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Abstract

Verification in computational structural mechanics: recovery-based a
posteriori error estimation

by

Giovanni Castellazzi

Dottorato di Ricerca in Meccanica delle Strutture - XIX Ciclo

Coordinatore: Prof. Ing. Erasmo Viola

Prof. Francesco Ubertini

Ing. Stefano de Miranda

ALMA MATER STUDIORUM - University of Bologna

Computational engineering, the discipline concerned with the use of computational
methods and devices to simulate physical events and engineering systems, is being
heralded by many as one of the most important developments in recorded history.
Computer predictions of physical events, it is argued, can be of enormous impor-
tance in making critical decisions that affect every facet of human existence. As
the speed and capacity of computer systems continue to grow, the expectations of
users of computer models in decision making continues to grow in kind. Today,
some look toward computer-based predictions as a means to obtain vital quan-
titative information on events that influence the security, health, and well being
of much of mankind and many nations and that influence the success of major
businesses and other enterprises worldwide.





"Homo qui erranti comiter monstrat viam
Quasi lumen de suo lumine accendat facit.
Nihilo minus ipsi lucet cum illi accenderit."

[maxim ascribed to Ennio by Cicerone

in "De Officiis", I, chapter XVI]
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Sommario
Questa tesi riguarda la stima a posteriori dell’errore commesso nella discretiz-
zazione in elementi finiti di problemi di analisi strutturale e sulle tecniche di adat-
tività ad essa correlate. L’attenzione è rivolta ai metodi di ricostruzione, di recov-
ery in dizione anglosassone, che stimano l’errore per confronto con una soluzione

più accurata che viene ricostruita con opportune procedure a partire da quella
per elementi finiti. In questo contesto è stata sviluppata una nuova procedura
di ricostruzione locale degli sforzi, ottenuta rilassando la compatibilità cinemat-
ica, attraverso la minimizzazione di un funzionale tipo energia complementare,
appositamente definito su un piccolo insieme di elementi. La procedura è stata
impiegata con risultati molto soddisfacenti su vari modelli strutturali, discretizzati
sia con elementi compatibili che con elementi finiti agli sforzi. In particolare, essa
è stata applicata con successo alle piastre laminate, descritte attraverso la cosid-
detta "First order Shear Deformation Theory", con l’obiettivo di ricostruire la

distribuzione delle tensioni tangenziali lungo lo spessore della piastra. In aggiunta
a ciò, infine, è stato analizzato il ruolo dello stimatore d’errore quale parametro
guida per la ricostruzione della discretizzazione in analisi adattative, mostrando
l’efficacia della procedura sviluppata anche in questo contesto.
La tesi si articola in sei capitoli.
Nel primo capitolo, introduttivo, vengono illustrate le motivazioni che hanno

spinto e spingono gli analisti alla ricerca di strumenti di verifica che consentano di
attribuire alle analisi numeriche un determinato grado di affidabilità.
Nel secondo capitolo, viene presentato il metodo degli elementi finiti, definito

il problema modello ed introdotto il concetto di errore commesso nella discretiz-

zazione per elementi finiti, inquadrando la tesi nello stato dell’arte sull’argomento.
Nel terzo capitolo, vengono illustrati alcuni risultati classici sulla stima a priori

dell’errore e presentati alcuni aspetti originali inerenti gli effetti delle distorsioni
di geometria sulle prestazioni degli elementi finiti isoparametrici.
Nel quarto capitolo, viene discussa la stima a posteriori dell’errore. Ven-

gono analizzati e confrontati i principali metodi di stima a posteriori, ponendo
l’attenzione sui metodi basati sulla ricostruzione del campo di sforzi (ovvero i cosid-
detti recovery based methods). In questo contesto, viene sviluppata una nuova
procedura che si dimostra essere versatile, robusta e superconvergente. Alcune
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applicazioni numeriche sono presentate a conclusione di tale capitolo.
Nel quinto capitolo, viene discusso il ruolo dello stimatore d’errore quale para-

metro di controllo per la ricostruzione della discretizzazione in analisi adattative.
Alcune applicazioni numeriche mostrano l’efficacia della procedura proposta come
guida del processo di analisi.
Nel sesto capitolo, conclusivo, vengono presentate alcune applicazioni avanzate,

quali l’impiego della tecnica proposta con elementi finiti di tipo misto agli sforzi,
l’applicazione alle piastre e l’estensione alla ricostruzione del profilo delle tensioni

tangenziali lungo lo spessore di compositi laminati.
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Chapter 1

What is the error?

Questo capitolo introduce il concetto di verifiche in analisi strutturali per elementi
finiti. A tale scopo, vengono illustrati i passaggi fondamentali che conducono ad
una analisi agli elementi finiti, mettendo n luce i punti in cui vengono introdotte
le approssimazioni e gli errori che ne conseguono. In particolare, vengono illustrati
gli errori di modellazione, discretizzazione e soluzione, e viene definito il processo

di verifica come quello che conduce alla quantificazione della somma degli ultimi
due.
Nella parte conclusiva del capitolo, inoltre, viene riportato un piccolo estratto

storico sull’evoluzione del metodo degli elementi finiti, cercando di evidenziare
la crescente sensibilità degli analisti verso i procedimenti di verifica e controllo
dell’errore in analisi strutturali agli elementi finiti.

1.1 A point of view

The word error has different meanings in different fields. The concrete meaning of
the Latin word error means "wandering" or "straying", although the metaphorical
meaning "mistake, misapprehension" is actually more common. To the contrary
of an illusion, an error or a mistake can be dispelled through knowledge (knowing
that one is looking at a mirage and not at real water doesn’t make the mirage
disappear). Looking at the Figure 1.1 is simple to understand that something

was wrong wen the train broke down the safety structure, passing through the
restaurant railway, destroying a newspaper kiosk and concluding its trip on the
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Figure 1.1: A famous image about error: train wreck at Montparnasse, Paris, France, 1895,

(photgrapher unknown). From Wikipedia, the free encyclopedia, www.wikipedia.org

road. Let us start with some point of view, in some disciplines.
In statistics an error is a difference between a computed, estimated, or measured
value and the true, specified, or theoretically correct value.

In experimental science an error is a bound on the precision and accuracy of
the result of a measurement. These can be classified into two types: statistical
error (see above) and systematic error. Statistical error is caused by random (and
therefore inherently unpredictable) fluctuations in the measurement apparatus,
whereas systematic error is caused by an unknown but nonrandom fluctuation. If
the cause of the systematic error can be identified, then it can usually be eliminated.
Such errors can also be referred to as uncertainties.
In engineering an error is a difference between desired and actual performance.
Engineers often seek to design systems in such a way as to mitigate or preferably
avoid the effects of error, whether unintentional or not. One type of error is the

human error which includes cognitive bias. Human factors engineering is often
applied to designs in an attempt to minimize this type of error by making systems
more forgiving or error-tolerant. Errors in a system can also be latent design errors
that may go unnoticed for years, until the right set of circumstances arises that
cause them to become active.
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In computer programming (i.e. in software engineering), the term error refers
to an incorrect action or calculation performed by software as a result of a fault (a
fault being incorrect code or data in the software or hardware). If, as a result of
the error, the software performs an undesired action or fails to perform a desired
action, then this is referred to as a failure. Note that a fault can exist in software
and not cause an error, and an error can occur without causing a failure.
Looking again at Figure 1.1 is clear that the desired performance was not repro-

duced in the practice and that the safety structures and the restaurant furniture

were not forgiving system as described above.
In science, the word error does not carry the usual connotations of the terms

mistake or blunder. Error in a scientific measurement means the inevitable uncer-
tainty that attends all measurements. As such, errors are not mistakes, you cannot
eliminate them by being very careful. The best you can hope to do is to ensure
that errors are as small as reasonably possible and to have a reliable estimate of
how large they are. For now, error is used exclusively in the sense of uncertainty,
and the two words are used interchangeably.

1.2 Computational engineering

Computational engineering, the discipline concerned with the use of computational
methods and devices to simulate physical events and engineering systems, is being
heralded by many as one of the most important developments in recorded history.

Computer predictions of physical events, it is argued, can be of enormous impor-
tance in making critical decisions that affect every facet of human existence. As
the speed and capacity of computer systems continue to grow, the expectations of
users of computer models in decision making continues to grow in kind. Today,
some look toward computer-based predictions to obtain vital quantitative infor-
mation on events that influence the security, health, and well being of much of
mankind and of many nations and that influence the success of major businesses
and other enterprises worldwide.
Somebody speaks of the coming crisis in computational engineering arising from

three major challenges: a) performance, b) programming, and c) prediction. The

performance and programming challenges have been met or will be met soon, but
the prediction challenge will require considerable advancement and maturity in the
way that simulation is done and interpreted.
The prediction challenge, which is at the heart of computational engineering,

is viewed as the most difficult challenge to be met in the future, and stands as
a major bottleneck, perhaps a crisis, in computational engineering. Again, the
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major issue is the reliability of computer predictions and their use as a basis for
important decisions [Babuška & Oden, 2005].
It is understandable that the reliability of computer predictions has been an

issue of growing concern for several decades. Major questions that arise with
increasing frequency are "can computer predictions be used as a reliable base
for crucial decisions? How can one assess the accuracy or validity of a computer
prediction? What confidence can be assigned to a computer prediction of a complex
event?". Professor E. Wilson, who has been responsible for the development of

several computer programs, talking about structural engineering, collected all these
questions giving a nice definition: Structural Engineering is:

The art of using materials
That have properties which can only be estimated

To build real structures
That can only be approximately analyzed

To withstand forces
That are not accurately known

So that our responsibility with respect to Public safety is satisfied

This little aphorism collects all the common greater uncertain about structural
engineering. It is possible to extend it by including the idea that the computer
nowadays is an essential powerful tool to use in structural design and modelling.
So Computational Engineering is:

The art of simulate physical events
That have properties which can only be estimated

To develop mathematical models
That can only be approximately analyzed
To improve the solution reliability

That are not accurately known
So that our responsibility with respect to Public safety is satisfied

The collection of processes, philosophical issues, and procedures connected with
answering these questions has become known as the subject of Verification &
Validation (V&V), the verification process addressing the quality of the numerical
treatment of the model used in the prediction and the validation process addressing

the quality of the model.
V&V has emerged in recent years as the intellectual and technological discipline

that addresses the prediction challenge. Both are processes, verification being the
processes addressing the quality of the numerical approximation of the mathemat-
ical model used as the basis for a prediction, and validation being the process
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addressing the reliability of the mathematical model as a faithful abstraction of
reality. V&V has been the focus of much study and debate in recent years and a
relatively large literature exists and is expanding.

Verification: the process of determining if a computational model obtained by
discretizing a mathematical model of a physical event and the code implementing

the computational model can be used to represent the mathematical model of the
event with sufficient accuracy.
Validation: the process of determining if a mathematical model of a physical

event represents the actual physical event with sufficient accuracy.

A typical example of a mathematical model is the set of equations and condi-
tions characterizing a boundary value problem involving deterministic or stochas-
tic differential equations together with functionals defining quantities of interest.
These quantities of interest are the goals of the computer predictions, which, in

turn, are the basis for decisions. Let us start with some primitive notions, depicted
by Babuška and Oden in [Babuška & Oden, 2004].
Physical event: an occurrence in nature or in a physical system; a fundamental
entity of a physical reality; a physical phenomenon. The dictionary (Merriam-
Webster Collegiate Dictionary, 10th edition) indicates that an event is "something
that happens". Thus, we are interested in something that happens as a physical
reality; not for example, in behavioral aspects or trends in, for instance, sociological
or economical systems.
Simulation: a process that build a likeness; in our case, a likeness produced by
an interpretation of output from a computer or computational device.

Mathematical model (of a physical event): a collection of mathematical con-
structions that provide abstractions of a physical event consistent with a scientific
theory proposed to cover that event.
Data of a mathematical model (of a physical event): factual information
that defines the values or ranges of values of parameters in the mathematical model
of a physical event.
Discretization: the process that transforms a mathematical model into a finite
number of discrete components that can be processed by a digital computer.
Computational model: the discretized version of a mathematical model that
has been designed to be implemented on (or to be processed by) a computer or
computational device.
Code: A computer program designed (in the present context) to implement a
computational model.
Prediction: something that is predicted, declared or indicated in advance; fore-
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told on the basis of observation, experience, or scientific reason. A prediction is
not simply a deduction or a consequence of a theory of something that mayor may
not be known. It is the indication of an event not already known.
The mathematical problem is described by its structure and its input data. The

structure of the mathematical problem comprises functional relations between the
input and the output. For example, the structure can be expressed by a system
of conservation laws. The input data is the set of all admissible data needed for
solving the mathematical problem. For example, input data includes the classic

boundary conditions and parameters used in the structure of the problem. The
data also include the characterization of the uncertainty as when it is part of the
mathematical problem.
In the literature the term mathematical problem and mathematical model are

not distinguished, although the term model is often used in a more generic sense
than mathematical, which involves all input data. We will not distinguish between
the problem and the model either.
Verification therefore is the process of determining if a computational problem

and the code implementing the computational problem leads to a prediction of suf-

ficient accuracy, i.e., the difference between the exact and computed quantity of
interest is sufficiently small. Hence, verification has two aspects, the approximation
aspect and the verification of the correctness of the code, i.e., the program devel-
oped to implement the computational model can faithfully produce the intended
results. Although code verification is obviously essential, we will not address it in
the present thesis. The first part of verification, so-called solution verification, is
essentially a problem of a-posteriori error estimation. It addresses not only classi-
cal methods of error estimation of standard approximation methods (such as finite
elements) but also errors due to simplification of the problem. For example, errors
due to the linearization of a nonlinear problem or of dimensional reduction.

A posteriori error estimation is a fairly mature subject and many techniques
for developing a-posteriori error estimates have been proposed in the literature. A
posteriori error estimation is a purely mathematical process and, while many open
problems remain, effective methods exist for addressing solution verification for a
large class of computational models.
Validation is the process of determining if the mathematical model of a physical

event (the prediction) represents the actual physical event with sufficient reliabil-
ity. In contrast to the verification, validation addresses the problem how well the
theory describes reality. This question is related to a major problem in philosophy,
especially in the philosophy of science. A first question is what is actually meant

by validation and whether validation is even possible. In the validation procedure,
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we consider a set of validation problems. These problems are specific mathematical
problems for which some of the input data are the same as those in the prediction
problem, but others may be different. For example, in the elasticity problem, the
domain and the boundary conditions are different for the validation and the pre-
diction problem, but the constitutive law is the same. These validation problems
are simpler than the prediction problems and can, in general, be experimentally
studied.

1.2.1 Idealization of a physical event

The goal of computer simulation is thus to make predictions of physical events
using computational models implemented with appropriate codes. It is important
to underscore the relationship between a mathematical model of an event and the

scientific theory or theories used to characterize the event. As mathematics is, in a
fundamental way, the language of science and technology, the mathematical model
can be viewed as a transcription into a concrete and precise format of the theoretical
framework in which the modeler intends the event to be depicted. A mathematical
model may not necessarily be equivalent to a complete theory covering events in
nature. Mathematical models may be the mathematical constructions representing
the result of collections of assumptions and constraints on theoretical arguments
and, therefore, may not describe all physical processes responsible for an event we
are interested in predicting. This relationship between the mathematical model
and the scientific theory provides an indirect connection between the philosophical

underpinnings of V&V and major tenants of contemporary philosophy of science.
If the computational model describes the mathematical model well and the

mathematical model relates to the theory well, then the computational model also
relates well to the theory.
The models referred to in the definitions of verification and those in validation

are, in general, quite different, as are, in some respects, the events they seek to
emulate. Note that both the verification and validation processes involve deter-
mining if the respective processes lead to results of "sufficient accuracy", leaving
open both the meaning of "sufficient" and of how "accuracy" is to be quantified.

1.2.1.1 Discrete model: some implications

The limitations of the human mind are such that it cannot grasp the behaviour
of its complex surroundings and creations in one operation. Thus the process
of subdividing all systems into their individual components or elements, whose
behaviour is readily understood, and then rebuilding the original system from
such components to study its behaviour is a natural way in which the engineer, or
even the scientist proceeds.
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Figure 1.2: Verification and Validation processes

In many situations an adequate model is obtained using a finite number of
well-defined components. We shall term such models discrete. In other situations
the subdivision is continued indefinitely and the problem can only be defined using
the mathematical fiction of an infinitesimal. This leads to differential equations or
equivalent statements which imply an infinite number of elements. We shall term
such models continuous.
With the advent of digital computers, discrete problems can generally be solved

readily even if the number of elements is very large. As the capacity of all com-

puters is finite, continuous problems can only be solved exactly by mathematical
manipulation.
To overcome the intractability of realistic types of continuous problems, various

methods of discretization have from time to time been proposed both by engineers
and mathematicians. All involve an approximation which, hopefully, approaches in
the limit the true continuous solution as the number of discrete variables increases.
The discretization of continuous problems has been approached differently by

mathematicians and engineers. Mathematicians have developed general techniques
applicable directly to abstract differential equations, such as finite difference ap-
proximations, various weighted residual procedures or approximate techniques for

determining the stationarity of properly defined functionals. Engineers, on the
other hand, often approach the problem more intuitively by creating analogies be-
tween real discrete elements and finite portions of a continuum domain. Figure 1.3
shows an interesting discretization study of a car, which is a very common physi-
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cal system, for performing crashworthiness simulations. The funny thing for this
case study is that for first the discretization has begun directly on the car, by a
preliminary vehicle tear-down. Actually in this study the non-structural trim and
interior components have been removed. Tape on vehicle is a coordinate system
used to measure the positions of removed components. The resulting measured
surfaces were then modified to an appropriate format for use in the vehicle model
mesh generation program. This is also an attempt of model validation using both
the component tests and full vehicle crash tests as shown in [Kirkpatrick et al. ,

1998].

1.2.1.2 Discretization methods

A typical classification of computational analysis is based on the discretization
method by which the continuum mathematical model is discretized (in space
or/and in time), i.e., converted to a discrete model with a finite number of de-
grees of freedom. Some of the most famous methods are:

(a) Finite Element Method (FEM),

(b) Boundary Element Method (BEM),

(c) Finite Difference Method (FDM),

(d) Finite Volume Method (FVM),

(e) Spectral Method,

(f) Meshfree Method.

In computational solid and structural mechanics the finite element method
currently dominates the scene as regards space discretization of linear problems.
Boundary element method posts a strong second choice in specific application
areas. For nonlinear problems the dominance of the finite element method is
overwhelming.
Finite difference methods for space discretization in solid and structural me-

chanics have virtually disappeared from practical use. This statement is not true,
however, for fluid mechanics, where finite difference discretization methods are
still important. Finite volume methods, which directly address the discretization

of conservation laws, are important in difficult problems of fluid mechanics, for
example high-Reynolds gas dynamics. Spectral methods are based on transforms
that map space and/or time dimensions to domains (for example, the frequency
domain) where the problem is easier to solve.
A recent newcomer to the scene is the brood class of meshfree methods. These

combine techniques and tools of finite element methods, such as variational formu-
lation and interpolation, with finite difference features, such as non-local support.
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Figure 1.3: Model of a Ford Crown Victoria for performing crashworthiness simulations: (a)

physical system; (b) discretization process; (c) discrete model; (d) subdomain subdivision

(http://www.arasvo.com/crown_victoria/crown_vic.htm)

1.2.2 Analysis process by the finite element method

Processes using the Finite Element Method involve carrying out a sequence of
steps in some way. This sequence takes two canonical configurations, depending
on (i) the environment in which FEM is used and (ii) the main objective of the
analysis: model-based simulation of physical systems, or numerical approximation
to mathematical problems. Both are reviewed below to introduce terminology used
in the sequel. Historically the model based was the first one to be developed to
model complex physical systems. The second came later and, among other things,
provided the necessary theoretical underpinnings to extend the method beyond

structural analysis.
A glance at the schematics of a train wreck shown in Figure 1.1 makes obvious

the reasons behind the necessity of simplifications. There is no simple differential
equation that captures, at a continuum mechanics level, the train structure, coal,
cargo, and passengers eating dinner [Felippa, 2004]. There is no reason for despair,
however. The time honored divide and conquer strategy 1, coupled with abstrac-

1 Divide et impera : the phrase is attributed to Philip II, king of Macedon (382-336 BC), describing
his policy toward the Greek city-states. In computer science, divide and conquer (D&C) is an
important algorithm design paradigm. It works by recursively breaking down a problem into
two or more sub-problems of the same (or related) type, until these become simple enough to be
solved directly. The solutions to the sub-problems are then combined to give a solution to the
original problem. A divide and conquer algorithm is closely tied to a type of recurrence relation
between functions of the data in question; data is "divided" into smaller portions and the result
calculated thence.
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tion, comes to the rescue. First, separate the structure out and view the rest as
masses and forces, most of which are time-varying and nondeterministic. Second,
consider the train structure as built of substructures (a part of a structure devoted
to a specific function): wheel, wheel bars, steam boiler, coal box and so on. Take
each substructure, and continue to break it down into components: rings, ribs,
spars, cover plates, etc., continuing through as many levels as necessary.

Figure 1.4: Divide and conquer (divide et impera) strategy: (a) physical system; (b) idealization

process

Eventually those components become sufficiently simple in geometry and con-

nectivity that they can be reasonably well described by the continuum mathe-
matical models provided, for instance, by Mechanics of Materials or the Theory
of Elasticity. At that point, stop. The component level discrete equations are
obtained from a finite element method library based on the mathematical model.
The system model is obtained by going through the reverse process: from com-

ponent equations to substructure equations, and from those to the equations of
the complete locomotive.
This system assembly process is governed by the classical principles of New-

tonian mechanics, which provide the necessary "component glue." The multilevel

decomposition process is diagramed in Figure 1.4.

1.2.3 Interpretations of the finite element method

As shown in the previous section there are two practicable way to study and
use the finite element method. Model based simulation has been shaped by the
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discovery and extensive use of the method in the field of structural mechanics. This
historical connection is reflected in the use of structural terms such as "stiffness
matrix", "force vector" and "degrees of freedom". This terminology carries over
to non-structural applications.
The basic concept in the physical interpretation is the breakdown (that mean

disassembly, tearing, partition, separation, decomposition) of a complex mechani-
cal system into simpler, disjoint components called finite elements, or simply ele-
ments. The mechanical response of an element is characterized in terms of a finite

number of degrees of freedom. These degrees of freedoms are represented by the
values of the unknown functions in a set of node points. The element response is
defined by algebraic equations constructed from mathematical or experimental ar-
guments. The response of the original system is considered to be approximated by
that of the discrete model constructed by connecting or assembling the collection
of all elements.
The breakdown-assembly concept occurs naturally when an engineer considers

many artificial and natural systems. For example, it is easy and natural to visualize
a building, bridge, or a metallic frame as being fabricated from simpler parts.

As discussed in the previous paragraph, the underlying theme is divide and
conquer. If the behavior of a system is too complex, the recipe is to divide it
into more manageable subsystems. If these subsystems are still too complex the
subdivision process is continued until the behavior of each subsystem is simple
enough to fit a mathematical model that represents well the knowledge level the
analyst is interested in. In the finite element method such "primitive pieces" are
called elements. The behavior of the total system is that of the individual elements
plus their interaction. A key factor in the initial acceptance of the FEM was that
the element interaction can be physically interpreted and understood in terms that
were eminently familiar to structural engineers.

On the other hand there are the mathematical interpretations. The method is
viewed as a procedure for obtaining numerical approximations to the solution of
boundary value problems (BVPs) posed over a domain. This domain is replaced
by the union of disjoint subdomains called finite elements.
The unknown function (or functions) is locally approximated over each element

by an interpolation formula expressed in terms of values taken by the function(s),
and possibly their derivatives, at a set of node points generally located on the
element boundaries. The states of the assumed unknown function(s) determined
by unit node values are called shape functions. The union of shape functions
"patched" over adjacent elements form a trial function basis for which the node

values represent the generalized coordinates. The trial function space may be
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inserted into the governing equations and the unknown node values determined
by the Ritz method (if the solution extremizes a variational principle) or by the
Galerkin, least-squares or other weighted-residual minimization methods if the
problem cannot be expressed in a standard variational form.

1.2.4 Historical sketch

This historical sketch is intended to outline an ideal common way about the finite
elements method, by thinking back the experience of the most famous author. A
first idea about finite element method may be associate to method of exhaustion
developed by Eudoxus from Cnido (408—355 A.C.) (a very far-off start point)
calculating an area by approximating it by the areas of a sequence of polygons.

J.W. Strutt (Lord Rayleigh) Walter Ritz

Lately Archimedes from Syracuse (287-212 A.C.) generalized the method and
went on to use Eudoxus’s method of exhaustion to prove a remarkable collection
of theorems. A first important contribution was brought by Lord Rayleigh, whose
real name was John William Strutt, after revised by W. Ritz in 1909. He developed
an effective method [Ritz, 1909] for the approximate solution of problems in the
mechanics of deformable solids. It includes an approximation of energy functional
by the known functions with unknown coefficients. Minimization of functional in
relation to each unknown leads to the system of equations from which the unknown

coefficients may be determined. One of the main restrictions in the Ritz method
is that functions used should satisfy to the boundary conditions of the problem.
In 1910 Richardson [Richardson, 1910] published the first paper for practical

computations utilizing finite differences and which presents a general procedure by
which errors can be estimated. The original Richardson method starts from the
fact that errors in the solution of any finite difference scheme usually depend of
some power of the mesh size used (or today the size of finite elements). The order of
the error is thus usually given and depends as well on the solution method adopted.
In 1915 Boris Grigorievich Galerkin published an article, in which he put forward

an idea of differential equations boundary problems approximate solution method.
He has applied his method to a big number of pivots and plates analysis problems.
Some time before I.G. Bubnov developed a similar approach for the variational
problems solution, which he interpreted as a variant of the Ritz method algorithm.
The Galerkin method (or Bubnov-Galerkin method) with Galerkin’s (or "weak")
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differential equations problem statement form are known all over the world.

Boris Grigorievich Galerkin Richard Courant

In 1943 Richard Courant considerably increased the possibilities of the Ritz

method by introducing of the special linear functions defined over triangular re-
gions and applied the method for the solution of torsion problems [Courant, 1943].
The values of functions in the node points of triangular regions were chosen as un-
knowns. Thus, the main restriction of the Ritz functions - a satisfaction to the
boundary conditions was eliminated. The name "finite element method" was not
due to Courant, however, but appears only in the 1960s. The Ritz method together
with the Courant modification is similar with the method proposed independently
by Clough many years later introducing for the first time in 1960 the term "fi-
nite element" in the paper "The finite element method in plane stress analysis"
[Clough, 1960]. Clough baptized the method and went on to form at Berkeley the

first research group that expanded the idea into Civil Engineering applications.

John H. Argyris Ray Clough Edward L. Wilson

Now, for exposition convenience, structural "finitelementology" may be divided
into four generations that span 10 to 15 years each, as suggested by C. Felippa
[Felippa, 2004].
The First generation, which spans 1950 through 1962, formed by the pioneers,

starts from the coming of word finite element method. The 1956 paper by Turner,
Clough, Martin and Topp [Turner et al. , 1956], henceforth abbreviated to TCMT,
is recognized as the start of the current FEM, as used in the overwhelming majority
of commercial codes. Indeed the finite element procedure as we know it today has
its origin in this work, which differs from the previous concepts in establishing

arbitrary-shaped elements directly as pieces of the original domain. The original
process suggested by them assumed specific stress distribution in each element
equilibrating nodal forces.
The main reason of wide spreading of FEM in 1960 is the possibility to use

computers for the big volume of computations required by FEM. However, Courant



Chapter 1 17

did not have such possibility in 1943, in fact he employ his students to compute
the calculus of its methods: by disposing the students on a mesh, so that each
students working as a node can spread the calculus, he can compute the simple
example presented in his work. It interesting to note that each student was paid
proportionally to each calculus.
Finally, it should be remembered that an important contribution was brought

into FEM development by the papers of Argyris [Argyris, 1954]-[Argyris, 1955].
The pioneers were structural engineers, schooled in classical mechanics. They

followed a century of tradition in regarding structural elements as a device to
transmit forces. This "element as force transducer" was the standard view in pre-
computer structural analysis. It explains the use of flux assumptions to derive
stiffness equations in TCMT. Element developers worked in, or interacted closely
with, the aircraft industry. Accordingly they focused on thin structures built up
with bars, ribs, spars, stiffeners and panels. Although the Classical Force Method
dominated stress analysis during the 1950s, stiffness methods were kept alive by
use in dynamics and vibration. It is a pity that, not being an engineer, Courant
did not link the idea with networks of discrete elements and that, for this reason

maybe, his work had to lie in obscurity for so many years.

Olgierd C. Zienkiewicz Robert L. Taylor

The next period, second generation, spans the golden age of FEM: 1962-1972.

This is the variational generation. Melosh showed that conforming displacement
models are a form of Rayleigh-Ritz based on the minimum potential energy princi-
ple. This influential paper marks the confluence of three lines of research: Argyris’s
dual formulation of energy methods, the Direct Stiffness Method (DSM) of Turner,
and early ideas of interelement compatibility as basis for error bounding and con-
vergence. From 1962 onward a two-step interpretation emerges: discrete elements
approximate continuum models, which in turn approximate real structures.
In 1963 E. L. Wilson and R. Clough developed, using the FORTRAN language,

the SMIS software (Symbolic Matrix Interpretive System) based on the matrix

analysis, for static and dynamic structural analysis. After, in 1969, Wilson was
responsible for the development of several computer programs which are exten-
sively used by professionals in the Civil, Mechanical and Aerospace engineering.
The general three-dimensional finite element analysis program SAP and the TABS
(after called ETABS) series of programs for the static and dynamic analysis of
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three-dimensional building systems are examples of programs initially developed
by Wilson. He was the first to develop computational methods and practical com-
puter programs based on matrix notation.

Bruce Irons John Barlow

Olek Zienkiewicz, originally an expert in finite difference methods who learned
the trade from Southwell, was convinced in 1964 by Clough to try FEM. He went

on to write with Cheung the first textbook [Zienkiewicz & Cheung, 1967] on the
subject and called "The finite element method in structural and continuum me-
chanics". This book presents the broad interpretation of the method and its ap-
plicability to any general field problem. Zienkiewicz organized another important
Civil Engineering research group at the University of Wales at Swansea.
In 1967 John Barlow at Rolls-Royce Aero Engine Division, discovered the opti-

mal stress sampling points, after usually called Barlow points, but he published his
work only in 1976, (as reported by his dear friend Bruce Irons in [Irons & Ahmadn,
1980]). This was the first UK FE system to exploit features such as isoparamet-

ric elements, the front solution, eigenvalue economisation, etc. After, in 1968, B.
Irons and O.C. Zienkiewicz presented the isoparametric formulation of finite ele-
ment stiffness matrices and this work had an immediate and significant impact on
the finite element research being conducted at Berkeley.

Thomas J. Hughes Klaus J. Bathe

Professor Taylor was the first to program this new formulation at Berkeley and
to demonstrate the power of this new type of element formulation. In a short time
software and structural code were available: STRESS (1964) [Fenves et al. , 1964],
STRUDL (1966), ASTRAN (1969), SAP (1970) in the United States of America,

SAMCEF (1965) and ASKA (1969) in Europe. Low order displacement models of-
ten exhibit disappointing performance. Thus there was a frenzy to develop higher
order elements. Other variational formulations, notably hybrids, mixed and equi-
librium models emerged. In this second generation can be placed the monograph
of Strang and Fix [Strang & Fix, 1973], the first book to focus on the mathematical
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foundations.
A third generation, based on consolidation of the method, put substantial effort

into improving the stock of second generation displacement elements by tools ini-
tially labeled variational crimes, but later justified. Textbooks by Hughes [Hughes,
1987] and Bathe [Bathe, 1996] reflect the technology of this period. Hybrid and
mixed formulations record steady progress. Assumed strain formulations appear.
The residual based error estimators were introduced by the pioneering work of
Babuška and Rheinboldt in 1978 [Babuška & Rheinboldt, 1978], and further devel-

oped by many other authors. In fact, during the early 1980s the search for effective
adaptive methods led to a wide variety of ad hoc error estimators. Many of these
were based on a priori or interpolation estimates, that provided crude but effective
indications of features of error sufficient to drive adaptive processes. A large ac-
tivity in error estimation and mesh adaptivity is fostered by better understanding
of the mathematical foundations.

Ivo M. Babuška J. Tinsley Oden

Commercial FEM codes gradually gain importance. They provide a reality
check on what works in the real world and what does not. By the mid-1980s there

was gathering evidence that complex and high order elements were commercial
flops. Exotic gadgetry interweaved amidst millions of lines of code easily breaks
down in new releases. Complexity is particularly dangerous in nonlinear and dy-
namic analyses conducted by novice users. A trend back toward simplicity starts.
The fourth generation begins by the early 1980s. More approaches come on

the scene, notably the Free Formulation, orthogonal hourglass control, Assumed
Natural Strain methods, stress hybrid models in natural coordinates, as well as
variants and derivatives of those approaches. Although technically diverse the
fourth generation approaches share two common objectives:

1. elements must fit into DSM-based programs since that includes the vast ma-
jority of production codes, commercial or otherwise;

2. elements are kept simple but should provide answers of engineering accuracy
with relatively coarse meshes (these were collectively labeled "high perfor-
mance elements" in 1989).

Zienkiewicz and Zhu in 1987 developed a simple error estimation technique that
is effective for some classes of problems and types of finite element approximations.
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Gradients of solutions obtained on a particular partition are smoothed and then
compared with the gradients of the original solution to assess error.
This four generations reflects so the main steps done by scientist until 1990s.

After, several develops have been done. In particular the dedication posed in
adaptive procedures is to be noted. Actually, with the coming of faster computers,
the adaptive finite element methods have become an important tool for the analysis
of engineering structures,.and a very important feature of any adaptive code is a
posteriori error estimation, i.e. the ability of the code to estimate the error in the

computed engineering quantity of interest. By the early 1990s the basic techniques
of a posteriori error estimation were established. Briefly two types of procedures are
currently well-known, by engineering point of view, for deriving error estimators.
They are either Residual based or Recovery based.
Here, substantial progress was made in 1993 with the introduction of so called

residual equilibration by Ainsworth and Oden [Ainsworth & Oden, 1993].

B. Boroomand Mark Ainsworth

On the other hand, the recovery based error estimators are more recent, hav-
ing been first introduced by Zienkiewicz and Zhu in 1987 [Zienkiewicz & Zhu,
1987]. Again, these were extensively improved by the introduction of new recov-
ery processes. Here, in particular, the so called SPR (or Superconvergent Patch
Recovery) method introduced in 1992 by the same authors [Zienkiewicz & Zhu,

1992c]-[Zienkiewicz & Zhu, 1992a]-[Zienkiewicz & Zhu, 1992b] has produced a very
significant improvement of performance of the Recovery based methods. Many
others attempted further improvement [Wiberg & Abdulwahab, 1993]-[Blacker &
Belytschko, 1994] but the simple procedure originally introduced remains still most
effective. A viable recovery alternative, known by the acronym REP (Recovery by
Equilibrium in Patches), was first presented by Boroomand and Zienkiewicz [Bo-
roomand & Zienkiewicz, 1997b] and later improved by same authors [Boroomand
& Zienkiewicz, 1997a].
In 2002 a new effective stress recovery procedure, called RCP (Recovery by

Compatibility in Patches), and based on complementary energy has been presented
by Ubertini in [Ubertini, 2004]. This procedure can be viewed as dual to REP
procedure in a certain sense.
So we reached now the present days and the error estimation topic. We have

quickly flown over the later improvements of finite element procedures, because
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this will be the main topic of the present work, and will be discussed widely in the
next chapters.

1.3 The main focus of this work

Nowadays the combination of this powerful modern computers with effective nu-
merical procedures, particularly finite element method, have transformed what
were once purely qualitative theories of mechanics and physics into effective bases
for simulation of physical phenomena important in countless engineering applica-
tions and scientific predictions.
No matter how sophisticated and appropriate the mathematical models as an

event, all computational results obtained using them involve numerical error. So
the presence of numerical error in calculations has been a principal source of con-

cern since the beginning of computer simulations of physical phenomena. The
discretization process of transforming a continuum model of physical phenomena
into one manageable by digital computers cannot capture all of the information
embodied in models characterized by partial differential equations or integral equa-
tions. What is the approximation error in such simulations? How can the error be
measured, controlled, and effectively minimized? These questions have confronted
computational mechanicians, practitioners, and theorists alike since the earliest
applications of numerical methods to problems in engineering, and science. The
reliability of computer simulations has become one of the most critical subjects

in computational science. Lately, much attention has been posed on procedures
aimed at improving accuracy of finite element solutions. Recovered solutions can
be directly used for most practical purposes and, in particular, for evaluating the
finite element discretization errors, that is a verification of solution.
The subject of a posteriori error estimation for finite element approximation

has now reached maturity. The emphasis has now shifted from the development
of new techniques to the study of robustness of existing estimators and identifying
limits on their performance.
This work is intended to provide a contribution to give an answer to these

questions through a study of error estimation for finite element approximations of

boundary value problems, from a priori to a posteriori error estimation.In par-
ticular the work put particular care on a recent a posteriori error estimator, RCP
procedure, and the role that this can assume as an independent measure of the
quality of the simulation under study. Actually solution verification of a computa-
tional model must, in general, be based on a posteriori estimates of the error. By
definition, methods of a posteriori error estimation are post-processing techniques
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that attempt to determine quantitative information on the actual numerical error
in computed approximations of the target quantities of interest. Effective meth-
ods for such calculations exist and are used with increasing frequency in solution
verification processes.

F. Ubertini S. de Miranda G. Castellazzi

We expect to obtain quantitative information on system performance and out-

puts, and this expectation put stringent demands on the sophistication and accu-
racy of computer simulations.
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Finite element analysis

In questo capitolo vengono illustrati gli aspetti fondamentali del metodo degli
elementi finiti, presentato il problema modello (assunto lineare) e introdotta la
definizione di errore di discretizzazione. Tutto ciò getta le basi per la stima
dell’errore, la quale può essere affrontata a priori, ovvero prima di eseguire l’analisi
per elementi finiti, oppure a posteriori, ovvero dopo aver eseguito l’analisi. Tali

approcci verranno affrontati separatamente nei capitoli successivi.

2.1 The basic ideas of the finite element method

The finite element method is a computational technique for obtaining approximate

solutions to the partial differential equations that arise in scientific and engineering
applications. Rather than approximating the partial differential equation directly
as with, e.g., the finite difference methods, the finite element method utilizes a
variational problem that involves an integral of the differential equation over the
problem domain.
The finite element method can be described in a few words. Suppose that the

problem to be solved is in variational form, it may be required to find the function
which minimizes a given expression of potential energy. This minimizing prop-
erty leads to a differential equation (the Euler equation), but normally an exact
solution is impossible and some approximation is necessary. The Rayleigh-Ritz-

Galerkin idea is to choose a finite number of trial functions and among all their
linear combinations to find the one which is minimizing. This is the Ritz approxi-



24 2.1- The basic ideas of the finite element method

mation. The unknown weights are determined, not by a differential equation, but
by a system of discrete algebraic equations which the computer can handle. The
theoretical justification for this method is simple, and compelling: the minimizing
process automatically seeks out the combination which is closest to the solution.
Therefore, the goal is to choose trial functions which are convenient enough for
the potential energy to be computed and minimized, and at the same time general
enough to approximate closely the unknown solution.
The real difficulty is the first one, to achieve convenience and computability.

In theory there always exists a set of trial functions which is complete, their linear
combinations fill the space of all possible solutions as the trial functions increases,
and therefore the Ritz approximations converge, but to be able to compute with
them is another matter. This is what finite elements have accomplished. The
underlying idea is simple. It starts by a subdivision of the structure, or the region
of physical interest, into smaller pieces. These pieces must be easy for the computer
to record and identify; they may be triangles or quadrilateral. Then within each
piece the trial functions are given an extremely simple form (normally they are
polynomials). Boundary conditions are infinitely easier to impose locally, along

the edge of a triangle or quadrilateral, than globally along a more complicated
boundary. The accuracy of the approximation can be increased, if that is necessary,
but not by the classical Ritz method of including more and more complex trial
functions. Instead, the same polynomials are retained, and the subdivision is
refined. The computer follows a nearly identical set of instructions, and just takes
longer to finish. In fact, a large scale finite element system can use the power of the
computer, for the formulation of approximate equations as well as their solution,
to a degree never before achieved in complicated physical problems.
The method was created by structural engineers, and it was not recognized at

the start as an instance of the Rayleigh-Ritz principle. The subdivision into sim-

pler pieces, and the equations of equilibrium and compatibility between the pieces,
were initially constructed on the basis of physical reasoning. The later development
of more accurate elements happened in a similar way; it was recognized that in-
creasing the degree of the polynomials would greatly improve the accuracy, but the
unknowns computed in the discrete approximation have always retained a phys-
ical significance. In this respect the computer output is much easier to interpret
than the weights produced by the classical method.
The whole procedure became mathematically respectable at the moment when

the unknowns were identified as the coefficients in a Ritz approximation and the
discrete equations were seen to be exactly the conditions for minimizing the po-
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tential energy. The effect was instantly to provide a sound theoretical basis for the
method. As the techniques of constructing more refined elements have matured,
the underlying theory has also begun to take shape [Strang & Fix, 1973].
The fundamental problem is to discover how closely piecewise polynomials can

approximate an unknown solution. In other words, we must determine how well
finite elements, which were developed on the basis of computational simplicity, sat-
isfy the second requirement of good trial functions, to be effective in approxima-
tion. Intuitively, any reasonable function can be approached to arbitrary accuracy

by piecewise linear functions. The mathematical task is to estimate the error as
closely as possible and to determine how rapidly the error decreases as the number
of pieces (or the degree of the polynomial within each piece) is increased.

2.1.1 Variants of the finite element method

In the analysis of problems of a discrete nature, a standard methodology has been
developed over the years. The civil engineer, dealing with structures, first calcu-
lates force-displacement relationships for each element of the structure and then
proceeds to assemble the whole by following a well-defined procedure of estab-
lishing local equilibrium at each node or connecting point of the structure. The
resulting equations can be solved for the unknown displacements. Similarly, the
electrical or hydraulic engineer, dealing with a network of electrical components
(resistors, capacitances, etc.) or hydraulic conduits, first establishes a relationship
between currents (flows) and potentials for individual elements and then proceeds

to assemble the system by ensuring continuity of flows. The term Finite Element
Method actually identifies a broad spectrum of techniques that share common fea-
tures. Two subclassifications that fit well applications to structural mechanics
are:

1. FEM Formulation: (a) Displacement; (b) Equilibrium; (c) Mixed; (d) Hy-
brid;

2. FEM Solution: (a) Stiffness; (b) Flexibility; (c) Mixed;

The existence of a unified treatment of standard discrete problems leads us to
the first definition of the finite element process as a method of approximation to
continuum problems such that

1. the continuum is divided into a finite number of parts (elements), the behav-
iour of which is specified by a finite number of parameters,

2. the solution of the complete system as an assembly of its elements follows
precisely the same rules as those applicable to standard discrete problems.

It will be found that most classical mathematical approximation procedures as
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well as the various direct approximations used in engineering fall into this category.

2.1.2 Discretization of the domain

Since the problem is usually defined over a continuous domain, the governing
equations, with the exception of the essential boundary conditions, are valid for
the entirety of, as well as for any portion of, that domain. This allows idealization
of the domain in the form of interconnected finite-sized domains (elements) of
different size and shape (see Figure 2.1). By doing this, certain approximations
are introduced (e.g., cutting the corners, making curved lines straight and curved
elements flat). Putting enough numbers of nodes between the elements (higher-
order elements, etc.) also comes into the picture at this stage of the method. Here,
one should be concerned with how well the idealized discrete domain represents the

actual continuous domain. To a certain extent, it is true that the smaller elements
(finer mesh) produce better results. But it is also true that the finer mesh results
in a larger number of equations to be solved. The question then arises: What is the
most efficient element type, size, and pattern? A partial answer to this question
is given in the literature under the key word modeling. Adaptive processes or
mesh refinements and automatic mesh generation are also techniques relevant to
the discretization of the domain.

Figure 2.1: Discretization of a domain Ω

2.1.2.1 Discretization error

The real issue for us to grapple with now is that the computational model prepared
to simulate the mathematical model may be faulty and can lead to errors. In the

process of replacing the continuum region by finite elements, errors originate in
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many ways. From physical intuition, we can argue that this will depend on the
type, shape and number of elements that we use, the grading or density of the
mesh used, the way distributed loads are assigned to nodes, the manner in which
boundary conditions are modelled by specification of nodal degrees of freedom etc.
These are the discretization errors that can occur.
We can assume that the approximation for the displacement u will yield the

exact solution in the limit as the size h of elements decreases. The arguments for
this are simple: if the expansion is capable, in the limit, of exactly reproducing

any displacement form conceivable in the continuum, then, as the solution of each
approximation is unique, it must approach, in the limit of h→ 0, the unique exact
solution. In some cases the exact solution is indeed obtained with a finite number
of subdivisions (or even with one element only) if the approximation used in that
element fits exactly the correct solution. Thus, for instance, if the exact solution
is of the form of a quadratic polynomial and the shape functions include all the
polynomials of that order, the approximation will yield the exact answer.
The last argument helps in determining the order of convergence of the finite

element procedure as the exact solution can always be expanded in the vicinity of

any point (or node) i of coordinates x0 as a polynomial:

u (x) = u (x0) + ∇u|x=x0 (x− x0) + . . . (2.1)

If within an element of size h, a polynomial expansion of degree p is employed for
u, this can fit locally the Taylor expansion up to that degree and, as (x− x0) is of
the order of magnitude h, the error in u will be of the order hp+1.

2.1.3 Identification of the state variable(s)

Until this step, no reference has been made to the physical nature of the prob-
lem. Whether it is a heat-transfer problem, fluid- or solid-mechanics problem,
etc., comes into the picture at this stage. The mathematical description of steady-
state physical phenomena, for instance, leads to an elliptic boundary-value problem
in which the formula contains the state variable and the flux. These variables are
related to each other by a constitutive equation representing a mathematical ex-
pression of a particular physical law. Table 2.1 presents various physical problems
with associated state variables and constitutive equations. Once the state variable
and the flux have been identified, the formulation can take place containing either
or both. The choice is usually dictated by the problem.

2.1.4 Formulation of the problem

Posing the problem to be solved in its most general terms we find that we seek an
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Table 2.1: Classification of various physical problems

Physical Problem State variable Flux
Constitutive

Equation

Elasticity Displacements or forces Stress or strain Hooke’s law

Torsion Warping function Rate of twist Hooke’s law

Heat Transfer Temperature Heat Flux Fourier’s law

Fluid Flow Velocity Shear stress Stokes’s law

Flow through porous media Hydraulic head Flow rate Darcy’s law

Electrostatics Electric potential Electric flux Couloumb’s law

Magnetostatic Magnetic potential Magnetic Flux Maxwell’s law

unknown function u such that it satisfies a certain differential equation set

A (u) =

⎧⎪⎨⎪⎩
A1 (u)
A2 (u)
...

⎫⎪⎬⎪⎭ = 0, (2.2)

in a domain (volume, area, etc.) Ω (Figure 2.2), together with certain boundary
conditions

B (u) =

⎧⎪⎨⎪⎩
B1 (u)
B2 (u)
...

⎫⎪⎬⎪⎭ = 0, (2.3)

on the boundaries ∂Ω of the domain.
The function sought may be a scalar quantity or may represent a vector of

several variables. Similarly, the differential equation may be a single one or a set
of simultaneous equations and does not need to be linear. It is for this reason that
we have resorted to matrix notation in the above.
The finite element process, being one of approximation, will seek the solution

in the approximate form

u ≈ uh =
nX
i=1

Uidi = Ud, (2.4)

where Ui are shape functions prescribed in terms of independent variables (such
as the coordinates x1, x2, etc.) and all or most of the parameters di are unknown.
As the set of differential equations (2.2) has to be zero at each point of the domain
Ω, it follows thatZ

Ω

vTA (u) dV ≡
Z
Ω

[v1A1 (u) + v2A2 (u) + . . .] dV = 0, (2.5)
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Figure 2.2: Problem domain Ω and boundary ∂Ω

where

v =

⎧⎪⎨⎪⎩
v1
v2
...

