
 

 

temperature. On the contrary, the β relaxations are present also at very low 

temperatures. Their temperature dependence follows the Arrhenius law, also in solid 

matrices characterized by very low contents of residual water (Fig.1.4B) (Fraunfelder, 

2009).  



CHAPTER 1 - INTRODUCTION 

 

 7 

All the observations described above have been rationalized by proposing that α 

and β fluctuations in proteins originate from their coupling with solvent dynamics 

(Fraunfelder, 2009); in particular, α processes have been associated with the dynamics 

of the bulk solvent and β processes with the dynamics of the hydration shell, formed by 

one to two layers of water molecules interacting with the surface of the protein. Indeed, 

many experimental and theoretical studies (Pal, 2002; Ebbinghaus, 2007; Grossman, 

2011) indicate distinct dynamical properties for these two classes of water molecules. In 

this unified model of protein dynamics (Fraunfelder, 2009) three types of motions are 

identified on the basis of  their slaving to the solvent dynamics (Fenimore, 2004): 

solvent-coupled (α-slaved) processes (Class I); hydration-shell coupled (β-slaved) 

processes (Class II); and inner molecular processes (Class III), such as molecular 

vibrations in the force-field potential of molecular atom-atom interactions, that are 

higher in energy and non-slaved to solvent fluctuations. Class I, solvent-slaved motions, 

follow the dielectric (α-) fluctuations in the bulk solvent; they involve large-scale 

conformational changes, such as those controlling the entrance and exit of ligands in 

myoglobin or of diprotonated quinol (QBH2) in the photosynthetic bacterial reaction 

center of Rb. sphaeroides (RC) (see par. 1.3 and Savitsky, 2010). Since these motions 

are controlled by the bulk-solvent viscosity, η(T), they are considered to be absent in 

rigid environments (η → ∞). Class II motions are slaved to fast (β-) fluctuations in the 

hydration shell; this statement is well supported by the results reported in Fig.1.4B, 

showing that the temperature dependence of the β-relaxations in myoglobin is markedly 

affected by the hydration state of the sample at low residual water contents, when the 

protein hydration shell is progressively depleted (Frauenfelder, 2009). On these basis, 

class II motions are expected to be absent in fully dehydrated proteins. Such β-

fluctuations are supposed to involve side chains of the protein, and to govern processes 

such as the movement of ligands between different cavities inside myoglobin.  In the 

case of myoglobin, the distinction between Class I and II processes (α- and β-

fluctuations) has been put in relation with two hierarchically organized “tiers” of the 

energy landscape, CS2 (the lowest) and CS1 (the next higher one (Frauenfelder, 2009). 

Remarkably, in the frame of this unified model, the interpretation of the dynamic 

transition (Fig.1.3) becomes particularly simple: the increase of mean-square 

displacements above Td is due to the “activation” of β fluctuation in the hydration shell. 

We notice that such a close relationship between the dynamics of the protein and 

of its surroundings (Frauenfelder, 2009; Doster, 2010; Grossman, 2011) is likely to be  
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Figure 1.4 

Relaxation processes in myoglobin measured by dielectric relaxation spectroscopy. A. 
Arrhenius plot of the α and β processes in 50:50 (w/w) water : glycerol samples, with a 
water/protein weight ratio equal to 1. The dependence for the α processes have been fitted to a 
Vogel-Tammann-Fulcher relation, while β relaxation follows approximately an Arrhenius law. 
For further details on the fitting models refer to Frauenfelder, 2009. B. Arrhenius plot of β 
processes for myoglobin embedded in polivinilalcool matrices, at the weight water/protein ratio 
h indicated in the figure. Adapted from Frauenfelder, 2009. 
 

 

very important for the understanding proteins function in vivo, where, due to molecular 

crowding, proteins operate under conditions which are far from the idealized ones used 

in “traditional” biochemical enzymatic or functional assays (Zhou, 2008). In these 

respect we believe that the studies presented in the present thesis, mainly performed at 

room temperature in strongly dehydrated protein-matrix systems, can contribute to 

clarify function/dynamics relationships under conditions of physiological relevance.  
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1.3 The photosynthetic reaction center of Rb. sphaeroides: structure and 

photochemistry.  

The photosynthetic reaction center (RC) of anoxygenic purple bacteria is one of 

the best-characterized membrane proteins and has become a reference model in 

studying the primary processes of photosynthesis. The RC is the key protein in the 

photosynthetic machinery which upon light excitation initiates a sequence of electron 

transfer processes coupled to the pumping of protons across the energy transducing 

membrane. The resulting electrochemical potential difference of protons drives the 

synthesis of ATP via a chemiosmotic circuit, which enables the transformation of 

electromagnetic energy into chemical energy (Cramer, 1990).  

The reaction center of Rhodopseudomonas viridis has been the first membrane 

protein for which the crystallographic structure has been solved (at 3 Å) (Deisenhofer, 

1985). Soon after the crystallographic structure of the RC purified from Rhodobacter 

(Rb.) sphaeroides R26 (a carotenoid-less strain) was also determined at 2.8 Å resolution 

(Allen, 1986). The structure is now available at the maximal resolution of 1.8 Å for the 

RC purified from the wild type strain 2.4.1 of Rb. sphaeroides (Koepke, 2007).  The 

comparison of the wt 2.4.1 and the R26 structures showed no relevant difference 

between the two proteins, except for the presence in the R26 RC of a molecule of 

detergent (LDAO) in the binding site of the carotenoid (a spheroidene or a 

spheroidenone in the 2.4.1 strain). RCs purified from both strains have been used in the 

present thesis. 

Figure 1.5 shows views of the RC structure derived from the crystallographic 

coordinates. The protein complex is formed by three subunits, named L, M and H (Low, 

Medium and High) from their apparent molecular weight derived from SDS-PAGE 

analysis. It was predicted that two of the three subunits (L and M) were strongly 

associated with the membrane and that the H subunit was only loosely associated with 

the phospholipids bilayer, as it could be easily detached from the membrane by gentle 

detergent treatments. The crystallographic structure confirmed this prediction. As 

shown in Fig. 1.5A,B, the L and M subunits have both five transmembrane α-helices, 

that in the LM complex are arranged according to a C2 pseudo-symmetry with the axis 

passing through the non-heme iron atom and the P special pair. The H subunit is 

composed of an α-helix inserted into the phospholipid bilayer, in close contact with the 

LM  complex,  and  of  a  globular  domain  which  includes a β-strand  surrounded by 2  
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Figure 1.5 
The crystallographic structure of Rb. sphaeroides RC. A. The L, M and H subunits are 
represented in green, blue and orange respectively; the cofactors of the RC are represented in 
wireframe with CPK colours. B. The structure of the cofactors. Branch A is represented on the 
left side of the Fe2+ atom. For each branch, from the bottom to the top, a ubiquinone-10, a 
bacteriopheophytin, and a monomeric bacteriochlorophyll are present. On the top, the 
bacteriochlorophyll molecules forming the P special pair are showed, with their parallel 
tetrapyrrole  planes. C. Tryptophan residues are shown in a space-filling representation 
(yellow). On the periplasmic side (top) tryptophan residues are organized in a ring, which is 
thought to contribute to the positioning of the protein complex within the phospholipid bilayer. 
D. The resolved water molecules are shown as red spheres. All images have been done with the 
Swiss PDB-Viewer software (Guex, 1997), using the PDB coordinates 1RG5 (A, B and C; 
Roszak, 2004) and 2J8C (D; Koepke, 2007).  
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α−helices and some loops. This subunit protrudes on the citoplasmic side of the 

membrane.     

As shown in Fig.1.5C, on the periplasmic side of the membrane a ring of 

tryptophan residues is present, which, due to the hydrophobic interactions of the indolic 

groups with the phospholipids, is supposed to regulate the position of the protein 

complex in the membrane, with respect to the normal to the membrane plane. Figure  

1.5D shows as red spheres the many water molecules (430) resolved at 1.8 Å in the 

crystallographic structure of the wt RC, located both on the external surfaces and inside 

the complex (Koepke, 2007). A very large number of water molecules (1300), many of 

which also in the interior of the protein and often organized in water channels, has been 

found recently in the high resolution (1.9 Å) crystallographic structure of photosystem 

II from the cyanobacterium Thermosynechococcus vulcanus (Umena, 2011). These 

observations are particularly relevant for the studies reported in the present thesis, 

which deals with many aspects of the dynamical coupling between the protein and its 

hydration shell (see in particular Chapter 6).    

The LM complex binds the RC cofactors, which also obey a C2 pseudo-symmetry 

(see Fig.1.5B). The cofactors are: 4 bacteriochlorophyll a molecules (two forming the P 

special pair (BChlP) and two known as accessory monomeric bacteriochlorophylls 

(BChlB)), 2 bacteriopheophytin (BPheo), 2 ubiquinone-10 (UQ10) molecules and one 

non-heme iron atom Fe2+ (see also Fig.1.8). The cofactors are arranged in two 

symmetrical branches, called A and B; branch A is mainly surrounded by aminoacidic 

residues of the L subunit, while the cofactors of branch B are mainly associated to 

aminoacidic residues of the M subunit.  

The transfer of the electron donated by the P special pair following the absorption 

of a photon of appropriate wavelength takes place only through branch A, while the 

cofactors of branch B are supposed to be involved in the dissipation of non productive 

excited states of the P pair under stress conditions. In the wt 2.4.1 RC structure in fact 

the BChlB of branch B (BChlBB) is located in the vicinity of the isoprene tail of 

spheroidenone, which runs parallel to the BChlBB porphyrin ring. It is well known that 

carotenoids are able to dissipate bacteriochlorophyll triplet states and this is one of the 

functional roles attributed to the spheroidenone molecule in the native RC.  

The sequence of events which results in the physiological incorporation of the 

carotenoid molecule into the protein structure is not fully unravelled. However it has 

been  demonstrated  (Roszak, 2004)  that,  as  illustrated  in  Fig.1.6A,  a  phenylalanine  
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Figure 1.6 

The binding sites of spheroidenone and of the bacteriochlorophylls of the P special pair in the 
RC of Rb. sphaeroides. A. Spheroidenone binding site. In green the lateral groups of 
hydrophobic amino acidic residues, in blue the monomeric BChl of branch B and in CPK the 
spheroidenone. The conformations adopted by the phenylalanine residue M162 in the presence 
and in the absence of the carotenoid have been represented in orange and red respectively. 
TrpM75 (on the left) forms a hydrogen bond with the spheroidenone. B. The coordination 
geometry of the P bacteriochlorophyll molecules. Images were constructed with Swiss PDB-
Viewer (Guex, 1997) from the PDB files 2J8C (Koepke, 2007), 1RG5 (Roszak, 2004) (panel 
A), and 2J8C (Koepke, 2007) (panel B).  
 

 

residues acts as a gatekeeper, determining the entrance of the pigment only from one 

side of the binding site; a tyrosine residue ensures the correct positioning of the 

cofactor, through the formation of an hydrogen bond between the OH group of the 

spheroidenone and the nitrogen atom of the tryptophan indolic ring. A structural role of 

the carotenoid is suggested by other studies, indicating a larger rigidity of the wt 2.4.1 

as compared to the R26 RC (Gall, 2001; Gall, 2004). 

Also the other cofactors are bound to the protein through hydrogen bonds or 

hydrophobic interactions with the lateral groups of aminoacidic residues belonging to 
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the transmembrane helices of the L and M subunits. The case of the P special pair 

binding site is of particular interest since it has been shown that the extension of the 

hydrogen bond network which involves these two bacteriochlorophyll molecules has 

functional consequences on the electron transfer, by affecting the standard midpoint 

reduction potential (E°’) of the electron donor P (Lin, 1994). More specifically, as 

illustrated in Figure 1.6B, in the wt RC the BChlP, in addition to the coordination of the 

two magnesium atoms by two histidines, establishes an hydrogen bond with HisL168 

(the bond involves the oxygen atom of the acetyl group of one of the two 

bacteriochlorophylls and one nitrogen atom of the imidazolic group of the histidine). In 

this native situation the E°’  value of the (P+/P) redox couple is approximately 505 mV. 

Lin and coworkers (Lin, 1994), through site-specific mutagenesis, obtained RCs in 

which 1, 2 or 3 hydrogen bonds are formed between different protein residues and 

BChlP. These authors obtained a series of 11 mutated RCs with in which E°’ varies in 

the range between 410 and 765 mV. As a general rule it has been observed that E°’ 

increases with the number of hydrogen bonds involving BChlP, by 60-125 mV for each 

new hydrogen bond added. 

The bacteriochlorin RC cofactors, being characterized by extended π systems, 

give rise to a RC absorption spectrum rich of bands in the spectral interval from the 

ultraviolet to the near infrared (Figure 1.7A). The main absorption bands are attributed 

to electronic transitions of specific individual cofactors inside the reaction center, as 

detailed in the caption of Figure 1.7.  

Photoinduced electron transfer takes place according to the scheme of Figure 1.8. 

Following the absorption of a photon of λ ≈ 860 nm by the BChlP (or the transfer of 

excitation energy from another photoexcited pigment in the RC or in the antenna 

system), the special pair enters the first excited singlet state, BChlP*, which donates an 

electron to the quinone bound at the QA site, via the intermediate bacteriopheophytin of 

branch A. This photochemical event, being the P special pair approximately 20 

angstrom away from the quinone QA, produces a charge separated state in the protein 

complex. The formation of the primary charge separated state P+QA
- is characterized by 

a time constant τ ≈ 200 ps. The electron is then delivered from QA
- to the quinone bound 

at the QB site, which is reduced to the semiquinone form, QB
-. This process, occurring 

over the time scale of 10-100 µs, is conformationally gated, i.e. rate limited by a 

conformational change of the RC (Graige, 1998). Under physiological conditions, the 

photoxidized  primary  donor,  P+  is  rapidly  reduced  by  a  soluble  cytochrome  c 



CHAPTER 1 - INTRODUCTION 

 

 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 
The absorption spectrum of dark-adapted RC from Rb. sphaeroides R26 (A) and the light-
minus-dark difference spectrum (B) between 250 and 1300 nm. In A, the bands around 560 and 
757 nm are attributed to the QX and QY transitions of the bacteriopheophytin molecules; the 
bands at 800 nm and 860 nm result from the QY transitions of the monomeric and dimeric (P) 
bacteriochlorophyll molecules, respectively. All bacteriochlorophyll molecules contribute to the 
QX band at 600 nm. Adapted from Bagley, 1990.    
 

 

 (cytochrome c2). The ri-reduction of P+ makes possible a subsequent photoexcitation of 

BChlP and a new charge separation event within the RC. The second photochemical 

event produces the double reduction of QB which, following the uptake of two protons 

from the cytoplasm is released from its binding pocket into the phospholipid bilayer as 

dihydroquinone or quinol (QH2). A two-electron gate operates therefore at the level of 

the secondary acceptor QB . The reactions described above represent the first step in the 

cyclic electron transfer chain which in vivo generates the electrochemical potential 

difference of protons across the intracytoplasmic membrane driving ATP synthesis.  

For each of the forward, charge separating processes considered a finite 

probability exists that the inverse reaction takes place, resulting in a charge 

recombination process, in which the electron on the acceptor recombines with the hole 

on  the  donor  cofactor.  In  the  absence  of  electron  donors  to  the  photoxidized  P+,  
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Figure 1.8 
Light-induced electron transfer processes within the Rb. sphaeroides RC. The lateral chains of 
cofactor have been omitted. The electron transfer reactions which produce the separated states 
are shown with green arrows; charge recombination processes from QA and from QB are 
indicated by red arrows. 
 

 

recombination of the light-generated P+QB
- state occurs according to the following 

kinetic scheme: 

 

 

                                                                                                                                    

                                                                                                                                                                             

                                                                    

 

where kAP, kAB and kBA are first-order rate constants. The state P+QA
-QB can either 

recombine yielding the ground state PQAQB with a rate constant kAP ≅10 s-1 or, in the 

presence of ubiquinone bound at the QB site, yield P+QAQB
-. Under physiological 

conditions, the state P+QAQB
- is stabilized with respect to P+QA

-QB by approximately 70 

meV and, since (kAB+kBA) ≅104 s-1 >> kAP , electron transfer to QB occurs with an 

extremely high quantum efficiency. The state P+QAQB
- recombines slowly (lifetime ≅ 
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1s) essentially via the P+QA
-QB state, with the direct route (kBP) being negligible at room 

temperature (Kleinfeld, 1984; Labahn, 1995). By contrast, the fast recombination of 

P+QA
-QB (lifetime ≅ 0.1s) is observed when electron transfer to QB is blocked by a 

competitive inhibitor as o-phenantroline.  

The kinetics of the electron transfer processes outlined above can be studied by 

time-resolved optical spectroscopy, since the light-minus-dark difference spectrum of 

the RC (see Fig.1.7B) has a number of relatively intense and well characterized bands 

resulting from the oxidation of the primary donor, from the reduction of the QA and QB 

acceptors, as well as from electrochromic effects (for further details see par.3.3).  

 

1.4 The conformational dynamics of the bacterial photosynthetic reaction center. 

The bacterial RC is considered to be an excellent model system for investigating 

the relationship between protein internal motions and long range electron transfer. A 

number of investigations, exploiting independent spectroscopic, electrometric, and 

biochemical approaches (Kleinfeld, 1984; Kriegl, 2004) indicate coherently that 

following the light-induced primary charge separation, the RC protein-solvent system 

responds to the generated electric field by relaxing from a dark-adapted to a light-

adapted conformation which stabilizes the charge separated P+QA
- state relative to the 

PQA ground state. Fundamental information on the interplay between this RC 

conformational dynamics and electron transfer has been provided by low temperature 

studies of P+QA
- recombination kinetics (Kleinfeld, 1984; Ortega, 1996; McMahon, 

1998; Kriegl, 2004). In a pioneering study, Kleinfeld and coworkers (Kleinfeld, 1984) 

showed that the recombination kinetics is accelerated by a factor of five, with respect to 

room temperature, when RCs are frozen to 77 K in the dark; at variance the above 

process is sizably slowed down when cooling takes place in the light (see Fig. 1.9).  

This behavior was interpreted as reflecting the trapping at low temperature of the dark-

adapted or the light-adapted conformation. In addition, the strongly non-exponential 

kinetics measured both in the dark- and light-adapted states at cryogenic temperature 

(Fig. 1.9) were interpreted as reflecting an ensemble of frozen conformational substates 

giving rise to a continuous distribution of electron transfer rates. Such a behavior is not 

observed at room temperature due to the rapid substates interconversion over the time 

scale of the electron transfer reaction. The rapid fluctuations among conformational 

substates bring about result in averaging over the rate constant distribution, leading at 

room  temperature  to  exponential  recombination  kinetics.  Kleinfeld  and  colleagues  
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Figure 1.9 
Charge recombination kinetics recorded in R26 RCs at room temperature (T=294K) and at 
cryogenic temperature (T=77K) for RCs cooled in the dark and in the light. From Kleinfeld, 
1984. 
 

 

(Kleinfeld, 1984) proposed that the dark-adapted and the light-adapted conformations 

differed essentially in the distance between between P+ and QA
- and that the distribution 

of rate constants reflected essentially a distribution of distances between the cofactors. 

This interpretation has been recently disfavoured on the basis of high-field EPR 

measurements performed on RC crystals grown in the light or in the dark (Flores, 

2010).  No change in the distance and relative orientations between P and QA have been 

observed between RC in the neutral or charge separated state.  

Kleinfeld and colleagues (Kleinfeld, 1984) also showed that RCs frozen in the 

dark were incompetent for the final electron transfer step (P+QA
-QB→ P+QAQB

-). On the 

other hand, RCs frozen under illumination retained their ability to extend the charge 

separation to the final electron acceptor, QB. This dependence on the illumination 

history was fully reversible upon thawing. These results indicate that the protein 

changes its structure in response to photoinduced charge separation (conformational 

relaxation) and suggest that some of these conformational changes are a prerequisite for 

the P+QA
-QB→ P+QAQB

- electron transfer (conformational gating). The existence of a 

conformational gate, which rate limits the electron transfer from the primary to the 
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secondary quinine has been subsequently confirmed by independent, room temperature 

studies (Graige et al. (1998).   

In the crystal structure of the RC cooled to cryogenic temperatures under 

illumination, i.e. trapped in an active state, QB was found 2.7 Å closer to QA than in the 

protein frozen in the dark and flipped by 180o around the isoprenoid chain (Stowell, 

1997). This movement of QB from an inactive-distal to an active-proximal site was 

originally proposed as the major structural change involved in the conformational gating 

step. However the correlation between the large shift in QB configuration and the rate 

limiting conformational change has been questioned on the basis of subsequent work 

performed in native and mutated RCs, which suggests more subtle structural 

rearrangements, possibly involving protein groups or hydrogen-bonding networks, as 

responsible of the gate (Kuglstatter, 2001; Xu, 2002a; Xu, 2002b; Breton, 2004). 

Besides the QB movement reported by Stowell and colleagues (Stowell, 1997) 

confirmed by other laboratories (Fritzsch, 2002; Walden, 2002; Rahaman, 2004), other 

structural changes revealed by X-ray diffraction studies have been associated to charge 

separation, including a concerted movement of the H subunit after prolonged 

illumination (Katona, 2005) and, more recently, a light-induced change involving the 

side chain of a tyrosine residue close to P, caught by time-resolved Laue diffraction in 

the RC from the related species Blastochloris viridis (Wöhri, 2010). Furthermore, 

spectroscopic studies of charge recombination reactions (form the states P+QA
- and 

P+QB
-) following a prolonged photoexcitation of the RC indicate that additional 

conformational changes take place in the light over the time scale of minutes, which 

lead to a dramatic stabilization of the charge separated states (Gouscha, 1997; Gouscha, 

2000; Andréasson, 2003; Gouscha, 2003; Manzo, 2011). These dynamics have been 

proposed to play an important role in regulating the RC photochemistry in vivo, where 

the RC is exposed to light for long periods. 

In the following we will focus again on the conformational dynamics which 

governs P+QA
- recombination. The kinetic analysis of this electron transfer process has 

been in fact used in the present thesis as the reference probe to investigate the associated 

RC relaxations and fluctuations in the different environmental conditions examined.  

After the pivotal observations of Kleinfeld and coworkers (Kleinfeld, 1984), the 

kinetics of P+QA
- recombination have been systematically examined as a function of 

temperature (5-300K), illumination protocol and warming rate (McMahon, 1998). In this 

study a quantitative analysis of the coupling between electron transfer and protein 
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motions was developed, based on a quantum-mechanical electron transfer model 

(Fermi’s golden rule and the spin-boson model). The static heterogeneity of the protein 

ensemble, conformational relaxations, and fluctuations between conformational substates 

were all cast into a single parameter, the energy gap between the charge separated (P+QA
-

) and the neutral (PQA)  states, which was mapped  on a single conformational coordinate 

along which  the RC protein performs slow, diffusive motions (see Fig.1.10). The model 

accounts quantitatively for the behavior observed over the whole accessible temperature 

range in native (McMahon, 1998) and genetically modified RCs (Kriegl, 2004), in a 

water-glycerol solvent and in RCs trapped in a sol-gel matrix (Kriegl, 2003). According 

to this dynamic model (McMahon, 1998), at physiological temperatures the RC protein, 

following light-induced transition to the P+QA
- state, relaxes rapidly from the dark-

adapted to the light-adapted conformation, solvating the altered charge distribution. This 

relaxation is associated with a decrease in the energy gap between P+QA
- and the PQA 

ground state, which is reflected in a decrease of the electron transfer rate, i.e. in the 

stabilization of the charged separated state (Fig.1.10). At room temperatures, moreover, 

the RC protein rapidly samples the conformational substate ensemble, so that averaging 

of the corresponding rate distribution occurs over the time scale of charge 

recombination. This gives rise to an almost exponential kinetics of P+QA
- recombination 

(life time, τ≈10-1 s).  At variance, freezing  RCs in the dark at temperatures between 250 

and 150K hampers progressively the relaxation from the dark-adapted to the stabilized, 

light adapted conformation, as well as the interconversion between conformational 

substates: this hindrance of the conformational dynamics results in a progressive increase 

of the average rate constant for P+QA
- recombination and in a progressively broader 

distribution of rate constants (McMahon, 1998). In summary, it appears that the 

recombination kinetics of the primary charge separated state is a sensitive probe of the 

associated internal RC dynamics. 

The structural basis of the relaxation from the dark- to the light-adapted 

conformation has not yet been clarified, and different mechanisms of stabilization of the 

primary charge separated state have been proposed. From FTIR studies (Nabedryk, 

1990b) it was suggested that highly localized conformational changes of the protein 

matrix near the QA site might play a key role in assisting the stabilization of the primary 

charge-separated state; alternatively it has been proposed that the protonation of amino-

acid residues located at a large distance from QA (> 16 Å) can participate in the 

stabilization of the QA
- anion radical (Kalman, 1994). This appears reasonable since the  
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Figure 1.10 

Schematic representation of the rugged energy surfaces of the primary charge separated state 
(P+QA

-) and the neutral state (PQA). The energy gap ε separating the P+QA
- and the PQA state 

varies as a function of the conformational coordinate, q. D and L indicate the dark-adapted and 
the light-adapted conformations of the RC. Vertical arrows represent electron transfer 
processes, while the arrows along the energy surfaces indicate conformational relaxations of the 
RC structure. The shadowed distributions refer to the structural heterogeneity of the RC. From 
Kriegl, 2004. 
 

 

the formation of one-electron states of the quinones in the primary photosynthetic 

electron transfer chain, QA and QB, is accompanied by protonation reactions, but the H+ 

binding targets are protein residues rather than the quinone cofactors themselves 

(Maroti, 1997). A time-resolved optical spectroscopy study performed on wild-type 

RCs and four site-specific mutants with widely modified free-energy gaps for P+QA
- 

recombination has led to the suggestion to associate conformational relaxation with 

subtle rearrangements of the cofactors within their cavities (Kriegl, 2004). Finally, the 

involvement of water molecules, weakly bonded to the RC and perturbed by light-

induced QA reduction (see below), has been recently invoked as playing a major role in 

the relaxation process which stabilizes the primary charge separation (Iwata, 2009).  

Although low temperature studies represent the classical approach to study protein 

dynamics, in the last years, however, it has been shown that complementary information 

can be obtained following an alternative method, which consists in embedding the 

protein into amorphous matrices and in probing dynamical parameters of the protein at 

room temperature as a function of the hydration level of the matrix (see par. 1.6 and 
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Cordone, 2005). In particular, both in the case of a soluble (myoglobin) and of a 

membrane (RC) protein, the incorporation into dehydrated matrices formed by the 

disaccharide trehalose proved to be especially effective in reducing protein dynamics to 

levels comparable to the ones attained at cryogenic temperature. The use of glassy 

matrices, and the choice of trehalose among other saccharides, were suggested by the 

observation that vitrification in the presence of disaccharides appears to be the key 

strategy adopted in nature to preserve life under conditions of extreme drought and high 

temperature. This biological phenomenon, known as anhydrobiosis, is accompanied by 

a temporary, reversible arrest of metabolism, brought about by an extremely effective 

block in the dynamics of biomolecules. In the following paragraph we introduce the 

anhydrobiosis and its relation with glass-forming saccharides. 

 

1.5 Anhydrobiosis and glass-forming disaccharides. 

It is well known that some organisms are able to survive in anhydrobiosis, i.e. 

under conditions of high temperature and almost in the absence of water. As a 

convention, the state of anhydrobiosis starts at a content of residual water lower than 

0.3% (grams of water per grams of dry weight of the cell or of the organism). The group 

of organisms capable of anhydrobiosis comprises: unicellular eukaryotes, as yeast; some 

fungal spores; some invertebrates, as the crustacean Artemia salina, and various species 

of nematodes; the mould Dictyostelium; some tardigrades; various plants (Crowe, 

1998), including ferns, mosses and angiosperms, but not gymnosperms. In the case of 

angiosperms the ability to survive in the absence of water is extremely important in the 

seeds and in the pollen, but in some cases also in the sporophyte. The resistance to this 

specific kind of stress, also in relation to the possible biotechnological applications, is 

intensively studied in vegetal organisms. Two types of resistance are usually 

distinguished (Hoeckstra, 2001): when water availability is lower than usual, the stress 

is classified as drought, while when the residual water is not even sufficient to solvate 

protein surface and cover phospholipid bilayers surface, the organism is said to be 

tolerant to desiccation in an anhydrobiosis condition.  

Anhydrobiotic organisms in general adopt two active strategies to withstand water 

depletion: they produce compatible solutes, e.g. proline, mannitol and in particular di- 

or oligo-saccharides, and/or proteins, more or less specific for the kind of stress they are 

experiencing. In plants the two strategies are usually concomitant and the proteins 

produced belong mainly to the LEA family (Late Embryogenesis Abundant proteins) or 
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to the dehydrin family. In yeast, at variance, the HSP12 protein, belonging to the Heat-

Shock protein family, is produced in association with mannitol; its function is to 

stabilize the plasmatic cellular membrane under water stress conditions (Sales, 2000).  

The production of disaccharides during water stress conditions, in particular of 

α,α-trehalose (currently called trehalose), and of maltose, is a conserved, widespread 

method to face water depletion, and it is used also by multicellular organisms: under 

water stress conditions, Artemia salina, or the desert plant Selaginella, produce 

trehalose up to 20% of their dry weight (Crowe, 1998). Also a more common plant, as 

Phaseolus vulgaris, following water depletion accumulates trehalose, thanks to the 

work of its symbiont Rhizobium (Farias-Rodriguez, 1998).  

The elucidation of the molecular basis of the bioprotective role exerted by 

disaccharides has catalyzed a very large number of chemico-physical studies. Many of 

them have attempted to clarify the molecular mechanism leading to preserve the 

structure of phospholipid bilayers. As a consequence of desiccation, in fact, these 

cellular components can undergo wasteful structural alterations. Destabilization occurs 

not only when the water content is decreased, but also when the system is rehydrated. 

Upon desiccation phospholipid bilayers, undergo a liquid-crystalline to gel transition, 

due to the depletion of water molecules interacting with the phospholipid head groups. 

During this phase transition, delamination of the bilayer is common and it strongly 

affects the functionality of cellular membranes. Similar processes occur upon freezing 

when water molecules sequestered in crystals become unable to interact with the polar 

head groups of phospholipids. When these stress conditions stop, rehydration generally 

produces the fusion between phospholipid bilayers and increases membrane 

permeability. As far as proteins are concerned, desiccation affects their hydration shell, 

which plays a fundamental role in protein folding (Tanford, 1978). Furthermore, 

molecules which under normal conditions only weakly interact with the protein, due to 

their increased activity bind to the protein and cause the dislocation of one or more 

structural elements; these events can trigger the  irreversible unfolding of the protein. 

Several, often complementary, hypotheses have been proposed to explain the 

ability of saccharides to protect and preserve biostructures such as membranes and 

proteins. The proposed models also attempted to explain the peculiarity of trehalose, i.e. 

its superior bioprotective efficacy in comparison with other saccharides.   

The first is the water replacement hypothesis which proposes that the sugar forms, 

upon water removal, hydrogen bonds directly with the biostructure, thus replacing the 



CHAPTER 1 - INTRODUCTION 

 

 23 

hydrogen bonds normally formed in solution with water molecules (Carpenter, 1989). 

This hypothesis is supposed to be at the basis of membrane bioprotection by trehalose 

(Sum, 2003; Pereira, 2004; Pereira, 2006). It has been suggested that the peculiar 

efficacy of α,α-trehalose for membrane preservation in comparison to other 

disaccharides involves its α,α−(1,1) glycosidic linkage. The axial, axial linkage allows 

this molecule to adopt a clam shell structure that probably facilitates interactions 

between the sugar and the headgroup region by creating the appropriate hydrogen-

bonding geometry to adjacent lipids (Albertorio, 2007). 

The second hypothesis, i.e. the water entrapment hypothesis assumes that 

trehalose, during desiccation, rather than directly binding to biomolecules, confines and 

entraps the residual water molecules at the biostructure-matrix interface by glass 

formation, thus preserving the native salvation (Belton, 1994).  

A third hypothesis, the high viscosity hypothesis, considers that the discriminating 

factor in cellular structure conservation is the ability of the sugar to form glassy 

matrices (characterized by an extreme high viscosity) at room temperature (Sampedro, 

2004). Since trehalose vitrifies also at conditions which are sub-optimal for the other 

sugars, this would explain its peculiar bioprotective efficacy. The bioprotective effect of 

the host glassy matrix is thought to cause, at low water content, motional inhibition and 

hindering of the dynamic processes that lead to loss of native structure and denaturation. 

Cesáro and co-workers (Sussich, 2001) have suggested that the peculiarity of 

trehalose arises from its polymorphism, i.e. from its capability to interconvert between 

the structurally similar anhydrous form and dehydrate form. This would favour in nature 

smooth, reversible dehydration/rehydration processes. 

Recently, Cordone and colleagues (Francia, 2008) have proposed a fourth 

hypothesis, the anchorage hypothesis, which incorporates some aspects of the not 

mutually exclusive models outlined above, being in particular related to the water 

entrapment hypothesis. The model, based on a number of experimental observations and 

molecular dynamics simulations, proposes in fact that the inhibition of protein dynamics 

at the basis of the bioprotective properties of trehalose is due to the formation of a 

network of hydrogen bonds which, besides connecting sugar molecule to each other in 

the matrix, involves, at the sugar-matrix interface, water molecules of the hydration 

shell, simultaneously bonded to surface groups of the protein and to trehalose molecules 

of the matrix. This network “anchors” the protein surface to the matrix, thus coupling 

the internal protein dynamics to that of the matrix. In the framework of this model, the 
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peculiar efficacy of trehalose as a bioprotectant is due due to its propensity to form 

intermolecular hydrogen bonds. In spite of its structural similarity with trehalose, 

sucrose has a higher propensity to form intramolecular H bonds. Consistently, it has 

been shown that sucrose is almost ineffective in inhibiting the dynamics of RCs, even at 

extremely low contents of residual water of the embedding matrix (Francia, 2008; see 

also the next paragraph).  

 

1.6 Electron transfer in RCs embedded in α,αα,αα,αα,α-trehalose glassy matrices. 

The kinetics of P+QA
- recombination have been extensively studied at room 

temperature in RCs embedded in dehydrated matrices formed by α,α-trehalose (for a 

review see Cordone, 2005) or sucrose (Francia, 2008). Figure 1.11A shows examples of 

recombination kinetics measured following a laser pulse in solution and in an 

amorphous α,α-trehalose matrix characterized by two different hydration levels. 

Incorporation of the RC in the glassy matrix and dehydration result in a remarkable 

acceleration of the decay. Additionally, the kinetics, which is essentially exponential in 

solution, become markedly non exponential in the dehydrated matrix. These effects are 

fully reversible upon rehydration.  

The accelerated and distributed kinetics measured at room temperature in 

extensively dehydrated α,α-trehalose glasses are comparable to those observed in RC 

water-glycerol samples cooled in the dark at cryogenic temperatures (see par.1.4). It 

was therefore inferred that in sufficiently dehydrated matrices the RC conformational 

dynamics is hindered to an extent comparable to that observed in water-glycerol 

systems at cryogenic temperatures (Palazzo, 2002). More specifically it was concluded 

that at sufficiently low hydration of the α,α-trehalose matrix both the RC relaxation 

from the dark-adapted to the light-adapted conformation and the interconversion among 

lower tier conformational substates are suppressed on the time scale of charge 

recombination. 

As previously reported (Palazzo, 2002; Francia, 2004a; Francia, 2004b; Francia, 

2008), description of the survival probability N(t) of the P+QA
- state after the 

photoexcitation pulse requires a continuous distribution p(k) of rate constants k, i.e.: 
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Figure 1.11 

Kinetic analysis of P+QA
- charge recombination following laser excitation of RCs embedded in 

α,α-trehalose glassy matrices. Panel A shows recombination kinetics measured in solution 

(trace a) and in a sugar glassy matrix at two different hydration levels, corresponding to 4700 

H2O molecules per RC (trace b) and to 7800 H2O molecules per RC (trace c). Continuous red 

lines are best fits to eq.1.9, yielding the following values of the kinetic parameters: (a) <k> = 8.3 

s-1, σ = 2.5 s-1; (b) <k> = 35.5 s-1, σ = 26.5 s-1; (c) <k> = 13.4 s-1, σ = 5.8 s-1. Panel B shows the 

corresponding distributions of rate constants (Gamma distributions). From Francia, 2004b. 

 

 

where t=0 is the time at which the laser pulse is fired. Following the approach first 

adopted by Feher and coworkers (Kleinfeld, 1984) to analyze P+QA
- recombination 

kinetics in RCs frozen at cryogenic temperature, the decay of the P+QA
- state can be 

fitted to a power law of the form 
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with k0 and n as free parameters.  
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This parameterization in the time domain has the advantage that the corresponding 

distribution function p(k), i.e. the inverse Laplace transform of N(t) (see eq.1.1), can be 

obtained analytically (Abramowitz, 1965), that is: 

 

      ���� =
����

��
�

 !"	��� ��⁄ �

$���
              (eq.1.3)                 

                                      

where Γ(n) is the gamma function and k0 and n are related to the average rate constant, 

<k>, and to the variance, σ 
2, of the distribution by: 
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It was found that under all the conditions considered (i.e. both in solution RC and 

in RC-trehalose matrices at different hydration levels) the approach described above 

gave an adequate description of P+QA
- recombination kinetics. 

The rate distributions calculated using eq.1.3 from the kinetic parameters best 

fitting the kinetic traces of Fig.1.11A are shown in Figure 1.11B. It can be seen that 

upon incorporation of the RC into the matrix and dehydration the distribution moves to 

higher <k> values (acceleration of the kinetics) and undergoes a dramatic and 

progressive broadening. In extensively dehydrated trehalose matrices, a quasi-static 

structural heterogeneity of the RC is revealed by the large broadening of the distribution 

of electron transfer rates which results from the trapping of conformational substates. At 

variance, in relatively wet glasses interconversion between substates and protein 

relaxation, although slowed down as compared to solution, take place over the time-

scale of charge recombination. This leads to partial averaging of the static 

conformational heterogeneity of RCs (narrowing of p(k)) and partial stabilization of the 

charge separated state (decrease of <k>) (see the values of the kinetic parameters in the 

caption of Fig.1.11).  

Fig.1.12 shows the dependence of the average rate constant, <k>, and of the rate 

distribution width, σ, upon the content of residual water of the matrix ((H20/trehalose) 

molar ratio) obtained from measurements similar to those shown in Fig.1.11. When the 

H20/trehalose ratio is decreased below approximately 0.7 both <k> and σ increase 

steeply. As already mentioned, we remark that the maximal values of <k>, measured at 

room temperature in extremely dehydrated matrices, are comparable to those measured  
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Figure 1.12 
Dependences of the average rate constants (A) and distribution width (B) from the 
H20/disaccharide molar ratio for RC embedded in α,α-trehalose matrices. The α,α-trehalose/RC 
molar ratio is equal to 104. From Cordone, 2005. 
 

 

in water-glycerol samples at temperature lower than 40K (McMahon, 1998). 

Furthermore, the width of the rate distribution in the driest matrices is even larger than 

that observed at 10K in water-glycerol. It appears in conclusion that in dehydrated 

trehalose matrices the RC relaxation from the dark- to the light-adapted conformation 

(see Fig.1.10) and the RC thermal  fluctuation among lower tier conformational 

substates are essentially blocked over the time scale (0.1 s) of the charge recombination 

process. These results are consistent with the anchorage model outlined above (see par. 

1.5), i.e. with the notion that a water mediated H bond network “anchors” the protein 

surface to the matrix, thus tightly coupling the internal dynamics of the RC to that of the 

embedding glass. 

The anchorage model has been further supported by studies in which the kinetics 

of P+QA
- recombination have been studied as a function of the photoexcitation  time, 

also following prolonged illumination periods (up to 200 s) (Francia et al, 2004b). The 
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underlying idea was that, even with a protein dynamics strongly inhibited on the tens-

of-ms time scale, when the RC experience the charge separated state for a sufficiently 

long spell of time, the protein-water-trehalose structures postulated by the anchorage 

model could undergo structural rearrangements stabilizing P+QA
-. The results of these 

measurements (shown Figure 1.13) have revealed that, upon increasing the duration of 

the photoexcitation from about 10 ms to a few seconds, the charge recombination 

process become progressively slower (Fig.1.13A) and less distributed (Fig.1.13B). 

Control measurements performed in RC solutions show that the effect is observed only 

in the glassy matrix. In line with the anchorage model  it was proposed that, when the 

electric field perturbation generated by primary charge separation is maintained for a 

sufficiently long time, the continuous attempts of the protein to undergo conformational 

changes toward the more stable light-adapted state, cause a partial collapse of the 

hydrogen bond network connecting the protein surface to the matrix. This, in turn, 

results in partial unlocking of the protein surface and increases the protein motional 

freedom. During continuous illumination, the RC protein is gaining therefore a limited 

conformational flexibility which allows both partial relaxation (decrease of <k>) and 

substate averaging (decrease of σ). 

Matrices formed by α,α-trehalose exhibit a peculiar efficacy in hindering the RC 

protein dynamics. As an example, when the RC was embedded in polyvinyl alcohol 

matrices (PVA), the effects on P+QA
- charge recombination were extremely weak even 

at PVA hydration levels lower than those obtainable in trehalose matrices (Francia, 

2004a). The peculiarity of trehalose became particularly evident when the charge 

recombination kinetics were compared in dehydrated matrices formed by α,α-trehalose 

or by sucrose (Francia, 2008). Fig.1.14 compares the dependence of the average rate 

constant <k> and of the rate distribution width σ upon the (H2O/RC) molar ratio in 

trehalose and sucrose matrices. As already observed, in the case of trehalose both <k> 

and σ  undergo a sudden, dramatic increase, when the residual water content of the 

matrix is decreased below a threshold of ∼8 x 103 H2O molecules per RC. On the 

contrary, in the sucrose matrices, <k> and σ  values remains essentially unchanged 

upon decreasing the water content over this range. It is noteworthy that, even in 

extremely dehydrated, hard sucrose glasses P+QA
- recombination kinetics are scarcely 

affected as compared to solution and strongly resemble those measured in weakly 

interacting PVA matrices (Francia, 2004b). This behavior suggests that in sucrose 

matrices,  upon  dehydration, the  sucrose molecules,  which  have  a high propensity  to  
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Figure 1.13 

Prolonged illumination experiments in RCs embedded in α,α-trehalose matrices. The filled 
symbols refer to extremely dehydrated matrices (H2O/trehalose ≈ 0.5); circles, squares and 
diamonds refer to different sets of independent measurements performed at slightly different 
contents of residual water (from 5900 to 5400 water molecules per RC). The empty symbols 
correspond to measurements in solution RCs (in the presence of 0.4 M trehalose). Panels A and 
B show the dependences of <k>  and σ upon the duration of the illumination period. The 
measurements in solution are control data and show that in these conditions, as expected, the 
duration of the photoexcitation does not affect the charge recombination kinetics. From Francia, 
2004b. 
 

 

form intramolecular H bonds, compete successfully with the RC protein for hydrogen 

bond formation. As a consequence, the resulting structural and dynamic protein-matrix 

coupling is very weak, even at extreme dehydration: the motional freedom of the RC 

surface is essentially unrestricted, in spite of the rigidity of the sucrose embedding 

matrix and the RC protein undergoes a fast relaxation to the light-adapted 

conformation, as well as a rapid interconversion among low tier conformational 

substates. On these basis it can be also expected that the bioprotective action of sucrose 

is weaker than that of trehalose. The study of the thermal stability of RC embedded in 

these two sugar glassy matrix fully confirmed this conclusion (Francia, 2008).  
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Figure 1.14 

Analysis of P+QA
- charge recombination kinetics for RCs embedded in α,α-trehalose (empty 

circles) and sucrose (filled circles) matrices. Panels A and B show the dependence of the 
average rate constant, <k>, and of the distribution width, σ, upon the H2O/RC molar ratio, 
respectively. From Francia, 2008. 
 

 

As a whole, the results summarized in this section, are in line with the proposal 

that the structural/dynamical coupling in water-protein-sugar matrices is mainly 

regulated by hydrogen-bond networks involving residual water molecules, and 

anchoring the protein surface to the matrix. The underlying protein-sugar-water 

interactions can be highly specific, as shown by the radically different behavior of 

glassy matrices formed by structurally related disaccharides.   
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2. AIM OF THE RESEARCH 

 

Inasmuch as myoglobin can be regarded as an established paradigm to study 

function-dynamics relationships in soluble proteins, the bacterial photosynthetic 

reaction center has become a prototype when approaching similar problems in integral 

membrane proteins which catalyze electron transfer, one of the simplest, and largely 

widespread bio-catalytic events. As outlined in the Introduction, the internal 

conformational dynamics of the RC protein play a central role in stabilizing the primary 

charge separated state (P
+
QA

-
) induced by photoexcitation. The RC protein behaves as 

an inhomogeneous dielectric medium, which relaxes over different time scales in 

response to the electric field generated across the protein complex by its primary 

photochemical activity. These conformational relaxations, which reduce the probability 

of wasteful charge recombination events, are of great importance in regulating the 

photochemical activity of the RC, optimizing the quantum yield of photosynthesis. The 

structural basis and the temporal sequence of these conformational events are at present 

lively debated. A closely related, unraveled problem concerns the dynamical coupling 

between the RC and its environment. Although in soluble proteins the slaving of  

internal dynamical processes to thermal fluctuations of the solvent has been deeply 

studied, both on the experimental and theoretical ground, (see par.1.1), much less is 

known about solvent/protein interactions and their effects on internal dynamics, in the 

case of large integral membrane complexes as the RC. 

The main purpose of the present thesis has been to contribute to elucidate these 

interconnected questions. The thermal fluctuations of the RC and its dielectric 

conformational relaxation following photoexcitation have been probed by analyzing the 

recombination kinetics of the primary charge-separated (P
+
QA

-
) state, using time 

resolved optical and EPR spectroscopies. The RC dynamics coupled to this electron 

transfer process has been modulated at room temperature by incorporating the RC into 

amorphous matrices and by varying the hydration state of the system. Specifically, the 

incorporation of the RC into extensively dehydrated trehalose matrices inhibits at room 

temperature the RC dynamics to an extent comparable to that attained at cryogenic 

temperatures in water-glycerol system. This matrix approach represents a valuable tool 

in the study of function/dynamics relationships in proteins, providing, at the same time, 
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unique information on the mechanisms of protein/solvent interaction and on the role of 

the hydration shell dynamics in driving and controlling internal protein motions.  

