
ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

II FACOLTA’ DI INGEGNERIA

Dipartimento delle Costruzioni Meccaniche,
Nucleari, Aeronautiche e di Metallurgia

DOTTORATO di RICERCA
IN DISEGNO E METODI DELL’INGEGNERIA INDUSTRIALE

CICLO XIX

Progetto e realizzazione del sistema di gestione
autonoma del volo e controllo in remoto

per un velivolo UAV ad ala rotante.

S.S.ING-IND/03 MECCANICA DELVOLO

Coordinatore: Chiar.mo Prof. Ing. Franco PERSIANI

Relatore: Prof. GianMarco SAGGIANI

 Dottorando:

 Ing. Barbara TEODORANI

Esame Finale Anno 2007

 2

 3

On the Development of a Rotary Wing UAV Platform:
Avionics and Onboard Software Set-Up

PhD Thesis

by

cand. Barbara Teodorani

S.S.ING-IND/03 FLIGHT MECHANICS

Coordinator: Chiar.mo Prof. Ing. Franco PERSIANI
 DIEM-University of Bologna

Advisor: Prof. GianMarco SAGGIANI

 DIEM-University of Bologna

ALMA MATER STUDIORUM

Department of Mechanical, Nuclear and Aerospace Engineering
II Faculty of Engineering

DIEM– University of Bologna
2007

 4

ACKNOWLEDGMENTS

 Expert people in UAV development know well that it is above all a science of integration

of different disciplines, skills and know-how. No successful results could be achieved without

the precious contribution of numerous people working together. That’s why we, me and

Roberto Pretolani, are very grateful to all people working with us, during the years we spent

at the Hangar Laboratories of the University of Bologna.

 In the first place, we would like to thank Professor Ing. Franco Persiani who, for first,

supported and believed in the rotary UAV project and Prof. Gianmarco Saggiani for the rotary

team coordination.

 But we cannot forget also the support of:

Ing. Veronica Rossi: support in onboard software implementation

Ing. Filippo Zanetti: rotary team new entry and support in autonomous flight tests

Mauro Ricci and hangar technicians (Luciano and Ivano): fun club & support in helicopter mechanics

Stefano Lucchi: fantastic RC Helicopter pilot

Antonio Francia: enthusiastic support in helicopter engine set-up

Ing. Tiziano Bombardi: support in C++ program language and his “precious UDP.dll”

Prof. Alessandro Rivola: support in vibration tests and analysis

Prof. Gian Battista Garito for his interesting lessons on helicopter dynamics theory

Ing. Matteo Zanzi: support in flight control and navigation theory

Fodias Guys: experience exchange talks and test rig

Don Diacunu Pietro: helicopter flight test football field

Ing. Stefano Saputo and Ing. Fabio Antonini: advices in onboard electronics set up

Ing. Stefano Mazzoni: support in NI Hardware choice

Ing. Alessandro Boccalatte: visual system design

The CAPECON Rotary Team People: Stephen Mouritsen, Jan Floris Boer, Marzio Luigi Preatoni,

Cyrille Sevin

 5

TABLE OF CONTENTS

LIST OF FIGURES ..7

LIST OF TABLES ..11

ABSTRACT ..12

NOMENCLATURE ...13

1. MOTIVATION AND BACKGROUND ...16

1.1 OVERVIEW .. 16

1. 2 SUMMARY OF HELICOPTER PRINCIPLES .. 21

2. MISSION SIMULATION ENVIRONMENT..25

2.1 THE AV & NGCS SIMULINK MODEL... 27

2.1.1 CONTROL MODES DESCRIPTION AND FORCE FEEDBACK LAWS .. 29

2.1.2 ENERGY MANAGEMENT EQUATION ..30

2.1.3 NAVIGATION GUIDANCE AND CONTROL SYSTEM (NGCS)...34

2.2 GROUND CONTROL STATION ... 36

2.1.1 COMMUNICATION MANAGER AND SOFTWARE INTERFACING...38

2.2.2 FORCE FEEDBACK JOYSTICK... 40

2.2.3 GCS RUAV USER INTERFACE .. 42

2.3 SIMULATION ENVIRONMENT APPLICATIONS.. 46

2.3.1 CONFIGURATION EVALUATION ... 46

2.3.2 ACTIVE JOYSTICK APPLICATION ... 50

2.3.2.1 Search/Identification Task Description .. 51

2.3.2.2 Piloted Simulations... 52

2.3.2.3 Cooper-Harper Rating Evaluations .. 56

3. ROTARY WING UAV SYSTEM DEVELOPMENT...59

3.1 DESIGN PROCESS... 60

4. HARDWARE SELECTION AND INTEGRATION ..63

4.1 HARDWARE DESIGN REQUIREMENTS.. 63

4.2 FLIGHT TEST VEHICLE DESCRIPTION... 64

4.3 FLIGHT COMPUTER... 65

 6

TABLE OF CONTENTS ---- Continued

4.3.1 CRIO REAL TIME APPLICATION DESIGN ..67

4.4 SENSORS.. 68

4.4.1 ATTITUDE HEADING AND REFERENCE SYSTEM (AHRS).. 68

4.4.1.1 AHRS Set-Up... 70

4.4.2 ALTITUDE SENSORS... 79

4.4.2.1 Description ... 80

4.4.2.2 Sonar sensors data acquisition.. 82

4.5 ACTUATORS.. 87

4.6.1 PULSE WIDTH MODULATION-SERVO ANGLE CURVE... 90

4.5.2 ACTUATORS SIGNAL ACQUISITION AND GENERATION SOFTWARE................................. 94

4.6 DATA LINK .. 97

4.7 HARDWARE INTERFACING, WIRING AND MOUNTING .. 97

4.7.1 VIBRATION ISOLATION...100

4.7.1.1 Vibration Load Experimental Test ...102

4.7.1.2 Experimental Results..105

4. 8 HARDWARE AND SENSORS DAQ FLIGHT TESTS ...108

4.8.1 FLIGHT DATA RECORD VIRTUAL RE-VIEW...110

5. SITL SIMULATION..111

5.1 HELICOPTER DYNAMICS IDENTIFICATION AND SIMULINK PID DESIGN RESULTS113

5.2 ONBOARD CONTROL SYSTEM..115

5.2.1 DISCRETE PID IMPLEMENTATION...115

5.2.2 ONBOARD NESTED PI SOFTWARE..117

5.3 COMPLETE ONBOARD SOFTWARE IMPLEMENTATION..124

6. HIL SIMULATION..130

7. FLIGHT TESTS & PI GAINS TUNING ...132

7.1 CONCLUSION AND OUTLOOK ..136

REFERENCES ...137

 7

LIST OF FIGURES

Figure 1: CAPECON Structure ..17

Figure 2: UAV System ...19

Figure 3: Basic Helicopter Notation [20] ...21

Figure 4: Blade Degrees of Freedom Schematic and Rotor Head Mechanization [20]22

Figure 5: Mission Simulation Environment ...26

Figure 6: AV & NGCS SimulinkTM model ..28

Figure 7: Control Modes and Force Feedback Laws..30

Figure 8: Max Acceleration at Constant Altitude; ∆θ in figure is that of equation 2.1 [42]...31

Figure 9: Max Acceleration along a descending flight path; ∆θ is that of extended approach

(eq. 2.4)...31

Figure 10: Forward speed vs Time during the max acceleration phase33

Figure 11: AV Guidance SimulinkTM blocks ...34

Figure 12: AV lateral track control strategy...35

Figure 13: Simulation of lateral track control [43]...36

Figure 14: GCS LabView code ..37

Figure 15: SIT Connection Manager Schematic ..39

Figure 16: Microsoft SidewinderTM Force Feedback II Joystick ...40

Figure 17: Spring Forces Programmed in Joystick ..41

Figure 18: Comparison of Commanded and Actual Stick Position [].....................................41

Figure 19: Description of Typical Softstop ..42

Figure 20: GCS Configuration ...43

Figure 21: GCS UNIBO Visual (external view) ..44

Figure 22: GCS UNIBO Visual (pilot/EO view) ...45

Figure 23: GCS UNIBO Visual terrain mesh...45

Figure 24: Mission Scenario...47

Figure 25: Fire Surveillance Mission flight path..48

Figure 26: Fire Surveillance Mission actual flight path ...48

Figure 27: Fire Surveillance Mission vertical profile...49

Figure 28: Fire Surveillance Mission ground speed...49

 8

LIST OF FIGURES ---- Continued

Figure 29: Fire Surveillance Mission power required..50

Figure 30: Search Mission fuel consumption...50

Figure 31: Phase 1, Autonomous, Waypoint Flight [42] ..50

Figure 32: Phase 2, Manual Mode [42] ..52

Figure 33: Phase 3, Acceleration Mode [42] ... 50

Figure 34: Phase 4, Hover Hold Mode [42] ...52

Figure 35: Total Time Comparisons for Pilots A,B and C...54

Figure 36: Airspeed Time History, Pilot B, Phase 3 ..55

Figure 37: Airspeed time History, Pilot B, Phase 2 ...56

Figure 38: Cooper-Harper Decision Tree...57

Figure 39: RUAV System set-up and Architecture..60

Figure 40: RUAV Avionics Design Flow ..61

Figure 41: RUAV Air Vehicle ...65

Figure 42: National Instruments CRIO Onboard Computer ..66

Figure 43: CRIO Field Programmable Gate Array (FPGA) Structure [51]67

Figure 44: CRIO Programming Structure [51]...68

Figure 45: NAV420CA System Architecture...69

Figure 46: NAV 420 Set-up Procedures...70

Figure 47: NAV420CA on Test Rig...71

Figure 48: NAV420 Test Rig Measurements...71

Figure 49: NAV420CA Mounting..73

Figure 50: NAV420CA Acquisition Software Flow Chart ..75

Figure 51: NAV420CA data Packet length time..77

Figure 52: NAV420CA Packet Acquisition Sequence...78

Figure 53: Sonar Sensor SRF08 ...80

Figure 54: Example of Three-Dimensional Representation of the Sonar Beam Pattern.........80

Figure 55:SRF08 beam pattern [54] ...81

Figure 56: Sonar Acquisition Circuit ...82

Figure 57: I2C Start and Stop Sequence [55]...83

Figure 58: I2C bit transfer [55] ..84

Figure 59: FPGA Sonar Data Acquisition Loop ..85

 9

LIST OF FIGURES ---- Continued

Figure 60: Servo Actuators Control Circuit ...88

Figure 61: Tail & Helicopter Gyro System Interaction..89

Figure 62: PWM pulse width and servo angle rotation..90

Figure 63: Experimental Set-up for Servo Angle-PWM curve determination.........................91

Figure 64: Optical Encoder Principle [56] ...91

Figure 65: LabViewTM Software for Encoder Signal Acquisition and PWM generation

through DAQ Card ...92

Figure 66: Front Panel of the software reported in figure 65 ...92

Figure 67: PWM on-time-Servo Angle curve ..93

Figure 68: Actuators PWM Acquisition Software ...95

Figure 69: Actuators PWM Generation Software ..96

Figure 70: RUAV WIFI Access Point..97

Figure 71: RUAV Schematic Wiring ...98

Figure 72: Avionics Vibration Isolation System..101

Figure 73: Typical diagram of resonant transmissibility versus damper frequency101

Figure 74: Experimental Data Acquisition System ..102

Figure 75: Acquisition Software Front Panel...102

Figure 76: Accelerometers Data Acquisition Software..103

Figure 77: Accelerometers mounting points ..106

Figure 78: Acceleration experienced on landing gear ..106

Figure 79: Acceleration Experienced on the isolated NAV 420 ..107

Figure 80: Acceleration experienced after the first shock mounts ...107

Figure 81: Boeing Results for Raptor 60 [62] ..107

Figure 82: Example of pitch and roll rate AHRS raw data ..108

Figure 83: AHRS filtered flight data ..109

Figure 84: Sonar sensors measurements...109

Figure 85: “Post-View” Station Architecture...110

Figure 86: Onboard Control System Architecture..112

Figure 87: Onboard Control Loop..117

Figure 88: Schematic of the FPGA Vx-Theta nested PI ..118

Figure 89: Schematic of the Vy-phi nested PI...120

 10

LIST OF FIGURES ---- Continued

Figure 90: Schematic of the stand alone Vz PI ..121

Figure 91: schematic of the heading control ..123

Figure 92: RUAV Complete Software Implementation...125

Figure 93: PI tuning tests GUI (1)..126

Figure 94: PI tuning tests GUI (2)..127

Figure 95: Typical Setpoint Profiles...128

Figure 96: Typical Flight Pattern Profile..128

Figure 97: Flight Data Acquisition GUI...129

Figure 98: Schematic of HIL Simulator ...130

Figure 99: Recorded HIL Simulation ...131

Figure 100: Flight Tests Procedures...132

Figure 101: Simulate vs Experimental longitudinal controller tracking performance134

Figure 102: Heading “Control” flight test ..134

Figure 103: Flight Path...135

Figure 104: Flight Pattern Test...135

 11

LIST OF TABLES

Table 1: Flight Plan Data..47

Table 2: Definition of Desired and Adequate Performance ...53

Table 3: Cooper-Harper Ratings for the Rotorcraft UAV Search/Identification Task58

Table 4: NAV420CA Packet Details (NAV Mode) [53] ...78

Table 5: Accelerometers Characteristics ..104

Table 6: DAQ Card Settings...104

Table 7: Attitude dynamics identified parameters..113

Table 8: Velocity dynamics identified parameters ...113

Table 9:Heave Dynamics identified parameters...114

Table 10: Attitude Controllers PI Gains...115

Table 11: Velocity controllers PI Gains ...115

Table 12: Unity of Measures and scale factors used in the control code118

Table 13: Vx PI Input Parameters ..119

Table 14: Vx PI Outputs...119

Table 15: theta PI Input Parameters ...119

Table 16: theta PI Outputs ..119

Table 17: Vy PI Input Parameters ..120

Table 18: Vx PI Outputs...121

Table 19: phi PI Input Parameters ..121

Table 20: phi PI Outputs...121

Table 21: Vz PI Input Parameters ..122

Table 22: Vz PI Outputs ...122

Table 23: Collective-Throttle Curve Look-up table ...123

Table 24: psi dead zone Input Parameters..124

Table 25: psi dead zone Outputs ..124

 12

ABSTRACT

 This PhD thesis presents the results, achieved at the Aerospace Engineering Department

Laboratories of the University of Bologna, concerning the development of a small scale

Rotary wing UAVs (RUAVs).

 In the first part of the work, a mission simulation environment for rotary wing UAVs was

developed, as main outcome of the University of Bologna partnership in the CAPECON

program (an EU funded research program aimed at studying the UAVs civil applications and

economic effectiveness of the potential configuration solutions). The results achieved in

cooperation with DLR (German Aerospace Centre) and with an helicopter industrial partners

will be described.

 In the second part of the work, the set-up of a real small scale rotary wing platform was

performed. The work was carried out following a series of subsequent logical steps from

hardware selection and set-up to final autonomous flight tests.

 This thesis will focus mainly on the RUAV avionics package set-up, on the onboard

software development and final experimental tests.

 The setup of the electronic package allowed recording of helicopter responses to pilot

commands and provided deep insight into the small scale rotorcraft dynamics, facilitating the

development of helicopter models and control systems in a Hardware In the Loop (HIL)

simulator. A neested PI velocity controller1 was implemented on the onboard computer and

autonomous flight tests were performed. Comparison between HIL simulation and

experimental results showed good agreement.

1 This PhD work was carried out in full cooperation with Roberto Pretolani, who was mainly responsible for the
helicopter dynamic identification and the control system design. His PhD thesis [19] will report this work in
details

 13

NOMENCLATURE

u helicopter longitudinal speed in body axes
v helicopter lateral speed in body axes
w helicopter vertical speed in body axes
p roll rate in body axes
q pitch rate in body axes
r yaw rate in body axes
ϕ Euler angle for helicopter roll
ϑ Euler angle for helicopter pitch
ψ Euler angle for helicopter heading
Ψ blade azimuth angle
Θ blade pitch angle
Q the main rotor torque
TTR tail rotor thrust
FAF fuselage aerodynamic forces
FAT tail surface aerodynamic forces
Ω rotor speed
β blade flapping angle
Θ0 average blade pitch angle
A1 lateral cyclic blade pitch
B1 longitudinal cyclic blade pitch
Blat lateral stick to cyclic pitch gearings (effective lateral control derivatives taking

into account the effect of the stabilizer bar)
Along longitudinal stick to cyclic pitch gearings gearings (effective longitudinal control

derivatives taking into account the effect of the stabilizer bar)
δcoll collective control input
δlat cyclic lateral control input
δlong cyclic longitudinal control input

ch δ∂∂
•
/ rate of climb vs collective

∆θlevel_flight delta pitch attitude in level flight relative to flight path
∆θextended_approach delta pitch attitude in the energy extended approach relative to flight path
δc max maximum collective
δc trim trim collective
V forward speed
E total energy
M mass
g gravity acceleration
h altitude
VN, VE, VD velocities in the north (N), east (E), down (D) reference frame
Vx, Vy, Vz velocities along the trajectory
Th PWM high time
fs PWM frequency
T PWM period
d PWM duty cycle
ωnq natural frequencies of the longitudinal of the fuselage-rotor-bar modes
ωnp natural frequencies of the lateral of the fuselage-rotor-bar modes
τe flapping motion rotor time constant including the effect of the stabilizer bar.
XVx longitudinal speed derivative
YVy lateral speed derivative
ZVz vertical speed damping derivative

 14

Zcoll vertical control derivative

Acronyms
CAPECON Civil uav APplications & Economic effectivity of potential CONfiguration solutions
DLR Deutches Zentrum für Luft-und-Raumfahrt
RUAV Rotorcraft Unmanned Aerial Vehicle
UAV Unmanned Aerial Vehicle
UNIBO UNIversity of BOlogna
PID Proportional – Integral- Derivative
PI Proportional – Integral
EU European Union
AV Air Vehicle
DL Data Link
DD Data Distribution
GCS Ground Control Station
COTS Commercial Off The Shelf
NGCS Navigation Guidance Control System
LAN Local Area Network
VLAB Virtual reality LABoratory
SIT Simulation Interface Toolkit
SDK Software Development Kit
FF Force Feedback
WP WayPoint
USGS US Geological Survey
SRTM Shuttle Radar Topography Mission
DEM Digital Elevation Map
PWM Pulse Width Modulation
CRIO Compact Reconfigurable Input Output
AHRS Attitude Heading and Reference System
SITL Software In The Loop
HIL Hardware In the Loop
RF Radio Frequency
RC Radio Control
EMI Electro-Magnetic Interference
EM Electro-Magnetic
FPGA Field Programmable Gate Array
IMU Inertial Measurement Unit
GPS Global Positioning System
AMSL Above Mean Sea Level
AGL Above Ground Level
SDA Sensor Data line
SCL Sensor CLock line
MSB Most Significant Bit
LSB Least Significant Bit
HL-AVCS Heading Lock Angular Velocity Control System
DC Direct Current
SISO Single Input Single Output
SP Set Point
PV Process Variable
DI Digital Input
DO Digital Output
GUI Graphical User Interface

 15

 16

Chapter 1

MOTIVATION AND BACKGROUND

1.1 OVERVIEW

The increasing interest in military Unmanned Air Vehicles (UAVs) is fuelling an equally

ambitious build-up in the civil community. It is well known that UAVs may represent a

promising and cost-effective alternative to manned aircraft for a large number of civil

applications [1]. Compared to traditional air vehicles, UAVs may offer significant advantages

in terms of human safety (especially in dull, dirty and dangerous missions), operational cost

reduction and work rate efficiency. Nevertheless, while research activities in UAV or Rotary

Wing UAV systems are very advanced in the United States, UAV interest in Europe has

begun only in the last years. As a result, in year 2001, the European Union has sponsored the

UAV development program CAPECON, to attempt to kick-start a civil UAV industry in

Europe and try to fill the gap with the United States. Since 1999, the University of Bologna

(UNIBO) has carried out several research projects concerning the development and

manufacturing of fixed wing UAV systems for the civil aviation market. For that reason,

when the EU decided to start the CAPECON program, UNIBO didn’t hesitate to take part in.

CAPECON (Civil UAV Application end Potential CONfiguration solution) was the first

European wide program tying together the resources of eight countries, nine industrial

organization, five aerospace centres and six universities. Its main goal was to provide

European industry with detailed design and manufacture know-how on safe cost-effective and

commercially viable civil UAVs. The program was structured to make a logical progression

 17

from customer needs to final products [2]. The process (see figure 1) started with UAV

applications analisys, braking them down into discrete missions which were then lumped into

multirole missions [3,4].

Figure 1: CAPECON Structure

 The most promising and commercially viable multirole missions were selected and further

translated into operational concepts, which lead to the definition of formal requirements [5].

The formal requirements were used to help defining five fixed wing and two rotary wing

configuration which best fulfilled the requirements. The configuration were then designed and

the related technology were also identified. The costs for the configurations were also

estimated and final dissemination of results to the European industry was done. During the

CAPECON project, interest in the Small/Mini size UAVs increased considerably, mainly due

to the miniaturization of avionics and onboard systems. The project was therefore extended to

study also the Small/Mini Configurations. UNIBO played an important role inside the rotary

wing part of the CAPECON program both in the Small/Mini and big size Rotary UAVs

(RUAV).

The main CAPECON outcomes for the RUAV systems concerned:

- the identification of the most promising applications [6,7]. Examples of the identified

applications included: fire surveillance and fire fighting, civilian security, monitoring

or close inspection of electrical powerline, pipeline or dam, search part of SAR

(search and rescue) missions, agriculture spray etc..[8,9,10]

 18

- as far as technology are concerned, one important aspect derived from the CAPECON

program, was the real need to apply already existing, proven and cost effective

technology to the UAV world. Therefore, many existing technologies were identified,

ready for application in the short and mid term [11-18]
- the complete preliminary design of two rotary wing UAV configuration: one was a

conventional main rotor-tail rotor configuration, while the other one was a coaxial

rotor configuration

The culmination of the UNIBO CAPECON work was the design of a mission simulation

environment for the rotary wing UAVs. The mission simulation environment was used

inside the CAPECON for evaluating the two RUAV configuration operational

capabilities. The work carried out by UNIBO during the CAPECON program will be

summarized in chapter 2.

