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Abstract

Next generation electronic devices have to guarantee high performance while be-

ing less power-consuming and highly reliable for several application domains

ranging from the entertainment to the business. In this context, multicore plat-

forms have proven the most efficient design choice but new challenges have to

be faced. The ever-increasing miniaturization of the components produces un-

expected variations on technological parameters and wear-out characterized by

soft and hard errors. Even though hardware techniques, which lend themselves to

be applied at design time, have been studied with the objective to mitigate these

effects, they are not sufficient; thus software adaptive techniques are necessary.

In this thesis we focus on multicore task allocation strategies to minimize the

energy consumption while meeting performance constraints. We firstly devise a

technique based on an Integer Linear Problem formulation which provides the

optimal solution but cannot be applied on-line since the algorithm it needs is time-

demanding; then we propose a sub-optimal technique based ontwo steps which

can be applied on-line. We demonstrate the effectiveness ofthe latter solution

through an exhaustive comparison against the optimal solution, state-of-the-art

policies, and variability-agnostic task allocations by running multimedia applica-

tions on the virtual prototype of a next generation industrial multicore platform.

We also face the problem of the performance and lifetime degradation. We firstly

focus on embedded multicore platforms and propose an idleness distribution pol-

icy that increases core expected lifetimes by duty cycling their activity; then, we

investigate the use of micro thermoelectrical coolers in general-purpose multicore

processors to control the temperature of the cores at runtime with the objective of

meeting lifetime constraints without performance loss.
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Chapter 1

Introduction

1.1 Overview

Fast and complex computations are no longer required only byinstitutes of research, big com-

panies and banks for manipulating huge amounts of data. Nowadays, personal computers and

mobile devices are largely adopted to facilitate the users’life in several application domains,

from the entertainment to the business. Thus, to be capable of executing a wide range of sophis-

ticated applications, these systems are increasingly becoming very performance demanding.

For example, complex multimedia applications are now a mustfor all portable systems, as

well as the security of sensitive data, which needs to be always guaranteed in modern, always-

connected embedded devices. Such requirements lead to the necessity of executing intensive

computation within short times, which translates in high performance demand.

High performance obviously implies high consumption of power. Most of the electronic

devices are portable, then they need batteries supporting long usage time. Reducing power

consumption is obviously paramount for battery-operated embedded systems, but energy re-

duction is becoming a critical issue also for personal computers and workstations, as all the

world community has become aware of the energy problem in general. Nowadays, all the en-

ergy produced is becoming insufficient to meet the demand andincreasingly expensive. While

the search for alternative sources of energy is underway, engineers must put all their efforts in

designing less energy-demanding products.

To further complicate the picture, the miniaturization andhigh stress of utilization of cur-

rent CMOS designs, have caused them to become less reliable.In particular the lifetime of any

electronic device can no longer be considered infinite and some solutions need to be devised
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1. INTRODUCTION

to prevent hard and soft errors. Of course in specific fields such as military, aviation and so

on, long lifetimes must be guaranteed, but this is becoming arequirement also for commercial

devices. This is because almost all personal data is today stored into digital devices which

must be ensured to work efficiently for the longest possible time. Moreover, the big companies

are aware of the problem of the impact on the environment, andthey are required to adhere to

design processes which lead to produce long-lasting and reliable systems.

In conclusions, next generation electronic devices have toguarantee high performance

while being less power-consuming and highly reliable. The design processes at the hardware

layer take into account these requirements, but even for single-application systems the results

are less effective because the workload changes very often over time. For this reason, system-

level adaptive techniques, in particular those at the software layer are an unavoidable choice.

1.2 The performance issue

In 1965 Gordon E. Moore described that the density of the components in integrated circuits

would have increased over the following years [55]. Since 1975 the number of transistors per

area in fact has kept doubling every twenty-two months, thusthis allowed the increase of the

speed of single-core processors while keeping a stable reliability.

Over the last years the single-core processor speed increase has begun to diminish. This

performance increase has always been around 60% until the year 2000, but it dropped to 40%

in 2004. The limits of current transistor technology mainlyregard the power. The gate of small

CMOS transistors gets thinner and less able of blocking the flow of the electrons, then even if

transistors are not switching they consume power. Moreoverincreased clock frequencies cause

faster transistor switching, which translates in more heat[31]. The heat increase also produces

higher temperatures that in turn lead to reduced reliability [72, 77].

The bottleneck in performance that single-core processorsare experiencing is described

through thePollack’s Rule, which states that performance increase is proportional tothe square

root of the increase in complexity. Moreover the core power consumption is proportional to the

area [12, 65].

Multicore processors have been introduced to keep pace withMoore’s law. For instance, for

the same chip area and power, two small cores can potentiallyprovide the 70-80% performance

increase postulated by the Moore’s law, against the 40% obtained by a large monolithic core.

2



1.3 The power issue

Despite Pollack’s Rule might suggest pursuing the direction of using a large number of

small cores integrated on the same chip, some other bottlenecks in performance exist. To

receive high throughputs from multicores, applications need to be parallelized. This process

is not always easy. IfN is the number of cores, theAmdahl’s lawstates that the parallel

speedup is limited by the serial code in a program, which severely affects the throughput as

follows: Parallel Speedup = 1/(Serial% +(1-Serial%)/N) [37]. In addition, the performance

improvement given by a high number of short parallel execution parts could suffer the latency

towards the memory and the other devices. In conclusion, different architectures can be adopted

such as platforms with a small number of complex cores or platform with a high number of

small cores. Hybrid platforms also exist, composed of heterogeneous cores [13].

1.3 The power issue

The power consumption in CMOS circuits is produced by two major contributions. The first

one is related to the switching activity of the transistors and it is well-known asdynamic

power [32] which is proportional to the clock frequency of the core andthe total capacitance

and the square of the voltage. The other contribution also persists in static conditions due to the

leakagecurrent which is highly dependent on the threshold voltage [17]. The supply voltage

plays an important role for the dynamic power as well as for the performance. The dynamic

power can be brought down by lowering the supply voltage while the clock frequency required

is still kept. In multicore processors, dynamic voltage andfrequency scaling (DVFS) mecha-

nisms can be adopted to optimize the power and set the speed ofeach singular core to configure

energy-efficient systems [66]. Basically low-power processors require low supply voltages [25]

but as the CMOS technology scales down to 65nm and beyond, electronic devices work near-

threshold region which can cause performance loss, performance variation, and memory and

logic failures [27].

Beyond 65-nm dimension, process variations impacting the delay and the power of the

circuits have become a critical issue in the design of very large scale integrated (VLSI) circuits

using advanced CMOS technologies[64]. A large magnitude of the power variability is due to

the exponential relationship between transistor gate length and subthreshold leakage current.

On the other hand, performance variability is primarily impacted by physical variations in

interconnects. [51, 56, 60]

3



1. INTRODUCTION

1.4 The reliability issue

In addition to variations, also thewear-outis a factor affecting next generation nanoscale plat-

forms [11, 71]. The impact is not only on power and performance.Negative bias temperature

instability (NBTI) and dielectric breakdown are critical mechanisms enabling degradation over

time that can lead to system failures. Several mechanisms offailure have been classified [70].

The main factors which lead to failures are the usage of the system and the temperature. Typ-

ically before incurring a failure a circuit becomes slower [67]. Without applying workload-

balancing based techniques, lifetime can be preserved by lowering the execution speed [3].

1.5 Thesis contributions and organization

The aim of this thesis is to demonstrate the effectiveness inperformance, power, and lifetime

of the software techniques for workload balancing in next generation multicore platforms. We

firstly provide an exhaustive background on the multicore processors analyzing the hardware

and the software aspects as well as the technological issues, then we present the adaptive tech-

niques we have devised to improve the solutions present in literature.

More in details the structure of the thesis is depicted in Figure1.1. Chapters2, 3, 4 form the

background part, whereas the contribution of this work is presented over Chapters5, 6, 7, 8.

Finally, in Chapter9 we summarize the results and make some remarks regarding upcoming

issues.

In Chapter2 we provide a classification of the primary types of architecture adopted in

multicore processors. We highlight the differences concerning the processing units, the cache

memories, and the interconnection systems. Moreover we introduce the concept of virtual

platform and what are the needs to adopt such simulators in hardware verification and soft-

ware development. To conclude the chapter, we present the xSTsim multicore platform by

STMicroelectronics that we have largely used in the experimental part of this work.

In Chapter3 we introduce the issue of the parallel programming needed inmulticore pro-

cessing to reach high performance. We review the most popular paradigms of parallel comput-

ing, and then we illustrate how we have parallelized two applications for the xSTsim platform.

The first application is the MPEG2 decoder, and the other one is theintegral imagewhich is a
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Figure 1.1: Structure of the thesis.

very popular computational kernel used in image detection.These two applications have been

used in the experiments.

In Chapter4 we illustrate the problem of variations and wear-out in sub 45-nm CMOS

technology multicore platforms and how much they impact theperformance, power, and life-

time of such systems. We illustrate the models and the tools used to estimate those effects.

Furthermore, we show how we have linked such tools to the virtual platform of the xSTsim

platform. Thus we were able to study and test variation-aware software techniques.

After the background part we illustrate the contributions of this work. The goal we want

to reach is to discover adaptive techniques able to meet requirements in performance, power

and lifetime. We divide that problem into two separate issues. In Chapters5, 6, we face the

problem of how to minimize the energy consumption while meeting performance constraints

in presence of static variations, whereas in Chapters7, 8 we investigate how to meet lifetime

constraints considering also dynamic variations.

In particular, Chapter5 presents an optimal solution based on an Integer Linear Program-

ming (ILP) formulation of the problem, and a sub-optimal solution based on two-steps namely

Linear Programming (LP) and Bin Packing (BP). We have testedthe proposed strategies on

the virtual cycle-accurate prototype of the target industrial platform comparing the results in

terms of energy and performance with the state-of-the-art techniques. Even though we demon-

strate the effectiveness of the proposed strategies, they cannot be applied at runtime since they
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1. INTRODUCTION

need time-demanding algorithms. In particular to solve theILP problem we used the ILOG

Solver[41] and to solve the LP part of the other technique we adopted theSimplex algorithm.

In Chapter6 we exploit the key properties of the LP problem of the sub-optimal strategy

based on two steps and presented in Chapter5 to prove that it can be solved through few

arithmetic computations and without using the Simplex algorithm. Thus we demonstrate that

the LP+BP technique can be solved in linear time and can be definitely applied at runtime. We

tested its effectiveness on the virtual cycle-accurate prototype of the target industrial platform

running two multimedia applications; the complete MPEG2 decoding, and theintegral image.

We also verify that this strategy outperforms the state-of-the-art solutions.

We face the problem of the performance and lifetime degradation in Chapters7, 8. In

particular we focus on embedded multicore platforms in Chapter 7 and on general-purpose

multicore processors in Chapter8.

In Chapter7 the objective is to mitigate the impact on lifetime uncertainty and unbalancing

among the cores. To this purpose, we developed an idleness distribution policy that increases

core expected lifetimes by duty cycling their activity.

In Chapter8 we investigate the use of micro thermo-electric coolers (TECs) to control the

temperatures of the cores and then the lifetime of the system. Based on a real dual-core proces-

sor, we first devise a model to estimate the mean-time-to-failure (MTTF) for each core and the

entire processor as a function of each core operating conditions, such as power, temperature,

and voltage. We then develop a thermal model for the processor and the TECs to capture the

thermal and power interactions between the processor, the TECs, and the heat sink. We then

propose a number of strategies to use TECs in conjunction with dynamic voltage and frequency

scaling (DVFS) to improve reliability and performance.
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Chapter 2

Architectures

2.1 From general-purpose processors to embedded system plat-

forms

Multicore architectures can be classified in many ways. We review in the following some of

the most representative, considering three popular criteria, namely: the application class, power

performance, and processing elements.

The application class. Machines targeted to specific application domains leverage hard-

ware architectures reflecting those specific requirements.This solution ensures the most effi-

cient implementation for the targeted domain, but on the other hand lacks flexibility, thus re-

sulting very weak in executing programs from different application domains. The most notable

example in this sense isapplication-specific integrated circuit(ASIC). Tailoring the system

design to a specific application domain has many advantages,such as high energy efficiency.

Digital signal processors(DSPs) are a significant example of this design paradigm.

However this kind of architecture is not recommendable whendesigning systems that are

meant to run varied workload. For example, data-intensive computations such as video and au-

dio processing typically involves executing numerous different signal processing algorithms,

for what on-chip multi-core systems are bound to provide better power/performance ratio. The

same rationale also applies to control-dominated applications, where file compression/decom-

pression and network processing algorithms may be more efficiently executed over multiple

parallel general purpose processing elements. In this manner the unstructured nature of control

7



2. ARCHITECTURES

codes can be better handled.

PowerPerformance. Many devices must execute applications within very strictpower

budgets and performance requirements. Examples are mobilephones, which are nowadays

devised to support video playback while consuming less power and keeping adequatequality

of service(QoS). Currently, general-purpose multicore processors are the most suitable choice

for similar devices, but they are becoming very energy demanding.

Processing elements. Another possible classification can be made based on the type of

processing element used as a main building block. Each core has an Instruction Set Architec-

ture (ISA) corresponding to a general-purpose processor plus some few instructions, such as

atomic instructions for synchronization to support parallelism. ISAs can be historically classi-

fied in reduced instruction set computer (RISC) and complex instruction set computer (CISC).

The CISC ISAs provide benefits in code sizes; in fact ISAs for processing elements are ex-

tended by the major vendors of processors like Intel and AMD which equip their cores with

particular operations for multimedia applications like ARM does for its NEON [47].

The most popular architectures are homogenous and hence allcores have the same design.

However, heterogeneous architectures may be more suitableto have same performance with

lower power consumption. To increase the performance deep pipelines are typically used be-

cause they require a minimal logic per stage; this allows faster clocks and incurs lower penalties

from broken execution sequence due to branches.

In-order processing elements are preferable to out-of-order ones because they need smaller

area, lower power and are more suitable for high thread-level parallelism. A representative ex-

ample in this sense is general-purpose graphical processing units (GPGPUs): The, NVIDIA’s

G200 has 240 in-order cores [21]. Out-of-order processors work better to improve perfor-

mance of serial codes because instructions can be dynamically (re)scheduled to keep full the

pipeline, but the related mechanisms are very power hungry.When the application domains

are characterized by poor degrees of thread-level parallelism, out-of-order cores are prefer-

able, particularly when implementations adhering to either thesingle-instruction multiple-data

(SIMD) or thevery long instruction word(VLIW) architecture paradigm are considered. SIMD

and VLIW eliminate some complexity of the logic to optimize the execution of instruction
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streams. SIMDs use large split registers to process multiple data requiring only one instruc-

tion. An example of this architectural solution is vector instructions. An example of multi

SIMD-core processors is the IBM Cell [50] which is targeted for data-intensive applications.

Instead VLIWs use multiple pipelines to execute groups of instructions in parallel. Most of

the complexity in this case is moved at the compiler level. VLIWs can provide some advan-

tages over SIMDs but exhibit poor performance if under-utilized. Both VLIW and SIMD are

the most efficient solution, performance- and energy-wise,for applications with high levels of

data-parallelism.

Memory hierarchy . From the point of view of the memory hierarchy, caches have become

more and more important in multicore processors, because they provide each core with local,

fast memory. Caches can be further tagged and managed by the hardware or explicitly used as

local store memory (i.e. scratchpads).

Tagged caches are very common because they handled transparently by the instruction

stream which believes only one uniform memory exists. Scratchpads can instead provide de-

terministic performance and offer more storage capacity for the same area.

The number of cache levels increases as processing elementsbecome faster and numerous

in platforms [9]. Typically, as the cache gets close to the main memory it becomes larger,

slower, and it is shared among the cores. Thanks to memory hierarchies, processing elements

perform very fast accesses even though the main memory is hundreds of cycles away. For in-

stance, AMD Phenom [42] has three levels of cache. In embedded multicores the main memory

may be a few tens of cycles away and one level of cache may be sufficient to conserving both

die area and power [9].

Some multicore platforms integrate an embedded DRAM (eDRAM) bank on the same die

to improve system performance by reducing the memory latency. Multi-bank DRAMs are

adopted to hide long latencies by allowing the memory to process multiple accesses in parallel.

This may incur a significant area penalty and will therefore restrict the density of the embedded

DRAM main memory [84].

Tightly-coupled, multi-banked shared memories are adopted in embedded multicore plat-

forms as P2012 [53] from STMicroelectronics and the Hypercore architecture line (HAL) [48]

from Plurality, both of them contain sets of RISC-32 bit Harvard processors.

9
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Shared memory-based systems often leverage coherent cachesystems to ease application

writing. Cache coherence can be broadcast-based or directory-based. In the broadcast way

operations visible to all processor can be executed from only one core at time. The directory

instead enables multiple coherence actions to occur concurrently. This is possible because a

directory contains information about which caches containeach memory address.

Directory coherence is typically adopted for weak consistency models and for large systems

containing many cores, such as the Tilera TILE64 [22].

Sometimes cache coherence is omitted to reduce design complexity, examples are the TI

TMS320DM6467 [76] and the IBM Cell [50]. In this case the software has to enforce the

visibility of the memory among the cores at runtime. This limits the programming models to

custom variants of message passing. This can be feasible when the size of the memory is lim-

ited [9].

In multicore processors the processing elements communicate each other via intra-chip in-

terconnects. The different types of interconnects can be classified in buses, crossbars, rings,

and NoCs. The bus requires simple logic but it suffers from limited bandwidth when the num-

ber of processing elements increases. Instead the NoC scales very well but many challenges

rise up at the design phase.

Interconnects are also responsible for the cache coherencewhich determines the program-

ming models supported by the overall architecture. For programming models based on shared

memory, cache coherence keeps a unique image of the memory visible to all cores in the sys-

tem. ARM Cortex A9 supports this view [47].

2.2 Virtual platforms

Due to the increase of the Multiprocessor System-on-chips (MPSoCs) complexity and to tight

time-to-market requirements, the hardware and the software parts of the system need to be

designed simultaneously.

Software engineers have to develop operating systems, device drivers, and protocols of

communications on the hardware prototype while hardware engineers are designing the plat-

form at register-transfer level (RTL).
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The overall software part cost of MPSoCs is quickly increasing. The International Tech-

nology Roadmap for Semiconductors (ITRS) have predicted that software will cost as much as

the hardware by 2013.

Prototypes of the target applications, namely virtual platforms (VPs), are adopted. Thanks

to virtual platforms software development and hardware validation can be largely facilitate.

A simplified flow of concurrent hardware/software design starts from a system-level func-

tional specification of the overall system. In the next step several functions are identified and

mapped on either hardware or software blocks. Then the hardware team develops the RTL

specification of the hardware components while the softwareteam starts to work on the vir-

tual platform. As the hardware progresses the virtual platform is updated and provided to the

software development team. In this way, the hardware and software processes can progress

together in lockstep.

Virtual platforms are developed at various level of abstraction. For each one of these levels

a certain degree of accuracy is possible. Typically high levels of abstractions are mostly useful

for the software development while more accurate models areneeded for hardware verification.

Virtual platforms are also characterized by the speed of simulation. At high level of abstraction

virtual platforms are faster and less accurate.

VPs can be developed though several system (hardware and software) description lan-

guages that in most cases match programming languages such as C, C++, Matlab or are exten-

sions of those, such as SystemC. Each language better lends itself to one or few specific levels

of abstraction. Figure2.1shows several levels of abstraction indicating the system description

languages associated. For each level the graph also indicates the degree of both accuracy and

simulation speed.

Several emerging standards exist to develop virtual platforms of MPSoCs.

SystemC is a C++ library that provides the concepts of concurrency, bit-accuracy and tim-

ing required in chip design to the C++-based programming. [1].

Transaction-level modeling (TLM) is an interface modelingmethodology. TLM models

complex system-on-chip using instruction-set simulators(ISSs) of processors and high-level,

fully functional SystemC/C++ models of the other hardware building blocks.