⎫⎪⎬⎪⎭ , (2.6)

is a set of arbitrary functions equal in number to the number of equations (or
components of u) involved.
The statement is, however, more powerful. We can assert that if (2.5) is satisfied

for all v, then the differential equations (2.2) must be satisfied at all points of the
domain. The proof of the validity of this statement is obvious if we consider the
possibility that A(u) 6= 0 at any point or part of the domain. Immediately, a
function v can be found which makes the integral of (2.5) non-zero, and hence the
point is proved. If the boundary conditions are to be simultaneously satisfied, then

we require thatZ
Ω

v̄TB (u) dS ≡
Z
Ω

[v̄1B1 (u) + v̄2B2 (u) + . . .] dS = 0, (2.7)

for any set of functions v̄. Indeed, the integral statement thatZ
Ω

vTA (u) dV +

Z
∂Ω

v̄TB (u) dS = 0, (2.8)

is satisfied for all v and v̄ is equivalent to the satisfaction of the differential equa-
tions (2.2) and their boundary conditions (2.3).

In the above discussion it was implicitly assumed that integrals such as those
in Equation (2.8) are capable of being evaluated. This places certain restrictions
on the possible families to which the functions v or u must belong. In general we
shall seek to avoid functions which result in any term in the integrals becoming
infinite.
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Thus, in Equation (2.8) we generally limit the choice of v and v̄ to bounded
functions without restricting the validity of previous statements.
What restrictions need to be placed on the functions? The answer obviously

depends on the order of differentiation implied in the equations A(u) [or B(u)].
Consider, for instance, a function u which is continuous but has a discontinuous
slope in a particular direction. We imagine this discontinuity to be replaced by a
continuous variation in a very small distance. It is easy to see that although the
first derivative is not defined here, it has finite value and can be integrated easily,

but the second derivative tends to infinity. This therefore presents difficulties if
integrals are to be evaluated numerically by simple means, even though the integral
is finite. If such derivatives are multiplied by each other the integral does not exist
and the function is known as non-square integrable. Such a function is said to be
C0 continuous. In a similar way it is easy to see that if nth-order derivatives occur
in any term of A or B then the function has to be such that its n− 1 derivatives
are continuous (Cn−1 continuity).
On many occasions it is possible to perform an integration by parts on Equation

(2.8) and replace it by an alternative statement of the formZ
Ω

A (v)
T
A (u) dV +

Z
∂Ω

B (v̄)
T
B (u) dS = 0. (2.9)

In this, the operators A, A, B and B usually contain lower order derivatives than
those occurring in operators A or B. Now a lower order of continuity is required
in the choice of the function u at a price of higher continuity for v and v̄.
The statement (2.9) is now more permissive than the original problem posed

by Equations (2.2), (2.3), or (2.8) and is called a weak form of these equations. It
is a somewhat surprising fact that often this weak form is more realistic physically
than the original differential equation which implied an excessive smoothness of
the true solution. Integral statements of the form of (2.8) and (2.9) will form the
basis of finite element approximations.

The finite element method is one particular Galerkin method, named after the
Russian engineer Galerkin. It is a method for finding approximate solutions to par-
tial differential equations. It is closely related to the Rayleigh-Ritz method which
involves choosing functions (a basis) for the solution and finding the amplitude of
each function by minimizing the energy. The Galerkin method is however more
general, being able to solve a greater range of problems.
The essence of the Galerkin method involves taking the weak form of the gov-

erning Equation (2.8), and finding the best solution to a problem given a collection
of functions.
First, consider the approximate solution to some problem, uh ∈ Sh, where
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Sh is a finite-dimensional space. This means that there is a limited number of
possibilities. For example, uh could be a combination of low order polynomial
functions. The Galerkin problem for Equation (2.9) involves: find uh ∈ Sh such
thatZ

Ω

A
¡
vh
¢T
A
¡
uh
¢
dV +

Z
∂Ω

B
¡
vh
¢T
B
¡
uh
¢
dS = 0, ∀vh ∈ Vh, (2.10)

where Vh is a finite dimensional space.
The Galerkin method (more specifically, the Bubnov-Galerkin method) requires

that the weight and trial functions, vh and uh respectively, come from the same
finite-dimensional space, taking into account the special requirements on the weight
and trial functions where Dirichlet boundary conditions are applied. In Petrov-
Galerkin method, the weight functions come from a different function space than
the trial functions. This method is used for special applications, often in fluid

mechanics.
Different Galerkin-based methods are defined by how the unknown field uh

is represented. In the finite element method, uh and vh will be simple continu-
ous, piecewise low-order polynomials defined on finite elements. Spectral Galerkin
methods for example use a truncated Fourier series as the basis. A basic question
which arises when computing an approximate solution is how uh relates to the ex-
act solution u. Given a finite number of possibilities in Sh, which solution does
the method seek? Understanding this requires some basic error analysis. The er-
ror analysis will tell how the computed solution uh differs from the actual solution

u and why the Galerkin method works (or for problems not considered here, why
it does not work). This is examined in the following chapter.

2.2 The model problem

Consider the model problem governed by the following equations:

D∗σ = b, (2.11)

σ = C², (2.12)

² = Du, (2.13)

in Ω, together with the following boundary conditions

u = ū on ∂Ωu, (2.14)

NTσ = t̄ on ∂Ωt. (2.15)

In the above equations, u, ² and σ are the unknown vectors, D and D∗ are lin-
ear differential operators, C is a symmetric positive definite matrix of physical
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parameters, b is a prescribed source term, N is a matrix which contains the di-
rection cosines of the outward unit normal vector on ∂Ω, Ω is the domain and ∂Ω

is the domain boundary. Operators D and D∗ are assumed to be related by the
Gauss-Green formulaZ

Ω

wTDv dV =

Z
Ω

vTD∗w dV +
Z
∂Ω

vTNTw dS, (2.16)

where v andw are vectors of sufficiently regular functions defined on Ω. Combining
Equations (2.11)-(2.15), the boundary value problem can be put in the form

A (u) ≡ D∗CDu− b = 0, in Ω, (2.17)

B (u) ≡ NTCDu− t̄ = 0, on ∂Ωt. (2.18)

The model problem stated above is typical of many self-adjoint problems in engi-
neering. To fix the ideas, we may refer to a problem of elasticity so that u can
be interpreted as the displacement vector, ² as the strain vector, σ as the stress
vector, D and D∗ as the compatibility and equilibrium operators and C as the
elasticity matrix. Then, Equations (2.11)-(2.13) are the equilibrium equation, the
constitutive equation and the compatibility equation, respectively. More details

about the structural model used in the present work are given in Appendix A.

Figure 2.3: Problem domain Ω and boundary ∂Ωt and ∂Ωu

The model problem admits weak formulations in terms of stationary of single
or multifield functionals. In elasticity, the variational formulation in terms of
displacements stems from the principle of minimum potential energy

Π (u) =
1

2

Z
Ω

(Du)TCDudV −
Z
Ω

uTbdV −
Z
∂Ωu

uTtdS, (2.19)
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whose domain is the set of the functions u continuous in Ω, which satisfy the
displacement boundary condition (2.14).
Assuming the stress as an additional variable leads to the Hellinger-Reissner

functional

ΠHR (u,σ) =

Z
Ω

µ
σTDu− 1

2
σTC−1σ + bTu

¶
dV −

Z
∂Ωt

uTtdS, (2.20)

whose domain is the set of functions u continuous in Ω, and functions σ fulfill-
ing a priori the stress-strain relationship. If σ satisfies a priori the equilibrium
equation (2.11), then the Hellinger-Reissner functional reduces to the hybrid stress
functional

ΠHY (u,σ) = −1
2

Z
Ω

σTC−1σdV −
Z
∂Ωt

uTtdS. (2.21)

Functionals (2.19) and (2.20) are the variational supports in developing compati-
ble and mixed finite element models, respectively. While functional (2.21) is the
variational support in developing hybrid stress model as well as the support of the
so called Equilibrium Model II [de Veubeke, 1965]—[Pian & Tong, 1972].
Let’s focus attention on the potential energy functional (2.19). Displacement

u, is approximated over each element Ωe as follows

u ' uh = U (x) ūh, (2.22)

where U is the matrix of shape functions and d is the vector of nodal displace-

ment values. Once nodal displacements are determined, stresses (or gradients) are
usually computed by means of Equations (2.12) and (2.13):

σh = CBd, (2.23)

where

B = DU. (2.24)

It is well known that finite element stresses σh are in general discontinuous
at inter-elements and have a low accuracy at nodes and element boundaries. The

objective of a stress recovery procedure is to compute improved stresses by post-
processing the finite element solution.
In the case of the mixed and hybrid finite element models based on the Hellinger-

Reissner’s functional (2.20) and the hybrid functional (2.21), respectively, u is
represented, over each element, according to Equation (2.22), and stress σ is rep-
resented as

σh (x) = S (x) s,

where S is a matrix of square integrable functions and s a vector of unknown stress
parameters.



34 2.3- Definitions of error

2.3 Definitions of error

Before proceeding further it is necessary to define what we mean by error. In
principle, the error is the difference between the exact solution and the approximate
one. This can apply to the basic function, such as displacement which we have
called u and can be given as

e = u− uh. (2.25)

In a similar way, however, we could focus on the error in the strains ² or stresses
σ (i.e., gradients of the solution), and define an error in those quantities as

eε = ²− ²h, (2.26)

eσ = σ − σh. (2.27)

The specification of local errors in the manner given in Equations (2.25)-(2.27)
is not always convenient and occasionally misleading. For instance, under a point
load both errors in displacements and stresses will be locally infinite but the over-
all solution may well be acceptable. Similar situations will exist near re-entrant
corners where, as is well known, stress singularities exist in elastic analysis and
gradient singularities develop in field problems. For this reason various norms

representing some integral scalar quantity are often introduced to measure the
error.
We can define an energy norm written for the error as

kek =

∙Z
Ω

¡
²− ²h¢T ¡σ − σh

¢
dV

¸ 1
2

, (2.28)

=

∙Z
Ω

¡
σ − σh

¢T
C−1

¡
σ − σh

¢
dV

¸ 1
2

, (2.29)

=

∙Z
Ω

¡
u− uh¢TD∗CD ¡u− uh¢dV ¸ 12 . (2.30)

=

∙Z
Ω

¡
²− ²h¢TC ¡²− ²h¢dV ¸ 12 , (2.31)

and its relation to strain energy is evident.
Other scalar norms can easily be devised. For instance, the L2 norm of dis-

placement and stress error can be written as

kekL2 =

∙Z
Ω

¡
u− uh¢T ¡u− uh¢dV ¸ 12 , (2.32)

keσkL2 =

∙Z
Ω

¡
σ − σh

¢T ¡
σ − σh

¢
dV

¸ 1
2

. (2.33)

It is possible to evaluate root mean square (RMS) values of error. For instance,
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the RMS error in displacement, ∆u,

|∆u| =
Ã
kek2L2
Ω

! 1
2

. (2.34)

Similarly, the RMS error in stress, ∆σ, becomes for the domain Ω

|∆σ| =
Ã
keσk2L2
Ω

! 1
2

. (2.35)

Any of the above norms can be evaluated over the whole domain or over subdo-
mains or even individual elements.

We note that

kek2 =
nelemX
e=1

kek2e , (2.36)

where e refers to individual elements Ωe such that their sum (union) is Ω. We note
further that the energy norm given in terms of the stresses, the L2 stress norm
and the RMS stress error have a very similar structure and that these are similarly
approximated.

To describe the behaviour of stress analysis problems we define the variation of
the relative energy norm error (percentage) as

η =
kek
E
× 100 (%) , (2.37)

where

E =

µZ
Ω

²TC²dV

¶ 1
2

, (2.38)

is the (exact) energy norm of the solution.
At the end of this chapter is clear that the analysis of the finite element method

lead to a natural definition of error, by the attempt to compare the approximated

quantity to the exact one. It appears by this definition, that this comparison is not
always possible, due on the fact that the exact or true solution does not exist for
all problems. Still actually the necessity to quantify this error by using different
tools.
Commonly two are the practicable ways: the a priori error estimation and the

a posteriori error estimation. In the next two chapters this two complementary
ways, that can sometime interact, will be shown.
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A-priori error estimation

Nella prima parte di questo capitolo vengono brevemente illustrati alcuni risultati
classici sulla stima a priori dell’errore di discretizzazione in analisi agli elementi
finiti.
La seconda parte del capitolo si incentra, invece, sullo studio delle prestazioni

che diversi elementi finiti mostrano in funzione del loro grado di approssimazione.

In particolare, viene presentato un nuovo metodo di indagine [Castellazzi & Uber-
tini, 2004] per la valutazione del ruolo che le distorsioni di geometria hanno sulla
prestazioni degli elementi finiti. L’indagine prende in esame elementi finiti para-
metrici piani, e ne quantifica la sensibilità alle distorsioni di geometria. L’indagine
é inoltre accompagnata da un ’ampia sperimentazione numerica in cui si evi-
denzia come la progressiva distorsione della geometria influisca sulle prestazioni
dell’elemento. Alcune considerazioni conclusive terminano il capitolo.

3.1 Analysis of the finite element method

Most of the errors introduced by the finite element methods are difficult to quantify
analytically or determine in a logically coherent way. We can only rely on heuristic
judgement (based on intuition and experience) to understand how best to minimize
errors. However, we shall now look only at that category of discretization error that
appears because the computational or discretized model uses trial functions which

are an approximation of the true solution to the mathematical model. It seems
possible that to some extent, analytical quantification of these errors is possible.
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At the same time, a large body of literature has been created by mathematical
analysts using the concepts of variational calculus and functional analysis to derive
projection theorems and energy error rules on an a priori basis. These were first
reported more than thirty years ago by Strang and Fix in [Strang & Fix, 1973].
Unfortunately, these statements on error analysis of the finite element method are
derived using rigorous mathematical abstractions which are sometimes difficult for
the engineer to grasp. It is indeed possible to re-derive these using the energy,
virtual work and least action principles that the engineer or physicist is more

familiar with, especially for linear elastostatics.
As shown in the previous chapter, the finite element method is one particular

Galerkin method, and finds approximate solutions for partial differential equations.
The essence of the Galerkin method involves taking the weak form of the governing
equation, as developed in the previous chapter, and finding the best solution to a
problem given a collection of functions. It is interesting to check how the solution
computed using the Galerkin procedure compares to the exact solution.
Following the nomenclature used in Strang and Fix [Strang & Fix, 1973], we

write the weak form in terms of the energy inner product for the exact solution

u to the problem. Let be V a space of functions, which has an infinite number of
members, and u ∈ V, then consider the following:Z

Ω

(Du)
T
CDudV =

Z
Ω

uTbdV ∀u ∈ V, (3.1)

where the first term of Equation (3.1) is a measure of the total elastic strain energy.
The vector u describes the degrees of freedom and the second term of the Equation
(3.1) describes the potential of the applied loads. This virtual work statement
refers to the exact solution of the elastostatic problem: the trial function and test
function are taken as u ∈ V and the virtual work argument establishes that (3.1)
is truly satisfied only when u is the exact solution at the point of equilibrium.
Consider now a subspace Vh ⊂ V which has a finite number of members, then we
can rewrite the Equation (3.1) asZ

Ω

³
Duh

´T
CDudV =

Z
Ω

¡
uh
¢T
bdV ∀uh ∈ Vh. (3.2)

In (3.2), we take note of the fact that the test function uh ∈ Vh need not be
the exact displacement function for the virtual work principle to be true. For
convenience, we take this to be the discrete finite element displacement field, as
long as it is admissible (i.e. it satisfies all the geometric boundary conditions).
By using uh for both the trial and test function, we get the actual finite element
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equations, or we pose the Galerkin formulation, finding uh ∈ Vh such thatZ
Ω

³
Duh

´T
CDuhdV =

Z
Ω

¡
uh
¢T
bdV ∀uh ∈ Vh, (3.3)

with the right hand side leading to the consistent load vector and the left hand
side representing the stiffness matrix. This equation will now reflect the error due
to the finite element discretization. We are now in a position to see how the error
e = u−uh can be assessed. Comparing (3.2) and (3.3) and noting that the energy
inner product is bilinear, we can arrive atZ

Ω

³
Duh

´T
CDudV =

Z
Ω

³
Duh

´T
CDuhdV ∀uh ∈ Vh, (3.4)

and from this we obtain the projection, or Cea’s, theorem:Z
Ω

³
Duh

´T
CD

¡
u− uh¢dV = 0 ∀uh ∈ Vh. (3.5)

This important result is commonly known also as Galerkin orthogonality. This
means that the approximate solution uh is a projection of the exact solution u onto
the space of the weight functions. In the Bubnov-Galerkin, the weight functions
vh come from the same space as the trial functions uh, hence the solution uh is the
projection of the exact solution onto the finite dimensional space of trial functions.
In simple linear elastostatics cases, this would imply that the strains or stresses
are obtained in a best-fit sense and that there would be points in the element

domain where these stresses or strains are very accurately computed. Consider
the following:Z

Ω

£
D
¡
u− uh¢¤TCD ¡u− uh¢dV =

Z
Ω

(Du)
T
CDudV+

+

Z
Ω

³
Duh

´T
CDuhdV − 2

Z
Ω

³
Duh

´T
CDudV

=

Z
Ω

(Du)TCDudV −
Z
Ω

³
Duh

´T
CDuhdV+

−2
∙Z
Ω

³
Duh

´T
CDudV −

Z
Ω

³
Duh

´T
CDuhdV

¸
=

Z
Ω

(Du)
T
CDudV −

Z
Ω

³
Duh

´T
CDuhdV+

−
Z
Ω

³
Duh

´T
CD

¡
u− uh¢dV| {z }

=0

,

for any uh ∈ Vh. So we get an energy error theorem which can be expressed as:

Energy of the error = Error of the energy, (3.6)°°u− uh°°
E

= kukE −
°°uh°°

E
, (3.7)
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where the subscript E indicates that the type of norm is in energy sense:°°u− uh°°
E

=

Z
Ω

£
D
¡
u− uh¢¤TCD ¡u− uh¢dV, (3.8)

kukE =

Z
Ω

(Du)
T
CDudV, (3.9)°°uh°°

E
=

Z
Ω

³
Duh

´T
CDuhdV. (3.10)

As the left hand side of (3.6) is always positive definite, we get the useful statement
that: Z

Ω

³
Duh

´T
CDuhdV <

Z
Ω

(Du)TCDudV. (3.11)

Thus, in a variationally correct approach, the energy inner product of the approx-

imate (Ritz or finite element) solution will always be a lower bound of the exact
energy.
From these statements, we can set simple estimates for the error in a finite

element discretization and, therefore, for the rate of convergence of the solution.
It can be shown that the Galerkin finite element method is optimal in terms of
the energy. The finite element solution is therefore seen to be a best-fit or best
approximation solution. This error analysis tells something of what the Galerkin
method calculates. Given some approximate functions, the Galerkin method will
yield the best fit to the exact solution in terms of energy. Consider the following:°°u− uh + vh°°

E
=

Z
Ω

£
D
¡
u− uh + vh¢¤TCD ¡u− uh + vh¢dV

=

Z
Ω

£
D
¡
u− uh + vh¢¤TCD ¡u− uh¢dV +

+

Z
Ω

£
D
¡
u− uh¢¤TCD ¡u− uh + vh¢dV

=

Z
Ω

£
D
¡
u− uh¢¤TCD ¡u− uh¢dV +

+2

Z
Ω

£
D
¡
u− uh¢¤TCDvhdV| {z }

=0

+

Z
Ω

³
Dvh

´T
CDvhdV

for any vh ∈ Vh. As seen before this last Equation was simplified by the Equation
(3.5). Denoting now wh = uh − vh, the above result leads to the conclusion that:°°u− uh°°

E
=

Z
Ω

£
D
¡
u− uh¢¤TCD ¡u− uh¢dV, (3.12)°°u−wh

°°
E

=

Z
Ω

£
D
¡
u−wh

¢¤T
CD

¡
u−wh

¢
dV, (3.13)

°°u− uh°°
E
≤ °°u−wh

°°
E

∀wh ∈ Vh. (3.14)
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This implies that the solution uh is closer to u than any other element of Vh
in terms of energy. Given a choice of functions, the Galerkin method therefore
chooses those which minimize the error in terms of the strain energy.
There is a close relationship between the Rayleigh-Ritz method and the Galerkin

method. It has been shown that the Galerkin method minimizes the error in terms
of the energy, which is the principle behind the Rayleigh-Ritz method. For many
problems in solid mechanics, the two are equivalent.

3.2 Convergence of the finite element method

A priori error estimation does not provide quantitative information about error in
a finite element simulation. What it does provide is the order of convergence. The
order of convergence indicates how quickly the error reduces upon mesh refinement.

The order depends on several factors. For finite element analysis, the order of
convergence depends heavily on the type of element. We want to know how much
smaller the error will be if we halve the element size (leading to at least a doubling
in computational effort).
To give an indication of the size of the error e = u − uh, it is necessary to

consider a norm of the error, kekn . The subscript n indicates the type of norm.
The energy norm, which is the type of norm which will be used here, is given by:

kekn =
Ã

nX
α=0

Z
Ω

(Dαe)C (Dαe) dV

!1/2
, (3.15)

whereDα denotes the α derivative. This scalar value is a measure of the magnitude
of the error. Two norms of particular interest involve n = 0 and n = 1. For
example, setting n = 0 gives:

kek0 =
µZ
Ω

eTCedV

¶1/2
, (3.16)

which is a measure of the error in the displacements. Setting n = 1,

kek1 =
µZ
Ω

³
eTCe+ (De)

T
CDe

´
dV

¶1/2
, (3.17)

which now includes the operator D on e, thereby introducing a measure of the
error in the strain.
Consider the nodal interpolate uI ,

uI =
X
i

Uiai. (3.18)

The nodal interpolate is equal to the exact solution at the nodes (u−uI = 0 at the
nodes), hence it interpolates the exact solution using the provided shape functions.
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Given that a finite solution is the best possible solution from the finite-dimensional
space Vh, it holds that

kekE ≤
°°u− uI°°

E
.

This means that the finite element solution is at least as accurate as the nodal

interpolate in terms of energy. In this way, the question of determining an error
estimate is no longer a finite element question, rather a question which can be
answered from interpolation theory. Using the Equation (3.5) we can state that:

kekr ≤ α
°°u− uI°°

r
, (3.19)

where α is a positive constant. Interpolation theory provides the inequality°°u− uI°°
m
≤ chk+1−m kukE , (3.20)

where k is the polynomial order, c is an unknown constant, and h is a measure
of the element size. Note that to ensure convergence it should be: k + 1 > m.

Inserting now Equation (3.19) into the above expression,

kekr ≤ Chk+1−r kukE , (3.21)

where C is a constant, independent of h. For an elasticity problem, r = 1, hence

kek1 ≤ Chk kukE . (3.22)

This implies that the solution converges in this norm at a rate equal to the poly-
nomial order. For practical purposes, this norm is dominated by the error in the
strain, hence it represents the error in the energy. If the exact solution is not suffi-
ciently smooth, there maybe no gain in accuracy through increasing the polynomial

order.
It would be useful to find an estimate in terms of lower norms, such as the error

in the displacements, kek0. An estimate can be obtained using Nitsche’s trick (see
[Strang & Fix, 1973] for details). It leads to the estimate:

keks ≤ Chβ kukE , (3.23)

where β = min {k + 1− s, 2 (k + 1− r)}.
In elasticity, the two quantities of special interest are the displacements and the

strains (and hence the stresses). For k ≥ 1, the displacement error is:
kek0 ≤ Chk+1 kukE , (3.24)

and the strain error is:

kek1 ≤ Chk kukE , (3.25)

which implies that the approximate strains converge to the exact result slower than
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the approximate displacements. For linear elements k = 1. Therefore:

kek0 ≤ Ch2 kukE , (3.26)

kek1 ≤ Ch kukE . (3.27)

Hence linear elements are known as being O
¡
h2
¢
in terms of displacements, and

O (h) in terms of strains. The notation O (ha) means that the error is of the order
ha. Of course, as h becomes small, the greater a the smaller the error. Larger a
implies faster convergence.

3.2.1 Richardson’s theorem

This procedure may be applied to a sequence of displacement models only. Thus,
for instance, if the displacement converges at O(h2) and we have two approximate
solutions u1 and u2 obtained with meshes of size h and h

2 , we can write, with u
being the exact solution,

u1 − u
u2 − u =

O
¡
h2
¢

O
¡
h
2

¢2 = 4 (3.28)

From the above, an (almost) exact solution u can be predicted and, then, an
estimation kuRkE of the exact strain energy can be obtained..
Another method to obtain an estimation of the exact strain energy of the struc-

ture is to perform dual analyses [de Veubeke, 1965] in which the same problem is
solved by using both displacement models and equilibrium models. Then if the
displacement boundary conditions are homogeneous and consistent loads are ap-
plied, a displacement model gives a lower bound to the exact strain energy while an
equilibrium model gives an upper bound. Richardson’s extrapolation may then be
applied to both sequences of displacement and equilibrium models so as to obtain
two estimates which bound the exact strain energy.

3.3 Completeness requirements of shape functions

Convergence of finite element results with the mesh refinement is an important
requirement to be satisfied by any successful element. The continuity and com-
pleteness requirements (e.g., see, Zienkiewicz [Zienkiewicz & Taylor, 1989], Bathe

[Bathe, 1996]) must be satisfied so as to ensure convergence. The continuity re-
quirement demands that the shape functions must be chosen so that the assumed
interpolation function of the field variable, the displacement in structural analy-
sis, is sufficiently continuous within and across the boundary of the elements. The
completeness requirement demands that the shape functions must be such that the
interpolation function is capable of representing rigid body motions and constant
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strain states correctly.

The continuity requirement is usually satisfied by ensuring that the shape func-
tions (and hence the displacement model) are polynomials of an appropriate order.
Typically if the stiffness integrands involve derivatives of order m, the shape func-
tions must be at least Cm continuous within the element and Cm−1 continuous
across the element interface. The completeness requirements are satisfied for a two
dimensional isoparametric element, for examples if the element shape functions,
Ui satisfy the conditions X

i

Ui = 1, (3.29)

X
i

Uix1,i = x1, (3.30)

X
i

Uix2,i = x2, (3.31)

In the literature, the completeness requirements are frequently associated with the
ability of the element to represent an arbitrary linear polynomial displacement
field. For this reason, we will refer to these completeness requirements as the
linear completeness requirements. In the limit of mesh refinement, the element size
becomes so small that the displacement field within each element can be considered
to be linear, and,. hence an element satisfying the linear completeness requirements

is expected to converge to an exact solution without any problem.
It was once believed that elements satisfying the continuity and completeness

requirements would indeed, in the limit of mesh refinement, converge to the actual
solution without any difficulty. However, there have been instances which have con-
tradicted this belief. Locking problems (e.g. see, [Prathap, 1993] and [Wilson et al.
, 1973]) and the deterioration of solution accuracy with geometric distortion are
two examples. To avoid the problem of locking, in addition to the continuity and
completeness requirements, certain other conditions have to be satisfied by the dis-
placement model [Prathap, 1993]. Nonconforming elements (e.g. see, [Zienkiewicz
& Taylor, 1989], [Wilson et al. , 1973] and [Taylor et al. , 1976]) which violate the

inter-element continuity requirements have been used successfully. However, such
formulations are sensitive to geometric distortion of the element, and the patch
test (see [Irons & Razzaque, 1972]—[Irons & Ahmadn, 1980]) bas been introduced
to cheek the ill effects of the violation of inter-element continuity and complete-
ness requirements in a global sense, i.e., for a patch. These observations are the
source of motivation for several investigations into the continuity and completeness
requirements.
It is frequently inconvenient to refine the mesh successively in order to check
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for convergence. As an alternative to successive mesh refinement, higher order
elements are sometimes used. In the context of the higher order elements, however,
the completeness requirements need to be interpreted carefully. These elements use
a higher order interpolation model, and attempt to obtain convergence using fewer
elements. With fewer elements, the elements are larger and. hence, the linear
completeness requirements are no longer sufficient as they ensure convergence only
in the limit of mesh refinement. Thus, for the effective use of higher order elements,
it is necessary to investigate the higher order completeness requirements of shape

functions.

3.3.1 Constructing approximate functions for the elements

Once the state variable(s) and the local coordinate system have been chosen, the

state variable(s) can be approximated in numerous ways, i.e. different choices for
expression (2.4) are possibile. We mention here only the approximation in terms
of algebraic functions. There are two entities that need to be approximated. The
first is physical (the state variable) and the second is geometrical (the shape of the
element). If the element is actually made of straight lines or planes, the coordinates
of primary nodes (those at the extremes of the elements) will define the element
shape accurately. In this case, the geometric approximation does not enter into the
picture. Because of this, discretization of the entire domain is most often made by
straight-line (linear) elements. For some problems, however, linear elements (i.e.,
flat elements in shells) may introduce unacceptable errors, and discretization must

be done by using isoparametric elements (see Figure 3.1). A similar argument is, of
course, valid for the approximation of the state variable. It can be approximated in
the form of a linear function or a higher-order function (i.e., quadratic, cubic, etc.).
The analyst then must decide whether to approximate physics (state variable) and
geometry (element shape) equally or to give preference to one or the other in
various regions of the domain.
This leads to three different categories of elements with m and n representing

the degree of approximation for element shape and for the state variable, respec-
tively. Figure 3.1 illustrates examples, related to plane case, for (a) superamet-
ric (m > n), (b) isoparametric (m = n), and (c) subparametric (m < n) elements.

Approximation of any function can be made in the form of a family of algebraic
equations, using the well-known Pascal’s Triangle. At this point one is tempted
to say that the finite element solution may converge to the exact solution either
by increasing the degrees of polynomials (these often correspond to the number
of nodes in the element) or by decreasing the element size. Each has advantages
and disadvantages. Since, however, the finite element method is a procedure for
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Figure 3.1: Example of superametric, isoparametric and subparametric elements

constructing the solution for the entire domain from local approximations, the con-
vergence can be attained if the functional itself converges as the size of the element
diminishes. It is therefore to be noted that:

1. the local functions have to be constructed so that their discontinuities (in terms
of their derivatives as well) should not make the functional itself undefined
over the entire domain. In other words, not only the local functions but the
derivatives of one order less than that occurring in the functional must be
continuous;

2. the integrand of the functional must be single-valued and represent a constant
as the element size approaches zero.

Figure 3.2: Pascal’s triangle to generate various trial functions and corresponding elements
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Figure 3.3: Two dimensional transformation between local or theory space (left) and the real or

user space (right) of quadrilateral and triangular elements

3.3.2 Isoparametric quadrilateral elements

Is useful to start from the most simple isoparametric quadrilateral finite element,
and extend the result to other elements after some study. The shape functions are
polynomial representations of behaviour inside each element. This behavior is writ-
ten in terms of local coordinates. Consider 2D behaviour: 3D is a straightforward
extension. Although there are differences in detail in the theoretical derivations
between triangles and quadrilaterals, the end result are equivalent.
The basic theory is developed in a square of side length 2 units, which can be

termed the fundamental shape. This space is the theory space and has dimension-
less coordinates (ξ1, ξ2). The real, or user space, has the usual (x1, x2) cartesian
coordinates. These spaces are shown in Figure 3.3 for the quadrilateral and the
triangular elements.
If the degree of freedom at each node i are the displacement components¡

ūh1,i, ū
h
2,i

¢
, as used in stress and dynamics analysis, then the shape functions can

express
¡
uh1 , u

h
2

¢
at any point in the element based on these nodal values as:

uh1 =
X

Uiū
h
1,i, u2 =

X
Uiū

h
2,i, (3.32)

uh1 = U1ū
h
1,1 + U2ū

h
1,2 + . . .+ Unū

h
1,n (3.33)

uh2 = U1ū
h
2,1 + U2ū

h
2,2 + . . .+ Unū

h
2,n (3.34)

where the summations are over the nodes on the element. A requirement of each
of these shape functions is that they equal unity at their reference node and zero
at every other node. Also the Equation (3.29) have to be verified throughout the
element.
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Table 3.1: Shape functions of 4, 8 and 9 noded quadrilaterals elements

include only if node i exists on the element

coords shape function i = 5 i = 6 i = 7 i = 8 i = 9

−1 −1 U1=
1
4 (1− ξ1) (1− ξ2) −12U5 −12U8 1

4U9

1 −1 U2=
1
4 (1 + ξ1) (1− ξ2) −12U5 −12U6 1

4U9

1 1 U3=
1
4 (1 + ξ1) (1 + ξ2) −12U6 −12U7 1

4U9

−1 1 U4=
1
4 (1− ξ1) (1 + ξ2) −12U7 −12U8 1

4U9

0 −1 U5=
1
4

¡
1− ξ21

¢
(1− ξ2) −12U9

1 0 U6=
1
4 (1 + ξ1)

¡
1− ξ22

¢ −12U9
0 1 U7=

1
4

¡
1− ξ21

¢
(1 + ξ2) −12U9

−1 0 U8=
1
4 (1− ξ1)

¡
1− ξ22

¢ −12U9
0 0 U9=

1
4

¡
1− ξ21

¢ ¡
1− ξ22

¢
The shape functions for the 4, 8, and 9 noded quadrilateral elements are given

in Table 3.1.

The performance of those elements will be evaluated in the next sections, for
now it is interesting to pose the attention on Equation (2.24). After some manip-
ulation, which in detail is not necessary here, it turns out that B can be written
out in full as:

B =

⎡⎣ g11 0 g12 0
0 g21 0 g22
g21 g11 g22 g12

¯̄̄̄
¯̄ 0
g2n
g1n

⎤⎦ (3.35)

where the three rows correspond to the three components of strain, and the columns
cover the n nodes. A typical term applying to node k is:

g1k =

∙µ
x2,i

∂Ui
∂ξ2

¶
∂Uk
∂ξ1
−
µ
x2,i

∂Ui
∂ξ1

¶
∂Uk
∂ξ2

¸
1

detJ
(3.36)

g2k =

∙
−
µ
x1,i

∂Ui
∂ξ2

¶
∂Uk
∂ξ1

+

µ
x1,i

∂Ui
∂ξ1

¶
∂Uk
∂ξ2

¸
1

det J
(3.37)

An important factor here is the inverse det J term. The scalar detJ is the Ja-
cobian transformation, effectively a numerical representation, or scaling, between
the theory space and the real space of the element, over which the integration is
performed.

J=

⎡⎢⎢⎣
∂x1
∂ξ1

∂x2
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

⎤⎥⎥⎦ (3.38)
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det J =
∂x1
∂ξ1

∂x2
∂ξ2
− ∂x1

∂ξ2

∂x2
∂ξ1

(3.39)

A last note about the Jacobian lies on the fact that the most common finite element
method is based on the principle of minimum potential energy, which means that
when the structure is loaded and suitably fixed, the displacements and stresses
are those which render the potential energy a minimum. Then the approximating
equation system will yield a set of linear equations of the form

Kd+ f = 0, (3.40)

here, K is the global stiffness matrix and u assume the role of the total degree of
freedom vector, and f is the corresponding vector of equivalent nodal loads. Each
element contributes its own stiffness matrix Ke, added into the global stiffness
matrix, plus any contributions to the load vector

Kij =
nelemX
e=1

Ke
ij fi =

nelemX
e=1

fei . (3.41)

The element stiffness matrix is given by

Ke =

Z 1

−1

Z 1

−1
BTCBdetJdξdη (3.42)

in terms of the element’s 2D theory space.
When detJ is no longer constant, the stiffness matrix polynomial becomes of

infinite order, and a strictly accurate numerical integration is not available. This
can be seen from Equation (3.42), whose right-hand side contains detJ in the
integrand.
The product which gives Ke is seen therefore to contain 1/det J in the inte-

grand, which is an infinite polynomial. We can term any element whose shape is
such that detJ is not constant over the element as distorted. Only undistorted
elements can be accurately evaluated numerically.
If singularities exist in the mapping, detJ becomes zero, corresponding to cer-

tain types of gross distortion, discussed in the next section. Large numerical errors
could result. Another requirement of the mapping is that it should not be both
positive and negative in the same element. If negative throughout the element, the
mapping sign can be reversed by software (e.g. by reversing the topology order).
Over an element, if det J is not constant but a polynomial, then a useful check

on the shape is to compare the maximum and minimum values of detJ , or their
ratio. Hence, checking detJ is a valuable element shape check.
To understand what are distortions it is useful to analyze the isoparametric

maps of 4 and 8 node elements.
Any change in shape in the user space from the original square is called a dis-
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Figure 3.4: Reference coordinates for four-node and eight node element used for give physical

meaning of coefficients αi,j

tortion. Several investigators have described the various shapes and their signifi-
cance, see, for example, Burrows [Burrows & Enderby, 1993], Robinson [Robinson,
1987b]—[Robinson, 1988] and the references therein.

3.3.2.1 Four-node element in detail

The isoparametric map

x : [−1, 1]× [−1, 1]→ B ⊂ R2

of a biunit on R×R onto a quadrilateral is defined for an 4-node element by

x =

½
x1
x2

¾
=

4X
i=1

Ui (ξ1, ξ2)

½
x1i
x1i

¾
= (3.43)

=

½
α1,0 + α1,1ξ1 + α1,2ξ2 + α1,3ξ1ξ2
α2,0 + α2,1ξ1 + α2,2ξ2 + α2,3ξ1ξ2

¾
(3.44)

x1,i, x2,i are nodal coordinate of an element. Shape functions Ui (ξ1, ξ2) for each
node are given as follows:

Ui =
1

4

¡
1 + ξ1,iξ1

¢ ¡
1 + ξ2,iξ2

¢
for i = 1, 2, 3, 4

the coefficients αi,j , for i = 1, 2 and j = 0 − 3, in terms of the nodal coordinates
x1,k , k = 1− 4, are:

α1,0 =
1

4
(x1,1 + x1,2 + x1,3 + x1,4) (3.45a)

α1,1 =
1

4
(−x1,1 + x1,2 + x1,3 − x1,4) (3.45b)

α1,2 =
1

4
(−x1,1 − x1,2 + x1,3 + x1,4) (3.45c)

α1,3 =
1

4
(x1,1 − x1,2 + x1,3 − x1,4) (3.45d)

and similar α2,j , which are determined in terms of the coordinates x2,k.
As show in [Robinson, 1987b] and whit respect to Equations (3.45) the physical

significance of the αi,j coefficients is shown in Figure 3.5. From Figure 3.5(a) it
is clear that α1,0 and α2,0 define an origin (translation of axes), Figure 3.5(b)
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Figure 3.5: Physical meaning of the coefficients α1,i and α2,i for i = 1, 2, 3, 4

shows that α1,1 and α2,2 define the size of rectangle (aspect ratio), Figure 3.5(c)
demonstrates that α1,2and α2,1 give two rotations (skew and rotation of axes), and
Figure 3.5(d), (e) shows that α1,3 and α2,3 give two tapers. If the local axes are
defined as in Figure ?? the shape parameter are:

aspect ratio =
max (α1,1, α2,2)

min (α1,1, α2,2)
(3.46)

skew =
α1,2
α2,2

(3.47)

taper in the x− direction =
α2,3
α2,2

(3.48)

taper in the y − direction =
α1,3
α1,2

(3.49)

3.3.2.2 Eight-node element in detail

The isoparametric map

x : [−1, 1]× [−1, 1]→ B ⊂ R2 (3.50)

of a biunit on R×R onto a quadrilateral is defined for an 8-node element by
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x =

½
x1
x2

¾
=

8X
i=1

Ui (ξ1, ξ2)

½
x1i
x1i

¾
= (3.51)

=

½
α1,0 + α1,1ξ1 + α1,2ξ2 + . . .+ α1,5ξ

2
2 + α1,6ξ

2
1ξ2 + α1,7ξ1ξ

2
2

α2,0 + α2,1ξ1 + α2,2ξ2 + . . .+ α2,6ξ
2
2 + α2,6ξ

2
1ξ2 + α2,7ξ1ξ

2
2

¾
(3.52)

x1,i, x2,i are nodal coordinate of an element. Shape functions Ui (ξ1, ξ2) for each
node are given as follows, for corner nodes:

Ui =
1

4

¡
1 + ξ1,iξ1

¢ ¡
1 + ξ2,iξ2

¢ ¡
ξ1,iξ1 + ξ2,iξ2 − 1

¢
for i = 1, 2, 3, 4 (3.53)

for boundary nodes:

Ui =
1

2

¡
1− ξ21

¢ ¡
1 + ξ2,iξ2

¢
for i = 5, 7 (3.54)

Ui =
1

2

¡
1 + ξ1,iξ1

¢ ¡
1− ξ22

¢
for i = 6, 8 (3.55)

the coefficients αi,j , for i = 1, 2 and j = 0 − 7, in terms of the nodal coordinates
x1,k , k = 1− 8, are:

α1,0 = −1
4
(x1,1 + x1,2 + x1,3 + x1,4) +

1

2
(x1,5 + x1,6 + x1,7 + x1,8) (3.56)

α1,1 =
1

2
(x1,6 + x1,8) (3.57)

α1,2 =
1

2
(−x1,5 + x1,7) (3.58)

α1,3 =
1

2
(x1,1 − x1,2 + x1,3 − x1,4) (3.59)

α1,4 =
1

2
(x1,1 + x1,2 + x1,3 + x1,4)− 1

2
(−x1,5 + x7) (3.60a)

α1,5 =
1

2
(x1,1 + x1,2 + x1,3 + x1,4)− 1

2
(−x1,6 + x1,8) (3.61)

α1,6 =
1

2
(−x1,1 − x1,2 + x1,3 + x1,4) +

1

2
(x1,5 − x1,7) (3.62)

α1,7 =
1

2
(−x1,1 + x1,2 + x1,3 − x1,4) +

1

2
(−x1,6 + x1,8) (3.63a)

and similarly α2,j , which are determined in terms of the coordinates x2,k. An
interpretation of the eight coefficients α1,i and α2,i for i = 1, 2, 3, 4, is shown in
Figure 3.6.
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Figure 3.6: Physical meaning of the coefficients α1,i and α2,i for i = 4, 5, 6, 7
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3.4 Numerical integration and optimal sampling
points

The integration in Equation (3.42) cannot be performed analytically, because the
equations are too complicated also for the simplest types of elements. Hence the
famous numerical integration scheme called Gaussian quadrature is used.

Figure 3.7: Optimal sampling points for the function (a) and its gradient (b) in one dimension

(linear elements)

The scheme integrates a polynomial curve in 1D, which effectively calculates
the area under the curve over the required interval. The rule order is the number
of integration points, or Gauss points, needed in the interval to perform an accu-
rate numerical integration. For each order, the Gauss points have to be situated at
particular locations within the interval. For a rule with n such points, polynomials
of up to and including order 2n− 1 are integrated accurately. In numerical analy-
sis terms, Gaussian quadrature is very efficient, requiring less points than other
methods of integration. In the limit of a straight line, n = 1, the integration cal-
culates the area of a simple quadrilateral. Polynomials higher than 2n− 1 cannot
be integrated accurately, which in finite element terms results in instabilities such
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as zero energy modes. If a given polynomial is integrated accurately by a rule of
order k, fit is also integrated accurately by all orders higher than k.
In our finite element calculation we often have a need for accurate estimates

of the derivatives of the primary variable. For example, in a plane stress or plane
strain analysis, the primary unknowns which we compute are the displacement
components of the nodes. However, we often are equally concerned about the
strains and stresses which are computed from derivatives of the displacements.
Likewise, when we model an ideal fluid with a velocity potential, we actually have

little or no interest in the computed potential, but we are very interested in the
velocity components which are the derivatives of the potential. A logical question
at this point is: what location in the element will give me the most accurate
estimate of derivatives?

Figure 3.8: Integration property of gauss points: (a) p = 1; (b) p = 2; (c) p = 3 which guarantees

superconvergence

At this stage, it is appropriate to restate the general problems discussed ear-
lier. In the displacement method, the stresses are discontinuous between elements
because of the nature of the assumed displacement variation. In analysis involv-
ing numerically integrated elements such an isoparametric elements experience has
shown that the integration points are best stress sampling points. The nodes,

which are the most useful output locations for stresses, appear to be worst sam-
pling points. Reasons for this phenomenon are not immediately apparent even
if they could be somehow explained basing on the arguments exposed in Section
3.1. However, it is well known that interpolation functions tend to behave badly
near the extremities of the interpolation region. It is therefore reasonable to ex-
pect the shape function derivatives (and hence stresses) sampled in the interior of
elements would be more accurate than those sampled on the element periphery.
Indeed in one dimension at least we shall find that such points often exhibit the
quality known as superconvergence (i.e., the values sampled at these points show
an error which decreases more rapidly than elsewhere). Obviously, the user of fi-
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nite element analysis should be encouraged to employ such points but at the same
time note that the errors overall may be much larger. To clarify ideas we shall
start with a typical problem of second order in one dimension.

Figure 3.9: Optimal sampling points for the function (a) and its gradient (b) in one dimension

(quadratic elements)

3.4.1 A one-dimensional example

Here we consider a problem of a second-order equation which may be typical of
either one-dimensional heat conduction or the equilibrium of a thin membrane
subjected to a transverse load b This equation can readily be written as

d

dx

µ
k
du

dx

¶
= b (3.64)

with the boundary conditions either defining the values of the function u or of its
gradients at the ends of the domain.
Let us consider a typical problem shown in Figure 3.7. Here we show an exact

solution for u and du/dx for a span of several elements and indicate the type of
solution which will result from a finite element calculation using linear elements.
We have already noted that on occasions we shall obtain exact solutions for u at

nodes. This will happen when the shape functions contain the exact solution of the
homogeneous differential equation, a situation which happens for Equation (3.64)
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when b = 0 and polynomial shape functions are used. In all cases, even when b

is non-zero and linear shape functions are used, the nodal values generally will be
much more accurate than those elsewhere, Figure 3.7(a). For the gradients shown
in Figure 3.7(b) we observe large discrepancies of the finite element solution from
the exact solution but we note that somewhere within each element the results are
nearly exact. It would be useful to locate such points and indeed we have already
remarked in the context of two-dimensional analysis that values obtained within
the elements tend to be more accurate for gradients (strains and stresses) than

those values calculated at nodes. Clearly, for the problem illustrated in Figure
3.7(b) we should sample somewhere near the centre of each element.

Figure 3.10: Cantilever beam with four 8-node elements. Stress sampling at cubic order (2x2)

Gauss points with extrapolation to nodes

Pursuing this problem further in a heuristic manner we shall note that, if higher
order elements (e.g., quadratic elements) are used, the solution still remains exact
or nearly exact at the end nodes of an element but may depart from exactness at
the interior nodes, as shown in Figure 3.9(a). The stresses, or gradients, in this case
will be optimal at points which correspond to the two Gauss quadrature points for
each element as indicated in Figure 3.9(b). This fact was observed experimentally
by Barlow in [Barlow, 1976]-[Barlow, 1977]-[Barlow, 1989], and such points are
frequently referred to as Barlow points.2

We shall now state in an axiomatic manner that:

2 The waste bin is not the right place for our failures, when an intelligent response can generate
ideas like the Barlow points. (by B. Irons from [Irons & Ahmadn, 1980])
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1. the displacements are best sampled at the nodes of the element, whatever the
order of the element is,

2. the best accuracy is obtainable for gradients or stresses at the Gauss points
corresponding, in order, to the polynomial used in the solution.

At such points the order of the convergence of the function or its gradients
is one order higher than that which would be anticipated from the appropriate
polynomial and thus such points are known as superconvergent.