Based on the work performed in the CAPECON program, an independent RUAV research

program was also started at UNIBO laboratories, since RUAV systems may represent an

alternative to fixed wing UAVs (or even a more promising solution) for a wide number of

civilian applications, due to their versatile flight modes, maneuverability and vertical take-

off and landing capabilities.

The goal to be achieved with the UNIBO RUAV research program was to develop a

helicopter, capable of autonomous flight, which could be used inside the university as

platform for researches in control and navigation laws; meanwhile it should be proposed

as technological prototype to industry interested in UAV development and manufacturing.

An UAV system is generally constituted by at least four main integrated sub-systems (see

figure2): the air vehicle (AV), the ground support system, the data link and the data

distribution [9].

 19

Figure 2: UAV System

- The AV includes all the airborne systems: the basic helicopter platform, the onboard

computer and sensors, the mission payload and all the software necessary to guide,

navigate and control the air vehicle.

- The ground support system includes all the ground infrastructures and equipments to

enable the AV operations, such as a mobile ground control station (GCS), a logistic

and maintenance segment and a ground vehicle.

- The data link supports video, data and telemetry communications between the AV and

the ground support systems, while the data distribution is able to transmit annotated

significant data, collected at the GCS, to potential users at remote locations.

The subsystems, both hardware and software equipments, can be much or less sophisticated,

depending on the UAV system size and complexity.

For the purpose of the RUAV program, a small scale hobby model helicopter was used as

flying platform, which was certainly a significant physical constraint for the RUAV

subsystem equipment choice and development.

The work performed to develop the RUAV platform was carried out following a series of

subsequent logical steps:

- first the RUAV hardware (including the onboard avionics, the air vehicle and the data

link system) was selected and interfaced, placing attention to vibration isolation,

electromagnetic interference and accessibility

- following the hardware set-up, sensor data acquisition software was developed and

tested in flight in order to verify sensor measurement reliability. This step plays a

crucial role in a RUAV development because, if the helicopter has to fly

 20

autonomously, reliable information about its states is needed by the onboard control

and navigation system.

- parallel to the hardware set-up, simulation plays also an important role in the

development of an autonomous helicopter. A simulation model was developed, based

on helicopter dynamics identification flight tests, to be used for the design of the

onboard control and navigation algorithm

- once the previous task were completed, the onboard hardware and software were

integrated into the simulation loop using a Hardware In the Loop (HIL) simulator. In

this scenario, performance and possible errors of the onboard software can be detected

during intensive ground safe and risk free tests

- in the end, autopilot flight tests were performed for final verification and tuning of the

control and navigation system.

This thesis will focus mainly on the RUAV avionics package set-up and on the onboard

software development, while the other steps will be covered in reference [19].

One important aspect to be taken into account in the development of a RUAV system is that it

is, actually, an aerial robot. The set-up of a capable task-worthy aerial robot is essentially an

integration effort and, always, requires knowledge of several different disciplines and

experimentation on new system development. In the past years, most of the research efforts in

miniature autonomous helicopter were lost for hardware integration and for obtaining reliable

sensor measurements. For that reasons, taking also into account the outcomes of the

CAPECON program, it was decided to evaluate the feasibility of using COTS sensors and

electronics for the RUAV avionics package. Both the hardware and the software were

integrated placing attention to modularity, growth potential, versatility and possibility for ease

reconfiguration and software implementation. Results achieved in this work showed that the

selected hardware and the onboard software were able to provide accurate flight data

measurements and good helicopter control capabilities. Thanks to its modular architecture and

accurate flight data measurement capabilities, the developed RUAV system may become a

useful research test bench in several different field such as:

-aircraft /rotorcraft dynamic model identification

-researches in control and navigation laws (fast and ease software implementation could

results also in a speed up of the research time)

 21

-researches in man machine interface and air system integration which is addressed as one of

the most critical technology aspect for the future development of the civil UAVs and their

integration into the airspace [14,16].

1. 2 SUMMARY OF HELICOPTER PRINCIPLES

As well known, helicopters are air vehicles which are able to fly thanks to the lift force

produced by lifting surfaces (the rotor blades) rotating about a vertical axis (the rotor shaft).

In order to understand the contents of this work, some basic helicopter principles will be

introduced. The standard helicopter notation , that will be used in the next chapters, is shown

in figure 3.

Figure 3: Basic Helicopter Notation [20]

Figure 3 shows the helicopter with its body reference frame; origin is at the helicopter centre

of gravity. The principle variables are shown on the x, y and z body axes. They include: the

body speeds u, v, w, the Euler angle ϕ, ϑ , ψ, the body angular rates p, q, r. The main rotor is

represented as a disc that can tilt about the rotor hub in the longitudinal and lateral directions.

This motion is describe through the angles β1c and β1s measured in reference to a plane

perpendicular to the rotor shaft (hub plane). The actual rotor blade position is described by the

angle Ψ measured from the tail (see fig.3). The components of the resultant forces and

moment acting at the helicopter centre of gravity are X,Y,Z and L,M,N, respectively. The

figure shows also the key forces that contribute to the helicopter motion, including: the rotor

thrust T, the longitudinal and lateral rotor moments acting on the hub LR and MR, the main

rotor torque Q, the in-plane rotor forces Hx and Hy, the tail rotor thrust TTR, the fuselage

aerodynamic forces FAF, the aerodynamic forces from the tail surface FAT [20].

 22

Rotor blades are attached to the spinning shaft via a rotor head. Besides its rotation around the

hub (speed Ω, position Ψ), the blade can also rotate about three hinges which are shown in

figure 4. Feathering is the motion of the blade about its length and is described by the blade

pitch angle Θ; flapping is the blade motion in a direction normal to the main rotor disc and is

described by the flapping angle β; lead-lagging is the motion of the blade in the rotor disc

plane and is described by the angle ξ. Significant variations in the design of the helicopter

rotor head exist. Blade motion is enabled by mechanical hinges near the blade root

(articulated rotor), by blade root compliance (hingless rotor), or by combination of both.

Figure 4: Blade Degrees of Freedom Schematic and Rotor Head Mechanization [20]

In the hobby helicopter used for the development of the RUAV system, there are no actual

flapping hinges. The motion about the three hinges is restrained by elastomer fittings that act

both as springs and dampers (see fig. 4, elastomeric flapping and teetering hinge). The spring

effect is used to transform the blade flapping motion in a hub moment.

In most rotorcraft, the rotor speed is kept constant by an electronic engine governor. The

thrust and rotor moments are produced by changing the blade pitch angle. The blade pitch

control system is based on a swashplate mechanism. The purpose of this mechanism is to vary

the blade pitch both in magnitude but also as a function of the blade angular position around

the hub. Using the collective control input, the pilot controls the average blade pitch angle.

 23

The blade pitch angle as a function of its angular position is controlled by the longitudinal and

lateral cyclic controls.

The blade pitch angle as a function of its angular position Ψ around the hub (Ψ is zero when

the blade is above the tail and it is assumed that the blades rotates counter clockwise; see

figure 3) is described by:

Θ(Ψ)= Θ0 –A1cosΨ-B1sinΨ (1.1)

where

- Θ0 is the average blade pitch angle, which is set by the collective control input δcoll ,

- A1 and B1, the coefficients of the cosine and sine terms, are the amount of blade pitch the

blade undergoes when it is located above the tail (-x body direction) and on the right-hand

side (y-direction), respectively [20].

A1 and B1 are functions of the longitudinal and lateral cyclic controls δlon and δlat,

respectively. It is possible to rewrite them as a function of linear gearing coefficients which

transform the pilot stick input into angular blade-root pitch change:

A1 =Blat δlat B1 =Along δlong (1.2)

Usually, on small scale hobby helicopters, a stabilizer bar is also present. The stabilizer bar

does not produce thrust (it has no collective blade pitch setting). Instead, the main blade pitch

receives both the cyclic pitch servo command and a major component imposed by the

stabilizer bar.

Hence, Blat and Along are the effective cyclic control derivatives taking into account the effect

of the stabilizer bar.

The primary function of the four principal rotorcraft commands are the following: the main

rotor lateral and longitudinal cyclic inputs control the roll and pitch moments produced by the

main rotor; collective input controls the magnitude of the main rotor thrust; the tail rotor

collective input controls the tail rotor thrust by varying the tail blade pitch. Hence, the

commands have a direct effect on the rotorcraft roll and pitch attitude rate, vertical velocity

 24

and heading rate, respectively. The pilot does not control the helicopter position or velocity

directly, but via a chain of effects that can be summarized as follows. The cyclic control

inputs result in control moments about the rotor hub via a tilting motion of the rotor disc

(rotor disc refer to a simplified representation of the combined effect of individual blade

motion). The rotor control moments produce a fuselage rolling or pitching motion. If the

helicopter is hovering, changing the fuselage’s roll and pitch angle will result in a tilting of

the rotor thrust vector, producing horizontal thrust components that acts as propulsive force.

For example, by holding a constant pitch angle, the helicopter will accelerate until the

propulsive force is balanced by the aerodynamic drag force. Of course some cross axis effect

are also present. For example, in the longitudinal velocity control, when the helicopter is

pitched, the vertical thrust component will decrease, requiring an increase in the thrust

magnitude to keep the vehicle at level altitude. This increase in thrust, however, will produce

a reaction torque at the rotor shaft that in turn will result in a yawing moment, for which the

pilot will need to adjust the tail rotor thrust. Other effects are more subtle, such as the roll

responses following cyclic and collective control actions and the pitch responses following

lateral control actions [20].

 25

Chapter 2

MISSION SIMULATION ENVIRONMENT

This chapter will describe the mission simulation environment, developed inside the

CAPECON program, to evaluate the operational capabilities of the two RUAV configurations

designed by the industrial partners (AGUSTA and Eurocopter) [21]. The simulation

environment was developed mainly as a tool for supporting the CAPECON industrial

helicopter designers in the preliminary design phase of the RUAV systems. In this

perspective, it was taken into account that the design of a RUAV system is quite different

from the one of a classical manned rotorcraft, since it requires the concurrent definition of its

main sub-systems: the air vehicle, the ground support system, the data link and the data

distribution. For example, unlike manned helicopter, the helicopter control strategy is one of

the most critical aspect in the design of a RUAV. Besides, the ground control station must be

also brought into the design space, because it plays a crucial role for the RUAV platform

operation. In order to develop such a complex system at industrial level, it was decided, inside

CAPECON, that new design strategies are needed, which could be integrated into the design

process normally used by the manned helicopter companies [22-28]. In this perspective, the

idea was to create a simulation tool able to merge the contributions of different preliminary

design working teams (the helicopter preliminary design, the NGCS preliminary design, the

GCS preliminary design and payload integration) into a single environment and to test them

in cooperative simulation. Such a simulation environment was developed at UNIBO

Laboratories and is shown in figure 5.

 26

Figure 5: Mission Simulation Environment

The simulation environment is able to emulate the RUAV main sub-systems [10,21]. It is

composed by three computers and three monitors (figure 5):

- The “Air Vehicle” computer: it represents the ”airborne world” and contains a SimulinkTM

dynamic model of the helicopter and of the NGCS. In a preliminary design process, this part

of the system may allow the designers to test different NGCS solutions.

- The “Ground Support System” computers: for the sake of simplicity the Ground Support

System has been simulated as a unique control station, constituted by two computers:

• the master computer is used for real time mission planning, control and for managing

communication among the mission simulation environment computers. IT is connected

with two monitors displaying the mission planning window on the first screen and the

flight instrumentations on the other one

• the second computer is used for providing a virtual view of the mission scenario and for

mission payload data display. An Electro Optic camera payload was also simulated by

means of a Visual system developed at the Faculty VLAB.

In a preliminary design process, this part of the system may be used to improve the GCS

human interface design.

 27

- Data Link: Communication between the AV and the GCS is simulated of course via local

area network (LAN). Bidirectional communication between the AV and the GCS primary

master computer is done by means of TCP/IP protocol managed by a LabViewTMTM software.

Communication between the two computers of the GCS is done via UDP protocol and is

always managed by the LabViewTM software.

The goals to be achieved with the development of the mission simulation environment were

many [22]:

1- to create a simulation environment capable of prototyping a full RUAV system,

including also the GCS operator into the design process since the preliminary design

stage

2- to provide a modular and open environment easy to upgrade by changing a single or a

set of components. The “open system approach” may allow quick tests of multiple

design solutions, reducing design risk and time with the expectation of life cycle cost

reduction

3- to create a tool that improves the RUAV performance estimation and evaluates the

RUAV stability and controllability qualities by testing the full system into a realistic

operational scenario.

Details of the mission simulation environment software implementation will be given in the

next sections, while the most important achieved results will be reported in section 2.3

2.1 THE AV & NGCS SIMULINK MODEL

In order to simulate the behaviour of an autonomous RUAV, it is necessary to model the air

vehicle dynamics and the navigation guidance and control system (NGCS).

The complete SimulinkTM model developed by UNIBO is shown in figure 6.

 28

Figure 6: AV & NGCS SimulinkTM model

The model is composed by several different parts:

- two “communication” blocks for exchanging data with the GCS computer,

- the “helicopter dynamics” block which is able to simulate the flight dynamics of a classic

main & tail rotor helicopter. The model is a non-linear rigid blade dynamic model using

main rotor first-order flapping dynamics, steady & uniform Inflow, and combined

momentum & blade element theory. It was primarily derived from Mettler [20, 30, 31, 32]

theory of small scale helicopters

- the Engine Governor block which changes the throttle settings in order to maintain

constant rotor RPM,

- the Navigation, Guidance and Control System blocks which are able to provide controls for

the air vehicle stabilization and enable the air vehicle to track a set of pre-planned flight

segments, starting from any initial condition,

- the Switch block which is able to change the flight mode depending on a flag input joystick

signal coming from the Ground Control Station. Four different flight mode were

implemented which are detailed in section 2.1.1

- the Stability Augmentation System (SAS) & Autopilot block works both as stabilization

and autopilot system. The autopilot gives controls to the helicopter flight dynamics block

 29

for the Air Vehicle to maintain reference flight parameters, depending on the selected flight

mode,

- the Force Feedback (FF) block gives back to the active joystick, at the GCS, different force

feedback laws, according to the current flight mode. The active joystick features were used

to backdrive the joystick, in order to eliminate transients between the various mission

phases and to provide situational awareness to a potential ground control station pilot.

Details of the dynamic model and of the SAS and autopilot can be found in [19] (other useful

references are in [33-39]. In the next section details of the navigation guidance system and the

four control mode will be given.

2.1.1 CONTROL MODES DESCRIPTION AND FORCE FEEDBACK LAWS

Four control modes were defined for mission accomplishment: autonomous, manual,

acceleration and hover hold.

They can be selected by means of the force feedback joystick buttons. Depending on the

selected flight mode, the reference parameters for the autopilot are different as well as the

force feedback on the joystick.

In autonomous mode, the reference flight parameters are generated by the guidance system

(see section 2.3) according to the prescribed flight plan planned at the Ground Control

Station, during which joystick stick inputs are ignored. The force feedback module backdrives

the joystick so that it follows the current flight condition (see figure 7).

In manual mode, the reference flight parameters coming from the joystick are forward speed,

lateral velocity, yaw rate and rate of climb/descent. The force feedback module helps the pilot

to maintain the commanded reference speed (see figure 7).

In acceleration mode, the “acceleration” block calculates the reference flight parameters for

the helicopter to achieve the maximum acceleration according to the energy law, described in

section 2.1.2. The force feedback module gives back to the joystick the reference pitch angle

to be maintained, calculated using the energy management equations. The reference flight

parameters, commanded by the pilot, are the yaw rate and the rate of climb/descent.

Moreover, also the pitch angle can be changed if necessary (see figure 7).

 30

Figure 7: Control Modes and Force Feedback Laws

In hover hold flight mode, the “hover hold” block allows to quickly decelerate the helicopter

in order to reach hover flight conditions and to maintain current spatial position. The force

feedback module backdrives the joystick stick to follow the current speed so that it works as a

speed indicator (helping situational awareness). The reference flight parameters commanded

through the joystick are the yaw rate and the rate of climb/descent (see figure7).

2.1.2 ENERGY MANAGEMENT EQUATION

Energy management equations were implemented in order to define a maximum acceleration

flight mode towards the object for task accomplishment of a potential search mission. The

maximum acceleration was computed using an extension2 to an approach documented in

reference [40].

Reference [40] documents an approach to compute the pitch attitude required to perform a

maximum acceleration at constant altitude while not exceeding limits in the vertical axis. For

the purpose of this work, the Energy Management approach was used, but it needed a slight

extension to take into account also for the rate of descent, which could be experienced by the

helicopter during a mission descent phase .

The equation for the pitch attitude leading to maximum acceleration in forward flight and at

constant altitude is shown below:

2 The energy management extension approach was developed in cooperation with DLR (Ing. Stephen
Mouritsen). Ref. 42 is the outcome of this work

 31

()ctrimc
coll

flightlevel

hV δδ
δ

θ

−⋅
∂
∂⋅

=∆ •

max

_
1 (2.1)

For the original derivation, please refer to reference [40]. The terms in the equation are

defined in the notation. This equation assumes a helicopter flying in forward flight so that the

reciprocal of the forward velocity does not go to infinity. Each term of the equation is readily

available: the forward velocity, the maximum collective, the trim collective and the stability

derivative (rate of climb vs collective). This equation assumes level flight and computes the

nose down pitch attitude such that there is sufficient collective margin to hold altitude (see the

figure below).

constant altitudemax acceleration

T

∆θ

constant altitudemax acceleration

T

∆θ

Figure 8: Max Acceleration at Constant Altitude; ∆θ in figure is that of equation 2.1 [42]

During certain mission phases, however, the helicopter may need to perform a maximum

acceleration, but not at constant altitude, rather in a descent. It follows, then, that the required

pitch down attitude will not be as large relative to the flight path, because acceleration is also

being aided by a component of gravity (see figure below).

T

θ

γ

∆θ

vcos()

v, v

γ

T

θ

γ

∆θ

vcos()

v, v

γ

Figure 9: Max Acceleration along a descending flight path; ∆θ is that of extended approach (eq. 2.4)

The Energy Management extension begins with the same basis equation used in Reference

[40], the relation between potential energy in the vertical direction and kinetic energy in the

flight path direction.

 32

E=mgh + ½*mV2 (2.2)

To take acceleration in a descent into account the equation is modified by taking only the

horizontal component of the flight path velocity.

E=mgh + ½*m[V*cos(γ)]2 (2.3)

If we derive ∆θextended_approach from eq. 2.3 (following the procedure described in [40,41]), the

results is an extra term multiplied against equation (2.1):

 (2.4)

∆θextended_approach is the pitch attitude required to accelerate in a maximal sense along a flight

path, regardless if the flight path is horizontal or descending.

Checking the signs in the extra term in equation (2.4):

 1/V > 0

0<
∂
∂

•

coll

h
δ

(δcmax - δctrim) >0

sin(γ) > 0

This means the entire extra term itself is always:

 0 < extra term < 1.

This has the effect of reducing the needed ∆θ in a descent flight path, which makes sense

because acceleration is now aided by gravity and it is not necessary to command the same

nose down pitch attitude as in horizontal flight [42].

 33

Equation (2.4) was implemented in the acceleration block (see figure 6) and was used as input

for the helicopter controller. The reference attitude provided to the controller was then:

θref. = γ + ∆θextended_approach (2.5)

Simulation tests showed the rotorcraft UAV accelerations (along body x-axis) to be quite

brisk, between 0.2 and 0.3 [g] at the beginning and reducing to about 0.1 [g] as the

acceleration phase ended (see curve slope in figure 10).

Figure 10: Forward speed vs Time during the max acceleration phase

The acceleration decreases with forward velocity due to the reciprocal term of the velocity in

the very beginning of equation (2.4). The reciprocal term eventually drives ∆θextended_approach to

zero with increasing airspeed, at least theoretically.

To aid the pilot, the force feedback joystick is backdriven to a forward position such that the

pitch attitude follows the Energy Management law but with an extension which takes into

account also for the extra term.

This feedback law is used when the helicopter flies in maximum acceleration mode as it is

implemented in the force feedback block of the simulator together with the other feedback

laws used for the three other control modes (see previous section).

 34

2.1.3 NAVIGATION GUIDANCE AND CONTROL SYSTEM (NGCS)

The NGCS system used to guide the helicopter implements a proportional navigation

strategy. The same strategy was also used for the onboard navigation software

implementation of the rotary wing air vehicle developed in this PhD work (see enclosed

CD).

The guidance system is composed by two main parts: the lateral track control and the

“altitude hold” [43].

Figure 11: AV Guidance SimulinkTM blocks

The altitude-hold is a simple Proportional Integral (PI) controller. It takes as input the

destination waypoint altitude and the current vehicle altitude and gives as output the

vertical velocity, required to maintain or reach the reference altitude.

The lateral control strategy guides the helicopter towards the destination waypoints (e.g.

WP 2), along a track line defined by two consecutive waypoints (e.g. WP1 and WP2) as

depicted in Figure 12, by means of a yaw-rate command [43]. The guidance block first

transforms the helicopter latitude and longitude coordinates into a (Xtrack ,Ytrack) local

system (see figure 12). Knowing the AV current position in the local coordinates system

(Xtrack, Ytrack), the navigation strategy is to turn the ground speed vector V into the

direction of the exact track, so that the helicopter intercept the track line at point C.

