Alma Mater Studiorum - Universit a degli Studi di Bologna

DOTTORATO DI RICERCAIN
Elettronica, Informatica e delle Telecomunicazioni

CICLO XXIV

Settore concorsuale di afferenza: 09/E3 Elettronica
Settore scientifico disciplinare: ING-INF/01 Elettronica

VARIABILITY -TOLERANT HIGH-RELIABILITY
MULTICORE PLATFORMS

Presentata da:. FRANCESCO PATERNA

Coordinatore Dottorato: Relatore:

Chiar. mo Prof. Ing.LUCA BENINI Chiar. mo Prof. Ing.L UCA BENINI

Esame Finale Anno 2012

Abstract

Next generation electronic devices have to guarantee hagfopnance while be-
ing less power-consuming and highly reliable for severagpleation domains

ranging from the entertainment to the business. In this edntmulticore plat-

forms have proven the most efficient design choice but nelieobas have to
be faced. The ever-increasing miniaturization of the comepts produces un-
expected variations on technological parameters and veegireharacterized by
soft and hard errors. Even though hardware techniques, higind themselves to
be applied at design time, have been studied with the obgtd mitigate these
effects, they are not sufficient; thus software adaptivirtiggies are necessary.

In this thesis we focus on multicore task allocation stregego minimize the
energy consumption while meeting performance constraiits firstly devise a
technique based on an Integer Linear Problem formulationctviprovides the
optimal solution but cannot be applied on-line since the&tym it needs is time-
demanding; then we propose a sub-optimal technique basd¢d@isteps which
can be applied on-line. We demonstrate the effectivenesisedhtter solution
through an exhaustive comparison against the optimal smlutstate-of-the-art
policies, and variability-agnostic task allocations bywning multimedia applica-
tions on the virtual prototype of a next generation indudtmulticore platform.

We also face the problem of the performance and lifetimeadiegion. We firstly
focus on embedded multicore platforms and propose an igtedistribution pol-
icy that increases core expected lifetimes by duty cycliegy &activity; then, we
investigate the use of micro thermoelectrical coolers inagal-purpose multicore
processors to control the temperature of the cores at rumtivith the objective of
meeting lifetime constraints without performance loss.

To my father.

Vi

Acknowledgements

I would like to express my deepest gratitude to my advisasf.Rruca Benini, for
giving me the opportunity to work in his research team, fargig with me his
remarkable knowledge and for his precious lessons.

| would also like to thank:

Prof. Andrea Acquaviva for his support during my PhD studied for reviewing
this thesis.

Prof. Sherief Reda who gave me the possibility to join hisried Brown Univer-
sity and for the accurate work in reviewing this thesis.

Giuseppe Desoli and Francesco Papariello for all | havenlestrST Microelec-

tronics in Milan.

Eric Flamand and Diego Melpignano for making possible t@eyd my knowl-
edge through my experience at ST Microelectronics in Grienob

Prof. Mauro Olivieri for believing in me at the beginning ofymesearch activity.
Prof. Alberto Caprara for his kind and punctual assistance.

All the guys of Micrel Lab for sharing important goals and fufn particular,
Andrea Marongiu for his patience as reader.

All the people | met in Bologna, Milan, Grenoble and Provideifior the wonder-

ful moments we shared.
Salvatore and Gianpiera.

My brothers, my sister, and my mother.

viii

Contents

List of Figures Xiii
List of Tables XV
List of Abbreviations Xvii
1 Introduction 1
1.1 OVerview e 1
1.2 Theperformanceissue i 2
1.3 Thepowerissue 3
1.4 Thereliabilityissue e 4
1.5 Thesis contributions and organization 4

2 Architectures 7
2.1 From general-purpose processors to embedded systdormpg 7
2.2 Virtual platforms L 10
2.3 Amulticore platformmodel 12

3 Parallel programming on multicore processors 15
3.1 OvVerview e e 15
3.2 Parallel programming paradigms o 17
33 Casestudy 19
3.3.1 Integralimage 19

3.3.2 Parallel MPEG2decoder, 20

CONTENTS

4 Process variation and aging of CMOS architectures 23
4.1 Impactofstaticvariations. e 23
4.2 Performance degradations and reliability limitations. 24

4.2.1 NBTI characterization for multicore platforms 25
4.2.2 MechanismsofFailure 26
4.3 TooIsS. e 29
4.3.1 \Variability Aware Modeling (VAM) 29
4.3.2 Reliability-aware Micro-processors (RAMP) 29
4.4 Integratation of tools into virtual platforms 30

5 Variability-tolerant multicore platforms 33

5.1 Qverview e e 33
5.1.1 Target system and variability model 35

5.2 Relatedwork 36
5.3 Variability-tolerant workload allocation 37
5.3.1 ILP problem formulation oL 37
5.3.2 LP+BP problem formulation 39
5.3.21 LP:firststep 39

5.3.22 BP:secondstep 40

5.3.3 Rank-basedtechniques 44,

5.4 Experiments 44
541 Setup 44
5.4.2 The advantage of variability-aware allocation 46
5.4.2.1 Results using 4-core platform A7

5.4.2.2 Results using 8-core platform A8

5.4.3 Variability compensation analysis 50

55 Summary 52

6 A variability-aware run-time task allocation 53
6.1 Qverview e 53
6.2 \Variability-tolerant run-time workload allocation 54

6.2.1 RankFrequency 55
6.2.2 RankPower. 55
6.2.3 RankEnergy 56

CONTENTS

6.2.4 LP+BP and its fast implementation
6.2.4.1 A closed-form solution ofthe LP

6.24.2 Example

6.2.5 Min and Max energy techniques

6.3 Experimentalresults
6.3.1 Results,
6.3.2 LP+BP policy executiontime
6.4 Summary e e e e

7 High-reliability multicore platforms

7.1 OVEIVIEW . . . o o o e e e e
7.1.1 Relatedwork
7.2 ldlenessconstraints

7.2.1 Platform model and software infrastructure

7.3 Adaptive idleness distribution policy
7.4 Experimentalresults
7.5 Summary ... e

8 Using micro thermoelectric cooling in multicore processts

8.1 Overview e
8.2 Relatedwork
8.3 Thermalmodeling.

8.4 Strategies for improving reliability and performance

8.5 ExperimentalResults
8.6 Summary

9 Conclusions
Appendix A - Proof of Proposition 1
Appendix B - Published Papers

References

Xi

......... 72

73

......... 74

97

99

101

CONTENTS

Xii

List of Figures

11

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2

Structure of the thesis. e

Abstraction levelsofasystem.,

xSTsim platformmodel.,

Levelsof paralellism
Parallel programming paradigms: a) Master Slave; b) BR#IData Pipeling.
Integral Image. Execution time over the number of cocelecators.
Task graph of a parallel characterization of the MPEG®der.

MPEG2 Decoding. Execution time over the number of cocelacators. . . .

Per-core guardband analisys over recoveryratio.
System lifetime analysis. e
Diagram for lifetime estimation using the RAMPtool.

Modeling variability in Virtual Platforms.

Switch ring area impact on power domain size.
Normalized Energy Comparison. 4 cores. The Number dfiga8.
Normalized Energy Comparison. 4 cores. The Number df iBa®32.
Normalized Energy Comparison. 8 cores.
Energy comparison e
MIN-MAX-AVG Energy Comparison.

Energy percycle/ Time Spreading. oo ..

Rank policies block diagram.
LP+BP block digram.

Xiii

.22

26
27
29
30

. 34

47
48

. 49

50
51
51

LIST OF FIGURES

6.3

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6

a)Variability injection b)Profiling c)Energy vs. Exdmn Time d)Energy vs.

Variation Level 70
Relationship between idleness and core lifetime. 76
Implementation scheme of the adaptive idleness disioi policy. 78
Adaptive idleness distribution policy description. 78
Variability scenarios. e 80
Relative impact of variability. 80
Variability impact on throughput. L. 81
Processor heat removal system incorporating microTECs 84
Relation betwee® and AT for various values of currerit. 87
Thermal circuit for one TEC used with single-core preoes 87
Thermal circuit modeling fortwo TECs. 88
MTTF as a function of different TEC power ratios at vas@VFS settings. . 90
MTTF overthetime. 92

Xiv

List of Tables

3.1

5.1
5.2
5.3
54

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

8.1
8.2
8.3

Levels of parallelism and grain code size. 16

Variability-affected MPSoC. 45
Deadline miss rate. 4 cores. 8 tasks. 0.5 for deviation. 47
Deadline miss rate. 4 cores. 32 tasks. 0.5 for deviation.. 48

Platform Utilization Percentage. 8cores. 49

Degraded platform example. oL 62
Corecyclebudgets 63
LP+BPexample. 63
Final task allocation., 64
Degraded platforms. 66
Deadlinemissrate. e 67
Parameter variation distribution. L. 71
LP+BP COSt. e 71
Results for the SPEC CPUO6 benchmarks 89
Benchmarks. e 92
Summaryofresults. 93

XV

LIST OF TABLES

XVi

List of
Abbreviations

ASIC
BFD
BP

CIsC

CMOS

CPU
D2D
DC
DRAM
DSP
DVFS
EDA
EM
GOP
GOPS
GPE
HCI
IDCT
ILP
IPC

ISA

Application Specific Integrated Circuit
Best Fit Decreasing

Bin Packing

Complex Instruction Set Computer

Complementary Metal Oxide Semicon-
ductor

Central Processing Unit

Die to Die

Direct Current

Dynamic Random access memory
Digital Signal Processor

Dynamic voltage and frequency scaling
Electronic design automation
Electromigration

Giga operations

Giga Operations per Second

General Purpose processing Element
Hot Carrier Injection

Inverse Discrete Cosine Transform
Integer Linear Programming
Instruction Per Cycle

Instruction Set Architecture

XVii

ISS
ITRS

LP
MOSFET

MPEG
MPSoC
MTTF
NBTI

NoC
NUMA
(O}
ovP
PE
QoS
RAMP
RF

RISC
RN
RNM
RP
RTL
SIMD
SM
SMP
SoC
SPMD
TC
TDDB
TEC
TLM

Instruction Set Simulator

International Technology Roadmap for
Semiconductors

Linear Programming

Metal Oxide Semiconductor Field Effect
Transistor

Moving Picture Experts Group
Multi Processor System on Chip
Mean Time To Failure

Negative Bias Temperature Instability
Network on Chip

Non Uniform Memory Accesses
Operating System

Open Virtual Platform

Processing Element

Quiality of Service

Reliability Aware Micro Processors

Rank Frequency task allocation tech-
nique

Reduced Instruction Set Computer
Rank Energy task allocation technique
Random task allocation technique
Rank Power task allocation technique
Register Transfer Level

Single Instruction Multiple Data
Stress Migration

Symmetric Multi Processor

System on Chip

Single Program Multiple Data
Thermal Cycling

Time Dependent Dielectric Breakdown
Thermo Electric Cooler

Transaction Level Modeling

LIST OF TABLES

VAM Variability aware modeling VP Virtual Platform
VLIW Very Long Instruction Word WID Within Die
VLSI Very Large Scale Integration

Xviil

Chapter 1

Introduction

1.1 Overview

Fast and complex computations are no longer required onigdtijutes of research, big com-
panies and banks for manipulating huge amounts of data. dyga personal computers and
mobile devices are largely adopted to facilitate the uddesin several application domains,
from the entertainment to the business. Thus, to be capableouting a wide range of sophis-
ticated applications, these systems are increasinglynb@govery performance demanding.

For example, complex multimedia applications are now a riausdll portable systems, as
well as the security of sensitive data, which needs to beya\gaaranteed in modern, always-
connected embedded devices. Such requirements lead tedhssity of executing intensive
computation within short times, which translates in highfgrenance demand.

High performance obviously implies high consumption of pawMost of the electronic
devices are portable, then they need batteries suppodimy usage time. Reducing power
consumption is obviously paramount for battery-operatetbexided systems, but energy re-
duction is becoming a critical issue also for personal caensuand workstations, as all the
world community has become aware of the energy problem iergénNowadays, all the en-
ergy produced is becoming insufficient to meet the demandreméasingly expensive. While
the search for alternative sources of energy is underwayneers must put all their efforts in
designing less energy-demanding products.

To further complicate the picture, the miniaturization dmgh stress of utilization of cur-
rent CMOS designs, have caused them to become less relialplacticular the lifetime of any

electronic device can no longer be considered infinite amgessolutions need to be devised

1. INTRODUCTION

to prevent hard and soft errors. Of course in specific fields st military, aviation and so
on, long lifetimes must be guaranteed, but this is becomirggjairement also for commercial
devices. This is because almost all personal data is todegdsinto digital devices which

must be ensured to work efficiently for the longest possinie t Moreover, the big companies
are aware of the problem of the impact on the environmentlaggare required to adhere to
design processes which lead to produce long-lasting aiablelsystems.

In conclusions, next generation electronic devices havguarantee high performance
while being less power-consuming and highly reliable. Tasigh processes at the hardware
layer take into account these requirements, but even fgtesipplication systems the results
are less effective because the workload changes very of@rtime. For this reason, system-
level adaptive techniques, in particular those at the softdayer are an unavoidable choice.

1.2 The performance issue

In 1965 Gordon E. Moore described that the density of the @mapts in integrated circuits
would have increased over the following yedass]|[Since 1975 the number of transistors per
area in fact has kept doubling every twenty-two months, thissallowed the increase of the
speed of single-core processors while keeping a stabibikly.

Over the last years the single-core processor speed iecheasbegun to diminish. This
performance increase has always been around 60% until #1290, but it dropped to 40%
in 2004. The limits of current transistor technology mairdgard the power. The gate of small
CMOS transistors gets thinner and less able of blocking tve df the electrons, then even if
transistors are not switching they consume power. Moreioweeased clock frequencies cause
faster transistor switching, which translates in more fg#t The heat increase also produces
higher temperatures that in turn lead to reduced relighifi2, 77].

The bottleneck in performance that single-core procesam®xperiencing is described
through thePollack’s Rule which states that performance increase is proportiornhletiaquare
root of the increase in complexity. Moreover the core povegrstmption is proportional to the
area [L2, 65].

Multicore processors have been introduced to keep paceMuatire’s law For instance, for
the same chip area and power, two small cores can potergialyde the 70-80% performance
increase postulated by the Moore’s law, against the 40%radatdy a large monolithic core.

1.3 The power issue

Despite Pollack’s Rule might suggest pursuing the directbusing a large number of
small cores integrated on the same chip, some other batkeria performance exist. To
receive high throughputs from multicores, applicationscht be parallelized. This process
is not always easy. IN is the number of cores, themdahl's lawstates that the parallel
speedup is limited by the serial code in a program, whichrefveaffects the throughput as
follows: Parallel Speedup = 1/(Serial% +(1-Serial%)/N) [37]. In addition, the performance
improvement given by a high number of short parallel execugarts could suffer the latency
towards the memory and the other devices. In conclusioferdiit architectures can be adopted
such as platforms with a small number of complex cores ofgufat with a high number of

small cores. Hybrid platforms also exist, composed of loggemeous cored §].

1.3 The power issue

The power consumption in CMOS circuits is produced by twoamapntributions. The first
one is related to the switching activity of the transistonsl a is well-known asdynamic
power[32] which is proportional to the clock frequency of the core &l total capacitance
and the square of the voltage. The other contribution alssigis in static conditions due to the
leakagecurrent which is highly dependent on the threshold voltdgé. [The supply voltage
plays an important role for the dynamic power as well as fergharformance. The dynamic
power can be brought down by lowering the supply voltage ewie clock frequency required
is still kept. In multicore processors, dynamic voltage &eduency scaling (DVFS) mecha-
nisms can be adopted to optimize the power and set the speadlokingular core to configure
energy-efficient system§§]. Basically low-power processors require low supply vods R5]
but as the CMOS technology scales down to 65nm and beyordrarie devices work near-
threshold region which can cause performance loss, peafocenvariation, and memory and
logic failures p7].

Beyond 65-nm dimension, process variations impacting #laydand the power of the
circuits have become a critical issue in the design of vagelacale integrated (VLSI) circuits
using advanced CMOS technologi@4]. A large magnitude of the power variability is due to
the exponential relationship between transistor gatettheagd subthreshold leakage current.
On the other hand, performance variability is primarily aofed by physical variations in
interconnects.q1, 56, 60]

1. INTRODUCTION

1.4 The reliability issue

In addition to variations, also theear-outis a factor affecting next generation nanoscale plat-
forms [11, 71]. The impact is not only on power and performanbkegative bias temperature
instability (NBTI) and dielectric breakdown are critical mechanismalgimg degradation over
time that can lead to system failures. Several mechanisrifalafe have been classified(].
The main factors which lead to failures are the usage of teesyand the temperature. Typ-
ically before incurring a failure a circuit becomes slowér][Without applying workload-

balancing based techniques, lifetime can be preservedamrilog the execution speed]|

1.5 Thesis contributions and organization

The aim of this thesis is to demonstrate the effectiveneggiformance, power, and lifetime
of the software techniques for workload balancing in nextsgation multicore platforms. We
firstly provide an exhaustive background on the multicormpssors analyzing the hardware
and the software aspects as well as the technological ighasswe present the adaptive tech-
nigues we have devised to improve the solutions preserteiature.

More in details the structure of the thesis is depicted iuféh 1. Chapter, 3, 4 form the
background part, whereas the contribution of this work espnted over Chaptess 6, 7, 8.
Finally, in Chapter9 we summarize the results and make some remarks regardiognupr
issues.

In Chapter2 we provide a classification of the primary types of architeetadopted in
multicore processors. We highlight the differences camogrthe processing units, the cache
memories, and the interconnection systems. Moreover wedate the concept of virtual
platform and what are the needs to adopt such simulatorsriwlaae verification and soft-
ware development. To conclude the chapter, we present thsimSmulticore platform by
STMicroelectronics that we have largely used in the expenii@ part of this work.

In Chapter3 we introduce the issue of the parallel programming needealuiticore pro-
cessing to reach high performance. We review the most popatadigms of parallel comput-
ing, and then we illustrate how we have parallelized two igpfibns for the xSTsim platform.

The first application is the MPEG2 decoder, and the other ®fteeintegral imagewhich is a

1.5 Thesis contributions and organization

Conclusion
Chapter
9

Contribution
Chapters
56,7,8

Background
Chapters
2,34

Introduction
Chapter
1

Background

Chapter2
Multicore
Architectures

Chapter 3
Programming
Paradigms

Chapter 4
Variations
and Aging

Contributions

Variability-tolerant High-reliability
adaptive techniques adaptive techniques

Chapter 5
Optimal
Technique

Chapter 6
Runtime
Technique

Chapter 7
Idleness
Technique

Chapter 8
TEC-based
Technique

Figure 1.1: Structure of the thesis.

very popular computational kernel used in image detecfldrese two applications have been
used in the experiments.

In Chapter4 we illustrate the problem of variations and wear-out in séknth CMOS
technology multicore platforms and how much they impactgedgormance, power, and life-
time of such systems. We illustrate the models and the tos#sl o estimate those effects.
Furthermore, we show how we have linked such tools to thealiplatform of the xSTsim
platform. Thus we were able to study and test variation-avgaftware techniques.

After the background part we illustrate the contributiofighis work. The goal we want
to reach is to discover adaptive techniques able to meetrezgents in performance, power
and lifetime. We divide that problem into two separate issua Chapters, 6, we face the
problem of how to minimize the energy consumption while nmgeperformance constraints
in presence of static variations, whereas in ChapteBwe investigate how to meet lifetime
constraints considering also dynamic variations.

In particular, Chapteb presents an optimal solution based on an Integer Linear&rog
ming (ILP) formulation of the problem, and a sub-optimaluiain based on two-steps namely
Linear Programming (LP) and Bin Packing (BP). We have te#ftedproposed strategies on
the virtual cycle-accurate prototype of the target indakplatform comparing the results in
terms of energy and performance with the state-of-theeattrtiques. Even though we demon-
strate the effectiveness of the proposed strategies, Hreyot be applied at runtime since they

1_introduction/figures/diagramma_tesi.eps

1. INTRODUCTION

need time-demanding algorithms. In particular to solveltti® problem we used the ILOG
Solverft1] and to solve the LP part of the other technique we adopte&itmplex algorithm.

In Chapter6 we exploit the key properties of the LP problem of the subroglk strategy
based on two steps and presented in Chapter prove that it can be solved through few
arithmetic computations and without using the Simplex atigm. Thus we demonstrate that
the LP+BP technique can be solved in linear time and can beidyiapplied at runtime. We
tested its effectiveness on the virtual cycle-accuratéopype of the target industrial platform
running two multimedia applications; the complete MPEGR@atiing, and thentegral image
We also verify that this strategy outperforms the statéhetart solutions.

We face the problem of the performance and lifetime degradlan Chapters7, 8. In
particular we focus on embedded multicore platforms in @vap and on general-purpose
multicore processors in Chaptér

In Chapter7 the objective is to mitigate the impact on lifetime uncertgiand unbalancing
among the cores. To this purpose, we developed an idlenstsaliion policy that increases
core expected lifetimes by duty cycling their activity.

In Chapter8 we investigate the use of micro thermo-electric coolersG$Eo control the
temperatures of the cores and then the lifetime of the sydBa®ed on a real dual-core proces-
sor, we first devise a model to estimate the mean-time-torga{MTTF) for each core and the
entire processor as a function of each core operating ¢ongjtsuch as power, temperature,
and voltage. We then develop a thermal model for the processbthe TECs to capture the
thermal and power interactions between the processor, B@sTand the heat sink. We then
propose a number of strategies to use TECs in conjunctidndyitamic voltage and frequency
scaling (DVFS) to improve reliability and performance.

Chapter 2

Architectures

2.1 From general-purpose processors to embedded system {pla
forms

Multicore architectures can be classified in many ways. Wewein the following some of
the most representative, considering three popular iejteamely: the application class, power

performance, and processing elements.

The application class Machines targeted to specific application domains lewetsgd-
ware architectures reflecting those specific requiremertigs solution ensures the most effi-
cient implementation for the targeted domain, but on themwttand lacks flexibility, thus re-
sulting very weak in executing programs from different >lon domains. The most notable
example in this sense mpplication-specific integrated circu{iASIC). Tailoring the system
design to a specific application domain has many advantageh, as high energy efficiency.
Digital signal processorgDSPs) are a significant example of this design paradigm.

However this kind of architecture is not recommendable witesigning systems that are
meant to run varied workload. For example, data-intensiveputations such as video and au-
dio processing typically involves executing numerousedéht signal processing algorithms,
for what on-chip multi-core systems are bound to providégbgtower/performance ratio. The
same rationale also applies to control-dominated apmiest where file compression/decom-
pression and network processing algorithms may be mordegifig executed over multiple

parallel general purpose processing elements. In this emahe unstructured nature of control

2. ARCHITECTURES

codes can be better handled.

PowerPerformance Many devices must execute applications within very sipmiver
budgets and performance requirements. Examples are npimiees, which are nowadays
devised to support video playback while consuming less pand keeping adequatpiality
of service(QoS). Currently, general-purpose multicore process@$hee most suitable choice

for similar devices, but they are becoming very energy defman

Processing elements Another possible classification can be made based on tledfyp
processing element used as a main building block. Each @@ Instruction Set Architec-
ture (ISA) corresponding to a general-purpose processm gdme few instructions, such as
atomic instructions for synchronization to support paiam. ISAs can be historically classi-
fied in reduced instruction set computer (RISC) and compistruiction set computer (CISC).
The CISC ISAs provide benefits in code sizes; in fact ISAs facpssing elements are ex-
tended by the major vendors of processors like Intel and AMiictv equip their cores with

particular operations for multimedia applications like MRIoes for its NEON 4 7].

The most popular architectures are homogenous and herm@edl have the same design.
However, heterogeneous architectures may be more sutalblave same performance with
lower power consumption. To increase the performance dipgpines are typically used be-
cause they require a minimal logic per stage; this allowefagocks and incurs lower penalties
from broken execution sequence due to branches.

In-order processing elements are preferable to out-céravdes because they need smaller
area, lower power and are more suitable for high thread-feusllelism. A representative ex-
ample in this sense is general-purpose graphical progessits (GPGPUs): The, NVIDIAs
G200 has 240 in-order cores2]]. Out-of-order processors work better to improve perfor-
mance of serial codes because instructions can be dyn&micglscheduled to keep full the
pipeline, but the related mechanisms are very power hungtiyen the application domains
are characterized by poor degrees of thread-level pasatielout-of-order cores are prefer-
able, particularly when implementations adhering to eithesingle-instruction multiple-data
(SIMD) or thevery long instruction wordVLIW) architecture paradigm are considered. SIMD

and VLIW eliminate some complexity of the logic to optimizgetexecution of instruction

2.1 From general-purpose processors to embedded system titems

streams. SIMDs use large split registers to process mailtpta requiring only one instruc-
tion. An example of this architectural solution is vectostiictions. An example of multi
SIMD-core processors is the IBM Ceb(] which is targeted for data-intensive applications.
Instead VLIWs use multiple pipelines to execute groups sfructions in parallel. Most of
the complexity in this case is moved at the compiler level.IWk can provide some advan-
tages over SIMDs but exhibit poor performance if undeiizgd. Both VLIW and SIMD are
the most efficient solution, performance- and energy-wiseapplications with high levels of
data-parallelism.

Memory hierarchy. From the point of view of the memory hierarchy, caches hamine
more and more important in multicore processors, becaweseptovide each core with local,
fast memory. Caches can be further tagged and managed bgrthedre or explicitly used as
local store memory (i.e. scratchpads).