The work presented has addresses in parallel the problem of clarifying, at the 

molecular level, the tight dynamical coupling between the protein and the matrix, 

arising in trehalose glasses at low hydration levels. We aimed, in particular, at testing a 

molecular model (the anchorage hypothesis) previously developed to explain the 

extraordinary and peculiar ability of dehydrated trehalose matrices to protect 

biostructures against thermal denaturation. This property is receiving an increasing 

attention, in view of the growing employment of trehalose in food, pharmaceutical and 

biotechnological sciences to optimize long-term storage of biological samples. The 

kinetics of thermal denaturation, analyzed in RCs incorporated into different amorphous 

matrices, have provided concomitantly useful information on the large scale RC 

dynamics involved in the loss of its native structure.  

The results obtained are presented and discussed in 5 chapters, dealing with 

different aspects of the RC/matrix dynamical coupling and with the conformational 

stabilization of the RC charge-separated state. In Chapter 4 the effects of the internal 

flexibility of the RC structure on the protein/matrix dynamical coupling are investigated 

by combining kinetic measurements of charge recombination and Brownian dynamics 

simulations performed on native and mutated RCs. In Chapter 5 high-field EPR 

spectroscopy, both in cw and pulsed modes, has been used to examine the structural and 

dynamical properties of the RC cofactors involved in primary charge separation when 

the protein is embedded into polymeric and glassy trehalose matrices. In Chapter 6, 

water sorption has been studied by FTIR spectroscopy in RC-detergent films dehydrated 

under controlled relative humidity in the absence of trehalose. The spectral analysis of 

the water combination and association bands, carried out in parallel with the kinetic 

analysis of P
+
QA

-
 recombination, has provided convincing evidence that the thermal 

fluctuation and conformational relaxations which stabilize the charge-separated state are 

driven and controlled by the dynamics of the RC hydration shell. This result is fully 

consistent with the proposed anchorage model of trehalose matrices.  The results of 

Chapters 7 and 8 have better defined the role of the sugar in forming the network of 

hydrogen bonds which, according to the anchorage model, modulates the RC internal 

dynamics. It has been shown, in particular, that the dynamical properties of the 

trehalose-water-RC structures formed upon dehydration of the matrix are markedly 

affected by the duration of photoexcitation as well as by the sugar/protein molar ratio. 



CHAPTER 2 - AIM OF THE RESEARCH 

 

 33 

Furthermore, a minimum ratio, corresponding to a monolayer of trehalose coating the 

RC complex, appears to be necessary to completely block the large scale RC dynamics 

leading to thermal denaturation. Finally, in Chapter 9, we acquired light-minus-dark 

difference FTIR spectra in hydrated and dehydrated RC films, in an attempt to 

determine the chemical nature and the possible location of the groups involved in the 

long-time (10 s) stabilization of the primary charge-separated state of the RC. Possible 

candidates are water molecules weakly hydrogen bonded to the RC and aminoacidic 

residues in the vicinity of the primary donor (P) and acceptor (QA) binding pockets. 
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3. MATERIALS AND METHODS 

 

3.1    Reaction center purification and preparation of samples. 

3.1.1 Reaction center purification. 

Purified RC preparations have been obtained from the carotenoid-containing Rb. 

sphaeroides wild type 2.4.1 strain and from the carotenoid-less strain R26, essentially as 

described by Baciou (Baciou, 1995) and Gray (Gray, 1990), respectively.  

Bacterial cells from R26 and wild type 2.4.1 strains were grown respectively on 

RCV and Sistrom mediums (Sistrom, 1960); chromatophores of both strains were 

prepared from bacterial cells as described by Baccarini-Melandri  (Baccarini-Melandri, 

1971). The purification procedures for the wt and the R26 RCs, as described in the 

references cited above, differ significantly, although in both cases the detergent N,N-

dimethyldodecylamine-N-oxide (LDAO) is used to solubilise the RC complex. 

In the wt 2.4.1 purification procedure, starting from 100 mL of chromatophores in 

100 mM phosphate buffer, pH 7.5 at an optical density OD800 = 50, a first extraction is 

performed at 26°C with 0.35% (volume/volume) LDAO; the suspension is stirred in the 

dark for 15’ and then ultracentrifuged for 1h30’ at 4°C and 40000 rpm (50.2Ti Beckman 

rotor). The supernatant is supplemented with ammonium sulphate 22% (weight/volume) 

in the dark at 4°C, stirred for 10’ and centrifuged at 27000g for 10’ at 4°C. A floating 

pellet is obtained which is collected, resuspended in ≈ 25 mL of 10 mM TRIS HCl, pH 

8.0, 0.08% LDAO, and dialyzed overnight at 4°C against 10 mM TRIS HCl, pH 8.0, 

0.08% LDAO, to eliminate ammonium sulphate. After dialysis, the preparation is 

loaded on a DEAE column (DE52, Whatman) and extensively washed with buffer at 

increasing ionic strength (80 mM and 135 mM NaCl). Finally, the RC is eluted from the 

DEAE column with 280 mM NaCl and the preparation is dialyzed overnight at 4°C 

against 10 mM TRIS HCl, pH 8.0, 0.025% LDAO.  

At variance, in the case of R26, starting from 100 mL of chromatophores in 20 

mM TRIS HCl, pH 8.0 at an optical density OD800 = 50, two LDAO extractions, are 

performed. The first extraction is carried out at room temperature with 0.25% 

(volume/volume) LDAO, after the addition to the chromatophore suspension of 125 

mM NaCl, 1 mM Na-ascorbate and 0.5 mM PMSF; following LDAO addition, the 

suspension is stirred in the dark for 45’ and ultracentrifuged for 1h30’ at 4°C and 40000 

rpm (50.2Ti Beckman rotor). The pellet is harvested and, after adding NaCl, Na-
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ascorbate and PMSF at the same concentration of the previous extraction, extracted with 

0.35% (volume/volume) LDAO. The preparation is stirred on ice for 30’ in the dark and 

ultracentrifuged for 1h30’ at 4°C and 40000 rpm (50.2Ti Beckman rotor). The 

supernatant is collected and diluted 1:2 with buffer, to decrease NaCl concentration. The 

preparation is then loaded on a DEAE column (DE52, Whatman) and washed at 

increasing ionic strength (80 mM, 110 mM and 135 mM NaCl). The RC is eluted from 

the DEAE column with 280 mM NaCl and the preparation is dialyzed overnight at 4°C 

against 10 mM TRIS HCl, pH 8.0, 0.025% LDAO.  

Generally, following the described purification procedure, the secondary quinone 

acceptor, QB, is washed out in about half of the RC population, both in wt 2.4.1 and R26 

RCs. To reconstitute the quinone at the QB site, the RC preparation was loaded on a 

smaller DEAE column (volume ≈ 10 mL) and extensively washed with ≈ 250-300 mL 

of a 20 µM UQ10 solution in 10 mM TRIS HCl, pH 8.0, 0.08%, LDAO. The RC is 

eluted from the DEAE column with 280 mM NaCl and dialyzed overnight at 4°C 

against 10 mM TRIS HCl, pH 8.0, 0.025% LDAO. The occupancy of the QB site is 

estimated from the relative amplitude of the slow kinetic phase (see par.1.3) of charge 

recombination following a laser pulse. This reconstitution method yields an occupancy 

of the QB site of 95-98% for R26 RCs and 89-91% for wt 2.4.1 RCs.  

When needed, to replace the detergent LDAO with n-octyl β-D-glucopyranoside 

(OG) the LDAO suspension of purified RCs, eluted from the DEAE column (DE52, 

Whatman), was dialyzed twice for 10 hours against a one hundred times larger volume 

of 10 mM Tris buffer, pH 8.0 in the presence of 0.1 % OG rather than 0.025 % LDAO. 

LDAO and OG were from Sigma-Aldrich and Anatrace (Maumee, OH, USA), 

respectively. 

 

3.1.2 Samples for optical and difference FTIR measurements. 

RC-detergent films for optical and FT-NIR measurements (see chapter 6) were 

prepared by depositing a drop (0.168 mL) of the dialyzed RC-detergent solution at 60 

µM RC concentration, in the presence of 10 mM o-phenanthroline  and 0.025 % LDAO 

or 0.1 % OG, at the center of  a 50 mm diameter CaF2 window. The sample was 

subsequently dried in a desiccator for about 4 hours under N2 flow at room temperature 

and equilibrated at a given relative humidity as described in par.3.2. Essentially the 

same procedure was used for the preparation of samples examined by light-induced 
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FTIR difference spectroscopy (see chapter 9), except that the volume of the RC solution 

drop was decreased to 40-60 µL.  

RC-trehalose glassy samples for optical and FT-NIR spectroscopy have been 

prepared according to the following procedure. A drop (160 µL) of 60 µM RC in 10 

mM TRIS HCl, pH 8.0, 0.025 %; LDAO was mixed with 40 µL or 80 µL of a 1.2 M 

α,α-trehalose solution in 10 mM TRIS HCl, pH 8.0, 0.025% LDAO in order to obtain a 

disaccharide/RC molar of 5000:1 or 10000:1, respectively.  The mixed solution drop is 

deposited on a 50 mm diameter CaF2 (CRYSTAN, Poole, UK) or optical glass window. 

The vitrification method, which consists essentially in flowing dried nitrogen on the 

liquid drop, was somewhat different for the matrices characterized by a sugar/RC molar 

ratio equal to 5000 or 10000. An undesirable phenomenon, which can occur when 

drying a drop of a suspension containing solute particles, is the migration of the solute 

toward the perimeter of the drop during evaporation of the solvent. The solute, initially 

dispersed in the liquid drop, becomes concentrated into a ring along the perimeter of the 

dried sample. Such ring deposits, common wherever drops containing dispersed solids 

(e.g. coffee) evaporate on a surface, can occur also in the case of RC suspensions. This 

characteristic pattern of the deposition has been ascribed to a form of capillary flow in 

which pinning of the contact line of the drying drop ensures that liquid evaporating 

from the edge is replenished by liquid from the interior. The resulting outward flow can 

carry in principle all the dispersed material to the edge (Deegan, 1997). In the case of 

RC containing trehalose solutions this behaviour can easily result in strongly 

inhomogeneous dried glassy matrices, which render problematic optical and IR 

measurements, also hampering a physically meaningful definition and measurement of 

the water per RC molar ratio. The outward capillary flow which can cause the formation 

of a dense RC ring at the perimeter of the dried drop can be prevented or limited by 

increasing the viscosity of the solution or by creating a gradient in the evaporation flow, 

i.e. by inducing a faster evaporation at the center of the drop. For a disaccharide/protein 

molar ratio of 10000, reasonably homogeneous wet RC-trehalose glasses can be 

obtained by flowing at room temperature dried nitrogen in a desiccator which contains 

the deposited sample drop for approximately 5 hours and by placing a small fan over the 

drop at a distance of approximately 10 cm. The viscosity of the drop in the presence of 

the relatively high concentration of trehalose employed in this case, and the gentle wind 

produced by the fan counteracts the migration of the RC toward the perimeter during the 

time interval necessary to induce the glass transition. When the transition has occurred, 
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RC migration inside the matrix is blocked. In the case of the samples with a lower 

trehalose/RC molar ratio (5 . 103), characterized by a lower viscosity, a different 

strategy is employed. The sample is vitrified by fluxing the dried nitrogen directly over 

a localized area in the middle of the drop through a thin Pasteur capillary. By this way a 

gradient for water evaporation is created which apparently contrasts the capillary flow. 

The further dehydration of the solid samples and the control of their hydration level by 

an isopiestic method are described in par.3.2. 

 

3.1.3 Samples for EPR measurements. 

In order to examine EPR signals from the ubiquinone UQ10 radical anions, the 

high-spin non-heme Fe2+ (S = 2) of the RC has to be removed and replaced by 

diamagnetic Zn2+, thus avoiding fast spin relaxation of the UQ10 anions. The procedure 

used for the replacement of Fe2+ by Zn2+, modified from Utschig and colleagues 

(Utschig, 1997), is described in the following. A volume of 5 mL of a R26 RC 

preparation with optical density at 803 nm OD803 = 20 in 10 mM TRIS HCl, pH 8.0, 

0.025% LDAO and 10 µM EDTA (obtained as described in the previous paragraph) is 

incubated on ice in the presence of 5 mM o-phenanthroline and ≈ 50 µM UQ10 for 5 

minutes. After 30 minutes of additional incubation on ice in the presence of 1.5 M 

lithium thyocyanate (LiSCN), 8 mM mercaptoethanol and 1 mM zinc sulfate (ZnSO4) 

are added to the solution which is incubated for 30’ always at ice temperature. The 

removal of the H subunit by LiSCN allows the replacement of Fe by Zn. Following this 

treatment, the preparation is extensively dialyzed at 4°C against 1 L of 10 mM TRIS 

HCl, pH 8.0, 0.045% LDAO and 5 grams of CHELEX to remove completely the excess 

zinc.  

This procedure resulted in a partial replacement of Fe2+ by Zn2+: The ratio of the 

−•
AQ -to- +•

865P  spectral intensities in the Q-band EPR spectra (see par.5.1.1) showed that 

Fe2+ was retained in about half of the RC population. Evaluation of the Fe2+ and Zn2+ 

content by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) 

before and after the replacement showed additionally that the ≈50% decrease of the 

Fe2+/RC ratio was compensated by an approximately corresponding increase of the 

Zn2+/RC ratio. The absence of a significant fraction of Fe-depleted RCs, lacking bound 

Zn2+, was confirmed by the comparable extent of photoxidized 
+•

865P  induced by a 

saturating laser flash in the native and Zn2+-replaced RC preparation. On the contrary, a 

considerably reduced efficiency of light-induced charge separation is expected in Fe-
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depleted RCs which have no metal ion occupying the Fe site. In our preparation, the 

fraction of photoactive RC, after the replacement, was larger than 90%. This was 

estimated from the absorbance change induced by a train of six laser pulses at 422 nm, 

assuming a differential extinction coefficient ∆ε422 = 17.5   mM-1cm-1.  

The Zn2+-RC preparation (at a concentration of about 50 µM) was supplemented 

with stigmatellin, one of the most potent inhibitors of the −•
AQ -to-QB electron transfer, at 

a stigmatellin-to-RC molar ratio of 2. The suspension was subsequently concentrated by 

ultrafiltration using a 100 kDa cut-off cartridge (Amicon) up to a RC concentration of 

335 µM. An aliquot, frozen in liquid nitrogen after addition of glycerol at a final 

concentration of 20% v/v, was stored at -80 °C for EPR and optical measurements of 

RC/water samples.  

The RC/trehalose glassy sample for EPR measurements was prepared according to 

the following procedure: A volume of 50 µL of the concentrated (335 µM) RC was 

mixed with 100 µL of 1.67 M trehalose to obtain a sugar-to-RC molar ratio of 104. 

Trehalose (> 99% purity) was purchased from Hayashibara Shoij (Okayama, Japan). 

The RC/trehalose solution was layered on an optical window and dried in a desiccator 

under N2 flow at room temperature. The glassy sample obtained in about four hours of 

flux was further dehydrated by alternating incubation under N2 atmosphere at room 

temperature for 18 hours and direct N2 flux for six hours; this drying cycle was repeated 

three times.  

The RC/PVA sample for EPR measurements was prepared by mixing 75 µL of the 

concentrated RC (335 µM) with an equal volume of 10% w/v PVA (Fluka, 

Mw≈130000). To form the film, the same drying procedure used for the RC/trehalose 

sample was employed. Since optical measurements were not possible in these samples, 

because their absorbance was too high, RC/trehalose and RC/PVA samples, with a 

three- and four-times lower RC concentration, respectively, were prepared in parallel. 

These samples were characterized by the same trehalose-to-RC and PVA-to-RC molar 

ratios as those prepared for EPR measurements. Also the same drying procedure was 

applied for the two matrices. RC/trehalose glassy matrices were stored at room 

temperature, while RC/PVA films were kept at 4° C. 
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3.2   Control of the hydration state of amorphous matrices.  

Different hydration levels of the RC-detergent films were obtained by 

equilibrating the samples with hydrating saturated solutions providing defined values of 

relative humidity, r. To this end the window on which the RC film was formed was 

inserted into a specifically designed sample holder, equipped with a second CaF2 

window, to form a gastight cylindrical cavity (volume ≅7.7 mL), which contained at the 

bottom about 1.5 mL of the hydrating solution. A picture of the sample holder, showing 

the salt solution at the bottom of the cavity and a RC-LDAO film formed on the inner 

side of one of the optical windows is shown in Figure 3.1. 

The following saturated solutions were employed to obtain the desired relative 

humidity (indicated in brackets) at 297 K: KNO3 (94%), KCl (84%), NaCl (75%), 

NH4NO3 (63%), Mg(NO3)2 (53%), K2CO3 (43%), MgCl
2
 (33%), CH

3
COOK (23%), 

LiCl (11%), KOH.2H
2
O (9%), NaOH.H

2
O (6%), P

2
O

5
 (3%). The indicated values of 

relative humidity at 297 K have been taken from Greenspan, 1977. Spectroscopic 

measurements (see par. 3.3 and 3.4) were performed directly on the film exposed to the 

saturated atmosphere inside the holder. This allowed to monitor directly the time course 

of water sorption/desorption during equilibration of the RC film by following the 

evolution of the NIR water combination band at about 1940 nm (see par 6.1.1). When 

the relative humidity inside the holder was varied over the explored range (3% ≤ r ≤ 94 

%), a steady hydration level was reached in a few hours. After replacement of the 

hydrating solution in the holder, RC-detergent films were always allowed to equilibrate 

for a minimum of 15 hours. 

In several sets of measurements (see par. 7.1.1-7.1.3 and chapter 8) the same 

isopiestic method was also applied to control the hydration level of RC-trehalose glassy 

matrices. In this case, however, due to the large amount of sugar present in the matrix 

and to the high affinity for water of trehalose, the attainment of thermodynamic 

equilibrium at given value of relative humidity was much slower, as compared to RC-

detergent films. In fact, significant changes in the hydration level of RC-trehalose 

matrices occurred on the time scale of days, rather than a few hours as in RC-detergent 

films. Furthermore, even over this long time scale, a true equilibrium could be obtained 

only for matrices characterized by 5 . 103 trehalose molecules per RC, and not for a 

(trehalose/RC) molar ratio equal to 104 (see par 7.1 and 7.2 of the Results). 

Nevertheless, the isopiestic method proved to be very useful, allowing a fine tuning of 

the content of residual water.  
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Figure 3.1 
Picture of a RC-detergent film deposited on a CaF2 window and incubated in the presence of a 
saturated salt solution visible at the bottom of the gastight holder. 
 

 

In other sets of measurements, the RC-trehalose matrices were dehydrated by 

incubating them under nitrogen atmosphere. As a general rule, following the formation 

under dry N2 flow of the glassy matrix in about 4 h (see par. 3.1), the content of residual 

water (typically ≈1.2 H2O molecules per trehalose molecule) was further reduced by 

alternating incubation under N2 atmosphere at 30°C for about 12 hours and under 

vacuum for approximately the same time. The maximum dehydration was attained after 

several days of incubation, i.e. in a time comparable to that needed to reach an 

equivalent dehydration by the isopiestic method. During spectroscopic measurements, 

to avoid water exchange between the sample and the environment, the optical window 

on which the RC-trehalose glassy matrix was formed was inserted into same type of 

gastight sample holders used to control the hydration state through the isopiestic 

method, filled with dry N2.  

During the long incubation times necessary to vary the hydration level of the 

system, the RC-trehalose matrices retained a good transparency, except for a few 

samples in which under rather hydrated conditions small areas of micro-crystallization 

appeared. Upon extensive dehydration clefts became often visible at the surface of the 

matrices. At the same time the matrices became more fragile and the samples had to be 

handled with care to avoid fractures in the glass and its detachment from the optical 

window. Pictures of a typical RC-trehalose glass taken during the dehydration period 

are shown in Figure 3.2. 
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Figure 3.2 
Photographs of a typical RC-trehalose glass taken during dehydration. The content of residual 
water in the matrix decreases from left to right. Values of the (water/sugar) molar ratio are the 
following: 1.36 (A),  1.04 (B),  0.81 (C), 0.52 (D). 
 

3.3   Time-resolved optical absorption measurements. 

The kinetics of charge recombination of the primary charge separated state P+QA
-, 

induced by a laser pulse or by continuous illumination, have been measured by time-

resolved absorption optical spectroscopy using a spectrophotometer of local design.  

A scheme of the instrument is shown in Figure 3.3. Optical components are 

aligned on a Oriel optical bench. The measuring beam (yellow line) is provided by an 

illuminator (1) equipped with a 100 W quartz tungsten halogen lamp.  

The wavelength is selected by a double monochromator (2) and the 

monochromatic beam is collimated by two focusing lenses (4). When measurements are 

performed on solid amorphous matrices, the cuvette holder routinely used for 

measurements in RC solutions (5), is replaced by a dual-axis x-z micropositioner fixed 

on a carrier of the optical bench. The gastight sample holder containing the amorphous 

matrix on one of its optical windows is fixed to the micropositioner, with its optical 

windows forming an angle of 45° with both the measuring beam and the excitation 

light, in order to minimize reflections of the actinic light on the photomultiplier (see 

Figure 3.4).  

To avoid actinic effects on the sample due to the measuring light, the monitoring 

beam is gated until approximately 1 s before photoexcitation by an electromechanical 

shutter (3), placed between the monochromator and the focusing lenses, activated by a 

delay line (12). The photomultiplier (6) (Philips XP2013B) is protected from scattered 

excitation light  by a 0.01%  blocking, 10 nm bandwidth  interference filter,  centered at  
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Figure 3.3 
Schematic representation of the laser kinetic spectrophotometer. Each component, identified by 
a numerical label, is described in the text. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4  
View of a detail of the optical spectrometer which shows at the center the sample holder 
containing an amorphous matrix. The blue line indicates the direction of the measuring beam 
coming from the monochromator (on the left) and hitting the photomultiplier (on the right). The 
green line represents the pathway of the laser excitation beam. 
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420 or at 450 nm. When recombination kinetics exhibit fast decay phases in the 10-5 s 

time scale, to avoid transient artifacts due to the scattered laser light, the photomultiplier 

is additionally protected by a holographic notch filter centered at 532 nm plus a Corning 

4-96 glass filter.  

Rapid digitization and averaging of the amplified (13) photomultiplier signal is 

done by a Le Croy 9410 digital oscilloscope (14) controlled by an Olivetti M290 

personal computer (15). Signal acquisition by the oscilloscope can be triggered by a 

photodiode (11) sensing the laser pulse. From 4 to 64 kinetic traces have been averaged 

depending on the required time resolution and signal-to-noise ratio. During averaging 

the sample has been allowed to dark adapt for at least 1 min between successive 

photoexcitations. 

 Excitation, at 90° with respect to the measuring beam, is provided by a frequency 

doubled Nd:YAG laser (Handy 710, Quanta System, Milano, Italy) delivering 150 mJ 

pulses of 7 ns width (8), operated by a power supply (9) and triggered by a pulse 

generator (10). The laser beam (green line in Fig.3.3) hits the sample after reflection by 

two prisms (7). In some measurements the Nd-YAG laser was used to pump a dye-laser 

(RDP-1; Radiant Dyes GmbH, Wermelskirchen, Germany). Styryl 9 was used as a dye 

(λmax at 810 nm). In both cases the saturation of a single photoexcitation was around 

85%. 

Continuous illumination was provided by a 200 W quartz tungsten halogen lamp 

collimated by an optical condenser and filtered by 8 cm of thermostated water and by a 

colored glass long-pass filter with a cut-on wavelength of 780 nm. In continuous 

illumination experiments we used a Uniblitz electro-programmable shutter system, 

characterized by a 3 ms closure time (Vincent Associates, Rochester, NY). 

The recombination kinetics of P+QA
- has been recorded at 422 nm and at 450 nm 

(Sloten, 1972). The relative contribution of P+ and QA
- to the absorption change at 422 

nm and at 450 nm can be evaluated from the differential extinction coefficients for P+/P 

and QA
-/QA at the two wavelengths. By using the spectral data of Sloten and colleagues 

(Sloten, 1972) and extinction coefficients ε605(P
+/P)=19.5 mM-1 cm-1 and ε450(QA

-/QA) = 

8.5 mM-1 cm-1 (Wraight, 1975; Bowyer, 1981), we estimated ε450(P
+/P)=13.1 mM-1 cm-

1,  ε422(P
+/P)=28.8  mM-1 cm-1, and  ε422(QA

-/QA)= 4.9 mM-1 cm-1. These values imply a 

relative contribution of QA
- to the flash-induced absorbance change measured at 422 nm 

and at 450 nm of 14.5 % and 39.4 %, respectively. 
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3.4 Numerical analysis of kinetic signals, best fitting procedures and Brownian 

dynamics simulations. 

Fitting of recombination kinetics to eqs.1.2, 6.4 and 6.5 was performed by least-

squares minimization routines, based on a modified Marquardt algorithm (Bevington, 

1969). Confidence intervals of the fitting parameters (average rate constant, <k>, and 

width, σ, of the distribution function) were evaluated numerically through an exhaustive 

search method (Beechem, 1992; Holzwarth, 1996). A series of nonlinear χ2 

minimizations was performed by varying stepwise the value of each ith fitting 

parameter, allowing the remaining fitting parameters to adjust. The obtained minimized 

χ2 values were plotted versus the value of the ith parameter, obtaining an error graph for 

each ith fitting parameter. The confidence interval was calculated by using an F-statistic 

to evaluate the probability of a given fractional increase in χ2 according to 

 

�� ����
�⁄ = 1 + 
� (
 − �)⁄ ��(�, 
 − �, 1 − �)     (eq.3.1)        

                  
where m is the number of parameters, n is the number of data points, and F is the upper 

(1-p) quantile for Fisher’s F distribution with m and (m-n) degrees of freedom. 

Confidence intervals are generally given within two standard deviations (p=0.95). 

Decomposition of absorption bands into Gaussian components (see par.6.1.2, 

7.1.3, 7.1.4), as well as fitting of hydration data to sorption isotherms (see par.6.1.1), 

was performed by non-linear least-squares minimization using Origin (Microcal 

Software, Northampton, MA, USA). Confidence intervals of the fitting parameters were 

evaluated numerically through the exhaustive search method, described in detail above, 

using routines written in LabTalk language (Origin), or software written in C language, 

based on grid search algorithms (Bevington, 1969).  

Brownian dynamics simulations, performed to compare the flexibility of the 2.4.1 

RC and of the R26 mutant, have been carried out essentially as described in Sacquin-

Mora, 2007a. The simulations adopted a coarse-grained protein model (Zacharias, 

2003), in which each amino acid is represented by one pseudoatom  located at the Cα 

position, and small side chains (with the exception of Gly) have a second pseudoatom at 

the geometric center of the heavy atoms of the side chain, while larger side chains (Arg, 

Gln, Glu, His, Lys, Met, Trp, Tyr) have a pseudoatom at the center of the Cβ-Cγ bond 

and a third pseudoatom at the geometrical center of the heavy atoms of the side chain 

atoms beyond Cγ. Interactions between the pseudoatoms are treated according to the 
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standard elastic network model (Tozzini, 2005), i.e. all pseudoatoms lying closer than 9 

Å are joined with quadratic springs having the same force constant of 0.6 kcal mol-1  Å-

2. Springs are assumed to be relaxed in the reference conformation of the protein, 

derived from the crystallographic data. Brownian dynamics simulations use an implicit 

solvent description via the diffusion and random displacement terms in the equation of 

motion (Ermak, 1978). Other details of the simulation procedure are given in Sacquin-

Mora, 2006. 

From the positional fluctuations resulting from Brownian dynamics simulations, 

carried out for 50,000 steps at a temperature of 300K, effective force constants for 

displacing each particle i are calculated as 

 

     �� = ����
〈(� !〈� 〉#)〉        (eq.3.2) 

 

where brackets 〈%〉 indicate an average taken over the whole simulation, kB is the 

Boltzmann constant, and di is the average distance of particle i from the other particles j 

in the protein, excluding the pseudoatoms which belong to the same residue m to which 

particle i belongs. Also the distances between the Cα pseudoatom of residue m and the 

Cα pseudoatoms of the adjacent residues m+1 and m-1 are not included in the average. 

The force constant associated with each residue m is taken to be the average of the force 

constants calculated according to eq.3.2 for each of the pseudoatoms i forming this 

residue. Within this framework, the mechanical properties of the protein are described at 

the residue level by its “rigidity profile”, i.e. by the ordered sequence of the force 

constants calculated for each residue.  

 

3.5 Redox titrations of the P
+
/P couple in RC detergent suspensions. 

The P+/P redox midpoint potentials of RCs purified from the 2.4.1 and R26 strains 

were determined by chemical oxidation-reduction titrations, essentially as described in 

Hochkoeppler, 1995. At a given ambient redox potential (Eh), the degree of reduction of 

the primary electron donor was measured by monitoring spectrophotometrically the 

maximal extent of P photoxidation induced in the RC suspension by a train of 6 flashes 

fired 100 ms apart. The extent of P photoxidation was measured from the absorbance 

change induced at 542 nm (∆A542). Excitation was provided by a Xenon flash lamp 

(3.25 J discharge energy, 4 µs pulse duration at half-maximal intensity) screened by a 
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Kodak Wratten 88A filter. Eh was measured with a platinum electrode and a calomel 

reference electrode, calibrated using equimolar ferri/ferrocyanide mixtures (O’Reilly, 

1973). The potential was adjusted by the addition of small volumes of concentrated 

potassium ferricyanide or Na-ascorbate solutions. Titrations were performed at RC 

concentrations ranging between 0.5 and 2.0 µM in 20 mM Tris, pH 8.0, 60 mM KCl, in 

the absence and in the presence of the redox mediators 2,3,5,6-tetramethyl-p-phenylene 

diamine (DAD) and p-benzoquinone (pBQ) at 20 µM concentrations. To compare with 

previously published results (Williams, 1992), titrations of the wt RCs were also 

performed in the presence of 0.1% Triton X-100 and 1 mM EDTA. Equilibration 

between the redox center P and the platinum electrode was assessed by verifying 

reversibility during an oxidative and a successive reductive titration.  

The midpoint potential (Em) was obtained by fitting the titrations to the one 

electron Nernst equation: 

 

    ∆'()�(*+) = ∆'()�
�,- .1 + /0� 12(34!35)

6� 789     (eq.3.3) 

 

where Eh is the ambient redox potential relative to the hydrogen electrode, R and F are 

the gas and Faraday constant respectively, and T is the absolute temperature. The free 

parameters were the midpoint potential, Em and max
542A∆ , defined as the expected 

absorbance change induced by the train of flashes in a fully reduced sample. 

 

3.6 FTIR spectroscopy and isotopic exchange of water. 

FTIR absorption measurements in RC-detergent films and RC-trehalose matrices 

were performed at 297 K using a Jasco Fourier transform 6100 spectrometer, equipped 

with a DLATGS detector. Spectra in the mid IR range (7000-1000 cm-1) were acquired 

using a standard high-intensity ceramic source. Measurements were extended to the NIR  

region (15000-2200 cm-1) using a halogen lamp source, replacing the Ge/KBr with a 

Si/CaF2 beam splitter, and the KRS-5 with a CaF2 exit interferometer window. 

Occasionally FTIR spectra were also recorded with a Bruker Tensor 27 spectrometer. 

The spectra were recorded with the resolution of 4 cm-1, adding 102 and 103 scans per 

spectrum in samples equilibrated at r > 11% and r ≤ 11%, respectively. 

Light-minus-dark difference spectra were recorded following essentially the 

procedure described by Breton, 1991a. Interferograms in the 5000-1000 cm-1 range 
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were acquired at 281 K before and during continuous illumination (lasting 20 s) using a 

MCT detector. During averaging each light-minus-dark cycle was separated by a dark 

time sufficient to allow a complete recovery of the RC neutral state after the light-

induced charge separation, as judged from the kinetics of P+QA
- recombination 

monitored by time-resolved visible absorption spectroscopy following a 20 s period of 

continuous photoexcitation (see par.9.1.5). The duration of dark adaptation between 

averaging cycles was set to 80 s and 140 s for the RC films equilibrated at r =11% and 

r=74%, respectively.  

Continuous illumination was provided by a 250 W (24 V) quartz tungsten halogen 

lamp collimated by an optical condenser and filtered through a water layer 8 cm thick 

and two coloured glass filters, resulting in a transmitted band centred at 760 nm with 

0.01 transmittance for λ < 700 nm and λ> 850 nm. 

P+QA
- light-minus-dark (P+QA

-/PQA) difference spectra were obtained by 

averaging interferograms taken in many measurement cycles on different (from 2 up to 

14) RC-LDAO films equilibrated at the same values of relative humidity. RC-detergent 

films (see par.3.1.2) were prepared on CaF2 windows (25 mm diameter). A small 

gastight compartment of volume ≈ 1 mL, was obtained by opposing a second CaF2 

window to the one carrying the RC-detergent film in a clipping sample holder, using a 

rubber O-ring sprinkled with vacuum grease, interposed between the two windows, as a 

spacer.  

The relative humidity r within the compartment containing the sample was 

controlled by a few microliter drops of saturated sodium chloride or lithium chloride 

solutions, to achieve values of relative humidity at 281 K of 76% and 11% respectively 

(Malferrari, 2011; Greenspan, 1977).  

The exchange of H2O with D2O or H2O18 was performed by a new isopiestic 

method (Malferrari, 2012). RC-detergent films equilibrated at r=76% with D2O or 

H2O
18 were obtained following a sequence of dehydration/re-hydration equilibria. 

Essentially the film was first dehydrated by equilibrating it, within a gastight chamber 

of volume≈ 40 mL, with about 3 mL of a saturated lithium chloride solution in H2O for 

3 hours. The film was then rehydrated in a D2O or H2O
18 atmosphere by replacing in the 

same chamber the H2O lithium chloride solution with a saturated sodium chloride 

solution in D2O or H2O
18. The efficiency of the isotope substitution procedure has been 

evaluated in the range between 90% and 100% from the residual differential bands 
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attributed to H2O, detectable in P+QA
-/PQA spectra of RC-LDAO films re-hydrated at 

r=76% with D2O and H2O
18 (see par.9.1.2).  

In the case of D2O substitution, an extent of isotopic replacement larger than 95% 

can be independently estimated from the spectra acquired between 5500 and 1400 cm-1 

in RC-detergent films equilibrated in the presence of H2O at r=76%, dehydrated by 

incubation at r=11% and rehydrated at r=76% in the presence of  D2O (see Figure 3.5). 

In Fig.3.5A, the amide A (at ~3295 cm-1), the amide I (at ~1655 cm-1), and the amide II 

(at ~1550 cm-1) bands are easily identified, in agreement with spectra obtained in air 

dried RCs reconstituted in phospolipid vesicles (Nabedryk, 1982). The peaks around 

2900 cm-1 are attributed to the various CH2 stretching modes (Nabedryk, 1982). The 

amide A band overlaps largely with the OH stretching band of water. As a consequence 

the large band at ~3300 cm-1 is strongly reduced when the sample is dehydrated by 

equilibration at r=11% as compared to r=76%. The dehydration of the sample can be 

better evaluated from  the (ν2+ν3) combination band of water, centred at 5150 cm-1, 

which is shown enlarged in Fig.3.5B. The area below this band has been shown to be 

proportional to the water content, independently of the H bonding organization (see 

par.6.1.1). The peak at 4850 cm-1, on the lower wavenumber side of the water 

combination band, is attributed to a combination of the NH stretching frequency at 3280 

cm-1 and the peptide frequency at 1550 cm-1 (see par. 6.1.1), and is clearly resolved at 

r=11%. When the water combination band is corrected for this contribution by 

subtracting a background, it can be estimated that at r=11% less than 20% of the water 

content of the sample detected at r=76% is retained.  The association band of water 

visible at ~2100 cm-1 in the spectrum at r=76% is also strongly reduced at r=11% 

(Fig.3.5A).  

When the dehydrated sample (r=11%) is rehydrated in the presence of NaCl in 

D2O (r=76%) the spectrum exhibits strong alterations, diagnostic of an efficient 

deuteration. In Fig.3.5A, all the spectra have been normalized to the amplitude of the 

amide I band, which is less affected by D2O replacement as compared to the amide II 

band. Although the region of the amide I includes some contribution from the water 

bending mode, normalization to the amplitude of the amide I band allows a better 

comparison between the spectra recorded in the presence of H2O and D2O at r=76%.  

Fig.3.5A shows that upon rehydration with D2O the band centred at 3300 cm-1 is almost 

halved in amplitude, consistently with a reduction of the water OH stretching 

contribution  and  the  partial  deuteration  of  the  NH group  of  the  amide A band.  As  
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Figure 3.5 

A. FTIR spectra recorded in a RC film equilibrated at r =76% (blue), dehydrated at r=11% 
(black) and rehydrated at r =76% in the presence of D2O (red). B. Enlargement of the 5500-
4700 cm-1 spectral region, showing the (ν2+ν3) combination band of water at 5150 cm-1. 
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expected, upon rehydration with D2O, the OH stretching band of water is blue-shifted 

by about 800 cm-1 (Max, 2002), resulting in a strong absorption band centred at 2500 

cm-1. In the hydrated samples at r=76%, both in H2O and in D2O, the amide A band 

exhibits a shoulder on the high wavenumber side. This shoulder, which essentially 

disappears in the dehydrated sample at r=11%,  is attributed to the water OH stretching 

mode, and to OH and NH groups of the protein. We propose that the disappearance of 

the shoulder in the dehydrated sample reflects not only water depletion, but also a shift 

to lower wavenumbers of the protein OH and NH groups, presumably due to a 

strengthening of the H-bonds. This interpretation explains why the shoulder becomes 

again detectable upon rehydration with D2O, although much reduced in amplitude and 

width. Since in D2O the extent of deuteration is very high and H2O is essentially absent 

(see below), the contribution of protein OH and NH groups is likely to be responsible 

for the band shoulder in the deuterated sample.  

It is known that N-deuteration converts largely the amide II mode to a CN 

stretching vibration at 1490-1460 cm-1, named amide II’ band (Barth, 2007). In line 

with this change, we observe a weakening of the band at 1550 cm-1 (amide II) and a 

large increase of the  absorbance between 1420 and 1500 cm-1, giving rise to a peak at 

1460 cm-1, which can be attributed to the appearance of the amide II’ band. Interestingly 

a peak at 1550 cm-1 also appears, which corresponds to the wavenumber expected for 

the water association band upon D2O replacement (Max, 2002).  

The extent of D2O replacement can be evaluated from Fig.3.5B. Following 

rehydration with D2O, the spectrum between 5500 and 4700 cm-1 still exhibits the NH 

band at 4850 cm-1, while the (ν2+ν3) combination band of water essentially disappears. 

We infer that the efficiency of D2O replacement achieved upon rehydration in the 

presence of D2O is larger than 95%. Since rehydration with D2O occurs in samples 

which still retain some residual H2O (see the spectrum at r=11% in Fig.3.5B), it appears 

that equilibration with D2O vapour not only leads to rehydration with deuterated water, 

but also results in the exchange of the residual H2O with D2O.  

The isopiestic method for isotopic replacement described above offers significant 

advantages over the currently used methods based on dialysis: (i) the efficiency of the 

isotopic replacement is much higher; (ii) the amount of D2O needed is extremely low; 

(iii) dehydration and D2O rehydration require a short time (less than 6 hours as 

compared to more than 12 for dialysis); (iv) the hydration state of the sample can be 

concomitantly controlled. 
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3.7   EPR spectroscopy. 

For EPR measurements the dehydrated, fragile RC/trehalose glasses described 

above were crumbled into small flakes which, by applying reduced pressure, could be 

quickly inserted into the cylindrical quartz capillaries (ID = 0.6 mm) for the 95-GHz 

EPR cavity. The small strips from dehydrated RC/PVA film (1 mm length, 0.4 mm 

height) were fitted into the EPR capillary. The capillary was positioned into the EPR 

cavity with the strip surface perpendicular to the light beam direction to ensure the 

maximum excitation of the sample. 

High-field EPR and ESE measurements were performed on a laboratory-built W-

band (95 GHz/3.4 T) spectrometer that had been optimized for a variety of cw and pulse 

experiments, as described previously (Möbius, 2009).  

The spectrometer was equipped with a TE011 optical transmission microwave 

(mw) cavity with an unloaded quality factor QU = 5000 (empty) for optimum detection 

sensitivity. The samples were contained in thin-walled quartz capillaries. For optical 

sample irradiation the light was guided to the center of the cavity through a quartz fiber 

of 0.8 mm diameter (see Figure 3.6). The electron transfer was initiated by singlet 

excitation of the primary donor at 532 nm using a frequency-doubled Nd:YAG laser 

assembled from various commercial components (5 ns pulse length, 1-10 Hz repetition 

rate, 0.5 mJ/pulse on the sample surface) or at 690 nm using a cw diode laser (25 mW 

output, 10 mW on the sample surface).  

The ESE measurements were performed using the standard mw pulse sequence for 

primary spin-echo generation: (tp)x,-x-τ-(2tp)-τ-echo. The pulse length tp of the π/2 mw 

pulses was generally set to 30 ns. To acquire field-swept ESE detected spectra the pulse 

separation time τ was fixed to 150 ns. The 2-pulse echo decay traces were recorded by 

incrementing τ from a starting value τ0 = 50 ns. The time-resolved cw W-band transient 

EPR (TREPR; Kim, 1979) measurements of short-lived paramagnetic intermediates 

were performed without field modulation using the direct-detection technique with a 

time resolution of 10 ns. The −•+•
AQP865 charge-recombination kinetics data were obtained 

for radical pairs with thermally equilibrated spin polarization by recording their 

transient EPR absorption after a laser flash, using 30 kHz field modulation and lock-in 

detection with 1 ms time resolution. Temperature control was achieved by a gas-flow 

cryostat housing the cavity probehead. The accumulation time for an EPR spectrum was 

typically 300 s depending on the sample temperature and solvent matrix.  
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Figure 3.6 
Exploded view of the 95 GHz EPR probehead with TE011 cavity. 
 

 

All experimental spectra analysis and simulation procedures were performed on the 

basis of the EasySpin toolbox (Stoll, 2006; Stoll, 2007) for the Matlab program package. 
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4. THE PROTEIN/MATRIX DYNAMICAL COUPLING IN TREHALOSE 

GLASSES: INSIGHTS FROM THE KINETIC ANALYSIS OF P
+
QA

-
 

RECOMBINATION IN WILD TYPE AND CAROTENOID-LESS RCs 

 

As outlined previously (see par.1.5 and 1.6), according to the anchorage 

hypothesis the peculiar ability of α,α-trehalose matrices in hindering protein dynamics 

is bought back to the formation, during dehydration, of an extended hydrogen bond 

network which involves the protein surface and the surrounding glassy matrix (Francia, 

2008). This network, in the case of α,α−trehalose as compared to other sugars, is 

characterized by a higher fraction of residual water molecules simultaneously hydrogen 

bonded with protein surface residues and sugar molecules. In this model the effects of 

the dynamical constraints applied by the sugar matrix at the protein surface will 

propagate to the interior of the protein, affecting the internal dynamics of the protein. In 

the case of the RC, in particular, these mechanical constraints will inhibit the protein 

dynamics involved in the stabilization of the primary charge separated state. 

On this basis the anchorage hypothesis predicts that the inhibition of specific 

internal protein dynamics is related to the overall, and possibly local, mechanical 

properties of the protein: a larger overall structural rigidity of the protein should lead in 

principle to a better coupling between the dynamics of the matrix-locked protein surface 

and the dynamics of the protein inner regions. A more flexible protein structure, on the 

contrary, should allow a significant residual dynamics, even upon extreme hardening of 

the constrains applied by the surrounding matrix to the protein surface. 

Previous high-pressure studies, performed comparatively in the sphaeroidene 

containing RC purified from Rb. sphaeroides wt 2.4.1 and in the carotenoid-less RC 

obtained from strain R26 (Gall, 2001; Gall, 2004) have shown that the presence of the 

carotenoid results in a more compact structure, putting in evidence a larger 

compressibility of the carotenoid-less protein. In view of the above arguments, we 

expect a different inhibition of the internal protein dynamics for these two RC 

structures, when they are embedded in progressively dehydrated α,α-trehalose 

amorphous glassy matrices. If the more flexibile structure (R26) leads to a significantly 

looser coupling between the matrix-locked RC surface and the inner RC dynamics 

which controls the stability of P+QA
-, we also expect a weaker response of P+QA

- 

recombination kinetics to dehydration (hardening) of the embedding trehalose matrix.  
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In this chapter a kinetic analysis of P+QA
- recombination is presented for both wt 

and R26 RCs embedded at room temperature in α,α-trehalose glassy matrices, 

characterized by a sugar/protein molar ratio equal to 104. These kinetics are compared 

with those measured at room temperature in solution and in RC films dehydrated in the 

absence of sugar under dry N2 flow. Finally, to rationalize the differences observed 

between the carotenoid-containing and the carotenoid-less RCs, the mechanical 

properties of the two RCs have been modeled by means of Brownian dynamics 

simulations, performed in collaboration with Dr. Sophie Sacquin-Mora of the 

Laboratoire de Biochimie Théorique (Institut de Biologie Physico-Chimique, Paris, 

France) (Francia et al., 2009).  

 

4.1   Results. 

4.1.1   Kinetics of P
+
QA

-
 recombination in RC-trehalose glasses and dried RC films. 