 35

Figure 12: AV lateral track control strategy

The intercepting point C can be tuned by a design parameter k. The distance along the

track line between the intercepting point C and the Wp2 is, at any instant, equal to

(1-k)*Xtrack. From the geometry similitude of the triangles OAB and OCD, a control

strategy can be defined following relationship [43]:

 (2.6)

To achieve this objective, the error E is computed by:

 (2.7)

The error can be driven to zero, using the proportional feedback control law that expresses

yaw-rate commands as:

 (2.8)

The proportional gain Kr is determined iteratively through simulation, until good tracking

is achieved with virtually no overshoot. The proposed lateral control handles also wind

conditions in a simple manner, ensuring track stability over a wide set of initial conditions

(see figure 13).

 36

Figure 13: Simulation of lateral track control [43]

In manual flight mode, the guidance system is obviously disabled: the operator acts on the

joystick in order to control directly body axis forward speed, vertical velocity, side sleep

velocity and yaw rate. In this mode the joystick commands are directly sent to the

autopilot.

2.2 GROUND CONTROL STATION

The work involved in this part of the project was the design and development of a ground

control station for real time control and display of the simulated RUAV flight test data.

The GCS is the hub of an unmanned air vehicle [44,45]. It processes the incoming data

and sends control instructions to the air vehicle. Typically a GCS will envelope three main

functions:

- mission planning

- mission control

- data processing.

The level of autonomy of the RUAV and the mission complexity dictate the GCS

architecture. For the purpose of this work, a simplified standard GCS was developed,

which is able to operate the RUAV in both autonomous or remote piloted flight. The GCS

was designed to be easily modified for controlling and monitoring of a real RUAV;

therefore, this part of the work was used as starting point to develop the GCS of the small

scale helicopter UAV system.

 37

The GCS includes a visual system which induces a sense of presence in the engagement

area, provides a multi-modal input interface, including head tracker and joystick, which

enables efficient interactions.

Key problems to be solved during the development of the GCS were (see next sections in

details):

- the interfacing of the different hardware and software components,

- the development of the graphic interface for mission planning and control and

flight data display,

- the development of a visual system for modular mission payload simulation and

for a data-driven “virtual view” of the flight vehicle, displaying the helicopter

current position.

The basic software was developed through the LabViewTM data acquisition, control and

visualization software. The LabViewTM software has been chosen due to its quick and

flexible applications. The source code, implemented on the primary master computer of

the GCS, is able to manage:

- communication between the SimulinkTM model of the air vehicle and the master

computer of the GCS,

- communication between the visual system, developed in C++ language, and the

primary master computer of the GCS,

- the graphic interface for mission control and flight data display.

Figure 14 shows the LabView code, which runs on the GCS master computer (please refer

to enclosed CD for complete software implementation).

Figure 14: GCS LabView code

The LabView code is constituted by different blocks:

 38

- a “read loop” which receives data from the RUAV simulator via TCP/IP using the

LabView simulation interface toolkit 2 blockset;

- a “data selection block” which is able to split the data, received at the GCS primary

master computer, into four main cluster of data to be displayed on the GCS graphic

interface: a “cluster to visual” data, a “cluster to map” data, a “cluster to virtual

cockpit” data and a feedback laws data to be sent to the active joystick;

- two graphic blocks have been created for generating real-time plots of various

flight parameters, animated map display, flight plan window and virtual cockpit;

- a “ Force Feedback joystick manager” which manages input/output communication

with the USB FF joystick;

- a “send loop” to the visual system for displaying data on a 3D graphical interface

which uses an UDP communication protocol;

- a “send loop” to the air vehicle computer for sending real time control signal. In

remote piloted flight mode the control signals comes from the joystick interface,

while in autonomous flight mode the control-navigation signals depend on the

flight plan, defined at the flight plan graphical interface.

2.1.1 COMMUNICATION MANAGER AND SOFTWARE INTERFACING

Communication between the Simulink model and the GCS primary master computer was

done using the LabView simulation interface toolkit 2 (SIT V2.0). A vector of data is sent

from/to the “air vehicle” computer to/from the GCS, via a TCP/IP communication

protocol. Data received at the GCS primary master computer are then distributed to the

graphical interface, to the active joystick and to the visual system; meanwhile control

command data must be sent from the GCS to the air vehicle computer for the RUAV

control and navigation. Since the visual system is developed in C++ and requires an UDP

communication protocol, another communication interface between the visual PC and the

master PC is needed and was therefore developed. Moreover, another block was

developed for communication between LabView and the force feedback joystick.

Communication SimulinkTM model-GCS

The LabView SIT V2.0 software was used to interface LabView with the MathWorks,

Inc./Simulink environment. The SIT V2.0 provides a way to generate a LabView user

interface which can be used to interact with the Simulink model without converting the

 39

Simulink model into a dynamic link library. The component involved in the interaction

between LabView and Simulink are shown in figure 15.

LabView exchanges data with MATLAB/Simulink using TCP/IP. For LabView to

communicate successfully with Simulink, it is necessary to have MATLAB running on the

“air vehicle” computer. When MATLAB is launched on the “air vehicle” PC, a Simulation

Interface Toolkit (SIT) Server starts, which enables LabView and MATLAB to

communicate with each other. On the master computer, the LabView front panel provides

the user interface to the Simulink model. By configuring the SIT Connection Manager

dialog box, it is possible to specify the relationship between LabView controls /indicators

and the Simulink model input /output. LabView controls are the GCS data sent to the

simulator (arranged into a 2D array); LabView indicators are the GCS data received from

simulator (arranged into 1D array).

Figure 15: SIT Connection Manager Schematic

Communication visual system-GCS

The visualization software was developed in C++ using OPENGL library and

OPENInventor software. It runs on the second computer of the GCS. The software was

provided by the Faculty VLAB and was partially modified to be interfaced with the

LabView environment. For LabView to communicate successfully with the visual system,

an UDP communication protocol has been developed in C++ and integrated in the

LabView environment using the LabView call library function node. The call library

function node are LabView objects that link compiled source code, written in a

conventional programming language as C++, to LabView. When the call library function

executes, LabView loads the C++ code and passes input data (in that case the “cluster to

visual” data) to the executable code. In that way, data are sent to the visual system which

will display a 3D virtual view on a TFT monitor.

 40

Communication force feedback joystick-GCS

The joystick chosen to be installed on the RUAV simulation environment was a Microsoft

SidewinderTM Force Feedback II Joystick as shown in figure 16. This decision was made

rather arbitrarily and should not be construed as an endorsement. Other capable force

feedback joysticks exist on the market. This joystick did have an advantage though. It is

compatible with a joystick driver, written in C++, available from www.Microsoft.com.

For those with extra interest, Microsoft offers a Software Development Kit (SDK) for free

to support game developers. Visit the Microsoft website and download and install the

latest version of the SDK (200 to 300 MB). The kit includes everything needed to write

video games, including a joystick interface. Find the file called “joystick.dsw”. This is a

finished project file compatible with the MicrosoftTM Visual C++ compiler. The C++

code is written using DirectXTM libraries which enable the generation of force-feedback

effects for devices that have compatible drivers. The code was partially modified to be

integrated with LabView so that the force feedback law inputs, coming from the simulator,

can be passed to the active joystick. A compiled dynamic link library was generated and

implemented in the force feedback manager module of the GCS source code.

This setup allowed testing of new active control ideas inside the mission simulation

environment before turning to more sophisticated simulations.

Figure 16: Microsoft SidewinderTM Force Feedback II Joystick

2.2.2 FORCE FEEDBACK JOYSTICK

The joystick has eight buttons and a 4-position “coolie hat”. Button pushes can be

recognized within Simulink or National Instruments LabViewTM, allowing pre-

programmed control modes. For example, one button initiated autonomous waypoint

flight, while another initiated maximum acceleration flight; the other two are left for the

hover hold and manual mode. The 4-position coolie hat controlled the view of a slewable

camera during autonomous flight.

 41

For the joystick evaluations, the control range and maximum forces of the joystick can be

measured. Based on an optical measurement using a protractor, the joystick can be moved

+35 deg forward/aft and +35 deg left/right [42].

The maximum forces available from the joystick are +5 N (not so large).

Nevertheless, the forces are sufficient to be felt by a GCS potential pilot, to backdrive the

joystick and to simulate (at least partially) the behavior of a manned helicopter type

sidestick.

The joystick forces were programmed in the following fashion, depicted in the picture

below:

-5

5

35-35

Force [N]

Displacement [deg]

Origin Movable-5

5

35-35

Force [N]

Displacement [deg]

Origin Movable

Figure 17: Spring Forces Programmed in Joystick

These forces have the effect of holding the joystick at a desired displacement in both the

fore/aft and left/right directions. In other words, the effect is that the joystick can be

backdriven. This is a very beneficial effect in that now a backdriven joystick can be used

to, in turn, control the helicopter simulation.
origin position joystick position

time, sec
0 2 4 6 8 10

origin position joystick position

time, sec
0 2 4 6 8 10

Figure 18: Comparison of Commanded and Actual Stick Position []

The fidelity of the backdriven stick is shown in the above figure. Figure 18 shows a

comparison between the position of the spring force origin (commanded position) and the

actual position of the joystick, assuming, of course, the pilot does not have his hand on the

joystick. It can be seen that the stick follows the commanded position with a small delay

and chatter. The chatter is the result of some dead band existing at the spring force origin.

 42

It might be possible (in a later study) to reshape the force curve to minimize the chatter.

Evaluation trials were conducted to test if the commanded joystick could, in turn, control a

helicopter simulation in real time. Despite the delay and chatter, the stick had no problem

“keeping up” with the simulation during stabilized flight and aggressive maneuvers.

During these trials it appeared the simulation was controlled by a “ghost pilot”.

A stick shaker can be also programmed with variable frequency and amplitude.

This feature can be useful in warning the pilot of impending limits or danger but was not

utilized in this study.

A popular feedback cue for manned helicopter sidesticks is softstops, depicted in the

following figure.

-5

5

35-35

Force [N]

Displacement [deg]

width

height

-5

5

35-35

Force [N]

Displacement [deg]

width

height

Figure 19: Description of Typical Softstop

A softstop provides a temporary resistance to stick movement at a given location [42].

The resistance is controlled through the height and width variables shown in the figure. It

was attempted to simulate such a softstop with the active joystick. The result was found

problematic in that joystick dead band make the softstop feel “jerky”. A simple fix for

this behavior was not found and therefore softstops were not used.

2.2.3 GCS RUAV USER INTERFACE

The GCS user interface is constituted by three video screens (shown in figure 20) which

allow the GCS-operator to control flight data information (by means of the virtual cockpit

view), to plan or re-plan the mission flight path (using the mission planning window) and

to have a good situation awareness during all mission phases (by means of the 2D map

view, of the mission vertical profile view, and of the 3D view).

The virtual cockpit and the 2D map view were developed through simple ActiveX

controls, such as aircraft instrumentation available from Global Majic Software Inc

 43

(GMS), which can be used as stand-alone applications. The activeX add-ons were chosen

in order to simplify the software, since they can be easily interfaced with LabView. Other

secondary displays were created using the indicators library of LabView.

The virtual cockpit contains six main displays, arranged according to the basic T layout, as

shown in figure 20. They include the air speed indicator, attitude indicator, altimeter, turn

coordinator, heading indicator, and vertical speed indicator. As well as the six main

displays, other various flight control displays and warnings have been created such as

main rotor and engine rpm indicators. For resource planning and monitoring, the

Instruments Panel also shows the current fuel level and the mission elapsed time.

Figure 20: GCS Configuration

The Instruments Panel helps the operator to control the UAV flight.

The mission planning interface (right screen in figure 20) was created using also a

LabView software. Mission planning is the first step to do at the beginning of the mission

simulation process.

The first step is to decide the targets that represent the mission goals and constraints. After

that, mission planning is accomplished mostly through interaction with the “Set

Waypoints & Flight Plan” Menu (figure 20). The operator enters the waypoints

coordinates (in terms of latitude, longitude and altitude) for the UAV to fly towards the

targets. The user interface shows the waypoints and flight paths in 2D graphics.

Waypoints can be also added or inserted into an existing flight path for mission re-

programming while the simulation is running. Once the waypoints (WP) have been

defined, the operator specifies the flight plan parameters into the flight plan menu in term

 44

of waypoint identification number and velocity to be maintained by the helicopter, while

overflying a specific WP. When running in autonomous flight mode, the LabView code

automatically sends the waypoints coordinates and the flight plan parameters to the

helicopter autopilot computer.

Situation Awareness

The visual system is used for viewing the engaging area in 3D and providing the operator

with a good situation awareness. The virtual world window enables three different

visualization modes, chosen via keyboard switch:

External view (key “1”): This button allows the operator to view the RUAV from

 outside (fig.21)

Figure 21: GCS UNIBO Visual (external view)

Pilot view (key”3”): This button allows the operator to view the world from the

 cockpit of the RUAV (fig.22).

Payload view (key “2”): This button allows the operator to display the RUAV EO camera

viewpoint (fig.22). The onboard camera can be then moved by

means of the POV joystick button. Zoom in and out can be done

simply using the computer mouse.

 45

Figure 22: GCS UNIBO Visual (pilot/EO view)

The visualization software was developed in C++ using OpenGL library and

OpenInventor at the University VLAB and further modified to be integrated into the

simulation environment. It supports also 3D rotorcraft models in VRML format and other

elements such as terrain model, clouds, airports and/or buildings in the mission area. The

rotorcraft model is located in the virtual scenery based on the air vehicle position data,

received through the GCS primary master computer. In order to create a realistic virtual

scenery, it is necessary to generate a detailed terrain model of the mission area. Therefore,

the visualization software uses a terrain regular grid quadmesh which covers an area of

300 km x 300 km [46] (see figure 23).

Figure 23: GCS UNIBO Visual terrain mesh

The terrain mesh is constituted by about four millions of polygons and nodes. The nodes

elevations are based on free DEM (Digital Elevation Map) data, available at the USGS

 46

(US Geological Survey) catalogue internet homepage [47]. The DEM data are SRTM

(Shuttle Radar Topography Mission) data type with 3 arc-sec resolution (that is a pixel of

90m x 90m). The software incorporates also Gaussian data filtering routines to provide

effective noise filtering of the SRTM data. Terrain rendering is done using view-

dependant polygons rendering algorithms. This kind of algorithm is able to create quad-

tree hierarchy structures of the terrain polygonal mesh, such providing quick and efficient

terrain rendering even if the terrain mesh is constituted by several millions of polygons.

Nevertheless, since the algorithm is “view-dependant”, the number of polygons actually

rendered every iteration is reduced to about four-ten thousands (4000-10000). One or

more textures (such as satellite or aerial pictures) can be also applied to the terrain in order

to produce a more realistic virtual environment.

2.3 SIMULATION ENVIRONMENT APPLICATIONS

In this section, the results of two interesting research activities performed using the

developed mission simulation environment will be described. The first one concerns the

evaluation of the rotary wing UAV configuration developed by AGUSTA inside the

CAPECON program; the second is an investigation on how the active features could be

used for successful RUAV mission task accomplishment. The last research activities was

performed in cooperation with DLR (German Aerospace Centre).

2.3.1 CONFIGURATION EVALUATION

The first application of the developed mission simulation environment was the operational

capabilities evaluation of the RUAV, designed by AGUSTA inside the CAPECON

program [48,49]. The RUAV platform was tested over a wide spectrum of different

mission scenarios, defined in CAPECON.

The results for a standard Fire Surveillance mission (figure 24) are reported in this section

as an example of mission simulation and performance estimation. The intent was to

evaluate the AV and NGCS performance using a realistic mission profile. Simulation

results showed that the NGCS first step design is able to stabilize, control and guide the

AGUSTA configuration. After this tests, the GCS layout was also improved to the current

layout (described in section 2.2.3), taking also into account ground control station pilot

suggestions.

The mission scenario and the related AV performances are described below.

 47

Figure 24: Mission Scenario

The air vehicle was supposed to take-off in manual mode and then follow in autonomous

mode the flight path described in Figure 25 and in Table 1.

Table 1: Flight Plan Data

 48

Figure 25: Fire Surveillance Mission flight path

The operator at the ground monitored the surveillance area by means of the simulated

onboard slewable camera. For evaluating the mission operational capabilities of the

RUAV, it was supposed to find the fire at a certain point of the mission path. In that case,

the operator at the ground switched the air vehicle control to manual mode for monitoring

the situation. The actual flight path and the mission vertical profile are shown in figures 26

and 27.

Figure 26: Fire Surveillance Mission actual flight path

 49

Figure 27: Fire Surveillance Mission vertical profile

Once the air vehicle was nearby the “fire” area, a manual descent and loiter were

performed in order to have a better situation overview and send fire position and video

images to the ground control station. Particularly, the AV performed a loiter in the area of

interest for 40 minutes. After a detailed survey, the “autonomous” key on the joystick

allowed the operator to redirect the AV to the original flight path.

If nothing is found the RUAV was supposed to cover the pre-planned path 3 times and

then land at the base to refuel. The surveillance path was performed at the best endurance

speed while the fire area was reached at higher speed.

The landing maneuver was always done in manual flight mode. Other post-processed data

are reported in the following figures.

Figure 28: Fire Surveillance Mission ground speed

 50

Figure 29: Fire Surveillance Mission power required

Figures 28 and 29 show respectively the ground speed and the power required during each

mission phase.

The total fuel consumption was about 33 lts (figure 30). If the AV performs 3 times the

flying path with no outrun the fuel consumption was 42 lts.

Figure 30: Search Mission fuel consumption

2.3.2 ACTIVE JOYSTICK APPLICATION

The task chosen for this study was a search/identification mission which originates from

an autonomous waypoint flight mode. For the task accomplishment, it was supposed that,

when the operator at the ground control station saw an object in the camera downlink, he

engaged a maximum acceleration mode minimizing the time to the object. The pilot then

engaged hover hold mode when he was near the object, all the while keeping the object in

view for identification. The active features of the joystick were used to backdrive the

joystick to eliminate transients between the various phases and to provide situational

 51

awareness to the pilot during the phases. The pilots reported a marked improvement in

mission effectiveness when the active features were turned on. With the active features

disabled, some of the task requirements could not be met. Active features on the joystick

helped to reduce the workload and total time while, at the same time, helped to increase

situational awareness, absolutely needed in any ground control station environment.

To be consistent with the CAPECON program, the flight model chosen for the

search/identification task was the UAV rotorcraft designed by Agusta [48]. The design is

a 4 bladed, standard helicopter with a single main rotor and a tail rotor. The design is

based on studies made to fulfil a number of rotorcraft UAV civil applications [9]. One of

which was a search mission requiring 4-5 hours of endurance and a range in excess of 25+

[km]. This range requirement is what makes the use of a GCS compulsory. At 25 [km],

the UAV is not in direct view and therefore a means must be found to control it remotely.

During the first sizing of this UAV for CAPECON, the maximum take-off weight was 260

[kg]. This assumed only a 40 [kg] payload which reflected the requirement of only

minimal components onboard. Therefore the search/identification task could be performed

using only a datalink, videolink and a steerable camera, which are well simulated inside

the mission simulation environment. No sophisticated object recognition software or

fancy sensors were assumed. The idea was to evaluate the operational capabilities of a

system capable to be trucked somewhere, set-up and flown with minimal personnel,

equipment and operating cost, thus demonstrating also that the task can be performed by

an RUAV at a fraction of the cost of a manned aircraft.

2.3.2.1 Search/Identification Task Description
The search/identification task had four phases:

- autonomous waypoint flight

- manual mode

- acceleration mode

- hover hold mode.

The four task phases are shown in Figures 31-34. The most demanding phase was phase

3, the acceleration task. A maximum acceleration was required to save valuable minutes

taken from the overall search.

 52

Phase 2
manual mode,
turn towards object.

Align object in pilot view.

Phase 2
manual mode,
turn towards object.

Align object in pilot view.

Figure 31: Phase 1, Autonomous, Waypoint Flight [42] Figure 32: Phase 2, Manual Mode [42]

Phase 3
acceleration mode.
Keep object aligned in pilot view
while performing maximum
acceleration.

View of object from Ground Control Station.
Red square is alignment requirement.

object Phase 3
acceleration mode.
Keep object aligned in pilot view
while performing maximum
acceleration.

View of object from Ground Control Station.
Red square is alignment requirement.

object

Figure 33: Phase 3, Acceleration Mode [42] Figure 34: Phase 4, Hover Hold Mode [42]

2.3.2.2 Piloted Simulations
The piloted simulations were organized with the intent of using the Cooper-Harper

handling qualities rating scale [50] to measure the impact of the joystick active features.

Therefore the task was designed to be flown with or without the active joystick features to

offer a direct comparison. It was decided to invite at least three pilots, each with UAV

piloting experience, to do the evaluations. The final results were then averaged to show

trends. The trends and pilot comments showed the active features made a marked

improvement in task performance and situational awareness.

Following the Cooper-Harper rating procedures, so-called “desired performance” and

“adequate performance” limits were defined. These limits were necessary to inform the

pilots how much aggressiveness was required and which flight limits to be respected.

Table 2 shows the limits for all the task modes.

The following definitions were used:

“Camera View” is the view from the onboard camera if it is being slewed around, and

“Pilot View” is the view from the onboard camera if it is locked in a forward looking

position.

Phase 1
Autonomous,
waypoint flight.

Object spotted with
Slewable camera.

Phase 1
Autonomous,
waypoint flight.

Object spotted with
Slewable camera.

Phase 4
hover hold mode.
Keep object aligned in camera view
using the Point Of View button on
the joystick.

View of object from Ground Control Station.
Red square is alignment requirement.

object
Phase 4
hover hold mode.
Keep object aligned in camera view
using the Point Of View button on
the joystick.