Figure 3.11: Optimal superconvergent sampling and minimum integration points for some ele-

ments

3.4.2 Optimal sampling points

The single point at the centre of an element integrates precisely all linear func-
tions passing through that point and, hence, if the stresses are exact to the linear
form they will be exact at that point of integration. For any higher order poly-
nomial of order p, the Gauss-Legendre points numbering p will provide points of
superconvergent sampling. We see this from Figure 3.8 directly. Here we indicate

one, two, and three point Gauss-Legendre quadrature showing why exact results
are recovered there for gradients and stresses. For points based on rectangles and
products of polynomial functions it is clear that the exact integration points will
exist at the product points as shown in Figure 3.11 for various rectangular ele-
ments. In the same figure we show, however, some triangles and what appear to
be good but not necessarily superconvergent sampling points. Though we find that
superconvergent points do not exist in triangles, the points shown in Figure 3.11
are optimal. In Figure 3.11 we contrast these points with the minimum number of
quadrature points necessary for obtaining an accurate (though not always stable)
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Table 3.2: Basic element properties: the optimal points are also the reduced rule, althoug the

latter may give mechanism for some of the element types

Number of: number of intgn rules: stress var’n:

el. type nodes dofs el. order complete optimal points complete pseudo

2D TRI3 3 6 linear 1 1 const -

2D TRI6 6 12 quadr 3× 3 2× 2 linear -

2D Q4 4 8 linear 2× 2 1× 1 const linear

2D P8 8 16 quadr 3× 3 2× 2 linear quadr

2D Q9 9 18 quadr 3× 3 2× 2 linear quadr

stiffness representation and find these to be almost coincident at all times.

0
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0.5

(a)

(b)

Figure 3.12: Bending of a slender beam using 3×3 integration rules points: (a) shear stress map,
(b) longitudinal stress

The Gaussian quadrature integration rules suitable for different members of the
isoparametric element families are shown in Table 3.2.
In Figure 3.10, representing an analysis of a cantilever by four rectangular el-

ements with 8 nodes, we see how well the stresses sampled at superconvergent

points behave compared to the overall stress pattern computed in each element. It
is from results like this that many suggestions have been made to obtain improved
nodal values and one method proposed by Hinton and Campbell [Hinton & Camp-
bell, 1974] has proved to be quite widely used. However, we shall discuss better
recovery procedures later.
The extension of the idea of superconvergent points from one-dimensional ele-

ments to two-dimensional rectangles was fairly obvious. However, the full super-
convergence is lost when isoparametric distortion occurs.
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3.5 Effects of geometry distortion on the element
performance

It is well known that many existing finite elements exhibit poor performance
when the element geometry is distorted (see for example [Carey & Oden, 1983]—
[Zienkiewicz & Taylor, 1989]—[Striklin et al. , 1977]—[Backlund, 1978]—[Gifford,
1979]—[Cannarozzi et al. , 1997]—[Macneal & Harder, 1992]. A set of basic distor-

Figure 3.13: Classification of element distortions: (a) undistorted element; (b) ratio distortion;

(c) parallelogram distortion; (d) skew distortion; (e) mid-side node distortion; (f) curved edge

distortion.

tion shapes is shown in Figure 3.13. In practice, most distortions are a combination
of these.
It has been a common knowledge that the interpolation precision of quadran-

gular finite elements deteriorates if the element geometry is not a parallelogram.
This is because for more general element configurations, the global coordinates are
no more linear functions of local coordinates in the geometry mapping. Accord-
ingly, the local coordinates are no more polynomials of the global coordinates, but
irrational functions. Thus, the interpolated field is badly dependent on the real

shape of the element. Then, as hint before, there immediately occur two issues: the
first is how to determinate the interpolation precision that can be exactly achieved
by the shape functions for the element configuration, the second is whether we
can find an approach to improve the element performance. A qualitative method
is available to investigate the first issue: the polynomial we are interested in un-
derstanding when correctly captured (say x2) is expanded in terms of the local
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Figure 3.14: Distortion groups for serendipity eigth node elements

coordinates by using the geometry mapping and then we check if the shape func-
tions contain every term needed to describe it [Lee & Bathe, 1993]. This method
has been widely used, but due to the indirect analysis it gives no useful informa-
tion to evaluate, control or predict the resulting error as well as no indication on
how this trouble can be cured.
To study element distortions, it could be convenient to divide the shapes into

5 groups. Groups 1 to 4 follow the convention of Barlow [Barlow, 1989] and

are shown in Figure 3.14, while group 5 is covered by Figure 3.15. Each group
has geometric distortions in the user space, which contain certain terms from the
(ξ1, ξ2) polynomial in the theory space. The higher the group, the more terms
in this polynomial to represent the cartesian geometry. In ascending order of
distortion severity, the groups are:

• group 1: constant (ξ1, ξ2) terms, a square shape,

• group 2: linear (ξ1, ξ2) terms, a rectangle or a parallelepiped,

• group 3: quadratic (ξ1, ξ2) terms, displaced midside nodes, tapered rectangles,
simple curved sides,

• group 4: quasi-cubic (ξ1, ξ2) terms, more complicated distortion shapes,

• group 5: extreme distortions, where singularities exist such that the Jacobian
determinant, Equation (3.39) , is zero at one or more points.

Most practical distortions will be combinations of the above, when the group-
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Table 3.3: Total response errors from distributios for quadrilaterals 8-node serendipity elements,

(see [Barlow, 1989])

2× 2 Rule 3× 3 Rule
Distortion groups:

Order of strains 2 3 4 2 3 4

constant 0 0 0 0 0 0

linear 0 d2 d 0 d d

quadratic 1 1 1 1 1 1

Table 3.4: Stress calculation errors from distortions for quadrilaterals 8-node serendipity elements,

(see [Barlow, 1989])

General points Optimal 2× 2 points
Distortion groups:

Order of strains 2 3 4 2 3 4

constant 0 0 0 0 0 0

linear 0 d d 0 d2 d

quadratic 1 1 1 0 d d

ing is decided by the most severe component. In figure 3.14, the amount of the
distortion is indicated by a single measure of magnitude d (the α parameters of
Figure 3.5 and 3.6). Note that as the length of the side is 1, then d < 1 and so
d2 < d. The significance of these groupings is that errors due to the distortions
depend on the group, the magnitude of d and the nature of the strain field ex-
perienced by the element. The higher the group number, the worse the error can
be.
The nature of the strain experienced by the element is an important consid-

eration, since a highly distorted element may well model a certain component of
strain accurately and another (such as a transverse strain) badly. Also, for elastic
isotropic elements, strain is proportional to stress, so that we can consider either
strain or stress in these arguments. The exact strain distribution across an ele-
ment is not known a priori, so different strain fields are considered in turn. The
highest strain field that a single 8-node element can accommodate is quadratic (al-
beit incomplete), hence we consider the effects of constant, linear and quadratic
strain variations. In practice, they appear across the element as a combined effect,
but in this assessment they are considered in this separated form.
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Distortion errors do not occur for group 1 shapes, since there is no distortion.
For groups 2 to 4, Barlow [Barlow, 1989] has deduced for each distortion group
the error variations occurring in each element due to the applied strain variations.
Table 3.3 shows the order of magnitude of the errors for each distortion group,
under different orders of applied strain field. These errors are the combined errors
of the calculated stresses (or strains) and the resulting stiffness matrix. Table 3.4
shows the corresponding orders of magnitude of the error in the calculated stresses
(or strains) only. Here, general points are considered to be any locations in the

element other than the optimal points. In these tables, the error of 1 denotes the
same magnitude as the individual components of stiffness or stress, i.e. very large,
whilst d is the order of the distortion, which in this analysis is assumed to be small,
with d2 << d. In each entry, the error is for the worst case, so that some cases in
each category may show much less error.

Figure 3.15: Types of extreme distortions in four and eigth node elements

In Table 3.3, it is seen that the total response errors due to any order of dis-
tortion are negligible under constant strain fields, but are of order of unity under
quadratic strain fields, for both complete and reduced integration. The linear

strain field errors are slightly more favourable for reduced integration, mainly of
order d. Table 3.4 shows very small errors for stresses evaluated at the optimal
points, never more than d even for quadratic strain fields. At other points, the
errors are of order of unity under quadratic strain fields.
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The above groups have distortions measured by the geometric quantity d for
each particular shape. An alternative way to view element distortion is the Jaco-
bian determinant, as discussed in previous section. For groups 1 and 2, detJ is
constant over the element. For the other groups, it is not constant and has been
observed to vary: in general larger variations are observed for larger distortions.
Hence, the ratio of the maximum to minimum values of detJ over an element gives
an a priori guide to distortion. Many points over the element need to be sampled,
particularly on sides and faces; just sampling at the Gauss points is not sufficient.

The ratio is thus easily calculated for the mesh at generation time and is available
for diagnostic warnings in some commercial software. A value of typically 2 is of-
ten taken as a guide for the upper limit of this ratio, such that when exceeded the
distortion may be too severe, and the user should check this part of the mesh.
It should be emphasized that, in real life, some applied load cases may only give

rise to insignificant distortion errors in elements where the detJ ratio is high, and,
conversely, significant errors where the ratio is low. Evaluating the ratio therefore
has to be considered only as an indicative a priori guide to distortion.
Distortion effects can be assessed by calculating the individual distortion shapes

of Figure 3.13 for each element. These can be checked, along with detJ , by au-
tomatic software procedures, establishing which group is relevant to each element.
Then, knowledge of the amount of distortion in each element, by diagnostic warn-
ings of elements in certain of the above groups, or by the above det J ratios, enables
suitable warnings to be highlighted. The effects are, however, very dependent on
the applied loading, so that particular caution would be required if multiple load
cases were being run concurrently.

3.5.1 A simple distortion test for quadratic elements

For elements that have complete polynomial basis functions of at least degree 2
(8 and 9-node elements), we use the constant-bending-moment problem shown in
Figure 3.16 to demonstrate the effects of element distortions [Lee & Bathe, 1993].
The Young’s modulus is E = 1.0 × 107, Poisson’s ratio is ν = 0.3, thickness is
t = 1.0 and we are in a plane stress condition. We solve this problem using 8-
node, 9-node isoparametric elements and the meshes of Figure 3.16 (b)-(c). The

corresponding stress band plots are given in Figures 3.16 (d)-(e).
The results show that the 9-node Lagrangian element is not affected by angular

distortions, no matter how severe they may be. The 8-node serendipity element,
on the other hand, is badly affected by angular distortions. We also see that the 8-
and 9-node elements are significantly affected by the curved-edge distortions, and
by the mid-side node distortion Figure 3.17.
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Figure 3.16: The two element test: (a) the geometry and loading; (b) undistorted configuration;

(c) progressive distortion due to δ parameter; (d) stress band plots of longitudinal stresses (σxx) in

constant-bending-moment problem using undistorted mesh; (e) stress band plots of longitudinal

stresses (σxx) using a distorted mesh

These findings have several important practical implications, such as:

1. for a reliable analysis, the use of the serendipity elements is best restricted to
cases where rectangular or parallelogram elements can be used;

2. Lagrangian elements can be freely used: one need not be concerned about
awkward-looking meshes as long as the elements have straight sides and evenly
spaced nodes;

3. elements with curved sides should be used to represent only curved boundaries
since the performance of such elements is inferior to those that have straight
sides;

4. Lagrangian elements are preferred in large-displacement, large-strain analyses
since the elements in these analyses can quickly become distorted;

5. adaptive schemes in large deformation analysis should be based on the use of
completely new meshes when mesh/interpolation refinement at a particular

step is required.
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Figure 3.17: Stress band plots of longitudinal stresses (σxx) in constant-bending-moment problem

for a curved edge distortion and a mid-side node distortion

Angular distorted element usually appear in the mesh generation of curved
geometries and in transition regions from coarse to fine mesh, and also in the
nonlinear problems involving large deformations.
In some cases, extreme distortions actually model certain singularities correctly,

such as the elastic and elasto-plastic strain fields around sharp crack tips.
Automatic mesh generators would normally avoid generating such extreme dis-

tortions, although in some awkward geometrical shapes they could well arise. It
is therefore sensible to utilize any pre-processor checks for zero detJ . However,
checking this quantity has to be made at many locations over each element, in-

cluding on its boundaries, since detJ has a polynomial variation which is of higher
order the more the distortion, and so which requires a lot of sampling points to de-
tect trends towards zero. This check is usefully made with the ratio of maximum
to minimum det J over each element, to give some guidance to distortion effects.
Table 3.5 collect the polynomial displacement fields that can be solved exactly

by the various serendipity and Lagrangian elements in their undistorted and dis-
torted configurations, as shown by Lee and Bathe in [Lee & Bathe, 1993].

3.6 A new procedure to evaluate element
distortions

In this section an analytical procedure to evaluate element distortions is presented

[Castellazzi, 2001]-[Castellazzi & Ubertini, 2004].
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Consider Figure 3.3 the coordinate transformation defined by

T : x = x (ξ) , (3.65)

over the master element B̂. The following condition on the determinant of the
Jacobian matrix

j(ξ) = det [∇ξx] > 0, (3.66)

ensures locally the existence and uniqueness of the inverse map:

T−1 : ξ = ξ (x) . (3.67)

Transformation T is called direct transformation, transformation T−1 is called
inverse transformation. For convenience, in standard finite elements interpolation
functions (e.g. shape functions) are defined on the master element, F̂ = F̂ (ξ).
However, the interpolation quality should be evaluated over the physical domain.
Obviously, to determine the actual dependence of interpolation functions on x the

inverse map is needed:

F (x) = F (ξ (x))
T−1
= F̂ (ξ) .

Except for very simple element geometry, determining the inverse transformation
is an hard task, due to nonlinearity of Equation 3.65. In the following, the inverse
mapping is determined trough the Gröbner basis method [Cox et al. , 1992]. This
means to compute a Gröbner basis of the ideal generated by polynomials x−x (ξ).
The Gröbner basis is a new set of polynomials which has the same roots of the
original one x − x (ξ) and, in addition has a triangular form. Thus, one of the
new polynomials contains just one component of ξ and can be solved for in. Then
by back substitution into the other polynomial the inverse mapping can be found.
This procedure has no theoretical limitations, since Gröbner bases can always

be computed in a finite number of steps [Buchberger, 2001]—[Tran, 2000], using
for example a commercial software for algebraic manipulation such as MAPLE,
although it may be a very time consuming. However, in practice the one component
equation can be explicitly solved only up to the fourth degree. Moreover, the
resulting expressions could be heavy to be handled. In the following some basic
transformations are analyzed and discussed.
The analysis is conducted basing on the fact that if the direct transformation

is defined by polynomial P̂ :

x
def
= P̂ (ξ) , (3.68)

the inverse map, can be represented as:

ξ (x) = P (x) +NP (x) , with P ⊆ P̂ , (3.69)

where NP is the non-polynomial part. Indeed these equations have a completely
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polynomial form only if T is linear. Based on the above remark and taking into
account that the finite element generally crucially depends on the polynomial part
of the interpolation functions, the analysis is focused on this part. In particular
we consider vector Ξ̂ collecting monomials in ξ

Ξ̂ =
£
1, ξ1, ξ2, ξ1ξ2, ξ

2
1 . . . , ξ

n
2

¤
, (3.70)

which can be viewed as the basis of the shape functions. Then through the com-
puted inverse mapping we could determine the transformation basis Ξ, whose
structure can be analyzed based on the following matrix:

J0 = ∇Ξ, (3.71)

where derivations carried out with respect to

X =
£
1, x1, x2, x1x2, x

2
1, . . . , x

m
2

¤
. (3.72)

It is to be intended as a formal derivation capable to extract from lengthy ex-
pressions the polynomial part of the transformation, as shown by the following

example:

Ξ̂ = [1, ξ1, ξ2, ξ1ξ2] , (3.73)

X =
£
1, x1, x2, x1x2, x

2
1, . . .

¤
, (3.74)

a generic the inverse map, can be represented as:

ξ1 = x1 +
√
x1 (3.75)

ξ2 = x2

Ξ =
h
1, x1 +

√
x1, x2, x1x2 + x2

√
x1
i

(3.76)

J0 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (3.77)

By inspecting matrix J0 and, in particular, linear independence of rows and columns
we can extract useful information on the polynomial part of the transformation.

3.6.1 Some basic distortions of plane elements

For later convenience the transformation is written as

T : x = A2×1 +B2×2

∙
ξ1
ξ2

¸
+C2×3

⎡⎣ ξ21
ξ1ξ2
ξ22

⎤⎦+D2×i

⎡⎢⎣ ξ31
...
ξ32

⎤⎥⎦+ . . . (3.78)
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Table 3.6: Relation between elements of X and elements of Ξ

1 x1 x2 x1x2 x21 · · ·
l l l l l

1 ↔ ¥ 0 0 0 0 · · ·
ξ1 ↔ 0 ¥ 0 0 0 · · ·
ξ2 ↔ 0 0 ¥ ¥ 0 · · · =⇒ J

0

ξ1ξ2 ↔ 0 0 0 ¥ ¥ · · ·
...

...
...

...
...

...
. . .

Table 3.7: Trasformation and relation

T : x = A2×1 → translation

T : x = B2×2 · ξ02×1 → simple rotation if B2×2= R R ∈Orth

T : x = A2×1 +B2×2 · ξ02×1 → generic linear transformation

Where A2×1 is 0th order matrix , B2×2 is the first order matrix and so on. Table
3.7 collects some basic transformations.

In the following section we will denote by the letter Q quadrilateral Lagrangian
elements plus a number to identify the degree of completeness, that, Q1 denotes
four node Lagrangian elements, Q2 nine node Lagrangian element and Q3 sixteen
node Lagrangian element. We will use also the letter P for serendipity elements :
P2 denotes eigth-node serendipity element, P3 the twelve-node element.

3.6.2 A simple rotation

The simpler linear transformation is a rotation. With respect to Figure 3.18(a)
the transformation (3.78) reduces to

T : x = R · ξ, (3.79)

with R−1 = RT, and in extended form

T :

½
x1 = cosαξ1 − sinαξ2,
x2 = sinαξ1 + cosαξ2.

(3.80)

In this simple case, the inverse transformation can be easily computed and given
by

T−1 :
½

ξ1 = cosαx1 + sinαx2,
ξ2 = − sinαx1 + cosαx2. (3.81)
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Figure 3.18: Linear transformation: the local normal co-ordinate system for a simple rotation (a)

and for a generic lianear transformation (b).

Table 3.8: Relation between of the monomials

1 x1 x2 x1x2 x21 x22 x31 x21x2 x1x
2
2 x32 x41 x31x2 x21x

2
2 x1x

3
2 x42

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ξ1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

ξ2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

ξ1ξ2 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

ξ21 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

ξ22 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

ξ21ξ2 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0

ξ1ξ
2
2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

ξ21ξ
2
2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

Following the outlined procedure we can compute matrix J0, given by Table 3.8.

The analysis of this matrix can be summarized in the following three points.

1. The sub-matrix established by the first 4 rows and columns, corresponding
to bilinear Lagrange element Q1, have independent rows, resulting in the

following polynomial basis:

[1 x2 − x1 − x1x2]. (3.82)

2. The sub-matrix corresponding to Serendipity element P2 has independent
rows, resulting in the following polynomial basis:

[1 x2 − x1 − x1x2 2x22 2x21 − 2x1x22 2x21x2]. (3.83)

3. The sub-matrix corresponding to Lagrangian element Q2 has independent
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Table 3.9: Coordinate’s point, see Figure 3.18

x y
P1 0 0
P2 l1 cosα1 l1 sinα1
P3 l1 cosα1 + l2 cosα2 l1 sinα1 + l2 sinα2
P4 l2 cosα2 l2 sinα2

rows, resulting in the following polynomial basis:

[1 x2 − x1 − x1x2 2x22 2x21 − 2x1x22 2x21x2 4x21x
2
2]. (3.84)

This practical, and very simple, example show as rotation does not deteriorate
element performance, as expected.

3.6.3 A generic linear transformation

A generic linear transformation can be written as

T : x = A+B ·
∙
ξ1
ξ2

¸
=

∙
α1,0
α2,0

¸
+

∙
α1,1 α1,2
α2,1 α2,2

¸ ∙
ξ1
ξ2

¸
, (3.85)

and represents a quadrilateral with parallel straight edges, eventually rotated and
translated. For simplicity we set A = 0 (αi,0 = 0) that rules out the transla-
tion. Making reference to Figure 3.18(b) and Table 3.1, the direct and inverse
transformations are

T :

½
x1 = (l1 cosα1)ξ1 + (l2 cosα2)ξ2,
x2 = (l1 sinα1)ξ1 + (l2 sinα2)ξ2,

, (3.86)

T−1 :
½

ξ1 =
sinα2
l1d

x1 − cosα2
l1d

x2,

ξ2 =
sinα1
l2d

x1 − cosα1
l2d

x2,
, (3.87)

where

d = cosα1 sinα2 − cosα2 sinα1. (3.88)

Setting: c1 = cosα1, s1 = sinα1, c2 = cosα2, s2 = sinα2, and making reference to
Q2 element we have

Ξ̂ = [1 ξ1 ξ2 ξ1ξ2 ξ1
2 ξ2

2 ξ1
2ξ2 ξ1ξ2

2 ξ1
2ξ2

2], (3.89)

Xi = [1 x1 x2 x1x2 x21 x22 x31 x21x2 x1x
2
2 x32 x41 x31x2 x21x

2
2 x1x

3
2 x42]. (3.90)
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Table 3.10: Coefficients of a generic linear transformation

e1 =
s2
l1d

, e10 =
c2
2

l21d
2 , e19 =

³
2c2s1c1
l1d3l22

+ s2c1
2

l1d3l22

´
,

e2 = − c2
l1d

, e11 =
s21
l22d

2 , e20 =
s2s1

2

l1d3l22
,

e3 = − s1
l2d

, e12 = −2 s1c1
l22d

2 , e21 = − c2c1
2

l1d3l22
,

e4 =
c1
l2d

, e13 =
c21
l22d

2 , e22 =
4s2c2s1c1+s2

2c1
2+c2

2s1
2

l12d4l22
,

e5 = − s2s1
l1d2l2

, e14 =
³

s22c1
l21d

3l2
+ 2s2c2s1

l21d
3l2

´
, e23 =

³
−2s22s1c1

l12d4l22
− 2s2c2s1

2

l12d4l22

´
,

e6 =
³

s2c1
l1d2l2

+ c2s1
l1d2l2

´
, e15 =

³
− c2

2s1
l12d3l2

− 2s2c2c1
l12d3l2

´
, e24 =

³
−2s2c2c12

l12d4l22
− 2c2

2s1c1
l12d4l22

´
,

e7 = − c2c1
l1d2l2

, e16 = − s2
2s1

l21d
3l2

, e25 =
c2
2c1

2

l12d4l22
,

e8 =
s2

2

l21d
2 , e17 =

c2
2c1

l21d
3l2

, e26 =
s2

2s1
2

l12d4l22

e9 = −2 s2c2
l21d

2 , e18 =
³
−2s2s1c1

l1d3l22
− c2s1

2

l1d3l22

´
,

Then the functional matrix in Equation (3.71) takes the form:

J0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 e1 e2 0 0 0 0 0 0 0 0 0 0 0 0
0 e3 e4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 e6 e5 e7 0 0 0 0 0 0 0 0 0
0 0 0 e9 e8 e10 0 0 0 0 0 0 0 0 0
0 0 0 e12 e11 e13 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 e16 e14 e15 e17 0 0 0 0 0
0 0 0 0 0 0 e20 e18 e19 e21 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 e26 e23 e22 e24 e25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.91)

where coefficients ei are collected in Table 3.10. This matrix has full rank, the
first six columns are linear independent, just two columns are linear independent
from 7th to 10th and just one among the last five columns. Therefore the polynomial
part admits the following representation£

1 x1 x2 x1x2 x21 x
2
2 p1 p2 p3

¤
, (3.92)

where p1 and p2 are independent polynomials that are linear combinations of third

degree monomials: p1 = p1(x
3
1, x

2
1x2, x1x

2
2, x

3
2), p2 = p2(x

3
1, x

2
1x2, x1x

2
2, x

3
2),

whereas p3 is a linear combination of fourth degree monomials: p3 = p3(x
4
1, x

3
1x2,

x21x
2
2, x1x

3
2, x

4
2). For the eight-node serendipity element, Ξ̂ is the same except for

ξ1ξ2 and x takes the form

X =
£
1 x1 x2 x1x2 x21 x22 x31 x21x2 x1x

2
2 x32

¤
. (3.93)

The corresponding functional matrix can be obtained by the first eight rows and
ten columns of Equation (3.91). This new sub-matrix has full rank, and the most
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Table 3.11: Effects of a generic linear transformation

degree Q1 P2 Q2 P3 Q3
0◦ 1 1 1 1 1

1◦ x1 x2 x1 x2 x1 x2 x1 x2 x1 x2

2◦ p1 x1x2 x21 x22 x1x2 x21 x22 x1x2 x21 x22 x1x2 x21 x22

3◦ - p1, p2 p1, p2 x31 x21x2 x22x1 x32 x31 x21x2 x22x1 x32

4◦ - - p3 p4, p5 p6, p7, p8

5◦ - - - - p9, p10

6◦ - - - - p11

general algebraic polynomials represented by F̂ belong now to whole described by£
1 x1 x2 x1x2 x21 x22 p1 p2

¤
, (3.94)

where p1 and p2 are already known. The functional matrix of Q1 element can
be obtained by first four rows and first six columns of matrix contents in Equa-
tion (3.91). This new sub-matrix has full rank, and the most general algebraic
polynomials is described by

[1 x1 x2 p0] , (3.95a)

where p0 is a linear combination of second degree monomial:

p0 = p0(x
2
1, x1x2, x

2
2)

The same approach can be repeated also for other types of elements. The results
are summarized in Table 3.11.

3.6.4 A bilinear transformation

A generic bilinear transformation is given by

T : x =

∙
α1,1 α1,2 α1,3
α2,1 α2,2 α2,3

¸⎡⎣ ξ1
ξ2
ξ1ξ2

⎤⎦ . (3.96)

It transforms B̂ into a generic quadrilateral element. For simplicity we can analyze

three bilinear transformation considering to progressively distorted element config-
uration as described in Figure 3.19. Whit respect to Figure 3.19(a), transformation
reduces to

T :

½
x1 = α1,1 · ξ1 + α1,3 · ξ1ξ2
x2 = α2,2 · ξ2 , (3.97)



Chapter 3 75

Figure 3.19: Bilinear transformation: (a) taper distortion ), (b) taper distortion with skew, (c)

generic bilinear distortion

and the inverse mapping is

T−1 :

⎧⎪⎨⎪⎩
ξ1 = −

−x2
α2,2

ξ2 = −
α2,2 (−x1 + α1,1)

α1,1α2,2 + α1,3x2

, (3.98)

The T−1 are therefore established from the following basis functions:

[1 x2 r1 r2], (3.99)

where r1 and r2 are rational functions. With respect to Figure 3.19(b) transfor-
mation is:

T :

½
x1 = α1,1 · ξ1 + α1,2 · ξ2 + α1,3 · ξ1ξ2
x2 = α2,2 · ξ2 , (3.100)

and the inverse takes the form

T−1 :

⎧⎪⎨⎪⎩
ξ1 =

x1α2,4 − α1,1α2,4 − α1,4x2 + α1,4α2,1
α1,2α2,4

ξ2 =
α1,2 (x2 − α2,1)

x1α2,4 − α1,1α2,4 − α1,4x2 + α1,4α2,1

,

Now the quadrilateral element is not a parallelogram, and results from previous
case let to take off from (3.96) rotation terms, but without loosing generality.
With respect to Figure 3.19(c) the transformation is:

T :

½
x1 = α1,1 · ξ1 + α1,2 · ξ2 + α1,3 · ξ1ξ2
x2 = α2,2 · ξ2 + α2,3 · ξ1ξ2 . (3.101)

In this case the elimination process based in Gröbner basis leads to a second order
equation which yields to two possible solutions for the inverse map, but just one
is acceptable:

T−1 :
½

ξ1 = β1,0 + β1,1x1 + β1,2x2 + β1,3
p
r (1, x1, x2, x1x2, x21, x

2
2)

ξ2 = β2,0 + β2,1x1 + β2,2x2 + β2,3
p
r (1, x1, x2, x1x2, x21, x

2
2)

, (3.102)

where r
¡
1, x1, x2, x1x2, x

2
1, x

2
2

¢
is a polynomial, and βi,j are coefficients depending
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Table 3.12: Bilinear transformation

degree Q1 P2 Q2 P3 Q3

0◦ 1 1 1 1 1

1◦ x1 x2 x1 x2 x1 x2 x1 x2 x1 x2

2◦ - h1(x1x2, . . .), h2(x1x2, . . .) x1x2 x21 x22 x1x2 x21 x22 x1x2 x21 x22

3◦ - - - h3(x
3
1, . . .) x31 x21x2 x22x1 x32

on element geometry:

β1,0 =
(a1,2a2,1 − a1,1a2,2)

2 (a1,1a2,3 − a1,3a2,1)
, β1,1 =

a2,3
2 (a1,1a2,3 − a1,3a2,1)

,

β1,2 = −
a1,3

2 (a1,1a2,3 − a1,3a2,1)
, β1,3 = −

1

2a1,1a2,3 − a1,3a2,1
,

β2,0 =
a1,1a2,2 − a1,2a2,1
2 (a1,2a2,3 − a1,3a2,2)

, β2,1 =
a2,3

2 (a1,2a2,3 − a1,3a2,2)
,

β2,2 = −
a1,3

2 (a1,2a2,3 − a1,3a2,2)
, β2,3 =

1

2 (α1,3α2,2 − α2,3α1,2)
,

(3.103)

The T−1 is therefore based on the following:

[1 x1 x2

q
r (1, x1, x2, x1x2, x21, x

2
2)]. (3.104)

Based on the above results on inverse mapping, the analysis of the polynomial part
of interpolation functions can be carried out. The main results are summarized
in Table 3.12, when hi are linear combination of n-degree monomial, being n the
table row.

3.6.5 Higher degree transformations: quadratic curved-
edge

Here element geometry with quadratic curved edge is discussed. This most general
quadratic transformation is given by

T : x =

∙
α1,1 α1,2
α2,1 α2,2

¸ ∙
ξ1
ξ2

¸
+

∙
α1,3 α1,4 α1,5
α2,3 α2,4 α2,5

¸⎡⎣ ξ21
ξ1ξ2
ξ22

⎤⎦ . (3.105)

Among this class we focus the attention on two cases with an increasing level of
distortion as shown in Figure 3.20. Consider the semirectangulars [Frey et al. ,
1978] of Figure 3.20(a) and (b), whose transformation are given by

T :

½
x1 = α1,1ξ1 + α1,4ξ1ξ2 + α1,7ξ1ξ

2
2

x2 = α2,2ξ2
, (3.106)
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Figure 3.20: Higher degree transformations

and

T :

½
x1 = α1,1ξ1 + α1,2ξ2 + α1,3ξ1ξ2 + α1,4ξ

2
2

x2 = α2,2ξ2 + α2,3ξ1ξ2 + α2,4ξ
2
2

. (3.107)

Using the Gröbner basis method the inverse mappings of the first transformation
can be computed in the form

T−1 :

(
ξ1 =

x1α2,2
2

α1,1α2,22+α1,3x2α2,2+α1,5x22

ξ2 =
x2
α2,2

. (3.108)

In the second most severe case the Gröbner basis method leads to a fourth order
triangular system. The only acceptable solution can be written as

T−1 :

⎧⎪⎪⎨⎪⎪⎩
ξ1 = γ1,0 + γ1,1x1 + γ1,2x2 +

3
p
(3)
1 +γ1,3

√
r1

γ1,4
+

p
(2)
2

γ1,5· 3 p(3)3 +γ1,6
√
r1

ξ2 = γ2,0 +
3
p
(1)
4 +γ2,1

√
r2

γ2,2
+

p
(1)
5

γ2,3· 3 p(3)6 +γ2,4
√
r2

;

(3.109)

were r1 and r2 are polynomials of second degree, while γi,j are coefficients depend-
ing on element geometry, while p(k)j are polynomials, of degree k. Then, the T−1

has the following basis∙
1 , x1, x2,

3 p1 + t1
√
r1,

p2
3 p3 + t2

√
r1
, 3 p4 + t3

√
r2,

p2
3 p6 + t4

√
r2

¸
, (3.110)

where ti are coefficients depending on γi,j . Now the analysis can be carried out and
the main results are summarized in Table 3.13, where wi are polynomials whose
degree is indicated in the first column.

3.7 Some numerical tests

To numerically evaluate the effect of coordinate transformations on the element
interpolation capability and, so, verify the analytical results discussed in the pre-
vious section, single element test are used. The idea is the same of the Continuum
Region Element (CRE) method of Robinson [Robinson, 1985]—[Robinson, 1987a]
(Figure 3.21). A single element of any shape is constructed and displacement are
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Table 3.13: Higher degree transformations: quadratic curved-edge

degree P2 Q2 P3 Q3

0◦ 1 1 1 1

1◦ x1 x2 x1 x2 x1 x2 x1 x2

2◦ w1(x1x2, . . .) w2(x1x2, . . .) w3(. . .), w4(. . .) x21 x1x2 x22

3◦ - - w5(. . .) w6(. . .), w7(. . .)

4◦ - - - w8(. . .)

prescribed in all the nodes according to (a priori selected) analytical solution. Then
the numerical solution is computed and checked against the analytical solution.
In the following the basic element geometries discussed in the previous section

are considered, together with linear, quadratic and cubic prescribed displacement
fields. The results are presented by plotting the stress field and the finite element
stress field, and comparing locally the two solutions overlapping the contours of
the exact solution (red line) and the contour of the FEM solution (blue line) with

the local error. This plots confirm also that unfortunately the Barlow points not
always remain superconvergent points as already pointed out in [Barlow, 1989]. As,
experienced, when linear displacement field are prescribed, no errors were recorded,
independently of the element type used.

Figure 3.21: The Continuum Region Element test: displacements u = (x) are prescribed

3.7.1 Bilinear transformations

Consider the example shown in Figure 3.16 where a simple distortion test is per-
formed on a cantilever beam. Here we reproduce this distortion case using a CRE
approach. As shown by Table 3.12 all the elements represent correctly the linear
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displacement field, and so we do not report them. Differently for a quadratic dis-
placement field some difference occurs as shown by Table 3.12. Actually P2 and
Q2 elements have some difference due quadratic terms.
Consider first a quadratic displacement field. Figures 3.22 and 3.23 show that

a P2 element is not capable to represent it correctly. Taking a cubic displacement
field, Figures 3.24 and 3.25 shows the results for P2 elements. Figures 3.26 and
3.27 show that in this case also Q2 element is not capable to represent a quadratic
displacement field correctly and suffer of the same error distributions of P2 element.
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Figure 3.22: Element test for P8 elements: stress band plots stress for quadratic displacement

field and error distributions with contour line step: 0.001
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Figure 3.23: Element test for P8 elements: local error distributions for quadratic displacement

field plotted on stress contour plots for exact solution (red line) and FEM solution (blu line).

The red star markers show the positions of integrations points (contour interval: 0.001)



80 3.7- Bilinear transformations

 Exact x

0.5

1

1.5

 FEM x

0.5

1

1.5

Exact y

0.5

1

1.5

FEM y

0.5

1

1.5

Exact xy

0.5

1

1.5

FEM xy

0.5

1

1.5

FEM: x - MAX: 1.7697 FEM: y - MAX: 1.3771 FEM: xy  - MAX: 1.5789

Figure 3.24: Element test for P8 elements: stress band plots stress for cubic displacement field

and error distributions with contour line step: 0.1
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Figure 3.25: Element test for P8 elements: local error distributions for cubic displacement field

plotted on stress contour plots for exact solution (red line) and FEM solution (blu line). The red

star markers show the positions of integrations points (contour interval: 0.1)
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Figure 3.26: Element test for Q9 elements: stress band plots stress for cubic displacement field

and error distributions with contour line step: 0.1
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Figure 3.27: Element test for Q9 elements: local error distributions for cubic displacement field

plotted on stress contour plots for exact solution (red line) and FEM solution (blu line). The red

star markers show the positions of integrations points (contour interval: 0.1)

3.7.2 Higher order transformations

Here we intend to reproduce distortions of Figure 3.17 using the CRE approach.

As shown by Table 3.13 and Figure 3.17 all the "curved edge" elements represent
correctly the linear displacement field, and so we do not report them. On the
contrary for a bilinear displacement field some problems occur as shown by the
same table. Figures 3.28 and 3.29 show the results corresponding to a bilinear
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displacement field, which confirm that a P2 element is not capable to correctly
capture it. Moreover, Figures 3.30 and 3.31 confirm that Q2 element yields in
this case a similar response. Summing up, the numerical results presented above
confirm the results of the analysis presented in the previous section.
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Figure 3.28: Element test for P8 elements: stress band plots stress for cubic displacement field

and error distributions with contour line step: 0.02
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Figure 3.29: Element test for P8 elements: local error distributions for cubic displacement field

plotted on stress contour plots for exact solution (red line) and FEM solution (blu line). The red

star markers show the positions of integrations points (contour interval: 0.02)



Chapter 3 83

 Exact x

0.05

0.1

0.15

0.2

 FEM x

0.05

0.1

0.15

0.2

Exact y

0.05

0.1

0.15

0.2

FEM y

0.05

0.1

0.15

0.2

Exact xy

0.05

0.1

0.15

0.2

FEM xy

0.05

0.1

0.15

0.2

FEM: x - MAX: 0.14765 FEM: y - MAX: 0.63242 FEM: xy  - MAX: 0.48026

Figure 3.30: Element test for Q9 elements: stress band plots stress for cubic displacement field

and error distributions with contour line step: 0.02
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Figure 3.31: Element test for Q9 elements: local error distributions for cubic displacement field

plotted on stress contour plots for exact solution (red line) and FEM solution (blu line). The red

star markers show the positions of integrations points (contour interval: 0.02)

3.8 Distortion measures

One of the main concerns when generating a new mesh is the quality of elements
produced. In particular, the efficiency of adaptive refinement analysis depends
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on the shape of the elements, and so estimating the quality of element shape is
a requisite during the adaptive analysis being performed. Unfortunately, most
posterior error estimates can not evaluate the shape error of an element, so that
some difficulties remain in the application of an adaptive analysis.
The use of element distortion factors (computable a priori) is, therefore, a

necessary step in order to ensure that the elements shapes do not act as an extra
cause of deterioration in finite element analysis accuracy. Element shape distortion
can be defined in many forms, most notable of which are aspect ratios, skew,

taper and warp. Robinson [Robinson, 1987b] used three of the latter properties to
classify the distortion of four-noded quadrilaterals. A sensible choice of distortion
measure would be the determinant of the element’s Jacobian matrix. Robinson
expressed the shape parameters in terms of the Jacobian determinant for four-
noded quadrilaterals. However, the difficulty arising in linking each element’s
Jacobian determinant to such parameters (e.g., the aspect ratio or internal angles)
for elements of displacement order higher than one with curved sides was pointed
out. Eight further parameters in the form of the tangential and normal deviations
for each of the four edges were later added [Robinson, 1988]. Although these 12

parameters for eight-noded curved quadrilaterals provide a high degree of accuracy,
a higher computational workload is needed when calculating all twelve factors for
each element.
In [El-Hamalawi, 2000] a simple element distortion factor is proposed, based

only on interior angles, and here will be used as a comparison factor. In [Yuan &
Pian, 1994] a set of distortion measuring parameters for the quadrilaterals hybrid
stress membrane element is presented, based on Robinson’s distortion parameters
modified by geodesic coordinates, subsequently used in [Lautersztajn-S & Samuels-
son, 1997b] and [Lautersztajn-S & Samuelsson, 1998b]. Thus, significant reduction
of the number of these parameters, with respect to previous work, from 12 to 4,

from is obtained.

Figure 3.32: Simple distortione measure: (a) diagonal ratio c1; (b) middle point distance ratio

c2; (c) middle point pojection ratio (on reference axes) c3
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Table 3.14: Test No.1: two element test.

Distortion measure
δ̂ η e c0 c1 c2 c3

0.0000 -16.1778 0.0000 0.0000 1.0000 1.0000 1.0000
0.1000 -15.6361 0.0335 0.2792 0.9050 0.9950 1.0000
0.2000 -14.2400 0.1198 0.5381 0.8198 0.9806 1.0000
0.3000 -12.5666 0.2232 0.7643 0.7442 0.9578 1.0000
0.4000 -11.0137 0.3192 0.9542 0.6778 0.9285 1.0000
0.5000 -9.7113 0.3997 1.1107 0.6202 0.8944 1.0000
0.6000 -8.6383 0.4660 1.2389 0.5708 0.8575 1.0000
0.7000 -7.7203 0.5228 1.3443 0.5293 0.8192 1.0000
0.8000 -6.8674 0.5755 1.4315 0.4953 0.7809 1.0000
0.9000 -5.9574 0.6318 1.5043 0.4681 0.7433 1.0000

3.8.1 Distortion measures for four node elements

A quality measure for quadrilaterals can be depend as [El-Hamalawi, 2000]

c0 =

vuut 4X
i=1

(δθi)
2 (3.111)

where δθi =
¯̄
π
2 − θi

¯̄
is the deviation of interior angles θi from the optimum value

of π
2 , corresponding to the rectangular shape. In addition to the above indicator,

three more measures can be included [Castellazzi & Ubertini, 2004]: (a) diagonal
ratio c1; (b) middle point distance ratio c2; (c) middle point pojection ratio (on
reference axes) c3 see Figure 3.32. Making reference to the notation defined in the
previous section, the first parameter is given by

c1 =

q
α21,1 + 2α1,1α1,2 + α21,2 + α22,1 + 2α2,1α2,2 + α22,2q
α21,1 − 2α1,1α1,2 + α21,2 + α22,1 − 2α2,1α2,2 + α22,2

, (3.112)

the second is given by

c2 =

q
α21,2 + α22,2q
α21,1 + α22,1

, (3.113)

and the third parameter by

c3 =
|α1,1|
|α2,2| . (3.114)

3.8.2 Test No.1

The test in Figure 3.16 is considered, with h = 1, L = 2, M = 1 and results for the

tip deflection are given for the cases v = 0.3 and Young’s modulus equal to one.
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(a) (b)

(c) (d)

Figure 3.33: Contour bands of stress for a four-node element: (a) undistorted configuration; (b)

angular distortion with δ̂ = 0.3; (c) angular distortion with δ̂ = 0.6; (d) angular distortion with

δ̂ = 0.9

In Table 3.14 the first column indicates the dimensionless distortion coefficient
δ̂, (which varies from 0 to 1 and defines the mesh) and the second column the tip

deflection η, the third column the percentage relative deviation

e =
η̄ − η

η̄
(3.115)

where η̄ is the tip deflection when δ̂ = 0. In addition the distortion measures c0,
c1, c2, c3 are reported. In Figure 3.33 the stress bands plot of the σx stress com-

ponent, are plotted for four different value of δ̂. It is clear the effect of progressive
deterioration.

3.8.3 Test No.2

The cantilever beam of Figure 3.34 is analyzed with four node elements and dif-
ferent meshes. Young’s modulus is set to 1, Poisson’s coefficient to 0.3 and F to
1. The results are collected in Tables 3.15—3.18.
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Figure 3.34: A beam problem: (a) the geometry and load; (b) discretization for undistorted

configuration, reference solution; (c) linear distortion; (d) first bilinear distortion; (e) second

bilinear distortion; (f) taper distortion; (g) arbitrary bilinear distortion;

Table 3.15: A beam problem: clamped beam along one end and vertically loaded at the free end

with distorted element as shown in Figure (3.34)(c)

Distortion measure.
δ̂ η e c0 c1 c2 c3

0.0000 -3791.1856 0.0000 0.0000 1.0000 1.0000 1.0000
0.1000 -3786.8955 0.0011 0.0926 0.9938 0.9999 1.0000
0.2000 -3780.5241 0.0028 0.1847 0.9878 0.9997 1.0000
0.3000 -3772.0722 0.0050 0.2760 0.9820 0.9993 1.0000
0.4000 -3761.5454 0.0078 0.3659 0.9762 0.9988 1.0000
0.5000 -3748.9549 0.0111 0.4541 0.9707 0.9981 1.0000
0.6000 -3734.3160 0.0150 0.5402 0.9653 0.9972 1.0000
0.7000 -3717.6481 0.0194 0.6240 0.9601 0.9963 1.0000
0.8000 -3698.9729 0.0243 0.7053 0.9550 0.9951 1.0000
0.9000 -3678.3134 0.0298 0.7838 0.9500 0.9939 1.0000
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Table 3.16: A beam problem: clamped beam along one end and vertically loaded at the free end

with distorted element as shown in Figure (3.34)(c)

Distortion measure.
δ̂ η e c0 c1 c2 c3

0.0000 -3791.1856 0.0000 0.0000 1.0000 1.0000 1.0000
0.1000 -3786.8033 0.0012 0.0463 0.9784 0.9936 0.9938
0.2000 -3781.9247 0.0024 0.0926 0.9573 0.9869 0.9879
0.3000 -3776.5385 0.0039 0.1388 0.9367 0.9799 0.9820
0.4000 -3770.6324 0.0054 0.1847 0.9166 0.9727 0.9764
0.5000 -3764.1936 0.0071 0.2305 0.8971 0.9650 0.9708
0.6000 -3757.2084 0.0090 0.2760 0.8781 0.9571 0.9654
0.7000 -3749.6631 0.0110 0.3211 0.8596 0.9489 0.9601
0.8000 -3741.5434 0.0131 0.3659 0.8417 0.9404 0.9549
0.9000 -3732.8347 0.0154 0.4102 0.8243 0.9315 0.9498

Table 3.17: A beam problem: clamped beam along one end and vertically loaded at the free end

with distorted element as shown in Figure (3.34)(c)

Distortion measure.
δ̂ η e c0 c1 c2 c3

0.0000 -3791.1856 0.0000 0.0000 1.0000 1.0000 1.0000
0.1000 -3786.7882 0.0012 0.0707 0.9753 0.9997 1.0000
0.2000 -3780.9705 0.0027 0.1410 0.9512 0.9988 1.0000
0.3000 -3773.7398 0.0046 0.2106 0.9278 0.9972 1.0000
0.4000 -3765.1218 0.0069 0.2792 0.9050 0.9950 1.0000
0.5000 -3755.1588 0.0095 0.3465 0.8828 0.9923 1.0000
0.6000 -3743.9076 0.0125 0.4122 0.8612 0.9889 1.0000
0.7000 -3731.4362 0.0158 0.4761 0.8402 0.9850 1.0000
0.8000 -3717.8206 0.0194 0.5381 0.8198 0.9806 1.0000
0.9000 -3703.1413 0.0232 0.5980 0.8001 0.9756 1.0000

Table 3.18: A beam problem: clamped beam along one end and vertically loaded at the free end

with distorted element as shown in Figure (3.34)(c)

Distortion measure.
δ̂ η e c0 c1 c2 c3

0.0000 -3791.1856 0.0000 0.0000 1.0000 1.0000 1.0000
0.1000 -3788.0883 0.0008 0.1027 0.9861 0.9861 0.9861
0.2000 -3782.5727 0.0023 0.2071 0.9725 0.9726 0.9725
0.3000 -3774.5421 0.0044 0.3150 0.9591 0.9595 0.9593
0.4000 -3763.8307 0.0072 0.4279 0.9460 0.9468 0.9463
0.5000 -3750.1957 0.0108 0.5468 0.9332 0.9345 0.9336
0.6000 -3733.3006 0.0153 0.6724 0.9205 0.9227 0.9212
0.7000 -3712.6732 0.0207 0.8049 0.9081 0.9113 0.9090
0.8000 -3687.5855 0.0273 0.9437 0.8959 0.9004 0.8970
0.9000 -3656.5848 0.0355 1.0876 0.8839 0.8900 0.8852
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A posteriori error estimation

Nella prima parte di questo capitolo, vengono introdotti i concetti di base su cui
si fonda la stima a posteriori dell’errore di discretizzazione in analisi agli elementi
finiti.
In seguito, l ’attenzione é incentrata sui cosiddetti "patch recovery methods",

ovvero sui metodi che stimano l ’errore per confronto della soluzione agli elementi

finiti con una più accurata ottenuta previa opportuna ricostruzione (recovery) del
campo di sforzi operata localmente su piccoli insiemi di elementi contigui (patch).
In questo contesto, sono illustrate alcune delle più note tecniche presenti in letter-
atura e viene sviluppata una nuova procedura di ricostruzione locale degli sforzi,
denominata RCP (Recovery by Compatibility in Patches), ottenuta rilassando la
compatibilità cinematica, attraverso la minimizzazione di un funzionale tipo ener-
gia complementare, definito sulla patch.
Nell’ultima parte del capitolo, viene condotta un ’ampia sperimentazione nu-

merica che mostra come la nuova procedura risulti versatile, robusta e supercon-
vergente.