The room temperature kinetics of P+QA
- recombination following a laser pulse 

have been compared in RC purified from the carotenoid-containing wt strain and from 

the carotenoid-less mutant R26 under different environmental conditions, which are 

known to affect markedly the RC dynamics coupled to the reaction (Palazzo, 2002; 

Francia, 2008; Francia, 2004b). Fig.4.1 shows kinetics recorded in solution, in a RC 

film extensively dehydrated employing a dry nitrogen flux (panel A) and in a RC-

trehalose glassy matrix characterized by an extremely low content of residual water 

(panel B). As previously observed in R26 reaction centers, under all the conditions 

tested kinetics are accurately described by a power law (eq.1.2, see par.1.6); 

accordingly, the kinetic process can be fully described by a Gamma distribution of rate 

constants (eq.1.3, see par.1.6). In solution, the kinetics recorded in the wt and in the R26 

RCs essentially coincides, marginally deviating from an exponential decay, as shown by 

the narrow rate distributions (Fig.4.1A’). The values obtained for the average rate 

constant, <k>, and for the rate distribution width, σ, are close to 11 s-1 and 2 s-1, 

respectively, for both strains, in agreement with previous data obtained in the R26 

mutant (Palazzo, 2002; Francia, 2008; Francia, 2004b). When the RC suspensions are 

dehydrated by N2 flux to the maximum extent attainable by this method,  RC films  are 

produced with weakly accelerated recombination kinetics for both carotenoid-

containing and carotenoid-less RCs (Fig.4.1A), reaching <k> values close to 20 s-1. The 

rate distributions (Fig.4.1A’) become correspondingly broader, with σ values in the   

range  of  10 s-1.  In  the  dehydrated  RC-films,  however,  the  kinetics  of  P+QA
-  
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Figure 4.1 
Kinetic analysis of P+QA

- recombination following flash excitation of RC purified from the wt 
2.4.1 and the R26 mutant of Rhodobacter sphaeroides measured under different environmental 
conditions. The decays of the absorbance change induced at 422 nm by a laser pulse have been 
measured at T=21°C in detergent RC solution (panel A), in dehydrated RC films (panel A), and 
in extensively dried trehalose-RC glassy matrices (panel B). Traces recorded in the wt and in the 
R26 RC are shown in red and blue respectively. Kinetics have been normalized to the maximal 
change immediately after photoexcitation (t=0). Best fits to eq.1.2 are shown as black 
continuous lines. The corresponding rate distributions (see eq.1.3) are shown in the lower panels 
(A’ and B’). The values obtained for the average rate constant <k> and the distributions width σ  
(see eqs.1.2, 1.3 and 1.4) are reported in the following, with the extremes of the calculated 
confidence intervals within two standard deviations indicated in brackets. Panel A: wt, solution 
<k>= 11.5 (11.3, 11.8) s-1, σ = 1.9 (0.0, 3.4) s-1; R26, solution <k>= 11.1 (11.0, 11.3) s-1, σ = 
1.1 (0.0, 1.9) s-1; wt, film <k>= 24.0 (23.9, 24.6)  s-1, σ= 13.4 (11.3, 16.3)   s-1; R26, film <k>= 
20.3 (20.2, 20.5) s-1, σ = 10.2 (10.0, 10.3) s-1. Panel B: wt RC-trehalose glass <k>= 52.3 (47.4, 
57.6) s-1, σ = 32.0 (26.2, 37.4) s-1; R26 RC-trehalose glass <k>= 29.7 (27.0, 32.7) s-1, σ = 15.2 
(12.0, 18.7) s-1. The dehydrated trehalose matrices embedding the wt and the R26 RCs 
contained 5.2 x 103 H2O/RC. In the RC films the residual water was below the detection limit of 
NIR spectroscopy (see chapter 3 for further details).  
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recombination appears slightly but systematically and reproducibly faster and more 

distributed in the wt than in the R26 reaction centers. In a trehalose glassy sample, 

characterized by ~5 x 103 residual water molecules per RC, the kinetics measured  in the 

carotenoid-less reaction center are further accelerated, as compared to the dried RC-

film, reaching  a <k> value ~30 s-1 and a σ  value ~15 s-1 (Fig.4.1B, B’; note the 

different time scale in Fig.4.1B and 4.1A). In RCs from the carotenoid-containing wt, 

incorporated into a trehalose glass of comparable content of residual water, these effects 

are remarkably larger, giving rise to an approximately two-fold accelerated and 

distributed decay: P+QA
- recombination kinetics are in fact characterized by <k>=52 s-1 

and σ =32  s-1 (Fig.4.1B’).  

The behavior observed in the trehalose matrix led us to study systematically the 

response of the kinetics to a variation in the content of residual water of the embedding 

sugar glass. The dependence of the average rate constant <k>, and of the distribution 

width σ, upon the H2O/RC molar ratio is shown in Fig.4.2A and B respectively for 

trehalose glasses in which wt or R26 RCs had been incorporated. For both strains, upon 

decreasing the water content below about 15 x 103 water molecules per RC, the average 

rate constant and the distribution width undergo a steep increase. The kinetic parameters 

measured in the R26 and in the wt RC do not differ significantly at H2O/RC values 

larger than about 104. However, at lower contents of the residual water the dependences 

observed for the two RCs diverge progressively. A remarkably steeper increase of both 

<k> and σ is observed in the wt RC. At the maximal dehydration attained, 

corresponding to about 5000 H2O/RC (i.e. 0.5 water per trehalose molecule), the 

average rate constant and the distribution width obtained in the wt RC are about two-

times larger than the corresponding values in the R26 mutant. The effects observed in 

the dehydrated systems are fully reversible upon redissolving the RC-sugar matrix (see 

Fig.4.2, open triangles) and the RC film, as already reported for the R26 RC (Palazzo, 

2002; Francia, 2004b).  

To confirm that in solution samples P+QA
- kinetics are essentially coincident in 

RCs from both strains and that the observed differences emerge as a consequence of the 

progressive hardening of the surrounding glassy matrix during dehydration, we 

examined the temperature dependence of the kinetics in solution between -6 and +30°C. 

As shown in Fig.4.3, very close <k> values were obtained for the wt and R26 RC over 

this temperature range. The values of the average rate constant exhibit a slight inverse 

temperature  dependence,  in  agreement  with  previous  results  obtained  in  R26  RCs  
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Figure 4.2 

Dependence of the kinetics of P+QA
- recombination upon the content of residual water 

(H2O/RC molar ratio) in trehalose-water glassy matrices incorporating the wt (filled 
circles) and the R26 (open circles) RCs. Measurements performed in solution in the 
absence of trehalose, and after redissolving the trehalose glasses are also shown with 
filled (wt) and open (R26) diamonds and triangles, respectively. Kinetic analysis was 
performed as illustrated in Figure 4.1 (see par.3.4 and par.1.4, eq.1.2). Values of the 
average rate constant <k> and of the distribution width σ are presented in panel A and 
B respectively. Vertical bars indicate confidence intervals within two standard 
deviations (see par.3.4). The values at the right of the break in the abscissa scale have 
been obtained in solution, the ones on the left in glassy matrices. Values of <k> and σ 
evaluated by fitting the same experimental traces to a third order cumulant expansion, 
i.e.: ���� = ����−〈�〉� + ���� 2!⁄ − ���� 3!⁄ �, where N�t� is the survival probability 
of the P+QA

- state after the photoexcitation pulse, µ2 ≡ σ2 is the variance and the third 
moment µ3 provides a measure of the skewness or asymmetry of the monomodal rate 
distribution. The values of <k>  and σ2 for the best fits with the cumulant expansion 
are shown for comparison with filled (wt) and open (R26) inverted triangles. Sigmoidal 
curves are drawn through the experimental points just to guide the eye. 
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Table 4.1 

The midpoint potential of the P+/P couple measured under different conditions in 
detergent suspensions of RC from the wt 2.4.1 strain and from the R26 mutant. 
 

Strain Additions 
Redox midpoint potential, Em 

(mV) 

wt 2.4.1 20 µM DAD, 20 µM pBQ 503  ± 5 
wt 2.4.1 0.1% Triton X-100, 1 mM EDTA 503  ± 5 

R26 - 508  ± 5 
R26 20 µM DAD, 20 µM pBQ 506  ± 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 

Temperature dependence of the average rate constant for P+QA
- recombination measured in 

detergent solutions of wt (closed circles) and R26 (open circles) RCs in  the presence of 58% 
(v/v) glycerol. Vertical bars give the calculated confidence intervals within two standard 
deviations.  
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(Palazzo 2008). Over this temperature range, kinetics are almost exponential, and the 

width of the calculated rate distribution (not shown) appears to be temperature 

independent and coincident for the two RC strains within the experimental uncertainty 

(σ ≅ 2 s-1). These observations suggest that, in solution, both wt and R26 RC proteins 

undergo a fast relaxation from the dark-adapted to the light-adapted conformation, 

which results in a comparable stabilization of the P+QA
- state i.e. in a comparable free 

energy difference between the charge separated P+QA
- and the ground PQA states. This 

is in line with the results of redox titrations of the P+/P couple reported in Table 4.1, 

which yielded essentially the same redox midpoint potential (Em=505±5 mV) in the wt 

and R26 RCs, in excellent agreement with values previously determined in the wt RC 

(Williams, 1992; Lin, 1994 ). 

The data obtained in the dried RC-films and in the trehalose matrices indicate that 

when the RC dynamics is progressively hindered (as inferred from the accelerated and 

increasingly distributed kinetics of P+QA
- recombination), the kinetics of the wt and R26 

RCs differ progressively.  Already in the RC-films (see Fig.4.1A, A’), the <k> and the 

σ values in the wt RC exceed by 16% and 25% respectively the corresponding 

parameters measured in the R26 mutant. In extensively dehydrated RC-trehalose glasses 

this difference increases to 80% for <k> and 110% for the distribution width. The 

behavior observed in dry films and trehalose matrices suggests therefore that, when 

severe environmental constraints affect the RC dynamics, both the relaxation to the 

stabilized, light-adapted P+QA
- state and the thermal fluctuations between 

conformational substates are hampered to a markedly different extent in the wt and R26 

RCs. 

 

4.1.2   Brownian dynamics simulations on the wt and R26 RC protein. 

In order to investigate the structural/dynamical origin of the different 

recombination kinetics observed in the mutant RC when incorporated into dry trehalose 

matrices, we performed a theoretical analysis of the internal mechanics of the wt and 

R26 RC proteins. Brownian dynamics simulations on coarse-grained representations of 

bacterial RC proteins have been able to account for an increased flexibility of RC 

mutants, experimentally demonstrated by elastic and quasi-elastic neutron scattering 

data (Sacquin-Mora, 2007a). The aim of this simulative approach (Sacquin-Mora, 2006; 

Lavery, 2007) is to give a description of the mechanical properties of the protein at the 

level of each single residue. The strategy employed is to carry out Brownian dynamics 
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simulations on a simplified structural model of the protein. This representation is 

achieved starting from the protein crystallographic structure and by representing each 

residue by pseudoatoms: one pseudoatom is located at the crystallographic coordinate of 

the Cα carbon atom and one or two pseudoatoms are assigned to the side chain, 

following established rules previously proven to give the best compromise between 

simplification of the side chains chemical structures and representation of the 

heterogeneity among aminoacidic side chains masses (a detailed description of the 

protocol adopted for translating the all atom crystallographic information into the 

reduced pseudoatom representation is given in par.3.4 of Materials and methods). The 

interactions between each pseudoatom are then treated in the frame of the standard 

elastic network model (see par.3.4 of Materials and methods). For each subunit of the 

protein “rigidity profiles” are then obtained performing Brownian dynamics simulations 

on the coarse-grained model at 300K; in these profiles for each pseudoatoms effective 

force constants,  ki , for displacing each particle i are calculated as described in par.3.4 

of Materials and methods. Within this framework, the mechanical properties of the 

protein are described at the residue level by its “rigidity profile”, i.e. by the ordered 

sequence of the force constants calculated for each residue. 

The results obtained from the crystallographic structures of wt (pdb 2j8c) and R26 

(pdb 1rg5) RCs are shown in Fig.4.4A, B. The upper lines in panel A and B are the 

rigidity profiles for the L and M subunit respectively of the wt RC; the lower lines 

represent the difference for any residue between the force constant calculated for the 

R26 mutant and that of the wt RC. The H subunit is much more flexible than the L and 

M subunits, with force constants which do not exceed 50 kcal mol-1 Å-2, and do not 

change significantly when comparing the wt RC and the R26 mutant (not shown). The 

profiles of the wt RC L and M subunits are very similar to the ones already published 

for the same RC (Sacquin-Mora, 2007a), starting from a different crystallographic 

structure (pdb 1k6l). As already noticed, regions close to the non-heme iron atom 

(L180-L195, L225-L240, M210-M230, and M260-M275) exhibit the largest rigidity. 

The lower curves indicate quite clearly that the R26 reaction center is considerably 

more flexible than the wt RC. More specifically, the largest decrease in the calculated 

force constants occurs for residues in the more rigid region of the protein (notably for 

residues M216, M217, M219 and M222), located on the quinone acceptor side of the 

RC.  In  the  same  region,  other  residues  undergo  a  significant  decrease  in the force  
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Figure 4.4 

Comparison between the local rigidity of the wt and of the R26 reaction centers as 
evaluated from the results of Brownian dynamics simulations. Effective force constant 
profiles are shown for the residues belonging to the L (panel A) and to the M (panel B) 
subunit of the RC. In each panel, the upper curves refer to the profile calculated for the 
wt RC, while the lower curves represent the difference between the effective force 
constant calculated in the R26 RC and in the wt RC. 
 

 

constant (L187, L188, L190, L240, M211, M214, M215, M218, M220, M221, M223, 

M224, M232, M234, M269, and M273). 

As it will be discussed deeply in the next section, the higher local rigidity of the 

wt RC revealed by Brownian dynamics simulations is fully consistent with the larger 

inhibition of wt RC dynamics indicated by the kinetic analysis of P+QA
- recombination 

in dried RC-trehalose glasses (Fig.4.2).  
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4.2   Discussion.  

The kinetic analysis of P+QA
- decay shows that in extensively dehydrated RC-

trehalose glasses, characterized by a comparable content of residual water, 

recombination occurs two times faster in the wt RC than in the carotenoid-less R26 

mutant. Moreover, in the wt RC the rate distribution is more than two-times broader. 

The former observation indicates that over the time scale of charge recombination, the 

flash-induced P+QA
- state is less stabilized in the wt than in the R26 RCs. The broader 

rate distribution in the wt RC also indicates that in trehalose glasses the wt RC is 

trapped over a larger ensemble of substates as compared to the R26 RC.  

Taken together, the two observations strongly suggest that the protein dynamics probed 

by P+QA
- recombination kinetics is more severely hindered in the carotenoid-containing 

wt RC. Specifically, this means that, in the wt RC, trehalose coating causes a more 

efficient trapping of the unrelaxed, dark adapted P+QA
- conformation and of the static 

structural heterogeneity of the protein. In the R26 mutant, at variance, a residual internal 

dynamics would be present even in the driest trehalose matrices, which would partially 

stabilize the P+QA
- recombination kinetics and lead to a partial averaging over the 

conformational substates that determine the rate distribution.  

Inhibition of protein dynamics in room temperature dehydrated trehalose glasses 

implies that the energy barriers between protein conformational substates are 

dramatically increased, i.e. that the entire enegy landscape of the embedded protein is 

dramatically perturbed. In principle, following extensive drying of the trehalose-RC 

glasses, the energy landscapes could differ significantly for the carotenoid-containing 

(wt) and the carotenoid-less (R26) RC structures, leading eventually to a different 

energy gap between the dark-adapted P+QA
- and the PQA ground state.  In the frame of 

the model adopted (see par.1.4 of the Introduction), a larger energy gap in the wt as 

compared to the R26 RC would give rise to a faster charge recombination in the wt RC. 

It is therefore possible that a larger energy gap between the dark-adapted  P+QA
- and the 

PQA ground state in the solid glass contributes substantially to accelerate charge 

recombination in the wt RC. In other words, alterations of the protein energy landscapes 

and of the internal protein dynamics are constitutively interconnected. Whether the 

different effects observed in the kinetics of charge recombination for the wt and R26 RC 

arise mainly from a structural/energetic difference (due to different energy landscapes 

of the proteins in the dried trehalose glass) or can be predominantly brought back to 

different dynamics (again due to the different energy landscapes in the extensively 
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dehydrated glass) cannot be inferred unequivocally from our data. We note, however, 

that the large broadening of the rate distribution function in the wt, as compared to the 

R26 RC, indicates, in the former RC type, a stronger inhibition of the internal protein 

dynamics which determines the interconversion between conformational substates. This 

observation strongly favor a predominantly dynamic origin of the different 

recombination kinetics observed in the solid trehalose glasses, since there is no a priori 

reason for assuming a different static heterogeneity in the two RC types. 

In moderately dehydrated trehalose glasses and in RC-film extensively dried in the 

absence of sugar the differences observed in the recombination kinetics between the wt 

and R26 RCs are less pronounced. This is consistent with the notion that, when the 

dynamics of the RC protein is less inhibited, relaxation to the light-adapted state and 

interconversion between substates can occur over a time scale comparable with that of 

charge recombination both in the wt and in the R26 RCs. No significant differences in 

the kinetics can be detected between the two RCs in solution. Under these conditions, 

narrow rate distributions are found (almost-exponential kinetics), indicating that 

interconversion between conformational substates takes place rapidly over the time of 

recombination in both RCs. The very close values of <k> show moreover that in 

solution samples the free-energy difference between the relaxed light-adapted P+QA
- 

state and PQA is the same in the wt and in the R26 mutant. This is consistent with the 

coincident values we found for the redox midpoint potential of the primary donor P+/P 

couple in the two RCs. 

 According to the anchorage model of trehalose-protein interaction, dehydration 

of the trehalose-RC matrix results in the formation of an hydrogen-bond network, which 

connects surface groups of the protein, via molecules of residual water, to the trehalose 

matrix (Cordone, 2005; Giuffrida, 2006; Francia, 2008). In strongly dehydrated glasses, 

this network reduces dramatically the motional freedom of the protein surface. The 

internal mechanical properties of the protein are expected to determine the range and 

extent of propagation of the mechanical constraints introduced by the sugar matrix at 

the protein surface. The anchorage model, therefore, implies that the stronger 

structural/dynamical protein-matrix coupling revealed in the wt RC-trehalose glasses by 

the kinetics of charge recombination reflects a larger rigidity of the wt RC protein as 

compared to the R26 mutant. This conclusion is fully consistent with the results of 

Brownian dynamics simulations carried out in the present study.  
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Brownian dynamics simulations performed on reduced protein representations 

have proven to be a useful tool to analyze protein mechanical properties on a residue-

by-residue basis (Lavery, 2007). This approach has been previously applied to a variety 

of proteins, including hemoproteins (Sacquin-Mora, 2006) and the photosynthetic 

reaction center (Sacquin-Mora, 2007a). The force constant profiles calculated for the wt 

RC from the pdb structure 2j8c (Fig.4.4) agree well with the rigidity profiles previously 

obtained from a different crystallographic structure (pdb file 1k6l) of the same RC 

protein, showing in particular a rigid core located in the vicinity of the non-heme iron 

atom. When the force constant profile is calculated for the R26 mutant it appears that 

this protein is more flexible than the wt, and that the largest variations of the force 

constants occur within the most rigid core of the RC. The force constant profiles shown 

in Fig.4.4 have been calculated in the absence of cofactors, i.e. the carotenoid molecule 

was not taken into account in the structure of the wt RC. The inclusion of the prosthetic 

groups did not change significantly the results of the simulation, in agreement with what 

found previously for the other proteins studied (Sacquin-Mora, 2006; Sacquin-Mora, 

2007b). This means that softening of the R26 RC evidenced by the simulations is an 

intrinsic mechanical property of the apoprotein architecture. The different “rigidity” 

derives uniquely from the differences, revealed by the crystallographic data, in the 

conformation of the two proteins in response to the presence/absence of the carotenoid 

molecule.  Following structural alignment of the two RCs, the  overall Cα rmsd 

between the wt and the R26 L and M subunit structures, calculated over the residues 

included in the Brownian dynamics simulations, results in a value of 0.75 Å. The larger 

compactness of the wt compared to the R26 structure appears directly in the spring 

networks built from the crystallographic data: the reduced model obtained from the wt 

crystallographic structure (2j8c) is made of 1822 pseudoatoms and 29152 springs, while 

the one constructed from the R26 structure (1rg5) comprises 1826 pseudoatoms and 

27505 springs. In accordance with the lower number of springs in the R26 

representation, analysis of the RC cavities based on the two RC structures reveals a 

significantly larger internal void volume of the R26 structure as compared to the wt. 

The less dense structure of the R26 mutant is in line with comparative high pressure 

studies which suggest a larger compressibility of the carotenoid-less mutant (Gall, 2001; 

Gall, 2004). 

The location of the residues which in the R26 protein undergo a more pronounced 

softening are shown by van der Waals envelopes in Fig.4.5. The largest changes in force  
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Figure 4.5 

Localization of the residues which undergo significant changes in rigidity when passing 
from the wt to the R26 RC. A ribbon representation of the L (pink), M (cyan) and H 
(grey) subunits of the wt RC (pdb structure 2j8c) is shown, with the cofactors in green. 
Van der Waals envelopes represent the carotenoid molecule (green), which is absent in  
the R26 RC, and the residues which undergo significant changes of the effective force 
constant in the R26 as compared to the wt RC. Residues characterized by the largest 
variations of the force constant (between -100 and -165 kcal mole-1 Å-2) are shown in 
red. Those which exhibit a variation between -40 and -100 kcal mole-1 Å-2 are colored in 
orange. 
 

 

constant (between -100 and -165 kcal mole-1 Å-2) occur for residues (PheM216, 

AlaM217, HisM219 , ThrM222), shown in red in Fig.4.5, which belong to the M 

subunit, to which the carotenoid molecule is bound in the wt structure. These residues 

form a cluster with 12 additional residues of the M subunit and with 4 residues of the L 

subunit (orange colored in Fig.4.5), for which the force constant undergoes smaller 

variations (between -40 and -100 kcal mole-1 Å-2). Three of the residues which exhibit a 

significant variation in the force constant (HisM219, GluM234 and HisL190) act as 

ligands of the iron atom.  

The residues which become more flexible in the R26 RC are at a considerable 

distance from the position occupied by the carotenoid molecule in the wt structure (the 
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minimal edge-atom to edge-atom distance between the carotenoid and the closer residue 

of the cluster (AlaL188) is 19 Å).  It appears therefore that the subtle structural 

rearrangements induced by removal of the carotenoid cause long-range variations in the 

mechanical properties of the RC protein. A similar long-range softening effect has been 

found by Brownian dynamics simulation when comparing the rigidity profiles 

calculated for the wt RC with those of a non-functional mutant carrying the mutations 

GluL212/AspL213→Ala/Ala (Sacquin-Mora, 2007a). Also in this case the mutations 

mainly affect residues which belong to the most rigid region of the RC around the iron 

atom, and which are relatively distant from the site of the point mutations. 

In conclusion, from the results of the Brownian dynamics simulations it appears 

that softening of a cluster of residues in the R26 RC protein looses the dynamical 

coupling between the trehalose-water matrix and the RC site(s) involved in relaxation of 

P+QA
- from the dark adapted to the light-adapted conformation. Interestingly, the high 

resolution structure of the wt RC (Koepke, 2007) reveals that most of the residues 

undergoing a rigidity change in the R26 mutant are part of an hydrogen bond network 

which also involves a large number of bound water molecules and a few additional 

residues close to the surface of the protein. It seems reasonable therefore to propose 

that, through this hydrogen bond network, the force constants of a few key residues 

affect the mechanical coupling between the protein surface and the residue(s) involved 

in the stabilization of the charge separated state.  

The largest differences in force constants between the wt and the R26 are found 

for residues which cluster around the quinone acceptor complex. This suggests that 

residues localized on the quinone acceptor side of the RC, possibly in the proximity of 

the binding pocket of QA, play a role in the conformational relaxation which stabilizes 

the P+QA
- state. FTIR studies on the Rb. sphaeroides RC have shown that formation of 

P+QA
- is associated with a light-induced differential band at 1650 cm-1, most likely 

reflecting some change in a peptide C=O vibration belonging to the QA pocket 

(Nabedryk, 1990a). The authors propose that the involved residue is an alanine (Ala 

M260), conserved in Rhodopseudomonas viridis. The peptide nitrogen of this residue is 

within hydrogen bonding distance from one of the C=O groups of QA. As noticed by the 

authors, the conformational change could alternatively involve ThrM222, which is also 

at hydrogen bond distance from the other C=O group of QA in Rb. sphaeroides.  

Notably, Brownian dynamics simulations predict a large decrease (- 105 kcal mole-1 Å-

2) for this residue in the R26 mutant as compared to the wt.  
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5. PROTEIN/SOLVENT DYNAMICS AND THE STABILIZATION OF THE  

LIGHT-INDUCED P
+
QA

-
 STATE: STUDIES BY HIGH-FIELD EPR 

SPECTROSCOPY 

 

The present chapter presents a collaborative study of laser-flash and high-field 

EPR spectroscopies on RCs from Rb. sphaeroides R26, embedded in different matrices, 

specifically in PVA films and trehalose glasses. High-field EPR measurements (at 95 

GHz/3.4 T) have been performed in collaboration with Prof. Klaus Möbius and Dr. 

Anton Savitsky at the Institut für Experimentalphysik, Freie Universität, Berlin (see 

Savitsky, 2010).  

High-field EPR methods, both in cw and pulse modes, offer powerful tools for a 

deep structural and dynamical characterization of radicals, radical pairs and their 

immediate neighbourhood (for an overview see Möbius, 2009). This has been 

demonstrated for many protein systems, and notably for light-induced electron transfer 

intermediates of bacterial photosynthetic RCs (see Möbius, 2009).  

As outlined in the previous chapter, kinetic analysis of P+QA
- recombination by 

optical absorption spectroscopy indicates that the RC conformational dynamics at room 

temperature are severely restricted in dehydrated trehalose glasses. It has been shown 

that a similar inhibition, although to a lesser extent, also occurs in PVA matrices under 

extreme dehydration (Francia, 2004a), indicating that at room temperature the dynamics 

of the protein were regulated by the dynamics of the external matrix (Cordone, 2005). 

We thought to exploit the possibilities offered by high-field EPR to gain detailed 

structural and dynamical information on the P+ and QA
- sites with the aim to contribute 

to clarify the molecular basis of the RC relaxation involved in the stabilization of the 

primary charge separated state and to get insight into the mechanism of inhibition of 

this protein dynamics exerted by dehydrated α,α-trehalose glassy matrices.  

Specifically, photo-generated P+ and QA
-  radical ions as well as P+QA

- radical pairs were 

studied to probe, at low and room temperature, potential changes of the coupling 

between conformational protein dynamics and electron transfer rates in these matrices, 

and to compare the results with those deduced from laser-flash spectroscopy. We aimed 

to find out, on the molecular level, whether any local changes in structure and dynamics 

of the electron transfer cofactor sites occur when changing the matrix from water to dry 

PVA and trehalose or, alternatively, whether the inhibition of the RC relaxation 
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following light excitation is more delocalized over the protein structure, possibly 

involving a number of residues and/or bound water molecules. In this sense, the 

concomitant study of matrix effects by optical and EPR spectroscopies has yielded 

information on the mechanisms by which dielectric relaxation of the RC/solvent system 

stabilizes the primary charges separated state of the RC.   

To investigate the role of the matrix properties, both in terms of composition and 

dynamics, in the coupling between the fluctuations of the QA binding site, the solvent 

matrix and the electron transfer characteristics in the P+QA
- recombination process, we 

performed W-band EPR measurements on Zn-substituted RCs from Rb. sphaeroides 

R26 in water/glycerol, PVA, and trehalose matrices at 290 K and 150 K. Since the 

sample requirements for optical and EPR measurements are quite different, e.g. in terms 

of concentration and paramagnetic perturbations and/or impurities, in a first step the 

various RC/matrix samples have been characterized according to their EPR behaviour. 

Equivalent samples, in terms of relative matrix-protein composition, were subsequently 

analyzed by laser optical spectroscopy, and used for estimating the hydration level by 

visible-NIR spectroscopy.  

 

5.1   Results. 

5.1.1 W-band cw EPR at 290 K. 

Figure 5.1a shows the cw EPR spectrum of Zn-substituted RCs in water solution 

at room temperature during continuous illumination (690 nm) and after illumination. 

Under illumination the EPR spectra of the 
−•

AQ  and +•
865P  radical ions appear. After 

switching off the diode laser, only very small photo-accumulated signals of 
−•

AQ  and 

+•
865P  remain (< 5%). This shows that the sample is almost 100% cyclic. In Figure 5.1b, 

the difference spectrum (in blue) is overlaid with the corresponding simulation (in red). 

The ratio of the 
−•

AQ -to- +•
865P  spectral intensities allows one to check the Zn-substitution 

grade to be about 50% (see Möbius 2009, section 5.2). The g-values of both 
−•

AQ  and

+•
865P , resulting from the spectra simulations, are given in the figure caption.  

In Figure 5.2 the results of a similar W-band cw EPR experiment performed on 

the solid RC/PVA sample at room temperature are shown together with the overlaid 

spectrum  simulation.  Both  spectra,  with  the  laser  ON  and  OFF, are dominated by a  
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Figure 5.1 
(a) W-band cw EPR spectra of dark-adapted Zn-RCs from Rb. sphaeroides in water at room 
temperature under continuous laser-diode illumination at 690 nm (ON: blue trace) and after the 
laser is switched off (OFF: green trace) recorded using field modulation at 8.2 kHz with 
amplitude 50 µT. (b) difference spectrum (ON-OFF) overlaid with the spectrum simulation 
giving: g(QA

-)=[2.00647 2.00525 2.00223]; g(P+)=[2.00325 2.00240 2.00189]. The EPR 
intensity ratio of QA

- to P+ is 0.52, revealing a Zn-substitution grade of 52%. (*) marks the line 
positions of the field calibration standard (Mn2+). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 

(a) W-band cw EPR spectra of dark-adapted Zn-RCs in PVA at room temperature under 
prolonged continuous illumination at 690 nm and after the diode laser is switched off. (b) Laser 
OFF spectrum (green) overlaid with its simulation (red) resulting in: g( −•

AQ )=[2.00652 2.00531 
2.00224]. (*) marks the Mn2+ line positions of the field calibration standard. 
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signal which is attributed to the 
−•

AQ  radical ion (see Möbius 2009, section 5.2) The 

extracted g-values agree perfectly with results of numerous previous EPR investigations 

of 
−•

AQ at low temperatures (Burghaus, 1993; Isaacson, 1995; Tang, 1999). As compared 

to the RC/water sample, however, the gxx and gyy values are slightly larger. This is 

probably due to partial averaging of the g-tensor in liquid water because of still rapid 

overall motion of the RC in aqueous solution at room temperature. Such a motion is 

severely restricted in solid PVA and trehalose matrices even at room temperature. The 

EPR measurements on the RC/trehalose sample yielded the same results as on the 

RC/PVA sample. 

When recording the echo-detected EPR spectra of dark-adapted RCs in PVA and 

trehalose matrices at room temperature in a fresh sample (spectra not shown) a small 

steady-state EPR signal was observed prior to actinic illumination. According to its g-

factor values, it presumably stems from a quinone-type anion radical rather than from a 

neutral (protonated) semiquinone radical (Hales, 1981; Feher, 1985) and is probably due 

to a photo-accumulation process which at room temperature is initiated by residual light 

in the laboratory during sample handling. In the following, we call this radical, whose 

exact identity cannot be determined by EPR alone but would require additional ENDOR 

experiments (Lubitz, 1985; Feher, 1985) the "QA-type radical". Switching on the 690 

nm diode laser results in a growing of both 
−•

AQ  and +•
865P  EPR signals. After turning off 

the laser, a strong and stable QA-type radical signal remains. There is no concentration 

dependence of the photo-accumulation process. Next, the RC/PVA and RC/trehalose 

samples containing steady-state QA-type radicals were dissolved in water (about 50:50). 

The dissolved samples were cooled down to 150 K and inspected by W-band EPR. Prior 

to illumination, no QA-type radical signal was detected. The water-solution behaviour 

was fully restored. Up to now, the identity of the photo-accumulated QA-type radical 

remains uncertain. The photo-accumulation of such a QA-type radical in dehydrated 

trehalose matrices at room temperature is consistent with the previous observation 

(Palazzo, 2002) that, in similarly dried trehalose glasses, a repetitive laser-flash 

excitation resulted in the decrease of the extent of optically detected +•
865P , photoxidized 

by the laser pulse. In fact the formation of the primary charge-separated state −•+•
AQP865  

will be prevented in the RC sub-population where photo-accumulation of a QA-type 

radical anion has occurred, leading to a decrease of the total +•
865P  signal, as is observed 

at µs resolution after the laser pulse (see Discussion). Consistent with the EPR results, 
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also this optically detected effect reverted fully upon re-dissolving the solid RC-

trehalose matrix (Palazzo, 2002). 

 

5.1.2   W-band pulse EPR at 150 K. 

Figure 5.3 shows the echo-detected EPR spectra of dark-adapted RCs in the three 

matrices, water, PVA, and trehalose, at 150 K (frozen in the dark). In water solution the 

behaviour of the sample is perfect in the sense that there are no EPR signals prior to 690 

nm illumination and no signals after switching off the diode laser (Figure 5.3, panel a). 

In the RC/trehalose and RC/PVA samples (panel b and c, respectively), a small QA-type 

anion-radical signal is again observed prior to illumination, similar to what was 

observed at room temperature. Under 690 nm irradiation the EPR spectra from all three 

samples are exactly the same. After switching off the laser, a small accumulated signal 

is observed in PVA and trehalose (compare the red and blue traces in Figure 5.3, panels 

b and c). To compare these results with the room temperature spectra shown in Figure 

5.1 and 5.2, we show in Figure 5.3, panel d, the ESE spectra of the transiently formed 

radical pairs (light ON minus light OFF) and of the radicals photo-accumulated upon 

illumination (light OFF minus dark spectrum, recorded prior to illumination) in first 

derivative representation for the case of the RC/PVA sample. Simulation of the 

spectrum due to transiently formed radical pairs yields parameters in close agreement 

with those obtained from the cw spectrum measured in water at room temperature (see 

Figure 5.1, panel b). The signal of the radicals photo-accumulated upon illumination 

(red trace in Figure 5.3, panel d) , in contrast to room temperature illumination, is due to 

non-recombining −•+•
AQP865  pairs, as can be inferred from the relative spectral intensities, 

and is not due to photo-accumulation of a QA-type radical. Thus, at 150 K photo-

accumulation of such a QA-type radical does not take place, and the RC behaviour is the 

same in all three matrices. By comparing the intensities of the 
−•

AQ signal in the spectra 

of Figure 5.3, panel c, it can be evaluated that in the PVA sample about 15% of the RC 

population is not photo-active, 80% is cyclically photoactive, and only 5% is non-

cyclically photo-active, due to non-recombining −•+•
AQP865 pairs. 
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Figure 5.3 

W-band 2-pulse ESE-detected EPR spectra of dark-adapted Zn-RCs in (a) water, (b) 
trehalose and (c) PVA at 150 K prior to illumination at 690 nm (blue trace), under 
continuous illumination at 690 nm (green trace), and after the 690 nm diode laser is 
switched off (red trace). (d) Comparison of the light induced spectral changes observed 
in PVA. The green line shows the ESE-detected EPR spectrum (in first derivative 
representation) due to transiently formed radical pairs (light ON minus light OFF traces 
in panel c) overlaid with its simulation (dotted line) corresponding to a spectral intensity 
ratio −•

AQ  to +•
865P  of 0.48 and to the parameters reported previously by Savitsky and 

colleagues (Savitsky, 2007). The red line corresponds to the EPR spectrum due to 
stationary formed pairs (light OFF minus dark spectra in panel c) magnified by a factor 
14). (*) marks the Mn2+ line positions of the field calibration standard. 
 

 

5.1.3 
−•+•

AQP865  recombination kinetics from transient EPR and optical flash 

absorption spectroscopy. 

Figures 5.4a and 5.5 show selected EPR decay traces, due to charge recombination 

of the 
−•

AQ  and +•
865P  radical ions, at 290 K and 150 K, respectively. They have been 

measured by transient direct-detection EPR absorption from dark-adapted Zn-RCs in 

water/glycerol mixture, PVA and trehalose matrices following excitation by a 532 nm 

laser flash of 5 ns duration, firing at 1.25 Hz repetition rate. Under all the conditions 

tested the time profiles  could be adequately fitted  to a power law  (see eq.1.2 in chapter  
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Table 5.1 

Kinetic parameters of −•+•
AQP865  recombination determined at 290 K from the EPR and optical 

absorption decays (see text for details). Confidence intervals are given within 2 standard 
deviations.  
 

From EPR-detected kinetics 

RC matrix  τ /ms <k> /s-1 σ /s-1 

H2O-glycerol 114 ± 4 8.8 ± 0.3 0 
PVA 59 ± 3 16.8 ± 0.7 8.0 ± 0.8 

Trehalose 48 ± 2 21 ± 1 12 ± 3 
 

From optically-detected kinetics 

H2O/glycerol 104 ± 4 9.6 ± 0.3 1.1 ± 1.0 
PVA 58 ± 2 17.0 ± 0.2 8.1 ± 0.3 

Trehalose 46 ± 2 21.5 ± 0.6 9.5 ± 0.7 
 

 

 

 
Table 5.2 

 Kinetic parameters of −•+•
AQP865  recombination kinetics determined at 150 K from the decay of 

EPR absorption. 
 

RC matrix  τ /ms <k> /s-1 σ /s-1 
H2O-glycerol 35 ± 2 29 ± 2 12 ± 2 

PVA 20 ± 2 50 ± 4 24 ± 5 
Trehalose 22 ± 4 45 ± 8 29 ± 4 

 
For comparison data given for deuterated RCs measured by EPR (Flores, 2008) 

H2O (dark) 22 ± 2 46 ± 4 23 ± 3 
H2O (light) 52 ± 4 19 ± 2 17 ± 2 

    
 

Data given by Kleinfeld et al. (Kleinfeld, 1984) 
H2O (dark) 22 45.4 18.4 
H2O (light) 65 15.4 14.3 
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Figure 5.4 

Kinetics of −•+•
AQP865 recombination measured at 290 K following a 532 nm laser pulse by 

transient EPR absorption (a) and by optical absorption spectroscopy (b) at 422 nm in dark-
adapted Zn-RCs. Measurements have been performed in water-glycerol RC solutions (blue 
traces), in dehydrated RC-PVA films (green traces), and in dehydrated trehalose glasses (red 
traces). Fitting the signals to a power law, dashed lines in (b), yielded the values of the average 
rate constant, <k>, and of the rate distribution width, σ, given in Table 5.1.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 

EPR-detected kinetics of −•+•
AQP865 recombination following a laser pulse in dark-adapted Zn-RC 

measured at 150 K in water-glycerol (blue trace), in PVA (green trace) and in trehalose (red 
trace). Traces have been fitted to a power law obtaining the values of the average rate constant, 
<k>, and of the rate distribution width, σ, given in Table 5.2.  
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1.6 in the Introduction; Kleinfeld, 1984; Steinbach, 1992): the results of the fit are 

summarized in Table 5.1 for 290 K and in Table 5.2 for 150 K. For comparison, Table 

5.2 reports also previous data obtained by W-band EPR for deuterated Zn-RCs (Flores, 

2008) and by optical absorption spectroscopy in water glycerol suspensions of RCs 

without Fe→Zn substitution (Kleinfeld, 1984). 

At 290 K the kinetics of −•+•
AQP865  recombination after a laser pulse were also 

measured in a parallel experiment by optical absorption spectroscopy (see Figure 5.4, 

panel b). These measurements could not be performed directly on the same samples 

examined by EPR, due to their high optical absorbance. They were carried out in 

samples that were prepared following the same procedures and using the same Zn-

substituted RC preparation, but at a lower RC concentration, as described under 

Materials and Methods (par.3.1.3). To make the two sets of samples comparable as 

much as possible, the PVA-to-RC and trehalose-to-RC molar ratios were kept constant 

for both the optical and EPR measurements (i.e., ≈ 57 and 104, respectively). Fitting the 

kinetics to the power law gave the kinetic parameters summarized in Table 5.1. Both the 

values of the average rate constant, <k> , and of the rate distribution width, σ, are in 

excellent agreement with those determined by EPR (see Table 5.1). The kinetics 

measured in the RC/PVA samples are considerably accelerated and distributed in rate as 

compared to those measured in liquid water/glycerol solutions. These effects are 

slightly more pronounced in the RC/trehalose samples.  

Due to their relatively low absorption in the visible and NIR spectral regions, the 

solid samples used for flash absorption spectroscopy allowed a determination of the 

amount of residual water in the dehydrated matrices by NIR spectroscopy (see Materials 

and Methods, par.3.2). Interestingly, the RC/Trehalose glass was characterized by 

approximately (11800 ± 100) water molecules per RC, while the RC/PVA film yielded 

a H2O-to-RC molar ratio of about 1100 ± 100. It appears therefore, in agreement with 

previous measurements (Palazzo, 2002; Francia, 2004a; Francia, 2009), that 

incorporation of the RC into a dehydrated PVA matrix results in kinetic parameters of 

−•+•
AQP865  recombination similar to those observable in dehydrated trehalose matrices, but 

the content of residual water is about one order of magnitude lower in the case of the 

PVA matrix. In view of the close agreement between the recombination kinetics 

measured by EPR and optical spectroscopy, these estimates of the hydration levels can 

be reasonably extrapolated to the samples examined by EPR. We have shown, indeed, 

that the values of <k>  and σ are univocally related, and quite sensitive to the water 
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content of the embedding matrices (Palazzo, 2002; Francia, 2004a; Francia, 2009). The 

fact that an acceleration of the recombination kinetics almost comparable to that seen in 

trehalose is observed in PVA only under much more dried conditions suggests that the 

protein-matrix interaction, which governs the dynamic coupling, is different in the two 

systems: it is considerably weaker in the PVA as compared to the trehalose matrix (see 

Discussion). 

 

5.1.4   Direct-detection transient W-band EPR of 
−•+•

AQP865  radical pairs. 

Figures 5.6 and 5.7 depict the W-band transient EPR (TREPR; Kim, 1979) signals 

from the spin-correlated radical pair −•+•
AQP865  measured at 290 K and 150 K respectively, 

shortly after the laser flash. Apparently, the signals of the radical pairs in the different 

matrices of the Zn-RCs look very similar. This suggests that distance and orientation of 

−•

AQ  and +•
865P  relative to each other do not change significantly upon solvation in the 

different host matrices embedding the RC. This conclusion follows from established 

theory of spin-correlated radical pairs: according to the "Correlated Coupled Radical 

Pairs" (CCRP) model (Stehlik, 1989; Hore, 1989) the spin-polarized EPR spectrum of 

two weakly coupled electron spins in a biradical system consists, for each orientation of 

the dipolar axis with respect to the external magnetic field, of two "antiphase doublets" 

of equal intensity, i.e., in each doublet of the 4-line spectrum one line is in emission (E), 

the other in absorption (A). In frozen-solution samples, the transient EPR spectrum 

reflects the powder average over all possible orientations of the dipolar axis, and the 

observed lineshape is governed by the magnitude and sign of the dipolar coupling of the 

two electron spins. This, in turn, is determined by distance and relative orientation of 

the radical-pair partners. Hence, lineshape analysis of the spin-polarized EPR spectrum 

gives direct information on the structure of the radical-pair complex formed in its 

specific matrix. 

 

5.1.5 Relaxation dynamics of 
−•

AQ  due to molecular librations in the binding site.  

Finally, to clarify whether the dynamic behaviour of the primary electron acceptor 

−•

AQ  in its binding pocket changes upon changing the matrix in which the RC is 

embedded, we used two-dimensional ESE detected high-field EPR at 95 GHz to 

measure the  T2  relaxation times of 
−•

AQ and their anisotropies in the different RC/matrix  
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Figure 5.6 

The transient W-band EPR signals of the spin-correlated −•+•
AQP865  radical pair in dark-adapted 

Zn-RCs obtained 400 ns after a 532 nm laser flash in PVA (green) and trehalose (red) samples 
at 290 K. (a) In absolute signal units. (b) With matched +•

865P  spectral part. The −•
AQ  part of the 

spectrum is at the low-field side (higher g-values than the +•
865P  part). A stands for absorptive, E 

for emissive type of spin polarization.  
 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 

The transient W-band EPR signals of the spin-correlated −•+•
AQP865  radical pair in dark-adapted 

Zn-RCs obtained 400 ns after a 532 nm laser flash in PVA (green), trehalose (red) and water 

(blue) samples at 150 K. (a) In absolute signal units. (b) With matched +•
865P  spectral part. The 

−•
AQ  part of the spectrum is at the low-field side (higher g-values than the +•

865P  part). A stands 
for absorptive, E for emissive type of spin polarization.  
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Figure 5.8  
Field dependence of the anisotropic T2 spin-spin relaxation times at 290 K (a) and 150 K (b). 

The black dotted traces represent the ESE-detected −•+•
AQP865  radical-pair EPR spectrum at the 

inter-pulse separation time τ = 0. The −•
AQ  part of the spectrum is at the low-field side (higher g-

values than the +•
865P  part). For more details, see section materials and methods. 

 

 

systems. In the present case, T2 is governed by librational fluctuations of 
−•

AQ  in the H-

bonding network of its binding site in dark-adapted Zn-RCs dissolved either in water, 

PVA or trehalose. The anisotropic contributions to T2 have minima (longest T2) along 

the canonical orientations of the g-tensor, because in their neighbourhood fluctuations 

of g-values translate only weakly to fluctuations of the Larmor frequencies. Thus, the 

determination of T2 as a function of the resonance position in the high-field EPR 

spectrum provides information about the directions and amplitudes of molecular 

motions and their correlation times. This is indicative as to whether the quinone is 

hydrogen bonded in its protein binding site or not, and in which direction the dominant 

hydrogen-bonding amino-acid partner is located. This holds as long as the temperature 

is sufficiently low (T ≈ 150 K) for a uniaxial motion about a dominating H-bond. When 

going to higher temperatures, the orientation dependence of the relaxation times of 
−•

AQ   

changes. The differences in T2 values between canonical and intermediate orientations 

increase, while the T2 values at the canonical orientations become equal. This shows 

that at temperatures higher than ≈150 K, the motional modes loose their directional 

preference, probably because of thermally activated additional fluctuations between 

conformational substates of the protein (Parak, 1980), superimposing the fluctuations of 

the quinones around their H-bond axis.  
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Figure 5.8 shows the field dependence of T2 relaxation profiles, as evaluated from 

the mono-exponential decays of 2-pulse echo intensities. At 290 K the T2 profiles were 

obtained for the two cases, 690 nm diode laser either ON or OFF, to compare the 

relaxation dynamics of photo-accumulated and "cyclic", i.e., transient radicals. Within 

experimental error the relaxation dynamics of 
−•

AQ  in PVA and trehalose matrices agree 

both in absolute values and anisotropies (Figure 5.8a). Thus, with respect to the 
−•

AQ  

dynamics, there is no difference in the H-bonding network of the binding site between 

PVA and trehalose matrices at room temperature. The ESE experiments at 150 K give a 

similar picture for PVA and trehalose, as shown in Figure 5.8b. In water, the relaxation 

dynamics of 
−•

AQ  is about a factor of 2 slower, but the anisotropy picture stays the same 

as compared to the PVA and trehalose samples. The increased T2 values measured in 

water as compared to RCs embedded in the dehydrated PVA and trehalose matrices are 

most likely due the much higher RC concentration in the latter samples. Indeed 

measurements in water, performed at two RC concentrations, differing by a factor of 

2.3, yielded sizeably smaller T2 values in the more concentrated sample (not shown). A 

more pronounced effect is expected in the PVA and trehalose matrices, where, due to 

extensive dehydration, a RC concentration is attained, which is at least one order of 

magnitude larger than in the water solution. Such a concentration effect on T2 values is 

well documented in the literature (Eaton, 2000). The important point is, however, that, 

independently from the absolute T2 values which differ in water, the T2 anisotropy is 

essentially the same in water, PVA and trehalose. We conclude that the motional 

dynamics of 
−•

AQ  in its binding site remain the same in all three solvent matrices. 