Many electronic design automation (EDA) vendors are producing tools to develop virtual

platforms, such as Synopsys and Carbon Design Systems.

System-on-Chip design companies widely exploit virtual platforms and provide simulator

of their own IPs to be easily imported in virtual platform of complex systems designed by third
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Figure 2.1: Abstraction levels of a system. Comparison between accuracy and simulation speed.

parts. For example, ARM provides a large set of fast models ofseveral ARM processors[79].

Tensilica proposes a simulation environment including XTENSA processors, memories, and

connectors that can run as a SystemC model or as a C/C++ model[80]. ST Microelectronics is

a pioneer of SystemC and of the TLM-2 standard, and its designteams use SystemC models

for both software design and hardware verification. [59]

2.3 A multicore platform model

In this section we illustrate the xSTsim multicore platforms by STMicroelectronics and the

related VP which will be largely used in the experiments of this work.

The platform is composed of a general purpose processing element (GPE, in particular

it is an ST231 [28]) acting ashost processorand a number of programmable accelerators,

acting asstreaming engine(or fabric), as shown in Figure2.2. The processing elements (xPEs)

of the streaming fabric are connected through a Network-on-Chip supporting very high data

bandwidth and throughput. The platform is meant to address the needs of data-flow dominated,

highly computational intensive tasks, typical of many embedded systems. This platform model

adheres to the STMicroelectronics xSTsim architecture. For the applications we target in this

work the GPE acts as a task dispatcher for the xPEs.
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The xPEs of the streaming fabric are relatively simple programmable processors with a

simple ISA extended with SIMD and vector mode instructions.The engines include a set of

features for improving performance and efficiency, such as wide data-paths, simple pipelines,

multi-threading etc. At the same time they execute instruction fetches from local memories

instead of caches, a great simplification at the pipeline forefront. Local memory is also used

for wide data accesses.

Each xPE can befrozenand restarted writing to a control register that can be accessed by

the GPE. The system has a global memory containing the program (typically the operating

system, OS) running on the GPE and its data. Any xPE can accessthe global memory and

each processor can access the local memory of another xPE, even though with a significant

cost in terms of latency. Hardware based memory coherency isnot needed because of the lack

of caches for the xPEs, and cache coherency is explicitly maintained in software with the GPE.

The GPE and the global memory are connected through a shared bus which is one node of the

NoC interconnect.

A C-based model of the xSTsim platform has been developed by STMicroelectronics. This

virtual platform can be configured at the beginning of the simulation through a configuration

file. It is possible to specify the number of the accelerators, the type of the interconnection such

as bus, crossbar, NoC, and the level of accuracy of each block. The ISSs of both the ST231 and

the XPE processor are cycle-accurate. Despite the xSTsim simulator allows to reach very high

levels of accuracy it is highly efficient in terms of performance.

Figure 2.2: xSTsim platform model.
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Chapter 3

Parallel programming on multicore

processors

3.1 Overview

Smart mechanisms for dynamic, network-wide resource sharing have enabled the creation of

clusters of processors to be used in large-scale computing systems, achieving high performance

and scalability.

In recent computers and workstations, parallelism appearsboth in hardware and software

at various layers: signal, circuit, component, and system levels. At signal and circuit levels,

parallelism is performed using hardware parallelism. At a slightly higher level, better perfor-

mance is obtained by exploiting multiple functional units operating in parallel. This level of

parallelism is well-known as instruction level parallelism. At a still higher level, symmetric

multi processors (SMPs) have multiple CPUs working in parallel. At an even higher level

of parallelism, several computers can be connected together and work as a single machine,

namely cluster computing. Parallelism at component and systems levels is mostly possible by

exploiting various software techniques, popularly known as software parallelism.

Software parallelism can be identified and outlined at different granularities in the appli-

cation code. These granularities determine different kinds of parallelism. In particular, the

parallelism can be extracted automatically in hardware, orthrough software techniques at vari-

ous levels: (semi-)automatically in the compiler or manually in the application code. Table3.1
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classifies the kinds of parallelism on a code grain size basis.

Grain size Code item Parallelized by

Fine Instruction Processor

Medium Loop or instruction block Compiler

Large Threads and processes Programmer

Table 3.1: Levels of parallelism and grain code size.

All the approaches to parallelization have the common goal to boost processor efficiency.

Possibilities to parallelize the code of an application canbe detected at the several levels, as

depicted in Figure3.1. Starting from the application it is possible to find some functionalities

that can be split in tasks, or processes that can be run in parallel; this is the coarse grain level.

Each task can be further composed by functions that can be runin parallel; this is a medium

grain level. More deeply, each function can be characterized by sequences of equal operations

that work on different data; thus those operations can run inparallel too actually performing

the instruction-level parallelism, this is a fine grain level. Some processor microarchitectures

are characterized by different functional blocks that allow executing in parallel different kind

of operations; this is the very-fine grain level [18].

Among the four identified levels of parallelism, the very-fine and the fine grain level are

supported transparently either by the hardware or parallelizing compilers, while programmers

mostly deal with the large and the medium levels.

Parallel programs exploit concurrently running threads orprocesses, and support for inter-

thread communication is needed. The two primarily models ofcommunication are the shared

memory and the message-passing.

In the shared-memory paradigm, processes communicate using references to shared data

which typically are stored in a global memory visible to all cores. The accesses towards the

global memory are asynchronous. This requires protection mechanisms such as locks and

semaphores. The shared memory model can be emulated on distributed-memory systems but

non-uniform memory accesses (NUMA) can degrade the performance.

In a message-passing communication model, processes communicate using messages. There

is no common address space for data, but each process accesses its own dedicate address space

which may correspond to a private local memory. These communications can be asynchronous

or synchronous [45].
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Figure 3.1: Levels of paralellism

3.2 Parallel programming paradigms

Parallel programming techniques can be classified in few paradigms that are used repeatedly to

develop many parallel programs. A paradigm is identified by aclass of algorithms which have

the same control structure. The choice of a paradigm strongly depends on the parallel comput-

ing resources and the application. In particular the resources identify the granularity level at

which the parallelism can be more efficient whereas the structure of the application or the data

determines the type of the parallelism. There is a functional parallelism when it is possible to

extrapolate from the application different tasks that can be executed concurrently and in a co-

operative way. Data parallelism exists when it is easy to identify identical processes that can be

executed in parallel but on different data. In literature many different classifications of parallel

programming paradigms exist [30, 33]. A classification based on process properties, interac-

tion process, and data properties can be found in [45]. We review three of the most important
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parallel programming paradigms which are named respectively: Master/Slave, Single-Program

Multiple-Data, and Data Pipelining.

Master/Slave

The Master/Slave or Task-farming paradigm is characterized by a master entity and multiple

slave entities. The master has to organize the problem into small tasks and then distribute them

to the slaves. When the slaves terminate their works, the master has also to collect the results.

Figure3.2a) shows the Master/Slave diagram. The workload-balancingacross the slaves can be

static or dynamic. In the first case, all tasks are assigned tothe slave processes at the beginning

of the computation. The allocation can be done at compile-time or at runtime. In the second

case it is possible to map the tasks on the slave cores dynamically and one-by-one basis. This

mechanism can be applied only at runtime. The dynamic load-balancing is more suitable when

the number of tasks either exceeds the number of the cores or it is unknown. Moreover, it can

be very useful to adapt the workload to the conditions of the systems by giving the possibility

to optimize the execution in terms of performance as well as power and reliability.

Single-Program Multiple-Data (SPMD)

One of the most popular paradigms is the SPMD. Basically the application has to be decom-

posed in processes having the same piece of code which works on different data. Figure3.2b)

illustrates the SPMD diagram. This paradigm is highly recommended when it is possible to rec-

ognize geometric structures and data-independent computation in the applications. Processes

firstly access to their own data and then work simultaneously. A barrier of synchronization is

typically used between different computations.

Data Pipelining

This paradigm suggests identifying sequences of separate functions in the applications and

assigning each one of them to a process. In this manner a sequence of computation stages

is created. In general, each stage produces a data which willbe the input of the next stage as

depicted in Figure3.2c). A system for communicating across the stages is needed; thus it deter-

mines the robustness of the paradigm. The communication maybe completely asynchronous;

this means that mechanisms like barriers are not needed. Theeffectiveness of this paradigm

depends on the possibility to well balance the workload across the stages. Data Pipelining is
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often used in data reduction or image processing applications.

Sometimes the paradigms can show fuzzy boundaries. In addition, for some complex struc-

tures high levels of parallelism could not be reached by using only one paradigm. Typically

applications are parallelized exploiting mixes of paradigms [18].

a) b)

c)

Figure 3.2: Parallel programming paradigms: a) Master Slave; b) SPMD; c) Data Pipeling.

3.3 Case study

In this section we describe two examples of parallel applications for multicore platforms. The

first example is a simple computational kernel very common inmany algorithms from the

computer vision domain; the second is a complete MPEG2 decoder.

3.3.1 Integral image

The integral image algorithm is becoming popular in many image processing applications. In

particular it is used for feature evaluation in the face detection problem [8].

This algorithm is applied on an image characterized througha pixel matrix. Letx be the

pixel row identifier and lety be the pixel column identifier, the integral image consists in

formula (3.1).

II(x, y) =
∑

x′<x,y′<y

I(x′, y′) (3.1)
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It can be easily parallelized according to the SPMD paradigm. We divide the computation

in two steps. In the first step, for each rowr we replace the value at elementi with the sum of

its current value plus the value of elementi− 1. Let r be composed byN elements, from0 to

N − 1. We start fromi = 1 until i = N − 1, while for element0 we do not replace its value.

We can execute the computations regarding each row in parallel. The second step is similar to

the first one, but the computation involves the elements of the columns. Also in this case we

can proceed by parallel computations.

For instance if we have a matrix of 96× 96 elements and we want to divide each step in 8

parallel tasks, for the first step we assign the computation of the first 12 rows at the first task,

the computation of the second 12 rows at the second task, and so on. For the second step we

act in the same way, then we assign at each task the computation of 12 contiguous columns.

For this application, to evaluate how much the performance increases with the number

of the parallel tasks, we have executed the following experiments on the multicore platform

simulator illustrated in Section2.3. We have analyzed the time needed by the execution of the

integral image described through Formula (3.1) by varying the image size and the number of

the parallel tasks. On each xPE accelerator of the platform we have allocated only one task.

In Figure3.3, we show how much the execution time scales down with the increase of the

number of the used xPE accelerators. The figure plots the execution times for different image

sizes. For each of these sizes, we have normalized the execution times over the longest one.

The execution time is roughly halved by passing from2x accelerators to2x+1, for anyx.

For the smallest image size, beyond 4 cores the latency toward the memory hides the benefits

that the parallel execution provides, and then the execution time does not further scale.

3.3.2 Parallel MPEG2 decoder

We started working on a MPEG2 decoder [34, 54] originally written for the ST231 multi-

threaded processor [28]. This program was designed to run on 1, 2, or 4 threads dividing each

frame in two vertical halves or four quadrants. The aim of theeffort was to transform the code

into a realistic benchmark for a class of parallel multimedia codec suitable of being deployed

on massively parallel embedded multiprocessor arrays. To do this we had to restructure the ap-

plication to remove bottlenecks stemming from Amdahl law limitation to available parallelism

when the number of concurrent threads is increased.
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Figure 3.3: Integral Image. Execution time over the number of core accelerators at different image

sizes.

The task graph it is depicted in Figure3.4and it is composed of three parts: a control part

which scans the current frame, a slice decoding, and an Inverse Discrete Cosine Transform

(IDCT). There is also a fourth step, performed after the decoding of each frame, associated

with the commit of results.

We modified the program so that the scan of the current frame isperformed by the host

core, the slice decoding and the IDCT can be parallelized andexecuted on a generic number of

accelerators, and the commit of results is performed by the host core. The slice decoding and

the IDCT have been divided in independent tasks whose numbercan be equal or greater than

the number of accelerators. Regarding the latter case, a dispatcher has been implemented on

the host core to schedule the different tasks on the accelerators. To increase the performance

we further modified the code to execute the commit of the previous frame during the execution

of the current frame on the accelerators.

This example combines all the three parallel programming paradigms presented in Sec-

tion 3.2.

We have conducted experiments on the MPEG2 decoder presented in this section to evalu-

ate the benefits that the parallelism provides. As input we have used a videoclip characterized

by frame ratio 25 frame per second (fps), length 1 second, resolution 720×576. We have still
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Figure 3.4: Task graph of a parallel characterization of the MPEG2 decoder.

used the simulator presented in Section2.3. In each simulation, the platform has decoded 25

frames, and we have measured the execution time. We have divided the workload in 2, 4, and

8 tasks and allocated on each accelerator only one task.

Figure3.5 shows how much the execution time scales down over the numberof the used

xPE accelerators / parallel tasks. The execution time is roughly reduced by 40% passing from

2x accelerators to2x+1, for anyx.
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Figure 3.5: MPEG2 Decoder. Execution time over the number of core accelerators.
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Chapter 4

Process variation and aging of CMOS

architectures

4.1 Impact of static variations

Multicore architectures will be adopted in the sub-45nm CMOS technology nodes for virtually

all application domains with energy efficiency requirements exceeding 10GOPS/ Watt. Unfor-

tunately, future technology nodes will be increasingly affected by variation phenomena, and

multicore architectures will be impacted in many ways by thevariability of the underlying

silicon fabrics [29, 77].

The main causes which produce process variability in these technologies are imperfection

in lithographic patterning of small devices and random doping effects [73] especially for mul-

ticore systems [15, 40, 74].

The causes of process variations are classified in relation to two kinds of effects; die-to-die

(D2D) or within-die (WID). This means that in multicore processors if we compare two chips

of the same model, we can experience differences in speed andpower between the two chips

and also among the cores of each chip. Whereas D2D is mainly caused by atomic-scale oxide

thickness variations and also dielectric thickness variations, two components are handled to

model WID variations. One component is systematic and the other one is random. Systematic

variations show a spatial correlation; this means that nearby transistors exhibit similar param-

eter values. On the other hand, random variations are mostlyinduced by materials effects and

show different profiles across the transistors [7, 77].

However, also single core platforms are strongly impacted by variability. In superscalar
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processors, variability causes non-uniform performance among the various units, so that the

clock frequency must be set to accommodate the slowest unit,thus degrading the overall

throughput. An alternative is to set the clock based on the fastest units and leave more cy-

cles to the slowest. The instructions are then scheduled in the functional units to maximize the

throughput [57].

In multicore processor, intra-die process variations result in significant core-to-core fre-

quency variations [19, 36]. More in detail, critical paths can be faster or slower thannominal

and the clock frequency of each accelerator needs post-fabrication calibration.

In addition to the performance, variability also impacts the power consumption and since

intra-die variations cause a non-uniform behavior of the components across the chip surface,

multicore platforms become heterogeneous both from a performance and energy viewpoint [63].

Large variations are measured for the leakage because of theexponentially dependency from

the threshold voltage [2]. In conclusion, beyond 90-nm CMOS technology process variability

can affect dies leading to 30% in delay and 20× in leakage [14].

Furthermore, temperature dependencies and wear-out add dynamic variations on top of

static inter-die process variability [77].

4.2 Performance degradations and reliability limitations

Multicore architectures on next generations are also experiencing effects due to aging and

failure processes. These effects cause dynamic variationsand can be orthogonally treated with

respect to the variability which primarily leads to static variations.

Elevated power densities and practical limitations on heatremoval have led to high junction

temperatures in modern computing processors. These elevated temperatures limit the perfor-

mance and reduce the reliability of computing systems.

In particular, progressive slowdown in processors is induced by Negative Bias Temperature

Instability (NBTI) and Hot-Carrier Injection (HCI) [7] and several other mechanisms, which

are strongly dependent on temperature, cause chip failure mechanisms [70].

At the system level, NBTI and HCI produce a gradually slowdown of the transistors switch-

ing, and hence slower critical paths. This roughly is due to the stress of the transistors that

causes a continuous movement of charges.
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4.2.1 NBTI characterization for multicore platforms

NBTI affects PMOS transistors causing shifts in threshold voltages with relation to operat-

ing conditions [4]. One of the most qualified models of NBTI is characterized bytwo phases.

Thestressphase happens when the logic input 0 is applied to the gate of aPMOS transistor.

The recoveryphase happens when the logic input 1 is applied. We used the mathematical

model described by Tiwaryet al. [77].

Let’s denote the stress time aststress and the recovery time astrec , we have the threshold

voltage increment (∆Vt stress) during the stress phase modeled as in (4.1). The total degrada-

tion (∆Vt) that further takes into account the recovery time is given by the (4.2).

∆Vt stress = ANBTI × tox ×
√

Cox(Vdd − Vt)× e
(
Vdd−Vt
toxE0

−Ea
kT

)
× t0.25stress (4.1)

∆Vt = ∆Vt stress × (1−
√

η × trec/(tstress + trec)) (4.2)

We set the following parameters as descripted in [77]: tox = (0.65nm) (oxide thickness) ,

Cox = 4.6 × 10−20F/nm2 (gate capacitance per unit area),E0 = 0.2V/nm, Ea = 0.13eV ,

k = 8.6174 × 10−5eV/K, η = 0.35 (constants). The parameterANBTI is a constant

depending on the aging rate.

The delay of a transistor in relation withVt is expressed by (4.3), where α ≈ 1.3 ([77]).

SettingVdd = 1.10V , Vt = 0.5V , Lf = 5.24−10 we have a delay ofTs = 1.12−9sec. This

determines the maximum support clock frequency of a core, thus we calculate it asfck max =

1/Ts ≈ 893MHz.

Ts =
LfVdd

(Vdd − V t)α
(4.3)

We can now define theguardbandof a core as the relative difference between the working

clock frequencyfckand the maximum one (4.4).

GB =
(fck max − fck)

fck
; (4.4)
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Of course to be working a core must have a positive value for GB. Once we know the

temperature and the constantANBTI we can estimate the guardband. We assume a temperature

constant at330K and setANBTI = 15.26. We can now estimate the lifetime in terms of years

assuming to be able to impose a fixed recovery / stress ratio over the time.

Let’s assume to consider acceptable a core whose guardband is larger than 1%.

Figure4.1shows for a generic value of idle / activity ratio (X axis) theguardband (Y axis)

after a certain number of years (curves), if the value is found above the dashed horizontal line

which indicates the GB = 0.01, that number of year is guaranteed.
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Figure 4.1: Per-core guardband analisys over recovery ratio.

For example if idle / activity = 0.1 the core will work for 3 years, but not for 5 years. Again,

imposing a ratio of 0.4 the system will work until 10 years.

The lifetime is intended as the sum of the time spent in idle and the time spent in activity.

Figure4.2shows the maximum total lifetime, total activity time, and total recovery time in

year (Y axis) in relation with the ratio (X axis). The area below the total lifetime curve gives

all the guaranteed working years for each idle ratio imposed.

4.2.2 Mechanisms of Failure

Another approach to study aging and wear-out is to find a relationship between the mech-

anism of failures and the lifetime expressed in number of years. This information can be

26

4/figures/guardband.eps


4.2 Performance degradations and reliability limitations

0

2

4

6

8

10

12

14

16

0,00 0,10 0,20 0,30 0,40 0,50 0,60

Y
e

a
rs

 

idle / activity

lifetime stress time recovery time

Figure 4.2: System lifetime analysis.

obtained through a first characterization which lends itself to estimate the Minimum-time-to-

failure (MTTF) of the chip structures.

Device and interconnect failures can occur in any structureof the processor die [16, 52, 70].

Failures can be classified into five critical mechanisms:

1. Electromigration (EM). EM occurs when conductor metal atoms are being transported

within the processor interconnect. The MTTF related to thismechanism decreases with

the current density, then with the power, and with the temperature in an exponential way.

