
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

AUTOMATICA E RICERCA OPERATIVA

Ciclo XXIV

Settore Concorsuale di Afferenza: 09/G1
Settore Scientifico Disciplinare: ING–INF/04

NONLINEAR CONTROL STRATEGIES
FOR COOPERATIVE CONTROL OF

MULTI–ROBOT SYSTEMS

Presentata da: Lorenzo Sabattini

Coordinatore:

Prof. Alberto Caprara

Relatore:

Prof. Claudio Melchiorri

Esame finale anno 2012

Copyright c©2012 by Lorenzo Sabattini.

Bologna, Italy, March 2012.

Abstract

Abstract

This thesis deals with distributed control strategies for cooperative control

of multi–robot systems. Specifically, distributed coordination strategies are

presented for groups of mobile robots.

The formation control problem is initially solved exploiting artificial po-

tential fields. The purpose of the presented formation control algorithm is to

drive a group of mobile robots to create a completely arbitrarily shaped for-

mation. Robots are initially controlled to create a regular polygon formation.

A bijective coordinate transformation is then exploited to extend the scope of

this strategy, to obtain arbitrarily shaped formations. For this purpose, arti-

ficial potential fields are specifically designed, and robots are driven to follow

their negative gradient.

Artificial potential fields are then subsequently exploited to solve the coor-

dinated path tracking problem, thus making the robots autonomously spread

along predefined paths, and move along them in a coordinated way.

Formation control problem is then solved exploiting a consensus based

approach. Specifically, weighted graphs are used both to define the desired

formation, and to implement collision avoidance. As expected for consensus

based algorithms, this control strategy is experimentally shown to be robust

to the presence of communication delays.

The global connectivity maintenance issue is then considered. Specifically,

an estimation procedure is introduced to allow each agent to compute its

own estimate of the algebraic connectivity of the communication graph, in

a distributed manner. This estimate is then exploited to develop a gradient

based control strategy that ensures that the communication graph remains

connected, as the system evolves. The proposed control strategy is devel-

oped initially for single–integrator kinematic agents, and is then extended to

Lagrangian dynamical systems.

iii

Acknowledgements

Acknowledgements

This thesis is the result of several years of work, and I need to thank who

made it possible.

I would like to thank my advisor, Prof. Claudio Melchiorri, for giving me

this opportunity.

Many thanks go to Dr. Cristian Secchi and Prof. Cesare Fantuzzi, for

their teachings, their advices and their help.

I’d like to thank Dr. Nikhil Chopra for his support during my six months

at the University of Maryland.

I would have never been able to start studying without the support of my

parents: I really need to thank them for their support.

And, of course, my greatest thanks go Francesca, my wife. Thanks for

being there.

v

Contents

Contents

1 Introduction 1

1.1 Contribution and thesis outline . 5

2 MORE–pucks: a multi–robot experimental framework 9

2.1 Introduction . 9

2.1.1 Outline . 12

2.2 E–puck robots and arena design . 12

2.3 Software architecture . 13

2.3.1 Localization and visual odometry 13

2.3.2 The Core Software and the Graphical User Interface (GUI) 17

2.4 Validation experimental tests . 21

2.5 Discussion . 21

3 Formation control and coordinated curve tracking 23

3.1 Introduction . 23

3.1.1 Outline . 28

3.2 Arbitrarily Shaped Formations of Mobile Robots: Artificial Potential Fields

and Coordinate Transformation . 28

3.2.1 Regular polygon control law . 28

3.2.2 Orientation of the polygon . 32

3.2.3 Deformation of the polygon: bijective coordinates transformation . 35

3.2.4 Simulations and experiments . 42

3.3 Coordinated Closed–Curve Path Tracking for Multi–Robot Systems 47

3.3.1 Deformation of a circumference . 47

3.3.2 Paths described with implicit functions 48

3.3.3 Paths described with parametric functions 54

3.3.4 Implementation issues . 56

vii

Contents

3.3.5 Presence of multiple tasks . 59

3.4 A Graph–Based Collision–Free Distributed Formation Control Strategy . . 64

3.4.1 Weighted Graph-Based Formation Achieving 64

3.4.2 Obstacle avoidance . 69

3.4.3 Local minima avoidance . 72

3.4.4 Simulations and Experiments . 75

3.5 Discussion . 78

4 Global connectivity maintenance 81

4.1 Introduction . 81

4.1.1 Outline . 84

4.2 Estimation of the algebraic connectivity of the graph 84

4.3 Connectivity maintenance for single integrator agents 90

4.3.1 Decentralized implementation of the connectivity maintenance al-

gorithm . 93

4.3.2 Connectivity maintenance in the presence of an external controller . 97

4.3.3 Enhanced connectivity maintenance: selective control action 100

4.3.4 Identification of the critical agents 104

4.3.5 Rendezvous and formation control 106

4.4 Connectivity maintenance for networked Lagrangian dynamical systems . . 109

4.4.1 Connectivity maintenance control strategy 110

4.4.2 Connectivity in the presence of external control laws 111

4.4.3 Application: rendezvous for fully actuated Lagrangian systems . . . 113

4.5 Simulations and experiments . 115

4.5.1 Matlab simulations . 115

4.5.2 Experiments . 121

4.6 Discussion . 122

5 Concluding remarks 125

A Background on graph theory 127

Bibliography 131

viii

1. Introduction

Chapter 1

Introduction

Cooperative multi–robot systems have several advantages, over single–robot systems [1,

Chapters 40–41]:

• multiple robots can accomplish tasks that are too complex for a single robot,

• different robots can gather together complementary abilities,

• some tasks are inherently distributed, in space or time,

• multiple robots can work simultaneously, thus solving parallelizable problems in less

time,

• redundancy provided by multiple robots may increase the overall robustness of the

system.

These are among the main reasons why multi–robot systems have been intensively studied,

in the last few decades.

A specific class of robots that are often exploited in cooperative system is that of mobile

robots. Groups of mobile robots can be exploited in several applications. Main examples

are search–and–rescue operations [2–4], cooperative transportation [5, 6], exploration of

unknown terrains [7–9], service operation in domestic [10, 11] or industrial environment

[12–14], military tasks [15, 16].

Generally speaking, control strategies for multi–robot systems may be divided into

two categories: centralized and distributed:

When adopting a centralized control architecture (Fig. 1.1a), a central computation

unit gathers information from all the members of the team. Subsequently, the central

unit sends the desired control input to all the team members.

1

1. Introduction

(a) Centralized architecture (b) Distributed architecture

Figure 1.1: Centralized and distributed control architectures

Conversely, in a distributed control architecture (Fig. 1.1b), each entity of the group

computes its own control input, based on information acquired locally, from its neighbors.

While a centralized architecture generally yields to an easier design of the control

algorithm, it clearly lacks of robustness [17]. In fact, in the case of failure of the central

entity, the group is no longer able to perform the task. Conversely, in a distributed

architecture, the failure of a single entity doesn’t necessarily prevent the completion of

the task: generally speaking, the rest of the group may be still able to perform the

desired operation, possibly with lower performances. This is the main reason why this

work focuses on distributed control strategies.

The idea of having a group of mobile entities cooperating in a distributed manner

comes from several examples that can be easily found in the nature. The so called social

animals are a remarkable example of cooperating entities (Fig. 1.2). Exploiting cooper-

ation, animals are able to fulfill incredibly challenging tasks. Consider insects, like ants

or bees: simple entities, with very limited cognitive capabilities, are able to organize

themselves in a very complex way, and to complete incredible challenges: ant colonies

(Fig. 1.2a) and beehives (Fig: 1.2b) are remarkable examples of complex behaviors, real-

2

1. Introduction

(a) An ant colony (b) A swarm of bees

(c) A school of fish, hunted by a
shark

(d) A pride of lions hunting

Figure 1.2: Examples of social animals

ized by means of the cooperation of simple entities. Another example is represented by

school of fish (Fig. 1.2c): coordinating their movements, the animals are able to increase

exponentially each one’s perception capabilities, without explicit communication. This

kind of cooperation helps them in finding food, and avoiding predators. Furthermore,

also predators, in some cases, exploit cooperation for hunting, as in the case of lions

(Fig. 1.2d).

Considering these fascinating examples, the idea of imitating natural behaviors in

robotics appears quite attractive.

3

1. Introduction

Artificial potential fields are one of the main techniques that allow groups of robots

to imitate social animals’ behaviors. Specifically, control strategies based on artificial

potential fields drive robots to move along the negative gradient of the composition of

some specifically designed artificial potential fields. The shape of these potential fields

encodes the desired behavior. In fact, potential fields can be used to:

• aggregate robots that are too far away from each other,

• avoid collisions among robots,

• avoid collisions with obstacles,

• move robots to the desired position.

Hence, they can be used to imitate the so called social forces, the forces that occur among

social animals (see [17] and references therein). As observed by the biologists, in fact, the

behavior of social animals can be modeled as the composition of some simple behaviors,

each of which can be defined by means of an appropriate potential function.

In order to implement any kind of control strategy in a distributed manner, it is

necessary for the robots to exchange information with their neighbors. There are basically

two different ways of exchanging information: communication and sensing. Generally

speaking, communication entails a bidirectional information exchange: if the i–th robot

can communicate with the j–th one, it is reasonable to assume that the j–th robot can

communicate with the i–th one as well. Conversely, an information exchange based on

pure sensing is generally unidirectional: the fact that the i–th robot can acquire some

data about the i–th one doesn’t necessarily mean the converse.

Clearly, bidirectional explicit communication is more effective than unidirectional sens-

ing. This is due to the fact that information flows faster through the team of robots.

Furthermore, structured data (e.g. results of local computations) may be exchanged as

well. The main drawback is in the fact that a communication infrastructure is needed,

that is computationally demanding. Moreover, typically mobile robots are powered by

means of batteries: avoiding the use of communication modules increases the battery life.

Another problem is related to the environmental conditions: communication is not always

possible, for instance in the presence of radio disturbances, or in the case of long distances

among the robots.

The communication architecture among the robots is often modeled as a graph [18,19],

that is usually referred to as the communication graph. Generally speaking, a graph G
represents the interconnection among a set of nodes : if two nodes are interconnected, and

4

1. Introduction

edge exists among them. The neighborhood of a node is defined as the set of its neighbors,

that is the set of nodes to whom it is connected through an edge.

Hence, in multi–robot systems, each robot is represented as a node of the graph, and

the link between two robots is represented as an edge of the graph. In order to represent

the communication architecture in multi–robot systems, two different classes of graphs

may be adopted: directed graphs and undirected graphs.

• In an undirected graph the information exchange is bidirectional: for every couple of

nodes i and j, if the i→ j edge exists, then the j → i edge exists as well. Undirected

graphs are thus usually exploited to model explicit bidirectional communication

among the robots.

• In a directed graph the information exchange is unidirectional: for every couple of

nodes i and j, the fact that the i → j edge exists doesn’t automatically imply the

existence of the j → i edge. Directed graphs are thus usually exploited to model

unidirectional communication among the robots, that may be based on pure sensing.

1.1 Contribution and thesis outline

This thesis focuses on distributed control strategies for cooperative control of multi–robot

systems. Each chapter focuses on a specific topic, and starts with an introduction section,

that includes a detailed analysis of the state of the art, based on the literature review.

Chapter 2 describes the MORE–pucks experimental framework, that is exploited

for validating the control strategies described in the subsequent chapters. Specifically,

an hardware and software platform is described, that has been designed to implement

multi–robot control strategies on a group of e–puck robots. Even though the control

software is implemented on a central computer, that communicates via bluetooth with

the e–puck robots, distributed implementation of control strategies is emulated, letting

each robot exploit only local information. Another experimental framework, based on

iRobot Roomba robots, that was first introduced in [20], is described as well.

Chapter 3 introduces distributed control strategies for the coordination of multi–

robot systems, first introduced in [21–24]. Specifically, artificial potential fields are ex-

ploited for formation control purpose. In fact, artificial potential fields are designed to

obtain a regular polygon formation, that is subsequently deformed by means of an ap-

propriately designed coordinate transformation, thus obtaining a completely arbitrarily

shaped formation. This control strategy is proven to be asymptotically stable, and to be

5

1.1. Contribution and thesis outline

local minima free, unlike traditional strategies available in the literature.

Subsequently, the previously designed artificial potential fields are modified, in order

to solve a slightly different problem: coordinated path tracking. Specifically, as shown

also in [25, 26], robots are controlled to move along a predefined closed curve path: in

a completely distributed way, without any global synchronization, the composition of

appropriately defined artificial potential fields make them spread along the curve and

move along it, while keeping the desired speed.

The formation control problem is then tackled exploiting graph theory based strate-

gies. In fact, while artificial potential fields are an effective way of solving formation

control problem, they have some criticalities: one of the main drawbacks is in the fact

that delays in the communication channels drive the system to instability. For this reason,

a formation control strategy based on edge–weighted graphs, first introduced in [27, 28],

is described: specifically, edge–weights are exploited both for formation control and for

collision avoidance. In fact, traditional approaches use graph based strategies for forma-

tion control only, while artificial potential fields are introduced for collision avoidance.

Avoiding the use of artificial potential fields, the proposed control strategy is robust to

the presence of delays, as shown in simulations.

To perform a common task in a distributed manner, it is crucial to ensure that infor-

mation exchange may take place, as the system evolves. For this reason, Chapter 4 deals

with connectivity maintenance. Specifically, a distributed control strategy is described to

ensure the connectivity of the communication graph. This control strategy was first in-

troduced in [29–32]. In the literature, several approaches to connectivity maintenance

have been proposed. These approaches can be divided into two categories: approaches

to maintain the local connectivity, and approaches to maintain the global connectivity.

Maintaining the local connectivity entails designing a controller that ensures that, if a

communication link is active at time t = 0, it will be active ∀t ≥ 0. However, impos-

ing the maintenance of each single communication link is often too restrictive. In fact,

to ensure that information exchange among all the robots is possible, it is necessary to

guarantee only the global connectivity of the communication graph. Loosely speaking, it

is acceptable that a few links are broken, as long as the overall graph is still connected: if

necessary, redundant links can be removed, and new ones can be introduced. As a measure

of the global connectivity of a graph is the second smallest eigenvalue of the Laplacian

matrix, the proposed strategy implements a gradient descent of an appropriately designed

function of the eigenvalue itself.

In order to implement this strategy, a distributed estimation procedure is introduced, to

6

1. Introduction

let each robot compute its own estimate of the eigenvalue and of its gradient. The bound-

edness of the estimation error is shown to be a sufficient condition to ensure connectivity

maintenance. The proposed strategy is implemented initially for single–integrator kine-

matic agents, and is then extended to Lagrangian dynamical systems, as shown in [33].

The presence of additional external control laws is considered as well.

Appendix A summarizes some of the main results on graph theory used throughout

the thesis.

7

2. MORE–pucks: a multi–robot experimental framework

Chapter 2

MORE–pucks: a multi–robot
experimental framework

This chapter describes an experimental test–bed for multi–robot experiments. More

specifically, a software platform is described that allows the user to test control al-

gorithms on a multi–robot experimental setup based on e–puck robots. An overhead

camera is exploited for the identification and the localization of the robots, that are

moving inside a bounded arena. The software platform has been developed based

on open source and cross–platform libraries. Validation experiments for the control

strategies described in the following Chapters will be developed within this experi-

mental framework.

2.1 Introduction

This chapter describes a hardware and software platform designed to implement control

strategies on a multi–robot experimental setup based on e–puck robots [34]. This exper-

imental framework has been designed from scratch in cooperation with the ARSControl

research group at the University of Modena and Reggio Emilia, Italy.

Since research on groups of autonomous mobile robots is a quite popular topic, several

different experimental setups have been developed in the recent years. General purpose

software platforms, such as [35] and [36], provide support for the development of exper-

imental tests of control algorithms independently of the the particular hardware used.

Thus, the same algorithm can be tested on different kinds of robots, also on simulated

ones.

On these lines, a preliminary experimental setup has been realized inspired by [37],

creating a group of three mobile robots. Each one of them is based on an iRobot Roomba

9

2.1. Introduction

Figure 2.1: iRobot Roomba robot vacuum cleaner
connected to Gumstix computer

robot vacuum cleaner1, connected to a Gumstix Connex board2, as shown in Fig. 2.1.

The interaction among the main components of this experimental setup is described in

Fig. 2.2. Gumstix Connex is a very small sized single–board Linux computer, which

can be connected to the Roomba via serial port, controlling the wheels’ motors and

reading data from the sensors. Furthermore, it provides WiFi connectivity. The control

strategy is implemented by means of the Player Robot Device Interface: the Gumstix

board runs the Player server, while the control strategy is implemented on a remote

computer, which controls the group of robots exploiting a WiFi network. It is worth

noting that, due to the limited computational resources of the Gumstix board, it is not

possible to execute complex control strategies directly on the board itself. Hence, even

to emulate the implementation of decentralized strategies, the controller is executed on a

remote computer.

Since the Roomba robots are not equipped with any exteroceptive sensor, the local-

ization is performed by means of odometric measurements. To obtain a good accuracy,

measurement and correction of the systematic odometric errors have been performed,

exploiting the methodology described in [38]. WiFi network is used to broadcast each

robot’s position to the other robots, while the presence of proximity sensors may be sim-

ulated: for instance, each robot may be allowed to use only the positions of its neighbors

(i.e. robots that are closer than the sensing range).

Even though this experimental setup ensures flexibility and reusability of the software

on different hardware platforms, it presents serious lacks in terms of performances, as

shown for instance in [20].

To obtain better performances, in the literature several software platforms have been

1http://www.irobot.com
2http://www.gumstix.com

10

http://www.irobot.com
http://www.gumstix.com

2. MORE–pucks: a multi–robot experimental framework

Figure 2.2: Scheme representing the main components of the iRobot Roomba based ex-
perimental setup

developed ad hoc for some particular robots. E–puck robots [34], for instance, are

equipped with a simple and effective software platform that allows the users to control

each sensor and actuator of the robots. In [39] an experimental platform for the control

of groups of multiple e–puck robots has been introduced. The robots are moving in a

bounded arena, and their positions are tracked by means of an overhead camera. The

acquisition and elaboration of the image, and the control algorithm, are implemented as

Matlab functions and scripts on a central PC. As stated by the authors in [39], Matlab

has been used because it is easy to use, but the efficiency of the code (in term of speed of

execution) can be improved using other (lower level) programming tools.

The software platform described in this chapter has been developed in C/C++ lan-

guage. The main goal was to obtain an efficient and easy–to–use platform for the imple-

mentation of experimental tests on groups of mobile robots. The movement of the robots

have been constrained inside an arena, equipped with an overhead camera. Exploiting

11

2.2. E–puck robots and arena design

colored markers, the overhead camera allows the tracking of the position of each robot.

The elaboration of the images acquired by the overhead camera is developed exploiting

some of the functions provided within the OpenCV library [40].

A Graphical User Interface (GUI) has been provided for the supervision of the experi-

mental setup. The GUI, developed by means of the Nokia Qt library [41], allows the user

to increase and reduce the number of robots included in the experiment, to monitor the

position of each robot, and to implement the desired controllers. Analysis and plot tools

are available as well.

The project has been developed on a Personal Computer equipped with Microsoft

Windows XP Operative System. However, all the libraries that have been used are cross–

platform, thus the software can be compiled and executed under different Operative Sys-

tems, such as Linux or Mac OS.

2.1.1 Outline

The outline of the Chapter is as follows. Section 2.2 describes the hardware test–bed used

within the MORE–pucks project, based on the use of e–puck robots moving in a bounded

arena, equipped with an overhead camera. Section 2.3.1 describes the image processing

operations that allow the system to exploit the overhead camera for identification and

localization purposes. Section 2.3.2 provides technical details about the modular structure

of the software. Experimental tests developed with this platform will be described in the

following Chapters.

2.2 E–puck robots and arena design

E–puck robots [34] are cheap and small sized mobile robots developed by the École Poly-

technique Fédérale de Lausanne (EPFL), Switzerland. Each robot (Fig. 2.3) has a di-

ameter of 75mm, and is equipped with a dsPIC30 microcontroller. The robots have a

differential drive kinematic structure, with two wheels actuated by means of two stepper

motors. A bluetooth interface is provided for the communication between each e–puck

robot and a computer. The robots are equipped with several sensors as well, such as a

small CMOS front camera, eight infrared proximity sensors on the perimeter, microphones

and 3D accelerometers.

Inspired by [39], an arena was built to constraint the movement of the robots, equipped

with an overhead camera, used for localization purposes. The arena (Fig. 2.4) has a

rectangular shape, with dimension 2.0m × 1.5m. A metal structure holds a USB web–

12

2. MORE–pucks: a multi–robot experimental framework

Figure 2.3: E–puck robots

cam on the top of the middle of the arena, at a height of 1.7m from the floor of the arena.

The arena has been developed with a 4 : 3 ratio between the sides, in order to exploit the

entire size of the image acquired by the camera, that has a 4 : 3 ratio. The correct height

of the camera from the floor of the arena has been determined empirically.

Each robot has been equipped with a colored marker (Fig. 2.4). Different colors are

used as unique identifiers during the visual localization process. Further details regarding

the visual localization process will be provided in the following section.

2.3 Software architecture

2.3.1 Localization and visual odometry

One of the most commonly used localization systems is odometry. Starting from a known

initial position, the current position of the robot is computed exploiting the readings of

the encoders on the wheels. As is well known (see e.g. [38]), odometry is affected by

error, that accumulates as the robot moves. Since, during the experiments, robots are

constrained to move in a limited–size arena, their position can be computed by means of

the visual feedback provided by an overhead camera.

This section will explain how the position is computed in our software platform: this

part of the system will be referred to as visual odometry.

Each robot is equipped with a colored marker, represented in Fig. 2.4. The background

color of each marker is used as a unique identifier for each robot (as shown in Fig. 2.4,

13

2.3. Software architecture

Figure 2.4: The arena, equipped with the
overhead camera, with eight e–puck robots.
On each e–puck robot, a colored marker is
used for identification and localization

each robot’s marker has a different background color), while the triangle inside the marker

is used to compute its position.

Colored markers have two purposes: they provide a unique identifier for each robot

(identification), and they are used to compute the current position of each robot (local-

ization).

Identification

The arena has a uniform white background. Each robot is identified by the color of the

background of its marker. More specifically, the image acquired by the camera is analyzed

using the RGB color model [42]: the color of each pixel is identified with a specific value

for each channel, red (R), green (G), and blue (B). A filter is applied to the image, in

order to identify a region of interest for each robot. The mean and the standard deviation

values for the three RGB channels are specified for each robot. This allows the system to

identify whether a pixel corresponds to a robot (and, in this case, to find which robot it

is) or to the white background.

The built–in OpenCV filtering function [40] does the image filtering. The main draw-

back of this function is that it analyzes the whole image for each color to be found: thus,

14

2. MORE–pucks: a multi–robot experimental framework

Figure 2.5: Filtering function used for the
identification of the markers’ colors

to identify N robots, each pixel of the image must be processed N times. This makes the

system not scalable with the number of robots, and causes an unacceptably high compu-

tation time even for a relatively small number of robots. This is the main reason why a

custom filtering function has been developed.

Each pixel of the image can either be part of the background, or part of the marker of

one of the robots. The markers are compact sets of pixels: this means that all the pixels

with the same color are in a limited area. Furthermore, if a pixel with a particular color

is found, it’s quite likely that also its neighboring pixels have the same color. Hence, the

filtering function algorithm is explained in the flow–chart in Fig. 2.5:

• the image is analyzed per rows;

• if a pixel’s color corresponds to the background, the pixel is ignored;

• if a pixel’s color corresponds to one of the robots’ identifiers, the next pixel will be

tested first to understand if it has the same color.

This strategy makes the filtering operation considerably faster than using the built–in

OpenCV function, because the heaviest computation (testing a pixel for all the possible

ranges of colors) is done (ideally) only for the pixels that correspond to the borders of

the robots. To make the computation even faster, this identification procedure is done

15

2.3. Software architecture

Figure 2.6: Region Of Interests
(ROI) created on each robot

not on all the pixels, but only on the ones corresponding to an even row and an even

column. It is worth noting that the filtering function has been implemented in a scalable

way. More specifically, since each pixel of the image is analyzed only once, regardless of

the number of robots involved, the computation time does not increase heavily as the

number of robots increases.

The output of this filtering procedure is to create a region of interest for each robot.

As shown in Fig. 2.6, it is a square set of pixels that, for each robot, contains the triangle

used for the following localization procedure.

Localization

In the center of each marker, an isosceles triangle is drawn, with an high–contrast color:

white (if the marker’s background color is dark) or black (is the marker’s background

color is light).

After the identification phase, a region of interest is defined for each robots. Each

region of interest contains the triangle and part of the marker’s background color, as

shown in Fig. 2.6.

The purpose of the localization phase is to compute the pose of each robot. The term

pose indicates both the position and the orientation of the robot.

The position of the robot is defined as the barycenter of the isosceles triangle. More-

over, the orientation of the robot is defined as the angle between the height of the isosceles

triangle and the x–axis of the absolute reference frame.

The positions of the corners of the isosceles triangle are computed exploiting the

strategy described in [43]: corners are identified as points of discontinuity in the image.

16

2. MORE–pucks: a multi–robot experimental framework

Thus, corners are identified as point in which the second–order derivative of the intensity

is high, both in x and y direction. Further details can be found in [43].

Once the corners have been found, the position of the robot is defined as the barycenter

of the triangle, i.e. the average of the positions of the corners. Once the top corner of

the triangle (i.e. the corner between the two identical sides of the isosceles triangle) has

been identified, the orientation of the robot is computed as the angle between the height

of the triangle and the x–axis of the absolute reference frame.

2.3.2 The Core Software and the Graphical User Interface (GUI)

The software platform has been developed in a modular way. As show in the class diagram

in Fig. 2.7, several C/C++ classes has been defined to implement the different modules

and sub–modules of the software architecture. The main modules are the Core Software

and the Graphical User Interface (GUI).

GUI

COMMUNICATION MODULE

IMAGE PROCESSING MODULE

CONTROL MODULE

CORE SOFTWARE

Figure 2.7: Class diagram of the software

The Core Software

The Core Software is the composition of three sub–modules: the image processing module,

the communication module, and the control module.

17

2.3. Software architecture

Figure 2.8: Class diagram of the
image processing module

Figure 2.9: Scheme of the
communication architecture
between the e–puck robot
and the PC

Image processing module The image processing module implements the visual odom-

etry procedure described in the previous section. As shown in Fig. 2.7, the image process-

ing is managed by the class TrackController, whose decomposition is shown in Fig. 2.8.

Specifically, the class CaptureThread implements an infinite loop that acquires images

from the web–cam and saves it into a buffer (ImageBuffer). The class ProcessingThread

extracts the image from the buffer and computes the elaboration described in the previous

section. A separate class has been created for the heaviest part of the image processing,

namely the filtering process (class Filter).

Communication module The scheme of the communication architecture between the

computer and each robot is described in Fig. 2.9. The communication is implemented

18

2. MORE–pucks: a multi–robot experimental framework

exploiting the bluetooth interface of the e–puck robots. More specifically, a serial com-

munication over bluetooth channel is implemented, by means of the Boost.Asio library.

Boost.Asio is provided within the Boost C++ library, that is a cross–platform C++ li-

brary for network and low level I/O programming with an asynchronous model support.

Further details about the Boost C++ library can be found in [44].

The main purpose of the communication module is to send commands to the robots,

and to acquire data from the robots’ sensors.

A modified version of the e–puck BTCom protocol has been implemented (details can

be found in [45]). The main improvement to this protocol is the support for asynchronous

communication.

The communication protocol is based on the exchange of fixed length text messages.

To read some sensor data:

• the PC sends to the robot a request message;

• once received the message, the robot saves the request, and sends a confirmation to

the PC;

• the robot sends the data asynchronously, every time the values change;

• the PC acquires the incoming data in a buffer, and makes them available for the

application programs.

Sending commands for the actuators is managed in the same way.

The asynchronous approach helps the execution of the program as the number of

robots increases, because there is no need to insert blocking points to wait for the other

robots to end their current operation.

Control module The control module is in charge of associating one of the available

control functions with the desired robot. Control functions are C/C++ functions, written

by the user to obtain some desired behavior.

The Graphical User Interface (GUI)

The Graphical User Interface (GUI) has been developed exploiting the Nokia Qt library

[41]. The class decomposition scheme of the GUI is shown in Fig. 2.7.

As show in Fig. 2.10, the GUI is represented by the main window, where Qt Widgets

(i.e. modules) can be added to control the different parts of the software platform, as

shown in Fig. 2.11.

19

2.3. Software architecture

Figure 2.10: The Graphical User Interface (GUI)

More specifically, the user can add virtual robots, that appear in a tree list. The user

can then add a communication widget to each virtual robot, thus linking the virtual robot

to a real, physical, robot. Then, adding an odometry widget to a virtual robot allows the

user to link each robot with the corresponding marker’s background color, so that the

system can perform the visual odometry. Finally, adding a control widget to a virtual

robot, the user selects the desired control function to be executed on each robot.

Additional features of the GUI include the possibility to record videos of the arena

during the experiments, and storing log files of the positions of the robots, to be used

for further off–line elaborations (e.g. to draw plots or compute statistical analysis, with

external programs such as Matlab).

The modular architecture allows the user to add widget at runtime. More specifically,

this means that it is possible to add or remove robots while performing an experiment.

This allows, for example, to test the scalability of control algorithms, since it is possible

to analyze the behavior of the system as robots are added or removed.