Tagged caches are very common because they handled tremifpdoy the instruction
stream which believes only one uniform memory exists. $hpdds can instead provide de-
terministic performance and offer more storage capacityhie same area.

The number of cache levels increases as processing elebemuine faster and numerous
in platforms P]. Typically, as the cache gets close to the main memory iblmes larger,
slower, and it is shared among the cores. Thanks to memargrbiees, processing elements
perform very fast accesses even though the main memory dréus of cycles away. For in-
stance, AMD Phenom¥p] has three levels of cache. In embedded multicores the mamary
may be a few tens of cycles away and one level of cache may heiaunif to conserving both
die area and powe#].

Some multicore platforms integrate an embedded DRAM (eDRAdkK on the same die
to improve system performance by reducing the memory Igtemdulti-bank DRAMs are
adopted to hide long latencies by allowing the memory to@ssanultiple accesses in parallel.
This may incur a significant area penalty and will therefasnict the density of the embedded
DRAM main memory 84].

Tightly-coupled, multi-banked shared memories are adbpteembedded multicore plat-
forms as P201293] from STMicroelectronics and the Hypercore architectime (HAL) [48]
from Plurality, both of them contain sets of RISC-32 bit Hand/processors.

2. ARCHITECTURES

Shared memory-based systems often leverage coherent £gthens to ease application
writing. Cache coherence can be broadcast-based or diydmaged. In the broadcast way
operations visible to all processor can be executed from oné core at time. The directory
instead enables multiple coherence actions to occur caardly. This is possible because a
directory contains information about which caches coneaich memory address.

Directory coherence is typically adopted for weak consisgenodels and for large systems
containing many cores, such as the Tilera TILEBZ] [

Sometimes cache coherence is omitted to reduce design exitgpexamples are the TI
TMS320DM6467 F6] and the IBM Cell BQ]. In this case the software has to enforce the
visibility of the memory among the cores at runtime. Thisilgrthe programming models to
custom variants of message passing. This can be feasible tivbaize of the memory is lim-
ited [9].

In multicore processors the processing elements comntergeah other via intra-chip in-
terconnects. The different types of interconnects can assifled in buses, crossbars, rings,
and NoCs. The bus requires simple logic but it suffers franitéd bandwidth when the num-
ber of processing elements increases. Instead the NoGseate well but many challenges
rise up at the design phase.

Interconnects are also responsible for the cache cohevanich determines the program-
ming models supported by the overall architecture. Forgamgning models based on shared
memory, cache coherence keeps a unique image of the mensdrleuo all cores in the sys-
tem. ARM Cortex A9 supports this viewtT].

2.2 Virtual platforms

Due to the increase of the Multiprocessor System-on-ciMi33oCs) complexity and to tight
time-to-market requirements, the hardware and the saftyarts of the system need to be
designed simultaneously.

Software engineers have to develop operating systemscelevivers, and protocols of
communications on the hardware prototype while hardwaginerrs are designing the plat-

form at register-transfer level (RTL).

10

2.2 Virtual platforms

The overall software part cost of MPSoCs is quickly incnegsiThe International Tech-
nology Roadmap for Semiconductors (ITRS) have predictatisbftware will cost as much as
the hardware by 2013.

Prototypes of the target applications, namely virtualfptats (VPs), are adopted. Thanks
to virtual platforms software development and hardware&agibn can be largely facilitate.

A simplified flow of concurrent hardware/software desigmtstirom a system-level func-
tional specification of the overall system. In the next steyesal functions are identified and
mapped on either hardware or software blocks. Then the laedteam develops the RTL
specification of the hardware components while the softweasen starts to work on the vir-
tual platform. As the hardware progresses the virtual gtatfis updated and provided to the
software development team. In this way, the hardware artevad processes can progress
together in lockstep.

Virtual platforms are developed at various level of absioac For each one of these levels
a certain degree of accuracy is possible. Typically higklkef abstractions are mostly useful
for the software development while more accurate modeleegded for hardware verification.
Virtual platforms are also characterized by the speed otisition. At high level of abstraction
virtual platforms are faster and less accurate.

VPs can be developed though several system (hardware atvehes)f description lan-
guages that in most cases match programming languages s@;iCe+, Matlab or are exten-
sions of those, such as SystemC. Each language better tealisd one or few specific levels
of abstraction. Figur@.1shows several levels of abstraction indicating the systeseription
languages associated. For each level the graph also ieslittad degree of both accuracy and
simulation speed.

Several emerging standards exist to develop virtual pia$oof MPSoCs.

SystemC is a C++ library that provides the concepts of caragy, bit-accuracy and tim-
ing required in chip design to the C++-based programmitlg. [

Transaction-level modeling (TLM) is an interface modelimgthodology. TLM models
complex system-on-chip using instruction-set simulaftBSs) of processors and high-level,
fully functional SystemC/C++ models of the other hardwauiégding blocks.

Many electronic design automation (EDA) vendors are produtools to develop virtual
platforms, such as Synopsys and Carbon Design Systems.

System-on-Chip design companies widely exploit virtualtforms and provide simulator
of their own IPs to be easily imported in virtual platform aioplex systems designed by third

11

2. ARCHITECTURES

TLM+

cieyele | o N
Aci:urale iyl @,‘9

Performance in mega MIPS

From cycle accurate to functional accurate

Figure 2.1: Abstraction levels of a system. Comparison between acganad simulation speed.

parts. For example, ARM provides a large set of fast modetseeéral ARM processors}).
Tensilica proposes a simulation environment including XIHA processors, memories, and
connectors that can run as a SystemC model or as a C/C++ r@od&[I’ Microelectronics is
a pioneer of SystemC and of the TLM-2 standard, and its ddsigms use SystemC models
for both software design and hardware verificatid®g] [

2.3 A multicore platform model

In this section we illustrate the xSTsim multicore platfertmy STMicroelectronics and the
related VP which will be largely used in the experiments @ thork.

The platform is composed of a general purpose processimgeale(GPE, in particular
it is an ST231 28]) acting ashost processorland a number of programmable accelerators,
acting asstreaming enginéor fabric), as shown in Figur2.2 The processing elements (XPES)
of the streaming fabric are connected through a Networkzbip supporting very high data
bandwidth and throughput. The platform is meant to addresa¢eds of data-flow dominated,
highly computational intensive tasks, typical of many eddesl systems. This platform model
adheres to the STMicroelectronics xSTsim architecture.tf@applications we target in this
work the GPE acts as a task dispatcher for the xPEs.

12

2/figures/vp.eps

2.3 A multicore platform model

The xPEs of the streaming fabric are relatively simple prognable processors with a
simple ISA extended with SIMD and vector mode instructiom&e engines include a set of
features for improving performance and efficiency, such e data-paths, simple pipelines,
multi-threading etc. At the same time they execute insipactetches from local memories
instead of caches, a great simplification at the pipelineffont. Local memory is also used
for wide data accesses.

Each xPE can b&ozenand restarted writing to a control register that can be astkby
the GPE. The system has a global memory containing the pro@rgpically the operating
system, OS) running on the GPE and its data. Any XPE can ateeggobal memory and
each processor can access the local memory of another xBi tlesugh with a significant
cost in terms of latency. Hardware based memory coherenuyt iseeded because of the lack
of caches for the xPEs, and cache coherency is explicitiytaiaied in software with the GPE.
The GPE and the global memory are connected through a shasesHhich is one node of the
NoC interconnect.

A C-based model of the xSTsim platform has been developedMi@oelectronics. This
virtual platform can be configured at the beginning of theuation through a configuration
file. Itis possible to specify the number of the acceleratibres type of the interconnection such
as bus, crossbar, NoC, and the level of accuracy of each.bldeklSSs of both the ST231 and
the XPE processor are cycle-accurate. Despite the xSTriolatior allows to reach very high

levels of accuracy it is highly efficient in terms of performea.

Figure 2.2: xSTsim platform model.

13

2/figures/xstream.eps

2. ARCHITECTURES

14

Chapter 3

Parallel programming on multicore
pProcessors

3.1 Overview

Smart mechanisms for dynamic, network-wide resource ispdrave enabled the creation of
clusters of processors to be used in large-scale computatgras, achieving high performance
and scalability.

In recent computers and workstations, parallelism appaatisin hardware and software
at various layers: signal, circuit, component, and syst&ml$. At signal and circuit levels,
parallelism is performed using hardware parallelism. Alighy higher level, better perfor-
mance is obtained by exploiting multiple functional unifgeaating in parallel. This level of
parallelism is well-known as instruction level parallaiis At a still higher level, symmetric
multi processors (SMPs) have multiple CPUs working in pekalAt an even higher level
of parallelism, several computers can be connected togatie: work as a single machine,
namely cluster computing. Parallelism at component antésyslevels is mostly possible by
exploiting various software techniques, popularly knowrsaftware parallelism.

Software parallelism can be identified and outlined at diifé granularities in the appli-
cation code. These granularities determine different kioflparallelism. In particular, the
parallelism can be extracted automatically in hardwarghmugh software techniques at vari-
ous levels: (semi-)automatically in the compiler or matyial the application code. Tabl 1

15

3. PARALLEL PROGRAMMING ON MULTICORE PROCESSORS

classifies the kinds of parallelism on a code grain size basis

‘ Grain size Code item Parallelized by
Fine Instruction Processor
Medium | Loop or instruction blockk Compiler
Large Threads and processes Programmer

Table 3.1: Levels of parallelism and grain code size.

All the approaches to parallelization have the common go&lbbst processor efficiency.
Possibilities to parallelize the code of an application bardetected at the several levels, as
depicted in Figure.1 Starting from the application it is possible to find somectionalities
that can be split in tasks, or processes that can be run iigdatiais is the coarse grain level.
Each task can be further composed by functions that can binoarallel; this is a medium
grain level. More deeply, each function can be characterimesequences of equal operations
that work on different data; thus those operations can rymanallel too actually performing
the instruction-level parallelism, this is a fine grain lev@ome processor microarchitectures
are characterized by different functional blocks thatvalexecuting in parallel different kind
of operations; this is the very-fine grain levéH].

Among the four identified levels of parallelism, the veryefiand the fine grain level are
supported transparently either by the hardware or pamtiglcompilers, while programmers
mostly deal with the large and the medium levels.

Parallel programs exploit concurrently running threadprocesses, and support for inter-
thread communication is needed. The two primarily modelsooimunication are the shared
memory and the message-passing.

In the shared-memory paradigm, processes communicatg resferences to shared data
which typically are stored in a global memory visible to alkes. The accesses towards the
global memory are asynchronous. This requires protectiechanisms such as locks and
semaphores. The shared memory model can be emulated obutiestrmemory systems but
non-uniform memory accesses (NUMA) can degrade the pedoce

In a message-passing communication model, processes quoatausing messages. There
is no common address space for data, but each process acitessen dedicate address space
which may correspond to a private local memory. These conrations can be asynchronous

or synchronous4s5).

16

3.2 Parallel programming paradigms

Application

Large
Grain
function1(arg1) : function2(arg2) : : functionM(argM) :

{ [t I [t I Medium
[} | | 1 .
= | | | Grain

} | } | | I

I 11 [S
/k\

C[0] = A[0] + B[O]| [C[1]=A[1]+B[1] C[k] S ALK] + BIK]
Fine
Grain

|
F[0] = D[0] x E[O0] F[1] = D[1] x E[1] F[k] = D[K] x E[K]
-- Very Fine

ADD MUL Grain

Figure 3.1: Levels of paralellism

3.2 Parallel programming paradigms

Parallel programming techniques can be classified in feadigms that are used repeatedly to
develop many parallel programs. A paradigm is identified lojaas of algorithms which have
the same control structure. The choice of a paradigm styatepends on the parallel comput-
ing resources and the application. In particular the ressurdentify the granularity level at
which the parallelism can be more efficient whereas the tstre®f the application or the data
determines the type of the parallelism. There is a functipagallelism when it is possible to
extrapolate from the application different tasks that carexecuted concurrently and in a co-
operative way. Data parallelism exists when it is easy totifieidentical processes that can be
executed in parallel but on different data. In literaturengndifferent classifications of parallel
programming paradigms exisi(), 33]. A classification based on process properties, interac-

tion process, and data properties can be foundih [We review three of the most important

17

3/figures/parallelism.eps

3. PARALLEL PROGRAMMING ON MULTICORE PROCESSORS

parallel programming paradigms which are named respégtivMaster/Slave, Single-Program

Multiple-Data, and Data Pipelining.

Master/Slave

The Master/Slave or Task-farming paradigm is charactérigea master entity and multiple
slave entities. The master has to organize the problem inédl sasks and then distribute them
to the slaves. When the slaves terminate their works, théemhas also to collect the results.
Figure3.2a) shows the Master/Slave diagram. The workload-balareingss the slaves can be
static or dynamic. In the first case, all tasks are assignétketslave processes at the beginning
of the computation. The allocation can be done at compie-tr at runtime. In the second
case it is possible to map the tasks on the slave cores dyalyrand one-by-one basis. This
mechanism can be applied only at runtime. The dynamic |I@ahlcing is more suitable when
the number of tasks either exceeds the number of the corégsarriknown. Moreover, it can
be very useful to adapt the workload to the conditions of tfstesns by giving the possibility

to optimize the execution in terms of performance as wellasgp and reliability.

Single-Program Multiple-Data (SPMD)

One of the most popular paradigms is the SPMD. Basically ppdiaation has to be decom-
posed in processes having the same piece of code which worigferent data. Figur8.2b)
illustrates the SPMD diagram. This paradigm is highly recended when itis possible to rec-
ognize geometric structures and data-independent cotiguia the applications. Processes
firstly access to their own data and then work simultaneousligarrier of synchronization is

typically used between different computations.

Data Pipelining

This paradigm suggests identifying sequences of sepawatgidns in the applications and
assigning each one of them to a process. In this manner argsxjoé computation stages
is created. In general, each stage produces a data whichentiie input of the next stage as
depicted in Figur&.2c). A system for communicating across the stages is neduolesljttdeter-
mines the robustness of the paradigm. The communicationb@apmpletely asynchronous;
this means that mechanisms like barriers are not neededefldativeness of this paradigm

depends on the possibility to well balance the workload sctbe stages. Data Pipelining is

18

3.3 Case study

often used in data reduction or image processing applitatio

Sometimes the paradigms can show fuzzy boundaries. In@adibr some complex struc-
tures high levels of parallelism could not be reached bygusinly one paradigm. Typically
applications are parallelized exploiting mixes of parawsq18].

task i+N INPU’V DATA

BHE & i é?

DUTPUT DATA

a) @[-[
c)

Figure 3.2: Parallel programming paradigms: a) Master Slave; b) SPNIData Pipeling.

3.3 Case study

In this section we describe two examples of parallel apfitioa for multicore platforms. The
first example is a simple computational kernel very commomany algorithms from the
computer vision domain; the second is a complete MPEG2 decod

3.3.1 Integral image

The integral image algorithm is becoming popular in manygenprocessing applications. In
particular it is used for feature evaluation in the face ckite problem §].

This algorithm is applied on an image characterized thraugixel matrix. Letx be the
pixel row identifier and lety be the pixel column identifier, the integral image consists i
formula 3.2).

H(z,y)= Y, I.y) (3.)

' <x,y' <y

19

3/figures/master_slave.eps
3/figures/spmd.eps
3/figures/pipe.eps

3. PARALLEL PROGRAMMING ON MULTICORE PROCESSORS

It can be easily parallelized according to the SPMD paradigfa divide the computation
in two steps. In the first step, for each rewve replace the value at elemeénwith the sum of
its current value plus the value of elemént 1. Letr be composed by elements, frond to
N — 1. We start fromi = 1 until i = N — 1, while for element we do not replace its value.
We can execute the computations regarding each row in plaréthe second step is similar to
the first one, but the computation involves the elements@ttilumns. Also in this case we
can proceed by parallel computations.

For instance if we have a matrix of 96 96 elements and we want to divide each step in 8
parallel tasks, for the first step we assign the computatfdheofirst 12 rows at the first task,
the computation of the second 12 rows at the second task,caod. S~or the second step we
act in the same way, then we assign at each task the computditi® contiguous columns.

For this application, to evaluate how much the performamceeases with the number
of the parallel tasks, we have executed the following expenits on the multicore platform
simulator illustrated in SectioB.3. We have analyzed the time needed by the execution of the
integral image described through Formubalj by varying the image size and the number of
the parallel tasks. On each XPE accelerator of the platfoerhave allocated only one task.

In Figure 3.3, we show how much the execution time scales down with theas® of the
number of the used XPE accelerators. The figure plots theiggadimes for different image
sizes. For each of these sizes, we have normalized the exetintes over the longest one.

The execution time is roughly halved by passing frdfraccelerators t@*+!, for any .
For the smallest image size, beyond 4 cores the latency dotvarmemory hides the benefits
that the parallel execution provides, and then the exettitioe does not further scale.

3.3.2 Parallel MPEG2 decoder

We started working on a MPEG2 decodérl[54] originally written for the ST231 multi-
threaded processo2§]. This program was designed to run on 1, 2, or 4 threads digiéach
frame in two vertical halves or four quadrants. The aim ofdfiert was to transform the code
into a realistic benchmark for a class of parallel multineeclbdec suitable of being deployed
on massively parallel embedded multiprocessor arrays.oThid we had to restructure the ap-
plication to remove bottlenecks stemming from Amdahl lawitation to available parallelism

when the number of concurrent threads is increased.

20

3.3 Case study

Integral Image

1,20

1,00 2

0,80

0,60

0,40

Execution Time norm.

0,20

0,00 T T T T 1
1 xPEs 2 xPEs 4 xPEs 8 xPEs 16 xPEs

Image size:
=¢-1Kbyte <=4 Kbyte 16 Kbyte =464 Kbyte

Figure 3.3: Integral Image. Execution time over the number of core aceaédrs at differentimage
sizes.

The task graph it is depicted in FiguBed and it is composed of three parts: a control part
which scans the current frame, a slice decoding, and andev@rscrete Cosine Transform
(IDCT). There is also a fourth step, performed after the dawp of each frame, associated
with the commit of results.

We modified the program so that the scan of the current franperi®rmed by the host
core, the slice decoding and the IDCT can be parallelizeceaaduted on a generic number of
accelerators, and the commit of results is performed by tis¢ ¢ore. The slice decoding and
the IDCT have been divided in independent tasks whose nuo#rebe equal or greater than
the number of accelerators. Regarding the latter case patditer has been implemented on
the host core to schedule the different tasks on the actaisralo increase the performance
we further modified the code to execute the commit of the pressframe during the execution
of the current frame on the accelerators.

This example combines all the three parallel programminggigms presented in Sec-
tion 3.2

We have conducted experiments on the MPEG2 decoder prdsarites section to evalu-
ate the benefits that the parallelism provides. As input we haed a videoclip characterized
by frame ratio 25 frame per second (fps), length 1 second|utisn 720<576. We have still

21

3/figures/ii_perf.eps

3. PARALLEL PROGRAMMING ON MULTICORE PROCESSORS

accelerators accelerators

= G
core

- »-(slice_dec > = @
stage1 : : :

stage 1 \
works
on frame i @ @

stage 2 stage 3
works works
on frame i-1 on frame i-2

Figure 3.4: Task graph of a parallel characterization of the MPEG2 decod

used the simulator presented in Sectibf In each simulation, the platform has decoded 25
frames, and we have measured the execution time. We hawkedithie workload in 2, 4, and
8 tasks and allocated on each accelerator only one task.

Figure 3.5 shows how much the execution time scales down over the nuaitike used
XPE accelerators / parallel tasks. The execution time ighiyureduced by 40% passing from
27 accelerators t@**!, for anyzx.

MPEG2 decoding

1,20
£ 1,00 \
2
o 0,80
£
= 0,60
5
2 0,40
>S5
g 0,20
o

0,00 . . .

2 xPEs 4 xPEs 8 XPEs

Figure 3.5: MPEG2 Decoder. Execution time over the number of core acaisles.

22

3/figures/task_graph.eps
3/figures/mpeg2_perf.eps

Chapter 4

Process variation and aging of CMOS
architectures

4.1 Impact of static variations

Multicore architectures will be adopted in the sub-45nm C3/€chnology nodes for virtually
all application domains with energy efficiency requirensegitceeding 10GOPS/ Watt. Unfor-
tunately, future technology nodes will be increasinglyeeaféd by variation phenomena, and
multicore architectures will be impacted in many ways by taeability of the underlying
silicon fabrics R9, 77].

The main causes which produce process variability in thedenblogies are imperfection
in lithographic patterning of small devices and random dgpeffects 3] especially for mul-
ticore systems1[5, 40, 74].

The causes of process variations are classified in relatibma kinds of effects; die-to-die
(D2D) or within-die (WID). This means that in multicore pessors if we compare two chips
of the same model, we can experience differences in speedaver between the two chips
and also among the cores of each chip. Whereas D2D is maingedaby atomic-scale oxide
thickness variations and also dielectric thickness viariat two components are handled to
model WID variations. One component is systematic and theraine is random. Systematic
variations show a spatial correlation; this means thathyeansistors exhibit similar param-
eter values. On the other hand, random variations are mostiiced by materials effects and
show different profiles across the transistofs//].

However, also single core platforms are strongly impacteddriability. In superscalar

23

4. PROCESS VARIATION AND AGING OF CMOS ARCHITECTURES

processors, variability causes non-uniform performamers the various units, so that the
clock frequency must be set to accommodate the slowest timis, degrading the overall
throughput. An alternative is to set the clock based on te&eg units and leave more cy-
cles to the slowest. The instructions are then scheduldtkifunctional units to maximize the
throughput §7].

In multicore processor, intra-die process variations ltaausignificant core-to-core fre-
qguency variations19, 36]. More in detail, critical paths can be faster or slower tinaminal
and the clock frequency of each accelerator needs postdéibn calibration.

In addition to the performance, variability also impacts gower consumption and since
intra-die variations cause a non-uniform behavior of thegonents across the chip surface,
multicore platforms become heterogeneous both from ape&ioce and energy viewpoirid].
Large variations are measured for the leakage because ekflumentially dependency from
the threshold voltage?]. In conclusion, beyond 90-nm CMOS technology processatslity
can affect dies leading to 30% in delay and>2(n leakage 14].

Furthermore, temperature dependencies and wear-out adumily variations on top of

static inter-die process variability 7].

4.2 Performance degradations and reliability limitations

Multicore architectures on next generations are also épeing effects due to aging and
failure processes. These effects cause dynamic variaimthsan be orthogonally treated with
respect to the variability which primarily leads to statariations.

Elevated power densities and practical limitations on he@bval have led to high junction
temperatures in modern computing processors. These eleterhperatures limit the perfor-
mance and reduce the reliability of computing systems.

In particular, progressive slowdown in processors is ieduay Negative Bias Temperature
Instability (NBTI) and Hot-Carrier Injection (HCI)7] and several other mechanisms, which
are strongly dependent on temperature, cause chip failachamisms70].

At the system level, NBTI and HCI produce a gradually slowda#ithe transistors switch-
ing, and hence slower critical paths. This roughly is dueht dtress of the transistors that

causes a continuous movement of charges.

24

4.2 Performance degradations and reliability limitations

4.2.1 NBTI characterization for multicore platforms

NBTI affects PMOS transistors causing shifts in threshalliages with relation to operat-
ing conditions fi]. One of the most qualified models of NBTI is characterizedvey phases.
The stressphase happens when the logic input O is applied to the gatdPM@S transistor.
The recoveryphase happens when the logic input 1 is applied. We used tlleematical
model described by Tiwargt al.[77].

Let's denote the stress time ag,..s; and the recovery time as... , we have the threshold
voltage increment QAV;_s-es5) during the stress phase modeled aslid)(The total degrada-
tion (AV;) that further takes into account the recovery time is givethie @.2).

Vad—Vi _Ea

A‘/t_stress = ANBTI X to:c X/ Ooz(vdd - Vt) X 6(foxFo kT) X t(s]ﬂ%gss (41)

AV;S — Av;f_stress X (1 - \/77 X trec/(tstress + trec)) (42)

We set the following parameters as descripted/ify:[t,, = (0.65nm) (oxide thickness) ,
Coe = 4.6 x 10720 F/nm? (gate capacitance per unit aredjy = 0.2V /nm, E, = 0.13eV,
k = 8.6174 x 107%e¢V/K, n = 0.35 (constants). The parameted yp7; iS a constant
depending on the aging rate.

The delay of a transistor in relation with; is expressed by4(3), where a =~ 1.3 ([77]).
SettingVyy = 1.10V, V; = 0.5V, Lf = 5.24719 we have a delay ofl, = 1.12%sec. This
determines the maximum support clock frequency of a cotes We calculate it ag.x e =
1/T, ~ 893M H 2.

L f Via

T, = L
(Vg = V't)

(4.3)

We can now define thguardbandof a core as the relative difference between the working
clock frequencyf.rand the maximum onet(4).

(fck:_maz - fck)

GB =
fck

: (4.4)

25

4. PROCESS VARIATION AND AGING OF CMOS ARCHITECTURES

Of course to be working a core must have a positive value for Gice we know the
temperature and the constaAty gy we can estimate the guardband. We assume a temperature
constant aB30K and setd yprr = 15.25. We can now estimate the lifetime in terms of years
assuming to be able to impose a fixed recovery / stress ratiotiog time.

Let's assume to consider acceptable a core whose guardb&arder than 1%.