 

5.2 Discussion. 

The results of the W-band EPR study, both by cw and pulse techniques, and of the 

laser- flash absorption experiments on dark-adapted Zn-RCs, dissolved in water, PVA 

or trehalose matrices, can be summarized as follows:  

1. The behaviour of the Zn-RC preparations in water solution is as expected: a) the 

degree of Fe→Zn substitution in the RC is about 50%, b) the −•+•
AQP865  charge-

recombination kinetics at 290 K and 150 K are in agreement with the literature 

(Kleinfeld, 1984; Flores, 2008), c) the cyclicity of the RC/water sample is > 95%  
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both at 290 K and 150 K. Apparently, the RC-preparation procedures for the EPR 

measurements have left the structure and dynamics of the protein intact. 

2. Illumination of the RC/PVA and RC/trehalose samples at 290 K results in a strong 

steady-state signal of a QA-type radical anion (at present our EPR experiments cannot 

reveal the exact structure of the photo-accumulated radical species, but additional 

ENDOR experiments are planned for future structure information). After about 

1 hour of illumination only about 20% of RCs are still intact, i.e., show cyclic ET 

behaviour. The process of the QA-type radical photo-accumulation is independent of 

RC concentration, i.e., is not due to a photo-heating of the sample. After adding water 

(≈ 50%), the steady-state signal of the QA-type radical disappears and normal 

behaviour like in RC/water solutions is restored. The photo-accumulation of a QA-

type radical anion is reflected in the comparable decrease of the optically detected 

+•
865P  signal recorded in room-temperature trehalose glasses following repetitive laser 

excitation.  

3. At 150 K, the behaviour of all three RC/matrix samples is similar. The QA-type 

radical photo-accumulation process (in RC/PVA and RC/trehalose samples) does not 

take place. The −•+•
AQP865  charge-recombination kinetics are similar for all three 

matrices. 

4. At 290 K, the −•+•
AQP865  recombination kinetics probed by EPR and optical absorption 

are in excellent agreement. They differ significantly in the RC/trehalose and RC/PVA 

matrices, as compared to the water/glycerol RC solution, which is in line with 

previous optical measurements (Palazzo, 2002; Francia, 2004a; Francia, 2009).  

5. Both at 290 K and 150 K, there is no significant difference in the electron spin T2 

relaxation dynamics due to librational fluctuations of 
−•

AQ  in all three RC/matrix 

samples (except for a factor of about 2 in the T2 time for the RC/water sample at 

150 K) .  

6. The shape of the spin-correlated −•+•
AQP865  radical-pair spectrum is similar in all three 

samples at 150 K and 290 K.  

Thus, from the high-field EPR and laser-flash absorption measurements it has to 

be concluded that the motional dynamics of 
−•

AQ  in its binding site remain the same in 

the three solvent matrices, suggesting that the observed matrix dependence of the 

−•+•
AQP865  recombination kinetics in dark-adapted RCs at room temperature (RC/water 

versus RC/PVA and RC/trehalose, see Figure 5.4) is not due to changes in the local 
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environment of the 
−•

AQ  cofactor in its binding site, but it rather originates in the high 

rigidity of the dry trehalose glassy matrix firmly coating the surface of the RC already at 

room-temperature.  

As outlined in the Introduction, a rich body of independent experimental evidences 

indicates that in room-temperature solutions the RC protein rapidly fluctuates among an 

extremely large number of conformational substates (Frauenfelder, 2009). This is 

essential for biological function since such an high structured energy landscape with its 

multi-frequency fluctuations among the substates provides the reservoir of entropy that 

dictates to which extent a given quantity of thermal energy is available for doing 

biologically useful work. Following the light-induced primary charge separation, the 

RC relaxes from a dark-adapted to a light-adapted state, thereby stabilizing the −•+•
AQP865  

state. Despite the fact that a central goal in photosynthesis research over the last decades 

has been to relate structure, dynamics and function, the structural and dynamical basis 

of the relaxation by which the RC responds to the light-induced generation of the 

electric field around +•
865P  and 

−•

AQ  remains elusive at present (see chapter 1.4 in the 

Introduction). 

With the aim to contribute to clarify the confusing scenario of proposed strategies 

for stabilizing the charge-separated primary radical pair −•+•
AQP865 , we have compared the 

behavior of RCs embedded in water solution and incorporated into dehydrated matrices; 

the latter were shown to hinder the RC relaxation following −•+•
AQP865  formation and to 

trap the RC distributed over a large ensemble of conformational substates (see chapter 4 

of the present thesis and (Palazzo, 2002; Francia, 2004a; Francia, 2009)). In fact, the 

embedding of the RC in a dehydrated trehalose glassy matrix or in a strongly dried PVA 

film gives rise, at room temperature, to significantly accelerated −•+•
AQP865  recombination 

kinetics, as compared to water-glycerol solutions. Such matrix effects have been 

consistently probed in parallel by laser optical absorption spectroscopy and by direct-

detection EPR microwave absorption (see Fig.5.4); it is satisfying that similar kinetics 

were obtained for such vastly different spectroscopic methods (see Table 5.1). Both 

measurements show additionally that, while in aqueous solutions the −•+•
AQP865  decay is 

essentially exponential with a unique rate constant, a distribution of rate constants is 

needed to fit the recombination kinetics in the dehydrated trehalose and PVA matrices. 

This indicates that, over the time scale of −•+•
AQP865  recombination, in the latter matrices 

trapping of conformational substates occurs already at room temperature. We observed 
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slightly faster and rate-distributed kinetics in the RC/trehalose sample, as compared to 

the RC/PVA one, in spite of the much lower content (by one order of magnitude) of 

residual water in the PVA matrix. The values measured for the kinetic parameters and 

for the residual water content in the two matrices fit well the previously observed 

relationship between the kinetics of charge recombination and the hydration level 

(Palazzo, 2002; Francia, 2004a; Francia, 2009).  

Interestingly, analysis of the charge-recombination kinetics, probed by EPR at 

150 K, shows that the average rate constant and the width of the rate distribution are 

further increased in the same trehalose and PVA matrices at cryogenic temperatures (see 

Table 5.2). These values are significantly larger than those obtained for the water-

glycerol system at the same temperature which, in turn, are in good agreement with the 

values measured by optical laser spectroscopy at cryogenic temperatures (McMahon, 

1998). It appears, therefore, that the observed inhibition of relaxation from the dark-

adapted to the light-adapted state in the trehalose and PVA matrices, although quite 

significant, was not complete at room temperature. Apparently, some conformational 

dynamics, coupled to the ET process, survived at room temperature in the examined 

samples, most likely due to their residual water content. Indeed, we have shown that a 

more extensive dehydration of RC/trehalose matrices leads at room temperature to 

larger <k> and σ values, which are comparable to those measured in glycerol-water 

systems at cryogenic temperatures (see chapter 4 of the present thesis and ref. (Palazzo, 

2002; Francia, 2009)). 

As another important result we want to point out that W-band EPR experiments 

performed on both RC/PVA and RC/trehalose samples at room temperature have 

revealed the photo-accumulation of a stable QA-type radical (probably a quinone anion 

radical, see above). A simple explanation for the photo-accumulation of a QA-type 

radical is that, in the subpopulation of RCs in which photo-accumulation takes place, 

reduction of the flash-oxidized +•
865P  by an exogenous electron donor occurs faster than 

recombination between +•
865P  and  

−•
AQ . Such an adventitious electron donor is expected 

to be eventually present in the liquid sample at very low concentrations, being therefore 

unable to reduce, through a collisional process, +•
865P  at a rate which efficiently competes 

with −•+•
AQP865  recombination. Correspondingly, no photo-accumulation of a QA-type 

radical is detected in water RC solutions. In the solid PVA and trehalose matrices, due 

to the extensive dehydration, the concentration of the putative electron donor to +•
865P  
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would be greatly increased, possibly leading to a close complex between the exogenous 

electron donor and the RC, and making possible a fast electron donation to +•
865P . If this 

is the case, we have to assume that the electron transfer is thermally activated, since no 

photo-accumulation of a QA-type radical has been observed in the RC/PVA and 

RC/trehalose samples at 150 K.  

The photo-accumulation of a QA-type radical revealed by W-band EPR is 

consistent with previous observations by flash absorption spectroscopy: in progressively 

dried RC/trehalose glasses, repetitive photo-excitation led, in fact, to a decreased 

amplitude of the flash-induced optically detected +•
865P  signal (Palazzo, 2002). This 

decrease had been attributed to a fraction of RCs in which −•+•
AQP865  was not formed, and 

charge recombination occurred on a sub-nanoseconds time scale from the photo-reduced 

bacteriopheophytin. Since this decay was much faster than the time resolution of the 

optical measurements, it resulted in a decrease of the signal of the photo-oxidized +•
865P . 

The present EPR experiments are fully consistent with this observation by optical 

spectroscopy, because photo-accumulation of a radical in a subpopulation of RCs will 

clearly prevent the formation of the primary charge-separated state −•+•
AQP865 leading in 

that subpopulation to photo-reduced bacteriopheophytin. Upon dissolving the glassy 

sample, the EPR-detected photo-accumulated QA-type radical was no more observed in 

the dark. Consistently, the dissolution of dehydrated RC/trehalose glasses fully restored 

the original extent of +•
865P  photo-oxidized by a laser flash, as detected by optical 

spectroscopy (Palazzo, 2002). 

Rather unexpectedly, the W-band EPR and ESE experiments on the photo-

generated +•
865P  and 

−•

AQ  radical ions as well as on −•+•
AQP865  radical pairs when performed 

on the same glycerol-water, trehalose and PVA samples, that are characterized by 

different recombination kinetics at room temperature (see Table 5.1), did not show any 

significant matrix-induced effects, neither on the spectra nor on the echo decays. The 

transient W-band EPR signals of the spin-correlated −•+•
AQP865 radical pair, measured at 

290 K in the dehydrated PVA and trehalose matrices, and at 150 K in the glycerol-water 

system, did not exhibit significant differences when normalized in amplitude. This 

suggests that incorporation of RCs into the dehydrated trehalose and PVA matrices does 

not change significantly the distance and the relative orientation of the +•
865P  and 

−•

AQ  

cofactors as compared to RCs in water-glycerol, i.e., the glassy matrices do not cause 
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any structural distortions of the cofactor binding sites of the RC. Therefore, the effects 

observed on the kinetics of electron transfer cannot be simply traced back to matrix-

induced structural changes, but rather have to be related to the dynamics and/or the 

energetics of the protein/solvent system, with its characteristic fluctuations between 

conformational substates of the energy landscape, as was originally proposed by 

Palazzo et al. (Palazzo, 2002) and Francia et al. (Francia, 2004b). 

From these observations we also infer that the RC relaxation from the dark-

adapted to the light-adapted state occurring under physiological conditions (McMahon, 

1998; Kleinfeld, 1984) is quite unlikely to involve any change in the geometry of the 

cofactors. Moreover, the ESE experiments show that the field dependence of the 

anisotropic T2 spin-spin relaxation times is essentially coincident in the trehalose and 

PVA matrices at 290 K, and quite similar in these two matrices and in the glycerol-

water system at 150 K. This indicates that the relaxation dynamics of 
−•

AQ  (dominated, 

under high-field conditions, by its g-tensor anisotropy) are essentially the same in the 

three solvent matrices, implying, in turn, that also the hydrogen-bond network in the QA 

binding pocket is unaffected by the different matrices. Therefore, this hydrogen-bond 

network does not appear to be involved in the conformational response of the RC to the 

light-induced electric field generated by the formation of the charge-separated radical 

pair −•+•
AQP865 . 

Taken together, the results imply that the relative geometries of the primary donor 

and acceptor, as well as the local environment of QA in its binding pocket, do not differ 

significantly in the light-adapted state, which is observed at room temperature in 

solution RCs, with respect to the dark-adapted state, which is trapped both in the 

dehydrated trehalose and PVA matrices at room temperature and in water-glycerol 

mixtures at cryogenic temperature. This conclusion has been further supported by a 

recent high-field EPR study, in which the dark- and light-adapted conformations have 

been trapped at cryogenic temperatures (Flores, 2010). These findings suggest that the 

structural and dynamical basis of the RC relaxation processes following charge 

separation resides rather in changes throughout the protein-solvent system that do not 

involve the geometry or local environment of the cofactors. Thus it appears possible 

that the stabilizing relaxation process consists mainly in a reorientation of amino-acid 

side chains in response to the light-induced electric field around +•
865P  and 

−•

AQ . 

However, if this is the case, these side chains are unlikely to be involved in the 
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formation of  the QA binding pocket. Otherwise one would expect that, at variance with 

what was observed by the high-field ESE experiment on the T2 anisotropy, the 
−•

AQ  

environment and dynamics would be significantly altered by incorporation of the RC 

into solid matrices, which substantially inhibit the relaxation processes, as is shown by 

the kinetics of charge recombination. 

 As an alternative explanation, besides solvation effects due to residues of the RC 

protein, a major energetic contribution to stabilizing the primary charge-separated state 

is also expected from internal water molecules interacting with the RC cofactors. In a 

recent work, Iwata et al. (Iwata, 2009) have observed light-induced FTIR spectral 

changes, associated with the photo-reduction of QA, in the O-H stretching region (3700-

3500 cm-1), which is characteristic of weakly hydrogen-bonded water molecules. The 

authors have proposed that the orientation of these "free" water molecules plays a major 

role in stabilizing the −•+•
AQP865  state by dielectric screening of the light-induced electric 

dipole of the charge-separated radical pair. As compared to previous crystallographic 

RC structures, for example that of Ermler et al. with 2.65 Å resolution (Ermler, 1994), 

crystal structures with significantly better resolution have become available by now, 

allowing more and more unbound water molecules in the protein to be identified. 

Recently, Koepke et al. have reported a Rb. sphaeroides RC structure with a resolution 

of 1.87 Å, which is the best resolution obtained so far (Koepke, 2007) and, indeed, the 

number of modeled water molecules that was included in the structure could be 

extended from 160 (Ermler, 1994) to 430: many newly assigned unbound water 

molecules are clustered at the cytoplasmic surface of the RC (where the quinone 

acceptor are located), and several unbound water molecules are buried in its membrane-

spanning region. Hence, unbound water molecules are expected to be able to reorient in 

the electric field of the cofactor ions following charge separation, thereby giving rise to 

a significant "dynamic screening". 

The notion that a water-mediated dynamic screening of the light-generated −•+•
AQP865  

can largely contribute to the relaxation from the dark-adapted to the light-adapted RC 

conformation is in line with the anchorage model (Francia, 2008; see also chapter 1.5 of 

the Introduction) that was proposed to explain the tight dynamic coupling which 

characterizes glassy trehalose-water protein matrices. According to this hypothesis, in 

trehalose-water systems of low water content, the residual water preferentially 

surrounds the protein: upon drying, an increasing fraction of this hydration shell 

becomes involved into an H-bond network which bridges protein groups and sugar 
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molecules, thus anchoring the protein surface to the surrounding trehalose matrix.  Such 

a locking of the protein surface (and of the protein hydration shell) to the dynamics of 

the solid matrix is expected to hinder protein fluctuations and conformational changes 

that are  related to amino-acid side-chain reorganization as well as to the reorientation of 

water molecules interacting with the RC, thus contributing to the stabilization of the 

charge-separated −•+•
AQP865 state. This scenario is consistent with the present EPR results, 

because such a matrix-protein interaction does neither necessarily involve any alteration 

of the distance and relative orientation of the cofactors, nor necessarily any dynamic-

coupling change on the local scale of the QA binding pocket. Changes in these 

parameters are, therefore, not necessarily involved in the stabilization mechanism of 

charge separation by protein/solvent relaxation. 

The control exerted on the RC dynamics and electron transfer kinetics by the 

fluctuations of the cofactor environment can be further clarified in the framework of a 

"unified model of protein dynamics" developed by Frauenfelder and colleagues 

(Frauenfelder, 2009), which summarizes decades of experimental and theoretical 

investigations focused on myoglobin (Mb). As discussed in detail in the Introduction 

(see chapter 1.2), three types of protein motions are essentially identified as relevant for 

biological function (Fenimore, 2004; see also chapter 1.2 of the Introduction): solvent-

coupled (α-slaved) processes (Class I); hydration-shell coupled (β-slaved) processes 

(Class II); and inner-molecular processes (Class III), such as molecular vibrations in the 

force-field potential of inner-molecular atom-atom interactions, that are higher in 

energy and non-slaved to solvent fluctuations. Except for the latter processes, which do 

not appear to be controlled by external thermal fluctuations, the dominant internal 

protein motions and concomitant protein functions are driven by the dynamics of the 

solvent.  

In an attempt to apply this concept to the RC dynamics coupled to light-induced 

electron transfer we propose to ascribe the structural relaxation from the dark-adapted 

to the light-adapted state to Class II processes, slaved to the β-fluctuations of the 

hydration shell. According to the anchorage model outlined above, in a sufficiently 

dehydrated RC/trehalose-water matrix, we expect that the H-bond network involving 

the hydration shell substantially reduces its motional degrees of freedom, i.e., restricts 

the β-fluctuations, thus hindering the β-slaved relaxation from the dark-adapted to the 

light- adapted state. In line with the concept of a β-slaved relaxation, also an extensive 

drying of the RC in the absence of trehalose sugar, which leads to a substantial 
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depletion of the hydration shell, is able to inhibit the conformational change from the 

dark-adapted to the light-adapted state at room temperature, as probed by the strongly 

accelerated and distributed kinetics of −•+•
AQP865  recombination in superdry RC films 

following a laser pulse (see chapter 6 and Malferrari, 2011). 

A reduction of the β-fluctuations in solid matrices is expected to depend on the 

specific molecular interactions between the matrix and the hydration shell of the protein 

(e.g., the ability to form H-bond networks). In the case of PVA matrices this interaction 

appears to be weaker than in trehalose, resulting in a weaker protein-matrix dynamic 

coupling (Giachini, 2007). Accordingly, in agreement with previous observations 

(Francia, 2004a), in the RC/PVA sample an almost comparable acceleration of the 

charge-recombination kinetics has been observed at hydration levels one order of 

magnitude lower than those prevailing in the RC/trehalose sample. Because of the low 

content of residual water, it is likely that the observed inhibition of the transition from 

the dark- to the light-adapted conformation is due, in this case, not only to a reduction 

of the RC hydration-shell dynamics (β-fluctuations) as caused by interaction with the 

PVA matrix, but also to a depletion of the protein hydration layer where the β-

fluctuations occur. A different mechanism of matrix-protein coupling in the RC/PVA 

and RC/trehalose sample is further supported by the observation that in the dehydrated 

trehalose matrix the RC can withstand temperatures as high as 50 °C for several weeks 

without undergoing any denaturation (a prominent example of anhydrobiosis), while in 

PVA a significant fraction of the RC population undergoes under the same conditions 

thermal denaturation during the period of a few days (data not shown). 

Interestingly, the librational fluctuations of 
−•

AQ in the H-bond network of its 

binding site turned out to be non-slaved to the matrix environment, since the observed 

anisotropy of the transversal spin-relaxation time T2 is essentially independent of the 

chosen matrix, even in the extreme case of dehydrated trehalose glass. Although, in 

general, librational fluctuations of the whole cofactor might be expected to belong to the 

energetic tier of Class II processes (β-fluctuations), they turned out to be not controlled 

externally by the solid protein-coating trehalose matrix but rather internally by 

temperature-dependent amplitudes of fluctuation affecting the hierarchy of H-bond 

strengths between the quinone and local amino-acid residues (Schnegg, 2002). In the 

frame of the "unified model of protein dynamics" proposed by Frauenfelder and co-

workers (Frauenfelder, 2009; Fenimore, 2004) we tend, therefore, to ascribe the RC 

cofactor dynamics, as revealed by the present high-field EPR measurements at 290 K 
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and 150 K, to Class III processes. The cofactor dynamics, non-slaved to the micro-

environment, appear to be coupled to the process of light-induced charge separation, 

which proceeds even in the dehydrated RC and in solid matrices at room and cryogenic 

temperatures.  
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6.   ELECTRON TRANSFER AND  PROTEIN-SOLVENT DYNAMICS IN RC 

FILMS  AT DIFFERENT HYDRATION LEVELS 

 

As discussed in the previous chapter, one of the main conclusions of the high-

field EPR studies performed on RC-trehalose glasses been the assignment of the protein 

relaxation events which stabilize the P+QA
- state to Class II motions, i.e. to the internal 

protein dynamics slaved to β fluctuations of the water molecules belonging to the 

protein hydration shell (Fenimore, 2004; Frauenfelder, 2009; see also par.1.2). 

If this attribution is correct we expect that depletion of the hydration shell of the 

protein even in the absence of any embedding matrix is able per se to inhibit the RC 

dynamics, leading, at sufficiently low water contents, to a strong retardation of the RC 

internal motions coupled to P+QA
- recombination. The main aim of the experimental 

studies presented in the present chapter (the results have been published in Malferrari, 

2011) has been to test this expectation by analyzing the kinetics of P+QA
- recombination 

in RC-detergent films over a large range of controlled hydration levels. Fourier 

transform infrared (FTIR) spectral analysis of the combination (5155 cm-1) and of the 

association (2130 cm-1) bands of water allowed to estimate the water content of the 

films even at very low hydration, to construct water sorption isotherms, and to correlate 

the effects observed on the electron transfer kinetics with the structural/dynamical 

properties of the residual hydration shell of the complex. The results, obtained in the 

presence of two different detergents, indicate that dehydration of the complex retards 

the RC thermal fluctuations and relaxations probed by the kinetics of P+QA
- 

recombination, mimicking at room temperature effects observed at cryogenic 

temperatures in the hydrated system. Furthermore, data at extremely low hydration 

suggest that a limited number of tightly bound water molecules are essential to stabilize 

the primary, light-induced charge separated state on the time scale of 10-2 s. 

 

6.1   Results. 

6.1.1   Hydration isotherms. 

The (ν2+ ν3) combination band of water around 1940 nm is particularly suited to 

evaluate the water content of the RC-detergent films. This NIR band originates from the 

combination of bending (ν2 or δ-OH at 1638 cm-1) and asymmetric stretching (ν3 or ν-

OH at 3000-3700 cm-1) vibrations (Max, 2002). The area under this band can be taken 
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to be proportional to the water concentration, being unaffected, at variance with other 

water IR bands, by co-solvents (Bonner, 1974b; Dickens, 1999), by the physical state of 

the water sample (solid or liquid) (Fornés, 1978), and therefore by the extent of 

hydrogen bonding. A proportionality constant (absorptivity) aw = 101.9 M-1 cm-1 nm 

inferred from water absorption in reverse micelles (Giustini, 1996) was used. Since the 

average thickness of the RC-detergent film, i.e. the effective optical path, is not easily 

measured to a sufficient accuracy, we used as an internal standard the area of the amide 

II band of the RC (centered around 1550 cm-1). Under the assumption that the 

proportionality constant (absorptivity) aII  between the concentration of the RC and the 

area of this band does not depend on the hydration level of the RC-detergent film,  the 

(H2O/RC) molar ratio can be calculated as: 

 

����
�� � = 	
���

	���
								 (eq.6.1) 
                                  

where Aw and AII represent the area of the water combination band and of the amide II 

band respectively. The value of aII was determined from the RC absorption at 802 nm 

(i.e. at the peak of the Qy band of the monomeric RC bacteriochlorophyll) using an 

extinction (Straley, 1973) ε802=288 mM-1 cm-1. Spectra were collected over the 15000-

1000 cm-1 range in 5 freshly prepared RC-detergent films equilibrated at different 

relative humidity (43% ≤ r ≤ 94%), and aII evaluated as (ε802 AII)/A802, being A802 the 

absorbance of the sample at 802 nm. By this approach we obtained aII=(32.7 ± 2.8) .106 

M-1 cm-1 nm and aII=(56.6 ± 4.3) .106 M-1 cm-1 nm in the case of RC-OG and RC-

LDAO films, respectively. The value in the presence of OG is in excellent agreement 

with an estimate based on spectra recorded in dried RC reconstituted into phospholipid 

vesicles after replacement of LDAO with OG (Nabedryk, 1982). The larger value 

obtained for  aII in RC-LDAO films can be explained by considering that the detergent 

LDAO contributes significantly to the IR absorption in the amide II region (Giguère, 

1961). The aII value determined in RC-LDAO films cannot therefore be considered a 

true value for the RC amide II absorptivity. This does not preclude, however, its correct 

use in eq.6.1, since the LDAO to RC molar ratio in the samples is fixed, being 

essentially determined by the number of LDAO molecules organized as a detergent belt 

around the hydrophobic region of the RC (see par. 6.2.1).  
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Figure 6.1 
NIR spectra of RC-LDAO films at different hydration levels in the wavelength range of the 
(ν2+ν3) combination band of water. The relative humidity of the atmosphere at which the 
samples were exposed is indicated in the labels. The vertical bar corresponds to 40 mA for 
spectrum a, 16 mA for spectrum b, 5 mA for spectrum c, and 2 mA for spectra d-f. The dashed 
line shows the background of spectrum f in the water absorption region, evaluated as described 
in the text. Spectra have been normalized on the basis of the area of the amide II band. 
 

 

Fig.6.1 shows FTIR spectra in the region of the water combination band, measured in 

RC-LDAO films equilibrated at different values r of relative humidity, as described in 

par.3.2. The band is progressively reduced in amplitude when r decreases from 94 to 3 

%. Upon dehydration the band shifts to higher wavelengths and becomes narrower. The 

band at 2058 nm (4859 cm-1), assigned to a combination (Hecht, 1956) of the NH 

stretching frequency at 3280 cm-1 and the peptide frequency at 1550 cm-1, partially 

overlaps with the water combination band. Under extensive dehydration, the NH band is 

clearly resolved, as already observed in gelatin and soluble proteins (Vandermeulen, 

1980). In order to correct for contributions arising from the NH band, a background 

spectrum has been estimated using a quadratic form to connect the regions proximal to 

the water band in the spectrum at r=3% (curve f of Fig.6.1). The background spectrum 

(simulating the one of a fully dehydrated sample) has been subtracted from all the other 

spectra, after normalization based on the area of the corresponding amide II bands.  
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The (H2O/RC) molar ratios evaluated as described above (see eq.6.1) in RC-

detergent films equilibrated at different relative humidity were used to construct water 

sorption isotherms. The films formed under nitrogen flow (see par.3.1.2) were 

characterized by (H2O/RC) molar ratios between 1000 and 2000. Each film was first 

equilibrated at a relative humidity between 3% and 85%. In order to construct the 

isotherm, data were subsequently collected for each film at increasing relative humidity. 

The (H2O/RC) molar ratios determined at a given relative humidity in different films 

and sorption sequences were quite reproducible, and did not show any dependence upon 

the value of the relative humidity at which the films were initially equilibrated. No 

hysteresis effect was therefore observed, since each film was subjected to a 

desorption/sorption sequence over a different range of relative humidity. After a 3 days 

exposure of the RC films at room temperature, the RC bacteriochlorin pigments started 

to lose the native coordination, as judged from the alterations in their Qy bands (Hughes, 

2006), particularly when the RC-detergent system was highly hydrated. Since the films 

were equilibrated at any value of r for at least 15 hours, this limited the number of r 

values which could be explored in a single film: each sorption sequence included a 

maximum of 4 values of relative humidity.  The hydration isotherms obtained by this 

procedure in a series of RC-LDAO and RC-OG films are shown in Figure 6.2. The 

hydration of the RC-detergent complex is given as the measured (H2O/RC) molar ratio 

or as water-to-RC mass ratio, h, assuming a molecular weight of 100 KDa for the RC. 

The dependence of the hydration upon r exhibits the typical sigmoidal character 

observed for water sorption by a number of globular and fibrillar proteins (Careri, 1979; 

Lüscher-Mattli, 1982). Over the whole r range the RC-LDAO complex is systematically 

more hydrated than the RC-OG complex, indicating that the hydration properties of the 

two detergents differ significantly and that the RC detergent belt contributes 

substantially to water sorption. 

 To analyze the sorption data we choose the Hailwood and Horrobin model 

(Hailwood, 1946), which assumes that water sorption is governed by two sets of 

equilibria: (a) the formation of hydrates between water and definite sites of the 

absorbing complex, and (b) the formation of an ideal solid solution of water in the 

complex. Accordingly, adsorption data have been fitted to the Hailwood and Horrobin 

equation (Hailwood, 1946): 
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Table 6.1 
Parameters of the Hailwood and Horrobin equation (eq.6.2) best fitting the hydration isotherms 
in RC-LDAO and RC-OG films. Water-to-reaction center molar ratios (H2O/RC) have been 
converted into water-to-protein mass ratios by assuming a RC molecular mass of 100 KDa. 
Values in brackets indicate the calculated confidence intervals within one standard deviation.  
 

 
h0 

(g water/g 
protein) 

h0 

(H2O/RC) 
molar ratio 

 
K1 

 
K2 

RC-LDAO 0.27 (0.25-0.29) 1500 (1390-1610) 10.5 (4.8-23.0) 1.02 (1.01-1.02) 
RC-OG 0.18 (0.17-0.21) 1000 (944-1170) 2.0 (1.0-3.3) 0.94 (0.93-0.95) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 
Hydration isotherms at 297 K determined in RC-LDAO and RC-OG films. Continuous lines 
represent best fit to eq.6.2. The corresponding parameters are given in Table 6.1. Panel B shows 
an enlargement of the data in panel A over the low relative humidity range. The dashed curves 
describe the contributions to water uptake of the two processes considered in eq.6.2, i.e. 
adsorption at strong binding sites and water condensation prevailing at high r values.  
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ℎ = ℎ� � ���
����� + ���

������					(eq.6.2) 
 

where h represents the equilibrium water content of the film, h0 and K1 are constants, 

proportional to the number and activity of the hydration sites, respectively (process a); 

K2 is related to the water activity of the solid solution formed by water condensing at 

the surface of the complex (process b). Best fitting to eq.6.2 (continuous lines in 

Fig.6.2) yields the ho, K1 and K2 values reported in Table 6.1, and allows to resolve the 

contributions to the film hydration of water adsorbed at (strong) binding sites (process 

a) and at (weak) condensation sites (process b). These contributions are shown as 

dashed curves in Fig.6.2B.  The h0 value is significantly larger in RC-LDAO as 

compared to RC-OG films, indicating in the latter system a smaller number of strong 

binding sites. The activity of the strong binding sites (K1) is about 5 times larger in the 

presence of LDAO. The different K1 and h0 values appear to be mainly responsible for 

the systematically larger total hydration observed in the RC-LDAO as compared to RC-

OG films. Similar best fitting values have been in fact obtained in the presence of 

LDAO and OG for the water activity K2  of the solid solution. This finding is consistent 

with the notion that K2 governs the progressive binding of water molecules at 

condensation sites to form a multilayer structure: most of this water population, 

therefore, does not interact directly with the detergent micelle which surrounds the RC. 

 

6.1.2   Spectral analysis of the water combination and association bands. 

The shape and location of the water combination band appear to be governed 

mostly by hydrogen bonding organization (Dickens, 1999; Bonner, 1974). This band 

can therefore provide information when attempting to qualify and quantify the 

intermolecular hydrogen bonds of water adsorbed to the RC-detergent complex. Upon 

decreasing r, particularly for r <20%, the band as a whole shifted to lower 

wavenumbers and narrowed markedly (Fig. 6.3). In RC-LDAO films the band peak 

shifted from 5160 cm-1 at r=84% to 5000 cm-1 at 3%, and the band width at the half-

intensity decreased correspondingly from 245 cm-1 to 100 cm-1. Similar effects were 

observed in the RC-OG films.  

In an attempt to resolve the contribution of water populations differing in 

structure and/or dynamics we performed a numerical decomposition of the band into 

three  Gaussian  sub-bands.  Such  a  decomposition  has been previously  employed to  
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Figure 6.3 
Resolution into three Gaussian components (dashed lines) of the combination band of water, 
corrected for the NH contribution (see Fig.6.1), in RC-LDAO films equilibrated at three 
different values of relative humidity: 84 % (A), 6 % (B), 3 % (C). Values of the fractional area, 
peak wavenumber and width of the Gaussian components are reported in Fig.6.4. 
 

 

analyze the combination band of water in solution as a function of temperature (Fornés, 

1978; Czarnik-Matusewicz, 2006; Malsam, 2009), in mixed solvent systems (Bonner, 

1974b; Bonner, 1974a), and when adsorbed to solid surfaces (Takeuchi, 1960). The 

same Gaussian decomposition has been successfully applied to analyze the temperature 
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dependence of the OH stretching band in pure water (Brubach, 2005) and the effect of 

the water-to-detergent ratio on the OH stretching band in reverse micellar aggregates 

(Onori, 1993). In all these systems, the resolved bands are attributed to water sub-

populations differing in the H bonding organization. The lowest frequency Gaussian is 

assigned to molecules having a high H bond coordination number, as this component 

sits close to the band observed in ice. Conversely, the highest frequency Gaussian is 

ascribed to water molecules poorly connected to their environment, according to the 

idea that the less H bonds are established, the stiffer the oscillator.  

After normalization of the bands to a unitary area, the absorbance A as a function 

of the wavenumber �   was fitted to:  

 

!(" ) = �
√$% ∑ 	'

('
)*+� ,-. /− (12�12')�

$	('� 3									(eq.6.3)	
 

with Ai, " *, and σi  as adjustable parameters. Examples of the obtained decomposition in 

RC-LDAO films are shown in Fig.6.3 for three values of r. Gaussian sub-bands are 

labeled as band 1-3 in order of increasing peak wavenumber. The dependences upon r 

of the best fitting parameters, i.e. the fractional area (Ai), the position (" *) and width (σi) 

of the sub-bands, are presented in Fig. 6.4 A,B, C and Fig. 6.4 A’,B’, C’ for RC-LDAO 

and RC-OG films respectively. In the presence of the detergent LDAO (Fig.6.4 A-C), 

under the most hydrating condition (r=94%), the peak positions (	" �=4990 cm-

1,	" $=5125 cm-1,	" )=5220 cm-1) and the widths (σ1=140 cm-1,   σ2=80 cm-1, σ3=55 cm-1) 

of the three sub-bands essentially coincide with those found in pure water at a 

comparable temperature (Fornés, 1978; Czarnik-Matusewicz, 2006; Malsam, 2009). 

The bandwidths follow the order: σ1 >  σ2 >  σ3. This is consistent with the attribution 

of the lowest frequency band to water molecules for which the H bonding connection is 

maximized, since hydrogen bonding is known to increase the breath of the band, in 

parallel with a decrease of the frequency (Kawai, 1985). In fully hydrated films, it 

appears therefore that the resolved sub-populations exhibit the spectral properties of 

pure water components, suggesting that most of the adsorbed water molecules are H 

bonded as bulk water and do not interact with the protein-detergent complex. 

At values of the relative humidity between 94% and about 40% the sub-bands 

did not undergo significant changes, except for a slight shift to lower wavenumbers of 

bands  2 and 3,  and a decrease of the width of  band  1.  At  lower r  values,  however,  
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Figure 6.4  

Fractional area (A, A’), peak wavenumber (B, B’), and width (C, C’) of the three Gaussian 
components of the water combination band in RC-LDAO (A, B, C) and RC-OG (A’, B’, C’) 
films, as a function of the relative humidity r. Bands are numbered according to the increasing 
value of their peak wavenumber as band 1 (red triangles), band 2 (blue squares), band 3 (black 
circles). Vertical bars correspond to the confidence interval within 2 standard deviations of the 
parameters of the Gaussian components. Continuous lines are drawn through the experimental 
points just to guide the eye.  
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dehydration of the film resulted in marked alterations, particularly prominent at r <10%. 

The contribution of band 1 essentially vanished at r <40%. The disappearance of band 1 

was accompanied by a progressive increase of the fractional area of band 3, from about 

0.25 at r=40% to about 0.80 at r=9%; this increase occurred also at the expenses of 

band 2. Further, extensive dehydration (from r=6% to  r=3%) induced a sudden 

reduction of the contribution of band 3, compensated by the increase of band 2 

fractional area. In parallel with these drastic changes, the peaks of band 2 and 3 shifted 

to lower frequencies by about 150 cm-1. Dehydration at r < 10% also induced a strong 

narrowing of band 2 and 3.  

In RC-OG films the spectral analysis evidenced essentially a similar dependence 

upon r of the fractional area, of the position and of the width of the three Gaussian sub-

bands, as shown in Fig. 6.4 A’-C’. In particular, in the hydrated RC-OG films (r=94%) 

the peak positions and widths coincided within the experimental error with those 

determined in the hydrated RC-LDAO films. Also in the presence of OG, the fractional 

area of band 1, close to 0.3 at r=94%, decreased upon dehydration and reduced to zero 

at r<40%. This decrease occurred mainly at the expenses of band 3, the contribution of 

which was maximum at r=11%. The sudden increase of the fractional area of band 2, 

paralleled by a decrease of  that of band 3, was also observed in RC-OG films at r<9%. 

The shift to lower frequency of  band 2 and 3 were the same in RC-LDAO and RC-OG 

films. In the latter system these two bands underwent a larger narrowing   (σ2≅σ3≅20 

cm-1 at r=3%). 

The disappearance of the lowest frequency band 1 upon decreasing the hydration 

of the film below r = 40% appears to correlate with the strong decrease observed at this 

relative humidity in the amount of weakly adsorbed water, as resolved by fitting the 

hydration isotherms to the Hailwood and Horrobin equation. As shown in Fig. 6.2B, in 

fact, the contribution of this subpopulation of adsorbed water molecules, presumably 

condensed in multilayer structures, is strongly reduced upon decreasing the relative 

humidity from 94% to about 40%. Specifically, at r < 45% in RC-LDAO films, and r < 

30% in RC-OG films, the contribution of the water adsorbed at strong binding sites 

starts to prevail over the weakly bound sub-population. Consistently, band 1 is 

attributed to water molecules organized in structures highly connected through H 

bonding, which are characteristic of pure water (Fornés, 1978; Czarnik-Matusewicz, 

2006; Malsam, 2009). The increase in the relative contribution of band 3 which 

accompanies the disappearance of band 1 and the decrease of band 2 (see above) is 
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paralleled by a downward shift of their peak wavenumber at r values decreasing from 

~40% to ~10%. This response, indicative of a strengthening of the H bonds involving 

these two water populations, suggests that water molecules adsorbed at stronger binding 

sites of the protein-detergent complex are progressively depleted upon drying.  When 

the films are drastically dried, at 10% > r > 3%, the steep variations observed in the 

relative area of band 2 and 3, the additional downward shift of the peak wavenumber, 

and the strong narrowing of both sub-bands indicate that drastic changes occur in the 

structure/dynamics of the residual water when the inner hydration shell is removed. 

Additional information to characterize the interaction between water and the 

RC-detergent complex is provided by a second IR band of water, the so called 

association band  around 2130 cm-1, ascribed to a combination of the bending mode of 

water with intermolecular vibrational modes (Eisenberg, 1960). The association band, 

which is absent in water vapors and is not structured in pure liquid water, becomes 

sizably structured when water interacts with phospholipids and acylglycerols in liquid-

crystalline phases (Nilsson, 1991) and in powders of disaccharides (Giuffrida, 2003), 

suggesting that the coupling of the bending modes of water molecules with 

intermolecular modes involves also non-water H bonding groups (Giuffrida, 2006). This 

makes the band potentially useful when analyzing the structural organization of water 

adsorbed to RC-detergent films, since, at sufficiently low hydration levels, it can reflect 

the multiplicity of the environments experienced by the water molecules.   

Fig. 6.5A and B show the association band of water measured in RC-LDAO and 

RC-OG films at selected values of the relative humidity; bands were normalized to a 

unitary area in order to better examine the evolution of the band in terms of width and 

structuredness.  In the presence of both detergents the band  underwent a progressive, 

strong narrowing but remained scarcely structured when dehydrating the film down to a 

relative humidity of about 10%. At lower r values no further narrowing occurred in the 

bands, which however became strongly structured. A pronounced shoulder appeared 

around 2080 cm-1 in the RC-LDAO film. In the RC-OG film a shoulder at 

approximately this wavenumber was already evident at r=23%.  At r ≤ 9% structuring 

of the band resulted in two well resolved peaks at 2070 and 2120 cm-1.  In the light of 

the arguments summarized above, this behavior suggests that, when the RC-detergent 

films are equilibrated at r <10%, the residual water interacts prevalently with surface 

groups of the protein and of the detergent micelle surrounding the hydrophobic portion 

of  the  RC.  Consistently,  the profile of the association band was very similar in highly  
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Table 6.2 

Ratio rA=AA/AC between the area underlying the association (AA) and the combination (AB) band 
of water as a function of the relative humidity r determined in RC-LDAO and RC-OG films. 
  

r (%) 94 84 75 63 53 43 33 23 11 9 6 3 
rA 

(RC-LDAO) 
1.20 0.88 0.78 0.86 0.74 0.64 0.84 0.88 0.77 1.37 1.80 36.4 

rA 

(RC-OG) 
1.43 0.98 1.30 0.80 0.80 0.84 0.81 0.85 1.01 2.02 1.69 50.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 
Evolution of the association band of water as a function of the relative humidity r  in RC-LDAO 
(panel A) and RC-OG (panel B) films. The r values are indicated in the labels. 
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hydrated RC-LDAO and RC-OG films (where water-water intermolecular modes 

mainly contribute to the association band) while, on the contrary, it differed 

significantly in extensively dried films (where the fraction of weakly adsorbed water 

molecules, mostly interacting with other water molecules, is expected to be greatly 

reduced).  

The area of the intramolecular (ν2+ν3) combination band of water is 

proportional to the total water content of the sample, being essentially independent of 

the extent of interaction of water with neighboring molecules (see above). At variance, 

the area of the association band, due to its intermolecular origin, strongly depends on 

the specific interaction of the water molecules with the environment, showing large 

differences between liquid water and ice (Zelent, 2004). This sensitivity was clearly 

shown by studies in which the ratio rA between  the area of the association (AA) and of 

the combination (AC) bands was determined in pure water, in water-sugar powders, and 

in protein-water-sugar glassy systems under different hydration conditions and in the 

presence of different saccharides (Giuffrida, 2006). When comparing pure water with 

trehalose dihydrate powders rA was found to incresase from 1.8 to 73. The value of rA 

increased by at least one order-of-magnitude upon extensive dehydration of sugar-

water-protein amorphous systems. Furthermore, the rA value measured in the driest 

matrices depended significantly on the structure of the saccharide molecule. From these 

studies it was argued that the ratio rA estimates roughly the extent of the interaction of 

water molecules with non-water H bond forming groups, with large rA values indicating 

large fractions of water molecules H bonded with non-water groups (Giuffrida, 2006). 

The rA values calculated from the area AA and AC measured in RC-LDAO and RC-OG 

films at different values of relative humidity are reported in Table 6.2. At 11% < r < 

94%, the rA ratio does not show systematic changes, fluctuating around an average value 

close to 0.9. At lower contents of residual water the rA value increases, jumping to 36 

and 50 in the driest (r=3%) RC-LDAO and RC-OG films, respectively. This behavior is 

in line with the one observed in protein-water-sugar glassy systems (Giuffrida, 2006), 

and suggests that under the driest conditions the large majority of the adsorbed water 

molecules interacts directly with non-water H bonding groups of the RC-detergent 

complex.  
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6.1.3   Recombination kinetics of the primary charge separated state P
+
QA

-
. 

As outlined in the previous paragraphs, the thermodynamic and spectral analyses 

of water sorption by RC-detergent films concur to identify two main hydration regimes. 

When the relative humidity is decreased from 94% to about 30% the amount of 

adsorbed water undergoes a large change, from 35.103 to 1.6.103 H2O molecules per RC 

in RC-LDAO films, and from 8.103 to 6.102 H2O molecules per RC in RC-OG films 

(Fig.6.2). At r > 30%, the combination band of water exhibits spectral features similar 

to those of bulk water (Fig.6.4), indicating that such a change of the relative humidity 

affects essentially the number of water molecules weakly bound at condensation sites 

(Fig.6.2). However, the progressive narrowing of the intermolecular association band 

observable over this hydration range (Fig.6.5) suggests that depletion of the outer 

hydration shell already affects the structural organization and dynamics of the residual 

water. Such changes are reflected also in the intra-molecular water combination band 

(Fig.6.4) only when (at 10% < r <30 %) the amount of bound water is further reduced to 

~103 and ~400 H2O molecules per RC in RC-LDAO and RC-OG films, respectively. 

Hydration isotherms show indeed that under these conditions the contribution of water 

adsorbed to strong binding sites of the complex becomes relevant, and overcomes the 

one of the weakly bound water molecules. Finally, dramatic changes are observed both 

in the combination and in the association band when the second hydration regime is 

entered, at r < 10%, i.e. when the most tightly bound water molecules, presumably 

forming the inner hydration shell, are removed progressively. 

In order to examine how the extent of hydration and the structure/dynamics of 

the hydration shell affect intraprotein electron transfer we have analyzed the kinetics of 

flash-induced P+QA
- recombination in RC-detergent films as a function of their water 

content. Kinetic measurements were performed in parallel with the spectral analysis 

described above, over the same samples.  

As summarized in the Introduction the recombination kinetics of the light-

induced P+QA
- state can be considered a sensitive probe of : (a) the RC relaxation from 

the dark-adapted to the light-adapted conformation in response to the electric field 

generated by the light-induced charge separation; (b) the RC thermal fluctuations 

among a large ensemble of conformational substates (see par.1.4 in the Introduction). 

The analysis of P+QA
- recombination in RC-detergent films characterized by a different, 

controlled hydration, is therefore expected to provide information on the conformational 
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dynamics of the RC and on its coupling with the structure and dynamics of the RC-

detergent hydration shell. 

Fig.6.6A shows the kinetics of P+QA
- recombination, measured by recording the 

absorbance change at 422 nm after a laser pulse, in RC-LDAO films equilibrated at 

relative humidity between 63 % and 9 %. Dehydration of the RC-detergent complex 

results in a progressive acceleration of the kinetics, which become also more and more 

distributed. A similar behavior was observed in RC-OG films (see below). To account 

for the non-exponential, distributed character of the kinetics, P+QA
- charge 

recombination kinetics have been fitted to a single power law (see eq.1.2 and the 

Introduction, section 1.6).  