View of object from Ground Control Station.
Red square is alignment requirement.

object

 53

The two most important performance parameters were the centering of the object and the

total time for Phase 2 and acceleration in Phase 3. The centering of the object is a classic

tracking problem and it is know that precise tracking increases pilot workload. But object

tracking is critical for this task as it is an object identification task and the object must be

held visible and recorded on camera at all times. Furthermore the tracking is vital so that

the UAV does not drift into possible nearby obstacles. In this case tracking is used as a

substitute for local navigation. This means the same task can be utilized not only to

identify a boat on the ocean, as it is in this simulation, but the task can also be applied in a

mountainous region.

The second important performance parameter is the total time for Phase 2 + acceleration

in Phase 3. Because our onboard equipment is being held very simple, we assume no radar

altitude or laser range sensors. This means that as the pilot is accelerating towards the

object, he has a difficult time sensing depth from the 2D video monitor. In other words,

the pilot needs a criteria at which to engage hover hold mode. In the absence of such a

 Phase 1

Autonomous,Waypoint

Flight

Phase 2

Manual Mode

Phase 3

Acceleration Mode

Phase 4

Hover Hold Mode

D
es

ir
ed

Pe
rf

or
m

an
ce

object found in camera

view

- airspeed held + 1 [m/s]

- altitude held + 5 [m]

- object laterally centered

- object centered

within red square

at all times

- total time for

Phase 2

 +

acceleration in

Phase 3 < 50 [sec]

- object centered within

red square (drawn on

pilot view) at all times

A
de

qu
at

e

Pe
rf

or
m

an
ce

object found in camera

view

- airspeed held + 3 [m/s]

- altitude held + 10 [m]

- object visible in pilot

view at end of phase

- object visible in

pilot view at all

times

- total time for

Phase 2

 +

acceleration in

Phase 3 < 60 [sec]

- object visible within

pilot view at all times

Table 2: Definition of Desired and Adequate Performance

 54

criteria, it was decided to define a minimum time to complete Phase 2 and the acceleration

to 55 [m/s] in Phase 3.

In practice, it may become necessary to give the pilot better depth information to prevent

him from engaging hover hold mode too late, which could result in a collision with the

object. Nevertheless, results from these piloted simulations showed that hover hold could

be engaged at a safe distance while allowing a detailed view of the object.

Varying the desired and adequate performance for the total time of Phase 2+ acceleration

in Phase 3 had the effect of varying the aggressiveness of the maneuver. The final values

were selected to be consistent with the maximum accelerations achieved through the use

of the Energy Management equations. This means that when the active joystick features

were turned on, the desired performance for total time was easily achieved. When the

active features were turned off, the pilot had a more difficult time optimizing his flight

path and the total time increased. The following figure 35 illustrates this result.

Figure 35: Total Time Comparisons for Pilots A,B and C.

Specifically, total time equals the time from the moment the pilot switches on manual

mode (onset Phase 2) to the moment he reaches 55 m/s in Phase 3

It can be seen in figure 35 that there was a consistent improvement in the total time for all

three pilots when the force feedback features are turned on. To understand this better,

during the acceleration phase, the joystick is automatically backdriven to the forward

position corresponding to Energy Management equations. The Energy Management

equations compute the required ∆θ for maximum acceleration. The control system, in

attitude control mode, backdrives the joystick input until this attitude is matched. This

relieves the pilot of the task of trying to optimize the acceleration while keeping the object

 55

centered in the pilot view. But with no active joystick cues, the pilot needs more time to

accelerate to the desired airspeed.

This result can be seen shown in the airspeed time history of Pilot B in the following

figure:

Figure 36: Airspeed Time History, Pilot B, Phase 3

It can be seen in figure 36 that Pilot B could accelerate more quickly when the joystick

was automatically backdriven to its optimal forward position.

Other results for Pilot B include a time history of airspeed during manual mode in Phase 2.

Here the pilot was tasked with taking over control from autonomous mode and turning the

UAV towards the object to be identified. This task could not be automated because it

inherently is dependent on the object cues in the pilot view and no object recognition

software is assumed onboard.

As aid to the pilot, the joystick commands a speed hold mode so that moving the joystick

forward commands a faster airspeed. The active features held the joystick at this position.

Of course, with the active features turned off, the pilot had more difficulty hold the

required airspeed and the pilot required more time to turn the UAV toward the object as

shown below in figure 37.

 56

Time [s]

A
irs

pe
ed

[m
/s

]

Phase 2, Manual Mode

Pilot B w/ active joystick

Pilot B no active joystick

Desired Performance

Adequate Performance

Time [s]

A
irs

pe
ed

[m
/s

]

Phase 2, Manual Mode

Pilot B w/ active joystick

Pilot B no active joystick

Desired Performance

Adequate Performance

Figure 37: Airspeed time History, Pilot B, Phase 2

It can be seen in the figure that Pilot B could perform the manual mode task easier with a

backdriven joystick with an airspeed hold command turned on. It should also be noted

that during Phase 1, Autonomous mode, the joystick is continuously backdriven to match

the airspeed hold command. Therefore when manual mode is turned on, there are no

transient inputs.

The last phase for the pilot is Phase 4, hover hold. When the pilot determines that the

object is “close enough” to the UAV, he pushes the joystick button for hover hold mode.

This is an automatic hover stabilization which automatically backdrives the joystick to

zero out velocities in all 3 axes. The heading is maintained to be the last active heading,

that is with the nose pointed towards the object. During this phase the pilot does not enter

any control inputs except that he has to operate the Point Of View switch in the joystick to

keep the object centered within the red square on the monitor. During the switch from

Phase 3 (acceleration) to Phase 4 (hover hold), the onboard camera switches from pilot

view (camera fixed forward) to camera view (camera is slewable). The pilot does not have

enough cues to do the hover hold himself, that’s why it was automated. But during the

stabilization, the pilot still needs to maintain visual contact with the object and this extra

workload is reflected later in the Cooper-Harper ratings. When the aircraft is stable, then

the pilot officially ends Phase 4 and completes the search/identification task.

2.3.2.3 Cooper-Harper Rating Evaluations
The procedures in support of the Cooper-Harper ratings involve a number of issues which,

now, will be discussed.

- Step one, of course, is that the engineers need to design a task which is repeatable

by different pilots and has performance criteria which can be measured. This was

done and the results are documented in the previous sections.

 57

- Next, pilots need to be chosen who fulfill minimum qualifications. Not just anyone

should be invited to evaluate the task. The minimum requirements for the pilots

were 1) they have an aviation background 2) they have time in either manned

aircraft or UAVs and 3) they have a serious attitude when evaluating the task.

- When the task, the Ground Control Station, the active joystick and the pilots are

ready, then each pilot takes time to train on the task until he is familiar with it.

Each is allowed to fly the task several times until an “official run” is made.

Official runs were made for both cases with the active features of the joystick

turned on and with the features turned off. The official run time histories are

recorded on computer and then the pilot fills out immediately a questionnaire and

makes a rating. He is obliged also not to tell the other pilots his opinion or rating

until all have finished their evaluations. This insures that the ratings are objective.

These procedures were followed with three pilots, A, B and C. Each was asked to fill out

a questionnaire probing their knowledge and opinions about the task. The pilot’s typically

remarked that the joystick cues helped them achieve desired task performance.

Finally the Pilot’s were asked to carefully go through the Cooper-Harper decision tree and

make a rating. The rating procedure is shown below:

Figure 38: Cooper-Harper Decision Tree

The decision tree in figure 38 is well known and every attempt was made in these tests to

respect its assumptions.

 58

Table 3: Cooper-Harper Ratings for the Rotorcraft UAV Search/Identification Task

Table 3 contains the final results for the handling qualities evaluation for the

search/identification task. The results show quite clearly the impact active joystick

features can have on handling qualities. With the features turned on, control of the

rotorcraft UAV for this task is Level 1, normally accepted as quite good. But with the

active features turned off, control of the UAV drops into the lower part of Level 2 which

normally means the system requires improvement, especially true if it is to be certified

under civilian airworthiness regulations.

 59

Chapter 3

ROTARY WING UAV SYSTEM DEVELOPMENT

The goal of UNIBO RUAV project is to develop a helicopter platform capable of

autonomous flight which could be used inside the University for researches in control and

navigation laws, man-machine interfaces and system integration; meanwhile it should be

proposed as a technological prototype for industries interested in UAV development and

manufacturing. In order to develop such kind of platform, avionic systems are required

that enable the helicopter to maintain a stable attitude and follow desired trajectories. This

avionics package is comprised of sensors, computer and data link hardware as well as

software to guide, navigate and control the air vehicle. These aspects are particularly

critical for helicopters, which are well known to be inherently unstable systems, and place

numerous requirements on the avionic system design.

The overall RUAV system architecture developed at UNIBO is show in figure 39.

It has the typical UAV system architecture, as defined in the CAPECON program [49],

but simplified for a small RUAV. The modified Hirobo 60 helicopter mechanics was used

as flying platform. The RUAV avionics is constituted by an onboard computer (the CRIO

system from National Instruments) which acquires sensor data from an Attitude Heading

and Reference System (AHRS) and the sonar altimeter and sends PWM commands to the

helicopter servo actuator, based on the control and navigation laws implement on it. The

data link between the onboard computer and the ground control station is performed by

means of a simple WIFI access point. Details of the RUAV hardware set up will be given

in chapter 4.

 60

Figure 39: RUAV System set-up and Architecture

Next section introduces the applied design and integration methodology used to set-up the

RUAV system. Details of the work performed in this thesis for the development of the

RUAV system will be given in the next chapters following the design methodology

described below.

3.1 DESIGN PROCESS

The design methodology followed for the RUAV system development is depicted in

figure 40.

RUAV Systems

– Helicopter Hirobo Eagle 60 (modified)

– Onboard Computer CRIO from NI

– AHRS Crossbow NAV420

– Sonar Sensor

– Ground Station

– Data Link HW (WIFI Access Point)

 61

Figure 40: RUAV Avionics Design Flow

It is a multidisciplinary design process which includes six main steps:

1- Hardware Selection and Integration: this task include the selection and set-up of the

rotorcraft airframe and of the onboard avionics. Once the hardware is selected, it must be

packaged and interfaced placing attention to vibration isolation, electromagnetic

interference and accessibility (see chapter 4)

2- Acquisition Software Development: if a RUAV has to fly autonomously, information

about its states is needed which must be used by the control and navigation system.

Therefore, following the hardware set-up, sensor data acquisition software must be

developed and tested in flight in order to validate the acquisition software and ensure

measurement reliability (see chapter 4).

3- Software In The Loop (SITL): parallel to the hardware set-up, simulation plays an

important role in the development of an autonomous helicopter. At this aim, a series of

flight tests must be also done in order to collect experimental data for identifying the

helicopter dynamics characteristics and develop a reliable vehicle simulation model. After

 62

that, before actual autonomous flight test can take place, control and navigation algorithm

must be design using the identified model of the helicopter dynamics (see chapter 5).

4- Hardware In The Loop (HIL): once the previous tasks are completed, the onboard

autopilot software must be developed. After that, the onboard hardware and software must

be integrated into the simulation loop. For that, a Hardware In the Loop (HIL) simulator

was developed in the NI LabView environment. In this scenario, performance and possible

errors of the onboard software can be detected during intensive ground safe and risk free

tests (see chapter 5-6).

5- In Flight Autopilot Test: autopilot flight test must be performed for final verification

and tuning of the control and navigation system (see chapter 7).

At this point, improvement within the previous steps can and should be undertaken until a

configuration is reached that promises satisfactory results for the final RUAV system set-

up.

 63

Chapter 4

HARDWARE SELECTION AND INTEGRATION

The synthesis of the RUAV hardware is a trade-off evaluation like any other design

process. An optimal design solution is sought, by finding the best compromise to satisfy

the design requirements.

The main requirements driving the hardware selection and integration process are outlined

in section 4.1 while sections 4.2 to 4.6 describe the selected hardware and the overall

hardware system set-up.

4.1 HARDWARE DESIGN REQUIREMENTS

The main requirements taken into account for the RUAV system design were both

operational requirements and physical constraints. Numerous requirements were placed on

the avionics system design while the air vehicle configuration was somehow freezed to the

one already available at he UNIBO laboratories, which was modified only to increase

performance and payload carrying capabilities.

The most important design criteria, followed for the RUAV testbed development, was

maximum flexibility (i.e. easy and quick reconfiguration) while maintaining good air

vehicle performance. Therefore, efforts were concentrated to ease hardware configuration

and reconfiguration and allow for future system growth. From this point of view important

requirements are :

 64

- to provide accurate flight data acquisition for dynamic model development and

validation

- to be versatile enough to enable fast and easy integration of different input/output

sensors and to allow future system growth in term of payload, sensors and interfaces

- to be as light as possible in order to lower the total platform weight and maintain good

helicopter maneuver capabilities. Preliminary flight test demonstrated that the

helicopter still had good maneuverability with 6 kg payload mass.

- to be able to withstand the high vibration load typical of small scale helicopters. The

primary sources of vibrations are the engine, the main rotor (spinning at roughly 22

Hz), the tail rotor and the tailboom bending resonance. These vibrations must be

reduced to fit the operational vibration range of the onboard sensors and to provide

accurate flight data measurements. Experimental tests performed with commercially

manufactured elastomeric dampers showed that vibrations can be effectively reduced to

the desired level

- to be protected against the electromagnetic and RF interference: common shielding

precautions were used to isolate the onboard electronics from EM interference

- to allow onboard implementation of feedback control laws and demonstrate good

control capability

- to be endowed with an onboard safety system in event of computer failure. Depending

on the size and cost of the air vehicle this can include a completely redundant avionics

system or simply a minimum safety system

- cost is of course a limiting factor for avionics and airframe selection and for achievable

performance

4.2 FLIGHT TEST VEHICLE DESCRIPTION

The air vehicle chosen as RUAV platform is shown in figure 41. It is a Hirobo Eagle II 60

hobby helicopter which was modified to accommodate the avionics hardware. A more

powerful engine, longer fiberglass blades, longer tail boom and tail blades were mounted

in order to increase the helicopter payload carrying capabilities. The assembly also

includes a Bell-Hiller stabilizer bar, which augments servo torque with aerodynamic

moment to change the blades cyclic pitch and adds lagged rate feedback to improve the

helicopter handling qualities.

 65

Figure 41: RUAV Air Vehicle

The main helicopter characteristics are:

- main rotor diameter: 1840 mm

- tail rotor diameter: 330 mm

- total helicopter mass: 11.2 kg

- engine: OS 91 Engine 15 cc; power 2.9 CV

- main rotor rpm: 1200-1300

- tail rotor rpm: 5000 -6000

- payload carrying capabilities: 5-6 kg

4.3 FLIGHT COMPUTER

The CRIO system from NI was selected as flight computer due to its ability to fulfill many

among the stated design requirements. Particularly, the most important CRIO features that

encouraged its usage as onboard computer for the UNIBO RUAV system were:

- modular and versatile architecture

- easily reconfigurable with minimal time investment

- ultrahigh performance and low power consumption

- relatively low cost system

- ease and open access to low level hardware resources

- rapid embedded control and acquisition system development that rival the performance

and optimization of custom-designed circuitry

- possibility to use LabView graphical programming tool to develop a variety of different

applications

 66

- relatively small size and weight compared to its control and data acquisition

capabilities

The CRIO platform includes the CRIO-9004 real time controller endowed with an

industrial Penthium 200 MHz floating –point processor, a four slot reconfigurable chassis

featuring three million gate FPGAs chipset and a wide variety of analog\digital I\O

module types.

Figure 42 shows the CRIO configuration currently mounted on the UNIBO RUAV

system.

Figure 42: National Instruments CRIO Onboard Computer

The real time controller also features a 100 Mb/s Ethernet port for network

communication with an host computer and a 9 PIN serial port.

The FPGA module currently used are:

- CRIO 9411 mounted in slot 1 having 6 digital input channels

- another CRIO 9411 mounted in slot 2 having 6 digital input channels

- CRIO 9474 mounted in slot 3 having 8 digital output channels

- another CRIO 9474 mounted in slot 4 having 8 digital output channels

Each CRIO module contains already build in signal conditioning.

FPGA devices are very useful and powerful since they combine the versatility of a

reconfigurable digital architecture with a matrix of configurable-logic blocks surrounded

by a periphery of I/O channels. This way, signal can be routed within the FPGA matrix in

any arbitrary manner by programmable interconnected switches and wire routes (figure

43).

FPGA Modules:

 16 DO Channels

 12 DI Channels

Real Time Core:

 Penthium 200 MHz

 Serial Port

 Ethernet 100 Mb/s

 67

Figure 43: CRIO Field Programmable Gate Array (FPGA) Structure [51]

Control loops can be also implemented inside the FPGA environment using “while loops”

up to 40 MHz (25 ns). Moreover, FPGA modules are ease programmable with NI

LabView without need to know specialized hardware design languages such as VHDL

(the LabView code is directly compiled in VHDL before being downloaded on the FPGA

devices).

4.3.1 CRIO REAL TIME APPLICATION DESIGN

The real time control and acquisition system which is possible to develop with the CRIO

system typically contains four main components(see figure 44):

- RIO FPGA core application for input, output, inter-thread communication and control

- Time critical loop for floating point control, signal processing, analysis and point-by-

point decision making

- Normal priority loop for embedded data logging, remote panel interfaces and

Ethernet/serial communication

- Networked host PC for remote graphical user interface, historical data logging and

postprocessing

 68

Figure 44: CRIO Programming Structure [51]

Depending on the application requirements, it’s possible to implement one or all of these

application components. The onboard software, currently implemented on the flight

computer, follows this standard approach.

4.4 SENSORS

If an UAV is to fly autonomously or needs stability augmentation in remote controlled

flight, its flight control algorithms need information about its state, which can be obtained

by means of onboard sensors. Depending on the vehicle type and its mission, sensors can

be different. For the purpose of this work, sensor types have been split into Attitude

Heading and Reference System (AHRS) and altitude sensors.

4.4.1 ATTITUDE HEADING AND REFERENCE SYSTEM (AHRS)
Most common attitude sensors are based on gyros that can be either mechanical,

piezoelectric or optical. A three axis gyro platform measures angular rates along all axes

of the vehicle and is usually contained in an Inertial Measurement Unit (IMU), which also

provides data from accelerometers. Magnetometers are also used to determine heading of

the air vehicle by measuring the Earth magnetic field. Attitude and position can be then

calculated in a state estimator by integrating IMU measurements. However the high

accuracy, simplicity and availability of the Global Positioning System (GPS) makes it the

emerging standard positioning system for UAVs as well as for general and commercial

aviation. Depending on the quality of the GPS receiver, the achievable accuracy and the

GPS update rate varies. Since common GPS update rate is usually once a second, this can

 69

result in a limited bandwidth of the UAV controller. A common way of solving that

problem is to fuse data from all the flight sensors into a navigation filter in a state

estimator. In addition altitude data (coming from a radar or sonar altimeter) and

magnetometers measurements can be also used to improve the navigation filter. Usually

an extended Kalman filter approach is used to integrate data from all the navigation

sensors [52].

An alternative solution to IMU, individual gyros and self-built navigation filter is to use a

complete AHRS like the CrossBow NAV 420, which was chosen as navigation platform

for the purpose of this work. This kind of unit is able to directly deliver vehicle attitude,

GPS velocity and position data, acceleration and rates at a rate up to 100 Hz, thanks to a

high performance Kalman filter algorithm implemented on an internal digital signal

processing module. Velocity data includes aiding from the inertial instruments such

reducing the latency associated with stand-alone GPS measurements.

Particularly, the NAV 420 uses the latest in solid-states sensor technology and consists of

the following subsystems (see figure 45):

1) Inertial Sensor Array: This is an assembly of three accelerometers, three gyros (rate

sensors) and four temperature sensors.

2) A three axis fluxgate magnetometer board used to compute heading.

3) A WAAS capable GPS receiver for position and velocity measurement.

4) A digital signal processing (DSP) module, which receives the signals from the inertial

sensors and magnetometers. This unit converts the signals to digital data, filters the data,

computes the attitude solution, monitors and processes all BIT data, and transmits the

results to the user.

The NAV420 analog sensor signals are sampled and converted to digital data at 1 kHz.

The sensor data is filtered and down-sampled by a DSP.

Figure 45: NAV420CA System Architecture

 70

The choice of this kind of platform significantly reduced development time in signal

processing and sensor fusion, greatly improved measurement reliability and guaranteed

sensor stability and performance in a high vibration operating environment, like the one of

a small rotary wing platform.

4.4.1.1 AHRS Set-Up
The NAV420 set-up procedures was done following four major steps (see figure 46):

 Figure 46: NAV 420 Set-up Procedures

- first some measurement tests were performed on a certified test rig in order to verify

the navigation platform responses

- a LabView software was then developed in order to change the NAV 420 default

settings: before using the NAV 420 data inside a control algorithm, the update rate, the

baud rate and the output packet type must be set to appropriate values

- afterwards the navigation platform must be installed inside the avionics box:

appropriate procedures must be followed in order to obtain correct states measurements

- in the end, NAV 420 data acquisition software must be developed in order to read

sensor information, to be used inside the onboard control software

Test Rig Experiments

Figure 47 shows the NAV420 mounting on the UNIBO test rig during the first

experiments performed to verify the platform responses.

TEST RIG Measurements

Set appropriate default settings

Installation and Final Calibration

Acquisition SW Development

1

2

3

4

 71

Figure 47: NAV420CA on Test Rig

Reference points in terms of angular rates and attitude were given by means of the test rig

control unit; NAV420 responses were recorded by means of the NAVView software

provided by CrossBow [53].

Diagrams of some experimental results reported in figure 48 confirmed the good quality of

the NAV420 measurement capabilities.

Figure 48: NAV420 Test Rig Measurements

 72

NAV 420 Settings

The LabView software, designed to change the NAV420 default settings is reported in the

enclosed CD.

The CrossBow NAV420 provides information to the user by means of a RS 232 protocol.

Therefore, the developed software was used to set the transmission baud rate, the packet

output rate and the output packet type.

This can be done by using an appropriate command list reported in the NAV420 user

manual.