Figure4.1shows for a generic value of idle / activity ratio (X axis) neardband (Y axis)

after a certain number of years (curves), if the value is doainove the dashed horizontal line
which indicates the GB = 0.01, that number of year is guasghte

0,25 1

0,20

0,15

0,10 1

Guardband

0,05

0,00 - . T T T T 1
0 0,1 0,2 0,3 0,4 0,5 0,6

idle / activity

=i 1 year === 3 years 5years ==fr=7 years =@= 9 years = == GB min
Figure 4.1: Per-core guardband analisys over recovery ratio.

For example if idle / activity = 0.1 the core will work for 3 yesa but not for 5 years. Again,
imposing a ratio of 0.4 the system will work until 10 years.

The lifetime is intended as the sum of the time spent in idtthe time spent in activity.
Figure4.2 shows the maximum total lifetime, total activity time, atal recovery time in

year (Y axis) in relation with the ratio (X axis). The areadwelthe total lifetime curve gives
all the guaranteed working years for each idle ratio imposed

4.2.2 Mechanisms of Failure

Another approach to study aging and wear-out is to find aioglsttiip between the mech-

anism of failures and the lifetime expressed in number ofg/ed his information can be

26

4/figures/guardband.eps

4.2 Performance degradations and reliability limitations

16
14

10

[]
© 8
L6

4

2 g

0 4

0,00 0,10 0,20 0,30 0,40 0,50 0,60
idle / activity
BEBlifetime =®=stresstime recovery time

Figure 4.2: System lifetime analysis.

obtained through a first characterization which lendsfiteeéstimate the Minimum-time-to-
failure (MTTF) of the chip structures.

Device and interconnect failures can occur in any structtitiee processor dielp, 52, 70].
Failures can be classified into five critical mechanisms:

1. Electromigration (EM). EM occurs when conductor metal atoms are being transported
within the processor interconnect. The MTTF related to theshanism decreases with
the current density, then with the power, and with the teaijpee in an exponential way.

The model is given by

EaEM

MTTFgy o (J) e kT | (4.5)

whereJ is the current density in the interconnekis the Boltzmann’s constarif; is the
absolute temperature in Kelvin. = 1.1 and E,g; = 0.9 are constants that depend on

the interconnect material.

2. Stress Migration (SM). SM is due to the migration of metal atoms in the interconnects
caused by mechanical stress. The MTTF decreases on therguarpein a non-linear

way as given by

Easm

MTTFsy o« [Ty — T| e %7, (4.6)

whereE, sy = 0.9 is a constant that depends on the interconnect material] @isthe

metal deposition temperature (typically 500 K).

27

4/figures/lifetime.eps

4. PROCESS VARIATION AND AGING OF CMOS ARCHITECTURES

3. Time-Dependent Dielectric Breakdown (TDDB).TDDB is generated by the gate di-
electric’'s gradual wear out leading to transistor failuree MTTF of this mechanism is
affected by the temperature and the voltage as given by

MTTFrpps o (i)a—bTe|X +(Y/T) + ZTI)
Vv kT

where V' is the operating voltagey,b, Z,Y, and Z are all fitting parameters. Au-

thors in [72] assume the following values: = 78,6 = 0.081, X = 0.759¢V,Y =

—66.8¢VK,Z = —8.37 x 107 %eV/K.

4.7)

4. Thermal Cycling (TC). TC in processors can be caused by different phenomena like
variations in power consumption or workloads. TC can leadatiure. The MTTF
depends on the temperature as given by

1

MTTFTC X (T—ifrb
am

)%, (4.8)
whereq = 2.35 is the Coffin-Manson exponent, afig,,; is the ambient temperature.

5. Negative Bias Temperature Instability (NBTI). NBTI affects the P-channels of MOS-
FET transistors. This mechanism generates a thresholaigeoihcrease which can lead
to timing violations and failures. NBTI is given by

A
MTTFnNBrr {[ln(w) + (4.9)
A T s
_ln(1+263/kT —O)] % e—D/kT} /e,

whereA, B, C, D, andg are all fitting parameters with the following valuds= 1.6328,
B =0.07377, C = 0.01, D = 0.06852, 5 = 0.3.

The parameters and the constants of the models illustratacare here explained. We re-
port the parameter values adopteddf][J is the current density in the interconneat= 1.1,
E.pyv = 0.9, m = 2.5, E,sp = 0.9 are constants depending on the interconnect metal used
(copper is assumed); is the Boltzmann’s constant]” is the absolute temperature in Kelvin,
T.mp IS the ambient temperature in KelvifTy = 500K is the metal's stress-free temperature,

a = T78b=0.081,X = 0.759V,)Y = —66.8¢VK,Z = —8.37 x 10~%eV/K are fitting
parameters,q = 2.35 is the Coffin-Manson exponentA = 1.6328, B = 0.07377,C =
0.01, D = 0.06852, 8 = 0.3 are fitting parameters.

28

4.3 Tools

4.3 Tools

4.3.1 Variability Aware Modeling (VAM)

VAM is a tool presented by IMEC in 2007 to percolate procesgbdity and reliability infor-
mation from the electrical device model level to the systewel. It reuses the same abstraction
interfaces as currently found in existing digital designviidut augmented with additional in-
formation for representing the statistical influence oftspoocess variability and technology
reliability effects. Through a Monte-Carlo approach, ih@ves sufficient statistical relevance
using a limited number of simulations. Furthermore VAM déses in detail the process to
predict system yield from technology variability, and apiblis to a concrete systerd§, 78].

It can be used to emulate degraded multicore platforms. VAdvts from its gate-level
netlist and can generate some instances of the system ¢haharacterized by the values of
leakage power, dynamic power and delay of each core. In this@2D and WID variations
can be modeled.

system floorplan

temperature | lifetime
struet1f ruct \
power
|:> RAMP

Mucw

time time

> -
>

Figure 4.3: Diagram for lifetime estimation using the RAMP tool.

4.3.2 Reliability-aware Micro-processors (RAMP)

RAMP is a tool developed by the University of lllinois to eraté the mechanisms of failure
described in Sectiod.2.2 It can be very useful at design time and for devising adaptiv
techniques for lifetime preservation. Basically it use® twputs. First of all, a floorplan
describing the topology specifying all the structures @& target system has to be provided
to the tool. The other input regards a trace file containirgytdmporal information about
temperature and power of each structure. In a first step RAMEulates the MTTFs of each
structure for all mechanisms by exploiting the models preskin Sectior.2.2 In a second

29

4/figures/ramp.eps

4. PROCESS VARIATION AND AGING OF CMOS ARCHITECTURES

step through a Montecarlo simulation it estimates theififetof the system. In particular
the tool can be used to calculate the lifetime over the timedoyulating for each instant
the information trace from the beginning to the actual tifiais means that it could be also
exploited at runtime to dynamically preserve the lifetifioe example by adapting the workload
among the cores of an MPSoCs. Figdr8shows the diagram of RAMP.

Platform

Configuration Files for
the Virtual Platform:

f,

ckl, fckZ e

Figure 4.4: Modeling variability in Virtual Platforms.

4.4 Integratation of tools into virtual platforms

We integrated variability and aging models into the xSTsirtual platform presented in Sec-
tion 2.3 by building a plug-in which uses the simulator API functidomshave access to the
simulator structures and functionalities. The idea is tousate hardware monitors present in
modern multicore processors to expose at the software thganformation about the power,
the speed, and the lifetime degradation of the cores. Inthisthe runtime can modulate the
workload among the cores to meet given constrains on peafoce) energy and lifetime. In
particular monitors are simulated by memory-mapped regigbr each core.

The plug-in provides the following features:

a) it differentiates the cores in relation with their paraeng;

b) it scales the clock frequency of each core according toitgest path delay;

c) it stores the cycles spent in the different states of eaoft c

d) since it knows the core parameters and the stored cytlesaluates the energy con-
sumption.
The plug-in needs to be configured at the beginning of thelsiton through a text file named

configuration file that specifies the core parameters.

30

4/figures/plugin.eps

4.4 Integratation of tools into virtual platforms

To emulated static variations among the cores in terms &hlga power, dynamic power,
and longest path delay we used VAM which works as back-enduofptug-in; Figure4.4
depicts this mechanism. From the netlist of the platform V§éherates the values of leakage
power, dynamic power, and longest path delay of each corasd kalues are written into
the configuration file of the simulator. The plug-in reads tinformation and exposes them
to the software layer. Furthermore, it can automaticallgngje the frequency of each core in
according to its own longest path delay. In this way we are &ibbkmulate both WID and D2D
variations.

To emulate the aging we further implement into our plug-ie thodel shown in Sec-
tion4.2.1

31

4. PROCESS VARIATION AND AGING OF CMOS ARCHITECTURES

32

Chapter 5

Variability-tolerant multicore
platforms

5.1 Overview

In this chapter we study multicore platforms whose accedesaare nominally homogeneous,
but unfortunately variability causes significant perttidras on their performance and power
consumption. More in detail, critical paths can be fasteslower than nominal and the clock
frequency of each accelerator needs post-fabricatiobredilbn. Faster cores are overclocked
and slower cores are clocked at a lower frequency. Frequefjagtments are supported by the
platform, but the accelerators do not have independentiyrattable power supply voltages for
system and die cost as well as pinout reasons. All accefsrate in the same power island,;
hence per-accelerator supply voltage calibration is nof#ion in our platform case study. Un-
fortunately, due to its overhead in terms of area occupapencore dynamic voltage scaling
is amortized only for large and complex cores. As such, ibisarealistic option in embedded
platforms featuring small processing elements such asrtbeve are targeting in this work. In
Figure5.1, we show a chart for overhead enn? provided by ST Microelectronics for power
switches at 45nm CMOS technology. Power switches and imdkgyet power grids are needed
to support fine-grained DVS. In addition, having multipl@ply voltages for each core implies
a high cost for the power controller (e.g. DC-DC convertdif)ese overheads are clearly not
affordable at the granularity of the data-processing cosesl in embedded media-processing.
For this reason we assume in our work that the cores are in emoommoltage island.

We link the variability on platform multicore as the diffetesupported frequencies and

33

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

Switch Ring Area Impact on Power Domain Size

25%
20% A

15% \
10% \

5%

Area Increase

\\.\

0% - n

0 2 4 6 8 10 12 14 16 18

Power Domain Area [mm?]
—+—50u —a— 35u —a—35u/1side

Figure 5.1. Switch ring area impact on power domain size. ST Microetatts for power
switches at 45nm CMOS technology.

power consumptions among the cores. The main contribufitimsostudy is the definition and
experimental validation of optimal non-uniform workloalbaation policies that compensate
for platform variability both in terms of predictability drenergy efficiency.

We address the problem of distributing tasks onto acceleratith the primary objective
of minimizing deadline violations and the secondary goamiaimize energy consumption.
This goal ordering is dictated by the fact that frame-rat#ations may severely degrade the
quality of user experience and should be avoided as muchszsoe

We define a static allocation policy where globally optimiéd@ation is computed with a
computationally intensive Integer-Linear ProgrammingP()l solver. This approach is useful
as a design-time lower-bounding analysis step to assesaality losses of on-line policies,
or it can be used at application start-up time if the numbexcotlerators is not large and thus
ILP solution time on the CPU is smaller than a couple of sesond

Second, we define a two-phase approach based on linear progrg (LP) and cus-
tomized bin packing algorithm (BP). This algorithm is syftimal but it is much faster than
ILP and can definitely be applied at application start-upnefge large coprocessor arrays.
Allocation policies computed at application start-up appleable when the workload does
not change significantly on a frame-by-frame basis, as ircése of image enhancement ap-

34

5/figures/ST_DVS.eps

5.1 Overview

plications, which perform very regular pixel operationgg(eGaussian filtering, color-space
conversion, etc.).

The proposed policies exploit the knowledge of the degradatof the performance (i.e.
maximum supported clock frequency) among the cores, wigintbe provided either by offline
characterization or by online monitors. For instanceij fhe authors propose a monitoring
structure which can anticipate timing violations. Moreotlee paper demonstrates that this
monitor can be scalable, low power, and with low area ovethda [26] a high bandwidth
critical path monitor is proposed. This monitor can providal-time timing information to
a variable voltage/frequency scaling. Power-reducti@hneyues such as clock gating cause
wide fluctuations in supply voltage. Those variations intpiaging violations. This problem is
also referred as voltage emergency. G4][a voltage emergency predictor is proposed to learn
the combinations of control flow and microarchitectural r@gecausing voltage emergencies
and prevent the timing violations. 18%] the authors exploit hardware solutions with additional
run-time software to address problematic code sequenaesdhse recurring voltage swings.
In [43] the authors present a microarchitectural control thaitéirsupply voltage fluctuations
with a nearly negligible impact on performance and energy.

To test the effectiveness of the proposed policies for bditya compensation, in the ex-
periments we explore the design space in terms of numbersceleaators, and we test a
large set of different workloads and tightness levels ofitlea constraints. We also compared
with state-of-the-art solutions for variability-awareeegy minimization f5]. To show the im-
pact on variability compensation, we generated a numbearidihility affected platforms with
different performance/power characteristics and we aealythe variability compensation ca-
pabilities to demonstrate that our policies are much mobesbagainst platform variations in
terms of real-time predictability while providing comgetée energy savings.

5.1.1 Target system and variability model

The target application we consider in this work is charaoter by a set of independent tasks
synchronized on a barrier for which a global deadline is $jgec We assume that each task
is characterized by a number of instructions which is knowrekease time. This number

corresponds to a given number of cycles, which also takesaiotount cycles lost for shared
memory contention as a fraction of the executed "usefultesicWe considered a fixed number
of cycles spent for shared memory accesses for each task wiaig result from task execution

profiling or worst case analysis. The goal of our allocati@tigies is to map tasks to cores

35

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

such that deadline constraints are met with minimum eneogygumption. The platform we
refer is xXSTsim presented in Secti@r8. We generated set of degraded platform by applying
VAM, the tool presented in Sectioh3.1, on xSTsim.

The rest of the chapter is organized as follows. In Sedi@we discuss related work, in
Sectionb.3we present our variability-tolerant workload allocatiavlipies, with details on ILP
and LP+BP formulations. Finally in Sectidn4we show experiments and results.

5.2 Related work

Allocation and scheduling in multicore architectures whése not affected by variations has
been extensively studied, very often using ILP (see foeimst B5]). Recently, much attention
has been given to task allocation and scheduling stratégiddPSoCs affected by variability
and aging. Integer Linear Programming (ILP) techniquesdoiability affected platforms have
been proposed ir/p, 83, 86], where the objective is the minimization of the productestn
the energy consumption and the delay squared.

The works in |5, 83] assume a different workload model, which can be descrilyed b
task graph with inter-task dependencies. Moreover, theoagpes are fully static and cannot
be applied on-line. A process variation-aware thread nmappias been recently proposed
in [38]. In this work the main purpose is to maximize performancefacus on loop-intensive
applications: threads undergo a first run of the main loopachetask to detect the impact
of core speed on the thread execution time. This informagahen used for the following
mapping step. Compared to our work, this approach does pwidgr an optimal solution and
does not take energy consumption into consideration.

In [81] a statistical scheduling approach is proposed to mititfaeimpact of parameter
variations in a multiprocessor platform. The strategy asssithat task executions are statistical
rather than deterministic. A new metric is introduced ahlperformance yield, defined as
the probability of the assigned schedule meeting the timomgstraints. In this work, authors
demonstrate that using a statistical scheduling approacsistently improves the performance
yield. The proposed policy is based on a static estimatiaasifexecution times and variability
information and it does not consider power consumption.

Task allocation and scheduling techniques have been teqaaposed to handle aging
effects. In B9] a task allocation and scheduling technique is presenteas&/bbjective is to

36

5.3 Variability-tolerant workload allocation

maximize system lifetime under a given performance comgfraowever energy consumption
is not taken into account.

Most closely related to our approach, variability aware ki@ad allocation policies for
independent task sets are presentedng6]. In the former paper, two policies are considered,
aiming at maximizing performance or minimizing power, witile assumption that voltage
scaling is available on a per-core basis (this is not supgdrt our platform). Moreover7p]
assumes that the number of tasks is not larger than the nushlceres. In our experiments
we compare with modified versions of the policies descrilme[d %], with suitable extensions
for our system setup. 1r8p] the proposed policies explicitly consider time constrsigs input
of the problem, as in our case. However, energy minimizasoachieved by using an ILP
solution, which has a large computational cost and can nappked online.

5.3 Variability-tolerant workload allocation

To the purpose of deriving an effective formulation of theimg@l workload allocation prob-
lem, some assumptions have been made that are described getkion. We start from the
knowledge of the total number of tasks and of the cycle buélge¢ach task. Furthermore,
we assume that the actual frequency of each core (congydenimpact of variations) and its
power consumption, both static and dynamic, are also known.

Based on these assumptions, we formulated the problem eshbdekin the next subsec-
tion. We first describe the optimal ILP technique, and thendescribe the approximated
LP+BP approach.

5.3.1 ILP problem formulation

ThelLP, Integer Linear Programmindprmulation considers binary variables to represent the
allocation of a generic tagkon corei. The total number of binary variables is given by the
numberM of tasks times the numbé¥ of cores.

The total energy is expressed as a function of the binarabkes and the static and dy-
namic contributions in active and idle states such that @alirfunction is obtained. It must
be noted that in this formulation we consider two power staéetive and idle. However the
proposed approach can be generalized to consider a larggyenwof idle states (e.g. power
gating, clock gating).

37

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

Each core is characterized byPy,n 4, Pstaa, Pstar)i, While each taskis characterized by
the number of cycle€’;. For each coré running at frequency.; we express its active time
asTy; and its idle timel;; as follows:

fcki fckz'
whereCy; is the number of cycles spent &ttivity state whileC; is the number of cycles
spent inidle state.

T (5.1)

By considering thét;, ¢;) pair that characterizes the mapping of task corei, the asso-
ciated binary variable; ; assumes valug if the task is mapped on the coi@ptherwise. In
this case the total energy is given by:

N
Pni+PsaiCi Psaici
ETOT:Z|:(dynd tads) Al DstaliT (5.2)

i=1 fckz' fcki

For each coré, its execution time iractivity andidle states can be expressed as a function of
the task execution times:

M ZijCj
i=1 fck’i
where theTl is the time constraint by which the workload must be execulde total energy
becomes:

Tai=). Tri =T —Ta; (5.3)

N M N
P, n 2+Ps a 'L'_Ps ali
Eror =) (Puyna ft; s Y (@i C) | + T Potari (5.4)
i=1 cr j=1 i=1

To obtain a linear function, we add N dummy variables:

N M N
P n ’L+P.5 a i_P.s alt

Eror =Y (Payn i Potasi— Patars) D (iiC)| + T ans1,iPetari (5.5)

i—1 fcki —1 —1

= 1= 1=

Now, given the following vector of binary variables:
X = (.1‘1,1,... ,.Z‘LM,... 7$N,1 "'733N,M7

TN411 - TN41N)|Tij € {0,1} Vi, j (5.6)

ThelLP formulation of the problem becomes:

38

5.3 Variability-tolerant workload allocation

mianTOT
SHiwy=1 Vi:l..N
TN+1,5 = 1 V] :1...N (57)
YoM BT <7 i1 N
fcki

The first constraint imposes that each task is allocated lyrooe core. The second constraint
determines the dummy variables while the third one condimgxecution time constraifit.
The ILP solver (we used ILOGA[]) wants both coefficient and variable vectors with the same
size; indeed we need the dummy variables.

As mentioned in the introduction, the ILP solution mainlpmesents an optimal reference
for the faster heuristic policies described below. On tieohand, it could be actually applied
before application start-up if the number of acceleratensaot large and thus the solution can

be computed in a time much smaller with respect to applinagecution time.

5.3.2 LP+BP problem formulation

An approximate approach that lends itself to be applied atfgrims with a larger number of
accelerators is based on a two-phases approach based an Bnogrammingd.P followed by
Bin PackingBP. The algorithm can be run at the beginning of the applicadiod requires the

knowledge of the cycle budget for each task.

5.3.2.1 LP: first step

The LP step starts from the total number of cycles of all tiskggcalledKk’). The goal of the
LP is to assign a cycle budget to each core disregarding taskikarity. We express the energy
consumption as for ILP but here the number of variablédNisand they represent the number
of cycles each core must execute in active and idle cycleterfReg to (6.2) we consider the

vector R of 2N coefficients:

denAl + PstaAl Psta[l denAN + PstaAN PstaIN) (5 8)

R = , ey ,
(fert fert fern fexN

and the vectot” of 2N real variables that will then be rounded up to the closesgieit

C=(Ca1,Cr1,...,Can,CrN) (5.9)

39

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

TheLP minimization problem can be expressed as:

ming R - CT
CAZ'—I-C[Z':CA]‘—FC[]' Vijil. . Nidj
Nfck:i fckj ’ ’ (5 10)
> im1 Cai = K
Ca1+Cn <7
fckl

The first constraint concerns the sum of idle and active tithas must be equal for all the
cores, the second one concerns the total number of cyclde thiei third one the maximum
execution timerl".

5.3.2.2 BP: second step

Thanks to the LP solution, each caris assigned an optimal budget of cyci@g;. If task allo-
cation were able to exactly match this budget the minimunmggneondition will be achieved
within the time constraint.

However this is not possible in general. To achieve a goodpingpa Bin Packing algo-
rithm is used. We considerdslest Fit Decreasingsolution, which ranks the tasks from the
biggest to the smallest and the cores from the one with loapadity to the one with higher
budget (also called capacity, i.&’4; LP solutions). The algorithm proceeds by taking the
current task and mapping it into the core with minimum cafyaidi fit it, then the cores are
reordered considering the remaining capacities and thetasi is considered. We show two
different implementations of the Bin Packing, the first omedmposed by two steps, namely
Stepl() and Step2standard() and the second one composed by three steps, naded§();
Step2custom(); Step3custom(). The second version is a custom version which is more saitabl
for our problem.

The pseudo-code @teplis shown in Listing5.1and is described as follows. TAasks
array contains the number of cycles needed by each task,har@oresarray contains the
remaining capacities of the cores. Line02: Tasks are sdrtedl the biggest to the smallest
according to their estimated cycles. Line04: For each taslkcores are sorted according to the
smallest residual capacity. Line05: A loop around the ctdimd the first one that has enough
left capacity for the current task is done. When such cordbaa found, the algorithm records
the mapping and updates the remaining capacity for thetseleore. The function returns the
number of mapped tasks that is useful to understand if &sthave been mapped.

40

5.3 Variability-tolerant workload allocation

Listing 5.1: the Stepl function which implements the Best¥creasing to solve the formulated H

Packing Problem.

int Stepl(Tasks, Cores ,COREJMBER, TASKNUMBER) {
01 int mappedt.num=0;
02 DescentingSort(Tasks);
03 for (t=0;t<TASKNUMBER;t++) {
04 AscentingSort (Cores);
05 for (c=0;c<CORENUMBER;c++) {
06 if (Task[t] <= Cores|[c]) {
07 Assign(t,c);
08 Cores[c]—= Tasks|[t];
09 mappedt_num ++;
10 break;
11 }
12 }
13 }
14 return mappedt_.num;
15 }

By applying this solution, it is in general possible that sotasks cannot be allocated
because none of the cores has enough remaining cycle budgats case, if the unassigned
tasks are mapped by minimizing the exceeding cycle budgfetstime constraint would be
violated. This is the behavior of the standard BP. We refé¢hitas theStep2standardand we
show it in Listing5.2

Listing 5.2: the Step2standard function allocates thestagkle minimizing the exceeding cycle budg

int Step2standard (Tasks, Cores ,COMBEMBER, TASKNUMBER, t_large) {
01 int mappedt.num=t_large;
02 for (t=t_large ;t<TASKNUMBER;t++) {
03 c.exc=0;
04 min_exc = abs(Cores[exc] — Tasks[t]);
05 for (c=1;<CORENUMBER;c++) {
06 if (min_exc > abs(Cores[c]— Tasks[t])) {
07 c.exc = C;
08 min_.exc = abs(Cores[exc] — Tasks[t]);
09 }
10 }
11 Assign(t,cexc);
12 Cores[cexc] —= Tasks[t];
13 mappedt_num ++;
14 }
15 return mappedt_-num;
16 }

The Step2standard function, starting from the largest fhaking indext_large) that has

41

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

not been allocated in Stepl, finds the core that can execuiighitthe minimum exceeding

cycle budget. The function then continues with the otheksand returns the number of the
mapped tasks that can be equal to the total number of tastan(ibe useful for checking). It
must be noted that the subtraction between the number ofimamgaycles for a core and the
cycles needed by the current task is always negative.

In this work, we propose a variant, where the idea is to chisk tonstraints instead of
minimizing the exceeding cycle budget. This applies whesrgrare no cores with enough
remaining capacity to fit a certain task. In this case thalteditime is computed as the differ-
ence between the time constraint and the estimated assgeedtion time so far, given by the
number of already assigned cycles plus the cycles neededrignt task; all is then divided
by the frequency. The task is assigned to the first core fochvtlie estimated activity time
is shorter than the deadline. We explore the cores stantorg the one with larger capacity
(i.e. the inverse order). In this way we force to fit the tasksimizing the exceeding cycle
budgets of the cores (i.e. that means the exceeding LP @ojwtihich is the input of BP), in
order to lower the energy consumption. The variant that vepgse for theStep2standards

the Step2custorwhich is shown in Listing.3.