The model is given by

MTTFEM ∝ (J)−ne
EaEM

kT , (4.5)

whereJ is the current density in the interconnect,k is the Boltzmann’s constant,T is the

absolute temperature in Kelvin.n = 1.1 andEaEM = 0.9 are constants that depend on

the interconnect material.

2. Stress Migration (SM). SM is due to the migration of metal atoms in the interconnects

caused by mechanical stress. The MTTF decreases on the temperature in a non-linear

way as given by

MTTFSM ∝ |T0 − T |−ne
EaSM

kT , (4.6)

whereEaSM = 0.9 is a constant that depends on the interconnect material, andT0 is the

metal deposition temperature (typically 500 K).
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3. Time-Dependent Dielectric Breakdown (TDDB).TDDB is generated by the gate di-

electric’s gradual wear out leading to transistor failure.The MTTF of this mechanism is

affected by the temperature and the voltage as given by

MTTFTDDB ∝ (
1

V
)a−bT e

|X + (Y/T ) + ZT |

kT
, (4.7)

whereV is the operating voltage,a, b, Z, Y , andZ are all fitting parameters. Au-

thors in [72] assume the following values:a = 78, b = 0.081,X = 0.759eV, Y =

−66.8eV K,Z = −8.37 × 10−4eV/K.

4. Thermal Cycling (TC). TC in processors can be caused by different phenomena like

variations in power consumption or workloads. TC can lead tofailure. The MTTF

depends on the temperature as given by

MTTFTC ∝ (
1

T − Tamb
)q, (4.8)

whereq = 2.35 is the Coffin-Manson exponent, andTamb is the ambient temperature.

5. Negative Bias Temperature Instability (NBTI). NBTI affects the P-channels of MOS-
FET transistors. This mechanism generates a threshold voltage increase which can lead
to timing violations and failures. NBTI is given by

MTTFNBTI ∝ {[ln(
A

1 + 2eB/kT
) + (4.9)

− ln(
A

1 + 2eB/kT
− C)]×

T

e−D/kT
}1/β,

whereA,B,C,D, andβ are all fitting parameters with the following valuesA = 1.6328,

B = 0.07377, C = 0.01, D = 0.06852, β = 0.3.

The parameters and the constants of the models illustrated above are here explained. We re-

port the parameter values adopted in [72]. J is the current density in the interconnect,n = 1.1,

EaEM = 0.9, m = 2.5, EaSM = 0.9 are constants depending on the interconnect metal used

(copper is assumed),k is the Boltzmann’s constant,T is the absolute temperature in Kelvin,

Tamb is the ambient temperature in Kelvin,T0 = 500K is the metal’s stress-free temperature,

a = 78, b = 0.081,X = 0.759eV, Y = −66.8eV K,Z = −8.37 × 10−4eV/K are fitting

parameters,q = 2.35 is the Coffin-Manson exponent,A = 1.6328, B = 0.07377, C =

0.01,D = 0.06852, β = 0.3 are fitting parameters.
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4.3 Tools

4.3.1 Variability Aware Modeling (VAM)

VAM is a tool presented by IMEC in 2007 to percolate process variability and reliability infor-

mation from the electrical device model level to the system level. It reuses the same abstraction

interfaces as currently found in existing digital design flows but augmented with additional in-

formation for representing the statistical influence of such process variability and technology

reliability effects. Through a Monte-Carlo approach, it achieves sufficient statistical relevance

using a limited number of simulations. Furthermore VAM describes in detail the process to

predict system yield from technology variability, and apply this to a concrete system [58, 78].

It can be used to emulate degraded multicore platforms. VAM starts from its gate-level

netlist and can generate some instances of the system that are characterized by the values of

leakage power, dynamic power and delay of each core. In this way D2D and WID variations

can be modeled.

Figure 4.3: Diagram for lifetime estimation using the RAMP tool.

4.3.2 Reliability-aware Micro-processors (RAMP)

RAMP is a tool developed by the University of Illinois to emulate the mechanisms of failure

described in Section4.2.2. It can be very useful at design time and for devising adaptive

techniques for lifetime preservation. Basically it uses two inputs. First of all, a floorplan

describing the topology specifying all the structures of the target system has to be provided

to the tool. The other input regards a trace file containing the temporal information about

temperature and power of each structure. In a first step RAMP calculates the MTTFs of each

structure for all mechanisms by exploiting the models presented in Section4.2.2. In a second
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step through a Montecarlo simulation it estimates the lifetime of the system. In particular

the tool can be used to calculate the lifetime over the time bycumulating for each instant

the information trace from the beginning to the actual time.This means that it could be also

exploited at runtime to dynamically preserve the lifetime,for example by adapting the workload

among the cores of an MPSoCs. Figure4.3shows the diagram of RAMP.
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Figure 4.4: Modeling variability in Virtual Platforms.

4.4 Integratation of tools into virtual platforms

We integrated variability and aging models into the xSTsim virtual platform presented in Sec-

tion 2.3 by building a plug-in which uses the simulator API functionsto have access to the

simulator structures and functionalities. The idea is to simulate hardware monitors present in

modern multicore processors to expose at the software layerthe information about the power,

the speed, and the lifetime degradation of the cores. In thisway the runtime can modulate the

workload among the cores to meet given constrains on performance, energy and lifetime. In

particular monitors are simulated by memory-mapped registers for each core.

The plug-in provides the following features:

a) it differentiates the cores in relation with their parameters;

b) it scales the clock frequency of each core according to itslongest path delay;

c) it stores the cycles spent in the different states of each core;

d) since it knows the core parameters and the stored cycles, it evaluates the energy con-

sumption.

The plug-in needs to be configured at the beginning of the simulation through a text file named

configuration file, that specifies the core parameters.
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To emulated static variations among the cores in terms of leakage power, dynamic power,

and longest path delay we used VAM which works as back-end of our plug-in; Figure4.4

depicts this mechanism. From the netlist of the platform VAMgenerates the values of leakage

power, dynamic power, and longest path delay of each core. Those values are written into

the configuration file of the simulator. The plug-in reads this information and exposes them

to the software layer. Furthermore, it can automatically change the frequency of each core in

according to its own longest path delay. In this way we are able to emulate both WID and D2D

variations.

To emulate the aging we further implement into our plug-in the model shown in Sec-

tion 4.2.1.
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Chapter 5

Variability-tolerant multicore

platforms

5.1 Overview

In this chapter we study multicore platforms whose accelerators are nominally homogeneous,

but unfortunately variability causes significant perturbations on their performance and power

consumption. More in detail, critical paths can be faster orslower than nominal and the clock

frequency of each accelerator needs post-fabrication calibration. Faster cores are overclocked

and slower cores are clocked at a lower frequency. Frequencyadjustments are supported by the

platform, but the accelerators do not have independently controllable power supply voltages for

system and die cost as well as pinout reasons. All accelerators are in the same power island;

hence per-accelerator supply voltage calibration is not anoption in our platform case study. Un-

fortunately, due to its overhead in terms of area occupation, per-core dynamic voltage scaling

is amortized only for large and complex cores. As such, it is not a realistic option in embedded

platforms featuring small processing elements such as the one we are targeting in this work. In

Figure5.1, we show a chart for overhead onmm2 provided by ST Microelectronics for power

switches at 45nm CMOS technology. Power switches and independent power grids are needed

to support fine-grained DVS. In addition, having multiple supply voltages for each core implies

a high cost for the power controller (e.g. DC-DC converter).These overheads are clearly not

affordable at the granularity of the data-processing coresused in embedded media-processing.

For this reason we assume in our work that the cores are in a common voltage island.

We link the variability on platform multicore as the different supported frequencies and
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Figure 5.1: Switch ring area impact on power domain size. ST Microelectronics for power

switches at 45nm CMOS technology.

power consumptions among the cores. The main contribution of this study is the definition and

experimental validation of optimal non-uniform workload allocation policies that compensate

for platform variability both in terms of predictability and energy efficiency.

We address the problem of distributing tasks onto accelerators with the primary objective

of minimizing deadline violations and the secondary goal tominimize energy consumption.

This goal ordering is dictated by the fact that frame-rate violations may severely degrade the

quality of user experience and should be avoided as much as possible.

We define a static allocation policy where globally optimal allocation is computed with a

computationally intensive Integer-Linear Programming (ILP) solver. This approach is useful

as a design-time lower-bounding analysis step to assess optimality losses of on-line policies,

or it can be used at application start-up time if the number ofaccelerators is not large and thus

ILP solution time on the CPU is smaller than a couple of seconds.

Second, we define a two-phase approach based on linear programming (LP) and cus-

tomized bin packing algorithm (BP). This algorithm is sub-optimal but it is much faster than

ILP and can definitely be applied at application start-up even for large coprocessor arrays.

Allocation policies computed at application start-up are applicable when the workload does

not change significantly on a frame-by-frame basis, as in thecase of image enhancement ap-
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5.1 Overview

plications, which perform very regular pixel operations (e.g. Gaussian filtering, color-space

conversion, etc.).

The proposed policies exploit the knowledge of the degradations of the performance (i.e.

maximum supported clock frequency) among the cores, which can be provided either by offline

characterization or by online monitors. For instance in [61] the authors propose a monitoring

structure which can anticipate timing violations. Moreover the paper demonstrates that this

monitor can be scalable, low power, and with low area overhead. In [26] a high bandwidth

critical path monitor is proposed. This monitor can providereal-time timing information to

a variable voltage/frequency scaling. Power-reduction techniques such as clock gating cause

wide fluctuations in supply voltage. Those variations impact timing violations. This problem is

also referred as voltage emergency. In [62] a voltage emergency predictor is proposed to learn

the combinations of control flow and microarchitectural events causing voltage emergencies

and prevent the timing violations. In [35] the authors exploit hardware solutions with additional

run-time software to address problematic code sequences that cause recurring voltage swings.

In [43] the authors present a microarchitectural control that limits supply voltage fluctuations

with a nearly negligible impact on performance and energy.

To test the effectiveness of the proposed policies for variability compensation, in the ex-

periments we explore the design space in terms of numbers of accelerators, and we test a

large set of different workloads and tightness levels of deadline constraints. We also compared

with state-of-the-art solutions for variability-aware energy minimization [75]. To show the im-

pact on variability compensation, we generated a number of variability affected platforms with

different performance/power characteristics and we analyzed the variability compensation ca-

pabilities to demonstrate that our policies are much more robust against platform variations in

terms of real-time predictability while providing competitive energy savings.

5.1.1 Target system and variability model

The target application we consider in this work is characterized by a set of independent tasks

synchronized on a barrier for which a global deadline is specified. We assume that each task

is characterized by a number of instructions which is known at release time. This number

corresponds to a given number of cycles, which also takes into account cycles lost for shared

memory contention as a fraction of the executed ”useful” cycles. We considered a fixed number

of cycles spent for shared memory accesses for each task which may result from task execution

profiling or worst case analysis. The goal of our allocation policies is to map tasks to cores
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such that deadline constraints are met with minimum energy consumption. The platform we

refer is xSTsim presented in Section2.3. We generated set of degraded platform by applying

VAM, the tool presented in Section4.3.1, on xSTsim.

The rest of the chapter is organized as follows. In Section5.2 we discuss related work, in

Section5.3we present our variability-tolerant workload allocation policies, with details on ILP

and LP+BP formulations. Finally in Section5.4we show experiments and results.

5.2 Related work

Allocation and scheduling in multicore architectures which are not affected by variations has

been extensively studied, very often using ILP (see for instance [85]). Recently, much attention

has been given to task allocation and scheduling strategiesfor MPSoCs affected by variability

and aging. Integer Linear Programming (ILP) techniques forvariability affected platforms have

been proposed in [75, 83, 86], where the objective is the minimization of the product between

the energy consumption and the delay squared.

The works in [75, 83] assume a different workload model, which can be described by a

task graph with inter-task dependencies. Moreover, the approaches are fully static and cannot

be applied on-line. A process variation-aware thread mapping has been recently proposed

in [38]. In this work the main purpose is to maximize performance with focus on loop-intensive

applications: threads undergo a first run of the main loop of each task to detect the impact

of core speed on the thread execution time. This informationis then used for the following

mapping step. Compared to our work, this approach does not provide an optimal solution and

does not take energy consumption into consideration.

In [81] a statistical scheduling approach is proposed to mitigatethe impact of parameter

variations in a multiprocessor platform. The strategy assumes that task executions are statistical

rather than deterministic. A new metric is introduced called performance yield, defined as

the probability of the assigned schedule meeting the timingconstraints. In this work, authors

demonstrate that using a statistical scheduling approach consistently improves the performance

yield. The proposed policy is based on a static estimation oftask execution times and variability

information and it does not consider power consumption.

Task allocation and scheduling techniques have been recently proposed to handle aging

effects. In [39] a task allocation and scheduling technique is presented whose objective is to
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maximize system lifetime under a given performance constraint, however energy consumption

is not taken into account.

Most closely related to our approach, variability aware workload allocation policies for

independent task sets are presented in [75, 86]. In the former paper, two policies are considered,

aiming at maximizing performance or minimizing power, withthe assumption that voltage

scaling is available on a per-core basis (this is not supported in our platform). Moreover [75]

assumes that the number of tasks is not larger than the numberof cores. In our experiments

we compare with modified versions of the policies described in [75], with suitable extensions

for our system setup. In [86] the proposed policies explicitly consider time constraints as input

of the problem, as in our case. However, energy minimizationis achieved by using an ILP

solution, which has a large computational cost and can not beapplied online.

5.3 Variability-tolerant workload allocation

To the purpose of deriving an effective formulation of the optimal workload allocation prob-

lem, some assumptions have been made that are described in this section. We start from the

knowledge of the total number of tasks and of the cycle budgetfor each task. Furthermore,

we assume that the actual frequency of each core (considering the impact of variations) and its

power consumption, both static and dynamic, are also known.

Based on these assumptions, we formulated the problem as described in the next subsec-

tion. We first describe the optimal ILP technique, and then wedescribe the approximated

LP+BP approach.

5.3.1 ILP problem formulation

TheILP, Integer Linear Programmingformulation considers binary variables to represent the

allocation of a generic taskj on corei. The total number of binary variables is given by the

numberM of tasks times the numberN of cores.

The total energy is expressed as a function of the binary variables and the static and dy-

namic contributions in active and idle states such that a linear function is obtained. It must

be noted that in this formulation we consider two power states, active and idle. However the

proposed approach can be generalized to consider a larger number of idle states (e.g. power

gating, clock gating).
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Each corei is characterized by(PdynA, PstaA, PstaI)i, while each taskj is characterized by

the number of cyclesCj. For each corei running at frequencyfcki we express its active time

asTAi and its idle timeTIi as follows:

TAi =
CAi

fcki
TIi =

CIi

fcki
(5.1)

whereCAi is the number of cycles spent inactivity state whileCIi is the number of cycles

spent inidle state.

By considering the(tj , ci) pair that characterizes the mapping of taskj on corei, the asso-

ciated binary variablexi,j assumes value1 if the task is mapped on the core,0 otherwise. In

this case the total energy is given by:

ETOT =
N
∑

i=1

[

(PdynAi + PstaAi)CAi

fcki
+

PstaIiCIi

fcki

]

(5.2)

For each corei, its execution time inactivity and idle states can be expressed as a function of

the task execution times:

TAi =
∑M

j=1

xi,jCj

fcki
TIi = T − TAi (5.3)

where theT is the time constraint by which the workload must be executed. The total energy

becomes:

ETOT =

N
∑

i=1





(PdynAi+PstaAi−PstaIi)

fcki

M
∑

j=1

(xi,jCj)



+ T

N
∑

i=1

PstaIi (5.4)

To obtain a linear function, we add N dummy variables:

ETOT =

N
∑

i=1





(PdynAi+PstaAi−PstaIi)

fcki

M
∑

j=1

(xi,jCj)



+ T

N
∑

i=1

xN+1,iPstaIi (5.5)

Now, given the following vector of binary variables:

X = (x1,1, . . . , x1,M , . . . , xN,1 . . . , xN,M ,

xN+1,1 . . . , xN+1,N )|xi,j ∈ {0, 1} ∀i, j (5.6)

TheILP formulation of the problem becomes:
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minX ETOT














∑M
j=1 xi,j = 1 ∀i : 1 . . . N

xN+1,j = 1 ∀j : 1 . . . N
∑M

j=1

xi,jCj

fcki
≤ T ∀i : 1 . . . N

(5.7)

The first constraint imposes that each task is allocated on only one core. The second constraint

determines the dummy variables while the third one concernsthe execution time constraintT .

The ILP solver (we used ILOG [41]) wants both coefficient and variable vectors with the same

size; indeed we need the dummy variables.

As mentioned in the introduction, the ILP solution mainly represents an optimal reference

for the faster heuristic policies described below. On the other hand, it could be actually applied

before application start-up if the number of accelerators is not large and thus the solution can

be computed in a time much smaller with respect to application execution time.

5.3.2 LP+BP problem formulation

An approximate approach that lends itself to be applied to platforms with a larger number of

accelerators is based on a two-phases approach based on Linear ProgrammingLP followed by

Bin PackingBP. The algorithm can be run at the beginning of the applicationand requires the

knowledge of the cycle budget for each task.

5.3.2.1 LP: first step

The LP step starts from the total number of cycles of all the tasks (calledK). The goal of the

LP is to assign a cycle budget to each core disregarding task granularity. We express the energy

consumption as for ILP but here the number of variables is2N and they represent the number

of cycles each core must execute in active and idle cycles. Referring to (5.2) we consider the

vectorR of 2N coefficients:

R = (
PdynA1 + PstaA1

fck1
,
PstaI1

fck1
, . . . ,

PdynAN + PstaAN

fckN
,
PstaIN

fckN
) (5.8)

and the vectorC of 2N real variables that will then be rounded up to the closest integer:

C = (CA1, CI1, . . . , CAN , CIN ) (5.9)
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TheLP minimization problem can be expressed as:

minC R · CT






















CAi + CIi

fcki
=

CAj + CIj

fckj
∀i, j : 1 . . . N, i 6= j

∑N
i=1CAi = K

CA1 + CI1

fck1
≤ T

(5.10)

The first constraint concerns the sum of idle and active timesthat must be equal for all the

cores, the second one concerns the total number of cycles while the third one the maximum

execution timeT .

5.3.2.2 BP: second step

Thanks to the LP solution, each corei is assigned an optimal budget of cyclesCAi. If task allo-

cation were able to exactly match this budget the minimum energy condition will be achieved

within the time constraint.

However this is not possible in general. To achieve a good mapping a Bin Packing algo-

rithm is used. We consideredBest Fit Decreasingsolution, which ranks the tasks from the

biggest to the smallest and the cores from the one with lower capacity to the one with higher

budget (also called capacity, i.e.CAi LP solutions). The algorithm proceeds by taking the

current task and mapping it into the core with minimum capacity to fit it, then the cores are

reordered considering the remaining capacities and the next task is considered. We show two

different implementations of the Bin Packing, the first one is composed by two steps, namely

Step1() and Step2standard() and the second one composed by three steps, namelyStep1();

Step2custom(); Step3custom(). The second version is a custom version which is more suitable

for our problem.

The pseudo-code ofStep1is shown in Listing5.1 and is described as follows. TheTasks

array contains the number of cycles needed by each task, and the Coresarray contains the

remaining capacities of the cores. Line02: Tasks are sortedfrom the biggest to the smallest

according to their estimated cycles. Line04: For each task the cores are sorted according to the

smallest residual capacity. Line05: A loop around the coresto find the first one that has enough

left capacity for the current task is done. When such core hasbeen found, the algorithm records

the mapping and updates the remaining capacity for the selected core. The function returns the

number of mapped tasks that is useful to understand if all tasks have been mapped.
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Listing 5.1: the Step1 function which implements the Best Fit Decreasing to solve the formulated Bin

Packing Problem.

i n t Step1 ( Tasks , Cores ,CORENUMBER,TASK NUMBER) {

01 i n t mapped t num =0;

02 D e s c e n t i n g S o r t ( Tasks ) ;

03 f o r ( t =0; t<TASK NUMBER; t ++) {

04 A s c e n t i n g S o r t ( Cores ) ;

05 f o r ( c =0; c<CORENUMBER; c ++) {

06 i f ( Task [ t ] <= Cores [ c ] ) {

07 Ass ign ( t , c ) ;

08 Cores [ c ] −= Tasks [ t ] ;

09 mappedt num ++;

10 break ;

11 }

12 }

13 }

14 re tu rn mapped t num ;

15 }

By applying this solution, it is in general possible that some tasks cannot be allocated

because none of the cores has enough remaining cycle budget.In this case, if the unassigned

tasks are mapped by minimizing the exceeding cycle budgets,the time constraint would be

violated. This is the behavior of the standard BP. We refer tothis as theStep2standard, and we

show it in Listing5.2.