4.1 Aims and concepts of a posteriori error
estimation

The remarkable success of some a posteriori error estimators has opened a new
chapter in computational mechanics. By effectively estimating error, the possi-
bility of controlling the entire computational process through new adaptive algo-
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rithms emerges. Fresh criteria for judging the performance of algorithms become
apparent. Most importantly, the analyst can use a posteriori error estimates as an
independent measure of the quality of the simulation under study.
The a priori estimation of errors in numerical methods has long been an enter-

prise of numerical analysts. Such estimates give information on the convergence
and stability of various solvers and can give rough information on the asymptotic
behavior of errors in calculations as mesh parameters are appropriately varied.
Traditionally, the practitioner using numerical simulations, while aware that er-

rors exist, is rarely concerned with quantifying them. The quality of a simulation
is generally assessed by physical or heuristic arguments based on the experience
and judgment of the analyst. Frequently such arguments are later proved to be
flawed.
Some of the earliest a posteriori error estimates used in computational me-

chanics were developed for the solution of ordinary differential equations. These
are typified by predictor-corrector algorithms in which the difference in solutions
obtained by schemes with different orders of truncation error is used as rough esti-
mates of the error. This estimate can in turn be used to adjust the discretization

step. It is notable that the original a posteriori error estimation schemes for el-
liptic problems had many features that resemble those for ordinary differential
equations.
Modern interest in a posteriori error estimation for finite element methods for

two point elliptic boundary value problems began with the pioneering work of
Babuška and Rheinboldt [Babuška & Rheinboldt, 1978]-[Babuška & Rheinboldt,
1979]. A posteriori error estimation techniques were developed by investigating the
residuals occurring in a patch of elements or even in a single element what makes
possible to estimate the errors in energy, or an energy norm, which arise locally.
The original approaches for error estimation and indeed for correcting these by

adaptive refinement started by simply looking at the elements with largest error
and dividing these to achieve some acceptable accuracy. These formed the basis
of adaptive meshing procedures designed to control and minimize the error.
The use of complementary energy formulations for obtaining a posteriori error

estimates was put forward by de Veubeke [de Veubeke, 1965]. However, the method
failed to gain popularity being based an a global computation. The idea of solving
element by element complementary problems together with the important concept
of constructing equilibrated boundary data to obtain error estimates was advanced
by Ladeveze and Leguillon [Ladeveze & Leguillon, 1983]. Related ideas are found
in the work of Kelly [Kelly, 1984].
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During the early 1980s the search for effective adaptive methods led to a wide
variety of ad hoc error estimators. Many of these were based on a priori or in-
terpolation estimates, that provided crude but effective indications of features of
error sufficient to drive adaptive processes.
Since these early works many players entered the field and today the procedures

available for error estimation are essentially reduced to two kinds. These are, first,
the residual error estimators, continuing the original suggestions of Babuška but the
emphasis is now on use of self-equilibrating patches. Here the work of Ainsworth

and Oden [Ainsworth & Oden, 1992], [Ainsworth & Oden, 1993], and others is
important. Such residual approaches have gained universal mathematical aplomb
and for some years formed the basis of acceptable error estimators.
The second kind of procedures was initially suggested by Zienkiewicz and Zhu

in 1987 [Zienkiewicz & Zhu, 1987] and consist of using a recovery process to obtain
a more accurate representation of the unknowns. In the original procedure, simple
averaging and the so-called L2 projection recovery of Brauchli and Oden [Brauchli
& Oden, 1971] were used to estimate errors. This is a simple error estimation
technique that is effective for some classes of problems and types of finite ele-

ment approximations. Indeed, their method started the new category of recovery-
based methods: gradients of solutions obtained on a certain domain partition are
smoothed and then compared with the gradients of the original solution to assess
error. This approach was later modified [Zienkiewicz & Zhu, 1992a]-[Zienkiewicz
& Zhu, 1992b], leading to the well-known Superconvergent Patch Recovery (SPR)
method, which provides very accurate recovered values that generally converge at
a higher rate than the original finite element solution so giving a solid basis for
error estimation.
In the SPR, the standard process was to find, in a patch formed by the elements

surrounding a node or a element, a set of points at which the accuracy of the finite

element solution was higher, such as the superconvergence points, and then to
pass a least squares approximation of the function of the stresses or gradients (as
in the case of thermal problems) through such values. With the knowledge of these
more accurate stresses or gradients of the solution, the energy norm could easily
be estimated and, indeed, so could the local values of stresses and gradients [Lee
et al. , 1997]—[Lo & Lee, 1998].
Today the methodology is widely used, industrially, following the same prac-

tice, but some variants of it have been introduced. In one of these variants the
superconvergent values are taken not as the stresses or gradients of the solution,
but on the values of the original functions themselves. It is known for instance

that superconvergence will always occur in these values for triangular elements
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at the vertex nodes, whereas in the same triangular elements such superconver-
gence for the stresses or gradients does not exist. Therefore for triangular elements
it is preferable to include in the patch superconvergence of the displacements or
the basic function itself and then to find its gradients by establishing a suitable
polynomial of higher order. This procedure of obtaining the recovered values is
currently widely used and many papers by Wiberg have contributed very much to
this recovery methodology [Wiberg & Abdulwahab, 1993]-[Wiberg, 1997]-[Wiberg
& Abdulwahab, 1997a]-[Wiberg & Abdulwahab, 1997b]-[Wiberg & Li, 1999].

The subject of a posteriori error estimation for finite element approximation
has now reached maturity. In fact, study of robustness of existing estimators and
identifying limits on their performance has gained importance. Noteworthy in this
respect is the work of Babuška et al. [Babuška et al. , 1994a]-[Babuška et al.
, 1994b] who conducted an extensive study on the performance and robustness
of the main error estimation techniques. This methodology is essentially a sort of
patch test (Babuška patch test) in which arbitrary fields of finite elements, assumed
to be repeatable in space, are subjected to the next higher order basic polynomial
contained in the original shape functions. Obviously if the finite elements used

include quadratics any solution which is quadratic terms will be exactly returned
through the numerical computation and the main errors will be concentrated only
in the cubic terms. Thus it is necessary, in a repeatable sense, to impose only cubic
polynomials on the patch and test whether errors arise and, if so, their magnitude.
By doing this it is easy to establish whether the procedures capture errors exactly
or simply show the errors for inexact solutions. Here Babuška proposed to value
each error estimator with a robustness index and after many tests concluded that
the robustness index was definitively optimal for the recovery methods, with the
residual methodology giving much poorer results.

4.1.1 Residual based approaches

The residual type of error estimator was first introduced by Babuška and Rhein-
boldt [Babuška & Rheinboldt, 1978] and their research was later followed by many
others [Ladeveze & Leguillon, 1983]—[Babuška & Miller, 1987]—[Ainsworth & Oden,
1992]—[Ainsworth & Oden, 1993]—[Ainsworth & Oden, 1997]. This type of error

estimator is computed by using the residuals of the finite element solution implic-
itly or explicitly. The term explicit or implicit is used in a context similar to the
characterization of explicit and implicit difference schemes for time-marching al-
gorithms: explicit schemes involve a direct computation using available data while
implicit schemes involve the solution of an algebraic system of equations. The
implicit residual error estimators are determined by solving local boundary value
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problems for the error, which use the residuals of the finite element solution as
data. The explicit residual error estimators are, on the other hand, expressed di-
rectly by the residuals of the discretization solution. As might be expected, explicit
schemes generally require less computational effort than implicit schemes but in-
volve compromises in robustness and in utility as means for accurate, quantitative
error estimation. The accuracy of the implicit residual error estimator depends on
how the local problem is solved. In particular, how the boundary conditions of
the local problem are set. Several techniques have been developed to split the flux

on the boundary of the element by satisfying some equilibrium conditions. The
accuracy of the explicit residual error estimator depends on the accuracy of the
constants contained in the error estimator. The robustness of this type of error
estimator, as shown by Babuška and coworkers [Babuška et al. , 1994a]—[Babuška
et al. , 1994b]—[Babuška et al. , 1995b]—[Babuška et al. , 1995a]—[Babuška et al. ,
1997a]—[Babuška et al. , 1997c]—[Babuška et al. , 1998], depends on the regularity
of the problem and the mesh used in the finite element analysis.

4.1.2 Recovery based approaches

The finite element method produces the optimal approximation from the finite
element subspace. However, it is frequently the case that the finite element analyst
is more interested in the gradient of the finite element approximation, than in the
approximation itself. For instance, in computational elasticity, the stresses and
strains are the primary concern, rather than the displacements. Furthermore, the

normal component of the gradient of the approximation is generally discontinuous
across the element boundaries, meaning that the practitioner is presented with
a discontinuous approximation to the main quantity of interest. For this reason,
many finite element packages incorporate a post-processing procedure whereby the
discontinuous approximation to the gradient is smoothed before being presented
to the user.
The reasons for performing such a post-processing are not purely cosmetic: un-

der certain circumstances it is found that the accuracy of the smoothed gradient is
superior to the approximation provided by the untreated gradient of the original
finite element approximation. A rather natural approach to a posteriori error esti-

mation is based on measuring the difference between the direct and post-processed
approximations to the gradient. This ostensibly rather crude approach can result
in astonishingly good estimates for the true error. In this approach, the error es-
timator is computed by first using some recovery techniques to achieve a more
accurate, or even superconvergent solution from the finite element approximation.
The recovered solution is then used in place of the exact solution to compute the
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error:

exact error = FEM solution - exact solution, (4.1)

estimated error = FEM solution - recovered solution. (4.2)

This type of error estimator is very easy to implement and is computationally very
efficient. Obviously the accuracy of the error estimator depends on the accuracy
of the recovered solution.
The appeal of such procedures to practitioners is easy to appreciate. The

ready availability of a post-processed gradient in the finite element package means
that the estimator may be easily implemented. This approach allows considerable
leeway in the selection of the post-processed gradient, and there are as many

different estimators as there are post-processing techniques.
One class of techniques that is particularly popular with the engineering com-

munity is averaging methods. The gradient of the finite element approximation
provides a discontinuous approximation to the true gradient. This may be used to
construct an approximation at each node by averaging contributions from each of
the elements surrounding the node. These values may then be interpolated to ob-
tain a continuous approximation over the whole domain. The specific steps used
to construct the averaged gradient at the nodes distinguish the various estima-
tors and have a major influence on the accuracy and robustness of the ensuing
estimator.

Nodal averaging of derivatives (or stresses) has been practised since the incep-
tion of the finite element method to present the user with more realistic results.
Although the basis of the process was initially intuitive its success is closely linked
with the existence of superconvergent points in many finite element solutions at
which the normal rate of theoretical convergence is exceeded by one order. The
existence of such optimal sampling points has been suggested quite early [Barlow,
1976]-[Barlow, 1977] and has been subject to much research since. Extrapolation
from such superconvergent points and subsequent averaging at nodes (local pro-
jection) gives clearly a sound basis for improved nodal values obtainable for linear
elements in which the superconvergent point is that of the element centroid for

quadrilaterals and that of a mid side of triangles. A widely used technique of Hin-
ton and Campbell [Hinton & Campbell, 1974] for quadrilateral quadratic elements
follows a similar procedure using the 2 × 2 Gauss points sampling and bilinear
extrapolation.
Different strategies were developed in recent years, namely, simple nodal av-

eraging, L2-projections (see [Brauchli & Oden, 1971]), and the so called Super-
convergent Patch Recovery (SPR) technique, introduced by Zienkiewicz and Zhu
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[Zienkiewicz & Zhu, 1992c], [Zienkiewicz & Zhu, 1992a], [Zienkiewicz & Zhu,
1992b]-[Zienkiewicz et al. , 1993]-[Zienkiewicz & Zhu, 1995]. Meanwhile, vari-
ous enhancements of the SPR technique have been presented (see e.g. Wiberg
and Abdulwahab [Wiberg & Abdulwahab, 1993]-[Wiberg, 1997]-[Wiberg & Abdul-
wahab, 1997a]-[Wiberg & Abdulwahab, 1997b], Blacker and Belytschko [Blacker
& Belytschko, 1994], Kvamsdal and Okstad [Kvamsdal & Okstad, 1998], Duarte
[Duarte & Dutra Do Carmo, 2000] and Gu [Gu et al. , 2004]).

4.2 Some recovery methods

In this section, two of the most popular recovery based methods, that is the SPR
method, the REP method are illustrated.

4.2.1 Superconvergent Patch Recovery: SPR

The Superconvergent Patch Recovery procedure was introduced by Zienkiewicz and
Zhu in 1992 [Zienkiewicz & Zhu, 1992c] and is characterized by single and contin-
uous polynomial expansion of the function describing the derivatives used on an

element patch surrounding the nodes at which recovery is desired. This expansion
can be made to fit locally the superconvergent points in a least square manner or
simply be an L2 projection of the consistent finite element derivatives. The first of
these processes will be shown always to lead to superconvergent recovery of nodal
derivatives or stresses. The second, although not generally superconvergent, will
still always result in a considerable improvement of recovered nodal values.
In the previous chapter we have shown that sampling of the gradients and

stresses at some particular points is generally optimal and possesses a higher order
accuracy when such points are superconvergent. However, we would also like to
have similarly accurate quantities elsewhere within each element for general analy-

sis purposes, and in particular we need such highly accurate gradients and stresses
when the energy norm or other similar norms have to be evaluated in error es-
timates. We have already shown how with some elements very large errors exist
beyond the superconvergent point and attempts have been made from the earliest
days to obtain a complete picture of stresses which is more accurate overall. Here
attempts are generally made to recover the nodal values of stresses and gradients
from those sampled internally and then to assume that throughout the element
the recovered stresses σ∗ are obtained by interpolation in the same manner as the
displacements by, first, recovering nodal values σ̄∗ and, then, interpolating these
values by standard shape functions:

σ∗ = Uσ̄∗, (4.3)
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where U are the same basis functions as for the interpolation of displacements in
Equation (2.22). Thus, the key step is to determine the nodal values σ̄∗. This is a
process used almost from the beginning of finite element calculations for triangu-
lar elements, where elements are sampled at the centroid (assuming linear shape
functions have been used) and then the stresses are averaged at nodes. However
this is not the best for triangles and for higher order elements such averaging is
inadequate.

4.2.1.1 Implementation of the SPR procedure

Local patches of elements are considered, assembled around a central node. If we
accept the superconvergence of σh at certain points s in each element, then it is
a simple matter to compute σ∗ which is superconvergent at all points within the
element. The procedure is illustrated for two dimensions in Figure 4.1.
At the superconvergent points the values of σh are accurate to order p and not

p − 1 as is true elsewhere (p is the order of the polynomials in the dispacement
shape functions). However, we can easily obtain an approximation given by a poly-
nomial of degree p, with identical order to these occurring in the shape function for

displacement, which has superconvergent accuracy everywhere if this polynomial
is made to fit the superconvergent points in a least square manner.

Figure 4.1: Interior patches for quadrilateral elements: (a) 4-nodes elements; (b) 8-node elements;

(c) 9-node elements

Thus we proceed by introducing the following approximation for the recovered
solution over the patch

σ∗p = P
∗a. (4.4)

where P∗ is a matrix of approximation functions, a is a vector of unknown para-
meters and subscript ·p emphasizes that the recovery is done over the patch.
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For instance, in two dimensional elasticity P∗ and a are given by

σ∗ =

⎡⎣ σ11
σ22
τ12

⎤⎦ , P∗ =
⎡⎣ P̃ (x)

P̃ (x)

P̃ (x)

⎤⎦ , a =

⎡⎣ a1
a2
a3

⎤⎦ , (4.5)

where P̃ (x) is a 1×m vector that contains the polynomials terms in x coordinates,
ai is a m× 1 vector of unknown coefficients and m is the number of terms used to
form the polynomial bases of order p

P̃ (x, y) =
h
1, x1, x2, . . . , xp1, x

p−1
1 x2, . . . , x1x

p−1
2 , xp2

i
. (4.6)

To evaluate the vector of unknown parameters a, we minimize, the following func-

tional

F (a) =
nX
i=1

£
σh(xi)− σ∗p(xi)

¤2
=

=
nX
i=1

£
σh(xi)−P∗(xi)a

¤2
, (4.7)

over an assigned patch Ωp

Ωp =

nep[
j=1

Ωj, (4.8)

formed by nep elements, where xi is the i-th superconvergent point, and n = nep×k
is the amount of sampling points being k the number of sampling points for element.
Minimization of F (a) yields:

∂F (a)

∂a
=

nX
i=1

P∗T(xi)P∗(xi)a−
nX
i=1

P∗T(xi)σh(xi) = 0, (4.9)

or in compact form

Ha = g, (4.10)

where

H =
nX
i=1

P∗T(xi)P∗(xi), (4.11)

and

g =
nX
i=1

P∗T(xi)σh(xi). (4.12)

Equation (4.10) can now be solved to compute the coefficients a

a =H−1g. (4.13)

The availability of σ∗p allows the values of σ̄∗ to be determined at all nodes. As
some nodes belong to more than one patch, average values of σ̄∗ are best obtained.
Finally, the recovered solution σ∗ throughout each element is achieved by Equation
(4.3).
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Figure 4.2: Recovery of exact σ of degree p by linear elements (p = 1)

In Figure 4.2 and 4.3 we show, in a one-dimensional example, how the Super-
convergent Patch Recovery works. The Superconvergent Patch Recovery can be
extended to produce superconvergent displacements. The procedure for the dis-
placements is quite simple if we assume the superconvergent points to be at nodes
of the patch. However, as we have already observed it is always necessary to have
more data than the number of coefficients in the particular polynomial to be able
to execute a least square minimization. Here of course we occasionally need a
patch which extends further than before, particularly since the displacements will

be given by a polynomial one order higher than that used for the shape functions.
The recovered solution σ∗ has on occasion been used in dynamic problems,

because in dynamic problems the displacements themselves are often important.

4.2.1.2 L2 recovery variant

An alternative procedure lies on the local L2 projection to obtain the polynomial
solution locally on each patch. The functional F (a) to be minimized is given by

F (a)=

Z
Ωp

(σh − σ∗p)2dV =

Z
Ωp

(σh −P∗a)2dV, (4.14)

where, similar to (4.8), the patch domain is defined by

Ωp =

nep[
j=1

Ωj . (4.15)

Minimizing F (a) yields Z
Ωp

P∗TP∗dV a =
Z
Ωp

P∗TσhdV, (4.16)

and again

a =H−1g, (4.17)
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where

H =

Z
Ωp

P∗TP∗dV and g =

Z
Ωp

P∗TσhdV. (4.18)

It is interesting to note that if we use the numerical integration to compute the
Equation (4.18), we obtain an analogous expression to Equation (4.11); in this case

each terms of the sum will be multiplied by a weight coefficient, and we obtain the
same results obtained before if and only if the integration points are the same of
the superconvergence points.
The L2 recovery gives much inferior answers, showing superconvergence only

for odd values of p and almost no improvement for even values of p.

Figure 4.3: Recovery of exact σ of degree p by quadratic elements (p = 2)

4.2.2 Recovery by Equilibrium in Patches: REP

Although SPR has proved to work well generally, the reason behind its capability
of producing an accurate recovered solution even when superconvergent points do
not in fact exist remains an open question. An alternative, known by the acronym

REP (Recovery by Equilibrium in Patches), was first presented in [Boroomand
& Zienkiewicz, 1997b] and later improved in [Boroomand & Zienkiewicz, 1997a]-
[Boroomand & Zienkiewicz, 1999]-[Boroomand et al. , 1999].
To some extent the motivation is similar to that of Ladeveze et al. [Ladeveze

& Leguillon, 1983] who sought to establish (for somewhat different reasons) a fully
equilibrating stress field which can replace that of the finite element approximation.
The method operates in the some way of SPR. It is aimed at recovering a new
solution σ∗p over patches of elements. These solutions are used to compute the



100 4.2- Implementation of the REP procedure

nodal values σ̄∗p which are formally interpolated by Equation (4.3) to determine
the recovered stresses over the whole domain.

4.2.2.1 Implementation of the REP procedure

Consider a patch, as shown in Figure 4.4. The finite element solution derives by
imposing the discrete equilibrium of all elements. Thus also every isolated patch of
elements Ωp will be in equilibrium. This can be shown by writing the equilibrium

equations for such a patch as

Actions of
remaining domain

���F
p�

Figure 4.4: Example of a patch of elements

Z
Ωp

BTσhdV −
Z
Ωp

UTbdV −
Z
∂Ωpt

UTt̄dV +FΩ−Ωp= 0, (4.19)

where FΩ−Ωp represents the forces from the domain Ω−Ωp and its exterior bound-
ary (see Figure 4.4) and B is given by Equation (2.24). Thus, we can write for any
patch Z

Ωp

BTσhdV = g, (4.20)

with

g = −FΩ−Ωp −FΩp , (4.21)

where FΩp are the equilibrant nodal forces:

FΩp = −
Z
Ωp

UTbdV −
Z
∂Ωpt

UTt̄dS. (4.22)

Now assuming the forces on the right-hand side of Equation (4.22) are known, the
patch of elements can be considered as a separate system on which these forces
are acting as nodal forces. Thus, again applying the virtual work principle, we can
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write for any stress system σ∗p the discrete equilibrium equation asZ
Ωp

BTσ∗pdV = g, (4.23)

and Z
Ωp

BTσ∗pdV =

Z
Ωp

BTσhdV, (4.24)

and consequently Z
Ωp

BTσ∗pdV =

Z
Ωp

BTCBūhdV. (4.25)

At this stage we shall assume a continuous form of stresses over the patch. This

can be done in several ways:

1. smoothing the stresses by defining these in a polynomial form:

σ∗p = P
∗a, (4.26)

resulting in ÃZ
Ωp

BTP∗dV

!
a =

ÃZ
Ωp

BTCBdV

!
ūh; (4.27)

2. smoothing the strains:

²∗p = P
∗a, (4.28)

resulting in ÃZ
Ωp

BTCP∗dV

!
a =

ÃZ
Ωp

BTCBdV

!
ūh; (4.29)

3. or smoothing the displacements:

u∗p = P
∗a, (4.30)

resulting in ÃZ
Ωp

BTCDP∗dV

!
a =

ÃZ
Ωp

BTCBdV

!
ūh. (4.31)

In all the above cases the number of unknowns should be equal to or less than
the number of equations implied in Equation (4.25). In the third case the rigid-
body motion must be omitted from series of unknowns. One convenient way for this
is to consider the displacements of all boundary nodes of the patch and minimize
the square difference of recovered values and those of finite element method. As

already mentioned, to achieve the recovery we proceed in an exactly analogous
way to that used in the SPR procedure, first approximating the stress in each
patch by a polynomial of appropriate order σ∗p, second using this approximation
to obtain nodal values of σ̄∗ and finally interpolating these values by standard
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shape functions.
Therfore, in what follows we shall only use the first type of smoothing and

assume that

σ∗p = P
∗a, (4.32)

and so ÃZ
Ωp

BTP∗dV

!
a =

ÃZ
Ωp

BTCBdV

!
ūh. (4.33)

The stress is taken as a vector of appropriate components, and for equilibrium
we shall attempt to ensure that the smoothed stress σ∗p satisfies in the least square
sense the same patch equilibrium conditions as the finite element solution. For
instance, in plane elasticity the stress approximation is taken as

σ∗p = P
∗a =

⎡⎣ P̃ (x) 0 0

0 P̃ (x) 0

0 0 P̃ (x)

⎤⎦⎧⎨⎩ a1
a2
a3

⎫⎬⎭ . (4.34)

Obvious modifications are made for more or less components. It has been found
in practice that the constraints provided in this way are not sufficient to always
produce non-singular least square minimization. Accordingly, the equilibrium con-
straints are split into an alternative form in which each component of stress σ∗pi
is subjected to equilibrium requirements. This may be achieved by expressing the
stress as

σ∗ =
X
i

1iσ
∗
pi, (4.35)

where 1i represents a zero vector having unit value at the position of i-th stress
(i.e. 12 = [0, 1, 0]T for the second stress component), and imposing the set of
constraints Z

Ωp

BTσ∗pidV =

Z
Ωp

BTσh
pidV. (4.36)

The imposition of the above equation allows each set of coefficients ai to be solved
independently. The least square minimization is based on the following functional

F =

ÃZ
Ωp

BTσ∗pidV −
Z
Ωp

BTσh
i dV

!TÃZ
Ωp

BTσ∗pidV −
Z
Ωp

BTσh
i dV

!
,

(4.37)

providing the number of parameter ai is smaller (or equal) than the number of
equations implied. The above functional can be rewritten as

F (ai) = (Hiai − gi)T (Hiai − gi) , (4.38)

where

Hi =

Z
Ωp

BT1iP̃dV, (4.39)
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and

gi =

Z
Ωp

BTσh
i dV =

ÃZ
Ωp

BT1i ⊗ 1Ti CBdV
!
ūh. (4.40)

The minimization condition results in

ai =
£
HT

i Hi

¤−1
HT

i gi. (4.41)

Sometimes the application of this minimization to the patch alone is not sufficient
to provide non-singular solution due to a large number of parameters a. Generally,
this may be eliminated by modifying the patch requirement to the minimization
of

F ∗ (ai) = (Hiai − gi)T (Hiai − gi) +
nepX
e

α (He
iai − gei )T (He

iai − gei ) , (4.42)

where the added terms represent modification on individual elements and α is a
parameter.

He
i =

Z
Ωp

BT1iP̃dV ai, (4.43)

gei =

Z
Ωp

BTσh
i dV. (4.44)

Minimization now gives

ai =

"
HT

i Hi + α
X
e

HeT
i H

e
i

#−1 "
HT

i gi + α
X
e

HeT
i g

e
i

#
. (4.45)

The REP procedure gives overall an approximation which does not require knowl-
edge of any superconvergent points. The accuracy of REP and SPR is comparable.

4.2.2.2 Some remark on superconvergence

Numerical tests show that the REP procedure exhibits superconvergence. The
reason lies on the formulation that is based on using nodal forces. Referring to
Equation (4.19) it can be seen that these forces are directly related to integrals

of the displacement shape functions. Therefore, the rate of convergence of these
forces is the same as that of displacements. This means that the rate of convergence
of stresses in Equation (4.23) will, at least, be that of displacements if proper
smoothing function is used.
Alternatively, we can prove this by using the principle of minimum potential

energy. We must show that the answer, after smoothing, will approach the exact
solution with higher order of error than that of the standard finite element solution.
For this we shall use the equivalence of minimization of error of potential energy
and minimization of total potential energy. The equivalence has been proved by
Herrmann in [Herrmann, 1972]. Starting from Equation (4.20) we can consider
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this equation as an answer of minimization of total potential energy over a patch
provided that the nodal forces of patch are known:

Πp =

Z
Ωp

³
Būh

´T
C
³
Būh

´
dV − ūhTFΩ−Ωp . (4.46)

In fact, this energy is a part of total energy of system. If minimum supports for
this sub domain are provided the answers for stresses will be the same as those
from solution of the whole domain. But according to Herrmann’s theorem this is
equivalent to minimization of error of energy with respect to ū. Thus, we minimize

∆E =

Z
Ωp

h
D
³
u−Uūh

´iT
C
h
D
³
u−Uūh

´i
dV, (4.47)

where u is the exact displacement field. Now we have
∂∆E

∂ūh
= 0,

which gives Z
Ωp

BTCDudV=

Z
Ωp

BTCBūhdV. (4.48)

From Equation (4.25) we recall that the new approach is based onZ
Ωp

BTCDP∗adV=
Z
Ωp

BTCBūhdV. (4.49)

Comparing (4.48) with (4.49),Z
Ωp

BTCDudV=

Z
Ωp

BTCDP∗adV, (4.50)

or Z
Ωp

BTC (Du−DP∗a) dV= 0. (4.51)

The matrix BTC can be considered as a discontinuous weight function over the
domain. So Equation (4.51) implies that

Du ' DP∗a.
Multiplying both sides of above equation by (DP∗)TD and taking integral over
the patch gives Z

Ωp

(DP∗)TCDūhdV '
Z
Ωp

(DP∗)TCDP∗adV. (4.52)

Now we can compare the above result with that of minimization of∆E with respect
to a:

∆E =

Z
Ωp

[D (u−P∗a)]TC [D (u−P∗a)] dV, (4.53)

∂∆E

∂a
= 0, (4.54)
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which leads to Z
Ωp

(DP∗)TCDūhdV=
Z
Ωp

(DP∗)TCDP∗adV. (4.55)

From equations (4.52) and (4.55) it can be stated that REP gives the answers
of minimization of least square of the stress errors in energy norm. In fact, we
have changed the finite element bases from shape functions with discontinuous
derivatives to a continuous polynomials with higher order.
Equality (4.52) is dependent on the form of weighting functionBTC in Equation

(4.51). So the form of elements used in the mesh can affect the super-convergence
and therefore it can be expected that for different kinds of meshes the rate of

convergence will differ.
It is clear that the order of polynomial used in finite element procedure deter-

mines the order of convergence of answers. So obviously if we are able to change
the order of finite element bases, we can increase the rate of convergence by using
a higher order polynomial.

4.3 Recovery by Compatibility in Patches: RCP

In this section, a new stress recovery procedure is presented [Ubertini, 2002]—
[Ubertini, 2004]—[Benedetti et al. , 2006]. The method proceeds in a way analo-
gous to that used in both the SPR procedure and the REP procedure. The desired
improved approximation for stresses over the whole domain, say σ∗, is constructed
by, first, recovering nodal values σ̄∗ and, then, interpolating these values by stan-
dard shape functions (see Equation (2.24)). Thus, the key step is to determine the
nodal values σ̄∗. To accomplish this task, the problem domain is subdivided into

local patches of elements. Each assembly node of the finite element discretization
is associated to a patch. Such a patch is defined as a union of elements surround-
ing the particular assembly node considered. An illustration of typical patches
associated to corner nodes internal to the domain is shown in Figure 4.5(a). Some
additional details about patches associated to nodes in the interior or on the edge
of an element as well as to nodes lying on the domain boundary are given in Section
4.3.4.

4.3.1 Formulation of the RCP procedure

Let Ωp be the domain of the typical patch, ∂Ωp the boundary of the patch and σ∗p
the local stress field in Ωp which is to be determined aiming at improving the finite
element solution. The current patch is considered as a separate system on which
displacements are prescribed along the boundary ∂Ωp, as shown in Figure 4.5(b).



106 4.3- Formulation of the RCP procedure

p

p

FEM displacements

prescribed

(a) (b)

Figure 4.5: Example of pacth: (•) assembly node defining the patch

The prescribed displacements are those resulting from the finite element analysis.
Then, the local stress field σ∗p is determined by minimizing the convex functional
of complementary energy associated to this separate system:

Π(σ∗p) =
1

2

Z
Ωp

σ∗Tp C−1σ∗p dV −
Z
∂Ωp

uhTNTσ∗p dS, (4.56)

over a set of stress fields fulfilling equilibrium equations within the patch:

D∗σ∗p = b in Ωp. (4.57)

Since both uh and σ∗p are continuous over the patch, the above functional can be
re-expressed in the equivalent form:

Π(σ∗p) =
nepX
j=1

Ã
1

2

Z
Ωj

σ∗Tp C−1σ∗p dV −
Z
∂Ωj

uhTNTσ∗p dS

!
, (4.58)

where nep is the number of elements in the patch and Ωj and ∂Ωj are the do-
main and the boundary of the generic element of the patch, respectively. Notice
that Equation (4.56) is the complementary energy of the separate patch system,
which does not coincide in general with the exact complementary energy of the
corresponding subdomain embedded into the original system, since uh does not
coincide in general with the exact displacement u.
This simple procedure is based on the idea of improving stresses by enhancing

equilibrium while relaxing compatibility. In fact, using the Gauss-Green formula
(see Equation (2.16)) together with the following

uh = U (x) ūh, (4.59)

and with the Equation (4.57), functional (4.58) can be written as

Π(σ∗p) =
1

2

Z
Ωp

σ∗Tp C−1σ∗p dV −
Z
Ωp

σ∗Tp BūhdV +

Z
Ωp

bTUūhdV. (4.60)

Denoting by ²h the strains resulting from the finite element solution and by ²∗p the
strains associated with the recovered stresses:

²h = Būh, ²∗p = C
−1σ∗p, (4.61)
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the first variation of the above functional takes the form

δΠ =

Z
Ωp

δσ∗Tp
¡
²∗p − ²h

¢
dV. (4.62)

This expression shows that the present procedure leads to local compatibility con-
ditions. In particular, it enforces strains coming from equilibrated stresses to be
equal to compatible finite element strains, by projecting the error into the new
stress space over each patch. Hence, the procedure is a Recovery of stresses by
Compatibility in Patches (RCP).
It is interesting to notice that the present procedure can be viewed as dual, in a

certain sense, to the already mentioned procedure called Recovery by Equilibrium
in Patches (REP). Indeed, dual should be intended only in the sense that the
condition enforced by REP can be obtained from Equation (4.62) by exchanging

the roles played by σ and ². This means to project the error between new and
original stresses into the finite element strain space over the patch.

4.3.2 Implementation of the RCP procedure

In this section, a simple and low-cost implementation of the RCP procedure is

presented. The first step is to select an approximation for local stresses over the
patch. In order to obtain stresses which satisfy interior equilibrium, the following
additive decomposition is introduced

σ∗p = σ∗ph + σ∗pp, (4.63)

where σ∗ph is the homogeneous solution of Equation (4.57) and σ
∗
pp is a particular

solution of the same equation. More details about σ∗ph and σ
∗
pp are given in Section

4.3.4. Notice that only σ∗ph is indeterminate at this stage. Now, an approximation
for σ∗ph over the patch is assumed:

σ∗ph = P
∗ a, (4.64)

where P∗ is the matrix of basis functions and a is the vector of unknown parame-
ters. For the above assumptions, matrix P∗ should be selected such that

D∗P∗ = 0 in Ωp, (4.65)

i.e., P∗ is a matrix of self-equilibrated stress modes.
The minimization condition results in the following system of linear algebraic

equations

Ha = g, (4.66)

with matrix H and vector g given by

H =

nepX
j=1

Hj , g =

nepX
j=1

¡
guj − gpj

¢
, (4.67)
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where

Hj =

Z
Ωj

P∗TC−1P∗ dV, (68)

guj =

Z
Ωj

P∗TBūhdV =

ÃZ
Ωj

P∗TBdV

!
ūh, (69)

gpj =

Z
Ωj

P∗TC−1σ∗ppdV. (70)

The outlined procedure can be easily implemented in existing finite element codes
and possesses some features which make it simpler and cheaper than other patch-
based recovery procedures. In fact, the number of unknown parameters a is equal
to the number of equations of system (4.66) and the coefficient matrix H is sym-
metric and positive definite. Thus, system (4.66) can be solved directly using
standard procedures. Notice that this is not the case of other recovery techniques,
such as SPR and REP, which need to resort to least-squares scheme. Unlike the
SPR procedure, RCP does not require any knowledge of super-convergent points.
Moreover, matrix H and vector g are simply obtained by summing contributions

from each element forming the patch, as shown by Equation (4.67). Finally, nu-
merical stability is always guaranteed, so that the RCP procedure can be applied
also to small patches (such as boundary ones) without any special modification to
add extra constraints.

4.3.3 Consistency of the RCP procedure

A basic requirement for a recovery procedure, as well as for any numerical pro-
cedure, is that the exact solution should be reproduced under favorable circum-
stances. In the present context, such a condition can be formalized by requiring
that if the finite element solution is exact, then also the local recovered stresses
should be exact [Ainsworth & Oden, 2000]. It can be immediately realized that
the RCP procedure satisfies this consistency condition if the local stress approx-
imation is properly selected. In fact, let uh be a polynomial of degree p which
coincides with the exact solution u. Then, Equation (4.56) actually represents
the exact complementary energy for the subdomain corresponding to the current

patch and the exact stresses are always recovered if the self-equilibrated field σ∗ph
belongs to the space of p-order polynomials which satisfy condition (4.65). Ex-
cept for internally isostatic models such as rods or beams, this means that each
component of σ∗ph should be able to reproduce a complete polynomial of degree
p. Thus, consistency is met if self-equilibrated stress approximations are selected
among polynomials of degree not less than p, when finite element of order p are
used.
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4.3.4 Some remarks

In this section, some issues about the proposed procedure are addressed.
The first issue is the form of the typical patch. In principle, the number of el-

ements forming the patch may be large at will. Also the whole domain could be

considered as a patch. However, using large patches increases the computational
cost and, as a consequence, the resultant procedure could become no more conve-
nient in practice. Here, patches of conventional minimal form are used, as shown
in Figure 4.5. In other words, each patch is formed using only one layer of elements
surrounding the patch assembly node, so to minimize the computational cost.

Figure 4.6: Computation of nodal values for four-, eight- and nine-node elements: (◦) nodal
points, (•) nodal values determined by recovery procedure

The second issue to be discussed is how to construct local stress approxima-
tions. Indeed, this can be easily done by employing the well-established techniques
usually adopted to construct stress approximations for the original version of hy-
brid stress elements [Pian, 1973]. In particular, polynomial basis functions for
self-equilibrated stresses σ∗ph can be derived from assumed stress functions. It
should be emphasized that these approximations should be derived having care to
obtain complete polynomial expansions for each component of σ∗ph, so to retain
invariance of the procedure with respect to any coordinate change and, in case,
consistency, as stated in the previous section. A scheme to construct such ap-
proximations for some structural models is illustrated in Appendix A. Notice that

the present procedure poses no upper limit to the order of polynomial approxima-
tion or to the number of unknown parameters a with any form of the patch. This
does not occur with the SPR and REP procedures because of the limited num-
ber of independent equations they involve. Thus, for finite elements of order p
any approximation of degree not less than p could be used in principle, provided it
satisfies Equation (4.65). The numerical results obtained on some bi-dimensional
tests using approximations of degree p and p+1 over patches of conventional form
are compared and discussed in Section 4.6. Further increasing the order of approx-
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imation seems to be not recommendable since the computational cost increases
without any appreciable improvement in accuracy.
Another important issue regarding implementation of patch-based recovery pro-

cedures is how to compute smoothed stresses at nodes which are not located at the
element vertices. In fact, when higher-order elements are used, improved stresses
should be computed not only for corner nodes but also for edge nodes and/or
nodes interior to the elements. Although the corresponding patches could be de-
fined in different ways, the rules recommended for the SPR and REP procedures

are adopted here. Only patches associated to corner nodes are formed and each
patch is used to recover stresses at all the nodes inside the patch itself, as shown
in Figure 4.6. By doing so, it is clear that edge and interior nodes generally be-
long to several patches and different recovered values are available from different
overlapping patches. In order to obtain a single value for each node, a simple av-
eraging of these values is taken. It should be remarked that the reason to adopt
the above strategy for the present recovery procedure is not dictated by stabil-
ity requirements. It has been adopted because provides good accuracy and allows
computational savings.

Figure 4.7: Boundary nodal recovery: (a) and (b) interior patches, (c) and (d) boundary patches;

(◦) nodal points, (•) nodal values determined by recovery procedure

Another particular situation arises for nodes lying on the domain boundaries.
Also in this case, there are many ways to define patches for boundary nodes
and compute the corresponding stress values. Here, two different techniques are
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adopted. The first technique consists of forming and processing boundary patches
in the same manner of interior patches. In particular, the smoothed stress field σ∗p
is taken as for interior patches. Notice that neither reducing the order of stress
approximation nor adding any extra condition are needed for stability purpose.
An illustration of boundary patches is reported in Figure 4.7. The second tech-
nique is the one recommended for the SPR procedure [Zienkiewicz & Zhu, 1995]
and consists of evaluating stresses at boundary nodes by interior patches instead
of boundary ones, as shown in Figure 4.7(a)-(b).

Finally, it should be added that locally based coordinate origins are used to
avoid ill-conditioning.

4.3.5 An alternative version of RCP recovery

An alternative version of RCP recovery can be obtained by adopting a different
strategy to form the patch, while retaining the same core. In the original form, the
patch is defined as the union of the elements surrounding an assembly node of the
finite element discretization (node patch, see Figure 4.7), while, in the new form,
the patch is defined as the union of the elements surrounding an element (element
patch, see Figure 4.8). In other words, in the original RCP each assembly node
is associated to a patch, while in the new version each element is associated to
a patch. Indeed, the above description of the node patch configuration is not
exhaustive, since it refers only to internal vertex nodes. In fact, some additional
details about node patches associated to nodes in the interior or on the edge of

an element as well as to nodes lying on the domain boundary have been given
in the previous Section, so leading to the need of special procedures in order to
treat these cases. On the contrary, the above description completely defines the
element patch configuration. For better clarity, Figure 4.9 shows an element patch
associated to an element with edges on the domain boundary. As it can be noted,
the same criterion as for internal elementsis used to form the patch.
Owing to the new patch configuration, parameters a can be directly used to

recover stresses over the central element of the patch, without any additional in-
terpolation and average process of values coming from adjacent patches.
The new form of the RCP procedure is simpler than the original one and easier

to implement into existing finite element codes. In fact, no special data structures
are needed to form the patch or to distinguish between vertex nodes, interior nodes
and nodes lying on the domain boundary or other physical interfaces. Another
advantage offered by the new form is that the larger support of the patch generally
leads to higher accuracy without increasing the computational effort, which is
substantially dictated by the assumed stress approximation over the patch. Indeed,
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FEM displacements 
prescribed

Ωp

∂Ωp

elements of the patch element defining the patch

(a) (b)

Figure 4.8: Example of element pacth: assembly element defining the patch

elements of the patch

element defining the patch

Figure 4.9: Boundary element recovery

unlike the original version, discontinuous solutions across element boundaries are
obtained in this way, although discontinuities could be eliminated by an averaging
process. However, in the spirit of the RCP recovery, the equilibrated nature of

improved stresses within each element is retained. Finally, notice that the new
version of the RCP recovery preserves the attractive feature of numerical stability.

4.4 Recovery on the boundary of the domain

It will be found that the accuracy of recovery at inner parts of the domain is greater
than the accuracy on their boundary.
There are many ways to compute boundary stress values. One is computing

these stresses from the smoothed stresses from interior patches without adding any
extra condition for any imposed tractions.
In order to increase the accuracy at boundaries, we can enforce equilibrium

with known traction boundary conditions, Figure 4.10(a) We can be sure that
adding this form of constraint will not affect the convergence of the solution be-
cause the exact solution satisfies this conditions and we do nothing except to force
the solution toward the exact solution. This constraint has been used in SPR lead-
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Figure 4.10: Typical boundary patches: (a) smooth boundary with traction; (b) geometrical

singularity

ing to improvement of results elsewhere [Zienkiewicz & Zhu, 1995]—[Boroomand &

Zienkiewicz, 1997b]. Considering the number of equations and unknowns, REP al-
lows us to use such boundary patches with some extra traction conditions. For this,
in the least squares procedure we add some terms which represent the difference
between exact boundary condition and assumed one. Then we can write:

F (ai) = (Hiai − gi)T (Hiai − gi) +
NPX
i=1

¡
NTσ∗p − t̄

¢T
i

¡
NTσ∗p − t̄

¢
i
. (4.71)

In the above equation, t̄ denotes the prescribed traction on the boundary, and NP

is the number of integration points with prescribed tractions on the boundary of
the patch. The experience shows that when a curved boundary exists and we are
using low-order polynomial for smoothing, minimum number of integration points
gives the best answer.
For geometrical singularities, like that shown in Figure 4.10(b), there will be

singularities in strains and stresses. To overcome this difficulty, instead of using
polynomial forms for σ11, σ22 and τ12, we could use polar expressions for smoothed
values of σr, σθ and τ rθ. A combination of polynomial for in radial direction

(i.e. 1, r−1, r−2, . . . ) and periodic functions in rotational direction (i.e. 1, cos(θ),
sin(θ), ...) can be employed. This will help to have a discontinuous answer at r = 0.
To evaluate H, an appropriate rotational matrix must be used:Z

Ωp

BTTP∗dV.

The above equation may need a larger number of integration points than conven-
tionally used. Further it may be worthwhile to use large patches and add more un-

known around singular points. To use higher order functions around these points,
one can find all interior nodal stresses as a first step and use them, as the sec-
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ond step, for the nodes belonging to the boundary patch as additional constraints.
This can also be done for other boundary nodes when the user wishes to increase
the number of polynomial terms.

4.5 The quality of an error estimator

The recovery procedures can be used to estimate the error resulting from a finite
element analysis by replacing the exact solution with the recovered solution, as
indicated by Equation (4.2). So, the estimated local error in the stresses is given
by

e∗ = σh − σ∗, (4.72)

where the symbol ·∗ is usual to distinguish the estimated error from the exact error
(see Section 2.3 for more details on the error definitions). As for the exact error,
if single-valued nodal errors are needed, because of interelement discontinuity the
average of nodal errors can be computed in the same manner, element or global
errors can be estimated. Adopting for instance the energy norm, the estimated
element error is given by

ke∗ke =
°°σh − σ∗°°

e
=

∙
1

2

Z
Ωe

¡
σh − σ∗¢C−1 ¡σh − σ∗¢dV ¸ 12 , (4.73)

where Ωe is the element domain under consideration. Finally, the estimated global
error is

ke∗k =
³Pn−elem

e=1 ke∗ke
´ 1
2

E
, (4.74)

where E is the exact energy norm of the problem

E =

∙
1

2

Z
Ω

σTC−1σdV
¸ 1
2

. (4.75)

Clearly the higher is the accuracy of the recovered solution, the higher is the quality
of the error estimator.
To measure the accuracy of the recovered solution, the error definitions recalled

above can be used again. A local measure is simply given by the pointwise error
in the recovered stress

ees = σ∗ − σ. (4.76)

Notice that the superscript ·es is used to indicate this type of error, that is the
exact error in the recovered solution, while symbol e is reserved for the exact error
in the original finite element solution. In the case of interelement discontinuity the
average of nodal errors can be considered also in this case.
The (exact) element and global errors in the recovered solution, assuming the
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energy norm, read as

keeske = kσ∗ − σke =
∙
1

2

Z
Ωe

(σ∗ − σ)C−1 (σ∗ − σ) dV
¸ 1
2

, (4.77)

keesk =
³Pn−elem

e=1 keesk2e
´ 1
2

E
. (4.78)

The effectiveness of the error-estimators is measured by the effectivity index ,
namely, the ratio between the estimated and the exact value of the error norm of
interest:

θ =
ke∗k
kek .