The command list was written directly to the NAV 420 EEPROM, using the power-up

configuration field, so that the configuration settings are used always as default values by

the system.

For the onboard software to work properly the NAV420 default settings must be as

follows:

Baud Rate: 57600 bps

Packet Output Rate: 100 Hz

Packet Type: NAV mode

AHRS Mounting and Alignment

The CrossBow NAV 420 was installed inside the avionics box of the UNIBO RUAV (see

figure 49). The GPS antenna is mounted on the tail boom and is connected to the GPS

receiver inside the navigation platform with a SMA jack. The GPS antenna was changed

with respect to the one provided by CrossBow: a Geohelix-S GPS Antenna was installed

in order to improve GPS signal reception. The Geohelix characteristics can be found in the

enclosed manual.

When mounting the NAV 420 some precautions must be taken in order to ensure proper

functioning and measurement reliability.

The AHRS unit has its own coordinate system as shown in figure below.

 73

Figure 49: NAV420CA Mounting

The axes form an orthogonal right-handed coordinate system:

X-axis – from face with connector through the NAV 420

Y-axis – along the face with connector from left to right

Z-axis – along the face with the connector from top to bottom.

In this reference system, the direction of positive rotation for the rate is defined by the

right-hand rule:

-Pitch is defined positive for helicopter nose up

-Roll is defined positive when the helicopter rolls to the right

-Yaw is defined positive for heading right turn.

-The position output form GPS is represented in Latitude, Longitude and altitude

convention while the GPS velocity output is defined in the North, East and Down

reference frame [53].

The NAV 420 mounting holes can be used as a reference for aligning the NAV420 sensor

axes with the ones of the helicopter.

The NAV420 was installed along the x, y, z axis of the helicopter. Before any flight test

can take place, it must be also ensured that the NAV420 is not rotated with respect to the

helicopter, that would cause wrong helicopter attitude measurements. At this aim, the

AHRS is mounted fixed in heading: alignment was compared to the one available from a

small magnetic compass, fixed with the h/c, in order to have a rough feedback about the

heading correct mounting.

As for the roll and pitch angle, the AHRS is mounted on a slew able flat plate around the x

and y axis.

NAV 420
Alignment

with respect to
Hely

X

Y

Z

X

Hely
Alignment

Rack

 74

Before any flight, the helicopter and the NAV420 are both aligned with the g vector and

the earth tangent plane so that they can be considered aligned between each other. The

helicopter airframe is positioned on a special rack and is aligned by means of a spirit-level

and of the rack screws (see figure 49). After that, the flat plate, on which the NAV 420 is

mounted, is adjusted (using its own screws) so that the measured attitude is zero and the

acceleration is parallel to the g vector.

Usually, once the NAV 420 has been aligned with respect to the helicopter, only attitude

periodic checks are needed, if the navigation platform is not moved from its site.

Another important precaution to be taken is that the NAV 420 must be mounted as close

as possible to the helicopter Center of Gravity (CG). If it is not mounted at the CG, then

rotation around the CG can cause NAV 420 accelerometers to measure acceleration

difference equal to the angular rate squared multiply by the distance between the NAV

420 and the helicopter CG. This, in turn, may also affect velocity and position

measurements.

The helicopter CG can be easily determined experimentally. The NAV 420 was aligned

with the CG in the x and y axes while there is an offset of about five centimeters along the

z axis. This small offset, however, will not significantly affect the NAV 420

measurements for several reasons:

- the offset is very small

- the angular rates are usually small since the helicopter doesn’t perform extreme

maneuvers

- the NAV 420 internal Kalman filter updates velocity and position measurements using

GPS information so that possible errors can be partially corrected

Finally, when installing the NAV 420 in a vehicle and the vehicle contains ferro-magnetic

parts (as the helicopter for example), it is necessary to perform a magnetometers

calibration procedure for hard and soft iron compensation before using it. The several

steps to be followed for the calibration procedures are described in the NAV420 user

manual and can be performed using the NAVView software, provided by CrossBow.

Other calibration procedures are not necessary, since NAV420 internal sensors comes

already factory calibrated for temperature bias, scale factor and misalignments.

 75

AHRS Data Acquisition Software

The CrossBow NAV420 provides information to the user by means of a RS 232 protocol.

The RS232 data acquisition was not performed using the real time serial port, since

acquisition from serial port is well know to be not-deterministic and is, therefore,

incompatible with real time critical control loops. For that reason, the RS232 data packet

was acquired by means of a FPGA digital input channel (particularly the Slot2/cRIO-

9411/DI 0) to guarantee deterministic data acquisition, needed for the control algorithms

to work properly.

The full software developed for the NAV 420 is reported in the enclosed CD, together

with a step by step explanation. The NAV420 string is acquired by reading directly the

RS232 electrical signal coming to the CRIO digital input channel. In order to understand

the program, a detail knowledge of the RS232 protocol and of the NAV string contents is

needed as well as of the LabView software packet reconstruction methodology.

The program works following the flow chart reported below:

Figure 50: NAV420CA Acquisition Software Flow Chart

1) The program starts with an initialization procedure. This is constituted by a while

loop that cicles till a low level signal time interval is found whose length is comparable

with the time distance between two consecutive NAV 420 packets. This ensure that the

 76

NAV 420 string is read starting from the first byte of the packet. The wait time value can

be estimated from the NAV 420 packet rate and from the baud rate. During the

initialization procedure, the time (measured in FPGA clock ticks) corresponding to one bit

and half bit of information is also calculated. These two times will be used by the program

to correctly read the bit sequence, which composes each byte of information in the NAV

420 packet.

Wait time and FPGA tick counts calculation

Since the NAV 420 output rate is 100 Hz and the baud rate is 57600 bps then:

microseconds corresponding to 1 bit of information = 17,36 µs

time needed for 1 packet transmission = 10 ms

Taking into account that the FPGA works at 40 MHz (which is 40.000.000 tick/s or 1 tick

corresponds to 0.025 µs), then it is also:

Time in tick corresponding to 1 bit of information = 17,36 [µs] / 0.025[µs/tick] = 694 tick

Time in tick corresponding to 1/2 bit of information = 347 tick

Since the packet in NAV mode is constituted by 37 bytes of information and each byte in

the RS232 protocol is constituted by 10 bit (1 start bit + 8 information bit + 1 stop bit), not

all the 10 ms contains data information; there will be a certain time, during which the

electrical signal will remain low, that can be used as wait time to identify the NAV packet

first byte (see figure 51). Hence:

Bit per packet = 37 byte * 10 bit/byte = 370 bit

Actual packet length in ms = 370 bit * 17,36 µs/bit = 6.4 ms

Low level signal time= Wait time = 10 ms – 6.4 ms = 3.6 ms

 77

Figure 51: NAV420CA data Packet length time

By default the wait time is set equal to 3.2 ms to be sure that the program is ready to read

the first signal rising edge corresponding to the start bit of the packet first byte.

2) During the second step the actual NAV 420 packet rate is read by calculating the

inverse of the time difference between two consecutive received packets: actually this

procedures requires two packets to be read so, at the program first call, this value is not

used.

3-4) In the third and fourth steps, information are read each bit at one time, which are

used first to build 1 byte and then respectively a 2 byte or a 4 byte data type.

This procedure is performed taking into account that:

- NAV420 data transmission is a standard RS-232 protocol with 8 data bits, 1 start bit,

1 stop bit, no parity and no flow control. The 8-bit data transmission starts from the

least to the most significant bit and uses inverted logical levels (high signal level

corresponds to "0", low signal level corresponds to "1"). On the contrary, the RS232

protocol byte transmission is done from the most significant byte to the least

significant byte. So for example to transmit a 2 byte information, the RS232 protocol

first sends the most significant byte and then the least significant. In turn, each bit,

inside one byte is transmitted from the least to the most significant.

- the LabView program language uses boolean arrays to store bit/byte information

which uses opposite logic levels with respect to the one of the RS232 protocol.

Morevover, LabView associated the significant bits/bytes to the index position inside

the array.

-the NAV 420 packet type (in NAV mode) is composed by 37 byte. Data are signed

I16 (2 byte) or I32 (4 byte) format, depending on the information type as show in table

below:

 78

Bytes Description Range Unit

0,1 Header ‘UU’

2 ‘N’

3,4 Roll Angle [-180 180] Degrees

5,6 Pitch Angle [-180 180] Degrees

7,8 Heading [-180 180] Degrees

9,10 Roll Rate [-630 630] Degrees /second

11,12 Pitch Rate [-630 630] Degrees /second

13,14 Yaw Rate [-630 630] Degrees /second

15,16 VN [-256 256] m/s

17,18 VE [-256 256] m/s

19,20 VD [-256 256] m/s

21,22,23,24 Longitude [-180 180] Degrees

25,26,27,28 Latitude [-180 180] Degrees

29,30 Altitude [-100, 16284] m

31,32 GPS ITOW [0, 65536] msec

33,34 BIT

35,36 Checksum

Table 4: NAV420CA Packet Details (NAV Mode) [53]

For example, to read a 2 byte information data type the following step are needed as

shown in figure 52:

Figure 52: NAV420CA Packet Acquisition Sequence

 79

1°) read the first eight information bit sequence belonging to the most significant byte, put

it into a LabView boolean array and then negate it

2°) read the second eight information bit sequence belonging to the least significant byte,

put it into a LabView boolean array and than negate it

3°) put these two boolean arrays into a 16 element boolean array with the first byte in the

8-15th position and the second byte in the 0-7th position. For the example reported in

figure, the information will be interpreted correctly by LabView as follows:

1011001110011000 = 20 + 22 +23 +26 +27 +28 +211 +212 = 6349 (I16 format)

5- In the end a checksum control is performed in order to verify the correct data packet

acquisition. The acquisition continues till the program is stopped.

4.4.2 ALTITUDE SENSORS

Altitude sensors measure with reference to sea level (AMSL, Above Mean Sea Level) or

the local ground (AGL, above ground level). This kind of data is needed in order to

control the altitude of the aircraft depending on the vehicle type and on the modes and

location of operation. Operations within ground vicinity, such as landings, usually require

absolute AGL measurements or a very accurate terrain database [52]. Available sensors

include:

• Sonar (AGL)

• Radar (AGL)

• Laser/Lidar (AGL)

• GPS (AMSL)

• Barometric (AMSL)

Sonar sensors were chosen to measure the helicopter altitude with respect to the ground.

Important issues taken into account for the selection of the altitude sensor type, besides the

type of measurement, were its accuracy, range and cost, which was a very limiting issue

driving the sensor choice. Radar altimeter would have higher AGL measurement

capabilities at a comparable resolution, but at a price out of the project budget. Sonar

sensors, however, worked very good to test the system operating capabilities at very low

 80

altitude, which can be easily extended to higher altitude once future system improvements

will be undertaken.

4.4.2.1 Description
The sonar sensor chosen for the UNIBO RUAV was the SRF08 (see fig. 53) which can

deliver helicopter altitude till six meters with a resolution of 2 cm and has a minimum

altitude measurement limit of 3 cm. It has a very low voltage and current consumption

respectively of 5 V and 12 mA.

Figure 53: Sonar Sensor SRF08

Usually ultrasonic sensors use transducers to radiate sounds in many different types of

patterns, from omnidirectional to very narrow beams. For a transducer with a circular

radiating surface vibrating in phase, as is most commonly used in ultrasonic sensor

applications, the narrowness of the beam pattern is a function of the ratio of the radiating

surface diameter to the sound wavelength at the operating frequency. The larger the

diameter of the transducer, as compared to a wavelength of sound, the narrower the sound

beam.

Figure 54: Example of Three-Dimensional Representation of the Sonar Beam Pattern

As can be seen, the sonar sensor produces a narrow conical beam and a number of

secondary lobes of reduced amplitude separated by nulls. The beam angle is usually

 81

defined as the measurement of the total angle where the sound pressure level of the main

beam has been reduced by 3 dB on both sides of the on-axis peak. However, the

transducer still has the sensitivity at greater angles, both in the main beam and in the

secondary lobes.

For a symmetrical conical pattern, such as that shown in Figure 54 and typical of

ultrasonic sensors, a simple two-dimensional plot known as beam pattern, can describe the

entire three-dimensional pattern. The beam patterns of transducers are reciprocal, which

means that the beam will be the same whether the transducer is used as a transmitter or as

a receiver. Figure 55 shows the beam pattern for the SRF08 sonar sensor as a function of

angle. The beam angle is enough narrow, approximately about +45° and -45° [54].

Of course, the presence of secondary lobes may produce unwanted echoes and cause false

measurements. Therefore, the sonar sensor was mounted under the avionics box in order

to avoid undesired reflection from the helicopter airframe (see fig 39).

Other aspects associated with sonar mounting and operation were:

- sonar measurements depend of course on the helicopter attitude: for the purpose of

this work this effect was neglected, since, for typical flight conditions, the helicopter

attitude is not very high

- sonar measurements can be affected from false echoes at the ground: since flight test

were performed in open field with no presence of obstacle and building in the vicinity,

this aspects won’t be a real problem for helicopter operation. However, the SRF08 has

the possibilities to choose altitude information among 16 different echoes starting from

the nearest to the farthest, which could be used for future work improvements.

Figure 55:SRF08 beam pattern [54]

 82

4.4.2.2 Sonar sensors data acquisition
Sonar sensor output is provided using an I2C protocol. In order to acquire altitude with the

onboard computer the sonar sensor was interfaced with the CRIO using an in-house made

interface card. After that the appropriate acquisition software was developed.

Sonar Card Design

The I2C protocol uses two lines (just two wires) to synchronize all data transfer over the

I2C bus called SDA and SCL line. The first is the data line and the second is the clock

line. The SCL and SDA lines must be connected to the CRIO digital output and input in

order to write and read commands on the I2C bus. A third wire is used for the ground and

a 5 Volt wire for distributing power to the devices (see figure 56). Particularly:

the Slot2/cRIO-9411/DI 1 is used for reading the clock line (virtual channel SDKR)

the Slot2/cRIO-9411/DI 2 is used for reading the data line (virtual channel SDAR)

the Slot3/cRIO-9411/DO 5 is used for writing the clock line (virtual channel SDKW)

the Slot3/cRIO-9411/DO 5 is used for writing the data line (virtual channel SDAW)

Figure 56: Sonar Acquisition Circuit

The core of the sonar acquisition circuit is shown in figure 56, while the final printed

circuit is reported in the enclosed CD.

Particularly:

- a buffer open collector SN7407N was used to protect the devices from short cuts or

other problems

- two “pull-up” resistors (1,8 kΩ) were used to pull up the SDA and SCL lines. This

is necessary because both the SCL and SDA lines are "open drain" drivers. What

this means is that the chip can drive its output low, but it cannot drive it high. For

the line to be able to go high, pull-up resistors to the 5v supply must be provided. If

 83

the resistors are missing, the SCL and SDA lines will always be low - nearly 0

volts - and the I2C bus will not work.

- two pull-down resistors (1 kΩ) were used to pull-down the line output from the

CRIO DO. These were necessary to adjust the low logical level of the CRIO DO to

be compatible with the ones of the SN7407N.

- in the final circuit other components were added to stabilize the voltage line and

signals so that the sonar acquisition card can be powered with a maximum input

voltage of 9 Volts. The card provides then 5 Volts terminals to distribute the

correct power to the devices.

FPGA Sonar data acquisition

The sonar data acquisition software required deep knowledge of the I2C protocol in order

to be developed. Therefore, some background is provided here below.

The I2C Protocol

If the CRIO has to talk to a slave (the sonar SRF08), it must begin by issuing a start

sequence on the I2C bus. A start sequence is one of two special sequences defined for the

I2C bus, the other being the stop sequence. The start sequence and stop sequence are

special in that these are the only places where the SDA (data line) is allowed to change

while the SCL (clock line) is high. When data is being transferred, SDA must remain

stable and not change whilst SCL is high. The start and stop sequences mark the beginning

and end of a transaction with the slave device (see figure 57).

Figure 57: I2C Start and Stop Sequence [55]

Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting with

the MSB (Most Significant Bit). The SCL line is then pulsed high, then low (actually the

chip cannot really drive the line high, it simply "lets go" of it and the resistor actually pulls

it high). For every 8 bits transferred, the device receiving the data sends back an

acknowledge bit, so there are actually 9 SCL clock pulses to transfer each 8 bit byte of

 84

data (see figure 58). If the receiving device sends back a low ACK bit, then it has received

the data and is ready to accept another byte. If it sends back a high then it is indicating it

cannot accept any further data and the master should terminate the transfer by sending a

stop sequence [55].

Figure 58: I2C bit transfer [55]

In order to manage the I2C protocol, appropriate command sequences were defined:

START Sequence: for the CRIO to start communication with the sonar

STOP Sequence: for the CRIO to stop communication with the sonar

TX Sequence: for the CRIO to transmit information to the sonar

Get-ACK Sequence: for the CRIO to get acknowledgement from sonar (that means the

sonar has received the data). For the Get-ACK Sequence to work properly, it must

contains also a Clock stretching wait routines (see software details). The clock stretching

is necessary to be sure that the sonar has actually received the CRIO commands and is

ready to send the data.

RX Sequence: for the CRIO to read information from the sonar

Give-ACK Sequence: for the CRIO to acknowledge the sonar (that means the CRIO has

received data from sonar).

Moreover, the SRF08 sonar has a predefined device address using 7 bits + 1 R/W bit

(Read/Write bit) and register addresses (whose values can be found in the SRF08 manual),

which must be used for communication with the CRIO.

Particularly :

E0: it is the sonar device address + write bit (it is used when the CRIO wants to write the

sonar)

E1: it is the sonar device address + read bit (it is used when the CRIO wants to read from

the sonar)

Therefore, communication Sonar-CRIO can be performed on the I2C bus by using the

above defined standard sequences, device addresses and register addresses.

 85

 Sonar acquisition software

The sonar acquisition software is shown in figure 59 while details of the implemented

subVI are reported in the enclosed.

 Figure 59: FPGA Sonar Data Acquisition Loop

The software is basically constituted by two main subVI:

- the first one performs an initialization procedure to set the sonar range and gain to

appropriate values

- the second one read information when the sonar is commanded to range from the CRIO

For the SRF08 to start ranging in cm, the following instruction must be implemented in

sequence:

Initialization procedures

i2c_start(); // send start sequence

i2c_tx(0xE0); // SRF08 I2C address + W bit

i2_get-ack; // get acknowledgment

i2c_tx(0x02); // SRF08 range register address

i2_get-ack ; // get acknowledgment

i2c_tx(0xFF); // set range to appropriate level (determined experimentally). This

 value must be set to Hex FF if we want the sonar to range till 6 m

i2_get-ack // get acknowledgment

i2c_stop(); // send stop sequence

 86

i2c_start(); // send start sequence

i2c_tx(0xE0); // SRF08 I2C address + W bit

i2_get-ack; // get acknowledgment

i2c_tx(0x01); // SRF08 gain register address

i2_get-ack ; // get acknowledgment

i2c_tx(0x10); // set gain to appropriate level (determined experimentally). This value

 must be set to Hex 10 if we want the sonar to range till 6 m

i2_get-ack // get acknowledgment

i2c_stop(); // send stop sequence

Sonar data read

i2c_start(); // send start sequence

i2c_tx(0xE0); // SRF08 I2C address + W bit

i2_get-ack; // get acknowledgment

i2c_tx(0x00); // SRF08 command register address

i2_get-ack; // get acknowledgment

i2c_tx(0x51); // command to start ranging in cm

i2_get-ack; // get acknowledgment

i2c_stop(); // send stop sequence

Now after waiting 65mS for the ranging to complete, the following commands are sent:

i2c_start(); // send start sequence

i2c_tx(0xE0); // SRF08 I2C address + W bit

i2_get-ack; // get acknowledgment

i2c_tx(0x02); // SRF08 range register address; before reading from the sonar, it is

necessary to tell the sonar which of its internal addresses we want to

read.

i2_get-ack; // get acknowledgment

i2c_start(); // send again start sequence

i2c_tx(0xE1); // SRF08 I2C address + R bit

i2_get-ack; // get acknowledgment

 87

i2_rx_high; // read the most significant byte (sonar data are in the U16 format and

 therefore requires two byte)

i2_give-ack; // give acknowledgment

i2_rx_low; // read the least significant byte (sonar data are in the U16 format and

 therefore requires two byte)

i2_give-ack; // give acknowledgment

i2c_stop(); // send stop sequence

data rebuilt; // builds altitude information in a 16 element Boolean array (in a

 similar way as is done for the NAV 420 I16 data)

4.5 ACTUATORS

Servo actuators allow accurate helicopter commands thanks to the on-board circuit. They

are controlled by a Pulse-Width-Modulated (PWM) signal, where the desired servo motor

angle is usually proportional to the pulse width (see further in Section 4.5.1).

Five servo actuators are currently mounted on the helicopter which must be powered at

5V:

- S9202 for throttle control

- two S9405 for lateral and longitudinal cyclics controls

- S9255 for collective control

- S 9252 for tail control which can provide a 6 kg cm torque

 The servo actuators control circuit is show in figure 60.

During the helicopter flight, servo actuators are controlled either by the RC pilot via radio

or by the onboard computer, when the RUAV flies autonomously.

The core of the onboard actuator circuit are 5 helymodel switches which are used to

change the helicopter flight mode. They have 3 input cables and one output cable which

brings signal commands, power and ground to the servo actuators.

 88

Figure 60: Servo Actuators Control Circuit

The needed input are:

1- The first input cables of each switch are connected together and plugged into

channel 7 of the RC receiver so that the pilot can switch from/to manual-

autonomous flight mode

2- The second input cable of each switch is connected to the radio receiver channel,

which receive signal from the RC pilot via radio. Five switches were used since

five commands are necessary to control the helicopter

3- The third cable of each switch is connected to the related CRIO digital output

channel, to receive computer input when the helicopter flies in autonomous mode.