Listing 5.3: the Step2custom function tries to allocatetdsks while meeting the deadline.

int Step2custom (Tasks, Cores, Freqs, StartCoreBudgets ,SORBER
,TASKNUMBER, t_large , timeconstr) {
01 int mappedt_-num=t_large ;
02 for (t=t_large ;t<TASK.NUMBER;t++) {
03 AscentingSort(Cores);
04 for (c=CORENUMBER-1;c>=0;c——) {
05 if (time_constr >
06 ((StartCoreBudgets[c] — (Cores[c]— Tasks[t]))
I Fregs[c])) {
07 Assign(t,c);
08 Cores[c]—= Tasks[t];
09 mappedt_num ++;
10 break;
11 }
12 1
13 }
14 return mappedt_-num;
15 }

In the Step2custonfunction, starting from the largest task that has not bektated in
Steplwe find the core that can execute this task while meetingrtreedonstraint#ime_constr).
For each task we find the first core that can meet the deadliea atiding the execution time

42

5.3 Variability-tolerant workload allocation

of the current task. In Line06, we can see that we use therdueeaining cycles{ores|c|)

by subtracting the cycles of the current tasks; from théaihitore budget, we can estimate the
allocated cycles and the execution time. This function a¢leeFreqsarray which contains the
frequencies of the cores, and tBartCoreBudgetarray which contains the start cycles budget
of the cores. The function returns the total number of atkeddasks. In case there are some

tasks that are not allocated we need a third step shown iutietién in Listing5.4.

Listing 5.4: the Step3custom function allocates the tadkigaminimizing the overrunning of the dea

line.

int Step3custom (Tasks ,Cores,Freqs, StartCoreBudgets
,CORENUMBER, TASKNUMBER, t_large) {
01 int mappedt-num=t_large ;
02 for (t=t_large ;t<TASKNUMBER;t++) {

03 AscentingSort(Cores);
04 c_exc=CORENUMBER—1;
05 t_min_exc = (StartCoreBudgets[exc]

— (Cores[cexc] — Tasks[t]))
| Fregs[cexc];

06 for (c=CORENUMBER-2;c>=0;c—) {

07 if (t-min_exc > ((StartCoreBudgets[c}- (Cores[c]— Tasks[t]))
IFregs[c])) {

08 C.exc = C;

09 t_min_exc = (StartCoreBudgets[exc]

— (Cores[cexc] — Tasks[t]))
/Freqs[cexc];

10 }

11 1

12 Assign(t,cexc);

13 Cores[cexc] —= Tasks[t];
14 mappedt_num ++;

15 }

16 return mappedt_num;

17 }

In the Step3custonfunction, we find for the remaining tasks a mapping that minégs
the execution time over the deadline. For each task we finddrethat can execute it while
minimizing the time of the deadline miss. We explore the sa@trting from the one with
the biggest capacity (i.e. in the inverse order) to minimime exceeding cycles and thus the
energy consumption. If the platform is designed with covesiare time margins for the target

applications, this step should not be executed.

43

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

5.3.3 Rank-based techniques

The proposed strategies will be compared in the experirhesgalts section with approaches
that have been presented in literature to address the pnaiflallocation of independent tasks
on variability affected cores/p].

e Rank Frequency. This technique oriented to performance maximization perfoa
dynamic allocation by assigning the current task on thelabiai core with higher fre-
qguency. It derives from the VarF&ApplIPC presentedif][but differs from the original
version in that it can be applied also when the number of teslesger than the number
of cores. Moreover, we do not sort tasks based on the IPGerratd consider it con-
stant. Finally, we do not apply the second stage exploitimitage assignment because
we consider platforms having a fixed supply voltage.

e Rank Power. This technique oriented to power minimization performs aaiyic allo-
cation by assigning the current tasks on the available dmeacterized by the minimum
power consumption. It derives from the VarP&AppP presemdd5] as the cores with
smaller total power consumption are selected first. Diffdyerom the original versions,
we do not sort tasks based on dynamic power.

VarF&AppIPC and VarP&AppP are the names of policies ifb][We extended them into
the Rank policies. Rank Frequency allocates a new task ofasitest core available; Rank
Power allocates a new task on the lower-power core avail&#ek policies are the closest to
our approach we found.

5.4 Experiments

5.4.1 Setup

In the first set of experiments, reported below, the xSTsimesdave been synthesized on
STMicroelectronics 65nm high-speed technology. Due tdidentiality concerns, all results
are expressed in normalized form with respect to the norfiiegliency and power. Variability
data has been obtained through the VAM methodology, asnedtlin Section4.3.1 It is
important to notice that the ratio between leakage and dimpawer is not constant, as higher
operating frequency is generally coupled with faster, érghakage transistors. Thus, the
leakage power of the fastest core accounts for as much as 2@é dynamic power. We

44

5.4 Experiments

consider leakage consumption in power-gating state aati@rifree because it is controlled
by very large power gating transistors turned off in powatiftgy state. These transistors can be
biased with a suitable gate voltage to ensure that varalgiffects are negligible. In Tabke 1
the normalized frequency and power characteristics of tinescused for the experiments in

this section are detailed.

core Jek PaynaA | Pikga/Payna (4) | Pugpa/Payna (4) || Prota/fek
1 1.14 1.07 2.14F — 01 2.00FE — 05 1.11
2 1.07 1.04 1.56E — 01 2.00E — 05 1.11
3 1.01 1.01 7.10FE — 02 2.00E — 05 1.06
4 1.00 1.00 1.00F — 02 2.00FE — 05 1.00
5 0.97 0.99 6.90F — 03 2.00FE — 05 1.01
6 0.95 0.97 4.86FE — 03 2.00E — 05 1.01
7 0.93 0.95 3.81FE — 03 2.00FE — 05 1.02
8 0.89 0.93 2.79F — 03 2.00FE — 05 1.04
MV : 21.93% 13.18% 98.70% 0.00% 10.28%
av : 9.95FE — 01 | 9.95F — 01 5.87TE — 02 2.00E — 05 1.05E + 00
std : 7T97TFE — 02 | 4.58FE — 02 8.27TF — 02 0.00E +00 || 4.67TE — 02

Table 5.1: Variability-affected MPSoC. In the headlines we used tHiWing notations:A for
Activity, Ikg for leakageMV for Maximum Variation (i.e.(max — min)/max), av for average,
stdfor deviation,f.x is the maximum clock frequency supported by the core.

From the values in Tablg.1, we obtain that the maximum variation of the energy required
to execute atask on any two different processors is 10.28#6.CEn be considered as an upper-
bound in the energy consumption difference achievable skyalocation. We considered four
and eight-core platforms. Referring to Tabld, four-core platforms use core numbers 2, 4, 6,
and 8.

Tasks are characterized by their instruction budget. Foerperiments we generated task
sets, characterized by the number of tasks and the deviattittve number of instructions per
task. The total instruction budget of application is fixeddach task set. For a given number
of tasks, we considered one task set with no deviation, li.tasks are equal, and additionally
we generated 8 different task sets for each non-zero valdeviétion. We used two non-zero
values of deviation.

In our experiments another key parameter is the tightnessioiy constraints. These con-

straints have been selected to obtain variable platfortization. We computed the minimum

45

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

time to execute a given total number of cycles, which impasésores platform utilization of
100%. We then obtained more relaxed deadline constrauuadtr) as follows:

tconstrl = 1.05 - timenmin
tconstr2 = 1.10 - ttmenin

tconstrd = 1.20 - timenmin (5.11)
teconstr2 = 1.40 - timemin
where:
K
timemin = (5.12)

Zz‘:2,4,6,8 feki
In our experiments we considered the total number of cy€lbging 80e+6. It must be noted

that the more relaxed constraint imposes a platform utitimeof just 60%.

5.4.2 The advantage of variability-aware allocation

In this section, we show what is the advantage in terms ofgrmmsumption and performance
of variability-aware allocation using the proposed methbdg comparison with rank-based
techniques. To achieve this objective, we first compute tagimum and the minimum energy
consumption to execute a given task set on the platform. Tihemam energy (without taking
into account timing constraints) is obtained when all ttek$aare executed by the core with
minimum energy and similarly for the maximum energy.

We use these extreme values to normalize the energy whenacimmgphe different tech-
nigues under consideration. l.e. for the generic enéfgpent during the execution of a given
workload, we normalize it using the following metricZ — E\.in)/ (Emaz — Emin). We com-
pute the deadline miss rate related to each group of 8 taskwvelkeére a group is characterized
by a total number of tasks (i.e. 8, 32, and 128) and by a dewiatiThe miss rate is com-
puted as the number of tasks violating the deadline. Theyeoitithe deviation is expressed
in a relative way with respect to the average number of cyotrstask. We identified three
levels of deviation, namely 0, 0.25 and 0.5. For instanceg\aation of 0.5 means that the
number of cycles of tasks can be half the average. For O dmviahly one task set exists. In
what follows we show the comparison results for the two ca$asA-core platform and 8-core
platform. We will use the following abbreviations: ILP: &ger Linear Programming -based
policy, LP+BP: Linear Programming + Bin Packing -based@glRF: Rank Frequency policy,
RP: Rank Power policy.

46

5.4 Experiments

5.4.2.1 Results using 4-core platform

Figure 5.2 shows the energy comparison among the policies when thenotaber of task
of the application is 8 and they are characterized by higlatien (level 0.5). The proposed
ILP solution provides better results in terms of energy comgion and lots of deadlines are
met. Also LP+BP meets many deadlines but uses more energyusdt be noted that our
policies are able to save energy when the time constrainbie melaxed. Rank based policies
spend the same energy independently from the constrdimg ¢o not take them into account)
and violate the deadlines in most of the cases. Details abuirtg violations are shown in
Table5.2, where miss rates are reported.

1,000
0,900

0,800

o
~
o
S

(E-Emin)/(Emax - Emin)
2
8

W E——) © ®)
D e N

0,300 —= \,,,,,:\\

0,200 \\\\\\ -

Ta

0,100

0,000

tconstrl tconstr2 tconstr3 tconstr4

TIGHT LOOSE

& |LP ¢ LP+BP V RankFreq A RankPower

Figure 5.2: 4 cores. Normalized Energy Comparison. The Number of Ta8k tise deviation is
0.5. A circle means that some deadlines are not met. tcansie constraint leval The rank
approaches give very close results, so they are hardlydisthable in the plot.

tconstrl| tconstr2 | tconstr3| tconstr4
ILP 0.13 0.00 0.00 0.00
LP+BP 0.75 0.25 0.00 0.00

RankFrequency 1.00 1.00 0.75 0.38

RankPower 1.00 1.00 0.75 0.38

Table 5.2: Deadline miss rate. 4 cores. 8 tasks. 0.5 for deviation.

The same comparison has been done considering an applicagéide of 32 tasks. Results

47

5/figures/8tasks_4cores_std_dev2.eps

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

show that in this case LP+BP achieves similar results wispeet to ILP in terms of energy
consumption (Figur&.3). This is because a large number of smaller tasks (in termarober
of instructions) are easier to allocate. Also, from a miss paint of view, rank based policies
perform better than in the previous case, however they arayal worse than both ILP and
LP+BP, as shown in Table.3.

1,000
0,900
0,800

0,700

=
5 o600
& 0,500
&
= 0,40Q — @ . +
c S ———a
‘€ 0300 -
W 0,200 \
0,100
0,000
tconstrl tconstr2 tconstr3 tconstr4
TIGHT LOOSE

| |LP ¢ LP+BP V RankFreq 4 RankPower

Figure 5.3: Normalized energy comparison. 4 cores. The Number of Ta3R,ishe deviation is
0.5. A circle means that some deadlines are not met. tcantite constraint leval The rank
approaches provide very close results, so they are harstipguishable in the plot.

tconstrl| tconstr2 | tconstr3| tconstr4
ILP 0.00 0.00 0.00 0.00
LP+BP 0.00 0.00 0.00 0.00
RankFrequency 0.88 0.38 0.00 0.00
RankPower 1.00 0.38 0.00 0.00

Table 5.3: Deadline miss rate. 4 cores. 32 tasks. 0.5 for deviation.

5.4.2.2 Results using 8-core platform

We performed experiments on a platform with higher paralel We considered task sets of
8 tasks and highest deviation. RankFrequency and RankPspeed a considerable amount
of additional energy with respect to ILP and LP+BP (see FEdgud). Moreover, they provide

48

5/figures/32tasks_4cores_std_dev2.eps

5.4 Experiments

much larger miss-rates. It must be noted that, differemtiynfthe 4-cores platform, the pro-

posed strategies gain a considerable amount of power ald@fder time constraints. This

is because they are able to better exploit the additionalegsgof freedom for the allocation

provided by the larger number of cores.

1,000

0,900

0,800

0,700

£ 0,600

w

é 0,500

£

Y 04007 ¥ ¥

c

£ 0300

w

w1 0,200

~ o
ol0®4——ro— e
0,000
tconstrl tconstr2 tconstr3
TIGHT

& |LP ¢ LP+BP V RankFreq 4 RankPower

tconstr4
LOOSE

Figure 5.4: Normalized Energy Comparison. 8 cores. 8 tasks for eachsmiskith 0.5 for
deviation. A circle means that some deadlines are not n@tstds the constraint level

To compare the capability of the proposed strategies taaftiy use the platform, we show

platform utilization details for the 8-cores platform inbla5.4. A utilization of 100% means

that all the cores are used at least once. Since timing eomistalues have been tuned to the

4-cores platform, the whole computational power of the &sas under-utilized on average

and a smart allocation policy should exploit this to reducergy consumption by switching

off some of the cores. In Tabl&4the 45% value means that the 55% of cores are never used.

tconstrl| tconstr2 | tconstr3| tconstr4

ILP 42% 47% 50% 63%
LP+BP 36% 42% 45% 58%
RankFrequency 100% 100% 100% 100%
RankPower 100% | 100% | 100% | 100%

Table 5.4: Platform Utilization Percentage. 8 cores. 8 tasks for eask-set with 0.5 as deviation.

49

5/figures/8tasks_8cores_std_dev2.eps

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

5.4.3 Variability compensation analysis

The results obtained so far were referring to a specific bditigaffected platform. However,
being variability a statistical effect, we need to study effectiveness of the policies on many
of such platforms. To this purpose we performed a set of é@xgeits using a number of
platforms generated using VAM. The objectives of the preposnalysis are the following:

1. to show the impact of variations in terms of performance emergy at the application
level;

2. to demonstrate how variability-aware task allocatiotiges in general are effective
in reducing the impact of variability, however state of the @olicies are not able to
compensate both energy and performance impact with the sfiectiveness at the same
time;

3. to demonstrate that the policies we designed are ableltweethe impact of variability
on energy while matching time constraints.

To highlight the energy gains with respect to RF/RP, we ntin@d the energy levels with
respect to the energy provided by ILP (best case). This iptihgose of Figur®.5, where for
each platform the normalized energy consumption of LP+BiakRFrequency, Rank Power is
represented. ILP consumes the minimum energy with no deadiisses. The plot highlights
that LP+BP allows energy savings almost as significant asethchieved by ILP, whereas the
Rank policies consume more energy and lead to deadline snisse

4,00€-02

3,50E-02

3,00E-02

2,50E-02

2,00€-02

1,50E-02

1,00€-02

(energy - energylLP) / energylLP

5,00E-03

0,00E+00

1 2 3 a 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

platform

‘ EILP+BP ERankFreq @ RankPow

Figure 5.5: Energy comparison among LP+BP, Rank Frequency, and RanlerPeehniques.
Values are normalized by the ILP’s.

To show the cumulative impact of these policies on varigbdffected platforms, in Figure
5.6 we reported the energy consumption for all the 4 policiest daxh policy we reported

50

5/figures/ener_ILP.eps

5.4 Experiments

minimum, maximum and average energy consumption valuethéoexecution of the repre-
sentative benchmark consisting of 80Mcycles. The plotsvsthat LP+BP and ILP policies

provide always lower energy by considering average casassi@ering the maximum energy
consumption, RP provides slightly lower maximum energyyéner this comes at the price of

a very large miss rate.

MIN-MAX-AVG Energy Comparison

2,40E-12
2,35E-12
2,30E-12
2,25E-12 mILP
2,20E-12
2,15E-12 m LP+BP
2,10E-12 RF

2,05E-12
2,00E-12 mRP
1,95E-12
1,90E-12

energy per cycles [J/cycle]

MIN MAX AVG

platforms consuming the minimum, the maxium and the average of the
energy per policy

Figure 5.6: MIN-MAX-AVG Energy Comparison. Energy consumption comigan: cumulative
results across all platforms considering MIN, MAX and AVGeegy for each policy.

Energy/time spreading

1,02E+00

1,01E+00
2
£ < ILP
E 1,00E+00
a O LP+BP
~
Q
£ 9,90E-01 ARF
2
S +RP
£ 9,80E-01
o
3
w

9,70E-01

Jr
9,60E-01
2,05E-12 2,15E-12 2,25E-12 2,35E-12

Energy per cycle [J/cycle]

Figure 5.7: Energy per cycle / Time Spreading. Execution time vs. eneoaggumption per cycle.
The execution time is divided by the deadline. The horizicsdahed row identifies the deadline.

51

5/figures/new_MIN_MAX_AVG.eps
5/figures/energy_time_spreading2.eps

5. VARIABILITY-TOLERANT MULTICORE PLATFORMS

As mentioned before, the proposed policies are much moeetef® in compensating per-
formance impact of variations with respect to RF and RP. Ehévident by observing Figure
5.7. Since each platform can be more or less energy consumirenda on the ratio between
power and clock frequency of its own cores, to evaluate intebeay the spent energy across
the different platforms we used the metric of energy pereyelere it can be noted that the pro-
posed policy compensates variations by reducing time tiiwia due to variability effects and
leads to predictable performance results. Indeed, theugredimes provided by LP+BP (and
also by ILP) are very close but lower than the valyghich identifies the time constraint, inde-
pendently from the platforms, which is the time constraietwsed for these experiments. On
the other side, rank policies lead to much more variablewi@ttimes. It must be noted that,
by considering each single platform, our policies provilteasts lower energy while matching
time constraints. Finally, it must be noted that for our giels the energy spread is slightly
larger, but mainly because our policies are aimed at miningienergy (indeed the minimum
energies are provided by our policies), not to match a givesngy budget.

5.5 Summary

In this chapter, we presented the definition and experinhealidation of optimal non-uniform
workload allocation policies that compensate for platforamiability both in terms of pre-
dictability and energy efficiency. We addressed the prolénistributing tasks onto acceler-
ators with the primary objective of minimizing deadline littons and the secondary goal to
minimize energy consumption. First we defined a static atioa policy where globally opti-
mal allocation is computed with a computationally intersivteger-linear programming (ILP)
solver. Second, we defined a sub-optimal two-phase appiuasdd on linear programming
(LP) and bin packing (BP). We demonstrated through experisneonducted on an indus-
trial platform simulator the effectiveness of the propopeticies using a large set of different
workloads and tightness levels of deadline constraintsaMfe compared with state-of-the-art
solutions for variability-aware energy minimization tondenstrate that our policies are much
more robust in terms of real-time predictability while piding competitive energy savings.

Regarding the two proposed approaches namely ILP and LRhBRirst one gives the
optimal solution but it is very time demanding whereas for-BP some improvement in ex-
ecution time can be reached. In the next chapter we will shmw ihis possible to apply the
LP+BP-based policy at runtime.

52

Chapter 6

A variability-aware run-time task
allocation

6.1 Overview

The previous chapter gave important insights to the proldkthe energy minimization under
real-time constraints for multicore platforms. Howevenyiost of real scenarios task allocation
techniques need to be executed at runtime, and this mearibéfraalgorithms must be simple.

The aim of this chapter is to improve the implementation efpiblicy based on the LP+BP
formulation to apply that strategy at runtime. We based enstime hypothesis regarding the
platforms, the variations and the workload illustrated ma@ters. In particular the contribute
we provide in this chapter are threefold and can be sumnth&gdollows.

First, we propose a new formulation of the problem whichvedido design a linear-time
algorithm to solve it and that can be easily applied onliree,at run-time. Indeed, we demon-
strate that the overhead of the LP+BP solution is minimal enables its application on a
frame-by-frame basis. Second, we propose a full implenientaf the LP+BP on a multicore
embedded multiprocessor SoC running representative thmellided multimedia applications,
namely an MPEG2 decoder and an Integral Image algorithnh,héhnge been parallelized and
ported to the target platform as shown in Secto® Their implementation exploits on-board
accelerators to execute various threads in parallel whéehbst core accomplish dispatching
functionalities and takes decisions about the allocatioihe tasks by running the algorithms
of the policies discussed in this chapter. Finally, we mtevd comprehensive study about the
effectiveness of the proposed runtime allocation techenmumultimedia applications in terms

53

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

of energy, deadline miss rate, scalability (both in the nend$ cores and tasks) and variability
conditions.

To well explain the new study we review in Sectiér2 the LP+BP formulation which has
been previously shown in Sectidn3.2 In Section6.2 we also review the illustration of the
comparison techniques based aib][and presented in Sectidh 3.3 with the aim to better
highlight the difference between the different approaches

Finally, we demonstrate through experimental resultsdahatechnique compensates vari-
ability, while improving energy-efficiency and minimizirdgadline violations in presence of
performance and power variations across the cores. Thegedmolicy can save up to 33%
of energy with respect to the state-of-the-art policies @5% of energy with respect to one

variability-un-aware task allocation policy while proind better Quality of Service (QoS).

6.2 Variability-tolerant run-time workload allocation

We begin the description of the workload allocation pokci®y introducing some notations.
In active state, each coreeonsumes dynamic power expressedryy, 4, and leakage power
expressed by’;,4;. Each cora consumes only leakage power while in idle state, which is

expressed aBj.qr;. The clock frequency of a coies f.;. Each core spends a certain amount
denAi + PlkgAi

of energy per cycleD 4; given by D 4; = 7 in activity state, and)y; given by
cki
Pigri ..
Dy = “97% i jdle state.
fckz'

We start describing the rank policies used for comparisethey are more intuitive. These
techniques are based on the scheme shown in the block diagraigure6.1 A ranking of
the cores is performed on the basis either on the clock frexyuelynamic power, and leakage
power, depending on the specific implementation. On theratitke, tasks are sorted using
information about the tasks cycle budget. Finally, the sasite allocated one-by-one on the
first available core following the ranking. The solution isacacterized by a vector of the
binary elements; ;s. For each core if the taskj is allocated on it; ; is 1, otherwiseQ. In
what follows we detail the various rank policies, each oraratterized by the way the rank is
performed. This choice determines the behavior of the yofior instance, a ranking based on

clock frequency will lead to smaller execution time withpest to a ranking based on power.

54

6.2 Variability-tolerant run-time workload allocation

Task Set Info Var Info
task cycles Fck Pdyn Plkg)i

| Rank Tasks | ‘ Rank Cores |

Figure 6.1: Rank policies block diagram.

6.2.1 Rank Frequency

The tasks are sorted in relation with their lengths in terfsyoles starting from the longest
one. The cores are sorted in relation with their clock fremyef..; starting from the speediest
one. Then, the current task is allocated on the first availabte; this implies that the largest
task is executed by the speediest core and so on. This teehdéeyives from the VarF&AppIPC
policy presented inq5] but differs from the original version in that it can be agplialso when
the number of tasks is larger than the number of cores. Merewe do not sort tasks based on
the Instruction per Cycle (IPC), rather we express eachwatbkits activity cycles, but we sort
the profiled tasks from the largest to the smallest. Finally,do not apply the second stage
exploiting voltage assignment because we consider phatfdraving a fixed supply voltage.
The problems of this technique are: a) it does not take into@a the power consumption of
the cores, and then it only tries to minimize the executiametib) when the number of tasks
is greater than the number of cores it is not generally traeeakecuting the largest task on the
fastest core implies the fastest computation; it can bdyestsown that executing two or more
small tasks on the fastest core and the largest task on arateecan be taken less time for
the execution.

6.2.2 Rank Power

The tasks are sorted in relation with their lengths in terfnsyoles starting from the longest
one. The cores are sorted in relation with their power comgiom Py, 4; + Pirq4; Starting
from the one at minimum power consumption. Then, the cunask is allocated on the first
available core; this implies that the largest task is exatbly the least power consuming core.

55

5/figures/RANK_diagram.eps

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

It derives from the VarP&AppP presented ifb] as the cores with smaller power consumption
are selected first. The problems of this technique are: aeas aot take into account the time
needed to execute all tasks; b) executing one task on thetor@imum power does not imply
that it will consume the minimum energy because the enesgy @¢pends from the execution
time which depends from the clock frequency of the core.

6.2.3 Rank Energy

We introduce this technique to solve problem b) of Rank Poweée characterize each core
i by its own ratio between power and clock frequency. Thisoratinsists in the energy per
cycle D 4;. Sorting the cores from the one at minimum energy per cyakesanting the tasks

from the longest one, we allocate the current task on thedirailable core. This implies

that the largest task is executed by the least energy congurore. Besides, the problem of
this technique is that when the number of tasks is greater ttha number of cores, it is not
generally true that executing the largest task on the com@ramum energy per cycle implies

the lowest energy consumption; it can be easily shown thexduaing two or more small tasks
on the core at minimum energy per cycle and the largest taskother core, the platform can
spend less energy.