The error estimator is said to be asymptotically exact if θ approaches unity as the
exact error kek tends to zero (as h→ 0, or as p→∞). This means that the error
estimator will always converge to the exact error while this decreases. Obviously,

the reliability of ke∗k is dependent on the quality of σ∗, and it can be proved
(Zienkiewicz and Zhu, [Zienkiewicz & Zhu, 1992b]) that

1− ke
esk
kek ≤ θ ≤ 1 + ke

esk
kek . (4.79)

In fact we can rewrite the error estimator ke∗k as
ke∗k = °°σh − σ∗°° ≡ °°¡σh − σ¢− ¡σ∗ − σh

¢°° = ke− eesk , (4.80)

and using the triangular inequality, we have

kek− keesk ≤ ke∗k ≤ kek+ keesk . (4.81)

Dividing by kek, we obtain the (4.79).
Based on these result we have that the error estimator is asymptotically exact

if

keesk
kek → 0 as kek→ 0. (4.82)

This is achieved if keesk converges at a higher rate than kek. It follows that if keesk
is superconvergent then asymptotic exactness of the error estimator is assured. The
energy norm of the error of a finite element solution, with a p-order shape functions

can be represented as follow

kek = O (hp) ≤ Chp, (4.83)

where p > 0 is the rate of convergence and C > 0 is a constant independent of
the element dimension h, but dependent on the patch (see Section 3.2). For the
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recovered solution we can write

keesk = O ¡hp+α¢ , (4.84)

with α > 0 , so the limits of the effectivity index, by substituting the equations
(4.83) and (4.84) into (4.79), are :

1−O (hα) ≤ θ ≤ 1 +O (hα) .
Naturally, one hopes that effectivity indices close to unity can be obtained, but
global effectivity indices of 2.0÷3.0 or even higher are often regarded as acceptable
in many engineering applications.

4.5.1 The benchmarking approach

In engineering practice one often attempts to analyze the accuracy of the error
estimators which are implemented in various finite element codes by checking the
values of the effectivity index in a few example problems which are often called
benchmarks. The benchmarking approach is a well accepted procedure for checking
finite element codes [Babuška et al. , 1997a].
Can we classify the error estimator as reliable or unreliable based on these

results? To answer to this question the following remarks should be considered
[Babuška et al. , 1997b]:

1. The error in an element can be partitioned into the local error (the part of the

error due to the residuals in the element and its neighbors) and the pollution
error (the part of the error due to the residuals in the rest of the mesh and
especially those in the neighborhood of the singular points and sharp fillets).

2. All the error indicators which employ only local computations (i.e. they use

the input-data and the finite element solution in the element and its neighbors)
cannot account for the pollution error.

3. The pollution error is the most significant component of the error in the major-
ity of the elements for the types of meshes and domains employed in engineer-

ing computations. Note that when a globally adaptive mesh (which almost
equidistributes the element error indicators) is employed, then the pollution
error is practically controlled (see Reference [Zienkiewicz & Zhu, 1987]).

Therefore, it follow that

1. For uniform meshes (and singular problems), the global energy norm of the
error practically coincides with the energy norm of the error over the patch
of the elements which have a vertex at the singular point. Hence, for uniform

meshes, the global effectivity index reflects only the accuracy of the error
estimator for the elements adjacent to the singularity. The pollution error in
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these elements is practically negligible and the element error indicators are
close to the exact element norms of the error.

2. There is significant pollution practically everywhere, except in the elements
with the biggest errors (which are the elements with a vertex at the singular
point), and the element error indicators underestimate the element energy
norms of the error in all the elements, except the elements with the biggest
errors.

Hence, we conclude that if one is interested in the accuracy of the element error
indicators in the elements adjacent to the singularity then a benchmark problem
can be a proper choice. On the other hand, if one is interested in the accuracy of the
element error indicators in the interior of the mesh or at the elements adjacent to
a smooth boundary then benchmark tests could give no useful information unless
we carefully avoid or properly control pollution.
Let us now summarize the conclusions which should be drawn from the above

discussion (see also References [Babuška et al. , 1994b]-[Babuška et al. , 1994a]-

[Babuška et al. , 1995b]).

1. The error in a patch of elements has a local and a global component and
any error estimator based on local computations can only estimate the local
component.

2. The element error indicators estimate only the local part of the error. The local
error is practically the same as the error in the finite element approximation
of the local (p+ 1) Taylor series expansion of the exact solution.

3. The element effectivity indices depend on the local geometry of the mesh
and should be reported for the worst (p+ 1) degree Taylor series expansions
corresponding to the particular mesh-geometry of interest.

Based on the above conclusions, Babuska and coworkers [Babuška et al. , 1994a]-
[Babuška et al. , 1997a] prepared a numerical methodology to test the robustness
of an error estimator in the asymptotic limit (when the mesh size tends to zero) for
smooth problem (that is to check the capability of computing the local error). The
methodology described in the next section provides an effective tool to evaluate

and compare different procedures in a systematic and objective manner. It can be
viewed as a patch test procedure which fixes minimal criteria to be met and avoids
drawing erroneous conclusions based only on a limited number of test problems.
However, it should be emphasized it is an asymptotic test and certain effects,
such as those due to boundaries or singularities, have been isolated. In addiction
no indications are given on the accuracy in the pre-asymptotic behaviour. Thus,
this asymptotic testing should always be accompanied by some (carefully chosen)
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benchmarking computation which give valuable information on the pre asymptotic
behaviour.

4.5.2 The robustness test

The patch test idea was proposed by Bruce Irons in 1965 for to verify the quality of
a model implemented in a finite element code, verifying, under regular condition,
the capability of the element to reproduce, in a generic point, a constant state of
strain when the dimension of the region surrounding that point tends to zero. So
the elements surrounding this point must represent a constant strain state.
As shown before (see Section 3.2) the convergency is assured by the consistency

of the finite element method: when the characteristic dimension of the elements h
tends to zero, the approximated equations represent exactly the differential prob-

lem, at least in weak form. Based on the above conditions, the elements, with p

degree polynomials, can reproduce exactly every problem with an exact solution
based on that polynomial.
The effectivity robustness test , introduced by Babuška and coworkers, is based

on the same idea of the traditional patch test, and is useful to compute the ro-
bustness of the error estimators. The method start from the fact that a smooth
problem have a solution where the terms with order (p+ 1) are predominant, so,
as before, we can study a simple patch and its (p+ 1) exact solution, that will give
the asymptotic behaviour, its dimension tend to zero. We can also use this method
to compute, over a specific patch, the maximum and minimum asymptotic value

of θ, that reach the maximum and minimum values for the family problems with
exact solution of order (p+ 1) .
These maximum and minimum bounds of the effectivity index are called θL

and θU and for robustness in estimating of errors both values should be close to
unity.
Babuška and coworkers defined a single robustness index as:

R = max

µ
|1− θL|+ |1− θU | ,

¯̄̄̄
1− 1

θL

¯̄̄̄
+

¯̄̄̄
1− 1

θU

¯̄̄̄¶
, (4.85)

which obviously should be equal to zero in the ideal case when

θL = θU = 1, (4.86)

and which measures how far both values depart from unity. The particular form
of the index is chosen to give equal weight to the value of θL (or θU ) below unity
or above it, as clearly the coefficients must always be positive.

The test is based on the following assumptions:

Assumption 1. Since we are dealing with an asymptotic problem, it imme-
diately follows that we should assume the element sizes to be near to
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Figure 4.11: Babuska patch test: (a) problem domain; (b) local (periodic) mesh; (c) master-cell

zero so the dimensions of any patch of elements, with limited number of
elements, will be close to zero as well.

Assumption 2. We assume that the patch considered is far from singular
points and that a smooth exact solution exists at the location of the
patch.

Assumption 3. We assume that the mesh at the location of the patch has a
repeatable pattern in all directions (we usually consider a single one of
such repeatable patterns as a patch).

Summing up the test aims at assessing the asymptotic behaviour by considering
that: (a) the mesh is locally uniform, (b) the exact solution is locally smooth and
(c) the pollution error is negligible.
The idea is sketched in Figure 4.11 . Focusing the attention on the local periodic

mesh (Figure 4.11(b)) and considering a finite element solution with p order shape
function in all elements, we know thus that all reliable elements can reproduce an
exact field of order p. Therefore the terms of order p + 1 in the Taylor’s series
expansion of exact solution u have a predominant effect in the error (as h→ 0):

kek = °°σh − σ°° ' °°σh − σasy

°° , (4.87)

where

σasy = CDu
p+1, (4.88)

is the stress corresponding to the (p+ 1)-order term up+1 of the exact solution.
Therefore for testing any recovery only such monomials need to be used as exact
solutions:

u ' up+1. (4.89)

The whole procedure of this test is based on estimating the asymptotic error and
evaluating the effectivity indices, considering each one of these monomials as an
exact solution over a local periodic mesh (Figure 4.11(b)). Having obtained these
effectivity indices, the maximum and minimum bounds for the combination of the
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monomials can be found through the solution of an eigenvalue problem.
The exact asymptotic error is given by

keasyk =
°°σh

asy − σasy

°° , (4.90)

where σh
asy is the asymptotic finite element solution on the periodic mesh. The

estimated asymptotic error is°°e∗asy°° = °°σh
asy − σ∗asy

°° , (4.91)

where σ∗asy is the asymptotic recovered solution.
The procedure consists of three steps.

1. Select the master cell (mesh pattern and aspect ratio), Figure 4.11(c), and
take the exact solution as a general (p+ 1) degree polynomial in the form

u =
X

αiu
(p+1)
i , σ =

X
αiσi, (4.92)

where u(p+1)i are basis functions of degree p+ 1, αi are unknown coefficients
and

σi = CDu
(p+1)
i . (4.93)

For example, for scalar-value problems and linear elements we can take

u = α1x
2
1 + α2x1x2 + α3x

2
2. (4.94)

2. For each bases function u(p+1)i , determine the (asymptotic) finite element so-
lution σh

i and the (asymptotic) recovered solution σ
∗
i over the periodic patch

formed using the chosen master-cell.

3. Compute the extreme values of the (asymptotic) effectivity index, for all pos-
sible values of αi, corresponding to the (asymptotic) solutions:

σh
asy =

X
αiσ

h
i , σ∗asy =

X
αiσ

∗
i . (4.95)

To apply the above procedure we need to explain how to compute each finite
element solution σh

i . Indeed computing σ
∗
i poses no particular difficulty as it can

be done in the standard way using the recovery technique under investigation.
In addition, we give some details on how to compute the extreme values of θ
(step 3). The nature of this test is such that any recovery method which is truly
superconvergent must produce the perfect answer of θL = θU = 1 or R = 0.

4.5.2.1 Computing asymptotic finite element solution

The relation between the finite element solution uhi and the exact solution u
(p+1)
i

can always be written asZ
Ω

BTCD
³
uhi − u(p+1)i

´
dV = 0. (4.96)

Then, if ūhi are the nodal displacements of u
h
i and u

h
i = Uū

h
i , the above relation
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can be put in the formZ
Ω

BTCDuhi dV =

Z
Ω

BTCDUūhi dV, (4.97)

By interpolating the exact (p+ 1)-degree solution u(p+1)i using the standard p-
degree shape functions we have

û
(p+1)
i = Uū

(p+1)
i (4.98)

where ū(p+1)i are the nodal values of u(p+1)i . Then the exact solution can be
rewritten as

ū
(p+1)
i = û

(p+1)
i +

³
ū
(p+1)
i − û(p+1)i

´
(4.99)

and substituting in the Equation (4.96) yieldsZ
Ω

BTCDêhi dV =

Z
Ω

BTCD
³
u
(p+1)
i − û(p+1)i

´
dV, (4.100)

where êi is the difference between the finite element solution and the interpolant
of the exact solution

êi = uhi − û(p+1)i = U
³
ūhi − ū(p+1)i

´
= (4.101)

= Uēi. (4.102)

Taking into account for this reason, Equation (4.97) can be rewritten asµZ
Ω

BTCBdV

¶
ēi =

Z
Ω

BTCD
³
ū
(p+1)
i − û(p+1)i

´
dV.

It can be shown that
³
u
(p+1)
i − û(p+1)i

´
is a periodic function with a period same

as the patch length in all direction [Boroomand & Zienkiewicz, 1997a]. To prove
this we consider the m-th monomial of the exact solution. With this important
fact and with the knowledge of periodicity of the mesh we can write (4.97) for only
the master-cell Ωmc:µZ

Ωmc

BTCBdV

¶
ēi =

Z
Ωmc

BTCD
³
u
(p+1)
i − û(p+1)i

´
dV. (4.103)

This equation can be solved for ēi once the appropriate boundary conditions are
specified. In particular êi should be periodic over the master cell, therefore periodic
boundary conditions on ēi should be applied.
It can be easily verified that the above formulation has a unique solution a

part for a constant which can be computed by subjecting the domain to a uniform
"body force" and requiring that the absorbed energy from using the finite element
method solution and the exact one should be the same. The resulting additional
condition is Z

Ωmc

ēhi dV =

Z
Ωmc

³
u
(p+1)
i − û(p+1)i

´
dV. (4.104)

Now, the set boundary conditions is complete and Equation (4.103) can be solved
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for ēi and, subsequently, the finite element solution can be computed by

uhi = û
(p+1)
i + êi = U

³
ēi + ū

(p+1)
i

´
. (4.105)

4.5.2.2 Computing the effectivity index

For any procedure of error estimation we can independently determine the es-
timated error norm and, as the exact solution is known, also the exact error
norm thus establishing the effectivity index θ corresponding to each bases function
u
(p+1)
i .
It would appear that a search amongst the values of indices so obtained would

give the bounds of θL and θU or the possible effectivity. The determination of

effectivity for each monomial separately does not, however, guarantee that absolute
lowest and highest bounds have been determined.

Figure 4.12: Computing the effectivity index: (a) master-cell; (b) periodic mesh

We give below a process by which all combination of the individual terms can
be examined for the case of recovery based estimators. As a starting point we
repeat the solution procedure for all u(p+1)i so the general finite element solution

takes the form:

ūh =
X
i

αiu
h
i =

X
i

αiUū
h
i = UŪ

h
α, (4.106)

where Ūh collects the nodal values of all the finite element solutions

Ūh =

⎡⎣ ūh1

¯̄̄̄
¯̄ ūh2

¯̄̄̄
¯̄ . . .

⎤⎦ , (4.107)

and α collects the coefficients αi.
The general finite element solution in terms of stresses is given by

σh = CBŪ
h
α. (4.108)
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Analogously, the recovered solution in compact form reads as

σ∗ =
X
i

αiσ
∗
i = S

∗α, (4.109)

where matrix S∗ collects the solutions σ∗i obtained by applying the recovery pro-
cedure under investigation to the finite element solution uhi . Finally, also the exact
solution can be put in a compact form as

u =
X
i

αiu
(p+1)
i = U(p+1)α ,

where matrix U(p+1) collects the basis functions u(p+1)i :

Ues =

∙
u
(p+1)
1

¯̄̄̄
u
(p+1)
2

¯̄̄̄
. . .

¸
. (4.110)

Consequently the exact solution in terms of stresses can be written as

σ = CBU(p+1)α. (4.111)

Using the above expressions the exact asymptotic error over the master-cell (in
energy norm) results in

keasyk2 =
1

2

Z
Ωmc

³
CDU(p+1)α−CBŪh

α
´T

C−1
³
CDU(p+1)α−CBŪh

α
´
dV,

= αT
½Z
Ωmc

³
DU(p+1) −BŪh

´T
CT

³
DU(p+1) −BŪh

´
dV

¾
α. (4.112)

Posing

E =

Z
Ωmc

³
DU(p+1) −BŪh

´T
CT

³
DU(p+1) −BŪh

´
dV, (4.113)

yields

keasyk2 = αTEα. (4.114)

On the other hand, the estimated asymptotic error over the master-cell can be
expressed as

°°e∗asy°°2 =
1

2

Z
Ωmc

³
S∗α−CBŪh

α
´T
C−1

³
S∗α−CBŪh

α
´
dV =

= αT
½Z
Ωmc

³
S∗ −CBŪh

´T
C−1

³
S∗ −CBŪh

´
dV

¾
α. (4.115)

So, posing

E∗=
Z
Ωmc

³
S∗ −CBŪh

´T
C−1

³
S∗ −CBŪh

´
dV, (4.116)

we end with °°e∗asy°°2 = αTE∗α. (4.117)
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Now we can write the (asymptotic) effectivity index as

θ2asy =

°°e∗asy°°2
keasyk2

=
αTE∗α
αTEα

. (4.118)

The maximum and minimum values for θ2asy are the maximum and minimum

eigenvalues of the following problem¡
E∗ − θ2E¢w = 0, (4.119)

where θ2 is the diagonal matrix of the eigenvalues of the problem.

4.5.2.3 Self equilibrated solutions

In the test so far described we have used generic (p+ 1) degree bases functions
u
(p+1)
i . Indeed it is convenient to use only self equilibrated, that is only these
solutions of the homogeneous form of the governing equations of degree (p+ 1).
Such solutions can be found from the general form by enforcing a proper restrictions
on coefficients α:

α = Tα̃. (4.120)

Then Equations (4.114) and (4.117) can be written as

keasyk2 = α̃TTTETα̃ = α̃TẼα̃, (4.121)

and

°°e∗asy°°2 = α̃TTTE∗Tα̃ = α̃TẼ
∗
α̃. (4.122)

Therefore a modified procedure should be followed by finding the eigenvalues of³
Ẽ∗ − θ̃2Ẽ

´
w̃ = 0. (4.123)

4.5.2.4 Summary of the procedure

In summary the test procedure is performed as described below:

1. select a mesh pattern for the master-cell;

2. select a proper basis function (monomial) one order higher than the order of

shape-functions;

3. solve Equation (4.103) for ēi with periodic boundary conditions and minimum
support for the master-cell;

4. use Equation (4.104) to find rigid-body motions;

5. find the finite element solution through Equation (4.105);

6. perform the recovery procedure using the finite element solution from previous
step. This step itself consists of three smaller steps:

(a) produce a periodic mesh from the patch;
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(b) apply the recovery procedure on the periodic mesh;

(c) consider the recovered answers only for one master-cell. (it should be noted

that depending on the location of the patch the finite element solution may
change but it can be shown that the errors will be periodic.)

7. repeat (2)-(6) for all possible basis functions (monomials);

8. evaluate E and E∗ for exact and recovered errors. Special care should be taken
here for rectangular elements since these elements can exactly reproduce some
higher-order solutions, e.g. x1x2 in bilinear elements, and the FEM solution,
itself, will be exact. Therefore the corresponding terms in E and E∗, which
are close to zero, must be eliminated otherwise roundoff error will encounter

the computation leading to some non-realistic answers.

9. find the eigenvalues of E∗ (or E) to determine the upper and lower bounds of
the effectivity index and robustness index.

4.6 Numerical tests

In this section, the performance of the RCP recovery is validated numerically
through a systematic testing based on the methodology proposed by Babuška et
al. in [Babuška et al. , 1994a]-[Babuška et al. , 1997a], Section 4.6.1, and several
benchmark tests proposed in the literature, Section 4.6.2. Comparisons are carried
out with the improved version of the REP procedure [Boroomand & Zienkiewicz,
1997a], as quite natural considering the duality recognized in Section 4.3.1. For

the sake of brevity, no further comparisons are included. However, the reader
can refer to [Boroomand & Zienkiewicz, 1997b][Boroomand & Zienkiewicz, 1997a]-
[Boroomand & Zienkiewicz, 1999] for a detailed comparison between the REP
procedure and the widely used SPR procedure. As claimed by the authors of these
papers, the two procedures yield very similar results.
All the numerical results presented in the following are obtained using patches

of conventional minimal form. In the REP procedure, complete polynomial expan-
sions of order p are selected for each stress component, being p the interpolation
order for displacements in the finite element solution (i.e. the order of shape func-
tions U). In the RCP procedure, the influence of different choices for the order of

stress approximation is investigated. It is worth to emphasize that the present pro-
cedure allows to enrich the approximation for smoothed stresses without any need
to enlarge the form of the patch. As recommended in [Boroomand & Zienkiewicz,
1999], the REP procedure is applied without using boundary patches or any cor-
rection on boundaries, so that nodal boundary values are computed from interior
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Table 4.1: Versions of RCP recovery tested and related orders of the stress approximation

Type order of the
stress approximation formation of the patch

RCP1n p node patch; boundary patch are used;

RCP1nb p node patch; boundary patch are not used;

RCP2n p+ 1 node patch; boundary patch are used;

RCP2nb p+ 1 node patch; boundary patch are not used;

RCP1e p element patch; -

RCP2e p+ 1 element patch; -

patches. Since the present procedure allows to use boundary patches without in-
troducing any additional condition or decreasing the order of approximation for
smoothed stresses, this opportunity has been exploited. Thus, various versions of
the RCP procedure have been implemented. Denoting by p theinterpolation order
for displacements in the finite element solution, the various versions of the RCP
procedure are summarized in Table 4.1.

(a) (b)

(c) (d)

Figure 4.13: Boundary nodal recovery: (a) and (b) interior patches, (c) and (d) boundary patches;

(◦) nodal points, (•) nodal values determined by recovery procedure

4.6.1 Asymptotic behaviour and robustness

The analysis described in Section4.6.1 has been carried out for two different types
of problems: equilibrium of thin membranes of uniform thickness or heat transfer
(Class I problems, see Appendix A.1) and plane strain elasticity (Class II problems,

see Appendix A.2). The Young’s modulus and Poisson’s ratio are taken as 1000 and
0.3, respectively. Various mesh patterns have been selected for the basic cell, using
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both triangular and quadrangular elements, as illustrated by Figures 4.14 and 4.15.
In all these tests the performance of the RCPn-based error estimator is compared
with both the RCPe form and the REP-based estimator, in the improved version
presented in [Boroomand & Zienkiewicz, 1997a]. The interested reader can refer to
[Boroomand & Zienkiewicz, 1997a]-[Boroomand et al. , 2004] for a comparison with
the SPR-based estimator. As suggested in [Boroomand & Zienkiewicz, 1997a], the
REP procedure is used with complete polynomial expansions of degree p for each
stress component. Stress approximations are selected according to Equation (A.3)

for the thin membrane case and according to Equation (A.18) for the plane strain
case.

(c) (d) 

(e) (f) (g) (h) 

(a) (b) 

Figure 4.14: Mesh patterns used in robustness tests for triangular elements

4.6.1.1 Class I problems

Class I problems refer to thin membrane problems and are described in Appendix

A.1. The results obtained for triangular and quadrangular elements in this case
with the RCPn procedure are collected in Tables 4.2 and 4.3, respectively, while the
corresponding results obtained with the RCPe procedure are collected in Tables 4.4
and 4.5. Moreover, Tables 4.6 and 4.7 collect some results obtained using regular
mesh patterns of quadratic elements with various aspect ratios.
It is interesting to observe that the RCP procedure exhibits a super-convergent

behavior for two simple patterns (Figures 4.14(a) and (c)) of linear triangular
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(b) (c)

(d) (e)

(a)

Figure 4.15: Mesh patterns used in robustness tests for quadrangular elements

elements. Super-convergence is observed also for different values of the aspect
ratio of these mesh patterns. Indeed, super-convergence is lost by the RCPe on
the criss-cross pattern (Figure 4.14(d)), where the RCPn and the REP are super-
convergent, but the robustness index takes very small values: R = 0.0243 for
RCP1e and R = 0.0057 for RCP2e (Table 4.2). On the other hand, full super-
convergence is not achieved by none of the procedures considered for triangular
elements of quadratic kind. Also in this case, however, the RCPe preserves small
values of the robustness index, valuably smaller than those of the other procedures.
In particular, R < 0.07 for RCP1e, R < 0.27 for RCP1n and R < 0.33 for REP

(Table 4.4). This is confirmed also on regular meshes with different aspect ratios
(see Table 4.7).
As regards quadrangular elements, the REP procedure is super-convergent for

both four- and nine-node elements on regular meshes (Figure 4.15(a)), while the
RCPn and the RCPe procedure only for four-node elements. However, although
not exact, the RCP-results for nine-node elements are very good being R < 0.08 for
RCPn (Table 4.6) and R < 0.007 for RCPe (Table 4.7). As for triangular elements,
super-convergence is not observed for irregular patterns (Figures 4.15(b)-(e)), but
excellent results are obtained.

In general, the robustness index obtained with the RCPe procedure takes, values
smaller than those obtained with the RCPn version
The above results demonstrate the good quality of the RCPn and RCPe pro-

cedure. The RCP1 versions appear to be more robust than REP especially on
irregular mesh patterns. No appreciable improvements of the asymptotic perfor-
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Table 4.2: RCPn - Effectivity bounds and robustness indices for triangular elements applied to

Class I problems (the mesh patterns are illustrated in Figure 4.14, the aspect ratio is 1/1).

REP RCP1n RCP2n

Mesh θL θU R θL θU R θL θU R

Three-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 1.0000 1.0074 0.0074 0.9201 1.0039 0.0907 0.9298 1.0052 0.0807
c 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
d 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
e 0.9715 1.0190 0.0480 0.9636 1.0014 0.0392 0.9717 1.0020 0.0311
f 0.9828 1.0247 0.0420 0.9405 1.0035 0.0667 0.9479 1.0051 0.0600
g 0.9352 1.5400 0.6047 0.7121 1.0218 0.4256 0.7153 1.0316 0.4288
h 0.9939 1.8287 0.8347 0.5975 0.9806 0.6935 0.6311 0.9763 0.6089

Six-node elements
a 0.9516 1.0398 0.0891 0.9956 1.0114 0.0158 0.9956 1.0114 0.0158
b 0.9950 1.0222 0.0272 0.9839 1.0157 0.0318 0.9815 1.0070 0.0258
c 0.9320 0.9836 0.0897 0.9454 1.0136 0.0712 0.9454 1.0136 0.0712
d 0.9259 0.9594 0.1223 0.9454 1.0136 0.0712 0.9454 1.0136 0.0712
e 0.9481 1.0240 0.0782 0.9695 1.0095 0.0409 0.9582 1.0071 0.0507
f 0.9816 1.0045 0.0232 0.9929 1.0083 0.0154 0.9681 1.0058 0.0387
g 0.8972 1.1625 0.2653 0.8487 0.9950 0.1832 0.7767 1.0026 0.2900
h 0.8868 1.2142 0.3274 0.8033 0.9764 0.2691 0.7401 0.9613 0.3914

Table 4.3: RCPn - Effectivity bounds and robustness indices for quadrangular elements applied

to Class I problems (the mesh patterns are illustrated in Figure 4.15, the aspect ratio is 1/1).

REP RCP1n RCP2n

Mesh θL θU R θL θU R θL θU R

Four-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 0.9987 1.0174 0.0187 0.9987 1.0174 0.0187 0.9841 1.0008 0.0169
c 0.9979 1.0061 0.0082 0.9978 1.0037 0.0059 0.9889 1.0047 0.0159
d 0.9798 1.0680 0.0882 0.9394 1.0118 0.0762 0.9363 1.0000 0.0680
e 0.9833 1.0680 0.0847 0.9449 1.0077 0.0660 0.9334 1.0031 0.0745

Nine-node elements
a 1.0000 1.0000 0.0000 1.0107 1.0107 0.0214 1.0107 1.0107 0.0214
b 0.9816 1.0045 0.0232 0.9929 1.0083 0.0154 0.9681 1.0058 0.0387
c 0.9967 1.0131 0.0164 1.0016 1.0142 0.0158 0.9941 1.0074 0.0133
d 0.9911 1.0329 0.0418 0.9800 1.0018 0.0222 0.9467 0.9933 0.0630
e 0.9909 1.0334 0.0425 0.9730 1.0008 0.0285 0.9454 0.9934 0.0644
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Table 4.4: RCPe - Effectivity bounds and robustness indices for triangular elements applied to

Class I problems (the mesh patterns are illustrated in Figure 4.14, the aspect ratio is 1/1).

REP RCP1e RCP2e

Mesh θL θU R θL θU R θL θU R

Three-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 1.0000 1.0074 0.0074 0.9705 1.0006 0.0310 0.9677 1.0008 0.0342
c 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
d 1.0000 1.0000 0.0000 0.9765 1.0002 0.0243 0.9946 1.0003 0.0057
e 0.9715 1.0190 0.0480 0.9812 1.0005 0.0196 0.9822 1.0006 0.0188
f 0.9828 1.0247 0.0420 0.9853 1.0023 0.0173 0.9888 1.0019 0.0133
g 0.9352 1.5400 0.6047 0.8504 1.0024 0.1783 0.8760 1.0011 0.1427
h 0.9939 1.8287 0.8347 0.7493 0.9942 0.3404 0.7701 0.9848 0.3140

Six-node elements
a 0.9516 1.0398 0.0891 0.9989 1.0007 0.0018 0.9979 1.0012 0.0033
b 0.9950 1.0222 0.0272 0.9986 1.0023 0.0038 0.9980 1.0105 0.0125
c 0.9320 0.9836 0.0897 0.9972 1.0044 0.0073 0.9931 1.0029 0.0098
d 0.9259 0.9594 0.1223 0.9972 1.0076 0.0104 0.9932 1.0015 0.0084
e 0.9481 1.0240 0.0782 0.9978 1.0051 0.0073 0.9960 1.0114 0.0154
f 0.9816 1.0045 0.0232 0.9978 1.0038 0.0060 0.9942 1.0054 0.0111
g 0.8972 1.1625 0.2653 0.9674 1.0125 0.0461 0.9419 1.0025 0.0642
h 0.8868 1.2142 0.3274 0.9465 0.9961 0.0605 0.9138 0.9879 0.1066

Table 4.5: RCPe - Effectivity bounds and robustness indices for quadrangular elements applied

to Class I problems (the mesh patterns are illustrated in Figure 4.15, the aspect ratio is 1/1).

REP RCP1e RCP2e

Mesh θL θU R θL θU R θL θU R

Four-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 0.9987 1.0174 0.0187 0.9999 1.0011 0.0011 0.9998 1.0079 0.0081
c 0.9979 1.0061 0.0082 0.9981 1.0016 0.0035 0.9926 0.9995 0.0079
d 0.9798 1.0680 0.0882 0.9364 1.0025 0.0704 0.9354 0.9924 0.0767
e 0.9833 1.0680 0.0847 0.9311 1.0032 0.0771 0.9280 0.9980 0.0797

Nine-node elements
a 1.0000 1.0000 0.0000 0.9981 0.9981 0.0038 0.9981 0.9981 0.0038
b 0.9816 1.0045 0.0232 0.9971 1.0022 0.0050 0.9930 1.0025 0.0095
c 0.9967 1.0131 0.0164 0.9978 1.0002 0.0024 0.9983 1.0028 0.0045
d 0.9911 1.0329 0.0418 0.9951 1.0021 0.0071 0.9936 1.0026 0.0091
e 0.9909 1.0334 0.0425 0.9946 1.0021 0.0075 0.9920 1.0009 0.0090
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Table 4.6: RCPn - Effectivity bounds and robustness indices for regular meshes of triangular and

quadrangular elements applied to Class I problems (the mesh patterns are illustrated in Figures

4.14(a) and 4.15(a)).

REP RCP1n & RCP2n

Aspect ratio θL θU R θL θU R

Six-node triangular elements
1/1 0.9516 1.0398 0.0891 0.9956 1.0114 0.0158
1/2 0.9516 1.0425 0.0916 0.9968 1.0178 0.0210
1/4 0.9516 1.0450 0.0939 0.9988 1.0250 0.0262
1/8 0.9516 1.0459 0.0948 0.9997 1.0279 0.0283
1/16 0.9516 1.0462 0.0950 0.9999 1.0288 0.0288
1/32 0.9516 1.0462 0.0950 1.0000 1.0290 0.0290
1/64 0.9516 1.0463 0.0951 1.0000 1.0290 0.0290

Nine-node quadrangular elements
1/1 1.0000 1.0000 0.0000 1.0107 1.0107 0.0214
1/2 1.0000 1.0000 0.0000 1.0030 1.0297 0.0327
1/4 1.0000 1.0000 0.0000 1.0008 1.0530 0.0538
1/8 1.0000 1.0000 0.0000 1.0002 1.0659 0.0661
1/16 1.0000 1.0000 0.0000 1.0000 1.0701 0.0702
1/32 1.0000 1.0000 0.0000 1.0000 1.0713 0.0713
1/64 1.0000 1.0000 0.0000 1.0000 1.0716 0.0716

Table 4.7: RCPe - Effectivity bounds and robustness indices for regular meshes of triangular and

quadrangular elements applied to Class I problems (the mesh patterns are illustrated in Figures

4.14(a) and 4.15(a)).

Aspect REP RCP1e RCP2e

ratio θL θU R θL θU R θL θU R

Six-node triangular elements

1/1 0.9516 1.0398 0.0891 0.9989 1.0007 0.0018 0.9979 1.0012 0.0033
1/4 0.9516 1.0450 0.0939 0.9984 1.0021 0.0037 0.9981 1.0049 0.0068
1/16 0.9516 1.0462 0.0950 0.9983 1.0025 0.0042 0.9981 1.0080 0.0099
1/64 0.9516 1.0463 0.0951 0.9983 1.0025 0.0042 0.9981 1.0082 0.0102

Nine-node quadrangular elements

1/1 1.0000 1.0000 0.0000 0.9981 0.9981 0.0038 0.9981 0.9981 0.0038
1/4 1.0000 1.0000 0.0000 0.9942 0.9998 0.0060 0.9942 0.9998 0.0060
1/16 1.0000 1.0000 0.0000 0.9938 1.0000 0.0062 0.9938 1.0000 0.0062
1/64 1.0000 1.0000 0.0000 0.9938 1.0000 0.0062 0.9938 1.0000 0.0062
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mance are observed using the RCP2 versions. It should be remarked that REP is
not stable for linear triangular elements on the mesh patterns in Figures 4.14(c)
and (f). Thus, the corresponding results have been obtained using the stabilization
technique suggested in [Boroomand & Zienkiewicz, 1997b].

4.6.1.2 Class II problems

Class II problems refer to plane elasticity problems and are described in Appendix

A.2. In particular, plane strain conditions and elastic isotropic properties are con-
sidered. The values of Young’s modulus and Poisson’s ratio are assumed as 1000
and 0.3, respectively. Tables 4.8 and 4.9 collect the results obtained for triangular
and quadrangular elements using the RCPn procedure and the mesh patterns il-
lustrated in Figures 4.14 and 4.15, respectively. Tables 4.12 and 4.10 collect some
results obtained with the RCPe procedure. Finally, Tables 4.12 and 4.13 shows
the influence of the aspect ratio for regular meshes of quadratic elements.
The above comments can be substantially repeated for triangular elements ap-

plied to the plane strain case. In particular, super-convergence is achieved for
linear triangular elements on the simple patterns of Figures 4.14(a) and (c), also

for aspect ratios different from 1/1. This ideal behavior is not observed using
quadratic triangular elements, but the results reported in Tables 4.6, 4.7, 4.12 and
4.13 indicate a good performance of the RCP procedure.
In the case of quadrangular elements, both REP and RCP yield full super-

convergence only for four-node elements on regular meshes. However, the robust-
ness indices in Tables 4.9, 4.11, 4.12 and 4.13 reveal an excellent performance also
for nine-node elements on regular meshes. The results obtained on distorted pat-
terns are very good though not exact. These numerical tests confirm the good
quality of the RCP procedure, already experienced on the previous class of prob-

lems. The asymptotic behaviour of the RCP recovery is similar to that of the REP
recovery. Actually, the RCP1 version appears to be slightly superior to REP. Pass-
ing to the RCP2 versions no remarkable improvements of robustness are observed.

4.6.2 Benchmark tests

In the following, the numerical validation of the RCP recovery is completed by
some benchmark computations, which provide valuable information on the pre-
asymptotic behaviour.
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Table 4.8: RCPn - Effectivity bounds and robustness indices for triangular elements applied to

Class II problems (the mesh patterns are illustrated in Figure 4.14, the aspect ratio is 1/1).

REP RCP1n RCP2n

Mesh θL θU R θL θU R θL θU R

Three-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 0.9763 1.0116 0.0358 0.8815 1.0063 0.1407 0.9207 1.0090 0.0950
c 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
d 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
e 0.9628 1.0165 0.0548 0.9447 1.0030 0.0615 0.9630 1.0062 0.0446
f 0.9590 1.0273 0.0693 0.8845 1.0038 0.1344 0.8826 1.0040 0.1369
g 0.8136 1.8299 1.0163 0.5533 1.0124 0.8196 0.5753 1.0308 0.7683
h 0.8270 1.8261 0.9991 0.4486 1.0021 1.2313 0.5005 0.9825 1.0157

Six-node elements
a 0.9558 1.1018 0.1461 0.9923 1.0361 0.0438 0.9923 1.0361 0.0438
b 0.9691 1.0757 0.1066 0.9811 1.0325 0.0513 0.9565 1.0126 0.0579
c 0.8587 0.9993 0.1653 0.8743 1.0216 0.1650 0.8743 1.0216 0.1650
d 0.8448 0.9871 0.1968 0.8743 1.0216 0.1650 0.8743 1.0216 0.1650
e 0.9174 1.0529 0.1403 0.9468 1.0216 0.0773 0.9184 1.0093 0.0980
f 0.8609 1.0300 0.1907 0.8747 1.0115 0.1546 0.8484 1.0040 0.1826
g 0.6944 1.3145 0.6794 0.7188 1.0034 0.3946 0.6617 1.0129 0.5240
h 0.7430 1.3508 0.6078 0.6740 0.9969 0.4867 0.6144 0.9801 0.6478

Table 4.9: RCPn - Effectivity bounds and robustness indices for quadrangular elements applied

to Class II problems (the mesh patterns are illustrated in Figure 4.15, the aspect ratio is 1/1).

REP RCP1n RCP2n

Mesh θL θU R θL θU R θL θU R

Four-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 0.9898 1.0231 0.0333 0.9895 1.0249 0.0354 0.9655 1.0014 0.0371
c 0.9924 1.0074 0.0150 0.9921 1.0066 0.0145 0.9827 1.0100 0.0274
d 0.9411 1.0975 0.1564 0.8968 1.0237 0.1383 0.8925 1.0319 0.1514
e 0.9517 1.0870 0.1353 0.9064 1.0191 0.1220 0.9002 1.0317 0.1416

Nine-node elements
a 1.0025 1.0102 0.0127 1.0000 1.0360 0.0360 1.0000 1.0360 0.0360
b 0.9834 1.0219 0.0386 0.9804 1.0203 0.0399 0.9420 1.0180 0.0792
c 0.9919 1.0170 0.0251 0.9974 1.0208 0.0234 0.9683 1.0127 0.0453
d 0.9675 1.0246 0.0576 0.9625 1.0028 0.0417 0.9049 0.9936 0.1116
e 0.9664 1.0235 0.0577 0.9562 1.0027 0.0485 0.9015 0.9937 0.1156



134 4.6- Homogeneous elestic bar

Table 4.10: RCPe - Effectivity bounds and robustness indices for triangular elements applied to

Class II problems (the mesh patterns are illustrated in Figure 4.14, the aspect ratio is 1/1).

REP RCP1e RCP2e

Mesh θL θU R θL θU R θL θU R

Three-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 0.9763 1.0116 0.0358 0.9642 1.0010 0.0381 0.9630 1.0011 0.0395
c 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
d 1.0000 1.0000 0.0000 0.9802 1.0005 0.0207 0.9964 1.0075 0.0112
e 0.9628 1.0165 0.0548 0.9761 1.0012 0.0257 0.9798 1.0014 0.0220
f 0.9590 1.0273 0.0693 0.9764 1.0026 0.0268 0.9847 1.0022 0.0177
g 0.8136 1.8299 1.0163 0.7612 1.0020 0.3157 0.7371 1.0039 0.3605
h 0.8270 1.8261 0.9991 0.6377 1.0016 0.5698 0.6336 1.0008 0.5791

Six-node elements
a 0.9558 1.1018 0.1461 0.9971 1.0018 0.0046 0.9973 1.0044 0.0070
b 0.9691 1.0757 0.1066 0.9957 1.0035 0.0078 0.9958 1.0161 0.0203
c 0.8587 0.9993 0.1653 0.9971 1.0345 0.0374 0.9894 1.0349 0.0455
d 0.8448 0.9871 0.1968 0.9970 1.0345 0.0376 0.9911 1.0349 0.0438
e 0.9174 1.0529 0.1403 0.9953 1.0149 0.0197 0.9937 1.0300 0.0363
f 0.8609 1.0300 0.1907 0.9961 1.0280 0.0319 0.9870 1.0272 0.0402
g 0.6944 1.3145 0.6794 0.9156 1.0157 0.1077 0.8676 1.0106 0.1631
h 0.7430 1.3508 0.6078 0.8626 1.0077 0.1669 0.8022 1.0008 0.2473

Table 4.11: RCPe - Effectivity bounds and robustness indices for quadrangular elements applied

to Class II problems (the mesh patterns are illustrated in Figure 4.15, the aspect ratio is 1/1).

REP RCP1e RCP2e

Mesh θL θU R θL θU R θL θU R

Four-node elements
a 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
b 0.9898 1.0231 0.0333 0.9991 1.0018 0.0027 0.9967 1.0098 0.0131
c 0.9924 1.0074 0.0150 0.9935 1.0038 0.0103 0.9886 1.0010 0.0125
d 0.9411 1.0975 0.1564 0.9137 1.0031 0.0976 0.9096 0.9952 0.1041
e 0.9517 1.0870 0.1353 0.9219 1.0056 0.0903 0.9148 0.9990 0.0941

Nine-node elements
a 1.0025 1.0102 0.0127 0.9965 1.0000 0.0035 0.9965 1.0000 0.0035
b 0.9834 1.0219 0.0386 0.9965 1.0079 0.0114 0.9918 1.0075 0.0157
c 0.9919 1.0170 0.0251 0.9976 1.0013 0.0037 0.9980 1.0079 0.0099
d 0.9675 1.0246 0.0576 0.9926 1.0041 0.0115 0.9903 1.0038 0.0136
e 0.9664 1.0235 0.0577 0.9931 1.0042 0.0111 0.9871 1.0028 0.0158
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Table 4.12: RCPn - Effectivity bounds and robustness indices for regular meshes of triangular

and quadrangular elements applied to Class II problems (the mesh patterns are illustrated in

Figures 4.14(a) and 4.14(a)).

REP RCP1n & RCP2n

Aspect ratio θL θU R θL θU R

Six-node triangular elements
1/1 0.9558 1.1018 0.1461 0.9923 1.036 0.0438
1/2 0.9548 1.0980 0.1432 0.9888 1.0392 0.0505
1/4 0.9527 1.0928 0.1401 0.9845 1.0437 0.0592
1/8 0.9519 1.0900 0.1381 0.9828 1.0457 0.0628
1/16 0.9517 1.0889 0.1372 0.9824 1.0462 0.0639
1/32 0.9516 1.0886 0.1370 0.9823 1.0464 0.0641
1/64 0.9516 1.0885 0.1369 0.9822 1.0464 0.0642

Nine-node quadrangular elements
1/1 1.0025 1.0102 0.0127 1.0000 1.0360 0.0360
1/2 1.0025 1.0181 0.0205 1.0000 1.0524 0.0524
1/4 1.0002 1.0136 0.0139 1.0000 1.0656 0.0656
1/8 0.9997 1.0061 0.0064 1.0000 1.0700 0.0700
1/16 0.9968 1.0061 0.0094 1.0000 1.0712 0.0712
1/32 0.9950 1.0061 0.0111 1.0000 1.0715 0.0715
1/64 0.9945 1.0061 0.0116 1.0000 1.0716 0.0716

Table 4.13: RCPe - Effectivity bounds and robustness indices for regular meshes of triangular

and quadrangular elements applied to Class II problems (the mesh patterns are illustrated in

Figures 4.14(a) and 4.15(a)).

Aspect REP RCP1e RCP2e

ratio θL θU R θL θU R θL θU R

Six-node triangular elements
1/1 0.9558 1.1018 0.1461 0.9971 1.0018 0.0046 0.9973 1.0044 0.0070
1/4 0.9527 1.0928 0.1401 0.9947 1.0023 0.0076 0.9973 1.0048 0.0075
1/16 0.9517 1.0889 0.1372 0.9944 1.0027 0.0083 0.9973 1.0067 0.0094
1/64 0.9516 1.0885 0.1369 0.9944 1.0028 0.0084 0.9973 1.0075 0.0102

Nine-node quadrangular elements
1/1 1.0025 1.0102 0.0127 0.9965 1.0000 0.0035 0.9965 1.0000 0.0035
1/4 1.0002 1.0136 0.0139 0.9941 1.0000 0.0059 0.9941 1.0000 0.0059
1/16 0.9968 1.0061 0.0094 0.9938 1.0000 0.0062 0.9938 1.0000 0.0062
1/64 0.9945 1.0061 0.0116 0.9938 1.0000 0.0062 0.9938 1.0000 0.0062
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4.6.2.1 Homogeneous elestic bar

Consider a one-dimensional sample problem governed by the following equations

k
d2u

dx2
= b, 0 < x < L,

u = 0, x = 0, L.

This problem can be viewed as the equilibrium problem of a clamped one-dimensional
homogeneous elastic bar, of length L and axial rigidity k, subjected to a distrib-
uted axial force b. The values of the parameters are assumed as L = 4 and k = 1.
The loading function is taken as

b = −π

L
cos
³πx
L

´
.

The exact solution in terms of stress is

σ = k
du

dx
= sin

³πx
L

´
.

This problem was used by Boroomand and Zienkiewicz [Boroomand & Zienkiewicz,
1997b] to illustrate the convergence properties of the REP procedure. The finite
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Figure 4.16: Recovered stress solutions for linear elements

element solution is obtained using uniform meshes of two-node (linear) elements.
The undeterminate self-equilibrated stress in the RCP1n procedure is simply a
constant term:

σ∗ph = β.

Thus, the present procedure involves only one unknown parameter for each patch.
The stress term in equilibrium with the prescribed load within the patch is taken
as

σ∗pp =
Z x

0

bdx.

In this problem, the stress fields recovered by the RCP1n procedure with and
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without boundary patches are almost coincident. Thus, no distinction is made
between RCP1n and RCP1nb in what follows. In the REP procedure, a linear
stress expansion is assumed within the patch, so that two unknown parameters for
each patch are involved.

 0 0.125 0.25 0.375 0.5

0

0.02

0.04

0.06

0.08

x / L

 
s
t
r
e
s
s
 
e
r
r
o
r

FEM (max .194)

REP (max .049)

RCP (max .019)

(a)

1 2 3 4

0.02

0.04

0.06

0

elements

s
t
r
e
s
s
 
e
r
r
o

r
 
(
e
n

e
r
g
y
 
n
o

r
m

)

FEM

REP

RCP

1 2 3 4

L

(b)

Figure 4.17: Error distributions for linear elements: (a) local error (maximum values are reported

in brackets), (b) element error in energy norm

The local recovered solutions σ∗p over a patch are shown in Figure 4.16 for the
four-element mesh and compared with the finite element solution. Notice that the
RCP-solution is indistinguishable from the exact one and much more accurate than
the REP-solution. This is confirmed by the error distributions in the smoothed
stresses σ∗ reported in Figure 4.17 for the eight-element mesh. In particular,
Figure 4.17(a) shows the local error and Figure 4.17(b) the element error. Due
to symmetry, the distributions are plotted only on one half of the domain. The
convergence properties of the recovery procedures are illustrated by Figure 4.18.
Figure 4.18(a) shows the rate of convergence of the local error in the nodal stress

value at point x = (3/4)L. Figure 4.18(b) shows the rate of convergence of the
global error in energy norm. These graphs reveal that nodal stress values recovered
by the RCP1n procedure are ultra-convergent, while those recovered by the REP
procedure are super-convergent. Unfortunately, ultra-convergence is lost for the
global error, because of the nodal interpolation by linear shape functions, and
super-convergence is achieved by both the REP and RCP1n procedures.

4.6.2.2 Thin membrane subjected to transverse loading (Class I
problem)

The second benchmark test is a typical problem of the class described in Appendix
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Figure 4.18: Rate of convergence for linear elements: (a) local error at point x/L = 3/4, (b)

global error in energy norm (Problem No. 1)

A.1. In particular, the equilibrium problem of a thin square membrane of uniform

thickness with fixed boundary is considered. Both the sidelength of the domain and
the parameter k are taken of unity value. Two different load cases are considered.
In load case No. 1, function b is selected such that the exact solution is given by

u(x, y) = xy sin(πx) sin(πy).

In load case No. 2, function b is selected such that the exact solution is given by

u(x, y) = x(1− x)y(1− y)(1 + 2x+ 7y).