20

2. MORE–pucks: a multi–robot experimental framework

(a) (b)

Figure 2.11: GUI Widgets: communication widget and control widget

2.4 Validation experimental tests

The MORE–pucks software platform has been exploited for the experimental validation

of the control strategies described in the following chapters.

On the project’s web–page, http://www.arscontrol.unimore.it/morepucks, several videos

can be found. This videos show the system implementing different control algorithms.

Tutorials and extended documentation are available as well.

Generally speaking, as described in the previous section, the control module is in

charge of selecting one of the available control functions, and to assign it to the desired

robots.

Control functions are written in C/C++ code. Generally speaking, a function is

assigned to a specific robot, but has access to the data acquired by the sensors of the

entire group. In other words, each robot has access to the sensor data (e.g. the positions)

of all the other robots. This is useful to emulate the presence of an explicit communication

channel between the robots, or to emulate the presence of some proximity sensors.

Once written and saved as a source file, each control function can be assigned to a

robot by exploiting the control widget of the GUI, that allows the user to select the

function from a list.

2.5 Discussion

In this chapter a software platform has been described for the development of experimental

tests in the field of multi–robot systems. The purpose of this software platform is the

control of a group of e–puck robots moving in a bounded arena, which is equipped with

21

http://www.arscontrol.unimore.it/morepucks

2.5. Discussion

an overhead camera used for identification and localization purposes.

The software platform has been developed from scratch, based on the use of open–

source cross–platform libraries, such as OpenCV, Boost and Nokia Qt. The software

platform is freely available for download, under GPLv3 license.

As described in Section 2.3.2, the software has been developed in a modular way. This

characteristic makes the addition of new features easy to implement.

Furthermore, the modularity of the software is exploitable also from the user’s point

of view. More specifically, the GUI is defined as a collection of widgets: this allows the

addition and subtraction of robots at runtime.

The use of a central computer and of an overhead camera allow the user to directly

test centralized algorithms, but also to emulate the execution of decentralized algorithms,

simulating the presence of proximity sensors and of direct communication channels among

the robots.

The image elaboration, that is the most computationally demanding part of the soft-

ware platform, has been developed with custom functions, to guarantee a faster execution

with respect to the built–in OpenCV functions. This increased the scalability of the soft-

ware, because the execution time does not heavily increase with the number of robots.

Nevertheless, the image filtering procedure needs further improvements, in order to make

the system able to identify a higher number of colors.

The software platform has been developed based on open source and cross–platform

libraries. The name of the project, MORE–pucks, comes from the acronym of the Uni-

versity of MOdena and REggio Emilia. The software is is freely available for download,

under GPLv3 license [46], at http://www.arscontrol.unimore.it/morepucks.

22

http://www.arscontrol.unimore.it/morepucks

3. Formation control and coordinated curve tracking

Chapter 3

Formation control and coordinated
curve tracking

In this chapter some coordination control strategies for multi–robot systems are de-

scribed to solve formation control and coordinated curve tracking problems. Artificial

potential fields and consensus based controllers will be exploited to design the control

strategies. Specifically, the first section describes how to design artificial potential

fields to obtain a formation with the shape of a regular polygon. The proof asymp-

totic stability of the system is based on the definition of a proper Lyapunov function.

The absence of local minima will be ensured as well. Then, exploiting a bijective

coordinate transformation to deform the polygonal formation, completely arbitrarily

shaped formations will be obtained. Subsequently, the previously described artificial

potential fields will be modified, in order to achieve coordinated tracking of closed

curve paths. This will lead to the definition of a completely decentralized algorithm,

that doesn’t require any global synchronization. The formation control problem will

then be addressed by means of a consensus based control strategy. Weighted graphs

will be used to obtain the desired formation–shape while avoiding collisions among

the robots. Since mobile robots usually move in unknown and unstructured environ-

ments, the control strategy will be extended to make the robots avoid collision with

obstacles as well.

3.1 Introduction

Formation control has been widely studied in the last few years, due to the increasing

interest in autonomous vehicles. Groups of mobile robots can be used to perform tasks

that a single robot cannot be able to complete. Examples are the movement of large or

heavy objects [47], or the exploration of wide areas [48].

In the literature, many different approaches to formation control can be found. The

main existing approaches can be divided into two categories: centralized and distributed.

Because of the intrinsic unreliability of centralized methods [17], the focus of this Chapter

23

3.1. Introduction

is on distributed ones: all the agents are equal, and if one of them stops working, the

other ones can still complete their task.

Many distributed strategies have been proposed to make groups of mobile robots move

in a cohesive way [49–51], imitating the behavior of large groups of animals (e.g. school

of fish). However, the aim of the control strategy introduced in Section 3.2 is quite

different: the group of mobile robots is required to create a formation with an exact

desired geometric shape.

This kind of control strategy can be applied into several different fields. For example, in

the industrial field, this formation control strategy can be applied to a group of Automated

Guided Vehicles (AGVs) moving in a warehouse for goods delivery. The main idea is to

make a group of AGVs cooperatively deliver a certain amount of goods, moving in a

formation. The creation of a formation with the desired shape is useful to precisely

constrain the action zone of the AGVs, thus reducing the chance of collisions with other

entities (e.g. human guided vehicles).

Another possible application is in the exploration of unknown environments. A group

of mobile robots moves inside an unknown environment, while acquiring data from some

exteroceptive sensors. With respect to a single robot exploring an unknown environment,

a group of robots can acquire much more information. However, data acquired by each

robot need to be merged in a coherent way. If the mobile robots keep a known formation

while moving in the environment, their relative positions are known, that makes the

process of merging sensor data more effective.

Artificial potential fields Artificial potential based control strategies make robots

move along the negative gradient of the composition of some artificial potential fields.

Correctly shaping these potential fields allows one to impose a desired behavior to a

group of robots. Artificial potential fields are a very powerful control strategy. Different

potential fields can be designed to obtain different objectives, for example

• to make a robot move to a desired goal position,

• to make a robot avoid collisions with obstacles,

• to avoid collisions among different robots,

• to make a group of robots move in a cohesive way.

From the composition of these artificial potential fields, the desired behavior for the group

emerges.

24

3. Formation control and coordinated curve tracking

While most of the artificial potential based formation control strategies have the aim

of controlling only the overall swarm geometry (examples can be found in [52, 53], and

references therein), recently some strategies have appeared to control the exact shape

of the formation. One possible approach is to deploy a group of robots over a desired

curve [54–56].

Conversely, the control strategy introduced in Section 3.2 exploits some specifically

designed artificial potential fields to obtain a completely arbitrarily shaped formation. In

particular, the artificial potential fields are designed to provably make the robots create

a regular polygon formation. Subsequently, a bijective coordinates transformation will

be exploited to obtain a arbitrarily shaped formation. Formal proof of the asymptotic

stability of the system, based on the definition of a proper Lyapunov function, will be

provided. Previous potential based strategies to obtain formations with an exact geo-

metric shape [17] have the drawback that, as the number of agents increases, many local

minima appear. Local minima are asymptotically stable undesired equilibrium points.

Thus, they are one of the main problem in potential based strategies [57], because they

make the agents stop in undesired positions. Conversely, the control strategy introduced

in Section 3.2 is formally guaranteed to be unaffected by the problem of local minima:

thus, the desired formation is always created.

Consider the regular polygon formation. Introducing a time varying coordinate trans-

formation, it is possible to make the coordinate system rotate, in order to make the robots

move along the circumcircle of the polygon. Hence, exploiting this strategy, it is possible

to solve the coordinated path tracking problem, as shown in Section 3.3.

Among the main applications of this control strategy, a remarkable example is repre-

sented by Automated Guided Vehicles (AGVs) moving in an industrial environment. As

represented, for instance, in Fig. 3.1, AGVs may be employed for end–of–line operations,

for example delivery of goods from the production machines to the warehouse.

Since movement of goods is a crucial activity in industrial applications, this kind of

problem has already been tackled, in the literature. A remarkable example is described

in [12]: a decentralized control strategy has been developed to make AGVs autonomously

move on a roadmap, for goods delivery in a warehouse. However, considering typical

industrial plants, the environment is generally more cluttered: therefore, the admissi-

ble paths for the AGVs often assume very strange shapes. Thus, the control strategy

introduced in Section 3.3 is suitable for paths with completely arbitrary shapes.

In the literature, many control strategies have been proposed for tracking of paths.

Traditional approaches (see e.g. [58] and references therein) generally make the mobile

25

3.1. Introduction

Figure 3.1: End–of–line industrial sce-
nario

Warehouse

Parking

Machine

Machine

robot follow a reference point that moves along the trajectory, by means of error feedback.

Even though these strategies are very effective for a single vehicle to track a trajectory,

it’s not straightforward to extend them to the multi–vehicle case.

In the multi–vehicle case, each robot has to track the path without colliding with the

other ones, and maintaining a desired distance from them. For this purpose, traditional

collision avoidance strategies, for example potential based ones [59], are not suitable. An

adapted potential based control strategy is presented in [60] for automatic driving on

highways. The composition of the artificial potentials makes the vehicles change the lane

to overtake other vehicles, thus avoiding collisions. Conversely, due to safety issues, the

single lane scenario (i.e. the vehicles never leave the path, and synchronize their motion

along it) is often more interesting, for industrial applications.

A well studied application for groups of mobile robots coordinated over a closed curve

path is boundary tracking [61, 62], i.e. the deployment of a group of robots along the

boundary of a certain zone, for instance a nuclear plant, as shown in Fig. 3.2. The same

concepts can be used for environmental monitoring, i.e. the deployment of a group of

active sensors around a forest fire, a poisonous oil spill or an ocean contamination. How-

ever, generally boundaries are approximated by convex (or star–convex) curves [63, 64],

since a higher precision in the definition of the boundary is not needed for environmental

monitoring. Furthermore, the aim of these algorithms is to spread the robots over the

boundary and then to stop them [63], or to make them patrol a small segment of the

boundary moving alternatively forward and backward [65].

26

3. Formation control and coordinated curve tracking

Figure 3.2: Mobile robots can be used for
patrolling the boundary of a nuclear plant

Hence, Section 3.3 describes how to modify the control strategy introduced in Sec-

tion 3.2, making the coordinate system rotate, in order to make the robots move along

a circumference. However, it is not always possible to find a suitable coordinates trans-

formation to relate a circumference with a completely arbitrary shaped curve. Thus,

the artificial potential fields will be appropriately redefined, in order to avoid the use of

coordinates transformations.

Weighted graph consensus algorithms Artificial potential fields are a very effective

way to implement formation control and collision avoidance strategies. However, one of

the main drawbacks in using potential fields is the fact that delays in the communication

channels drive the system to instability [66].

Hence, in Section 3.4 edge–weighted graphs [67,68] will be exploited to drive a group

of robots to create the desired formation while avoiding collisions.

A remarkable example of consensus based formation control strategy has been intro-

duced in [69]: in this work, the authors describe how to exploit consensus algorithms to

obtain a formation of autonomous vehicles whose interconnection is described by means

of a graph. One of the main advantages of consensus algorithms is the fact that the

agreement is reached even in the presence of delays in the communication [70]. Further-

more, the multi–agent system keeps a stable behavior even in the presence of a varying

communication topology [69]. However, to include collision avoidance among the agents

27

3.1. Arbitrarily Shaped Formations of Mobile Robots

into consensus based formation control strategies, typically repulsive potential fields are

added [70]. As previously stated, one of the main drawbacks in using potential fields is

the fact that delays in the communication channels drive the system to instability [66],

as shown in the simulations described in Section 3.4.4.

The control strategy described in Section 3.4 follows a different approach. Specifi-

cally, a control strategy is introduced that exploits edge–weighted graphs [67] both for

the creation of a desired formation and for collision avoidance. In particular, non–constant

edge–weight functions are exploited to obtain the desired formation while avoiding col-

lisions among the robots. Moreover, supposing that the robots are moving in unknown

environments, this approach can be extended to avoid collisions with detected obstacles,

by introducing virtual agents projected on their surface [71]. The repulsive action caused

by the introduction of virtual agents could drive the system to configurations where the

desired shape is not maintained [72]. Therefore, the intensity of the inter–robot influ-

ence [73] may be regulated, in order to modify the rigidity of the formation, thus ensuring

the shape maintenance.

Avoiding the use of artificial potentials, this approach is robust to the presence of

communication delay, being fully consensus based. Simulations are provided for validation

purpose.

3.1.1 Outline

The outline of the Chapter is as follows. Section 3.2 describes an artificial potential field

based control strategy that aims at obtaining completely arbitrarily shaped formations

of mobile robots. Modified artificial potential fields are then exploited in Section 3.3

to perform cooperative path tracking, in a completely decentralized way. Section 3.4

described a strategy based on graph theory for formation control and collision avoidance.

3.2 Arbitrarily Shaped Formations of Mobile Robots:

Artificial Potential Fields and Coordinate Trans-

formation

3.2.1 Regular polygon control law

Consider a group of n point mass holonomic agents characterized by the following dy-

namics:

ẍi = ui i = 1, ..., n (3.1)

28

3. Formation control and coordinated curve tracking

where xi ∈ R
2 is the position of the i–th agent. The dynamic behavior considered here

is quite simple, but all the results obtained hereafter can be extended to nonholonomic

vehicles. In fact, many strategies can be found (e.g. [74] and [75]) to feedback linearize

several classes of nonholonomic vehicles. Furthermore, the agents are supposed to be

able to localize themselves exactly. For applications in indoor environment (e.g. AGVs

moving in a warehouse), localization can be obtained, for instance, by means of laser

triangulation. On the other hand, in case of outdoor applications (e.g. mobile robots

for exploration of unknown environment), localization can be obtained exploiting a GPS

receiver.

Let SR be the sensing range of each agent. Each agent knows only the positions of its

neighbors, which are the agents that are closer than SR.

The objective is to make the agents create a formation with the shape of a regular

polygon with n sides. More specifically, the length of each side (i.e. the distance between

two neighboring agents) is required to be equal to L ≤ SR, and the circumcenter of the

polygon to be in a desired position xc ∈ R
2. Let R be the radius of the circumcircle

of the polygon (i.e. the distance between each agent and the circumcenter): from basic

geometrical considerations, it follows that

R =
L

2 sin
(π

n

) (3.2)

In order to implement the control law, each agent is supposed to know the position

of the center of the circumcircle, xc, the number of agents, n, and the desired distance

between two neighboring agents, L. It is worth noting that knowing the total number of

agents is necessary to create a formation with an exact geometric shape.

Hence, to obtain the desired behavior, the following control law is implemented:

ui = fci +

n
∑

j=1;j 6=i

faij − bẋi (3.3)

where b is a positive constant which implements a damping action.

The first term of Eq. (3.3) is defined as follows:

fci = −∇xi
Vci (xi) (3.4)

and

Vci (xi) =
1

2
Kc(dci −R)2 (3.5)

29

3.2. Arbitrarily Shaped Formations of Mobile Robots

where dci (t) = ‖xi (t)− xc‖ is the current distance between the i–th agent and the desired

position for center (xc), and Kc is a positive constant. The role of this term is to take

each agent at distance R from the desired position for the center of the formation. In

other words, if no other potential fields were present, this term would make every agent

move to a circumference with center xc and radius R.

The second term of Eq. (3.3) is defined by the following components:

faij = −∇xi
Vaij (xi, xj) (3.6)

and

Vaij (xi, xj) =

{ 1

2
Ka(dij − L)2 if dij ≤ L

0 otherwise
(3.7)

where dij (t) = ‖xi (t)− xj (t)‖ is the distance between the i–th agent and the j–th agent,

and Ka is a positive constant. It’s easy to see that function Vaij is continuously differ-

entiable. This term is used to regulate the distances among the agents. This interagent

potential produces a repulsive force if two agents are too close, namely if dij < L, and

produces a null force if the distance is greater than or equal to the desired one, namely if

dij ≥ L.

Thus, the composition of these potential fields produces the following behavior:

1. All the agents move toward a circumference with center xc and radius R. No col-

lisions among the agents can happen, because of the presence of the control action

in Eq. (3.6).

2. When all the agents lie on the circumference, the control action in Eq. (3.4) is null.

The control action in Eq. (3.6) regulates the relative distances among the agents,

until they are in the desired configuration.

3. In the desired configuration, the composition of the potentials gives a null control

action, because the agents are on the circumference (fci = 0 ∀i = 1, . . . , n), and the

distance between each couple of agents is equal to L (faij = 0 ∀i, j = 1, . . . , n).

Proposition 3.1. The regular polygon formation is an asymptotically stable configuration.

Proof. Let x̃ =
[

xT1 ... xTn ẋT1 ... ẋTn
]T ∈ X be the state vector of the system. Consider

the following Lyapunov candidate function V : X → R, given by the total energy of the

system:

V (x̃) =
n
∑

i=1

[

Vci (xi) +
n
∑

j=1;j 6=i

Vaij (xi, xj) +
1

2
‖ẋi‖2

]

(3.8)

30

3. Formation control and coordinated curve tracking

From Eqs. (3.5), (3.7) one can trivially see that V ≥ 0. Since V is the sum of three terms

which are always positive or null, for V to be equal to zero all of them are required to be

equal to zero as well. More specifically, V = 0 if and only if, simultaneously:

1. ẋi = 0 ∀i = 1, ..., n; i.e. all the agents are at some steady state position;

2. Vci = 0 ∀i = 1, ..., n; i.e. all the agents are on the circumference with center xc and

radius R;

3. Vaij = 0 ∀i, j = 1, ..., n; i.e. all the agents are at a distance greater than or equal to

L with respect to their neighbors (dij ≥ L ∀i, j = 1, ..., n).

From basic geometrical considerations it follows that conditions 2 and 3 can hold simul-

taneously if and only if dij = L ∀i, j = 1, ..., n. In other words, V ≥ 0 always, an V = 0

only in the regular polygon formation (no local minima).

Consider the time derivative of this function:

V̇ (x̃) =
n
∑

i=1

ẋTi

[

∇xi
Vci (xi) +

n
∑

j=1;j 6=i

∇xi
Vaij (xi, xj) + ẍi

]

(3.9)

From Eqs. (3.1), (3.3), (3.4), (3.6) it is possible to obtain the following equation:

ẍi = −∇xi
Vci (xi)−

n
∑

j=1;j 6=i

∇xi
Vaij (xi, xj)− bẋi (3.10)

Thus, from Eq. (3.9) and Eq. (3.10):

V̇ (x̃) = −
n
∑

i=1

b‖ẋi‖2 (3.11)

which is always less than or equal to zero.

To prove the asymptotic stability of the desired configuration, LaSalle’s principle may

be invoked. Function V as already been proved to be always greater than or equal to

zero, and V = 0 only in the desired configuration. Furthermore it has been proved that

V̇ ≤ 0 always, and V̇ = 0 if and only if ẋi = 0 ∀i = 1, ..., n.

Thus, in a neighborhood of the desired configuration, V is positive definite, and V̇ is

negative semidefinite. V̇ = 0 if the velocities of all the agents are zero. This situation

happens only in the desired configuration. In fact, if the agents are in different configura-

tions, thanks to the control law described so far, a force different from zero makes them

accelerate, thus modifying their velocities. Hence, the set

V =
{

x̃ ∈ X s.t. V̇ (x̃) = 0
}

(3.12)

31

3.2. Arbitrarily Shaped Formations of Mobile Robots

contains no trajectory of the system except the trivial trajectory x̃ (t) = x̃D, where x̃D is

the state vector of the system where all the agents are in the desired configuration with

velocity equal to zero.

Therefore, the desired configuration is asymptotically stable.

The desired configuration is not globally asymptotically stable because undesired equi-

librium configurations appear when two or more vehicles are aligned with xc. In this

case the potentials never generate a force perpendicular to the alignment direction and,

therefore, the aligned agents would never play their role in the creation of the desired

polygonal formation. Nevertheless, these equilibrium points are not local minima, since

they are clearly unstable. In fact, an infinitesimal perturbation of the position of the

aligned agents is sufficient for the potentials to create a force that leads the agents to the

desired configuration. Thus, in order to avoid some agents to get stuck in this undesired

configuration, when an agents detects that it’s aligned with xc and with another agent,

it applies a random infinitesimal force that modifies its position in order to destroy the

alignment condition and to converge to the desired polygonal configuration. The possi-

bility that all the aligned agents apply a force in the same direction and that, therefore,

the alignment condition is preserved after the perturbation, is practically zero.

Hence, the regular polygon configuration is the only asymptotically stable configura-

tion of the system. Thus, unlike other potential–based methods [57], this control strategy

is local minumum free.

3.2.2 Orientation of the polygon

The control strategy presented in the previous section admits a symmetry. In fact, given

n agents, there are infinite regular polygons with n sides lying on the same circumcircle,

and this control strategy just takes the agents to one admissible configuration. However,

in many applications it is very useful to select exactly one of these infinite admissible

configurations. To solve this problem, the orientation of the formation needs to be fixed.

To this aim, the control law presented in the previous section will now be modified.

In Fig. 3.3 one can see three admissible configurations, obtained by rotating the poly-

gon around its circumcenter. The system has one degree of freedom: to select one precise

polygon, one condition is needed to eliminate this degree of freedom. One way to do

this is to select the position of one of the vertices of the polygon. Thus, define x∗ as the

position to be occupied by one of the vertices of the polygon. Fixing the position of one

of the vertices, the orientation of the polygon may be selected. Since all the agents are

32

3. Formation control and coordinated curve tracking

Figure 3.3: The action zone of the orien-
tation component of the control law must
be such that it influences one and only one
agent at the steady state

x∗

L∗

x1

x2

L

required to be indistinguishable, selecting a priori which agent will be in the position x∗ is

not admissible. Thus, a new potential Voi is introduced which attracts to x∗ every agent

that is inside a proper region of attraction. It is now necessary to define this region of

attraction.

Let C = {x s.t. ‖x− x∗‖ ≤ L∗} be a circle whose border intersects the circumcircle of

the polygon in two points x1 and x2 such that ‖x1 − x2‖ = L (Fig. 3.3). To calculate L∗,

Figure 3.4: Geometric properties to calculate
the radius L∗ of the action zone of the orien-
tation component

β δ

ǫ

γ

x∗

R

L

L∗

refer to Fig. 3.4, where some geometric properties among the angles are shown. Namely,

given angle β, then δ = 2β, and ǫ = π − β. The following property among L, R and β

holds:

L/2 = R sin (δ/2) = R sin (β) (3.13)

Thus, β can be easily calculated:

β = arcsin (L/2R) (3.14)

33

3.2. Arbitrarily Shaped Formations of Mobile Robots

Angle γ is given by the following relation:

γ = [π − (π − β)] /2 = β/2 (3.15)

Since

L/2 = L∗ cos (γ) (3.16)

L∗ can be calculated as follows:

L∗ = L/ {2 cos [(arcsin (L/2R)) /2]} (3.17)

Assume that C is the region of attraction. If one agent is inside C, the action of Voi

would attract this agent to x∗ taking the polygon at the desired orientation. Nevertheless,

if two agents are in x1 and x2, they are both attracted to x∗ and the interaction between

Voi and the interagent potential creates a local minimum which deforms the final shape

of the formation. On the other hand, if the border of C is excluded from the region of

attraction, another pathological case appears. In fact, in this case, if two agents are in x1

and x2, none of them is attracted to x∗ and the orientation of the polygon is not changed

as desired. In order to avoid these undesired behaviors, the region of attraction is defined

as follows:

S∗ = {x s.t. ‖x− x∗‖ < L∗} ∪ {x1} (3.18)

Note that x1 can be substituted by x2 as well.

Thus, the following control law is implemented:

ui = fci +

n
∑

j=1;j 6=i

faij + foi − bẋi (3.19)

This control law can be obtained from Eq. (3.3) by adding the term foi, which is defined

as follows:

foi = −∇xi
Voi (xi) (3.20)

and

Voi (xi) =

{ 1

2
Ko(doi)

2 if xi ∈ S∗

K∗ otherwise
(3.21)

where doi (t) = ‖xi (t)− x∗‖ is the distance between the i–th agent and the point x∗, and

Ko and K
∗ are constants, with Ko > 0.

As already stated, after the polygon has been created, one and only one agent would

be influenced by the orientation action. But during the transient (i.e. before the polygon

has been created) it can happen that two or more agents are inside S∗. For the polygon

34

3. Formation control and coordinated curve tracking

to be correctly created, the distance between two neighboring agents is required to be

equal to L, even in the presence of this orientation component. Thus, if two or more

agents are inside S∗, they must move away from each other, until they reach the correct

relative positions. In other words, the gain of the orientation component (Ko) must be

much smaller than the gain of the interagent component (Ka). Namely, these gains must

be chosen such that Ka ≫ Ko. This ensures that, in the presence of both the components,

the orientation one becomes negligible, and the polygonal formation is correctly created.

Once the agents are in the polygonal formation, only one of them is inside S∗, and the

formation is taken to the desired orientation.

3.2.3 Deformation of the polygon: bijective coordinates trans-

formation

For many applications it is very useful to obtain formations with shapes different from

regular polygons. The main idea is to obtain a formation with an arbitrary shape by

deforming the regular polygon, as shown in Fig. 3.5. In this picture, the reference frame

Figure 3.5: To obtain an arbitrary
shape, the regular polygon is de-
formed by means of a bijective co-
ordinates transformation u

v

w

zxk
xk+1

xc

x′k

x′k+1
x′c

x

x′

T

(w, z) represents the real reference frame; the real positions of the agents are measured

with respect to the coordinate set (w, z). The reference frame (u, v) is an auxiliary

reference frame. A bijective coordinates transformation T is introduced to relate the

desired positions for the agents in (w, z) to the positions of the vertices of a regular

polygon in (u, v).

Thus, the following control strategy is proposed:

1. Each agent measures its own position, and the positions of its neighbors, with respect

to the real reference frame (w, z).

2. Each agent transforms these positions using the transformation T , and obtains the

values of these positions with respect to the auxiliary reference frame (u, v).

35

3.2. Arbitrarily Shaped Formations of Mobile Robots

3. Then, it calculates the control action as described in the previous sections, with

respect to the auxiliary reference frame (u, v).

4. Finally, applying the inverse transformation, it finds the value of the control action

with respect to the real reference frame (w, z). The control action can then be

applied.

Thus, the obtained formation has the shape of a regular polygon with respect to the

auxiliary reference frame (u, v), but has the desired shape with respect to the real reference

frame (w, z).

Define now a bijective transformation of coordinates T which maps n arbitrary posi-

tions into the positions of the vertices of a regular polygon. It is only necessary to ensure

that the distance between each couple of neighboring positions is less than the sensing

range SR.

Refer to the left–hand picture in Fig. 3.5. The (u, v) reference frame is partitioned,

creating n triangular zones (where n is the number of agents in the formation). The

partition is created drawing n rays: each ray starts at the circumcenter of the polygon xc

and passes through a vertex. Thus, the environment is partitioned into n zones, whose

borders are these n rays.

Referring to the right–hand picture in Fig. 3.5, the (w, z) reference frame can be

partitioned in a similar way. The partition is created drawing n rays: each ray starts at

x′c and passes through the desired position of an agent in the desired formation. x′c is the

image of xc under the transformation T . The requirements on its position will be shown

subsequently.

Once defined the partitions in the two coordinates sets, they need to be correlated by

means of a bijective relation. This relation maps each vertex of the polygon in (u, v) into

the desired position of an agent in the formation in (w, z). The circumcenter of the polygon

xc = (uc, vc)
T is mapped into the point x′c = (wc, zc)

T . Then, each triangular zone in the

(u, v) reference frame is mapped into one triangular zone in the (w, z) reference frame.

Referring to Fig. 3.5, for example, the triangular zone defined by the points (xk, xk+1) has

to be mapped into the triangular zone defined by the points
(

x′k, x
′
k+1

)

, and vice versa.

Thus, this mapping is defined as follows: x ∈ (u, v) is inside the k–th zone (yellow zone

in the left–hand picture in Fig. 3.5) if the argument of the vector (x− xc) is between the

arguments of the vectors (xk − xc) and (xk+1 − xc):

x ∈ k–th zone iff

36

3. Formation control and coordinated curve tracking

∠ (x− xc) ∈ [∠ (xk − xc) ,∠ (xk+1 − xc)[(3.22)

and x′ ∈ (w, z) is inside the k–th zone (yellow zone in the right–hand picture in Fig. 3.5)

if the argument of the vector (x′ − x′c) is between the arguments of the vectors (x′k − x′c)

and
(

x′k+1 − x′c
)

:

x′ ∈ k–th zone iff

∠ (x′ − x′c) ∈
[

∠ (x′k − x′c) ,∠
(

x′k+1 − xc
)[

(3.23)

Let x̄ =
(

xT , 1
)T ∈ R

3 and x̄′ =
(

x′T , 1
)T

∈ R
3. For each couple of corresponding

triangular zones, a projective transformation [76] is exploited, that maps x̄ into x̄′. For

the k–th couple of triangular zones:

x̄′ =Mk · x̄ (3.24)

The matrix Mk has the following structure:

Mk =





a b c
d e f
0 0 1



 (3.25)

where a, b, c, d, e, f ∈ R. Each triangular zone is defined by three points (Fig. 3.5):

(xc, xk, xk+1) in the (u, v) coordinates set, and
(

x′c, x
′
k, x

′
k+1

)

in the (w, z) coordinates

set. To find the matrix Mk, the following conditions are imposed:







x̄′c =Mk · x̄c
x̄′k =Mk · x̄k
x̄′k+1 =Mk · x̄k+1

(3.26)

Since xc, x
′
c, xk, x

′
k, xk+1, x

′
k+1 ∈ R

2, Eq. (3.26) represents a linear system of six equa-

tions, to find the six components of the matrix Mk.