Listing 5.2: the Step2standard function allocates the tasks while minimizing the exceeding cycle budget.

i n t S t e p 2 s t a n d a r d ( Tasks , Cores ,CORENUMBER,TASK NUMBER, t l a r g e ) {

01 i n t mapped t num = t l a r g e ;

02 f o r ( t = t l a r g e ; t<TASK NUMBER; t ++) {

03 c exc =0;

04 min exc = abs ( Cores [ cexc ] − Tasks [ t ] ) ;

05 f o r ( c =1; c<CORENUMBER; c ++) {

06 i f ( min exc > abs ( Cores [ c ]− Tasks [ t ] ) ) {

07 c exc = c ;

08 min exc = abs ( Cores [ cexc ] − Tasks [ t ] ) ;

09 }

10 }

11 Ass ign ( t , c exc ) ;

12 Cores [ c exc ] −= Tasks [ t ] ;

13 mappedt num ++;

14 }

15 re tu rn mapped t num ;

16 }

The Step2standard function, starting from the largest task(having indext large) that has
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not been allocated in Step1, finds the core that can execute itwith the minimum exceeding

cycle budget. The function then continues with the other tasks and returns the number of the

mapped tasks that can be equal to the total number of tasks (itcan be useful for checking). It

must be noted that the subtraction between the number of remaining cycles for a core and the

cycles needed by the current task is always negative.

In this work, we propose a variant, where the idea is to check time constraints instead of

minimizing the exceeding cycle budget. This applies when there are no cores with enough

remaining capacity to fit a certain task. In this case the residual time is computed as the differ-

ence between the time constraint and the estimated assignedexecution time so far, given by the

number of already assigned cycles plus the cycles needed by current task; all is then divided

by the frequency. The task is assigned to the first core for which the estimated activity time

is shorter than the deadline. We explore the cores starting from the one with larger capacity

(i.e. the inverse order). In this way we force to fit the tasks minimizing the exceeding cycle

budgets of the cores (i.e. that means the exceeding LP solution, which is the input of BP), in

order to lower the energy consumption. The variant that we propose for theStep2standardis

theStep2customwhich is shown in Listing5.3.

Listing 5.3: the Step2custom function tries to allocate thetasks while meeting the deadline.

i n t Step2cus tom ( Tasks , Cores , Freqs , S ta r tCo reBudge t s ,CORENUMBER

,TASK NUMBER, t l a r g e , t i m e c o n s t r ) {

01 i n t mapped t num= t l a r g e ;

02 f o r ( t = t l a r g e ; t<TASK NUMBER; t ++) {

03 A s c e n t i n g S o r t ( Cores ) ;

04 f o r ( c=CORENUMBER−1;c>=0;c−−) {

05 i f ( t i m e c o n s t r >

06 ( ( S t a r t C o r e B u d g e t s [ c ] − ( Cores [ c ] − Tasks [ t ] ) )

/ F reqs [ c ] ) ) {

07 Ass ign ( t , c ) ;

08 Cores [ c ] −= Tasks [ t ] ;

09 mappedt num ++;

10 break ;

11 }

12 }

13 }

14 re tu rn mapped t num ;

15 }

In the Step2customfunction, starting from the largest task that has not been allocated in

Step1, we find the core that can execute this task while meeting the time constraint (time constr).

For each task we find the first core that can meet the deadline when adding the execution time
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of the current task. In Line06, we can see that we use the current remaining cycles (Cores[c])

by subtracting the cycles of the current tasks; from the initial core budget, we can estimate the

allocated cycles and the execution time. This function needs theFreqsarray which contains the

frequencies of the cores, and theStartCoreBudgetsarray which contains the start cycles budget

of the cores. The function returns the total number of allocated tasks. In case there are some

tasks that are not allocated we need a third step shown in the function in Listing5.4.

Listing 5.4: the Step3custom function allocates the tasks while minimizing the overrunning of the dead-

line.

i n t Step3cus tom ( Tasks , Cores , Freqs , S t a r t C o r e B u d g e t s

,CORENUMBER,TASK NUMBER, t l a r g e ) {

01 i n t mapped t num = t l a r g e ;

02 f o r ( t = t l a r g e ; t<TASK NUMBER; t ++) {

03 A s c e n t i n g S o r t ( Cores ) ;

04 c exc =CORENUMBER−1;

05 t m i n e x c = ( S t a r t C o r e B u d g e t s [ cexc ]

− ( Cores [ c exc ] − Tasks [ t ] ) )

/ F reqs [ c exc ] ;

06 f o r ( c=CORENUMBER−2;c>=0;c−−) {

07 i f ( t m i n e x c > ( ( S t a r t C o r e B u d g e t s [ c ]− ( Cores [ c ] − Tasks [ t ] ) )

/ F reqs [ c ] ) ) {

08 c exc = c ;

09 t m i n e x c = ( S t a r t C o r e B u d g e t s [ cexc ]

− ( Cores [ c exc ] − Tasks [ t ] ) )

/ F reqs [ c exc ] ;

10 }

11 }

12 Ass ign ( t , c exc ) ;

13 Cores [ c exc ] −= Tasks [ t ] ;

14 mappedt num ++;

15 }

16 re tu rn mapped t num ;

17 }

In the Step3customfunction, we find for the remaining tasks a mapping that minimizes

the execution time over the deadline. For each task we find thecore that can execute it while

minimizing the time of the deadline miss. We explore the cores starting from the one with

the biggest capacity (i.e. in the inverse order) to minimizethe exceeding cycles and thus the

energy consumption. If the platform is designed with conservative time margins for the target

applications, this step should not be executed.
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5.3.3 Rank-based techniques

The proposed strategies will be compared in the experimental results section with approaches

that have been presented in literature to address the problem of allocation of independent tasks

on variability affected cores [75].

• Rank Frequency. This technique oriented to performance maximization performs a

dynamic allocation by assigning the current task on the available core with higher fre-

quency. It derives from the VarF&AppIPC presented in [75] but differs from the original

version in that it can be applied also when the number of tasksis larger than the number

of cores. Moreover, we do not sort tasks based on the IPC, rather we consider it con-

stant. Finally, we do not apply the second stage exploiting voltage assignment because

we consider platforms having a fixed supply voltage.

• Rank Power. This technique oriented to power minimization performs a dynamic allo-

cation by assigning the current tasks on the available core characterized by the minimum

power consumption. It derives from the VarP&AppP presentedin [75] as the cores with

smaller total power consumption are selected first. Differently from the original versions,

we do not sort tasks based on dynamic power.

VarF&AppIPC and VarP&AppP are the names of policies in [75]. We extended them into

the Rank policies. Rank Frequency allocates a new task on thefastest core available; Rank

Power allocates a new task on the lower-power core available. Rank policies are the closest to

our approach we found.

5.4 Experiments

5.4.1 Setup

In the first set of experiments, reported below, the xSTsim cores have been synthesized on

STMicroelectronics 65nm high-speed technology. Due to confidentiality concerns, all results

are expressed in normalized form with respect to the nominalfrequency and power. Variability

data has been obtained through the VAM methodology, as outlined in Section4.3.1. It is

important to notice that the ratio between leakage and dynamic power is not constant, as higher

operating frequency is generally coupled with faster, higher-leakage transistors. Thus, the

leakage power of the fastest core accounts for as much as 20% of the dynamic power. We
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consider leakage consumption in power-gating state as variation-free because it is controlled

by very large power gating transistors turned off in power-gating state. These transistors can be

biased with a suitable gate voltage to ensure that variability effects are negligible. In Table5.1

the normalized frequency and power characteristics of the cores used for the experiments in

this section are detailed.

core fck PdynA PlkgA/PdynA (4) PlkgPG/PdynA (4) PtotA/fck

1 1.14 1.07 2.14E − 01 2.00E − 05 1.11

2 1.07 1.04 1.56E − 01 2.00E − 05 1.11

3 1.01 1.01 7.10E − 02 2.00E − 05 1.06

4 1.00 1.00 1.00E − 02 2.00E − 05 1.00

5 0.97 0.99 6.90E − 03 2.00E − 05 1.01

6 0.95 0.97 4.86E − 03 2.00E − 05 1.01

7 0.93 0.95 3.81E − 03 2.00E − 05 1.02

8 0.89 0.93 2.79E − 03 2.00E − 05 1.04

MV : 21.93% 13.18% 98.70% 0.00% 10.28%

av : 9.95E − 01 9.95E − 01 5.87E − 02 2.00E − 05 1.05E + 00

std : 7.97E − 02 4.58E − 02 8.27E − 02 0.00E + 00 4.67E − 02

Table 5.1: Variability-affected MPSoC. In the headlines we used the following notations:A for

Activity, lkg for leakage,MV for Maximum Variation (i.e.(max − min)/max), av for average,

std for deviation,fck is the maximum clock frequency supported by the core.

From the values in Table5.1, we obtain that the maximum variation of the energy required

to execute a task on any two different processors is 10.28%. This can be considered as an upper-

bound in the energy consumption difference achievable by task allocation. We considered four

and eight-core platforms. Referring to Table5.1, four-core platforms use core numbers 2, 4, 6,

and 8.

Tasks are characterized by their instruction budget. For our experiments we generated task

sets, characterized by the number of tasks and the deviationof the number of instructions per

task. The total instruction budget of application is fixed for each task set. For a given number

of tasks, we considered one task set with no deviation, i.e. all tasks are equal, and additionally

we generated 8 different task sets for each non-zero value ofdeviation. We used two non-zero

values of deviation.

In our experiments another key parameter is the tightness oftiming constraints. These con-

straints have been selected to obtain variable platform utilization. We computed the minimum
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time to execute a given total number of cycles, which imposesa 4 cores platform utilization of

100%. We then obtained more relaxed deadline constraints (tconstri) as follows:

tconstr1 = 1.05 · timemin

tconstr2 = 1.10 · timemin

tconstr3 = 1.20 · timemin

tconstr2 = 1.40 · timemin

(5.11)

where:

timemin =
K

∑

i=2,4,6,8 fcki
(5.12)

In our experiments we considered the total number of cyclesK being 80e+6. It must be noted

that the more relaxed constraint imposes a platform utilization of just 60%.

5.4.2 The advantage of variability-aware allocation

In this section, we show what is the advantage in terms of energy consumption and performance

of variability-aware allocation using the proposed methods by comparison with rank-based

techniques. To achieve this objective, we first compute the maximum and the minimum energy

consumption to execute a given task set on the platform. The minimum energy (without taking

into account timing constraints) is obtained when all the tasks are executed by the core with

minimum energy and similarly for the maximum energy.

We use these extreme values to normalize the energy when comparing the different tech-

niques under consideration. I.e. for the generic energyE spent during the execution of a given

workload, we normalize it using the following metric:(E−Emin)/(Emax −Emin). We com-

pute the deadline miss rate related to each group of 8 task sets, where a group is characterized

by a total number of tasks (i.e. 8, 32, and 128) and by a deviation. The miss rate is com-

puted as the number of tasks violating the deadline. The entity of the deviation is expressed

in a relative way with respect to the average number of cyclesper task. We identified three

levels of deviation, namely 0, 0.25 and 0.5. For instance, a deviation of 0.5 means that the

number of cycles of tasks can be half the average. For 0 deviation only one task set exists. In

what follows we show the comparison results for the two casesof a 4-core platform and 8-core

platform. We will use the following abbreviations: ILP: Integer Linear Programming -based

policy, LP+BP: Linear Programming + Bin Packing -based policy, RF: Rank Frequency policy,

RP: Rank Power policy.
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5.4.2.1 Results using 4-core platform

Figure 5.2 shows the energy comparison among the policies when the total number of task

of the application is 8 and they are characterized by high deviation (level 0.5). The proposed

ILP solution provides better results in terms of energy consumption and lots of deadlines are

met. Also LP+BP meets many deadlines but uses more energy. Itmust be noted that our

policies are able to save energy when the time constraint is more relaxed. Rank based policies

spend the same energy independently from the constraints (they do not take them into account)

and violate the deadlines in most of the cases. Details abouttiming violations are shown in

Table5.2, where miss rates are reported.

Figure 5.2: 4 cores. Normalized Energy Comparison. The Number of Task is8, the deviation is

0.5. A circle means that some deadlines are not met. tconsti is the constraint leveli. The rank

approaches give very close results, so they are hardly distinguishable in the plot.

tconstr1 tconstr2 tconstr3 tconstr4

ILP 0.13 0.00 0.00 0.00

LP+BP 0.75 0.25 0.00 0.00

RankFrequency 1.00 1.00 0.75 0.38

RankPower 1.00 1.00 0.75 0.38

Table 5.2: Deadline miss rate. 4 cores. 8 tasks. 0.5 for deviation.

The same comparison has been done considering an application made of 32 tasks. Results
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show that in this case LP+BP achieves similar results with respect to ILP in terms of energy

consumption (Figure5.3). This is because a large number of smaller tasks (in terms ofnumber

of instructions) are easier to allocate. Also, from a miss rate point of view, rank based policies

perform better than in the previous case, however they are always worse than both ILP and

LP+BP, as shown in Table5.3.

Figure 5.3: Normalized energy comparison. 4 cores. The Number of Task is32, the deviation is

0.5. A circle means that some deadlines are not met. tconsti is the constraint leveli. The rank

approaches provide very close results, so they are hardly distinguishable in the plot.

tconstr1 tconstr2 tconstr3 tconstr4

ILP 0.00 0.00 0.00 0.00

LP+BP 0.00 0.00 0.00 0.00

RankFrequency 0.88 0.38 0.00 0.00

RankPower 1.00 0.38 0.00 0.00

Table 5.3: Deadline miss rate. 4 cores. 32 tasks. 0.5 for deviation.

5.4.2.2 Results using 8-core platform

We performed experiments on a platform with higher parallelism. We considered task sets of

8 tasks and highest deviation. RankFrequency and RankPowerspend a considerable amount

of additional energy with respect to ILP and LP+BP (see Figure 5.4). Moreover, they provide
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much larger miss-rates. It must be noted that, differently from the 4-cores platform, the pro-

posed strategies gain a considerable amount of power also for tighter time constraints. This

is because they are able to better exploit the additional degrees of freedom for the allocation

provided by the larger number of cores.

Figure 5.4: Normalized Energy Comparison. 8 cores. 8 tasks for each task-set with 0.5 for

deviation. A circle means that some deadlines are not met. tconsti is the constraint leveli.

To compare the capability of the proposed strategies to efficiently use the platform, we show

platform utilization details for the 8-cores platform in Table 5.4. A utilization of 100% means

that all the cores are used at least once. Since timing constraint values have been tuned to the

4-cores platform, the whole computational power of the 8-cores is under-utilized on average

and a smart allocation policy should exploit this to reduce energy consumption by switching

off some of the cores. In Table5.4 the 45% value means that the 55% of cores are never used.

tconstr1 tconstr2 tconstr3 tconstr4

ILP 42% 47% 50% 63%

LP+BP 36% 42% 45% 58%

RankFrequency 100% 100% 100% 100%

RankPower 100% 100% 100% 100%

Table 5.4: Platform Utilization Percentage. 8 cores. 8 tasks for each task-set with 0.5 as deviation.
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5.4.3 Variability compensation analysis

The results obtained so far were referring to a specific variability-affected platform. However,

being variability a statistical effect, we need to study theeffectiveness of the policies on many

of such platforms. To this purpose we performed a set of experiments using a number of

platforms generated using VAM. The objectives of the proposed analysis are the following:

1. to show the impact of variations in terms of performance and energy at the application

level;

2. to demonstrate how variability-aware task allocation policies in general are effective

in reducing the impact of variability, however state of the art policies are not able to

compensate both energy and performance impact with the sameeffectiveness at the same

time;

3. to demonstrate that the policies we designed are able to reduce the impact of variability

on energy while matching time constraints.

To highlight the energy gains with respect to RF/RP, we normalized the energy levels with

respect to the energy provided by ILP (best case). This is thepurpose of Figure5.5, where for

each platform the normalized energy consumption of LP+BP, Rank Frequency, Rank Power is

represented. ILP consumes the minimum energy with no deadline misses. The plot highlights

that LP+BP allows energy savings almost as significant as those achieved by ILP, whereas the

Rank policies consume more energy and lead to deadline misses.

Figure 5.5: Energy comparison among LP+BP, Rank Frequency, and Rank Power techniques.

Values are normalized by the ILP’s.

To show the cumulative impact of these policies on variability affected platforms, in Figure

5.6 we reported the energy consumption for all the 4 policies. For each policy we reported
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minimum, maximum and average energy consumption values forthe execution of the repre-

sentative benchmark consisting of 80Mcycles. The plots show that LP+BP and ILP policies

provide always lower energy by considering average cases. Considering the maximum energy

consumption, RP provides slightly lower maximum energy, however this comes at the price of

a very large miss rate.

Figure 5.6: MIN-MAX-AVG Energy Comparison. Energy consumption comparison: cumulative

results across all platforms considering MIN, MAX and AVG energy for each policy.

Figure 5.7: Energy per cycle / Time Spreading. Execution time vs. energyconsumption per cycle.

The execution time is divided by the deadline. The horizontal dashed row identifies the deadline.
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As mentioned before, the proposed policies are much more effective in compensating per-

formance impact of variations with respect to RF and RP. Thisis evident by observing Figure

5.7. Since each platform can be more or less energy consuming depending on the ratio between

power and clock frequency of its own cores, to evaluate in a better way the spent energy across

the different platforms we used the metric of energy per cycle. Here it can be noted that the pro-

posed policy compensates variations by reducing time violations due to variability effects and

leads to predictable performance results. Indeed, the execution times provided by LP+BP (and

also by ILP) are very close but lower than the value1, which identifies the time constraint, inde-

pendently from the platforms, which is the time constraint we used for these experiments. On

the other side, rank policies lead to much more variable execution times. It must be noted that,

by considering each single platform, our policies provide always lower energy while matching

time constraints. Finally, it must be noted that for our policies the energy spread is slightly

larger, but mainly because our policies are aimed at minimizing energy (indeed the minimum

energies are provided by our policies), not to match a given energy budget.

5.5 Summary

In this chapter, we presented the definition and experimental validation of optimal non-uniform

workload allocation policies that compensate for platformvariability both in terms of pre-

dictability and energy efficiency. We addressed the problemof distributing tasks onto acceler-

ators with the primary objective of minimizing deadline violations and the secondary goal to

minimize energy consumption. First we defined a static allocation policy where globally opti-

mal allocation is computed with a computationally intensive integer-linear programming (ILP)

solver. Second, we defined a sub-optimal two-phase approachbased on linear programming

(LP) and bin packing (BP). We demonstrated through experiments conducted on an indus-

trial platform simulator the effectiveness of the proposedpolicies using a large set of different

workloads and tightness levels of deadline constraints. Wealso compared with state-of-the-art

solutions for variability-aware energy minimization to demonstrate that our policies are much

more robust in terms of real-time predictability while providing competitive energy savings.

Regarding the two proposed approaches namely ILP and LP+BP,the first one gives the

optimal solution but it is very time demanding whereas for LP+BP some improvement in ex-

ecution time can be reached. In the next chapter we will show how it is possible to apply the

LP+BP-based policy at runtime.
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Chapter 6

A variability-aware run-time task

allocation

6.1 Overview

The previous chapter gave important insights to the problemof the energy minimization under

real-time constraints for multicore platforms. However, in most of real scenarios task allocation

techniques need to be executed at runtime, and this means that their algorithms must be simple.