This problem has been extensively used in the literature to test recovery procedures
on a bi-dimensional case. The finite element analysis is carried out on different
meshes using quadrangular four- and nine node elements.
The error distributions for load case No. 1 on a regular mesh of four by four bi-

linear elements are shown in Figures 4.19 and 4.20, in order to asses the accuracy
properties of the RCP procedure. In particular, the distributions of the local error
are shown in Figure 4.19 and the distributions of the element error are shown in

Figure 4.20, together with the values of the relative percentage error η (Equation
(2.37)). The local error is defined as the absolute value of the pointwise difference
between the recovered stress σ∗ and the exact stress σ for RCP and REP, while
between the finite element stress σh and the exact stress σ for FEM. These results
show a very good performance of the RCP procedure. In fact, RCP is much more
accurate than the REP procedure almost everywhere, and the associated errors are
more uniformly distributed over the domain. Moreover, RCP1e is, notwithstanding
its simplicity, about as accurate as RCP1n. The figures reveal also that the RCPe
seems to be slightly more sensitive than the RCPn to the increase of the stress
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FEM: σx - MAX: 0.7147 REP: σx - MAX: 1.1671 

RCP1e: σx - MAX: 0.3961 RCP2e: σx - MAX: 0.2016

RCP1n: σx - MAX: 0.3112 

RCP2n: σx - MAX: 0.2878 

Figure 4.19: Thin membrane subjected to transverse loading, load case No. 1 - Local error

distributions on a regular mesh of four-node elements (contour interval = 0.1)

approximation order. In particular, RCP2e remarkably improves accuracy all over
the domain and the relative percentage error passes from 22% (RCP1e) to only 7%.
Figure 4.21 shows the results of the convergence analysis of the RCP procedure,
carried out on sequentially refined uniform meshes of bi-linear and bi-quadratic
elements. In particular, the pointwise convergence of nodal stresses, evaluated

at point (x, y) = (0.5, 0.5) where σx = σy, is shown in Figures 4.21(a) and (c).
Because of inter-element discontinuity, here and in the following, the single-valued
RCPe and the FEM values are computed as average of nodal errors. Moreover,
note that, since uniform meshes are used, also the recovered stress components turn
out to be equal, so that only one graph is reported for each type of elements. The
rate of convergence of the relative percentage error for bi-linear and bi-quadratic
elements is shown in Figures 4.21(b) and (d). These results confirm that the
RCP procedure possesses the desirable feature of superconvergence. Moreover, it
can be observed that RCP2 is more accurate than RCP1, although it exhibits a
similar convergence behavior, as expected from robustness tests. The effectiveness

of the RCP procedure is also tested solving the present problem on an irregular
unstructured mesh of bi-linear elements. The results are shown in Figures 4.22
and 4.23. In particular, Figure 4.22 shows the distributions of the local error in
both the stress components, plotted as contours over the domain, and Figure 4.23
the distributions of the element error. The sensitivity of the RCP recovery to
element geometry distortions is also investigated solving the some problem on a
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Figure 4.20: Thin membrane subjected to transverse loading, load case No. 1 - Distributions of

element error in energy norm on a regular mesh of four-node elements (the relative percentage

error is reported above each plot)

sequence of progressively distorted meshes. The irregular pattern used in this test
is illustrated in Figure 4.26. The distortion is measured by the parameter d/L,
which ranges from −0.375 to 0.375. The local error in the nodal stress value at
point x = 0.5 and y = 0.5 is plotted against the distortion parameter in Figure
4.27 for both four- and nine-node elements. Figures 4.27(a) and (d) show the

results obtained for the load case No. 1, while Figures 4.27(b), (c), (e) and (f)
show the results obtained for the load case No. 2. In the first load case, only the
results for one stress component are reported owing to symmetry considerations.
It is interesting to notice the very good performance of the RCP procedure also for
irregular meshes. The nodal stress values recovered by the present procedure are
weakly sensitive to element geometry distortions and very accurate also for patches
of highly distorted elements. In particular, the RCP-results are much less sensitive
to geometry distortions than the REP-results. This is especially evident for nine-
node elements and confirms the good quality of RCP also in the pre-asymptotic
regime.

These experiments confirm what has been previously observed for uniform
meshes, so demonstrating that RCPn is reliable also for arbitrary irregular meshes.
This is a feature of importance in error estimation and adaptive analysis proce-
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Figure 4.21: Thin membrane subjected to transverse loading, load case No. 1 - Rate of conver-

gence: (a) local error at point x = 0.5, y = 0.5 (σx = σy) for four-node elements, (b) relative

percentage error for four-node elements, (c) local error at point x = 0.5, y = 0.5 (σx = σy) for

nine-node elements, (d) relative percentage error for nine-node elements

dures.
In order to evaluate the effect of using the boundary patch in the RCP procedure

based on node patches, the above test have been conducted both with and without
using boundary patches. The corresponding results, reported in Appendix B.1
show that using boundary patches actually enhances accuracy near boundaries.
Finally, using the unstructured mesh, the error distribution estimated basing on

the present RCP procedure, according to Equations (4.1) and (4.2), is compared
with the exact FEM error by Figure 4.28. As it can be observed, an excellent
behavior of the RCP error estimator is experienced, for both bi-linear and bi-

quadratic elements. Similar results are obtained using triangular elements. These
are not included for the sake of brevity.
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RCP1n: σx - MAX: 0.1769 

RCP2n: σy - MAX: 0.1965 

RCP2n: σx - MAX: 0.1897 

FEM: σy - MAX: 0.5998 REP: σy - MAX: 0.3313 

RCP1e: σy - MAX: 0.1711 RCP2e: σy - MAX: 0.0622 

FEM: σx - MAX: 0.7001 REP: σx - MAX: 0.2855 

RCP1e: σx - MAX: 0.1500 RCP2e: σx - MAX: 0.0852 

RCP1n: σy - MAX: 0.1828 

Figure 4.22: Thin membrane subjected to transverse loading, load case No. 1 - Local error

distributions on an unstructured mesh of four-node elements (contour interval = 0.05)
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FEM: η = 18.061 REP: η = 8.836 
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Figure 4.23: Thin membrane subjected to transverse loading, load case No. 1 - Distributions

of element error in energy norm on an unstructured mesh of four-node elements (the relative

percentage error is reported above each plot)

4.6.2.3 Stretched plate with circular hole (Class II problem)

The second class of problems considered refers to problem class described in the
Appendix A.2. In particular, a portion of an infinite plate with a central circular

hole of radius a subjected to a unidirectional tensile load σ0 = 1 is considered.
Plane stress conditions are assumed with elastic isotropic properties: Poisson’s
ratio is taken as 0.3 and Young’s modulus as 1000. The geometry of the problem
and the prescribed boundary conditions are shown in Figure 4.29. This is a popular
benchmark test for which the exact solution reads as

σx = 1− a2

r2

µ
3

2
cos 2θ + cos 4θ

¶
+
3

2

a4

r4
cos 4θ,

σy = −a
2

r2

µ
1

2
cos 2θ − cos 4θ

¶
− 3
2

a4

r4
cos 4θ,

τxy = −a
2

r2

µ
1

2
sin 2θ + sin 4θ

¶
+
3

2

a4

r4
sin 4θ.

where (r, θ) are the usual polar coordinates (see Figure 4.29). The radius of the
hole is taken as a = 1.
Three meshes are used in the finite element analysis and shown in Figure 4.29.

The coarsest mesh consists of 72 elements. The subsequent meshes are created
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FEM: y - MAX: 0.5998 REP: y - MAX: 0.3313 RCP1n: y - MAX: 0.1164

RCP1nb: y - MAX: 0.1828 RCP2n: y - MAX: 0.1352 RCP2nb: y - MAX: 0.1965

FEM: x - MAX: 0.7001 REP: x - MAX: 0.2855 RCP1n: x - MAX: 0.1501

RCP1nb: x - MAX: 0.1769 RCP2n: x - MAX: 0.1585 RCP2nb: x - MAX: 0.1897

Figure 4.24: Thin membrane subjected to transverse loading - Error distributions on an unstruc-

tured mesh of four-node elements (contour interval = 0.05,load case No. 1)
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FEM: y - MAX: 0.06859
y

REP: y - MAX: 0.07630 RCP1n: y - MAX: 0.01246

RCP1bn: y - MAX: 0.03648 RCP2n: y - MAX: 0.00866 RCP2nb: y - MAX: 0.01703

FEM: x - MAX: 0.07470 REP: x - MAX: 0.07123 RCP1n: x - MAX: 0.01113

RCP1nb: x - MAX: 0.04330 RCP2n: x - MAX: 0.00817 RCP2nb: x - MAX: 0.01966

Figure 4.25: Thin membrane subjected to transverse loading - Error distributions on an unstruc-

tured mesh of nine-node elements (contour interval = 0.005, load case No. 1)
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Figure 4.26: Thin membrane subjected to transverse loading - Irregular pattern used in sensitivity

test to mesh distortion

by a uniform refining process: each element of the preceding mesh is divided into
four new elements. The following quadrangular elements are employed: bi-linear
four-node elements, quadratic serendipity eight-node elements and bi-quadratic
nine-node elements. The stress approximations for the RCP and REP procedures

are assumed as described in Section A.2.2. In particular, the same approximations
are used for eight- and nine-node elements.
The distributions of the local error for four-node elements are displayed in Fig-

ures 4.30 and 4.31. The distributions of the element error for the same elements
are displayed in Figure 4.32. Inspecting these figures reveals that conclusions anal-
ogous to those of the preceding benchmark problem can be drawn, so confirming
the excellent performance of the RCP procedure also for plane elasticity problems.
The convergence properties of the procedure are illustrated in Figure 4.33: the
pointwise convergence of the recovered stress components, evaluated at the ver-
tex node (r = 1.5, θ = π/4) indicated on each mesh in Figure 4.29, is shown for

four-node elements by Figures 4.33(a)-(c), the convergence of the relative percent-
age error is shown for four- and nine-node elements by Figures 4.33(d) and (f). As
it can be noted, superconvergence of nodal stresses is experienced for the RCP pro-
cedure as well as for the REP procedure. On the contrary, the relative percentage
error is not superconvergent with any procedure, as expected because the meshes
are not fully regular. Anyway, the rate of convergence of the original finite element
solution is remarkably improved. As in the previous test, the influence of using
boundary patches in the RCPn procedure has also been investigated. The results,
reported in Appendix B.2 demonstrate that boundary patches generally improve
accuracy, especially on coarse meshes, but sometimes may deteriorate convergence.

Finally, the convergence behavior of the RCP-based error estimator is shown in
Figure 4.34(a) and (b) for four- and nine-node elements, respectively, and compared
to the exact one. In particular, the errors estimated by both RCP1e and RCP2e
are reported. The excellent properties of the RCP1e estimator are confirmed.
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Figure 4.27: Thin membrane subjected to transverse loading - Sensitivity to mesh distortion of

local error at point x = 0.5, y = 0.5: (a) four-node elements and load case No. 1, (b) and (c)

four-node elements and load case No. 2, (d) nine-node elements and load case No. 1, (e) and (f)

nine-node elements and load case No. 2

Moreover, it emerges that using the error estimator based on RCP2e could be
convenient in conjunction with higher order elements. Similar results are obtained

using triangular elements.

4.7 Recovery based error estimators can fail?

Recovery-based estimators possess a number of attractive features that have led

to their popularity. In particular, their ease of implementation, generality, and
ability to produce quite accurate estimators have led to their widespread adop-
tion, especially in the engineering community. However, the estimators also have
drawbacks.
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exact error 
η = 18.0613 

RCP1e estimator 
η∗ = 17.6521  θ = 0.9766
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Nine-node elements 
exact error 
η = 1.2778 

Figure 4.28: Thin membrane subjected to transverse loading, load case No. 1 - Exact and

estimated distributions of the element error in energy norm on an unstructured mesh

To illustrate the dangers in the indiscriminate use of such techniques, we present
a simple example by [Ainsworth & Oden, 2000]. The setting is chosen to be as
simple as possible so that there is no question that the source of the problems is
due to extraneous effects such as mesh distortions (the partition will be uniform)
numerical quadrature (all integrals are evaluated exactly), nonsmooth coefficients
(the data are smooth) or nonsmooth solution (the true solution is smooth). Fur-
thermore, the example is even taken to be one-dimensional to avoid any question

regarding mesh topology. Nevertheless, even in such an idealistic setting, it is pos-
sible to construct an example whereby the recovery based estimators produce an
estimated error of zero, while the actual error can be arbitrarily large.
It would be quite wrong to dismiss such a situation as being purely academic

and having no relevance to practical computation of much more complicated phe-
nomena in multidimensions. The point is that if such anomalies can be present in
such a simplified setting, then it is quite possible for similar effects to occur, pos-
sibly only locally, in more complex cases. The danger would be that the estimated
error in the neighborhood of the local feature would be zero, with the net result
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Figure 4.29: Stretched plate with circular hole

that the adaptive refinement procedure would miss the local feature altogether and
the error estimator would not flag any difficulties. Obviously, this is a potentially
disastrous situation. The example consists of approximating the problem

−u00 = f in Ω = (0, 1) , (4.124)

u (0) = u (1) = 0. (4.125)

The data f is chosen to be of the form

f (x) = μ sin (2mπx) , (4.126)

where m is a fixed integer and μ is an arbitrary constant. The approximation
consists of using piecewise linear finite elements on a uniform partition consisting
of 2n elements. Such a partition would arise beginning with a single element
and performing n− 1 successive subdivisions of the partition, corresponding to a
sequence of uniform refinements. The element nodes are located at the points

xk =
k

2n
, k = 0, . . . , 2n. (4.127)

It is well known that the finite element approximation uh will actually be the
piecewise linear interpolant to the exact solution u. Here, the exact solution is
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RCP1e: τxy - MAX: 0.5236 RCP1e: σy - MAX: 0.5100 RCP1e: σx - MAX: 0.6725 

FEM: τxy - MAX: 0.4703 

REP: τxy - MAX: 0.4876 

FEM: σy - MAX: 0.5451 

REP: σy - MAX: 0.4903 

FEM: σx - MAX: 0.8137 

REP: σx - MAX: 0.6375 

RCP1n: τxy - MAX: 0.5015 RCP1n: σy - MAX: 0.5100 RCP1n: σx - MAX: 0.6725 

Figure 4.30: Stretched plate with circular hole - Local error distributions for four-node elements

on mesh No. 1: FEM solution, REP, RCP1n and RCP1e (contour interval = 0.05)
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RCP2e: τxy - MAX: 0.3629 RCP2e: σy - MAX: 0.4068 RCP2e: σx - MAX: 0.5581 

RCP2n: τxy - MAX: 0.3626 RCP2n: σy - MAX: 0.3614 RCP2n: σx - MAX: 0.5013 

Figure 4.31: Stretched plate with circular hole - Local error distributions for four-node elements

on mesh No. 1: RCP2n and RCP2e (contour interval = 0.05)
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RCP2e: η = 4.612 RCP1e: η = 7.312 

FEM: η = 7.446 REP: η = 6.286 RCP1n: η = 6.692 

RCP2n: η = 5.087 
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Figure 4.32: Stretched plate with circular hole - Distributions of element error in energy norm

on mesh No. 1 of four-node elements (the relative percentage error is reported above each plot)
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Figure 4.33: Stretched plate with circular hole - Rate of convergence: (a) local error in σx at

point r = 1.5, θ = π/4 for four-node elements, (b) local error in σy at point r = 1.5, θ = π/4

for four-node elements, (c) local error in τxy at point r = 1.5, θ = π/4 for four-node elements,

(d) relative percentage error for four-node elements, (e) relative percentage error for nine-node

elements
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Figure 4.34: Stretched plate with circular hole - Convergence of the estimated relative percentage

error: (a) four-node elements, (b) nine-node elements

given by

u (x) =
1

4mπ2
μ sin (2mπx) (4.128)

and if m ≥ n, then u (xk) vanishes identically. Consequently, the finite element
approximation uh is identically zero. Observe that, no matter how many times
the partition is subdivided by increasing n, there always exists a set of data (cor-
responding to sufficiently large m) such that uh will vanish identically. Obviously,
the gradient of the finite element approximation also vanishes everywhere, and
consequently the recovered gradient functions of uh will also vanish everywhere.
The majority of practical a posteriori error estimates are based on either the con-
struction of an improved solution which is extracted locally from the finite element
solution by some local averaging (recovery) or on the solutions of local boundary

value problems set over the elements (or small subdomains associated with the el-
ements) with input-data obtained from the local residuals. This means that the
estimated error will be zero. However, the actual error is proportional to |μ| and
could therefore be arbitrarily large.
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Adaptivity

In questo capitolo viene illustrato e discusso il ruolo dello stimatore d’errore presen-
tato nel precedente capitolo quale parametro guida per la ricostruzione della dis-
cretizzazione finalizzata alla minimizzazione dell’errore stesso, ovvero quale para-
metro di controllo di analisi di tipo adattativo.
Dopo alcune considerazioni introduttive sulle varie strategie secondo cui si può

essere condotta un’analisi adattativa, l’attenzione è focalizzata sull’impiego dello
stimatore d’errore quale guida di analisi adattative condotte per completa rigen-
erazione della discretizzazione, mostrando l’efficacia dello stimatore RCP anche in
questo ambito.

5.1 Mesh generation

Normal practice to solve engineering problems by means of the Finite Element
Method involves increasing the number of discretization points in the computa-
tional domain and resolving the resulting system of equations to examine the rela-
tive change in the numerical solution. In general, this procedure is time consuming,
it depends on the experience of the analyst, and it can be misleading if the solution
has not entered an asymptotic range.
Ideally, with a robust and reliable self-adaptive scheme, one would be able

to specify an initial discrete model which is sufficient to describe the geome-

try/topology of the domain and the boundary conditions, and to specify a desired
error tolerance, according to an appropriate criterion. Then, the system would
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automatically refine the model until the error measure falls below the prescribed
tolerance. The process should be fully automatic and without any user interven-
tion. This approach increases the overall reliability of the analysis procedure since
it does not depend on the experience, or inexperience, of the analyst.
The need for developing better pre-processing techniques for the finite element

method, for performing automated analysis, and for obtaining self-adaptive so-
lutions (which is becoming a trend for commercial finite element software) have
driven the development of automatic mesh generation algorithms, i.e. algorithms

which are capable of discretizing an arbitrary geometry into a consistent finite
element mesh without any user intervention.

Figure 5.1: Simplified diagram of the iterative mesh design cycle: (1) self-adaptive tecnique;

(1)+(2) self-adaptive tecnique with supervisor

Such software is nowadays accompanied by interactive graphics, which eases the
mesh generation task considerably. Standardized data interfaces such as IGES and
STEP allow CAD-generated data to be transferred between different software. The

difficult step then follows of assigning the topological element descriptions to fill the
required volume. However, the generation of meshes, particularly for complicated
3D structures, can still be a daunting task. Mesh generation techniques fall into
two broad classes, which can be termed top-down and bottom-up.
Top-down takes for input an overall volume. This is defined to the program as a

set of lines and curves in 2D, or equivalent surfaces in 3D. A mesh is automatically
formed in the required volume. The problem here is that elements with badly
distorted shapes can be generated to fill the space. When huge numbers of elements
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are being generated in complicated 3D structures, such elements can be hard to
spot by eye in the graphics. Some shape checks should be available in the software,
and it is prudent to use this to check such distortions.
Bottom-up is based on designing the mesh element by element, building up

using sets of commands in sequence. Hence a more continuous control on each
element is available. However, distortions can occur in the later stages of the
process when final parts of the overall shape have to be filled. The process is also
time consuming for the user.

In both cases, the meshes produced should be checked for an accurate repre-
sentation of the model, and that the elements are of suitable shape and size. Some
elements will have to be somewhat distorted in the fitting process, particularly
around detailed geometric features and curved boundaries [Zhu et al. , 1991b].

5.2 Adaptive finite element techniques

Adaptive procedures try to automatically refine, coarsen, or relocate a mesh and/or
adjust the basis to achieve a solution having a specific accuracy in an optimal
fashion. The computation typically begins with a trial solution generated on a
coarse mesh with a low-order basis. The error of this solution is estimated. If
it fails to satisfy the prescribed accuracy, adjustment are made with the goal of
obtaining the desired solution with minimal effort. While adaptive finite element
methods have been studied for nearly twenty years, surprising little is known about

optimal strategies. Common procedures studied to date include

• local refinement and/or coarsening of a mesh

• relocating or moving a mesh

• locally varying the polynomial degree of the basis

• combinations of the precedent

We may guess that the relocating or moving a mesh method alone is generally

not capable of finding a solution with a specified accuracy. If the mesh is too
coarse, it might be impossible to achieve a high degree of precision without adding
more elements or altering basis especially if geometry singularity occurs. This
refinement is more useful with transient problems where elements move to follow
an evolving phenomenon. By far the local refinement method is the most popular.
It can increase the convergence rate, particularly when singularities are present.
In some sense locally varying the polynomial degree as refinement is the most
powerful. Exponential convergence rates are possible when solutions are smooth.
When combined with a local refinement of the mesh size, these high rates are also
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possible when singularities are present. The use of polynomial is most natural
with a hierarchical basis, since portions of the stiffness and mass matrices and load
vector will remain unchanged when increasing the polynomial degree of the basis.
In the previous chapter, we have discussed at some length various methods of

recovery by which the finite element solution results could be made more accurate
and this led us to devise various procedures for error estimation. In this chapter,
we shall be concerned with methods which can be used to reduce the errors gen-
erally once a finite element solution has been obtained. As the process depends

on previous results at all stages it is called adaptive. Such adaptive methods were
first introduced to finite element calculations by Babuska and Rheinboldt in the
late 1970s [Babuška & Rheinboldt, 1978]-[Babuška & Rheinboldt, 1979]. Before
proceeding further it is necessary to clarify the objectives of refinement and specify
permissible error magnitudes, and here the engineer or user must have very clear
aims. For instance, the naive requirement that all displacements or all stresses
should be given within a specified tolerance is not always acceptable. The rea-
sons for this are obvious as at singularities, for example, stresses will always be
infinite and therefore no finite tolerance could be specified. The same difficulty is

true for displacements if point or knife edge loads are considered. The most com-
mon criterion in general engineering use is that of prescribing a total limit of the
error computed in the energy norm. Often this error is required not to exceed a
specified percentage of the total energy norm of the solution and in the many ex-
amples presented later we shall use this criterion. However, using a recovery type
of error estimator it is possible to adaptively refine the mesh so that the accuracy
of a certain quantity of interest, such as the root mean square error in displace-
ment and/or root mean square error in stress, satisfy some user-specified criterion.
Zienkiewicz and Zhu in [Zienkiewicz & Zhu, 1987] have used root mean square er-
ror in stress in the adaptive procedure to obtain more accurate stress solutions. We

should recognize that adaptive procedure based on reducing the root mean square
error in displacement is in effect reducing the average displacement error in each
element; similarly adaptive procedure based on reducing the root mean square er-
ror in stress is the same as reducing the average stress error in each element. Here
we could, for instance, specify directly the permissible error in stresses or displace-
ments at any location. Others have used the requirement of constant energy norm
density in the adaptive analysis, which is, in fact, equivalent to specifying a uni-
form distribution of root mean square error in stress in each element. We note
that the recovery type of error estimators are particularly useful and convenient in
designing adaptive analysis procedures for the quantities of interest.
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5.2.1 Adapt elements or functions?

As we have already remarked in the previous chapter we will at all times consider
the error in the actual finite element solution rather than the error in the recovered
solution. It may indeed be possible in special problems for the error in the recovered

solution to be zero, even if the error in the finite element solution itself is quite
substantial. (Consider here for instance a problem with a linear stress distribution
being solved by linear elements which result in constant element stresses. Obviously
the element error will be quite large. But if recovered stresses are used, exact results
can be obtained and no errors will exist). The problem of which of the errors to
consider still needs to be answered. At the present time we shall consider the
question of recovery as that of providing a very substantial margin of safety in the
definition of errors.

Figure 5.2: Various procedures by h-refinement: (a) mesh enrichment by transition elements; (b)

mesh enrichment; (c) complete mesh regeneration; (d) repositioning node

Various procedures exist for the refinement of finite element solutions [Babuška
& Miller, 1984]—[Carey, 2006]. Broadly these fall into two categories:

• The h-refinement, in which the same class of elements continue to be used but
are changed in size, in some locations made larger and in others made smaller,
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to provide maximum economy in reaching the desired solution.

• The p-refinement, in which we continue to use the same element size and

simply increase, generally hierarchically, the order of the polynomial used in
their definition.

It is occasionally useful to divide the above categories into subclasses, as the
h-refinement can be applied and thought of in different ways. In Figure 5.2 we
illustrate four typical methods of h-refinement.

1. The first of these h-refinement methods is element subdivision (enrichment)
(Figure 5.2(a)). Here refinement can be conveniently implemented and exist-
ing elements, if they show too much error, are simply divided into smaller ones
keeping the original element boundaries intact. Such a process is cumbersome
as many hanging points are created where an element with mid-side nodes is
joined to a linear element with no such nodes. On such occasions it is nec-
essary to provide local constraints at the hanging points and the calculations
become more involved. In addition, the implementation of de-refinement re-
quires rather complex data management which may reduce the efficiency of
the method. Nevertheless, the method of element subdivision is quite widely

used.

2. The second method is the locally mesh enrichment by using transition zone
(Figure 5.2(b)). Here, on the basis of a given solution, some element are
subdivided by precise schemes and join together with other elements. Such a

process needs sometime distorted element in the transition zone, and therefore
is advise against use element sensitive to distortion.

3. The third method is that of a complete mesh regeneration or remeshing (Figure
5.2(c)). Here, on the basis of a given solution, a new element size is predicted

in all the domain and a totally new mesh is generated. Thus a refinement and
de-refinement are simultaneously allowed. This of course can be expensive,
especially in three dimensions where mesh generation is difficult for certain
types of elements, and it also presents a problem of transferring data from
one mesh to another. However, the results are generally much superior and
this method will be used in most of the examples shown in this chapter.
For many practical engineering problems, particularly of those for which the
element shape will be severely distorted during the analysis, adaptive mesh
regeneration is a natural choice.

4. The final method, sometimes known as r-refinement [Figure 5.2(d)], keeps the
total number of nodes constant and adjusts their position to obtain an optimal
approximation. While this procedure is theoretically of interest it is difficult



Chapter 5 161

to use in practice and there is little to recommend it. Further it is not a true
refinement procedure as a prespecified accuracy cannot generally be reached.

We shall see that with energy norms specified as the criterion, it is a fairly simple
matter to predict the element size required for a given degree of approximation.
Thus very few re-solutions are generally necessary to reach the objective.
With p-refinement the situation is different. Here two subclasses exist:

1. One in which the polynomial order is increased uniformly throughout the
whole domain;

2. One in which the polynomial order is increased locally using hierarchical re-

finement.

In neither of these cases a direct procedure, which allows the prediction of the
best refinement to be used to obtain a given error, has been developed. Here the
procedures generally require more resolutions and tend to be more costly. However,

the convergence for a given number of variables is more rapid with p-refinement
and it has much to recommend it.
On occasion it is possible to combine efficiently the h- and p-refinements and call

it the hp-refinement. In this procedure both the size of elements h and their degree
of polynomial p are altered. Much work has been reported in the literature by
Babuska, Oden and others and it has been proved that an hp-adaptive system gives
the optimal convergence (maximum accuracy for a given number of equations).
However, its programming is difficult and requires careful planning of the data
base structure [Babuška & Miller, 1984]—[Zienkiewicz et al. , 1989]—[Ainsworth &

Oden, 1992]—[Ainsworth & Oden, 2000].

5.2.2 Structured or unstructured mesh?

The most basic form of mesh classification is based upon the connectivity of the
mesh: structured or unstructured.

Structured mesh is one in which the elements have the topology of a regular
grid. Structured meshes are typically easier to compute with (saving a constant
factor in runtime) but may require more elements or worse-shaped elements.
Unstructured mesh is characterized by irregular connectivity. Unstructured

meshes are often computed using quadtrees, or by Delaunay triangulation of point
sets; however there are quite varied approaches for selecting the points to be tri-
angulated. Compared to structured meshes, the storage requirements for an un-
structured mesh can be substantially larger since the neighborhood connectivity
must be explicitly stored.
A hybrid mesh is a mesh that contains structured portions and unstructured
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portions. Note that this definition requires knowledge of how the mesh is stored
(and used). There is disagreement as to the correct application of the terms "hy-
brid" and "mixed". The term "mixed" is usually applied to meshes that contain
elements associated with structured meshes and elements associated with unstruc-
tured meshes (presumably stored in an unstructured fashion).

5.2.3 h-refinement on structured mesh

The quadrilateral type elements generally produce better solutions than the triangular-
type, and have been frequently used in the adaptive h−refinement algorithm. How-
ever, when an area of complicated geometry is refined locally, the use of four node
elements often only leads either to the meshes with distorted shapes or to the
meshes with too many degrees of freedom not to result in an inefficient solution

like those of Figure 5.3. The adaptive mesh refinements using variable-node ele-
ments have been reported to be effective [Gupta, 1978]—[Lo et al. , 2006].

Figure 5.3: Examples of refinement without changing element type

The subdivided elements called daughter elements can maintain the same shapes
as that of the original element, ormother element, when the variable-node elements
are used for mesh refinement, as shown in Figure 5.4. If the well-composed ini-
tial mesh is used and the variable-node element is utilized in the transition zone,

the mesh distortion will not occur or will be minimized. In evaluating the element
mass and stiffness matrices of a variable-node element, a normal numerical inte-
gration may not be applied directly over the entire element domain; this is because
the slope discontinuity of shape function derivative assumed in the element may
cause a singular integral. Mesh refinement strategies for elliptic (steady) problems
need not consider coarsening. We can refine an initially coarse mesh until the re-
quested accuracy is obtained. This strategy might not be optimal and won’t be,
for example, if the coarse mesh is too fine in some regions.
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5.2.3.1 Rules: quadtree balancing

The recursive binary refinement algorithm is simple. Each test point is located
with respect to the current tree, as shown in Figure 5.5. The cell where the point
is located is recursively divided by two until the size of the resulting cell is less
than the characteristic size of the element associated with the test point. This
process is repeated for each element edge segment along the curve. Each segment

mid point is located in the tree resulting from the refinement due to the previous
point.

Figure 5.4: Quadtree balancing: (a) split of neighbors; (b) initial element split with new nodes

and daughter-elements

In any spatial data structure, the domain is enclosed by unit squares (root)
that are sub-divided into four equal elements (cells) which are the children of the
root. This process can be repeated several times on each of the children until a
stopping criteria is met. Two cells are adjacent if they have a common edge. Each
child of the cell represents an element. A cell is called a leaf if it does not have any
children. The level of a cell is the number of refinements needed to obtain that
cell; the root is at level zero.

Figure 5.5: Quadtree connection: refinement by subsequent subdivision level
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5.2.4 h-refinement on unstructured mesh

It is difficult to make general statements about unstructured mesh generation al-
gorithms because the most prominent methods are very different in nature. The
most popular family of algorithms are those based upon Delaunay triangulation,

but other methods, such as quadtree/octree approaches are also used.
Many of the commonly used unstructured mesh generation techniques are based

upon the properties of the Delaunay triangulation and its dual, the Voronoi dia-
gram. Given a set of points in a plane, a Delaunay triangulation of these points
is the set of triangles such that no point is inside the circumcircle of a triangle.
The triangulation is unique if no three points are on the same line and no four
points are on the same circle. A similar definition holds for higher dimensions,
with tetrahedra replacing triangles in 3D.

5.3 Predicting the required element size in
h-adaptivity

The error estimators discussed in the previous chapter allow the global energy
(or similar) norm of the error to be determined and the errors occurring locally
(at the element level) are usually also well represented. If these errors are within
the limits prescribed by the analyst then clearly the work is completed. More

frequently these limits are exceeded and refinement is necessary. The question
which this section addresses is how best to effect this refinement [Zienkiewicz &
Zhu, 1987]—[Zienkiewicz & Zhu, 1991]—[Zhu et al. , 1991a]. Here obviously many
strategies are possible and much depends on the objectives to be achieved.
In the simplest case we shall seek, for instance, to make the relative energy

norm percentage error η less than some specified value (say 5% in many engineering
applications). Thus

η ≤ η̄, (5.1)

is to be achieved.
In an optimal mesh it is desirable that the distribution of energy norm error

(i.e., kek) should be equal for all elements. Thus if the total permissible error is
determined (assuming that it is given by the result of the approximate analysis)
as

Permissible error ≡ η̄ kuk ≈ η̄
³°°uh°°2 + kek2´1/2 , (5.2)

here we have used

kek2 = kuk2 − °°uh°°2 . (5.3)
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We could pose a requirement that the error in any element ( ·e) should be

keke ≤ η̄

Ã°°uh°°2 + kek2
ne

!1/2
= ēne, (5.4)

where ne is the number of elements involved. Elements in which the above is not
satisfied are obvious candidates for refinement. Thus if we define the ratio

keke
ēne

= ξe, (5.5)

we shall refine whenever

ξe > 1, (5.6)

ξe can be approximated, of course, by replacing the true error in Equations (5.4)
and (5.5) with the error estimates.
The refinement could be carried out progressively by refining only a certain

number of elements in which ξ is higher than a certain limit and at each time of
refining halve the size of such elements. This type of element subdivision process
is also known as mesh enrichment. This process of refinement though ultimately
leading to a satisfactory solution being obtained with a relatively small number of
total degrees of freedom, is in general not economical as the total number of trial

solutions may be excessive.
It is more efficient to try to design a completely new mesh which satisfies the

requirement that

ξe ≤ 1. (5.7)

One possibility here is to invoke the asymptotic convergence rate criteria at the
element level (although we have seen that these are not realistic in the presence

of singularities) and to predict the element size distribution. For instance, if we
assume

keke ∝ hpe, (5.8)

where hpe is the current element size and p the polynomial order of approximation,
then to satisfy the requirement of Equation (5.4) the new generated element size
should be no larger than

hnew = ξ−1/pe he. (5.9)

The reason for the success of the mesh regeneration based on the simple assumption
of asymptotic convergence rate implied in Equation (5.8) is the fact that with
refinement the mesh tends to be optimal and the localized singularity influence no
longer affects the overall convergence.

Of course the effects of singularity will still remain present in the elements
adjacent to it and improved mesh subdivision can be obtained if in such elements
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we use the appropriate convergence and write, if in Equations (5.8) and (5.9) p is
replaced by λ,

hnew = ξ−1/λe he, (5.10)

in which λ is the singularity strength. A convenient number to use here is λ = 0.5

as most singularity parameters lie in the range 0.5 ÷ 1.0. With this procedure,
added to the refinement strategy, we frequently achieve accuracies better than the
prescribed limit in one remeshing.

5.3.1 The h−refinement strategy with RCP
The refinement strategy depends on the nature of the accuracy criteria to be satis-
fied. A very common requirement is to specify the achievement of a certain value
of the percentage error. Resorting to a recovery procedure, the percentage error
in Equation (5.1) can be estimated as

η∗ =
ke∗k³

kσhk2 + ke∗k2
´1/2 .

Aiming at an equal distribution of error between all elements, requirement (5.1)
can be reformulated by placing a limit on the error in each element. Following the
strategy proposed in the previous section and denoting by ne the total number
of elements in the current analysis, the following requirement on the permissible
error in each element ( ·e) is posed:

keke ≤ η̄

Ã°°σh
°°2 + kek2
ne

!1/2
= ēm. (5.11)

Thus, the ratio

ξe =
keke
ēm

, (5.12)

defines the elements to be refined (ξe > 1) as well as the areas where a coarser
subdivision is permissible (ξe < 1). In practice, an approximated value of ξe
can be computed for each element by replacing the true error kek in Equations
(5.11) and (5.12) with an error estimator ke∗k. Then, the predicted values of ξe
provide guidance for the refinement process. Here, the processes based on both
mesh enrichment and complete mesh regeneration are considered. In the latter
case the values ξe are used to predict the element size distribution. Invoking the
asymptotic convergence rate criteria, the new generated element size should be no
larger than

hnewe = heξ
−1/p
e , (5.13)

where he is the current element size and p the assumed convergence rate of the
error in the area covered by the element. This value is generally taken as equal
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to the polynomial order of approximation, though of course it is not realistic near
singularities.

5.3.2 The hp−refinement strategy
In an hp-adaptive solution one needs to pick which item to change first. Since p
changes are relatively expensive and must be limited to integers it may be best to
select pnew, first and to restrict the change in degree, say n to 0 or ±1 Then, due
to the integer choice on p some of the estimated refinement (or de-refinement) still
needs to occur by also selecting a new mesh size. We can envision the refinement
indicator as having two contributions, ξ = ξp ·ξh. If the new integer degree, (p+ n),
was based on the current element size then the now known numerical value

ξp =
hp

h(p+n)
, (5.14)

can be used to get the needed remaining spatial refinement indicator, ξh. Note
that the product relation is

ξ =
hp

h
(p+n)
new

=
hp

h(p+n)
· h

(p+n)

h
(p+n)
new

= ξp · ξh, (5.15)

which with ξ and ξh known simplifies to

ξh =
ξ

ξp
=

µ
h

hnew

¶(p+n)
, (5.16)

or finally

hnew =
h

ξ
1

(p+n)

h

. (5.17)

Even with these rough estimates of desired changes one may need other rules to
assure that the mesh size and local degree do not change rapidly from one solution
iteration to the next, or oscillate between large and small values.

5.4 Numerical examples

To illustrate the efficiency of the RCP error estimator in adaptive analyses we
present now some examples of adaptive refinement. The refinement strategies
shown in the previous section that will be used are: h-refinement with transition
element and h-refinement with full mesh regeneration.

5.4.1 Class I problems

The first class of problems considered refers to Class I problems (equilibrium prob-
lem of a thin membrane of uniform thickness, subjected to a distributed transverse
force) described in Appendix A.1. The parameter k is set equal to 1, and the load
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term b is.specified in the following.

5.4.1.1 Square domain: load case No.1

This example [Zienkiewicz & Taylor, 1989] is fairly straightforward and starts from
a simple square domain in which the loading term b is selected such that the exact
solution is given by

u(x, y) = x(1− x)y(1− y) arctan [α(ρ− ρ0)] , (5.18)

where ρ = (x+ y)/
√
2, ρ0 = 0.8 and α = 20. Figure 5.6 shows the exact solution

in terms of stresses. As it can be observed, the exact stresses exhibit a relatively
sharp concentration. In Figure 5.7 we show the first subdivision of this domain
into regular linear and quadratic elements and the subsequent refinements.

Base contour value = -0.365100

Maximum contour value = 0.852200

Contour interval = 0.060865

(a)

Base contour value = -0.365100

Maximum contour value = 0.852200

Contour interval = 0.060865

(b)

Figure 5.6: Exact solution: (a) contours of σx, (b) contours of σy

The elements are of both triangular and quadrilateral shape. For the linear
elements the target error is 10% of total energy, while for quadratic elements the
target error is 1% of total energy. In all cases, three refinements suffice to reach a
very accurate solution satisfying the requirements despite the fact that the original
mesh cannot capture in any way the high intensity region illustrated in the previous
figure.
Notice that the prescribed accuracy has been achieved in all cases. Moreover,

Figures 5.8-5.11 illustrate a comparison between the distributions of the exact
and the estimated error in energy norm, showing a very good agreement. Finally,
convergence rates of the exact and of the estimated error on the adaptive mesh
refinement are shown in Figures. 5.12 and 5.13. The excellent behaviour of the
RCP error estimator can be observed.
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Mesh 1 – 32 elements (9 DOFs)

 = 57.48 %    * = 55.04 %

 = 0.938

Mesh 2 – 580 elements (563 DOFs)

 = 13.52 %    * = 13.61 %

 = 1.007

Mesh 3 – 1294 elements (1277 DOFs)

 = 7.98 %    * = 8.11 %

 = 1.017

Mesh 1 – 32 elements (9 DOFs)

 = 78.71 %    * = 65.21 %

 = 0.778

Mesh 2 – 828 elements (370 DOFs)

 = 16.85 %    * = 17.02 %

 = 0.010

Mesh 1 – 1881 elements (911 DOFs)

 = 9.20 %    * = 9.45 %

 = 1.027

Mesh 1 – 32 elements (49 DOFs)

 = 41.11 %    * = 43.53 %

 = 1.124

Mesh 2 – 690 elements (1319 DOFs)

 = 2.03 %    * = 2.02 %

 = 0.939

Mesh 3 – 1064 elements (2077 DOFs)

 = 0.84 %    * = 0.85 %

 = 1.018

Mesh 1 – 16 elements (49 DOFs)

 = 28.18 %    * = 24.95 %

 = 0.874

Mesh 2 – 382 elements (1501 DOFs)

 = 1.82 %    * = 1.89 %

 = 1.037

Mesh 3 – 876 elements (3477 DOFs)

 = 0.72 %    * = 0.78 %

 = 1.078

Figure 5.7: Adaptive solutions for: (a) and (b) linear elements with target error set to 10 %, (c)

and (d) quadratic elements with target error set to 1 %
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Figure 5.8: Distributions of element error in energy norm for linear triangular elements: (a) and

(c) exact error, (b) and (d) error estimate

Figure 5.9: Distributions of element error in energy norm for quadratic triangular elements: (a)

and (c) exact error, (b) and (d) error estimate
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Figure 5.10: Distributions of element error in energy norm for linear quadrilateral elements: (a)

and (c) exact error, (b) and (d) error estimate

Figure 5.11: Distributions of element error in energy norm for quadratic quadrilateral elements:

(a) and (c) exact error, (b) and (d) error estimate
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Figure 5.12: Convergence of adaptive refinement for triangular elements
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Figure 5.13: Convergence of adaptive refinement for quadrilateral elements
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5.4.1.2 Square domain: load case No.2

A square domain is considered also in this example [Ainsworth & Oden, 2000], but
the source term b is chosen so that the exact solution of the problem is

Base contour value = -62273.7487
Maximum contour value = 18906.9979

Contour interval = 4272.6709

Base contour value = -62273.7487
Maximum contour value = 18906.9979

Contour interval = 4272.6709

(a) (b)

Figure 5.14: Exact solution: (a) contours of σx, (b) contours of σy

u(x, y) = 5x2 (1− x)2
³
e10x

2 − 1
´
y2 (1− y)2

³
e10y

2 − 1
´

(5.19)

The solution is smooth, but possesses step gradients in the neighborhood of the
boundaries as shown in Figure 5.14(a)-(b). For this reason, in this second load
case the target error is higher than in the previous one: 15% of total energy for
linear elements and, 5% of total energy for quadratic elements.
In Figure 5.15 we show the first subdivision of this domain into regular linear

and quadratic elements and the subsequent refinements
Also in this example three refinements suffice to reach a very accurate solu-

tion satisfying the requirements, so confirming the good performance of the RCP
estimator.
Moreover, Figures 5.16—5.19 compare the distribution of the exact error with

that ao the estimated one, obtained both with the RCPn and the RCPe estimator.
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Figure 5.15: Adaptive solutions for: (a) and (b) linear elements with target error set to 15 %,

(c) and (d) quadratic elements with target error set to 5 %
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 = 93.0156  RCP: * = 75.6859 ,  = 0.31252  RCPE: * = 96.3847 ,  = 0.9762
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 = 26.8024  RCP: * = 32.9078 ,  = 1.2526  RCPE: * = 25.6085 ,  = 0.95221
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Figure 5.16: Distributions of element error in energy norm for linear triangular elements: (a), (c)

and (e) exact error, (b), (d) and (f) error estimate
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 = 97.5864  RCP: * = 76.0242 ,  = 0.26009  RCPE: * = 97.6168 ,  = 0.99972
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Mesh 1 - 16 elements (9 DOFs)

Mesh 2 - 768 elements (804 DOFs)

Mesh 3 - 1492 elements (1566 DOFs)

Figure 5.17: Distributions of element error in energy norm for linear quadrangular elements: (a),

(c) and (e) exact error, (b), (d) and (f) error estimate
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 = 64.8979  RCP: * = 75.2798 ,  = 0.97361  RCPE: * = 75.5045 ,  = 0.98036
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Figure 5.18: Distributions of element error in energy norm for quadratic triangular elements: (a),

(c) and (e) exact error, (b), (d) and (f) error estimate



178 5.4- Square domain: load case No.2

 = 47.863  RCP: * = 71.6472 ,  = 1.8682  RCPE: * = 48.1312 ,  = 0.99885
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Figure 5.19: Distributions of element error in energy norm for quadratic quadrangular elements:

(a), (c) and (e) exact error, (b), (d) and (f) error estimate
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5.4.2 Class II problems

In this section some adaptivity examples concerning plane stress problems (Class
II problems) are presented. Young modulus is set equal to 1 and Poissons ratio to
0.3.

5.4.2.1 Short cantilever with uniformly distributed load

A short cantilever subjected to uniformly distributed load is considered, Figure
5.20 [Zienkiewicz & Taylor, 1989]—[Zienkiewicz & Zhu, 1991].

Figure 5.20: Short cantilever beam

The allowable error η is set equal to 5%. There are two singular stress points at

the two corners of the edge clamped on the wall. The reference solution is obtained
with a fine mesh of 64 × 64 elements. Adaptive analysis is performed employing
mesh refinement with transition element. The details about the transition elements
used in this example are given in Appendix D. As expected, in the refinement
process, elements are significantly refined around the singular stress points.

5.4.2.2 L-shaped domain

This example considers a finite plate subjected to tensile loading along the orizontal
direction, one quarter of which is shown in Figure 5.22. In the plate centre, there

is a square cut out that introduces four singular points at the four corners of the
cut out. As discussed in the previous section (see Equation (5.10)), the effects of
the singularity will still be present in the elements adjacent to it and improved
mesh subdivision can be obtained if, in such elements we use the appropriate
singularity strength coefficient λ. As shown before most singularity parameters lie
in the range 0.5÷ 1.0. A convenient number to be use here is λ = 0.5 A complete
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 = 41.4224

 = 36.3530
 = 0.87762

4 elements

 = 26.4290
 = 23.2132

16 elements

64 elements

 = 15.9863
 = 14.3631
 = 0.89846

 = 9.4736
 = 8.5933
 = 0.90707

241 elements

 = 6.1050
 = 5.6330
 = 0.92269

445 elements

 = 4.2994
 = 4.0700
 = 0.94663

690 elements

 = 0.87832

             Mesh 1                                                           Mesh 2

            Mesh 3 Mesh 4

            Mesh 5 Mesh 6

Figure 5.21: Short cantilever beam solved by mesh enrichment: linear quadrilateral elements

mesh regeneration with quadratic quadrilateral elements is used. The allowable
error η is set equal to 1%. Figure 5.22 shows the progressive steps of adaptive
refinement and Figure 5.23 shows the corresponding distributions of the estimated
error with both RCPn and RCPe estimator. The convergence rate is given in
Figure 5.24

5.4.2.3 Machine part

The machine part shown in Figure 5.25 is considered [Zienkiewicz & Taylor, 1989]—
[Zienkiewicz & Zhu, 1991]. The allowable error η is set equal to 5%. Adaptive
analysis is performed using complete mesh regeneration strategy. Figure 5.26 and
5.27 show the RCP-based adaptive mesh refinement with quadrangular and trian-
gular elements, respectively. As it can be noted only two steps suffice to reach the
desired accuracy.
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Mesh 1 – 27 elements (252 DOFs) 

η = 8.26 %    η* = 10.03 % 

θ = 1.214 100

5
0

5
0

50

1

Mesh 2 – 169 elements (1424 DOFs) 

η = 2.67 %    η* = 2.83 % 

θ = 1.058 

Mesh 3 – 358 elements (2992 DOFs) 

η = 0.88 %    η* = 0.90 % 

θ = 1.014 

Figure 5.22: Adaptive refinement of an L-shaped domain in plane stress with prescribed error of

1%: nine-node elements
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Figure 5.23: Adaptive solutions for quadratic elements with target error set equal to 2 %



Chapter 5 183

2.4 2.6 2.8 3 3.2 3.4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Log(NDOFs)

L
o
g
(r

e
la

ti
v
e
 %

 e
rr

o
r)

1

1

RCP

exact

Figure 5.24: Convergence for L-shaped domain

Figure 5.25: Machine part domain
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Figure 5.26: Adaptive refinement of machine part using linear quadrilateral elements.
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Figure 5.27: Adaptive refinement of machine part using linear triangular elements.