Fitting to eq.1.2 yielded a reasonable description of the kinetics measured in RC-films 

equilibrated at relative humidity r as low as 23 % (see Fig. 6.6, panel A and B). In 

hydrated films, characterized by ~4300 H2O molecules per RC (r=63%), <k>=15.3±0.2 

s-1. Upon dehydration <k> increases and reaches a value of 27.8±0.6 s-1 when the 

hydration layer is decreased to ~1400 H2O molecules per RC (r=23%). As shown in 

Fig.6.6C, the acceleration of the kinetics is paralleled by a progressive broadening of the 

rate distribution, calculated according to eq.1.3 (see the Introduction par.1.6).  To allow 

a more direct comparison with the rate distributions obtained at low temperatures 

(McMahon, 1998) or in dehydrated matrices (Palazzo, 2002; Francia, 2009), rate 

distributions f(k) defined on a logarithmic k scale (f(k)dlog(k)=p(k)dk) are shown. From 

the described kinetic effects (Fig.6.6) we infer that dehydration of the film progressively 

hampers the RC relaxation from the dark-adapted to the light-adapted conformation, 

and concomitantly inhibits the RC thermal fluctuations. Both dynamics are affected by a 

reduction of the weakly bound hydration layer, since a decrease of r from 63% to 23% 

mainly affects this sub-population of the adsorbed water, without depleting the tightly 

bound water layer (Fig.6.2).  

When the hydration of the RC-LDAO film is further reduced (at r <23%) the 

recombination kinetics is further accelerated (Fig6.6A). Under such dehydrated 

conditions eq.1.2 becomes unable to fit adequately the kinetics: as shown in Fig.6.6B, in 

fact, while in hydrated samples the residues of the fit to eq.1.2 are randomly distributed, 

for traces acquired at r <23% the residues exhibit a systematic increase at short times 

after the laser, suggesting the presence of an additional, faster kinetic component which 

cannot be accounted for by eq.1.2. This unsatisfactory residue pattern, which already 

appears   in   the   trace  at  r =23%,   becomes   more   and   more  evident   upon 
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Figure 6.6 
Kinetic analysis of P+QA

- recombination following laser flash excitation of RC-LDAO films 
equilibrated at the indicated relative humidity r. A. Normalized decay of the P+QA

- state. Best fit 
to eq.1.2 are shown as black continuous lines. The values of the average rate constant <k> and 
distribution width σ are reported in the following only for the kinetic traces measured at r ≥ 
23%., i.e. for the kinetics which are satisfactorily fit to a power law (see panel B). The extremes 
of the calculated confidence intervals within two standard deviations are indicated in brackets. 
Fit to eq.1.2 yielded: <k> = 15.3 (15.1, 15.5) s- 1, σ = 6.6 (6.3, 6.9) s- 1 at r=63%; <k> = 18.6 
(18.4, 18.9) s- 1, σ = 8.1 (7.7, 8.4) s- 1 at r=43%; <k> = 27.8 (27.2, 28.5) s- 1, σ = 18.6 (17.9, 
19.4) s- 1 at r =23%. Although for the sake of visual clarity only the first 400 ms of P+QA

- decay 
are shown, the time scale of kinetic recording (time resolution 0.5 ms) extended out to 1 s after 
the laser pulse and the whole information was used when fitting kinetics to eq.1.2.  B. Residues 
of the fit to eq.1.2. Traces have been arbitrarily shifted along the vertical scale. C. The rate 
distributions f(k) corresponding to the fit to a power law of the kinetics at r =63%, 43% and 
23%. The distributions, calculated according to eq.1.3 are defined on a logarithmic scale. 
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dehydration, when r is decreased from 11% to 9% (Fig.6.6B). In order to better analyze 

the short time behavior we have increased the time resolution of the kinetic 

measurements to 10 µs over the 0-100 ms time range. Fig. 6.7 shows an example of the 

kinetics measured at higher time resolution under extremely dehydrated conditions 

(r=3%) as compared to the kinetics measured in the hydrated film (r=63%). The log-log 

plot of panel A makes evident that, at variance with the trace at r=63%, under the most 

dehydrated conditions the decay is drastically distributed in rate, occurring over more 

than four orders of magnitude. Fig. 6.7A and B suggest that the faster kinetic 

component present at r=3% is also markedly distributed in rate. We have found that 

kinetic traces acquired at r <23% fit well the sum of two power laws, i.e.: 

 

5(6) = 71 − !89(1 + :�	6)�; + !871 + :�869�;< 				(eq.6.4) 
 

where Af is the relative amplitude and k0f and nf are the kinetic parameters of the fast 

phase.  The best fit to a single power law (eq.1.2) of the kinetics at r=63% and to the 

sum of two power laws (eq.6.4) for the kinetics measured at r=3% are shown as red 

lines in Fig.6.7A over the whole time window examined, and, in Fig.6.7B, over a time 

scale which better resolves the fast phase at r=3%. The inability of a single power law 

(eq.1.2) to fit the kinetics in strongly dehydrated RC-detergent films, already suggested 

by the residue distribution of the traces acquired at the lower time resolution (Fig.6.6B), 

is seen more clearly at the higher time resolution.  As illustrated in the upper panel of 

Fig.6.7A, the residues of the fit to a single power law (eq.1.2) are uniformly distributed 

in the hydrated sample (r=63%), but increase systematically in the most dehydrated RC-

detergent film (r=3%) at short times (green dots). In the upper panel of Fig.6.7A, the 

residues of this unacceptable fit are compared with  those of the fit to the sum of two 

power laws (eq.6.4), which at variance appear randomly distributed also in the short 

time-range (see red dots, r=3%).  Similar patterns of residues were obtained when 

comparing the best fit to eq.1.2 and eq.6.4 in all the kinetic traces measured at the 

higher time resolution for r<23% both in the presence of the detergent LDAO and OG. 

Consistently, the fit to the sum of two power laws (eq.6.4) yielded  reduced chi-square 

values systematically lower than the fit to a single power law (eq.1.2) at r <23%.  

As a possible alternative to eq.6.4, and to further test the presence of a second 

kinetic component under strongly dehydrated conditions, we have fitted the kinetics  
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Figure 6.7 
Kinetic analysis of P+QA

- decay in RC-LDAO films equilibrated at relative humidity r=63% and 
r =3%. The data have been acquired on each sample in two sets with time resolutions of 10 µs 
per point (blue trace) and 0.5 ms per point (black trace). Data recorded over both time windows 
were used when fitting the kinetics. A. Log-log plot of the normalized kinetics. The best fit to a 
single power law (eq.1.2) at r =63% and to the sum of two power laws (eq.6.4) at r =3% are 
shown as continuous red lines. The upper panel shows the corresponding residues (red dots), 
and the residues of the fit to a single power law for the kinetic trace at r =3% (green dots). B. 
Expanded view of the first 5 ms of the decays. C. The rate distribution functions f(k), defined on 
a logarithmic scale, calculated according to eq.1.3 (at r = 63%) and to eq. 6.6 (at r = 3%) from 
the best fitting parameters.  
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also to a stretched exponential, i.e. to the Kohlrausch-Williams-Watts (KWW) decay 

function  

 

5(6) = ,-.>−(6 ?⁄ )AB														(eq.6.5)	
 

 with τ and β as free parameters. The best fits, and the corresponding residues, obtained 

in RC-LDAO films equilibrated at r=3% and r=9% using eq.6.4 and the KWW function 

are compared in Figure 6.8. The KWW function, although providing a fit better than 

eq.1.2 in strongly dehydrated RC-detergent films, yielded reduced chi-square values 

slightly but systematically larger than the sum of two power laws (eq.6.4). Most 

importantly, the residues of the best fit to the KWW function exhibited a significant and 

systematic increase in the (0-1 ms) time range (see Fig.6.8), indicating that the KWW 

function was not able to satisfactorily account for the short-time behavior of the 

kinetics. This finding further supports the notion that an additional, distributed kinetic 

component appears in the P+QA
- decay upon extensive dehydration.  

The use of eq.6.4 to describe the kinetics leads to a bimodal rate distribution 

function p(k) given by the weighted sum of two Gamma distributions:  

 

.(:) = 71 − !89 DEF�GHI(�D DJ⁄ )
DJEΓ(;) + !8 	DE<F�GHI7�D DJ<⁄ 9

DJ<
E<
Γ7;<9 														(eq.6.6) 

 

The average rate constant <kf> and the distribution width σf of the fast kinetic 

component are obtained from the fitting parameters k0f  and nf through eq.1.4.). The 

unimodal (eq.1.3) and bimodal (eq.6.6) rate distribution functions which describe the 

kinetics at r=63% and r=3%, respectively, are represented in Fig.6.7C.   

The values of <k> and σ obtained for the slow kinetic component are plotted in 

Fig.6.9 as a function of the relative humidity r at which the film were equilibrated. The 

kinetic parameters of the fast component are reported in Table 6.3. The kinetic 

parameters of the fast phase exhibited a limited variability (cf e.g. Table 6.3). Both in 

RC-LDAO and RC-OG films the fast kinetic phase appears abruptly when the films are 

equilibrated at r < 23 %: its relative amplitude exceeds 50 % of the total at r=9%, and 

remains unaffected within the experimental error when the residual water of the films is 

further  reduced.  Also  the  average  rate constant  <kf>  and distribution width σf  of  
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Figure 6.8 
Log-log plots of P+QA

- kinetics measured in RC-LDAO films equilibrated at r =9% and r =3%, 
fitted to the sum of two power laws (A, B) or to the KWW function (A’, B’). Best fits are shown 
as continuous lines (red: sum of two power laws; green: KWW function); the corresponding 
values of the reduced chi-square, 2

νχ  , are: 2
νχ =1.108 (A), 2

νχ =1.165 (A’), 2
νχ =1.035 (B) 

and 2
νχ =1.056 (B’). In the upper part of each panel the residues of the best fit are shown; the 

kinetics parameters obtained by fitting to the sum of two power laws are reported in Table 6.3;  
fitting to the KWW function yielded: τ = 5.90.10-3 s-1, β = 0.368 for the trace acquired at r =3% 
(panel A’);  τ = 5.46.10-3  s-1, β = 0.376 for the trace acquired at r =9% (panel B’). 
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Table 6.3 
Kinetic parameters of the fast phase of P+QA

- recombination detected upon extreme dehydration 
of RC-LDAO and RC-OG films. The extremes of the calculated confidence intervals within two 
standard deviations are indicated in brackets. 
 

RC-LDAO 
relative 

humidity, r (%) 
H2O/RC 

molar ratio 
relative amplitude, 

Af (%) 
average rate 

constant, <kf> (s-1) 
distribution width, 

σf (s
-1) 

11  935 38.9 (33.0, 45.8) 1569 (568, 3964) 1505 (398, 5458) 
9 815 61.0 (54.1,69.2)   3421 (2537, 4622) 3660 (2152, 8332) 
6 670 60.2 (55.3, 65.8) 3668 (2547, 6004) 4136 (2729, 7370) 
3 85 56.4 (50.5, 63.3) 3884 (2882 , 5658 ) 4211 (2754, 8164 ) 

 
RC-OG 

11  435 47.1 (42.4, 52.4) 1678 (1412, 2021) 1805 (1501, 2203) 
9 330 61.4 (55.8, 68.2) 1780 (1540, 2083) 1908 (1625, 2238) 
6 305 55.9 (51.9, 60.5) 1913 (1614, 2312) 2114 (1816, 2552) 
3 30 42.0 (37.5, 46.5) 1705 (1447, 2032) 2223 (1893, 2648) 

 

 

the fast component stay essentially constant at  3% ≤ r ≤ 9%, around 3.5.103 s-1 and 

1.8.103 s-1 in RC-LDAO and RC-OG films, respectively.  

Quite remarkably, although the water content of the RC-LDAO and RC-OG 

films differ markedly at each value of r (see Fig.6.2), Fig.6.9 shows a unique 

dependence of <k> and of σ upon the relative humidity, irrespective of the chemical 

nature of the detergent. The simplest interpretation of this behavior appears to be that 

the hydration of the detergent belt has a negligible impact on the RC dynamics probed  

by the kinetics of charge recombination (see Discussion, par.6.2.2). The increase of <k> 

and of σ occurs steeply below a threshold value of relative humidity, r ~ 0.4 This value 

of r corresponds to a molar ratio (H2O/RC) ~2000 and ~1000 in the presence of LDAO 

and OG, respectively. When the fast kinetic component becomes detectable, at r ~ 0.1, 

corresponding to (H2O/RC)≅900 in RC-LDAO and (H2O/RC)≅400 in RC-OG films, 

both <k> and σ have already increased by almost three times, and appear to be close to 

their maximal values reached at the minimum value of the relative humidity. The 

continuity found in the values of <k> and σ over the whole range of relative humidity, 

even when a second, additional kinetic phase, characterized by <kf> and σf, has to be 

included in the fit, supports the physical adequacy of the fitting model adopted in the 

kinetic analysis. Interestingly, the fast kinetic component of P+ decay is observed rather 

abruptly when all the weakly bound water molecules have been essentially withdrawn,  

 



CHAPTER 6 

 

 112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 
Dependence of the kinetics of P+QA

- recombination upon the relative humidity, r, in RC-LDAO 
(red circles) and RC-OG (blue circles) films. Panels A and B show the values of the average rate 
constant <k> and of the rate distribution width σ, respectively. Kinetic analysis was performed 
as described in the text, and illustrated in Fig.6.6 and 6.7. When the P+QA

- decay includes two 
kinetic phases, i.e. in films equilibrated at r <23%, the plotted <k> and σ values refer to the 
slow phase. The corresponding kinetic parameters of the fast phase are reported in Table 6.3. 
Vertical bars indicate confidence intervals within two standard deviations. 
 

 

and a significant fraction of the inner, most tightly bound hydration shell has been also 

removed, as judged from the water sorption isotherms (cf. Fig. 6.2B).  

The fast phase of the decay measured at 422 nm occurs on the hundreds-of-

micros time scale (Fig.6.7 and Table 6.3). To attribute safely this kinetic component to 

P+QA
- recombination, excluding side electron donation which could concur to re-reduce 

P+ and re-oxidize QA
-, we have measured in parallel the decay of the laser induced  

absorbance change at 450 nm, i.e. at the peak of the differential semiquinone/quinone 

spectrum. As detailed in par.3.3, at 422 nm the relative contribution of P+ to the flash  
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Figure 6.10 
P+QA

- recombination kinetics measured on RC-LDAO films at r =3% following absorption 
changes at 422 nm and at 450 nm, reported respectively with orange and cyan filled symbols 
(for more details on the relative contributions of P+ and QA

- at the two wavelength see par.3.3 
and par.6.2.2). With continuous lines the best fit to the sum of two power laws are reported for 
each trace and the values of the kinetics parameters are the following: fast	phase	amplitude = 
0.54, <k>F = 2230 s-1, σF = 3175 s-1, <k>S = 42.93 s-1, σS  = 39.64 s-1 for the kinetics measured 
at 422 nm (orange); fast	phase	 amplitude = 0.49, <k>F = 2579 s-1, σF = 3433 s-1, <k>S = 
42.33 s-1, σS  = 39.92 s-1 for the kinetics measured at 450 nm (cyan). 
 

 

induced absorbance change largely dominates. At 450 nm the contribution of Q- 

becomes more significant (~40%). If events different from P+QA
-  recombination 

contribute to the decay of the photogenerated radical pair we expect that the kinetics of 

P+ and QA
- recovery after photoexcitation will in general differ, resulting in a different 

kinetics of the absorbance change measured at 422 nm and at 450 nm. The time course 

of signals recorded in parallel at 422 nm and at 450 nm was always found to coincide, 

as shown in Figure 6.10, even in RC-detergent films equilibrated at r =3%. This 

observation strongly supports the attribution to P+QA
- recombination of both kinetic 

phases measured under the most dehydrating conditions. Thus under extreme 

dehydration two RC populations can be identified, in which the stability of the primary 

charge separated state differs by almost two orders of magnitude.   
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6.2   Discussion. 

6.2.1  The hydration shell of the RC-detergent complex: thermodynamic properties 

and structural organization. 

Water sorption by RC-detergent complexes can be studied profitably by 

coupling the use of thin films of the protein-detergent complex with the isopiestic 

method to control hydration. The combination band of water at 5155 cm-1 is well suited 

to study water binding to protein complexes: its position and width yield information on 

the H bonding organization of water molecules, while the area below the band measures 

the amount of bound water, being independent of the H bonding organization (Bonner, 

1974b; Dickens, 1999; Fornés, 1978). The sensitivity of the FTIR spectroscopic 

determination of water makes possible the study of water sorption/desorption on small 

amounts of RC-detergent complexes (about 1 mg) which equilibrate rapidly (typically 

in a few hours) at a relative humidity between 94% and 3%.  

Hysteresis phenomena have been reported in several investigations involving 

desorption/sorption cycles on soluble proteins (see, e.g. Lüscher-Mattli, 1982). 

Scanning experiments on α-chymotripsin and tropocollagen have shown however that 

hysteresis effects occur only as a consequence of an almost complete water removal 

(Lüscher-Mattli, 1982). Our data (par.6.1.1) do not reveal any hysteresis effect. We 

could for instance verify that the water content of a film equilibrated at r=63% was 

independent of its dehydration/rehydration history, i.e the same for the following 

desorption/sorption sequences: (i) solution → (r=63%); (ii) solution → (r=11%) → 

(r=63%); (iii) solution → (r=3%) → (r=6%) → (r=9%) → (r=63%). We consider this 

as a reasonable test that the obtained data represent true equilibrium states, accessible to 

thermodynamic interpretation. 

 The sorption isotherms obtained in RC-LDAO and RC-OG films (Fig.6.2) 

exhibit the typical sigmoidal type II character (Brunauer, 1938) observed for a large 

number of polypeptides. To describe such a behaviour different theoretical models, 

roughly falling in two classes (surface and solution models), have been adopted (for a 

review see Kuntz, 1974). Our data fit well the Hailwood and Horrobin equation (eq. 

6.2), based on a solution model, which provides a convenient way to separate the 

“monolayer” (tightly bound water) and “multilayer” (weakly bound water) contributions 

to a given isotherm. The equation includes only three adjustable parameters, related to 

the number (h0) and activity (K1) of “tight” binding sites (“monolayer” component) and 

to the activity (K2) of water condensing in “multilayer” structures. We have also fitted 
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our experimental isotherms to the D’Arcy and Watt equation (D’Arcy, 1970), which 

accounts for an additional set of weak binding sites. Although an equally good fit was 

obtained (not shown), confidence analysis resulted in unacceptably large uncertainties 

of the parameters, indicating that no information was gained, and that the Hailwood and 

Horrobin equation yielded a possibly rough, but physically more sound interpretation of 

the data. 

At any value of relative humidity, the H2O/RC molar ratio is approximately two-

times larger in RC-LDAO as compared to RC-OG complexes, indicating that the 

binding of water to the detergent belt which surrounds the hydrophobic region of the 

RC contributes substantially to the overall water sorption process. The best fitting 

parameters (Table 6.1) show that the activity K2 of water in the solid solution is 

comparable for RC-LDAO and RC-OG complexes, as expected for water molecules 

which form the outermost hydration shells. The larger hydration systematically 

observed in RC-LDAO as compared to RC-OG is traced back to the larger number h0 of 

binding sites and to the ~5 times larger activity K1 of water forming the inner hydration 

layer. Since both the exposed hydrophilic portion of the RC protein and the surface of 

the detergent belt are expected to bind water molecules, we discuss in the following a 

simple geometrical model of the RC-detergent complex, which allows a rough estimate 

of the water binding surfaces in  the case of LDAO and OG solubilized RCs.  

The number of LDAO molecules associated with the RC from Rb. sphaeroides 

(wild type Y) has been determined by chromatography using 14C-labelled detergent. 

Values of (206 ± 12) (Rivas, 1980) and  289 (Møller, 1993) have been reported. By 

monitoring the resolubilization of detergent-free RC preparations from Rb. sphaeroides 

R26 values of (150±20) and (370±100) were obtained at pH 8.0 for LDAO and OG, 

respectively (Gast, 1996). Using (LDAO/RC)=150 or 289 and (OG/RC)=370±100, it 

can be easily evaluated that in the solutions used to prepare our RC-detergent films 

(0.025% LDAO or 0.1% OG) the molar ratio (“free”/total) detergent is about 11% or 6 

% (LDAO) and (13±3) % (OG); we assume therefore that in our samples essentially all 

the detergent is associated with the RC protein.  The low-resolution structure of the RC-

detergent complexes obtained by neutron diffraction in crystals of Rps. viridis showed 

that LDAO is concentrated in rings, forming a micelle around the transmembrane 

helices of the RC (Roth, 1989). The extension of this approach to localize the detergent 

OG in crystals of Rb. sphaeroides strain Y (Roth, 1991) indicated a quasi identity of 

shape and position of the OG and LDAO rings around the transmembrane helices. In 
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both cases the thickness of the detergent phase perpendicular to the membrane plane 

was nearly 30 Å, suggesting that the detergent belt can be regarded as a half-torus of 

minor radius close to 15 Å. It has to be noted, however, that crystallization in the 

presence of LDAO can be accomplished only in conjunction with additional 

amphiphiles, such as 1,2,3-heptanetriol, which was present in the Rps. viridis crystals 

used to obtain the low-resolution structure of RC-LDAO complexes (Roth, 1989). The 

micellar radius of LDAO in solution is significantly decreased upon addition of 

heptanetriol (Timmins, 1991). A SANS determination of micelle structure 

(Thiyagarajan, 1994) has shown that the addition of heptanetriol perturbs substantially  

not only the dimension but also the shape of pure LDAO micelles in solution. 

Thiyagarajan and Tiede (Thiyagarajan, 1994) found that the LDAO micelle can be 

assimilated to an ellipsoid with semiaxes of 30.6 and 19.4 Å, and the OG micelle to a 

sphere of radius 22.9 Å. Addition of heptanetriol to pure LDAO micelles resulted in 

smaller, spherical micelles, with radii in the range 17-21 Å, in agreement with ref. 79. In 

view of these results we believe that under the condition of our samples, the shape and 

dimension of the detergent belt can be reasonably described using the parameters 

determined by Thiyagarajan and Tiede (Thiyagarajan, 1994) for LDAO and OG 

micelles. Figure 6.11 shows the geometrical model we adopted. In a crude 

approximation subunits L and M of the RC have been represented as forming a cylinder 

of height h=50 Å and radius R=25 Å; the H subunit is approximated to a hemisphere of 

radius R, which caps the LM cylinder (Yeates, 1987). The LDAO belt (Fig.6.11A) is 

modeled as an oblate ellipsoidal ring, generated by rotation of half an ellipse of 

semiaxes a=19.4 Å and b=30.6 Å (Thiyagarajan, 1994) removed by the distance R from 

the axis (of rotation) of the LM cylinder. We note that the choice of an oblate ellipsoidal 

ring implies a thickness of the detergent phase perpendicular to the membrane plane 

equal to 2a=38.8 Å, in good agreement with a calculated thickness of the hydrophobic 

portion of the RC LM subunit of 42 Å (Yeates, 1987). The OG belt (Fig.6.11B) is 

represented as a half torus of minor radius r=22.9 Å, corresponding to the radius of the 

spherical OG micelle (Thiyagarajan, 1994), and major radius R. The surface area AHT of 

the half torus is given by (Wolfram, 1999): 

 

!�[ = 2\$]^ + 4\]$						(eq.6.7) 
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Figure 6.11 
Geometrical model of the RC-LDAO (A) and RC-OG (B) complexes (see par.4.1 for details). 
 

 

The surface area AOE of the oblate ellipsoidal ring can be calculated as (see Appendix, 

section 6.3, in this chapter): 
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by numerical integration. Starting from the geometrical model of Fig.6.11, and using 

eqs.6.7 and 6.8, it can be estimated that the area of the LDAO detergent belt is equal to 

21.5 . 103 Å2, while that of the OG ring is 17.9 . 103 Å2. Unfortunately the large 

uncertainty in the number of detergent molecules per RC complex (see above) does not  

allow a strict test of consistency of the geometrical model with the surface area of the 

detergent head groups. However, the calculated area of the detergent LDAO and OG 

rings, when divided by the number n of detergent per RC complex experimentally 
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estimated, yields an area per LDAO molecule equal to 74 Å2 (for n=289) or 143 Å2 (for 

n=150), and an area per OG head group equal to (48 ± 13) Å2 (n=370±100). These 

values are reasonably consistent with literature data: a value of 44 Å2 has been 

determined for the area of the head group of OG using independent experimental 

approaches (Nilsson, 1991; Rojas, 2005); for the LDAO head group areas around 60 Å2 

and 70 Å2 have been determined by SANS, respectively excluding or including 

hydration water. A recent molecular dynamics simulation of LDAO micelles (Lorenz, 

2011) has provided a value of 94.8 Å2 which compares favorably with the range derived 

from the area of the LDAO ring in our model.  

In the geometrical model of Fig. 6.11, the area of the exposed protein surface, 

not screened by the detergent ring, is equal to 7.65 . 103 Å2 (RC-LDAO ) and 6.55 . 103 

Å2 (RC-OG), implying that the contribution of the protein surface interacting directly 

with water is ~ 27% of the total surface area of the RC-detergent complex, for both 

detergents. The total surface area is larger in RC-LDAO (29.2 . 103 Å2) as compared to 

RC-OG complexes (24.4 .103 Å2). From these values and from the number h0 of water 

binding sites derived from sorption isotherms (Table 6.1) we can estimate the average 

area per binding site, Ab equal to 19.5 Å2 and 24.4 Å2 for the RC-LDAO and RC-OG 

complex respectively. Ab can be usefully compared with the average area per binding  

site estimated in soluble proteins. To this end, among the large number of available 

data, we have selected those obtained in proteins for which Hailwood and Horrobin 

analyses of hydration isotherms and high resolution crystallographic structures are 

available. The protein surface area accessible to water has been evaluated from the 

structural data (pdb files are listed in Table 6.4) using the “rolling ball” algorithm 

implemented in the Swiss PDB Viewer molecular graphics software with a radius equal 

to 1.4 Å. From the values of h0 (g water/g protein) (Lüscher-Mattli, 1982) and from the 

evaluated surface are of the protein, the area per water binding site has been calculated. 

The results, summarized in Table 6.4, indicate that the area per water binding site does 

not change too much over a set of structurally different proteins which span a large 

range of molecular masses, yielding an average area per binding site, Abp=(102 ± 21) 

Å2. This value is about 4-5 times larger than the average area per binding site Ab 

estimated over the whole RC-detergent complex. It appears therefore that the surface 

density of water molecules tightly bound to the detergent ring of the RC is much higher 

than the average density of water tightly bound to the protein surface. If we assume that 

the Abp value evaluated from the data of Table 6.4 holds also for the exposed surface of  
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Table 6.4 
Thermodynamic and structural parameters used to evaluate the average area Abp per tightly 
bound water molecule in soluble proteins. The values of h0, obtained by fitting the experimental 
sorption isotherms to the Hailwood and Horrobin equation, are from  Lüscher-Mattli, 1982. 
 

protein 
molecular 

weight 
(KDa) 

pdb file 
h0 

(g water/ 
g protein) 

h0 

(H2O/protein) 
molar ratio 

protein 
surface 

area 
(Å2) 

area per 
water 

binding 
site (Å2) 

lysozime 14.331 2LYZ 0.080 64 5672 88.6 

β-lactoglobulin 18.387 2Q2M 0.059 60 7881 131 

α-chemotripsin 25.000 3NK8 0.069 96 8102 84.4 

ovalbumin 172.438 1OVA 0.058 556 57877 104.1 

 

 

the RC protein, the average area Abd per binding site on the detergent belt can be 

evaluated from the relation: 

 

�
	h = �

	hi �	i
	j� + �

	hk �	k
	j�												(eq.6.9) 

 

where Ap and Ad are the surface areas of the water exposed RC protein and of the 

detergent ring, respectively, and AT= Ap+ Ad. From eq.6.9 we obtain Abd =15 A2 and Abd 

=19 A2 for LDAO and OG, respectively. These values, when considering the area per 

detergent head group evaluated from our geometrical model, would correspond to a 

number of water molecules tightly bound to each detergent head group ranging from ~9 

to ~5 for LDAO and of ~2.5 for OG. The larger hydration of LDAO is in qualitative 

agreement with molecular dynamics simulations performed in LDAO (Lorenz, 2011) 

and OG (Konidala, 2006) micelles, which resulted in an average hydration number ~8 

and ~5 respectively.  

According to the Hailwood and Horrobin fit, the activity K1 of the strong water 

binding sites is about 5 times larger in the RC-LDAO as compared to the RC-OG 

complex (Table 6.1). Since the area of the exposed protein surface represents a 

comparable fraction of the total area in the RC-LDAO and RC-OG complex, the 

observed difference in K1 values implies that the water activity of the tight binding sites 

is even more than 5-times larger for the LDAO than for the OG molecules of the 

detergent ring which surrounds the RC.  This observation is consistent with the H 

bonding properties of the polar head of the two detergents, emerging from simulative 
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studies. Amine oxides are highly hydrophilic despite having only one polar atom 

(oxygen) able to interact with water. A recent ab intio study of the LDAO interaction 

with water (Kocherbitov, 2007) features a maximum of 3 water molecules H bonded to 

the amine oxide group. The mean energies of the H bonds (55 kJ/mol, 52 kJ/mol, and 49 

kJ/mol for 1, 2 and 3 water molecules) are much larger than the H bond energy of the 

water dimer (~13 kJ/mol) (Curtiss, 1979; Feyereisen, 1996). As to the strength of the H 

bonds between the OG hydroxyl groups and water, ab initio molecular dynamics 

simulations of a glucose-water system indicate that hydroxyl groups form weak 

acceptor and stronger donor H bonds (Suzuki, 2008). The strength of the latter was 

found comparable to that of the water dimer.  

Finally we notice that a description of water sorption to soluble proteins 

(lysozime, β-lactoglobulin, ovalbumin, keratin) according to the Hailwood and 

Horrobin isotherm (Lüscher-Mattli, 1982) yielded K1 values between ~9 and ~15 which 

are comparable to the K1 value determined for the RC-LDAO complex (Table 6.1). This 

suggests a similar affinity of the binding sites localized on the exposed RC protein and 

on the LDAO ring.  

Equilibrium sorption isotherms characterize thermodynamically two main 

populations of water molecules adsorbed to the RC-detergent complex: those tightly 

bound at primary hydration sites, and those, less tightly bound, presumably condensing 

at the surface of the partially hydrated complex when the relative humidity increases.  

This basic picture is confirmed by the spectral analysis of the intramolecular (ν2+ν3) 

combination band of water, which has been decomposed into three Gaussian sub-bands  

attributed to sub-populations of water molecules differing in H bonding organization.  

Detailed models have been proposed, in which the resolved sub-bands have been 

ascribed to water molecules forming a different number of H bonds with their 

immediate neighbors (Fornés, 1978; Malsam, 2009; Takeuchi, 2005) and/or involved in 

symmetrical or unsymmetrical H bonds of different strength (Bonner, 1974b) or 

characterized by a different H bond connectivity on a larger scale (Brubach, 2005). 

Despite differences in the structural interpretations, often reflecting different views on 

the structure/dynamics of liquid water, the lowest frequency sub-band (band 1) can be 

reasonably attributed to water molecules highly connected through an extended H bond 

organization, in which each water molecules forms a few H bonds (3-4) with its 

neighbors, typical of pure, bulk water. The breaking of this structure, leading to the 

distortion of H bonding and weakening of connectivity, typical of small water 
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aggregates and dimers, appears to originate band 2, of intermediate frequency, and the 

highest frequency band 3, associated with highly disconnected water molecules, 

possibly involved in a single H bond (Malsam, 2009; Takeuchi, 2005).  

In highly hydrated RC-detergent systems the three sub-bands are centered at the 

same wavenumbers observed in pure water. As in pure water, the bandwidth decreases 

monotonically from band 1 (centered at the lowest frequency) to band 3 (highest 

frequency). Such a coincidence is not surprising: under these conditions, as indicated by 

the Hailwood and Horrobin isotherm, water sorption is largely dominated by weakly 

bound water molecules, forming a multilayer structure in which the H bonding 

organization and energetics are not expected to be significantly perturbed as compared 

to liquid water. When, according to the Hailwood and Horrobin isotherm, the 

population of the weakly bound water molecules is decreased, the relative contribution 

of band 1 (attributed to highly H bond connected water structures, typical of bulk water) 

is also decreased and disappears at relatively low hydration levels (r < 40%), suggesting 

that a significant fraction of the residual water interacts directly with the RC-detergent 

complex and that the interaction with the surfactant head groups causes a disruption of 

the H bond network present in bulk water. The disappearance of band 1 is in line with 

the results of a Gaussian analysis of the OH stretching band of water in reverse micelles 

(Onori, 1993). This study showed that the contribution of the lowest frequency sub-

band decreases from ~50% to ~15% when the [H2O]/[detergent] molar ratio (W) is 

decreased from 12 to 0.4.  The lowest frequency Gaussian component prevailing in pure 

water is closely related to band 1 of the water combination band, and is also attributed 

to water molecules organized in regular structures with unstrained H bonds (Brubach, 

2005; Onori, 1993). The vanishing of band 1 observed in RC-detergent films upon 

dehydration appears therefore to reflect the disappearance of bulk-like water molecules. 

Interestingly, the decrease of band 2 and increase of band 3 fractional areas observed in 

RC-detergent films when reducing further the relative humidity to about 10% also 

resembles the evolution of the corresponding OH stretching sub-bands in reverse 

micelles characterized by a progressively lower water content (Onori, 1993). The 

qualitatively similar behavior observed in RC-detergent films and in reverse surfactant 

micelles at low hydration levels suggests a progressive reduction of H bond connected 

domains of water molecules adsorbed at the surface of the RC detergent belt. During 

this evolution of the (ν2+ν3) combination band, the peak of both band 2 and 3 shifts to 

lower wavenumbers, indicating that the H bonds involving the residual populations of 
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adsorbed water become stronger. At r ≤ 6 % the contribution of band 2 increases at the 

expenses of band 3 and the peak wavenumber of band 3 undergoes an additional, steep 

downward shift (Fig.6.4A,B and A’,B’), suggesting further rearrangements of the H 

bonding organization at extreme draught. The different structural and dynamical 

properties of these residual water molecules are also inferred from the impressive 

narrowing of band 2 and 3 (Fig.6.4C and C’), pointing to a dramatic reduction in the 

number of accessible configurations and H bond angles for the water molecules most 

tightly bound to the RC-detergent complex. At such low hydration levels the absolute 

number of water molecules per complex evaluated from the area of the (ν2+ν3) band 

(<100 at r=3%) is certainly a very rough estimate, implying the crude assumption that 

the average oscillator strength weighted over the band is still unaffected by the 

hydration state of the system. It is however tempting to speculate that under this 

extreme dryness the inner hydration shell of the complex has been strongly depleted, 

and that even some molecules belonging to highly structured water clusters bound 

within RC cavities (Koepke, 2007) have been possibly removed. 

The changes detected at r < 10% in the (ν2+ν3) intramolecular water 

combination band correlate with the strong alterations of the association band at low 

hydration (Fig.6.5). Previous studies performed in lipid liquid-crystalline phases 

(Nilsson, 1991), in saccharide-coated liposomes (Chiantia, 2005), as well as in 

sugar/water and protein/sugar/water amorphous matrices (Giuffrida, 2006), indicate that 

the intermolecular association band is a sensitive structural probe of the interactions 

experienced by the water molecules. In particular, Cordone and coworkers (Giuffrida, 

2003; Giuffrida, 2006) proposed that the structuring of the association band and the 

value of  the ratio rA between the area of the association band and that of the (ν2+ν3) 

band give a rough estimate of the relevance of the interaction between water molecules 

and non-water H bond forming groups. The evolution of the association band observed 

by us in response to dehydration of RC-detergent films is fully consistent with this 

notion. Both in RC-LDAO and in RC-OG films the association band undergoes an 

impressive narrowing upon dehydration, but only at r < 10% a clear structuring of the 

profile takes place, paralleled by a steep increase of rA (Table 6.2).  It is noteworthy that 

the increase of rA occurs only when, according to the Hailwood and Horrobin analysis 

of the hydration isotherms, most of the weakly bound water molecules have been 

removed. Under these conditions, the different structure of the band in the presence of 

LDAO and OG indicates that even in the most dried samples (r =3%) a significant 
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fraction of the residual water is tightly bound to the detergent ring and reflects a 

different organizations of H bonding between residual water molecules and the polar 

head groups of LDAO and OG. 

 

6.2.2  The hydration of the RC-detergent complex modulates the RC dynamics and   

the stability of the primary charge separated state. 

Dehydration of RC-detergent films results in accelerated and broadly distributed 

kinetics of P+QA
- recombination, in qualitative agreement with previous results (Francia, 

2009). In our previous observations (Palazzo, 2002; Francia, 2009) we reported effects 

somewhat variable and weaker than shown in the present paper. In these works the 

kinetic effects were not correlated with the content of residual water, which could not be 

determined in extensively dried films due to the low sensitivity of the NIR dispersive 

spectrometer used to record the combination band of water. In the present study a 

systematic analysis of P+QA
- recombination kinetics as a function of the hydration level 

was made possible by: (a) the use of FTIR spectroscopy to determine the water content 

of the films; (b) the strict control of the hydration level of the RC-detergent films 

reached by equilibrating them with an atmosphere of defined relative humidity. This 

approach has shown indeed that large effects on the kinetics of P+QA
- are observed only 

at very low hydration levels. 

The dependence of the average rate constant <k> and of the width of the rate 

distribution σ upon the relative humidity r (Fig.6.9) shows that both parameters do not 

change significantly for 0.43< r < 0.94, i.e. when the water content is reduced from ~3.5 

.104 to ~2.103 water molecules per RC-LDAO complex and from ~104 to ~103 water 

molecules per RC-OG complex. Upon further dehydration <k> and σ increase steeply 

following a sigmoidal dependence. It is noteworthy that <k> and σ follow the same 

dependence upon r in RC-LDAO and RC-OG complexes (see below). 

As outlined in the Introduction, these kinetic effects, previously detected upon 

dehydration of amorphous RC/water/trehalose matrices  at room temperature (Palazzo, 

2002; Francia, 2004b; Francia, 2008; Francia, 2009; Savitsky, 2010) and upon freezing 

RCs in water/glycerol to cryogenic temperatures (McMahon, 1998; Kleinfeld, 1984; 

Ortega, 1996; Kriegl, 2004) can be taken to reflect a strong inhibition of the RC 

conformational dynamics on the time scale probed by P+QA
- recombination. The 

increase of the average rate constant <k> is taken to indicate an impairment of the RC 

relaxation from the dark-adapted to the light-adapted conformation, resulting in 
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destabilization of the P+QA
- charge separated state. The increase in σ is considered to 

reflect the “freezing” of the interconversion among RC conformational substates, which 

makes observable the structural and kinetic heterogeneity of the RC population over the 

time scale of charge recombination (McMahon, 1998; Kriegl, 2004). The maximal 

values reached by <k> and σ at low hydration levels of the RC-detergent films 

(corresponding to a few hundreds of water molecules per RC-detergent complex) are 

quantitatively comparable with those measured in extensively dried RC/water/trehalose 

matrices at room temperature (Francia, 2009). Dehydration mimics the effects of 

freezing the RC complexes in water/glycerol systems (Kriegl, 2004) at T<50K. In the 

hydrated system, upon decreasing the temperature from 200 K to 150 K, and to 50 K, 

<k> increases from ~10 s-1 to ~30 s-1, and to ~45 s-1, respectively (Kriegl, 2004). We 

infer that an extensive dehydration of the RC-detergent complex brings about a drastic 

reduction of the RC conformational dynamics, simulating the effects of cryogenic 

temperatures.  

The critical role of hydration water in determining the internal motions, and 

hence the function, of globular proteins has been deeply investigated during the last 

decades (see e.g. Mattos, 2002, and references therein), and it is now well-ascertained 

that a threshold level of hydration is required to fully activate protein dynamics (and 

functionality) (Rupley, 1991). The interplay between solvent and protein dynamics has 

been rationalized in a “unified model of protein dynamics” (Frauenfelder, 2009) which 

systematizes a large body of experimental and theoretical investigations in myoglobin 

(Fenimore, 2004). Three classes of protein dynamical processes are identified: (a) class 

I processes, including typically large-scale motions of the protein, driven by thermal 

fluctuations of the bulk solvent, and found to obey dielectric α relaxations; (b) class II 

processes, e.g. ligand migration inside myoglobin, powered and controlled by the 

solvent fluctuations of the hydration shell which surrounds the protein, and following  

dielectric β relaxations; (c) class III processes, such as molecular vibrations in the force-

field potential of atom-atom interactions, not controlled by external fluctuations. In the 

high-field EPR study presented in chapter 5 (Savitsky, 2010) we have applied these 

concepts to clarify the control exerted on electron transfer kinetics by the 

protein/solvent environment when RC complexes are embedded into trehalose glasses 

and poly (vinyl alcohol) matrices. We have proposed to ascribe the relaxation of the RC 

from the dark- to the light-adapted conformation, as well as the thermal interconversion 

between lower tier conformational substates of the RC, to Class II processes, slaved to 
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the fluctuations of the hydration shell. As outlined in the introduction to the present 

chapter, the main reason to study RC-detergent films in the absence of sugars was to 

verify this attribution. Our results strongly support this view: in the absence of any 

saccharide or polymeric matrix, in fact, the relaxation from the dark- to the light-

adapted conformation is progressively hampered upon removal of water molecules 

bound to the RC-detergent complex. At very low hydration levels the degree of 

inhibition of the conformational relaxation is comparable to the one attained at 

cryogenic temperature in water/glycerol media, as predicted for Class II dynamical 

processes driven by the β-fluctuations of the hydration shell (Frauenfelder, 2009). It is 

noteworthy that, as shown by the similar dependence of <k> and σ upon the relative 

humidity, the interconversion among lower tier substates and the relaxation from the 

dark- to the light-adapted conformation are inhibited in parallel when the hydration of 

the protein complex is reduced. This suggests that the protein conformational 

fluctuations and the relaxation processes which stabilize the P+QA
- charge separated 

state are dynamically coupled, both being driven by the fluctuations of the hydration 

shell. Interestingly, it has been shown recently that IR bands attributed to water 

molecules weakly H bonded to the RC are perturbed upon light-induced reduction of QA 

(Iwata, 2009). The dielectric relaxation of these water molecules has been proposed to 

play an important role in stabilizing the primary charge separated state (Iwata, 2009). 

As already observed, the same unique dependence is obtained when <k> and σ 

are plotted as a function of the relative humidity r at which the RC-LDAO and RC-OG 

films are equilibrated (Fig.6.9 A and B), in spite of the fact that, at any given r value, 

the amount of water bound to the RC-detergent complex is considerably larger in the 

presence of LDAO as compared to OG (see the adsorption isotherms in Fig.6.2). This 

observation strongly suggests that the hydration state of the detergent belt has no real 

impact on the RC dynamics which govern the kinetics of P+QA
- recombination. Since at 

any fixed r value the exposed protein will have the same level of hydration, independent 

of the detergent, we suggest therefore that the RC dynamics probed by the 

recombination kinetics is essentially determined by the hydration state of the exposed 

protein surface, i.e. of the globular domain of the H subunit and of the hydrophilic 

portions of the LM complex which in vivo face the periplasmic space. We also notice 

that according to the geometrical model developed to interpret the water sorption results 

(Fig.6.11) the area of the exposed protein surface is comparable in the RC-LDAO (7.65 
. 103 Å2) and in the RC-OG complex (6.55 . 103 Å2). 
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The Hailwood and Horrobin isotherms determined for the RC-LDAO and the 

RC-OG complex (Fig.6.2) provide overall thermodynamic parameters for water 

sorption averaged over the detergent belt and the exposed portion of the RC. However, 

the hydration state of the exposed protein at a given relative humidity can be roughly 

estimated by assuming that the affinity K1 for tight water binding of the exposed RC 

surfaces is reasonably approximated by values determined from a Hailwood and 

Horrobin analysis of water sorption in soluble proteins. Using the set of proteins already 

considered in Table 6.4,  the data of Lüscher-Mattli and colleagues (Lüscher-Mattli, 

1982) yield an average affinity K1= 13.8 with a standard deviation equal to 2.9. By 

replacing this value in the first term of the Hailwood and Horrobin equation (eq.6.2) we 

can easily evaluate the fraction of occupied tight binding sites of the exposed RC 

surface as a function of the relative humidity. As mentioned above, inhibition of the RC 

conformational dynamics, as probed by an increase of <k> and σ values, starts at r ~0.4 

(Fig.6.9). At this relative humidity more than 80% of the tight water binding sites of the 

exposed surface of the RC complex are still occupied.  The maximum inhibition of the 

RC conformational dynamics is found at r between 6% and 3% (Fig.6.9). At these 

values of relative humidity, 55% and more than 70%, respectively, of the tight water 

binding sites are empty. This behavior indicates that removal of a large part of the 

hydration shell of the exposed RC protein is needed to arrest the β-slaved RC dynamical 

processes on the time scale probed by P+QA
- recombination. 

The kinetic analysis summarized in Fig.6.6,.6.7 and.6.8 and Table 6.3 shows that 

a limited decrease of the amount of residual water (when r decreases from 11% to 9%) 

leads to the appearance of a second, well resolved and much faster phase of charge 

recombination (τ~3.102 µs), suggesting that a sharp structural/dynamical transition has 

occurred in a large fraction (~50%) of the RC population. Consistently, this strong 

alteration of the kinetics is paralleled by drastic spectral changes of the residual water, 

which, as discussed  in section 6.2.1, reflect a strong reduction in the accessible H 

bonding configurations of the inner hydration shell. The fast phase is also distributed in 

rate (Fig. 6.8C and Table 6.3) indicating that the corresponding RC subpopulation is 

also frozen over a large ensemble of conformational substates. To our knowledge, such 

a fast phase of P+QA
- recombination has not been observed previously as a result of 

environmental alterations,  or genetic mutations  or even in RC complexes frozen at 10 

K (McMahon, 1998; Kriegl, 2004). We therefore ascribe this fast recombination to a 

new conformation produced by the removal of specific, tightly bound water molecules, 
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which play a specific structural and/or energetic role in stabilizing the primary light-

induced charge separated state.  

In the frame of the semi-classical Marcus model of electron transfer, which is 

supposed to hold at room temperature, the rate constant of the process is given by 

(Marcus, 1985): 

 

: = m%�
n o$ �

pm%λDq[ ,-. r− (s�λ)�
mλDq[t													(eq.6.10) 

 

where ε is the difference in free energy between P+QA
- and PQA states, λ the 

reorganization energy, V the electronic interaction matrix element describing the weak 

coupling between the initial and final electronic states, kB and h the Boltzmann and 

Planck constants, and T the absolute temperature. It is generally assumed that, to a 

reasonable approximation, V2 falls off exponentially (Moser, 1992) with the distance R, 

i.e.:  

 

o$ = o�$,-.(−v^)											(eq.6.11) 

 

where β =1.4 Å-1. In terms of eqs.6.10 and 6.11 an increase in k can be accounted for by 

a decrease of R, an increase in the free energy difference ε, or a decrease of the 

reorganization energy λ. It may be instructive to evaluate to which extent a variation in 

each of these parameters could individually account for the difference between the 

average rate constant of the slow phase (~50 s-1 in LDAO, ~40 s-1 in OG) and that of the 

fast phase (~3500 s-1 in LDAO, ~1800 s-1 in OG) detected at extreme draught. Eq.6.11 

immediately shows that such an acceleration of the electron transfer process could be 

caused by a decrease in R equal to 3.0 Å (in RC-LDAO) and to 2.7 Å (in RC-OG 

complexes). This corresponds to a contraction of about 10% of the distance (28.5 Å) 

measured between the QA ring and the center of a line connecting the Mg atoms of the P 

dimer (pdb 2J8C; Koepke, 2007). As to the change required in ε or in λ to obtain the 

same kinetic effect, it depends significantly on the values assumed for these two 

parameters when the reaction proceeds with the rate constant of the slow phase. 