The aim of this chapter is to improve the implementation of the policy based on the LP+BP

formulation to apply that strategy at runtime. We based on the same hypothesis regarding the

platforms, the variations and the workload illustrated in Chapter5. In particular the contribute

we provide in this chapter are threefold and can be summarized as follows.

First, we propose a new formulation of the problem which allows to design a linear-time

algorithm to solve it and that can be easily applied online, i.e. at run-time. Indeed, we demon-

strate that the overhead of the LP+BP solution is minimal andenables its application on a

frame-by-frame basis. Second, we propose a full implementation of the LP+BP on a multicore

embedded multiprocessor SoC running representative multithreaded multimedia applications,

namely an MPEG2 decoder and an Integral Image algorithm, that have been parallelized and

ported to the target platform as shown in Section3.3. Their implementation exploits on-board

accelerators to execute various threads in parallel while the host core accomplish dispatching

functionalities and takes decisions about the allocation of the tasks by running the algorithms

of the policies discussed in this chapter. Finally, we provide a comprehensive study about the

effectiveness of the proposed runtime allocation technique on multimedia applications in terms
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of energy, deadline miss rate, scalability (both in the number of cores and tasks) and variability

conditions.

To well explain the new study we review in Section6.2 the LP+BP formulation which has

been previously shown in Section5.3.2. In Section6.2 we also review the illustration of the

comparison techniques based on [75] and presented in Section5.3.3 with the aim to better

highlight the difference between the different approaches.

Finally, we demonstrate through experimental results thatour technique compensates vari-

ability, while improving energy-efficiency and minimizingdeadline violations in presence of

performance and power variations across the cores. The proposed policy can save up to 33%

of energy with respect to the state-of-the-art policies and65% of energy with respect to one

variability-un-aware task allocation policy while providing better Quality of Service (QoS).

6.2 Variability-tolerant run-time workload allocation

We begin the description of the workload allocation policies by introducing some notations.

In active state, each corei consumes dynamic power expressed byPdynAi and leakage power

expressed byPlkgAi. Each corei consumes only leakage power while in idle state, which is

expressed asPlkgIi. The clock frequency of a corei is fcki. Each core spends a certain amount

of energy per cycleDAi given byDAi =
PdynAi + PlkgAi

fcki
in activity state, andDIi given by

DIi =
PlkgIi

fcki
in idle state.

We start describing the rank policies used for comparison, as they are more intuitive. These

techniques are based on the scheme shown in the block diagramin Figure6.1. A ranking of

the cores is performed on the basis either on the clock frequency, dynamic power, and leakage

power, depending on the specific implementation. On the other side, tasks are sorted using

information about the tasks cycle budget. Finally, the tasks are allocated one-by-one on the

first available core following the ranking. The solution is characterized by a vector of the

binary elementsxi.js. For each corei if the taskj is allocated on itxi,j is 1, otherwise0. In

what follows we detail the various rank policies, each one characterized by the way the rank is

performed. This choice determines the behavior of the policy. For instance, a ranking based on

clock frequency will lead to smaller execution time with respect to a ranking based on power.
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Figure 6.1: Rank policies block diagram.

6.2.1 Rank Frequency

The tasks are sorted in relation with their lengths in terms of cycles starting from the longest

one. The cores are sorted in relation with their clock frequency fcki starting from the speediest

one. Then, the current task is allocated on the first available core; this implies that the largest

task is executed by the speediest core and so on. This technique derives from the VarF&AppIPC

policy presented in [75] but differs from the original version in that it can be applied also when

the number of tasks is larger than the number of cores. Moreover, we do not sort tasks based on

the Instruction per Cycle (IPC), rather we express each taskwith its activity cycles, but we sort

the profiled tasks from the largest to the smallest. Finally,we do not apply the second stage

exploiting voltage assignment because we consider platforms having a fixed supply voltage.

The problems of this technique are: a) it does not take into account the power consumption of

the cores, and then it only tries to minimize the execution time; b) when the number of tasks

is greater than the number of cores it is not generally true that executing the largest task on the

fastest core implies the fastest computation; it can be easily shown that executing two or more

small tasks on the fastest core and the largest task on another core can be taken less time for

the execution.

6.2.2 Rank Power

The tasks are sorted in relation with their lengths in terms of cycles starting from the longest

one. The cores are sorted in relation with their power consumption PdynAi + PlkgAi starting

from the one at minimum power consumption. Then, the currenttask is allocated on the first

available core; this implies that the largest task is executed by the least power consuming core.
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It derives from the VarP&AppP presented in [75] as the cores with smaller power consumption

are selected first. The problems of this technique are: a) it does not take into account the time

needed to execute all tasks; b) executing one task on the coreat minimum power does not imply

that it will consume the minimum energy because the energy also depends from the execution

time which depends from the clock frequency of the core.

6.2.3 Rank Energy

We introduce this technique to solve problem b) of Rank Power. We characterize each core

i by its own ratio between power and clock frequency. This ratio consists in the energy per

cycleDAi. Sorting the cores from the one at minimum energy per cycle and sorting the tasks

from the longest one, we allocate the current task on the firstavailable core. This implies

that the largest task is executed by the least energy consuming core. Besides, the problem of

this technique is that when the number of tasks is greater than the number of cores, it is not

generally true that executing the largest task on the core atminimum energy per cycle implies

the lowest energy consumption; it can be easily shown that executing two or more small tasks

on the core at minimum energy per cycle and the largest task onanother core, the platform can

spend less energy.

6.2.4 LP+BP and its fast implementation

The objective of the proposed LP+BP approach is to approximate the optimal solution in a

computationally efficient way. We firstly describe the rationale behind the policy, and then we

cover its mathematical formulation. The block diagram is shown in Figure6.2.

This approximation is obtained by first determining a fine grain (cycle-level) allocation

of a cycle budget to each core to minimize energy consumptionwhile matching a given time

constraint. This is done using an optimized formulation of the LP problem that does not require

the usage of a solver so that the solution can be computed veryfast. After this is done, the tasks

are fit into the given budgets using a customized BP algorithmthat takes the time constraint

into account to reduce the impact on QoS when the task allocation do not fit in the given budget

for one or more cores.

The first part, namely the cycle budget allocation, is performed by using clock frequency,

dynamic power, and leakage power, to sort the cores according to the quantityDAi − DIi

(wherei identifies the core). We point out that, in contrast with the rank policies, this approach
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takes into account the idle power consumption as well as the activity power consumption and

the clock frequency. In particular the first core has the minimum value ofDAi −DIi and the

last core has the maximum value ofDAi − DIi. By considering the quantityK as the sum

of the cycles of all tasks, and the time constraintT , we are able to calculate the cycle budgets

that each core must spend in activity state in order to minimize the energy consumption due to

executing all tasks while meeting the deadline. This is donein three steps: 1) Computation of

Solution A; 2) Computation ofSolution B; 3) Comparison between Solutions A and B to select

the best one.

Solution A allocates cycles to the core to minimize their execution time, without taking the

deadline into consideration. On the other side, Solution B exploits the knowledge of the dead-

line T to allocate cycles exploiting the available time. The solution leading to the minimum

energy is selected. Details about the solution computationare given later in this section. We

point out that if the time needed by Solution A is longer than the time constraint, the application

cannot be supported by the platform.

After the cycle budgetsCAis have been computed, the BP phase allocates tasks on the cores

(see Figure6.2). This is obtained by fitting the cycles of each task in the bins given by the core

cycle budgets. To solve this BP problem, we use the Best Fit Decreasing (BFD) algorithm that

we customized as explained in Section5.3.2.2. The final solution is characterized by a vector

of the binary elementsxi.js. For each corei if the taskj is allocated on itxi,j is 1, otherwise0.

Details of Solution A and B computation are given in what follows.

Solution A. Solution A is obtained by first computing the minimum timetmin to executeK

cycles using all cores through the formulatmin = K/sum fck, wheresum fck is the sum of

all core clock frequencies of the given degraded platform. Starting from the first sorted core we

calculate for each corei the activity cycle budget asCAi = tminfcki. The total energy is given

by Etot =
∑N

i=1 CAiDAi whereN is the number of the cores. Solution A suggests executing

the total amount of cycles in the minimum possible timetmin.

Solution B. Solution B calculates for corei the activity cycle budget asCAi = Tfcki starting

from the first core,i = 1. For each core cycle budget that has been calculated we evaluate the

sum of the already allocated cycles :C = C+CAi. We proceed to calculate theCAis until C <

K. When this condition is not supported anymore, we will find the id-corer for which the cores
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Figure 6.2: LP+BP block digram.

from 1 to r− 1 will always work for all the timeT while corer will generally work for shorter

time spending the rest of the time in idle state, and finally the other cores will always stay in idle

state. The time in activity state of corer can be calculated asCAr/fckr where its cycle budget

CAr has been fixed toCAr = K−
∑r−1

i=0 CAi. Corer will generally spend a partial time in idle

state, in particular its idle cycles will be:CIr = Tfckr − CAr. We can now calculate the total

energy given by Solution B:Etot =
∑r−1

i=1 CAiDAi + CArDAr + CIrDIr +
∑N

i=r+1CIiDIi.

Solution B suggests executing the total amount of cycles by exploiting the available timeT .

Note that if the solution B is taken, it is not guaranteed thattasks (after allocation performed

by the BP algorithm) complete exactly at timeT , as it depends on task granularity.

6.2.4.1 A closed-form solution of the LP

In this section we proove that the LP formulation of Section5.3.2.1can be solved thourgh few

computations because it features some key properties. Thismeans that there is no longer need

of an LP solver, furthermore the overall LP+BP policy can be applied at runtime as we will

demonstrate on the experimental results.

The above outlined LP formulation features some propertiesthat simplify its solution. The

main observation is that these properties reduce the set of possible optimal LP solutions: They
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are characterized by a number of cores that are fully active,a number of cores that are fully

idle and at most one core characterized by an incomplete utilization (i.e. only one core is used

for a fraction of the frame time). In what follows we provide the mathematical formulation of

the closed form solution of the LP.

We call:

DAi =
PdynAi + PlkgAi

fcki
DIi =

PlkgIi

fcki
(6.1)

We can rewrite (5.2) like this:

ETOT =

N
∑

i=1

DAiCAi +

N
∑

i=1

DIiCIi (6.2)

We can introduce an additional variablet expressing the execution time, replacing the first

constraint in (5.10) with:
CAi + CIi

fcki
= t ∀i : 1 . . . N (6.3)

and the third one witht ≤ T . Since

CIi = fckit− CAi (6.4)

we can rewrite (6.2) like this:

ETOT =
N
∑

i=1

(DAi −DIi)CAi + t
N
∑

i=1

DIifcki (6.5)

We now define:

xi = CAi/fcki
pi = (DAi −DIi) fcki = PdynAi + PlkgAi − PlkgIi

q =
∑N

i=1 DIifcki =
∑N

i=1 PlkgIi

(6.6)

and rewrite the LP formulation as follows:

minx
∑N

i=1 pixi + qt

{
∑N

i=1 fckixi = K
0 ≤ xi ≤ t ≤ T ∀i : 1 . . . N

(6.7)

Note thatxi expresses the activity time of corei. Note also that the presence of termqt stresses

the fact that there may be a gain in terminating all tasks before the deadlineT , which is indeed

the case in Solution A.
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We assume that LP (6.7) has a feasible solution, which is easily seen to hold if and only if
∑N

i=1 fckiT ≥ K. Moreover, recall that the cores are ordered by increasing values of pi
fcki

=

DAi −DIi =
PdynAi+PlkgAi−PlkgIi

fcki
, i.e. the values of the cores:p1fck1

≤ p2
fck2

≤ · · · ≤ pN
fckN

are

sorted and represent the penalty in energy for using a cycle of the core.

The following proposition states that there is an optimal solution of (6.7) in which either

(a) there exists a cores such that either cores1 . . . s are always active during the execution time

and coress + 1 . . . N are always idle, or (b) the execution time is equal toT , and there exists

a corer such that cores1 . . . r− 1 are always active during the execution time, corer is partly

active and partly idle, and coresr + 1 . . . N are always idle. In fact, the proposition gives a

closed form expression of the optimal solution depending onthe specific values ofK andT .

Proposition 1. Lets ∈ {1, . . . , N} be the largest index such thatpsfcks
≤

∑s−1

i=1
pi+q

∑s−1

i=1
fcki

, withs = 1

if no index satisfies the property. GivenK andT , the optimal solutionx∗, t∗ of LP (6.7) is the

following:

(a) if
∑s

i=1 fckiT ≥ K, thent∗ = K∑s
i=1

fcki
; x∗i = t∗ for i = 1 . . . s; x∗i = 0 for i =

s+ 1 . . . N ;

(b) otherwiset∗ = T ; x∗i = T for i = 1 . . . r − 1; x∗r =
K−

∑r−1

i=1
fckiT

fckr
; x∗i = 0 for

i = r + 1 . . . N , wherer > s is such that
∑r−1

i=1 fckiT < K and
∑r

i=1 fckiT ≥ K.

Given a solutionx∗, t∗ to (6.7), the corresponding solutionC∗ to (5.10) is given byC∗
Ai =

fckix
∗
i andC∗

Ii = fckit
∗ − C∗

Ai for i : 1 . . . N . According to the above proposition, LP (6.7),

and therefore also LP (5.10), can be solved by a simple arithmetic calculation involving T and

R, given that the partial sums
∑j

i=1 fcki can be computed once for all for everyj ∈ 1 . . . N .

6.2.4.2 Example

Once we have calculated the cycle budgets of each core able toexecute the workload spending

the minimum energy while meeting the time constraint, we have to solve the problem to allocate

the tasks onto the cores. In particular the problem can be nowformulated as follows: Find

the best way to fit the task cycles into the core cycle budgets.In general this can be solved

using a BP algorithm; however some customization to the specific requirements of multimedia

applications must be performed. In particular, since the solution does not generally produce an

exact match between the cycle budget of each core and the cycles of the tasks that are allocated

on it, we must handle this case with minimum impact on energy and QoS.
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The algorithmic details have been presented in Section5.3.2.2, here we give an example.

Let us suppose to have the independent tasks represented by the following cycles{200, 220,

170, 70, 300}. Let us consider to have to execute them in 0.80µsec.

The hypothesis is to have the 3-core degraded platform whoseparameters are shown in

Table6.1. In the table the cores are already sorted in relation with their quantityDA −DI .

The closed form suggests the two solutions represented in Table 6.2. We point out that

Solution A, which use all cores in order to execute all cyclesin a minimum possible time,

consumes 40nJ . The minimum time of 0.37µsec is given by dividing all cycles, which are

960, by the sum of the all core clock frequencies.

Solution B proposes to use for all the available time, which is the time constraint of 0.80

µsec, the core 3, while the core 1 for a partial time, and finally thecore 2 never. The best

solution is given by B because its expected energy is smaller. Then, we formulate the BP

problem which tries to fit the task cycles into the binCAis.

The BFD algorithm indicates to sort the tasks from the largest one to the smallest one,

while the cycle budgets from the shortest one to the largest one. We sorted tasks and cores

as illustrated in Table6.3 at Starting Point. For each core we will also take into account the

execution time when the tasks are allocated on it, which is given by the cycles of the allocated

tasks divided by the clock frequency of the core.

Now, each task will be assigned on the first core which has the minimum cycle budget to

contain it. Once we allocate the current task, we remove it from the list and we calculate the

remaining cycle budget for the core. This completes the firstpart of the BFD algorithm.

For instance, the first task, whose identification number is 5, is too large to be allocated on

both core 2, which has a budget of 0 cycles, and core 1, which has a budget of 280 cycles. The

task will be allocated on core 3 which has a budget of 680 cycles. We remove from 680 the

300 cycles and we will obtain 380 cycles while the execution time is 300/850 = 0.35µsec.

We sort the cores again and remove the first task, obtaining the situation shown in Table6.3at

1st assignment.

Proceeding in this way we come to the situation shown in Table6.3at the4th assignment,

where there are no cores with enough remaining cycle budget to execute task 4. The first step

of the algorithm terminates with 4 allocated tasks and one missing. In this case the standard

solution following the BFD algorithm allocates the task on the core which exceeds its cycle

budget with the minimum number of cycles, which is core 1.
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The customized version, on the other side, checks how long the cost in terms of execution

time of the exceeding cycles is. Matching time constraint has a higher priority than reducing

the exceeding cycles (which means being closer to the energyoptimal solution computed by

LP). Having the cores different speeds, these two metrics donot lead to the same result. As

such, this version inspects the cores from the last one (the one which leads to the smaller cycle

overflow) and selects for allocation the first core allowing to match the deadline. This leads to

a trade-off between QoS and energy consumption. This completes the second part of the BFD

algorithm.

Applying this method, task 4 will be allocated on core 1, leading to an execution time of

0.24+70/900 = 0.31µsec which is shorter than the time constraint0.80µsec. It can be easily

verified that other allocations would lead to a deadline miss. It must be noted that in this case

the custom solution corresponds to the standard one, but this is not true in general.

The final situation is shown in Table6.3at the5th assignment, and the final task allocation

in Table6.4. Core 3 will work for 0.78µsec, core 2 will work for 0.31µsec and stay in idle

for the remaining time (0.47µsec), finally core 1 will always stay in idle (0.78µsec).

The expected execution time is 0.78µsec with respect to 0.80µsec provided by the LP

solution, in addition the expected energy consumption isE =
∑3

i=1 tAiDAi+
∑3

i=1 tIiDIi =

40nJ with respect to35nJ provided by the LP solution. The energy slightly increases because

core 1 has to execute 290 cycles instead of 280 as LP recommends, even if core 3 has to execute

670 cycles instead of 680 (core 1 has larger energy consumption per cycle).

In case there are no cores able to execute the remaining taskswithin the time constraint,

we used another customization to minimize the slack beyond the deadline. This concludes the

third step of the BFD algorithm. Note that this part is not executed if the platform is designed

with enough conservative time margins for the target applications.

Core Id Fck PdynA PlkgA PlkgI DA DI DA −DI

[Mhz] [mW] [mW] [mW]

3 850 21 9 0.2 3,53E-02 2,35E-04 3,51E-02

1 900 26 10 0.2 4,00E-02 2,22E-04 3,98E-02

2 870 28 14 0.2 4,83E-02 2,30E-04 4,81E-02

Table 6.1: A 3-core degraded platform example. Cores are sorted with respect toDAi −DIi.
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Execution CA3 CA1 CA2 CI3 CI1 CI2 Energy

Time [µsec]

solA 0.37 311 330 319 0 0 0 40

solB 0.80 680 280 0 0 440 696 35

Table 6.2: Core cycle budgets of the two LP candidate solutions with theexpected energy con-

sumptions.

Starting point

Task Id Task Cycles Core Id Remaining Allocated

Cycle Budget Execution Timeµsec

5 300 2 0 0.00

2 220 1 280 0.00

1 200 3 680 0.00

3 170

4 70

1st assignment

Task Id Task Cycles Core Id Remaining Allocated

Cycle Budget Execution Timeµsec

2 220 2 0 0.00

1 200 1 280 0.00

3 170 3 380 0.35

4 70

...

4th assignment

Task Id Task Cycles Core Id Remaining Allocated

Cycle Budget Execution Timeµsec

4 70 2 0 0.00

3 10 0.78

1 60 0.24

5th assignment

Task Id Task Cycles Core Id Remaining Allocated

Cycle Budget Execution Timeµsec

1 -10 0.31

2 0 0.00

3 10 0.78

Table 6.3: LP+BP example.