It’s easy to show that, if xc, xk and xk+1 are different and non–collinear, the six

equations are linearly independent. Since xc, xk and xk+1 are respectively the circumcenter

and two adjacent vertices of a regular polygon, they are never coincident or collinear.

A projective transformation maps a straight line into a straight line [76]. Thus the line

connecting xc and xk is transformed into the line connecting x′c and x
′
k (Fig. 3.5). In other

words, the borders of the k–th triangular zone in the (u, v) coordinates set are mapped

into the borders of the k–th triangular zone in the (w, z) coordinates set, ∀k = 1, . . . , n.

Since any linear transformation of a convex set yields to a convex set [77], each trian-

gular zone is mapped into a convex set by Mk. Since the borders of each triangular zone

in the (u, v) coordinates set are mapped into the borders of the corresponding triangular

37

3.2. Arbitrarily Shaped Formations of Mobile Robots

zone in the (w, z) coordinates set, then the matrix Mk maps every point of the k–th tri-

angular zone in the (u, v) coordinates set into points of the k–th triangular zone in the

(w, z) coordinates set, ∀k = 1, . . . , n.

Proposition 3.2. The matrix Mk is invertible.

Proof. Let
xc = (uc, vc)

T ∈ R
2

xk = (uk, vk)
T ∈ R

2

xk+1 = (uk+1, vk+1)
T ∈ R

2

(3.27)

be the positions of the center of the polygon, and of two adjacent vertices. Let

x′c = (wc, zc)
T ∈ R

2

x′k = (wk, zk)
T ∈ R

2

x′k+1 = (wk+1, zk+1)
T ∈ R

2

(3.28)

be their corresponding transformed points. The matrix Mk will be shown to be singular

if and only if x′c, x
′
k, x

′
k+1 are coincident or collinear.

The matrix Mk is singular if detMk = 0:

detMk = det





a b c
d e f
0 0 1



 = a · e− b · d = 0 (3.29)

Solving the linear system of six equations in Eq. (3.26), the condition in Eq. (3.29) can

be rewritten as follows:

− −wkzk+1 + wczk+1 − wczk + wkzc + wk+1zk − wk+1zc
uk+1vc − uk+1vk − vcuk + vkuc + ukvk+1 − ucvk+1

= 0 (3.30)

The denominator must be different from zero. By means of a simple translation of the

coordinates set, it’s always possible to consider

xc = (uc, vc)
T = (0, 0)T (3.31)

Thus, the denominator is equal to zero if

−uk+1vk + ukvk+1 = 0 (3.32)

The condition in Eq. (3.32) is verified if and only if

• xk = xk+1, or

• the arguments of vectors (xk − xc) and (xk+1 − xc) are equal.

38

3. Formation control and coordinated curve tracking

These conditions are never verified, because xk and xk+1 are two different vertices of the

polygon, and xc is the center of the circumcircle of the polygon.

Thus, matrix Mk is singular if the numerator in Eq. (3.30) is equal to zero. By means

of a simple translation of the coordinates set, it’s always possible to consider

x′c = (wc, zc)
T = (0, 0)T (3.33)

Thus the numerator is equal equal to zero if

−wkzk+1 + wk+1zk = 0 (3.34)

The condition in Eq. (3.34) is verified if and only if

• x′k = x′k+1, or

• the arguments of vectors (x′k − x′c) and
(

x′k+1 − x′c
)

are equal.

The first condition means that the desired position of two different agents must be

different. This appears to be a very natural condition: it doesn’t have any physical

meaning to obtain a formation in which two or more agents occupy the same position at

the same time.

To satisfy the second condition, x′c must be non–collinear to any couple of desired

position for the agents in the formation. This is the only condition that has to be satisfied

during the choice of x′c. Since the number of agents in the formation is finite, it is always

possible to find a suitable position for x′c.

It is worth noting that the coordinates transformation defined so far can be calculated

by each agent without any centralized controller. Each agent must only know the desired

positions that define the shape of the formation.

The triangular zones have been assumed to be convex sets, so far. While this is always

true in the (u, v) reference frame, because the triangular zones are defined by means of

the vertices of a regular polygon, this condition can be violated in the (w, z) reference

frame in many cases of interest (e.g. bottom left–hand picture in Fig. 3.6).

The borders of the triangular zones are rays starting at x′c and passing through the

desired position of an agent in the formation. If the angle between a couple of adjacent rays

is greater than π, the corresponding zone is non–convex. To apply the strategy described

so far, the partition needs to be modified, in order to obtain only convex zones. More

specifically, the non–convex zone needs to be split, thus obtaining two convex triangular

zones. To do this, an auxiliary point is introduced, which defines and additional ray.

39

3.2. Arbitrarily Shaped Formations of Mobile Robots

Figure 3.6: Adding an auxiliary point, all
the zones of the partitions are convex

uu

vv

ww

zz
TT

x+

x′+

xhxh

xh+1xh+1

x′hx′h x′h+1x′h+1

More specifically, let α′
h and α

′
h+1 be the arguments of vectors (x′h − x′c) and

(

x′h+1 − x′c
)

respectively. Furthermore, let ∆α′
h =

∣

∣α′
h − α′

h+1

∣

∣. If ∆α′
h > π, a point x′+ is introduced,

such that

∠
(

x′+ − x′c
)

= α′
+ = α′

h +∆α′
h/2 (3.35)

Then, the partition of the environment (right–hand picture in Fig. 3.6) is done considering

n+ 1 points: the desired positions of the n agents, and the auxiliary point x′+.

To make the transformation bijective, a corresponding auxiliary point, named x+,

must be added in the (u, v) reference frame as well. Let αh and αh+1 be the arguments

of vectors (xh − xc) and (xh+1 − xc) respectively. The argument of vector (x+ − xc) will

be the following:

∠ (x+ − xc) = α+ = αh + |αh+1 − αh| /2 = αh + π/n (3.36)

It is worth noting that x+ is used only for the definition of the bijective mapping: it does

not directly influence the control action (it is not an attraction point for the agents).

Thus, as initially stated, this control strategy allows the creation of completely arbi-

trarily shaped formations. Some examples are provided in Fig. 3.7.

The bijective coordinates transformation T defined so far can be described as a variable

matrix:

x′i = Ti (xi) · xi (3.37)

where xi and x′i represent the position of the i–th agent, in the (u, v) and in the (w, z)

40

3. Formation control and coordinated curve tracking

Figure 3.7: Some examples of different shapes that can be obtained starting from a
polygonal formation, exploiting the bijective coordinates transformation described in the
section

coordinates set, respectively. Ti (xi) =Mk if xi is inside the k–th triangular zone. Let

x =
[

x̄T1 . . . x̄
T
n

]T ∈ R
3n

x′ =
[

x̄′T1 . . . x̄′Tn
]T ∈ R

3n
(3.38)

Let the total transformation matrix T be defined such that

x′ = T (x) · x (3.39)

The matrix T is a block diagonal matrix with the following structure:

T (x) =















T1 (x1) 0 0
0 T2 (x2) 0 . . . 0
...

...
...

...
...

0 . . . 0 Tn−1 (xn−1) 0
0 0 Tn (xn)















(3.40)

The matrix T is clearly invertible, since it is the block diagonal composition of invertible

matrices.

Let xD be the desired configuration of the agents in the (u, v) reference frame, i.e. if

x = xD the agents create a formation with the shape of a regular polygon in the (u, v)

41

3.2. Arbitrarily Shaped Formations of Mobile Robots

reference frame. Let x′
D be the desired configuration of the agents in the (w, z) reference

frame, i.e. if x′ = x′
D the agents create a formation with the desired shape in the (w, z)

reference frame. The coordinates transformation is defined such that

x′
D = T (xD) · xD (3.41)

In Section 3.2.1, the control strategy has been proven to be asymptotically stable and

local minimum free. In other words, applying this control strategy, the regular polygon

formation is always created, namely

lim
t→∞

x (t) = xD (3.42)

Hence, applying the coordinates transformation to Eq. (3.42):

lim
t→∞

x′ (t) = lim
t→∞

T (x (t)) · x (t) = T (xD) · xD = x′
D (3.43)

In other words, with this control strategy the desired formation is always created.

3.2.4 Simulations and experiments

Matlab simulations

Several Matlab simulations have been performed, for validation purpose. Point mass

agents have been considered, with unitary mass. The presence of proximity sensors have

been simulated: each agent only knew the positions of its neighbors (i.e. agents that

are closer than the sensing range SR). During the simulations, the number of the agents

involved has been varied, as well as their desired positions. As expected, the agents always

converge to the desired positions. The trajectories covered by five point mass agents

realizing different formations are represented in Fig. 3.8. In the simulations, the following

parameters have been used: Kc = 80, Ka = 100, Ko = 30. With these parameters, the

time taken by the group to create the formation is always less then 20 seconds.

Fig. 3.9 shows the trajectories covered by five agents moving in the environment while

keeping an arrow shaped formation. The movement of the formation is obtained by

translating the point x′c. The desired positions for the agents are represented as relative

positions with respect to x′c. Thus, as x
′
c translates, even the minima of the composition

of the potential fields translate. Therefore, the agents move preserving the shape of the

formation, as shown in Fig. 3.9.

42

3. Formation control and coordinated curve tracking

Figure 3.8: Trajectories simulated
with Matlab: black dots are the
starting positions, red stars are the
final positions. Trajectories are plot-
ted with respect to the real reference
frame (w, z) and the auxiliary one
(u, v), respectively

(a) Simulation 1, (w, z) space (b) Simulation 1, (u, v) space

(c) Simulation 2, (w, z) space (d) Simulation 2, (u, v) space

(e) Simulation 3, (w, z) space (f) Simulation 3, (u, v) space

Figure 3.9: Agents moving while maintain-
ing a formation: different colors represent
different instant of time

43

3.2. Arbitrarily Shaped Formations of Mobile Robots

(a) (b) (c) (d)

Figure 3.10: Trajectories simulated with Palyer/Stage: black dots are the starting posi-
tions, red stars are the final positions

Player/Stage simulations

To validate the control strategy with realistic simulations, several tests have been devel-

oped within the Player/Stage environment. More specifically, the control strategy has

been implemented by means of the Player Robot Device Interface1: a useful feature of

Player Robot Device Interface is the Stage Multiple Robot Simulator, which enables the

simulation of algorithms with a realistic mobile robot model. More specifically, a dif-

ferentially driven mobile robot model has been adopted. Although the control strategy

described so far has been developed for holonomic point mass agents, it has been applied

to nonholonomic robots exploiting the dynamic feedback linearization strategy described

in [75].

In these simulations, each robot is supposed to have the capability to localize itself

within the environment, while the presence of proximity sensors has been simulated: each

robot only knew the positions of its neighbors (i.e. robots that are closer than the sensing

range SR).

During the simulations, the number of the involved agents has been varied, as well as

their desired positions. As expected, the agents always converge to the desired positions.

The trajectories covered by four simulated mobile robots realizing different formations

are represented in Fig. 3.10. In the simulations, the following parameters have been used:

Kc = 8, Ka = 10, Ko = 3. With these parameters, the time taken by the group to create

the formation is always less then 50 seconds.

1http://playerstage.sourceforge.net/

44

http://playerstage.sourceforge.net/

3. Formation control and coordinated curve tracking

Desired positions

(a)

(b) (c) (d)

(e) (f) (g)

Desired positions

(h)

(i) (j) (k)

(l) (m) (n)

Figure 3.11: Trajectories traveled by the robots: black dots are the starting positions, red
stars are the final positions; snapshots of simulated and real robots

Experimental results

Several experimental tests has been performed to validate the control strategy presented

so far, exploiting the iRobot Roomba based experimental setup described in Chapter 2.

During the experimental tests, the initial positions of the robots have been varied, as

well as the desired shape of the formation.

Two experiments are shown in Fig. 3.11. Figs. 3.11a, 3.11h show the trajectories

traveled by the robots: data are extracted from the log of the odometric measure-

ments of real robots. Figs. 3.11b, 3.11c, 3.11d and Figs. 3.11i, 3.11j, 3.11k show snap-

shots from the Stage simulation of the control algorithm. Figs. 3.11e, 3.11f, 3.11g and

Figs. 3.11l, 3.11m, 3.11n show snapshots from the same experiment on real robots.

Due to the limited performances of the Gumstix board, the control program is exe-

cuted with a quite slow frequency. Furthermore, the communication over WiFi network

introduces some non–negligible delays. Hence, the presence of a large sampling period

45

3.2. Arbitrarily Shaped Formations of Mobile Robots

makes the use very small gains necessary to obtain a stable behavior of the system. In fact,

during the experiments, the following parameters have been used: Kc = 0.08, Ka = 0.08,

Ko = 0.03, b = 0.2.

Figure 3.12: Agents moving while maintaining
a formation: different colors represent different
instants of time. The cross represents the cur-
rent position of x′c

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3.12 shows three robots that, after creating a formation, move in the environ-

ment while keeping the formation. Fig. 3.12a shows the trajectories traveled by the

robots: data are extracted from the log of the odometric measurements of real robots.

Figs. 3.12b, 3.12c, 3.12d show snapshots from the Stage simulation, while snapshots from

the same experiment on the real group of robots are shown in Figs. 3.12e, 3.12f, 3.12g.

Figs. 3.12b, 3.12e represent the initial condition of the robots (black dots in Fig. 3.12a).

Initially the agents create the formation, as in the previous experiments, until they are in

the configuration represented in Figs. 3.12c, 3.12f (yellow stars in Fig. 3.12a). Once the

formation has been created, the movement of the formation is obtained by translating the

point x′c. Point x
′
c is fixed for the first 60 seconds of the experiment, and then translates

in the environment. Thus, as x′c translates, even the minima of the composition of the po-

tential fields translate. Therefore, the agents move preserving the shape of the formation,

46

3. Formation control and coordinated curve tracking

as shown in Figs. 3.12d, 3.12g (red stars in Fig. 3.12a).

3.3 Coordinated Closed–Curve Path Tracking for Multi–

Robot Systems

3.3.1 Deformation of a circumference

With some modifications, the control strategy described in Section 3.2 can be exploited for

trajectory tracking as well. Let C be the closed curve that defines the desired trajectory,

and let T be the bijective mapping that relates C with a circumference. Then, a further

coordinates transformation is introduced, defined by the following matrix:

M (t) =

[

cosωt − sinωt
sinωt cosωt

]

(3.44)

where t is the time, and ω ∈ R is the angular speed. The matrix M defines the move-

ment around the circumference. Thus, from the composition of M and T , the previously

described artificial potential fields make a point move along the desired curve, with speed

proportional to ω.

Figure 3.13: Deformation of a circum-
ference to obtain an arbitrary curve

u

v

m

n

w

z

M

T

More specifically, refer to Fig. 3.13. The reference frame (w, z) represents the real ref-

erence frame; the real positions of the robots are measured with respect to the coordinate

set (w, z). The reference frames (u, v) and (m,n) are auxiliary reference frames. The

bijective coordinates transformation T relates the points of the curve C in (w, z) to the

points of a circumference in (u, v). The matrix M relates the points of the circumference

in (m,n) to the points of a circumference in (u, v). The two circumferences are equal, and

their centers coincide with the origin of the reference frames (m,n) and (u, v) respectively.

The reference frame (m,n) is obtained as a rotation at speed ω around the origin of the

reference frame (u, v).

Thus, with the control law described in Eq. 3.19, the robots create a regular polygon

formation with respect to the rotating reference frame (m,n). By means of the matrix

47

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

M , the robots create a polygon that rotates at speed ω with respect to the reference

frame (u, v). In other words, the robots move at speed ω along the circumference, and

the desired distance between each couple of neighbors is kept. Finally, by means of the

transformation T , the robots move at constants speed along the curve C.
The main drawback in this methodology is that it is not always possible to find a

suitable transformation T once defined the desired shape of the curve C. In fact, it is

worth noting that the bijective transformation presented Section 3.2, as shown e.g. in

Fig. 3.14, is not suitable to define any desired curve C. In fact, when a group of mobile

Figure 3.14: Bijective coordi-
nates transformation is not suit-
able to define a closed–curve path

T

robots is controlled to create a desired formation, robots move to the desired positions and

stop. Thus, only the final positions of the robots are of interest. As shown in Fig. 3.14,

the vertices of the polygon are mapped into the desired positions, while the rest of the

circumference assumes a strange and uncontrolled shape. This is clearly unacceptable in

the path tracking application. In this case, in fact, the whole shape of the curve is clearly

of interest.

3.3.2 Paths described with implicit functions

In this section a modified control strategy is presented, to implement path tracking con-

sidering a wider class of curves. To overcome the difficulties in finding an appropriate

transformation T to deal with completely arbitrarily shaped curves, the control law is

modified. Specifically, a control law is introduced that makes the robots move along an

arbitrarily shaped curve that can be described by means of an implicit function f (x) = 0,

x ∈ R
2.

To make a group of robots converge to the desired curve, they can be controlled to

perform a gradient descent of f 2 [56]. Thus the following control law is introduced:

vi = −K∇f 2 + fti + fdi − bẋi (3.45)

where K and b are positive constants, and b implements a damping action.

48

3. Formation control and coordinated curve tracking

The term −K∇f 2 is orthogonal to the curve C in every point of the space. The role

of this term is to make the robots converge to the desired curve C.
The role of the term fti is to make the i–th robot move along the curve C at the desired

speed. To this aim, the force fti is tangent to the curve at every time. More specifically,

fti is described as follows:

fti = ω · Rθ ·
−∇f 2

‖∇f 2‖ (3.46)

where ω ∈ R is a constant, proportional to the desired speed for the robot along the

curve, and Rθ is a rotation matrix. The rotation matrix Rθ is defined as follows:

Rθ (xi) =

[

cos θ − sin θ
sin θ cos θ

]

(3.47)

where:

θ (xi) =

{

−π/2 if f (xi) > 0
π/2 otherwise

(3.48)

In other words, θ (xi) = −π/2 if the i–th robot is outside the curve C, and θ (xi) = π/2 if

it is inside the curve. As shown for example in Fig. 3.15, this definition of the rotation

matrix Rθ leads to a movement along the curve in counterclockwise direction if ω > 0,

and in clockwise direction if ω < 0.

Figure 3.15: The force fti is perpendicular
to the negative gradient of f 2

-∇f 2

-∇f 2

fti

fti

Rπ/2

R−π/2

ω < 0

ω > 0

C

Clearly Eq. (3.46) is not defined when ‖∇f 2‖ = 0. This condition is verified only

when the robot is on the curve C. In this case, the control action is required to drive the

robot along the curve. In other words, the force fti needs to be still tangent to the curve

49

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

C. To obtain this, Eq. (3.46) may be slightly modified as follows:

fti (xi) =















ω · Rθ (xi) ·
−∇f 2 (xi)

‖∇f 2 (xi)‖
if f (xi) 6= 0

ω · Rθ (xp) ·
−∇f 2 (xp)

‖∇f 2 (xp)‖
otherwise

(3.49)

where xp is an arbitrary point on the line perpendicular to the curve C passing through

xi. Hence, the direction of the vector defined by Eq. (3.49) is the same of the desired one,

defined in Eq. (3.46).

Figure 3.16: The composition of the neg-
ative gradient of f 2 and of the force fti
makes the robots converge to the curve and
move along it

Fig. 3.15 shows the composition of the negative gradient of f 2 and of the force fti: the

composition of these two actions drives the robots to converge to the curve C, and then

move along it.

The role of the term fdi is to take the robot i at the desired distance from the other

robots. This force is given by the composition of two terms:

fdi =
n
∑

j=1;j 6=i

frij +
n
∑

j=1;j 6=i

fqij (3.50)

The term frij implements a repulsive action if robot i and robot j are closer than the

safety distance ds. The value of ds is the minimum distance that ensures that collisions

between two robots never happen. More specifically:

frij = −∇xi
Vrij (xi, xj) (3.51)

and

Vrij (xi, xj) =

{ 1

2
Kr(dij − ds)

2 if dij ≤ ds

0 otherwise
(3.52)

50

3. Formation control and coordinated curve tracking

where dij (t) = ‖xi (t)− xj (t)‖, and Kr is a positive constant. The definition this function

introduces a non–smooth control action, that can be avoided introducing a smooth bump

function, as in [78].

To regulate the relative positions of the agents along the curve, the term fqij is intro-

duced. In fact, the term frij regulates only the euclidean distances among the agents. The

fact that the euclidean distances between each couple of agents are equal to the desired

one doesn’t imply at all that the agents are deployed along the curve as desired.

Let u be a curvilinear abscissa, defined on the curve C. The term fqij is active only

when robot i and robot j are on the curve C. This term implements a repulsive action

based on the value of the curvilinear abscissa that corresponds to the positions of robot

i and robot j on the curve C. Given the position of the robot xi ∈ R
2, the corresponding

curvilinear abscissa ui is defined as the value of the curvilinear abscissa that corresponds

to the point of the curve that is closest to xi.

The force fqij is tangent to the curve C in the position of robot i. This force implements

a repulsive action if the distance between robot i and robot j is less than the desired

minimum distance ud. Let ui and uj be the value of the curvilinear abscissa corresponding

to the positions of robot i and robot j respectively, and let uij = |ui − uj|. Thus, fqij is

defined as follows:

fqij =







Ku ·Rθ (xi) ·
−∇f 2 (xi)

‖∇f 2 (xi)‖
(ui − uj) if uij ≤ ud

0 otherwise
(3.53)

where Ku is a positive constant.

To ensure collision avoidance, forces frij and fqij are assumed to be much stronger than

−K∇f 2 and fti. This is obtained by means of an appropriate choice of the parameters

Kr and Ku.

It is worth noting that the force frij should be active only for collision avoidance. This

means that, to avoid interference between frij and fqij, the parameter ds must be chosen

in order to define a region much smaller than the one defined by ud. Furthermore, the

curve must be defined such that its curvature do not cause any collision among the agents.

Proposition 3.3. Under the control law in Eq. (3.45), the robots asymptotically converge

to the curve C and, after the transient, never leave it

Proof. The motion of the robots can be considered as the composition of two components

of motion:

• the motion in direction parallel to the curve C,

51

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

• the motion in direction perpendicular to the curve C.

Namely:

ẋi = ẋi⊥ + ẋi‖ (3.54)

To prove the convergence of the motion to the curve C, only the perpendicular component,

namely ẋi⊥, is of interest.

As defined so far, the forces fti and fqij don’t have any component in the direction

perpendicular to the curve C. Thus, these forces do not influence the dynamics of ẋi⊥.

The force frij is active only for collision avoidance: this means that it can be different

from zero only during the initial transient, when the robots start moving from their initial

positions, and it can happen that two or more robots are closer than the safety distance.

Therefore, frij can be considered zero after the initial transient.

Thus, from Eqs. (3.1), (3.45) the following dynamics may be obtained:

ẍi⊥ = −K∇f 2 − bẋi⊥ (3.55)

To prove that the robot converges to the curve, it is necessary to prove the asymptotic

stability of the following set:
{

xi ∈ C
ẋi⊥ = 0

(3.56)

Consider the following Lyapunov candidate function:

V (xi) = Kf 2 (xi) +
1

2
‖ẋi⊥‖2 (3.57)

which is trivially non–negative, and equal to zero only when the conditions in Eq. (3.56)

are verified. The time derivative of this function is the following:

V̇ (xi) =
(

K∇f 2 + ẍi⊥
)T
ẋi⊥ (3.58)

From Eq. (3.55):

V̇ (xi) = −b ‖ẋi⊥‖2 (3.59)

which is always less than or equal to zero. The asymptotic stability can be proved by

invoking LaSalle’s principle.

Proposition 3.4. Under the control law in Eq. (3.45), after the transient, once on the

curve the robots move along the curve at a constant speed

52

3. Formation control and coordinated curve tracking

Proof. With respect to the decomposition of the motion of the robot described in Eq. (3.54),

in this case, only the component of the motion which is parallel to the curve C, namely

ẋi‖, is of interest.

By definition, the gradient of f 2 doesn’t have any component in the direction parallel

to C. As stated before, the force frij can be considered zero after the initial transient.

Thus, from Eqs. (3.1), (3.45), the dynamics may be rewritten as follows:

ẍi‖ = fti +
∑

j

fqij − bẋi‖ (3.60)

As stated before, the forces fqij are much stronger than fti. Therefore, if the robots are on

the curve and the distance between two neighbors is less than the desired one, the forces

fqij make them deploy along the curve as desired. Once the robots have deployed along

the curve, the forces fqij are no longer active, and Eq. (3.60) can be rewritten as follows:

ẍi‖ (t) = fti (t)− bẋi‖ (t) (3.61)

Since only the dynamics in direction parallel to the curve are under consideration, it

follows from Eq. (3.49) that, along this direction, fti (t) ≡ ω. Thus, Eq. (3.61) can be

rewritten as follows:

ẍi‖ (t) = ω − bẋi‖ (t) (3.62)

The differential equation in Eq. (3.62) can be easily integrated, thus obtaining

ẋi‖ (t) = (ω/b) + ce−bt (3.63)

where c is an arbitrary constant. Then, as time goes to infinity:

lim
t→∞

ẋi‖ (t) = (ω/b) = constant (3.64)

This proves that, asymptotically, the robots move along the curve C at a constant speed

proportional to ω.

It is worth noting that, since all the terms of the control strategy are independent of the

total number of robots, sudden addition or subtraction of robots is managed automatically,

as shown in the experiments described in Section 3.3.4.

Simulations and discussion

Several Matlab simulations have been performed for validation purposes. For example,

Fig. 3.17 shows the path covered by three point mass agents that, starting from random

53

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

Figure 3.17: Three agents moving along an
elliptic path

initial positions, initially move toward an elliptical curve, and then move along this curve

at a constant speed. The control strategy works as expected: the agents are attracted to

the curve until they reach it. Then they move along the curve, and are never forced to

leave it.

The main drawback of the control strategy presented so far is that, even though many

curves can be represented as implicit functions, with this formulation it is not possible to

represent completely arbitrarily shaped curves. The next Section will show how to extend

this control strategy, in order to deal with completely arbitrarily shaped curves.

3.3.3 Paths described with parametric functions

Generally speaking, a closed curve in R
2 can be described by means of a parametric

function x = g (u), with x ∈ R
2 and u ∈ R. In the literature, many methods can be found

to define these parametric functions. For example, arbitrarily shaped closed curves can

be defined by means of Bezier curves, B–splines or NURBS [79].

Since, in general, it is not always possible to obtain an implicit formulation of the

curve C from its parametric formulation, the algorithm will now be adapted, in order to

avoid the use of the implicit formulation.

Let L be the length of the curve C, i.e. the curvilinear abscissa u ∈ [0, L]. Since the

curve C is closed, g(0) = g(L).

The control law in Eq. (3.45) will then be modified, in order to allow the computation

of the forces without the expression of f (x).

In the control strategy presented in the previous section, the gradient descent of f 2

is performed in order to drive each robot toward the curve C. The same result can be

obtained replacing the term (−K∇f 2) in Eq. (3.45) with the following term:

−K∇f 2 (xi) → −K∇d2 (xi) (3.65)

54

3. Formation control and coordinated curve tracking

where d (xi) is the distance between the i–th robot and the curve C, i.e.:

d (xi) = min
u∈[0,L]

‖xi − g (u)‖ (3.66)

The other terms of the control law in Eq. (3.45) are modified accordingly. Specifically,

the force fti is replaced by the force f ′
ti, defined as follows:

f ′
ti (xi) = ω · Rθ ·

−∇d2 (xi)
‖∇d2 (xi)‖

(3.67)

and the force fqij is replaced by the force f ′
qij , defined as follows:

∥

∥f ′
qij

∥

∥ = ‖fqij‖
f ′
qij (xi) =

∥

∥f ′
qij

∥

∥ · Rθ (xi) ·
−∇d2 (xi)
‖∇d2 (xi)‖

(ui − uj)

|ui − uj|
(3.68)

It is worth noting that, in case ‖∇d2 (xi)‖ = 0, the control laws defined in Eqs. (3.67), (3.68)

can not be computed. However, this issue may be solved as for the control law defined in

Eq. (3.46): instead of xi, it is possible to use any point xp which is on the line perpendic-

ular to C passing through xi.

Hence, in the case of closed curves described with parametric function, the following

control law is applied:

vi = −K∇d2 + f ′
ti + f ′

di − bẋi (3.69)

where

f ′
di =

n
∑

j=1;j 6=i

frij +
n
∑

j=1;j 6=i

f ′
qij (3.70)

The following Propositions demonstrate the effectiveness of the proposed control law.

Proposition 3.5. Under the control law in Eq. (3.69), the robots asymptotically converge

to the curve C and, after the transient, never leave it

Proof. Consider the following Lyapunov function:

W (xi) = Kd2 (xi) +
1

2
‖ẋi⊥‖2 (3.71)

Proposition 3.3 can then be applied to prove the asymptotic stability of the set described

in Eq. (3.56).

Proposition 3.6. Under the control law in Eq. (3.69), after the transient, once on the

curve the robots move along the curve at a constant speed

55

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

Proof. As in Proposition 3.4, only the dynamics in direction parallel to the curve C may

be considered. From Eq. (3.67), it follows that, along this direction

fti (t) ≡ f ′
ti (t) ≡ ω (3.72)

Proposition 3.4 can then be applied to prove that, asymptotically, the robots move along

the curve C at a constant speed proportional to ω.

3.3.4 Implementation issues

In order to apply the previously described control law on simulated or real systems, it

is necessary to approximate the control law itself. In fact, the parametric definition of

the closed curve C will be approximated with a finite number of points, in a realistic

scenario. The implementation of this approximation procedure will be described in the

next subsection, and will be followed by the description of some Matlab simulations, and

experiments or real robots.