Estimates of the free energy change associated with the reaction range between 500 and 

600 meV (Gopher, 1985). Different approaches yielded the following estimates of the 

reorganization energy λ (meV): 640 (Feher, 1988), (600±100) (Gunner, 1989), 1250 
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(Franzen, 1993), 900 (Ortega, 1996; Lin, 1994), (820±30) (Allen, 1998), 667 

(McMahon, 1998). By assuming a value of ε between 500 and 600 meV (see above) 

eq.6.10 shows that even the largest decrease in the reorganization energy allowed 

without entering the inverted Marcus region is unable to account for the rate constant of 

the fast phase, unless the largest estimate (1250 meV) is used for the unperturbed λ. In 

this case the required decrease in the reorganization energy is ~500 meV. A similar 

situation holds when the effect of a variation in ε is considered. Again the effect can be 

accounted for only by assuming an unperturbed λ=1250 meV and a large variation of  ε 

(about 500 meV). It should be considered, however, that an increase of ε, i.e. an 

increase of the energy level of the P+QA
- state, implies a decrease of the energy 

difference (∆G0
I) between P+QA

- and the intermediate charge separated state involving 

the bacteriopheophytin cofactor, P+BPhe-. It has been shown (Gopher, 1985) that such a 

decrease allows the thermal repopulation of the intermediate P+BPhe- state, activating 

an indirect pathway of P+QA
- charge recombination, in addition to the direct one (see the 

scheme in Figure 6.12). When considering this possibility, the observed rate constant 

kobs of P+QA
- recombination is given by the rate constant of the direct (tunneling) 

process, kPA (given by eq.6.10), plus the contribution of the thermally activated, indirect 

route (Gopher, 1985), i.e.: 

 

:wxy = :z	 + :z{ 	,-.(−∆}{� :~�⁄ )										(eq.6.12) 

 

where kPI=8.107 s-1 is the rate constant for P+BPhe- recombination, and  ∆G0
I≅550 meV 

in native RCs (Moser, 1992). By combining eq.6.10 and eq.6.12 we can estimate that, 

assuming intermediate unperturbed values for ε and λ (i.e. 500 meV and 800 meV, 

respectively), an increase in ε of about 300 meV (implying ∆G0
I ≅ 250 meV) results in 

kobs ≅ 3.7.103 s-1, a value comparable to that measured for the fast phase of P+QA
- 

recombination in dehydrated RC-LDAO complexes. In other words, a limited 

destabilization of the P+QA
- state can result in a strong acceleration of charge 

recombination, due to the activation of the indirect route through the P+BPhe- state.  

The three different effects considered could cooperate in determining the fast 

recombination kinetics observed under extreme dehydration. In fact, it is plausible that 

the removal of water molecules bound at specific sites and orientations inside the RC 

complex can affect the electrostatics of the P and QA cofactors environment, increasing  
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Figure 6.12  
Simplified energy level scheme showing the direct (kPA) and indirect route (regulated by ∆G0

I 
and kPI), which involves the thermal repopulation of the intermediate P+BPhe- state. Adapted 
from Gopher, 1985. 
 

 

the value of ε and decreasing the value of the reorganization energy for the direct 

recombination, due to a decrease in the number (and mobility) of interacting solvent 

dipoles. At the same time it is not unreasonable that the RC, upon partial depletion of 

water molecules in its cavities and clefts, respond with a structural shrinking which 

might affect the distance between P+ and QA
-. Remarkably this strong destabilization of 

the charge separated state, possibly involving significant structural rearrangements, is 

fully reverted upon rehydration of the RC-detergent films. 

Finally the effects of dehydration observed in RC-detergent films as compared 

to the ones previously reported for RC-water-trehalose glassy matrices (Palazzo, 2002; 

Francia, 2004b; Francia, 2008; Francia, 2009; Savitsky, 2010) deserve some comments. 

Except for the presence of an additional, much faster kinetic phase of P+QA
- 

recombination, which was not detected in RC-trehalose glasses, dehydration leads in 

both systems to a comparable increase of <k> and σ of P+QA
- recombination, which  

indicates a restriction of the associated conformational dynamics. This similarity might 

cast some doubts on the effective role of trehalose and of the glassy state of the RC-

water-sugar matrix in controlling the RC internal dynamics, which might be suspected 

to simply arise from dehydration of the RC-detergent complex also in the presence of 

trehalose. We have at variance proposed that trehalose takes an active and peculiar role 
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in conditioning the protein dynamics through the formation of a network of H bonds 

interconnecting sugar molecules of the rigid glassy matrix with water molecules of the 

hydration shell which are in turn H bonded to surface groups at the protein (Francia, 

2004b; Cordone, 2005; Francia, 2008; Francia, 2009; Savitsky, 2010). This results in a 

strong slaving of the protein dynamics to that of the glassy matrix. A comparison of the 

water contents of the samples at which the kinetic effects on P+QA
- recombination 

become observable in the absence and in the presence of trehalose does not provide 

relevant information, because the trehalose matrix itself (formed by approximately 104 

sugar molecules per RC) binds a considerable amount of water, even under extremely 

dehydrating conditions; consistently the discussed kinetic effects are observed in the 

presence of trehalose at higher (H2O/RC) molar ratios (~104) (Palazzo, 2002; Francia, 

2008; Francia, 2009) as compared to RC films without sugar (H2O/RC~103). The 

following two observations, however, mark important structural and dynamical 

differences in the two systems: (a) as previously reported (Francia, 2008), and verified 

in this work under controlled, extreme dehydration, in RC-detergent films the primary 

photochemistry is irreversibly suppressed and the RC bacteriochlorin cofactors lose 

their native coordination after about three days of incubation at 37°C; the thermal 

stability of the RC is tremendously enhanced in the trehalose matrix, where on the 

contrary no degradation occurs even after several days of incubation at 37°C (Francia, 

2008); (b) in extensively dehydrated RC-trehalose glassy matrices P+QA
- recombination 

after a few seconds of continuous, intense photoexcitation is only slightly decelerated as 

compared to the one recorded after a laser flash, indicating that a prolonged permanence 

of the system in the charged separated state can remove only partially the matrix-

induced inhibition of the conformational relaxation (Francia, 2004b). At variance, as 

will be shown in chapter 8, in extensively dried RC films a comparable period of 

continuous illumination leads to a total recovery of the kinetics observed in the fully 

hydrated system, indicating that the impairment of the conformational protein dynamics 

induced by dehydration is less severe than in the glassy matrix and can be totally 

removed upon continuous photoexcitation. The latter behavior (see chapter 8) and the 

dramatically different resistance to thermal denaturation observed in RC-films and in 

RC-trehalose glasses (investigated in detail in chapter 7) suggest that the inhibition 

mechanism of the RC dynamics, although involving in  both systems the hydration shell 

of the RC-detergent complex, is different in RC-films and in RC-trehalose glasses, and 
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that in the presence of trehalose the protein dynamics is inhibited because it is tightly 

slaved to that of the embedding glassy matrix.  

 

 

6.3   Appendix. 

A formula is derived for calculation of the  surface area of an ellipsoidal ring, formed by 

revolution of an ellipse of semiaxes a and b around a cylindrical core of radius R, with 

axis along x. The area element dA of the surface of revolution obtained by rotating the 

arc segment ds of curve f(x) about the x axis is:  

                       

f! = 2\�(-)f� = 2\�(-)p1 + ��′(-)�$f- 

 

so that the surface area A obtained by rotating the arc between x=-a and x=+a will be: 

 

! = 2\ � �(-)��
�� p1 + ���(-)�$f-																	(eq.A6.1) 

 

For the described ellipsoidal ring, the function to be evaluated is 

 

�(-) = ^ + � 

 

where y obeys the equation of the ellipse 

 

		-$
b$ + �$

a$ = 1 

 

so that 

 

�(-) = ^ + x
� (b$ − -$)� $⁄ 																								(eq.A6.2) 
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After taking the derivative of eq.A6.2, replacing in eq.A6.1, and rearranging, we obtain: 

 

! = 2\a
b c db$ − -$

b$ (b$ − a$)e
� $⁄

f-
��

��

+ 2\^ c d1 + a$-$
b$(b$ − -$)e

� $⁄
f-

��

��
												(eq. A6.3) 
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7. THE EFFECT OF THE TREHALOSE/PROTEIN MOLAR RATIO ON 

THE INHIBITION OF THE RC DYNAMICS 

 

In the previous chapter (see section 6.2.2) it has been shown that an extensive 

dehydration of RC films in the absence of trehalose results in a strong acceleration of 

the P+QA
- kinetics, indicating that the depletion of the hydration shell leads to inhibition 

of the RC dynamics which stabilizes the charge separated state. In RC-films 

equilibrated at a relative humidity ∼ 10%, the observed P+QA
- recombination kinetics 

are comparable to those measured in dehydrated trehalose glasses, revealing that the 

extent of inhibition of the RC dynamics coupled to this electron transfer process is also 

comparable in the two systems. As already discussed in section 6.2.2, this observation 

poses the problem of the effective role of the trehalose matrix and prompts for 

additional investigations addressed to shed light on the differences and on the analogies 

of the mechanisms which determine the inhibition of RC dynamics in dehydrated RC-

detergent films as compared to RC embedded in α,α-trehalose glassy matrices.  

In the first part of this chapter we have used the isopiestic method previously 

applied to RC-detergent films (chapter 6; Malferrari, 2011) to control the hydration state 

of RC-trehalose glassy matrices characterized by a sugar/protein molar ratio equal to 5 x 

103 and 104. Analysis of P+QA
- recombination shows that the dependence of the kinetic 

parameters upon the hydration level of the matrix is significantly affected by the 

sugar/protein molar ratio. In the second part of the chapter we have studied the kinetics 

of thermal denaturation at 44°C in RC-LDAO films and in trehalose-RC glassy matrices 

characterized by a series of sugar/protein molar ratios ranging between 5 x 103 and 25. 

We found that the resistance of dehydrated LDAO-RC films to thermal denaturation 

was dramatically lower as compared to that of RCs embedded into trehalose matrices at 

a sufficiently high sugar/protein ratio.  

These finding emphasizes the specific role played by trehalose in inhibiting the 

protein dynamics coupled to electron transfer as well as the internal RC dynamics which 

leads to thermal denaturation. They also support the different molecular mechanisms 

proposed in section 6.2.2 to explain the inhibition of the RC dynamics in dehydrated RC 

films and in RC-trehalose glasses. 
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7.1   Results. 

7.1.1 Room temperature dehydration kinetics of trehalose-RC glassy matrices 

incubated at different values of relative humidity.  

In previous studies (Palazzo, 2002; Francia, 2004b; Francia, 2008; Francia, 2009; 

Savitsky, 2010) RCs were always embedded in α,α-trehalose glassy matrices 

characterized by a disaccharide-protein molar ratio of 10000; the protein was purified in 

most cases from the carotenoid-less strain R26 (Palazzo, 2002; Francia, 2004b; Francia, 

2008; Savitsky, 2010), but also the carotenoid-containing wild type strain 2.4.1 was 

used (Francia, 2009 and chapter 4 of the present thesis). In all cases, the progressive and 

extensive dehydration of the glassy samples was obtained by alternating cycles of dry 

nitrogen flow and prolonged incubation under nitrogen atmosphere at room temperature 

or at 30°C (for more details see par.3.2).   

With the aim to extend the isopiestic method described in chapter 6 (Malferrari, 

2011) to RC-trehalose glassy samples and to compare the behaviour of matrices 

dehydrated following this new method with the previously published results, the 

isopiestic method was first applied to α,α-trehalose-RC wt 2.4.1 amorphous glassy 

matrices characterized by a disaccharide-protein molar ratio of 104.   

The results obtained by exposing the RC-trehalose sample to relative humidities 

equal to 11%, 6% and 3% are reported in Figure 7.1. Panel A shows the progressive 

removal of residual water molecules following incubation at these relative humidity 

values. The residual water content was evaluated with a NIR dispersive spectrometer, as 

illustrated in par.3.2. At r = 11% approximatively 5 days were needed to lower the 

water content of the matrix from 1.4 to 1.2 H2O/trehalose; at r =6% a further 

comparable decrease (from 1.2 to 0.95 H2O/trehalose) requires incubation for 

approximatively 12 days; finally at r =3% a hydration level of ≈ 0.65 H2O/trehalose 

could be reached in about 2 days. During the described dehydration process of the 

matrix, we have measured in parallel the kinetics of P+QA
- recombination after a laser 

pulse. As described previously for RC embedded at room temperature in α,α-trehalose 

glassy matrices (see chapter 4), the kinetics accelerate and become progressively 

distributed in rate upon dehydration of the glass.  P+QA
- decays can be fitted by a single 

power law (eq.1.2; see par.1.6) and yield the values of the average rate constant, <k> , 

and of the rate distribution width, σ, shown in panels B and C, respectively, of Figure 

7.1. During incubation at r 11%, an appreciable acceleration and increase in the rate  
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Figure 7.1 
Dehydration kinetics (A) of an α,α-trehalose/RC wt 2.4.1 glassy sample incubated in sequence 
at a relative humidity equal to 11%, 6% and 3%. The vertical dashed lines define the time 
intervals during which the sample was incubated at the relative humidity indicated by the label. 
The time dependence of the kinetic parameters of charge recombination, i.e. the average rate 
constant, <k>, and the rate distribution width, σ, are shown in panel B and C, respectively. The 
parameter values were obtained by fitting to a single power law (eq.1.2) the P+QA

- kinetics 
measured during the slow dehydration of the matrix. 
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distribution width of the recombination process is observed as a consequence of partial 

dehydration of the sample:  <k> and  σ increase from values close to those measured in 

solution (<k>≈13 s-1, σ ≈ 4 s-1) to about 20 s-1 and 9 s-1 respectively. At r =6% a further 

acceleration is attained (<k> ≈ 28 s-1 and σ ≈ 14 s-1); finally incubation at r =3% causes 

a steep increase in the values of the kinetic parameters: kinetic analysis of the traces 

acquired after about two days of incubation yielded <k> ≈ 40 s-1 and σ ≈ 25 s-1; these 

values approach the maximal ones reported previously (Francia, 2009 and chapter 4 of 

the present thesis). However, the results of measurements performed during the 

subsequent 4 days of incubation at r =3% show a very limited additional increase of the 

kinetic parameters (see Fig.7.1, panel B and C) indicating that a kind of stationary 

condition is reached, and suggesting that a higher dehydration, and therefore a higher 

inhibition of the RC dynamics cannot be obtained with reasonable, not too long, periods 

of incubation even at this very low relative humidity (r =3%).   

The dependencies of the kinetics parameters, evaluated from the best fit of P+QA
- 

kinetics to a single power law, upon the residual water content of the amorphous glassy 

matrix are plotted in Figure 7.2 (red circles). For the sake of comparison the figure also 

shows data obtained previously in similar samples (black circles), which had been 

dehydrated progressively using a flow of dry nitrogen (chapter 4; Francia, 2009), rather 

than the isopiestic method. The same dependence is obtained within the experimental 

error, independently of the dehydration method used, indicating additionally a very 

good reproducibility of the measurements when different matrices are tested.   

The results presented above show that the isopiestic method can be profitable 

employed to control the hydration state of a RC-trehalose matrix, reaching dehydration 

levels which produce a considerable inhibition of the RC dynamics.  We notice however 

that the dehydration process is very slow for trehalose containing matrices, as compared 

to RC films (i.e. in the absence of saccharides). When using the isopiestic method with 

RC-LDAO films, we could estimate that, at all the relative humidity values tested 

between 3 and 94%, the hydration equilibrium was reached after about 3 hours of 

incubation (see par.3.2). The data of Fig.7.1 indicate that dehydration occurs over a 

much longer timescale (weeks) in RC-trehalose glasses; panel A of Fig.7.1 shows, in 

particular, that equilibrium is never attained even on the long time scale tested. As a 

consequence the maximal inhibition of RC dynamics, i.e. values of <k> ≈ 50-60 s-1 and 

σ ≈ 35-45 s-1, cannot be reached even following several days of incubation at the lowest 

relative humidity (r =3%). The extremely slow dehydration observed in  the saccharide  
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Figure 7.2 
The dependence of the average rate constant, <k>, and of the distribution width, σ, upon the 
residual water content of trehalose-RC wt 2.4.1 glassy samples, characterized by a sugar/protein 
molar ratio of 104. Filled black circles represent the same data shown in Figure 4.2 (see chapter 
4 and Francia, 2009), obtained in samples dehydrated by N2 flow or by prolonged incubation 
under a nitrogen atmosphere at room temperature; red filled circles represent data obtained in 
samples characterized by the same sugar/protein molar ratio, but dehydrated using the isopiestic 
method (see Fig.7.1). 
 

 

matrices is fully consistent with the high affinity of saccharides, and especially of 

trehalose, for water molecules (Heyden, 2008).  
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7.1.2 The effect of the trehalose/RC molar ratio on the time course of 

dehydration and on the kinetics of charge recombination.  

In view of the limitation discussed above, and since the slowness of the 

dehydration processes is clearly due to the slow exchange of water molecules between 

the vapour phase and trehalose in the matrix, we decided to test the efficacy and 

reproducibility of the isopiestic method in RC-trehalose matrices characterized by a 

halved trehalose/RC molar ratio (i.e. 5 x 103 instead of 104) while keeping constant   the 

RC mass in the sample. We expected that such a decrease in the absolute mass of 

trehalose could speed up the dehydration of the matrix, eventually allowing the 

attainment of equilibrium following a reasonable incubation time. This choice implied 

the development of a new protocol to produce homogenous amorphous protein-sugar 

matrices (see par.3.1.2 for details). In fact, as discussed in par.3.1.2, the decrease of the 

trehalose concentration in the liquid sample used to obtain the amorphous matrices, 

significantly decreases its viscosity. This causes, upon dehydration, a capillary flow of 

the RC towards the perimeter of the RC-trehalose liquid drop during dehydration. At 

low viscosity (low trehalose concentrations) this migration results in a strong 

inhomogeneity of the RC-trehalose matrix, with most of the RC confined to a narrow 

ring at the perimeter of the glass (see par.3.1.2).  

The dehydration kinetics measured in α,α-trehalose/RC wt 2.4.1 glassy matrices 

characterized by a trehalose/RC ratio equal to 5 x 103 are shown in Figure 7.3 at a 

relative humidity r =11% and 3%. The time course of water removal is shown at r 

=11% for two independent RC-sugar glassy samples (see open and closed symbols in 

Fig.7.3): data are fairly reproducible, as a stable residual water content is reached in 

both cases roughly after 200 hours (≈ 8 days) with values of H2O/trehalose ≈ 0.48 (0.43 

and 0.54 H2O/trehalose in the two independent experiments).  

The dehydration kinetics are reasonably fitted to an exponential decay 

function, i.e.: 

 

      ���� = ���0� − ��	�
 ∗ 	�
� + ��	�         �eq.7.1�  

 

where w(t), w(0) and w(e) are respectively the water content at time t, at time 0 and at 

the equilibrium; k is the rate constant of the dehydration process. Time 0 is taken as the 

time at which the incubation at a given value of the relative humidity starts. The best fit 

to the exponential decay  (see Fig.7.3, red dashed line)  returns a  half-time,  t1/2 ≈ 25  
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Figure 7.3 
The dehydration kinetics measured at room temperature in α,α-trehalose-RC wt 2.4.1 
amorphous glassy matrices characterized by a sugar/protein molar ratio equal to 5 x 103,  
incubated at r =11% and r =3%. The water content was evaluated by FT-NIR spectroscopy (see 
par.3.2). The black filled symbols represent data obtained on the same sample; the results shown 
as open black circles have been obtained in an independent trehalose-RC glassy matrix 
characterized by the same sugar/protein ratio. For each relative humidity, the red dashed lines 
represent the best fit of the dehydration (or rehydration) process to an exponential function; the 
values of the half times (t1/2) derived from the best fit of the dehydration or rehydration kinetics  
are reported in the text.  
 

 

hours. When the sample is subsequently incubated at r =3%, additional dehydration 

takes place, resulting in a very low residual water content at equilibrium, i.e. 

approximately of 0.07 H2O/trehalose. The dehydration process is slower at r =3% as 

compared to r =11% and the best fit to eq.7.1 (exponential decay) yields at the lower 

humidity t1/2 ≈ 72 hours (red dashed line in Fig.7.3). 

To test the reversibility of our isopiestic method during desorption/sorption 

cycles, we have studied the rehydration at r =11% of a glass previously equilibrated at r 

=3%. As shown in Figure 7.3, the rehydration at r =11% demonstrates, within the error 

of our estimations of the hydration contents, the full reversibility of the 

desorption/sorption processes in α,α-trehalose/RC amorphous glassy samples 

characterized by a sugar/RC molar ratio equal to 5 x 103. A residual water content ≈ 



CHAPTER 7 
 

 140 

0.43 H2O/trehalose, at equilibrium, was reached in about 250 hours (i.e. ≈ 10 days). The 

rehydration kinetics have been fitted to an exponentially growing function, i.e.: 

 

���� = ��0� + ���	� − ��0�
�1 − 	�
�
       �eq.7.2� 

 

where w(t), w(0), w(e) and k are defined as for eq.7.1). The best fit returns t1/2 ≈ 21 

hours for the rehydration process; it appears that the rehydration from r =3% to r =11% 

(during the last time interval of Fig.7.3) and the initial dehydration of the wet sample at 

r=11% exhibit essentially the same kinetics. Most importantly it appears that 

hydration/dehydration cycles in the range of relative humidity between 11% and 3% are 

fully reversible. 

The dehydration behavior of the RC-trehalose matrices characterized by a 

sugar/protein molar ratio of 104 and 5 x 103 shows that, as expected, at the lower sugar 

content a faster and more extended control of the hydration state of the matrix is 

obtained by the isopiestic method (cf. Fig.7.1 and Fig.7.3).  

In view of this, we have performed a detailed analysis of P+QA
- charge 

recombination kinetics after a laser excitation during the dehydration of α,α-

trehalose/RC matrices characterized by 5 x 103 trehalose molecules per RC. The results 

obtained are shown in Fig.7.4, and compared with those obtained in α,α-trehalose/RC 

glassy samples characterized by 104 trehalose molecules per RC (i.e. the data already 

reported in Figure 7.2). Quite interestingly, the dependence of both <k> and σ upon the 

hydration state of the matrix (H2O/trehalose molar ratio) is significantly affected by the 

sugar/protein molar ratio of the glassy matrix.  As the data of Fig.7.4 show clearly, at a 

(H2O/trehalose) ratio ≈ 0.5, for which <k> and σ reach the maximum values in the 

matrix characterized by 104 trehalose molecules per RC, the average rate constant and 

the rate distribution width are considerably lower in the matrix where the trehalose/RC 

ratio is 5 x 103. It appears therefore that a lower hindering of the RC dynamics 

involving lower tier conformational substates, as well as a lower inhibition of the RC 

relaxation from the dark- to the light-adapted conformation takes place in the matrix in 

which the trehalose molar fraction is lower, at the same hydration level. Furthermore, 

the same maximal values of <k> and σ observed at a (trehalose/RC) molar ratio equal to 

104 (i.e. <k> ≈ 60 s-1 and σ ≈ 50 s-1) are attained also in the matrix characterized by  a 

halved (trehalose/RC) molar ratio, but only at much lower hydration levels (i.e. at about 

0.1  H2O  molecules  per  trehalose  molecule).  In  other words, the dependence upon  
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Figure 7.4 
Dependencies of the average rate constant, <k> (panel A) and of the distribution width, σ (panel 
B)  upon the residual water content of the matrix in α,α-trehalose/RC glassy samples 
characterized by a disaccharide/protein molar ratio equal to 104 (red and black circles) and 5.103 
(green circles). Kinetic parameters have been obtained by fitting the P+QA

- recombination 
kinetics to a single power law (eq.1.2).   
 

 

dehydration diverges significantly when <k> and σ start to increase in the two systems. 

These differences are not related to the dehydration method employed (as we have 

shown that the dehydration procedure has no effect (see Fig.7.2). Therefore we strongly 

suggest that the halving of the (sugar/RC) molar ratio from 104 to 5 x 103 soften 

significantly the protein-sugar glassy matrix. Indeed, to obtain the same level of 

inhibition in the RC dynamics (i.e. comparable values of <k> and σ) the residual water 
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content has to be decreased by almost one order of magnitude at the lower sugar/protein 

molar ratio. 

 

7.1.3 The efficiency of the trehalose glassy matrix in protecting the RC from 

thermal denaturation at 44°C: a comparison between denaturation kinetics in RC-

films and in RC-trehalose matrices characterized by 5.103 trehalose molecules per 

RC. 

Previous studies, showing the peculiar efficacy of α,α-trehalose glasses in 

protecting the RC protein against thermal denaturation, as compared to RC-LDAO films 

and sucrose glassy matrices, were all performed at 37°C and in matrices characterized 

by 104 trehalose molecules per RC (Francia, 2008). In order to further characterize the 

dynamical behavior of trehalose/RC glasses at a sugar/protein ration equal to 5 . 103 and 

to compare them with dehydrated RC-film at controlled relative humidity we report in 

this section on thermal denaturation assays performed on both systems at 44°C. We 

have chosen this temperature, instead of 37°C (Francia, 2008), to compare our data with 

the results of thermal denaturation experiments of RC performed at 44°C in solution 

samples (Palazzo, 2010). 

As described previously (Hughes, 2006), the thermal denaturation of the RC can 

be studied by following the evolution of the NIR spectrum of the RC bacteriochlorin 

cofactors during the incubation at high temperature. The relative area of the three 

Gaussian bands into which the spectrum can be decomposed probes in fact the loss of 

the native structure of the individual cofactors (i.e. the bacteriochlorophyll dimer, P, the 

two monomeric bacteriochlorophyll and bacteriopheophytin molecules), since the 

Gaussian contribution of each cofactor is sufficiently separated in the NIR spectrum 

between 700 nm and 950 nm. The details of the analysis (Hughes, 2006; Francia, 2008) 

are given in par.3.4. In Figure 7.5A-B representative NIR spectra, measured at different 

times during incubation at 44 °C, are shown for RC-LDAO films (panel A) and RCs 

embedded in α,α-trehalose amorphous matrices (panel B). The evolution of the NIR 

spectra in Fig.7.5A puts in evidence the progressive loosening of the native structure of 

bacteriochlorin pigment binding sites in RC-LDAO films as a consequence of its 

exposure to high temperature. After 1 hour of incubation at 50°C a conspicuous increase 

of the band centered around 750 nm, due to the absorption of the bacteriopheophytin 

molecules, at the expense of the bands attributed to the monomeric bacteriochlorophylls 

and to the P special pair, centered respectively around 800 nm and 860 nm, is observed.  
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Figure 7.5 
Thermal denaturation assays at 44°C of RC-LDAO films, equilibrated at r =11% (950 H2O/RC), 
and of a dehydrated α,α-trehalose/RC amorphous matrix characterized by 5 . 103 trehalose 
molecules per RC and by a residual water content corresponding to 2400 H2O/RC. The NIR 
spectra of RC-LDAO films (A) and of the RC-trehalose glassy matrix (B) are shown for 
representative incubation times. Panel A: before incubation (continuous line), after 1 h (dashed 
line), after 28 h (dotted line), and after 51 h of incubation (dashed-dotted line). Panel B: before 
incubation (continuous line), after 30 h (dashed line), and after 96 h (dotted line) of incubation. 
Panels A’ and B’ show the relative area of the Gaussian components of the spectra for the RC 
films and for the RC-trehalose matrix, respectively. Spectra were decomposed into four bands, 
centered at 670 nm (black empty symbols), 750 nm (blue filled symbols), 800 nm (green filled 
symbols) and 860 nm (red filled symbols). The vertical bars give the confidence intervals within 
two standard deviations (for details see par.3.4).   
 

 

This suggests that, in a significant fraction of the RC population, the 

bacteriochlorophyll molecules have lost their native structure, i.e. they have lost the 

magnesium atom coordinated by the porphyrin ring or the native protein structure that 

form the pigment binding pocket has been altered, eventually causing a complete 

release of the pigment from the protein binding site. In the spectra of the RC-LDAO 

film taken after 28 h and 51 h of incubation at 44°C the P pair band at 860 nm has 

disappeared and only a broad band around 765 nm is observed, which includes 

contributions from both the monomeric bacteriochlorophylls and the 

bacteriopheophytins, significantly decreasing during the thermal treatment. The 
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alterations in the spectra of the RC-LDAO film at 28 h and 51 h additionally indicate at 

least a partial loosening of the tertiary structure of the RC: it has been reported in fact 

that, when the NIR spectra of the RC shows the disappearance of the 

bacteriochlorophylls bands and the concomitant appearance of broad band centered 

around 750 nm, the fluorescence of the tryptophan residues of the RC, which is usually 

quenched by the bacteriochlorin cofactors bound to the protein, dramatically increases 

(Palazzo, 2010). This behavior is attributed to a dramatic increase in the distances 

between the bacteriochlorin molecules and the tryptophan residues, due to strong 

alterations in the tertiary structure of the RC. On the contrary, as shown in panel B of 

Fig.7.5, the spectrum of RCs embedded in α,α-trehalose glassy matrices is essentially 

unaffected even after 96 hours of incubation at 44°C, demonstrating that the sugar 

matrix completely preserves the native structure of the pigment binding sites. 

The dependence of the band area of the bacteriopheophytins (750 nm), of the 

monomeric bacteriochlorophylls (800 nm) and of the P special pair (860 nm) on the 

incubation time at 44°C is reported in panel A’ and B’ of Fig.7.5 for the RC-LDAO film 

(at r =11%) and for the trehalose-RC glassy matrix, respectively. The origin of the 

fourth Gaussian band (centered at 670 nm), which had to be included to accurately fit 

the spectrum is not known (see Fig.1.7). This precludes any interpretation of the small 

changes which occur during incubation in the area of this minor band, only in RC-films. 

As far as the RC-trehalose glass is concerned, the areas of the three main bands remain 

constant within the experimental errors during the 96 hours of incubation at 44°C. On 

the contrary, the big changes produced by the thermal treatment in the spectrum of RC-

LDAO films result in significant alterations of the relative contributions of the different 

bands. The area of the band attributed to the monomeric bacteriochlorophylls (at 800 

nm) decreases during the first hours of incubation to 38% of its initial value before 

incubation, and the area of the band attributed to the P special pair (at 860 nm) 

essentially vanished in approximately 3 hours. The higher sensitivity of the 

bacteriochlorophyll molecules forming the P pair is consistent with the fact that they are 

closer to the surface of the complex as compared to the monomeric 

bacteriochlorophylls, which should be more protected also by the detergent micelle 

surrounding the protein complex. This behaviour is also in line with the higher 

sensitivity of the P absorption band to other perturbing agents, such as pH changes and 

ionic strength, reported previously (Palazzo, 2004). Consistently with the decrease of 

both bacteriochlorophyll bands, a strong increase in the contribution of the 
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bacteriopheophytin is observed during the first 10 hours of incubation, suggesting that 

the bacteriochlorophylls have lost the magnesium atom or came out of their protein 

binding site (Tandori, 2005). In agreement with what observed (following much shorter 

incubation times) in denaturation assays at 44°C of RC solution (Palazzo, 2010), when 

the dehydrated RC-LDAO films are incubated at 50°C for more than 10 hours the 

Gaussian contribution at ≈ 750 nm slowly decreased, probably as a consequence of the 

chemical denaturation of the pigment (Palazzo, 2010).  

Summarizing, we can conclude that when the RC is embedded in α,α-trehalose 

glassy matrices, in the presence of 5 . 103 trehalose molecules per RC, the native 

structure of the pigment binding sites of the RC is completely preserved at variance 

with what occurs in dehydrated RC-LDAO films, where the protein experiences over 

the same time scale an almost complete thermal denaturation, as revealed by the spectral 

alteration of its bacteriochlorin pigments. 

 

7.1.4  The kinetics of RC thermal denaturation at 44°C in α,αα,αα,αα,α-trehalose glassy 

matrices at different disaccharide/protein molar ratios. 

This section reports on the kinetics of thermal denaturation studied at 44 °C in 

RC embedded in α,α-trehalose glassy matrices characterized by a variable 

disaccharide/protein molar ratio; the molar ratios explored were 0 (i.e. RC-LDAO film, 

in the absence of trehalose), 25, 100, 200, 500, 103 and 104. The measurements were 

performed before the development of the isopiestic method to control the hydration 

state of films and sugar matrices: RC-films and trehalose-RC glasses were therefore 

extensively dehydrated under N2 flow before incubation at 44 °C. Except for this 

difference in the method of dehydration, the extent of thermal denaturation during 

incubation was determined by decomposing into Gaussian bands the NIR spectrum of 

the RC, essentially as described by Hughes and colleagues (Hughes, 2006). Fig.7.6 

shows the relative area of the bands attributed to the bacteriopheophytin cofactors  (750 

nm, panel A), to the monomeric bacteriochlorophylls (800 nm, panel B) and to the 

bacteriochlorophylls of the P pair (860 nm, panel C) as a function of the incubation time 

at 44 °C. For each spectral contribution, the area of the bands have been normalized for 

each time at the initial area before incubation at high temperature. This procedure 

allowed to compare data acquired in different RC-trehalose glassy matrices, which due 

to a variability in their thickness gave rise to different absolute absorbance values in the 

considered NIR spectral region.   
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A correlation between the disaccharide/protein molar ratio and the efficacy of the 

trehalose matrix to protect against thermal denaturation can be qualitatively inferred at a 

first sight from the data of Fig.7.6. First of all, in qualitative agreement with the results 

of the previous section (see Fig.7A’ and B’), essentially no spectral alteration is 

observed even after 100 hours of incubation at 44°C in matrices characterized by a 

sugar/RC ratio larger than 103, while an essentially complete thermal denaturation 

occurs over this time scale in the absence of trehalose (RC-films). A closer inspection of 

the data, at intermediate saccharide/RC molar ratio, reveals additional features, which 

yield information on the effect of the sugar/protein ratio on the overall dynamics of the 

system involved in thermal denaturation. 

When considering the time evolution of the bacteriochlorophyll contribution 

(panels B and C of Fig.7.6), as already observed in the case of RC-LDAO films at r 

=11% (Fig.7.5A, A’), it appears that the bacteriochlorophyll molecules belonging to the 

P special pair are more sensitive to thermal denaturation as compared to the monomeric 

bacteriochlorophylls. In the case of the monomeric ones, in fact, a loosening of the 

native structure is evident only at a very low (sugar/RC) molar ratio, equal to 25, and in 

the absence of sugar (RC-LDAO film). In the latter system, loss of the native structure 

is complete, while in the presence of 25 trehalose molecules per RC it occurs only in a 

fraction of the RC population, since about 50% of the initial area of the band at 800 nm 

survives even after a 120 h incubation (Fig.7.6 B). At molar ratios higher than 25 no 

significant decrease is observed upon incubation at high temperature in the area of the 

band centered at 800 nm. On the other hand, the area of the band at 860 nm undergoes a 

substantial decay during exposure to the high temperature for trehalose/protein molar 

ratios lower or equal to 200 (Fig.7.6C), showing that in a large fraction of the RC 

population the P bacteriochlorophyll is losing its native structure. Interestingly, upon 

decreasing the sugar/RC molar ratio the decay becomes progressively faster, and the 

fraction of the bacteriochlorophyll P special pair pigments withstanding exposition to 

high temperatures also decreases, as can be estimated from the residual normalized area 

of the band at 860 nm for incubation times longer than 120 h.  

The kinetics of the spectral changes related to the band at 750 nm, attributed to 

bacteriopheophytin or to bacteriochlorophyll molecules released from their binding 

sites, are consistent with the variations of the bands at 800 nm and 860 nm described 

above. The normalized area of the 750 nm band, in fact, increases for sugar/protein 

ratios lower or equal to 200; moreover the kinetics becomes progressively faster and the  
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Figure 7.6 

Thermal denaturation assays at 44°C of α,α-trehalose/RC wt 2.4.1 glassy matrices characterized 
by a disaccharide/RC molar ratio equal to 0 (RC-LDAO film, dark grey), 25 (red), 100 (black), 
200 (green), 500 (blue), 103 (orange) and 104 (violet). The time evolution of the relative area of 
the Gaussian bands centered at approximately 750 nm, 800 nm and 860 nm are shown in panel 
A, B and C, respectively. For each band, the relative area evaluated at each time during 
incubation has been normalized to the area of the band before incubation (t=0). Continuous lines 
represent best fits to eq.7.3 for the data in panel B and C, and best fits to eq.7.4 for panel A. The 
values of the fitting parameters A and k (see eqs.7.3 and 7.4) are plotted in Figure 7.7. 
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maximal variation recorded after 100 h incubation increases progressively upon 

decreasing the sugar/protein ratio (see Fig.7.6A). 

The kinetics of Fig.7.6 are reasonably described by exponential decaying (or 

growing) functions.  Best fits are shown in Figure 7.6 with continuous lines only in the 

case of sugar/RC molar ratios for which a significant change of the band area is 

detected. For the area of the band centered around 800 and 860 nm, which decreases 

during the thermal denaturation assays, an exponentially decaying function has been 

considered: 

 

       
��������

��������
= � ∙ 	�
� + �1 − ��       �eq.7.3� 

 

where areai(t) and area(0) are the area of the i-th band at time t and before incubation 

respectively, k is the rate constant of the denaturation process, and A is the maximum 

variation of areai throughout the denaturation assay. Similarly, to describe the increase 

of the band area centered approximately at 750 nm, the following exponentially 

growing function has been used: 

 

         
��������

��������
= 1 + � ∙ �1 − 	�
��    �eq.7.4� 

 

where areai(t), areai(0), A and k have the same meaning as in eq.7.3.  

The dependences of the kinetic parameter k and A upon the disaccharide/RC 

molar ratio are plotted in Figure 7.7. As shown in panel A, a monotonic decrease of the 

rate constants which describe the time evolution of the bands at 750, 800 and 860 nm is 

observed in response to the increase of the sugar/RC ratio. Values of k significantly 

differing from zero are observed only at molar ratios larger than or equal to 200. At all 

the molar ratios, k values which describe the variation of the 860 nm and of the 750 nm 

bands seem to exceed systematically those which govern changes of the 800 nm band.  

Also the maximal variation of the normalized area, A, decreases monotonically upon 

increasing the trehalose/RC molar ratio (Fig.7.7B). In the case of the 800 and 860 nm, A 

can vary by definition between 0 and 1. The small A values obtained for these two 

bands at disaccharide/RC molar ratios higher than 200 show that the vast majority of the 

RCs are protected against thermal denaturation under these conditions. The A values for  
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Figure 7.7 
The dependence of the fitting parameters k (panel A) and A (panel B) upon the trehalose/RC 
molar ratio, obtained by fitting the data in Figure 7.6 to eqs.7.3 and 7.4. The data corresponding 
to the contribution of the bacteriopheophytin, of the accessory bacteriochlorophylls and of the P 
pair are plotted with blue filled circles, green filled circles and red crosses, respectively.  
 

 

the 750 nm band, are systematically larger than the corresponding ones obtained for the 

800 nm and 860 nm bands. This agrees with the notion that the decrease of the bands at 

800 nm and 860 nm, reflecting the formation of bacteriopheophytin from 

bacteriochlorophyll or severe structural alterations in the binding pocket of the 

bacteriochlorophyll molecules, has to be paralleled by an increase of the band at 750 

nm, to which both bacteriopheophytin and unbound bacteriochlorophyll molecules 

contribute (Tandori, 2005).  

The data of Fig.7.7 support the conclusion that, when the disaccharide/protein 

molar ratio is decreased from 200 to 0, a progressively higher fraction of the RC 

population becomes involved in the denaturation process. We suggest that above a 

threshold of about 200 trehalose molecules per reaction center the RC-trehalose glassy 
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matrix essentially blocks the RC dynamics which leads to thermal denaturation. When 

the sugar/protein ratio is decreased below this threshold the mechanical constraints 

which hampers the RC dynamics coupled to denaturation are progressively released in 

parallel with an overall softening of the RC-water-trehalose system.  

 

7.2   Discussion. 

The first aim of the studies presented in this chapter has been to test the efficacy 

of the isopiestic method previously applied to RC-films (see chapter 6) in controlling 

the hydration level of RC-trehalose glassy matrices. The attempt to apply the method, at 

relative humidity values between 11% and 3%, to RC-trehalose glassy matrices 

characterized by a relatively high sugar/protein molar ratio (equal to 104) showed that 

the hydration level of the system could be finely modulated. It also turned out that the 

dependence of the kinetics of P+QA
- recombination upon the content of residual water of 

the matrix was pretty reproducible, irrespective of the method used to dehydrate the 

system: the same dependence was in fact obtained when the RC-trehalose matrix was 

dehydrated under N2 flow or by incubated at controlled relative humidity values, 

defined by the appropriate saturated salt solutions present inside the sample holder 

(Fig.7.2). In view of this results, the isopiestic method offers obvious advantages in 

measurements that require a subtle tuning of the hydration level and stable hydration 

levels of the matrix.  On the other hand, dehydration of the matrix was extremely slow, 

as compared to that observable in the absence of the saccharide (i.e. in RC films). 

Furthermore the dehydration kinetics and the kinetics of P+QA
- recombination, measure 

in parallel after a laser flash, have shown that even after 20 days of incubation at low 

values of the relative humidity (in the range 11% - 3%) a true hydration equilibrium 

could not be attained. This precluded to obtain, after a reasonable incubation time, the 

dehydration levels which cause the maximal inhibition of the RC dynamics, as probed 

by P+QA
- recombination kinetics.  

These limitation of the isopiestic method have been fully removed by decreasing 

the trehalose/RC molar ratio, as shown by the dehydration/rehydration kinetics 

measured in RC-trehalose matrices characterized by 5 . 103 trehalose molecules per RC 

(Fig.7.3). We have demonstrated that under these conditions the matrix equilibrates 

fully with the water vapour at relative humidity values equal to 11% and 3% and that 

stable, reproducible hydration levels can be obtained reversibly (i.e. following 

dehydration or rehydration). In matrices characterized by 5 . 103 trehalose molecules per 
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RC, the use of the isopiestic method allowed therefore to study carefully the dependence 

of the recombination kinetics of P+QA
- upon the hydration level, testing, in particular, 

the effect of the sugar/molar ration on the inhibition of the RC protein dynamics. As 

described in section 7.1.2 (see Fig. 7.4) it appears that at the lower trehalose/RC ratio (5 
. 103 as compared to 104) a much more extensive dehydration of the matrix is necessary 

to reach the maximal inhibition of the RC dynamics probed by the electron transfer 

process. In other words, for a given content of residual water per saccharide molecule, 

both the relaxation of the RC from the dark- to the light-adapted state, and the RC 

fluctuations among lower-tier conformational substates, are significantly less inhibited 

in the matrix characterized by a lower trehalose/protein ratio.  

These results, besides emphasizing the role of trehalose in determining the 

dynamics of the RC embedded in the matrix,  suggest that a limited decrease (form 104 

to  5 . 103) in the molar fraction of the sugar within the glassy matrix has relevant effects 

on the mechanical properties of the matrix and/or on the coupling between the protein 

and matrix dynamics. In order to evaluate the plausibility of such effects, it is 

instructive to attempt an estimate of some geometrical properties of the protein-sugar 

matrix. Although a realistic structural molecular model of the glassy matrix would be 

desirable, even very rough estimates, based on crude assumptions, can provide valuable 

information on the effect of changes of the trehalose molar fraction on parameters such 

as the average thickness of the trehalose protein coating and the average distance 

between individual RCs embedded into the matrix. An extremely crude representation 

of the RC coating by trehalose molecules in the matrix can be obtained by considering a 

spherical cell consisting of a spherical RC-detergent complex coated by a spherical 

trehalose shell. The volume of the RC –detergent complex can be estimated on the basis 

of the structural model introduced previously to interpret the water sorption isotherms in 

RC-detergent films (see chapter 6: Fig.6.11 and par.6.2.1, and ref. Malferrari, 2011): in 

the presence of the detergent LDAO a total volume, VRC-LDAO, ≈ 142•103 Å3 has been 

calculated. The volume of a single α,α-trehalose molecule, Vtrehalose, has been evaluated 

by using the Swiss-PDBViewer software (Guex, 1997) and by averaging five 

conformers of the α,α-trehalose molecule, obtained rotating the two glucosidic moieties 

around the glicosidic bond. Following this approach we have obtained Vtrehalose = 

(278±7) Å3. By varying the number of trehalose molecules per RC a very rough 

estimate of the thickness of the spherical trehalose shell which coats the RC-LDAO 

complex, as a function of the trehalose molar fraction, can be calculated.  
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Table 7.1 
The effect of varying the trehalose/RC molar ratio on the geometrical parameters for the coating 
of the RC-LDAO complex by the glassy matrix. Volumes of 278 Å3 and 142•103 Å3 have been 
estimated for the α,α-trehalose molecule (Vtrehalose), and for the RC-LDAO complex (VRC-LDAO), 
respectively (for more details see par.7.2). 
 
trehalose/RC 10000 5000 1000 500 200 100 25 

 
Cell volume 

(Å3) 
2.9x106 1.5x106 4.2x105 2.8x105 1.97x105 1.7x105 1.5x105 

LDAORC

trehalose

V

V

−

 19.6 9.8 1.96 0.99 0.39 0.20 0.05 

Cell radius 
(Å) 

88 71 46 40 36 34 33 

Trehalose 
matrix 

thickness (Å) 
56 39 14 8 4 2 1 

 

 

These simple geometrical parameters of the system are summarized in Table 7.1 

for several representative values of trehalose/RC molar ratio. When molar ratio is 

decreased from 10000 to 5000 the ratio between the volume of the RC-LDAO and the 

trehalose moieties, (Vtrehalose / VRC-LDAO), and the thickness of the trehalose coating are 

approximately halved, the latter parameter being reduced from 56 Å to 39 Å.  Although 

this geometrical representation is extremely crude, and in particular the model suffers 

from the fact that the considered spherical cells cannot obviously be packed to form a 

continuous RC-trehalose glass, the obtained values provide a useful insight into the 

order of magnitude of the average distance between adjacent RC-LDAO complexes 

hosted by the matrix. In fact, when considering that the sphere representing the RC with 

its micelle has a diameter of ≈ 64 Å,  at a sugar/protein ratio of 104 the average 

separation between two adjacent RC-detergent complexes is roughly comparable to the 

dimension of the RC-LDAO complex. This simple observation suggests that the 

presence of the (soft) protein moiety cannot be neglected when considering the overall 

mechanical (structural and dynamical) properties of the RC-trehalose matrix. The 

hardness of a dehydrated trehalose matrix is likely to be significantly decreased when 

the matrix incorporates RC-protein complexes at such relatively high “densities”. Since 

upon decreasing the sugar/protein ratio to 5 . 103 the thickness of the trehalose coating 

becomes even smaller than the diameter of the RC-LDAO complex,  it is conceivable 

that the overall RC-trehalose matrix is considerably “softened” and that, in particular, 

the dynamics of the incorporated RC is less hampered for a given hydration of the 
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matrix, as compared to the system characterized by 104 trehalose molecules per RC 

complex.  These considerations provide a reasonable explanation for the effect of the 

trehalose/RC molar ration on the kinetics of P+QA
- recombination (Fig.7.4). We expect, 

for instance, that in the “softened” matrix (molar ratio equal to 5 . 103) a larger 

dehydration, hardening the less extended trehalose matrix interposed between RCs, is 

necessary to attain the maximal hampering of the RC dynamics, reached already under 

more hydrated conditions in matrices characterized by a lower “density” of the 

incorporated protein complexes (i.e. at a molar ratio equal to 104).  