6.2.5 Min and Max energy techniques

The energy spread across the cores of a given platform in terms ofDAi is generally different

with respect to the different extracted platforms. Given a workload, the maximum energy

and the minimum energy that the platform can consume depend on the spread across theDAi
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task 1 task 2 task 3 task 4 task 5

core 1 X X

core 2

core 3 X X X

Table 6.4: Final task allocation.X indicates that the task on the column is assigned on the core on

the row.

values. Then, to understand how much a policy can save energyrunning an application on

a given platform, the normalization of the energy between the minimum and the maximum

values can help us. To know the minimum energyEmin and the maximum energyEmax to

execute a workload on a given platform we introduce two additional policies.

The Min Energy technique findsEmin in the following way. There are two candidate

solutions: a) all tasks are executed by the core at minimumDAi − DIi; b) we use all cores

allocating on them the tasks in the way to have minimum possible idle time (i.e. we can choose

Solution A of the closed form LP and then solve the BP problem).

We will choose the solution at minimum energy. Even if the b) solution uses all cores, there

exists a possibility that the execution time is so short to have the minimum energy consumption.

The Max Energy technique findsEmax in the following way. There are two candidate

solutions: a) all tasks are executed by the core at maximumDAi−DIi; b) the same of the Min

Energy.

We will choice the solution at maximum energy.

6.3 Experimental results

The platform target we refer of these experiment is xSTsim which is described in Section2.3.

In expertiments we used the cycle-accurate simulator. We integrated the variability model in

the target platform simulator to assess the impact of variations on the running software and

enable the study of system level software policies. Detailsare reported in Section4.3.1.

Our experiments are based on two different approaches of variability injection. In the first

case, we exploit the VAM tool which reads the netlist of the cores of the platform and generates

the configuration files of the simulator. This is depicted on the upper side of Figure6.3(a).

The second approach, which has been used to evaluate the benefits of the policy as a func-

tion of the entity of variation, exploits a synthetically generated set of configuration files. In
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particular we modulated each core parameter according to a normal distribution. That is, vary-

ing the standard deviation of the normal distributions we generated different sets of configura-

tion files. This approach is depicted in the bottom part of Figure6.3(a).

We used two different representative multimedia algorithms as testcases: An MPEG2 de-

coder, and an Integral Image algorithm which are described in Section3.3.

For the MPEG2 decoder, the workload is a video clip with 25 frame per second (fps), length

1 second, resolution 720×576. We conducted experiments by dividing the workload in 4,8,

and 12 tasks. The frame ratio of 25 fps implies a deadline of 40,000µsec to decode each frame.

For the Integral Image, the workload is a queue of 25 matricesof 96×96 unsigned integer

elements. This workload has been divided in 4, 8, and 12 tasks. We set a deadline of 4,500

µsec to compute the integral image of each matrix.

In order to provide the task sets to the policies we had to execute once the applications on

the simulator platform before the tests (profiling step). The plug-in stored the cycles needed

by each task for each frame/matrix. Since activity cycles donot change with the parameter

variation, we could use the nominal platform for the profiling. We needed also to take into

account the stall cycles. We made the realistic assumption that the ratio between the stall

cycles and the activity cycles does not depend on the core andthe specific frames/matrices.

During the profiling step we evaluated the maximum ratio between the stall and the activity

cycles among the cores and the frames/matrices.

We rearranged the formulation shown in Section5.3.2.1by adding to the parameters re-

garding activity cycles the contribution due to stall cycles. In the new formulation, we take into

account the dynamic power consumption in stall state of corei, namelyPdynSi, and the leakage

power consumption in stall state of corei, namelyPlkgSi. Referring to (5.2), and consideringr

as the ratio between stall cycles and activity cycles, whichwe suppose to be constant for each

core, we adjust the first term of the summation as follows:

(PdynAi + PlkgAi)CAi + (PdynSi + PlkgSi)CSi

fcki
=

=
(PdynAi + PlkgAi + (PdynSi + PlkgSi) r)CAi

fcki

(6.8)

In this way we take into account the power consumption in stall state by adapting the LP

formulation by simply adjusting the coefficients of theCAis variables. Regarding the time we

adjust the deadline in the second constraint of (6.7) as follows in (6.9).
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xi =
CAi

fcki
≤

t

1 + r
≤

T

1 + r
(6.9)

The algorithm can produce theCAi cycle budget for each corei. Likewise, we give to

the BFD algorithm the same adjusted time constraint shown in(6.9) as input. We experienced

through the following experiment that this assumption holds.

The upper side of Figure6.3(b)shows the profiling approach: 1) decode the current frame/-

matrix; 2) store for each task the needed activity cycles. During this phase, the plug-in writes

into a text file the information about the task set and the stall cycles. On the bottom of the same

figure it is represented how the test is performed by reading the text file.

fVARplatform

FCK PdynA PlkgA PdynS PlkgS PdynI PlkgI

xpe1 1.00 0.77 0.45 0.52 0.43 0.00E+00 7.98E-05

xpe2 0.81 0.85 0.50 0.57 0.48 0.00E+00 7.98E-05

xpe3 1.00 1.02 0.49 0.69 0.47 0.00E+00 7.98E-05

xpe4 0.84 0.87 0.50 0.59 0.48 0.00E+00 7.98E-05

xpe5 1.00 0.99 0.49 0.67 0.47 0.00E+00 7.98E-05

xpe6 0.84 0.83 0.49 0.57 0.47 0.00E+00 7.98E-05

xpe7 1.00 0.99 0.49 0.68 0.47 0.00E+00 7.98E-05

xpe8 0.84 0.80 0.48 0.54 0.46 0.00E+00 7.98E-05

pVARplatform

FCK PdynA PlkgA PdynS PlkgS PdynI PlkgI

xpe1 0.88 0.71 0.46 0.48 0.44 0.00E+00 7.98E-05

xpe2 1.00 1.03 0.50 0.70 0.48 0.00E+00 7.98E-05

xpe3 1.00 0.77 0.45 0.52 0.43 0.00E+00 7.98E-05

xpe4 1.00 1.04 0.50 0.71 0.48 0.00E+00 7.98E-05

xpe5 0.84 0.80 0.48 0.54 0.46 0.00E+00 7.98E-05

xpe6 1.00 1.04 0.50 0.71 0.48 0.00E+00 7.98E-05

xpe7 0.84 0.81 0.48 0.55 0.46 0.00E+00 7.98E-05

xpe8 1.00 1.05 0.50 0.71 0.48 0.00E+00 7.98E-05

Table 6.5: Degraded platforms.

6.3.1 Results

In this part of the results, we consider variability injected by the VAM tool. Among the gen-

erated degraded platforms we chose two of them having the largest spread in terms of perfor-

mance and power, calledfVAR andpVAR respectively. As such,fVAR can be considered

a worst case in terms of performance degradation, whilepVAR is the worst case in terms of

power. The characteristics of their cores are described in Table6.5. As nominal values for the
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MPEG2 Decoder

fVar pVar

tasks RNM RF RP RN LP+BP RNM RF RP RN LP+BP

4 1.00 0.40 0.88 0.40 0.40 0.48 0.40 0.96 0.64 0.40

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Integral Image

fVar pVar

tasks RNM RF RP RN LP+BP RNM RF RP RN LP+BP

4 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.6: Deadline miss rate[0..1] using fVAR and pVAR platforms.

parameters (i.e. longest path delay, dynamic and leakage power consumption for the different

work states), we used the values for the xPE at 32nm CMOS technology 1.

We compared, for the two platforms and the two applications,the energy consumption to

decode 25 frames and to integrate 25 matrices respectively,and the number of frames/matrices

execution missing the time constraint, that is the deadlinemiss rate.

In particular we normalized the energy consumption in the following way :

(E−Emin)/(Emax−Emin), whereE is the energy consumption related to a generic execution,

whileEmin andEmax are respectively the minimum and the maximum possible energy that can

be consumed executing the same workload on the same platformwithout taking into account

the time constraint.

We expressed the deadline miss rate as the ratio between the number of missed frames/-

matrices on the number of total frames/matrices. Then, boththe energy and the deadline miss

ratio can assume values between 0 and 1.

We compared the different policies presented in Section6.2. Hereafter we indicateRF for

Rank Frequency,RP for Rank Power,RN for Rank Energy, andLP+BP Linear Programming

+ Bin Packing. Moreover, we made experiments using a Random technique which randomly

allocates the tasks onto the cores; we indicate it asRNMon the tables.

In Figure6.3(c), we represented in X-Y plots the average time to execute one frame/matrix

(X-axis) and the normalized energy consumption (Y-axis). The best condition is therefore the

bottom-left area, however the QoS requirements impose to spend less than 40,000µsec for

decoding each frame for the MPEG2 decoder and less than 4,500µsec for the Integral Image

(dashed vertical line on the graphs show the time constraints).

1The tables contain normalized values because of confidentiality reasons
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For 4 tasks, LP+BP is always one of the policies that realizesthe minimum execution time

on average, indeed spending more energy than the policies that produce execution times being

further from the deadlines.

For 8 and 12 tasks, all policies show execution times shorterthan the time constraints. The

comparison policies show smaller execution time but more energy consumption than LP+BP

that meets the deadline in all cases. In conclusion LP+BP saves as much energy as possible

with minimum impact on QoS requirements.

For the pVAR platform the energy consumption is generally higher than in the case of the

fVAR platform, this depends on the difference between the maximum and minimum energy

that the platform can consume. In fact, regarding the energyper cycle, fVAR has a spread of

0.79, instead pVAR has a spread of 0.58 (see Table6.5).

In Table6.6 we show the deadline miss ratio for both the applications andboth the plat-

forms.

Using 4 tasks, the workload is characterized by few large tasks and it becomes hard to

execute them within the time constraint. In this case, RF candiscover the fastest task alloca-

tion, and then it realizes the lowest deadline miss rate. LP+BP always finds out that to reach

the lowest deadline miss rate the solution is to maximize theperformance. RF and LP+BP

always consume the same energy except for the pVAR-MPEG2 case where LP+BP is better

(see Figure6.3(c)).

Increasing the number of tasks, all the Rank policies meet all the deadlines, but LP+BP

is also able to better exploit the available time producing the lowest energy consumption. In

particular, in referring to the lowest energies of the comparison techniques, LP+BP can save

up to the 33% of energy.

In order to evaluate the impact of variability-aware allocation strategy with respect to a

variability un-aware one, we compared the normalized energy as a function of the entity of

parameter variations. Results are shown in Figure6.3(d). Here we compare LP+BP as well as

the rank techniques with an algorithm that assumes that all cores run to their nominal parame-

ters. We used LP+BP assuming the nominal platform instead ofthe actual variability-affected

platform. This algorithm is referenced asNOM. The study has been conducted by varying the

parameters according to a synthetically generated normal distribution.

In order to compare the energy consumption of the several task allocation techniques in

relation with the increasing of the variation we chose the following levels of standard deviation:

0.0 (i.e. nominal platform), 0.5 and 1.0.

For each non-zero standard deviation we extracted five different degraded 8-core platforms

and we averaged the results in normalized energy, deadline miss rate, time to execute one

frame/matrix. Moreover we evaluated the functional yield expressed as the percentage of the
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number of platforms that executed the test applications realizing no missed deadline.

We conducted experiments using configurations of 4, 8, and 12tasks. If the number of the

tasks increases, it is generally easier to find a task allocation meeting the time constraint.

The results clearly show how LP+BP reduces energy consumption with respect to the NOM

policy (up to 65%) and also in almost all the cases leads to lower energy than the other policies.

In general, all the policies are equivalent using the nominal platform (standard deviation= 0).

Clearly, by construction the LP+BP for the nominal platformperforms as the NOM policy.

It must be noted that in case of 12-tasks configuration, for both applications LP+BP slightly

reduces energy consumption also in the nominal platform case. We observed that this is because

its allocation, which tends to reduce the utilized cores, reduces the stall cycles as a side effect.

It must be noted that, besides the case of MPEG2 in 4-task configuration (upper-left side

of the figure), all the policies lead to an energy consumptioncloser to the maximum for the

nominal configuration (i.e. standard deviation= 0). In the nominal case cores are all equal and

for this reason most of the policies tend to use all of the available ones. The case of MPEG2 4-

tasks has a max energy corresponding to a configuration whereonly a single core is used. With

respect to this reference value, policies lead to an improvement also in the nominal platform.

Another consideration concerns the fact that the normalized energy decreases from 0 to 0.5

of standard deviation and increases from 0.5 to 1. The reasonis that the normalization range is

not the same for all the standard deviation values, since maxand min energy are recomputed

depending on the actual platform values.

Finally, in the case of MPEG2 it is more difficult to meet the deadlines, then the normalized

energy is higher on average.

By looking at the functional yield (upper side of Table6.7) this is lower than 100% using a

4-task configuration. In all the other cases all policies realize the 100% of yield. Similarly, the

deadline miss rate (lower side of Table6.7) is larger than 0% only in the 4-task configuration.

In this case, RF and LP+BP always achieve the maximum yield and the minimum deadline

miss rate. The reason is that RF always tries to maximize the performance and LP+BP finds,

in this case, that the only solution to minimize the deadlinemiss rate is to use the faster cores.

They also produce the same energy consumption.

Moving to 8-task and 12-task division, all policies realizethe 100% of yield and LP+BP

always consumes less energy.

In conclusion, applying a variability-aware task allocation technique improves energy con-

sumption and functional yield with respect to a variabilityun-aware policy and alternative

variability-aware techniques.
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(a) Variability injection in core plat-

form parameters. The first method uses

VAM (upper side). The second method

uses synthetic normal distributions (lower

side).

(b) Task activity cycles and stall ratio

profiling (upper side). Execution of test

by using the profiled information (lower

side).t: task,c: core,f : frame.

(c) Energy[0..1](Y axis) vs. Execution Time[µsec] (X

axis). Dashed lines indicate the time constraints.

(d) Energy[0..1](Y axis) vs. Variation Level[standard deviation](X axis). The segments

below the plots indicate different deadline miss rates at that point.

Figure 6.3: a)Variability injection b)Profiling c)Energy vs. Execution Time d)Energy vs. Variation

Level
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Functional Yield [%]

MPEG2 Decoder Integral Image

STD NOM RF RP RN LP+BP NOM RF RP RN LP+BP

0.0 0 0 0 0 0 100 100 100 100 100

0.5 0 0 0 0 0 0 40 0 40 40

1.0 0 0 0 0 0 0 40 40 40 40

Deadline Miss rate [0..1]

MPEG2 Decoder Integral Image

STD NOM RF RP RN LP+BP NOM RF RP RN LP+BP

0.0 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 0.00

0.5 0.47 0.37 0.40 0.39 0.37 1.00 0.60 1.00 0.60 0.60

1.0 0.47 0.37 0.37 0.37 0.37 1.00 0.60 0.60 0.60 0.60

Table 6.7: Normal distribution for parameter variations. 4 tasks.

3 cores 6 cores 9 cores 12 cores 16 cores

LP closed form 135 268 411 567 793

BFD to solve BP (8 tasks) 4 14 43 73 112

BFD to solve BP (16 tasks) 9 25 43 75 106

BFD to solve BP (32 tasks) 24 57 102 160 281

BFD to solve BP (128 tasks) 181 286 451 728 1153

Table 6.8: LP closed form algorithm and BFD algorithm costs [µsec]. The algorithms are executed

by ST231 clocked at 900MHz.

6.3.2 LP+BP policy execution time

The previous results were obtained by applying LP+BP at run-time. In particular, during the

xPEs execution, GPE solves the combined LP+BP problem in shorter time. In this part we

provide a detailed characterization of LP+BP execution time, highlighting that the algorithm

can be solved in linear time with respect to the number of cores.

The LP-BP policy runs on the host core, which is an ST231 processor clocked at 900 MHz.

We report in Table6.8 the execution time of the policy for an increasing number of cores and

for various task configurations. Overall, LP+BP overhead linearly increases with the number

of cores. In all of the configurations the policy overhead is one order of magnitude lower than

the execution time of the slice decoding or IDCT for the MPEG2application ( at least 7,000

µsec), then it can be transparently executed on the host while theslaves perform the decoding

tasks. In case of Integral Image, which is a simpler algorithm, this is true (for the considered

matrix size) up to 9 cores and 16 tasks. However, it must be noted that for larger matrices, for

which large parallelism is meaningful, this break-even point likely increases.

As a final consideration, the estimated stall cycles did not impact the LP+BP effectiveness;
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in particular the actual stall cycles always have been less than the estimated ones.

6.4 Summary

The algorithm we propose in this chapter, which implements the LP+BP policy, needs a linear

computation time and therefore it can be applied on-line. Wedemonstrated the effectiveness of

our approach through a comparison with state-of-the-art policies. In our experiments we used

representative multimedia streaming applications. We focused on the xSTsim industrial mul-

ticore platform provided by STMicroelectronics conducting our experiments on the xSTream

cycle-accurate simulator. LP+BP can save up to 33% of energywith respect to the state-of-the-

art policies and 65% of energy with respect to one variability-un-aware task allocation policy

while providing better QoS.
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Chapter 7

High-reliability multicore platforms

7.1 Overview

In Chapters5 and6 we studied the effects caused by static variations in terms of energy and

performance in MPSoCs. Here, we want to move our attention tothe lifetime reliability of the

systems.

To cope with process variations which cause performance uncertainty and unbalancing in

MPSoCs, countermeasures at various levels have been developed, ranging from transistor level,

architectural and system software level. Software approaches can be very effective because

they can adapt to wear-out and temperature dependency. There are several hardware tech-

niques that can be used to make software aware of chip degradation, namely sampling based

detection [10, 24], periodic testing, error correction and detection circuitry [68]. Once this

information is made available at the software level, a common purpose of various approaches

recently proposed is to provide wanted performance and match real-time constraints through

statistical scheduling [82] or learning algorithms [83].

The main challenge of these techniques in a multiprocessor systems is to cope with the

non-uniform distribution of critical path delay variations. To handle this heterogeneous delay

distribution, each core can be clocked with a different frequency, thus increasing the need of

synchronization for intra-core communication. A more conservative approach is to run all

the cores at the same clock frequency dictated by the slowestcore [63]. In both cases the

aging effect will deviate the system from the starting condition, affecting the expected lifetime

and its distribution between the cores. In this scenario, some cores will have a lower lifetime

expectation than others, thus decreasing reliability and predictability of the system.
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The objective of the work presented in this chapter is to mitigate the impact on lifetime

uncertainty and unbalancing among the cores. To this purpose, we developed an idleness distri-

bution policy that increases core expected lifetimes by duty cycling their activity. The idleness

is distributed to equalize the expected lifetime of each core to a target value, imposed by the

system designer or by the user. Since the actual impact on performance depends on the task

model running on the target multicore system, in this work weconsider three representative

task models, namely batch execution, playout and streaming, for which we evaluate the impact

of the policy on the performance level. The proposed approach is based on variability informa-

tion that can be provided at run time by variability monitors, that are likely to be embedded in

next generation MPSoC designs.

Idleness distribution is conceptually similar to clock frequency scaling. Even if our im-

plementation exploits idleness, the same strategy can be coupled with a frequency scaling ap-

proach. In both cases the core operates on average at a lower average speed and reduce overall

switching activity with a positive effect on lifetime. However, idleness distribution is more

profitable because it does not require separate frequency domains. Nevertheless, frequency

scaling coupled with voltage scaling can provide considerable dynamic power savings. How-

ever, for this to be possible separate voltage domains with associated expensive level shifters

are needed. Provided that voltage islands are present, alsoidleness distribution policy con-

tributes to power reduction as long as the core allows to be power-gated when idle.

The contributions provided in this chapter can be summarized as follows. First, we pro-

pose an on-line adaptive strategy for increasing MPSoC tolerance to non-uniform wear-out due

to variations. The methodology is innovative as it is focused on aging tolerance to improve

system lifetime rather than on recovery of performance lostbecause of wear-out. Moreover, it

is not based on static task characterization, but on on-lineexecution time and wear-out moni-

toring. Second, we propose an efficient implementation based on a look-up table that directly

correlates target lifetime with idleness distribution. Third, we studied the impact of the ag-

ing tolerance policy on performance for various representative task models, demonstrating its

negligible overhead and adaptation to different workload characteristics.