Approximation of the control law

This section will show how to implement the previously described control strategy in case

the curve C is defined by means of a finite number of points.

Let xi be the position of the i–th robot. At each time, the robot can compute the

closest point of the curve, i.e. the value u∗ of the curvilinear abscissa such that

u∗ = argminu∈[0,L] ‖xi − g (u)‖ (3.73)

It can happen that u∗ is not uniquely defined, i.e. more than one point of the curve have

the same minimum distance from the i–th robot. In particular, this can happen when

the i–th robot is approaching the (non–convex) curve, and u∗ defines the point where the

robot enters the curve. In this case, u∗ can be chosen randomly among the minimum

distance points. Once the robot is on the curve, this ambiguity will not happen anymore.

Once defined u∗, the control law in Eq. (3.65) may be approximated as follows:

−K∇d2 ≈ −∇Uatt (3.74)

where

Uatt =
1

2
K ‖xi − g (u∗)‖2 (3.75)

It is easy to show that the approximation is well posed. In fact, as the number of points

used to describe the curve C goes to infinity,

‖xi − g (u∗)‖ −→ d (xi) (3.76)

56

3. Formation control and coordinated curve tracking

The force f ′
ti needs to be approximated as well. In order to do that, the composition

of the negative gradient of −K∇d2 and f ′
ti is approximated as follows:

−K∇d2 + f ′
ti ≈ −∇Uω

att (3.77)

with

Uω
att =

1

2
K ‖xi − g ((u∗ + ω) mod L)‖

2 (3.78)

where (u) mod L is the reminder of the division of u by L.

The choice of this kind of approximation can be justified as follows: under this control

law, the robot is not attracted to g (u∗), but it is attracted to g ((u∗ + ω) mod L), where

ω ∈ R is proportional to the desired speed along the curve.

• When the robot is not on the curve, it is attracted to the curve C as desired, since

g ((u∗ + ω) mod L) is clearly a point of C.

• When the robot is on the curve, the point g (u∗) is the robot’s own position. Thus,

being attracted to g ((u∗ + ω) mod L) it is forced to move along the curve, at a speed

proportional to ω.

The other terms of the control law are defined as described in the previous section.

Thus, the approximated control law introduced in this section implements both the

actions perpendicular and parallel to the curve C, making the robots converge to the curve

and move along it.

It is worth noting that the choice of the value of ω must be related to the shape of

the curve, to guarantee a good tracking performance. In fact, if the curve, for instance,

presents a sharp bend, a high value of ω will make the robots cross the bend according

to a straight line, instead of following the curve as desired.

Matlab simulations

Several Matlab simulations have been performed for validation purpose. In these sim-

ulations, point mass agents have been considered, tracking the desired curve C, defined
by means of the B–spline formulation. As shown in Fig. 3.18, the agents, starting from

random initial positions, reach the curve C and move along it. The speed of the agent is

not uniform along the curve: this is obtained by means of a non–uniform discretization

of the curve. This is useful to make the robots move faster in some zones and slower in

some other zones. For example, this strategy can be exploited to slow down the robots

while loading or unloading goods on them.

57

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

(a) (b) (c)

Figure 3.18: Three agents moving along the desired curve

Fig. 3.18a shows the trajectories covered by three agents that, starting from random

initial positions, reach the desired curve and move along it. It can be seen that the tracking

of the path is quite good, except for two zones, described in Fig. 3.18b and Fig. 3.18c.

Fig. 3.18b shows the transient behavior: when the agents approach the curve for the

first time, they need a certain amount of time to obtain the desired distances among each

others. In fact, this undesired behavior is not repeated anymore: once the agents have

reached the correct distances, they track the curve as desired.

The wrong tracking of the path shown in Fig. 3.18c is due to the discretization of the

curve. In fact, in this zone the discretization of the curve is coarser than the rest of the

curve. A non–uniform discretization is useful if in some zones a precise tracking is not

needed (e.g. because in some zones of the environment there are no obstacles), because

it reduces the number of points to be stored to describe the curve.

Experiments

Several experiments have been performed exploiting the MORE–pucks experimental setup

described in Chapter 2.

To deal with the fact that these robots are nonholonomic systems, the feedback lin-

earization technique presented in [75] has been exploited.

58

3. Formation control and coordinated curve tracking

During the experiments, the following values have been used for the parameters:

K = 100, Ku = Kr = 500, b = 15, ω = 5, with curves defined by 400 points.

Similarly to the simulations, experiments show the effectiveness of the control strategy

described so far: in fact, after the transient, the robots correctly deploy along the curve

and track it.

In Fig. 3.19, some snapshots of an experimental test involving seven robots are shown.

Specifically, Fig. 3.19a shows the initial positions of the robots. As shown in Fig. 3.19b,

initially only four robots are activated, and start tracking the curve. The sequential

addition of the other three robots is shown in Figs. 3.19c, 3.19d 3.19e.

The positions of the robots have been recorded, and the mean value of the tracking

error (i.e. the distance between the each robot and the curve) has been computed after

15 runs of the experiments. As shown in Fig. 3.20, the curve tracking is quite accurate

since, after the transient, the mean error becomes less than 1cm.

3.3.5 Presence of multiple tasks

Discussion

In several applications, multiple tasks to be completed (i.e. multiple curves to be tracked)

may be simultaneously available. This scenario can arise, for instance, in industrial end–

of–line applications, where different kinds of goods are to be delivered to different locations

in the warehouse.

Typically, in industrial applications, a centralized system manages the different tasks

to be completed. More specifically, the centralized management system allocates each

robot to a predefined mission. The scenario under consideration is different: each robot

can access a shared task list, and the robots are supposed to autonomously spread among

the different tasks to be completed.

Similar problems have been widely studied in the last few years, under the class

of distributed task assignment problems. Task assignment is the problem of spreading

a set of agents to solve a finite number of tasks. Task assignment can be optimally

solved in a centralized implementation: see e.g. [80–83] and references therein. Since,

generally speaking, centralized implementations are less robust than distributed ones,

several distributed task assignment algorithms have been introduced. One way to solve the

task assignment problem in a distributed way is to let each agent compute a local estimate

of the global situation: consensus algorithms [69] can be exploited for this purpose [84].

This kind of algorithms lead to a consistent estimate of the global situation among the

59

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

(a) (b)

(c) (d)

(e)

Figure 3.19: Snapshots of the experimental validation of the multi–robot curve tracking
algorithm

60

3. Formation control and coordinated curve tracking

Figure 3.20: Mean error of the
curve tracking

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.12

0.14

0.16

m
e

a
n

 e
rr

o
r

(d
is

ta
n

c
e

)
[m

]
time [s]

0.1

agents, but require a significant time to compute a solution [85].

Auction based algorithms (see e.g. [86,87] and references therein) have been shown to

efficiently produce suboptimal solutions. Generally speaking, each agent places a bid for

a task, and the highest bidder is assigned to the task. As shown in [85] and references

therein, several decentralized algorithms have been introduced to compute the auction

winner in a decentralized implementation.

As shown in [87], although auction based algorithms are computationally efficient, they

are usually not robust to dynamically changing network topologies. However, dynamic

changes in the network topology are likely to appear in the problem under consideration.

More specifically, consider an industrial environment, where different robots become avail-

able at different time (e.g. because they have completed some previously assigned task).

Furthermore, a quite simple framework in under consideration: the robots are indistin-

guishable, i.e. anyone can execute any task. For this purpose, a simple message passing

algorithm in now introduced, that may be used for each robot to select the path to be

tracked.

Message passing for path assignment

This section describes a simple message passing algorithm, which represents a high level

control layer that enables each robot to select the right task.

When a new robot approaches a path, message passing starts among the robots that

are already tracking the same path. The answer to the new robot is sent based on the

number of robots that are already moving along the path (that can be simply computed

in a decentralized manner, as explained later on). Loosely speaking, the new robot is not

allowed to join the path if there already too many robots moving along it.

61

3.3. Coordinated Closed–Curve Path Tracking for Multi–Robot Systems

More specifically, the algorithm is based on the following assumptions and definitions:

1. The robots can communicate, by means of message passing, when their distance is

less then a certain communication radius.

2. Each robot has a unique identifier (UID).

3. Let L be the length of the curve to be tracked, and let ud be the desired distance

between two neighboring agents on the curve. Then, (L/ud) = N ∈ N. In other

words, ud is defined so that so that an exact number N of robots is allowed to track

the curve.

4. If the distance between two robots is less than or equal to ud, they can communicate.

5. The k–th robot is attracted to the curve C by means of the control strategy described

in the previous Section, while n robot are already moving along the curve C. Thus,
if it finds that n ≥ (L/ud), the k–th robot will move to a different task.

6. Let ∆j+1 = |uj+1 − uj| and ∆j−1 = |uj−1 − uj| be the distances, in terms of curvi-

linear abscissa, between the j–th robot and its neighbors along the curve.

Thus, the proposed algorithm is the following:

• The k–th robot sends to the j–th robot a message with its own UID, UIDk.

• The j–th robot starts Algorithm 1.

Algorithm 1 Reply of the j–th robot to the k–th robot request

1: if (Robot j is not on the curve) then
2: Robot j → Robot k: msg = [0, 0]
3: else
4: if ((∆j+1 > ud) AND (∆j−1 > ud)) then
5: Robot j → Robot k: msg = [1, 1]
6: else
7: Robot j → Robot j + 1: msgout = [UIDk, UIDj , 0]
8: Algorithm 2
9: end if
10: end if

Algorithm 1 describes how the j–robots computes the reply message to the request of

the k–th robot. The reply message is a two–bit message, and its meaning is the following:

62

3. Formation control and coordinated curve tracking

Algorithm 2 Message passing among the robots on the curve, to understand if one more
robot is allowed to track the curve as well
msgin = incoming message
msgout = outgoing message
The i–th robot receives msgin:
msgin = [UIDk, UIDj , m], m = 0, 1

1: if msgin (2) == UIDi then
2: Robot i → Robot k: msgout = [1, msgin (3)]
3: else
4: if msgin (3) == 1 then
5: Robot i → Robot i− 1: msgout = msgin
6: else
7: if (∆i+1 > ud) then
8: Robot i → Robot i− 1:

msgout = [UIDk, UIDj , 1]
9: else
10: Robot i → Robot i+ 1:

msgout = [UIDk, UIDj , 0]
11: end if
12: end if
13: end if

• msg = [0, 0]: the j–th robot is not on the curve C.

• msg = [1, 0]: the j–th robot is on the curve C, and n ≥ (L/ud). The k–th robot

must move to a different task.

• msg = [1, 1]: the j–th robot is on the curve C, and n < (L/ud). The k–th robot can

move along the curve C.

If the condition in line 4 of Algorithm 1 is true, then the distance between the j–th robot

and its neighbors is strictly greater than ud. Thus, under Assumption 3, the number of

robots on the curve C is less than the maximum allowed, and the k–th robot is allowed

to move along the curve C as well (Fig. 3.21a).

Otherwise, if this condition is not verified for the j–th robot, it is necessary to check

whether it is verified for another robot on the curve C (Fig. 3.21b). This is the purpose

of Algorithm 2. In this case, the message is a vector with three components:

1. The first component is the UID of the k–th robot.

2. The second component is the UID of the j–th robot. This is the robot that started

the message passing along the curve.

63

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

3. The last component can be 0 or 1:

• it is set to 0 if the k–th robot is not allowed to move along the curve C.

• it is set to 1 if the k–th robot is allowed to move along the curve C.

If the condition in line 7 of Algorithm 2 is true, then the distance between the i–th robot

and its following neighbor is strictly greater than ud. Thus, under Assumption 3, the

number of robots on the curve C is less than the maximum allowed, and the k–th robot

is allowed to move along the curve C as well (Fig. 3.21c). Thus, the third component of

the outgoing message is set to one, and this message is sent back to the previous robot.

The message is delivered to the j–th robot, that allows the k–th robot to move along the

curve C.
Conversely, if the condition in line 7 of Algorithm 2 is not verified for any robot on

the curve C, then the number of robots currently on the curve is greater than or equal to

the maximum allowed (Fig. 3.21d). In this situation, the message passes through all the

robots, and no one of them sets to 1 the third component of the message.

When the message comes back to the to the j–th robot, the condition in line 1 is true.

The message passing among the robots on the curve ends, and the j–th robot sends to

the k–th one the correct answer.

To quantify the complexity [88] of this algorithm, the worst case may be considered:

starting from the j–th robot, the message passes through all the robots until it reaches the

(j − 1)–th, and then goes back until it reaches the j–th one again. Let n be the number

of robots currently on the curve C. In the worst case, the message passing along the curve

involves 2 (n− 1) messages. Furthermore, one message is sent from the k–th to the j–th

robot, and the answer is sent back. Thus, the total number of messages exchanged in the

worst case is 2n. Hence, the communication complexity of this algorithm is linear with

the number of robots involved.

3.4 A Graph–Based Collision–Free Distributed For-

mation Control Strategy

3.4.1 Weighted Graph-Based Formation Achieving

This section will describe a formation control strategy, obtained exploiting a consensus–

based algorithm. For further details, see APPENDIX. Hence, consider a group of single

64

3. Formation control and coordinated curve tracking

jud
ud

j + 1

j − 1

∆j−1 > ud
∆j+1 > ud

k

[1, 1]

(a)

jud
ud

j + 1j − 1

k [k, j, 0]

(b)

j

ud

ud

ud

ud ud

i

k

∆i+1 > ud

[k, j, 1]

[1, 1]

(c)

j

ud
ud

ud

ud

k
[1, 0]

(d)

Figure 3.21: Message passing algorithm

65

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

integrator agents, whose dynamics are described as follows:

ẋi = − ∑

j∈Ni

wij (x) (xi − xj) (3.79)

Given an appropriate choice of the edge–weights wij (x) , ∀ (vi, vj) ∈ E, it is possible

to obtain any desired formation: the convergence of each edge–lengths to some desired

values will be formally proven: this implies the creation of the desired formation. Fur-

thermore, avoidance of collisions among the agents will be addressed as well within the

same control law. More specifically, it will proven that, given a safety distance δ, if the

initial configuration of the system is such that all the inter–agents distances are strictly

greater than δ, then they will never go below this value.

Let lij be the edge vector between agents i and j, i.e. lij = xi − xj . Furthermore, let

a collision–free realization of a graph G be defined as

Dǫ
G,δ =

{

x ∈ R
nN : (δ + ǫ) ≤ ‖lij‖ ≤ DM , ∀(vi, vj) ∈ E

}

(3.80)

for some positive ǫ. DM is the maximum allowed distance that guarantees connectivity

between the agents.

Then, define an edge–tension function Vij as follows (Fig. 3.22a):

Vij (δ, x) =























αij

(

coth

(‖lij‖ − δ

Kij

)

+
‖lij‖
Kij

− V min
ij

)

if (vp, vv) ∈ E

0 otherwise

(3.81)

where Kij > 0 is a constant, αij > 0 is a value used to define the intensity of the

inter–robot influence [73], and V min
ij > 0 is defined such that

min
‖lij‖>δ

Vij (δ, x) = 0 (3.82)

This function is non–negative, and has a strict minimum in ‖lij‖ = Dij , with

Dij = δ +
1

2
Kij log

(

3 + 2
√
2
)

(3.83)

The choice of the value of the constant Kij > 0 is related to the position of the minimum
of the edge–tension function, i.e. the desired distance for each couple of agents. From
Eq. (3.81), it follows that

∂Vij (δ, x)

∂xi
=























αij

(

−csch2
(‖lij‖ − δ

Kij

)

+ 1

)

· (xi − xj)

Kij ‖lij‖
if (vi, vj) ∈ E

0 otherwise

(3.84)

66

3. Formation control and coordinated curve tracking

0 δ Dij ‖lij‖

0

Vij

αij = 1

αij = 3

αij = 5

(a)
0 δ Dij ‖lij‖

0

1

3

5

wij

αij = 1

αij = 3

αij = 5

(b)

Figure 3.22: Edge–tension function Vij(δ, x) with respect to ‖lij‖ (Fig. 3.22a) and edge–
weight function with respect to ‖lij‖ (Fig. 3.22b)

The total tension energy of the graph G can then be defined as follows:

V (δ, x) =
1

2

N
∑

i=1

N
∑

j=1

Vij (δ, x) (3.85)

The edge–weights are defined as follows (Fig. 3.22b):

wij = αij

(

−csch2

(‖lij‖ − δ

Kij

)

+ 1

)

(3.86)

For ease of notation, hereafter αij will be assumed to be equal to 1, ∀i, j. Nevertheless,

all the following proofs still hold for arbitrary values of αij > 0.

Proposition 3.7. Given an initial position x0 ∈ Dǫ
G,δ, for some ǫ > 0, then, if the system

is driven by the control law in Eq. (3.79), with the edge–weights defined in Eq. (3.86), the

total tension energy of the graph G defined in Eq. (3.85) does not increase.

Proof. From Eqs. (3.79), (3.84), (3.86), the control law of the system can be rewritten as

follows:

ẋi = −∇xi
V (δ, x (τ))

∑

j∈Ni

Kij ‖lij‖ (3.87)

Assume that x (τ) ∈ Dǫ′

G,δ, for some ǫ′ > 0, at time τ . The total tension energy of the

graph V (δ, x), defined in Eq. (3.85), is a positive function, and is zero only in the desired

configuration, i.e. ‖lij‖ = Dij ∀lij ∈ E.

67

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

The time derivative of the total tension energy function is defined as follows:

V̇ (δ, x (τ)) = ∇xV (δ, x (τ))T · ẋ (τ) = −
N
∑

i=1

ẋTi ẋi
∑

j∈Ni

Kij ‖lij‖ (3.88)

Thus, for any x (τ) ∈ Dǫ′

G,δ, V̇ (δ, x (τ)) is non–positive, which proves the statement.

The total tension energy function V (δ, x) has been defined in Eq. (3.85) as the sum of

positive definite functions Vij (δ, x), that are described in Eq. (3.81). Since these functions

are clearly equal to zero only when the agents are in the desired configuration, it is possible

to conclude that the desired formation is a global minimum for the total tension energy

V (δ, x). However, it is possible for the system to evolve to some local minima of the total

tension energy. In order to avoid local minima, the Virtual Relabeling algorithm, that

will be described in Section 3.4.3, may be exploited.

In order to ensure that the presented control algorithm avoids collisions between agents

achieving formation, the following proposition is provided.

Proposition 3.8. Given an initial position x0 ∈ Dǫ
G,δ, for some ǫ > 0, under the control

law in Eq. (3.79), with the edge–weights defined in Eq. (3.86), collisions among the agents

are always avoided.

Proof. Let δ be the safety distance for the agents, i.e. if the distance between each couple

of agents is greater than δ, collisions are avoided. The proof of the statement is based on

the fact that, as V (δ, x (τ)) decreases (or at least does not increase), no edge–length will

approach δ.

In order to prove that, let

V̂ǫ = max
x∈Dǫ

G,δ

V (δ, x) (3.89)

Since, inside the set Dǫ
G,δ, the function V (δ, x) is bounded, this maximum exists. Let M1

be the number of edges whose length is less than Dij , and let M2 be the number of edges

whose length is greater than or equal to Dij. Thus, the maximum V̂ǫ is obtained when

M1 edge–lengths are equal to the minimum allowed length, i.e. ‖lij‖ = (δ + ǫ), while M2

edge–lengths are equal to the maximum allowed length i.e. ‖lij‖ = DM . Furthermore,

M1 or M2 are also allowed to be equal to zero. Thus:

V̂ǫ =M1

(

coth

(

(δ + ǫ)− δ

K∗

)

+
δ + ǫ

K∗

)

− V min
∗ +M2

(

coth

(

DM − δ

K∗

)

+
DM

K∗
− V min

∗

)

(3.90)

where K∗ and V min
∗ are the mean values of Kij and V

min
ij .

68

3. Formation control and coordinated curve tracking

A bound for the minimal edge–length will now be found, that can generate this value

for the total tension energy. Consider this total tension energy as if it were generated from

one single edge, whose edge–length is l̂ǫ ≤ (δ + ǫ), while all the other edge–lengths are

equal to Dij, thus their contribution to the total tension energy is zero. The edge–length

l̂ǫ is defined such that

V̂ǫ = coth

(

l̂ǫ − δ

K

)

− V min
ǫ (3.91)

where V min
ǫ > 0. To prove the statement, it is necessary to prove that l̂ǫ > δ. Substituting

Eq. (3.91) into Eq. (3.89):

coth

(

l̂ǫ − δ

K

)

=

V min
ǫ +M1

(

coth
(ǫ

K∗

)

+
δ + ǫ

K∗
− V min

∗

)

+M2

(

coth

(

DM − δ

K∗

)

+
DM

K∗
− V min

∗

)

(3.92)

From the definition of the edge–tension function in Eq. (3.81):

(

coth

(

DM − δ

K∗

)

+
DM

K∗
− V min

∗

)

≥ 0 (3.93)

Since M1 ≥ 0, M2 ≥ 0 and V min
ǫ > 0, the following inequality holds:

coth

(

l̂ǫ − δ

K

)

≥ 0 (3.94)

Then, it is possible to conclude that
(

l̂ǫ − δ
)

> 0, which implies l̂ǫ > δ. Thus, since l̂ǫ is

bounded from δ, then, as V decreases (or at least does not increase), no edge–length will

tend to δ.

3.4.2 Obstacle avoidance

One of the main issues that arises when robots have to be coordinated in an unstructured

or unknown environment is that they have to take into account the presence of obstacles.

Consider, without loss of generality, the case where a robot detects an obstacle at a

distance do ≤ dsens, where dsens represents the effective range of the on board sensors able

to detect obstacles all around the robot. In that case, as described in [71], a virtual agent

is projected on the obstacle by the robot that detects it. While in [71] artificial potential

fields are used for collision avoidance purposes, the control strategy described in this

section automatically deals with collision avoidance, by including the virtual agents (i.e.

69

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

the obstacles) into the previously described graph–based algorithm. More specifically,

this control algorithm can be extended simply by introducing a new virtual edge to the

connectivity graph to represent the link between the real robot and the virtual agent.

It is worth noting that the number of virtual agents can be different with respect to

the number of detected obstacles. In fact, as long as robots are moving in an unknown

environment, they cannot distinguish an obstacle from another one. This means that

different robots detecting the same object will project on it different virtual agents. As

an example, consider the system represented in Fig. 3.23: three robots are moving close to

an obstacle and, when robots R1 and R2 detect it, they project on the estimated surface

of the obstacle two different virtual agents V1 and V2.

Figure 3.23: Three robots moving in for-
mation: two of them (R1, R2) detect an
obstacle and project on it the correspond-
ing virtual agents (V1, V2). Virtual edges
are represented as dashed lines.

R1

R2

R3

V1

V2

Obstacle

dsens

Assumption 3.1. The distance between each couple of obstacles is supposed to be greater

then the size of a robot.

Without loss of generality, consider the case where, while N agents are moving in the

environment, the p–th one senses an obstacle. In this case, the dynamics of the agents

that don’t sense the obstacle are not directly influenced by its presence. On the contrary,

the p–th agent defines a virtual agent, whose position corresponds to the position of the

obstacle. The dynamics of the virtual agent are described as

ẋv = f (xv, t) (3.95)

70

3. Formation control and coordinated curve tracking

This function is completely unknown: even if the obstacle is static, the position of the

virtual agent depends on the motion of the p–th agent, and on the curvature of the surface

of the obstacle, that is supposed to be unknown in advance. Furthermore, if the obstacle

is not static (e.g. the obstacle is a non–cooperative vehicle), its law of motion is supposed

to be unknown.

Proposition 3.9. The edge–weight function introduced in Eq. (3.86) ensures the avoid-

ance of collisions with obstacles.

Proof. To include the virtual agent defined once an obstacle is sensed, the total tension

energy of the graph G defined in Eq. (3.85) may be modified as follows:

V (δ, δo, x) =
1

2

N
∑

i=1

N
∑

j=1

Vij (δ, x) + Vpv (δo, x) (3.96)

where Vpv (δo, x) is the edge–tension function related to the edge between the p–th real

agent and the v–th virtual agent, and δo is the safety distance required between robots

and obstacles. Namely:

Vpv (δo, x) =























αpv

(

coth

(‖lpv‖ − δo
Kv

)

+
‖lpv‖
Kv

− V min
pv

)

if (vp, vv) ∈ E

0 otherwise

where lpv is the edge vector between the p–th real agent and the v–th virtual agent, i.e.

lpv = xp − xv, and αpv > 0 is a constant value that can be used to modulate the intensity

of the interactions between real and virtual agents.

Thus, to prove the avoidance of collisions, Proposition 3.8 can be applied with this

modified total tension energy function.

Using the same approach, obstacle avoidance can be ensured even in the presence of

more than one obstacle sensed by more than one agent (i.e. many virtual agents are added

to the graph).

The value of the constant Kv > 0 can be chosen such that, when an agent senses an

obstacle and defines a virtual agent, the corresponding edge–weight is always negative,

thus always introducing a repulsive action.

It is worth noting that, in the presence of virtual agents, since their movement is not

influenced by the position of the real robots, the graph becomes directed. This causes that

Proposition 3.7 does not hold when virtual agents are added to the graph. This implies

71

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

that the shape of the formation is not preserved in the presence of obstacles. However,

the multi–robot system is not supposed to embed the virtual agents inside the formation:

virtual agents are introduced only for collision avoidance purposes. Hence, robots will

overcome the obstacles without maintaining the shape of the formation, i.e. by performing

split–and–rejoin maneuvers, or by reducing the inter–robot distances. Examples of these

maneuvers will be shown in the simulations described in the next section.

3.4.3 Local minima avoidance

The following section describes an algorithm to let the robots autonomously escape from

local minima of the total tension energy function V (δ, x), introduced in Eq. (3.85).

Virtual Relabeling

As demonstrated in Proposition 3.7, the desired formation configuration is the global

minimum of the of the total tension energy function V (δ, x) introduced in Eq. (4.131).

However, it is possible for the system to evolve to some local minumum configuration.

To make the robots escape from local minima, the virtual relabeling algorithm may be

exploited.

As long as the communication graph is connected, all the robots can calculate the

position of the centroid of the group. Then, by computing their own position with respect

to the centroid of the group, they can find an agreement on the position they should occupy

in the final formation. In order to do this, each robot needs to acquire information from

all the other robots of the group. For this purpose, the data broadcasting algorithm, that

01 ind := [1 ... N];

02 while 1 do
03 new ind := ind;
04 [Xc, Yc] := CalculateCoM();
05 v1 := GetClockwise([Xc, Yc]);
06 v2 := CreateSorted(v1);
07 if v2(i) != ind(i)
08 new ind(i) := v2(i);
09 end if
10 ind := new ind;
11 AchieveFormation(ind);
12 end while

Table 3.1: Pseudo code for virtual relabeling.

72

3. Formation control and coordinated curve tracking

Figure 3.24: Example of four
robots stuck in a local minimum
configuration while achieving a
square formation. The indices
vectors v1 and v2 are defined by
the relabeling algorithm.

v1 = [1 2 4 3]

⇓
v2 = [1 2 4 3]

v1 = [2 4 3 1]

⇓
v2 = [1 2 4 3]

v1 = [3 1 2 4]

⇓
v2 = [1 2 4 3]

v1 = [4 3 1 2]

⇓
v2 = [1 2 4 3]

R1

R2

R3

R4

C.o.M.

will be introduced in Section 3.4.3, may be exploited.

Therefore, the virtual relabeling algorithm, defined as in Table 3.1, may implemented

on each robot. More specifically:

• [Xc, Yc] := CalculateCoM(); calculates the centroid of the group exploiting di-

rectly acquired and broadcast data;

• v1 := GetClockwise([Xc, Yc]); creates a vector where the indices of all the de-

tected robots are saved according to clockwise direction with respect to the centroid;

• v2 := CreateSorted(v1); creates a new index vector where all the indices are

stored from 1 up to N starting from the previously defined vector v1.

To better clarify the relabeling algorithm, in Fig. 3.24 a typical example of local minima

for a system involving four robots achieving a square formation is depicted. In particular,

the virtual relabeling algorithm is applied by each robot in order to calculate the correct

neighbors configuration.

As reported, each robot calculate its own v1 vector depending on its position with

respect to the centroid and the teammates. Then, starting from v1, the vector v2 is

calculated in order to redefine the actual label that each robot should use in order to

achieve the right configuration. In the depicted example, the robots of the group reach

an agreement on v2 and each of them is able to detect that robots R3 and R4 are in the

wrong position with respect to their teammates.

73

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

Data Broadcasting

Figure 3.25: Example of data
broadcasting. Solid lines repre-
sent the existing communication
links while dash–dotted lines rep-
resents the broadcast ones. As an
example, robot Rj broadcasts the

values [(xk − xj), (yk − yj)]
T and

[(xh − xj), (yh − yj)]
T to robot

Ri, thus allowing it the to localize
teammates that are not directly
seen.