6.2.4 LP+BP and its fast implementation

The objective of the proposed LP+BP approach is to appraeirtiee optimal solution in a
computationally efficient way. We firstly describe the raaite behind the policy, and then we
cover its mathematical formulation. The block diagram ieva in Figure6.2

This approximation is obtained by first determining a fineirgi@ycle-level) allocation
of a cycle budget to each core to minimize energy consumptioiie matching a given time
constraint. This is done using an optimized formulatiorhefltP problem that does not require
the usage of a solver so that the solution can be computedasryAfter this is done, the tasks
are fit into the given budgets using a customized BP algorithem takes the time constraint
into account to reduce the impact on QoS when the task albocdb not fit in the given budget
for one or more cores.

The first part, namely the cycle budget allocation, is pentexl by using clock frequency,
dynamic power, and leakage power, to sort the cores acgptdithe quantityD 4; — Dy,
(wherei identifies the core). We point out that, in contrast with #uekrpolicies, this approach

56

6.2 Variability-tolerant run-time workload allocation

takes into account the idle power consumption as well asdtigts power consumption and
the clock frequency. In particular the first core has the mum value ofD4; — Dy; and the
last core has the maximum value bfy; — Dy;. By considering the quantityX’ as the sum

of the cycles of all tasks, and the time constraihtwe are able to calculate the cycle budgets
that each core must spend in activity state in order to mizertie energy consumption due to
executing all tasks while meeting the deadline. This is dorthree steps: 1) Computation of
Solution A 2) Computation oolution B 3) Comparison between Solutions A and B to select
the best one.

Solution A allocates cycles to the core to minimize theiraesimn time, without taking the
deadline into consideration. On the other side, Solutioxaits the knowledge of the dead-
line T to allocate cycles exploiting the available time. The doluleading to the minimum
energy is selected. Details about the solution computatiengiven later in this section. We
point out that if the time needed by Solution A is longer tHaamtime constraint, the application
cannot be supported by the platform.

After the cycle budget€’;s have been computed, the BP phase allocates tasks on the cores
(see Figures.2). This is obtained by fitting the cycles of each task in theslgjiven by the core
cycle budgets. To solve this BP problem, we use the Best Kitdasing (BFD) algorithm that
we customized as explained in Secti®3.2.2 The final solution is characterized by a vector
of the binary elements; ;s. For each coreif the taskj is allocated on itz; ; is 1, otherwise0.

Details of Solution A and B computation are given in whatdals.

Solution A. Solution A is obtained by first computing the minimum timg,, to executek’
cycles using all cores through the formu)g;,, = K/sum_fck, wheresum_f ck is the sum of

all core clock frequencies of the given degraded platfortartl®g from the first sorted core we
calculate for each coriethe activity cycle budget a8 4; = tin fers- The total energy is given

by Eir = Zf\il Ca; D 2; whereN is the number of the cores. Solution A suggests executing
the total amount of cycles in the minimum possible titpg,.

Solution B. Solution B calculates for coriethe activity cycle budget aS'4; = T f.x; Starting
from the first core; = 1. For each core cycle budget that has been calculated weatwdhe
sum of the already allocated cycle§':= C'+C4;. We proceed to calculate tlies;suntil C' <
K. When this condition is not supported anymore, we will finelidh-corer for which the cores

57

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

deadline T Task Set Info Var Info
task cycles Fck Pdyn Plkg)i

! ‘ Rank Cores: DAi—Dli‘

H Calcsol A l ’_.{ Calcsol B ‘

~.

| min(sol A,sol B) ‘

cycle budget

BP

=I BFD custom ‘

Figure 6.2: LP+BP block digram.

from 1 to r» — 1 will always work for all the timel” while corer will generally work for shorter
time spending the rest of the time in idle state, and finalydtiher cores will always stay in idle
state. The time in activity state of corean be calculated &S 4,/ f.x Where its cycle budget
Ca, has been fixed t6¢'4, = K — Z;";(} C 4;. Corer will generally spend a partial time in idle
state, in particular its idle cycles will b&Z;,. = T f.x — Ca,. We can now calculate the total
energy given by Solution BEyy, = /= CaiDai + CarDar + CoDry + YN, CriDii.
Solution B suggests executing the total amount of cyclesxpjoé@ing the available timéd".
Note that if the solution B is taken, it is not guaranteed thaks (after allocation performed
by the BP algorithm) complete exactly at tirfig as it depends on task granularity.

6.2.4.1 A closed-form solution of the LP

In this section we proove that the LP formulation of SectoB.2.1can be solved thourgh few
computations because it features some key properties.nidass that there is no longer need
of an LP solver, furthermore the overall LP+BP policy can pplied at runtime as we will
demonstrate on the experimental results.

The above outlined LP formulation features some propettiassimplify its solution. The

main observation is that these properties reduce the seissilge optimal LP solutions: They

58

5/figures/LP_BP_diagram_wout_stall.eps

6.2 Variability-tolerant run-time workload allocation

are characterized by a number of cores that are fully aciiveymber of cores that are fully
idle and at most one core characterized by an incompleieaiiiin (i.e. only one core is used
for a fraction of the frame time). In what follows we provideestmathematical formulation of

the closed form solution of the LP.

We call:
Dy = denAz’ + PlkgAz' Dy = -Plkglz' (61)
fcki fcki
We can rewrite §.2) like this:
N N
Eror =Y _DaiCai+»_ DriCr (6.2)
i=1 i=1

We can introduce an additional varialflexpressing the execution time, replacing the first

constraint in .10 with:

CaitCri _y g N 6.3)
fcki
and the third one with < T'. Since
Cri = ferit — Cai (6.4)
we can rewrite §.2) like this:
N N
Eror = Z (Dai — Dp;) Ca; +t Z Dri feki (6.5)

=1 =1
We now define:

x; = Cai/ feki
pi = (l?vAz' — Dr;) feki :NdenAz' + Piigai — Pikgri (6.6)
4= 1Driferi =>;_1 Pigri
and rewrite the LP formulation as follows:
ming 25\41 DiTi + qt
(6.7)
SN ferivi = K
0<x; <t<T Vi:1...N

Note thatr; expresses the activity time of careNote also that the presence of tegtrstresses
the fact that there may be a gain in terminating all tasksredfte deadlind’, which is indeed

the case in Solution A.

59

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

We assume that LF5(7) has a feasible solution, which is easily seen to hold if amigt &

N
Zi:l fckz’

Paynait+Pigai—P
Da; — Dy; = “dunai® lf}j:“ kgli i e. the values of the core#L < f’:; <. < % are

sorted and represent the penalty in energy for using a cytleaore.

The following proposition states that there is an optimalitton of (6.7) in which either
(a) there exists a coresuch that either coréls. . . s are always active during the execution time
and cores + 1... N are always idle, or (b) the execution time is equaltaand there exists
a corer such that cores. .. r — 1 are always active during the execution time, coig partly
active and partly idle, and cores+ 1... N are always idle. In fact, the proposition gives a
closed form expression of the optimal solution dependingherspecific values ok andT'.

Proposition 1. Lets € {1,..., N} be the largest index such thgt- < ZZS 11p1+q withs = 1
if no index satisfies the property Givéhand T, the optimal solution:* t* of | LP 6.7) is the
following:

(@ if >0 feiT > K, thent* =
s+1...N;

Zflfcm r=1t"fori=1. x; = 0fori =

r—1 X
(b) otherwiset* = T, zf = Tfori =1...r -1, z; = W xf = 0 for

i=r+1...N,wherer > sis such thath:‘l1 feiT < Kand Y, foeiT > K.

Given a solutionz*, t* to (6.7), the corresponding solutiofi* to (5.10 is given byC";, =
feriz; andCy; = fait™ — C7, fori : 1... N. According to the above proposition, LB.{),
and therefore also LP5(10, can be solved by a simple arithmetic calculation invajvinand
R, given that the partial sumgj{:1 fers can be computed once for all for eveiye 1... N.

6.2.4.2 Example

Once we have calculated the cycle budgets of each core abketote the workload spending
the minimum energy while meeting the time constraint, weshasolve the problem to allocate
the tasks onto the cores. In particular the problem can befoowulated as follows: Find
the best way to fit the task cycles into the core cycle budgetgeneral this can be solved
using a BP algorithm; however some customization to theipeequirements of multimedia
applications must be performed. In particular, since thetem does not generally produce an
exact match between the cycle budget of each core and thesayidhe tasks that are allocated
on it, we must handle this case with minimum impact on energly/@osS.

60

6.2 Variability-tolerant run-time workload allocation

The algorithmic details have been presented in Se&i8r2.2, here we give an example.
Let us suppose to have the independent tasks representbe fllowing cycles{200, 220,
170, 70, 300}. Let us consider to have to execute them in Q.86c.

The hypothesis is to have the 3-core degraded platform wpasemeters are shown in
Table6.1 In the table the cores are already sorted in relation wiglr tuantityD 4 — Dj.

The closed form suggests the two solutions representedhle 52 We point out that
Solution A, which use all cores in order to execute all cyéfes minimum possible time,
consumes 4@.J. The minimum time of 0.3%:sec is given by dividing all cycles, which are
960, by the sum of the all core clock frequencies.

Solution B proposes to use for all the available time, whigthie time constraint of 0.80
usec, the core 3, while the core 1 for a partial time, and finally toee 2 never. The best
solution is given by B because its expected energy is smalléen, we formulate the BP
problem which tries to fit the task cycles into the kin;s.

The BFD algorithm indicates to sort the tasks from the largee to the smallest one,
while the cycle budgets from the shortest one to the largest &Ve sorted tasks and cores
as illustrated in Tabl&.3 at Starting Point For each core we will also take into account the
execution time when the tasks are allocated on it, whichvisrgby the cycles of the allocated
tasks divided by the clock frequency of the core.

Now, each task will be assigned on the first core which has thémam cycle budget to
contain it. Once we allocate the current task, we removeinfthe list and we calculate the
remaining cycle budget for the core. This completes thepgast of the BFD algorithm.

For instance, the first task, whose identification number is ®0 large to be allocated on
both core 2, which has a budget of O cycles, and core 1, whistaaidget of 280 cycles. The
task will be allocated on core 3 which has a budget of 680 sycige remove from 680 the
300 cycles and we will obtain 380 cycles while the executiaretis 300/850 = 0.35usec.
We sort the cores again and remove the first task, obtainagithation shown in Tablé.3 at
1st assignment

Proceeding in this way we come to the situation shown in Taldat thedth assignment
where there are no cores with enough remaining cycle budgstecute task 4. The first step
of the algorithm terminates with 4 allocated tasks and orssimg. In this case the standard
solution following the BFD algorithm allocates the task twe tore which exceeds its cycle

budget with the minimum number of cycles, which is core 1.

61

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

The customized version, on the other side, checks how laagdkt in terms of execution
time of the exceeding cycles is. Matching time constrairg &digher priority than reducing
the exceeding cycles (which means being closer to the emmgrtgpal solution computed by
LP). Having the cores different speeds, these two metricsaldead to the same result. As
such, this version inspects the cores from the last one (thevhich leads to the smaller cycle
overflow) and selects for allocation the first core allowiogratch the deadline. This leads to
a trade-off between QoS and energy consumption. This caesplee second part of the BFD
algorithm.

Applying this method, task 4 will be allocated on core 1, iagdo an execution time of
0.24+70/900 = 0.31usec which is shorter than the time constrain80usec. It can be easily
verified that other allocations would lead to a deadline miissiust be noted that in this case
the custom solution corresponds to the standard one, Isustht true in general.

The final situation is shown in Tab&3at the5th assignmentand the final task allocation
in Table6.4. Core 3 will work for 0.78usec, core 2 will work for 0.31u.sec and stay in idle
for the remaining time (0.4#sec), finally core 1 will always stay in idle (0.78sec).

The expected execution time is 0.48ec with respect to 0.8Q:sec provided by the LP
solution, in addition the expected energy consumptiof’is- Zle taiDa; + Zle tr; D =
40nJ with respect t@5n.J provided by the LP solution. The energy slightly increasssalise
core 1 has to execute 290 cycles instead of 280 as LP reconsyrerh if core 3 has to execute
670 cycles instead of 680 (core 1 has larger energy consompér cycle).

In case there are no cores able to execute the remainingwatsits the time constraint,
we used another customization to minimize the slack beybadi¢adline. This concludes the
third step of the BFD algorithm. Note that this part is not@xed if the platform is designed

with enough conservative time margins for the target appbos.

Coreld| Fex | Piyna | Pkga | Pikgr Dy Dy Dy — Dy
[Mhz] | [mW] | [mW] | [mW]

3 850 21 9 0.2 3,53E-02| 2,35E-04| 3,51E-02

1 900 26 10 0.2 4,00E-02| 2,22E-04| 3,98E-02

2 870 28 14 0.2 4,83E-02| 2,30E-04| 4,81E-02

Table 6.1: A 3-core degraded platform example. Cores are sorted wéiheat toD 4, — Dy;.

62

6.2 Variability-tolerant run-time workload allocation

Execution | CA3 | CA1 | CA2 | CI3 | CI1 | CI2 | Energy
Time [psec]
solA 0.37 311 (330|319 O 0 0 40
solB 0.80 680 | 280 | O 0 | 440 696 35

Table 6.2: Core cycle budgets of the two LP candidate solutions withetkgected energy con-
sumptions.

Starting point

Task Id | Task Cycles|| Core ld| Remaining Allocated
Cycle Budget| Execution Timeusec
5 300 2 0 0.00
2 220 1 280 0.00
1 200 3 680 0.00
3 170
4 70
1st assignment
Task Id | Task Cycles|| Core ld| Remaining Allocated
Cycle Budget| Execution Timeusec
2 220 2 0 0.00
1 200 1 280 0.00
3 170 3 380 0.35
4 70

4th assignment

Task Id | Task Cycles|| Core ld| Remaining Allocated
Cycle Budget| Execution Timeusec
4 70 2 0 0.00
3 10 0.78
1 60 0.24
5th assignment
Task Id | Task Cycles|| Core ld| Remaining Allocated
Cycle Budget| Execution Timeusec
1 -10 0.31
2 0 0.00
3 10 0.78

Table 6.3: LP+BP example.

6.2.5 Min and Max energy techniques

The energy spread across the cores of a given platform irstefi 4, is generally different
with respect to the different extracted platforms. Given @khad, the maximum energy
and the minimum energy that the platform can consume deperidecspread across thie,;

63

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

‘ task 1| task 2| task 3| task 4| task 5
core 1 X X
core 2
core 3 X X X

Table 6.4: Final task allocatiorX indicates that the task on the column is assigned on the core o
the row.

values. Then, to understand how much a policy can save emengyng an application on
a given platform, the normalization of the energy betweeanrttinimum and the maximum
values can help us. To know the minimum enefgy;,, and the maximum energg,, ... to
execute a workload on a given platform we introduce two &mluit policies.

The Min Energy technique find&,,;, in the following way. There are two candidate
solutions: a) all tasks are executed by the core at minindium — Dy;; b) we use all cores
allocating on them the tasks in the way to have minimum pésgile time (i.e. we can choose
Solution A of the closed form LP and then solve the BP problem)

We will choose the solution at minimum energy. Even if theddyison uses all cores, there
exists a possibility that the execution time is so short teetthe minimum energy consumption.

The Max Energy technique finds,,.; in the following way. There are two candidate
solutions: a) all tasks are executed by the core at maxithug+— Dy;; b) the same of the Min
Energy.

We will choice the solution at maximum energy.

6.3 Experimental results

The platform target we refer of these experiment is xSTsirnthis described in Section.3.
In expertiments we used the cycle-accurate simulator. \fégiiated the variability model in
the target platform simulator to assess the impact of vanaton the running software and
enable the study of system level software policies. Detaidsreported in Sectiof.3.1

Our experiments are based on two different approaches iaiiléty injection. In the first
case, we exploit the VAM tool which reads the netlist of theesmf the platform and generates
the configuration files of the simulator. This is depicted lom tipper side of Figuré.3(a)

The second approach, which has been used to evaluate thHgdehthe policy as a func-

tion of the entity of variation, exploits a syntheticallyrgeated set of configuration files. In

64

6.3 Experimental results

particular we modulated each core parameter according ¢oraat distribution. That is, vary-
ing the standard deviation of the normal distributions weegated different sets of configura-
tion files. This approach is depicted in the bottom part oliFeg.3(a)

We used two different representative multimedia algorgham testcases: An MPEG2 de-
coder, and an Integral Image algorithm which are describ&erction3.3,

For the MPEG2 decoder, the workload is a video clip with 25eger second (fps), length
1 second, resolution 72b76. We conducted experiments by dividing the workload i8,4,
and 12 tasks. The frame ratio of 25 fps implies a deadline @f3@):sec to decode each frame.

For the Integral Image, the workload is a queue of 25 matf&6x 96 unsigned integer
elements. This workload has been divided in 4, 8, and 12 ta#ksset a deadline of 4,500
usec to compute the integral image of each matrix.

In order to provide the task sets to the policies we had towgreance the applications on
the simulator platform before the tesggdfiling ste). The plug-in stored the cycles needed
by each task for each frame/matrix. Since activity cyclemdbchange with the parameter
variation, we could use the nominal platform for the proglinWWe needed also to take into
account the stall cycles. We made the realistic assumpkiahthe ratio between the stall
cycles and the activity cycles does not depend on the cordhendpecific frames/matrices.
During the profiling step we evaluated the maximum ratio leevthe stall and the activity
cycles among the cores and the frames/matrices.

We rearranged the formulation shown in SecttB8.2.1by adding to the parameters re-
garding activity cycles the contribution due to stall cgclén the new formulation, we take into
account the dynamic power consumption in stall state of cor@melyF;,,,s;, and the leakage
power consumption in stall state of car@mamelyF;,s;. Referring to §.2), and considering
as the ratio between stall cycles and activity cycles, whietsuppose to be constant for each
core, we adjust the first term of the summation as follows:

(Paynai + Pikgai) Cai + (Paynsi + Pirgsi) Csi

fck:i 6.8
_ (denAi +]le:gAi + (denSi + PlkgSi) T) CAi (')

B fck:i
In this way we take into account the power consumption if state by adapting the LP
formulation by simply adjusting the coefficients of ;s variables. Regarding the time we
adjust the deadline in the second constraintof)(as follows in 6.9).

65

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

Cai t T
- Seki = 147 = 147

The algorithm can produce th&,; cycle budget for each core Likewise, we give to
the BFD algorithm the same adjusted time constraint showé.8) as input. We experienced
through the following experiment that this assumption bold

The upper side of Figure.3(b)shows the profiling approach: 1) decode the current frame/-
matrix; 2) store for each task the needed activity cyclesiriguhis phase, the plug-in writes
into a text file the information about the task set and thé syales. On the bottom of the same
figure it is represented how the test is performed by readiadext file.

Xy

(6.9)

fVARplatform

FCK | PdynA PIkgA | PdynS PlkgS Pdynl Plkgl

xpel| 1.00| 0.77 0.45 | 0.52 0.43 | 0.00E+00 7.98E-0§
xpe2| 0.81| 0.85 0.50 | 0.57 0.48 | 0.00E+00 7.98E-04
xpe3| 1.00 | 1.02 0.49 | 0.69 0.47 | 0.00E+00 7.98E-04
xped4 | 0.84| 0.87 0.50 | 0.59 0.48 | 0.00E+00 7.98E-04
xpe5| 1.00 | 0.99 0.49 | 0.67 0.47 | 0.00E+00 7.98E-04
xpe6 | 0.84 | 0.83 0.49 | 0.57 0.47 | 0.00E+00 7.98E-04
xpe7| 1.00 | 0.99 0.49 | 0.68 0.47 | 0.00E+00 7.98E-04
xpe8| 0.84 | 0.80 0.48 | 0.54 0.46 | 0.00E+00 7.98E-04

pVARplatform
FCK | PdynA PIkgA | PdynS PlkgS Pdynl Plkgl

xpel| 0.88| 0.71 0.46 | 0.48 0.44 | 0.00E+00 7.98E-04
xpe2| 1.00| 1.03 0.50 | 0.70 0.48 | 0.00E+00 7.98E-04
xpe3| 1.00 | 0.77 045 | 052 0.43| 0.00E+00 7.98E-04
xpe4 | 1.00| 1.04 0.50 | 0.71 0.48 | 0.00E+00 7.98E-04
xpe5| 0.84 | 0.80 0.48 | 0.54 0.46 | 0.00E+00 7.98E-04
xpe6| 1.00 | 1.04 0.50 | 0.71 0.48 | 0.00E+00 7.98E-04
xpe7| 0.84 | 0.81 0.48 | 0.55 0.46 | 0.00E+00 7.98E-041
xpe8| 1.00 | 1.05 0.50 | 0.71 0.48 | 0.00E+00 7.98E-0§

Table 6.5: Degraded platforms.

6.3.1 Results

In this part of the results, we consider variability injettey the VAM tool. Among the gen-
erated degraded platforms we chose two of them having thedaspread in terms of perfor-
mance and power, calleYAR and pVAR respectively. As suchVAR can be considered
a worst case in terms of performance degradation, wh&R is the worst case in terms of
power. The characteristics of their cores are describealiteb.5. As nhominal values for the

66

6.3 Experimental results

MPEG2 Decoder
fVar pVar
tasksf RNM RF RP RN LP+BP|RNM RF RP RN LP+BP
4 1.00 040 0.88 0.40 0.40(048 040 096 0.64 0.40
8 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00 0.00 0.00 0.00
12 0.12 0.00 0.00 0.00 0.00| 0.00 0.00 0.00 0.00 0.00
Integral Image
fvar pVar
tasks) RNM RF RP RN LP+BPfRNM RF RP RN LP+BP
4 1.00 0.00 1.00 0.00 0.00| 1.00 0.00 1.00 1.00 0.00
8 0.00 0.00 0.00 0.00 0.00| 0.00 0.00 0.00 0.00 0.00
12 | 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00 0.00 0.00 0.00

Table 6.6: Deadline miss ratf)..1] using fVAR and pVAR platforms.

parameters (i.e. longest path delay, dynamic and leakagerpmnsumption for the different
work states), we used the values for the xPE at 32nm CMOS démiy’.

We compared, for the two platforms and the two applicatiding,energy consumption to
decode 25 frames and to integrate 25 matrices respectaralthe number of frames/matrices
execution missing the time constraint, that is the deadtiss rate.

In particular we normalized the energy consumption in thiefdng way :
(E—Emin)/(Emaz— Emin), WhereE is the energy consumption related to a generic execution,
while E,,;, andFE,,., are respectively the minimum and the maximum possible gribeg can
be consumed executing the same workload on the same platfithout taking into account
the time constraint.

We expressed the deadline miss rate as the ratio betweenhigen of missed frames/-
matrices on the number of total frames/matrices. Then, th@lenergy and the deadline miss
ratio can assume values between 0 and 1.

We compared the different policies presented in Sedi@nHereafter we indicat®F for
Rank FrequencyRPfor Rank PowerRN for Rank Energy, antlP+BP Linear Programming
+ Bin Packing. Moreover, we made experiments using a Ranéaimique which randomly
allocates the tasks onto the cores; we indicate RIld# on the tables.

In Figure6.3(c) we represented in X-Y plots the average time to execute ranes/matrix
(X-axis) and the normalized energy consumption (Y-axig)e Dest condition is therefore the
bottom-left area, however the QoS requirements impose dadspess than 40,000sec for
decoding each frame for the MPEG2 decoder and less than 4 &@Gor the Integral Image
(dashed vertical line on the graphs show the time conssjaint

The tables contain normalized values because of confidigntizasons

67

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

For 4 tasks, LP+BP is always one of the policies that realizesninimum execution time
on average, indeed spending more energy than the poli@epithduce execution times being
further from the deadlines.

For 8 and 12 tasks, all policies show execution times shudrter the time constraints. The
comparison policies show smaller execution time but moergnconsumption than LP+BP
that meets the deadline in all cases. In conclusion LP+BPssas much energy as possible
with minimum impact on QoS requirements.

For the pVAR platform the energy consumption is generalghbkr than in the case of the
fVAR platform, this depends on the difference between th&imam and minimum energy
that the platform can consume. In fact, regarding the enpegycycle, fVAR has a spread of
0.79, instead pVAR has a spread of 0.58 (see Talde

In Table6.6 we show the deadline miss ratio for both the applicationstzott the plat-
forms.

Using 4 tasks, the workload is characterized by few largkstasmd it becomes hard to
execute them within the time constraint. In this case, RFdiscover the fastest task alloca-
tion, and then it realizes the lowest deadline miss rate. BFPalways finds out that to reach
the lowest deadline miss rate the solution is to maximizepgrdormance. RF and LP+BP
always consume the same energy except for the pVAR-MPEG2whsre LP+BP is better
(see Figures.3(c).

Increasing the number of tasks, all the Rank policies meédhaldeadlines, but LP+BP
is also able to better exploit the available time producimg lowest energy consumption. In
particular, in referring to the lowest energies of the corigom techniques, LP+BP can save
up to the 33% of energy.

In order to evaluate the impact of variability-aware allbma strategy with respect to a
variability un-aware one, we compared the normalized gnagga function of the entity of
parameter variations. Results are shown in FiguB¢d) Here we compare LP+BP as well as
the rank techniques with an algorithm that assumes thabedsarun to their nominal parame-
ters. We used LP+BP assuming the nominal platform instealdecdictual variability-affected
platform. This algorithm is referenced BOM. The study has been conducted by varying the
parameters according to a synthetically generated noristalbdition.

In order to compare the energy consumption of the severilaiacation techniques in
relation with the increasing of the variation we chose thiewang levels of standard deviation:
0.0 (i.e. nominal platform), 0.5 and 1.0.