The CRIO digital output channels are:

the Slot4/cRIO-9411/DO 0 for the lateral cyclic

the Slot4/cRIO-9411/DO 1 for the longitudinal cyclic

the Slot4/cRIO-9411/DO 2 for throttle

the Slot4/cRIO-9411/DO 3 for tail

the Slot4/cRIO-9411/DO 4 for collective

The switch output signals are send directly to the servo actuators apart from the PWM tail

commands. The tail command is sent to the tail actuator passing across the onboard hely

gyro.

Actually, the onboard hely model gyro is coupled with a control unit, provided by the

factory, and contains an Heading Lock Angular Velocity Control System (HL-AVCS),

 89

which is used either to stabilize the helicopter in heading or to control the helicopter

heading. From now on, the gyro sensor coupled with its control unit will be referred to as

gyro system.

While all PWM signal outputs control directly the servo motor angle, this is not true for

the PWM tail signal which, actually, is used as input for the gyro system. When the radio

is switched on for the first time, the gyro control unit reads the tail PWM signal coming

from the radio (which correspond to zero yaw rate since the helicopter stands at the

ground and the gyro sensor measures zero yaw rate) and is initialized.

The initial PWM tail command (or the CRIO PWM tail signal) is, therefore, perceived by

the gyro control unit as reference yaw rate to be maintained by the helicopter. If the PWM

command is equal to the initialization value, the reference yaw rate to be maintained is

zero, otherwise it is perceived as a reference of constant yaw rate, whose value depends on

the commanded PWM (see fig. 61).

Figure 61: Tail & Helicopter Gyro System Interaction

-If during the flight the helicopter experiences a perturbation in yaw (not due to a pilot or

computer command), the gyro feels a change in the helicopter yaw rate response, which is

communicated to the gyro control unit. In turn, the gyro control unit will send a PWM

signal to the tail actuator till the helicopter yaw rate is driven to zero; moreover, since an

Heading Lock AVCS is implemented on the gyro control unit the helicopter returns also to

the initial heading, while the yaw rate is smoothed to zero.

-If the RC pilot or the CRIO send to the gyro control unit a PWM signal, different from

the one read during the initialization process, this is perceived by the control unit as a new

reference yaw rate to be maintained; the control unit will send PWM signal to the tail

servo in order to maintain the commanded yaw rate.

 90

The commanded PWM, sent to the tail servo, is generated by the gyro control unit based

on a gain settable by the user.

4.6.1 PULSE WIDTH MODULATION-SERVO ANGLE CURVE

Pulse Width Modulation (PWM) is a technique commonly used to represent an analogue

signal using digital circuitry. It involves the switching on and off of a digital output at a

fixed frequency (switching frequency fs), but with varying times of either on or off. The

ratio of on-time to the total period (T = 1/ fs) is called the duty cycle (d):

d= Th/T (4.1)

where Th denotes the PWM on-time.

RC equipments, such as servos, typically use PWM signals for their control input. As

opposed to standard PWM signals where the signal value is dependant upon the duty-

cycle, RC equipment use the actual pulse-width (in seconds) to represent the signal.

Furthermore, the RC PWM signals usually has a standard frequency range between 20Hz

and 200Hz. The servo actuators used on the helicopter operate at a PWM frequency of 50

Hz.

Depending on the PWM actual pulse-width, the servo actuators rotates of a certain angle

(see figure 62), which can be easily identified experimentally.

Figure 62: PWM pulse width and servo angle rotation

The servo Angle-PWM curve was determined by means of the experimental equipments

illustrated in figure 63.

 91

Figure 63: Experimental Set-up for Servo Angle-PWM curve determination

The actuator was coupled with an optical encoder in order to measure the angular

displacement corresponding to a PWM servo command.

An encoder is a device that can converts a rotary displacement into digital or pulse signals.

The most popular type of encoder is the optical encoder, which consists of a rotating disk,

a light source, and a photodetector (light sensor). The disk, which is mounted on a rotating

shaft, has patterns of opaque and transparent sectors coded into the disk (refer to figure

64). As the disk rotates, these patterns interrupt the light emitted onto the photodetector,

generating a digital or pulse signal output. If the actuator arm is connected to the encoder

shaft, the encoder disk rotates each time the actuator is commanded to rotate. Therefore,

the encoder signal output will be broken when an opaque disk line is between the emitter-

detector pair. It is the monitoring of this on-off pattern which allows the actuator angular

displacement to be measured.

Figure 64: Optical Encoder Principle [56]

 92

By counting the number of the encoder output pulses using a DAQ card, it is possible to

know the rotation angle corresponding to a PWM actuator input [56]. At this aim, the

phase A encoder cable was connected to a counter input channel of a NI PCMCIA shown

in figure 63, while a PWM actuator signal was generated using the PCMCIA counter

output.

The software developed for this experiment is reported in figure 65.

Figure 65: LabViewTM Software for Encoder Signal Acquisition and PWM generation through DAQ Card

Figure 66: Front Panel of the software reported in figure 65

 93

It is constituted by two parallel while loops:

-the first one is used for PWM signal generation and data logging: for the purpose of this

work a time varying PWM pulse width was generated by changing the PWM duty cycle

with time. The PWM frequency was left fixed and equal to 50 Hz

- the second one is used to count the encoder pulses and convert it into an equivalent angle

measurement. At this aim, it must be taken into account that the encoder, available at the

Hangar Laboratories, has different decoding possibilities depending on its usage. If only

phase A cable is used, the encoder is not able to discriminate the sense of rotation (which,

however, is not a stringent requirements for this work) and work in X2 mode (which

means X2 resolution multiplication). Therefore, in order to calculate the angular servo

displacement the following formula must be used:

Amount of rotation (°) = Counts * 360° / 2 N (4.2)

where N is the pulse/revolution. For the selected encoder, N is equal to 900

pulse/revolution; hence the scale factor is 0,2 °/Counts, which correspond also to the

encoder angular resolution.

The acquired data were processed using Matlab curve fitting tools, which yielded to the

following PWM width-Servo Angle curve:

Figure 67: PWM on-time-Servo Angle curve

The servo angle is a linear function of the PWM on-time and the scale factor was found to

be:

 94

 ms
Th

/3.104 °=
∆
∆Θ (4.3)

 which means that one degree servo rotation corresponds to 9,6 µs PWM on-time.

4.5.2 ACTUATORS SIGNAL ACQUISITION AND GENERATION
SOFTWARE

For the helicopter to fly autonomously, PWM signal outputs must be generated by the

onboard computer for the servo actuators. Furthermore, if a dynamic helicopter model

must be identified for autopilot design, helicopter responses to pilot PWM inputs must be

also recorded. For that, a FPGA software was developed both to generate PWM output

signals and to acquire pilot PWM input commands.

PWM signal acquisition software

The PWM radio input signals have been acquired by measuring the corresponding PWM

on-time in microseconds, using the FPGA digital input channels. The channels

configuration is as follows:

Slot1/cRIO-9411/DI 0 lateral cyclic pitch

Slot1/cRIO-9411/DI 1 longitudinal cyclic pitch

Slot1/cRIO-9411/DI 2 throttle

Slot1/cRIO-9411/DI 3 tail

Slot1/cRIO-9411/DI 4 collective pitch

Slot1/cRIO-9411/DI 5 PID on/off (radio channel 7)

The software is reported in figure 68.

Basically, the software is constituted by a while loop running at 1 MHz (1 loop every one

microsecond). The PWM on-time is measured by creating a virtual microsecond counter.

Every microsecond, the digital input channels are read and a microsecond counter (each

for one channel) is updated if the input signal logical level is high, otherwise the

microseconds counter is re-initialized to zero. This way, the PWM pulse with is measured

with a resolution equal to one microsecond.

Moreover, two further remarks must be taken into account:

- the counter variable, actually incremented every microsecond, is a value placed in a

virtual memory (the LabView shift register). The corresponding PWM pulse width

value is updated only when the first low bit is read. This way, the PWM commands

 95

are all updated with minimum time latency and the software doesn’t yield to false

transient measurements.

- the program outputs are the 5 radio commands in µs (the measured pulse width for

each channel) and a boolean value for the PID on/off channel. This boolean value will

be used to enable or disable the autopilot in the control loop (TRUE means autopilot

ON, while FALSE autopilot OFF)

Figure 68: Actuators PWM Acquisition Software

PWM generation software

The PWM output signals have been generated using the FPGA digital output channels,

configured as follows:

Slot4/cRIO-9474/DO 0 Lateral cyclic

Slot4/cRIO-9474/DO 1 Longitudinal cyclic

Slot4/cRIO-9474/D2 Throttle

 96

Slot4/cRIO-9474/D3 Tail

Slot4/cRIO-9474/D4 Collective

The software is reported in figure 69.

The software core is the PWM generation subVI, which is able to generate a PWM signal

based on the PWM period input (which is fixed to 20000 µs by the servo actuator

frequency) and the PWM on-time input (which is provided by the control loop). This

subVI is used five time (one for each helicopter command) inside a PWM generation

while loop (see fig. 69).

Basically, the program creates a virtual clock whose time value ranges between 0-20000

µs. When the virtual clock time value reaches 20000 µs, it is reinitialized to zero. Each

loop, the virtual clock value is compared with the PWM on-time input. If the virtual clock

value is less then the PWM high time, a Boolean TRUE output is generated, otherwise the

output is driven to FALSE.

Figure 69: Actuators PWM Generation Software

 97

4.6 DATA LINK

Usually, data link are used for unmanned vehicles to send commands and receive

telemetry or payload data and can be divided into digital and analog links. An example for

an analog link is a UHF video signal transmission. Digital links provide a way of

communicating between ground and vehicle-mounted computers. The frequency band a

data modem operates, affects its data rate. Typically, the higher the frequency, the higher

the data rate. The frequency also affects the range of the data link. Lower frequencies

typically offer a greater range than high frequencies. Furthermore, the higher the

frequency, the greater the Line-of-Sight problem, i.e. the ability to penetrate obstacles like

buildings. Common data links in the 2.4 Ghz band are more easily “blocked” than that in

the VHF frequencies. Also, for unmanned vehicle operation a remote pilot data link is

often used to steer the vehicle manually for some phases of the flight [52]. The radio link

used for the UNIBO helicopter works at a frequency of 43.835 MHz. Instead, a common

WIFI access point (fig. 70), in the frequency of 2.4GHz, is used to perform the data link

between the onboard computer and the ground control station. Depending also on the

operating environment, the data link range is about 200m-300m, which is anyway quite

enough for the goals of the UNIBO RUAV project.

Figure 70: RUAV WIFI Access Point

4.7 HARDWARE INTERFACING, WIRING AND
MOUNTING

The RUAV hardware was assembled together placing attention to accessibility, flexibility

and modularity. A commercial off-the shelf plastic box was selected to house all avionics

components, which was installed under the modified landing gear. The plastic box cover

 98

was suspended to the landing gear by means of rubber shock mounts for vibration

isolation (see fig. 72). The very light weight plastic box can be attached to the cover and

easily removed, when maintenance or other works needs to be done on the avionics

components. Moreover, this mounting system allows the structure of the plastic box to

achieve its rigidity, which is of course necessary to perform good flight tests. The tail

boom provides also installation points for the GPS antenna, enabling firm fit and leaving

the boom structure unchanged. The sonar sensor was appended under and outside the

avionics box (see section 4.7.1 for vibration isolation).

A schematic wiring diagram of the vehicle-mounted avionics is depicted in figure 71.

Figure 71: RUAV Schematic Wiring

 99

Redundancy

The installation of a completely redundant avionics system was of course prevented from

the small size of the UNIBO RUAV. Therefore, only a minimum safety system was

installed, which was anyway enough for the purpose of this project. As discussed in

section 4.5, the core of the RUAV minimum safety system is the electronic switch used

for disabling the onboard computer in event of system failures. In this perspective, two

separate radio receivers were mounted on the helicopter :

-one inside the avionics box (second receiver in figure 71), whose channels are connected

to the CRIO digital input channels, for data acquisition

-one mounted on the helicopter airframe outside the avionics box (first receiver in figure

71), which is fully electrically separated from the other avionics and is used only by the

RC pilot when the helicopter flies in manual mode. The first receiver power system is also

fully independent from the one of the other avionics box equipments.

Power system & Electromagnetic Interference Shielding

All modules are powered by means of onboard batteries. The CRIO and the AHRS

requires a 11-12V DC power connection: 3200 mAh Lithium Polimer Battery were used,

which combines very light weight with long time power supplies (this battery package

allows almost two hours autonomy at a “price” of 150 gr). For the same reason, a 7,4 V

Litium Polimer battery package was used to power the data link access point. Since the

access point requires 5 V power supply, this battery package is connected to a voltage

regulator. The same was done for the 12 V battery package, which supplies also 9 V

power to the sonar interface card. The two radio receivers are powered by two 5V NiMH

separate batteries package to improve safety. The NiMH battery used for the second

receiver, located inside the avionics box, is utilized also to power the sonar and to set the

voltage level of the digital output channels of the CRIO.

The power panel is mounted on the side of the avionics box and includes power switch-on

buttons, external interface ports for batteries recharging. Special attention was placed also

to accessibility of the hardware interfaces: the panel comprises also a serial user interface

port and easy access to the CRIO Ethernet port, for easy connection of the avionics to the

planned hardware in the loop simulation system or to the ground control station computer

(if necessary).

All battery packages are installed so that they can be easy accessible for package

replacement with minimum efforts, if long flight tests have to be performed. The wires

 100

inside the avionics box are tied to several mounting points and to each other, in order to

prevent any shaving of the insulation.

The CRIO and the AHRS are already factory endowed with sufficient EMI shielding such

that it cannot interfere with other equipments. Moreover, the full avionics box was coated

with 2 layers of aluminium foil, in order to prevent any EM interference from the pilot

radio transmitter or other external disturbances. All aluminum parts were also electrically

connected and common grounded.

The two radio receiver antennas were left hanging under the helicopter, which was found

to be their best position after several flight tests.

4.7.1 VIBRATION ISOLATION
Electronic circuits and sensors can be affected by harmful vibrations from the engine and

rotors. Particularly, the AHRS, GPS antenna, the onboard computer and the sonar

altimeter are likely to produce faulty readings with inadequate vibration isolation or may

be subjected to damage, if their operational vibration range is overcome. Therefore, the

avionics box was appended under the landing gear by means of four elastomeric silent

blocks at its corners, which can be seen in figure 72. The dampers were mounted

symmetrically with respect to the avionics box centre of gravity, in order to optimize the

load distribution on the isolators. Moreover, the AHRS, the CRIO and the other

electronics were isolated inside the avionics box by means of neoprene strips. As the GPS

antenna and the helicopter gyro are mounted on the airframe structure, they needed

separate protection from harmful vibrations. They were isolated by using short pieces of

special hely-model rubber, that effectively attenuated vibrations. The sonar sensor was

appended at the bottom of the avionics box, by means of a small plastic box isolated with

rubber.

 101

Figure 72: Avionics Vibration Isolation System

A good criteria for chosing elastomeric dampers is that the critical frequency of the shock

mounts must not be close to any produced by the rotorcraft at its normal operation point.

Figure 73 shows a typical diagram of resonant transmissibility versus damper frequency.

If the damper work frequency is higher than its resonant frequency, than vibrations can be

effectively attenuated [57].

Figure 73: Typical diagram of resonant transmissibility versus damper frequency

With the selected shock mounts, and an avionics box weight of 5 kg, a natural frequency

of 15 Hz can be expected. This frequency is far enough from the closest frequency of the

system, the rotor-induced oscillations at about 22 Hz, to prevent any adverse effects.

Moreover the effect of the neoprene strips should help increasing the damping effect as

was demonstrated experimentally (see section 4.7.1.2).

 102

4.7.1.1 Vibration Load Experimental Test
The vibration isolation system was tested by means of the experimental test bed illustrated

in figure 74.

During experiments the onboard computer and AHRS were replaced with equivalent

metal part to prevent any damage due to unknown vibration effects. Accelerometer were

mounted on the landing gear, on the avionics structure after the dampers, on the CRIO and

the AHRS to measure the damping effects at different points.

Figure 74: Experimental Data Acquisition System

The accelerometers were connected by means of BNC cables to a charge amplifier. The

output signal from the amplifier was acquired by means of a data acquisition card installed

on a laptop computer. An appropriate software was also developed to acquire

accelerometer outputs, which is reported in figures 75-76.

Figure 75: Acquisition Software Front Panel

 103

Figure 76: Accelerometers Data Acquisition Software

The program can be used both for acquiring accelerometer outputs form the DAQ card and

for data post-processing by pressing the related button at the front panel. If it is used for

post-processing, the data file must be selected at the prompt window and frequency

analysis can be performed. If the program is used for data acquisition, the DAQ Card must

be configured appropriately through the DAQ assistant indicated in figure above. The

accelerometer scale in g/V must be given as input, which can be calculated knowing the

charge amplifier gain and the accelerometer sensitivity (eq. 4.4). Once data are acquired,

they are saved in a user defined file for post-processing.

In the software illustrated above, only one channel of the DAQ card is configured as

example, but other channels can be easily added, depending on the experimental set-up.

Tables 5-6 report the experimental set-up configuration used for the purpose of the

vibration tests.

Configure DAQ CARD

 104

Accelerometer Name Sensitivity [mV/g] G Scale Factor [g/V]

89158 10.23 1 97.752

89160 10.91 1 91.659

89161 10.19 1 98.135

89162 10.40 1 96.154

Table 5: Accelerometers Characteristics

 DAQ Card Settings

Sample Frequency [Hz] 51200

N° of Samples per Channel 307200

N° of Channels 4

Channel Max-Min V different according to test

Table 6: DAQ Card Settings

By denoting with:

x measured signal

G amplifier gain

S transducer sensitivity [mV/g]

the scale factor in g/V can be calculated through the following formulas:

=

V
mV

g
mVSG

Vxgx 1000][][or

=

V
mV

g
mVSGgx

Vx
1000

][
][(4.4)

The DAQ Card settings were chosen as follows:

- the sample rate depends on the DAQ card and the channels number. The chosen

acquisition rate is the maximum selectable for the DAQ card using four channels.

Since the maximum for the DAQ Card is 210000 Samples/s, with four channels the

maximum sample rate per channel is 52500 Samples/s (we choose a value a bit

smaller)

- the number of samples per channel depend on the acquisition time. By fixing an

acquisition time of 6 s, the needed number of samples per channel is:

6s * 51200 Samples/s = 307200 samples (per channel)

- the Max - Min Voltage level per channel depends on the expected voltage

measurements (to avoid overflow) and on the desired resolution. Since

 105

measurements were quite different in the various points of the structure, we used

different Max-Min V level values during the tests.

4.7.1.2 Experimental Results
A frequency analysis was performed on the experimental data using either LabView

software (fig.75-76) or Matlab software. The most significant results are reported in

pictures 78-79.

From the power spectral density (fig. 78-79), it is clear that the major vibration sources are

at a frequency of about 200 Hz and come from the engine. A very small spectral

component is present also at about 20 Hz and 80 Hz which are due to the main and tail

rotor, but can be neglected if compared to the engine component.

By defining a grms value as [58,59]:

g (rms) =))()((22 xmeanxstd − (4.5)

where

x is the vector of the acquired data

n is the number of samples (the x row number)

std(x) is the x standard deviation defined as 2/12

1

))(1()(∑
=

−=
n

i
i xx

n
xstd (4.6)

mean (x) is the x average value over the n sample ∑
=

==
n

i
ix

n
xxmean

1

1)((4.7)

it is possible to check if the vibration load experienced by the electronic component, once

they were damped, is within the operational vibration load advised by the factory, for the

onboard avionics components (NAV 420 Operating Vibration Range: < 6 g rms 20Hz-

2kHz ; CRIO Operating Vibration Range : < 5 g rms 10Hz-500Hz).

Experimental results confirmed that the elastomeric dampers efficiently attenuate

vibration on the onboard avionics.

The high vibration load experienced by the landing gear (at the engine frequency of 200

Hz) may seem somehow surprising, above all because very poor literature (or better no

literature at all) exists about that. Therefore, experimental tests were repeated several

times (even with a different acquisition system) and were compared with the results

provided by Boeing for a similar helicopter. This data were available at low engine rpm,

but they seem to confirm the order of magnitude of the measured data.

 106

Test “Eli09”: Vibration level along the z axis

Figure 77: Accelerometers mounting points

As example acceleration experienced on the landing gear (position P in figure 77) and on

the “emulated “ NAV 420 (position E figure 77) will be reported.

Figure 78: Acceleration experienced on landing gear

From the PSD [60,61] diagram it can be seen that the main vibration load is caused by the

engine spinning at about 200 Hz. This is also confirmed by the fact that, filtering the

signal in the band 0-1kHz the grms value, calculated with equation 4.5, is about 11.5. If the

signal is filtered under 40 Hz, this value is reduce to 2.05. Using an high pass filter over

2kHz the rms value is also reduced to 2.22.

 107

Figure 79: Acceleration Experienced on the isolated NAV 420

Acceleration are readily attenuated and the grms value calculated with equation (4.5) is

reduced to 0.7281.

Figure 80 shows also the acceleration experienced at point B (see fig.77) after the first set

of shock mounts; acceleration are attenuated, but using also the neoprene strips much

better results were achieved (fig.79).

Figure 80: Acceleration experienced after the first shock mounts

For sake of comparison, Boeing results for Raptor 60 are reported in figure 81.

Figure 81: Boeing Results for Raptor 60 [62]

The hard mounted accelerometer showed accelerations of between 8 and 15 times the

normal force of gravity, whereas, the isolated accelerometer only saw around a 0.3 to 0.8

increase in the force of gravity during the same flight test [62].

 108

4. 8 HARDWARE AND SENSORS DAQ FLIGHT TESTS

The UNIBO RUAV avionics hardware was successfully tested in flight. Flight data were

acquired by means of the data acquisition software described in the previous sections.