Chapter 6

Some advanced applications in
structural mechanics

La formulazione dell’elemento piastra è un caso speciale della formulazione gen-
erale dell’elemento guscio ed è basata sulla teoria delle piastre con deformazioni
trasversali taglianti incluse. Questi teoria, dovuta a E. Reissner e R. D. Mindlin, si
basa sul presupposto che le particelle della piastra originalmente su una linea retta,

normale alla superficie indeformata centrale rimangano su una linea retta durante
il procedimento di deformazione, Tale linea non sarà necessariamente normale alla
superficie centrale deformata.
Le strutture sottili come piastre e gusci costituiscono una categoria importante

fra le analisi per elementi finiti a causa del loro grande campo di applicazione.
Il presente capitolo punta l’attenzione sulla presentazione di un’estensione dello
stimatore d’errore basato sulla procedura RCP all’analisi per elementi finiti piastre
alla Reissner-Mindlin.
Come ben noto tali modelli strutturali soffrono di problemi legati alla loro for-

mulazione quando il rapporto tra larghezza della piastra e spessore della piastra au-

menta, manifestandosi in un abnorme aumento di rigidezza della piastra. Al fine di
evitare tali problemi si ricorre abitualmente ad elementi di tipo misto agli sforzi, ove
le variabili spostamento e tensione vengono coinvolti separatamente. Nel presente
capitolo vengono inoltre presentate alcune applicazioni avanzate, quali l’impiego
della tecnica proposta con elementi finiti di tipo misto agli sforzi, l’applicazione alle
piastre e l’estensione alla ricostruzione del profilo delle tensioni tangenziali lungo
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lo spessore di compositi laminati.

In this chapter we address some advanced problems in structural mechanics,
such as structures having a "thin" dimension in one or more directions and con-
strained elastic problems. In particular we focus the attention on shear deformable
plates structures, which are an important class of structures because of their large

application fields. Indeed this application is one of the first to which finite ele-
ments were directed, but it still is a subject of continuing research [Alfano et al. ,
2001]—[Auricchio et al. , 2006]. The reason lies on the well known pathology called
shear locking, that is an abnormal stiffening exhibited by standard finite elements
as the thickness/length ratio decreases. This locking performance is typical of
constrained elastic problems such as nearly incompressible elasticity, and is more
pronounced for lower order elements and in the presence of geometry distortion. A
successful approach to cure this trouble is to develop non standard finite element
based on mixed formulations. In the following the RCP based error estimation is
extended to tackle with such advanced applications.

First the recovery procedure is extended to non standard finite element formu-
lation????, such as assumed stress formulations. Then the recovery procedure is
applied to plate structures based on Reissner-Mindlin theory [Castellazzi et al. ,
2006a]—[Castellazzi et al. , 2006c]—[Castellazzi et al. , 2006b]. In particular, the
RCP procedure is applied to a hybrid stress (locking-free) element recently pro-
posed in [de Miranda & Ubertini, 2006] besides standard assumed displacement
elements. Finally, laminated composite plates are considered, with the formula-
tion of First order Shear Deformation Theory (FSDT), and the RCP procedure is
applied to capture the transverse shear stresses along the thickness [Daghia et al.

, 2007], which is crucial in order to predict critical phenomena such as delamina-
tion. Indeed, this last application can be also viewed as an attempt to pass from a
"gross" model (FSDT plate model) to a "finer" model (3D elasticity) and, in this
sense, it could be viewed as a first step towards model validation.

6.1 Recovery for assumed stress finite elements

Here, the procedures presented in the previous Chapter are applied to recover
stresses from mixed and hybrid stress finite elements, based on the formulation
early proposed by Pian [Yuan et al. , 1993]. Reference is made to the model
problem discussed in Section 2.2 and the associated mixed and hybrid functionals
(see Equations (2.20)—(2.21)).
Both displacements and stresses are involved as independent variables and are
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independently approximated as

uh = Uūh (6.1)

σh = Pβ (6.2)

In particular a standard interpretation is assumed for displacements, based on stan-
dard shape functions U and nodal values uh. Identifying nodal values at common
element boundaries by the usual assemblage procedure ensures the required dis-
placement continuity. On the other hand, stress are approximated independently
in each element, through a matrix of stress modes P and a vector of unknown

parameters β which is local to each element.
In the hybrid version, stresses should satisfy the equilibrium equations pointwise

within each element. This is obtained by the stress into two parts:

σh = σh
p + σh

h. (6.3)

The first is a known function equilibrating the external load within the element

D∗σh
p = b. (6.4)

The second is approximated according to Equation (6.2) by properly selecting
self-equilibrating stress modes:

D∗P = 0. (6.5)

Introducing the assumed displacements and stresses into mixed or hybrid functional
referred to the single element and making it stationary yield the following discrete
element equations: ∙ −H G

GT 0

¸ ∙
β
ūh

¸
−
∙
gσ
gu

¸
=

∙
0
h

¸
, (6.6)

where

H =

Z
Ωe

PTC−1PdV, GT =

Z
Ωe

(DU)
T
PdV, (6.7)

h are the element nodal forces, gσ and gu are terms due to the prescribed loads.
In the hybrid version matrix G reduces to

GT =

Z
Ωe

UTNTPdV. (6.8)

At this level, inner parameters β can be condensed out and the following ele-
mental equations involving only nodal displacements are obtained

h =Kūh − f , (6.9)

where K is the element stiffness matrix and f the equivalent nodal loads.

Notice that the above equations are in the standard format of assumed dis-
placement finite elements.
All the recovery procedures presented in Section 4.3 can be applied to finite
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element solutions obtained by mixed and hybrid stress elements. However, these
elements offer new possibilities which deserve to be discussed. In particular, the
finite element solution in terms of stresses is directly given by σh (see Equation
(6.2)) or it can be computed by uh as

σh
u = CDu

h = CBūh. (6.10)

As a consequence the recovery procedure can operate either on σh or on σh
u.

Considering the RCP procedure and the compatibility condition it enforces (see
Equation (4.62)), the following two alternatives can be derivedZ

Ωp

δσ∗T
¡
�∗p − �h

¢
dV = 0

⎧⎨⎩ (1) �h = Būh

(2) �h = C−1σh
, (6.11)

depending on if we evaluate the finite element strains from displacement uh or from
stresses σh. Both the choices can be used in principle. The first is coherent with
the RCP formulation as described n Section 4.3, while the second can not be traced

back to the minimization of functional (4.56), but should be formulated directly
in the form of Equation (6.11), that is based on arguments related to the principle
of virtual works. This does not appear as a limitation. Indeed this second choice
is expected to perform better because stresses σh are more accurate than those
computed from displacements. It is expected to be especially true in constrained
problems. These two RCP versions are compared in Section 6.3 through some
numerical tests on plate problems.
Based on the same arguments two versions of the other recovery procedures

can be devised. In particular, the REP procedures can be implemented as a least
square of the following conditionsZ

Ωp

BT
¡
σ∗pi − σ∗i

¢
dV = 0

⎧⎨⎩
(1) σh

(2) σh = CBūh
. (6.12)

These two possibilities are both tested in Section 6.3.

6.2 Plate structures

In this section the RCP recovery procedure is generalized to plate structures. In
particular, shear deformable plates are considered. The corresponding generaliza-

tion of the SPR and REP procedures can be found in [Boroomand et al. , 2004].
The governing equations for shear deformable plate structures are given in

Appendix A.3. As well known standard finite elements for this class of problems
suffers from shear locking in the thin plate element. In this work a four-node
locking-free finite element based on hybrid stress formulation is employed for finite
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element analysis [de Miranda & Ubertini, 2006].

The element is denoted by 9βQ4 and is briefly described in Appendix C. For
completeness, the standard assumed displacement four node element (C4) is also

included in the analysis.
The RCP recovery procedure proceeds as illustrated in Chapter 4. The two

ways to form the patch are shown in Figure 6.1.

p

FEM displacements
prescribed 

p

node patch 

p

FEM displacements
prescribed 

p

element patch 

Figure 6.1: Example of node and element patch: (•) assembly node definig the patch, the dark
element is the assembly element definig the patch.

The condition to be enforced on each patch specializes asR
Ωp

£
δN∗T

¡
μ∗p − μh

¢
+ δM∗Tp

¡
χ∗p − χh

¢
+ δS∗Tp

¡
γ∗p − γh

¢¤
dV = 0,

∀ δN∗, δM∗, δS∗,
(6.13)

where (δN∗, δM∗, δS∗) are the recovered stress resultants (over the patch) that
should satisfy a priori the plate equilibrium equations,

¡
μ∗p,χ∗p,γ∗p

¢
are the strain

components corresponding to the recovered stress resultants and
¡
μh,χh,γh

¢
are

the finite element strain components.
The recovered stress resultantes are expressed as⎡⎣ N∗p

M∗p
S∗p

⎤⎦ =
⎡⎣ N∗pp
M∗pp
S∗pp

⎤⎦+
⎡⎣ N∗ph
M∗ph
S∗ph

⎤⎦ , (6.14)

where the first term is chosen to be in equilibrium with the first term chosen to be
in equilibrium with the applied loads over the patch (i.e. as a particular solution

as the plate equilibrium equations over the patch), whereas the second term is a
self-equilibrated term, approximated in the form⎡⎣ N∗ph

M∗ph
S∗ph

⎤⎦ = P∗a, (6.15)

such that ⎡⎣ D∗p
D∗p I

D∗p

⎤⎦P∗ = 0. (6.16)
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The equilibrium operators in the above condition are defined in Appendix A.3.
The expressions adopted in this work for P∗ as well as for the first term in

Equation (6.14) are given in Appendix C.
The recovered strain components

¡
μ∗p,χ∗p,γ∗p

¢
in Equation (6.13) are computed

from the recovered stress resultants via the plate constitutive equations. Then,
to apply the RCP condition (6.13) we need to specify how to compute the finite
element strain components. When the recovery is used together with assumed
stress elements, we have two possibilities as outlined in the previous section: they

can be computed from the finite element kinematics via compatibility equations
or from the finite element statics, that is from finite element stress resultants
via the plate constitutive equations. Indeed, the hybrid stress element used in this
work has a non standard displacement interpolation, or called linked interpolation.
Thus the first version based on finite element kinematics can be implemented by
computing

¡
μh,χh,γh

¢
either through a standard interpolation or through the true

linked interpolation. All these possibilities are tested in the following. However
in the thin plate limit, the version based on finite element statics is expected to
be superior to the other since finite element stress resultants (that are directly

interpolated) do not suffer from the appearance of internal constraints.
In the next section, the performance of RCP recovery is numerically verified.

Since the membrane response has been already tested the attention is focused
here on the bending response by considering homogeneous isotropic linearly elastic
plates.
In Section 6.4 the coupled membrane bending response is investigated by con-

sidering laminated composite plates.

6.3 Some numerical tests on bending response

As shown in the previous chapters, two main approaches may be employed to in-
vestigate the performance of recovery methods. The first approach uses benchmark
problems with exact solutions and attempts to generalize the conclusions to wider
range of problems though no proof is given. Majority of studies on error estimators
fall within this form of approach. In the second approach, the asymptotic behav-

iour is investigated. Although such a study does not play the role of a proof, the
mathematical basis is much stronger and the range of application is much wider
than the first approach. Unfortunately the second approach has not been yet gen-
eralized to plate bending problems, and such an extension is beyond the scope of
this chapter. Hence the first approach is used in the following.
Two homogeneous isotropic linearly elastic square plates, are considered for
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Figure 6.2: (a) Test No.1- SS2 square plate under uniform load; (b) test No.2 - square plate with

prescribed displacement

various aspect ratios h/L from thick to thin cases (Figure 6.2).

The first square plate, of side length L = 8, is subjected to uniformly distributed
transverse load q = 1, with simply supported boundary conditions of hard (SS2)
type. This test case is referred to as Test No.1. Four meshes, created from a
coarse mesh of 4×4 elements by a uniform refining process, are used in the finite
element analysis, which is carried out for two values of the aspect ratio (h/L = 0.2
and h/L = 0.002) and assuming: E = 10.92 and ν = 0.3. Conventional 4-node

elements and hybrid stress 9βQ4 elements (see Appendix C) are employed. For
this test some results on unstructured meshes are also discussed.
The second square plate, of side length L = 4, is subjected to prescribed trans-

verse displacements along the boundary according to the following solution

w = sin (x) e(−y)y, (6.17)

This test case is referred to as Test No.2. Four meshes, created from a coarse
mesh of 4×4 elements by a uniform refining process, are used in the finite element
analysis, which is carried out for an intermediate value of the aspect ratio (h/L =
0.025) and assuming: E = 10.92 and ν = 0.3. Because of locking, only hybrid
stress elements are employed for this test.
Depending on the thickness of the plate, the exact solution for the first bench-

mark test is given with assumption of thick or thin plate formulation. Fourier
series can be used for both cases expressing the plate deflection as follows

w =
∞X

m=1

∞X
n=1

Cmn sin
mπx

a
sin

nπy

b
, (6.18)

with a and b being the plate dimensions and Cmn representing a series of coefficients
to be determined from the solution process. For thin plate solution, the deflection
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Table 6.1: Versions of RCP recovery tested and related approximations

REP RCPlin e a r RCPqu ad ra t ic

Q4 & 9βQ4 linear stress expansion
na = 3 + 3

quadratic stress expansion
na = 9

cubic stress expansion
na = 17

assumed above is directly substituted in to the governing differential equation
derived from Kirchhoff assumptions. The solution is straightforward. For thick
plate solution, however, some similar expressions for θx and θy are needed

θx =
∞X

m=1

∞X
n=1

Amn cos
mπx

a
sin

nπy

b
, (6.19)

θy =
∞X

m=1

∞X
n=1

Bmn sin
mπx

a
cos

nπy

b
. (6.20)

The solution may be found in Reference [Dobyns, 1981].

In the following the RCP recovery is tested by using different versions as sum-
marized in Table 6.1 and compared with REP recovery.

The comparisons are carried out based on the following norms
Total energy norm:

kukt =
³
kuk2b + kuk2s

´1/2
, (6.21)

Energy norm of bending stresses

kukb =
∙
1

2

Z
Ω

MTC−1b MdΩ

¸1/2
, (6.22)

Energy norm of shear stresses

kuks =
∙
1

2

Z
Ω

STC−1s SdΩ

¸1/2
, (6.23)

The associated error definitions read as

ke∗kt =
³
ke∗k2b + ke∗k2s

´1/2
, (6.24)

ke∗kb =
∙
1

2

R
Ω

¡
Mh −M∗¢TC−1b ¡

Mh −M∗¢dΩ¸1/2 , (6.25)

ke∗ks =
∙
1

2

R
Ω

¡
Sh − S∗¢TC−1s ¡

Sh − S∗¢dΩ¸1/2 , (6.26)

η∗t =
ke∗kt
kukt

× 100, η∗b =
ke∗kb
kukb

× 100, η∗s =
ke∗ks
kuks

× 100. (6.27)
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The results are presented in terms of convergence of both global error and point-
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Figure 6.3: Test No.1 (h/L = 0.2) - convergence of global errors for recovery procedures based

on linear stress approximations
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Figure 6.4: Test No.1 (h/L = 0.2) - convergence of global errors for recovery procedures based

on quadratic stress approximations

wise error at point A located at the centre of the plate, from thick to thin cases.
Convergence of the global errors in energy norm, for the thick case (h/L = 0.2),
is shown in Figures 6.3 for the linear stress approximation and in Figure 6.4 for
the quadratic stress approximation. These figures demonstrate the performance of
RCP and RCPE when compatible C4 elements are used. As expected, the average

rate of convergence of FEM solution is close to unity while those of the recovered
solutions are higher than one, so evidencing a superconvergent behaviour similar
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to that observed for two-dimensional elastic problems. Notice that the convergence
rates for the various recovery methods are similar and tend to two when quadratic
stress approximation is adopted.
The same case has been solved using hybrid stress elements instead of con-

ventional C4 elements to obtain the finite element solution, and the corresponding
results are shown in Figures 6.19—6.6 for linear and quadratic tress approximations,
respectively. These results are similar to those observed in the previous analysis
and no appreciable differences are noted among the various versions of the recov-

ery procedures. In particular, RCP, RCPC and RCPL all give similar responses.
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Figure 6.5: Test No.1 (h/L = 0.2) - convergence of global errors for recovery procedures based

on Linear stress approximations

Passing to a thinner plate (h/L = 0.025) some curious responses are observed.
The results obtained (using hybrid stress elements) in terms of both global and
local errors are shown by Figures 6.7—6.10, for linear and quadratic stress approx-
imations. The values of percentage point-wise errors in stress resultants in the
plate centre are collected in Tables 6.2—6.6.
As it can be noted, the responses of recovery procedures based on FEM displace-

ments (RCP, RCPEC, RCPEL and RCPL) drastically deteriorates due to the poor
performance on shear stresses. This becomes even more pronounced by increas-

ing the order of stress approximation and can be interpreted as a sort of locking
which destroyes the superconvergent properties of the recovery procedure in the
thin plate limit. The reason lies on the fact that the recovery procedure is applied
to the kinematic part of the finite element solution, which suffers from the internal
constraint of thin plate limit. In fact the RCP procedures based on FEM stresses
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Figure 6.6: Test No.1 (h/L = 0.2) - convergence of global errors for recovery procedures based

on quadratic stress approximations

(RCP and RCPE) do not exhibit such an analogous behaviour and maintain the
superconvergent properties. This behaviour is confirmed by the predictions for the
very thin plate, shown in Figure 6.11. As it can be observed, superconvergence is

experienced using both RCP and RCPE.
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Figure 6.7: Test No.1 (h/L = 0.025) - convergence of global errors for recovery procedures based

on linear stress approximations

For the very thin plate, that has been recognized as the most sever test problem,
the local error distributions on the 8 × 8 uniform mesh are given in Figures ??—
??. In particular, Figure ?? refers to the element error in energy norm whereas
Figures ??—?? to the pointwise errors in Mx, Mxy and Sx. As expected, the
recovery procedures sensibility reduce the error also locally within the domain,
while appear less effective near boundaries where small patches are used. Moreover,
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Figure 6.8: Test No.1 (h/L = 0.025) - convergence of global errors for recovery procedures based

on quadratic stress approximations

no significant differences in accuracy emerge among the various procedures, so
confirming the very good performance of the RCP procedure expecially in the
element version.
Finally, the sensitivity to mesh distortion has been tested. For the sake of

brevity, only the results obtained for the very thin plate (Test No.1) are reported
using an unstructured mesh. In particular, Figures 6.16—6.18 show the pointwise
errors in the stress resultants. These results confirm those experienced on regular
geometry and demonstrates that the RCP procedure is reliable also for arbitrary
irregulars meshes.
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Figure 6.9: Test No.1 (h/L = 0.025) - convergence of local error at the plate centre for recovery

procedures based on linear stress approximations

Summing up, the numerical experimentation evidences that the RCP procedure
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Figure 6.10: Test No.1 (h/L = 0.025) - convergence of local error at the plate centre for recovery

procedures based on quadratic stress approximations

Table 6.2: Test No. 2 (h/L=0.025): Point-wise errors (per cent) of Mx at point A ,9βQ4.

mesh FEM REP RCP RCPE REPC REPL RCPC RCPL RCPEC RCPEL
4× 4 102.2980 63.6449 65.8533 65.8533 65.4537 63.6449 65.8533 65.8533 65.8533 65.8533
8× 8 65.9772 17.1101 16.9315 23.1429 17.8086 17.1101 16.9315 16.9315 21.6229 21.6269
16× 16 32.2545 4.8034 4.8050 6.1959 5.0017 4.8034 4.8050 4.8050 6.0956 6.0984
32× 32 15.7180 1.2325 1.2331 1.5951 1.2840 1.2325 1.2331 1.2331 1.5864 1.5889
64× 64 7.7118 0.3106 0.3107 0.4036 0.3236 0.3106 0.3107 0.3107 0.4012 0.4032

is reliable and effective with either node or element patches, and that the linear
stress approximation offers the best trade-off between accuracy and computational
cost, especially for thin plates. Using quadratic stress approximations tends to
increase accuracy in any case but improves also the rate os convergence only for
thick plates.

Table 6.3: Test No. 2 (h/L=0.025): Point-wise errors (per cent) of My at point A, 9βQ4.

mesh FEM REP RCP RCPE REPC REPL RCPC RCPL RCPEC RCPEL
4× 4 107.6726 45.5386 20.0198 20.0198 55.0367 45.5386 20.0198 20.0198 20.0198 20.0198
8× 8 145.2619 15.8789 14.6587 54.7693 17.9765 15.8789 14.6587 14.6587 58.9709 58.9732
16× 16 82.9392 4.5577 4.4799 10.5333 5.2186 4.5577 4.4799 4.4799 10.8004 10.8072
32× 32 44.0788 1.2092 1.2031 2.4882 1.3800 1.2092 1.2031 1.2031 2.4986 2.5061
64× 64 22.7161 0.3067 0.3061 0.6182 0.3497 0.3067 0.3061 0.3061 0.6130 0.6194
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Table 6.4: Test No. 2 (h/L=0.025): Point-wise errors (per cent) of Mxy at point A, 9βQ4.

mesh FEM REP RCP RCPE REPC REPL RCPC RCPL RCPEC RCPEL
4× 4 130.9319 128.3576 130.9319 130.9319 130.9319 128.3576 130.9319 130.9319 130.9319 130.9319
8× 8 36.9052 35.6116 36.9052 64.2015 36.9052 35.6116 36.9052 36.9052 68.5926 61.9399
16× 16 10.5748 10.2368 10.5748 15.3272 10.5748 10.2368 10.5748 10.5748 16.4785 14.6672
32× 32 2.7141 2.6275 2.7141 3.8286 2.7141 2.6275 2.7141 2.7141 4.1263 3.6687
64× 64 0.6830 0.6612 0.6830 0.9557 0.6830 0.6612 0.6830 0.6830 1.0330 0.9230

Table 6.5: Test No. 2 (h/L=0.025): Point-wise errors (per cent) of Qx at point A, 9βQ4.

mesh FEM REP RCP RCPE REPC REPL RCPC RCPL RCPEC RCPEL
4× 4 42.6506 1032.3483 28.5764 28.5764 23.9424 7585.5042 23.0386 13.5889 23.0386 13.5889
8× 8 18.8570 1412.1877 6.2487 9.5095 19.0370 2225.5636 8.7652 1.0312 7.8487 3.2804
16× 16 14.6230 623.2831 5.3557 1.3339 3.3935 692.7196 1.5386 6.8012 0.8631 3.1556
32× 32 8.9459 174.4279 6.6641 3.0204 0.7210 179.6036 0.3516 7.0531 0.1598 3.4948
64× 64 5.4583 44.8515 4.8443 2.7780 0.1520 45.2808 0.0880 4.9525 0.0447 2.8996

Table 6.6: Test No. 2 (h/L=0.025): Point-wise errors (per cent) of Qy at point A, 9βQ4.

mesh FEM REP RCP RCPE REPC REPL RCPC RCPL RCPEC RCPEL
4× 4 90.5749 5867.8725 72.6527 72.6527 43.4051 6692.6620 77.3863 73.7673 77.3863 73.7673
8× 8 20.6936 971.0851 20.3957 31.6741 10.8521 2265.1508 17.7092 7.8062 34.1705 30.8678
16× 16 9.5253 253.7822 8.8973 8.3888 2.8788 605.2156 4.9511 5.8076 7.5439 2.8718
32× 32 4.8065 63.5138 5.2463 3.5083 0.7642 153.5090 1.2319 8.5986 1.7873 2.9443
64× 64 2.7021 15.8915 3.1256 2.0107 0.2068 38.5098 0.2943 6.4601 0.4108 3.5097
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Figure 6.11: Test No.1 (h/L = 0.002) - convergence of global errors for recovery procedures based

on linear stress approximations

FEM: 0.11124 RCP: 0.065623 RCPE: 0.071684

REP: 0.066021 RCP2: 0.045475 RCPE2: 0.034645
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Figure 6.12: Test No.1 (h/L = 0.002) Distributions of element error in energy norm on uniform

mesh wuth 9βQ4 elements (the relative percentage error is reported above each plot)



202 6.3- Some numerical tests on bending response

FEM: Mx − MAX: 0.36974 RCP: Mx − MAX: 0.70326 RCPE: Mx − MAX: 0.70326

REP: Mx − MAX: 0.44237 RCP2: Mx − MAX: 0.25783 RCPE2: Mx − MAX: 0.25783

Figure 6.13: Test No.1 (h/L = 0.002) Distributions of poinwise errors in Mx on uniform mesh

wuth 9βQ4 elements (contour interval =0.1)

FEM: Mxy − MAX: 0.38113 RCP: Mxy − MAX: 0.14197 RCPE: Mxy − MAX: 0.17655

REP: Mxy − MAX: 0.094585 RCP2: Mxy − MAX: 0.12912 RCPE2: Mxy − MAX: 0.12911

Figure 6.14: Test No.1 (h/L = 0.002) Distributions of poinwise errors in Mxy on uniform mesh

wuth 9βQ4 elements (contour interval =0.1)
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FEM: Sx - MAX: 0.6491 RCP: Sx - MAX: 1.3391 RCPE: Sx - MAX: 1.3391

REP: Sx - MAX: 0.73389 RCP2: Sx - MAX: 0.82623 RCPE2: Sx - MAX: 0.82623

Figure 6.15: Test No.1 (h/L = 0.002) Distributions of poinwise errors in Sx on uniform mesh

wuth 9βQ4 elements (contour interval =0.1)

FEM: Mx − MAX: 6.4319 RCP: Mx − MAX: 0.98721 RCPE: Mx − MAX: 0.98721

REP: Mx − MAX: 0.86907 RCP2: Mx − MAX: 0.71924 RCPE2: Mx − MAX: 0.57734

Figure 6.16: Test No.1 (h/L = 0.002) Distributions of poinwise errors in Mx on uniform mesh

wuth 9βQ4 elements (contour interval =0.2)
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FEM: Mxy − MAX: 1.9895 RCP: Mxy − MAX: 0.33842 RCPE: Mxy − MAX: 0.33842

REP: Mxy − MAX: 0.27379 RCP2: Mxy − MAX: 0.34464 RCPE2: Mxy − MAX: 0.32093

Figure 6.17: Test No.1 (h/L = 0.002) Distributions of poinwise errors in Mxy on uniform mesh

wuth 9βQ4 elements (contour interval =0.2)

FEM: Sx - MAX: 14.6828 RCP: Sx - MAX: 3.1392 RCPE: Sx - MAX: 1.542

REP: Sx - MAX: 2.2198 RCP2: Sx - MAX: 3.7329 RCPE2: Sx - MAX: 1.0312

Figure 6.18: Test No.1 (h/L = 0.002) Distributions of poinwise errors in Sx on uniform mesh

wuth 9βQ4 elements (contour interval =0.2)
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FEM: 0.20245 RCP: 0.1075 RCPE: 0.11792

REP: 0.098613 RCP2: 0.10556 RCPE2: 0.085749
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Figure 6.19: Test No.1 (h/L = 0.002) Distributions of element error in energy norm on uniform

mesh wuth 9βQ4 elements (the relative percentage error is reported above each plot)
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6.4 Laminated composite plates

This section deals with laminated composite plates based on First order Shear
Deformation Theory, Figure 6.20.

Figure 6.20: First order Shear Deformation Theory (FSDT) scheme for a laminated composite

plate

The governing equations are briefly recalled in Appendix A, which can be de-
rived from 3D elasticity as show in Appendix A.3.2. Using the same notation, the
stress-strain relation for the kth layer can be written as

S(k) = C(k)p e, τ (k) = κ¯C(k)s γ, (6.28)

whereC(k)p is the reduced in-plane elasticity matrix andC(k)s is the transverse shear

elastic matrix. Thus, following Appendix A.3.2, the plate constitutive equations
can be computed by integrating the local constitutive equations (6.28) through the
thickness:

N = Cmμ+Cmbχ, (6.29)

M = Cmbμ+Cbχ, (6.30)

S = Csγ, (6.31)

where the laminate stiffness matrices are given by

Cm =

n.layersX
k

(zk − zk−1)C(k)p , (6.32)

Cmb =
1

2

n.layersX
k

¡
z2k − z2k−1

¢
C(k)p , (6.33)

Cb =
1

3

n.layersX
k

¡
z3k − z3k−1

¢
C(k)p , (6.34)
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Cs = κ¯
n.layersX

k

(zk − zk−1)C(k)s . (6.35)

The two vertical abscissas zk−1 and zk define the bottom and top surfaces of the
kth layer. Notice that bending and extension are generally coupled.
In this work, laminated composite plates are analyzed using the hybrid stress

element called 9βQ4 (Appendix C) [de Miranda & Ubertini, 2006].

Figure 6.21: Variations of strains and stresses through layer and laminated thicknesses. (a)

Variation of typical in-plane strain. (b) Variation of corresponding stress

The RCP recovery discussed in the previous section can be successfully applied

to this class of problems, as shown by the numerical tests. Indeed, with this
framework, the RCP recovery is found to be an effective tool in order to face a key
issue for laminates: the evaluation of transverse shear stresses along the thickness
of the laminate.
The kinematic hypothesis introduced in the first order shear deformation the-

ory yields, obviously, inaccurate piecewise constant shear stresses which are dis-
continuous between the laminae. However, the specialistic literature suggests that
accurate transverse shear stress profiles can be evaluated in the post-processing
through three dimensional equilibrium equations (see Appendix A.3.2)

D∗ps
(k) +∇zτ

(k) + bx = 0. (6.36)

From the FEM internal moments Mh and membrane forces Nh it is possible to

evaluate the curvatures χh and the membrane strains μh through the laminate con-
stitutive equation and, so, the in plane strains eh (see Appendix A.3.2). The con-
stitutive equations of each lamina allow, finally, to determine the in plane stresses
s(k), which can be introduced in the three dimensional equilibrium equations to
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evaluate the transverse shear stresses:

τ (k)z = τ
(k)
0 −

Z zk

zk−1

³
D∗ps

(k) + bx

´
dz, (6.37)

where τ (k)0 represents the value of the shear stress vector at z = zk−1 i.e.

τ
(k)
0 = τ (k−1) (zk−1) , (6.38)

with

τ
(1)
0 = −p(−)x (6.39)

The shear stresses so obtained should satisfy the equilibrium boundary conditions
on the top surface of the laminate:

τ
(n)
0 (zn) = p

(+)
x , (6.40)

being n the number of layers. Moreover, in order to have consistency between the
recovered shear stresses and the FSDT model, the shear stress resultants along the
plate thickness should be equal to the transverse shear forces evaluated via finite

element procedure:

Sk =

Z
f

τdz = 0 (6.41)

It can be shown that both conditions are automatically satisfied if the internal
moments and membrane forces satisfy the plate equilibrium equations.
Indeed, accuracy of the stress profiles depends upon the derivatives of the in-

ternal moments and membrane forces, therefore a good approximation not only of
the internal forces but also of their derivatives is important. According to this, a
two steps procedure is proposed to recover transverse shear stresses. First, RCP
procedure is applied in order to improve the rate of convergence of the FEM in-
ternal forces. Then, using the recovered internal forces, the transverse shear stress
profiles are determined as described above. In particular, RCP is applied using

element patches so to preserve local equilibrium. In this way, transverse shear
stresses can be actually recovered by simply appling Equation (6.37): conditions
(6.40) and (6.41) were be automatically satisfied.
In the next section the effectiveness of RCP and the transverse shear stress

recovery has been verified on various test problems.

6.5 Some numerical tests

In this section, some numerical tests are carried out in order to investigate the
RCP performance and the transverse shear stress recovery procedure.
A simply supported square plate of side L (Figure 6.22) is considered under both

uniform and sinusoidal load with maximum intensity q. The side to thickness ratio
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of the laminate is η = L/h = 10. Two different stacking sequences are analyzed:
a 0/90/0 symmetric laminate and a 0/90 antisymmetric one. Due to the double
symmetry, only one quarter of the plate is studied. Some regular and distorted
meshes used in the analyses are shown in Figure 6.23.
The lamina mechanical properties are the following:

E1 = 25E2, ν21 = 0.25, G13 = G12 = 0.5E2, G23 = 0.2E2. (6.42)

The shear correction factors are evaluated according to cylindrical bending as
shown in [Vlachoutsis, 1992]—[Laitinen et al. , 1995]. The reference solution used
for the convergence analysis and in the tables is obtained according to Reddy

[Reddy, 1997].

A x

y

B

C

D

u w=� 0= =x

v w=� 0= =y

L/2

L
/
2

Figure 6.22: Simply supported square plate

Figure 6.24 shows the convergence in energy norm in the case of sinusoidal load
for the two different stacking sequences.
Figures 6.25 and 6.26 show the convergence of the FEM stress resultants at

(L/4, L/4) (point C, see Figure 6.22) under uniform load for the symmetric and an-
tisymmetric case, respectively. The values obtained are compared with the MITC
laminated plate element implemented in the commercial software ADINA.

The next set of graphs highlight the importance of the RCP procedure in this
context. 67
Figure 6.27 shows the convergence in energy norm of the shear stress profiles ob-

tained using the internal moments and membrane forces before and after recovery,
respectively. The error is defined as

e =

µ
1

2

Z
Ω

(τ̂ − τ )TC−1 (τ̂ − τ ) dV
¶1/2

, (6.43)

where τ̂ is computed using directly thhe finite element stress resultants, in the
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Figure 6.23: Some examples of regular and distorted meshes

first case, or the recovered stress resultants, in the second case. Notice the 9βQ4
element yelds stress resultants that satisfying the plate equilibrium equations and,
thus, they can be used for shear stress recovery without validating conditions (6.40)
and (6.41).
Both stacking sequences are reported, the load is sinusoidal. As can be clearly

seen, the error does not decrease for the shear stresses obtained before the RCP,
whereas for those obtained after the RCP the convergence rate is approximately
1.
This result can be explained by pointing out that the shear stress profiles ob-

tained via three dimensional equilibrium depend upon the derivatives of the in
plane stress components, thus the derivatives of the internal moments and mem-
brane forces are involved. A Recovery by Compatibility in Patches procedure,
while improving the convergence rate of the generalized stresses and thus of their
derivatives, maintains the equilibrium within the element.
Some results concerning the effectiveness of the RCP procedure to improve the

convergence rate are presented in Figures 6.28 and 6.29. Here, the convergence of
the internal moments at point D are shown before and after the RCP procedure,
respectively. Both stacking sequences are considered and the load is sinusoidal.
Point D coincides with a node in all the considered regular meshes. Since the RCP
procedure yields generalized stresses which are discontinuous across elements, in
this case the value considered are those for the elements which have point D as the
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Figure 6.24: Convergence in energy norm (sinusoidal load and different staking sequences)

top right-hand node.
The stress values obtained at nodal points such as point D are usually more

affected by error than the internal values. The improvement in convergence caused
by the RCP is significant (the convergence rate changes from around 1 to around
2).
Figures 6.30 to 6.33 show the dimensionless transverse shear stress profiles at

point C for sinusoidal load and the two different stacking sequences:

τ̄zs = τzs
100

qη
(6.44)

In the first two figures, the profiles obtained after the Rep are shown for different
meshes. The recovered profiles converge to the reference solution [Reddy, 1997].
In Figures 6.32 and 6.33, on the other hand, the profiles obtained before and after
recovery for a 9 × 9 mesh are shown. Observing for example the result obtained
for τzy using the distorted mesh in the 0/90/0 laminate (black dots in Figure

6.32), it is evident that the shape of the profile is very different from the reference
solution, while the resultant force (represented by the area under the graph) is
very similar. This means that, while the value of the generalized shear stress is
near to the exact one, the profile does not converge unless a recovery procedure is
implemented first. The importance of the RCP recovery is emphasized even more
by observing Figures 6.34 and 6.35. They show the error density before and after
recovery for two different meshes and the two stacking sequences. As can be noted,
before recovery the order of magnitude of the error density does not change with
mesh refinement, whereas a significant improvement can be seen in the error maps

after recovery.
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Figure 6.25: Convergence of stress resultant at point C (stacking sequence 0/90/0, uniform load)
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Figure 6.26: Convergence of stress resultant at point C (stacking sequence 0/90, uniform load)
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Figure 6.28: Convergence of the moments at point D before and after the recovery (stacking

sequence 0/90/0, sinusoidal load)
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Figure 6.30: Shear stress profiles at point C after recovery for different regular meshes (stacking
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Figure 6.31: Shear stress profiles at point C after recovery for different regular meshes (stacking

sequence 0/90, sinusoidal load)
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Figure 6.32: Shear stress profiles at point C after recovery for the mesh 9×9, regualr and distorted
(stacking sequence 0/90/0, sinusoidal load)

-20 -15 -10 -5 0
-0.5

-0.25

0

0.25

0.5

-20 -15 -10 -5 0
-0.5

-0.25

0

0.25

0.5
Ref. solution (Reddy)
Regular mesh
Regular mesh, recovery
Distorted mesh
Distorted mesh, recovery

�
zy

�
zx

z/h z/h

Figure 6.33: Shear stress profiles at point C after recovery for the mesh 9×9, regualr and distorted
(stacking sequence 0/90, sinusoidal load)
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Figure 6.34: error density of the shear profiles for different meshes before and after recovery

(stacking sequence 0/90/0, sinusoidal load)

Figure 6.35: error density of the shear profiles for different meshes before and after recovery

(stacking sequence 0/90, sinusoidal load)





Chapter 7

Concluding remarks:
looking toward Validation

In questo capitolo, conclusivo, si intende richiamare alla mente l’intero processo di

Verifica e Validazione per collocare il presente lavoro di tesi all’interno di questa ide-
ale catena logica, anche alla luce della recente pubblicazione da parte dell ’ASME
della Guida alla Verifica e Validazione nella Meccanica Computazionale dei Solidi.
Di seguito sono riportati alcuni contenuti del documento, essenziali dunque alla
suddetta collocazione, e vengono tratteggiati i possibili sviluppi del presente la-
voro verso la validazione. A tal proposito mi piace ricordare quanto affermava il
Professor A.A. Cannarozzi nel lontano 1991:

"Gli aspetti di ideazione e di innovazione dei procedimenti di calcolo competono
in linea di principio al Ricercatore. Il Produttore del codice, interagendo col Ricer-
catore (col quale talvolta si identifica) e col Produttore dell’apparecchiatura di cal-
colo, cura lo sviluppo, commercializza, aggiorna il codice e ne segue l’impiego presso
l’utente. Quest’ultimo si avvale dei mezzi di calcolo come risorse per lo svolgimento

della propria attività intellettuale, nell’ambito della quale i codici, per le opzioni
finalizzate che offrono, diventano strumento assoluto di realizzazione di una con-
sistente parte del processo logico. Infatti il ruolo attivo nell’impiego di un codice
consiste essenzialmente nella comprensione e nella scelta della procedura logica di
analisi, nella preparazione e nella consegna dei dati, nell’interpretazione e nel con-
trollo dei risultati, mentre il coinvolgimento nell’impostazione concettuale e nelle
modalità di esecuzione è per lo più impossibile. Il pericolo di impiego "a scatola
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chiusa", da molti lamentato, appare quindi effettivo. D’altra parte, la responsabil-
ità dell’utente del codice per le conseguenze della propria attività, nei confronti del
Committente o più in generale della collettività all’interno della quale egli opera,
è assai spesso totale.
In considerazione di tutto questo appare comprensibile l’importanza di definire

adeguate forme di regolamentazione e di controllo dell’operato delle figure interes-
sate a vario titolo all’elaborazione automatica nella progettazione strutturale, dal
Ricercatore all’utente" [Cannarozzi, 1991].

7.1 Assessing the numerical error in the finite
element solution

During the last two decades, the National Agency for Finite Element Methods and
Standards (NAFEMS, www.nafems.org) has developed some of the most widely
known V&V benchmarks. Roughly 30 verification benchmarks have been con-
structed by NAFEMS. The majority of these benchmarks have targeted solid me-
chanics simulations, though some of the more recent benchmarks have been in fluid
dynamics. Most of the NAFEMS verification benchmarks consist of an analytical
solution or an accurate numerical solution to a simplified physical process described
by a partial differential equation. The NAFEMS benchmark set is carefully de-
fined, numerically demanding, and well documented. However, these benchmarks
are currently very restricted in their coverage of various mathematical and/or nu-

merical difficulties and in their coverage of physical phenomena. Further, the
performance of a given code on the benchmark is subject to interpretation by the
user of the code. It is also likely that the performance of a code on the benchmark
is dependent on the experience and skill of the user.
Several large commercial code companies specializing in solid mechanics have

developed an extensive set of well-documented verification benchmarks that can
be exercised by licensed users of their codes. Such benchmarks are intended to
be applied only to a particular code, and they describe how that code performed
on the benchmark problems. The performance results of a code tested on the

benchmark problems by a commercial company can be clearly compared with the
results obtained by a user who tests the code with the same benchmark problems.
These company and user-testing activities give the user a better understanding of
the minimal performance that can be expected from a code. It should be noted
here that information about a code’s performance on a set of benchmark problems
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prior to purchase of the code is often difficult to obtain, as this information is
proprietary.
Moreover the most important step in any finite element analysis is clearly choos-

ing the appropriate mathematical model to solve. This model must contain all the
important ingredients regarding the geometry, loading, boundary conditions, and
material data. The mathematical model must be reliable and effective and is solved
using a finite element program with a mesh defined by the analyst.
The finite element solution of the mathematical model will contain some nu-

merical error which the analyst clearly wants to be sufficiently small. This will
of course be the case if a very fine mesh is used with appropriate finite elements.
But, in practice, when the mesh used is not very fine, the assessment of the nu-
merical error between the "exact" solution and the finite element solution can be
important. Since the exact solution is unknown, lower and upper bounds, proven
to bracket closely the exact solution, and obtainable with an acceptable computa-
tional effort, would be very valuable. Unfortunately, these bounds are not available
for general analysis, not yet even in academic research. Hence for general analy-
ses, the currently available error assessments are based on estimates without these

bounds.
Since this error estimation is an important issue, and presents an excellent

research challenge, a very large research effort by engineers and mathematicians
has focused on the development of error estimators. The current state of art and
hopefully some improvements on error estimation has been discussed in this work.
But which is the role played by error estimation in the whole V&V process shown
in Figure 7.1?
Recently the American Society of Mechanical Engineers (ASME) Standard

Committee on Verification and Validation in Computational Solids Mechanics
(PTC 60 / V&V 10) approved their first document (July 2006). This Guide has

been submitted to ASME publications (http://catalog.asme.org/) and to Ameri-
can National Standards Institute (ANSI) for public review. In the following section
some parts of this Guide are presented, underlying the role of error estimators.

7.2 Validate the model, not the codes

The notion of benchmarking a code refers to comparisons of results of the code
to some standard "benchmark", which may be an analytical solution or, as many
argue, a single physical experiment. Various uses of the notion of benchmarking
are found in the literature. Among these are:

1. Code-to-Code Comparisons of Code Performance. Here execution speeds or
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Figure 7.1: The scenario

numerical results, for example, of different codes solving one or more bench-
mark problems are compared on the same computer or on different computers
running the same code.

2. Code-to-Code Comparisons Versus Verified Code. Here one assumes that a
fully-verified code is in hand, and one compares results of different codes with
those produced by the master code on a suite of benchmark problems.

3. Comparison of Code Predictions to Results of Physical Experiments. Here
results of one or more codes are compared with results obtained by carefully
executed physical experiments.

4. Comparison of Code Results to Analytical or Highly Accurate Solutions. Here

a variety of features of basic algorithms in a code are tested by comparison of
computed results with known analytic solutions or with "overkill" solutions
obtained with very fine meshes using verified codes.

All of these approaches suffer from defects, some more serious than others.

Use 1 (Code-to-Code for Performance) has nothing to do with verification.
Use 2 (Code-to-Verified Code Comparisons) is not entirely useless, but is an

exercise fraught with pitfalls. If the "verified" code is not as accurate as the tested
code, how can useful conclusions be made by simply comparing results? Which
is correct? Such comparisons may be meaningless, without reference to other
information.
Use 3 (Comparison with Experiments), while a common benchmark scenario,

is the worst of all. If discrepancies between computed and observed responses are
observed, what is the source of error? Is the model bad or is the code inadequate

or does the code have bugs? There is no systematic way to distinguish between



Chapter 7 223

modeling error and approximation error by a simple comparison of computed pre-
dictions of a single experiment (which itself is subject to gross error). One must
first "verify the code".
Use 4 (Comparison with Accurate Solutions) is somewhat better, but also im-

perfect. Exactly what should be compared? Here we come to the central question
of benchmarking: what exactly are the comparisons with results of benchmark
problems supposed to test? Going to the core of the issue: what do we want to
know about a code to determine if it is "solving the model correctly"? The issue

is often much more complicated than this: if we are given results of a "black box"
commercial code where the precise model used to predict response is unknown (as
it is propriety information, belonging to the code developer) what information can
a suite of benchmark calculations provide?
We argue that: 1) benchmarking is primarily a verification exercise, not one of

validation. Comparisons of computed predictions with experiments is the essence
of validation, thus the subject code to be tested against experiments must have
been already subject to verification test using, among other tools, benchmarking
tests; 2) one must clearly set out tests designed to establish how well the subject

code can solve the model used to depict natural phenomena or the behavior of
engineering systems; 3) on the other hand, benchmarking need not necessarily be
tied exclusively to the model used to develop the code, as the user has right to
know where and when the model becomes invalid or inaccurate; 4) benchmarking,
or the selection of a benchmark suite, is a delicate and complex proposition: tests
on performance of a code on distorted meshes, on problems with nice smooth
solutions, or on specific quantities of interest in a calculation must be made with
a clear understanding of the capabilities of the model on which the code is based.
Some principles usually recommended for designing benchmark problems are:

1. Failure - Benchmark problems should be designed to establish the limits of
the code under consideration. Limits means failure: when does the code fail
to produce results in agreement with a suite of carefully-selected analytical
solutions? Design the benchmarks so that bad results, not always glorious
agreement, are obtained, by altering time steps, load steps, mesh size, ap-

proximation order, material mismatch, boundary-layers, point or line-loads,
etc. Surely, good agreement on simple problems is necessary, but not sufficient
to determine the real limitations of interest to the user.

2. Convergence - If a code produces pretty results but doesn’t converge or
doesn’t converge at acceptable rates, then its use as a simulation tool is suspect
at best. Also, the real meaning of the limit to which the code converges
to is important. Benchmark problems should be designed to determine via



224 7.2- Validate the model, not the codes

numerical experiments the rates of convergence of a model as the mesh size, the
order of the approximation, time step, load step, etc. are varied, convergence
being measured in a space of meaningful norms. Whenever possible these
should be compared with a priori estimates if they are available for the problem
at hand. Then a sequence of benchmarks can be designed to establish the
rates-of-convergence for various regularities. Thus, if a solution of a problem
is known, the error can be calculated for each choice of mesh size and order.

3. Local Behavior, Diffusion, Propagation - Users interested in simulating
physical phenomena are concerned with how well the code in hand can depict
so-called local phenomena. What are stresses at a point? How does the code
handle convection of a signal propagating through a domain? Are bifurcations,
localizations mesh dependent? Or do the predicted critical parameters agree

with those depicted in appropriate analytical solutions? These issues must be
considered in designing benchmark problems.

4. Model Limitations - Given a code (often a black box), design benchmark
problems to fool or verify or, at least, determine the limitations of the model on
which the code is based, this is not always easy. As a general rule, the design
of effective benchmark problems (as a verification tool) should be based on
models which supersede in complexity and sophistication those on which the
code is based. Limitations of the subject code can be determined in a broader
context. Then the limits of the model on which the code is based can also be
roughly evaluated.