For each non-zero standard deviation we extracted fiverdiffalegraded 8-core platforms
and we averaged the results in normalized energy, deadlige mate, time to execute one
frame/matrix. Moreover we evaluated the functional yielgressed as the percentage of the

68

6.3 Experimental results

number of platforms that executed the test application&neg@ no missed deadline.

We conducted experiments using configurations of 4, 8, artdsk&. If the number of the
tasks increases, it is generally easier to find a task aitotateeting the time constraint.

The results clearly show how LP+BP reduces energy consampiith respect to the NOM
policy (up to 65%) and also in almost all the cases leads tel@mergy than the other policies.
In general, all the policies are equivalent using the nohptaform (standard deviatios: 0).
Clearly, by construction the LP+BP for the nominal platfop@rforms as the NOM policy.
It must be noted that in case of 12-tasks configuration, fon lbpplications LP+BP slightly
reduces energy consumption also in the nominal platform. 3k observed that this is because
its allocation, which tends to reduce the utilized coreduoes the stall cycles as a side effect.

It must be noted that, besides the case of MPEG2 in 4-taskgeoafion (upper-left side
of the figure), all the policies lead to an energy consumpti@ser to the maximum for the
nominal configuration (i.e. standard deviatierD). In the nominal case cores are all equal and
for this reason most of the policies tend to use all of thelalsbe ones. The case of MPEG2 4-
tasks has a max energy corresponding to a configuration vehnérex single core is used. With
respect to this reference value, policies lead to an impneve also in the nominal platform.

Another consideration concerns the fact that the nornkezreergy decreases from 0 to 0.5
of standard deviation and increases from 0.5 to 1. The reagbat the normalization range is
not the same for all the standard deviation values, sinceandxmin energy are recomputed
depending on the actual platform values.

Finally, in the case of MPEG2 it is more difficult to meet thadknes, then the normalized
energy is higher on average.

By looking at the functional yield (upper side of Tal@l&) this is lower than 100% using a
4-task configuration. In all the other cases all policiesizedhe 100% of yield. Similarly, the
deadline miss rate (lower side of Talil€) is larger than 0% only in the 4-task configuration.
In this case, RF and LP+BP always achieve the maximum yietdtla@ minimum deadline
miss rate. The reason is that RF always tries to maximize e¢n@inance and LP+BP finds,
in this case, that the only solution to minimize the deadiiss rate is to use the faster cores.
They also produce the same energy consumption.

Moving to 8-task and 12-task division, all policies realthe 100% of yield and LP+BP
always consumes less energy.

In conclusion, applying a variability-aware task allooattechnique improves energy con-
sumption and functional yield with respect to a variability-aware policy and alternative
variability-aware techniques.

69

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

VAR PVAR
0,95 095
‘ ‘c 12 tasks ‘
085 y A \
~ 8tasks o8 C\‘#\‘ o
& ors g ‘ \ ‘
=3 / °75 1 8 tasks
. £ " 12tasks /a T 4 tasks
form parameters. The first method usesg |/ x| K
i 8tasks X / 12 tasks o
VAM (upper side). The second method o/ taske 2+
f |
i i i i 045 045
uses synthetic normal distributions (lower o AILY. oo e e
i 0,90 0,90 w| A
Slde) ‘ 8 asks/Xb ‘
S, 080 0, K 4tasks
o 0% 8 tasks ’ g X
& 12 tasks
PROFILING s £ om0 — ‘ /mf 070 5
as! simulator p— — / &
— @ e
T H CAIft] > task set [f] [12 tasks 080
it ' o e
1 csficl > max(cs/ Ca) 8 os0 e 4 tasks 050 ‘
£ w0 12tasks 040
0,30 ‘ 0,30 ‘
020 0,20
2000 3000 4000 5000 2000 3000 4000 5000
w¥$ | simulator DRANDOM ~RF + RP ORN XLP+BP

B sEN ' .
ﬂm J L ; (c) Energy[0..1](Y axis) vs. Execution Time[usec] (X

axis). Dashed lines indicate the time constraints.

-
(b) Task activity cycles and stall ratio
profiling (upper side). Execution of test
by using the profiled information (lower

side).t: task,c: core,f: frame.

4 tasks 8 tasks 12 tasks
1007 T T — el T ettt
0,80 o 0,80 0.80
T 060 \ 0,50 050
[-
Q
£ 040 = — A0 0,40
0,20 0,20 0,20
0,00 | ' . OVOOJ ! ~ 0,00 ‘ ' +
std 0.0 std 0 5 std 10 std 0.0 std 0.5 std 1 0 std_0_ std_0_5 std_1_0
1,00 7 1,007 1,007 NS
\\
g, o080 0,80 ™~ 0,80
@ N e
E 0,60 0,60 0,60
B
o
g 0,40 0,40 0,40
[
= 020 0,20 0,20
0,00 4 . 0,00 ! . , . 0,00 ‘ = i
std 0.0 std 0.5 std 1.0 std 0.0 std 0.5 std 1.0 std 0.0 std 0.5 std 1.0
------ NOM — -RF - RP - - -RN ——LP+BP

(d) Energyl0..1](Y axis) vs. Variation Level[standard_deviation|(X axis). The segments
below the plots indicate different deadline miss rates ait ploint.

Figure 6.3: a)Variability injection b)Profiling c)Energy vs. Executidime d)Energy vs. Variation
Level

70

5/figures/variability_vam_gauss.eps
5/figures/profiling.eps
5/figures/fvar_pvar.eps
5/figures/gauss.eps

6.3 Experimental results

Functional Yield [%]

MPEG2 Decoder Integral Image
STD|NOM RF RP RN LP+BPfNOM RF RP RN LP+BP
0.0 0 0 0 0 0 100 100 100 100 100
0.5 0 0 0 0 0 0 40 0 40 40
1.0 0 0 0 0 0 0 40 40 40 40
Deadline Miss rate [0..1]
MPEG2 Decoder Integral Image

STD|NOM RF RP RN LP+BPfNOM RF RP RN LP+BP
0.0 | 0.40 0.40 0.40 040 0.40| 000 0.00 0.00 0.00 0.00
05| 047 037 040 039 037 1.00 060 1.00 0.60 0.60
10| 047 037 037 037 037/ 1.00 0.60 0.60 0.60 0.60

Table 6.7: Normal distribution for parameter variations. 4 tasks.

3 cores| 6 cores| 9 cores| 12 cores| 16 cores
LP closed form 135 268 411 567 793
BFD to solve BP (8 tasks) 4 14 43 73 112
BFD to solve BP (16 tasks 9 25 43 75 106
BFD to solve BP (32 tasks 24 57 102 160 281
BFD to solve BP (128 tasks) 181 286 451 728 1153

Table 6.8: LP closed form algorithm and BFD algorithm costséc]. The algorithms are executed
by ST231 clocked at 900MHz.

6.3.2 LP+BP policy execution time

The previous results were obtained by applying LP+BP attime- In particular, during the
XPEs execution, GPE solves the combined LP+BP problem irteshiime. In this part we
provide a detailed characterization of LP+BP executioretifnighlighting that the algorithm
can be solved in linear time with respect to the number ofcore

The LP-BP policy runs on the host core, which is an ST231 msmeclocked at 900 MHz.
We report in Tablés.8the execution time of the policy for an increasing numberares and
for various task configurations. Overall, LP+BP overheaddrly increases with the number
of cores. In all of the configurations the policy overheadrie order of magnitude lower than
the execution time of the slice decoding or IDCT for the MPEApRlication (at least 7,000
usec), then it can be transparently executed on the host whilsldwes perform the decoding
tasks. In case of Integral Image, which is a simpler algorjtthis is true (for the considered
matrix size) up to 9 cores and 16 tasks. However, it must bednibiat for larger matrices, for
which large parallelism is meaningful, this break-evempbkely increases.

As a final consideration, the estimated stall cycles did mqict the LP+BP effectiveness;

71

6. A VARIABILITY-AWARE RUN-TIME TASK ALLOCATION

in particular the actual stall cycles always have been leas the estimated ones.

6.4 Summary

The algorithm we propose in this chapter, which implememsLiP+BP policy, needs a linear

computation time and therefore it can be applied on-line déraonstrated the effectiveness of
our approach through a comparison with state-of-the-ditips. In our experiments we used
representative multimedia streaming applications. Weded on the xSTsim industrial mul-

ticore platform provided by STMicroelectronics condugtiour experiments on the xSTream
cycle-accurate simulator. LP+BP can save up to 33% of eneitipyrespect to the state-of-the-

art policies and 65% of energy with respect to one varigbilit-aware task allocation policy

while providing better QoS.

72

Chapter 7

High-reliability multicore platforms

7.1 Overview

In Chapterss and6 we studied the effects caused by static variations in terfhenergy and
performance in MPSoCs. Here, we want to move our attentidinetdifetime reliability of the
systems.

To cope with process variations which cause performancertainty and unbalancing in
MPSoCs, countermeasures at various levels have been dedelanging from transistor level,
architectural and system software level. Software aprescan be very effective because
they can adapt to wear-out and temperature dependency.e Binerseveral hardware tech-
nigues that can be used to make software aware of chip demmadaamely sampling based
detection [0, 24], periodic testing, error correction and detection ciigu{68]. Once this
information is made available at the software level, a commuarpose of various approaches
recently proposed is to provide wanted performance andhmrat-time constraints through
statistical schedulingdp] or learning algorithms&3].

The main challenge of these techniques in a multiprocessiems is to cope with the
non-uniform distribution of critical path delay variat®nTo handle this heterogeneous delay
distribution, each core can be clocked with a different dietey, thus increasing the need of
synchronization for intra-core communication. A more @wmative approach is to run all
the cores at the same clock frequency dictated by the sloveest[63]. In both cases the
aging effect will deviate the system from the starting ctindi affecting the expected lifetime
and its distribution between the cores. In this scenarimesoores will have a lower lifetime
expectation than others, thus decreasing reliability aadiptability of the system.

73

7. HIGH-RELIABILITY MULTICORE PLATFORMS

The objective of the work presented in this chapter is togate the impact on lifetime
uncertainty and unbalancing among the cores. To this parpes developed an idleness distri-
bution policy that increases core expected lifetimes by dutling their activity. The idleness
is distributed to equalize the expected lifetime of eacledora target value, imposed by the
system designer or by the user. Since the actual impact dorpemce depends on the task
model running on the target multicore system, in this workomasider three representative
task models, namely batch execution, playout and strearfdng/hich we evaluate the impact
of the policy on the performance level. The proposed appraabased on variability informa-
tion that can be provided at run time by variability monitdret are likely to be embedded in
next generation MPSoC designs.

Idleness distribution is conceptually similar to clockguency scaling. Even if our im-
plementation exploits idleness, the same strategy canug@esbwith a frequency scaling ap-
proach. In both cases the core operates on average at a ksvaga speed and reduce overall
switching activity with a positive effect on lifetime. Howser, idleness distribution is more
profitable because it does not require separate frequenogide. Nevertheless, frequency
scaling coupled with voltage scaling can provide considerdynamic power savings. How-
ever, for this to be possible separate voltage domains wibaated expensive level shifters
are needed. Provided that voltage islands are presentjdigs@ss distribution policy con-
tributes to power reduction as long as the core allows to beepgated when idle.

The contributions provided in this chapter can be summdrasefollows. First, we pro-
pose an on-line adaptive strategy for increasing MPSoCatiote to non-uniform wear-out due
to variations. The methodology is innovative as it is foclus@ aging tolerance to improve
system lifetime rather than on recovery of performancebesause of wear-out. Moreover, it
is not based on static task characterization, but on onelkeeution time and wear-out moni-
toring. Second, we propose an efficient implementationdasea look-up table that directly
correlates target lifetime with idleness distribution. irflh we studied the impact of the ag-
ing tolerance policy on performance for various represgamtaask models, demonstrating its
negligible overhead and adaptation to different workloaaracteristics.

The rest of the chapter is organized as follows. Seclidnlreviewes the recent works in
this filed, Section 2 discusses the variability model comsd in this work. Section 3 presents
the hardware and software infrastructure. Section 4 dessithe proposed policy and Section
5 presents experimental results.

7.1.1 Related work

In [81] a statistic scheduling approach is proposed to mitigagdrtipact of parameter varia-
tions in a multiprocessor platform. The strategy assunmegddisk executions are statistic rather

74

7.2 ldleness constraints

than deterministic. A new metric is introduced called perfance yield, defined as the prob-
ability of the assigned schedule meeting the timing coimgza This work demonstrates that
using a statistical scheduling approach consistently awvgs the performance yield. Wear-out
factors are not considered in this work. As a result, the gsed policy is based on a static
estimation of task execution times and variability infotioa.

Wear-out effects are considered @8], where authors present a scheduling approach which
is aimed at recovering the performance impact due to nofowumichip degradation. They pro-
pose an integer linear programming method to determine eimalpscheduling for streaming
applications. Differently from previous work, variabylieffects on interconnect and memories
are also considered in the optimization problem. Moreawask migration is also considered
as solution to handle the time dependent effect of wear-out.

These papers state the effectiveness of software and siestehapproaches to variability
issues and we want to complement previous techniques bgngneg a fully on-line and work-
load adaptive strategy aimed at improving MPSoC agingdoles instead of focusing only on
performance. It is based on the on-line estimation of idderand variability as well as wear-
out conditions. As such, it does not exploit task pre-charaation. The proposed technique
can be applied to workload based on a variable number of .t&#sause of these character-
istics, our on-line approach to lifetime improvement cooddapplied with static techniques to
achieve an effective performance vs. lifetime trade-off.

7.2 ldleness constraints

The relationship between the degradation of the criticti galay and actual lifetime for each
core depends on two factors. First of all, an aging functidmctv expresses the delay critical
path degradation as a function of time. We refer to a per-agieg function modulated by
the core activity. This function has been extrapolated ey NBTI model and is shown in
Section4.2.1 This means that the delay critical path does not degrade Wigecore is idle.
Moreover we can increase the expected system core lifetynpaitting it in some standby state
when idle, which is a realistic assumption for state of theSmCs. The second factor is the
effectiveness of the error correction circuitry that isgibly embedded in the architecture. The
wear-out effect causes more and more severe timing viogtmd an increasing number of
paths violating them as the time elapse, thus increasingeteentage of corrected errors.
The error correction circuitry is able to correct up to a @erterror rate. If this rate is
reached, the core cannot be recovered and thus it fails.hiordason, the expected lifetime
can be computed as the time to reach this maximum error rater €orrection systems can
be exploited as monitor of the aging process. Using an agmdemit is possible to determine

75

7. HIGH-RELIABILITY MULTICORE PLATFORMS

the expected lifetime based on the amount of correctedserrior this way, our policy can
directly use the lifetime information to know how much idé=s is needed to match a given
target lifetime requirement. This opportunity is depiciedrigure7.1 Starting from an initial
expected lifetimet(,,..,;) which is achieved with 100% core activity, by playing withiéness

it is possible to increase the lifetime up to a target valye The dashed line represents the
activity duty cycling performed by inserting idle periodstiveen task executions. We assume
that the system is required to match a lifetime requiremartiie whole system and we play on
idleness distribution of each core in order to increase xipe&ked lifetime to match the target
one.

Typical bathtub curve

failure
rate \ /

;
N S N -

i<t rmax >t

max max

(=100% active) (=>duty cycling)

Figure 7.1: Relationship between idleness and core lifetime.

7.2.1 Platform model and software infrastructure

The platform we refer is xSTsim provided by STMicroelectosrand illustrated in Sectich 3.
We used for our experiment the cycle-accurate simulator.

The software organization of our system is composed by stjmactions for task load-
ing, data communication and synchronization, statistltection. All the cores load the same
program, following a SPMD approach, where each core exeautgifferent portion of the
program depending on its identifier. The accelerator cotaaas all the possible tasks to be
executed. Currently, dynamic loading of tasks is not sujgolorAs such, to execute a certain
task, cores have to jump to the related code portion, whiateistified by a pointer. To control
the execution on the accelerators, the master core chamgesinter depending on which task
the accelerator has to run. Shared memory is used to exchatg@emong cores.

Batch execution model.In the batch execution model, the master core spawns a number
of N independent tasks on the accelerators exploiting abhocking round-robin algorithm.
The performance metric associated with this task modeleeiecution time that in this case
is defined as the time between the allocation of the first taskthe completion of the last
allocated task. Input and output data are stored in local onieshof accelerators.

76

6/figures/lifetime.eps

7.3 Adaptive idleness distribution policy

Output rate-constrained execution model (playout). This model is representative of
playout activity performed by audio or video decoders. Atsthis case the master allocates
tasks on the accelerators. Accelerators read input datatfieir local memories. Output data
items are stored in a common output queue allocated in simaeeabry with access regulated
by semaphores. A consumer task runs in one dedicated coch wériodically picks one data
item from the output queue. The associated performancéaisetine output throughput. When
the output queue becomes empty, the consumer will experigrteadline miss. As such, the
performance constraint is represented by the output rate.

Input-output rate-constrained execution model (streamirg). While in the playout model
input data for accelerators are available on local memomestreaming task model data are
provided to the accelerators by the master core. This isiaedlymodel for a videoconferenc-
ing application where the input data are provided by a videoera and accelerators performs
video encoding. Another example is a video decoder apitaeceiving compressed frame
from the network. An interprocessor communication queugsed as buffer between master
and accelerators. As in the playout model, an output queused to synchronize data com-
munication with the consumer core. The associated perfoceenetric in this case is not only
the output throughput, but also input throughput. If theuingueue becomes full, this means
that accelerators are not able to handle the input data Tdte.constraint on the output still
applies also in this task model.

7.3 Adaptive idleness distribution policy

The master core is responsible of allocating tasks on thelerators. For this reason, it is the
most suitable place where to implement the idleness digioib algorithm. Since the distribu-
tion algorithm depends on the reading of variability morstof each core. Our target platform
is equipped with a register accessible from the master dridleatores where the percentage
of corrected errors (also called error rate) can be readdfch eore.

Our policy computes a required amount of idleness for each. ctm order to make the
policy implementation independent from the type of runtimfermation available, the policy
takes as input a required idleness for each core. A conversimule fills up a table with the
idleness values computed starting from error rate stegi$tr each core. An aging model as
described in Sectiod.2.1is used to compute the time required to reachrthe:_error_rate
value assuming zero idleness, that we ¢3)|,., wherei indicates the — th core. For each
core, the target amount of idleness for a gengéricth core is defined as:

77

7. HIGH-RELIABILITY MULTICORE PLATFORMS

t

Error ‘ ' o
rate; Idleness=f(T .., T;) ‘ 2 0.01
L i " .

» t'm ax

Figure 7.2: Implementation scheme of the adaptive idleness distobyiblicy.

Task dispatching
. XPEs:
: g2 » POIICV core manager
2 03 manager bad core
N 0.7

GPE:
core manager

S T T B

good core

Figure 7.3: Adaptive idleness distribution policy description.

ti .

maz {0l

idleness = RIa If = tmaz
0, tiy < (A

wheret; s is the system lifetime requirement and idleness is expdess@ number between
0 and1, where0 indicates full activity and indicating no activity. Once the wanted average
idleness has been computed it is stored in a table as shown in Fig@reThen, the master
processor must perform the task allocation policy accaiginas depicted in Figurg.3. To
achieve the wanted average idleness, our policy allocdleperiods between task executions
for each accelerator. This implies that the wanted idlemeashieved on a time scale on the
order of task execution times. This is reasonable as longeasxpected lifetime is typically
several orders of magnitude larger than task durationgeddhe implementation on a smaller
timescale would imply pre-emption of tasks on the accebesatintroducing an unnecessary
overhead. It must be noted that the proposed policy doesssonze a specific aging model.
The unique assumption is that additional idleness inceeasee lifetime.

As a result, the master core exploits hardware timers to tepdadata structure where
task start and completion times are stored. After each tesiptetes, its activity interval is

78

6/figures/implementation.eps
6/figures/policy.eps

7.4 Experimental results

computed. The idle period to be allocated is obtained by ipiigiition of the last activity
period by the wanted idleness. After the idle period expioes core, a new task is allocated
to it.

It must be taken into account that cores must also perforinrtenagement (i.e. load-
ing and completion notification) and synchronization opers (i.e. waiting on semaphores),
as needed to implement a given task model. When computingllédn@eriod to be allocated
to each core, this additional activity is taken into accdamybur policy. This is possible be-
cause the master core has full visibility and monitoringatality of accelerator’s activity. The
idleness for each core is conservatively updated by theemeste at each task completion, de-
pending on monitor readings. However, frequency of updedese configured. Experimental
results show that the implementation overhead of this padicmegligible and that the wanted
idleness is obtained with a very high accuracy.

7.4 Experimental results

The policy described in Sectiah3requires software support mechanism for task activity mon-
itoring and idleness computation, that could impact theuemzy of idleness distribution. For
our experiments we considered two platform configuratioasyely four and six accelerators.
For each configuration, we considered three variabilitynades. Each variability scenario
defines the number of cores affected by variability issuelstla® mapping of error rates on the
cores. In our simulation platform, error rates are exthdtem a Gaussian distribution. In
our experiments we considered a static condition where tmoreadings (i.e. variability con-
ditions) are constant over time. However, we consider atwaase scenario where the master
core reads the variability information at each task conmtetThe platform configurations and
variability scenarios considered for our experiments ascdbed in Figuré'.4.

It must be noted that minimum and maximum values of errorsrate the same for the
four and six core configurations. Benchmarks used for emparis are matrix multiplication
kernels. To the purpose of characterization of idlenesspeation accuracy we measured the
actual idleness and we compared it with the target one. Thatsanve obtained about idleness
accuracy, that are not shown here for space limitationd)ligigt that the maximum error in
idleness assignment is within 0.1%, demonstrating the&ffess of the proposed software
infrastructure.

Batch Execution Results.The matrix multiplication benchmatit- B = C'is composed by

two phases. During the first one the matrix B is copied fromresthanemory to local memory,
where A resides. In the second phase the actual matrix ricdiijpn takes place. Results are

79

7. HIGH-RELIABILITY MULTICORE PLATFORMS

Error rate

0,070

0,060
__ 0,050
o 0,040
=3
g 0030
(O]
. 0,020
o
) 0,010

0,000

1/4 3/4 1/6 5/6

fraction of cores with variability

Expel Bxpe2 Oxpe3 HExped Hxped5 DOxpeb

Figure 7.4: Variability scenarios. Error rates are mean values of agjanslistribution.

stored in the local matrix C.

0/4 1/4 3/4 /6 1/6 5/6
40258 | 44715 | 51427 [26965 | 29404 | 35875

execution
time [us]

relative

i 1 28 9 33

throughput
e | 6,00 | 545 | 470 | 883 | 844 | 681
relative

throughput 9,14 21 ,67 4,42 22,86
[%]

throughput
Nl 611 | 561 | 489 | 883 | 844 | 7,01

relative
thmu?;r]rut 8,24 20,00 4,42 20,59
throughput
ouT 5,96 5,45 4,72 8,67 8,29 6,86
Mbyte/s]
relative

throughput 8, 57 20, 79 4, 35 20, 86
OUT [%]

Figure 7.5: Relative impact of variability on performance for all theesarios and configurations

Increasing the lifetime may have an impact on performangemniding on the task model.
For batch execution, performance hit lead to an increasaeobverall execution time aV
tasks, whereNV has been fixed to 60. Results are shown in Figu&a, where associated
idleness values for each core are also reported for clantigure 7.5the relative impact on
execution time is shown. For each platform configuratiom four vs. six cores), this has been
computed using the scenario without variations as refereBy comparing the two platform
configurations, it can be noted that the impact on execuiine is proportional to the fraction

80

6/figures/error-rate.eps
6/figures/relative-impact.eps

7.4 Experimental results

9,00
8,00 -
7,00
]
$ 6,00 +
<
5,00 -
=
54,00
&
£ 3,00
3
0 2,00
=

~ 1,00 -

60000

50000

40000
4,00
30000

20000

execution time [us]
throughput [MByte/sec]

1,00
10000

0,00 + 0,00
02 [EN 03 os [EN os os Bl os oo [EY 1
o Bl o o E o 03 03 [Fi o5 o5 Y o5 osECH 1 1 BOS
o o [l o o 03 03 [zl 06 0.6 Al 16 os [EN +2 : BN
0|0 o o BN 04 04 2R 07 os B 11 B0 s 2 B

o ofll o o 07 o7 |EXR
o o EN 70 18 19 |EX
- 5 II!II 0.7 08 Ilz!l 34 4 Il!ll
a) b) c)

Figure 7.6: Impact of variability on the output throughput for a) batetisk model; b) playout
model; c) streaming model.

of variability-affected cores. For instance, the exequtime of the 5/6 configuration has a
larger increase than for the 3/4 one. However, with the gefar rate distribution this is not
enough to make any of the four cores configuration more peifa.

Output Rate-Constrained Processing ResultsIn this case the metric to be considered
is the output throughput. In order to consider a worst caggliion, we set the consumer
frequency corresponding to the maximum throughput thatbezanelivered by the six core
configuration, which is about 9MBytes/sec. As such, intoddy idleness has an immediate
impact on throughput, as it can be observed in Figuf. Differently from the execution
time for the previous task model, throughput degradatiae ieeless sensitive to the fraction
of variability affected cores. Indeed, in Figuresthe 5/6 scenario has a throughput drop of
23% while the 3/4 scenario has a throughput drop of 22%. Hewéy comparing 1/4 and 1/6
scenarios, the relative throughput drop is 9.1% compardd4s.