X

Y

Ri

Rj

Rh

RkRkRk

xi xj xhxk

yi

yj

yk

yh

One of the main problem related with robots with a limited communication range is

that they can not always acquire information about the whole swarm, that is some robots

can not see each other. Hence, the virtual relabeling algorithm introduced in Section 3.4.3

can not be implemented. However, as long as the communication graph is connected, this

problem may be overcome by introducing data broadcasting between teammates, i.e.

by allowing each robot to transmit information about the relative position of connected

teammates with respect to itself, thus transforming de facto a connected communication

graph into a complete graph. As an example, consider the three robots depicted in

Fig. 3.25. The corresponding Neighbor sets are defined as

Ni = {Rj} Nj = {Ri, Rk} Nk = {Rj, Rh} Nh = {Rk}

Generally speaking, given a couple of communicating robot, it is possible to define

∆x
ij = (xi − xj) and ∆y

ij = (yi − yj) as the relative distance between robot i and robot j

on the x-axis and on the y-axis respectively. Thus, the i-th robot can estimate the relative

position of the h-th one by exploiting the following equations:

(xh − xi) = (xj − xi) + ∆x
hj, (yh − yi) = (yj − yi) + ∆y

hj

In order to reduce the measurement errors, the data broadcast by each robot are

grouped into a data packet containing the sender ID and the relative position of their

neighbors with respect to itself. Each of the transmitted data is associated with a hop

count cij (∀i = 1 . . . N, j ∈ Ni) that is incremented each time a robot broadcasts position

data that are not directly measured, thus allowing the receiver to chose the data with the

74

3. Formation control and coordinated curve tracking

lowest hop count. The general scheme of the string transmitted by the generic j-th robot

of a swarm is the 4‖Nj‖+ 2 elements vector defined as:

Vector element:
Vector index:

j ‖Nj‖ i xi − xj yi − yj cij

0 1 3 4 5 6

where ‖Nj‖ is the cardinality of the neighbors subset and the terms 3–6 are repeated

∀i ∈ Nj.

As an example, by considering the system depicted in Fig. 3.25, the data transmitted

by Rj are stored in the following vector:

j 3 i ∆x
ij ∆y

ij 1 k ∆x
kj ∆y

kj 1 h ∆x
hj ∆y

hj 2

It is worth noting that the data broadcasting algorithm may be exploited to improve

the obstacle avoidance ability of the system as well. In fact, each robot may also broadcast

the position of the virtual agents defined when an obstacle is detected, as described in

Section 3.4.2.

The data broadcasting algorithm requires the communication graph to be connected.

In order to ensure connectivity of the communication graph, several strategies may be

exploited (see e.g [29, 67] and references therein).

3.4.4 Simulations and Experiments

To validate the control strategy presented so far, several simulations and experiments.

have been implemented. Differential–drive robots have been considered: to deal with

the fact that these model represents a nonholonomic system, the feedback linearization

technique presented in [89] has been applied. To make the formation move in a desired

direction, a common offset has been added to the control law in Eq. (3.79), that describes

the desired speed of the barycenter of the formation.

Matlab Simulations

Several simulations have been performed using Matlab/Simulink. Specifically, six robots

have been simulated, that were supposed to move in an environment where three round

obstacles were placed on their trajectory while achieving a formation with 1.5m radius.

To emphasize the different behaviors that come out by changing the value of αij , two

different simulations are reported in Figs. 3.26a 3.26b: in the first one, where the inter–

robot action is modulated by αij = 1, robots exhibit a flexible behavior when obstacles

are encountered. In the second one, where αij = 10, the formation is too rigid to be able

75

3.4. A Graph–Based Collision–Free Distributed Formation Control Strategy

to split in order to overcome the obstacles, thus the formation preserves its shape while

sliding over them.

0 5−5−10 10 15 20

−6

−4

−2

0

2

4

[m]

[m
]

11
1

1

11

22

2

2
2

2

3
3

3

33

3

4

4

4

444

5
5

5

555 66
66

6

6

(a) Formation moving with αij = 1, αpv = 1.

0 5

.3

−5−10 10 15 20

−6

−4

−2

0

2

4

[m]

[m
]

11

1

1

11

22

2

2

2
2

33

3

3

3
3

44

4

4

44

55

5

5

55

66

6

6

6

6

(b) Formation moving with αij = 10, αpv = 1.

Figure 3.26: Simulation with six robots engaged in a formation task while moving in an
unknown environment with three obstacles (in gray) with different values of αij .

Communication delay The behavior of the system in the presence of communication

delay has been tested by means of simulations.

More specifically, three robots have been simulated, moving in an obstacle–free envi-

ronment. Initially, the control law introduced in [69] was implemented, adding an arti-

ficial potential field for collision avoidance, as described in [70]. Simulations show that,

76

3. Formation control and coordinated curve tracking

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

R1

R2

R3

Time [s]

D
is
ta
n
ce

to
th
e
C
O
M

[m
]

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

R1

R2

R3

Time [s]
D
is
ta
n
ce

to
th
e
C
O
M

[m
]

(b)

Figure 3.27: Error between the actual and the desired distance between each robot and
the centroid of the formation with a communication delay of 0.5 s, by exploiting the
formation control algorithm introduced in [69] (Fig. 3.27a) and exploiting the algorithm
introduced in this section (Fig. 3.27b).

as proved in [66], artificial potential fields are not robust with respect to communication

delays. In fact, Fig. 3.27a shows the error between the actual and the desired distance

between each robot and the centroid of the formation, with a communication delay of

0.5s. As expected, the system does not converge to the desired formation.

Conversely, simulations show that the control law introduced in this section is robust

with respect to communication delays, as expected for consensus based control laws [70].

Fig. 3.27b shows the error between the actual and the desired distance between each robot

and the centroid of the formation, with a communication delay of 0.5s. As expected, the

error quickly converges to zero.

Experiments

Several experiments have been performed exploiting the MORE–pucks experimental setup

described in Chapter 2.

Two different experimental setups have been used to test the algorithm. In the first

setup, four robots starting from random positions converge to the desired square formation

while avoiding collisions and, after 20s they start moving along the x–axis with a constant

speed.

In the second setup, an obstacle is placed in the middle of the arena in a position

unknown by the system, thus robots have to overcome it while moving in formation along

77

3.5. Discussion

the x–axis.

For each setup, the experiments were run 10 times, and data were collected. The

average mean square error (MSE) between the actual and desired distances for each pair

of robots are represented in Fig. 3.28a and 3.28b respectively. In particular, in the second

setup, it can be seen that at time ≈ 35s the formation detects the obstacle, thus the

variance increases.

0 5 10 15 20 25 30 35 40 45 50

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

[m
2
]

Time [s]

(a)

*0.2y

0 5 10 15 20 25 30 35 40 45 50

−0.1

0

0.1

0.2

0.3

0.4

0.5

[m
2
]

Time [s]

(b)

Figure 3.28: Average and standard deviation of the mean square error between the actual
and desired distances for each pair of robots, depending on time, in a real arena without
obstacles (Fig. 3.28a) and with obstacles (Fig. 3.28b).

3.5 Discussion

In this chapter, three different decentralized control strategy for the coordination of multi–

robot systems have been presented.

Artificial potential fields and consensus based controllers have been be used to design

the control strategies. Specifically, Section 3.2 describes a formation control strategy, first

introduced in [21–24], that exploits artificial potential fields to design regular polygon

formations. Formal proof of the asymptotic stability of the system, based on the definition

of a proper Lyapunov function. The absence of local minima is ensured as well. The

control strategy is then extended to arbitrarily shaped formation, exploiting a bijective

coordinate transformation to deform the polygonal formation.

Simulations and experiments show the effectiveness of the proposed control strategy.

The desired formations are always created, regardless the original positions of the robots,

78

3. Formation control and coordinated curve tracking

and the shape of the formation itself. Moreover, as expected collisions among the robots

are always avoided.

The main advantages of this formation control strategy are the following:

• Asymptotic stability is guaranteed.

• Unlike other artificial potential based control strategies, local minima do not ap-

pear.

• It provides a high degree of flexibility, since formations can be obtained with

completely arbitrary shapes.

One of the main drawbacks of the formation control strategy presented in this section is

the sub–optimality of the paths traveled by the robots. As can be inferred by the results of

the simulations shown in Fig. 3.8, the shape of the paths is mainly due to the coordinate

transformation.

In order to improve the performances of this control strategy, different coordinate

transformation may be developed, in order to generate more optimal paths.

In Section 3.3, inspired by the previously described artificial potential fields, a coor-

dinated path tracking algorithm is described. First introduced in [25, 26], this control

strategy makes a group of mobile robots track a path given by an arbitrarily shaped de-

sired curve. This control strategy is a completely decentralized algorithm, since there is

no need for any centralized controller or global synchronization.

By means of this control strategy, a group of mobile robots, starting from random

initial positions, is able to reach the desired curve and then move along it. Once reached

the curve, the robots never leave it. Furthermore, collision avoidance and desired spacing

between neighboring robots is ensured.

With respect to previous works on tracking, the main advantage of this control strategy

is the fact that it combines tracking of paths with the coordination of multiple mobile

robots. Furthermore, this result is obtained without any global controller, and without

the need of knowing information about the whole group of robots. This ensures the correct

behavior even in the presence of sudden addition or subtraction of one or more robots.

Section 3.4 addresses the formation control problem by means of a consensus based

control strategy. Specifically, weighted graphs are exploited to drive a group of robots to

a predefined configuration while avoiding mutual collisions, exploiting a consensus based

algorithm, first introduced in [27, 28]. An appropriate edge–weight function has been

defined that provably guarantees the convergence to the desired formation, as well as the

79

3.5. Discussion

avoidance of collisions among the robots. The framework is extended for accomplishing

the avoidance of collisions among robots and obstacles as well.

Analytical proof of the convergence of the system has been provided, based on tools

from the graph theory. Furthermore, the approach has been validated by means of simu-

lations and real experiments in noisy environment.

80

4. Global connectivity maintenance

Chapter 4

Global connectivity maintenance

To accomplish cooperative tasks, robotic systems are often required to communicate

with each other. Thus, maintaining connectivity of the interagent communication

graph is a fundamental issue in the field of multi–robot systems. This chapter de-

scribes a completely decentralized control strategy for global connectivity maintenance

of the interagent communication graph, for single integrator kinematic agents. A

gradient–based control strategy is introduced that exploits decentralized estimation

of the algebraic connectivity. The proposed control algorithm guarantees the global

connectivity of the communication graph without requiring maintenance of the lo-

cal connectivity between robotic systems. The control strategy is demonstrated to

be effective in the presence of external control actions as well. The control strat-

egy is extended also to consider groups of dynamic agents, described as Lagrangian

systems.

4.1 Introduction

Connectivity maintenance is a crucial issue in the field of multi–robot systems. As mobile

robots have limited communication capabilities, for the completion of a desired cooper-

ative task, it is important to ensure information exchange can occur among the robotic

systems. The communication architecture among the robots is often modeled as a graph

(see e.g. [19]), and is usually referred to as the communication graph. Thus, the prob-

lem of ensuring that information exchange can occur is mathematically translated into

guaranteeing that the communication graph is connected.

Decentralized control of groups of mobile robots has several applications, such as

surveillance, exploration of unknown environments, search–and–rescue, automatic ware-

houses. In this kind of problems, robots are supposed to coordinate their motion, in

order to achieve the global objective. Generally speaking, one of the main challenges is

due to the fact that robots move into cluttered environments: unknown terrains to be

81

4.1. Introduction

explored, industrial environments for goods transportation, damaged buildings in search–

and–rescue applications. This implies that collisions with obstacles must be avoided,

while robots are performing their task. Thus, obstacle avoidance can interfere with the

primary task of the robots: problems can arise, for instance, if some robots are trapped.

One of the main issues, in this case, is to ensure the connectivity maintenance: due to the

limited communication capabilities, in fact, the trapped robots can lose the connectivity

with the rest of the group, which implies that the global objective can not be, in general,

achieved.

In the literature, several approaches to connectivity maintenance have been proposed.

These approaches can be divided into two categories: approaches to maintain the local

connectivity, and approaches to maintain the global connectivity.

Maintaining the local connectivity entails designing a controller that ensures that,

if a communication link is active at time t = 0, it will be active ∀t ≥ 0. Examples

of decentralized algorithms for local connectivity maintenance can be found in [67, 90–

95]. The main advantage of these control algorithms is that the maintenance of the

connectivity is formally proven. Nevertheless, imposing the maintenance of each single

communication link is often too restrictive. In fact, to ensure that information exchange

among all the robots is possible, it is necessary to guarantee only the global connectivity

of the communication graph. Loosely speaking, it is acceptable that a few links are

broken, as long as the overall graph is still connected: if necessary, redundant links can be

removed, and new ones can be introduced. For instance, in [96] a path planning strategy

is introduced that allows temporary loss of connectivity, provided that the connectivity

will then be again ensured in some predefined future time.

As shown in [97], a measure of the connectivity of a graph is the value of the second–

smallest eigenvalue of the Laplacian matrix of the graph. On these lines, a connectiv-

ity maintenance control strategy was introduced in [98], where each agent built a local

estimate of the communication graph, and computed the value of the second–smallest

eigenvalue of the Laplacian matrix. A distributed market–based algorithm was then im-

plemented, in order to cooperatively decide whether a link could be safely removed or

not.

To avoid the direct analysis of the influence of each single link on the connectivity of

the communication graph, gradient based strategies can be exploited. In [99] a gradient

based control strategy was proposed to guarantee that the second–smallest eigenvalue of

the Laplacian matrix is greater than zero. The main drawback of this control strategy is

the fact that the eigenvalue was computed in a centralized way. Decentralized estimation

82

4. Global connectivity maintenance

procedures for the computation of the second–smallest eigenvalue of the Laplacian matrix

were introduced in [100] and [101]. This estimate is then used in [100] to implement an

optimization algorithm, that aims at increasing the value of the algebraic connectivity of

the graph. Optimization algorithms have been also implemented to increase the algebraic

connectivity of the graph without estimation of the value of the eigenvalue itself, as shown

in [102–104].

Increasing the algebraic connectivity is pursued in [101] exploiting a gradient based

control strategy, that is implementable because an estimate of the gradient of the second–

smallest eigenvalue of the Laplacian matrix is computed as well. In cooperative control

tasks, connectivity maintenance is usually necessary for completing a desired task via

an external control. As will be discussed in Section 4.5, it can be demonstrated via

simulations that, in the presence of certain (bounded) external control laws, the control

strategy described in [101] may not guarantee the connectivity of the communication

graph.

Motivated by the above discussion, this chapter describes a decentralized control strat-

egy to guarantee maintenance of the global connectivity. Inspired by [101], this control

strategy relies on a decentralized estimation procedure of the second–smallest eigenvalue

of the Laplacian matrix. Specifically, the main contribution described in this chapter is

the following:

1. An estimation procedure is introduced, that provides bounded estimation errors.

The previous work in [101] demonstrates the convergence of the estimation sys-

tem, without considering the presence of estimation errors. Conversely, in Proposi-

tion 4.1, the dynamics of the estimation system are explicitly considered, and the

boundedness of the state of the estimation system is proven. This result leads to

the demonstration of the boundedness of the estimation error, in Proposition 4.3

and Proposition 4.4.

2. The boundedness of the estimation errors will be shown to be a necessary element to

guarantee the connectivity maintenance. Simulations will show that, in the presence

of certain (bounded) external control laws, the control strategy described in [101]

may not guarantee the connectivity of the communication graph. Conversely, The-

orem 4.1 demonstrates that the control strategy presented in this chapter ensures

the connectivity maintenance in any case.

3. Connectivity will be formally proven to be guaranteed even in the presence of any

bounded external control action.

83

4.2. Estimation of the algebraic connectivity of the graph

4. The control strategy will be extended to guarantee connectivity for groups of La-

grangian systems.

4.1.1 Outline

The outline of the Chapter is as follows. Section 4.2 introduces a distributed estimation

strategy, to allow each agent to compute its own estimate of λ2 and of its gradient. This

estimates are then exploited in Section 4.3 to develop a connectivity maintenance control

strategy for single integrator kinematic agents, that takes into account the presence of

both estimation errors and external control laws. This control strategy is then extended

in Section 4.4 to implement connectivity maintenance for group of Lagrangian dynamical

systems. Simulations and experiments are described in Section 4.5.

4.2 Estimation of the algebraic connectivity of the

graph

Consider a group on N cooperating agents. Let G be the communication graph, that is the

graph that model the communication architecture among them. Let L be the Laplacian

matrix of G. As shown in [97], a measure of the connectivity of a graph is the value of the

second–smallest eigenvalue of the Laplacian matrix of the graph, that will be hereafter

referred to as λ2.

This section will describe a decentralized estimation procedure, that allows each agent

to compute its own estimate of λ2.

For the sake of clarity, a brief overview of the estimation procedure introduced in [101]

will now be provided. Specifically, the estimation of λ2 is computed by exploiting the

estimation of the corresponding eigenvector v2. The power iteration procedure described

in [105] is utilized to design the following update law:

˙̃v2 = −k1Ave ({ṽi2})1− k2Lṽ2 − k3

(

Ave
({

(ṽi2)
2
})

− 1
)

ṽ2 (4.1)

where k1, k2, k3 > 0 are the control gains, and Ave (·) is the averaging operation. Fur-

thermore, ṽi2 is defined as the i–th agent’s estimate of vi2, the i–th component of the

eigenvector v2, and ṽ2 =
[

ṽ12 , . . . , ṽ
N
2

]T
. Additional details can be found in [101].

To implement the update law in Eq. (4.1) in a decentralized way, the averaging oper-

84

4. Global connectivity maintenance

ation is implemented by means of the PI average consensus estimator described in [106]:

żi = γ (αi − zi)−Kp

∑

j∈Ni

(

zi − zj
)

+Ki

∑

j∈Ni

(

wi − wj
)

ẇi = −Ki

∑

j∈Ni

(

zi − zj
) (4.2)

Further details can be found in [106].

Since there are two averaging operations in the update law in Eq. (4.1), two PI con-

sensus estimators must be run:

• the first one, with input αi,1 = ṽi2, provides zi1 as the i–th agent’s estimate of

Ave ({ṽi2});

• the second one, with input αi,2 = (ṽi2)
2
, provides zi2 as the i–th agent’s estimate of

Ave
({

(ṽi2)
2
})

.

Thus, each agent can run the decentralized version of the update law in Eq. (4.1):

˙̃vi2 = −k1zi1 − k2
∑

j∈Ni

aij
(

ṽi2 − ṽj2
)

− k3
(

zi2 − 1
)

ṽi2 (4.3)

As demonstrated in [101], the i–th agent can compute its estimate of λ2, namely λi2,

as follows:

λi2 =
k3
k2

(

1− zi2
)

(4.4)

The convergence of the estimation system to the real value of λ2 was formally proven

in [101] assuming that each agent could compute the current values of Ave ({ṽi2}) and

Ave
({

(ṽi2)
2
})

. In order to explicitly take into account the estimation errors provided

by the PI average consensus estimators, a modified estimator will now be introduced.

This estimator will be shown to provide bounded errors in the estimate of λ2, even in the

presence of estimation errors from the PI average consensus estimators.

In order to accomplish this goal, the following decentralized update law is introduced:

˙̃vi2 = −k1zi1 − k2
∑

j∈Ni

aij
(

ṽi2 − ṽj2
)

− k3
(

zi2 − 1
)

ṽi2 − k4
∣

∣ṽi2
∣

∣ ṽi2 (4.5)

for some constant k4 > 0. The update law in Eq. (4.5) is obtained by slightly modifying

Eq. (4.3), by introducing an additional term. As will be shown in the simulations provided

in Section 4.5, the introduction of this additional term deteriorates the estimation, with

respect to the original update law introduced in [101]. However, the presence of this

85

4.2. Estimation of the algebraic connectivity of the graph

Figure 4.1: Representation of the estima-
tion system

+

-
Σ

ψ (·)

y (t)r (t) ≡ 0

ψ (y)

ν (t)

additional term will be subsequently shown to be necessary to guarantee the boundedness

of the estimation error of λ2. This is a fundamental element to guarantee the connectivity

maintenance, which is the goal of the control strategy presented in this chapter.

In order to prove the boundedness of the estimation error of λ2, the boundedness of

the state of the estimation system will now be proven.

Let χ =
[

ṽT2 z1
Tw1

T z2
Tw2

T
]T

be the state vector of the estimation system, that embeds

the decentralized power iteration update law described in Eq. (4.5), whose state vector

is represented by ṽ2, and the two PI average consensus estimators described in Eq. (4.2),

whose state is represented by
[

z1
Tw1

T
]T

and
[

z2
Tw2

T
]T

respectively. Thus, the estimation

dynamics can be represented as the feedback interconnection of a linear dynamic system

Σ with a memoryless nonlinearity ψ (·), as described in Fig. 4.1. More specifically, the

linear dynamic system Σ is defined as follows:

Σ :

{

χ̇ (t) = Λχ (t) + Bν (t)
y (t) = Cχ (t)

(4.6)

where

Λ =












−k2L −k1IN 0N 0N 0N
γIN −γIN −KpL∗ KiL∗ 0N 0N
0N −KiL∗ 0N 0N 0N
0N 0N 0N −γIN −KpL∗ KiL∗

0N 0N 0N −KiL∗ 0N













B =













IN 0N
0N 0N
0N 0N
0N IN
0N 0N













C =

[

IN 0N 0N 0N 0N
0N 0N 0N IN 0N

]

(4.7)

where IN is the identity matrix of size N , and 0N is the zero matrix of size N . The

matrices L and L∗ are the weighted and unweighted Laplacian matrix, respectively. The

parameters Ki and Kp have been introduced in Eq. (4.2). As shown in Fig. 4.1, the input

ν is defined as ν (t) = −ψ (y (t)), where ψ (·) will be defined later on.

86

4. Global connectivity maintenance

From the definition of the matrix C in Eq. (4.7), it follows that

y =

[

y1
y2

]

=

[

ṽ2
z2

]

(4.8)

Given a vector ξ ∈ R
N , let diag (ξ) be the diagonal matrix whose diagonal elements

are the entries of the vector ξ. Let ξs ∈ R
N be a vector whose entries are the square of

the corresponding entries of ξ, namely ξs =
{

(ξi)
2}. It is easy to prove that

ξs = diag (ξ) ξ = ξTdiag (ξ) (4.9)

Hence, the memoryless nonlinearity ψ (·) is then defined as follows:

ψ (y) =

[

k3 (diag (y2)− IN) y1 + k4diag ({|yi1|}) y1
−γdiag (y1) y1

]

(4.10)

The following proposition proves the boundedness of the estimation system’s state.

Proposition 4.1. Consider the dynamics of the estimation system, described by Eqs. (4.6), (4.10).

Given any initial condition χ (0), the norm of the state vector of the estimation system,

‖χ (t)‖, is bounded.

Proof. First, the existence of a value S > 0 will be demonstrated such that, if ‖ṽ2‖ ≥ S,

then ‖χ‖ does not increase over time.

Let

W (χ) =
1

2
χTχ ≥ 0 (4.11)

where, for the sake of simplicity, the dependence on time has been dropped. The time

derivative of this function may be computed as follows:

Ẇ (χ) = χT χ̇ = χT [Λχ+Bν] (4.12)

The matrix Λ can be decomposed as the sum of the matrices Λdiag and Λskew, defined as

follows:
Λdiag =












−k2L 0N 0N 0N 0N
0N −γIN −KpL∗ 0N 0N 0N
0N 0N 0N 0N 0N
0N 0N 0N −γIN −KpL∗ 0N
0N 0N 0N 0N 0N













Λskew =













0N k1IN 0N 0N 0N
−γIN 0N KiL∗ 0N 0N
0N −KiL∗ 0N 0N 0N
0N 0N 0N 0N KiL∗

0N 0N 0N −KiL∗ 0N













(4.13)

87

4.2. Estimation of the algebraic connectivity of the graph

Since L and L∗, being Laplacian matrices, are symmetric and positive semidefinite, Λdiag

is negative semidefinite. Imposing k1 = γ, Λskew is skew–symmetric. Thus, Eq. (4.12)

may be rewritten as follows:

Ẇ (χ) = χTΛχ+ χTBν = χTΛdiagχ+ χTBν (4.14)

Substituting Eqs. (4.7), (4.10) into Eq. (4.14):

Ẇ (χ) =
= χTΛdiagχ− k3ṽ

T
2 [diag (z2)− IN] ṽ2 + z2

T [γdiag (ṽ2)] ṽ2 − k4ṽ
T
2 diag ({|ṽi2|}) ṽ2

= χTΛdiagχ+
(

−k3ṽT2 diag (z2) + γzT2 diag (ṽ2)
)

ṽ2 + k3ṽ
T
2 IN ṽ2 − k4ṽ

T
2 diag ({|ṽi2|}) ṽ2

(4.15)

Given two vectors ξ, φ ∈ R
N , the vector

ζ = ξTdiag (φ) = φTdiag (ξ) (4.16)

is the vector whose components are the products of the corresponding components of ξ

and φ, namely ζ = {ξiφi}.
Hence, Eq. (4.15) can then be rewritten as follows:

Ẇ (χ) =
= χTΛdiagχ+

(

−k3ṽT2 diag (z2) + γṽT2 diag (z2)
)

ṽ2 + k3ṽ
T
2 IN ṽ2 − k4ṽ

T
2 diag ({|ṽi2|}) ṽ2

(4.17)

Imposing k3 = γ, Eq. (4.17) can be rewritten as follows:

Ẇ (χ) = χTΛdiagχ+ γṽT2 IN ṽ2 − k4ṽ
T
2 diag ({|ṽi2|}) ṽ2 (4.18)

From the definition of Λdiag in Eq. (4.13), Eq. (4.18) can be rewritten as follows:

Ẇ (χ) = −ṽT2 k2Lṽ2 − z1
TγINz1 − z1

TKpL∗z1 − z2
TγINz2 − z2

TKpL∗z2 + γṽT2 IN ṽ2
−k4ṽT2 diag ({|ṽi2|}) ṽ2

(4.19)

From Eq. (4.19), the following inequality may be derived:

Ẇ (χ) ≤ −ṽT2 (k4diag ({|ṽi2|})− γIN) ṽ2 (4.20)

Let

Ωi (χ) = −k4
∣

∣ṽi2
∣

∣

3
+ γ

∣

∣ṽi2
∣

∣

2 ∀i = 1, . . . , N (4.21)

and let Ω (χ) =
N
∑

i=1

Ωi (χ), namely:

Ω (χ) = −k4
N
∑

i=1

|ṽi2|
3
+ γ

N
∑

i=1

|ṽi2|
2

= −ṽT2 (k4diag ({|ṽi2|})− γIN) ṽ2

(4.22)

88

4. Global connectivity maintenance

Thus, from Eqs. (4.19), (4.22) it follows that Ẇ (χ) ≤ Ω (χ). The function Ω (χ) has a

strict maximum ΩM when |ṽi2| =
2γ

3k4
<

γ

k4
∀i = 1, . . . , N .

Namely, ΩM = N · Ω̄, where:

Ω̄ =

[

−k4
(

2γ

3k4

)3

+ γ

(

2γ

3k4

)2
]

(4.23)

In order to compute an upper–bound on |ṽi2| ∀i = 1, . . . , N , the worst case may be

considered. More specifically, each entry of the vector ṽ2 will be shown to be bounded.

To do this, suppose that all the entries of the vector ṽ2 are bounded, such that |ṽi2| <
γ

k4
,

except the j–th one.

In this case, the following inequality holds:

Ω (χ) ≤ (N − 1) Ω̄ + Ωj (χ) = (N − 1) Ω̄− k4
∣

∣ṽj2
∣

∣

3
+ γ

∣

∣ṽj2
∣

∣

2
(4.24)

Worst case means that letting more than one component of ṽ2 be greater than
γ

k4
would decrease the value on the right–hand side of Eq. (4.24). The existence of a value α

will now be shown, such that, if
∣

∣ṽj2
∣

∣ > α, then Ωj (χ) > (N − 1) Ω̄, and then Ω (χ) < 0.

More specifically, Ω (χ) < 0 if
∣

∣ṽj2
∣

∣ > α > 0 such that:

α3 >
γ

k4
α2 +

(N − 1) Ω̄

k4
(4.25)

Hence, Ẇ (χ) ≤ Ω (χ) < 0 if |ṽi2| > α for at least one value of i = 1, . . . , N . Thus, ∃S > 0

such that, if ‖ṽ2‖ ≥ S, then W (χ) does not increase over time, which implies that ‖χ‖
does not increase over time as well.

The boundedness of ‖χ‖ will now be demonstrated even when ‖ṽ2‖ < S.

Let ζ1 =
[

z1
Tw1

T
]T

and ζ2 =
[

z2
Tw2

T
]T

be the state vectors of the PI average consensus

estimators. Thus, χ =
[

ṽT2 ζ
T
1 ζ

T
2

]T
. As proved in [106], the PI average consensus estimators

are input–to–state stable (ISS) systems. The boundedness of ‖ṽ2‖ implies the boundedness

of the inputs of the PI average consensus estimators. In fact, as stated in Section 4.3,

these inputs are vi2 and (vi2)
2
, respectively. Thus, both ‖ζ1‖ and ‖ζ2‖ are bounded, given

‖ṽ2‖ < S.

From Proposition 4.1, it follows that ∃M > 0 such that ‖χ (t)‖ ≤ M , ∀t ≥ 0.

Since ‖ṽ2 (t)‖ ≤ ‖χ (t)‖ and ‖z2 (t)‖ ≤ ‖χ (t)‖, it is possible to conclude that ‖ṽ2 (t)‖ ≤M

and ‖z2 (t)‖ ≤M , ∀t ≥ 0.

89

4.3. Connectivity maintenance for single integrator agents

4.3 Connectivity maintenance for single integrator

agents

This section will describe an algorithm for global connectivity maintenance, for groups of

single integrator kinematic agents.

For the sake of clarity, this algorithm will be first introduced in a centralized frame-

work: suppose that each agent can compute the actual value of the algebraic connectivity

of the communication graph. This assumption will be removed subsequently, exploiting

the decentralized estimation procedure introduced in Section 4.2.