The conclusion: the results of benchmark problems must be viewed and eval-
uated within the context of what is predictable by the theory upon which the
underlying model is based. Once again, the goal of verification is to determine if
the model is solved correctly.
Thus, model verification depends upon what can and should be deliverable

by the model. Such examples suggest that when the base model used in a code
is unknown, the benchmarks should be based on models presumed to be of the

highest sophistication and breadth appropriate for the class of problems under
consideration.
For this and other reason in 1999 an ad hoc verification & validation spe-

cialty committee was formed under the auspices of the United States Association
for Computational Mechanics (USACM). The purpose of this committee was to
pursue the formation of a verification & validation standards committee under a
professional engineering society approved to produce standards under the rules of
the American National Standards Institute (ANSI). This goal was achieved in 2001
when the then Board on Performance Test Codes (PTC) of the American Society



Chapter 7 225

of Mechanical Engineers (ASME) approved the committee’s charter:

”To develop standards for assessing the correctness and credibility of modelling and
simulation in computational solid mechanics.”

and the committee was assigned the title and designation of the ASME Committee
for Verification & Validation in Computational Solid Mechanics (PTC 601).
The membership is diverse with three major groups being industry, Govern-

ment, and academia. The industry members include representatives from auto
and aerospace industries and the Government members are primarily from the De-
partments of Defense and Energy. Particularly well represented are members from

the three national laboratories under the National Nuclear Security Administra-
tion. This latter membership group is key to the committee as much of the recent
progress in verification & validation has come from these laboratories and their ef-
forts under the Advanced Simulation and Computing (ASC) Program, started in
1995.

7.3 An overview of the PTC 60 / V&V 10

In this section, we give an overview of the "Performance Test Code #60" (PTC60)
recently appeared on the IACM bulletin (No. 20, January 2007) on the verification
and validation topic. This article depicts the main steps done by the committee
related to the necessity of standards and rules in the computational Solid Mechanics
field, and starts with the following funny example:
question: "Are the sometimes lengthy and costly processes of verification &

validation really necessary?"; answer: "Consider the following scenario that per-

haps you can relate to first hand. A project review meeting is taking place and
the project manager needs to make a critical decision to accept or reject a proposed
design change. A relatively new employee, freshly minted from the nearby engineer-
ing university, makes an impressive presentation full of colorful slides of deformed
meshes and skillfully crafted line plots indicating the results of many CPU and
labour hours of non-linear numerical analyses, ending with a recommendation to
accept the design change.
Hopefully, an astute project manager, aware of the vagaries of nonlinear nu-

merical analyses, will not accept the analysis and its conclusion at face value, es-

pecially given the inexperience of the analyst. Rather, the project manager should
seek some assurance that not only are the results reasonable, but a sound proce-
dure was followed in developing the model and documenting the numerous physical
and numerical parameters required for a typical analysis. The degree of assurance
sought by the project manager is directly related to the criticality of the decision to
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be made".
The processes of verification & validation are how evidence is collected, and

documented, that help establish confidence in the results of complex numerical
simulations.
The intended audience for this Guide is not the occasional computational me-

chanics user, e.g. a modern-day draftsman using an automated CAD/FEA pack-
age, rather it is computational analysts, experimentalists, code developers, and
physics model developers, and their managers, who are prepared to read a tech-

nical document with a mixture of discussion concerning mathematics, numerics,
experimentation, and engineering analysis processes.

7.3.1 The guide and the present work

The guidelines are based on the following key principles:

• Verification must precede validation.

• The need for validation experiments and the associated accuracy requirements
for computational model predictions are based on the intended use of the
model and should be established as part of V&V activities.

• Validation of a complex system should be pursued in a hierarchical fashion
from the component level to the system level.

• Validation is specific to a particular computational model for a particular
intended use.

• Validation must assess the predictive capability of the model in the physi-
cal realm of interest, and it must address uncertainties that arise from both
simulation results and experimental data.

The Guide contains four major sections:

1. Introduction - the general concepts of verification and validation are intro-
duced and the important role of a V&V Plan is described.

2. Model Development - from conceptual model, to mathematical model, and
finally the computational model are the keys stages of model development.

3. Verification - is subdivided into two major components: code verification -
seeking to remove programming and logic errors in the computer program, and
calculation verification - to estimate the numerical errors due to discretization
approximations.

4. Validation - experiments performed expressly for the purpose of model vali-
dation are the key to validation, but comparison of these results with model
results depends on uncertainty quantification and accuracy assessment of the
results.
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In the next sections the contents of this four points will be sketched.

7.3.1.1 The Introduction Section

The processes of verification & validation start, and end, with modelling and mod-
els, and so we seek to verify & validate a computational model, for making pre-
dictions within the domain of intended use of the model. Three types of models,
from the general to the specific, are described. The logic flow from the most gen-

eral Conceptual, to Mathematical, to the most specific Computational Model, is
illustrated in Figure 7.2.

Figure 7.2: The path from Conceptual and Computational Model

Neither part of verification addresses the question of the adequacy of the se-
lected Conceptual and Mathematical models for representing the reality of interest.
Answering this question is the domain of validation, i.e. are the mechanics (physics)

included in the Conceptual and Mathematical models sufficient for answering the
questions in the problem statement.
The manner in which the Verification and Validation interact is illustrated in

the flow chart shown in Figure 7.3. After the selection of the Conceptual model, the
V&V process has two branches: the left branch contains the modelling elements
and the right branch the experimental elements.
This figure is intentionally designed to illustrate the paramount importance

of physical testing in the V&V process, as ultimately, it is only through exper-
imentation that assessments about the adequacy of the selected Conceptual and
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Mathematical models for representing the reality of interest can be made. Close co-
operation among modelers and experimentalist is required during all stages of the
V&V process, until the experimental outcomes are obtained. Close cooperation is
required because the two groups will have quite different views of the Conceptual
model, i.e. the mathematical and physical model will be different.
As an example consider the last example shown in the previous chapter about

composite laminated plate with simply supported boundary conditions. Mathe-
matically this boundary condition is quite easy to specify, but in the laboratory

there is no such thing as a simply supported or ’clamped’ boundary. In general,
some parts of the Conceptual model will be relatively easy to include in either the
mathematical or physical model, and others more difficult. A dialogue between
the modelers and experimentalist is critical to resolve these differences. To aid
in this dialogue, the ’cross-talk’ activity labelled as "Preliminary Calculations" in
Figure 7.3 is intended to emphasize the goal that both numerical modelers and
experimentalist attempt to model the same Conceptual model.
Of equal importance is the idea that the experimental outcomes should not be

revealed to the modelers until they have completed the simulation outcomes. The

chief reason for segregation of the outcomes is to enhance the confidence in the
model’s predictive capability. When experimental outcomes are made available to
modelers prior to establishing their simulation outcomes, the human tendency is to
’tune’ the model to the experimental outcomes to produce a favorable comparison.
This tendency decreases the level of confidence in the model’s ability to predict,
and moves the focus to the model’s ability to mimic the provided experimental
outcomes.

7.3.1.2 The Model Development Section

Before modelling begins, a reality of interest is identified, i.e. what is the physical
system to be modelled. The reality of interest is typically described in the problem
statement presented to the analyst, e.g. "We need to know the behaviour of a
certain slab under a distributed load of x Newtons/meter". In this case the reality
of interest is the composite laminated plate.
The most general form of the model addressed in the Guide is the Conceptual

Model - "the collection of assumptions and descriptions of physical processes rep-
resenting the solid mechanics behaviour of the reality of interest from which the
mathematical model and validation experiments can be constructed". Continuing
with the slab example, the conceptual model could be a simply supported plate of

a laminated composite material, loaded uniformly.
With the Conceptual Model defined, the analyst next defines the Mathematical

Model - "The mathematical equations, boundary values, initial conditions, and
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Figure 7.3: Verification and Validation activities and outcomes

modelling data needed to describe the conceptual model". Referring again to the
slab example the mathematical model could be established based on the First order
Shear Deformation Theory.
The final model in the sequence is the Computational Model - "The numeri-

cal implementation of the mathematical model, usually in the form of numerical
discretization, solution algorithm, and convergence criteria". In our slab exam-

ple, the computational model is derived within with the finite element framework
using, for example, the 9βQ4 hybrid stress element.
At this point the computational model can be exercised (run) and the results

compared to available experimental data for validation of the model. It is fre-
quently the case that the results do not compare as favourably as requested in the
original problem statement. Assuming a high degree of confidence in the exper-
imental data, the analyst has two basic choices for revising the model: changing
the model form or calibrating model parameters.
Changing the model form can apply to either the Mathematical or Conceptual
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model. As an example, the first order shear theory assumption reveals to be too
restrictive and needs to be replaced by a higher-order plate theory or the plate
model reveals to be inadequate and should be replaced by a plate-like body.

7.3.1.3 The Verification Section

The Guide emphasizes that Verification must precede Validation. The logic is that
attempting to validate a model using a code that may still contain (serious) errors

can lead to a false conclusion about the validity of the model.
Two types of verification are generally recognized and defined in computational

simulation:

1. Code Verification - establish confidence, through the collection of evidence,
that the mathematical model and solution algorithms are working correctly.

2. Calculation Verification - establish confidence, through the collection of evi-
dence, that the discrete solution of the mathematical model is accurate.

Code Verification In general, Code Verification is the domain of software
developers who hopefully use modem Software Quality Assurance techniques along
with testing of each released version of the software. Users of software also share the
responsibility for code verification, even though they typically do not have access to
the software source. The large number of software users, typical of most commercial
codes, provides a powerful potential code verification capability, if it is used wisely
by the code developers.
Among the code verification techniques, the most popular method is to compare

code outputs with analytical solutions; this type of comparison is the mainstay of
regression testing. Unfortunately, the complexity of most available analytical solu-
tions pales compared to even rather routine applications of most commercial soft-
ware. One code verification method with the potential to greatly expand the number
and complexity of analytical solutions is what is termed in the V&V literature as
manufactured solutions.
The basic concept of a manufactured solution is deceptively simple. Given a

partial differential equation (PDE), and a code that provides general solutions of
that PDE, an arbitrary solution to the PDE is manufactured, i.e. made up, then

substituted into the PDE along with associated boundary and initial condition, also
manufactured. The result is a forcing function (right-hand side) that is the exact
forcing function to reproduce the originally selected (manufactured) solution. The
code is then subjected to this forcing function and the numerical results compared
with the manufactured solution. If the code is error free the two solutions should
agree.
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Calculation Verification The above illustration of a manufactured solution
used as part of code verification is only half of the verification effort. The other half
is what is termed calculation verification, or estimating the errors in the numerical
solution due to discretization. Calculation verification, of necessity, is performed
after code verification, so that the two error types are not confounded.
Any comparison of the numerical and analytical results will contain some error,

as the discrete solution, by definition, is only an approximation of the analytical
solution. So the goal of calculation verification is to estimate the amount of error

in the comparison that can be attributed to the discretization.
The discretization error is most often estimated by comparing numerical so-

lutions at two more discretizations (meshes) with increasing mesh resolution, i.e.
decreasing element size. The objective of this mesh-to-mesh comparison is to de-
termine the rate of convergence of the solution.
The main responsibility for Calculation Verification rests with the analyst, or

user of the software. While it is clearly the responsibility of the software develop-
ers to assure their algorithms are implemented correctly, they cannot provide any
assurance that a user-developed mesh is adequate to obtain the available algorith-

mic accuracy, i.e. large solution errors due to use of a coarse (unresolved) mesh
are attributable to the software user.

7.3.1.4 The Validation Section

The validation process has the goal of assessing the predictive capability of the
model. This assessment is made by comparing the predictive results of the model
with validation experiments. If these comparisons are satisfactory, the model is
deemed validated for its intended use, as stated in the V&V Plan. There is perhaps
a subtle point here to be emphasized. The original reason for developing a model

was to make predictions for applications of the model where no experimental data
could, or would, be obtained. However, in the V&V Plan it was agreed that if the
model could adequately predict some related, and typically simpler, instances of the
intended use, where experimental data would be obtained, then the model would
be validated to make predictions beyond the experimental data for the intended
use. Simply put, if the model passes the tests in the V&V Plan, then it can be used
to make the desired predictions with confidence. The V&V Plan is of paramount
importance to the V&V process.
When it is said that the model is validated for the intended use, it is not just

the Computational model, which likely will have to change for the predictions of

interest, but the Mathematical and Conceptual models upon which the Computa-
tion model was built that have been validated. It is through the validation of the
Conceptual model that confidence is gained that the correct physics (mechanics)
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were included in the model development.
The key components of the validation process are the:

• Validation Experiments - experiments performed expressly for the purpose of
validating the model.

• Accuracy Assessment - quantifying how well the experimental and simulation
outcomes compare.

The goal of a validation experiment is to be a physical realization of an initial
boundary value problem, since an initial boundary value problem is what the com-
putational model was developed to solve. Most existing experiments do not meet
the requirements of a validation experiment, as they were typically performed for
purposes other than validation. Certainly appropriate existing experimental data
should be used in the validation process, but the resulting confidence in the model’s
ability to make predictions, based on these experimental results, is diminished, rel-
ative to validation experiments. The reduced confidence arises from the necessity
of an analyst needing to select physical and numerical parameters required for the

model that were left undefined in the experiment.
The important qualities of a validation experiment include:

• Redundancy of the Data - repeat experiments to establish experimental varia-
tion.

• Supporting Measurements - not only are measurements of the important system
response quantities of interest recorded, but other supporting measurements are

recorded. An example would be to record the curvature of a beam to support a
strain gauge measurement.

• Uncertainty Quantification - errors are usually classified as being either ran-
dom error (precision) or systematic error (bias).

Once the experimental and simulation outcomes are obtained, the accuracy as-
sessment phase of the validation process can begin. If possible, the comparison of

the experimental and simulation outcomes should be made by an interested third
party, as this helps to remove a bias that favors either the experimental or the simu-
lation results. In addition to deciding what response quantities should be compared,
the V&V Plan should state how the quantities are to be compared.
Validation metric is the term used to describe the comparison of validation ex-

periment and simulation outcomes. These metrics can range from simple binary
metrics, e.g. was the material’s yield strength exceeded, to more complex compar-
isons involving magnitude and phase difference in wave forms, e.g. deceleration
history in a vehicle crash. Whatever the form of the validation metric, the result

should be a quantitative assessment of the agreement between the experiment and
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simulation. Hopefully, this quantification will also include an estimate of the vari-
ability in the agreement and a confidence statement about the variability, e.g. the
relative error between the experiment and simulations was 18% plus or minus 6%
with a 85% confidence level. This three-part comparative statement is provided to
the decision maker, along with all the supporting V&V documentation, to aide in
their decision making process about the validity of the model for the intended use.

7.3.1.5 The Conclusion Section

Some of the remaining important V&V activities requiring guidance from the com-
munity:

• Verification - this ’poor’ sister of validation needs more attention from the
V&V research community. Reliance on regression testing for code verification
provides minimal confidence when using today’s complex multi-physics and
multi-scale software. Methods, and their implementation as tools, for verifi-
cation of increasing software complexity are needed.

• Quantification of the Value of V&V - if program managers are asked to spend
resources on V&V, they needed some measure of the value they are receiving
for the resources expended.

• Incomplete V&V - if the V&V process is terminated before a successful con-
clusion, what is the best path forward for decision maker?

• Validation Experimentation - most experiments consume large amounts of re-
sources, the value of these experiments to the V&V process needs to be quan-
tified to enable decision makers to appropriately allocate resources for this
important activity.

• Uncertainty Quantification - meaningful comparisons of simulations with ex-
periments requires an estimate of the uncertainty in both sets of results, and
a comparative assessment of these two uncertain outcomes.

• Predictive Confidence - when validated models are applied beyond the limited

range of validation experiments, how can the confidence in these results be
quantified?

7.4 Concluding remarks

As a conclusion of the present work I would like to re interpret the last example
shown in the previous chapter: the laminated composite plate, where our error

verification tool (the RCP recovery procedure) is used to reconstruct the transverse
shear stress along the laminate thickness. This is an attempt to improve simulation
results by reviewing the underlying model, a sort of an ideal hierarchy of model
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(from plates to plate-like bodies). Thus this could be viewed as an attempt to go
beyond verification, looking at validation.
Looking back in the past, I would like to end this work with some advises

coming from the far 1980 by the brilliant mind of Bruce Irons [Irons & Ahmadn,
1980] (that it still up-to-date), and with the encouraging willpower of J. Tinsley
Oden.

• Finite elements are no substitute for commonsense.

• Trouble-shooting will continue to involve engineers in the sort of calculations
they have always done but have seldom been taught to do.

• A good engineer tries to understand every failure and learn from it.

• An element may succeed in one problem and fail in another. Finite elements

are not infallible, but their strength lies in their versatility. This is the kind
of strength valued by any engineer, who by choice would never buy a tool that
does only one job.

• The matched solution involves thinking about computer results in an ordinary,

engineering way and not merely accepting them as magic.

• When things go wrong, we want to try other approaches quickly, and when
something quite new is demanded we do not expect to be kept waiting six
months for a spare part.

• In seeking a suitable mesh, either by trial and error, or guessing from an
intuitive impression of what the answers will be like, it is useful to regard
the elements as interpolation formulae. If an element gives linear stresses, we
judge the size the elements should be on the basis that they are representing the

field by linear segments. The curvatures indicate, very roughly, what errors we
should expect. Barlow points improve the estimates, and also make prediction
more hazardous.

• Perhaps ultimately the most useful thing to emerge from the matched solution

is the consciousness of, and a technique for identifying, the unwanted side-
effects in the performance of an element. This will be important when we
develop ’hybrid’ elements to do a better job. For we can then choose the
responses we want, in terms of stress fields, and exclude those we do not.

As a last point of this list, Irons inserts a curious picture, Figure 7.4, that
probably represent the little snares hidden behind the computer manipulations.
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Figure 7.4: Cimex Fortranarius, magnification 109:1 (See [Irons & Ahmadn, 1980])

Professor J. Tinsley Oden in 1996, speaking about Computational mechanics:
"Modeling and simulation represent catalysts capable of synthesizing formal the-

ory and experimental results, breaking artificial barriers between these two main ap-
proaches to scientific discovery and engineering advances. Recently, computational
simulation has become a third approach - along with theory and laboratory simula-
tion - to studying and solving scientific and engineering problems. Computational

simulation is based on the use of high-performance computers to model and simu-
late complex systems. In this approach, a computer equipped with problem-solving
software tools may represent a virtual laboratory in which researchers can build a
model for a given problem and run it under varying conditions.
These increasingly complex computational methodologies require sophisticated

models and numerical algorithms, and vice versa" (Excerpts from the Timoshenko
Medal Acceptance Speech delivered by Professor J. Tinsley Oden in 1996. "The
Revolution in Applied Mechanics from Timoshenko to Computation").





Appendix A
Structural models

A.1 Class I problems

The first class of problems considered refers to problems governed by the following
differential equation

k

µ
∂2u

∂x2
+

∂2u

∂y2

¶
= b, in Ω. (A.1)

As usual, stresses are defined by

σx = k
∂u

∂x
, σy = k

∂u

∂y
. (A.2)

Within the context of linear elasticity, this problem may be viewed, for example,
as the equilibrium problem of a thin membrane of uniform thickness, subjected to
a distributed transverse force b. In the numerical tests, the parameter k is set to
k = 1.

Figure A.1: Class I problems

A.1.1 The RCP stress approximation

The stress approximation for the RCP procedure can be derived from a stress
function φ(x, y) as follows

σ∗Tph =
£
σ∗hx σ∗h y

¤
, σ∗hx =

∂φ
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, σ∗h y = −

∂φ

∂x
. (A.3)
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The particular solution σ∗pp is taken as

σ∗Tpp =
£
σ∗p x σ∗p y

¤
, σ∗p x =

1

2

Z x

0

bdx, σ∗p y =
1

2

Z y

0

bdy. (A.4)

Thus, selecting the stress approximation simply reduces to select the stress func-
tion. Here, φ is assumed as a complete polynomial expansion of degree (q + 1),
so that each stress component is approximated by a complete polynomial of de-

gree q. For finite elements of order p, two different values for q are tested: q = p

and q = p + 1. The corresponding implementations of the present procedure are
labelled by RCP1 and RCP2, respectively. Thus, local stresses are approximated
by linear (RCP1) and quadratic (RCP2) polynomials, in the case of three- and
four-node elements, and by quadratic (RCP1) and cubic (RCP2) polynomials, in
the case of six- and nine-node elements. The expressions of these local approxima-
tions are reported in the following. The number of unknown parameters involved
by linear, quadratic and cubic approximations are 5, 9 and 14, respectively. In the
REP procedure, complete linear polynomials are used for three- and four-node el-
ements (3 + 3 unknown parameters) and complete quadratic polynomials for six-

and nine-node elements (6 + 6 unknown parameters).
The local stress approximations used in the RCP procedure for Class I problems

are:

(a) linear 5-parameters approximation used in the RCP1 version for 4-node ele-
ments

σ∗ph =
∙
1 0 y 0 x
0 1 0 x −y

¸⎡⎢⎣ a1
...
a5

⎤⎥⎦ , (A.5)

(b) quadratic 9-parameters approximation used in the RCP2 version for 4-node
elements and in the RCP1 version for 9-node elements

σ∗ph =
∙
1 0 y 0 x y2 0 x2 −2xy
0 1 0 x −y 0 x2 −2xy y2

¸⎡⎢⎣ a1
...
a9

⎤⎥⎦ , (A.6)

(c) cubic 14-parameters approximation used in the RCP2 version for 9-node ele-
ments

σ∗ph =

∙
1 0 y 0 x y2 0 x2 2xy y3 0
0 1 0 x −y 0 x2 −2xy −y2 0 x3

x3 −3xy2 2x2y
−3x2y y3 −2xy2

¸⎡⎢⎣ a1
...

a14

⎤⎥⎦ . (A.7)
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A.2 Class II problems

The second class of problems is plane elasticity.

A.2.1 Basic equations

Figure A.2: Class II problems

Consider the elastic plane problem, shown in Figure A.2, governed by the following

equations:

D∗σ = b in Ω, (A.8)

σ = C² in Ω, (A.9)

² = Du in Ω, (A.10)

where Ω is the domain, together with the following boundary conditions on ∂Ω

u = ū in ∂Ωu, (A.11)

NTσ = t̄ in ∂Ωt, (A.12)

where matrix N collects the components of the outward unit normal to ∂Ω

N =

∙
nx 0 ny
0 ny nx

¸
. (A.13)

According to the figure, displacement u, strains ² and stress σ are given by

u (x) =

∙
ux
uy

¸
, ² (x) =

⎡⎣ �x
�y
γxy

⎤⎦ , σ (x) =

⎡⎣ σx
σy
τxy

⎤⎦ . (A.14)
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240 7.0- The RCP stress approximation

Compatibility and equilibrium operators D and D∗ take the form

D =

⎡⎣ ∂/∂x 0
0 ∂/∂y

∂/∂y 0∂/∂x

⎤⎦ , D∗ =
∙ −∂/∂x 0 −∂/∂y

0 −∂/∂y −0∂/∂x
¸
. (A.15)

b is a prescribed source term,

b (x) =

∙
bx
by

¸
. (A.16)

In the case of isotropic material in plane stress conditions, the elasticity matrix C
takes the form

C =
Et

1− ν2

⎡⎣ 1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ , (A.17)

where E is the Young’s modulus, ν is the Poisson’s ratio and t is the thickness.

A.2.2 The RCP stress approximation

The stress approximation can be easily constructed employing the well-established
techniques usually adopted for hybrid stress elements. In particular, for the equi-
librium problem of plane elasticity, σ∗ph and σ

∗
pp can be selected according to the

following relations:

σ∗Tph =
£
σ∗hx σ∗hy τ∗hxy

¤
, (A.18)

σ∗hx =
∂2φ

∂y2
, σ∗h y =

∂2φ

∂x2
, τ∗hxy = −

∂2φ

∂x∂y
, (A.19)

σ∗Tpp =
£
σ∗p x σ∗p y τ∗p xy

¤
, (A.20)

σ∗p x = −
Z x

0

bx dx, σ∗p y = −
Z y

0

by dy, τ∗p xy = 0. (A.21)

The particular solutions given in Equation (A.20) are those commonly adopted
for hybrid finite elements. Indeed, other choices are possible which would lead,
obviously, to different final solutions. However, the various choices become all
equivalent in practice when the mesh is refined, since all the recovered solutions
have been proved to converge to the exact one [Ubertini, 2004].
Based on the above assumptions, choosing the stress approximation simply re-

duces to choose the stress function φ. Regarding this, it should be observed that
the consistency of the procedure requires the self-equilibrated stress approximation
to be selected among polynomials of degree not less than p, being p the interpola-
tion order for displacements in the finite element solution. Moreover, the invariance
of the procedure with respect to any coordinate change, requires that all the com-
ponents of σ∗ph are represented by complete polynomial expansions of the same
degree. Therefore, the stress function should be chosen as a complete polynomial

castellazzi
Rectangle



Chapter 7 241

of degree not less than (p+ 2) in plane elasticity problems (see Equation (A.18)).
RCP1 and RCP2 denote the RCP procedure with p- and (p+ 1)-degree stress

approximation, respectively. In particular RCP1 and RCP2 refer to the linear
7-parameters and quadratic 12-parameters approximations, when linear elements
are used, while to the quadratic 12-parameters and cubic 18-parameters approx-
imations, when quadratic elements are used. In the REP procedure, complete
linear polynomials are used for linear elements (3 + 3 + 3 unknown parameters)
and complete quadratic polynomials for quadratic elements (6 + 6 + 6 unknown

parameters).
The local stress approximations used in the RCP procedure for Class II prob-

lems are:

(a) linear 7-parameters approximation used in the RCP1 version for 4-node ele-
ments

σ∗ph =

⎡⎣ 1 0 0 y 0 x 0
0 1 0 0 x 0 y
0 0 1 0 0 −y −x

⎤⎦
⎡⎢⎣ a1

...
a7

⎤⎥⎦ , (A.22)

(b) quadratic 12-parameters approximation used in the RCP2 version for 4-node
elements and in the RCP1 version for 8- and 9-node elements

σ∗ph =

⎡⎣ 1 0 0 y 0 x 0 y2 0 x2 2xy 0
0 1 0 0 x 0 y 0 x2 y2 0 2xy
0 0 1 0 0 −y −x 0 0 −2xy −y2 −x2

⎤⎦
⎡⎢⎣ a1

...
a12

⎤⎥⎦ ,
(A.23)

(c) cubic 18-parameters approximation used in the RCP2 version for 8- and 9-

node elements

σ∗ph =

⎡⎣ 1 0 0 y 0 x 0 y2 0 x2 2xy 0 y3 0
0 1 0 0 x 0 y 0 x2 y2 0 2xy 0 x3

0 0 1 0 0 −y −x 0 0 −2xy −y2 −x2 0 0

x3 3xy2 0 3x2y
3xy2 0 3x2y y3

−3x2y −y3 −x3 −3xy2

⎤⎦
⎡⎢⎣ a1

...
a18

⎤⎥⎦ . (A.24)

A.3 Class III problems

The third class of problems is shear deformable plates.

A.3.1 Basic equations

Consider a plate referred to a Cartesian reference frame (O, x, y, z) with the origin
O on the mid-surface Ω and the z-axis in the thickness direction, −h/2 ≤ z ≤ h/2
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242 7.0- Basic equations

where h is the thickness.

Figure A.3: Class III problems

Let ∂Ω be the boundary of Ω. The Reissner-Mindlin theory is employed. The

compatibility equations are given by

μ = Dpu, χ = Dpθ, γ = Dsw + θ, (A.25)

where uT = [ux, uy] is the in plane displacement, w is the transverse displacement,
θT =

£
θx θy

¤
is the vector of rotations, μT =

£
�x �y γxy

¤
is the vector

of in-plane strains, χT =
£
χx χy χxy

¤
is the vector of curvatures, γT =£

γx γy
¤
is the vector of transverse shear strains and

Db =

⎡⎣ ∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

⎤⎦ , Ds =

∙
∂/∂x
∂/∂y

¸
. (A.26)

The equilibrium equations can be obtained via the principle of virtual work in the
form

D∗pN = qx, D∗pM+ S = c, D∗sS = qz, (A.27)

where vectors NT =
£
Nx Ny Nxy

¤
, MT =

£
Mx My Mxy

¤
and ST =£

Sx Sy
¤
collect the resultant stresses, D∗p and D

∗
s are differential operators

adjoint toDp andDs, respectively, and qz, qx, and c are the prescribed generalized
loads.
The constitutive equations can be written in the following form typical of mon-

oclinic laminated plates:

N = Cmμ+Cmbχ, (A.28)

M = Cmbμ+Cbχ, (A.29)

S = Csγ. (A.30)
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where Cm, Cmb, and Cb are respectively the membrane, membrane-bending cou-
pling and bending elasticity matrices, whereas Cs represents the resultant elastic
shear matrix.
For an isotropic linearly elastic material, the constitutive equations reduces to

N = Cmμ, M = Cbχ, S = Csγ, (A.31)

Cm =
Eh

(1− ν2)

⎡⎣ 1 ν 0
ν 1 0
0 0 (1− ν)/2

⎤⎦ , (A.32)

Cb =
Eh3

12(1− ν2)

⎡⎣ 1 ν 0
ν 1 0
0 0 (1− ν)/2

⎤⎦ , (A.33)

Cs =
κEh

2(1 + ν)

∙
1 0
0 1

¸
, (A.34)

being E the Young’s modulus and ν the Poisson’s ratio and h is the plate thickness
and κ the shear correction factor, (κ = 5

6 if not otherwise specified).

Finally, the plate equilibrium problem can be stated once the boundary condi-
tions on ∂Ωu on ∂Ω are specified.

A.3.2 A plate-like body

Figure A.4: A 3D plate-like body

Consider the 3D plate-like body in Figure A.4, where volume forces are indicated
by b and surface tractions on top and bottom surfaces by p(+) and p(−).
In accordance with the Reissners-Mindlin plate theory, the displacement field
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244 7.0- A plate-like body

d is represented as a linear function of the thickness coordinate z in the form

d (x,z) =

∙
u (x) + zθ (x)

w (x)

¸
, (A.35)

where the notation introduced in the previous section is used to indicate quantities
defined on the plate mid-plane Ω.
The strain tensor ² can be decomposed as follows

ε =∇(s)d =

∙
e 1

2γ
1
2γ

T 0

¸
(A.36)

where e is the in-plane strain tensor and γ the transverse shear vector. Using the
matrix notation, they can be written as:

e =

⎡⎣ �x
�y
γxy

⎤⎦ = μ+zχ, γ = Dsw+ θ. (A.37)

Analogously, the stress tensor σ can be separated into the in-plane stress tensor
S and the transversal shear stress vector τ . As usual the out of plane normal
stress is assumed to be null, trough it could be regarded as the "reactive" stress
corresponding to the internal constant �z = 0 [Lembo & Podio-Guidugli, 2007].
The in-plane equilibrium equations are given by

∇xs+∇zτ + bx = 0, bx =

∙
bx
by

¸
, (A.38)

or, in matrix notation, by

D∗pS+∇zτ + bx = 0, S =

⎡⎣ σx

σy

τxy

⎤⎦ . (A.39)

Introducing the stress resultants

N =

Z
f

sdz, M =

Z
f

zSdz, S−
Z
f

τdz, (A.40)

the plate equilibrium equations can be derived in the form of Equation (A.31)
where

qx =

Z
f

bxdz +
³
p(+)x + p(−)x

´
,

qz =

Z
f

bzdz +
³
p(+)z + p(−)z

´
,

c =

Z
f

zbxdz +
³
p(+)x − p(−)x

´ h

2
.

Introducing the constitutive equations and taking into account for the above as-
sumptions, the stress-strain relations can be written as

s = Cpe, τ = κ¯Csγ, (A.41)

where Cp is the reduced in plane elastic matrix, Cs is the transverse shear elastic
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matrix, matrix κ collects the shear correction factors

κ =

∙
κ11 κ12
κ12 κ22

¸
, (A.42)

assumed to be constant along the plate thickness, symbol ¯ denotes a product
component by component. In the case of homogeneous plates: κ11 = κ22 =

5
6 and

κ12 = 0.

By interpolating the stress-strain relations through the thickness, the plate
constitutive equations are defined

N = Cmμ+Cmbχ, (A.43)

M = Cmbμ+Cbχ, (A.44)

S = Csγ. (A.45)

A.3.3 The RCP stress approximation

The RCP stress approximation is selected as follows. The part which equilibrates
external loads within the element is selected as

M∗pp =

⎡⎢⎢⎣
R x
0

£
cx +

1
2

R x
0
qzdx

¤
dxR x

0

£
cy +

1
2

R x
0
qzdy

¤
dy

0

⎤⎥⎥⎦ (A.46)

S∗pp = −
1

2

" R x
0
qzdxR y

0
qzdy

#
(A.47)

Two local approximations are tested for the sef-equilibrated part: a linear approx-
imation ruled by 9 parameters

∙
M∗ph
S∗ph

¸
=

⎡⎢⎢⎢⎢⎣
1 0 0 y 0 x 0 0 0
0 1 0 0 x 0 y 0 0
0 0 1 0 0 0 0 y x
0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 −1 0 −1

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ a1

...
a9

⎤⎥⎦ , (A.48)
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246 7.0- The RCP stress approximation

and a quadratic approximation ruled by 17 parameters

∙
M∗ph
S∗ph

¸
=

⎡⎢⎢⎢⎢⎣
1 0 0 y 0 x 0 0 0 xy 0 y2 0
0 1 0 0 x 0 y 0 0 0 xy 0 x2

0 0 1 0 0 0 0 y x 0 0 0 0
0 0 0 0 0 −1 0 −1 0 −y 0 0 0
0 0 0 0 0 0 −1 0 −1 0 −x 0 0

x2 0 0 0
0 y2 0 0
−xy −xy x2 y2

−x x 0 −2 y
y −y −2x 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ a1

...
a17

⎤⎥⎦ . (A.49)
Membrane forces can be approximated as described in Section A.2.2.
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Appendix B
More benchmark tests

B.1 Class I problems

FEM: x - MAX: 0.7147 REP: x - MAX: 1.1671 RCP1n: x - MAX: 0.3112

RCP1nb: x - MAX: 0.3112 RCP2n: x - MAX: 0.2752 RCP2nb: x - MAX: 0.2878

Figure B.1: Thin membrane subjected to transverse loading - Error distributions on a regular

mesh of four-node elements (contour interval = 0.1, with load case No. 1)
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0   

0.02

0.04

0.06

0.08REP (global error: 0.337) RCP1n (global error: 0.221)

0   

0.02

0.04

0.06

0.08RCP1nb (global error: 0.238) RCP2n (global error: 0.160) RCP2nb (global error: 0.179)

min 1.24E-02, max 7.98E-02

FEM (global error: 0.350)

min 1.02E-02, max 8.02E-02 min 0.56E-02, max 4.43E-02

min 0.42E-02, max 3.14E-02min 1.00E-02, max 4.43E-02 min 0.67E-02, max 3.68E-02

Figure B.2: Thin membrane subjected to transverse loading - Distributions of element error in

energy norm on a regular mesh of four-node elements, load case No. 1 (minimum and maximum

values are reported below each plot, the global error in energy norm is reported above each plot)
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FEM: x - MAX: 0.0953 REP: x - MAX: 0.4557 RCP1n: x - MAX: 0.0336

RCP1nb: x - MAX: 0.2083 RCP2n: x - MAX: 0.0186 RCP2nb: x - MAX: 0.0209

Figure B.3: Thin membrane subjected to transverse loading - Error distributions on a regular

mesh of nine-node elements (contour interval = 0.015, load case No. 1)
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FEM (global error: 0.036)

0   

0.01

0.02

REP (global error: 0.116) RCP1n (global error: 0.018)

0   

0.01

0.02

RCP1nb (global error: 0.037) RCP2n (global error: 0.009) RCP2nb (global error: 0.011)

min 0.59E-02, max 2.82E-02min 0.07E-02, max 0.77E-02 min 0.10E-02, max 0.30E-02

min 0.05E-02, max 0.16E-02min 0.18E-02, max 0.93E-02 min 0.10E-02, max 0.22E-02

Figure B.4: Thin membrane subjected to transverse loading - Distributions of element error in

energy norm on a regular mesh of nine-node elements, load case No. 1 (minimum and maximum

values are reported below each plot, the global error in energy norm is reported above each plot)
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Figure B.5: Thin membrane subjected to transverse loading - Rate of convergence for load case

No. 1: (a) local error at point x = 0.5, y = 0.5 (σx = σy) for four-node elements, (b) global

error in energy norm for four-node elements, (c) local error at point x = 0.5, y = 0.5 (σx = σy)

for nine-node elements, (d) global error in energy norm for nine-node elements
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Figure B.6: Thin membrane subjected to transverse loading - Rate of convergence for load case

No. 2: (a) local error in σx at point x = 0.25, y = 0.75 for four-node elements, (b) local error

in σy at point x = 0.25, y = 0.75 for four-node elements, (c) global error in energy norm for

four-node elements, (d) global error in energy norm for nine-node elements
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B.2 Class II problems

RCP2n: xy - MAX: 0.3927

RCP2nb: xy - MAX: 0.3626

RCP2n: y - MAX: 0.4166

RCP2nb: y - MAX: 0.3614

RCP2n: x - MAX: 0.5884

RCP2nb: x - MAX: 0.5013

Figure B.7: Stretched plate with circular hole - Error distributions for four-node elements on

mesh No. 1: RCP2 and RCP2b (contour interval = 0.05)
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FEM: xy - MAX: 0.4703

REP: xy - MAX: 0.4876

RCP1n: xy - MAX: 0.4176

RCP1nb: xy - MAX: 0.5015

FEM: y - MAX: 0.5451

REP: y - MAX: 0.4903

RCP1n: y - MAX: 0.4332

RCP1nb: y - MAX: 0.5100

FEM: x - MAX: 0.8137

REP: x - MAX: 0.6375

RCP1n: x - MAX: 0.5833

RCP1nb: x - MAX: 0.6725

Figure B.8: Stretched plate with circular hole - Error distributions for four-node elements on

mesh No. 1: FE solution, REP, RCP1 and RCP1b (contour interval = 0.05)
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RCP2: xy - MAX: 0.1077

RCP2b: xy - MAX: 0.1438

RCP2: y - MAX: 0.1147

RCP2b: y - MAX: 0.1186

RCP2: x - MAX: 0.1244

RCP2b: x - MAX: 0.1258

Figure B.9: Stretched plate with circular hole - Error distributions for nine-node elements on

mesh No. 1: RCP2 and RCP2b (contour interval = 0.05)
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FEM: xy - MAX: 0.1398

REP: xy - MAX: 0.2368

RCP1n: xy - MAX: 0.1122

RCP1nb: xy - MAX: 0.2180

FEM: y - MAX: 0.2542

REP: y - MAX: 0.2801

RCP1n: y - MAX: 0.1355

RCP1nb: y - MAX: 0.2312

FEM: x - MAX: 0.2137

REP: x - MAX: 0.3629

RCP1n: x - MAX: 0.1448

RCP1nb: x - MAX: 0.2890

Figure B.10: Stretched plate with circular hole - Error distributions for nine-node elements on

mesh No. 1: FE solution, REP, RCP1 and RCP1b (contour interval = 0.05)
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FEM (global error: 0.07446)

min 0.36E-04, max 6.95E-04

REP (global error: 0.06286)

min 0.16E-04, max 5.09E-04

RCP1n (global error: 0.06795)

min 0.12E-04, max 5.42E-04

RCP1nb (global error: 0.06692)

min 0.12E-04, max 5.47E-04

RCP2n (global error: 0.05783)

min 0.16E-04, max 5.28E-04

RCP2nb (global error: 0.05087)

min 0.16E-04, max 4.37E-04
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Figure B.11: Stretched plate with circular hole - Distributions of element error in energy norm

on mesh No. 1: four-node elements (minimum and maximum values are reported below each

plot, the global error in energy norm is reported above each plot)
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FEM (global error: 0.01803)

min 0.18E-05, max 1.67E-04

REP (global error: 0.02336)

min 0.14E-05, max 2.56E-04

RCP1n (global error: 0.01286)

min 0.08E-05, max 1.19E-04

RCP1nb (global error: 0.02210)

min 0.12E-05, max 2.42E-04

RCP2n (global error: 0.01017)

min 0.05E-05, max 1.02E-04

RCP2nb (global error: 0.01044)

min 0.05E-05, max 1.19E-04
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Figure B.12: Stretched plate with circular hole - Distributions of element error in energy norm

on mesh No. 1: nine-node elements (minimum and maximum values are reported below each

plot, the global error in energy norm is reported above each plot)
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Appendix C
The hybrid stress element for plate structures

(9βQ4)

Recently, a new quadrilateral 4-node element for the analysis of shear deformable
plates has been presented in [de Miranda & Ubertini, 2006]—[Daghia et al. , 2007]
and labelled 9βQ4. The formulation is of hybrid stress type, involving equilibrat-
ing stress resultants within each element and compatible displacements along the
interelement boundary. The assumed stress approximation, expressed in terms of
skew coordinates, has the minimum number of stress modes (9 + 5 modes) and
is coordinate invariant. Displacements are modelled using a linked interpolation
ruled by the standard nodal degrees of freedom (3 + 2 dofs per node). The hy-
brid stress approach, where displacement acts on element boundary only, together

with the linked interpolation allow to derive an element which is locking-free and
passes all the patch tests. Moreover, the resulting element has been tested to be
stable, accurate and relatively insensitive to geometry distortions.
The main features of the element are:

(1) it has 4-nodes (12 + 8 dofs) and involves only compatible displacement func-
tions,

(2) it is locking-free,

(3) it passes all the patch tests,

(4) it is readily implementable into existing finite element codes.

The key ingredients of the element formulation are:

• a mixed variational approach involving stresses and displacements as indepen-
dent variables, which allow to meet requirements (1) and (4);

• a linked interpolation for the transverse displacement field, which goes towards
avoiding locking effects but it does not suffice to remove them;

• the stress resultants are assumed to satisfy a priori the plate equilibrium equa-

tions within each element.

It can be proved that the last ingredient together with the previous ones allows
to meet also requirement (2) and (3).
The assumed approximation for stress resultants is⎡⎣ Nh

Mh
h

Shh

⎤⎦ =
⎡⎣ Nh

p

Mh
p

Shp

⎤⎦+
⎡⎣ Nhh

Mh
h

Shh

⎤⎦ (C.1)

where the first term is particular solution of the plate equilibrium equations, while
the second term is the self equilibrated component which is approximated as follows
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¤
=
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⎤⎦βN , (C.2)

∙
Mh

h

Shh

¸
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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0 0 0 0 0 0 1 b1η̄ b3ξ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎦
βMS ,

(C.3)

Coefficients ai and bi in the above expressions depend on the element geometry:⎡⎣ a1 b1
a2 b2
a3 b3

⎤⎦ = 1

4

⎡⎣ −1 1 1 −1
1 −1 1 −1
−1 −1 1 1

⎤⎦
⎡⎢⎢⎣

x1 y1
x2 y2
x3 y3
x4 y4

⎤⎥⎥⎦ . (C.4)
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Appendix D
Formulation of a transition element for plane

problems

D.1 Shape functions

The typical configuration of a variable-node element is shown in Figure D.1. The
midside nodes need to be generated when the refined elements are attached to
the side of the unrefined element. In particular a quadrilateral element with a
bilinear displacement field is considered but, the method is general and can be
easily applied to other elements.

I

A

A (-1)

B
C

u
u

C

B

II

III

Cu

Au
D

(a) (b)

C (0) B (+1)

Figure D.1: The transition quadrilateral element and displacement field

In Figure D.1 edge AB of element I has discontinuity in the displacement slope
at node C. The variation of any displacement u along edge AB can be expressed
as

u =
1

2
(1− ξ)uA +

1

2
(1 + ξ)uB +

1

2
(1− |ξ|)∆uC , (D.1)

where uA and uB are displacements at nodes A and B, respectively, and ∆uC

is the departure of displacement at C from the straight variation defined by the
displacements at A and B ; ξ is the local coordinate along AB, ξ = −1 at A,
ξ = +1 at B, ξ = 0 at C; |ξ| denotes the absolute value of ξ. Equation D.1 gives

uC =
uA + uB

2
+∆uC , (D.2)

or

∆uC = uC − uA + uB

2
. (D.3)
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Substituting Equation (D.3) into Equation (D.1) one gets

u =
1

2
(|ξ|− ξ)uA +

1

2
(|ξ|+ ξ)uB +

1

2
(1− |ξ|)uC ,

or

u = NAuA +NBuB +NCuC , (D.4)

where

NA =
1

2
(|ξ|− ξ) , (D.5)

NB =
1

2
(|ξ|+ ξ) , (D.6)

NC =
1

2
(1− |ξ|) . (D.7)

Equations (D.5-D.7) give the shape functions along an edge with a transition node.
The procedure to obtain these shape function, as shown in [Gupta, 1978] can be
summarized as follows:

• write the shape functions for the corner nodes as if there were no intermediate
transition node;

• write the shape function for the intermediate node treating the displacement
at the intermediate node as a departure ∆uC from the linear displacement
variation defined by the displacements at corner nodes;

• modify the shape function at the corner nodes such that the displacement at
the intermediate node becomes the total displacement at the node, uC . Note
that the shape function at the intermediate node does not change;

1 2
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5
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= -1x
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(-1,1) (1,1)
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Figure D.2: The transition quadrilateral element

The above procedure was established for an edge, but the same procedure can
be applied to the complete element. Figure D.2 shows a quadrilateral element with
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corner nodes 1−2−3−4 and intermediate nodes 5−6−7−8. It is assumed that any
intermediate node in this figure will introduce discontinuity in the displacement
slope. However, it is not necessary that any or all of these intermediate nodes be
present. Indeed, an element can be formulated with corner nodes only, or with
one, two, three or four intermediate nodes. The procedure summarized above is
applied as follows:

• write the shape functions for the corner nodes as if there were no intermediate
nodes

N
1
=

1

4
(1− ξ) (1− η) , (D.8)

N
2
=

1

4
(1− ξ) (1 + η) , (D.9)

N
3
=

1

4
(1 + ξ) (1− η) , (D.10)

N
4
=

1

4
(1 + ξ) (1 + η) , (D.11)

• write the shape function for the intermediate node treating the displacement
at the intermediate node as a departure from the linear displacement variation
defined by the displacements at corner nodes

N5 =
1

4
(1− |ξ|) (1− η) , (D.12)

N6 =
1

4
(1− |ξ|) (1 + η) , (D.13)

N7 =
1

4
(1 + ξ) (1− |η|) , (D.14)

N8 =
1

4
(1 + ξ) (1 + |η|) , (D.15)

• if any intermediate node is not present, simply set its shape function equal to
zero. For instance, if intermediate nodes 6 and 7 are not present, set N6 = 0

and N7 = 0. Modify the shape function at the corner nodes such that the
displacement at the intermediate node becomes the total displacement at the
respective nodes

N1 = N
1 − 1

2

¡
N7 +N8

¢
, (D.16)

N2 = N
2 − 1

2

¡
N8 +N5

¢
, (D.17)

N3 = N
3 − 1

2

¡
N5 +N6

¢
, (D.18)

N4 = N
4 − 1

2

¡
N6 +N7

¢
, (D.19)

Note, if nodes 6 and 7 were not present, their shape functions would be set
to zero as explained above, which would automatically reflect in no change in
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the shape function for node 2.

The shape functions for 5-node and 6-node elements are shown by Figures
D.3 and D.4. Notice that some care should be posed on numerical integration
when finite element equations are compute because of discontinuity of the shape
functions. In particular a modified Gaussian quadrature rule is adopted. The
patch test has been used to check the capability of the element above to represent
constant strain states. All the elements pass the patch test.
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