The much slower (and incomplete) equilibration observed when using the 

isopiestic method to dehydrate RC-trehalose matrices with a molar ratio equal to 104, as 

compared to 5 . 103, can also be qualitatively understood in the light of the above 

arguments; we expect, in fact, that in the softer matrix (lower sugar/protein), diffusion 

of water from the less exposed regions of the matrix, and particularly from the protein-

matrix interface, will be favoured by the less inhibited overall dynamics of the 

trehalose-RC matrix. In the “harder” system, moreover, the water molecules segregated 

at the surface of the RC complex, will have to cross a thicker (and “harder”) trehalose 

matrix in order to leave the system during the dehydration process.   

The values calculated for the geometrical parameters of the RC-trehalose matrix, 

as a function of the sugar/protein molar ratio can also help to rationalize the results of 

thermal denaturation assays performed at 44 °C, for different molar ratios (Fig.7.6 and 

7.7). The main conclusion of these measurements was that for values of the 

trehalose/RC ratios larger than 200 no significant thermal denaturation takes place even 

over the long time-scale explored (about 5 days). Upon decreasing the sugar/protein 

ratio below this threshold, thermal denaturation involves a progressively larger fraction 

of the RC population and a progressively faster denaturation kinetics is observed. As 

already mentioned in section 7.1.3 we ascribe the extraordinary ability of the trehalose 

matrices to protect the RC against thermal denaturation to the extremely tight coupling 

between the dynamics of the embedded RC and the dynamics of the solid trehalose 

matrix. This tight dynamical “slaving” (Frauenfelder, 2009) results in a strong inhibition 

of the RC conformational dynamics which governs the loss of the protein-cofactor 

native structure, thus preventing for long time thermal denaturation even at high 

temperatures.  

This scenario appears to be consistent with the observation of a threshold in the 

sugar/protein ratio, below which the protective effect of the trehalose matrix becomes 
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ineffective. We expect, in fact, that the inhibition of the RC protein dynamics involved 

in thermal denaturation is a collective effect, which requires a minimum coating of the 

RC complex surface by trehalose molecules. According to the anchorage hypothesis 

(see par.1.5) inhibition of the RC dynamics will require in particular the development, 

upon dehydration, of a sufficiently extended  network of multiple H bonds, involving  

simultaneously surface residues of the protein, water molecules at the water matrix 

interface, and trehalose molecules of the matrix. Below a critical number of trehalose 

molecules per RC this matrix effect will clearly vanish, since the H bond network will 

collapse. In spite of the crude assumptions made, the geometric parameters of Table 7.1 

are consistent with this model, and provide some additional insight into the mechanism 

of inhibition of the RC dynamics. We expect that a discontinuity will occur in the H 

bond network which locks the surface of the RC complex when the trehalose coating of 

the surface starts to be incomplete. In terms of the geometrical representation of Table 

7.1, this threshold is determined very roughly by a trehalose matrix thickness 

comparable to the dimension of a single trehalose molecule. From the volume 

calculated for the trehalose molecule, used in Table 7.1, Vtrehalose ≈ 278 Å3 a diameter of 

the trehalose molecule of approximately 8 Å is easily calculated in the spherical 

approximation. It can be suggested, therefore that, this is the approximate thickness of a 

continuous monolayer of trehalose molecules coating the  the RC-LDAO complex. 

From the data of Table 7.1, we see that the continuity of such a minimum trehalose 

coating is lost for disaccharide/protein molar ratios lower than 500 (which corresponds 

to a trehalose matrix thickness equal to 8 Å). This conclusion agrees very well with the 

experimental results presented in Figure 7.6 and 7.7, showing that below this threshold 

the bacteriochlorin cofactors of the RC start to lose their native structure upon 

prolonged incubation at 44 °C.   

The systematically lower sensitivity of the 800 nm band (i.e. the lower propensity 

of the monomeric bacteriochlorophyll cofactors to undergo thermally induced 

denaturation) is probably due to the localization of their binding pockets, which are 

deeply buried inside the RC-detergent complex. We tentatively propose that the 

alteration of the local environment of these buried cofactors requires a more complete 

unfolding of the RC protein, as compared to the more exposed bacteriochlorophyll 

dimer P. 

Finally, the comparison of the thermal denaturation assays performed at 

controlled relative humidity on a RC-LDAO film and on a RC-trehalose glassy sample 
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characterized by 5 . 103 trehalose molecules per RC (see Fig.7.5) deserves some 

comments. Both systems have been equilibrated in the presence of a saturated LiCl 

solution, i.e. at a relative humidity r =11%. As discussed in the last part of section 6.2.2 

the kinetic analysis of P+QA
- recombination after a laser pulse showed that the extensive 

dehydration of RC-LDAO films and RC-trehalose glasses results in a comparable 

inhibition of RC dynamics over the time scale (0.1 s) of this electron transfer process 

(see Fig.7.4, Fig.6.9 and Table 6.3).  The results of thermal denaturation assays reveal 

however a quite different behaviour in these two systems: while in the dehydrated 

trehalose glassy matrix, the RC preserves its structural and functional integrity even 

following several days of incubation at 44 °C, in the dehydrated RC-LDAO film the 

protein-pigment complex undergoes an essentially complete denaturation after about 5 

hours of incubation at the same temperature.   

This observation leads to the conclusion that the dynamical constraints which 

limit the RC dynamics in the two dehydrated systems are different and affect differently 

dynamics which involve different time- and space- scales. Thermal denaturation, in 

particular, is expected to be governed by large-scale dynamics, while the stabilization of 

the primary charge separated state P+QA
- is supposed to be coupled to a faster, small 

scale dynamics, although is structural basis is still debated (see par.1.4). We have 

already discussed at length in section 6.2.2 the different molecular mechanisms which, 

according to our view, lead to a comparable inhibition of the RC dynamics coupled to 

charge recombination in dehydrated trehalose glasses and RC-films. In the frame of the 

unified model of protein dynamics recently proposed by Frauenfelder (Frauenfelder, 

2009) we have assigned the conformational relaxation which stabilizes the primary 

charge separated state, as well as the fast RC fluctuations among lower-tier 

conformational substates, to the so-called β-slaved processes, which are dynamically 

coupled to the fluctuations of the hydration shell of the protein complex. On this basis, 

we have proposed that in the two systems inhibition of these RC dynamics are caused 

respectively by a substantial depletion of the protein hydration shell (RC films) and by a 

dramatic reduction in the dynamics of the residual water molecules belonging to the 

protein hydration shell (trehalose-RC glasses).  

According to the Frauenfelder unified model we should expect that dehydration of 

the RC complex, even in the absence of the trehalose matrix, inhibit the protein 

dynamics responsible for thermal denaturation, since large scale conformational 

changes are predicted to be blocked in extensively dehydrated systems. Indeed, our 
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thermal denaturation assays in dehydrated RC-LDAO films show that loss of the native 

structure occur over a time scale of hours. It appears therefore that the denaturation 

process is tremendously slowed down in dehydrated RC films as compared to solution, 

where a complete loss of the RC tertiary structure occurs over the time scale of minutes 

(Palazzo, 2010). The fact that in dehydrated trehalose glasses, under the same 

conditions, RC denaturation is totally prevented, at least over a time scale of a few days, 

shows that embedding the RC into the trehalose glasses totally suppresses the residual 

degree of motional freedom which in RC films allow at 44 °C a slow denaturation 

process. This observation further supports the notion that at low water content an 

extremely tight structural and dynamical coupling is set up between the protein and the 

trehalose glassy matrix, which impairs severely specific protein dynamics occurring 

over time-scales which differ by orders of magnitude.     
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8. THE KINETICS OF P
+
QA

- 
RECOMBINATION FOLLOWING 

CONTINUOUS ILLUMINATION IN DEHYDRATED RC FILMS 

AND RC-TREHALOSE GLASSES 

 

In the previous chapter it has been shown that the isopiestic method allows an 

efficient control of the hydration level not only in RC-LDAO films (see chapter 6 and 

Malferrari, 2011), but also in α,α-trehalose/RC sugar glassy matrices characterized by a 

sugar/RC molar ratio equal to 5 
.
 10

3
 (see par.7.1.1 and 7.1.2). Although a comparable 

inhibition of the RC dynamics probed by the kinetics of P
+
QA

-
 recombination after a 

laser pulse is observed in the two system under appropriate dehydration levels, the 

results discussed in the previous chapter, and in particular the effects of the 

sugar/protein ratio on the kinetics of P
+
QA

-
 recombination as a function of hydration, 

indicate that in RC-trehalose matrices protein-water-trehalose interactions play a critical 

role in the inhibition of the RC dynamics, as postulated by the anchorage model (see 

par.1.5). At variance, in dehydrated RC films, the inhibition of the RC dynamics which 

stabilizes the P
+
QA

-
 state is drawn back to the depletion of the hydration shell of the 

protein complex (see par.6.2.2). In both systems the RC dynamics coupled to the 

electron transfer process is “slaved” to the dynamics of the hydration shell, which is 

however regulated by different mechanisms and interactions in RC films and RC-

trehalose glasses. The results of the previous chapter have also shown that the RC 

dynamics associated to thermal denaturation of the protein complex differ significantly 

in dehydrated RC-trehalose matrices and in RC films. In the latter system loss of the 

native structure occurs on the time scale of hours, while in the former one no thermal 

denaturation is seen for at least several days at 44 °C. This observation suggests that the 

presence of trehalose in the amorphous matrix gives rise to stronger structural 

constraints which impair more effectively the RC dynamics. 

In order to obtain further insights into the different dynamical behaviour of 

dehydrated RC films and RC-trehalose glasses, we examine in this chapter the kinetics 

of P
+
QA

-
 recombination following periods of intense, continuous illuminations.  

Previous studies (Francia, 2004b; Cordone, 2005) have in fact demonstrated that when 

dehydrated RC-trehalose glassy matrix characterized by a strong RC dynamics 

inhibition are subjected to continuous, bright excitation of progressively longer 

duration, the kinetics of P
+
QA

-
 recombination following the photoexcitation becomes 
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progressively slower and less distributed, i.e. more similar to the one measured in 

solution. This partial recovery has been taken to indicate that following a sufficiently 

long photoexcitation of the system, the inhibition of the RC dynamics stabilizing the 

primary charge separated state is partially (and temporarily) removed (Francia, 2004b; 

Cordone, 2005). As outlined in par.1.6, similar effects, induced by prolonged, 

continuous photoexcitation in RC-trehalose matrices, have been observed also in 

relation with the conformational gating mechanism governing the electron transfer from 

QA
-
 to QB (Francia, 2003). These continuous illumination effects were interpreted by 

proposing that the persistence of the electric field produced by the P
+
QA

-
 charge 

separated state causes the continuous attempts of the protein to undergo dielectric 

conformational relaxation, most likely resulting in a temporary and partial disruption of 

the H bond network which, in the dark-adapted system, strongly inhibits any RC 

dynamics. As a consequence, following a sufficiently long photoexcitation, the 

relaxation from the dark-adapted to the light-adapted  conformation can take place in a 

fraction of the RC population. By comparing the kinetics of P
+
QA

-
 recombination in 

dehydrated RC films and in RC-trehalose matrices after continuous illumination we 

have found that only in the former system a complete recovery of the kinetics observed 

in solution can be observed. This finding further supports the conclusion that in the 

dehydrated RC film residual degrees of motional freedom are present, which, at 

variance, are completely suppressed in the RC-trehalose matrix.  

 

8.1   Results. 

Figure 8.1 shows P
+
QA

-
 charge recombination kinetics following a 7 ns laser 

pulse, measured in a RC-trehalose glassy matrix characterized by a trehalose/RC ratio 

equal to 5 
. 

10
3
 (Fig.8.1 A, black trace) and in RCs embedded in RC-LDAO films 

(Fig.8.1B, black trace), both equilibrated at a relative humidity r =11%. Kinetic traces 

have been fitted to a single power law (eq.1.2), except for the trace acquired in the RC 

film, following a laser pulse, which showed the presence of a second, additional much 

faster kinetic phase (see section 6.1.3), and was fitted to the sum of two power laws 

(eq.6.4). The amplitude of the fast phase accounted for 40% of the total decay. As 

discussed in section 6.2.2 the faster decay phase already observed in extensively dried 

RC films can be attributed to RCs in which the geometry of the P
+
QA

-
 radical pair 

and/or  the  energetics  of  charge  recombination  have  been  substantially  altered,  
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Figure 8.1 
P

+
QA

-
 charge recombination kinetics following a laser pulse (black traces) and 20 s of 

continuous photoexcitation (grey traces) in a RC-trehalose glassy matrix characterized by a 

trehalose/RC molar ratio equal to 5 
.
 10

3
 (A) and a RC-LDAO film (B), both equilibrated at r 

=11%. The residual water content of the RC-trehalose matrix and of the RC films was 2400 

H2O/RC and 950 H2O/RC, respectively. Continuous red lines represent the best fit of the P
+
QA

-
 

decay to the sum of two power laws (eq.6.4) in the case of the RC-LDAO film photoexcited by 

a laser pulse and to a single power law (eq.1.2) for all the other traces. Values of the obtained 

kinetic parameters are listed in the following (the corresponding confidence intervals within two 

standard deviations are given in brackets). For the RC-trehalose glassy sample (panel A): laser 

pulse, <k> = 38.5 (38.20, 38.90) s
-1

, σ = 21.65 (21.24, 22.02) s
-1

; 20 s continuous illumination, 

<k> = 25.40 (25.23, 25.61) s
-1

, σ = 13.74 (13.51, 13.97) s
-1

. For the RC-LDAO film (panel B): 

laser pulse,<kF> = 1569 (568, 3964) s
-1

, σF = 1505 (398, 5458) s
-1

, <kS> = 38.75 (35.62, 42.15) 

s
-1

, σS = 29.84 (24.19, 35.21) s
-1

; 20 s continuous illumination, <k> = 10.22 (9.97, 10.43) s
-1

, σ 

= 7.39 (7.00, 7.78) s
-1

. 
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presumably due to the removal of water molecules bound inside the RC protein. This 

phase, therefore, will not be further considered in the present analysis.   

 In RCs embedded in the trehalose matrix, best fitting of the kinetics recorded 

after the laser pulse yields <k> ≈ 39 s
-1

 and σ ≈ 22 s
-1

 (Fig.8.1, panel A); the same 

values, within the experimental error) have been obtained for the slow kinetic 

component in the RC-LDAO film, i.e. <k> ≈ 38 s
-1

 and σ ≈ 26 s
-1

 (Fig.8.1, panel B). 

From the essentially coincident values of the kinetic parameters, we infer that when the 

two systems are dehydrated by equilibrating them with an ambient relative humidity r 

=11% the RC experiences, over the time scale of the charge recombination process, a 

comparable protein dynamics inhibition.  

As shown in Figure 8.1 (grey traces) when the P
+
QA

-
 decay is recorded after 20 s 

of continuous photoexcitation (for details on the illumination source see par.3.3) in both 

the RC-LDAO film and the RC-trehalose glassy matrix the recombination kinetics is 

considerably slowed down, as compared to the one following the laser pulse excitation.  

In the case of the RC-trehalose matrix the average rate constant <k> and the distribution 

width σ decrease to  25 s
-1

 and 14 s
-1

 respectively. Quite remarkably a much bigger 

effect is observed in the RC films, where  <k> and σ, following continuous 

illumination, decrease to 10 s
-1

 and  7 s
-1

 respectively. We notice that the value of <k> 

obtained after continuous illumination coincides with that of  P
+
QA

-
 recombination in 

solution (see figure caption of Fig.4.1 and par.4.1.1). It appears therefore that, in the RC 

film, continuous photoexcitation fully restores the ability of the RC to undergo the 

conformational relaxation which stabilizes the primary charge separated scale, as 

probed on the time scale of this electron transfer process.  

Fig.8.2 shows the dependence of <k> (panel A) and of σ (panel B), determined 

from the measured P
+
QA

-
 recombination kinetics (see Fig.8.1), upon the duration of 

photoexcitation over a time range which extends from that of the laser pulse (7 
.
 10

-9
 s) 

to 100 s. In the RC-trehalose matrix equilibrated at r =11% (purple symbols) both 

kinetic parameters decrease progressively upon increasing the photoexcitation time 

period. The effect saturates at a photoexcitation time of about  100 ms. As observed 

above, even for the longer continuous illumination times the <k> and σ values are 

markedly larger than the one measured in solution (see figure caption of Fig.4.1 and 

par.4.1.1). At variance, in the RC-LDAO film equilibrated at the same relative humidity 

r =11%, <k> and σ values decrease more steeply than in the RC-trehalose matrix, and  
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Figure 8.2  

The dependence of the average rate constant, <k> (panel A), and of the distribution width, 

σ (panel Β) upon the duration of photoexcitation in the RC-LDAO film at r =11% (blue circles) 

and in the α,α-trehalose/RC wt 2.4.1 glassy matrix, equilibrated at r =11% (purple circles) and 

at r =3% (red circles). Kinetic analysis was performed as illustrated in Fig.8.1. The parameters 

shown in the case of the RC film photoexcited by the laser pulse refer to the dominating slow 

kinetic phase. Vertical bars represent the calculated confidence intervals within two standard 

deviations. 
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significant changes are observed at longer illumination times, i.e. up to 2 s. 

Furthermore, for such durations of photoexcitation, the average rate constant, <k>, has 

decreased to values of about  10 s
-1

, i.e. to the value measured in solution samples (see 

Fig.4.1 and Fig.4.2 for kinetic data in solution wt 2.4.1 RCs). The different response to 

continuous illumination of RC-trehalose glasses and of RC films indicates that in the 

former system the permanence of the charged separated state for about 100 ms only 

partially restores the ability of the RC to relax from the dark-adapted to the light-

adapted conformation. On the contrary, in the absence of trehalose, i.e. in RC films, a 

prolonged (1 s) exposure of the RC to the electric field generated by the P
+
QA

-
 state 

allows a complete stabilization of the primary charge separated state. Interestingly, 

under these condition, the exponential character of the charge recombination process is 

not fully restored, also in RC films: the rate distribution width, σ, in fact, is significantly 

decreased upon increasing to 1 s the duration of continuous illumination, but, even at 

the longest photoexcitation times, level at about 7 s
-1

, i.e. well above the values 

measured in solution. This suggests that the interconversion among lower tier 

conformational substates remains slower than in solution even when photoexcitation is 

attained continuously for several seconds. 

The kinetics of P
+
QA

-
 recombination in the RC-trehalose glass has been studied as 

a function of the photoexcitation also under more dehydrating conditions, i.e. following 

equilibration at r =3%. The results are shown in Fig, 8.2 with red symbols. The residual 

water content of the RC-trehalose glass, when equilibrated at r =11% and at r =3% was 

0.48 and 0.07 water per trehalose molecule, respectively. In the matrix equilibrated at r 

=3%, the analysis of P
+
QA

-
 recombination kinetics following a laser pulse yields  <k> = 

52 s
-1

, σ = 38 s
-1

 (as compared to <k> = 39 s
-1

, σ = 22 s
-1

 in the same matrix equilibrated 

at r =11%), indicating a stronger inhibition of RC dynamics at r =3% as compared to r 

=11%. In spite of this, the effect of continuous illumination is quite similar to that 

observed in the less dehydrated matrix; in particular <k> and σ values decrease 

progressively upon increasing the photoexcitation time, and the same minimum values 

are attained. As observed in the matrix equilibrated at r =11%, also in the more 

dehydrated matrix, the maximal recovery is observed already following  a 100 ms 

photoexcitation. The data obtained in the matrix equilibrated at r =3% confirm that in 

RC-trehalose matrix, at variance with dehydrated RC films, continuous illumination 

only partially reverts the inhibition of RC dynamics.  
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8.2   Discussion.  

The results illustrated above show that the effects of the prolonged illumination on 

RC purified from the wt 2.4.1 strain, embedded in dehydrated trehalose glassy samples, 

are consistent with what already published for RC purified from the carotenoid-less 

strain R26 (Francia, 2003; Francia, 2004b). Although the values of <k> and σ estimated 

from the P
+
QA

-
 recombination kinetics following a laser pulse are systematically larger 

in the carotenoid-containing RC as compared to the carotenoid-less one (see chapter 4, 

Fig.4.1 and 4.2), upon continuous photoexcitation a comparable fractional decrease in 

these kinetic parameters is observed. Most importantly in both RC types the slowing 

down of the kinetics occurs over the same range of photoexcitation duration (i.e. 

between 7 ns and 100 s), and the minimum values of <k> and σ reached are still 

consiberably higher than the ones observed in solution RCs. These minimum values 

coincide in the RC-trehalose matrix equilibrated at a relative humidity equal to 11% or 

3%, indicating that in both cases the inhibition of the RC relaxation which stabilizes the 

charge separated state is only partially removed following prolonged continuous 

illumination.  

In the frame of the anchorage model (par.1.5) the simplest interpretation of the 

continuous photoexcitation effects is that, during the continuous illumination period, the 

RC protein is continuously exposed to the electric field generated by charge separation 

and, in its continuous attempts to relax to the light-adapted conformation, perturbs the 

hydrogen bond network which connects protein surface residues to the trehalose matrix 

through residual water molecule at the protein-matrix interface. This perturbation seems 

to be able to disrupt partially the H-bond network which inhibits the RC dynamics. 

Following the partial collapse of the H bond network which tightly locks the surface of 

the RC complex to the sugar matrix, the RC protein regains some degrees of motional 

freedom and, during the continuous illumination period, undergoes a partial relaxation 

towards the light-adapted state. The P
+
QA

-
 kinetics recorded after a sufficiently long 

photoexcitation is therefore slower than that observed after a ns laser pulse, as a 

consequence of the partial energetic stabilization of the charge separated state. 

Interestingly, the partial disruption of the H bond network appears to be fully reversible 

in the dark. In fact, when a continuous photoexcitation kinetic measurement is followed 

by a laser-flash kinetic measurement, after a short (about 1 minute) dark adaptation, a 

fast P
+
QA

-
 decay is observed, characterized by the maximal <k> and σ values which are 

normally recorded following the laser pulse in dark adapted samples. We have not 
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studied systematically the kinetics of the dark adaptation after continuous illumination 

periods, but it is clear from the timing of our measurements that no hysteresis is 

observed in the effects of prolonged illumination (at least up to 100 s) when dark 

adaptation of about 1 minute is allowed between successive measurements. We infer 

that after the continuous photoexcitation and the decay of the P
+
QA

-
 state, the tight 

network of H bonds is re-constructed during a short dark adaptation.  

The interpretation of continuous illumination effects described above is consistent 

with the finding that, following continuous photoexcitation, the P
+
QA

-
 recombination 

kinetics is not only slowed down, but also becomes less distributed in rate (i.e. also the 

value of σ decreases. This suggests that the partial disruption of the H bond network 

which limits the RC relaxation also allows, on the time scale of charge recombination, 

thermal fluctuations among some of the low tier conformational substates of the protein, 

thus producing a partial averaging of the kinetic heterogeneity observable after a laser 

flash. 

The proposed interpretation is in line with the results of flash-photolysis 

experiments performed in dried trehalose-coated carboxy-myoglobin (MbCO) samples 

(Abbruzzetti, 2005). In this system, preillumination with continuous light increases the 

diffusion of CO from the distal to the proximal heme side. In analogy with what 

previously observed in RCs (Francia, 2004a; Francia, 2003), this effect has been taken 

as reflecting a decoupling of the protein internal degrees of freedom from those of the 

external water-sugar matrix (Abbruzzetti, 2005). Evidence of a conformational 

relaxation induced by continuous illumination at temperatures lower than 160 K had 

been previously reported in myoglobin (Chu, 1995). 

The results shown in Figure 8.2 depict a very different scenario for the effects of 

prolonged illumination on dehydrated RC-LDAO films equilibrated at r =11% (blue 

symbols). In this system, in fact, following a 2 s period of continuous photoexcitation 

the value of <k> decreases to the one (<k> ≈ 10 s
-1

) observed in solution RC samples,  

indicating that the inhibition of the RC relaxation which stabilizes the P
+
QA

-
 state (light-

adapted conformation) is completely removed. In section 6.2.2 we have discussed the 

inhibition of RC dynamics caused by extensive dehydration (RC films) in the frame of 

the unified model of protein dynamics proposed by Frauenfelder (Frauenfelder, 2009). 

The results of our high-field EPR studies (chapter 5) are consistent with the notion that 

the RC dielectric relaxation, as well as fluctuations among lower tier conformational 

substates, are β-slaved processes (section.5.2, see also section.6.2.2), dynamically 
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coupled to the thermal fluctuations of the water molecules which form the hydration 

shell of the protein, strongly interacting with its surface groups (see par.1.2). If this is 

the case, we expect that, as indeed probed by the kinetics of P
+
QA

-
 recombination, a 

progressive removal of the hydration shell of the RC-detergent complex leads to a 

drastic slowing of the considered RC dynamics. This dynamics will appear essentially 

“frozen” during the time scale of charge recombination (0.1 s), giving rise to fast and 

strongly distributed recombination kinetics after a laser-flash excitation. The fact that 

the inhibition of the RC relaxation from the dark-adapted to the light-adapted 

conformation appears to be totally removed after a sufficiently long (2 s) period of 

continuous photoexcitation, suggests that, in dehydrated RC films, this conformational 

dynamics is not totally suppressed, i.e. completely blocked, but only slowed by orders 

of magnitude, as compared to RC solutions. When the system is photoexcited by a laser 

pulse (10
-9

 s) the slowed conformational relaxation to the light-adapted state cannot 

occur, and a fast recombination is observed from the dark-adapted, unstabilized 

conformation. When however the RC is kept in the charge separated state for a much 

longer time (from 10
-2

 s
 
to 1s) the slowed relaxation can occur to a progressively higher 

extent for increasing photoexcitation times. For sufficiently long photoexcitation times 

(2 s) the RC can completely relax to the light-adapted state, and, correspondingly, P
+
QA

-
 

recombination can proceeds for the completely-stabilized, light-adapted conformation, 

exhibiting the slow kinetics measurable in solution samples. We do not exclude that 

also in the RC film an extensive dehydration leads to significant interactions between 

RC-detergent complexes, due to their close packing upon removal of the hydration 

layer, possibly mediated by the detergent micelle which surrounds the hydrophobic 

portion of the RC. These interactions may contribute to reduce the RC dynamics probed 

by the charge recombination kinetics, hampering in particular the interconversion 

between conformational substates. If this is the case, it is conceivable that the RC-

detergent matrix formed upon dehydration is also perturbed during a prolonged 

illumination period, resulting in a higher internal mobility of the RC. This would 

explain why, following continuous photoexcitation, the kinetics becomes progressively 

less distributed in rate: the rate distribution width, σ, decreases from 30 s
-1

 for the 

kinetics measured after the laser pulse to about 8 s
-1

 following a 2 s period of 

continuous photoexcitation (Fig. 8.2, panel B). The latter value is still significantly 

larger than the one (about 2 s
-1

) measured in solution, suggesting that the structural 
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heterogeneity of the RC population is not completely averaged over the time scale of 

charge recombination.   

The different effects of continuous illumination on the charge recombination 

kinetics observed in RC films and in RC-trehalose matrices are in line with the results 

of thermal denaturation studies described in the previous chapter (section 7.1.3). They 

show in fact that also the large scale dynamics, though to be associated with loss of the 

RC native structure, are much less impaired in dehydrated RC films, as compared to 

RC-trehalose matrices. As a whole the data suggest that the different dynamical 

processes considered, i.e. thermal fluctuations among conformational substates, 

relaxation to the light-adapted state, and rearrangements of large protein domains at 

high temperature, are correlated. The results indicate that in general the RC retains a 

significantly higher internal mobility when dehydrated in the absence of sugar, being 

the different dynamics probed by electron transfer and by propensity to thermal 

denaturation more strongly inhibited when the RC complex is incorporated into 

trehalose glasses.  
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9. LIGHT-MINUS-DARK FTIR DIFFERENCE SPECTROSCOPY 

STUDIES ON HYDRATED AND DEHYDRATED RC FILMS 

 

In chapter 4 it has been shown that the stabilization of the primary charged 

separated state, as probed by the kinetics of P+QA
- recombination after a laser pulse, is 

strongly affected by the hydration state of the RC. These results (see in particular 

par.6.1.3 and par.6.2.2) indicated that the conformational relaxation which stabilizes the 

P+QA
- state was dramatically hindered when removing water molecules from the protein 

hydration shell (Malferrari, 2011). On this basis, in order to better understand the 

molecular basis of this conformational relaxation, we have measured light-induced 

P+QA
-/PQA difference FTIR spectra of RC-LDAO films characterized by two well 

defined hydration levels, i.e. in samples equilibrated at a relative humidity r =76% and r 

=11% (see par.3.6 for more details on FTIR difference spectroscopy).  

As already outlined in par.1.4, the molecular mechanism of the relaxation from 

the light- to the dark-adapted conformation is still debated and several different 

hypothesis have been proposed during the last decades. Recently, Iwata and colleagues 

(Iwata, 2009), on the basis of light induced FTIR QA
-/QA difference spectra of RC-

LDAO films at r =98%,  have suggested that water molecules, weakly hydrogen bonded 

to the RC, play a critical role in relaxation process. We thought to extend the analysis of 

Iwata and colleagues by comparing directly FTIR light-minus-dark difference spectra in 

hydrated and significantly dehydrated RC-LDAO films. We also aimed to investigate 

the correlation between RC and water FTIR bands affected by the hydration level and 

the extent of protein dynamics inhibition inferred from P+QA
- recombination kinetics.  

At variance with the study by Iwata and co-workers (Iwata, 2009) who studied 

QA
-/QA difference spectra, we have examined P+QA

-/PQA difference spectra, because 

under our more dehydrated condition the photoxidized primary donor P+ cannot be 

rapidly reduced by exogenously added redox agents, due to the impairment of 

diffusional processes. We notice that, although P+QA
-/PQA difference spectra with good 

signal-to-noise ratio are not easily obtained (due to the strongly absorbing contributions 

of P+), these spectra provide in principle a more relevant information as compared to 

QA
-/QA difference spectra. In fact, the RC state which undergoes the dielectric 

relaxation under study is characterized by the P+QA
- radical pair, and the electric charge 
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on P+ can induce specific conformational changes, probed by difference FTIR 

spectroscopy, which do not take place when only the semiquinone anion (QA
-) is 

present. 

The light induced FTIR difference spectra presented in this chapter have been 

obtained during a stage in the laboratory of the Institut de Biologie et Technologies de 

Saclay IBITeC-S-CEA, in collaboration with Dr. Alberto Mezzetti and Dr. Winfried 

Leibl of the Group of Photocatalysis and Biohydrogen. 

 

9.1   Results. 

Previous studies (Mäntele, 1988; Bauscher, 1990; Nabedryk, 1990a; Breton, 

1992) have shown that P+QA
- light-minus-dark difference spectra in the 5000-1000 cm-1 

range contain a large number of vibrational bands, attributed to the bacteriochlorophylls 

of the P special pair, to the quinone in the QA site, to the peptide and to water molecules 

interacting with the RC. Dehydration of the RC films (from r =76% to r =11%) induces 

a number of changes in the differential P+QA
-/PQA spectra, which can be conveniently 

grouped according to their spectral region and are examined in detail in the following 

paragraphs.  

 

9.1.1   The electronic band of P
+
 around 2600 cm

-1
 and the continuum bands in the 

2900-2200 cm
-1

 region. 

Over the 5000-1000 cm-1 spectral range the biggest contribution to the differential 

light-dark spectrum is given by a broad band centred around 2600 cm-1 which is due to 

an electronic transition of P+ (Breton, 1992; Iwaki, 2002). In RC-LDAO films 

equilibrated at r =76% the amplitude of the electronic band of P+ is systematically larger 

than in films equilibrated at r =11% (not shown). From the amplitude of this light-

induced band, in view of the comparable RC concentration and optical path of the 

samples (as evaluated from the area of the amide II band of the RC, measured in the 

dark) it appears that the extent of primary electron donor P steadily photo-oxidized 

under continuous photo-excitation is systematically lowered upon decreasing the 

hydration level of the system. This observation was confirmed by optical spectroscopy 

performed in parallel to the FTIR measurements (see below, par.9.1.5) which also 

indicated a much lower P photoxidation level under continuous illumination (cf. 

Fig.9.5A). This behaviour is consistent with the strong acceleration of flash induced 

P+QA
- charge recombination kinetics observed in RC-LDAO films upon dehydration 
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(see par. 9.1.5 and Fig.9.5B). In fact, since the steady level of photo-oxidized P is 

determined by the competition between light-induced primary charge separation and 

P+QA
- recombination, we expect that the faster charge recombination in the dehydrated 

system will result in a decreased amplitude of the electronic band of P.  

As a consequence, to better compare the differential P+QA
-/PQA spectra measured 

at the two hydration levels, we have normalized them to the extent of photo-induced P+, 

estimated from the amplitude of the differential bands at 1749/1739 cm-1 attributed to 

the 10a-ester C=O mode of the bacteriochlorophylls of the P special pair (Leonhard, 

1993; Nabedryk, 1993) (see also par. 9.1.3); as a control of the consistency of this 

procedure, following normalization also the amplitude of the electronic band of P at the 

two values of r coincided within the experimental error.  

On the top and on the lower wavenumber ridge of the electronic band, in the 

2900-2200 cm-1 interval, a series of four smaller differential broad bands can be 

identified (Fig.9.1). Although over this wavenumber range the electronic P+/P band 

accounts for about 90% of the total differential signal, three positive peaks (at 2818, 

2709 and 2611 cm-1) and a positive shoulder (2756 cm-1) can be resolved, which appear 

to be in relation (also for their structure) with the bands detected in QA
-/QA spectra, 

characterized by peaks at 2818, 2756, 2709, and 2611 cm-1 (Iwata et al., 2009). The 

bands detected in the QA
-/QA spectrum were tentatively assigned to the electrostatic 

response, upon quinone photoreduction, of highly polarisable H-bonds located in the 

surroundings of the quinone acceptor molecules. This extended H-bond network has 

been proposed to involve aminoacidic residues and ordered water chains (Breton, 1998). 

A subsequent study has provided evidence that an unusually strong hydrogen bond 

between the Nπ-H group of the His-M219 and the carbonyl of QA contributes 

substantially to this spectral region (Breton, 2007), accounting specifically for the peak 

at 2709 cm-1. The possible contribution of protonated water molecules to the bands 

between 2820 and 2550 cm-1 has been recently questioned since this region of Q-/Q 

spectra did not show any shift by 18O water replacement (Iwata, 2009). These authors 

have suggested that the bands more likely originate from N-H stretches which form 

strong H-bonds, as His-M219. In line with this notion, in our P+QA
-/PQA spectra 

equilibrated at r =76% D2O substitution causes a strong decrease or elimination of the 

bands, except for the one at 2818 cm-1 (Fig.9.1B), while H2O
18 replacement does not 

appear to cause any shift in the band peaks (Fig.9.1C). Also, the position and the  
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Figure 9.1 
Light-induced P+QA

-/PQA difference FTIR spectra of RC-LDAO films in the 3200-2000 cm-1 
region. Panel A compares the spectra recorded in films hydrated with H2O at r =76% (red line) 
and r =11% (blue line). The effects of D2O and H2O

18 substitution at r =76% are shown in panel 
B (green line) and C (magenta line), respectively. As a reference, the main peaks identified in 
the H2O spectrum at r =76% are marked by grey dotted vertical lines (the interval in the 
ordinate axis between two major divisions corresponds to 0.5 absorbance unit). 
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amplitude of these broad bands do not change significantly when the films are 

equilibrated at a lower relative humidity, r =14% (Fig.9.1A). 

Dehydration of the RC films (from r =76% to r =11%) induces a number of 

changes in the differential P+QA
-/PQA spectra, which can be conveniently grouped 

according to their spectral region and are examined in detail in the following 

paragraphs.  

 

9.1.2   P
+
QA

-
 light-minus-dark difference spectra in the 3750-3550 cm

-1
 range. 

The P+QA
-/PQA spectrum of RC-LDAO films hydrated at r =76% with H2O is 

reported in Fig.9.2 (red line) in the spectral range where O-H vibrations due to weakly 

hydrogen bonded water molecules are expected to contribute (Iwata, 2009; Lórentz-

Fonfria, 2008; Noguchi, 2002; Maréchal, 2011). In spite of the weakness of the 

differential signals in this region, two positive and one negative peaks can be identified: 

the two positive bands are centered at 3664 and 3628 cm-1 and the broader negative 

band peaks around 3587 cm-1. Even if this region should be quite free of spectral 

contribution other than those mentioned above, in order to safely assign these bands to 

weakly hydrogen bonded water molecules, P+QA
-/PQA spectra were measured in RC-

LDAO films hydrated at r =76% alternatively in D2O and H2O
18. Following substitution 

of water with D2O and H2O
18 the peaks of the bands due to water molecules are 

expected to undergo a red-shift of about 900 cm-1 (Lappi, 2004) and ≈ 6-18 cm-1, 

respectively (Lappi, 2004; Marechal, 2011). In principle the substitution of H2O with 

H2O
18 provides by itself a definitive test for the assignment of these bands to water 

molecules. The D2O substitution, causing a much larger bandshift, allows additionally a 

better estimate of the efficiency of the isotopic replacement procedure.  

P+QA
-/PQA spectra of RC-LDAO films hydrated with D2O and H2O

18, compared 

to the one obtained in RC-LDAO films equilibrated at the same relative humidity (r 

=76%) in H2O, are presented respectively in Figure 9.2A (green line) and 9.2B 

(magenta line). As a consequence of D2O substitution the three peaks identified above 

completely disappear. In the H2O
18 substituted sample the peaks detected at 3664 and 

3628 cm-1 in the H2O hydrated sample shifts to 3652 and 3617 cm-1, whereas the 

negative peak observed in H2O at 3587 cm-1 disappears. The complete removal of the 

bands from the 3750-3550 cm-1 spectral range after D2O substitution and the 12 and 11 

cm-1 shifts of the peaks at 3664 and 3628 cm-1 observed upon H2O
18 substitution are 

fully consistent with the attribution of these two latter differential peaks to weakly  
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Figure 9.2 

Light induced P+QA
-/PQA FTIR difference spectra of RC-LDAO films in the 3750-3550 

cm-1 range. The spectrum recorded in films hydrated with H2O at r =76% (red line) is 
compared with those measured following D2O (panel A, green line) and H2O

18 
substitution (panel B, magenta line). Panel C compares the spectrum of RC-LDAO 
films equilibrated with H2O vapour at r =76% (red line) and r =11% (blue line). As a 
reference, the main peaks identified in the H2O spectrum at r =76% are marked by grey 
dotted line. The interval between two major divisions of the y-axis corresponds to 1.10-5 
absorbance unit; spectra have been offset for visual clarity.  
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hydrogen bonded water molecules. In the H2O
18 hydrated samples, a small peak seems 

to be still present at 3628 cm-1, but we are reluctant to interpret it as a residual of the 

band observed at this wavenumber in H2O hydrated samples, being its amplitude in the 

range of the signal noise. Although the expected shift of the negative peak at 3587 cm-1 

was not observed in the H2O
18 hydrated samples, the disappearance of the band from 

both the D2O and H2O
18 substituted samples suggests a tentative assignment to weakly 

hydrogen bonded water molecules also for this negative band.  

The disappearance of the peaks following D2O substitution indicates that the 

replacement of the water molecules giving rise to the light-induced bands is very high 

(see. par.3.6; Malferrari, 2012 submitted).  

Figure 9.2C compares the spectrum of the hydrated RC-LDAO film, equilibrated 

with water vapour at r =76% (red curve), with that of the partially dehydrated sample, 

equilibrated at r =11% in H2O (blue curve). Due to the smaller extent of photoxidized 

RC in the dehydrated sample (see above) the signal to noise ratio is worst for the film 

equilibrated at r=11%. In spite of this it is clear that the three bands observed at 3664, 

3628 and 3587 cm-1 in the hydrated sample are strongly reduced upon dehydration at r 

=11%. If residual bands are still present, their amplitude is comparable to the noise 

level. It appears therefore that, upon reducing the hydration of the RC-LDAO complex, 

the water molecules weakly hydrogen bonded to the RC which respond to the light-

induced charge separation are either removed or unable to undergo the structural 

relaxations which give rise to the spectral changes observed in the hydrated samples. 

 

9.1.3   P
+
QA

-
 light-minus-dark difference spectra in the 1800-1200 cm

-1
 range. 

The P+QA
-/PQA difference spectrum in the 1800-1200 cm-1 range is shown in 

Figure 9.3A for RC-LDAO hydrated films, equilibrated with H2O vapour at r =76%. 

This light induced spectrum has been extensively studied in hydrated RC films at 

temperatures around 250 K (Mäntele, 1988; Nabedryk, 1990a), and at 100 K 

(Nabedryk, 1990a). By comparing these differential spectra with the redox-induced 

infrared spectrum of bacteriochlorophyll-a cation formation (BChl-a+/BChl-a) (Mäntele, 

1988) and with the electrochemically-induced spectra of ubiquinone anion formation  

(Q • - /Q) (Bauscher, 1990) and of  P+/P (Leonhard, 1993), the assignment of many of the 

differential bands of this spectral interval was achieved. It is also clear from the 

literature cited above, and from QA
-/QA and QB

-/QB difference spectra (Breton, 1991a; 

Breton, 1991b), that in the P+QA
-/PQA differential spectrum over the 1800-1200 cm-1  
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Figure 9.3 

Light induced P+QA
-/PQA FTIR difference spectra in the 1800-1200 cm-1 range of RC-LDAO 

films equilibrated at a relative humidity r =76% (A) and r =11% (B) in the presence of H2O 
vapour. The interval between two major divisions of the ordinate axis corresponds to 1.10-5 
absorbance units.  
 

 

range the amplitudes of the light-induced bands associated with the primary donor P are 

much bigger than those related to the quinone. 

Some of the differential bands in the 1760-1620 cm-1 carbonyl region have been 

assigned to C=O modes of the bacteriochlorophyll molecules of the P special pair. The 

bands at 1749/1739 cm-1 are associated to the 10a-ester C=O mode (Nabedryk, 1993), 

while the positive and negative peaks at 1716-1701/1683 cm-1 are considered to 

originate from the overlapping of the 9-keto C=O modes of the two bacteriochlophylls 

molecules PL and PM (Mäntele, 1988; Nabedryk, 1993). It was suggested that also the 

negative band at 1665 cm-1 (1669  cm-1 in our spectrum) arises from one keto C=O of P  
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and that the positive band at 1658 cm-1 originates from the acetyl C=O mode of P+, 

although possible contributions of the quinone and of the protein to both bands were not 

excluded (Mäntele, 1988). On the basis of subsequent studies it was concluded that the 

negative peak at 1665 cm-1 is more probably due to a peptide C=O from a 

transmembrane helix in the environment of P (Nabedryk, 1992) or near the 

photoreduced bacteriopheophytin or QA
- (Maiti, 1993).  

Although the negative peak at 1651 cm-1 lies in the spectral range where C=O 

modes of ubiquinone are expected (Bauscher, 1990), several independent observations 

(Bagley, 1990; Nabedryk, 1990a) have led to tentatively assign it to the peptide 

component of the RC, and the AlaM260 or the ThrM222 residues have been proposed 

as possible candidates (Nabedryk, 1990a).  

The peak at 1603 cm-1 is the only peak in light-induced P+QA
-/PQA differential 

spectra that is assigned to QA. This peak (reported at 1604 cm-1 in the P+QA
-/PQA 

spectrum recorded in hydrated RCs at 100K (Breton, 1994a)) appears to be related to 

the 1601 cm-1 band observed in the QA
-/QA spectra, which has been associated to the 4-

C=O of QA (Breton, 1994a; Brudler, 1994).  

The presence in the light-induced spectrum of RC-LDAO films equilibrated with 

H2O vapour at r =76% of four negative peaks, at 1669, 1651, 1633 and 1603 cm-1 

(Figure 9.3A), is fully consistent with the assumption that, due to the presence of o-

phenanthroline, we are observing the differential P+QA
-/PQA spectrum. As reported by 

Nabedryk et al. (Nabedryk, 1990a), in fact, these four peaks are a signature of the P+QA
-

/PQA spectrum, being the P+QB
-/PQB spectrum characterized by only three peaks, at 

1664, 1638 and 1618 cm-1 in this spectral interval. We conclude therefore that, even 

following continuous 20-s photoexcitation of the samples, electron transfer from QA
- to 

QB is fully inhibited in our samples. This is consistent with spectra recorded in the O-H 

vibration of weakly hydrogen bonded water, 3750-3550 cm-1 (Fig.9.2), which are also 

very similar to the QA
-/QA and quite distinct from the QB

-/QB difference spectra (Iwata, 

2009). This point will be relevant when examining the kinetics of charge recombination 

after a 20-s period of continuous illumination, i.e. under the same photoexcitation 

conditions used in the acquisition of differential FTIR spectra (see par. 9.1.5 and 9.2). 

In the spectral ranges from 1570 to 1498 cm-1 and from 1387 to 1340 cm-1, 

positive and negative peaks have been assigned generally to the bacteriochlophylls of 

the P special pair (Mantel, 1988): the peaks at 1571, 1543, 1523, 1516 and 1498 cm-1 
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were assigned to C=C and C-C modes, those at 1353 and 1340 cm-1 to C-N and C-H 

modes respectively. 