Hence, consider a group of N single–integrator agents, i.e.:

ṗi = uci (4.26)

where pi ∈ R
m is the position of the i–th agent, and uci is the control input. Let

p =
[

pT1 . . . p
T
N

]T ∈ R
Nm be the state vector of the multi–agent system. Furthermore,

let R be the maximum communication range for each agent, i.e. the j–th agent is inside

Ni if ‖pi − pj‖ ≤ R.

Let L be the Laplacian matrix of the communication graph, then the connectivity is

guaranteed if the second smallest eigenvalue of L (that, hereafter, will be referred to as

λ2) is strictly greater than zero. Hence, let ǫ > 0 be the desired lower–bound for the value

of λ2. The control strategy will then be designed to ensure that the value λ2 never goes

below ǫ. To this end, an energy function will be used for generating the decentralized

connectivity maintenance control strategies.

Definition 4.1. An energy function

V (λ2 (p)− ǫ) : RNm 7→ R

exhibits the following properties:

(P1) It is continuously differentiable.

(P2) it is non–negative.

(P3) it is non–increasing with respect to λ2.

(P4) it approaches a constant value, as λ2 increases.

90

4. Global connectivity maintenance

The control design essentially drives the robots to perform a gradient descent of V (·),
in order to ensure connectivity maintenance. Since λ2 and its gradient are global quanti-

ties, the following centralized connectivity maintenance control law may be defined:

uci = −∂V (λ2 (p)− ǫ)

∂pi
= −∂V (λ2 (p)− ǫ)

∂λ2

∂λ2
∂pi

(4.27)

Without loss of generality, the following energy function will be adopter, hereafter:

V (p) = coth (λ2 − ǫ) (4.28)

The energy function (Fig. 4.2) is non–increasing (with respect to λ2) and non–negative,

for any λ2 > ǫ.

According to the energy function defined in Eq. eq:totaltension, the control law is

defined as follows:

uci = −∂V (p)

∂pi
(4.29)

Figure 4.2: Energy function
V (p) = coth (λ2 − ǫ) ǫ λ2

0

1

From Eq. (4.28):
∂V (p)

∂λ2
= csch2 (λ2 − ǫ) (4.30)

As shown in Fig. 4.3, the magnitude of this multiplicative coefficient increases suddenly as

λ2 decreases. Subsequently, this property will be shown to be fundamental to guarantee

the connectivity maintenance in the presence of external control laws. It is important to

note that, as will be subsequently shown, an appropriate choice of the lower–bound ǫ is

crucial for guaranteeing connectivity maintenance when dealing with estimation errors,

and external control laws as well.

91

4.3. Connectivity maintenance for single integrator agents

Figure 4.3:
∂V (p)

∂λ2
= csch2 (λ2 − ǫ)

ǫ λ2
0

From Eqs. (4.29), (4.28), the control law can be rewritten as follows:

uci = csch2 (λ2 − ǫ)
∂λ2
∂pi

(4.31)

Inspired by [101], the edge–weights for the inter–agent communication graph may be

defined as follows:

aij =

{

e−(‖pi−pj‖
2)/(2σ2) if ‖pi − pj‖ ≤ R

0 otherwise
(4.32)

The scalar parameter σ is chosen to satisfy the threshold condition e−(R
2)/(2σ2) = ∆,

where ∆ is a small predefined threshold. The presence of a non–zero threshold ∆ ensures

that that the edge–weight is different from zero if the distance between two agents is

exactly equal to R. This definition of the edge–weights introduces a discontinuity in the

control action, that can be avoided introducing a smooth bump function, as in [78].

Let v2 be the eigenvector corresponding to the eigenvalue λ2. As shown in [101],
∂λ2
∂pi

can be computed as follows:

∂λ2
∂pi

= vT2
∂L

∂pi
v2 =

∑

j∈Ni

∂aij
∂pi

(

vi2 − vj2
)2

(4.33)

where vi2 and v
j
2 are the i–th and the j–th components of v2, respectively. Then, from the

definition of the edge–weights aij given in Eq. (4.32):

∂λ2
∂pi

=
∑

j∈Ni

−aij
(

vi2 − vj2
)2 pi − pj

σ2
(4.34)

92

4. Global connectivity maintenance

Thus, the control law in Eq. (4.31) can be rewritten as follows:

uci = −csch2 (λ2 − ǫ)
∑

j∈Ni

aij
(

vi2 − vj2
)2 pi − pj

σ2
(4.35)

Let Dǫ be a set where the communication graph is connected, above a desired connec-

tivity threshold ǫ, i.e.:

Dǫ =
{

p ∈ R
Nm s. t. λ2 > ǫ

}

(4.36)

Proposition 4.2. Consider the system described by Eq. (4.26). Given an initial con-

figuration p0 ∈ Dǫ, for some ǫ > 0, then, if the system is driven by the control law in

Eq. (4.35), the energy function defined in Eq. (4.28) does not increase.

Proof. To prove the statement, the time derivative of the energy function may be com-

puted as follows:

V̇ (p) = ∇pV (p)T · ṗ =
N
∑

i=1

∂V

∂pi

T

· ṗi (4.37)

Thus, from Eq. (4.29):

V̇ (p) = −
N
∑

i=1

ṗTi ṗi ≤ 0 (4.38)

Thus, the energy function does not increase over time.

Hence, Proposition 4.2 guarantees that V (p) does not increase over time. Thus, if

the initial condition is such that λ2 > ǫ, the value of λ2 will never decrease. Hence, the

connectivity of the graph is always maintained.

4.3.1 Decentralized implementation of the connectivity mainte-

nance algorithm

Since the current value of λ2 is not available to each agent, this section we will show how

to exploit the decentralized estimation procedure introduced in Section 4.3.1 to implement

the control strategy introduced in Eq. (4.29) in a decentralized manner.

Summary of the different estimates of λ2 used by the connectivity maintenance
algorithm

This section will summarize the different estimates of λ2 that will be exploited for the

connectivity maintenance control algorithm.

Exploiting the estimation procedure introduced in Section 4.2, each agent computes

an estimate of a component of the eigenvector v2, namely ṽi2. Let ṽ2 =
[

ṽ12 . . . ṽ
N
2

]T
, and

93

4.3. Connectivity maintenance for single integrator agents

let λ̃2 be the value that the second smallest eigenvalue of the Laplacian matrix would take

if ṽ2 were the corresponding eigenvector.

Similarly to λi2 (see Eq. (4.4)), λ̃2 can be computed as follows:

λ̃2 =
k3
k2

[

1−Ave
({

(

ṽi2
)2
})]

(4.39)

As shown in [101],
∂λ̃2
∂pi

can be computed as follows

∂λ̃2
∂pi

= ṽT2
∂L

∂pi
ṽ2 =

∑

j∈Ni

∂aij
∂pi

(

ṽi2 − ṽj2
)2

(4.40)

Then, from the definition of the edge–weights aij given in Eq. (4.32):

∂λ̃2
∂pi

=
∑

j∈Ni

−aij
(

ṽi2 − ṽj2
)2 pi − pj

σ2
(4.41)

The actual value of λ̃2 can not be computed by each agent. In fact, the real value

of Ave ({(ṽi2)}) is not available to any agent. Nevertheless, an estimate of this average,

namely zi2, is available to each agent. According to Eq. (4.4), each agent can compute λi2,

that is indeed different from both λ2 and λ̃2. However, as demonstrated in the Proposi-

tion 4.3 and Proposition 4.4, λi2 is a good estimate of both λ2 and λ̃2, since ∃Ξ,Ξ′ > 0

such that
|λ2 − λi2| ≤ Ξ ∀i = 1, . . . , N
∣

∣

∣
λ̃2 − λi2

∣

∣

∣
≤ Ξ′ ∀i = 1, . . . , N

(4.42)

From Eq. (4.42), It is possible to conclude that

∣

∣

∣
λ2 − λ̃2

∣

∣

∣
≤ Ξ + Ξ′ (4.43)

We remark that, even though the actual value of λ̃2 is not available to each agent,

the partial derivatives of λ̃2 can be computed by each agent. In fact, Eq. (4.41) can be

implemented in a decentralized manner.

The following proposition proves the boundedness of the estimation error of λ2.

Proposition 4.3. Consider the estimation system described by Eqs. (4.4), (4.5). Then,

the error on the estimation of λ2 is bounded.

Proof. Let λ̂2 =
[

λ12, . . . , λ
N
2

]T ∈ R
N be the vector containing the estimates of λ2 per-

formed by each agent.

94

4. Global connectivity maintenance

Since each agent computes its estimate of λ2, namely λi2, according to Eq. (4.4), the

vector λ̂2 is defined as follows:

λ̂2 =
k3
k2

(1− z2) (4.44)

Since, from Proposition 4.1, ‖z2‖ is bounded, then
∥

∥

∥
λ̂2

∥

∥

∥
is bounded as well. Once defined

the number of agents in the graph, the real value of λ2 is bounded, namely λ2 ∈
[

0, λM2
]

.

More specifically:

• λ2 = 0 if the graph is disconnected;

• λ2 = λM2 if the graph is complete (i.e. an edge exist between each couple of agents),

and the distance between each couple of agents is such that the edge–weights aij

assume their maximum value. Namely, the distance between each couple of agents

is zero, and aij = 1 ∀i = 1, . . . , N . Then, for any value of the number of agents N ,

λM2 is well defined.

Let δ ∈ R
N be the estimation error vector, i.e. δ = λ̂2 − λ21.

Since both
∥

∥

∥
λ̂2

∥

∥

∥
and ‖λ21‖ = λ2 are bounded, we can conclude that ∃Ξ > 0 such that

‖δ‖ ≤ Ξ. Hence, |λi2 − λ| ≤ Ξ, ∀i = 1, . . . , N .

The following proposition proves the boundedness of the estimation error
∣

∣

∣
λi2 − λ̃2

∣

∣

∣
,

∀i = 1, . . . , N .

Proposition 4.4. Consider the estimation system described by Eqs. (4.4), (4.5), (4.39).

Then, the error on the estimation
∣

∣

∣
λi2 − λ̃2

∣

∣

∣
is bounded, ∀i = 1, . . . , N .

Proof. Let λ̂2 =
[

λ12, . . . , λ
N
2

]T ∈ R
N be the vector containing the estimates of λ2 per-

formed by each agent.

Since each agent computes its estimate of λ2, namely λi2, according to Eq. (4.4), the

vector λ̂2 is defined as follows:

λ̂2 =
k3
k2

(1− z2) (4.45)

Since, from Proposition 4.1, ‖z2‖ is bounded, then
∥

∥

∥
λ̂2

∥

∥

∥
is bounded as well.

As shown in the proof of Proposition 4.3,
∥

∥

∥
λ̂2

∥

∥

∥
is bounded. Furthermore Proposi-

tion 4.1 proves that also ṽ2 is bounded. Hence, it is possible to conclude that Ave ({(ṽi2)}),
i.e. the average of the components of the vector ṽ2, is bounded as well.

Let δ̃ ∈ R
N be the estimation error vector, i.e. δ̃ = λ̂2 − λ̃21.

Since both
∥

∥

∥
λ̂2

∥

∥

∥
and

∥

∥

∥
λ̃21
∥

∥

∥
= λ̃2 are bounded, it is possible to conclude that ∃Ξ′ > 0

such that
∥

∥

∥
δ̃
∥

∥

∥
≤ Ξ′. Hence,

∣

∣

∣
λi2 − λ̃

∣

∣

∣
≤ Ξ′, ∀i = 1, . . . , N .

95

4.3. Connectivity maintenance for single integrator agents

Decentralized connectivity maintenance algorithm

Consider the control law introduced in Eq. (4.29). Since the real values of λ2 and
∂λ2
∂pi

are not available, the agents will actually implement the following control law:

uci = csch2
(

λi2 − ǫ̃
) ∂λ̃2
∂pi

(4.46)

The parameter ǫ̃ is defined as follows

ǫ̃ = ǫ+ Ξ + Ξ′ (4.47)

where ǫ is the desired lower–bound for λ2, and Ξ,Ξ′ are defined according to Eq. (4.42).

The following energy function may now be introduced:

Ṽ (p) = coth
(

λ̃2 − ǫ̃
)

(4.48)

The following theorem shows that, assuming the initial value of λ2 is sufficiently large

(i.e. the graph is connected above a certain threshold), then the control law introduced

in this chapter ensures the connectivity maintenance.

Theorem 4.1. Consider the dynamical system described by Eqs. (4.26), (4.46). Then,

∃ǫ, ǫ̃ defined according to Eq. (4.47) such that, if the initial value of λ2 > ǫ̃+ Ξ + Ξ′, then

the value of λ2 never goes below ǫ.

Proof. To prove the statement, the time derivative of the energy function introduced in

Eq. (4.48) may be computed.

From Eq. (4.48) it follows that:

∂Ṽ

∂pi
=
∂Ṽ

∂λ̃2

∂λ̃2
∂pi

= −csch2
(

λ̃2 − ǫ̃
) ∂λ̃2
∂pi

(4.49)

From Eqs. (4.26), (4.46), (4.49), the time derivative of Ṽ (p) can be computed as fol-

lows:

˙̃V (p) = ∇pṼ (p)T ṗ =
N
∑

i=1

∂Ṽ

∂pi

T

ṗi =

=
N
∑

i=1

[

−csch2
(

λ̃2 − ǫ̃
) ∂λ̃2
∂pi

]T [

csch2 (λi2 − ǫ̃)
∂λ̃2
∂pi

]

=

= −
N
∑

i=1

csch2
(

λ̃2 − ǫ̃
)

csch2 (λi2 − ǫ̃)

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

≤ 0

(4.50)

96

4. Global connectivity maintenance

Thus, the energy function does not increase over time. According to Eq. (4.43), the

fact that the initial value of λ2 is greater than ǫ̃+ Ξ + Ξ′ ensures that the initial value

of λ̃2 is greater than ǫ̃. Hence, it is possible to conclude that the value of λ̃2 does not

decrease over time, which ensures λ̃2 ≥ ǫ̃.

Hence, according to Eq. (4.43), it is possible to conclude that λ2 is guaranteed to

remain lower–bounded as the system evolves, specifically

λ2 ≥ ǫ = ǫ̃− Ξ− Ξ′ (4.51)

4.3.2 Connectivity maintenance in the presence of an external

controller

This section extends the control law described in the previous section, considering the

following control law:

ṗi = uci + udi (4.52)

where uci is the control term introduced in Eq. (4.35), while udi is a control term used

to obtain some desired behavior. Namely, the control term udi is an unknown bounded

function, i.e.
∥

∥udi
∥

∥ ≤ uM .

Proposition 4.5. Consider the dynamical system described by Eq. (4.52). Let Ξ,Ξ′ be

defined according to Eq. (4.42). ∃ǫ, ǫ̃ such that, if the initial value of λ2 > ǫ̃+Ξ+Ξ′, then

the control law in Eq. (4.35) ensures that the value of λ2 never goes below ǫ.

Proof. To prove the statement, consider the following energy function:

V (p) = coth
(

λ̃2 − ǫ̃
)

(4.53)

The time derivative of this energy function may be computed as follows:

∂V

∂pi
=
∂V

∂λ̃2

∂λ̃2
∂pi

= −csch2
(

λ̃2 − ǫ̃
) ∂λ̃2
∂pi

(4.54)

From Eqs. (4.35), (4.52), (4.54), the time derivative of V (p) can be computed as follows:

V̇ (p) = ∇pV (p)T ṗ =
N
∑

i=1

∂V

∂pi

T

ṗi =
N
∑

i=1

[

−csch2
(

λ̃2 − ǫ̃
) ∂λ̃2
∂pi

]T [

csch2 (λi2 − ǫ̃)
∂λ̃2
∂pi

+ udi

]

(4.55)

97

4.3. Connectivity maintenance for single integrator agents

Since udi is bounded:

V̇ (p) ≤ csch2
(

λ̃2 − ǫ̃
) N
∑

i=1



−csch2 (λi2 − ǫ̃)

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

+ +

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

uM

]

(4.56)

From Eq. (4.56) it follows that V̇ (p) ≤ 0 if

N
∑

i=1



−csch2 (λi2 − ǫ̃)

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

uM



 ≤ 0 (4.57)

The condition in Eq. (4.57) is verified if

N
∑

i=1



csch2 (λi2 − ǫ̃)

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2


 ≥ uM
N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

(4.58)

According to Eq. (4.42), the fact that the initial value of λ2 is greater than ǫ̃+ Ξ + Ξ′

ensures that the initial value of λi2 is greater than ǫ̃, ∀i = 1, . . . , N . Then, csch2 (λi2 − ǫ̃)

is monotonically decreasing. Hence,

csch2
(

λi2 − ǫ̃
)

≥ csch2
(

λMAX
2 − ǫ̃

)

(4.59)

where, according to Eq. (4.42)

λMAX
2 = max

i=1,...,N

{

λi2
}

≤ λ̃2 + Ξ′ (4.60)

Hence, according to Eqs. (4.59), (4.60) the condition in Eq. (4.58) is verified if

csch2
(

λ̃2 + Ξ′ − ǫ̃
)

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

≥ uM

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

(4.61)

If the following condition holds

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

6= 0 (4.62)

then the inequality in Eq. (4.61) can be rewritten as follows:

csch2
(

λ̃2 + Ξ′ − ǫ̃
)

≥ uM

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2 = H (p) > 0 (4.63)

98

4. Global connectivity maintenance

Figure 4.4: The shape of csch2 (λ2 − ǫ) en-
sures the possibility to guarantee connec-
tivity maintenance even in the presence of
(bounded) external control laws m

n

ǫ

λ2

0

which implies

λ̃2 ≤ λ̄2 = settcsch
(

√

H (p)
)

+ ǫ′ (4.64)

where ǫ′ = ǫ̃− Ξ′. Therefore, as shown in Fig. 4.4, λ̄2 > ǫ′ always exists that satisfies the

condition in Eq. (4.64). Thus, ∀λ̃2 ≤ λ̄2 the function V̇ (p) ≤ 0. Then, ∀λ̃2 ≤ λ̄2, the

energy function V (p) does not increase over time.

Let λ̃2 (0) > ǫ̃ be the initial value of λ̃2. If λ̃2 (0) > λ̄2, then the value of λ̃2 will always

be lower–bounded by λ̄2. Conversely, if λ̃2 (0) ≤ λ̄2, then the value of λ̃2 will increase,

until λ̃2 ≥ λ̄2, and then it will never go below λ̄2. Namely, let

λ̂2 = min
(

λ̃2 (0) , λ̄2

)

(4.65)

Then, the value of λ̃2 will never go below the value of λ̂2 > ǫ′.

In case

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

= 0, the condition in Eq. (4.62) is not verified. However, in this case

˙̃
λ2 =

∂λ̃2
∂pi

ṗi = 0 (4.66)

This implies that the value of λ̃2 is constant over time, thus it is lower–bounded by its

initial value. In both cases, λ̃2 > ǫ′.

Then, according to Eq. (4.43), the control law in Eq. (4.35) ensures that the value of

λ2 never goes below ǫ = ǫ′ − Ξ = ǫ̃− Ξ′ − Ξ.

Hence, given the boundedness of the estimation errors, ensuring an appropriate lower-

bound on the estimate of λ2 guarantees that the actual value of λ2 remains strictly greater

than zero.

99

4.3. Connectivity maintenance for single integrator agents

4.3.3 Enhanced connectivity maintenance: selective control ac-

tion

In this section, a selective control action is described to enhance the previously described

connectivity maintenance control strategy. The objective is twofold:

1. to reduce the overall control effort introduced by the connectivity maintenance con-

trol action.

2. to reduce the interference between the connectivity maintenance control action and

the main task of the system.

In order to achieve these goals, the control law given in Eq. (4.35) is modified as

follows:

uci = γi csch
2
(

λi2 − ǫ̃
) ∂λ̃2
∂pi

(4.67)

where the coefficient γi ∈ R is used to modulate the control action as will be explained

hereafter.

Consider now the graph G encoding the communication architecture of a multi–robot

system. According to [18], an edge cutset is defined as a set of edges whose deletion

would increase the number of connected components of the graph G. If an edge cutset is

constituted by a single edge, then this edge is defined as a bridge. In other words, if a

graph is connected, deleting a bridge would cause the disconnection of the graph.

The relationship between the disconnection of a graph G and these concept will now

be investigated.

For this purpose, define Ni as the neighborhood of the i–th agent, and let

Ni = N c
i +N f

i (4.68)

where:

• N c
i is the set of the close neighbors of the i–th agent,

• N f
i is the set of the far neighbors of the i–th agent.

These two sets are defined as follows:

N c
i = {j ∈ Ni such that ‖pi − pj‖ ≤ δ ·R}

N f
i = {j ∈ Ni such that ‖pi − pj‖ > δ ·R} (4.69)

where δ ∈ (0, 1) is a predefined threshold. Note that according to this definitionN s
i ∩N c

i = ∅.
Moreover, the definition of isolated agent is introduced.

100

4. Global connectivity maintenance

Definition 4.2. Isolated agent. An agent j is considered isolated from the agent i’s

perspective, if it belongs to N f
i and it does not belong to the N c

k for any of the k ∈ N c
i ,

that is:

j ∈ N f
i , and 6 ∃k ∈ N c

i such that j ∈ N c
k (4.70)

Hence, the following definition of critical agent is introduced.

Definition 4.3. Critical agent. The i–th agent identifies itself as critical if at least one

of its neighbors is isolated.

The definition of critical agent exhibits a symmetry property, that is:

If the i–th agent considers itself as critical by identifying the j one as isolated, then the

j–th agent considers itself as critical by identifying the i one as isolated, as well.

This is a simple consequence of some geometrical facts, under the assumption of common

communication range R.

Fig. 4.5 clarifies the concept of critical agent. In the figure, the grey area represents

N c
k , the hatched area represents N f

i . In the left–hand picture of Fig. 4.5, no critical agents

are identified: in fact, even though j ∈ N f
i , the k–th agent is a close neighbor of both the

i–th and the j–th ones. Conversely, in the right–hand picture of Fig. 4.5, the i–th agent

considers the i–th one as critical, and vice–versa.

Figure 4.5: Identification of criti-
cal agents. The grey area repre-
sents N c

k , the hatched area repre-
sents N f

i . In the left–hand pic-
ture, no critical agents are iden-
tified. In the right–hand picture,
the i–th agent considers the i–th
one as critical, and vice–versa.

As a result, the connectivity maintenance control action is limited to those agents

whose disconnection may lead to the loss of connectivity. Thus, the coefficient γi in

Eq. (4.67) can be defined as follows:

γi =

{

1 if the i–th agent is critical
ρ otherwise

(4.71)

with ρ ∈ (0, 1) arbitrarily small. As will be shown in the next Section, the fact ρ 6= 0 is

a mathematical technicality required for the correctness of the proof of Proposition 4.6.

101

4.3. Connectivity maintenance for single integrator agents

However, since ρ can be chosen arbitrarily small, its effect can be made negligible from

an implementation standpoint.

The next proposition shows that the proposed selective control action uci given in

Eq. (4.67) can ensure the connectivity of the communication graph for the multi–robot

system under the assumption of boundedness for any additional control term udi introduced

to obtain some desired behavior.

Proposition 4.6. Consider the dynamical system described by Eq. (4.52). Let Ξ,Ξ′ be

defined according to Eq. (4.42). Then, ∃ ǫ, ǫ̃ such that, if the initial value of λ2 > ǫ̃+Ξ+Ξ′,

the control law given in Eq. (4.67) can ensure that the value of λ2 never goes below ǫ.

Proof. In order to prove the statement, the partial derivative of the energy function

introduced in Eq. (4.28) may be computed, with respect to an agent i, as follows:

∂V

∂pi
=
∂V

∂λ̃2

∂λ̃2
∂pi

= −csch2
(

λ̃2 − ǫ̃
) ∂λ̃2
∂pi

(4.72)

From Eqs. (4.67), (4.52), (4.72), it follows that the the time derivative of V (p) can be

computed as:

V̇ (p) =

∇pV (p)T ṗ =
N
∑

i=1

∂V

∂pi

T

ṗi =
N
∑

i=1

[

−csch2
(

λ̃2 − ǫ̃
) ∂λ̃2
∂pi

]T [

γicsch
2 (λi2 − ǫ̃)

∂λ̃2
∂pi

+ udi

]

(4.73)

Given the boundedness of the additional control term udi :

udi ≤ uM , ∀ i = 1, . . . , N (4.74)

the time derivate V̇ (p) can be restated as:

V̇ (p) ≤ csch2
(

λ̃2 − ǫ̃
) N
∑

i=1



−γicsch2 (λi2 − ǫ̃)

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

+

+

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

uM

]
(4.75)

As a result, the time derivative V̇ (p) ≤ 0 if the following condition holds:

N
∑

i=1



γicsch
2 (λi2 − ǫ̃)

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2


 ≥ uM
N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

(4.76)

102

4. Global connectivity maintenance

According to Eq. (4.42), if the initial value of λ2 is greater than ǫ̃+ Ξ + Ξ′ then the

initial value of λi2 is greater than ǫ̃, ∀i = 1, . . . , N as well. At this point, since the function

csch2 (λi2 − ǫ̃) is monotonically decreasing with respect to λi2, the following condition holds:

csch2
(

λi2 − ǫ̃
)

≥ csch2
(

λMAX
2 − ǫ̃

)

(4.77)

with λMAX
2 defined as:

λMAX
2 = max

i=1,...,N

{

λi2
}

≤ λ̃2 + Ξ′ (4.78)

As a result, according to Eqs. (4.77), (4.78), the inequality given in Eq. (4.76) is

verified if the following holds:

csch2
(

λ̃2 + Ξ′ − ǫ̃
)

N
∑

i=1

γi

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

≥ uM

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

(4.79)

Assume now that the following condition holds:

N
∑

i=1

γi

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2

6= 0 (4.80)

As a matter of fact, this implies that the inequality in Eq. (4.79) can be rewritten as

follows:

csch2
(

λ̃2 + Ξ′ − ǫ̃
)

≥ uM

N
∑

i=1

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

N
∑

i=1

γi

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

2 = H (p) > 0 (4.81)

which implies

λ̃2 ≤ λ̄2 (p) = settcsch
(

√

H (p)
)

+ ǫ′ (4.82)

where ǫ′ = ǫ̃ − Ξ′, and settcsch (·) is the inverse function of csch (·). At this point, it

should be noticed λ̄2 (p) > ǫ′ always exist such that the condition given in Eq. (4.82) is

satisfied, as shown in Fig. 4.4. This implies that:

V̇ (p) ≤ 0, ∀λ̃2 ≤ λ̄2 (p) (4.83)

Therefore, ∀λ̃2 ≤ λ̄2 (p), the energy function V (p) does not increase over time.

With a slight abuse of notation, let λ̃2 (t) and λ̄2 (t) be the values of λ̃2 (·) and λ̄2 (·)
at time t, respectively.

Suppose λ̃2 (0) > ǫ̃ > ǫ′ to be the initial value of λ̃2. If λ̃2 (0) > λ̄2 (0) > ǫ′, then the

value of λ̃2 will always be lower–bounded by ǫ′.

103

4.3. Connectivity maintenance for single integrator agents

Conversely, if ǫ′ < λ̃2 (0) ≤ λ̄2 (0), then the value of λ̃2 will increase, until λ̃2 (t) ≥ λ̄2 (t).

Then, the value of λ̃2 will never go below ǫ′.

Note that, in the case of

∥

∥

∥

∥

∥

∂λ̃2
∂pi

∥

∥

∥

∥

∥

= 0, the condition given in Eq. (4.80) is not verified.

Nevertheless, it should be noticed that:

˙̃
λ2 =

∂λ̃2
∂pi

ṗi = 0 (4.84)

which implies that the value of λ̃2 is constant over time, thus it is lower–bounded by its

initial value. In both cases, λ̃2 > ǫ′.

Then, according to Eq. (4.43), the control law in Eq. (4.67) ensures that the value of

λ2 never goes below ǫ = ǫ′ − Ξ = ǫ̃− Ξ′ − 2Ξ.

As a result, the boundedness of the estimation errors is a sufficient condition to prove

that, by ensuring an appropriate lowerbound on the estimate of λ2, the actual value of λ2

can be ensured to be strictly greater than zero over time.

Definition of the critical agents

4.3.4 Identification of the critical agents

In this section, a local policy is described for the identification of the critical agents,

according to Definition 4.3.

The proposed strategy exhibits the following properties:

• it does not require the agents to have a unique identifier,

• it only relies on local sensing information available to each agent,

• does not require explicit communication among the agents.

Referring to Definition 4.3, the local policy may be described with the following algo-

rithm.

The five configurations shown in Fig. 4.6 for the communication graph are represen-

tative of all the possible scenarios. More specifically:

• in Fig. 4.6a, the j–th agent is isolated: only the i–th one is in its neighborhood, and

they are far neighbors. Disconnecting the red link would cause the disconnection

of the graph. Furthermore, none of the i–th agent’s close neighbors (blue dots) is

close to the j–th agent: hence they are both considered critical, and γi = γj = 1.

104

4. Global connectivity maintenance

Algorithm 3 Local policy to identify the critical robots

1: γi = 1

2: if
{

N f
i = ∅

}

then
3: γi = ρ
4: end if
5: if

{

∀j ∈ N f
i ∃k ∈ N c

i s.t. j ∈ N c
k

}

then
6: γi = ρ
7: end if

i

j

(a) i and j are identified
as critical agents

i

j

(b) i and j are identified
as critical agents

i

j

k

(c) i and j (and k)
are identified as critical
agents

i

(d) i and all its neigh-
bors are identified as
critical agent

i

j
(e) i and j are
clearly identified as
non–critical agents

Figure 4.6: Decision algorithm to define the critical agents: some examples

105

4.3. Connectivity maintenance for single integrator agents

• in Fig. 4.6b, the link between the i–th and the j–th agents links two different

components of the graph. As in the previous example, both agents are considered

critical, and γi = γj = 1.