In order to conduct a flight tests, the vehicle avionics must be first powered using the

avionics box power panel. Compiled flight code must be uploaded from the ground station

onto the flight computer and started remotely. The ground control station, constituted by a

simple laptop computer, connects to the air vehicle, displaying its status. When everything

and everybody on the test team are set up for the flight, the engine is started allowing

continuous flight for approximately 15 minutes, limited by the on-board fuel capacity

(then helicopter re-fuelling must be made).

For the purpose of flight data acquisition tests, the helicopter was flying in RC mode,

while onboard data logging was started and stopped by the ground control station

operator.

High rate on-board data recording is independent from data communication and data

display on the GCS. Data are recorded in a file on the volatile CRIO RAM. This file can

be downloaded to the GCS using the WIFI data link during the flight tests, even without

stopping the flight code, or after the flight.

During the flights, data were transferred from the air vehicle back to the Ground Control

Station (GCS) via wireless data link and monitored by the GCS operator.

All onboard electronics worked properly while sensor data was recorded at 100 Hz. AHRS

raw data (figure 82) show vibration disturbances.

Figure 82: Example of pitch and roll rate AHRS raw data

 109

Figure 83: AHRS filtered flight data

However, thanks to the XBow NAV420 integrated Kalman filter, smooth and stable GPS

position information, velocity and attitude measurements were available, which can be

used for control and navigation system implementation. Figure 83 shows examples of

sensor data measurements taken while the helicopter was overflying the test field at low

speed conditions.

Ultrasonic sensors were also tested. Recorded flight tests showed good experimental

results although they could provide reliable altitude measurements only up to 5.5-6 m (see

fig.84).

Figure 84: Sonar sensors measurements

 110

4.8.1 FLIGHT DATA RECORD VIRTUAL RE-VIEW

Based on the work done in the CAPECON project for the ground control station, a “post-

view station” was develop, in order to help data record analysis by reproducing the flight

tests in a virtual scenery. The “post-view station” runs a LabView software which was

derived from the one developed for the CAPECON mission simulation environment and is

reported in the enclosed CD.

The program reads the data record file and displays flight information on a virtual cockpit

(reproducing also a pilot virtual radio stick) and on helicopter states diagrams; meanwhile

data are sent via TCP/IP to the visual system which is able to reproduce in real time an

external view of the air vehicle.

The station architecture is based on two computer (see fig. 85): one is used for the visual

system while the other one for the LabView code and user interface.

Such a system was very useful during post-processing analysis, since it’s possible to have

real time and immediate memory of the helicopter behaviour during experimental tests,

thereby facilitating flight data record interpretation.

Figure 85: “Post-View” Station Architecture

 111

Chapter 5

SITL SIMULATION

After the hardware was set-up, a series of flight tests were done in order to collect

experimental data, for identifying the helicopter dynamics characteristics and develop a

reliable vehicle simulation model. The helicopter dynamics was modelled in nearly hover

flight conditions by Pretolani [19] using a transfer function approach [63-66]. Based on

the helicopter dynamics transfer function identification, classical PID controllers were

designed in the Matlab/Simulink enviroment, neglecting cross-coupling between the

helicopter inputs. Results founded by Pretolani are summarized in section 5.1 and were

used as starting point to implement the control system on the onboard computer.

The control system architecture used to control the helicopter is based on a nested PID

approach as shown in figure 86.

The Vx and Vy track velocities control is implemented using the two level, nested loop

structure shown in Figure 86. Lateral track velocity (Vy) errors are used to generate roll

demands for the roll (φ) control module, while longitudinal track velocity (Vx) errors are

used to generate pitch demands for the pitch (θ) control module. Integral contribution in

the outer velocities loop compensate also external disturbances resulting from varying

wind conditions. The inner attitude controllers generate servo rotation commands for the

helicopter to maintain the desired reference condition.

The reference track velocities Vx and Vy can be generated either by an outer guidance and

navigation control system or by a user pre-defined reference velocity profile.

The vertical velocity control uses a stand alone PI feedback control loop.

 112

Figure 86: Onboard Control System Architecture

The vertical control either can take the form of vertical velocity regulation or height

regulation: in the first case the vertical velocity profile to be maintained is given by the

user, in the second case the reference vertical velocity is calculated by the altitude hold

regulator in the guidance and navigation system.

The heading control is left to the HL-AVCS onboard gyro system. The HL-AVCS gyro

input is actually a yaw rate, calculated on the basis of the helicopter heading error. Again,

the helicopter heading error can be calculated either by the NGCS or can be user defined.

The control system architecture described above was implemented on the onboard

computer. Currently, only the velocity control system was experimented in flight, while

the navigation and guidance system must be still tested. Therefore, the reference velocities

and heading profiles were defined by the operator at the ground control station, depending

on the flight test to be performed.

The complete onboard software implementation is described in sections 5.2-5.3.

CYCLICS
COLLECTIVE & THROTTLE

YAW RATE

ATTITUDES

VELOCITIES(Vx,Vy,Vz)

POSITION(Lat.,Long.,H), Heading

ATTITUDE
CONTROL

VELOCITY
CONTROL

GUIDANCE &
NAVIGATION

CONTROL

(φ,θ)S
(Vx,Vy,Vz)S

Helicopter

 113

5.1 HELICOPTER DYNAMICS IDENTIFICATION AND
SIMULINK PID DESIGN RESULTS

The identified helicopter dynamics transfer function are reported below [19]:

Attitude dynamics

22

2

/1
1

nqe

nq

e

long

ss
A

s
H

ωτ
ω

τϑ ++
= 22

2

/1
1

npe

np

e

lat

ss
B

s
H

ωτ
ω

τϕ ++
= (5.1)

Identified Parameters

Along [rad/rad] ωq [rad/sec] Blat [rad/rad] ωq [rad/sec] τe [sec]

0.30025 12.1 0.22078 18.1 0.132

Table 7: Attitude dynamics identified parameters

Velocity dynamics

Vx
Vx Xs

gH
−
−=

Vy
Vy Ys

gH
−

= (5.2)

Identified Parameters

g [m/s2] XVx [1/s] YVy [1/s]

9.81 -0.39654 0.05

Table 8: Velocity dynamics identified parameters

Heave Dynamics

Vz
Vz Zs

ZcollH
+

−= (5.3)

 114

Identified Parameters

Zcoll [(m/s2)/rad] ZVz [1/s]

-30 -1.14

Table 9:Heave Dynamics identified parameters

For Single Input Single Output (SISO) systems, the controller that is most commonly used

in industrial process control is the PID controller. This controller has the following

transfer function in the Laplace domain [67]:

 sK
s

K
KsG D

I
Pc ⋅++=)((5.4)

where KP , KI and KD the proportional, integral and derivative gains respectively.

Equation 5.4 is often rewritten in terms of time constants:

sTK
sT

K
KsG Dc

I

c
cc ⋅⋅+

⋅
+=)(with KC = KP (5.5)

This controller is termed a PID controller because Equation 5.4 has a proportional, integral

and derivative term. Although these controllers are simple, they are quite robust, simple to

tune and often provide sufficient control [68-72]. PID controllers have well known tuning

methods such as the Ziegler-Nichols Step and Ultimate Gain Methods. Whilst these tuning

methods are unlikely to produce an optimally tuned controller, they do provide a good

starting point for further optimisation. Therefore, the PID gains were tuned in the

Matlab/Simulink environment using the transfer function reported above. Even if

decoupled PID loops were considered, this was enough to control the helicopter, since

such loops should view the coupling between axes merely as a disturbance and should be

able to compensate this effect in a robust manner.

Simulation results showed also that a PI controller (derivative term set to zero) will

provide sufficient control capabilities [19]. Therefore, a simple PI was implemented on the

onboard computer. The calculated PI gains are reported below, together with the final gain

value, calibrated experimentally and currently used for the onboard control system.

 115

Attitude PI Gains

 KCθ [°servo/°θ]
KIθ

[°servo/°θ * s]

KCϕ

[°servo/°ϕ]

KIϕ

[°servo/(°ϕ * s)]

Calculated -0.77366 -0.08 1.0418 0.11346

Experimental -1 -1 1 1

Table 30: Attitude Controllers PI Gains

Velocity PI Gains

KCVx

[°θ /(m/s)]

KIVx

[°θ /m]

KCVy

[°ϕ / m/s]

KIVy

[°ϕ / m]

KCVz

[°coll /m/s]

KIVz

[°coll /m]

Calculated -13.2 -4.03 11.43 3.55 -3.622 -4.96

Experimental -10 -1 10 1 -10 -10

Table 41: Velocity controllers PI Gains

5.2 ONBOARD CONTROL SYSTEM

For the implementation of the onboard velocity – attitude control system a lot of things

must be taken into account:

- the control loop is not in a continuous time domain but cycles at a discrete time

interval. Therefore a discretise controller must be implemented

- the FPGA environment allows programming only by using integer values and the

sensor data output are all I16 values with their own scaled data. Therefore,

controller output and input values must be adjusted with some scale factors in

order to provide the correct servo commands value in PWM microseconds high-

time.

5.2.1 DISCRETE PID IMPLEMENTATION

Consider the ideal PID controller written in the continuous time domain form [67]:

0
0

)()()()(u
dt

tdeTKdtte
T
K

teKtu
t

dc
i

c
c +++= ∫ (5.6)

where e(t) is the process variable error defined as:

e(t) = SP – PV (SP being the Set Point and PV the Process Variable) (5.7)

 116

and u(t) is the PID output.

To discretise the controller, we need to approximate the integral and the derivative terms

to forms suitable for computation by a computer. From a purely numerical point of view,

if Ts is the loop cycle time, we can use:

∫ ∑≈−−≈
t t

s
s

ieTdtte
T

tete
dt

tde

0 0
)()()1()()((5.8)

The general discrete PID algorithm can be therefore [73]:

0
0

))1()((
)()()(u

T
teteTK

ie
T

TK
teKtu

t

i s

dc

i

sc
c +

−−
++= ∑

=

 (5.9)

which is now in the form of a difference equation, suitable for coding in an appropriate

programming language. This particular form of the PID algorithm is known as the

'positional' PID controller, because the control signal is calculated with reference to a

base level, uo (which can be known experimentally and must be set up correctly inside the

algorithm).

Actually, the PID integral action is calculated by using a trapezoid integration to avoid

sharp changes in integral action, when there is a sudden change in PV or SP. The integral

contribution is therefore express as:

∑
=

−+=
t

ii

sc
I

ieie
T

TK
tu

0 2
)1()()((5.10)

As for the derivative contribution, the derivative action is applied only to the PV in order

to avoid effects due to abrupt changes in SP. Therefore the following formula represents

the Derivative Action:

))1()(()(−−−= tPVtPV
T

TK
tu

s

dC
D (5.11)

So, finally it is possible to implement the following formula for the discrete PID

controller:

 117

0
0

))1()((
2

)1()()()(u
T

tPVtPVTKieie
T

TK
teKtu

t

i s

dc

i

sc
c +

−−
+−++= ∑

=

 (5.12)

Another important aspect is that the use of a summation to calculate the contribution of the

integral term can lead to problems causing long periods of overshoots in the controlled

response. This phenomenon is known as integral windup. The algorithm implemented on

board provides code for integrator anti- wind up.

5.2.2 ONBOARD NESTED PI SOFTWARE

The Complete nested PI software is shown in figure 87.

The control loop runs at 50 Hz taking into account the bandwidth of the helicopter servo

actuators.

The loop performs a series of instructions in three subsequent frames:

-in the first frame the control loop rate is set

-the second frame is used to read all the input parameters necessary to the controller

-the third frame contains the PID implementation and calculation of PWM high time to be

sent to the PWM generation loop (see section 4.5.2).

Figure 87: Onboard Control Loop

 118

The controller structure is the one shown in figure 86. In order to understand the PID

FPGA implementation, it is necessary to define the following unity of measure and scale

factors:

Name Symbol Scale factor

AHRS Euler Angle Output [aI16] [°]=[aI16]*180*2-15

AHRS NED Velocity Output [vI16] [m/s]=[vI16]*256*2-15

AHRS Latitude, Longitude Output [LI32] [°]=[LI32]*180*2-31

PWM High time [µs] [µs] [° servo] = [µs]*104.3*10-3

PID Attitude servo angle out (I16) [sI16]

[°servo]=[sI16]*180*2-15

And

[µs] = [sI16]*180*2-15 *103/104.3 = [sI16]*1737*2-15

PID Vz output

[VzO]=[°*vI16/(m/s)] [µs] = [VzO]*256*2-15 *103/104.3 = [VzO]*2455*2-15

And

[VzO]= [µs] *13.3504

Initial collective [I32] [cI32] [cI32]= [VzO]*27=[µs]*1709

K_Vx and K_Vy Gains [°Attitude/(m/s)] [°Attitude/m/s]=[aI16]/([vI16]*1.42)

Table 52: Unity of Measures and scale factors used in the control code

Each PID implementation will be described in the next sub-sections.

Vx-theta PI
A schematic of the Vx-Theta nested PI software is reported in figure 88.

Figure 88: Schematic of the FPGA Vx-Theta nested PI

The first PI implement the forward velocity control along the trajectory. This PI calculate

the reference theta attitude to be passed to the theta attitude controller. The attitude PI

calculates the servo rotation angle variation to be added to the trim value in order to

maintain the desired set point.

 119

This commands are then scaled in microseconds of PWM high time which is used to

generate the PWM signal for the servo actuator (see PWM generation algorithm section

4.5.2).

Unity of measure must be scaled as shown in figure taking into account the scale factors

defined in table 12.

Tables 13-16 summarize the input and output parameters needed for the algorithm to work

properly.
Vx PI Input Parameters

Vx SP [vI16] User defined profile or from Navigation System

Current Vx [vI16] Calculated from AHRS data

KCVx* 28 [aI16/vI16] -2560

KIVx * Ts* 28 [aI16/vI16] -5

Output High [aI16] 3640

Output Low [aI16] -3640

Initial theta [aI16*27] 0

PI Reset TRUE first PI call otherwise FALSE

(performed automatically by the program)

Table 63: Vx PI Input Parameters

Vx PI Outputs
Proportional action theta [aI16*27]

Total theta action [aI16]

Table 74: Vx PI Outputs

theta PI Input Parameters

theta SP [aI16] User defined profile or from Navigation System

Current Theta [aI16] from AHRS data

KCθ* 28 [°servo/°θ] -256

KIθ * Ts* 28 [°servo/°θ] -5

Output High [sI16] 5089

Output Low [sI16] -5089

PI Reset TRUE first PI call otherwise FALSE

(performed automatically by the program)

Table 85: theta PI Input Parameters

theta PI Outputs
Proportional action Long cyclic with repect to trim [sI16*27]

Total Longitudinal cyclic action with respect to trim[sI16]

N.B.Long Trim value to be added after PI ouput scale: 1544 µs

Table 96: theta PI Outputs

 120

Vy-phi PI
A schematic of the Vy-phi nested PI software is reported in figure 89.

Figure 89: Schematic of the Vy-phi nested PI

The first PI implement the lateral velocity control along the trajectory. This PI calculate

the reference phi attitude to be passed to the roll attitude controller. The attitude PI

calculates the servo rotation angle variation, to be added to the trim value, in order to

maintain the desired set point.

This commands are then scaled in microseconds of PWM high time which is used to

generate the PWM signal for the servo actuator (see PWM generation algorithm section

4.5.2).

Unity of measure must be scaled as shown in figure taking into account the scale factor

defined in table 12.

Tables 17-20 summarize the input and output parameters needed for the algorithm to work

properly.
Vy PI Input Parameters

Vy SP [vI16] User defined profile or from Navigation System

Current Vy [vI16] Calculated from AHRS data

KCVy* 28 [°aI16/vI16s] 2560

KIVy * Ts* 28 [°aI16 /vI16] 5

Output High [aI16] 3640

Output Low [aI16] -3640

Initial phi [aI16*27] 74565

PI Reset TRUE first PI call otherwise FALSE

(performed automatically by the program)

Table 107: Vy PI Input Parameters

 121

Vx PI Outputs
Proportional action phi [aI16*27]

Total phi action [aI16]

Table 118: Vx PI Outputs

phi PI Input Parameters

phi SP [aI16] User defined profile or from Navigation System

Current phi [aI16] from AHRS data

KCϕ* 28 [°servo/°θ] 256

KIϕ * Ts* 28 [°servo/°θ] 5

Output High [sI16] 4505

Output Low [sI16] -5670

PI Reset TRUE first PI call otherwise FALSE

(performed automatically by the program)

Table19: phi PI Input Parameters

phi PI Outputs
Proportional action Lateral cyclic with repect to trim [sI16*27]

Total Lateral cyclic action with respect to trim[sI16]

N.B.Lat Trim value to be added after PI ouput scale: 1564 µs

Table 120: phi PI Outputs

Vz PI
A schematic of the stand alone Vz PI software is reported in figure 90.

Figure 90: Schematic of the stand alone Vz PI

The PI implement the vertical velocity control along the trajectory. This PI calculates the

collective servo rotation angle in order to maintain the desired set point. The trim

condition (servo rotation corresponding to hover condition) must not be added, since it

was taken into account in the PI integrator initialization.

This commands are then scaled in microseconds of PWM high time, which is used to

generate the PWM signal for the servo actuator (see PWM generation algorithm section

 122

4.5.2). The collective PWM high time is used also to find the corresponding PWM throttle

high time, in order to send commands to the throttle servo actuator. At this aim, a

calibration curve was derived from the one defined inside the radio settings, which was

implemented on the FPGA by means of a look up table. The PWM collective-throttle

curve is defined so that the rotor maintain constant rpm. The values used for the

collective- throttle look up table are reported in table 23.

Unity of measure must be scaled, taking into account the scale factor defined in table 13.

Tables 21-22 summarize the input and output parameters needed for the algorithm to work

properly.

Vz PI Input Parameters

Vz SP [vI16] User defined profile or from Navigation System

Current Vz [vI16] AHRS

KCVz* 28 [°coll /m/s] -2560

KIVz * Ts* 28 [°coll / (m/s)] -51

Output High [Vz O] 25593

Output Low [Vz O] 16221

Initial Collective [cI32] Coll init [µs]*1790 (coll init not less than 1420[µs])

PI Reset TRUE first PI call otherwise FALSE

(performed automatically by the program)

Table 131: Vz PI Input Parameters

Vz PI Outputs
Proportional action collective [cI32]

Total Collective action [Vz O]

Table 142: Vz PI Outputs

 123

Collective [µs] Throttle [µs] Collective [µs] Throttle [µs]

1218 1893 1578 1414

1238 1857 1598 1404

1258 1817 1618 1392

1278 1771 1638 1378

1298 1721 1658 1369

1318 1669 1678 1356

1338 1634 1698 1343

1358 1598 1718 1328

1378 1583 1738 1309

1398 1564 1758 1292

1418 1549 1778 1269

1438 1529 1798 1249

1458 1510 1818 1224

1478 1494 1838 1203

1498 1474 1858 1178

1518 1457 1878 1151

1538 1444 1898 1130

1558 1433

Table 153: Collective-Throttle Curve Look-up table

Heading
A schematic of the heading control software is reported in figure 91.

Figure 91: schematic of the heading control

Heading control is achieved using the onboard GYRO HL-AVCS system. Therefore, an

algorithm is implemented which gives only a reference yaw rate to the gyro HL-AVCS

based on the heading error, calculated with respect to the reference heading set point. The

 124

algorithm is able to discriminate the sense of rotation, so that the helicopter will rotate

always in the shorter direction to reach the set point.

The yaw rate, calculated from the dead zone block in figure 89, is intended to be a

variation with respect to the condition of zero yaw rate. Therefore, this value must be

added to the initialization trim value. The obtained command is the PWM high time in

microseconds, which is used to generate the PWM signal for the gyro AVCS (see PWM

generation algorithm section 4.5.2).

Unity of measure must be scaled as shown in figure 90 taking into account the scale factor

defined in table 12.

Tables 24-25 summarize the input and output parameters needed for the algorithm to

work properly.
psi dead zone Input Parameters

psi SP [aI16] User defined profile or from Navigation System

Current psi [aI16] from AHRS data

Dead zone high limit [aI16] 546

Dead zone low limit [aI16] -546

Output High [µs] 20

Output Low [µs] -20

K_Psi saturation coefficient 21

Table 164: psi dead zone Input Parameters

psi dead zone Outputs
Yaw rate variation with respect to trim [µs]

N.B. Trim value to be added after ouput: 1515 µs

Table 175: psi dead zone Outputs

5.3 COMPLETE ONBOARD SOFTWARE IMPLEMENTATION

The complete RUAV onboard software architecture follows the typical CRIO advised

programming technique, explained in chapter 4, and is illustrated in figure below. The

source code of the full RUAV software is completely reported in the enclosed CD.

 125

Figure 92: RUAV Complete Software Implementation

The complete RUAV software is divided in three main parts:

-The FPGA software is constituted by six independent loops in order to increase

determinism. It includes:

 - nested PI control loop as described in the previous sections

 - NAV 420 data acquisition loop as described in section 4.4.1.

 - radio PWM signal acquisition loop as described in section 4.5

 - sonar sensor data acquisition loop as described in section 4.4.2

 - PWM signal generation loop as described in section 4.5

- a V track calculation loop which transform the NED velocity coming from the

NAV 420 into velocity along the trajectory, which will be used by the controller

[74]. The same loop perform also a GPS signal check. If the GPS has poor signal,

the NAV 420 velocity data are not reliable any more; therefore the velocity control

is automatically disabled and the controller become a merely attitude control.

-The RT (Real Time) software is constituted by two independent loops:

- the time critical loop (timed at 10 ms), which perform high rate read/write

communication with the FPGA software. The time critical loop acquires sensor

 126

data from the FPGA which are either recorded on the CRIO volatile memory for

post processing or communicated to the ground control station

-the normal priority loop which perform TCP/IP communication with the ground

control station and is timed at 100 ms

-The Host Software is constituted by two independent loops:

-the communication loop which perform communication with the onboard

computer for flight data transmission. Communication between the ground station

and the onboard computer is bidirectional since the operator at the ground can

interact with the onboard software by changing flight parameter values (for

example the PI gains can be changed during flight test for controller final tuning).