The assignment of the two peaks at 1481 and 1466 cm-1, on the broad positive 

band ranging from 1498 to 1425 cm-1, seems not so straightforward, due to the presence 

in this spectral interval of both P and ubiquinone contributions. At first, on the basis of 

infrared differential redox-induced BChl-a+/BChl-a spectra (Mäntele, 1988) and 

electrochemically-induced infrared Q•-/Q spectra (Bauscher, 1990), signals in this 

spectral interval were tentatively assigned to ubiquinone modes. Soon after, however, 

Leonhard and colleagues (Leonhard, 1993) showed that in the electrochemically-

induced P+/P differential infrared spectrum a big broad band ranging from 1496 to 1418 

cm-1 with two peaks at 1474 and 1456 cm-1 was present. When considering the small 

amplitude of the differential bands due to QA
- and QB

- formation in light-induced QA
-

/QA and QB
-/QB difference spectra (Breton, 1991a; Breton, 1991b), it seems reasonable 

to conclude that this interval includes contributions from both P and quinone modes, 

with the former prevailing on the latter. The attribution of the three large, structured 

bands in the 1580-1530, 1500-1430, and around 1290, mainly to the BChl dimer is also 

supported by the observation that these bands are absent (or very small) in the P+Q-/PQ 

spectra of heterodimer mutants from Rb. capsulatus, where the charge is located on a 

single BChl (Nabedryk, 1992). However, especially the 1480 cm-1 band contains also 

small contributions from the quinone anion C-O and C-C modes. In particular the 

positive 1466 cm-1 peak (in our spectrum) corresponds to the one of the main band of 

QA
-/QA spectra (Breton, 1994b), which comes predominantly from a C-O stretch 

semiquinone (Breton, 1994b; Brudler, 1994).   

In order to examine the effects of dehydration, Figure 9.3B presents the 

correspondent P+QA
-/PQA difference spectrum measured in RC-LDAO films, 

equilibrated with H2O vapour at r =11%. A comparison with the spectrum of Figure 

9.3A shows that the only changes occurring upon dehydration are: (i) a shift of the 

positive peak at 1701 cm-1 and of the negative one at 1669 cm-1 in the hydrated film to 

1703 cm-1 and 1666 cm-1, respectively; interestingly both peaks are attributed to the 

keto C=O mode of the P bacteriochlorophyll (Mäntele, 1988), and in particular to PM 

(Nabedryk, 1993); (ii) a shift of the peaks at 1481 cm-1 and 1466 cm-1 at r =76% to 1477 

cm-1 and 1456 cm-1, respectively, at r =11%. 
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9.1.4   P
+
QA

-
 light-minus-dark difference spectra in the 3550-3150 cm

-1
 range. 

In the spectral range between 3550 and 3150 cm-1 the spectra of protein films 

contain contributions arising from the stretching of OH groups of strongly hydrogen 

bonded water molecules or of lateral groups of amino acids residues, as serine, tyrosine 

and protonated carboxylic acids (Kandori, 2000; Lórenz-Fonfría, 2008), and from the 

stretching of hydrogen bonded NH groups of the protein (Hecht, 1956). Although 

studies of this spectral region have been performed in bacteriorhodopsin (Lórenz-

Fonfría, 2008) and in the photoactive yellow protein from Ectothiorhodospira 

halophyla (Kandori, 2000),  as far as we know, a systematic analysis of this interval in 

differential light-induced FTIR spectra of RC samples is still lacking. 

In Figure 9.4A we show the differential light-induced spectrum measured in this 

spectral range on hydrated RC-LDAO films, equilibrated with H2O at r =76%.  We also 

report the light-induced P+QA
-/PQA difference spectra recorded in RC-LDAO samples 

hydrated with D2O (Figure 9.4C) or H2O
18 (Figure 9.4D) at r =76%. The comparison 

between the spectrum obtained in the H2O hydrated film and the ones after D2O and 

H2O
18 substitution indicates that none of the numerous positive and negative bands 

detected in this spectral interval can be assigned to water molecules. In fact, none of the 

differential bands disappears after D2O substitution (Figure 9.4C), with the only 

exception of the band peaking at 3483 cm-1 in the H2O hydrated sample; however, after 

H2O
18 substitution, no clear shift of this peak is observed. This behaviour suggests that 

the peak at 3483 cm-1 is due to a NH or OH group of the peptide which undergoes 

deuterium exchange in D2O. This agrees with the attribution suggested by Iwata and 

colleagues (Iwata, 2009) for the positive peak detected at 3487 cm-1 in the QA
-/QA 

differential spectrum of fully hydrated RC films. Interestingly this peak, observed at 

3487 cm-1 in films equilibrated at  r =98% (Iwata, 2009), shifts to 1483 cm-1 at r =76% 

and to 1481 cm-1 at r =11% (Fig.9.4B); similarly the negative peak detected at 3501 cm-

1 in the QA
-/QA spectrum at r =98% (Iwata, 2009) moves to 3498 cm-1 at r =76% and to 

3496 cm-1 in our P+QA
-/PQA spectra. This behaviour suggests a systematic shift of the 

negative and positive bands to lower wavenumbers upon dehydration of the RC 

complex. The NH or OH groups of the residues which originate presumably these bands 

are likely to be close to the QA cofactor, since the positive and negative peaks observed 

in P+QA
-/PQA are even more clearly detected in QA

-/QA spectra (Iwata, 2009). 

The broad band peaking at 3417 cm-1 in the H2O hydrated film moves to 3425 cm-

1 in the D2O hydrated samples. No shift of this band is observed after H2O
18  
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Figure 9.4 

Light induced P+QA
-/PQA FTIR difference spectra measured in the 3550-3150 cm-1 range on 

RC-LDAO films hydrated with H2O at a relative humidity r =76% (panel A, red line) and r 

=11% (panel B, blue line). The corresponding spectra recorded at r =76% after D2O or H2O
18 

substitution are shown in panel C (green line) and panel D (magenta line), respectively. For the 
sake of comparison the spectrum in panel A, measured at r =76% in H2O, is also shown in panel 
B, C, and D with a dashed red line. The interval between two major divisions of the ordinate 
axis corresponds to 1.10-5 absorbance units.  
 

 

substitution.  The same behaviour characterizes the peaks at 3386, 3375 and 3352 cm-1 

in the H2O hydrated sample, which also do not seem to change following H2O
18 

substitution, and undergo small shift of 2-4 cm-1 to higher wavenumbers upon D2O 

replacement. These observations preclude to ascribe the above bands to hydrogen 

bonded water.  

The comparison between the hydrated (r =76%) and dehydrated (r =11%) RC-

LDAO films (Figure 9.4B) evidences, besides the shift of the 3498 cm-1 band described 

above, additional significant alterations in the light-induced spectrum. Small (2-4 cm-1), 

can be noticed for the peak at 3483  cm-1 and for the three peaks in the 3392-3342 cm-1 

range. Much more prominent differences can be observed between 3300 and 3240 cm-1. 

Over this spectral interval, while in the hydrated sample negative peaks appear at 3305, 

3288 and 3240 cm-1 and positive ones at 3302 and 3269 cm-1, in the dehydrated films a 



CHAPTER 9 

 

 179 

large positive peak is detected at 3275 cm-1, delimited by two negative peaks at 3300 

and 3255 cm-1. As no significant shift can be observed in this spectral region following 

D2O and H2O
18 substitution (see above), these bands should originate from NH or OH 

stretching modes of RC amino acid residues which respond differently to 

photoexcitation in the hydrated (r =76%) and in the dehydrated (r =11%) RC-detergent 

complex.  

In line with structural information (Katona, 2005) the latter observations point to 

the involvement of protein groups of the RC in conformational changes induced by a 

prolonged illumination of the RC. These conformational dynamics appear to be 

markedly affected by the hydration level of the RC-detergent complex, thus suggesting 

a tight dynamical coupling between the protein and its hydration shell (see Discussion, 

par. 9.2). Since, as outlined previously (see par.1.4), the kinetics of recombination of the 

light-induced P+QA
- state provides a sensitive probe of the RC internal dynamics and of 

the conformational relaxations which follow charge separation, we report in the 

following on the kinetics of this electron transfer process, analyzed under the same 

photoexcitation and hydration conditions employed in the FTIR measurements 

described above. 

 

9.1.5   P
+
QA

-
 recombination kinetics in hydrated and dehydrated RC-LDAO films.  

Figure 9.5A shows the absorbance changes at 422 nm induced by a 20 s 

photoexcitation of RC-LDAO films equilibrated with water vapour at relative humidity 

r =76% (red trace) and r =11% (blue trace).  Absorbance changes at this wavelength are 

due to the redox changes of the P+/P couple, and, to a minor extent, to those of Q-/Q 

(Sloten, 1972). The signals monitor therefore the kinetics of P+QA
- formation upon 

photoexcitation and recombination in the dark. The amplitude of the light-induced 

signal (i.e. the fraction of the RC population which upon continuous illumination is 

maintained steadily in the P+QA
- charge separated state) is more than three times larger 

in the hydrated sample (r =76%) as compared to the dehydrated sample (r =11%). This 

behaviour is qualitatively consistent with the observation (Malferrari, 2011) that,  

following a laser pulse, the P+QA
- recombination process is strongly accelerated in 

dehydrated RC-detergent complexes. Since the steady level of charge separation under 

continuous photoexcitation is considered to be determined by the kinetic competition 

between the processes of charge separation and recombination (Gouscha, 2000; 

Andréasson, 2003), an acceleration of the latter is expected to result in a decreased  
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Figure 9.5 
P+QA

- charge recombination kinetics in RC-LDAO films characterized by two different 
hydration levels, i.e. equilibrated with water vapour at relative humidity r =76% and r=11%. A. 
Time course of the absorbance change induced at 422 nm by a 20 s period of continuous 
illumination in the hydrated (r =76%, red trace) and dehydrated (r =11%, blue trace) RC film. 
B. Normalized kinetics of P+QA

- recombination obtained from the traces shown in panel A by 
expanding the time scale. The grey lines represent best fit to a single power law (eq.1.2) for the 
decay at r =11%, and to the sum of two power laws (eq.6.4) for the decay at r =76%. Values of 
the best fitting parameters are: at r =76% , AF = 0.51, <kF> = 13.0 s-1, σF = 8.4 s-1, <kS> = 0.13 s-

1, σS = 4.9.10-2 s-1; at r 11% , <k> = 10.2 s-1, σ = 7.4 s-1. C. The normalized kinetics of P+QA
- 

recombination after a 20 s period of continuous photoexcitation (from panels A and B) are 
compared with the kinetics recorded after a 7 ns laser pulse in RC-LDAO films equilibrated at r 

=76% (purple trace) and r =11% (cyan trace). Best fit to a single power law of the decays after 
the laser pulse are plotted in grey and correspond to the following values of parameters: at r 

=76%, <k>= 15.2 s-1, σ = 7.0 s-1; at r =11%, <k>= 38.8 s-1, σ = 29.8 s-1.  
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steady P+QA
- signal observable in continuous light. The levels of P+QA

- optically 

detected in the hydrated and dehydrated films agree with those estimated from the FTIR 

electronic band of P (see par. 9.1.1).  

From Figure 9.5A it also appears that, following a 20-s period of continuous 

illumination, the overall decay of the light-induced P+QA
- signal is dramatically slower 

in the hydrated RC film (r =76%) as compared to the dehydrated one (r =11%). In the 

latter sample the decay is unresolved over the time scale of seconds, while, at r =76%, 

about 10% of the photoxidized RCs are still in the charge separated state after a dark 

time of about 12 s. The charge separated state is therefore strongly stabilized in the 

hydrated RC-LDAO film as compared to the dehydrated sample. 

A closer inspection of the decay kinetics (which are shown expanded in time and 

normalized to the maximal amplitude in Figure 9.5B) evidences that in the dehydrated 

sample the decay is essentially monophasic, with an half time of approximately 80 ms; 

at variance in the hydrated condition (r =76%) the recombination process is distinctly 

biphasic, including a fast phase comparable in rate to the decay observed in the 

dehydrated sample (r =11%) and an extremely slow kinetic phase, that accounts for at 

least half of the total amplitude, characterized by an half time of approximately 5 s.  

Figure 9.5C compares, over a logarithmic time scale, the kinetics shown in panels 

A and B, recorded after prolonged, continuous illuminations, with P+QA
- recombination 

kinetics measured in the same RC films following a short (7 ns) laser pulse. As 

previously reported (see chapter 4; Malferrari, 2011) P+QA
- recombination after a laser 

pulse is significantly accelerated upon dehydration of the RC-detergent film. 

Furthermore, the non exponential character of the decay becomes more evident in the 

dehydrated film (at r =11%), which exhibits a recombination kinetics strongly 

distributed in rate (see Figure 9.5C).  

In agreement with our previous results (see section 6.1.3 and 8.1.1) the trace 

recorded in the hydrated film fits accurately a single power law (eq.1.2), while a minor 

faster component (which requires an additional, second power law) is present in the 

dehydrated (r =11%) kinetics. The latter fast phase will not be further considered, since, 

as already discussed it reflects recombination in a minor fraction of the RC population 

which has undergone severe structural and/or energetic alterations. Best fits to P+QA
- 

recombination after a laser pulse are shown in Figure 9.5 C with grey continuous lines. 

In the case of the kinetics recorded at low hydration (r =11%) the kinetics parameters 

refer to the slow phase (see above). Upon dehydration the average rate constant 
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increases from <k>=15.2 s-1 (at r =76%) to <k>=38.8 s-1 (at r =11%); in parallel the 

width of the rate distribution also increases from σ = 7.0 s-1 (at r =76%) to σ = 29.8 s-1 

(at r =11%). As summarized in the Introduction (par.1.4), these effects, which mimic at 

room temperature similar effects observed in water-glycerol RC solutions upon freezing 

the system at cryogenic temperatures (Kleinfeld, 1984; McMahon, 1998),  can be taken  

to reflect a strong inhibition of the RC relaxation from the dark- to the light-adapted 

conformation as well as a dramatic hindering of the interconversion between RC 

conformational substates (McMahon, 1998; Palazzo, 2002; Francia, 2009). 

Interestingly, the kinetics of P+QA
- recombination following prolonged, 

continuous illumination, differ substantially at both hydration levels from the 

corresponding ones measured after a short laser photoexcitation. The kinetics measured 

after continuous illumination in the RC film equilibrated at r =11% fit a single power 

law (eq.1.2), with <k>=10.2 s-1 and  σ = 7.4 s-1. It appears that, in agreement with what 

already observed (see section 8.1) and discussed (see section 8.2),  the kinetic effects of 

dehydration observable after a laser flash have totally reverted following a long 

continuous photoexcitation, since the kinetics are even slower and less distributed in 

rate than the ones recorded after a laser pulse in the hydrated film, at r =76% (see 

Figure 9.5C). The kinetics observed after continuous light in the dehydrated film are 

comparable to those observed in a RC solution at room temperature (Fig. 4.1 and Fig. 

4.3; Francia, 2009). In the hydrated film (r =76%) the recombination kinetics following 

continuous photoexcitation is also slowed down as a whole as compared to the one 

recorded at the same hydration after a laser pulse (see Figure 9.5 C).  Furthermore, the 

P+QA
- kinetics after 20 s photoexcitation at r =76% is clearly biphasic, and has been 

fitted to the sum of two power laws (see eq.6.4). 

The values of the obtained kinetic parameters (reported in the caption of Figure 

9.5B) show that the kinetics of the fast phase, accounting for  about 50% of the total 

decay, are comparable to those of the monophasic recombination measured at r =11% 

after 20 s photoexcitation. This result suggests that continuous illumination totally 

removes over the time scale of charge recombination the hindering of the RC 

conformational dynamics caused by dehydration, which is probed by P+QA
- decay 

kinetics after a short photoexcitation (see Discussion in par. 9.2, below).  In addition, 

the appearance as a consequence of 20 s continuous illumination of a very slow kinetic 

phase, characterized by <kS>= 0.13 s-1 and σS= 4.9.10-2
 s-1, in RC-LDAO films at r 

=76%, indicates that in a significant fraction (about 50%) of the RC population the 
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primary charge separated state has undergone a dramatic stabilization as a result of the 

prolonged photoexcitation. In order to safely attribute the slow phase of the decay 

measured at 422 nm to a genuine P+QA
- recombination, excluding for instance side 

reactions which could re-oxidize the photo-reduced QA
-, leaving the photoxidized P+ 

without a recombination partner, we have measured in parallel the kinetics of 

absorbance change at 450 nm. As outlined previously (see par.3.3 and par.6.1.3), at 450 

nm and 422 nm both P+ and QA
- contribute to the light-induced absorbance change. 

However, at 422 nm the relative contribution of P+ dominates, with the spectral 

contribution of the semiquinone accounting for about 14% of the total. At 450 nm the 

relative contribution of Q- increases to about 40% at the expense of that due to P+ 

(Sloten, 1972). Since the same decay kinetics, also after a prolonged continuous 

illumination, have been observed at the two wavelengths in the hydrated RC film (data 

not shown), we attribute both kinetic phases, including the extremely slow one observed 

in the hydrated RC film, to P+QA
- recombination.  

We recall that comparably slow kinetic phases of P+QA
- recombination have been 

observed in RC solution samples at room temperature following continuous 

photoexcitation periods longer than 5 minutes (Andréasson, 2003). Such a stabilization 

of the primary charge separated state, which resembles the one observed by us in the 

hydrated RC film, has been proposed to originate from slow structural changes of the 

RC protein which occur during continuous illumination  (Andréasson, 2003; Katona, 

2005).  

In conclusion the kinetic analysis of P+QA
- recombination after prolonged 

continuous photoexcitation suggests a correlation between the light-induced FTIR 

spectral changes sensitive to the hydration state (par. 9.1.2-9.1.5) and the strong 

stabilization of the primary charge separated state which is observed after continuous 

illumination only in the hydrated RC film (see the next section). 

 

9.2 Discussion. 

The different role of water molecules, belonging to the protein hydration shell, to 

the bulk solvent or placed in the interior of the protein, in governing specific functions 

and dynamics of proteins is receiving an increasing interest (Mattos, 2002; 

Frauenfelder, 2009; Grossman, 2011). Several FTIR difference studies have contributed 

to clarify the function of internal water molecules in different membrane proteins, as 

bacteriorhodopsin (Lórentz-Fonfria, 2008), cytochrome c oxydase (Maréchal, 2011), 
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photosystem II (Noguchi, 2002), and the bacterial reaction center (Garczarek, 2006). 

Recently, light-induced QA
-/QA FTIR difference spectra in the 3700-3450 cm-1 range 

have been measured in hydrated RC films equilibrated at r =98% (Iwata, 2009) and 

vibrational changes attributed to weakly hydrogen bonded water molecules have been 

observed as a consequence of QA
- formation; on these basis, the reorientation of water 

dipoles near QA has been tentatively proposed as the main conformational (dielectric) 

relaxation stabilizing the P+QA
- state in the RC. 

We have extended the study by Iwata and co-workers (Iwata, 2009) in different 

directions: i) we examined P+QA
-/PQA FTIR difference spectra rather than QA

-/QA 

spectra, in order to detect events which are induced  in the presence of the electric field, 

generated in vivo by the light-induced radical pair (P+QA
-), thus including processes 

which might be coupled to the formation of P+; ii) two hydration states of the RC film 

have been considered to study the effect of the protein hydration level on the water 

differential bands observed by Iwata and colleagues (Iwata, 2009) as well as on other 

light-minus-dark IR bands; iii) a large IR spectral range has been explored to reveal the 

possible contribution of other chemical groups to the stabilization of the charged 

separated state; iv) we have analyzed the charge recombination kinetics of the P+QA
- 

state following the same continuous illumination regime used in the FTIR 

measurements, in order to probe the stability of the charge separated state and correlate 

it with the light-induced IR spectral changes observed in parallel. We aimed at linking 

the information on RC dynamics and relaxation provided by charge recombination 

kinetics to the structural information eventually emerging from FTIR light-minus-dark 

difference measurements.  

At the two hydration levels studied, in fact, the kinetics of P+QA
- recombination 

after the 20 s continuous illumination period used to record light-induced FTIR 

difference spectra, was markedly different, indicating a more stabilized charge 

separation in the hydrated RC-LDAO film as compared to the dehydrated one (Fig.9.5). 

Three differential bands are resolved in the light-minus-dark FTIR difference 

spectrum of hydrated RC-LDAO films in the 3750-3550 cm-1 range (red trace in 

Fig.9.2), which, in view of the effects of water substitution with D2O and H20
18, have 

been attributed to weakly hydrogen bonded water molecules (par.9.1.2). From the high 

efficiency of isotope substitution (discussed in detail in par.3.6) it can be concluded that 

they are located in sites accessible to the solvent. Among these three bands, the positive 

one at 3664 cm-1 and the negative one at 3587 cm-1 peak at the same wavenumbers of 
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two of the difference bands detected by Iwata and colleagues (Iwata, 2009) in QA
-/QA 

spectra. We identify therefore these bands with the ones observed by Iwata and 

colleagues in the presence of the only semiquinone anion, attributed to weakly hydrogen 

bonded water molecules which respond with a vibrational rearrangement to the light-

induced formation of QA
-. In the spectral interval between these two bands, our P+QA

-

/PQA difference spectrum is somewhat different from the QA
-/QA spectrum reported by 

Iwata and colleagues. They have identified a small negative bands at 3622 cm-1, also 

attributed to weakly hydrogen bonded water molecules in the vicinity of QA
-; at 

variance we have observed a rather broad, more intense positive band at approximately 

3628 cm-1, which (as reported in par. 9.1.2) undergoes the expected 10 nm shift upon 

water substitution with H20
18, thus indicating that it originates from water molecules 

weakly bound to the RC. Although we cannot exclude that these difference are due, at 

least in part, to spectral interference with the intense and large electronic band of P+, it 

is possible that the band detected by us at 3628 cm-1 originates from water molecules 

interacting predominantly with the primary donor P, rather than with the QA acceptor.  

We notice, in this respect, that the crystallographic structure of the Rb. sphaeroides RC 

(Koepke, 2007) shows several water molecules in the immediate surroundings of the P 

special pair.   

When the water content of hydrated RC films (equilibrated at r =76%) was 

markedly reduced (at r =11%) we have observed a drastic reduction in the amplitude (or 

possibly the disappearance) of the three differential bands discussed above and 

attributed to RC bound water molecules. The most direct and simple interpretation is 

that the majority of the weakly bound water molecules which originate the light-induced 

bands have been removed upon dehydration. However, since the depletion of the RC 

hydration shell obtained by decreasing the relative humidity to 11% causes a strong 

inhibition of the RC/solvent dynamics (see chaper 6), it is also possible that the water 

molecules responsible for the bands at 3664, 3628 and 3587 cm-1 at r =76% are still 

present, but sufficiently “immobilized” to be unable to reorient and/or undergo 

vibrational rearrangements in response to light-induced charge separation. Also in this 

case a substantial decrease of the difference bands is expected. 

The strong reduction of the difference water bands observed upon dehydration 

occurs in parallel with a strong destabilization of the primary charge separated state, as 

inferred from the P+QA
- recombination kinetics recorded after a 20 s period of 

continuous photoexcitation (Fig.9.5), i.e. following the same illumination regime under 
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which the difference FTIR spectra have been acquired. This suggest a correlation 

between the dynamics of the weakly hydrogen bonded water molecules contributing to 

the difference bands in the 3750-3550 cm-1 range and the conformational processes 

which stabilize the P+QA
- state.  

Our results (see par.9.1.5) indicate that the stabilization of the charge separated 

state, depends not only upon the hydration state of the RC complex, but also upon the 

duration of the photoexcitation. Fig.9.5 C shows in fact that, at both hydration levels, a 

prolonged (20 s) illumination, as compared to a 7 ns (laser) photoexcitation, leads to a 

considerably more stable P+QA
- state (i.e. to a substantial overall slowing of P+QA

- 

recombination). The effects observed in the RC film equilibrated at r =11% are in 

excellent agreement with those previously observed at the same hydration (see par. 

8.1.1) and already discussed in par. 8.2: they indicate that the inhibition of the RC 

relaxation probed by the charge recombination kinetics after the laser flash is essentially 

reverted following a prolonged illumination. In the hydrated RC film, however, an 

additional relaxation process appears to place upon continuous illumination. At r =76%, 

in fact, the continuous 20 s photoexcitation results in a clearly biphasic decay of the 

P+QA
- state. The fast distributed phase exhibits kinetic parameters similar to those 

observed in solution, again showing a reversion of the inhibition of the RC dynamics 

observed after a laser flash. The second kinetic phase, accounting for half of the 

kinetics, decays in the tens-of-seconds time scale, with an average rate constant 

(<kS>=0.13 s-1) smaller by one order of magnitude. The presence of this dramatically 

slow recombination phase strongly suggests that different, additional relaxation 

processes have occurred during the prolonged illumination at this hydration level: these 

processes increase by one order of magnitude the stability of the primary charge 

separated state in about half of the RC population. Extremely slow components in the 

P+QA
- decay, comparable in rate to the one described above, have been observed in RC 

solution samples at room temperature as a consequence of continuous illumination for 

time periods ranging from 5 to 10 minutes (Andréasson, 2003); this extra-stabilization 

of the charge separated state has been attributed to an additional conformational 

relaxation, promoted by the prolonged illumination regime and occurring over a much 

longer time scale, as compared to the relaxation from the dark- to the light-adapted 

conformation probed by the P+QA
- recombination kinetics recorded after a single laser 

pulse (Kleinfeld, 1984; McMahon, 1998). We propose therefore that, following a long 

(20 s) photoexcitation, a similar, additional conformational relaxation, occurs in 
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hydrated (r =75%) RC films, which is inhibited by dehydration in RC films equilibrated 

at r =11%.   

To summarize the behaviour described above, it appears that, following long 

periods of continuous photoexcitation, the difference in the RC dynamics between the 

hydrated and the dehydrated system concerns mainly the slow conformational relaxation 

leading to extra-stabilization of the charge separated state: this process takes place in the 

hydrated system, but is absent (inhibited) in the dehydrated RC. The light-induced 

difference bands in the 3750-3550 cm-1 range (Fig.9.2), which are strongly reduced 

upon dehydration, are observed during such a long (20 s) photoexcitation of the system. 

We suggest therefore that the spectral response of the weakly bound water molecules 

which originate these bands is more likely related to the slow (lifetime τ∼10 s), extra-

stabilizing RC conformational relaxation, rather than to the fast (τ<10-2 s) 

conformational change evidenced by laser-flash experiments, as it was previously 

proposed by Iwata and colleagues (Iwata, 2009).   

Besides the difference bands ascribed to water molecules weakly bound to the 

RC, other features of the light-minus-dark difference spectrum are affected by the 

hydration level of the RC, including, in the 1750-1650 cm1 region, spectral 

contributions attributed to the 9-keto groups of the special pair bacteriochlorophyll 

molecules (Fig.9.3), and a few bands in the 3550-3150 cm-1 range (Fig.9.4). In this 

spectral region, which, in our knowledge, has not been analyzed before in Rb. 

sphaeroides RCs, no band could be attributed to water molecules, since we have not 

observed any shift upon isotopic substitution with D2O and H20
18.  Interestingly, several 

changes were observed as a consequence of water depletion: shifts of few cm-1 for 

difference bands between 3375 and 3300 cm-1, and strong alterations in the spectral 

features between 3300 and 3240 cm-1. Although no attribution to specific amino acidic 

residues is available for these differential bands, we can conclude that several OH or 

NH groups of amino acidic residues undergo relevant vibrational changes in parallel 

with dehydration, and therefore with the inhibition of the RC conformational relaxation 

inferred from the kinetic analysis of P+QA
- recombination (Fig.9.5). This observation is 

in line with X-ray diffraction data collected at low temperature in Rb. sphaeroides RC 

crystals during continuous illumination with bright light (Katona, 2003). The 

comparison with data acquired in crystals that were not illuminated showed significant 

movements (up to 0.7 Å) in a large number of amino acidic residues of the H subunit 

between ProH121 and ThrH226. 
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As mentioned above, upon dehydration we observed also shifts in bands (peaking 

at 1701 and 1669 cm-1 in RC films at r =76% (Fig.9.3)) which have been attributed to 

the 9-keto groups of the P bacteriochlorophyll special pair. Therefore, not only amino 

acidic residues and bound water molecules localized on the cytoplasmic acceptor side of 

the RC might be involved in the light-induced conformational relaxation, but also 

groups on the opposite periplasmic donor side. This notion is consistent with recent X-

ray diffraction and functional studies aimed to elucidate the structural basis of RC 

relaxations induced by photoexcitation. By applying time-resolved Laue diffraction to 

catch light-induced structural changes in the RC of Blastochloris viridis, Wöhri and co-

workers (Wöhri, 2010) found that the side chain of TyrL162, a residue strictly 

conserved in purple bacterial RCs which lies next to P special pair, moves 1.3 Å closer 

to P after photoactivation. Furthermore, by studying the effect of prolonged illumination 

(1-2 min) on P+QA
- kinetics in 11 mutants of Rb. sphaeroides RC characterized by 

different hydrogen bonding patterns of the primary electron donor P it was concluded 

that the relaxation event which stabilizes the P+QA
- state in the seconds time scale could 

be the deprotonation of one or more amino acidic residues in the vicinity of the special 

pair P (Deshmuckh, 2011); interestingly TyrM210, which is in the close proximity of 

the 9-keto group of the bacteriochlorophyll PM, has been proposed as the most probable 

candidate for the deprotonation.  

As a whole our results indicate that several different pigment-protein groups, both 

on the acceptor and donor side of the RC, as well as water molecules weakly bound to 

the RC, undergo structural/dynamic changes in parallel with the stabilization of the  

P+QA
- state on a second time scale. Although it is tempting to speculate that all these 

groups contribute, possibly over different time-scales and to a different extent, to 

stabilize the primary charge separated state of the RC in a collective process, our results 

do not allow to disentangle conformational changes which actively and primarily 

stabilize the P+QA
- state by dielectric screening from structural (vibrational) alterations 

which are a consequence of the primary conformational changes. Time-resolved FTIR 

difference measurements, aimed to better clarify the nature and the sequence of the 

relaxation processes, are underway in our laboratories.  
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10. CONCLUSIONS AND OUTLOOK 

 

The work reported was meant to investigate at the molecular level protein/solvent 

interactions and their relevance in protein function through the use of amorphous 

matrices at room temperature. As a model protein, we used the bacterial photosynthetic 

reaction center, a pigment protein membrane complex which catalyzes well defined 

light-induced electron transfer processes. The close coupling between electron transfer 

and internal protein dynamics has been proved in this system by structural and 

functional studies performed at cryogenic temperatures (par.1.4). The  results obtained 

in the present thesis have shown that the incorporation of this large membrane protein 

into amorphous matrices of controlled hydration represents a powerful tool when 

examining the function/dynamics coupling: this approach allows in fact to modulate at 

room temperature the internal protein dynamics to an extent comparable to that attained 

at cryogenic temperatures, providing complementary and more specific information on 

the dynamical coupling between the internal protein motions which regulate electron 

transfer and the dynamics of the protein environment. As an embedding amorphous 

matrix we have used primarily reaction center-sugar glasses formed by trehalose, a 

disaccharide which exhibits an extraordinary ability in protecting biostructures under 

extreme dehydration and high temperature. 

The studies performed on this system by exploiting different spectroscopic tools 

(i.e. flash spectrophotometry, FTIR and EPR spectroscopy) have provided information 

in two directions. On one side they have contributed to better understand the 

mechanisms by which the incorporation of the protein into a dehydrated trehalose 

matrix inhibits dramatically specific protein dynamics, both on short (< 10-3 s) and long 

(hours) time scales. These dynamics govern, respectively, the protein dielectric 

relaxation which stabilizes the primary light-induced charge separated state and the 

thermal denaturation of the pigment-protein complex. On the other side, the reported 

observations, based on the use of dehydrated matrices, have shed some light on the 

structural basis of the RC dynamics coupled to stabilization of the charge separated 

state, a topic which is still lively debated (see par.1.4). 

Concerning the tight structural and dynamical coupling between the trehalose 

glassy matrix and the incorporated protein, we have adopted as a working model the 

anchorage hypothesis (see par.1.5). According to this model the inhibition of protein 
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dynamics in dehydrated trehalose glasses is caused by the locking of the protein surface 

to the solid sugar matrix: the anchorage is mediated mainly by the residual hydration 

shell of the protein, which, upon progressive dehydration, becomes more and more 

involved in multiple hydrogen bonds with surface groups of the protein and with sugar 

molecules of the embedding matrix.  

The results obtained, as a whole, are fully consistent with the anchorage 

hypothesis and have allowed to better define the mechanisms of the protein/matrix 

dynamical coupling in the frame of the model. In particular: 

(a) The spatial constraints introduced at the RC surface by extensively dehydrated 

trehalose matrices can inhibit internal motions which involve deeply buried residues; 

the extent and specificity of this internal motional hindrance appears to be 

determined by the local mechanical properties of the protein. This has been inferred 

from a combined experimental and computational analysis, i.e. by comparing the 

kinetics of charge recombination in two RC structures (a carotenoid-containing wt 

and a carotenoid-less mutant) incorporated into trehalose matrices, and by analyzing 

the protein flexibility of the two structures by means of coarse-grained Brownian 

dynamics simulations (chapter 4). The RC dynamics simulations showed additionally 

that limited structural changes can have long range effects on the protein flexibility: 

removal of the carotenoid molecule from the RC appears to induce a protein 

rearrangement which affects substantially the RC dynamics, altering the rigidity of 

residues located at more than 20 Å from the carotenoid. In this respect, we think 

particularly relevant that coarse-grained Brownian dynamics simulations give a 

picture of the RC mechanical properties at the residue level, which is consistent with 

the effects experimentally observed in dehydrated trehalose matrices on a specific 

electron transfer process.   

 (b) The incorporation of the RC into a dehydrated, glassy trehalose matrix does neither 

affect the electronic and structural properties of the radical ions, P+ and QA
-, and their 

radical pairs, P+QA
-, nor the local dynamics of QA

- in its binding pocket, as indicated 

by the high-field EPR characterization (chapter 5). This finding is considered to be of 

particular relevance because it implies that the strongly accelerated and distributed 

P+QA
- recombination kinetics observable in such trehalose matrices are not related to 

structural distortions affecting the cofactor geometry nor to alterations in the local 

cofactor dynamics. These kinetic effects are rather a genuine probe of the 

protein/solvent conformational dynamics which govern the stabilization of the 
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primary RC charge-separated state, as we had previously proposed (Palazzo, 2002; 

Francia, 2009). It is argued that trehalose glasses provide in general a suitable tool to 

modulate the RC dynamics at room temperature. 

(c) The central role postulated by the anchorage hypothesis for the dynamics of residual 

water molecules at the protein matrix interface is fully supported by the 

thermodynamic, spectral and kinetic data obtained in dehydrated RCs in the absence 

of sugar (chapter 6). In fact, as revealed by FTIR analysis, dehydration of the RC-

detergent films below a critical threshold leads to dramatic structural and dynamical 

alterations of the residual hydration shell which are paralleled by a drastic inhibition 

of the RC relaxation from the dark-adapted to the light-adapted conformations, as 

well as of the interconversion among lower tier substates. 

(d)  At the same time, a close comparison between the kinetics of P+QA
- recombination 

after a laser pulse (7 ns) and following a  prolonged, continuous illumination (up to a 

few seconds) in dehydrated trehalose-RC matrices and in RC films, indicates that the 

water-RC-sugar structures formed in the presence of trehalose hinder more severely 

the RC protein dynamics, as compared to a mere dehydration of the protein-detergent 

complex (chapter 8). 

(e) Even more significant is the superior efficacy of trehalose glasses in blocking larger 

scale RC dynamics which are supposed to be involved in its thermal denaturation. In 

fact, at variance with dehydrated RC films, in which a slow loss of the native 

pigment-protein structure occurred at 44 °C on the time scale of hours, incorporation 

into a dehydrated trehalose matrix totally prevented thermal denaturation even after 

several days of incubation at the same temperature.   

(f) The protection of the trehalose matrix against thermal denaturation exhibits a clear 

threshold effect when studied as a function of the sugar/protein molar ratio. As 

expected from the anchorage model, the minimum number of trehalose molecules 

needed to totally suppress the RC dynamics involved in thermal denaturation (~ 200 

trehalose molecules per RC complex) corresponds roughly to the coating of the RC-

detergent complex  with a single layer of trehalose molecules (chapter 7). 

(g) Also the much faster RC dynamics which stabilizes the primary charge separated 

state is quite sensitive to the sugar/protein molar ratio (chapter 7), suggesting that the 

degree of protein dynamics inhibition for a given hydration level is determined by 

the overall dynamics of the RC-water-trehalose structure, as assumed by the 

anchorage model.  
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To further test the anchorage hypothesis, future experiments will need to focus on 

the structural and dynamic properties of the residual water at the RC surface, and on the 

coupled fluctuations of surface residues of the protein as a function of the hydration 

level of the embedding trehalose matrix. We expect that direct information on the 

dynamics of the RC protein surface and on the possible involvement of exposed  RC 

residues in water-mediated hydrogen bonding with the matrix can be obtained by 

combining site-specific NO· spin labelling of the RC H-subunit (e.g., labelling of the 

native cysteine at position 156 (Poluektov, 2003; Borovykh, 2006) with high-field EPR 

spectroscopy (Möbius, 2009), and  incorporating the labelled RC complex into trehalose 

matrices at different hydration levels. Experiments along these lines, in collaboration 

with Prof. Klaus Möbius, Prof. Wolfgang Lubitz, and Dr. Anton Savitsky, are in 

progress at the Max-Planck-Institut für Bioanorganische Chemie.  

In view of the points summarized above, defining several aspects of protein-

matrix interactions, we believe that room temperature trehalose glassy matrices 

represent in general an appropriate, valuable tool when examining function/dynamics 

relationships in proteins. The experimental efficacy of this approach has been 

significantly enhanced by introducing the isopiestic method (par.3.2) to achieve a 

reproducible control and a fine tuning of the hydration levels of amorphous protein 

matrices, both in the absence (chapter 6) and in the presence of trehalose (chapter 7,8,9).  

On these bases, the following conclusions can also be drawn, which concern the 

relaxation of the RC stabilizing the light-induced primary charge separated state: 

(h) The transition from the dark-adapted to the light-adapted conformation following a 

short (ns) photoexcitation does not seem to involve alterations of the relative 

geometry of the P+QA
- radical pair, or in the local structure and dynamics of the QA

- 

binding site, as probed by high-field EPR results, both in cw and pulse modes 

(chapter 5). 

(i) Within the frame of the unified model of protein dynamics recently proposed by 

Frauenfelder (Frauenfelder, 2009), we ascribe the conformational relaxations which 

stabilize the charge-separated state, as well as lower tier thermal fluctuations of the 

RC, probed by the kinetics of P+QA
- recombination to Class II (β-slaved) processes, 

driven and governed by the dynamics of the protein hydration shell. This is 

consistent with the EPR data, strongly supported by the study of dehydrated RC 

films (chapter 6), and fully in line with the anchorage model. 
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(j) The structural rearrangement stabilizing P+QA
- (dark- to light-adapted 

conformational transition) is likely to involve protein residues localized on the 

quinone acceptor side of the RC. This is suggested by the comparison of the rigidity 

profiles of the wt and carotenoid-less mutant, which show that most of the residues 

undergoing the largest differences in the calculated force constant cluster around the 

iron atom (chapter 4).  

(k) Interestingly the comparative analysis of light-induced FTIR difference spectra 

performed in hydrated and dehydrated RC films (chapter 9) indicates that the 

conformational rearrangements in response to charge separation might also involve 

residues located in the vicinity of the primary donor P as well as water molecules, 

weakly hydrogen bonded to the RC, proximal to the primary quinone acceptor, QA. It 

has to be noticed, however, that the difference FTIR results, provide information on 

putative relaxation events occurring over a long (10 s) time scale. This 

conformational adaptation leads, in the hydrated RCs, to an additional, ten-times 

larger stabilization of the charge-separated state, as compared to the one occurring 

after a laser pulse.  

We tend to propose that the dielectric relaxation of the RC/solvent system induced 

by the primary charge separation is a collective process, possibly involving protein 

groups  and bound water molecules localized in different regions of the complex. 

Furthermore, different relaxation processes are likely to take place over different time 

scales (covering at least the 10-3-102 s time range), depending on the duration of 

photoexcitation. Time-resolved FTIR measurements are in progress, which could help 

to better define the structural basis of the conformational relaxations occurring over 

different time scales. 
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12. ABBREVIATIONS AND ACRONYMS 

 

Amino acids abbreviations: 

Alanine: Ala, A. Arginine: Arg, R. Asparagine: Asn, N. Aspartate: Asp, D. Cysteine: 

Cys, C. Glutamate: Glu, E. Glutamine: Gln, Q. Glycine: Gly, G. Histidine: His, H. 

Isoleucine: Ile, I. Leucine: Leu, L. Lysine: Lys, K. Methionine: Met, M. Phenylalanine: 

Phe, F. Proline: Pro, P. Serine: Ser, S. Threonine: Thr, T. Tryptophan: Trp, W. 

Tyrosine: Tyr, Y. Valine: Val, V. 

 

Ai : area of the i-th gaussian band. 

AW : area of the (ν2+ν3) combination band of water. 

Å : angstrom. 

AII : area of the amide II band of the RC. 

Ad : surface area of the detergent ring. 

Ap : surface area of the RC protein. 

AT : sum of the areas of the RC protein and of the detergent ring. 

aW : proportionality constant (absorptivity) between the concentration of water and the 

area of the (ν2+ν3) combination band of water. 

aII : proportionality constant (absorptivity) between the concentration of the RC and the 

area of its amide II band. 

BChl : bacteriochlorophyll. 

BPheo : bacteriopheophytin.  

BPheo- : anion radical state of bacteriopheophytin. 

CaF2 : calcium fluoride. 

CH
3
COOK : potassium acetate. 

°C : celsius degree. 

Cα : alpha carbon atom. 

Cβ : beta carbon atom. 

Cγ : gamma carbon atom. 

CO : carbon monoxide. 

CPK : Corey-Pauling-Koltun color convention for atoms. 

CS : conformational substate. 

cw : continuous wavelength. 
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max
542A∆

DAD : 2,3,5,6-tetramethyl-p-phenylene diamine.  

DLATGS : duetereted L-alanine dopedtriglycine sulfate detector. 

D2O : deutereted water. 

∆A542 : absorption changes at 542 nm. 

             :  maximal absorption changes at 542 nm.  

∆G0
I : Gibbs free energy difference in standard conditions between the P+BPheo-QA and 

the P+BPheoQA
- state. 

EDTA : ethylenediaminetetraacetic acid. 

Eh : ambient redox potential relative to an hydrogen electrode. 

Em : midpoint reduction potential. 

EPR : Electron Paramagnetic Resonance. 

ESE : Electron Spin Envelope. 

exp(x) : e elevated to x.   

F : Faraday constant, 96485.3365 C/mol. 

Fe : iron atom. 

FTIR : Fourier Transform Infrared. 

Ge/KBr : germanium/potassium Bromide. 

h : grams of water/grams of protein. 

H-bonds : hydrogen bonds. 

h0 : constant in the Hailwood-Horrobin model, proportional to the number of the 

hydration sites. 

H2O : water. 

H2O
18 : water with oxygen-18. 

ID : inner diameter. 

kAP : rate constant for the electron transfer reaction from QA to P. 

kAI : rate constant for the electron transfer reaction from QA to BPheo. 

kB : Boltzmann constant, 1.3806488 .10-23 J K-1. 

kBP : rate constant for the electron transfer reaction from QB to P. 

KCl : potassium chloride. 

ki : effective force constant. 

kIP : rate constant for the electron transfer reaction from BPheo to P. 

kobs : observed rate constant. 

kPA : rate constant for the electron transfer reaction from P to QA. 

<k> : average rate constant. 
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KNO3 : potassium nitrate. 

KOH.2H
2
O : di-hydrated potassium hydroxide. 

KRS-5 : Thallium Bromoiodide. 

KWW: Kohlrausch-Williams-Watts function. 

K1 : constant in the Hailwood-Horrobin model, proportional to the activity of the 

hydration sites. 

K2 : constant in the Hailwood-Horrobin model, related to the water activity of the solid 

solution formed by water condensing at the surface of the RC-detergent complex. 

K2CO3 : potassium carbonate. 

IR : infrared. 

LDAO : N,N-dimethyldodecylamine-N-oxide. 

LiCl2 : lithium chloride. 

LiSCN : lithium thyocianate. 

MCT : Mecury Cadmium Tellurite detector. 

MgCl2 : magnesium chloride. 

Mg(NO3)2 : magnesium nitrate. 

mL : milliliter. 

mw : microwave. 

Mw : molecular weight. 

µL : microliter. 

µ2 : the second moment in the cumulant expansion function. 

µ3 : the third moment in the cumulant expansion function. 

NaCl : sodium chloride. 

NaOH.H
2
O : mono-hydrated sodium hydroxide. 

Nd:YAG : neodymium-doped yttrium aluminium garnet crystal. 

NH : NH group. 

NH4NO3 : ammonium nitrate.
 

NIR : near infrared. 

�� : wavenumber. 

(ν2+ν3) : asymmetrical stretching and bending combination band. 

OG : octyl-glucoside. 

OH : hydroxil group. 

P : bacteriochlorophylls P special pair. 

pQB : p-benzoquinone.  
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−•
AQ

+•
865P

PVA : polyvinyl alcohol. 

         , P+ : cation radical of the P special pair. 

P205 : phosphorous pentoxyde. 

QA : QA binding site or quinone of the QA binding site. 

QB : QB binding site or quinone of the QB binding site. 

QH2 : quinol. 

QU : quality factor QU (empty). 

       , QA
-  : anion radical of the quinone QA. 

QB
-  : anion radical of the quinone QB. 

r  : relative humidity. 

R : gas constant, 8.3144621 J-1 K-1 mol. 

Rb.  sphaeroides : Rhodobacter sphaeroides. 

RC : reaction center. 

S : electronic spin. 

SANS : small angle neutron scattering. 

SDS-PAGE : sodium dodecylsulfate – polyacrylammide gel electrophoresis. 

Si/CaF2 : silicium/calcium fluoride. 

σ : standard deviation. 

T : absolute temperature. 

Td : denaturation temperature. 

TE011 : TE011 optical transmission microwave cavity. 

TREPR : Time Resolved EPR. 

UQ10 : ubiquinone-10. 

v/v : volume/volume. 

w/v : weight/volume. 

w/w : weight/weight. 

ZnSO4 : zinc sulfate. 
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