The rest of the chapter is organized as follows. Section7.1.1reviewes the recent works in

this filed, Section 2 discusses the variability model considered in this work. Section 3 presents

the hardware and software infrastructure. Section 4 describes the proposed policy and Section

5 presents experimental results.

7.1.1 Related work

In [81] a statistic scheduling approach is proposed to mitigate the impact of parameter varia-

tions in a multiprocessor platform. The strategy assumes that task executions are statistic rather
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than deterministic. A new metric is introduced called performance yield, defined as the prob-

ability of the assigned schedule meeting the timing constraints. This work demonstrates that

using a statistical scheduling approach consistently improves the performance yield. Wear-out

factors are not considered in this work. As a result, the proposed policy is based on a static

estimation of task execution times and variability information.

Wear-out effects are considered in [63], where authors present a scheduling approach which

is aimed at recovering the performance impact due to non-uniform chip degradation. They pro-

pose an integer linear programming method to determine an optimal scheduling for streaming

applications. Differently from previous work, variability effects on interconnect and memories

are also considered in the optimization problem. Moreover,task migration is also considered

as solution to handle the time dependent effect of wear-out.

These papers state the effectiveness of software and systemlevel approaches to variability

issues and we want to complement previous techniques by presenting a fully on-line and work-

load adaptive strategy aimed at improving MPSoC aging tolerance instead of focusing only on

performance. It is based on the on-line estimation of idleness and variability as well as wear-

out conditions. As such, it does not exploit task pre-characterization. The proposed technique

can be applied to workload based on a variable number of tasks. Because of these character-

istics, our on-line approach to lifetime improvement couldbe applied with static techniques to

achieve an effective performance vs. lifetime trade-off.

7.2 Idleness constraints

The relationship between the degradation of the critical path delay and actual lifetime for each

core depends on two factors. First of all, an aging function which expresses the delay critical

path degradation as a function of time. We refer to a per-coreaging function modulated by

the core activity. This function has been extrapolated by the NBTI model and is shown in

Section4.2.1. This means that the delay critical path does not degrade when the core is idle.

Moreover we can increase the expected system core lifetime by putting it in some standby state

when idle, which is a realistic assumption for state of the art SoCs. The second factor is the

effectiveness of the error correction circuitry that is possibly embedded in the architecture. The

wear-out effect causes more and more severe timing violations and an increasing number of

paths violating them as the time elapse, thus increasing thepercentage of corrected errors.

The error correction circuitry is able to correct up to a certain error rate. If this rate is

reached, the core cannot be recovered and thus it fails. For this reason, the expected lifetime

can be computed as the time to reach this maximum error rate. Error correction systems can

be exploited as monitor of the aging process. Using an aging model, it is possible to determine
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the expected lifetime based on the amount of corrected errors. In this way, our policy can

directly use the lifetime information to know how much idleness is needed to match a given

target lifetime requirement. This opportunity is depictedin Figure7.1. Starting from an initial

expected lifetime (tmax) which is achieved with 100% core activity, by playing with idleness

it is possible to increase the lifetime up to a target valuetlf . The dashed line represents the

activity duty cycling performed by inserting idle periods between task executions. We assume

that the system is required to match a lifetime requirement for the whole system and we play on

idleness distribution of each core in order to increase the expected lifetime to match the target

one.

Figure 7.1: Relationship between idleness and core lifetime.

7.2.1 Platform model and software infrastructure

The platform we refer is xSTsim provided by STMicroelectronics and illustrated in Section2.3.

We used for our experiment the cycle-accurate simulator.

The software organization of our system is composed by support functions for task load-

ing, data communication and synchronization, statistic collection. All the cores load the same

program, following a SPMD approach, where each core executes a different portion of the

program depending on its identifier. The accelerator code contains all the possible tasks to be

executed. Currently, dynamic loading of tasks is not supported. As such, to execute a certain

task, cores have to jump to the related code portion, which isidentified by a pointer. To control

the execution on the accelerators, the master core changes the pointer depending on which task

the accelerator has to run. Shared memory is used to exchangedata among cores.

Batch execution model.In the batch execution model, the master core spawns a number

of N independent tasks on the accelerators exploiting a non-blocking round-robin algorithm.

The performance metric associated with this task model is the execution time that in this case

is defined as the time between the allocation of the first task and the completion of the last

allocated task. Input and output data are stored in local memories of accelerators.
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7.3 Adaptive idleness distribution policy

Output rate-constrained execution model (playout). This model is representative of

playout activity performed by audio or video decoders. Alsoin this case the master allocates

tasks on the accelerators. Accelerators read input data from their local memories. Output data

items are stored in a common output queue allocated in sharedmemory with access regulated

by semaphores. A consumer task runs in one dedicated core which periodically picks one data

item from the output queue. The associated performance metric is the output throughput. When

the output queue becomes empty, the consumer will experience a deadline miss. As such, the

performance constraint is represented by the output rate.

Input-output rate-constrained execution model (streaming). While in the playout model

input data for accelerators are available on local memories, in streaming task model data are

provided to the accelerators by the master core. This is a typical model for a videoconferenc-

ing application where the input data are provided by a video camera and accelerators performs

video encoding. Another example is a video decoder application receiving compressed frame

from the network. An interprocessor communication queue isused as buffer between master

and accelerators. As in the playout model, an output queue isused to synchronize data com-

munication with the consumer core. The associated performance metric in this case is not only

the output throughput, but also input throughput. If the input queue becomes full, this means

that accelerators are not able to handle the input data rate.The constraint on the output still

applies also in this task model.

7.3 Adaptive idleness distribution policy

The master core is responsible of allocating tasks on the accelerators. For this reason, it is the

most suitable place where to implement the idleness distribution algorithm. Since the distribu-

tion algorithm depends on the reading of variability monitors of each core. Our target platform

is equipped with a register accessible from the master and all the cores where the percentage

of corrected errors (also called error rate) can be read for each core.

Our policy computes a required amount of idleness for each core. In order to make the

policy implementation independent from the type of runtimeinformation available, the policy

takes as input a required idleness for each core. A conversion module fills up a table with the

idleness values computed starting from error rate statistics for each core. An aging model as

described in Section4.2.1is used to compute the time required to reach themax error rate

value assuming zero idleness, that we calltimax, wherei indicates thei − th core. For each

core, the target amount of idleness for a generici− th core is defined as:
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Figure 7.2: Implementation scheme of the adaptive idleness distribution policy.

Figure 7.3: Adaptive idleness distribution policy description.

idleness =

{

1− timax

tlf
, tlf > timax;

0, tlf < timax

wheretlf is the system lifetime requirement and idleness is expressed as a number between

0 and1, where0 indicates full activity and1 indicating no activity. Once the wanted average

idleness has been computed it is stored in a table as shown in Figure7.2. Then, the master

processor must perform the task allocation policy accordingly, as depicted in Figure7.3. To

achieve the wanted average idleness, our policy allocates idle periods between task executions

for each accelerator. This implies that the wanted idlenessis achieved on a time scale on the

order of task execution times. This is reasonable as long as the expected lifetime is typically

several orders of magnitude larger than task durations. Indeed, the implementation on a smaller

timescale would imply pre-emption of tasks on the accelerators, introducing an unnecessary

overhead. It must be noted that the proposed policy does not assume a specific aging model.

The unique assumption is that additional idleness increases core lifetime.

As a result, the master core exploits hardware timers to update a data structure where

task start and completion times are stored. After each task completes, its activity interval is
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7.4 Experimental results

computed. The idle period to be allocated is obtained by multiplication of the last activity

period by the wanted idleness. After the idle period expiresfor a core, a new task is allocated

to it.

It must be taken into account that cores must also perform task management (i.e. load-

ing and completion notification) and synchronization operations (i.e. waiting on semaphores),

as needed to implement a given task model. When computing theidle period to be allocated

to each core, this additional activity is taken into accountby our policy. This is possible be-

cause the master core has full visibility and monitoring capability of accelerator’s activity. The

idleness for each core is conservatively updated by the master core at each task completion, de-

pending on monitor readings. However, frequency of updatescan be configured. Experimental

results show that the implementation overhead of this policy is negligible and that the wanted

idleness is obtained with a very high accuracy.

7.4 Experimental results

The policy described in Section7.3requires software support mechanism for task activity mon-

itoring and idleness computation, that could impact the accuracy of idleness distribution. For

our experiments we considered two platform configurations,namely four and six accelerators.

For each configuration, we considered three variability scenarios. Each variability scenario

defines the number of cores affected by variability issues and the mapping of error rates on the

cores. In our simulation platform, error rates are extracted from a Gaussian distribution. In

our experiments we considered a static condition where monitor readings (i.e. variability con-

ditions) are constant over time. However, we consider a worst case scenario where the master

core reads the variability information at each task completion. The platform configurations and

variability scenarios considered for our experiments are described in Figure7.4.

It must be noted that minimum and maximum values of error rates are the same for the

four and six core configurations. Benchmarks used for experiments are matrix multiplication

kernels. To the purpose of characterization of idleness computation accuracy we measured the

actual idleness and we compared it with the target one. The results we obtained about idleness

accuracy, that are not shown here for space limitations, highlight that the maximum error in

idleness assignment is within 0.1%, demonstrating the effectiveness of the proposed software

infrastructure.

Batch Execution Results.The matrix multiplication benchmarkA·B = C is composed by

two phases. During the first one the matrix B is copied from shared memory to local memory,

where A resides. In the second phase the actual matrix multiplication takes place. Results are
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Figure 7.4: Variability scenarios. Error rates are mean values of a gaussian distribution.

stored in the local matrix C.

Figure 7.5: Relative impact of variability on performance for all the scenarios and configurations

Increasing the lifetime may have an impact on performance depending on the task model.

For batch execution, performance hit lead to an increase of the overall execution time ofN

tasks, whereN has been fixed to 60. Results are shown in Figure7.6.a, where associated

idleness values for each core are also reported for clarity.In Figure7.5 the relative impact on

execution time is shown. For each platform configuration (i.e. four vs. six cores), this has been

computed using the scenario without variations as reference. By comparing the two platform

configurations, it can be noted that the impact on execution time is proportional to the fraction
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a) b) c)

Figure 7.6: Impact of variability on the output throughput for a) batch task model; b) playout

model; c) streaming model.

of variability-affected cores. For instance, the execution time of the 5/6 configuration has a

larger increase than for the 3/4 one. However, with the givenerror rate distribution this is not

enough to make any of the four cores configuration more performing.

Output Rate-Constrained Processing Results.In this case the metric to be considered

is the output throughput. In order to consider a worst case condition, we set the consumer

frequency corresponding to the maximum throughput that canbe delivered by the six core

configuration, which is about 9MBytes/sec. As such, introducing idleness has an immediate

impact on throughput, as it can be observed in Figure7.6.b. Differently from the execution

time for the previous task model, throughput degradation here is less sensitive to the fraction

of variability affected cores. Indeed, in Figure7.5 the 5/6 scenario has a throughput drop of

23% while the 3/4 scenario has a throughput drop of 22%. However, by comparing 1/4 and 1/6

scenarios, the relative throughput drop is 9.1% compared to4.4%.

Input-Output Rate-Constrained Streaming Results.Both the input and output through-

put are critical in this case. Figure7.6.c shows variability effects on the input throughput. The

same results have been obtained for the output throughput (not shown). Interestingly, also for

the input throughput the relative performance drop for highthroughput values is similar for 3/4

and 5/6, being around 20% in both cases (see Figure7.5).
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7.5 Summary

In this chapter we presented an adaptive idleness distribution policy aimed at reducing the

impact of variations and aging on the lifetime of MPSoCs. Thepolicy exploits variability

monitors and on-line task execution statistics to determine the duration of idle intervals to be

distributed to the cores to match a given lifetime requirement. The proposed strategy has been

implemented on an industrial simulator of a next generationnanoscale multiprocessor platform.
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Chapter 8

Using micro thermoelectric cooling in

multicore processors∗

8.1 Overview

Our contribute so far regarded MPSoCs that are characterized by larger numbers of small cores.

As we explained DVFSs can cause penalties in area in these systems. In this chapter we want to

give some insights with regard to general-purpose multicore processors which are characterized

by few complex cores. In particular we focus on the problem ofthe reliability keeping attention

at the performance preservation.

While it is possible to reduce the operating temperature through the use of dynamic voltage

and frequency scaling (DVFS), this reduction comes at the expense of the performance and

runtime of applications. Furthermore, the increase in runtime makes the extended lifetime of

the processor less useful as applications will take longer to finish.

Micro thermoelectric cooling technology presents an approach that can supplement tradi-

tional air-based cooling techniques to reduce the temperatures of processors. Micro thermo-

electric coolers are inserted between the processor’s die and the processor’s heat spreader as

illustrated in Figure8.1. A thermoelectric cooler pumps heat from the die side to the heat

spreader side against a temperature gradient. This pumpinguses electrical energy, and thus,

thermoelectric cooling has to be exercised carefully. Micro thermoelectric coolers (TECs) are

particularly attractive to use with multi-core processors, where each core can use its own TEC,

0∗This research has been done in collaboration with SCALE laboratory at Brown University and it has been

partially funded by NSF grant No. 5-26874.

83



8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

Figure 8.1: Processor heat removal system incorporating micro TECs. Thermal interface material

is assumed at the interfaces between surfaces.

and thus cooling efforts can be focused directly on overheating cores.

In this chapter we explore the use of thermoelectric coolersto improve the reliability and

performance of multi-core processors. Our contributions are as follows.

• We devise a reliability model for multi-core processors. Our model is driven by real

measurements from a dual-core processors. We measure the power, temperature and

voltage of each core. We then feed these measurements to a reliability model to estimate

the expected mean-time-to-failure (MTTF) for each core andfor the entire processor.

• We develop a thermal model for our dual-core processor with the TECs, and use this

model to simulate the impact of using the TEC on the temperature of the processor and

total power consumption.

• We devise a number of strategies for using TEC and DVFS to improve the reliability

and performance of multi-core processors. Our strategies seek to maximize performance

while using total power consumption and MTTF as constraints.

• Using measurement traces from a real dual-core processor based system, we quantify the

impact of using our techniques on performance, power consumption, and the MTTF. We

show that using TEC with DVFS offers a valuable trade-off operating point that improves

MTTF and performance compared to pure DFVS.

In Chapter4 we presented the causes of the lifetime degradation, in particular we described

mechanisms of failure and the related models in Section4.2.2. The rest of the chapter is

organized as follows. Section8.2 reviews related work in the literature. In Section8.3, we

propose a TEC thermal model for multi-core processors. In Section 8.4we propose a number

of strategies to control MTTF within power budgets. A numberof comprehensive experiments
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are provided in Section8.5 to illustrate the impact of using TEC and DVFS on reliability,

performance and power. Section8.6summarizes the main conclusions of this chapter.

8.2 Related work

Higher power densities, die temperatures and smaller nanometer features have pushed failure

as a major concern in modern processors [16, 70]. As a result, it is now valuable to incorpo-

rate reliability modeling and optimization into the designand operationation of processors. A

popular architectural-level reliability modeling tool isRAMP [70]. RAMP uses floorplan infor-

mation with power and thermal traces produced from instruction-level architectural simulators

to estimate per-structure and system MTTF for every failuremechanism. RAMP-like tools

have been used in a number of architectural-related papers to evaluate system-level design and

runtime choices on the reliability of processors. At the design side, Atienzaet al. propose de-

sign optimizations for the register file to improve its reliability [ 6]. At the system-level runtime

side, Luet al. propose DVFS-based techniques to extend the lifetime of theprocessor [49], and

Coskunet al. use simultaneously DVFS and job scheduling methods to increase the lifetime

[23]. RAMP-like models can be also adapted to evaluate the reliability of real processors from

their actual measurements. For example, Mesa-Martinezet al. develops reliability models for

a single core AMD processor from temperature, power, voltage of the processor [52].

To avoid degradation to performance, it is possible to adjust the cooling system to reduce

the operating temperatures. Because most failures mechanisms depend strongly on tempera-

ture, small reductions in temperature can lead to large improvements in MTTF. Cooling sys-

tems need to be used judiciously due to their power consumption. Micro cooling (whether

liquid based [20] or themoelectric based [44, 69]) can directly focus the cooling on the hot

spots, which reduces the cooler power consumption. Recent advances in thermoelectric cool-

ing have improved the heat removal capability of TECs, whilebringing further miniaturization.

It has been recently demonstrated the possibility of using micro TECs to track hot spots and

adaptively cool them in a dual-core processor [5]. The design of the TEC itself naturally plays

n important rule in its efficiency. Thus, Longet al. consider design optimization choices for

thin film thermoelectric coolers [46].

Our work differs from previous work in a number of ways. First, we consider the impact of

the cooling system directly on the reliability, rather thanjust the temperature, of the system. We

also consider the simultaneous use of TECs and DVFS to optimize reliability and performance

of multi-core processors.
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8.3 Thermal modeling

Peltier-based TECs pump heat,Q, from thecold side of the TEC to thehot side of the TEC

creating a difference of temperature,∆T , between the two sides that is dependent on the elec-

trical energy provided to the TEC. Figure8.1 in Section8.1 illustrates the embedding of two

micro TECs between the processor die and the heat spreader. One TEC has an area equal to the

half of the die and in particular will be located on top of one core and half the cache. Without

the TECs, the die side is naturally hotter than the heat spreader side, and heat flows from the

die to the heat spreader. However, when TECs are used, the cold side is the die side, and the

hot side is the heat spreader side, and the TECs pump heat,Q from the processor against the

thermal gradient∆T . The relationship betweenQ and∆T is given by

Q = STcI −K∆T − I2R/2, (8.1)

whereS is the Seebeck coefficient;K is the TEC thermal conductance;R is the TEC electrical

resistance,I is the TEC electrical current andTc the temperature at the cold side [69]. K and

R are constant parameters that depend on the TEC construction.

If we assume a particular desired cool side temperature for the die (e.g.,Tc = 35celsius),

then the relationship betweenQ and∆T is linear for a fixedI as given by Equation (8.1).

Figure8.2 gives this relationship for various values of current supply I. The plots illustrate

some typical TEC characteristics. For a fixedI, increasing the amount of pumped heat,Q,

decreases the temperature difference∆T . The maximum amount of heat that can be pumped

is reached when∆T = 0. The maximum amount of heat,Qmax, that can be pumped at the

highest current setting,Imax, is one of the most important parameters of a TEC. A mismatch

between the power dissipated by the processor and theQmax of its TECs can lead to thermal

runaway. The maximum temperature difference,∆Tmax, obtained atImax obtained when no

heat is pumped is another important parameter.

The voltage of TEC as a function of the applied current,I, and the temperature difference,

∆T , and it is given byVTEC = S∆T + IR. Thus the power consumption of the TEC,PTEC ,

is equal toVTECI. This consumed power has to be dissipated at the hot side of the TEC.

This extra power consumption is the drawback of using TECs; furthermore, the heat rejected

at the hot side of the TEC, which is the sum ofQ andPTEC , increases the temperature of the

heat spreader compared to the case when no TEC is used. Thus, to model∆T and the exact

temperature of the cold side, it is necessary to develop a thermal model for the TECs with the

processor.