-the user interface loop which contains the code to generate the user interface for

flight test control and monitoring. The user interface code is made completely

independent from all the other code so that different type of Graphical User

Interface can be used, without need to change any other part of the source code.

Depending on the flight test to be performed, different GUIs were developed:

figures 93, 94, 97 show the ones used during PI tuning tests and flight data

acquisition tests.

Figure 93: PI tuning tests GUI (1)

 127

Figure 94: PI tuning tests GUI (2)

During PI tuning tests, the graphical interface was used to monitor the helicopter PI

responses by means of dedicated diagrams, to enter a given flight plan (or a set point time

history) and to change the PI gains if necessary. Six windows of diagrams are available,

one for each variable under control. Moreover, the user can start or stop the onboard data

logging by means of the front panel button shown in figure 94. The GUI interface can be

stopped independently from the onboard software so that, if TCP/IP communication is

lost, this will not affect the onboard program and the flight test can be concluded without

any data loss. Three different type of automatic flight mode are available:

- “Normal mode”: the user sets a velocity or heading profile to be maintained by the

helicopter. The generated profiles are shown in figure 94 and can be defined by the

user setting the wait time, the target time, the trim set point and the desired step.

All set points (a part form heading) are given by means of a ramp to avoid sharp

transitions. This setpoint mode is very safe because, if communication between the

GCS and the onboard computer is lost, the helicopter will safely complete the task

and flight tests have not to be abrupted.

 128

Figure 95: Typical Setpoint Profiles

- “ Fast Mode”: the user sets a velocity or heading step profile only by giving the

step value and no ramp will be used; the reference signal stops when the user

drives back the set point to trim condition. This mode is more risky with respect to

the first one since, if communication between the GCS and the onboard computer

is lost, the helicopter will not go back to the trim condition after a short period of

time. The only way to recover from this situation is switching back to radio

controlled mode. However, this mode was used only for preliminary and fast tests.

- “Flight Pattern Mode”: the user can set a complete squared flight pattern to be

track by the helicopter as shown in figure 96.

Figure 96: Typical Flight Pattern Profile

Inputs, defined by the user, are: the helicopter initial heading, the Vx step reference

point, the target time, the time of each velocity step and the time between each

velocity step (this time is used to rotate the helicopter in heading while the Vx

 129

velocity has been driven to zero). When the helicopter is running in this mode, Vy

and Vz are automatically set to zero.

The second interface available is much simpler and was used for flight data acquisition

tests. It is composed by two windows:

- the first one reproduces a virtual cockpit together with the radio stick movement

and a GPS 2D flight path

- the second one displays the helicopter states and the commanded inputs (see figure.

97)

Figure 97: Flight Data Acquisition GUI

 130

Chapter 6

HIL SIMULATION

To allow safe, risk-free onboard software testing, the PI controller was first implemented

in a HIL simulator, shown in figure 98.

Figure 98: Schematic of HIL Simulator

The HIL test bench includes as much of the flight hardware in the testing loop as possible

and is constituted by:

- an exact duplicate of the flight computer (the CRIO System) and of the onboard

software including the PI controllers. At this aim, a National Instrument PXI 7831 was

used which is equivalent to the CRIO FPGA modules. FPGA PXI communication with

the computer (emulating the CRIO Real time core) can be performed by means of a

FPGA interface card.

- a computer which simulates the helicopter plant, through the identified transfer

functions reported in chapter 5, and the onboard sensor outputs. The helicopter

simulation model receives inputs from the PI controllers: the software implemented

 131

inside the FPGA PXI 7831 is able both to generate PWM electrical signal for the

actuators and to acquire them by reading the PWM high time, which is sent to the

helicopter simulator. The PWM high time in microsecond is then translated into

degrees of servo rotation (see section 4.5), which is the actual input accepted by the

identified transfer function. In this simplified model, states outputs are θ, Vn, ϕ, Ve, Vd,

ψ, p, q, r which are formatted into a NAV 420 string emulator and are sent to the PXI

by means of the computer serial port. The NAV 420 FPGA acquisition software,

running inside the PXI, will acquire the helicopter states, such closing the loop. An

hardware interface card was also used for converting computer RS232 output level to

TTL level acceptable by the PXI. For practicality reasons, the helicopter dynamics

transfer functions has been developed in the LabView environment; moreover, the

helicopter simulator and the real time code runs on the same machine. This is possible

because all the source code is organized using independently loops.

- a GCS computer which contains the host source code and communicate with the

simulation computer by means of a TCP/IP protocol

- an OpenGL visual system computer can be optionally added for rendering the

helicopter as it moves around in a virtual scenery. The visual system can receive input

from the GCS computer using a TCP/IP protocol

The result of this setup is that the on-board computer effectively “thinks” it is flying the

vehicle, as all of its configuration/data flow is identical to an autonomous flight setup.

In this scenario, performance and possible errors of the onboard software can be detected

during intensive ground safe simulations, before performing any flight test. Figure below

shows an example of HIL simulations results.

Figure 99: Recorded HIL Simulation

 132

Chapter 7

FLIGHT TESTS & PI GAINS TUNING

The onboard control software was tested in flight. The complete flight campaign was done

following five major subsequent steps as show in figure 100.

Figure 100: Flight Tests Procedures

- First only the attitude (ϕ and θ) PI controllers were tested. During these tests collective

and tail commands were left to the RC pilot for safety reasons. As shown in table 11,

the final proportional PI gains find by simulation results were almost correct while the

integral gains were increased of an order of magnitude. This may be due to effects

unmodelled by the transfer funtions . By using an higher integral gain these effects can

be attenuated.

 133

- Once the attitude controllers were somehow calibrated, the nested PI Velocity – attitude

controllers were tested. During these tests, collective and tail commands were still left

to the RC pilot for safety reasons. As shown in table 10-11, the final gains were much

closer to the one found by simulations.

- The third step was to test the heading control together with the nested PI velocity

controller. During these flight tests only collective was left to the RC pilot for safety

reasons. The value to be calibrated during these flights was the yaw rate output in

microseconds to be sent to the gyro HL-AVCS system. Starting with a very small value

equal to ± 5µs, the same value was increased till finding an adequate yaw rate for the

helicopter. The calibrated final value was ± 20µs corresponding to about 10 °/s. This

value was kept intentionally low for safety reason but can be increased (or varied) if

necessary.

- In the fourth step the full, PI controller was tested including the vertical velocity

control. During these tests no commands was left to the pilot and the helicopter was

flying completely autonomously. As shown in the previous tables, the final calibrated

PI gains were higher with respect to the one calculated by simulations. This was due to

the fact that, during simulations, the gains were kept intentionally low for the helicopter

to maintain a very low rate of climb/descent. Vertical velocity flight tests can be very

dangerous since, if the collective-throttle curve is not good calibrated or the PI gains

are to high, the helicopter can crash to the ground without any hope to recover it.

Therefore, the helicopter team decided to keep the gains small at the beginning and

increase them once it was sure that the helicopter was flying safely. The first test

performed with the simulated gains showed that the helicopter was able to maintain

hover conditions. However, the rate of climb/descent was quite very low and the PI

gains were, therefore, increased.

- Finally, after each controller was good tuned, the full control system was tested over a

squared flight pattern. The distance tracked by the helicopter and, therefore, the Vx

track velocity were kept within the RC transmitter range and pilot good line of sight, in

order to recover the helicopter if needed. Some experimental results are shown in

figures 101-104.

During all the flight tests the helicopter was brought into hover condition by the RC pilot

and then switched into autonomous mode.

 134

Figure 101: Simulate vs Experimental longitudinal controller tracking performance

Figure 102: Heading “Control” flight test

 135

Figure 103: Flight Path

Figure 104: Flight Pattern Test

 136

7.1 CONCLUSION AND OUTLOOK

An RUAV platform was set up using commercial and cost effective technology. Both the

hardware and the software were integrated placing attention to modularity, growth

potential, versatility and possibility for ease reconfiguration and software implementation.

HIL simulations and experimental flights were performed in order to test the feasibility to

use the selected hardware and the developed software for helicopter control. The

controller architecture was developed based on a simple nested PID structure. Results

demonstrated that the RUAV system was able to provide accurate flight data

measurements and good helicopter control capabilities.

The research activities carried out at the University of Bologna opened several and new

research directions concerning the following major fields: RUAV Platform future

developments, HIL improvement, mission simulation environment future activities.

Mission Simulation Environment and HIL Simulator

These simulation platform will be further improved. More sophisticated dynamics models

will be implemented on the HIL simulator, including a more accurate model of al the

flight sensors. Coupled with the developed RUAV platform, these simulation

environments will provide useful test beds for safe ground pre-flight tests or for studying

different control and navigation strategy. Researches in man machine interface and air

system integration could be also be performed, which were addressed as one of the most

critical technology aspect for the future development of the civil UAVs and their

integration into the airspace.

RUAV Platform

The onboard navigation system software will be also tested in flight and further flights at

higher speed will be made. Automatic take-off and landing flight mode will be also

implemented and further flight tests will be performed.

Thanks to its modular architecture and accurate flight data measurement capabilities, the

RUAV system may become a useful research test bench in several different field such as:

-aircraft /rotorcraft dynamic model identification

-researches in control and navigation laws (fast and ease software implementation could

results also in a speed up of the research time)

- support in main machine interface research activities.

The feasibility to install the designed avionics hardware, integrated with additional

redundant systems, on an ultralight helicopter will be also investigated.

 137

References

[1] U.S. Air Force Scientific Advisory Board, “Unmanned Aerial Vehicles in

perspective: Effects, Capabilities and Technologies”, SAB-TR-03-01, July 2003.

[2] CAPECON Consortium, "Annex 1 Description of Work", CAPECON Project No.

GRD1-2001-40162, Starting Date May 2002.

[3] Mouritsen S., Boer J-F., Operational concept for local surveillance UAV missions, DLR

and NLR CAPECON report, January 2003

[4] Sevin C., Internal Report on RW UAVs requirements and equipment, CAPECON Report

ECD D 2.4/1, 23 January 2003

[5] Mouritsen S., Rotary wing requirements interim technical report, DLR CAPECON

report ID3/3, 4 February 2003

[6] Gian Marco Saggiani, Barbara Teodorani "A matrix method for defining potential

applications of a multirole Rotary UAV (RUAV) in Italy ", CAPECON Project Internal
Report no.1, January 2003.

[7] Saggiani G.M., Teodorani B., "Rotary wing UAV potential applications: an

analytical study through a matrix method ", University of Bologna, on Aircraft
Engineering and Aerospace Technology, vol. 76, No.1, 2004, pp.6-14

[8] Basset P.M., Operational concept for rotary wing UAV out-of-line-of sight mission,

ONERA CAPECON report, February 2003

[9] Sevin C., Internal Report on survey of potential applications for rotary-wing UAVs, ECD

CAPECON Report ID 2.1/2, 25 September 2002

[10] Cyrille Sevin, "Rotary Wing - Civil UAVs - Concept Of Employment", Rochester

CAPECON Technical Meeting, July 2002

[11] R. Pretolani, G. Saggiani, B. Teodorani, “Mini/Small Rotary Wing UAV

Technologies”, CAPECON Technical Report, Report ID 10.3, November 2005.

[12] L. A. Young, E. W. Aiken, NASA Ames Research Center, et al., “New Concepts

and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing
Vehicles”.

[13] S. Mouritsen, E. Rehwald, DLR-German Aerospace Research Centre, “ Micro
UAV Payloads and Data Link Survey Final Technical Report”, CAPECON Report
ID 10.6/10.7, November 2005

[14] R. E. Weibel R. J. Hansman, MIT, “Safety Considerations for Operation of
Different Classes of UAVs in the NAS”, AIAA-2004-6421, AIAA’s 4th Aviation
Technology, Integration and Operations (ATIO) Forum, 20 - 22 September 2004,
Chicago, Illinois.

 138

[15] B. L. Aponso, E. N. Bachelder, D. L. Lee, System Technology Inc., “Automated
Autorotation for Unmanned Rotorcraft Recovery”, AHS International Specialist’s
MeetingOn Unmanned Rotorcraft, 18-20 January 2005, Chandler, Arizona.

[16] R. E. Weibel R. J. Hansman, MIT, “An Integrated Approach to Evaluating Risk
Mitigation Measures for UAV Operational Concepts in the NAS”, AIAA-2005-
6957, AIAA’s 5th Infoech@Aerospace Conference, 26-29 September 2005,
Arlington, Virginia.

[17] S. Tsach, D. Penn and A. Levy Israel Aircraft Industries (IAI), “Advanced

Technologies and Approaches for Next Generation UAVs”, ICAS 2002.

[18] R. Pretolani, G. Saggiani, B. Teodorani, ”RUAV Ground Support: Basic

Requirements & First Layout Internal Report”, CAPECON Report UNIBO ID
6.1/1, 31 July 2003.

[19] R. Pretolani, “Progetto e realizzazione del sistema di navigazione, guida e
controllo per un elicottero con capacità di volo autonomo”, II School of
Engineering, University of Bologna, PhD Thesis, 2007

[20] B. Mettler, “Identification, Modeling and Characteristics of Miniature
Rotorcraft”, Kluver Academic Publishers,Boston, MA, 2002.

[21] R. Pretolani, G. Saggiani, B. Teodorani, “Development of a mission simulation

environment for Rotary Wing UAV”, CAPECON Technical Report, Report ID 6.4,
September 2004.

[22] M.L. Preatoni (AGUSTA, Varese Italy), R. Pretolani, G. M. Saggiani, B.

Teodorani (DIEM- University of Bologna), “An Integrated Simulation
Environment as a Strategy in Rotorcraft UAVs preliminary design”, Presented at
AHS meeting, Phoenix-Arizona, January 2005

[23] Leonard J., Systems engineering fundamentals Defense Systems Management College

Press, Fort Belvoir Virginia, 1999

[24] Lee J., Nugent J. and Taylor B. Advanced rotor control concepts. Georgia Institute of

Technology AE 6370 Team Project – American Helicopter Society RFP.

[25] Grinsell C., Thompson B., O’Brien P., Senga M. and Schrage D.P. Gtmars. Georgia

Institute of Technology, American Helicopter Society student design competition.

[26] Cohen L., Quality function deployment, Addison-Wesley, Mass, USA, 1995

[27] RAO A et al., Total quality management: a cross functional perspective, John Wiley &

Sons Inc., USA, 1996

[28] Knowles G., Advanced quality tools, Module Notes, WMG The University of Warwick,

Coventry UK, 1997

[29] Raymer D.P:, "Aircraft Design: A Conceptual Approach", AIAA EDUCATION

SERIES

 139

[30] B. Mettler, M.B. Tischler, and T. Kanade, “System identification modeling of a
small-scale unmanned rotorcraft for control design”, Journal of the American
Helicopter Society, 47(1):50–63, January 2002.

[31] B. Mettler, M. Tischler, T. Kanade, and W. Messner, “Attitude control

optimization for a small-scale unmanned helicopter”, Denver, CO, August 2000.
AIAA Guidance, Navigation and Control Conference.

[32] B. Mettler, V. Gavrilets, E. Feron, and T. Kanade, “Dynamic compensation for

high-bandwidth control of small-scale helicopter”, San Francisco, CA, January
2002. American Helicopter Society Specialist Meeting.

[33] M. McConley, “Draper small autonomous aerial vehicle dynamic model”,

Technical Report E41-98-091, Draper Laboratory, August 1998.

[34] J. G. Leishman, “Principles of helicopter aerodynamics”, Cambridge University

Press, New York, 2000.

[35] Ulrik B. Hald, Mikkel V. Hesselbaek, Jacob T. Holmgaard, Christian S. Jensen,

Stefan L. Jakobsen, Martin Siegumfeldt, “Autonomous Helicopter Modelling and
Control”, Aalborg University, May 2005.

[36] T. D. Talbot, B. E. Tingling, W. A. Decker, and R.T. Chen, “A mathematical

model of a single main rotor helicopter for piloted simulation”, Technical
Memorandum 84281, NASA, 1982.

[37] A.R.S. Bramwell, “Bramwell’s Helicopter Dynamics”, AIAA, Reston VA, 2001.

[38] G.D. Padfield, “Helicopter Flight Dynamics: The Theory and Application of

Flying Qualities and Simulation Modeling”, AIAA Education Series, Reston, VA,
1996.

[39] V. Gravilets, B. Mettler, E. Feron, “Dynamic model for a miniature acrobatic

helicopter“, MIT-LIDS report, # LIDS-P-2580, 2003

[40] Einthoven,P., Morse,C., ”Energy Management”, presented at the AHS Flight

Controls and Crew Systems Design Specialists’ Meeting,Philadelphia, PA, October
9-11, 2002

[41] Prouty R.W., “Helicopter Performance, Stability and Control”, Krieger Publishing

Company, Inc., 1990.

[42] S. Mouritsen (DLR,Braunschweig, Germany), R. Pretolani, G. M. Saggiani, B.

Teodorani (DIEM- University of Bologna), “Application of an Active Joystick in a
Rotorcraft UAV Ground Control Station”, Presented at AHS meeting, Phoenix-
Arizona, January 2005

[43] M. Niculescu, “Lateral Track Control Law for Aerosonde UAV”, AIAA 2001-

0016, University of Washington, Seattle, January 2001

 140

[44] P. S. Anderson, “Development of a UAV ground control station”, M.SC. Thesis
Linköping University, 2002

[45] C. Munzinger, “Development of a Real-time flight simulator for an experimental

model helicopter”, Georgia Institute of Technology School of Aerospace
Engineering, Atlanta Dec. 1998

[46] A. Boccalatte, F. De Crescenzio, F. Flamigni, F. Persiani "A training environment for

aircraft pilots by means of virtual reality techniques", Proceedings of the XIII ADM
International Conference, Napoli, June 4th - 6th 2003.

[47] ftp://edcsgs9.cr.usgs.gov/pub/data/srtm/

[48] Preatoni Marzio, Agusta, “Rotary Wing UAV Configurations –Final Technical

Report”, CAPECON Technical Report, Report ID 6.4, May 2004.

[49] J.F. Boer, F. Fresta, H. Haverdings, M.L. Preatoni, R.Pretolani, G.M. Saggiani,

B.Teodorani, AGUSTA, NLR, DIEM-University of Bologna, “ Small/Mini Rotary
Wing UAV Configuration”, CAPECON Report ID 10.5, November 2005.

[50] Cooper,G.E., Harper,R.P., ”The Use of Pilot Rating in the Evaluation of Aircraft

Handling Qualities”, NASA TN D-5153, April 1969.

[51] www.ni.com

[52] Joerg S. Dittrich, “Design and Integration of an Unmanned Aerial Vehicle

Navigation system”, School of Aerospace Engineering Georgia Institute of
Technology, May 2002

[53] “NAV 420 CrossBow User Manual”; www.xbow.com

[54] “SRF08 Ultra sonic range finder Technical Specification”; www.robotitaly.com

[55] “The I2C-BUS Specification”, Version 2.4, Doc. N° 93983934001, Philips

Semiconductors, Janaury 2000

[56] “Using Quadrature encoder with E series DAQ Cards”, National Instruments

application notes

[57] “Vibration and Shock Theory; www.lordmpd.com

[58] http://www.mathworks.com/products/matlab

[59] The MathWorks Inc. ed. T.M.W. Inc.; Natick, MA. “User’s Guide for Matlab

Simulink, Toolboxes”, 2001

[60] “Fundamentals of FFT signal Anlysis and measurements”, Labview Bookshelf,

2004

[61] A.V. Oppenheim and R.W. Schafer, “Discrete time signal processing”, Signal

Processing Series, Prentice Hall, Englewood Cliffs, 1989

 141

[62] www.boeing.com ; Penn State University study on Raptor 60 “Good Vibrations”

[63] István Kollár, “Frequency Domain System Identification Toolbox”, MATLAB®

User Guide

[64] L. Liung, “System Identification”, Prentice Hall, 1987

[65] P.G. Hannel and R.V. Jategeonkov, “The evolution of Flight vehicle system

Identification”, Agard Lectures Series on Rotorcraft System Identification, 1995

[66] J.S. Bendat and A.G. Piersol “Engineering Applications of Correlation and

Spectral Analysis”, John Whiley & Son, New York, NY, 1993

[67] M. Tibaldi, “Progetto di sistemi di controllo”, Pitagora Editrice, Bologna 1995.

[68] G. Buskey, J. Roberts, P. Corke, G. Wyeth, “Helicopter Automation using a low-cost

sensing system”, IEEE International Conference on Systems, Man and Cybernetics, 2005.

[69] K. Sprague, V. Gravilets, D. Dugail, B. Mettler, E. Feron, “Design and applications of an

avionics system for a miniature acrobatic helicopter”, Digital Avionics Systems
Conference, October 2001, Daytona Beach, Florida.

[70] C. Castillo, W, Alvis, M. Castillo-Effen, K. VAlavanis, W. Moreno, “Small scale

helicopter analysis and controller design for non-aggressive flights”, Center for Robot
Assisted Search and Rescue, University of South Florida.

[71] M. LaCivita, W. Messner, and T. Kanade, “Modeling of small-scale helicopters

with integrated first-principlesand integrated system identification techniques”,
Monteal, Canada, June 2002. Presented at 58th Forum of American Helicopter
Society.

[72] V. Gavrilets, I. Martinos, B. Mettler and E. Feron, “Control Logic for Automated

Aerobatic Flight of a Miniature Helicopter”, Massachusetts Institute of
Technology, Cambridge, MA 02139.

[73] LabView PID Control Toolset User Manual

[74] J.A. Farell, M. Barth, “The Global Positioning System & Inertial Navigation”, Mc

GrawHill, 1999