Input-Output Rate-Constrained Streaming Results.Both the input and output through-
put are critical in this case. Figui®e6.c shows variability effects on the input throughput. The
same results have been obtained for the output throughpuskown). Interestingly, also for
the input throughput the relative performance drop for higbughput values is similar for 3/4
and 5/6, being around 20% in both cases (see Figie

81

6/figures/exec-time-idleness-table-1.eps
6/figures/exec-time-idleness-table-2.eps
6/figures/exec-time-idleness-table-3.eps

7. HIGH-RELIABILITY MULTICORE PLATFORMS

7.5 Summary

In this chapter we presented an adaptive idleness distibyiolicy aimed at reducing the
impact of variations and aging on the lifetime of MPSoCs. Pldcy exploits variability
monitors and on-line task execution statistics to deteentite duration of idle intervals to be
distributed to the cores to match a given lifetime requinstn&he proposed strategy has been
implemented on an industrial simulator of a next generat@mmoscale multiprocessor platform.

82

Chapter 8

Using micro thermoelectric cooling in
multicore processors*

8.1 Overview

Our contribute so far regarded MPSoCs that are charaatidoizé&arger numbers of small cores.
As we explained DVFSs can cause penalties in area in thewarsysin this chapter we want to
give some insights with regard to general-purpose mukipoocessors which are characterized
by few complex cores. In particular we focus on the problernhefreliability keeping attention
at the performance preservation.

While it is possible to reduce the operating temperatureudin the use of dynamic voltage
and frequency scaling (DVFS), this reduction comes at theerese of the performance and
runtime of applications. Furthermore, the increase ininuatmakes the extended lifetime of
the processor less useful as applications will take lorgénish.

Micro thermoelectric cooling technology presents an apginathat can supplement tradi-
tional air-based cooling techniques to reduce the temyp@siof processors. Micro thermo-
electric coolers are inserted between the processor’srtid¢ree processor’s heat spreader as
illustrated in Figure8.1 A thermoelectric cooler pumps heat from the die side to that h
spreader side against a temperature gradient. This punugieg electrical energy, and thus,
thermoelectric cooling has to be exercised carefully. blitrermoelectric coolers (TECs) are
particularly attractive to use with multi-core processavhere each core can use its own TEC,

%*This research has been done in collaboration with SCALErktboy at Brown University and it has been
partially funded by NSF grant No. 5-26874.

83

8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE

PROCESSORS
spreader

Hot side

\
o\
I_I|U|_||I—|U|_|LI|_|\fan

heat

: : : sink

heat multi-core micro
spreader processor TEC coolers

Figure 8.1: Processor heat removal system incorporating micro TECstrifiél interface material
is assumed at the interfaces between surfaces.

and thus cooling efforts can be focused directly on overnhgatores.
In this chapter we explore the use of thermoelectric codteimprove the reliability and
performance of multi-core processors. Our contributiaiesas follows.

e We devise a reliability model for multi-core processors. r @odel is driven by real
measurements from a dual-core processors. We measure ileg, gemperature and
voltage of each core. We then feed these measurements takalitgl model to estimate
the expected mean-time-to-failure (MTTF) for each core fandhe entire processor.

e We develop a thermal model for our dual-core processor MithTEECs, and use this
model to simulate the impact of using the TEC on the tempegaifithe processor and
total power consumption.

e We devise a number of strategies for using TEC and DVFS toawgpthe reliability
and performance of multi-core processors. Our strategiels t® maximize performance
while using total power consumption and MTTF as constraints

e Using measurement traces from a real dual-core processed lsgstem, we quantify the
impact of using our techniques on performance, power copsam and the MTTF. We
show that using TEC with DVFS offers a valuable trade-offraiag point that improves
MTTF and performance compared to pure DFVS.

In Chapted we presented the causes of the lifetime degradation, ifcpkat we described
mechanisms of failure and the related models in Secfi@?2 The rest of the chapter is
organized as follows. Sectidh2 reviews related work in the literature. In Secti8rg, we
propose a TEC thermal model for multi-core processors. tii@e8.4we propose a number
of strategies to control MTTF within power budgets. A numbkcomprehensive experiments

84

7/figures/tec_assembly.eps

8.2 Related work

are provided in Sectio.5 to illustrate the impact of using TEC and DVFS on reliabjlity
performance and power. Secti8ré summarizes the main conclusions of this chapter.

8.2 Related work

Higher power densities, die temperatures and smaller natesrfeatures have pushed failure
as a major concern in modern processds [/0]. As a result, it is now valuable to incorpo-
rate reliability modeling and optimization into the desiggmd operationation of processors. A
popular architectural-level reliability modeling toolRAMP [70]. RAMP uses floorplan infor-
mation with power and thermal traces produced from inswuadevel architectural simulators
to estimate per-structure and system MTTF for every failmexhanism. RAMP-like tools
have been used in a number of architectural-related papesstuate system-level design and
runtime choices on the reliability of processors. At theigleside, Atienzaet al. propose de-
sign optimizations for the register file to improve its rélidy [6]. At the system-level runtime
side, Luet al. propose DVFS-based techniques to extend the lifetime giribeessor49], and
Coskunet al. use simultaneously DVFS and job scheduling methods to aser¢he lifetime
[23]. RAMP-like models can be also adapted to evaluate thehiitinof real processors from
their actual measurements. For example, Mesa-Marghat develops reliability models for
a single core AMD processor from temperature, power, veltaighe processobp).

To avoid degradation to performance, it is possible to adhescooling system to reduce

the operating temperatures. Because most failures merhamepend strongly on tempera-
ture, small reductions in temperature can lead to largeasgnents in MTTF. Cooling sys-
tems need to be used judiciously due to their power consemptMicro cooling (whether
liquid based P0] or themoelectric basedi{l, 69]) can directly focus the cooling on the hot
spots, which reduces the cooler power consumption. Recsmanaes in thermoelectric cool-
ing have improved the heat removal capability of TECs, whiilaging further miniaturization.
It has been recently demonstrated the possibility of usifggarirECs to track hot spots and
adaptively cool them in a dual-core processggr The design of the TEC itself naturally plays
n important rule in its efficiency. Thus, Loreg al. consider design optimization choices for
thin film thermoelectric coolersip.

Our work differs from previous work in a number of ways. Fimge consider the impact of
the cooling system directly on the reliability, rather thast the temperature, of the system. We
also consider the simultaneous use of TECs and DVFS to gmimliability and performance
of multi-core processors.

85

8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

8.3 Thermal modeling

Peltier-based TECs pump heél, from thecold side of the TEC to théiot side of the TEC
creating a difference of temperatur®]’, between the two sides that is dependent on the elec-
trical energy provided to the TEC. Figugel in Section8.1 illustrates the embedding of two
micro TECs between the processor die and the heat spreadel EXC has an area equal to the
half of the die and in particular will be located on top of omeecand half the cache. Without
the TECs, the die side is naturally hotter than the heat dpreside, and heat flows from the
die to the heat spreader. However, when TECs are used, ttiesidel is the die side, and the
hot side is the heat spreader side, and the TECs pump®@deim the processor against the
thermal gradien\7". The relationship betweep and AT is given by

Q= ST.I - KAT — I*R/2, (8.1)

whereS' is the Seebeck coefficienk is the TEC thermal conductancg;is the TEC electrical
resistance] is the TEC electrical current arif). the temperature at the cold sid&9. K and
R are constant parameters that depend on the TEC construction

If we assume a particular desired cool side temperaturéhéodie (e.g.1. = 35celsius),
then the relationship betweep and AT is linear for a fixedl as given by Equation8(1).
Figure 8.2 gives this relationship for various values of current syppl The plots illustrate
some typical TEC characteristics. For a fixgdincreasing the amount of pumped he@t,
decreases the temperature differedc¢E. The maximum amount of heat that can be pumped
is reached wher\T = 0. The maximum amount of heaf),,..., that can be pumped at the
highest current setting,...:, is one of the most important parameters of a TEC. A mismatch
between the power dissipated by the processor an@thg of its TECs can lead to thermal
runaway. The maximum temperature differenéd;, ., obtained atl,,,,, obtained when no
heat is pumped is another important parameter.

The voltage of TEC as a function of the applied curréneand the temperature difference,
AT, and itis given bWrgpc = SAT + I R. Thus the power consumption of the TER; ¢,
is equal toVpgcoI. This consumed power has to be dissipated at the hot sidesofHC.
This extra power consumption is the drawback of using TE@shérmore, the heat rejected
at the hot side of the TEC, which is the sum(@fand Prg¢, increases the temperature of the
heat spreader compared to the case when no TEC is used. ®hmedelAT and the exact
temperature of the cold side, it is necessary to developrantdenodel for the TECs with the
processor.

Figure 8.3 shows the thermal circuit of the simpler case of a single-qmocessor con-
nected to the heat sink through one TEC. In the figure, the poide processor is modeled

86

8.3 Thermal modeling

=2A I=3A ®I1=4A I=5A
60

50 §

40

20
10

0 7
0.00 2.00 4.00 6.00 8.00 10.00 1200 14.00 16.00

Qw]
Figure 8.2: Relation betwee® and AT for various values of currert

by the current sourc@; the power of the TEC is modeled by the current soulge;-1; and
AT is modeled by a supply source. The lumped thermal resistainttee spreader, sink, and
fan assembly is modeled by;. The TEC also introduced its own thermal resistance with is
determined by it thermal conductance and its physical dgioes. Note that the heat sink as-
sembly has to dissipate the sum of the TEC power and the morcpswer. The temperature
on the hot side7}, is equal to

Th = (IVTEC + Pcore)Rs + Tamb (82)
= (I(SAT +IR)+ P.ore)Rs + Tump,

whereT,,,;, is the ambient temperature. Thus, the temperature of thee ssdé is equal to
T. = T, — AT. To develop a lumped thermal model for a dual-core procesgserhave

amb
Prec=IVrec R
S

Hot side

I_——o
Thot
AT
e
T

Cold side
Pcore = Q

cold

Figure 8.3: Thermal circuit for one TEC used with single-core processor

87

7/figures/tec.eps
7/figures/singlecore.eps

8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

Tamb
IV1ecq R, Vreco
JAEN /
V— T v

TEC, _\F
T 2l
AD J_‘NN\ ‘MN\J_ CDPcore2

Vv

vV

Figure 8.4: Thermal circuit modeling for two TECs attached to a dualeqmocessor as illustrated
in Figure8.1

TEC,

SEE

to consider the mutual thermal dependency between the esrebown in Figurd.4. The
temperatures at the cold sides of the TECs have to be foundong the linear equations that
represent the thermal model.

8.4 Strategies for improving reliability and performance

TECs can be use to keep down core temperatures but since dhsyroe power it is to de-
vise strategies that use them intelligently. In this secti@ propose a number of strategies to
engage TECs to improve the MTTF. As described in Sedfiéh2 MTTF depends on tem-
perature, power, and voltage but the most important paemiethe temperature. Reducing
the temperature also has the additional benefit of redueakglge power. In addition to im-
proving reliability, we also focus on preserving the highasssible performance. In contrast
to adaptive DVFS techniques that improve reliability at éx@ense of performance, we want
to identify strategies that meet or improve the Reliabiitigh minimum loss in performance.
We also want to take into account the power consumption of EB@s over time and put some
constraints on the TEC power consumption if necessary. \&fggse two strategies.

Strategy |: Maximize MTTF for a Given TEC Power Budget. In this strategy we seek to
provide a solution of the problem of maximizing MTTF underd Bower constraints. Power
constraints on TECs really means that the TEC power shoultdensubstantial in comparison

to the core power. Thus, we consider the TEC power budget agxamam ratio between

the TEC power and the core power that we have to meet at any Biven the power ratio,

we search for the minimurid, that the core can reach at every moment in time. Decreasing

88

7/figures/multicore_model.eps

8.5 Experimental Results

2.80 GHz at Vdd 0.996 V

SYS CORE1 CORE2 SYS
GOPS| Power Tmax EM SM TDDB TC NBTI Power Tmax EM SM TDDB TC NBTI MTTF
maxw] _[C] [Y] [Y] Y] Y] [v] maxw] [C] [Y] [Y] Yl M [(Y]
perlbench - gromacs 7.091 21 51 32 40 25 33 25 19 43 75 84 32 64 34 14
bzip2 - tonto 6.980 23 51 41 43 25 35 26 30 44 55 83 31 63 34 15
gce - hmmer 7.182 37 51 46 48 26 38 27 35 43 63 92 32 70 35 15
gobmk - h264ref | 7.676 18 50 50 42 25 34 26 28 42 50 89 34 69 35 15
hmmer - povray | 9.060 20 51 34 36 24 30 24 29 45 38 71 30 54 32 13
sjeng - calculix 9.227 25 51 21 35 23 29 24 21 45 65 67 29 51 31 12
AVERAGE 7.125 23 49 42 46 26 37 27 23 44 82 81 31 62 33 14
2.13 GHz at Vdd 0.884 V
AVERAGE 5.978 15 43 108 92 17041 72 35 14 43 136 108 18326 85 38| 24
1.60 GHz Vdd 0.804 =V
AVERAGE 4.393 9 37 277 175 3,37E+06 159 46| 9 37 201 108 2,70E+06 85 38 29

Table 8.1: Summary of characterization results of the SPEC CPU 06 omloalrcore processor.
For space limitations we report results on only a few paiflsesfchmarks. Averages are, however,
computed across all pairs of benchmarks.

the temperature to the minimum possible value maximize$hé&F, while keeping the same
performance of the system since we are not scaling frequdiociind such minimum temper-
ature, we incrementally increase the TEC current and soduation 8.1) and Equation&.2)

to computel,.. We stop when the minimuri;. is found, while keeping all parameters within
the TEC specification.

Strategy Il: Meeting Required MTTF using Minimum TEC Power a nd minimum Perfor-
mance Degradation. In this strategy we seek to ensure a minimum acceptable MTHilew
using the least amount of TEC power consumption. To idefiti&minimum power required
to get to the required MTTF, we incrementally increase thegsaonsumption of the TEC and
use Equation§.1) and Equation§.2) to identify the cold side temperature at every moment of
time. The cold side temperature is then fed to the failureetsot compute the system MTTF.
If the system MTTF reaches the required value, then the ihgorstops. In some extreme
conditions, a situation might arise where the core powerghdr than the),,., of the TEC.

In this case, we are forced to use DVFS as a means to reducerthig power. We refer to this
strategy byadaptive TEC

8.5 Experimental Results
Our experimental system is equipped with an Intel Core 2 D4@0B processor and 4 GB
of DRAM. The processor has three DVFS states: 2.8 GHz at OW2613 GHz at 0.884 V,

and 1.6 GHz at 0.804 V. We intercept the power supply lineshéogrocessor and measure
the current consumption using an Agilent 34410A multimetée measure the temperature of

89

8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

2.80 GHz + Strategy | 2.13 GHz + Strategy | 1.60 GHz + Strategy |

26 35 ——— 35

.
o = —2—3 5 3a f/
75
F2 // T s i
T 20 =+ = bl < 33
i JAF v ———— 2 a9 £ /
=, s 17 z ol &
= a7 o
Eus i /. E¥] E 20
S = s i S5 T S99
- i

23 = 28
=

| 1 ; ; 2 - - |

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

POWER TEC / POWER CORE POWER TEC / POWER CORE POWER TEC / POWER CORE

Figure 8.5: MTTF as a function of different TEC power ratios at variousfE®/settings.

each core from the embedded sensors using tleensor s package. We also measure the
performance counters of the processor usingotheon package. Measuring the performance
counters enables us to calculate the throughput of the ggocand to estimate the individual
power of the cores from the total power consumption of theg@seor as discussed in Section
4.2.2 We use a sampling interval of 200 ms for all measurementse nibasured power,
temperature and voltage traces of each core are fed to ourfRIKd model to estimate the
FIT/MTTF for the five failure mechanisms and the MTTF of theienprocessor as discussed
in Section4.2.2

Our TEC model is based on TEC-microsystems model number 1068152-03. We as-
sume two TECs are embedded between the processor die anegthepheader. The physical
dimensions of each core match the physical dimensions aftliddual cores of the dual-core
processor. The parameters of our TEC model at 300 KA., = 67 K, Qaz = 18.7W,
Inax = 5.3 A, R=0.87Q, andV,x = 6.3 V.

In the first experiment we characterize the impact of woritlgariations on the power,
voltage, temperature, throughput, and MTTF of our duaéquocessor under different DVFS
settings. We use the SPEC CPU 2006 benchmarks, where a indfimarks are executed,
with one benchmark per core. We ran every possible combimati the 29 SPEC CPU 2006
benchmarks at every possible frequency-voltage settind20 seconds. Tabl.1 gives the
average total throughput of the processor in Giga Opermaiftar Second (GOPS) and the sys-
tem MTTF in years. We also report in the table the maximum ppteenperature, and MTTF
of every failure mechanism for each of the two cores. Due @xegimitations, we report
results for a few pairs of benchmarks. The average valueshaveever, computed across all
pairs of benchmarks. All failure mechanisms are directfg@éd by temperature; in addition,
EM is affected by power and TDDB is affected by voltage. TheT#$ for EM and TDDB
are very high at 1.60 GHz and 2.13 GHz. Thus, for these frerjasrnhe system’s MTTF is
largely determined by NBTI, TC, and SM, which are largelyedetined by temperature.

In the second experiment we evaluate the improvement in MdfTthe dual-core pro-

90

7/figures/mttf_power2.eps

8.5 Experimental Results

cessor as a function of the power consumption of the TECsaaydWFS setting. We vary
the ratio of the power consumption of TECs to its core, and for eaclinggtive identify the
largest possible improvements in the core temperaturetharslystem MTTF using Strategy |
proposed in SectioB.4. We plot the results in Figure 5 for a number of applicaticatés at
the three different frequency-voltage settings. In Fighiréhe x-axis gives the ratio between
the TEC power consumption and the core power consumptiahtreny-axis gives the MTTF
for the different pairs of benchmarks. Increasing the TE®@gqyaconsumption reduces the core
temperatures and improves the system MTTF. Because maumgefenechanisms depend expo-
nentially on the temperature, small reductions in tempegatan result in large improvements
in MTTF. For example, at 2.8 GHz, engaging the TEC can doutdeMTTF for sjeng-calculix
at the expense of an additional 60% increase in power consumAt 1.6 GHz, MTTF can
improve by 26% at the expense of an additional 35% increagevirer consumption. Note that
the curves exhibit two “flat” regions at low TEC power ratioglaat high TEC power ratios. At
low TEC power ratios, the electrical power supplied to th€€Tr&ight not be sufficient to pump
the power dissipated by the processor, resulting in no taeomMTTF improvements. At high
TEC power ratios, MTTF improvements saturate at a point vtherpower consumption of a
TEC reaches its maximum power rating, {,x /max). At such stage).,.x iS being pumped
from each core by its TEC. We also observe a trend where asnTdl€ power ratios are re-
quired to reach saturation at smaller frequencies. Thidtressexpected since cores consume
less power at lower frequencies and the TECs have to pumpéagproducing largehT'.

In the third experiment we evaluate the impact of using TECC@YFS on the performance,
MTTF, and power consumption of the processor. Our goal isotdrol the MTTF during
runtime with little or no impact to performance using Stegtél developed in Sectio.4,
which we will call adaptive TECTo mimic real-world settings and generate sufficient MTTF
variations, we sequentially execute different pairs ofdmenmarks. Each pair is executed for
100 billion operations, before the next pair is brought itite system. Tabl&.2 gives two
different benchmark combinations that will be analyzechis xperiment. Each combination
involves six pairs for a total of 600 billion operations. lig&re 6, we plot the MTTF (blue
solid line) when the frequency is statically held at the kijhsetting 2.80 GHz. The dashed
gray line gives the MTTF from using adaptive DVFS, while tlugted red line gives the MTTF
from using adaptive TEC. Tabk 3 gives the average MTTF for these strategies, where it is
clear that both adaptive TEC and DVFS give larger improvamenMTTF (from 16 years to
25 years). The table and figure show that adaptive TEC finiskesuting all the operations in
less runtime compared to adaptive DVFS for an average ingpnent of about 17%. However,
adaptive TEC uses higher power consumption than adaptiMeQur results demonstrate
that none of the evaluated three strategies dominate amgdio others. Each strategy gives

91

8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

Combination 1 Combination 2

GOPS CPU1 CPU2 CPU1 CPU2

[0: 100] bwaves namd | xalancbmk calculix
[100 : 200] || perlbench gromac$ perlbench gromacs
[200 : 300] | libquantum gamess povray calculix
[300 : 400] gcc hmmer| dealll wrf
[400 : 500] || libquantum gamessg gromacs povray
[500 : 600] || perlbench gromacs zeusmp dealll

Table 8.2: Combinations where pairs of benchmarks that are executseljuence. Each pair of
applications is executed for 100 GOP.

Static2.8GHz **-*-- Adaptive TEC == = Adapative DVFS

£ 20 1
2
EIS 1
= 10 1
5
0 20 40 60 80 100 120 140
Runtime (s)
35
20T P - = e o r
T 25 +—pmmmgms e e e vl
g 50 1K 1\ Yl Y Y R R ¥
L : ;
I 15 ‘5‘_.,_4 g~ 1\/"\/\;!"‘*’\
=10
5
o+ : . .
0 20 40 60 20 100 120
Runtime (s)

Figure 8.6: MTTF over the time for different benchmark combinationsgsilifferent strategies.

a valuable trade-off among MTTF, performance, and poweswamption. Depending on the
computing system objectives, the right strategy shouldnigaged.

While leakage is included in our initial traces, we do not eldtie reduction in leakage
due to the change in temperature arising from the use of TH®sIs, the real total power
consumption when TECs are used will be less than our cortserestimates.

8.6 Summary

In this chapter we investigated the use of thermoelectraimg to improve the reliability
and performance of multi-core processors. We devised ability model to characterize the
MTTF as a function of operating temperatures, power anéygek derived from measurements

92

7/figures/combinations_over_time.eps

8.6 Summary

Combination 1

metric static 2.80 GHz adaptive TEC adaptive DVFS
MTTF (years) 16 23 25
GOPS 6.47 6.16 497
Average power (W 30 30 22
runtime (s) 99 104 129
Combination 2
metric static 2.80 GHz adaptive TEC adaptive DVFS
MTTF (years) 16 24 25
GOPS 6.11 5.33 4.49
Average power (W, 30 20 19
runtime (s) 83 95 113

Table 8.3: Summary of results.

on a real dual-core processor. We also developed a thermdinm evaluate the impact of
using TECs on the die temperature and power consumption. héfe proposed a number
of strategies to use adaptive TEC and DVFS to improve thakiity and performance with
minimum power increases. In our experiments, we exploradpeehensively the trade-off
among reliability, power, and performance under a numbstrafegies such as static frequency
assignments, adaptive DVFS, and adaptive TEC. We demuetbtitaat TECs offer a valuable
operational point that delivers improved reliability wotlit the performance degradation of pure
DVFS techniques and with a reasonable increased power budge

93

8. USING MICRO THERMOELECTRIC COOLING IN MULTICORE
PROCESSORS

94

Chapter 9

Conclusions

Realizing multicore platforms in a single chip is becomimguaavoidable choice to obtain
a comparable increase between power and performance intr€840S technologies. The
miniaturization of the components produces undesired-fabsication variations on the tech-
nological parameters; the cores of the platforms can difféerms of power and speed from
the nominal values. Moreover several mechanisms depemdingmperature, supply voltage,
and stress of the components, create speed degradatiotimeehat can also generate soft
and hard errors if not well controlled.

Multicore platforms are used for large application domamsneet tight requirements in
terms of energy saving, performance, and lifetime. Hardwachniques at design time are
not sufficient to reach all these targets, and then adaptifterare strategies are needed. In
particular the aim of this thesis was to devise runtime meisinas able to manage the actual
degradation status among the cores known by using monilacsg on the chip and meet the
given requirements for the current workload. Many soludievere proposed in literature; in
particular we wanted to improve the solutions aimed at mizimg the energy consumption
while meeting a time constraint in multimedia multicoretfdems. We firstly discovered a
technique to find the optimal solution by formulating thelgean through an Integer Linear
Problem Formulation (ILP), then, since the algorithm oftsurethod is time-demanding and
cannot be applied on-line, we studied a sub-optimal saiutiased on two steps, namely a
Linear Programming (LP) and a Bin Packing (BP). We proved #irace the LP part meets
some key properties its solution can be calculated in clésed. We devised a simple algo-
rithm characterized by a linear cost with respect to the remobthe cores that can be applied
on-line and which solves the overall problem LP+BP. We destrated its efficiency by com-
paring it against ILP, state-of-the-art policies, and ahility-agnostic strategies by running

95

9. CONCLUSIONS

real multimedia applications on the virtual prototype ofreaustrial next-generation multicore
platform. LP+BP can save up to 33% energy with respect te-sththe-art policies and 65%
energy with respect to variability-agnostic task allooatpolicies while providing better QoS.

Furthermore we faced the problem of meeting a given lifetieguirement in multicore
multimedia platforms. We presented an adaptive idlenedsllition policy aimed at reducing
the impact of variations and aging on the lifetime. The poégploits variability monitors and
on-line task execution statistics to determine the dumabibidle intervals to be distributed to
the cores to match a given lifetime requirement. We evatutite impact on performance for
different degradation scenarios.

Finally we investigated the use of micro thermoelectricailers to control the temperature
of the cores at runtime with the objective of meeting lifegiconstraints without performance
loss. We showed that using only DVFS-based techniques tioweeed lifetime implies per-
formance degradations.