• in Fig. 4.6c, the j–th agent is isolated, and is likely to lose connectivity from all its

neighbors. Hence, it is identified as a critical agent, i.e. γj = 1. Analogously, the

i–th agent is considered critical, as well as the k–th one.

• in Fig. 4.6d, the i–th agent is identified as isolated by all its neighbors, and is then

a critical agent. Due to the symmetry property of Definition 4.3, the i–th agent’s

neighbors are critical agents as well.

• Fig. 4.6e represents a situation where the connectivity maintenance action is not

needed: in fact, even though the j–th agent is a far neighbor of the i–th one, they

have some close neighbors in common (blue dots). In this case, they are both

identified as non–critical neighbors, thus γi = γj = ρ.

4.3.5 Rendezvous and formation control

This section exploits the control strategy described so far to address the connectivity

maintenance issue within rendezvous and formation control problems.

For this purpose, the connectivity maintenance control action may be rewritten in

vector form. To this aim, define āij as follows:

āij
(

λi2
)

= γi csch
2
(

λi2 − ǫ̃
) 1

σ2

(

ṽi2 − ṽj2
)2
aij (4.85)

Furthermore, a modified degree matrix of the graph may be defined as D̄ = diag
({

d̄i
})

,

where d̄i is the degree of the i–th node of the graph, i.e. d̄i =
N
∑

j=1

āij . The modified

Laplacian matrix can be then defined accordingly, as L̄ = D̄ − Ā.

Hence, the control law in Eqs. (4.52)–(4.67) can be rewritten in vector form:

ṗ = −L̄p+ ud (4.86)

where ud is the vector containing the desired control laws.

In the following subsections, for the sake of clarity, the dynamics of the system will

be considered in one dimension only, without loss of generality. All the results presented

hereafter, in fact, may be easily extended to the m–dimensional case.

106

4. Global connectivity maintenance

Consensus–based rendezvous

In this section the connectivity maintenance issue in the rendezvous problem, i.e. making

a group of robots converge to the same position, is address. To this end, the following

consensus–based control law may be introduced:

ud = −L∗p (4.87)

As shown in [107], this control law guarantees the convergence of the system to the

rendezvous configuration, provided that the communication graph is connected.

Proposition 4.7. Under the control law described by Eqs. (4.86), (4.87), the connectivity

of the communication graph is always ensured.

Proof. To prove the statement, the results given in Proposition 4.6 is exploited. More

specifically, the value uM will be now derived, to be used in Eqs. (4.81), (4.82) to define

the lowerbound on λ2. In particular, since

udi =
∑

j∈Ni

(pi − pj) (4.88)

it follows that
∥

∥udi
∥

∥ ≤ uM = NR (4.89)

being R the greatest possible distance between two neighboring robots.

Proposition 4.8. Under the control strategy introduced in Eqs. (4.86), (4.87), the system

asymptotically converges to the rendezvous configuration.

Proof. The proof is analogous to that of [107], considering L̃ = L̄+ L∗ as the Laplacian

matrix of the communication graph.

Consensus–based formation control

In this section the connectivity maintenance issue is addressed in the formation control

problem. Consensus–based control laws can be exploited for formation control as well.

As in the rendezvous case, the convergence of the system to the desired configuration is

guaranteed, provided that the communication graph is connected. In [69] the following

control strategy has been introduced:

ud = −L∗p+ b (4.90)

107

4.3. Connectivity maintenance for single integrator agents

where

b = L∗p̄ (4.91)

and p̄ is a vector containing the desired positions for the robots in the formation. More

specifically, p̄ represents the desired relative position of each robot with respect to the

center of the formation. Hence, the desired configuration can be described as follows:

p = α1+ p̄ (4.92)

for some α ∈ R. In other words,

(p− p̄) ∈ span (1) (4.93)

The bias term defined in Eq. (4.91) is now slightly modified as follows:

b = {bi (p)} (4.94)

where

bi (p) =







∑

j∈Ni

(1 + āij (λ
i
2)) · (p̄i − p̄j) if λi2 > kǫ̃

∑

j∈Ni

(1 + āij (kǫ̃)) · (p̄i − p̄j) otherwise
(4.95)

for k > 1. Roughly speaking, when the estimate of the algebraic connectivity is sufficiently

greater than ǫ̃ (i.e. λi2 > kǫ̃), then the bias term is computed exploiting the following

Laplacian matrix:

L̃ = L̄+ L∗ (4.96)

Conversely, when the value of the estimate of the algebraic connectivity approaches ǫ̃, this

design of the control law ensures boundedness of udi that, as shown in Proposition 4.7, is

necessary to ensure connectivity.

Proposition 4.9. Under the control law described by Eqs. (4.86), (4.90), the connectivity

of the communication graph is always ensured.

Proof. The proof is analogous to that of Proposition 4.7.

In [69] the proof of the convergence of the system to the desired formation is provided.

The next proposition shows how this proof can be extended in order to guaranteed the

convergence even in the presence of the connectivity maintenance control action.

Proposition 4.10. Assume that, if p = p̄, then λi2 > kǫ̃, ∀i = 1, . . . , N . Then, under the

control strategy introduced in Eqs. (4.86), (4.90), the system asymptotically converges to

the formation defined as p = p̄.

108

4. Global connectivity maintenance

Proof. When λi2 > kǫ̃, then the control law introduced in Eqs. (4.86), (4.90) may be

rewritten as follows:

ṗ (t) = −L̃ (t) (p (t)− p̄) (4.97)

where the dependence on time has been added for clarity purposes.

As shown in [107], under the control law in Eq. (4.97), the system evolves until

(p (t)− p̄) ∈ ker
(

L̃
)

(4.98)

Since ker
(

L̃
)

= span (1), these condition is verified if

p (t)− p̄ = α1 (4.99)

for some α ∈ R. Hence,

p (t) = p̄+ α1 (4.100)

4.4 Connectivity maintenance for networked Lagrangian

dynamical systems

This section extends the scope of the control strategy introduced in Section 4.3, in order to

address the connectivity maintenance issue for groups of Lagrangian dynamical systems.

To this aim, a generalized communication model will now be defined. Let pij = pi − pj,

and let H be some properly defined constant matrix. Suppose H ≥ 0.

The matrix H is defined such that the j–th agent is inside Ni if p
T
ijHpij ≤ R2, for

some parameter R > 0.

The edge–weights aij , first introduced in Eq. (4.32), are then re–defined as follows:

aij =







e
−
pTijHpij

2σ2 if pTijHpij ≤ R2

0 otherwise

(4.101)

As for the single integrator case, the scalar parameter σ is chosen to satisfy the threshold

condition e−(R
2)/(2σ2) = ∆, where ∆ is a small predefined threshold.

Given the definition of the edge–weights in Eq. (4.101), the value of
∂λ2
∂pi

can be

computed as follows (see also Eq. (4.34)):

∂λ2
∂pi

=
∑

j∈Ni

−aij
(

vi2 − vj2
)2 H (pi − pj)

σ2
(4.102)

109

4.4. Connectivity maintenance for networked Lagrangian dynamical systems

4.4.1 Connectivity maintenance control strategy

Consider a group of N Lagrangian systems: Let pi ∈ R
m be the state vector of the i–th

Lagrangian agent, and let p =
[

pT1 . . . p
T
N

]T ∈ R
Nm be the state vector of the multi–agent

system.

Hence, the following dynamic model may be considered:

M (pi) p̈i + C (pi, ṗi) ṗi +Dṗi + g (pi) = ui (4.103)

where ui is the control input. The matrix M (pi) is the symmetric positive definite mass

matrix, the matrix C (pi, ṗi) represents the Coriolis effects, the matrix D represents a

dissipative term due to friction, and g (pi) is the gravity term. Further details can be

in [108].

As in the the previous section, let the energy function be defined as follows:

V (p) = coth
(

λ̃2 − ǫ̃
)

(4.104)

The following control law is now introduced:

ui = g (pi) + uci (4.105)

We remark that, as we are exploiting passivity based analysis, adaptive gravity compen-

sation is possible.

As in the previous case, the control term uci is defined as follows:

uci = −∂V
∂pi

(4.106)

Proposition 4.11. Consider the dynamic described by Eq. (4.103). Let Ξ,Ξ′ be defined

according to Eq. (4.42), and let ǫ̃ = ǫ+ Ξ + Ξ′. If the initial value of λ2 > ǫ̃+ Ξ + Ξ′,

then the control law defined in Eqs. (4.105)–(4.106) ensures that the value of λ2 never

goes below ǫ.

Proof. Let

W (p, ṗ) =
1

2

N
∑

i=1

ṗTi M (pi) ṗi + V (p) (4.107)

The time derivative of W may be computed as follows:

Ẇ (p, ṗ) = ṗT∇pW (p) =
N
∑

i=1

ṗTi
∂W

∂pi
(4.108)

110

4. Global connectivity maintenance

Hence:

Ẇ (p, ṗ) =
N
∑

i=1

(

ṗTi M (pi) p̈i +
1

2
ṗTi Ṁ (pi) ṗi + ṗTi

∂V

∂pi

)

(4.109)

From Eqs. (4.103), (4.105), (4.106):

M (pi) p̈i + C (pi, ṗi) ṗi +Dṗi = −∂V
∂pi

(4.110)

Hence:

M (pi) p̈i = −∂V
∂pi

− C (pi, ṗi) ṗi −Dṗi (4.111)

Hence, from Eqs. (4.109), (4.111):

Ẇ (p, ṗ) =
N
∑

i=1

(

−ṗTi
∂V

∂pi
− ṗTi C (pi, ṗi) ṗi − ṗTi Dṗi +

1

2
ṗTi Ṁ (pi) ṗi + ṗTi

∂V

∂pi

)

(4.112)

Hence:

Ẇ (p, ṗ) =
N
∑

i=1

(

1

2
ṗTi

(

Ṁ (pi)− 2C (pi, ṗi)
)

ṗi − ṗTi Dṗi

)

=
N
∑

i=1

(

−ṗTi Dṗi
)

≤ 0 (4.113)

With a slight abuse of notation, hereafter functions W (·) and V (·) will be referred to

as W (t) and V (t), even though they are not explicit functions of time.

Hence, ∀t ≥ 0, W (t) ≤W (0),∀t ≥ 0. From Eq. (4.107), it follows that V (t) ≤ W (t),

∀t ≥ 0. Thus, it is possible to conclude that V (t) ≤ W (0), ∀t ≥ 0.

Given the definition of V (t) provided in Eq. (4.104), it is possible to state that V is

monotonically decreasing with respect to λ̃2, ∀λ̃2 > ǫ̃. According to Eq. (4.43), the fact

that the initial value of λ2 is greater than ǫ̃+ Ξ + Ξ′ ensures that the initial value of λ̃2

is greater than ǫ̃.

Thus, it is possible to conclude that ∃λ̄2 > ǫ̃ such that λ̃2 (t) ≥ λ̄2, ∀t ≥ 0. Hence,

according to Eq. (4.43), this implies that λ2 ≥ ǫ = ǫ̃− 2Ξ− Ξ′.

4.4.2 Connectivity in the presence of external control laws

In this section, the presence of external control laws is explicitly considered:

ui = g (pi) + uci + udi (4.114)

Specifically, the following case will be considered: udi is supposed to be the gradient of an

appropriately designed potential function, that is:

udi = −∂U (p)

∂pi
(4.115)

where U (p) is supposed to be a positive definite potential function.

111

4.4. Connectivity maintenance for networked Lagrangian dynamical systems

Proposition 4.12. Consider the dynamic described by Eq. (4.103). Let Ξ,Ξ′ be defined

according to Eq. (4.42), and let ǫ̃ = ǫ+ Ξ + Ξ′. If the initial value of λ2 > ǫ̃+ Ξ + Ξ′,

then the control law defined in Eqs. (4.114)–(4.106)–(4.115) ensures that the value of λ2

never goes below ǫ.

Proof. Let

T (p, ṗ) =
1

2

N
∑

i=1

ṗTi M (pi) ṗi + V (p) + U (p) (4.116)

The time derivative of T may be computed as follows:

Ṫ (p, ṗ) = ṗT∇pT (p) =

N
∑

i=1

ṗTi
∂T

∂pi
(4.117)

Hence:

Ṫ (p, ṗ) =
N
∑

i=1

(

ṗTi M (pi) p̈i +
1

2
ṗTi Ṁ (pi) ṗi + ṗTi

∂V

∂pi
ṗTi
∂U

∂pi

)

(4.118)

From Eqs. (4.103), (4.114), (4.106), (4.115):

M (pi) p̈i + C (pi, ṗi) ṗi +Dṗi = −∂V
∂pi

− ∂U

∂pi
(4.119)

Hence:

M (pi) p̈i = −∂V
∂pi

− ∂U

∂pi
− C (pi, ṗi) ṗi −Dṗi (4.120)

Hence, from Eqs. (4.118), (4.120):

Ṫ (p, ṗ) =

=
N
∑

i=1

(

−ṗTi
∂V

∂pi
− ṗTi

∂U

∂pi
− ṗTi C (pi, ṗi) ṗi − ṗTi Dṗi ++

1

2
ṗTi Ṁ (pi) ṗi + ṗTi

∂V

∂pi
+ ṗTi

∂U

∂pi

)

(4.121)

Hence:

Ṫ (p, ṗ) =
N
∑

i=1

(

1

2
ṗTi

(

Ṁ (pi)− 2C (pi, ṗi)
)

ṗi − ṗTi Dṗi

)

=
N
∑

i=1

(

−ṗTi Dṗi
)

≤ 0 (4.122)

With a slight abuse of notation, hereafter T (·), V (·) and U (·) will be referred to as

T (t), V (t) and U (t), even though they are not explicit functions of time.

Hence, ∀t ≥ 0, T (t) ≤ T (0), ∀t ≥ 0. From Eq. (4.116), it follows that V (t) ≤ T (t),

∀t ≥ 0. Thus, it is possible to conclude that V (t) ≤ T (0), ∀t ≥ 0.

Given the definition of V (t) provided in Eq. (4.104), it is possible to state that V is

monotonically decreasing with respect to λ̃2, ∀λ̃2 > ǫ̃. According to Eq. (4.43), the fact

112

4. Global connectivity maintenance

that the initial value of λ2 is greater than ǫ̃+ Ξ + Ξ′ ensures that the initial value of λ̃2

is greater than ǫ̃.

Thus, it is possible to conclude that ∃λ̄2 > ǫ̃ such that λ̃2 (t) ≥ λ̄2, ∀t ≥ 0. Hence,

according to Eq. (4.43), it follows that λ2 ≥ ǫ = ǫ̃− 2Ξ− Ξ′.

4.4.3 Application: rendezvous for fully actuated Lagrangian sys-
tems

This section will show how to apply the connectivity maintenance control algorithm to a

group of fully actuated Lagrangian systems performing a rendezvous task.

Dynamics and control law

Consider a group of 6–degree–of–freedom spacecraft vehicles, whose dynamics are de-

scribed in [109].

Specifically, the configuration of these vehicles is described by the following state

vectors:

pi =
[

xTi θTi
]T

ṗi =
[

vTi ωT
i

]

(4.123)

where xi ∈ R
3 represents the position of the i–th robot, and θi represents the rotation of

the i–th robot, expressed in terms of Euler parameters [110]. vi ∈ R
3 and ωi ∈ R

3 are the

linear and angular velocity of the i–th robot, respectively.

The following relationship holds:

ẋi = vi
θ̇i = T (pi)ωi

(4.124)

where T (pi) is a properly defined transformation matrix.

Referring to Eq. 4.103, the matrices that describe the dynamics of each spacecraft

vehicle are defined as follows:

M (pi) =

[

msI3 03×3

03×3 Js (pi)

]

C (pi, ṗi) =

[

Ct (xi, ẋi) 03×3

03×3 Cr (θi, ωi)

]

g (pi) =

[

gt (xi)
03×1

]

D = 03×3

(4.125)

where 0ζ×ξ is a zero matrix with ζ rows and ξ columns, and Iξ is the identity matrix of

size ξ. The value ms represents the mass of the spacecraft, while Js (pi) is the matrix

representing the moments of inertia.

113

4.4. Connectivity maintenance for networked Lagrangian dynamical systems

From Eq. (4.125) it’s easy to see that translations and rotations are decoupled, and

can be independently controlled. Hence, hereafter only the translational dynamics of

the system will be considered. The matrix Ct (xi, ẋi) is a Coriolis–like skew–symmetric

matrix, and is defined as follows:

Ct (xi, ẋi) = 2msv̇i





0 −1 0
1 0 0
0 0 0



 (4.126)

The gravity term gt (xi) is defined as follows:

gt (xi) = mf













µ

r3s
− v̇2i −v̈i 0

v̈i
µ

r3s
− v̇2i 0

0 0
µ

r3s













xi (4.127)

where rs is the average radius of the orbit of the spacecraft. Let G be the universal

constant of gravity, and let Me be the mass of the Earth: then, µ ≈ GMe.

Consider the following connectivity model: two robots can communicate if their Eu-

clidean distance is less than or equal to R. More specifically, the matrix H in Eq. (4.101)

is defined as follows:

H =

[

I3 03×4

03×4 04×4

]

(4.128)

With this definition of H , the term pTijHpij is exactly the Euclidean distance between

the i–th and the j–th robot. According to the definition of the edge–weights introduced

in Eq. (4.101), the i–th and the j–th agents are neighbors if their Euclidean distance is

less than or equal to R. Furthermore, given the definition of the matrix H provided in

Eq. (4.128), it follows that only the first three components of the control action uci will

be different from zero.

Define ūci ∈ R
3 as the vector containing the first three components of uci . Hence,

uci =
[

ūci 0
T
3×1

]T
.

In order to make the robots perform a rendezvous task, an additional control law udi

is added, defined as in Eq. (4.115), where the potential field U (p) is defined as follows:

Ui =
∑

j∈Ni

1

2
Kr (xi − xj) (4.129)

where Kr > 0 is a properly defined constant. It’s easy to prove that, as long as the

communication graph is connected, this control law yields to the rendezvous of the multi–

robot system.

114

4. Global connectivity maintenance

4.5 Simulations and experiments

4.5.1 Matlab simulations

Several Matlab simulations have been implemented, for validation purposes. Both single

integrator and Lagrangian agents have been simulated: the number of agents have been

varied, from N = 3 to N = 25, and their initial positions have been randomly chosen.

Estimation process

Preliminary simulations have been carried out with the objective of evaluating the per-

formance of the estimation algorithm. Specifically, five agents have been simulated while

only running the estimation procedure.

Figure 4.7: Estimation error of λ2:
(λi2 − λ2) 0 2 4 6 8 10 12 14 16

−1

-0.5

0

0.5

1

1.5

2

t

λ
i 2
−
λ
2

In Fig. 4.7 the estimation error of λ2 is shown: each line represents the difference

between one of the estimates λi2 and the actual value λ2. As expected, the estimation

error is bounded.

Connectivity maintenance in the presence of an external controller, for single
integrator kinematic agents

The effectiveness of the proposed connectivity maintenance control algorithm has been

tested in the presence of different external control laws.

Comparison with the algorithm proposed in [101] To compare the control strat-

egy introduced in this chapter with the one previously proposed in [101], the following

115

4.5. Simulations and experiments

external control law has been defined:

udi =









k cos

(

2π

N + 1
i

)

k sin

(

2π

N + 1
i

)









(4.130)

for different values of k > 0. The results presented hereafter were obtainet with k = 5.

Without the connectivity maintenance controller (i.e. uci = 0), the external control

law makes the agents move away from each other. As shown in Fig. 4.8 (red dashed

line), the value of λ2 decreases, until the connectivity of the communication graph is lost.

Simulations give a similar result implementing the connectivity maintenance controller

described in [101], as shown in Fig. 4.8 (blue dotted line).

As expected, using the connectivity maintenance controller described in this chapter,

the connectivity of the communication graph is never lost. In this setup, the value of ǫ̃

has been empirically set to 1.3: simulations show that, with this choice, the value of λ2

is always bounded from zero.

Consensus–based rendezvous Connectivity maintenance have been validated in the

simulation of a rendezvous application: six single integrator kinematic agents, starting

from random initial positions, were supposed to converge to a common point, while avoid-

ing collisions with randomly placed point obstacles. For obstacle avoidance purposes, a

repulsive artificial potential field has been added (see e.g. [111]), ensuring that it produces

a bounded control action.

Snapshots of the simulations are shown in Figs. 4.9 and 4.10: red stars represent the

agents, while blue dots represent randomly placed point obstacles. Fig. 4.9 shows the be-

havior of the system without the connectivity maintenance control strategy. Conversely,

Figure 4.8: Value of λ2 with a
disconnecting external controller,
with the connectivity maintenance
controller described in this paper
(black solid line), with the con-
nectivity maintenance controller
described in [101] (blue dotted
line), and without any connec-
tivity maintenance controller (red
dashed line) 0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

λ
2

116

4. Global connectivity maintenance

(a) (b) (c) (d) (e)

Figure 4.9: Matlab simulation, rendezvous application, WITHOUT connectivity main-
tenance control strategy: red stars represent the agents, blue dots represent randomly
placed point obstacles

(a) (b) (c) (d) (e)

Figure 4.10: Matlab simulation, rendezvous application, WITH connectivity maintenance
control strategy: red stars represent the agents, blue dots represent randomly placed point
obstacles

Fig. 4.10 shows the behavior of the system with the connectivity maintenance control

strategy. After a few seconds, without the connectivity maintenance controller the con-

nectivity is lost: the obstacle avoidance action obstructs the desired movement of some

agents, that are thus trapped and lose connectivity with the other ones. As expected,

using the connectivity maintenance control action the connectivity of the graph is always

preserved, as shows also in Fig. 4.11.

Consensus–based formation control Analogously, the connectivity maintenance al-

gorithm have been validated in the simulation of a formation control application: six single

integrator kinematic agents, starting from random initial positions, were supposed to con-

verge to an hexagonal formation, and to move at constant velocity along the x–axis, while

avoiding collisions with randomly placed point obstacles. To make the formation move

in a desired direction, a common offset has been added to the control law in Eq. (4.90),

that describes the desired speed of the barycenter of the formation.

As in the rendezvous case, without the connectivity maintenance controller, the con-

117

4.5. Simulations and experiments

Figure 4.11: Rendezvous simula-
tion results: value of λ2 with (red
dashed line) and without (blue
solid line) the connectivity main-
tenance controller 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

t

λ2

nectivity is lost quite soon: the obstacle avoidance action obstructs the desired movement

of some agents, that are thus trapped and lose connectivity with the other ones. As ex-

pected, using the connectivity maintenance control action the connectivity of the graph

is always preserved, as shows also in Fig. 4.12.

Figure 4.12: Formation control
simulation results: value of λ2
with (red dashed line) and with-
out (blue solid line) the connectiv-
ity maintenance controller 0 1 2 3 4 5

0

1

2

3

4

5

6

t

λ2

Enhanced connectivity maintenance algorithm, for single integrator kinematic
agents

Several Matlab simulations have been carried out in order to compare the enhanced con-

nectivity maintenance control strategy (introduced in Section 4.3.3) with the standard

one (introduced in Section 4.3.2).

Simulations have been carried out by considering the following parameters setting

118

4. Global connectivity maintenance

Figure 4.13: Value of λ2 with
the standard connectivity mainte-
nance control strategy presented
in this paper 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

[sec]
λ
2

Figure 4.14: Value of λ2 with the
selective connectivity maintenance
control strategy presented in this
paper 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

[sec]

λ
2

{ρ = 10−5, δ = 0.8}. In the simulation, a multi–robot system composed of 6 agents was

involved in a formation control task: starting from random initial positions, they were

supposed to converge to an hexagonal formation, and move at constant velocity along the

x–axis, while avoiding collisions with randomly placed point obstacles.

In order to point out the advantages of the enhanced control action with respect to the

standard one, the two control laws have been implemented within the same setup, that

is by considering the same initial positions for the agents and the same positions for the

obstacles. Fig. 4.14 and Fig. 4.13 represent the value of the algebraic connectivity over

time using the enhanced and stanrdard connectivity maintenance control action, respec-

tively. As expected, the connectivity of the communication graph is always preserved, in

both cases.

To compare the two control strategies, Fig. 4.15 represents the average of the absolute

value of the connectivity maintenance control action over time, computed over all the

agents, that is ūc =
∑N

i=1 |uci |. It can be noticed that the introduction of the selective

action drastically reduces the number of times the connectivity maintenance control law

119

4.5. Simulations and experiments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[sec]

ū
c

(a) Selective control action

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[sec]

ū
c

(b) Standard control action

Figure 4.15: Average over all the agents of the absolute value of the connectivity main-
tenance control action: with the selective action, the connectivity maintenance control
action is often equal to zero

is activated. Indeed, it significantly reduces the interference with the primary task of the

multi–robot system, namely the formation control and the obstacle avoidance actions.

In order to carry out a quantitative analysis of the advantage introduced by the se-

lective action, a measurement of the required control effort may be defined as the area

underneath the curves represented in Fig. 4.15. Data have been acquired during 50 runs

of simulations, performed within random setups: initial positions of the agents, as well as

the obstacles’ positions, have been randomly varied. For each setup, both the standard

and the enhanced control law have been implemented. From the statistical analysis of

the acquired data, it turns out that the introduction of the selective action drastically

reduces the required control effort. In fact, the effort is reduced, on average, by 63.44%,

with a standard deviation of 24.85%.

The only drawback in the introduction of the selective action is a slight increase in the

instantaneous effort, which can be explained by the discontinuous nature of the selective

control action.

Connectivity maintenance for Lagrangian dynamical systems

Matlab simulations have been carried out to validate the connectivity maintenance control

strategy for groups of Lagrangian dynamical systems as well. As in the previous examples,

the number of agents has been varied, from N = 3 to N = 20, and they have been placed

them in randomly chosen initial positions.

A group of six Lagrangian agents have been simulated during a rendezvous task: six

120

4. Global connectivity maintenance

Figure 4.16: Rendezvous for
groups of Lagrangian systems:
value of λ2 with (blue dashed
line) and without (red solid line)
the connectivity maintenance
controller

agents that, starting from random initial positions, were supposed to converge to a com-

mon point, while avoiding collisions with randomly placed point obstacles. For obstacle

avoidance purposes, a repulsive artificial potential field has been added (see e.g. [111]).

As shows in Fig. 4.16, without the connectivity maintenance controller, the connectivity

is lost quite soon: the obstacle avoidance action obstructs the desired movement of some

agents, that are thus trapped and lose connectivity with the other ones. As expected,

using the connectivity maintenance control action the connectivity of the graph is always

preserved.

4.5.2 Experiments

Experiments on real robots have been performed within the MORE–pucks experimental

platform described in Chapter 2, with group of four E–puck robots [34] moving in a

2.0m× 1.5m arena.

E–puck robots can be described by the differential–drive kinematic model:







ẋi = ui cos(φi)
ẏi = ui sin(φi)

φ̇i = ωi

(4.131)

Experiments have been carried out to evaluate the performance of the connectivity

maintenance control algorithm, that has been actually developed for single integrator

kinematic agents. To deal with the fact that this model represents a nonholonomic system,

the feedback linearization technique presented in [89] has been applied.

121

4.6. Discussion

(a) (b) (c) (d) (e)

Figure 4.17: MORE–pucks experiment, formation control application, WITHOUT con-
nectivity maintenance control strategy

(a) (b) (c) (d) (e)

Figure 4.18: MORE–pucks experiment, formation control application, WITH connectivity
maintenance control strategy

The connectivity maintenance algorithm has been tested both for rendezvous and

formation control applications: in both cases, as expected, the connectivity is always

preserved.

Snapshots of a formation control experiments are shown in Figs. 4.17 and 4.18: robots

are supposed to create a formation and move through the arena, while avoiding collisions

with the obstacle. Fig. 4.17 shows the behavior of the system without the connectivity

maintenance control strategy. Conversely, Fig. 4.18 shows the behavior of the system

with the connectivity maintenance control strategy. When the obstacle avoidance action

is activated, without the connectivity maintenance controller the connectivity is lost: the

obstacle avoidance action obstructs the desired movement of one of the robots, that is thus

trapped and loses connectivity with the other ones. Conversely, as expected, using the

connectivity maintenance control action the connectivity of the graph is always preserved.

4.6 Discussion

In this chapter,a control algorithm has been described that, by means of decentralized

estimation of the algebraic connectivity of the communication graph, ensures the mainte-

122

4. Global connectivity maintenance

nance of the connectivity among a group of robots, for any initial condition. This control

strategy was first introduced in [29–32].

Analytical proofs have been provided that, by means of this control strategy, the value

of the algebraic connectivity of the graph, i.e. λ2, is bounded from zero, and then the

graph is connected. Connectivity maintenance in the presence of estimation errors has

been formally proved to be guaranteed. The control strategy has been demonstrated to

be effective in the presence of an external (bounded) controller as well.

This connectivity maintenance control strategy has been initially developed for single

integrator kinematic agents, and has then be extended for Lagrangian dynamical agents.

This extension was first introduced in [33].

Simulations and experiments have been carried out as well, for validation purposes.

Throughout the chapter, several upper–bounds have been defined, some of which

depend on the number N of robots in the group. If N is a variable number, i.e. the

number of robots can change (e.g. because robots can be added or removed), the actual

value of N can be substituted with an upper–bound, given by the maximum number of

agents that can be available.