Figure8.3 shows the thermal circuit of the simpler case of a single-core processor con-

nected to the heat sink through one TEC. In the figure, the power of the processor is modeled
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Figure 8.2: Relation betweenQ and∆T for various values of currentI.

by the current sourceQ; the power of the TEC is modeled by the current source,VTECI; and

∆T is modeled by a supply source. The lumped thermal resistanceof the spreader, sink, and

fan assembly is modeled byRs. The TEC also introduced its own thermal resistance with is

determined by it thermal conductance and its physical dimensions. Note that the heat sink as-

sembly has to dissipate the sum of the TEC power and the processor power. The temperature

on the hot side,Th, is equal to

Th = (IVTEC + Pcore)Rs + Tamb (8.2)

= (I(S∆T + IR) + Pcore)Rs + Tamb,

whereTamb is the ambient temperature. Thus, the temperature of the cold side is equal to

Tc = Th − ∆T . To develop a lumped thermal model for a dual-core processor, we have

Figure 8.3: Thermal circuit for one TEC used with single-core processor.
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Figure 8.4: Thermal circuit modeling for two TECs attached to a dual-core processor as illustrated

in Figure8.1.

to consider the mutual thermal dependency between the coresas shown in Figure8.4. The

temperatures at the cold sides of the TECs have to be found by solving the linear equations that

represent the thermal model.

8.4 Strategies for improving reliability and performance

TECs can be use to keep down core temperatures but since they consume power it is to de-

vise strategies that use them intelligently. In this section we propose a number of strategies to

engage TECs to improve the MTTF. As described in Section4.2.2, MTTF depends on tem-

perature, power, and voltage but the most important parameter is the temperature. Reducing

the temperature also has the additional benefit of reducing leakage power. In addition to im-

proving reliability, we also focus on preserving the highest possible performance. In contrast

to adaptive DVFS techniques that improve reliability at theexpense of performance, we want

to identify strategies that meet or improve the Reliabilitywith minimum loss in performance.

We also want to take into account the power consumption of theTECs over time and put some

constraints on the TEC power consumption if necessary. We propose two strategies.

Strategy I: Maximize MTTF for a Given TEC Power Budget. In this strategy we seek to

provide a solution of the problem of maximizing MTTF under TEC power constraints. Power

constraints on TECs really means that the TEC power should not be substantial in comparison

to the core power. Thus, we consider the TEC power budget as a maximum ratio between

the TEC power and the core power that we have to meet at any time. Given the power ratio,

we search for the minimumTc that the core can reach at every moment in time. Decreasing
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2.80 GHz at Vdd 0.996 V

SYS CORE1 CORE2 SYS

GOPS Power Tmax EM SM TDDB TC NBTI Power Tmax EM SM TDDB TC NBTI MTTF

max[W] [C] [Y] [Y] [Y] [Y] [Y] max[W] [C] [Y] [Y] [Y] [Y] [Y] [Y]

perlbench - gromacs 7.091 21 51 32 40 25 33 25 19 43 75 84 32 64 34 14

bzip2 - tonto 6.980 23 51 41 43 25 35 26 30 44 55 83 31 63 34 15

gcc - hmmer 7.182 37 51 46 48 26 38 27 35 43 63 92 32 70 35 15

gobmk - h264ref 7.676 18 50 50 42 25 34 26 28 42 50 89 34 69 35 15

hmmer - povray 9.060 20 51 34 36 24 30 24 29 45 38 71 30 54 32 13

sjeng - calculix 9.227 25 51 21 35 23 29 24 21 45 65 67 29 51 31 12
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

AVERAGE 7.125 23 49 42 46 26 37 27 23 44 82 81 31 62 33 14

2.13 GHz at Vdd 0.884 V
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

AVERAGE 5.978 15 43 108 92 17041 72 35 14 43 136 108 18326 85 38 24

1.60 GHz Vdd 0.804 =V
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

AVERAGE 4.393 9 37 277 175 3,37E+06 159 46 9 37 201 108 2,70E+06 85 38 29

Table 8.1: Summary of characterization results of the SPEC CPU 06 on ourdual-core processor.

For space limitations we report results on only a few pairs ofbenchmarks. Averages are, however,

computed across all pairs of benchmarks.

the temperature to the minimum possible value maximizes theMTTF, while keeping the same

performance of the system since we are not scaling frequency. To find such minimum temper-

ature, we incrementally increase the TEC current and solve Equation (8.1) and Equation (8.2)

to computeTc. We stop when the minimumTc is found, while keeping all parameters within

the TEC specification.

Strategy II: Meeting Required MTTF using Minimum TEC Power a nd minimum Perfor-

mance Degradation. In this strategy we seek to ensure a minimum acceptable MTTF while

using the least amount of TEC power consumption. To identifythe minimum power required

to get to the required MTTF, we incrementally increase the power consumption of the TEC and

use Equation (8.1) and Equation (8.2) to identify the cold side temperature at every moment of

time. The cold side temperature is then fed to the failure models to compute the system MTTF.

If the system MTTF reaches the required value, then the algorithm stops. In some extreme

conditions, a situation might arise where the core power is higher than theQmax of the TEC.

In this case, we are forced to use DVFS as a means to reduce the core’s power. We refer to this

strategy byadaptive TEC.

8.5 Experimental Results

Our experimental system is equipped with an Intel Core 2 Duo E4700 processor and 4 GB

of DRAM. The processor has three DVFS states: 2.8 GHz at 0.996V, 2.13 GHz at 0.884 V,

and 1.6 GHz at 0.804 V. We intercept the power supply lines to the processor and measure

the current consumption using an Agilent 34410A multimeter. We measure the temperature of
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Figure 8.5: MTTF as a function of different TEC power ratios at various DVFS settings.

each core from the embedded sensors using thelmsensors package. We also measure the

performance counters of the processor using thepfmon package. Measuring the performance

counters enables us to calculate the throughput of the processor and to estimate the individual

power of the cores from the total power consumption of the processor as discussed in Section

4.2.2. We use a sampling interval of 200 ms for all measurements. The measured power,

temperature and voltage traces of each core are fed to our RAMP-like model to estimate the

FIT/MTTF for the five failure mechanisms and the MTTF of the entire processor as discussed

in Section4.2.2.

Our TEC model is based on TEC-microsystems model number 1MDL06-052-03. We as-

sume two TECs are embedded between the processor die and the heat spreader. The physical

dimensions of each core match the physical dimensions of theindividual cores of the dual-core

processor. The parameters of our TEC model at 300 K are:∆Tmax = 67 K, Qmax = 18.7 W,

Imax = 5.3 A, R = 0.87 Ω, andVmax = 6.3 V.

In the first experiment we characterize the impact of workload variations on the power,

voltage, temperature, throughput, and MTTF of our dual-core processor under different DVFS

settings. We use the SPEC CPU 2006 benchmarks, where a pair ofbenchmarks are executed,

with one benchmark per core. We ran every possible combination of the 29 SPEC CPU 2006

benchmarks at every possible frequency-voltage setting for 120 seconds. Table8.1 gives the

average total throughput of the processor in Giga Operations Per Second (GOPS) and the sys-

tem MTTF in years. We also report in the table the maximum power, temperature, and MTTF

of every failure mechanism for each of the two cores. Due to space limitations, we report

results for a few pairs of benchmarks. The average values are, however, computed across all

pairs of benchmarks. All failure mechanisms are directly affected by temperature; in addition,

EM is affected by power and TDDB is affected by voltage. The MTTFs for EM and TDDB

are very high at 1.60 GHz and 2.13 GHz. Thus, for these frequencies the system’s MTTF is

largely determined by NBTI, TC, and SM, which are largely determined by temperature.

In the second experiment we evaluate the improvement in MTTFof the dual-core pro-
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cessor as a function of the power consumption of the TECs at every DVFS setting. We vary

the ratio of the power consumption of TECs to its core, and for each setting, we identify the

largest possible improvements in the core temperatures andthe system MTTF using Strategy I

proposed in Section8.4. We plot the results in Figure 5 for a number of application traces at

the three different frequency-voltage settings. In Figure5, the x-axis gives the ratio between

the TEC power consumption and the core power consumption, and the y-axis gives the MTTF

for the different pairs of benchmarks. Increasing the TEC power consumption reduces the core

temperatures and improves the system MTTF. Because many failure mechanisms depend expo-

nentially on the temperature, small reductions in temperature can result in large improvements

in MTTF. For example, at 2.8 GHz, engaging the TEC can double the MTTF for sjeng-calculix

at the expense of an additional 60% increase in power consumption. At 1.6 GHz, MTTF can

improve by 26% at the expense of an additional 35% increase inpower consumption. Note that

the curves exhibit two “flat” regions at low TEC power ratios and at high TEC power ratios. At

low TEC power ratios, the electrical power supplied to the TEC might not be sufficient to pump

the power dissipated by the processor, resulting in no thermal or MTTF improvements. At high

TEC power ratios, MTTF improvements saturate at a point whenthe power consumption of a

TEC reaches its maximum power rating (VmaxImax). At such stageQmax is being pumped

from each core by its TEC. We also observe a trend where smaller TEC power ratios are re-

quired to reach saturation at smaller frequencies. This result is expected since cores consume

less power at lower frequencies and the TECs have to pump lessheat producing larger∆T .

In the third experiment we evaluate the impact of using TEC and DVFS on the performance,

MTTF, and power consumption of the processor. Our goal is to control the MTTF during

runtime with little or no impact to performance using Strategy II developed in Section8.4,

which we will call adaptive TEC. To mimic real-world settings and generate sufficient MTTF

variations, we sequentially execute different pairs of benchmarks. Each pair is executed for

100 billion operations, before the next pair is brought intothe system. Table8.2 gives two

different benchmark combinations that will be analyzed in this experiment. Each combination

involves six pairs for a total of 600 billion operations. In Figure 6, we plot the MTTF (blue

solid line) when the frequency is statically held at the highest setting 2.80 GHz. The dashed

gray line gives the MTTF from using adaptive DVFS, while the dotted red line gives the MTTF

from using adaptive TEC. Table8.3 gives the average MTTF for these strategies, where it is

clear that both adaptive TEC and DVFS give larger improvements in MTTF (from 16 years to

25 years). The table and figure show that adaptive TEC finishesexecuting all the operations in

less runtime compared to adaptive DVFS for an average improvement of about 17%. However,

adaptive TEC uses higher power consumption than adaptive DVFS. Our results demonstrate

that none of the evaluated three strategies dominate any of the two others. Each strategy gives

91



8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

Combination 1 Combination 2

GOPS CPU1 CPU2 CPU1 CPU2

[0 : 100] bwaves namd xalancbmk calculix

[100 : 200] perlbench gromacs perlbench gromacs

[200 : 300] libquantum gamess povray calculix

[300 : 400] gcc hmmer dealII wrf

[400 : 500] libquantum gamess gromacs povray

[500 : 600] perlbench gromacs zeusmp dealII

Table 8.2: Combinations where pairs of benchmarks that are executed insequence. Each pair of

applications is executed for 100 GOP.

Figure 8.6: MTTF over the time for different benchmark combinations using different strategies.

a valuable trade-off among MTTF, performance, and power consumption. Depending on the

computing system objectives, the right strategy should be engaged.

While leakage is included in our initial traces, we do not model the reduction in leakage

due to the change in temperature arising from the use of TECs.Thus, the real total power

consumption when TECs are used will be less than our conservative estimates.

8.6 Summary

In this chapter we investigated the use of thermoelectric cooling to improve the reliability

and performance of multi-core processors. We devised a reliability model to characterize the

MTTF as a function of operating temperatures, power and voltages derived from measurements
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Combination 1

metric static 2.80 GHz adaptive TEC adaptive DVFS

MTTF (years) 16 23 25

GOPS 6.47 6.16 4.97

Average power (W) 30 30 22

runtime (s) 99 104 129

Combination 2

metric static 2.80 GHz adaptive TEC adaptive DVFS

MTTF (years) 16 24 25

GOPS 6.11 5.33 4.49

Average power (W) 30 20 19

runtime (s) 83 95 113

Table 8.3: Summary of results.

on a real dual-core processor. We also developed a thermal model to evaluate the impact of

using TECs on the die temperature and power consumption. We then proposed a number

of strategies to use adaptive TEC and DVFS to improve the reliability and performance with

minimum power increases. In our experiments, we explored comprehensively the trade-off

among reliability, power, and performance under a number ofstrategies such as static frequency

assignments, adaptive DVFS, and adaptive TEC. We demonstrated that TECs offer a valuable

operational point that delivers improved reliability without the performance degradation of pure

DVFS techniques and with a reasonable increased power budget.
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Chapter 9

Conclusions

Realizing multicore platforms in a single chip is becoming an unavoidable choice to obtain

a comparable increase between power and performance in recent CMOS technologies. The

miniaturization of the components produces undesired post-fabrication variations on the tech-

nological parameters; the cores of the platforms can differin terms of power and speed from

the nominal values. Moreover several mechanisms dependingon temperature, supply voltage,

and stress of the components, create speed degradation overtime that can also generate soft

and hard errors if not well controlled.

Multicore platforms are used for large application domainsto meet tight requirements in

terms of energy saving, performance, and lifetime. Hardware techniques at design time are

not sufficient to reach all these targets, and then adaptive software strategies are needed. In

particular the aim of this thesis was to devise runtime mechanisms able to manage the actual

degradation status among the cores known by using monitors placed on the chip and meet the

given requirements for the current workload. Many solutions were proposed in literature; in

particular we wanted to improve the solutions aimed at minimizing the energy consumption

while meeting a time constraint in multimedia multicore platforms. We firstly discovered a

technique to find the optimal solution by formulating the problem through an Integer Linear

Problem Formulation (ILP), then, since the algorithm of such method is time-demanding and

cannot be applied on-line, we studied a sub-optimal solution based on two steps, namely a

Linear Programming (LP) and a Bin Packing (BP). We proved that since the LP part meets

some key properties its solution can be calculated in closed-form. We devised a simple algo-

rithm characterized by a linear cost with respect to the number of the cores that can be applied

on-line and which solves the overall problem LP+BP. We demonstrated its efficiency by com-

paring it against ILP, state-of-the-art policies, and variability-agnostic strategies by running
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real multimedia applications on the virtual prototype of anindustrial next-generation multicore

platform. LP+BP can save up to 33% energy with respect to state-of-the-art policies and 65%

energy with respect to variability-agnostic task allocation policies while providing better QoS.

Furthermore we faced the problem of meeting a given lifetimerequirement in multicore

multimedia platforms. We presented an adaptive idleness distribution policy aimed at reducing

the impact of variations and aging on the lifetime. The policy exploits variability monitors and

on-line task execution statistics to determine the duration of idle intervals to be distributed to

the cores to match a given lifetime requirement. We evaluated the impact on performance for

different degradation scenarios.

Finally we investigated the use of micro thermoelectrical coolers to control the temperature

of the cores at runtime with the objective of meeting lifetime constraints without performance

loss. We showed that using only DVFS-based techniques the recovered lifetime implies per-

formance degradations.

An adaptive technique to control performance, power, and lifetime all together needs fur-

ther research. However, the techniques we proposed in this thesis - if correctly handled - can

be used together.

In fact, not all the applications are performance-hungry. This may be the case when the user

wants to watch a movie or manage some pictures, while for the rest of the time the applications

that are running are not particularly demanding. This suggests two observations.

The first one is that we have to activate task allocation techniques to deliver high perfor-

mance only when the platform is under stress, while in the other cases the runtime can manage

the idleness to meet lifetime constraints.

The other observation is that the strategy for lifetime preservation can exploit the intrinsic

idle time that the cores experience during runtime. If the policy is based on statistical infor-

mation about the scheduling of the applications related to the typical usage of the user, it can

enforce the lifetime preservation when the computations donot have stringent time constraints.

This allows to push the hardware to its peak performance whennecessary. Also thermoelectri-

cal coolers can be adopted only for the strictly necessary time frame; in this manner the power

they require will be well-amortized.
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Appendix A - Proof of Proposition 1

Here we prove Proposition1.

Proof. Consider LP6.7and its LP dual:

maxα,β,γ Kα− Tγ










fckiα− βi ≤ pi ∀i : 1 . . . N
∑N

i=1 βi − γ ≤ q

βi, γ ≥ 0 ∀i : 1 . . . N

(9.1)

whereα is the dual variable associated with constraint
∑N

i=1 fckixi = K, βi the dual variable

associated with constraintt ≥ xi, andγ the dual variable associated with constraintT ≥ t.

By the weak LP duality theorem, given a feasible solutionx∗, t∗ of (12) and a feasible solution

α∗, β∗, γ∗ of (9.1) having the same value, i.e. such that
∑N

i=1 pix
∗
i + qt∗ = Kα∗ − Tγ∗, both

solutions are optimal. Accordingly, the proof is based on showing the optimal dual solution

associated with (a) and (b) in the statement.

First, suppose
∑s

i=1 fckiT ≥ K, in which case (a) is immediately checked to be feasible

for (12) (in particular,t∗ ≤ T ). Consider the following solution of (9.1): α∗ =
∑s

i=1
pi+q∑s

i=1
fcki

;

β∗
i = fckiα

∗ − pi for i = 1, . . . , s; β∗
i = 0 for i = s + 1, . . . , N ; γ∗ = 0. Elementary

calculations show that this solution is feasible and has thesame value asx∗, t∗.

Second, suppose
∑s

i=1 fckiT < K, and consider the feasible solution (b) to (12). Consider

the following solution of (9.1): α∗ = pr
fckr

; β∗
i = pr

fckr
· fcki − pi for i = 1, . . . , r − 1;

β∗
i = 0 for i = r, . . . , N ; γ∗ = pr

fckr
·
∑r−1

i=1 fcki −q−
∑r−1

i=1 pi. Also in this case, elementary

calculations show that this solution is feasible, in particular thatγ∗ ≥ 0, and has the same value

asx∗, t∗.
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Appendix B - Published Papers

Several publications on international journals have been obtained during the development of

this thesis, and several works have been presented at international conferences such as Design,

Automation and Test in Europe (DATE 2009 and 2011), EmbeddedSystems for Real-Time

Multimedia (ESTIMEDIA 2009), Computing Frontiers (CF 2010), and System on Chip (SoC

2011).

We list below these publications by dividing the papers published on international journals

and the papers published on the proceedings of international conferences.

Journal Papers:

1. F Paterna, A Acquaviva, A Caprara, F Papariello, G Desoli, L Benini. “Variability-

aware Task Allocation for Energy-Efficient Quality of Service Provisioning in Embed-

ded Streaming Multimedia Applications”. It will appear onComputers, Transactions on.

IEEE. The preprint version is available online athttp://ieeexplore.ieee.org/.

2. F Paterna, A Acquaviva, F Papariello, G Desoli, L Benini. “Variability-tolerant work-

load allocation for mpsoc energy minimization under real-time constraints”. It will ap-

pear onEmbedded Computing Systems, Transactions on.ACM.

Conference Papers:

3. D Bortolotti, F Paterna, C Pinto, A Marongiu, M Ruggiero, L Benini. “Exploring

Instruction Caching Strategies for Tightly-coupled Shared-memory Clusters”.System

on Chip, Proceedings of the Conference on, 34-31. IEEE, 2011.

4. F Paterna, A Acquaviva, A Caprara, F Papariello, G Desoli, L Benini. “An Efficient On-

line Task Allocation Algorithm for QoS and Energy Efficiencyin Multicore Multimedia

99

http://ieeexplore.ieee.org/


9. APPENDIX B - PUBLISHED PAPERS

Platforms”. Design, Automation and Test in Europe, Proceedings of the Conference on,

1-6. IEEE, 2011.

5. F Paterna, A Acquaviva, A Caprara, F Papariello, G Desoli, L Benini. “Variability-

tolerant Run-time Workload Allocation for MPSoC Energy Minimization under Real-

time Constraints”.Computing Frontiers, Proceedings of the Conference on, 109-110.

ACM, 2010.

6. F Paterna, A Acquaviva, F Papariello, G Desoli, L Benini. “Variability-tolerant Work-

load Allocation for MPSoC Energy Minimization under Real-time Constraints”.Em-

bedded Systems for Real-Time Multimedia, Proceedings of the Workshop on, 134-142.

IEEE/ACM, 2009.

7. F Paterna, A Acquaviva, F Papariello, G Desoli, M Olivieri, L Benini. “Adaptive Idle-

ness Distribution for Non-uniform Aging Tolerance in Multiprocessor Systems-on-chip”.

Design, Automation and Test in Europe, Proceedings of the Conference on, 906-909.

IEEE, 2009.
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