An adaptive technique to control performance, power, detirie all together needs fur-
ther research. However, the techniques we proposed inhtssst - if correctly handled - can
be used together.

In fact, not all the applications are performance-hungtyisTay be the case when the user
wants to watch a movie or manage some pictures, while forabteof the time the applications
that are running are not particularly demanding. This sstg®svo observations.

The first one is that we have to activate task allocation tecias to deliver high perfor-
mance only when the platform is under stress, while in therathses the runtime can manage
the idleness to meet lifetime constraints.

The other observation is that the strategy for lifetime @restion can exploit the intrinsic
idle time that the cores experience during runtime. If thicpas based on statistical infor-
mation about the scheduling of the applications relatethéatypical usage of the user, it can
enforce the lifetime preservation when the computationsatdave stringent time constraints.
This allows to push the hardware to its peak performance wkeassary. Also thermoelectri-
cal coolers can be adopted only for the strictly necessarg frame; in this manner the power
they require will be well-amortized.

96

Appendix A - Proof of Proposition 1

Here we prove Propositiof
Proof. Consider LF6.7 and its LP dual:
maxXe, g, Ko — Ty

ferio—Bi <p; Vi:1...N

SN Bi—v<q
Bi,y >0 Vi:l...N

(9.1)

whereq is the dual variable associated with constraﬁtﬁi1 fewixi = K, 8; the dual variable
associated with constraimt> x;, and~ the dual variable associated with constraht> t.
By the weak LP duality theorem, given a feasible solutién:* of (12) and a feasible solution
o, *,v* of (9.1) having the same value, i.e. such thEtZN:l pizf +qt* = Ko* —T~*, both
solutions are optimal. Accordingly, the proof is based oowshg the optimal dual solution
associated with (a) and (b) in the statement.

First, supposed ;_, feiT > K, in which case (a) is immediately checked to be feasible
for (12) (in particular,t* < T'). Consider the following solution oB(1): o* = %
BF = fewic® —pifori =1,...,s B =0fori =s+1,...,N; v* = 0. Elementary
calculations show that this solution is feasible and has#mee value as*, ¢t*.

Second, suppos®_;_, fkiT < K, and consider the feasible solution (b) to (12). Consider
the following solution of 9.1): o* = f’;’;r; Bf = P~ fou —pifori =1,....r—1,

ckr

Br=0fori=r,....N;v* == S fo —q— Y i, pi- Also in this case, elementary

ckr

calculations show that this solution is feasible, in paittc thaty* > 0, and has the same value
asz*, t*. [l

97

9. APPENDIX A - PROOF OF PROPOSITION 1

98

Appendix B - Published Papers

Several publications on international journals have bd#aioed during the development of
this thesis, and several works have been presented atdtitaral conferences such as Design,
Automation and Test in Europe (DATE 2009 and 2011), Embedgigstems for Real-Time
Multimedia (ESTIMEDIA 2009), Computing Frontiers (CF 20Q1@nd System on Chip (SoC
2011).

We list below these publications by dividing the papers @higld on international journals
and the papers published on the proceedings of internatonéerences.

Journal Papers:

1. F Paterna, A Acquaviva, A Caprara, F Papariello, G Desoli, L Benini. afiability-
aware Task Allocation for Energy-Efficient Quality of Sex@iProvisioning in Embed-
ded Streaming Multimedia Applications”. It will appear Gomputers, Transactions on.
IEEE. The preprint version is available onlinenatt p: / / i eeexpl ore. i eee. org/.

2. F Paterna, A Acquaviva, F Papariello, G Desoli, L Benini. “Variabititolerant work-
load allocation for mpsoc energy minimization under réaletconstraints”. It will ap-
pear onEmbedded Computing Systems, Transaction2\Gi.

Conference Papers:

3. D Bortolotti, F Paterna, C Pinto, A Marongiu, M Ruggiero, L Benini. “Exploring
Instruction Caching Strategies for Tightly-coupled Skamemory Clusters”.System
on Chip, Proceedings of the Conference 84-31. IEEE, 2011.

4. F Paterna, A Acquaviva, A Caprara, F Papariello, G Desoli, L BenininEfficient On-
line Task Allocation Algorithm for QoS and Energy EfficienicyMulticore Multimedia

99

http://ieeexplore.ieee.org/

9. APPENDIX B - PUBLISHED PAPERS

Platforms”. Design, Automation and Test in Europe, Proceedings of th&#eZence on
1-6. IEEE, 2011.

5. F Paterna, A Acquaviva, A Caprara, F Papariello, G Desoli, L Benini. afiability-
tolerant Run-time Workload Allocation for MPSoC Energy Nfiization under Real-
time Constraints”. Computing Frontiers, Proceedings of the Conference 39-110.
ACM, 2010.

6. F Paterna, A Acquaviva, F Papariello, G Desoli, L Benini. “Variabylitolerant Work-
load Allocation for MPSoC Energy Minimization under Reiah¢ Constraints”. Em-
bedded Systems for Real-Time Multimedia, ProceedingseoMbrkshop on134-142.
IEEE/ACM, 20009.

7. F Paterna, A Acquaviva, F Papariello, G Desoli, M Olivieri, L BeniniAtaptive Idle-
ness Distribution for Non-uniform Aging Tolerance in Mpltocessor Systems-on-chip”.
Design, Automation and Test in Europe, Proceedings of thefeence on906-909.
IEEE, 2009.

100

References

(1]
(2]

(3]

(4]

(5]

8]

(9]

[10]

[11]

[12]

[13]

[14]

ACCELLERA SYSTEMSINITIATIVE The open systemc initiative websitetp://www.systemc.orgll

Tutorial 2: Leakage issues in ic design: Trends, esinaiand avoidance. IRroceedings of the Conference on Computer-
aided designpages 1-11. IEEE, 20024

M. AGARWAL, B. PauL, M. ZHANG, AND S. MITRA. Circuit failure prediction and its application to trarisisaging. In
Proceedings of the Symposium on the VLS|, Pesies 277-286. IEEE, 200Z.

M. ALAMAND S. MAHAPATRA. A comprehensive model of pmos nbti degradatidicroelectronics Reliability45(1):71—
81, ELSEVIER, 200525

R. ALLEY, M. SoTO, L. KWARK, P. GRocco, AND D. KOESTER Modeling and validation of on-die cooling of dual-core
cpu using embedded thermoelectric devicesPioceedings of the Symposium on Semiconductor Thermaluvézasnt
and Managemenpages 77-82. IEEE, 20085

D. ATIENZA, G. DE MICHELI, L. BENINI, J. AvALA, P. DEL VALLE, M. DEBOLE AND V. NARAYANAN Reliability-
aware design for nanometer-scale device®riiceedings of the Conference on Asia and South Pacific Dégigpmation
pages 549-554. IEEE, 20085

K. BERNSTEIN, D. FRANK, A. GATTIKER, W. HAENSCH, B. Ji, S. NaASSIF, E. NOwAK, D. PEARSON, AND N. ROHRER
High-performance cmos variability in the 65-nm regime apgidnd. Journal of Research and Developmeb®:433—-449,
IBM, 2006. 23, 24

B. BiLGcIc, B. HORN, AND |I. MASAKI. Efficient integral image computation on the gpuPimceedings of the Symposium
on Intelligent Vehiclespages 528-533. IEEE, 20109

G. BLAKE, R. DRESLINSKI, AND T. MUDGE. A survey of multicore processorSignal Processing Magazin26(6):26—
37, IEEE, 20099, 10

J. BLOME, S. FENG, S. GUPTA, AND S. MAHLKE. Online timing analysis for wearout detection. Workshop on
Architectural Reliability held in conjunction with Inteational Symposium on Microarchitectyr2006. 73

S. BORKAR. Designing reliable systems from unreliable componethts:challenges of transistor variability and degrada-
tion. Micro, 25(6):10 — 16, IEEE, nov.-dec. 2008.

S. BoRKAR. Thousand core chips: a technology perspectivePrioceedings of the Conference on Design Automation
pages 746-749. ACM, 2002.

S. BORKAR AND A. CHIEN. The future of microprocessor€ommunication54:67—-77, ACM, May 20113

S. BORKAR, T. KARNIK, S. NARENDRA, J. TSCHANZ, A. KESHAVARZI, AND V. DE. Parameter variations and impact
on circuits and microarchitecture. Rroceedings of the Conference on Design Automapages 338-342. ACM, 2003.
24

101

REFERENCES

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

K. BOWMAN, A. ALAMELDEEN, S. RINIVASAN, AND C. WILKERSON. Impact of die-to-die and within-die parameter
variations on the throughput distribution of multi-coreopessors. IrProceedings of the Conference on International
Symposium on Low Power Electronics and Desjgages 50-55. ACM, 20023

D. BROOKS, R. Dick, R. JOSEPH AND L. SHANG. Power, Thermal, and Reliability Modeling in Nanometegrigc
MicroprocessorsMicro, 27(3):49 — 62, IEEE, 200727, 85

J. BUTTS AND G. SOHI. A static power model for architects. Rroceedings of the Symposium on Microarchitectpeges
191-201. ACM, 20003

R. BuyYA. High Performance Cluster Computing: Programming and aggilbns High Performance Cluster Computing.
Prentice Hall PTR, 199916, 19

Y. CAo AND C. MCANDREW. Mosfet modeling for 45nm and beyond. Pmoceedings of the Conference on International
Conference on Computer-Aided Desigages 638—-643. IEEE, 20024

K. CHAKRABARTY, P. RAIK, AND V. PAMULA. Adaptive Cooling of Integrated Circuits Using Digital Maftuidics
Artech House Publishers, first edition, 20@&

NVIDIA C orP Nvidia cuda: Compute unified device architecture. 2008.
TILERA CORP Tilepro64 processor. 20080

A. COSKUN, R. STRONG, D. TULLSEN, AND T. ROSING. Evaluating the impact of job scheduling and power managéme
on processor lifetime for chip multiprocessors. Rroceedings of the Conference on SIGMETRICS/Performareages
169-180. ACM, 200985

S. Das, S. ANT, D. ROBERTS S. LEE, D. BLAaAauw, T. AUSTIN, T. MUDGE, AND K. FLAUTNER. A self-tuning dvs
processor using delay-error detection and correctiorPrateedings of the Symposium on VLSI Cirgyisges 258—-261,
Digest of Technical Papers, 2003

V. DE AND S. BORKAR. Technology and design challenges for low power and higfopeance microprocessors. In
Proceedings of the Symposium on Low Power Electronics astyBeages 163-168, IEEE, 1993.

A. DRAKE, R. SENGER, H. SINGH, G. CARPENTER AND N. JAMES. Dynamic measurement of critical-path timing. In
Proceedings of the Conference on Integrated Circuit Desigh Technology and Tutorigbages 249-252. |IEEE, 20085

R. DRESLINSKI, M. WIECKOWSKI, D. BLAAUW, D. SYLVESTER, AND T. MUDGE. Near-threshold computing: Re-
claiming moores law through energy efficient integrateduwsts. InProceedings of the IEED8(2):253-266, IEEE, 2010.
3

P. FARABOSCHI, G. BROWN, J. HSHER, G. DEsoLI, AND F. HOMEwWOOD. Lx: a technology platform for customizable
vliw embedded processing. Proceedings of the Conference on Computer Architecipaiges 203-213, IEEE, 20002,
20

E. FLAMAND . Strategic directions toward multicore application sfiecomputing. InProceedings of the Conference on
Design, Automation and Test in Eurggeages 1266-1266. IEEE, 20023

G. Fox. Parallel computing comes of age: Supercomputer levellpecamputations at caltechConcurrency - Practice
and Experiencepages 63-103, John Wiley & Sons Ltd, 1989

D. GEER. Chip makers turn to multicore processo@omputer 38(5):11-13, IEEE, may 20032

R. GONzZALEZ, B. GORDON, AND M. HOROWITZ. Supply and threshold voltage scaling for low power cmimsirnal of
solid-State Circuits32:1210-1216, IEEE 19973

102

REFERENCES

[33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

P. HANSEN. Model programs for computational science: A programmirgihradology for multicomputersConcurrency
- Practice and Experiencgages 407-423, John Wiley & Sons Ltd, 1998

B. HASKELL, A. PURI, AND A. NETRAVALI. Digital Video: An introduction to MPEG-2Chapman & Hall Ltd., 199620

K. HAzELwooD AND D. BROOKS. Eliminating voltage emergencies via microarchitectwaltage control feedback and
dynamic optimization Proceedings of the International Symposium on Low Powaerteleics and Desigrnpages 326—331,
IEEE, 2004.35

S. HERBERT AND D. MARCULESCU. Characterizing chip-multiprocessor variability-t@ace. InACM, Proceedings of
the Conference on Design Automation Conferepeges 313-318, ACM, 20024

M. HiLL AND M. MARTY. Amdahl’s law in the multicore era&Computer 41:33-38, IEEE, July 20083

S. HONG, S. NARAYANAN, AND M. KANDEMIR. Process variation aware thread mapping for chip multggsors. In
Proceedings of the Conference on Design, Automation artdiTesirope pages 821-826, IEEE, 20036

L. HUANG, F. YUAN, AND Q. Xu. Lifetime reliability-aware task allocation and schedglifor mpsoc platforms. In
Proceedings of the Conference on Design, Automation artdrTEsirope pages 51-56, IEEE, 20096

E. HUMENAY, D. TARJAN, AND K. SKADRON. Impact of process variations on multicore performancersegtry. In
Proceedings of the Conference on Design, Automation artdrTEsirope pages 1653-1658, EDA Consortium, 20Q3.

ILOG. llog solver. 20096, 39
ADVANCED MICRO DEVICESINC. 9

R. JosepH D. BROOKS, AND M. MARTONOSI. Control techniques to eliminate voltage emergenciesgh performance
processors. IfProceedings of the International Symposium on High-Peneorce Computer Architectyrpages 79-91,
IEEE, 200335

D. KOESTER R. VENKATASUBRAMANIAN , B. CONNER, AND G. SNYDER. Embedded thermoelectric coolers for semi-
conductor hot spot cooling. Imternational Conference on Thermal and Thermomecharfitenomena in Electronics
Systemgpages 491-496, IEEE, 20085

T. LEBLANC AND E. MARKATOS. Shared memory vs. message passing in shared-memory mocigsors. liProceedings
Symposium on Parallel and Distributed Processipages 254-263. IEEE, 19926, 17

J. LONG, S. MEMIK, AND M. GRAYSON. Optimization of an On-Chip Active Cooling System Based dnnfFilm
Thermoelectric Coolers. IBesign, Automation and Test in Eurggages 117-122, IEEE, 20185

ARM LTD. The arm cortex-a9 processors. 208710
PLURALITY LTD . Hypercore processor architecture. 2020.

Z. Lu, J. LACH, M. STAN, AND K. SKADRON. Improved Thermal Management with Reliability Banking. Nfcro,
25(6):40-49, IEEE, 200585

B. FLACHS, M. HOPKINS, Y. WATANABE, M. GSCHWIND, H. HOFSTEE ANDT. YAMAZAKI . Synergistic processing in
cells multicore architectureMicro, 26(2):10-24, IEEE,20069, 10

K. MENG, F. HUEBBERS R. JOSEPH AND Y. IsMAIL. Modeling and characterizing power variability in multieo
architectures. IrProceedings of the Symposium on Performance Analysis térysSoftwarepages 146 —157, IEEE,
2007.3

F. MESA-MARTINEZ, E. ARDESTANI, AND J. RENAU. Characterizing Processor Thermal Behavior. Achitectural
Support for Programming Languages and Operating Syspamges 193-204, ACM, 201Q7, 85

103

REFERENCES

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

ST MICROELECTRONICS ANDCEA. Platform 2012: A many-core programmable acceleraipulfra-efficient embedded
computing in nanometer technology. 2010.

J. MITCHELL, W. PENNEBAKER, C. FOGG, AND D. LEGALL, MPEG Video Compression Standar@hapman & Hall
Ltd., 1996.20

G. MooRE Cramming more components onto integrated circitiectronics 38(8), April 1965. 2

S. NassiF. Modeling and analysis of manufacturing variations. Pimceeding of the Conference on Custom Integrated
Circuits, pages 223-228, IEEE, 2003.

P. NDAI, S. BHUNIA, A. AGARWAL, AND K. Roy. Within-die variation-aware scheduling in superscalarcpssors for
improved throughputTransactions on Computers7(7):940-951, |IEEE, 20084

A. PAPANICOLAOU, M. MIRANDA, P. MARCHAL, B. DIERICKX, AND F. CATTHOOR. At tape-out: Can system yield
in terms of timing/energy specifications be predictedProceedings of the Conference on Custom Integrated Cércuit
Conferencepages 773-778, IEEE, 20029

K. POPOVICILAND A. JERRAYA. Virtual platforms in system-on-chip design., The MathWoinc. 12

R. RAO, A. SRIVASTAVA, D. BLAAUW, AND D. SYLVESTER. Statistical analysis of subthreshold leakage currentir
circuits. Transactions on Very Large Scale Integration Systei®@):131 —139, IEEE, feb. 2004&

B. REBAUD, M. BELLEVILLE, E. BEIGNE, M. ROBERT, P. MAURINE, AND N. AZEMARD. An innovative timing slack
monitor for variation tolerant circuits. IRroceedings of the Conference on IC Design and Technpjoages 215-218,
IEEE, 2009.35

V. REDDI, M. GUPTA, G. HoLLOWAY, G. WEI, M. SMITH, AND D. BROOKS. \oltage emergency prediction: Using
signatures to reduce operating margins.|Rroceedings of the nternational Symposium on High Peréorce Computer
Architecture pages 18-21. IEEE, 20095

D. ROBERTS, R. DRESLINSKI, E. KARL, T. MUDGE, D. SYLVESTER, AND D. BLAAUW. When homogeneous becomes
heterogeneous. M/orkshop on Operating Systems for Heterogeneous Mulggsmr Architecture2007.24, 73, 75

S. SAHA. Modeling process variability in scaled cmos technold@gsign Test of Compute®P(99):1, IEEE, 20103

T. SaTO AND T. FUNAKI. Dependability, power, and performance trade-off on a icari¢ processor. IProceedings of
the Asia and South Pacific Design Automation Conferepages 714-719. IEEE, 20038.

G. SEMERARO, G. MAGKLIS, R. BALASUBRAMONIAN, D. ALBONESI, S. DWARKADAS, H. DWARKADAS, AND

M. ScoTT. Energy-efficient processor design using multiple clockndms with dynamic voltage and frequency scal-
ing. In Proceedings of the International Symposium on High-Pentotce Computer Architecturgpages 29-40. |EEE,
2002.3

T. SIDDIQUA AND S. GURUMURTHI. A multi-level approach to reduce the impact of nbti on psswe functional units. In
Proceedings of the Symposium on Great lakes symposium dnpéges 67—-72. ACM, 2016t

J. SMOLENS, B. GoLD, J. HOE, B. FALSAFI, AND K. MAI. Detecting emerging wearout faults. Rroceedings of the
Workshop on Silicon Errors in Logi¢EEE, 2007.73

G. SNYDER, M. SoTO, R. ALLEY, D. KOESTER AND B. CONNER. Hot spot cooling using embedded thermoelectric
coolers. InProceedings of the Symposium on Semiconductor Thermaluvgasnt and Managemenpages 135-143.
IEEE, 2006.85, 86

J. RINIVASAN, S. ADVE, P. BoSE, AND J. RVERS. Lifetime Reliability: Toward an Architectural SolutionMicro,
25(3):70-80, IEEE, 20054, 24, 27, 85

104

REFERENCES

[71]

[72]

[73]

[74]

[75]

[76]

(77

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

J. RINIVASAN, S. ADVE, P. BosE, AND J. RVERS. The case for lifetime reliability-aware microprocessdrsProceed-
ings of the International Symposium on Computer Architecpages 276-287, ACM, 2004.

J. RINIVASAN, S. ADVE, P. BoSE, AND J. RVERS. Lifetime reliability: Toward an architectural solutionMicro,
25(3):70-80, IEEE, 20052, 28

D. SYLVESTER, K. AGARWAL, AND S. SHAH. Invited paper: Variability in nanometer cmos: Impact, lgsis, and
minimization. INTEGRATION, the VLSI journa#1:319-339, ELSEVIER, May 20083

D. SYLVESTER, D. BLAAUW, AND E. KARL. Elastic: An adaptive self-healing architecture for umjiceble silicon.
Design and Test of Compute3:484—-490, IEEE, 200623

R. TEODORESCU ANDJ. TORRELLAS. Variation-aware application scheduling and power mamesge for chip multipro-
cessorsSIGARCH Computer Architecture Nev@§(3):363—-374, ACM, 200835, 36, 37, 44, 54, 55, 56

INC. TEXAS INSTRUMENTS Tms320dm6467: Digital media system-on-chip, 2008.

A. TIWARI AND J. TORRELLAS. Facelift: Hiding and slowing down aging in multicoreBroceedings of the Symposium
on Microarchitecturg pages 129-140, IEEE/ACM, 2008, 23, 24, 25

IMEC VAM variability aware modelindnttp://www.imec.be/ScientificReport/SR2007/html/1384.html 29

ARM LTD. Latest ARM OVP Fast Processor Models and Platforms Avalabl
http://www.ovpworld.org/downloadARM.php 12

TENSILICA The XTensa Modeling Protocol and XTensa SystemC ModelmBaft System Modeling and Simulation.
http://www.tensilica.com/products/hw-sw-dev-toats/Eoftware-developers/system-modelingi2/

F. WANG, C. NicorpouLos X. Wu, Y. XIE, AND N. VIJAYKRISHNAN. Variation-aware task allocation and scheduling
for mpsoc. InProceedings of the Conference on Computer-Aided Depages 598-603, IEEE, 20036, 74

H. WANG, W. WANG, D. PENG, AND H. SHARIF. A route-oriented sleep approach in wireless sensor nkswomn
Proceedings of the Conference on Communication Sysfeagss 1-5, IEEE, 2007.3

J. WINTER AND D. ALBONESI. Scheduling algorithms for unpredictably heterogeneou architectures. IRroceedings
of the Conference on Dependable Systems and Netwmages 42-51, IEEE, 20086, 73

T. YAMAUCHI, L. HAMMOND, AND K. OLUKOTUN. The hierarchical multi-bank dram: A high-performancehétecture
for memory integrated with processors.Rmoceedings of the Conference on Advanced Research in,\pa8ks 303-320.
IEEE, 1997.9

Y. Y1, W. HAN, X. ZHAO, A. ERDOGAN, AND T. ARSLAN. An ilp formulation for task mapping and scheduling on
multi-core architectures. IRroceedings of the Conference on Design, Automation, astdiT&urope pages 33-38, |IEEE,
2009.36

L. ZHANG, L. BAI, R. DiCK, L. SHANG, AND R. JOSEPH Process variation characterization of chip-level mutiggssors.
In Proceedings of the Conference on Design Automation Carderpages 694-697, ACM/IEEE, 20086, 37

105

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Overview
	1.2 The performance issue
	1.3 The power issue
	1.4 The reliability issue
	1.5 Thesis contributions and organization

	2 Architectures
	2.1 From general-purpose processors to embedded system platforms
	2.2 Virtual platforms
	2.3 A multicore platform model

	3 Parallel programming on multicore processors
	3.1 Overview
	3.2 Parallel programming paradigms
	3.3 Case study
	3.3.1 Integral image
	3.3.2 Parallel MPEG2 decoder

	4 Process variation and aging of CMOS architectures
	4.1 Impact of static variations
	4.2 Performance degradations and reliability limitations
	4.2.1 NBTI characterization for multicore platforms
	4.2.2 Mechanisms of Failure

	4.3 Tools
	4.3.1 Variability Aware Modeling (VAM)
	4.3.2 Reliability-aware Micro-processors (RAMP)

	4.4 Integratation of tools into virtual platforms

	5 Variability-tolerant multicore platforms
	5.1 Overview
	5.1.1 Target system and variability model

	5.2 Related work
	5.3 Variability-tolerant workload allocation
	5.3.1 ILP problem formulation
	5.3.2 LP+BP problem formulation
	5.3.2.1 LP: first step
	5.3.2.2 BP: second step

	5.3.3 Rank-based techniques

	5.4 Experiments
	5.4.1 Setup
	5.4.2 The advantage of variability-aware allocation
	5.4.2.1 Results using 4-core platform
	5.4.2.2 Results using 8-core platform

	5.4.3 Variability compensation analysis

	5.5 Summary

	6 A variability-aware run-time task allocation
	6.1 Overview
	6.2 Variability-tolerant run-time workload allocation
	6.2.1 Rank Frequency
	6.2.2 Rank Power
	6.2.3 Rank Energy
	6.2.4 LP+BP and its fast implementation
	6.2.4.1 A closed-form solution of the LP
	6.2.4.2 Example

	6.2.5 Min and Max energy techniques

	6.3 Experimental results
	6.3.1 Results
	6.3.2 LP+BP policy execution time

	6.4 Summary

	7 High-reliability multicore platforms
	7.1 Overview
	7.1.1 Related work

	7.2 Idleness constraints
	7.2.1 Platform model and software infrastructure

	7.3 Adaptive idleness distribution policy
	7.4 Experimental results
	7.5 Summary

	8 Using micro thermoelectric cooling in multicore processors
	8.1 Overview
	8.2 Related work
	8.3 Thermal modeling
	8.4 Strategies for improving reliability and performance
	8.5 Experimental Results
	8.6 Summary

	9 Conclusions
	Appendix A - Proof of Proposition 1
	Appendix B - Published Papers
	References