In order to improve the applicability of this control strategy, tighter bounds may be

found, in order to make the control strategy less conservative. Hence, it may be feasible

to provide a constructive procedure to define the smallest possible bound ǫ̃ that ensures

connectivity maintenance.

To further improve the scope of this connectivity maintenance algorithm, sensing

might be considered, instead of explicit communication. In fact, often mobile robots do

not communicate explicitly, but they acquire information about the other ones by means

of exteroceptive sensors. In this case, the fact that the i–th agent can acquire information

from the j–th one does not imply the converse. This communication architecture can be

modeled by means of a directed graph.

123

5. Concluding remarks

Chapter 5

Concluding remarks

This thesis deals with distributed control strategies for cooperative control of multi–robot

systems. The main results are summarized hereafter.

Specifically, Chapter 3 describes some results obtained in the field of coordinated

motion control strategies. Initially, artificial potential fields are defined for formation

control purposes: following the negative gradient of some specifically designed potential

fields, robots are driven to create a regular polygon formation. A bijective coordinate

transformation is then exploited for obtaining completely arbitrarily shaped formations.

This control strategy, first introduced in [21–24], is proved to be asymptotically stable

and local minimum free.

Artificial potential fields are subsequently used to solve the coordinated path tracking

problem. First introduced in [25,26], a potential based control strategy is defined to make

a group of mobile robots track a path given by an arbitrarily shaped desired curve. This

control strategy is a completely decentralized algorithm, since there is no need for any

centralized controller or global synchronization.

Formation control problem is then solved exploiting a graph theory based approach.

Specifically, as described in [27, 28], weighted graphs are used to drive a group of robots

to a predefined configuration while avoiding mutual collisions, by means of a consensus

based algorithm. An appropriate edge–weight function has been defined that provably

guarantees the convergence to the desired formation, as well as the avoidance of collisions

among the robots. The framework is extended for accomplishing the avoidance of collisions

among robots and obstacles as well. This control strategy has been experimentally shown

to be robust to the presence of communication delays.

Finally, Chapter 4 deals with global connectivity maintenance. Specifically, as de-

scribed in [29–32], an estimation procedure is introduced to allow each agent to compute

125

its own estimate of the algebraic connectivity of the communication graph, in a distributed

manner. This estimate is then exploited to develop a gradient based control strategy, to

ensure the algebraic connectivity of the communication graph always remains positive, as

the system evolves. The proposed strategy is implemented initially for single–integrator

kinematic agents, and is then extended to Lagrangian dynamical systems, as shown in [33].

The presence of additional external control laws is considered as well.

126

A. Background on graph theory

Appendix A

Background on graph theory

This Appendix provides a brief overview of the main notions on graph theory used

throughout the thesis. Since a detailed description of graph theory is out of the scope

of this thesis, a few notions will be listed, without going into details. Specifically, no

proofs will be provided. Details on these and other notions can be found, for instance,

in [18, 112, 113] and references therein.

The main reason why graph theory is considered in this work is the following. Given N

mobile robots, the communication architecture among them may be described as a graph.

Generally speaking, a graph G represents the interconnection among a set of nodes : if

two nodes are interconnected, and edge exists among them. The neighborhood of a node

is defined as the set of its neighbors, that is the set of nodes to whom it is connected

through an edge.

Hence, in multi–robot systems, each robot is represented as a node of the graph, and

the link between two robots is represented as an edge of the graph. In order to represent

the communication architecture in multi–robot systems, two different classes of graphs

may be adopted: directed graphs and undirected graphs.

• In an undirected graph the information exchange is bidirectional: for every couple of

nodes i and j, if the i→ j edge exists, then the j → i edge exists as well. Undirected

graphs are thus usually exploited to model explicit bidirectional communication

among the robots.

• In a directed graph the information exchange is unidirectional: for every couple of

nodes i and j, the fact that the i → j edge exists doesn’t automatically imply the

existence of the j → i edge. Directed graphs are thus usually exploited to model

unidirectional communication among the robots, that may be based on pure sensing.

127

A. Background on graph theory

Hereafter, undirected graphs will be considered: throughout the thesis, in fact, the possi-

bility for the robots to exploit direct communication has been often assumed.

Hence, the fact that the graph is undirected means that, if the i–th robot can acquire

information from the j–th one, the j–th robot can acquire information from the i–th one

as well. Let Ni be the neighborhood of the i–th robot, i.e. the set of robots that can

exchange information with the i–th one. The communication graph can be described by

means of the adjacency matrix A ∈ R
N×N . Each element aij is defined as the weight of

the edge between the i–th and the j–th robot, and is a positive number if j ∈ Ni, zero

otherwise. Since undirected graphs are considered, it is possible to assume aij = aji. The

degree matrix of the graph is defined as

D = diag ({di}) (A.1)

where di is the degree of the i–th node of the graph, i.e. di =
N
∑

j=1

aij.

The (weighted) Laplacian matrix of the graph is defined as:

L = D −A (A.2)

The unweighted Laplacian matrix, L∗, is defined as a special case of Laplacian matrix,

where all non–zero entries of the adjacency matrix are equal to one.

The Laplacian matrix exhibits some remarkable properties:

1. Let 1 be the column vector of all ones. Then, L1 = 0.

2. Let λi, i = 1, . . . , N be the eigenvalues of the Laplacian matrix.

• λi ∈ R, ∀i = 1, . . . , N .

• The eigenvalues can be ordered such that

0 = λ1 ≤ λ2 ≤ . . . ≤ λN (A.3)

• λ2 > 0 if and only if the graph is connected. For this reason, λ2 is defined as

the algebraic connectivity of the graph [97].

From the properties described above, it follows that, if the graph is connected, then

ker (L) = span (1).

128

A. Background on graph theory

Consensus

The consensus problem [19] is a well–known and widely studied problem in the field of

decentralized control. In networks of agents (or dynamic systems), consensus means to

reach an agreement regarding a certain quantity of interest that depends on the state of

all agents. Generally speaking, a consensus algorithm is an interaction rule that specifies

the information exchange between an agent and all its neighbors.

Consider a group of N single integrator kinematic agents:

żi = ui n = 1, . . . , N (A.4)

where zi ∈ R is the state of the i-th agent. To solve the consensus problem, that is driving

all the state variables to a final common value, it is possible to exploit a distributed

feedback interconnection, defined as follows:

żi = −
∑

j∈Ni

wij (z) (zi − zj) (A.5)

where wij (x) are positive edge weight functions.

Let E be the edge set of the graph G, that is (i, j) ∈ E if an edge connects node i and

node j. According to this definition, the edge weights exhibit the following property:

wij 6= 0 if and only if (i, j) ∈ E (A.6)

Consider, without loss of generality, a graph with M edges, and let w ∈ R
M be the vector

containing all the non–zero edge weights of the graph. Hence, the weight matrix W (z)

may be defined as follows:

W (z) = diag (w) ∈ R
M×M (A.7)

Let I = [ιij] ∈ R
N×M be the incidence matrix of the graph G, defined as follows:

ιij







1 if (i, j) ∈ E
−1 if (j, i) ∈ E
0 otherwise

(A.8)

According to [67], a random orientation of the edges can be considering, when dealing with

undirected graphs. Given this definition of the incidence matrix, the Laplacian matrix of

the graph G may be defined with the following alternative formulation [67]:

L∗ = I · IT (A.9)

129

A. Background on graph theory

As shown in [67], the weighted Laplacian matrix may be defined as follows:

L = I ·W · IT (A.10)

Let z = [z1, . . . , zN]. The control law in Eq. (A.5) can be rewritten in the following

matrix form:

ż = −Lz (A.11)

So far, only scalar states have been considered. Consider now the position of each agent

as its own state. More specifically, if the position of the i–th agent is n–dimensional, the

i–th agent’s state is given by xi = [xi,1, . . . , xi,n]
T . Considering N agents, it is possible to

define x =
[

xT1 , . . . , x
T
N

]T
.

Therefore, to apply the graph based algorithms defined so far to the multi–dimensional

case, the component–wise operator, defined in [67], may be exploited:

c (x, j) = (x1,j , . . . , xN,j)
T ∈ R

N j = 1, . . . , n (A.12)

The component–wise operator can be then introduced in the control law in Eq. (A.11):

d

dt
c (x, j) = −Lc (x, j) j = 1, . . . , n (A.13)

The control law in Eq. (A.13) can be rewritten in vector form [67] as follows:

ẋi = − ∑

j∈Ni

wij (x) (xi − xj) (A.14)

130

Bibliography

Bibliography

[1] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer, 2008.

[2] A. Davids. Urban search and rescue robots: from tragedy to technology. IEEE
Intelligent Systems, 17(2):81–83, march–april 2002.

[3] Yo. Mei, Y.–H. Lu, Y. C. Hu, and C. S. G. Lee. Deployment of mobile robots
with energy and timing constraints. IEEE Transactions on Robotics, 22(3):507– 522,
june 2006.

[4] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta. Automatic Deployment of
Robotic Teams. IEEE Robotics Automation Magazine, 18(3):75–86, sept. 2011.

[5] A. Yamashita, T. Arai, J. Ota, and H. Asama. Motion planning of multiple mo-
bile robots for Cooperative manipulation and transportation. IEEE Transactions
on Robotics and Automation, 19(2):223–237, apr 2003.

[6] M. Hara, M. Fukuda, H. Nishibayashi, Y. Aiyama, J. Ota, and T. Arai. Motion
control of cooperative transportation system by quadruped robots based on
vibration model in walking. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’99), 3, pages 1651–1656 vol.3, 1999.

[7] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated
multi–robot exploration. IEEE Transactions on Robotics, 21(3):376–386, june 2005.

[8] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli. The Sensor–based Ran-
dom Graph Method for Cooperative Robot Exploration. IEEE/ASME Transac-
tions on Mechatronics, 14(2):163–175, april 2009.

[9] J. Y. Lee and H. Choset. Sensor–based exploration for convex bodies: a new
roadmap for a convex–shaped robot. IEEE Transactions on Robotics, 21(2):240–247,
april 2005.

[10] J. Sung, H. I. Christensen, and R. E. Grinter. Sketching the future: Assessing
user needs for domestic robots. In The 18th IEEE International Symposium on Robot
and Human Interactive Communication (RO–MAN 2009), pages 153–158, oct. 2009.

[11] F: Yuan, L. Twardon, and M. Hanheide. Dynamic path planning adopting hu-
man navigation strategies for a domestic mobile robot. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3275–3281, oct. 2010.

131

Bibliography

[12] P. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of cooper-
ative, autonomous vehicles in warehouses. AI Magazine, 29(1):9–20, 2008.

[13] D. Ronzoni, R. Olmi, C. Secchi, and C. Fantuzzi. AGV global localization
using indistinguishable artificial landmarks. In IEEE International Conference on
Robotics and Automation (ICRA), pages 287–292, may 2011.

[14] N. Wu and M. Zhou. Deadlock Resolution in Automated Manufacturing Sys-
tems With Robots. IEEE Transactions on Automation Science and Engineering,
4(3):474–480, july 2007.

[15] C. R. Weisbin, J. Blitch, D. Lavery, E. Krotkov, C. Shoemaker, L. Matthies,

and G. Rodriguez. Miniature robots for space and military missions. IEEE
Robotics Automation Magazine, 6(3):9–18, sep 1999.

[16] R. Madhavan. Robots in Military and Aerospace Technologies [News and
Views]. IEEE Robotics Automation Magazine, 17(2):6, june 2010.

[17] N. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coor-
dinated control of groups. In Proceedings of the IEEE Conference on Decision and
Control, pages 2968–2973, 2001.

[18] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[19] R. Olfati–Saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation
in Networked Multi–Agent Systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[20] L. Sabattini, C. Secchi, C. Fantuzzi, and A. Stefani. Bird’s–eye view image
for the localization of a mobile robot by means of trilateration. In Proceedings
of the IFAC SYmposium on Intelligent Autonomous Vehicles, 2010.

[21] L. Sabattini, C. Secchi, and C. Fantuzzi. Arbitrarily shaped formations of
mobile robots: artificial potential fields and coordinate transformation. Au-
tonomous Robots, 30(4):385–397, may 2011.

[22] L. Sabattini, C. Secchi, and C. Fantuzzi. Potential based control strategy for
arbitrary shape formations of mobile robots. In Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on, pages 3762–3767, oct. 2009.

[23] L. Sabattini, C. Secchi, and C. Fantuzzi. Potential Based Control Strategy
for Abritrary Shape Formations of Mobile Robots. In Convegno SIDRA, Siracusa,
2009. Poster.

[24] L. Sabattini, C. Secchi, and C. Fantuzzi. Formation Control and Obstacle
Avoidance. In Convegno SIDRA, Vicenza, 2008. Poster.

[25] L. Sabattini, C. Secchi, C. Fantuzzi, and D. de Macedo Possamai. Tracking of
closed-curve trajectories for multi-robot systems. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 6089–6094, oct. 2010.

132

Bibliography

[26] L. Sabattini, C. Secchi, and C. Fantuzzi. Closed–Curve Path Tracking for
Decentralized Systems of Multiple Mobile Robots. Journal of Intelligent and
Robotic Systems, 2012. (Submitted).

[27] R. Falconi, L. Sabattini, C. Secchi, C. Fantuzzi, and C. Melchiorri. A Graph–
Based Collision–Free Distributed Formation Control Strategy. In Proceedings of
the IFAC World Congress, 2011.

[28] R. Falconi, L. Sabattini, C. Secchi, C. Fantuzzi, and C. Melchiorri. Edge–
Weighted Consensus Based Formation Control Strategy With Collision Avoid-
ance. Robotics and Autonomous Systems, 2012. (Submitted).

[29] L. Sabattini, N. Chopra, and C. Secchi. On Decentralized Connectivity Main-
tenance for Mobile Robotic Systems. In Proceedings of the IEEE Conference on
Decision and Control, 2011.

[30] L. Sabattini, N. Chopra, and C. Secchi. Distributed control of multi-robot
systems with global connectivity maintenance. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages 2321–2326, sept. 2011.

[31] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri. Distributed Control of
Multi–Robot Systems with Global Connectivity Maintenance. IEEE Transac-
tions on Robotics, 2012. (Submitted).

[32] L. Sabattini, A. Gasparri, C. Secchi, and N. Chopra. Enhanced Connectivity
Maintenance for Multi–Robot Systems. In IFAC Symposium on Robot Control, 2012.
(Submitted).

[33] L. Sabattini, C. Secchi, and N. Chopra. Decentralized Connectivity Mainte-
nance for Networked Lagrangian Dynamical Systems. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2012.

[34] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Mag-

nenat, J. C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a Robot
Designed for Education in Engineering. In Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pages 59–65, 2009.

[35] The Player Project. http://playerstage.sourceforge.net/.

[36] ROS.org. http://www.ros.org/.

[37] M. J. Matarić, N. Koenig, and D. Feil–Seifer. Materials for Enabling Hands–
On Robotics and STEM Education. In AAAI Spring Symposium on Robots and Robot
Venues: Resources for AI Education, 2007.

[38] J. Borenstein and L. Feng. Measurement and Correction of Systematic Odom-
etry Errors in Mobile Robots. IEEE Transactions On Robotics and Automation, pages
869–880, 12 1996.

133

http://playerstage.sourceforge.net/
http://www.ros.org/

Bibliography

[39] A. T. Samiloglu, Ö. Çayrpunar, V. Gazi, and A. Buğra Koku. An Experimen-
tal Set–up For Multi-Robot Applications. In Workshop Proceedings of SIMPAR
2008 International Conference on Simulation, Modeling and Programming for Autonomous
Robots, pages 539–550, 2008.

[40] G. Bradski and A. Kaehler. Learning OpenCV – Computer Vision with the OpenCV
library. O’Reilly, 2008.

[41] Qt – A cross–platform application and UI framework. http://qt.nokia.com/.

[42] R. C. Gonzales and R. E. Woods. Digital Image Processing 3rd Ed. Prentice Hall,
2008.

[43] C. Harris and M. Stephens. A combined corner and edge detector. In 147–151,
page Alvey vision conference, 1988.

[44] Boost C++ libraries. http://www.boost.org/.

[45] e–puck educational robot. http://www.e-puck.org/.

[46] GNU General Public License, Version 3. http://www.gnu.org/licenses/gpl.html,
2007.

[47] F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J. L. Deneuborg, and

M. Dorigo. The cooperation of swarm–bots: physical interactions in collective
robotics. IEEE Robotics & Automation Magazine, pages 21–28, 2005.

[48] T. Balch and R. C. Arkin. Behavior–Based Formation Control for Multirobot
Teams. IEEE Transactions on Robotics and Automation, pages 926–939, 1998.

[49] S. W. Ekanayake and P. N. Pathirana. Artificial Formation Forces for Stable
Aggregation of Multi–Agent System. In International Conference on Information
and Automation, pages 129–134, 2006.

[50] M. Lindhé, P. Ögren, and K. H. Johansson. Flocking with Obstacle Avoidance:
A New Distributed Coordination Algorithm Based on Voronoi Partitions. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages
1785–1790, 2005.

[51] Y. Liu and K. M. Passino. Stable Social Foraging Swarm in a Noisy Environ-
ment. IEEE Transactions on Automatic Control, pages 30–44, 2004.

[52] T. Balch and M. Hybinette. Social Potentials for Scalable Multi–Robot For-
mations. In Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pages 73–80, 2000.

[53] R. Bachmayer and N. E. Leonard. Vehicle Networks for Gradient Descent
in a Sampled Environment. In Proceedings of the IEEE International Conference on
Decision and Control, pages 112–117, 2002.

134

http://qt.nokia.com/
http://www.boost.org/
http://www.e-puck.org/
http://www.gnu.org/licenses/gpl.html

Bibliography

[54] L. Chaimowicz, N. Michael, and V. Kumar. Controlling swarms of robots using
interpolated implicit functions. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 2487–2492, 2005.

[55] M. A. Hsieh and V. Kumar. Pattern generation with multiple robots. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, pages 2442–2447,
2006.

[56] L. S. Marcolino and L. Chaimowicz. No Robot Left Behind: Coordination
to Overcome Local Minima in Swarm Navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1904–1909, 2008.

[57] L. Barnes, M. A. Fields, and K. Valavanis. Unmanned Ground Vehicle Swarm
Formation Control Using Potential Fields. In Mediterranean Conference on Control
and Automation, pages 1–8, 2007.

[58] M. Egerstedt, X. Hu, and A. Stotsky. Control of Mobile Platforms Using a
Virtual Vehicle Approach. IEEE Transactions On Automatic Control, 11 2001.

[59] O. Khatib. Real–time Obstacle Avoidance For Manipulators and Mobile
Robots. The International Journal of Robotics Research, 1986.

[60] M. T. Wolf and J. W. Burdick. Artificial Potential Functions for Highway
Driving with Collision Avoidance. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, 2008.

[61] S. Jang, G. Song, and S. K. Hong. Dynamic Boundary Tracking in Active Sen-
sor Networks. In Proceedings of the International Conference on Control, Automation
and Systems, 2007.

[62] Z. Jin and A. L. Bertozzi. Environmental Boundary Tracking and Estimation
Using Multiple Autonomous Vehicles. In Proceedings of the 46th IEEE Conference
on Decision and Control, 2007.

[63] Y. Cao and R. Fierro. Dynamic Boundary Tracking Using Dynamic Sensor
Nets. In Proceedings of the 45th IEEE Conference on Decision and Control, 2006.

[64] M. A. Hsieh, S. Loizou, and V. Kumar. Stabilization of Multiple Robots on
Stable Orbits via Local Sensing. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 2312–2317, 2007.

[65] S. Susca, F. Bullo, and S. Mart́ınez. Synchronization of Beads on a Ring. In
Proceedings of the 46th IEEE Conference on Decision and Control, 2007.

[66] C. Secchi and C. Fantuzzi. Formation control over delayed communication net-
works. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 563–568, 2008.

[67] M. Ji and M. Egerstedt. Distributed Coordination Control of Multiagent
Systems While Preserving Connectedness. IEEE Transactions on Robotics, 2007.

135

Bibliography

[68] D. V. Dimarogonas and K. H. Johansson. Stability analysis for multi–agent
systems using the incidence matrix: quantized communication and formation
control. Automatica, 2010.

[69] J. A. Fax and R. M. Murray. Information Flow and Cooperative Control of
Vehicle Formations. IEEE Transactions on Automatic Control, pages 1465–1476, 2004.

[70] W. Ren, R. Beard, and E. Atkins. Information consensus in multivehicle co-
operative control. IEEE Control Systems Magazine, 27(2), 2007.

[71] R. Olfati–Saber. Flocking for multi–agent dynamic systems: algorithms and
theory. IEEE Transactions on Automatic Control, 51:401–420, 2006.

[72] T. H. Summers, C. Yu, and B. D. O. Anderson. Robustness to agent loss in
vehicle formations and sensor networks. In Proceedings of the IEEE Conference on
Decision and Control, pages 1193–1199, 2008.

[73] R. Falconi, S. Gowal, and A. Martinoli. Graph Based Distributed Control
of Non-Holonomic Vehicles Endowed with Local Positioning Information En-
gaged in Escorting Missions. In IEEE Conf. on Robotics and Automation (ICRA
2010), 2010.

[74] F. Han, T. Yamada, K. Watanabe, K. Kiguchi, and K. Izumi. Construction of an
Omnidirectional Mobile Robot Platform Based on Active Dual–Wheel Caster
Mechanisms and Development of a Control Simulator. Journal of Intelligent and
Robotic Systems, pages 257–275, 11 2000.

[75] G. Oriolo, A. De Luca, and M. Vendittelli. WMR Control Via Dynamic
Feedback Linearization: Design, Implementation, and Experimental Valida-
tion. IEEE Transactions On Control Systems Technology, pages 835–852, 11 2002.

[76] B. E. Meserve. Fundamental Concepts of Geometry. Courier Dover Publications, 1983.

[77] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997.

[78] K. D. Do. Formation Tracking Control of Unicycle–Type Mobile Robots With
Limited Sensing Ranges. IEEE Transactions on Control Systems Technology, 16:527–
538, 2008.

[79] L. Piege and W. Tiller. The NURBS Book. Springer–Verlag, 1995-1997.

[80] A. Tsalatsanis, A. Yalcin, and K.P. Valavanis. Optimized task allocation in
cooperative robot teams. In Proceedings of the IEEE Mediterranean Conference on
Control and Automation, pages 270–275, 2009.

[81] B. B. Choudhury and B. B. Biswal. An Optimized Multirobot Task Allocation.
In Proceedings of the First International Conference on Emerging Trends in Engineering
and Technology, pages 320–325, 2008.

[82] J. Bellingham, M. Tillerson, A. Richards, and J. P. How. Multi–task allo-
cation and path planning for cooperative UAVs. Cooperative Control: Models,
Applications, and Algorithms, pages 23–41, 2003.

136

Bibliography

[83] C. Schumacher, P. Chandler, and S. Rasmussen. Task allocation for wid area
search munition. In Proceedings of the American Control Conference, pages 1917–1922,
2002.

[84] R. W. Beard and V. Stepanyan. Synchronization of information in distributed
multiple vehicle coordinated control. In In Proceedings of IEEE Conference on De-
cision and Control, pages 2029–2034, 2003.

[85] H. L. Choi, L. Brunet, and J. P. How. Consensus–Based Decentralized Auc-
tions for Robust Task Allocation. IEEE Transactions on Robotics, 25(4):912–926,
2009.

[86] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market–Based Multirobot
Coordination: A Survey and Analysis. Proceedings of the IEEE, 97(7):1257–1270,
2006.

[87] T. Mercker, D. W. Casbeer, P. T. Millet, and M. R. Akella. An extension of
consensus–based auction algorithms for decentralized, time–constrained task
assignment. In Proceedings of the American Control Conference, pages 6324–6329, 2010.

[88] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks.
Applied Mathematics Series. Princeton University Press, 2009. Electronically available at
http://coordinationbook.info.

[89] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Plan-
ning and Control. Springer, London, UK, 2009.

[90] G. Notarstefano, K. Savla, F. Bullo, and A. Jadbabaie. Maintaining limited–
range connectivity among second–order agents. In Proceedings of the American
Control Conference, pages 2134–2129, 2006.

[91] Y. Cao and W. Ren. Distributed coordinated tracking via a variable structure
approach – Part I: consensus tracking. Part II: swarm tracking. In Proceedings
of the American Control Conference, pages 4744–4755, 2010.

[92] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Talyor. Maintaining Net-
work Connectivity and Performance in Robot Teams. Journal of Field Robotics,
25(1):111–131, 2008.

[93] A. Ajorlou, A. Momeni, and A. G. Aghdam. A Class of Bounded Distributed
Control Strategies for Connectivity Preservation in Multi–Agent Systems.
IEEE Transactions on Automatic Control, 55:2828–2833, 2010.

[94] D. V. Dimarogonas and K. H. Johansson. Bounded control of network con-
nectivity in multi–agent systems. IET Control Theory & Applications, 4:1751–8644,
2010.

[95] F. Morbidi, A. Giannitrapani, and D. Prattichizzo. Maintaining connectivity
among multiple agents in cyclic pursuit: A geometric approach. In Proceedings
of the IEEE International Conference on Decision and Control, pages 7461–7466, 2010.

137

Bibliography

[96] G. Hollinger and S. Singh. Multi–robot coordination with periodic connectiv-
ity. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 4457–4462, 2010.

[97] M. Fielder. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298–305, 1973.

[98] M. M. Zavlanos, H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Hybrid Control
for Connectivity Preserving Flocking. IEEE Transactions on Automatic Control,
54:2869–2875, 2009.

[99] M. M. Zavlanos and G. J. Pappas. Potential fields for maintaining connectivity
of mobile networks. IEEE Transactions on Robotics, 23(4):812–816, 2007.

[100] M. C. De Gennaro and A. Jadbabaie. Decentralized Control of Connectivity
for Multi–Agent Systems. In Proceedings of the IEEE International Conference on
Decision and Control, page 3628, 2006.

[101] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and

R. Sukthankar. Decentralized estimation and control of graph connectivity
for mobile sensor networks. Automatica, 46:390–396, 2010.

[102] S. Fallat and S. Kirkland. Extremizing algebraic connectivity subject to graph
theoretic constraints. The Electronic Journal of Linear Algebra, 3:48–74, 1998.

[103] Y. Kim and M. Mesbahi. On maximizing the second smallest eigenvalue of
a state–dependent graph Laplacian. In Proceedings of the IEEE American Control
Conference, pages 99–103, 2005.

[104] S. Bhattacharya and T. Basar. Graph–theoretic approach for connectivity
maintenance in mobile networks in the presence of a jammer. In Proceedings of
the IEEE International Conference on Decision and Control, pages 3560–3565, 2010.

[105] L. N. Trefthen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[106] R. A. Freeman, P. Yang, and K. M. Lynch. Stability and convergence prop-
erties of dynamic consensus estimators. In Proceedings of the IEEE International
Conference on Decision and Control, pages 338–343, 2006.

[107] R. Olfati–Saber and R. M. Murray. Consensus problems in networks of agents
with switching topology and time–delays. IEEE Transactions on Automatic Control,
9:1520–1533, 2004.

[108] R. Ortega, L. Perez, P. J. Nicklasson, and H. Sira–Ramirez. Passivity–based
Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Appli-
cations. Springer London, 1998.

[109] R. Kristiansen, P. J. Nicklasson, and J. T. Gravdahl. Formation Modeling
and 6DOF Spacecraft Coordination Control. In Proceedings of the IEEE American
Control Conference, pages 4690–4696, 2007.

138

Bibliography

[110] G. B. Arfken and H.–J. Weber. Mathematical methods for physicists. Elsevier, 2005.

[111] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stable flocking of mobile agents,
part I: fixed topology. In Proceedings of the IEEE Conference on Decision and Control,
pages 2010–2015, 2003.

[112] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.

[113] N. Biggs, E. Lloys, and R. Wilson. Graph Theory. Oxford University Press, 1986.

139

	Introduction
	Contribution and thesis outline

	MORE–pucks: a multi–robot experimental framework
	Introduction
	Outline

	E–puck robots and arena design
	Software architecture
	Localization and visual odometry
	The Core Software and the Graphical User Interface (GUI)

	Validation experimental tests
	Discussion

	Formation control and coordinated curve tracking
	Introduction
	Outline

	Arbitrarily Shaped Formations of Mobile Robots: Artificial Potential Fields and Coordinate Transformation
	Regular polygon control law
	Orientation of the polygon
	Deformation of the polygon: bijective coordinates transformation
	Simulations and experiments

	Coordinated Closed–Curve Path Tracking for Multi–Robot Systems
	Deformation of a circumference
	Paths described with implicit functions
	Paths described with parametric functions
	Implementation issues
	Presence of multiple tasks

	A Graph–Based Collision–Free Distributed Formation Control Strategy
	Weighted Graph-Based Formation Achieving
	Obstacle avoidance
	Local minima avoidance
	Simulations and Experiments

	Discussion

	Global connectivity maintenance
	Introduction
	Outline

	Estimation of the algebraic connectivity of the graph
	Connectivity maintenance for single integrator agents
	Decentralized implementation of the connectivity maintenance algorithm
	Connectivity maintenance in the presence of an external controller
	Enhanced connectivity maintenance: selective control action
	Identification of the critical agents
	Rendezvous and formation control

	Connectivity maintenance for networked Lagrangian dynamical systems
	Connectivity maintenance control strategy
	Connectivity in the presence of external control laws
	Application: rendezvous for fully actuated Lagrangian systems

	Simulations and experiments
	Matlab simulations
	Experiments

	Discussion

	Concluding remarks
	Background on graph theory
	Bibliography

